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Résumé 

Nous étudions l‘effet thermo-électrique et les phénomènes qui en résultent, forces et les 

courants thermoélectriques (TEC) sous l‘action d‘un champ magnétique externe imposé lors 

de la solidification d‘alliages métalliques. Nous avons utilisé des simulations numériques, des 

observations directes et des examens de laboratoire. L‘interaction entre les courants thermo-

électriques et le champ magnétique externe lors de la solidification produit des forces 

électromagnétiques et donc un écoulement du métal liquide. Le résultat est nommé effet 

magnétique thermoélectrique (TEME). Les formulations de TEC, les forces et les équations 

gouvernant les écoulements TEM sont donnés. Afin de mieux prouver l'existence de la TEME, 

des expériences par méthode d'imagerie à rayons X menées au synchrtron ont été utilisées 

pour observer in-situ et en temps réel l‘action directe des forces et les mouvements TEM 

pendant la solidification directionnelle des alliages Al-Cu. Nous avons montré la cohérence 

raisonnable entre les calculs analytiques et des simulations numériques qui ont été exécutes 

avec les mêmes conditions de traitement. En outre, la capacité des écoulements thermo-

électriques à influer sur la microstructure lors de la solidification directionnelle est 

expérimentalement évaluée dans les autres cas en réalité. La solidification directionnelle d'une 

seule phase de formation des alliages Al-Cu sous divers champs magnétiques montre que les 

écoulements TEM sont capables de modifier la forme de l'interface liquide-solide conduisant 

à des morphologies différentes. L‘effet le plus intense se produit dans différents champs 

magnétiques pour différentes morphologies, en effet, le champ magnétique élevé est 

nécessaire pour la morphologie à une plus petite longueur typique. Ceci est en accord avec le 

comportement des vitesses de TEM qui varient avec les champs magnétiques imposés ainsi 

que les différentes échelles de longueur typique. Cette variation est confirmée par des 

simulations numériques 3D. Nous montrons que les dendrites primaires et à l'avant de la 

phase eutectique, peuvent être modifiés par les mouvements TEM et les forces de TEM dans 

le solide pour améliorer la croissance de la phase de Al2Cu facettes primaire pendant la 

solidification des Al-40wt%Cu hypereutectiques. Le mécanisme de renforcement de la 

croissance de la phase facettes Al2Cu est confirmé par à électronique observation au 

microscope transmission, et la raison de la formation de la structure de croissance de couple 

de Al-26wt% Cu alliages est vérifiée par le test de l'analyse thermique différentielle. Ainsi, 

nous pouvons affirmer que le champ magnétique élevé facilite la formation de la structure de 

la croissance de couple pour hypoeutectiques alliages Al-Cu, et favorise la croissance de la 

phase Al2Cu primaire pour hypereutectiques Al-Cu alliages. 
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Abstract 

We have investigated the thermoelectric magnetic (TEM) forces and flows resulting 

from the interaction between the internal thermoelectric currents (TEC) and the imposed 

external magnetic field during solidification. Numerical simulations, direct observations and 

experimental examinations were taken. As the natural phenomenon, TEC was discovered 

almost 200 years ago, therefore, our introduction begins from then on. It is shown that the 

interaction between TEC and magnetic field during solidification was aware in the context of 

a rising field named Electromagnetic Processing of Materials. After that, it is discussed how 

the TEC appear and the TEM effect (TEME, referring to both TEM forces and flows) behaves 

at the liquid-solid interface in directional solidification under external magnetic field. 

Meanwhile, formulations of TEC, TEM forces and flows are given, and numerical 

simulations of TEME are performed to visually display the TEM forces and flows. In order to 

further prove the existence of TEME, in-situ synchrotron X-ray imaging method was used to 

observe the direct resultant of TEM forces and flows during directionally solidifying the Al-

Cu alloys. The observations show reasonable consistency with the analytical calculations and 

numerical simulations performed with the same process conditions. Except confirmation the 

existence of TEME, its abilities to affect the microstructure during directional solidification 

are experimentally investigated with the bigger samples. The single phase forming Al-Cu 

alloys are directionally solidified under various magnetic fields, which shows that TEM flows 

are capable to modify the shape of liquid-solid interface, and the most intensive affect occurs 

under different magnetic fields for different interface morphologies. Indeed, the smaller the 

typical length of the morphology is the higher the magnetic field is needed. This is confirmed 

by 3D numerical simulations and agrees with the estimating regulation of the velocity of TEM 

flows changing with magnetic fields for different typical length scales. Directional 

solidification of multiphase forming Al-Cu alloys under various magnetic fields shows that 

the mushy zone length (distance between the front of primary dendrites and eutectic phases) 

varies with the magnetic fields, which can be attributed to the redistribution of rejected 

solutes by TEM flows. In addition, apparent enhanced growth of the primary faceted Al2Cu 

phase is found when Al-40wt%Cu alloys are solidified under sufficient high magnetic fields, 

which should be ascribed to the TEM forces acting on the solid because stresses are able to 

lead the formation of defects and thus benefit to the growth of faceted phase. This is 

confirmed by comparison of the dislocations in samples solidified without and with a 10T 

magnetic field via transmission electron microscopy observation. In another aspect, an almost 
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entire couple growth structure is achieved when Al-26wt%Cu alloys are directionally 

solidified under a 4T magnetic field. This can be explained by the effect of high magnetic 

field on changing the nucleation temperature and growth velocity of primary α-Al and 

eutectic phases respectively. Moreover, the differential thermal analysis test on the nucleation 

temperature of each phase verified this explanation. Therefore, we conclude that high 

magnetic field facilitates the formation of couple growth structure for hypoeutectic Al-Cu 

alloys, reversely, enhances the growth of primary phase for hypereutectic Al-Cu alloys. 

Keywords: 

 Thermoelectric currents (TEC)  

 Thermoelectric magnetic effect (TEME) 

 Thermoelectric magnetic forces (TEM forces) 

 Thermoelectric magnetic flows (TEM flows) 

 Synchrotron X-ray imaging 

 Directional solidification 

 Numerical simulation 

 Magnetic field 

 Al-Cu alloy 
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Résumé étendu 

L‘effet thermoélectrique magnétique (TEM) résulte de l'interaction entre le courant 

thermoélectrique interne (TEC) et le champ magnétique externe, ce qui entraîne l‘apparition 

de forces électromagnétiques dites de TEM. De nombreuses indications expérimentales 

fragmentaires mentionnant l'existence de ces deux phénomènes ont été signalées dans la 

littérature lorsqu‘un champ magnétique continu était appliqué lors de la solidification. 

Cependant, il manque des observations ainsi que des études systématiques. Par conséquent, il 

était nécessaire de découvrir de manière plus détaillée l'effet TEM dans le processus de 

solidification directionnelle sous l‘influence d‘un champ magnétique externe. Ce travail 

constitue une suite du travail de thèse de X. Li [1]. La présente thèse décrit l'effet TEM et 

donne un état de la littérature dans le chapitre 1. Une illustration numérique dans le chapitre 2 

permet de montrer l‘action des forces TEM dans une configuration proche de celle que l‘on 

trouve en solidification. Les observations in situ par imagerie par rayons X synchrotron, 

détaillées dans le chapitre 3 ont donné la preuve de l‘existence de ces phénomènes. 

L‘'influence de l'effet TEM dans le processus de solidification directionnelle d‘alliages Al-Cu 

à la fois monophasés et multiphasés dans un champ magnétique externe est analysée 

respectivement dans les chapitres 4 et 5. Enfin les conclusions générales obtenues et les 

perspectives sont données dans le chapitre 6. 

Chapitre 1 

Les écoulements magnétohydrodynamiques thermoélectriques (le même phénomène que 

nous avons appelé TEM) peuvent exister et affecter les procédés métallurgiques. Cela a été 

mis en avant en premier lieu par A. Shercliff, dans son article publié en 1979. Cependant, 

parce que ses principales attentions se sont concentrées sur les écoulements TEM dans les 

réacteurs nucléaires, la tentative d'analyse de ce phénomène en relation avec la métallurgie a 

d'abord été faite par certains anciens scientifiques de l'Union soviétique en application au 

procédés de croissance des cristaux [2-4], puis par d'autres lors de la solidification de alliages 

métalliques [5-7].  

En 1981, Michelson et Karklin ont proposé un mécanisme selon lequel les courants 

générés par la force électromotrice thermique dans le corps de cristallisation pourraient 

affecter la croissance des cristaux si un champ magnétique était présent [2], Ils ont confirmé 

l'existence de TEC via la détection de l'évolution des champs magnétiques comme le montre 

la figure 1(a). Quelques années plus tard, une preuve explicite des écoulements TEM qui 
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influent sur la croissance de monocristaux a été donnée par Gorbunov en 1987 [3]. En effet, il 

a visualisé les écoulements TEM de In-Ga-Sn produits par un gradient de température imposé 

et un champ magnétique statique à la verticale de la surface de fondus. La Figure 1(b) montre 

la mesure de la vitesse de rotation de la surface du bain. On peut constater que la vitesse des 

écoulements atteint un maximum lorsque le champ magnétique est d'environ 0,1 T et diminue 

avec l'augmentation continue du champ magnétique. Le changement même de tendance a été 

confirmé par Kaddeche et al. [5] sept ans plus tard. En outre, Gorbunov a inversé la direction 

du champ magnétique, et la direction de la rotation de la surface a été inversée en même 

temps, ce qui pourrait démontrer que ces écoulements doivent être reliés au champ 

magnétique imposé. Après cela, Gorbunov et Lyumkis ont utilisé ce phénomène pour 

expliquer la forte déformation de la forme des cristaux produite lors du tirage de monocristal 

InSb qui croissent sous un champ magnétique. D'ailleurs, ils attribuent les stries périodiques 

de silicium dopé croissant dans un champ magnétique vertical à l'apparition d‘écoulements 

TEM [4].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L‘exploration des écoulements TEM pendant la solidification des alliages métalliques a 

été mise en évidence en 1991. Alboussière, Moreau et Camel ont proposé que des 

Figure 1 (a) variation temporelle de l‘intensité du champ magnétique (H) à proximité 
d‘un échantillon de cadmium solidifié, AA correspond au moment où le spécimen a 
été solidifié; (b) vitesse de rotation du liquide In-Ga-Sn: 1 et In-Sb: 2 en termes de 
densités de flux imposé de champ magnétique, (c) Bi-40at% alliages de Sn solidifiés, 
sans et avec un champ magnétique transversal. 

(b) 

(c) Direction de croissance 

(a) 

0T 

0.2T 
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écoulements en régime dendritique peuvent exister pour améliorer le mélange des solutés, et 

ces écoulements pouvaient être produits par l'interaction entre les courants TEC et le champ 

magnétique imposé [8]. Afin de vérifier l'existence d‘écoulement TEM dans le processus de 

solidification quand un champ magnétique externe est présent, ils ont réalisé une 

solidification directionnelle de Bi-Sn et des alliages Pb-Sn avec et sans champ magnétique. Il 

a été constaté que, pour l'alliage Bi-Sn, le transport solutal sous champ magnétique est plus 

élevé que celui obtenu sans champ magnétique, comme indiqué à la figure 1 (c), alors que 

pour Pb-Sn allié, aucun effet apparent n‘a été détecté quand il y avait un champ magnétique 

externe. En outre, parce que le pouvoir thermoélectrique absolu du Pb-Sn est négligeable 

(ATP, 0.1ȝV / K) à comparer à Bi-Sn (70ȝV / K), ces résultats leur ont permis de faire valoir 

que les écoulements de TEM existaient [9]. Afin d'obtenir une meilleure compréhension, 

Moreau et al. ont construit un modèle numérique pour estimer la vitesse des écoulements 

TEM interdendritiques en 1994 [10], D'un autre côté, ils ont analysé les effets Seebeck et 

Peltier en l'absence de champ magnétique externe et ont constaté que ces deux effets ont 

déstabilisé l'interface liquide-solide. Cinq ans après, Lehmann et Moreau fournissent un autre 

modèle pour simuler les écoulements TEM dans la zone pâteuse, et affirment que 

l‘écoulement TEM modifie la convection interdendritique [11, 12]. 

Parallèlement, les analyses de l'influence des écoulements TEM sur la croissance des 

cristaux ont été développées. Cröll et al. ont trouvé un nouveau type de stries de dopants 

prononcées et très différentes de celles provoquées par la convection naturelle ou 

thermocapillaire lors de l‘élaboration de silicium par la méthode de la zone flottante sous un 

champ magnétique axial [13]. Ils ont pensé que les écoulements TEM pouvaient expliquer ces 

nouvelles stries. Khine et Walker ont étudié théoriquement les écoulements TEM lors de la 

croissance Bridgman de semi-conducteurs sous un champ magnétique intense axial et ont 

constaté que le changement de tendance de l'amplitude des écoulements TEM avec le champ 

magnétique imposé se comporte de la même manière que celle soulignée par Gorbunov [14]. 

En outre, ils ont estimé les amplitudes des composantes azimutales des écoulements TEM et 

ont trouvé qu‘elles pouvaient atteindre plusieurs micromètres par seconde, ce qui pouvait 

générer des stries de rotation en phase de croissance des cristaux. Yesilyurt et al. ont simulé 

numériquement l'effet des écoulements TEM sur la croissance Bridgman de Ge1-xSix [15] et 

ont constaté que la convection méridienne avait modifié la composition et la forme d'interface 

de croissance. Après cela, ils ont prédit les écoulements TEM avec gravité variable [16] en 

optimisant leur modèle numérique. Les dernières recherches sur l'influence des écoulements 

TEM pendant la croissance cristalline ont été réalisées par Dold, Szofran, et Benz [17], qui 
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ont donné expérimentalement la preuve qu'il y avait une vitesse maximum de convection 

TEM alors que le champ magnétique imposé n'avait cessé d'augmenter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En 2002 et 2006, des recherches sur les effets des écoulements TEM pendant la 

solidification d'alliages métalliques ont été publiées par des chercheurs de l'Université 

Technique de Liaoning. Ils ont étudié l'influence des écoulements TEM sur la microstructure 

des Al-Cu et des alliages Al-Si et ont constaté que lorsque la solidification a lieu en présence 

d'un écoulement TEM de champ magnétique externe ce dernier est capable fait de modifier 

les structures des matériaux[18, 19]. Dans le cadre d'une coopération franco-chinoise entre les 

laboratoires SIMAP/EPM et l'Université de Shanghai des recherches ont été entreprises sur ce 

sujet et se poursuivent jusqu'à présent, animées par le professeur Yves Fautrelle et le 

professeur Zhongming Ren. En 2007, leur premier doctorant en co-tutelle, Xi Li, a commencé 

à étudier expérimentalement les écoulements TEM et ses influences sur la solidification en 

présence d'un champ magnétique externe. Il a constaté que les effets du champ magnétique 

varie avec différentes morphologies lors de la solidification directionnelle. En effet, plus la 

longueur du champ magnétique est petite, plus intense doit être le champ magnétique pour 

produire des écoulements TEM. En outre, il a constaté que les écoulements TEM turbulents 

peuvent se produire lorsque la solidification directionnelle a eu lieu sous un champ 

magnétique transversal des écoulements TEM peuvent apparaître [20-21]. En 2009, Cramer, 

Zhang, et Gerbeth ont publié leurs travaux numériques et expérimentaux sur les écoulements 

Figure 2 (a) Calcul des courants électriques TE, quand on impose un champ 
magnétique transversal; (b) observation in situ d‘écoulement TEM généré par un 
champ magnétique de 0.45T appliqué transversalement, par imagerie par rayons X 
synchrotron. 

(a) (b) 

0.1T 

TEM 
 vitesse 

TEC 
répartition 
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TEM en étudiant ces écoulements dans une boîte carrée avec un gradient de température 

imposé et un champ magnétique. Ils ont constaté que les écoulements TEM étaient vigoureux 

et pouvaient brasser le liquide pendant les procédés métallurgiques [22]. Afin d'étendre les 

études précédentes, en 2011, Li et Gagnoud ont effectué les simulations d'écoulements TEM 

sous l'action d'un champ magnétique transversal faible [23] comme le montre la figure 2 (a), 

en accord raisonnableavec les résultats expérimentaux. Durant cette période, un autre travail 

remarquable a été réalisé par le professeur Yasuda du Japon [24-25]. en observant pour la 

première fois, in situ, les écoulements TEM pendant la solidification directionnelle d'alliages 

métalliques par imagerie par rayons X synchrotron comme dans la figure 2 (b). Avec 

l'augmentation du nombre de recherches sur les flux de TEM, ses influences dans des 

systèmes de plus en plus, on a remarqué et étudié. Jusqu'à présent, l'existence de flux de TEM 

avait été validé dans les superalliages DZ417 par Ren et.al [26], dans hypereutectique alliage 

Al-Al2Cu par Shen et.al [27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Il est bien connu que les écoulements TEM sont engendrés par la force de Lorentz induite 

par l'interaction entre le courant TEC et le champ magnétique imposé. Ces forces, appelées 

forces TEM, s'appliquent aussi sur le solide [28]. Cependant, les effets des forces TEM sur un 

solide ont été presque ignorés au tout début de leur découverte car ils étaient difficiles à 

Figure 3 (a) exemple de branchement de la cellule d'Al-0.85wt% Cu solidifié à 5 m/ 
s sous différentes intensités de flux de champ magnétique; (b) Illustration du couple 
provoqué par les forces de TEM de directions opposées au sommet et au fond d'une 
cellule ou dendrites, (c) et la carte Microstructure EBSD d'Al-4.5wt% Cu alliage 
solidifié à 5 m / s avec et sans champ magnétique de 10T. 

(c) 

0T 
10T 

B 

10T 
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(a) 0T 
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10T 
B 

Direction de 
croissance 

(b) Couple 
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détecter. Les écoulements TEM peuvent être intensifs sous champs magnétiques modérés ou 

faibles [29]. En outre et jusqu'à récemment, la technologies sur les champs magnétiques 

élevés n'a pas permis le développement des recherches sur les forces TEM sur le solide en 

phase de solidification [30]. Grâce au développement rapide des matériaux supraconducteurs, 

on peut aujourd'hui utiliser des champs magnétiques intenses pour la solidification en 

laboratoire ou pour la métallurgie industrielle [31]. Sous des champs magnétiques élevés, les 

forces TEM peuvent être très grandes, et compte tenu de l' intérêt croissant pour la 

solidification sous des champs magnétiques élevés [32], il est intéressant de découvrir 

comment les forces TEM peuvent influencer un solide. En effet, quelques tentatives 

pionnières ont déjà été faites. 

L'effet des forces TEM sur un solide a été explicitement souligné par Li, Fautrelle, et 

Ren en 2007 [33]. En analysant les écoulements TEM ils ont constaté que les cellules ont été 

brisées et l'interface liquide-solide est devenu inégale sous un champ magnétique supérieur. 

Les écoulements TEM devraient être amortis en raison du champ magnétique élevé. Mais la 

rupture des cellules et de l'interface peut être causée par les forces TEM dans le solide. En ce 

qui concerne la rupture des cellules ou dendrites [34], ils ont étudié l'évolution morphologique 

des cellules et des dendrites lors de la solidification directionnelle dans un champ magnétique 

élevé. Ils ont mis en évidence que les cellules et les dendrites sont tordues et déviées par 

rapport à la direction de solidification. Pour des taux de croissance plus faibles, nous avons 

observé une augmentation de la ramification des troncs primaires ainsi qu'un fractionnement 

de la pointe des cellules comme le montre la figure 3 (a). Par ailleurs, en 2009 [35], en 

combinant avec les simulations numériques effectuées par Gagnoud et al. nous avons pu 

confirmer l'existence d'un couple sur la cellule ou sur les dendrites (figure 3 (b)) et souligner 

que ce couple peut déclencher la colonne de transitions équiaxes (CET) en cours de 

solidification directionnelle. Afin de prouver que la CET pouvait être déclenchée par les 

forces TEM, Li et al. ont réalisé une solidification directionnelle de divers alliages, tels que 

Al-Cu, Pb-Sn, superalliages, Zn-Cu, Al-Si et Al-Ni avec et sans champ magnétique élevé [36-

38], comme le montre la figure 3 (c). L'analyse par diffraction d'électrons rétrodiffusés 

(EBSD) a confirmé la présence de CET avec les alliages appropriés et sous un champ 

magnétique suffisamment élevé. En ce qui concerne l'interface inégale [39-41], avec l'aide de 

Yudong Zhang et Claude Esling, Li et.al ont examiné le plan de désorientation locale des 

échantillons et ont constaté que l'inadéquation de cristal de l'échantillon solidifié sous champ 

magnétique 10T était plus sévère que celle sans champ magnétique. Ceci démontre l'existence 

de forces TEM. Pendant ce temps, considérant l'ensemble des résultats expérimentaux relatifs 

au changement de forme de l'interface et au fractionnement de l'interface plane, ils ont fait 
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valoir que les forces TEM sur un solide peuvent provoquer l'instabilité de l'interface lors de la 

solidification [42]. En effet, les contraintes à l'état solide peuvent changer le potentiel 

chimique et la tension de surface solide, et cela influence étroitement la stabilité de l'interface 

liquide-solide [43]. 

En étudiant en 1979 les écoulements de refroidissement métalliques dans un système de 

réacteur nucléaire, le professeur Shercliff a mis en évjdence l'existence d 'écoulements TEM 

pendant le processus métallurgique. L'effet TEM en cause ici, devrait toutefois être classé 

dans une nouvelle branche des procédés électromagnétiques des matériaux (EPM), en 

particulier dans le domaine de la solidification sous champ magnétique statique externe. 

Notons que ce sont les professeurs Youdelis et Dorward qui, en étudiant dans les années 60, 

l'influence du champ magnétique sur la solidification directionnelle d'alliages Al-Cu, ont 

donné les premières indications sur l 'existence d'écoulements TEM dans le processus de 

solidification [45]. 

Chapitre 2 

Il est nécessaire à présent d'introduire l'effet thermoélectrique (TE) si nous voulons 

clarifier l'effet TEM dans la solidification. L'effet TE est un terme générique utilisé pour 

décrire les phénomènes de conversion directe des différences de température en tension 

électrique et vice-versa. Ceci englobe trois effets distincts : les effets Seebeck, Peltier et 

Thomson [46]. L'effet Seebeck a d'abord été découvert parmi les phénomènes 

thermoélectriques par un physicien allemand, Thomas Seebeck , en 1821 [47]. Il a constaté 

qu'un circuit constitué de deux métaux différents avec des jonctions à différentes températures 

pouvait dévier un aimant d'une boussole et a nommé ce phénomène : «effet magnéto-

thermique». Un physicien danois Hans Christian Orsted a reconsidéré la découverte de 

Seebeck et a constaté qu'une force électromotrice apparaît dans deux matériaux différents. 

L'effet magnéto-thermique est devenu   effet de thermoélectricité, puis effet Seebeck. L'effet 

Peltier a été découvert par un physicien français, Jean Charles Athanase Peltier, treize ans 

après la découverte de Seebeck. Il décrit un processus inverse de l'effet Seebeck : un courant 

électrique passant à travers les jonctions de deux métaux différents produirait du chauffage ou 

du refroidissement [48]. En 1838, Lenz a mis en évidence les relations entre le chauffage ou 

le refroidissement et la direction des courants [49]. Parce que la chaleur absorbée ou créée au 

niveau des jonctions est proportionnelle au courant électrique, un coefficient de 

proportionnalité appelé coefficient Peltier a été défini pour lier la chaleur et le courant [50]. 

En 1854 un physicien mathématicien britannique William Thomson (plus tard Lord Kelvin) a 

tenté d'établir une relation déterminant le coefficient Seebeck-Peltier à l'aide de la 
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thermodynamique [51]. L'effet Thomson révèle que la chaleur peut être absorbée ou produite 

lorsque le courant circule dans un milieu unique avec gradient thermique et le coefficient 

Thomson relie la chaleur aux deux courants électriques et au gradient thermique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En introduisant l'effet TE, on peut constater que l'apparition de l'effet Seebeck ou 

thermoélectrique courants (TEC) doit être le principe des deux autres effets. Les conditions 

nécessaires pour avoir un effet TEC sont deux conducteurs différents connectés et une 

différence de température existant entre leurs jonctions. Il se trouve que l'interface liquide-

solide dans le processus de solidification directionnelle répond à ces demandes. En règle 

générale, liquides et solides d'alliages ont des propriétés ATP et physiques telles que la 

conductivité thermique et électrique.Par conséquent le liquide et le solide au cours du 

Al-0.85%Cu, 2ȝm/s 
63K/cm 

Al-0.85%Cu, 1ȝm/s 
63K/cm 

DZ417G superalloy, 
5ȝm/s, 150K/cm 

(a) 

(b) 

(c) 

(d) 

Solide 

Liquid 

G 

Ss   πs   Ĳs 

Courants 
thermoélectrique

s Peltier  
refroidissement 

Peltier 
chauffage 

Sl   πl   Ĳl 

Figure 4 (a) interface plane; (b) interface cellulaire; (c) interface dendritique; (d) 
Illustration de l'effet TE se produisant au cours de la solidification directionnelle près 
de l'interface liquide-solide, G est le gradient thermique. S, π et τ représentent les 
coefficients Seebeck, Peltier et Thomson, respectivement, et les indices L, et S 
représentent les  liquide et solide respectivement. 
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processus de solidification peuvent être considérés comme deux conducteurs différents et sont 

reliés les uns aux autres à l'interface. Lorsque l'interface liquide-solide n'est pas parfaitement 

plane, ce qui est le cas le plus courant, la composante du gradient thermique le long de 

l'interface existe. Un tel gradient est un facteur important pour l'apparition de courants TE 

dans le processus de solidification dirigée. En fait, comme le montre la figure 4 (a) à (c) l'effet 

TE peut avoir lieu dans ces trois morphologies de base plus communément aux interfaces 

liquide-solide. Considérons un élément de chaque type d'interface (par exemple un côté d'une 

interface plane de révolution, d'un côté de la pointe de cellules ou dendrites) et encerclé par 

les rectangles rouges dans la figure 4 (a) à (c), on peut constater que la géométrie comme 

dessinée dans la figure 4 (d) peut raisonnablement représenter ces trois morphologies typiques. 

En présence d'un gradient ascendant thermique on observe une différence de température 

entre le haut et le bas de l'interface. Les solides et les liquides ont des propriétés physiques 

d'ATP différentes. Le courant TE indiqué par le cercle en pointillés sur la figure 4 (d) est 

conforme à l'effet Seebeck. A la jonction entre le solide et le liquide, le chauffage ou le 

refroidissement Peltier peut apparaître comme indiqué par les taches rouges et bleues sur la 

Figure 4 (d). Pendant ce temps, le TEC dans chacun des milieux solide et liquide provoque 

l'effet Thomson. Dans les cas étudiés, l'effet Peltier et Thomson est négligeable. 

Dans ces phénomènes, une fois imposé un champ magnétique externe, l'effet TEM 

apparaît. Quand les courants électriques et les lignes de champ magnétique ne sont pas 

parallèles les forces de Lorentz ou de Laplace apparaissent. Ces forces sont la source 

fondamentale de l'effet TEM. Par ailleurs, afin d'expliquer intuitivement l'effet TEM dans le 

processus de solidification directionnelle sous l'effet du champ magnétique axial et transversal, 

nous avons représenté graphiquement les cas à la fois en 2 dimensions et en 3 dimensions 

comme le montre la figure 5. 

Pour tenir compte quantitativement de l'effet TEC basé sur un mécanisme de potentiel 

thermoélectrique résultant des différentes réponses des porteurs de charge de matériaux à 

différentes températures, la loi Ohm doit être modifiée comme suit : 

)( TSBuEj          (1) 

dans lequel Bu
 est la force électromotrice provoquée par milieu conducteur se déplaçant 

dans un champ magnétique, ı est la conductivité électrique, E


 désigne le champ électrique, 

u


 est la vitesse de déplacement du milieu dans un champ magnétique B


, T  représente le 

gradient de température, et S est l'ATP. De plus, les courants doivent satisfaire à l'équation de 

continuité : 0.  j


. L'effet TEC dans la situation illustrée à la figure 5 a été simulé avec le 

logiciel COMSOL Multiphysics (version 4.2.0.228), qui utilise une méthode d'éléments finis 
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pour la discrétisation spatiale et pour la résolution de systèmes d'équations dérivées partielle 

[52]. La figure 6 montre une simulation de l'effet TEC généré par des gradients thermiques 

constants respectivement de 3000K/m et -3000K/m. 
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Figure 6 TEC densités de courants électriques générés par les gradients thermiques 
de 3000 et -3000K / m. 

Figure 5 Illustration de l'effet de TEM lors du processus de solidification dirigée à 
l'interface liquide-solide. (a) 2D et 3D illustration graphique des forces TEM et leur 
orientation sous champ magnétique axial vers le haut; (b) Vue de dessus des 
écoulements TEM dans le plan x-y générés par les forces TEM à l'état liquide; (c) 
illustration graphique 3D et 2D des forces TEM et de leur direction dans un champ 
magnétique transversal; (d) vue de dessus des écoulements de TEM dans le plan x-y 
entraînés par les forces TEM dans le liquide. 

(a) 

(b) (d) 

(c) 

Solid 

Solid Solid 

Solid 

3D 3D 

2D 2D 

Liquid Liquid 

TEC 

TEM Forces 

B B G G 

TEC 

TEM Forces 

 

     

 

 

B B 

TEM Flows 

z 

y 

x 

y 

x 



 

18 
 

Tableau 1 Propriétés physiques de l‘alliage d‘aluminium utilisés 

Symbol Unit Solid Liquid 

S V/K -1.5×10-6 -2.25×10-6 
σ (Ωm)-1 7.9×107 4.0×106 
ȝ Pas 2.0×106 2.9×10-3 
ț W/mK 150 95 
C J/KgK 0.9×103 1.08×103 
ρ Kg/m3 2.7×103 2.4×103 

L'interaction entre les courants électriques et le champ magnétique externe produit dans 

une force de Lorentz calculée comme suit : 

=F j B          (2) 

Si l'on néglige le champ électrique initiale, les forces TEM solides et liquides peuvent être 

simplement exprimées comme suit : 

s s sF S T B            (3) 

l l lF S T B            (4) 

D‘autre part,  les écoulements générés par les forces TEM dans le liquide peut être décrit par 

l'équation de Navier-Stokes (N-S) 

2( )
( )

u
u u p g u j B

t

                 
(5) 

Puisque le métal liquide est un fluide incompressible, la conservation de la masse doit être la 

suivante : 

0u           (6) 

 

 

   

 

 

 

 

 

 

 

 
Figure 7 Forces TEM et simulation des écoulements générés par un gradient 
thermique constant de 6000K / m et un champ magnétique annulaire 0.08T. 
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Nous avons utilisé les équations et les paramètres du tableau 1. Les forces et les 

écoulements TEM ont été simulés avec un module 2D axisymétrique. La figure 7 montre les 

forces TEM simulées et les écoulements causés par un gradient thermique de 6000K / m et un 

champ magnétique annulaire 0.08T. Ce genre de champ magnétique n'affecte pas l'effet TEM 

en solidification directionnelle même s'il ne peut pas être atteint dans la réalité. 

L'augmentation des intensités de champ magnétique imposé conduisent à une augmentation 

des vitesses d'écoulements TEM. Il a été constaté que les écoulements TEM parviennent à une 

vitesse maximale lorsque le champ magnétique atteint une valeur critique, puis ils ralentissent 

lorsqu'on augmente encore le champ magnétique. Ceci concorde avec les résultats examinés 

précédemment. 

Chapitre 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bien que de nombreuses indications montrent que l'effet TEM peut exister lors de la 

solidification directionnelle dans un champ magnétique externe, une preuve plus directe est 

toujours souhaitable, comme de voir directement son influence pendant le processus de 

solidification. Grâce à la découverte du faisceau de rayonnement de synchronie et au 

développement des techniques d'imagerie par rayons X, il devient possible d'observer in-situ 

(a) (b) (c) 

B B B 

G 

G 

G=0K/m 
500ȝm 500ȝm 

500ȝm 

Figure 8 Photographies réalisées à plusieurs instants successifs montrant le 
mouvement des cristaux pendant la solidification directionnelle des Al-10%wt.Cu 
avec différentes intensités de gradients thermiques. (a) G =-2000K / m; (b) G = 0K / 
m; (c) G = 2000K / m. (B =-0.08T; les taux de refroidissement sont 2K/min) 
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et en temps réel la solidification des alliages métalliques opaques [53-55]. Cependant, un 

autre obstacle apparaît, à savoir que les deux forces à l'état solide et à l'état fondu et les 

écoulements sont difficiles à détecter directement ou à observer. Alors que, un compromis a 

été donné que l'effet TEM pourrait être pensé pour être observée directement et a prouvé aussi 

longtemps que la résultante directe des forces et des flux TEM peut être in-situ vu. En 

conséquence, les forces de TEM solide sont révélés par le mouvement de cristaux qui ont été 

détecté seulement lorsque le champ magnétique était présent. En outre, les écoulements TEM 

sont démontrés par le changement de forme de l'interface liquide-solide qui ne peut 

s'expliquer que lorsque l‘on suppose que le transport des solutés est réalisé par des 

écoulements TEM.  
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Figure 9 Trois images successives capturées pendant la solidification directionnelle 
d‘un Al-4%wt.Cu avec un gradient thermique de 3500K/m et sous un champ 
magnétique transversal 0.08T, et écoulements TEM simulés avec la géométrie et les 
mêmes paramètres. (Taux de refroidissement : 0.1K/min) 
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Pour révéler les mouvements des cristaux, plusieurs images prises pendant la 

solidification sont superposées en une seule image. En effet, ces images représentent les 

mêmes cristaux mais à des positions différentes, l'image de projection unique permet de voir 

le déplacement des cristaux. La figure 8 montre les images de projection obtenues à partir des 

images prises lors de la solidification directionnelle des Al-10% en poids des alliages Cu avec 

différents gradients thermiques de direction. Comme indiqué par les flèches jaunes et rouges, 

la direction de déplacement des cristaux est inversée lorsque le gradient thermique est 

appliqué dans la direction opposée, et les cristaux coulent verticalement sans gradient 

thermique. Ceci suggère que le déplacement de ces cristaux est directement lié au gradient 

thermique lorsque le champ magnétique externe est présent et stable. Après avoir analysé ces 

situations, nous nous trouvons face à deux possibilités : la première est que les pressions 

engendrées par les forces TEM circulent autour des cristaux et la seconde est que les forces 

TEM agissent sur les cristaux. Si l'on considère les cristaux comme une sphère solide, le 

fluide s'écoule autour de cette sphère par l'effet TEM. La vitesse engendrée par les forces 

TEM a été calculée analytiquement, et le détail de ces calculs sont décrits dans le chapitre 3. 

Ils montrent que les pressions causées par les écoulements TEM devraient être nulles, et que 

les vitesses de calcul des mouvements engendrés par l'effet TEM étaient comparables à ceux 

mesurés par l'observation in-situ. Cela peut démontrer que le mouvement des cristaux pendant 

la solidification directionnelle Al-10% en poids des alliages Cu sous un champ magnétique 

transversal 0.08T est entraîné par les forces TEM qui agissent sur eux. En d'autres termes, on 

peut dire que le mouvement des cristaux est directement causé par les forces TEM sur un 

solide, et nous pouvons donc affirmer que les forces TEM sur un solide sont directement 

observées et avérées. D'autre part, on a pu observer in-situ et en temps réel le changement de 

forme de l'interface liquide-solide comme le montre la figure 9. Comme le soluté Cu rejeté est 

plus lourd que la matrice liquide environnante, si l‘interface est déjà inclinée, ce soluté a 

tendance à s'enfoncer dans la partie concave de l'interface, qui s‘enrichit et l'interface devient 

de plus en plus inclinée. Cela a été prouvé par Bogno et al. [56] quand ils ont étudié 

l'évolution de l'interface plane pendant la solidification directionnelle des Al-4wt%Cu. Par 

conséquent, à partir d‘une l'interface initialement plate, il y a suffisamment d'écoulements 

dans la direction de l'enfoncement pour transférer le soluté les plus lourd à partir de la partie 

concave vers la partie convexe de l'interface. On peut voir sur la figure 9.  Nous avons gardé 

les paramètres de condition utilisés par Bogno et.al , et nous imposons un champ magnétique 

transversal 0.08T. Alors l'interface initialement inclinée devient progressivement plate comme 

dans le processus de solidification directionnelle. Cela suggère que les écoulements 

suffisamment intenses et sont apparus et que le soluté Cu a été rejetés de la partie concave 
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vers la partie convexe. Bien qu'il semble que l'écoulement TEM puisse se produire dans un tel 

cas, il est nécessaire de vérifier si oui ou non les écoulements TEM peuvent correspondre à 

ceux permettant à une interface initialement inclinée de devenir presque plane. Des 

simulations 3D des écoulements TEM ont été effectués dans les mêmes conditions que celles 

des expériences in-situ .et avec la même la forme d'interface obtenus par les expériences in 

situ ont été effectuées. La figure 10 montre les écoulements TEM simulés, et il peut être 

observé que TEM coule dans ce cas de la partie concave de l'interface vers la partie convexe, 

contrairement à la direction d'amortissement des solutés lourds. En outre, le calcul du nombre 

de Peclet chimique a montré que les écoulements TEM de grande amplitude étaient capables 

de transporter des solutés Cu rejetés. Par conséquent, on peut certainement affirmer que dans 

ce cas, le changement de forme de l'interface liquide-solide est directement issu des 

écoulements de grande amplitude TEM, et qu'ayant pu observer directement les écoulements 

TEM, ceux-ci sont avérés.  

Chapitre 4 

Bien que l'effet TEM ait été prouvé par l'observation directe, la taille des échantillons 

utilisés par des expériences in situ, par exemple épaisseur 200 um, ne sont pas communs pour 

les lingots de métal. Par conséquent, il est intéressant de vérifier l'effet TEM dans des 

situations plus réalistes. Les échantillons d'alliages Al-Cu d'un millimètre de taille dans les 

trois dimensions ont été solidifiés de façon directionnelle sous différentes intensités 

d'écoulements magnétiques transversaux. Par ailleurs, afin de concevoir des expériences plus 

précises, les écoulements TEM ont été évalués analytiquement au préalable.  

La vitesse de ces écoulements peut être obtenue simplement par l'équilibre entre les 

forces TEM et les forces de viscosité ou d'inertie. Les valeurs du nombre de Reynolds peut 

permettre de choisir l'équilibre pertinent en fonction du champ magnétique imposé et de la 

longueur typique de la morphologie concernée. D'autre part, en vertu du principe de la 

magnétohydrodynamique (MHD), un métal liquide circulant dans un champ magnétique 

pourrait induire des courants électriques qui peuvent engendrer des forces de Lorentz 

s'opposant à l'écoulement. Ainsi, des forces de freinage des écoulements TEM ont été 

produites et rivalisent avec les forces TEM . Les écoulements TEM accélèrent au maximum 

sous l'intensité du champ magnétique, puis ralentissent à mesure que le champ magnétique 

imposé croît, parce que les forces de freinage sont proportionnelles à B2, tandis que les forces 

de TEM sont proportionnelles à B. Comme le montre la figure 10, les vitesses des 

écoulements TEM sous champ magnétique différent ont été évaluées pour trois longueurs 

typiques, et les détails de ce calcul peuvent être trouvés dans le chapitre 4.1 de cette thèse. En 
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outre, la courbe des écoulements réalistes TEM avec des champs magnétiques variables est 

indiquée par la ligne en pointillés jaune dans la figure 10 (c). car l'estimation de la vitesse 

pour la première phase d'accélération n'a pas pris les forces de freinage en considération. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Les morphologies de solidification faisant apparaître différentes échelles de longueur, les 

évaluations présentées dans la figure 10 peuvent être considérées comme un outil de prévision 

des écoulements TEM dans divers processus de solidification de la morphologie. En 

Figure 10 Courbes d‘évaluation des écoulements TEM en fonction des champs 
magnétiques imposés pour différentes échelles typiquesμ (a) Ȝ = 1mm; (b) Ȝ = 0,1mm 
(c) Ȝ = 0,01mm. 
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conséquence, nous pouvons connaître quelle fourchette de champ magnétique doit être choisie 

pour réaliser les écoulements TEM les plus intenses par rapport à différentes morphologie. 

Par exemple, les champs magnétiques de 0 à 0,3 T ont été imposés lorsque les conditions de 

solidification ont imposées pour réaliser la croissance d'interface plane, car la longueur 

typique d'une telle morphologie a été prise égale à 1mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La figure 11 montre l'interface liquide-solide avec des alliages Al-Cu obtenue sous 

différentes intensités de champ magnétique. Il peut être observé que quelle que soit la 

morphologie, la forme de l'interface change lorsqu'on impose un champ magnétique 

transversal. En effet, les interfaces sont alors toutes inclinées. Cette forme d'inclinaison de 

l'interface doit être attribuée aux écoulements TEM car les simulations numériques 3D ont 

montré que les écoulements TEM dans ces cas étaient des écoulements unidirectionnels qui 

Figure 11 Coupe longitudinale (parallèle à la direction de croissance et 
perpendiculaire au champ magnétique) de la structure de l'interface liquide-solide des 
alliages Al-Cu obtenu sous diverses intensités de TMF solidifiée (G=6000K/m) et 
après trempeμ (a) cas de l‘interface plane, Al-0,85wt%Cu, R=0.6ȝm/s, (b) interface 
cellulaire, Al-0.85wt%Cu, R=5ȝm/s; (c) interface dendritique, Al-Cu2,5wt%Cu, 
R=50ȝm/s. 
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transféraient les solutés rejetés d'un côté vers l'autre du lingot. Les solutés enrichis dégénèrent 

progressivement l'interface au cours du processus de solidification directionnelle, ce qui 

pourrait causer l'inclinaison de l'interface. Nous pouvons constater que l'inclinaison de 

l'interface plane réalisée dans un champ magnétique de 0,05 T et avec des interfaces 

cellulaires et dendritiques survient à moins de 0,1 et 0,5 T respectivement. L'écart entre la 

valeur exacte de l'intensité de l'écoulement et celle du champ magnétique critique pour la 

vitesse maximale de l'écoulement TEM est du aux imprécisions intrinsèques à l'évaluation. Le 

véritable gradient thermique dans un liquide et solide doit être différent de celui initialement 

appliqué. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si l'on excepte l'effet TEM quand la solidification directionnelle se déroule dans un 

champ magnétique transversal, la situation sous un champ magnétique axial a été étudiée par 

des simulations numériques 3D. Ces simulations ont été utilisées dans les mêmes conditions 

de solidification et avec une forme d'interface correspondante. La figure 12 montre les forces 

TEM simulées et les écoulements générés par le gradient thermique de 6000K/m et un champ 

magnétique axial de 0,1 T. On peut observer que les forces TEM dans le liquide forment un 

tourbillon qui tourne dans le sens des aiguilles d'une montre autour de l'interface liquide-

solide, et que leur plus grande amplitude se situe au sommet et à proximité de l'interface. Par 

conséquent, ce modèle de forces a entraîné un tourbillon TEM qui tourne autour de l'interface 

tel qu'il apparaît dans la figure 12 (c). Généralement, on ne pense pas que ce type 

d'écoulement soit en mesure de redistribuer des solutés. Toutefois, si nous prenons la 

différence de densité entre les solutés enrichis au fond et les différences initiales, les 

Figure 12 Calculs numériques des forces TEM et des écoulements générés par 
l‘application d‘un gradient thermique de 6000K / m et d‘un champ magnétique axial 
de 0,1 T: (a) les forces TEM dans le liquide (B) des forces TEM dans le solide; (c) 
distribution des écoulements TEM. 

(a) (b) (c) 



 

26 
 

turbulences peuvent redistribuer les solutés rejetés conformément à leur effet centrifuge. Ceci 

devrait modifier la structure au cours de la solidification directionnelle. En plus des 

écoulements TEM, comme le montre la figure 12 (b), l‘existence de forces TEM sur un solide 

ont également été confirmées par des simulations numériques. Celles-ci ont révélé que deux 

couples opposés formés respectivement sur le haut et le bas de l'interface sous l'AMF ont 

tendance à tourner dans le sens des aiguilles d'une montre en haut et dans le sens contraire en 

bas. Horaire. Enfin, nous avons vérifié comment les vitesses des écoulements TEM variaient 

avec les champs magnétiques et avons constaté que les évaluations, les expériences et les 

simulations indiquaient toutes une évolution en constante croissance des écoulements TEM 

avec le champ magnétique. 

Chapitre 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Coupes longitudinales (parallèle à la fois la croissance et la direction du 
champ magnétique) montrant la structure de l'interface réalisées avec Al-26wt%Cu 
(a) et Al-40wt%Cu ; (b) alliages solidifiés sous des intensités différentes de champ 
magnétique. La ligne rouge marque les interfaces eutectiques et les points verts les 
interfaces dendritiques, le pointillé bleu illustre comment les vitesses d‘écoulement 
TEM varient en fonction de l'AMF. Les longueurs mesurées en zone pâteuse sont 
donnés dans la partie supérieure de chaque figure. (R=2ȝm/s, G=6200K/m). 
 

(a) 

(b) 
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Afin d‘étudier l'influence du champ magnétique externe sur la solidification 

directionnelle d'alliages hors eutectiques, et afin d'examiner l'effet TEM pendant le processus 

de formation de la structure multi-phase, nous avons étudié la solidification directionnelle 

d‘un alliage hypo-eutectique Al-26wt%Cu et hyper-eutectique 40wt%Cu sous différentes 

intensités de champ magnétique statique axial. Il a été constaté que, dans le cas sans champ 

magnétique, la structure dendritique-plus-eutectique typique a été atteint pour les deux 

alliages hypo- et hyper-eutectiques avec gradient thermique appliqué de 6200K/m et une 

vitesse de tirage de 2ȝm/s. De plus, la dendrite primaire de Al-26wt%Cu est la phase α-Al, et 

celle de Al-Cu40wt%Cu est la phase Al2Cu comme le montre la figure 13. Par l‘mposition 

d‘un champ magnétique axial statique (AMF), la longueur de la zone pâteuse et la distance 

entre la pointe de la dendrites primaires et le front eutectique a été modifiée. En effet, comme 

indiqué dans la figure 13, la longueur de la zone pâteuse de Al-26wt%Cu d‘abord augmente, 

puis diminue de manière continue lorsqu‘on augmente le champ magnétique appliqué. 

Inversement, la zone pâteuse de Al-40wt%Cu d‘abord courte, s‘allonge en augmentant le 

champ magnétique à partir d‘une intensité critique. On pense qu‘un tourbillon TEM circulant 

autour des dendrites primaires peut se produire et rendre cette longueur de zone pâteuse 

variable. Le contenu des solutés au fond de la zone pâteuse pourrait être affecté par ces 

écoulements et devrait être en mesure de faire varier la longueur de la zone pâteuse pendant 

solidification directionnelle. Toutefois, avant de détailler la façon dont les écoulements TEM 

modifie la longueur de la zone pâteuse, ces cas ont été vérifiés par des simulations avec les 

mêmes conditions que celles utilisées et la géométrie similaire à celle obtenue dans les 

expériences. 

La Figure 14 (a) et (b) montre les distributions simulées des courants TE dans les deux 

cas pour lesquels les cellules/dendrites sont des phases Al2Cu et α-Al respectivement. Il peut 

être constaté que le courant TE peut apparaître dans ces deux cas et former des circuits autour 

du tronc principal de dendrites. En outre, la figure 14 (c) et (d) illustrent schématiquement 

comment les forces et les écoulements TEM pourraient se comporter après application d‘un 

champ magnétique statique axial. On peut observer qu‘un écoulement vortex similaire à celui 

découvert par des simulations numériques dans le chapitre 4 sont produites par des forces 

TEM à l'état liquide et l'écoulement est dans le sens antihoraire autour des dendrites. Comme 

le soluté Cu lourd est rejeté lors de la solidification directionnelle les hypoeutectiques Al-

26wt%Cu, l'effet centrifuge des écoulements TEM peuvent éloigner le soluté Cu loin des 

dendrites comme indiqué par les pointillés jaunes dans la figure 14 (c). Cet effet dilue la 

teneur en Cu au fond dans la zone pâteuse et donc accroit sa longueur. Avec les mêmes 

écoulements, si le soluté rejeté est plus léger, l‘effet centrifuge rassemblera le soluté dans 
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l‘avant de la dendrite, en particulier, au centre de l‘écoulement. Dans le cas de la 

solidification directionnelle de Al-40wt%Cu, l‘écoulement vortex TEM rassemble les 

éléments de soluté les plus légers et enrichit localement la matrice d‘aluminium. Cela fait 

fondre l'avant des dendrites Al2Cu comme illustré par la figure 14 (d), court-circuitant ainsi la 

zone pâteuse. Dans un autre aspect, la dégénérescence des dendrites Al2Cu au centre de 

l'échantillon, comme indiqué dans la figure 13 (b) confirme en outre l'argument selon lequel 

un écoulement vortex TEM regroupe les plus légers solutés au centre de l'échantillon. Lorsque 

l'AMF est supérieur à l'intensité critique, la vitesse maximale de l‘écoulement TEM ralentit, et 

donc la longueur de la zone pâteuse a tendance à revenir à l‘état sans champ magnétique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Simulation numérique des courants TE dans les cas de solidification 
directionnelle d‘alliages Al-26wt%Cu (a) et Al-40wt%Cu (b). Illustration qualitative 
de la façon dont les forces et les écoulements TEM apparaissent sous un champ 
magnétique axial. (c) se rapporte à (a) tandis que (d) se rapporte à (b). 

(d) (c) 

(a) (b) 
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Comme le montre la figure 15, zone pâteuse plus courte que celle obtenue sans champ 

magnétique a été observée lors de solidification directionnelle d‘un Al-26wt% Cu sous AMF 

supérieur à 1T, et presque toute la structure de la croissance couplée est apparu quand AMF 

était égal à 4T. Nous pensons que cela peut être attribué à l'effet du champ magnétique élevé 

sur les phases '(α-Al et phases eutectiques), par exemple la température de nucléation et la 

vitesse de croissance. En effet, selon l'analyse thermique différentielle (DTA) testée sur la 

solidification d‘alliages hypoeutectiques Al-Cu sous champ magnétique élevé, il a été 

constaté que les mécanismes supposés ci-dessus ont eu lieu dans ce cas. Les détails de la DTA 

peuvent être trouvés dans le chapitre 5 de cette thèse. Ainsi, nous pouvons conclure que le 

champ magnétique élevé est bénéfique pour la formation de la structure de la croissance au 

cours de la solidification directionnelle couplée hypoeutectiques les alliages Al-Cu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Par ailleurs, pour un alliage Al-40wt%Cu solidifié sous champ magnétique élevé, 

l'amélioration de la croissance des facettes phases Al2Cu primaires a été observée. Afin de 

permettre de définir quantitativement l'amplitude de l'effet de l'amélioration de la croissance 

du champ magnétique élevé, les fractions de la région de la phase Al2Cu primaire obtenue 

sous différentes intensités de l'AMF ont été mesurées. Le résultat est montré dans la figure 16. 

Celle-ci montre que l'amélioration de la croissance est devenu évident lorsque l'AMF est 

Figure 15 Coupe longitudinale (perpendiculaire à la fois à la direction de croissance 
et le champ magnétique) montrant la structure trempée de l'interface d‘un Al-
26wt%Cu obtenus sous différentes intensités de champ magnétique et leur structure 
correspondante dans une coupe transversale (parallèle à la fois à la direction de 
croissance et le champ magnétique): (a) et (d), 1T, (b) et (e) 2T, (c) et (f) 4T. 
(R=2ȝm/s G=6200K/m) 
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supérieur à 1T. Or il a été prouvé et largement accepté que les contraintes dans les cristaux 

lors de leur croissance sont capables de déclencher la formation et la propagation de défauts. 

Ces défauts sont bénéfiques en ce qui concerne la croissance des cristaux à facettes. On peut 

donc conclure que la croissance accrue de la phase Al2Cu peut être attribué aux forces TEM 

agissant sur les cristaux lors de la solidification directionnelle d‘Al-40wt%Cu sous un champ 

magnétique élevé. Par conséquent, nous sommes capables d'obtenir une autre conclusion 

selon laquelle le champ magnétique élevé freine mais ne favorise la formation de la structure 

de la croissance associée aux alliages hyper-eutectiques Al-Cu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapitre 6 

En conclusions générales de cette thèse, nous avons montré que l‘effet thermo-électrique 

existait dans les métaux liquides en cours de solidification et pouvait produire de nombreux 

effets sur le solide formé, grâce :  

- à des expériences de solidification sur lingot et analyses post-mortem des structures 

- à des expériences de solidification avec observation in situ par imagerie X.  

Cela ouvre de nouvelles perspectives concernant le contrôle et la maîtrise de la solidification 

d‘alliages en fonderie.  

 

Figure 16 Courbes de fractions de surface mesurées des phases Al2Cu primaires de 
structures entièrement solidifiés tracées en fonction de l'intensité du champ 
magnétique  imposée, et vue agrandie des données marquées par la boîte jaune. 



 

31 
 

Content 
Acknowledgement  ........................................................................................................ 2 

Résumé (Abstract in French) .............................................................................................. 4 

Abstract (Abstract in English) ........................................................................................... 6 

Résumé étendu ............................................................................................................... 8 

1 Introduction  ........................................................................................................ 34 

1.1 Encounter between magnetic field and solidification  ............................ 34 

1.1.1 Step from Magnetohydrodynamics to Electromagnetic Processing of 
Materials  ............................................................................................................... 34 

1.1.2 Brief introduction of Elecrtomagnetic Processing of Materials  ......... 38 

1.1.3 Influence of static magnetic field on solidification  ................................ 46 

1.2 Encounter between thermoelectric magnetic effect (TEME) and 
solidification  ................................................................................................................ 53 

1.2.1 Meet between thermoelectric currents (TEC) and magnetic field  ..... 53 

1.2.2 Review on researches of TEM flows in melt during solidification  .. 55 

1.2.3 Review on researches of TEM forces in solid during solidification  . 59 

1.3 Purposes and organization of present thesis  ................................................ 61 

2 Thermoelectric (TE) and thermoelectric magnetic effect (TEME) 
in solidification   ................................................................................................... 64 

2.1 Thermoelectric (TE) and thermoelectric magnetic effect (TEME)  in 
directional solidification process ........................................................................ 64 

2.1.1 TE effect  ............................................................................................................... 64 

2.1.2 TE effect in directional solidification process .......................................... 66 

2.1.3 TEME in directional solidification process ............................................... 68 

2.2 Thermoelectric currents (TEC) in directional solidification process  69 

2.2.1 Neglect of Peltier and Thomson effects  ..................................................... 69 

2.2.2 Formulation of TEC  .......................................................................................... 70 

2.2.3 Simulation of TEC at liquid-solid interface  .............................................. 71 

2.3 Thermoelectric magnetic effect (TEME) in directional solidification 
process  ........................................................................................................................... 79 

2.3.1 Formulation of TEME  ...................................................................................... 79 



 

32 
 

2.3.2 Verification of the simulation method  ........................................................ 80 

2.3.3 Simulation of TEME in directional solidification process  ................... 86 

2.4 Summary  .................................................................................................................... 101 

3 Visualization of thermoelectric magnetic effect (TEME) in 
directional solidification process  .............................................................. 102 

3.1 Experimental apparatus  ...................................................................................... 102 

3.1.1 General view of in-situ synchrony X-ray imaging setup  .................... 102 

3.1.2 Ultrahigh vacuum Bridgeman furnace and samples  ............................ 103 

3.1.3 External magnet system  ................................................................................. 106 

3.2 In-situ observation of thermoelectric magnetic (TEM ) forces  ........... 110 

3.2.1 Analytical calculations of TEM forces driving movements of sphere 
particles  ............................................................................................................... 110 

3.2.2 Velocity measurement of  movements of crystals during in-situ 
observation experiments  ................................................................................ 114 

3.2.3 Comparison of analytical calculations and in-situ measurement 
results  ................................................................................................................... 123 

3.3 In-situ observation of thermoelectric magnetic (TEM ) flows  ............. 126 

3.3.1 Simulations of TEM flows in in-situ experiments  ................................ 127 

3.3.2 In-situ observation of shape change of liquid-solid interface  ........... 140 

3.4 Summary  .................................................................................................................... 146 

4 Influence of thermoelectric magnetic effect (TEME) on liquid-
solid interface shape in directional solidification process  .............. 147 

4.1 Evaluation of thermoelectric magnetic (TEM ) flows  ............................. 147 

4.2 Experimental investigation of influence of thermoelectric magnetic 
(TEM) flows on liquid-solid interface shape  .............................................. 154 

4.2.1 Experimental apparatus  ................................................................................. 154 

4.2.2 Results and discussions .................................................................................. 157 

4.3 Numerical simulation of thermoelectric (TEM ) flows in directional 
solidification of Al-Cu alloys under static magnetic field  ..................... 167 

4.3.1 Simulation of TEM flows in directional solidification under a 
transverse static magnetic field  ................................................................... 168 

4.3.2 Simulation of TEM flows in directional solidification under an axial 
static magnetic field  ........................................................................................ 178 



 

33 
 

4.4 Summary  .................................................................................................................... 185 

5 Influence of magnetic field on formation of structure during 
directionally solidifying near-eutectic alloys  ....................................... 187 

5.1 Alloys and experimental apparatus  ................................................................ 187 

5.2 Influence of axial magnetic field during directionally solidifying 
hypoeutectic Al-26wt%Cu alloy  ...................................................................... 191 

5.2.1 Influence of low magnetic field on the mushy zone length during 
directionally solidifying Al-26wt%Cu alloy ........................................... 192 

5.2.2 Formation of coupled growth structure in hypoeutectic Al-26wt%Cu 
alloy solidified under high magnetic field  ............................................... 198 

5.3 Influence of axial magnetic field during directionally solidifying 
hypereutectic Al-40wt%Cu alloy  .................................................................... 204 

5.3.1 Influence of low magnetic field on the mushy zone length during 
directionally solidifying Al-40wt%Cu alloy ........................................... 206 

5.3.2 Enhancement of the growth of Al2Cu phase in hypereutectic Al -
40wt%Cu alloy solidified under high magnetic field  .......................... 208 

5.4 Summary  .................................................................................................................... 211 

6 Conclusions and prospects  .......................................................................... 213 

Appendix: Publications  .......................................................................................... 217 

References  ................................................................................................................... 219 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

34 
 

Chapter 1: Introduction 

1.1 Encounter between magnetic field and solidification 

As the most popular method to prepare metallic materials, solidification process 

determinates their solid strucuture and then the mechanical properties. Therfore, it is a 

longterm desire to precisely control such process. Enlightened by magnetohydrodynamics 

(MHD) theory that dealing with the problems of fluid flow under magnetic field, an idea to 

control the melt flow during solidification by applying magnetic field comes to people‘s mind. 

Verification of such idea leads to the encounter between magnetic field and solidification. 

Further, applying the MHD to metallurgy process gives the birth to a newly and rasing 

research field neamed electromagnetic processing of materials (EPM) that aiming at taking all 

the advantages of various types of magnetic fields in different material preparsions or 

processes. Therefore, it is better to introduce how MHD theory forms in advanced if we 

intend to know how the encounter between magnetic field and solidification happens. 

1.1.1 Step from Magnetohydrodynamics to Electromagnetic Processing of Materials 

Magnetohydrodynamics, a branch of the hydromechanics, specially deals with how the 

electrically conducting fluids behave under an external magnetic field. It is the combination of 

two classical disciplines that electromagnetism and fluid mechanics [1-3]. A Swiss 

astrophysicist named Hannes Alfvén is known as the establisher of MHD theory because he 

firstly proposed the term ―Electromagnetic-hydrodynamic‖ in 1942 [3] and won the Noble 

prize on the benefit of this work. Actually, the earliest MHD related event happened in 1832. 

In that year an English scientist Michael Faraday stood on the Waterloo Bridge in London and 

attempted to measure the electric signal when the salty Thames water ebbed back to the sea. 

Although Faraday did not detect any signals probably becaue of the poor ammeter, he had 

must been realized that solid or fluid subject should experience an electromotive force when it 

cutting the magnetic field lines [4, 5]. Further, if this subject is electrically conducting the 

electric currents can appear and lead to two consequences [6]: 

1. These currents induce a new magnetic field that perturbs the original one; 

2. These currents interacting with the original magnetic field produces an electromagnetic 

force, and this force perturbs the subjects' motions.  

For the sake of illustrating the two consequences, a simple situation is considered. As 

shown in figure 1.1, a metal sheet dropping through a gap of magnet. The electromotive force 

will be induced in the sheet‘s immersed part as soon as it enters the magnetic field. At almost 

the same time, electric current loops should appear as indicated in the figure 1.1 (b), because 

the sheet is conducting. And then, those currents induce a magnetic field to deform the 
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original one as shown in figure 1.1 (a). In another aspect, an electromagnetic force oppose to 

the sheet's moving direction is produced via interacting between those currents and the 

original magnetic field. It is easy to image that if replace the moving metal sheet by the 

flowing melt the electrcomagnetic force (consequence 2) must influnce the melt's flows that 

play critical role in strucuture formation during solidification. 

  

 

 

 

 

 

 

 

 

 

 

 

In order to know the view at the other side of the ocean, sail was chosen by our ancestors 

to discover this curiousness. Therefore how the seawater flows was eagered to know for the 

safety consideration. Based on a widely accepted view that magnetic field exists in a set of 

astronomic objects included earth [7], Faraday thought that the motions of ocean might be 

attributed to the perturbations of earth‘s magnetic field by consequence 1 [1], on the contrast, 

William Ritchie counted the movements of ocean to the consequence 2 [5]. It does not matter 

who is correct, the passion to figure our how the seawater flows motivated the initial 

development of MHD theory [8]. Table 1.1 briefly lists some remarkable events in astro- and 

geophysical fields that promoted the grwoth of MHD theroy before Hannes Alfvén pubished 

his electromagnetic-hydrodynamic wave theory in 1942. Once the theroy is established, it 

application should naturally attract peoples‘ attentions. But sometimes the practical 

applications can run ahead to the theroy, and this did happen in MHD related cases. Table 1.1 

also lists some industrial and technological events based on MHD principles happend before 

1942 that is considered as the birth year of MHD theroy. It can find that just when Faraday 

investigated the theory aspect of electromagnetic induction phenomenon, Rithchie had 

successfully pumped the water electromagnetically. In fact, Rithchie‘s experiment is the 

rudiment of the electromagnetic pump that firstly patented in 1λ10s‘. Figure 1.2 simply 

Figure 1.1 An example of basic MHD phenomena. 
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illustrates a case that pumping conducting liquids with vertical current and satic transverse 

magnetic field. 

Table 1.1 MHD related events in Astrophysic, geophysic, industry and technology. 

Year Astrophysical & Geophysical Industrial & Technology 
1831 Michael Faraday discovered the electromagnetic induction [9]. 

1832 
Michael Faraday tried to detect 
the currents generated when 
Thames river water ebb tide [10]. 

William Ritchie electromagnetically 
pumped the water when he studied the 
voltaic electricity [5]. 

1889 

Bigelow guessed that there were 
magnetic fields on the sun and 
hale, and Babcocks confirmed 
this later [11]. 

 

1906  
First patent for the induction heating 
appeared in UK [12]. 

1λ10s’  
Electromagnetic pump & inductive cold 
crucible were invented [13]. 

1912  
Emile Bachelet awarded a USA patent 
―levitating transmitting apparatus‖ for 
electromagnetic suspension system [14]. 

1917  
The electromagnetic stirring was firstly 
attempted to modify the final solid 
structure in Europe [15]. 

1918 

Larmor suggested the magnetic 
field of the sun and other 
heavenly bodies might be due to 
dynamo action, whereby the 
conducting material of the star 
acted as the armature and stator of 
a self-exciting dynamo [16]. 

 

1919  
Petersen converted the electromagnetic 
pump and invented the MHD generator 
using ionized gas as an armature [17]. 

1937 
Hartmann & Lazarus theoretically and experimentally investigated the 
laminar flow of an electrically conducting liquid in a homogeneous magnetic 
field [18]. 

1939 
Walter Elsasser began to 
investigate the origin of earth‘s 
magnetic field [19].  

 

1942 Hannes Alfvén published the classical paper remarked the born of MHD [3]. 

After the second word war, utilization of the nuclear energy in a peaceful and safe way 

caught lots of attentions. In order to control the thermonuclear fusion magnetic field must be 

applied to confine the ionized deuterium away from all walls. This is just the MHD case that 

conducting gases moving in a magnetic field and intensively studied until now [20]. Moreover, 

transferring the heat generated by nuclear reaction to the genset is another typical MHD 
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phenomenon because the liquid metal coolants should flow under external magnetic field as 

well [21]. From the steelmaking inductrial aspect, there should be burst demands on the steels 

because destroyed constructions are earger to be rebuilt after the wordwide war. Motived by 

this, many methods had been found by the metallurigists during those years to optimal the 

quality of iron and steel products. In which, applying an external magnetic field to influence 

the melt flows is one of their excellent achievements. It can image that such idea must be 

proposed by a metallurigist who was familiar with the newly MHD theory at that time. In the 

following years, MHD theory made another great progress under the exploration of applying 

it to the metallurgy processes [22-24]. 

  

 

 

 

 

 

The first laboratory in the word aiming at applying MHD in metallurgy was offically 

established in Grenoble (France) in 1986, which was named MADYLAM at the beginning 

and the SIMAP/EPM now [15, 25 and 26]. The first international symposium specially 

focusing on applying MHD to metallurgy was hold by the International Union of Theoretical 

and Applied Mechanics (IUTAM) at Cambridge University in 1982. In a certain extends, this 

symposium foreboded the birth of a new research field named Electromagnetic Processing of 

Materials (EPM) [27]. In fact, just three years after the Iron and Steel Institute of Japan (ISIJ) 

found a aommittee of electromagnetic metallurgy [25, 27]. In another aspect, before the 

metallurgists noticed the charm of applying magnetic field, some material scientists had 

successfully employed the magnetic field to control the motion of the conducting solutiosn in 

electro-deposition process in 1975 [28-30]. This widens the application range of MHD theory 

in the field of material science and extends the content of EPM field. Finally, an international 

conference specially aiming at the newly progresses on the application of MHD to various 

material processes emerged in 1994 and was held every three years from then on. The term 

‗EPM‘ firstly used in the 6th international Iron and Steel Congress in 1990 was chosen to be 

the name of this newly research field [31-35].   

 

Figure 1.2 Simplest principle of the electromagnetic pump.  
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1.1.2 Brief introduction of Electromagnetic Processing of Materials 

Electromagnetic Processing of Materials is a broad concept, which contains subjects that 

related to applying various magnetic fields to different material processes, for example 

solidification, electro-deposite, heat treatment and sintering etc. [36]. The corresponding 

international conference was held alternatively in France and Japan only at the early stage. 

But now it has become a more worldwide academic event due to it had been held in German 

in 2009 and in China in 2012. Because there are lots kinds of material processes and as well 

as the types of magnetic fields, combinations between them provide numerous topics. Here, 

according to the chronological order of the topics‘ appearance, the main ones are introduced 

to give a general glance of the EPM research field. 

 Induction heating & Cold crucible electromagnetic melting  

 

 

 

 

 

 

 

 

 

 

 

 

The induction heating is introduced firstly because it is the earliest practical application 

of electromagnetic phenomenon. Thanks to Faraday and Joule, who found the time-changing 

magnetic field can induce eddy currents wthin the conducitng substance and electric currents 

flowing in the resistance can release heat respectively [37]. The self-heated feature gives the 

induction heating a number of intrinsic advantages, such as high electro-heating transfer 

efficiency, localized and shape changeable heating etc. [38-40]. These advantages enhance a 

wide application of induction heating, in which, the one closely related to people‘s live is 

induction cooker as shown in figure 1.3. Figure 1.3 (a) is the induction cooker firstly appeared 

on the newspaper 100 years ago [12, 41]. The principle of such cooker is briefly inllustrated 

in figure 1.3 (b). The copper coils supplied with alternate currents produce the time-changing 

magnetic fields, and such fields induce eddy currents in the vessel. Because the conducting 

Figure 1.3 Induction cooker introductions appearing on the newspaper more than 100 
years ago (a) and brief illustration the principle of the induction cooker (b). 
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vessel must have resistance the flowing of those eddy currents release heat in accordance to 

the Joule‘s law, this heats the vessel. 

 

 

 

 

 

 

 

 

 

 

Induction heating has wide application in industry as well and is mainly used in three 

processes, which are induction channel furnace in iron reserver tank or continuous casting 

tundish, surface quenching harden and induction welding [42-45]. In order to reduce the 

energy cost during the steel making process, an external heating is applied during transporting 

the iron or steel melts. Figure 1.4(a) shows the typical channel furnace with induction heating 

used by the iron reserver tank [46]. Moreover, because the electromagnetic stirring 

accompanies the induction heating all the time this channel furnace can also purify and 

homogenize the melts during transportation [47]. Because the copper coil can be easily 

shaped, the subject with complex shape can be heated. Further, take the advantage of skin 

effect of high frequency magnetic field surface hardened of complex shape products can be 

realized by high frequency induction heating coupling with water quenching as shown in 

figure 1.4 (b) [48, 49]. The third magic technology based on the principle of induction heating 

is induction welding. As illustrated in figure 1.4 (c), eddy currents induced by the inductor 

would gather at the yellow point because the currents always flow along the path with the 

lowest resistance. Therefore, the local current density at the yellow point is dramatically 

increased and make there remelted. And then, while the tube is transmitting by the two rolls 

the disconnected parts can be welded [50-52]. Although a lot of applications in accordance to 

the induction heating had been achieved, researches on the relevant topics are still active. This 

is because the complex intereaction between the accompanying electromagnetic stirring, heat 

and mass transfer is far from thoroughly understood. Moreover, how to more precisely control 

the induction heating is a longterm aspiration [53].  

Induction heating provides another attactive application that melting the ultrahigh 

materials. Theoretically, if the material is conductivity it can be melted by induction heating 

Figure 1.4 (a) Induction channel furnace; (b) Induction heating surface harden; (c) 
Induction welding. 
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no matter how high melting temperature it is. But what kind of the crucible can be used 

blocks the further development of this application. Acctually, such obstacle motivates another 

great invention that the well known cold crucible electromagnetic melting. This smart 

solution was figured out in early 1910s‘ [54], and the first patent was obtained by a Germany 

company named Simens und Halske in 1931 [55]. The cold crucible is a water-cooled copper 

crucible made by a number of separated sectors to reduce the shield effect of the conducting 

crucible. In operation, a skull made by the melting object itself forms between the crucible 

and the melt and avoids the reaction between them.  This makes melting the reactive materials 

become possible [56]. Figure 1.5 (a) gives a photo of real cold crucible electromagnetic 

melting device and figure 1.5 (b) shows its corresponding sketch. Except melting the reactive 

and ultrahigh melting point meterials cold crucible electromagnetic melting provides more 

possibilities, such as fabricating the ultrahigh purity materials and growing the single crystal 

[57-59]. Moreover, another good example of using the cold crucible electromagnetic heating 

in high efficient material preparing technology is the cold crucible continuous casting 

(C.C.C.C or 4C) process that illustrated in figure 1.5 (c). 4C process was developed initially 

by cooperation between the CEZUS company and MADYLAM (now SIMAP/EPM) 

laboratory in Grenoble (France) and patented in 1989 [60]. Similar to induction heating, it can 

find that a number of brilliant works related to cold crucible electromagnetic melting have 

been done. However, because the relationship bwteen flows and mass or heat transfer in melt 

contained in the cold crucible are not clearly undertood until now, massive investigations on 

this topic carry on with the aids of numerical simulations [61-63]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 (a) Photo of real cold crucible electromagnetic melting device; (b) Sketch 
of cold crucible electromagnetic melting; (c) Sketch of cold crucible continuous 
casting device. 
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 Electromagnetic levitation 

 

 

 

 

 

 

 

 

 

 

 

 

 

When time stepped into 20th  century‘s second decade, another fascinating phenomenon, 

electromagnetic levitation, was invented by perfectly utilizing the MHD principle as 

described in chapter 1.1.1 and patented in 1912 [64]. As one kind of magnetic levitation, 

electromagnetic levitation is realized via a time-changing magnetic field. This kind of field 

can induce the eddy currents in the conducting object and intereacts with them to produce the 

electromagnetic forces. If the electromagnetic forces are oppsite to and big enough to 

counterbalance the gravity under a certain conditions the conducting objectcan be levitated 

[65]. According to the baisis of the electromagnetic levitation, many applications had been 

achieved, for example the maglev train. In the same time, the advantages of such levitation 

were noticed and used by some material scientists, such as the examples given in figure 1.6. 

Figure 1.6 (a) shows the first experimental attempt of electromagnetic levitation in 1952 by 

Okress [66], figure 1.6 (b) gives the image of levitating aluminum melts by an alternating 

current magnetic field at EPM laboratory in France [67], the simply illustration of the 

levitation principle is in figure 1.6 (c), and figure 1.6 (d) provides an example of numercal 

simulation of electromagnetic levitation [68]. Moreover, it is worthy to  point out that deep 

undercooling, ultrahigh pure material preparation and measurement of materials‘ high 

Figure 1.6 (a) Levitation of solid Al sphere; (b) Levitation of Al melt; (c) Illustration 
of levitating a melt droplet by AC magnetic field; (d) Example of numerical 
simulation of electromagnetic levitating. 
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temperature thermophysical paramenters can be realized with the aid of electromagnetic 

levitation as well [69, 70]. 

 Electromagnetic stirring  

Electromagnetic stirring is another classical example of application of MHD principle 

and main subject in EPM field. This smart inventation was reported in a literature published 

in 1917 [71], and it is reasonable to believe that its appearance must be under the strong 

expectation of controlling the melt‘s flows in the metallurgical process.  

 

 

 

 

 

 

 

 

 

According to the type of applied magnetic fields, melt can be stirred by the following 

approaches: 1) melt is stirred by an alternating current magnetic field, for example the melt 

can be stirred during of induction heating, cold crucible electromagnetic melting and 

electromagnetic levitation; [72]; 2) melt is stirred by an pulsed magnetic field [73]; 3) melt is 

stirred by a moving magnetic field such as melt can be stirred by a rotating magnetic field [74, 

75]; and 4) melt is stirred by imposing the non-parallel magnetic field and electrical current 

simultaneously (sometimes called electromagnetic vibration) [76-78]. In order to gain some 

perceptual knowledge, figure 1.7 (a) gives an example of realizing the stirring by a 

mechanically rotating magnetic field. Figure 1.7 (b) shows the top view of the device stirring 

melt by imposing phase different currents. Figure 1.7 (c) simply illustrates the method 

commoly called electromagnetic vibration. It should be noticed that such method combines 

the advantages of stir and vibration, but the inserted electrode blocks the widely application of 

this method [79-81]. Because relationship between the input conditions and the corresponding 

flow field of stirred melt has not been thoroughly understood, researches on electromagnetic 

stirring are still rising. Moreover, due to the difficulties in observing flow field in melt, 

numerical simulation is a main and surfficient way used in the investigations on this topic 

[82-84]. Figure 1.7 (d) is an example of numerical simulation of flow field in melt during clod 

crucible electromagnetic melting [85]. 

 

Figure 1.7 (a) Mechanically rotating magnetic field; (b) Rotating magnetic field 
realized by phase different currents; (c) Sketch of electromagnetic vibration device; 
(d) Numerical simulation of melt flows field during cold crucible electromagnetic 
melting. 
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 Electromagnetic braking 

Controlling the fluid flow should at least contain two aspects that promote and suppress. 

If saying the electromagnetic stirring can be regarded as promoting melt flow, to fulfill the 

demands of control, there must be a method to suppress the flows in melt. It seems easy to 

realize the suppress purpose visa producing an electromagnetic force has opposite direction to 

melt flows [15]. Besides, beause the direction of electromagnetic force can be easily managed 

though modify the applying electromagnetic field. This method should be operable. However, 

suppressing flows by an opposite electromagnetic force is not so successful in reality. This is 

because stronger other than weaker motions will be led when the opposite force acts on the 

flowing melt. Nevertheless, even melt flows are slowed down by the opposite force, which 

are not stable [86].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, more efficient method is desired to realize the truely control of melt flows. 

Motivated by this, another way was figured out that is using the induced electromagnetic 

pressure to balance the hydrostatic pressure of melt flows. As shown in figure 1.8 (a), a 

simple induction coil around the circular nozzle with a decentered hole can control the 

downward melt stream based on the similar principle of electromagnetic levitation [87]. 

However, the hole of nozzle cannot be placed in the center due to the alternating magnetic 

field with axisymmetric distribution is impossible to entirely stop the cylindrical flows or 

levitate them [88]. Figure 1.8 (b) gives the most commonly method used to suppress jet flow 

in the continouse casting mold by static magnetic field, which is based on the MHD theory 

Figure 1.8 (a) Electromagnetic braking realized by induction coil around nozzle; (b) 
Electromagnetic braking used to suppress jet flow in continuous casting mold; (c) 
Four different types of electromagnetic braking realized by static magnetic field.  
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related effect 2 as illustrated by figure 1.1 [89]. For this method, if the static magnetic field is 

not situable arranged unwanted counter flows can appear near the nozzle jet [90-92]. So that, 

there are still many works worthy to do on this topic and numerical simulation can be the best 

choice to optimize the magnetic field and then to avoid the unwanted counter flows [93-95]. 

Figure 1.8 (c) shows some solutions to perfect the electromagnetic braking effect [96].  

 Electromagnetic shaping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taking advantage of the electromagnetic pressure, another main subject of EPM, 

electromagnetic shaping is invented to control or modify the shape of liquid metal [97]. 

Because the electromagnetic pressure accompanies all electromagnetic related process, it is 

difficult to clearly tell the precise time when the electromagnetic shaping is invented. 

However, it must be a scientist with an art heart inside firstly noticed and treated this 

fascinating phenomenon as an individual research subject. Because, as shown in figure 1.9 (a) 

to (c), shaping the liquid melt just likes creating an artwork. These artworks are caused by the 

electromagnetic instabilities that related to both amplitude and frequency of the imposing 

magnetic fields [98-100]. Except creating artworks, electromagnetic shaping provides two 

Figure 1.9 (a) Mercury drop is at rest; (b) Mercury drop is shaped by magnetic field 
with frequency of 2.1Hz; (c) Gallium drop is emulsified by magnetic field with 
frequency of 6.2 Hz; (d) Equipment for the near-net shape continuous casting; (e) 
Mold of equipment shown in (d) and the ingot; (f) Products of soft-contact 
continuous casting under different electromagnetic field frequencies. 
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important industrial applications. One is the near-net shape continuous casting as shown in 

figure 1.9 (d) and (e) that the equipment, mold, and produced ingot respectively [101, 102]. 

The other is soft contacting continuous casting that had been successful used to fabricate the 

aluminum based alloys with high surface quality as shown in figure 1.9 (f) [103, 104]. 

Meanwhile, electromagnetic shaping is able to modify the meniscus in continuous casting 

mold, which can improve the surface quality of continuously casting products [105, 106].  

 Magneto-Electrochemistry 

 

 

 

 

 

 

 

 

 

 

 

 

Emergence of magneto-electrochemistry extends the application range of MHD theory 

and enriches the content of EPM research field [107]. Chemistry reaction is another efficient 

method to preparaing advanced materials [108-110]. Therefore, whether or not the magnetic 

field can affect during such process is worthy to investigate. Electrochemistry process was 

firstly choosed to investigate the influence of imposing an external magnetic field due to 

electric currents exists inherently [111-113]. Magneto-electrochemistry specially refers to the 

electrochemical process taking place in the presence of magnetic field, as shown in figure 

1.10 (a) [114]. Because Lorentz force should be produced by the imposing magnetic field and 

the inherent electric currents, flows caused by such force appear in solutions and affect the 

key factor of such process that the mass transport [115]. Two kinds of flows involved in 

magneto-electrochemistry are defined, one is micro-MHD flow that produced by interaction 

between magnetic field and deformed current at the vicinity of crystal, and the other called 

MHD flow is generated by the non-parallel magnetic field and electric currents in the 

diffusion layer [116, 117], as illustrated by figure 1.10 (b) and (c). Under the influence of 

such flows, the micro- (figure 1.10 (d)) and macro- (figure 1.10 (e)) chiral structure were 

Figure 1.10 (a) Magneto-electrochemistry device; (b) Illustration of micro-MHD 
flows in composite magneto-electrodeposition; (c) Illustration of MHD flows in 
electroless deposition; (d) Micro-chiral structure of Ni/nano-particle-Al2O3 achieved 
under influence of micro-MHD flows; (e) Macro-chiral structure of Ag metal-leaves 
under influence of MHD flows. 
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obtained in composite electrodeposition of Ni/nano-particle-Al2O3 [118] and electroless 

deposition of Ag metal-leaves respectively [119]. 

Until now, main subjects of EPM have been introduced briefly, but which must be far 

from to get the fully view of EPM because some other topics are not mentioned such as 

velocimetry of liquid melt [120-122], electromagnetic field controlling plasma process [123-

125], microwave heating [126], and application of electromagnetic field to environment 

problems [127, 128]. Particularly, topic the most closely related to the present thesis has not 

been introduced, which is a rising branch of EPM that applying static magnetic field to 

solidification process.  

1.1.3 Influence of static magnetic field on solidification 

As an important section in metallurgy and the widest method to prepare metallic 

materials, solicification was consciously treated as an independent discipline from late 1950s‘ 

to early 1960s‘ [129-131]. Although electromagnetic fields had been used in several 

metallurgical processes at that time, most of them were time-changing or mechanically 

moving magnetic fields [132-134]. First attemption of applying static magnetic field was 

inspired by the expectation to damp flows in melt that may result in solute segregation and 

banding in solidification process [135-137]. After that, rising interests on studying the 

influence of static magnetic field on solidification were waked up. Meanwhile, numerous 

interesting and meaningful phenomena were uncovered, particularly when the solidification is 

conducted under high static magnetic field [138-140]. 

 Static magnetic field affects the thermodynamics of solidification 

Thermodynamics determinates the possibility of occurance of phase transformation, 

which is represented by the Gibbs free energy difference between parent and producing 

substances [141]. Just like temperature and pressure, magnetic field is another essential 

thermodynamic parameters and able to change the internal energy of system [142]. So that, if 

the phase transformation takes place in magnetic field, the Gibbs free energy of both parent 

and producing substances may be shifted because of their different magnetism properties 

[143]. In order to express this shift, additional item standing for the magnetization Gibbs 

energy difference is added to the expression of total Gibbs free energy difference of the 

system [142]:  

2
0 0= - ( 2) ( )G G H V          (1.1) 

where, G 0 is free energy difference in the absence of magnetic field. The second item at 

right is the magnetization Gibbs energy difference, in which ȝ0 is magnetic permeability 

(4π×10-7 Hm-1), H is imposed magnetic field strength, χ denotes magnetic susceptibility and 
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V represents molar volume of the substance. It can see that the bigger the magnetic 

susceptibility difference of the substances is the more apparent change of total free energy is. 

For this reason, inchoate investigations on this topic were almost focused on the 

ferromagnetic materials [144]. Murgaš and Biacovska applied a magnetic field during cooling 

the pure iron from melt and found that both temperatures of l to δ and δ to γ phase 

transformations were shifted to high region as indicated by figure 1.11(a) [145]. Similar 

investigations were also taken on solid phase transformation processes, such as austenite to 

pearlite, austenite to bainite and austenite to ferrite transformations. It was found that the 

bainite was dramatically promoted when applied a 10T magnetic field during bainite 

transformation process as shown in figure 1.11 (b) [146-148]. Additionally, phase diagram 

calculation suggested that magnetic field changed both γ-α and γ- Fe3C transformation as 

revealed by figure 1.11(c) [149].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the magnetization Gibbs energy difference between liquid and solid of non-

ferromagnetic systems is negligible, the change of solidification temperature is detectable 

when an ultrahigh magnetic field is applied [150]. For example, Ren and Li et al. 

experimentally demonstrated that 10T magnetic field can increase the temperature of 

peritectic phase transformation, BiMn1.08 + L = BiMn, by about 20K [151]. If saying there is 

still a ferromagnetic phase involved, another experiment performed by Li, Fautrelle and Ren 

provided strong evidence. They found that 12T magnetic field is capable to increase the 

solidification temperature of Bi by about 6K [152]. Furthermore, Chuanjun Li invented a 

specially designed device to perform the differential thermal analysis under high magnetic 

field. He found that the high magnetic field can shift the solidification temperature of Al-Cu 

Figure 1.11 (a) Differental thermal analysis of cooling iron from melt without and 
with different magnetic fields; (b) Bainite transformation at 1275K for 10 min 
without and with a 10T magnetic field; (c) Fe-C phase diagram associated with the γ-
α and γ- Fe3C transformation under various magnetic fields. 
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binary system as well [153]. Meanwhile, he proposed another possibility that may respond to 

the solidification temperature shifting, which is the physical properties but not only the 

internal energy are changed under high magnetic field, surface tensions and wettability 

between the melt and the nuclei for instance [154].  

 Static magnetic field affects the orientation during solidification 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the thermodynamical demands are achieved solidification steps in the second 

stage that is the growth of nuclei. For this stage, which orientation should be selected is 

another core problem of solidification [155]. Moreover, because orientated or textured 

structures can dramatically increase products‘ physical and mechanical properties preparing 

the materials with aligned structure is desired, particularly, with the specified crystal 

orientation [156]. Inspired by this, some methods had been invented by numerals efforts paid, 

such as directional solidification. However, the crystallographic isotropy materials are always 

hard to be orientated because the small difference between the preferential growth direction 

and the others [157]. Thanks to magnetic susceptibility and shape anisotropy of crystals, the 

aligned structure of such materials may be achieved by applying an external magnetic field 

during solidification [158], electrodeposition [159], vapor deposition [160], solid 

transformation [161], and the protein synthetize process [162]. Figure 1.12 gives some 

examples of oriented structure obtained via applying magnetic field during different processes. 

Just as mentioned above, the magnetic susceptibility and shape anisotropy of crystals should 

respond to such alignment behaviors. The magnetic susceptibility is various in crystals‘ 

different axes [163], and the magnetic energy of each axis induced by the external magnetic 

field is expressed [164]: 

Figure 1.12 (a) Orientated Al-Al2Cu alloy fabricated via solidification under a 12T 
magnetic field; (b) Oriented medium plain carbon steel obtained through austenitized 
under a 12T magnetic field; (c) Oriented egg white lysozyme under a 1.13T magnetic 
field; (d) Oriented Zn film achieved via vapor deposition under a 6T magnetic field. 
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2
0 2Mi iG H        (1.2) 

where, GMi is magnetic energy of i-axis, ȝ0 is magnetic constant (4π×10-7 Hm-1), H is the 

imposed magnetic field strength, χ
i
 denotes magnetic susceptibility of i-axis and i stands for 

the direction of crystal. It has been well know that crystal alway grows along the direction 

that bears minimum system energy. The growth of c-axis should be enhanced in the presence 

of external magnetic field if GMab is bigger than GMc, and then the orientated structure is 

achieved. In the case that magnetic axes correlate to the symmetry of crystal, for example the 

tetragonal crystal structure, the crystal receives a magnetic torque T (θ, H) [165] expressed as: 

2
0( , ) (sin 2 ) 2T H H V    

   (1.3) 

where,    is the susceptibility difference between two perpendicular axes, V is volume 

and θ is the angle between applied magnetic field and the axis with maximum . Expression 

1.3 reveals that the easy magnetization axis of the paramagnetic crystal should rotate along 

the applied magnetic field [166]. Because the induced demagnetizating field dependents on 

the shape of crystals and the magnetizating direction, the crystal has unsymmetrical structure 

can be orientated by the external magnetic field based on the shape anisotropy of crystals. In 

these cases, crystals should grow along the direction having lower demagnetizing field to 

ensure the minimum total magnetic energy of the sysem [167]. 

 Static magnetic field affects the distribution of primary phases 

Other than the orientation of crystals, where are they placed is another crucial factor in 

determining metallic materials‘ properties [168]. Because the position of primary phases are 

decided by the nuclei, the inclusions and the local melts‘ condition (content of solutes for 

instance), if there is a method to affect these factors primary phasess‘ position may be 

controlled [169]. Fortunately, the magnetic property difference between the nuclei, the 

inclusions, the solutes and their surrounding melts permits the uniform or gradient static 

magnetic field to modify their distribution [170]. It shold be pointed oput that different from 

the electromagnetic levitation introduced in 1.1.2 the gradient static magnetic field is another 

approach to levitate substance, which is called magneto-Archimedes levitation [171]. The 

remarkable difference between these two levitations is the former realized by a time-changing 

magnetic field but the latter levitates substance by the static magnetic field [172].  

In 1991, Beaugnon et al. levitated some diamagnetic substances by a high gradient static 

magnetic field and named such phenomenon as diamagnetic levitation [173]. This should be 

categorized to magneto-Archimedes levitation. The substance in gradient magnetic field is 

subjected to a magnetic force expressed as [174]: 
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where, ȝ0 is magnetic constant (4π×10-7 Hm-1), B is magnetic field flux intensity, χ refers 

magnetic susceptibility and V is volume. Because both object and its surrounding medium are 

are subjected to this force, the object can be levitated if the resultant magnetic force acting on 

it is opposite and equal to its gravity. It can find that there should be only one position for a 

specified object to be stably levitated. Therefore, different objects must locate at different 

positions if put them in the same magnetic field. This provides an approach to separate the 

mixed objects via imposing a suitable magnetic field. As shown in figure 1.13 (a), the feeble 

magnetic particles are separated by a 12T magnetic field [175]. By using the gradient static 

magnetic field, Tagami et al. in-situ observed the solidification of a levitated water droplet 

and investigated the containerless crystal growth [176]. Wang Qiang et al. utilized a high 

gradient magnetic field to grade the Mn solutes in Mn-Sb melts and achieved the 

compositional gradient composites as shown in figure 1.13 (b) [177]. As shown in figure 1.13 

(c), Ren Zhongming et al. studied the effect of magnetic field on the migration of primary 

MnBi phase in the melt and found that distribution of primary phase can be controlled via 

modifying magnetic fields and varying the holding time during solidification [178].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Static magnetic field affects the flows in melt during solidification 

Just like the storm can destroy everything when it passes, although the thermodynamical 

permission has been achieved, the selection of growth direction of crystal has been dicieded 

Figure 1.13 (a) Feeble magnetic particles with different magnetic susceptibilities in 
6wt%MnCl2 aqueous solution are separated by a 12T magnetic field; (b) 
Compositional gradient Mn-Sb alloy obtained by bulk solidifification under a high 
gradient magnetic field; (c) Radial migration and alignment of primary phase in Mn-
Bi alloy under gradient static magnetic field.  
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and the position of primary phases has been redistributed, all these can be changed if severe 

engouth flows in melt appear during solidification [179]. Unlucky, flows in metl exist in 

almost cases if solidification conducted under terrestrial because the thermal and 

compositional gradient are always present [180]. Reducing or suppressing the flows in melt is 

desired in most crystal growth and solidification process [181]. However, not all the 

electromagnetic braking methods introduced in section 1.1.2 are suitable except the one using 

static magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The theoretically analysis of damping flows in melt had been treated in 1952 by 

Chandrasekhar [182]. In 1966, Chedzey et al. published their experimental results that 

imposing a static magnetic field during growing the semiconductor crystal can eliminate the 

solute banding, or saying growth-striae. Curve shown in figure 1.14 (a) is the thermal 

fluctuations obtained by them. It can see that flows in melt were damped in the presence of a 

0.175T staic magnetic field [135, 136]. After that, intensive numerical and experimental 

researches have been performed to understand the role of various magnetic fields in 

optimizing the quality of crystals [183-185]. Like showing in figure 1.14 (b), which is the 

InSb single crystal obtained without and with a transverse magnetic field by Witt et al. [186]. 

Figure 1.14 (c) is the numerical simulation of composition near solid-liquid interface during 

growing SbGe crystal in the absence and presence of the gradient magnetic field. Oreper and 

Szekely numerically investigated the influence of external magnetic field on the buoyancy 

driven flows in a rectangular cavity and stated that the damping effect of applied magnetic 

Figure 1.14 (a) Thermal fluctuations during crystal growth with and without a 
magnetic field; (b) Etched (211) surface of InSb single crystal without and with 
transverse magnetic field; (c) Simulation of the composition near solid-liquid 
interface without and with gradient magnetic field.  
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field was related to the its flux intensity and the geometry of studying system. Additionally, 

they pointed out that flows cannot be damped entirely [187]. Reports of damping flows in 

melt by a gradient static magnetic field also can be found [188-190]. This has the similar 

principle of magneto-Archimedes levitation, but the magnetic forces produced by the gradient 

static magnetic field are opposite to the melt flowing direction rather than the gravity 

direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

But the damping effect of static magnetic field does not always work, which was awared 

when some unexpected results emerge in directional solidification of metallic alloys under a 

static magnetic field. The first voice saying the invalid of the damping effect rose in 1981 

[191], when Bottinger et al. investigated the relationship between solute convection and the 

macrosegregation in Sn-43wt%Pb alloy. They initially planed to suppress the convections by 

applying a 0.1T magnetic field, but they finally found that the static magnetic field cannot 

reduce macrosegregation at all (figure 1.15 (a)). To investigate this further, 13 years later, 

Tewari et al. applied a higher magnetic field during directional solidification of Pb-Sn alloys 

[192]. They also found that the 0.45T static transverse magnetic field has no influence on the 

bulk convections. In addition to, a strange phenomenon was uncovered. They found that 

0.45T magnetic field led to new freckles in cellular arrays as shown in figure 1.15 (b) and 

attributed this to the magnetic field causing thermosolutal convection‘s anisotropy. Because 

Figure 1.15 (a) Average solid composition vs solid fraction of Sn-43wt%Pb alloy 
fabricated with and without magnetic field; (b) Cellular microstructure of Pb-Sn 
alloys solidified without and with a 0.45 transverse magnetic field; (c) 
Macrostructure of Sn-Pb alloys solidified under different static magnetic fields 
applied parallel to the solidifying direction. 
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the appearance of freckles or saying the distortion of cellular arrys suggests convections exist 

in the mushy zone, such strange phenomenon should indicate that applying a static magnetic 

field may lead to new flows in melt during solidification. In fact, this is not role case, the 

indications for static magnetic field produceing new flows in melt can be aloso found in some 

other studies with different purposes.  For instance, with the purposed to investigate the 

anisotropic effect of MHD on metal solidification Kinshida et al. solidified Sn-Pb alloys 

under different magnetic fields [193]. As shown in figure 1.15 (c), it can find that compare to 

the solid structure obtained without magnetic field the equiaxed crystal region was enhanced 

under in the sample solidified under 0.2T magnetic field. This indicates the existence of 

severer flows in melt when a 0.2T static magnetic field is applied because the increasing of 

equiaxed crystal region is commonly caused by intense flows in melt [194]. Nowadays, more 

indications of static magnetic field being able to produce new flows in melt during directional 

solidification emergy [195], but the systematic research is lack. This is one of the main 

reasons for making the present thesis. 

1.2 Encounter between thermoelectric magnetic effect (TEME) and 
solidification 

Similar to the encounter between magnetic field and solidification, before TEME 

officially comes across with solidification a relevant theory named thermoelectric MHD is 

proposed [196]. Therefore, it is better to begin the story from the meet between thermoelectric 

currents and magnetic field to the appearance of thermoelectric MHD theory, and then we can 

gradually step into the following encounter between TEME and solidification. 

1.2.1 Meet between thermoelectric currents (TEC) and magnetic field 

TEC refers the currents that caused by heat and is one aspect of the thermoelectric (TE) 

effect. Three phenomena make up the TE effect, which are Seebeck effect that converting 

temperature difference directly into electricity, Peltier effect that heat absorbing or releasing 

at an junction of two dissimilar metals when elecrtric currents flowing across, and Thomson 

effect that heating or cooling of a current-carrying conductor with thermal gradient [197]. 

These three phenomena were discovered respectively in 1821 by Thomas Johann Seebeck, in 

1834 by Jean-Charles Peltier, and in 1851 by Lord Kelvin [198]. Although the TEC was 

discouvered early in 1820s‘, the meet between it and the external magnetic field happened 

almost a century later. This was realized by a smart invention that pumping the liquid metal 

by the Lorentz force produced via TEC interacting with magnetic field. In order to transfer the 

heat from fusion reactor blanket to the hot engine and then to generate electricity, the coolant 
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should be carefully chosen. Because the low solidification and high evaporation temeperature, 

liquid metal is the best candidate. Otherwise, how pump such the liquid melt coolant should 

be sovled as well. At that time, because the MHD theory and related effects had been widely 

known, people tried to find a method in accordance to the principle of electromagnetic 

pumping. It should be clear that temperature difference along the heat exchanging tube 

inherently exists and the liquid metal and the tube must have dissimilar physical properties. 

This gives rise to the appearance of TEC in case the liquid meltal coolant flowing within the 

heating exchanging tube. Moreover, the magnetic field must exist to protect windings from 

neutron bombardment in the fusion reactor blanket [199].Therefore, the problem of pumping 

liquid metal coolant in nuclear fusion generator was solved by the interaction between the 

inherent TEC and the static magnetic field [200]. This solution made TEC meet the magnetic 

field. After that, under intensive demands on developing fusion reactor generator, studies on 

optimizing the utilization of the interaction between TEC and magnetic field were boom. For 

this reason, several progresses and patents had been made as listed in table 1.2 that the events 

happened before Shercliff published the thermoelectric MHD theory in 1979 [196]. 

Table 1.2 Experiments and patents that utilize interaction between TEC and magnetic field 

Year People Events 

1951 W. Murgatroyd 
Improvements in or relating to heat transfer systems. U.K. Patent 
Appl. 20911/51 [201] 

1954 
E. Luebke 

L. B. Vandenberg 
Compact reactor power plant with combination heat exchanger 
thermoelectric pump (also U.S. Patent 2.748.710, 1956) [200] 

1956 K. F. Schoch 
An experimental liquid metal thermoelectric electro-magnetic 
pump – heat exchanger [202] 

1961 D. von Rex Thermoelectric pump for liquid metal [203] 

1964 
J. F. Osterle 

S. W. Angrist The thermoelectric hydromagnetic pump [204] 

1964 S. R. Rocklin Thermoelectric pump U.S. Patent 3.116.693 [205] 

1965 
M. A. Perlow 
K. A. Davis 

The development of the SNAP-10 thermoelectric pump (also 
U.S. Patent 3.288.070, 1966) [206] 

1969 
M. de Cachard 

P. Caunes 
Fuel elements of sodium thermosyphon for irradiation cell [207]  

1969 
V. S. Makarov 

A. Kh. Cherkasskii 
Pressure-consumption characteristic and efficiency of a 
thermoelectromagnetic pump [208] 

Just like the paper published by Hannes Alfvén in 1942 marking the establishment of 

fully-fledged MHD theory, the paper published by J. Arthur Shercliff in 1979 [196] is 

regarded as the birth of thermoelectric magnetohydrodynamics (TEMHD) theory. Although 

this paper mainly dealt with the fluid flow problems involved in heat exchanging process in 

the nuclear fusion generator, he proposed the idea of applying TEMHD to metallurgy. This 
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lighted the enthusiasm of studying TEMHD phenomena in metallurgy process and provided a 

reasonable explanation to how new flows in melt appear when the solidification is conducted 

under external magnetic field. After that paper, J. Arthur Shercliff applied his TEMHD theory 

to some specific phenomena such as the pipe end problems in TEMHD and TEMHD with 

walls parallel to the magnetic field [209, 210]. Although these topics are still related to the 

heat exchanging system of nuclear fusion generator, his brilliant works made the TEMHD 

theory gradually mature. So that let us go together with the material researchers who had got 

Shercliff‘s inspiration to discover the TEMHD phenomena in the metallurgy, particularly in 

solidification process. 

1.2.2 Review on researches of TEM flows in melt during solidification 

 

 

 

 

 

 

 

 

 

 

 

 

 

We call TEMHD flows thermoelectric magnetic (TEM) flows here in order to emphasize 

their original that interaction between TEC and magnetic field. The attempt of investigating 

TEM flows in metallurgy was made by some former Soviet Union scientists in the crystal 

growth process [211-213]. In 1981, when Michelson and Karklin investigated how the 

Figure 1.16 (a) Curve of magnetic field strength (H) close to crystallizing cadmium 
specimen versus the time (A-A corresponds to the moment that the solidification of 
the specimen finished); (b) Rotating velocities of liquid meltal veries with increasing 
magnetic field; (c) Bi-40at%Sn alloys solidified without and with a transvers 
magnetic field. 
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magnetic field control the crystallization processes they found that currents generated by 

thermal electromotive force in the crystallizing body might affect the crystal growth via 

interacting with the magnetic field [211]. Further, they proved the existence of TEC by 

recording the changing of magnetic field that close to the vessel because the changing TEC 

should induce a fluctuation magnetic field near the crystallizing body. Figure 1.16 (a) is the 

curve of magnetic field strength versus time made by them. An explicitly evidence for the 

existence of TEM flows in melt during crystal growth was provided by Gorbunov in 1987 

[212]. By applied only thermal gradient and vertical static magnetic field to liquid In-Ga-Sn 

contained in a copper crucible, he observed the motion and measured the rotaing speed from 

the surface under different magnetic fields as shown in figure 1.16 (b). It can find that TEM 

flows firstly speed up to the maximum and then slow down with the continuously increasing 

magnetic fields. Seven years later, the similar change tendency of the speed of TEM flows 

was pointed out by Kaddeche et al. in their numerical simulation works as well [217]. 

Furthermore, Gorbunov and Lyumkis argued that TEM flows should respond to the 

deformation of crystal shape and the remained periodic striations in doped silicon single 

crystal (figure 1.14 (b)) fabricated under a static magnetic field [213]. 

TEM flows in solidification of metallic alloys were noticed in the early 1λλ0s‘ [214-216]. 

In 1991, Alboussière and Moreau et al. [214] solidified Bi-Sn and Pb-Sn alloys without and 

with magnetic field and found that solutal convection under magnetic field was more severe 

than the field is absent for Bi-Sn alloy as shown in figure 1.16 (c). Whereas, for Pb-Sn alloy, 

the solutal convection did not change a lot no mater the magnetic field is present or not. They 

concluded that the more severe convection appearing in Bi-Sn alloys should be TEM flows 

because Bi-Sn has much higher absolute thermoelectric power (70ȝV/K) than the Pb-Sn 

(0.1ȝV/K). After that, they built a numerical model to estimate the velocity of typical 

interdendritic TEM flows in 1994 [218]. By analyzed the influence of both Seebeck and 

Peltier effects on solidified microstructure they found that such effects can destabilize the 

liquid-solid interface [215]. They introduce a new dimensionless parameter Se to characterize 

the influenc of Seebeck and Peltier effects, which is expressed: 

2( )
e=

+
S L S L

S L S L

S S
S

  
   


      

(1.5) 

where, ı is electrical conductivity, ț stands for the thermal conductivity, S is absolute 

thermoelectric power,  θ denotes typical temperature at interface, subscripts S and L 

represents solid and liquid state respectively. SI units are used by the above physical 

quantities. Furthermore, Moreau and Lehmann et al. used TEM flows to modify interdendritic 

convections, introduced a simple model to simulate TEM flows in the mushy zone and 
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validated it by comparing the computing results to the experiment [219-221]. Figure 1.17 (a) 

to (c) show the typical structures obtained under different types of TEM flows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In 1λλ0s‘, studies on TEM flows in crystal growth process developed as well, but this is 

after a little bit long stagnate from the pioneer exploration made by Gorbunov et al. It was 

1998 when Cröll et al. found a new type of pronounced dopant striations quite different from 

the ones caused by buoyancy or surface tension driving convections. They thought this should 

be attributed to the occurrence of TEM flows during growing silicon under a strong static 

axial magnetic field [222]. In the same year, Khine and Wallker studied TEM flows in 

semiconductor crystal growth [223] and found the same change tendency of speed of TEM 

flows with imposing magnetic fields as the one measured by Gorbunov and numerically 

computed by Kaddeche. Further, they estimated the azimuthal component speed of TEM 

flows and found that the maximum speed can be several micrometers per second. This is able 

to cause the rotational-like striations during crystal growth. Moreover, they studied TEM 

flows in crystal growth under different moderate magnetic fields to find out how TEM flows 

vary with the imposing magnetic fields and the thermal gradient at crystal-melt interface 

[224]. Yesilyurt et al. numerically simulated the influence of TEM flows on Bridgman growth 

of Ge1-xSix [225] and found that the meridional convection altered the composition of melt in 

front of the crystal/melt interface then changed its shape. At the beginning of 21st century, 

they optimized their model and predicted TEM flows under varying gravity levels [226]. In 

Figure 1.17 Transverse structures of Cu-Ag alloys directionally solidified without 
magnetic field (a), under a 1.5T axial magnetic field (b) and under a 0.65T transverse 
magnetic field (c). GeSi crystal grown under different axial magnetic fields: (d) 0T; 
(e) 2T; (f) 5T. 

(a) (b) (c) 

(d) (e) (f) 
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2001, Cröll et al. deeply studied the explanation used in their previous paper published in 

1998 via numerical simulations [227]. The latest research of TEM flows in crystal growth we 

can find was taken by Dold, Szofran, and Benz in 2006 [228]. They experimentally proved 

that TEM flows reach the maximum speed under a unique magnetic field for the given 

condition, over such threshold, TEM flows slow down under higher magnetic field. This can 

be indicated by the periodic striations in the crystal as shown in figure 1.17 (d) to (f). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The researches of TEM flows in solidification of metallic alloys in this new millennium 

began with two master‘s work from Liaoning Technical University, China, published 

respectively in 2002 and 2006 [229, 230]. They investigated the influence of TEM flows on 

the formation of microstructure of Al-Cu and Al-Si alloys. This put forward a question that 

should we control the microsture by TEM flows during solidification? It is pity that no more 

publishing works from them could be found from then on. Fortunately, a raising and active 

group noticed this interesting topic and insisted the related study till now. This group is based 

on the successful cooperation between SIMAP/EPM laboratory in France and key laboratory 

of metallurgy of Shanghai University in China. Prof. Yves Fautrelle and Prof. Zhongming 

Ren respectively represent these two loboratories. In 2007, their first co-supervised Ph. D 

Figure 1.18 Computed TEC distribution, TEM flows and their corresponding 
experimental results under axial (a) and transverse (b) magnetic field; (c) In-situ 
observation of TEM flows generated by a transverse 0.45T magnetic field. 
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student, Prof. Xi Li now, qualitatively evaluated the TEM flows in different typical scale 

lengths and compared with experimental results obtained under different axial magnetic fields 

[231, 232]. He concluded that effect of magnetic field varies for different typical scale 

lengthes, indeed, the smaller the structure is the larger the magnetic field is needed to produce 

the apparent TEM flows. In 2009, Li, Ren and Fautrelle thoroughly investigated TEM flows 

and its influences on solidification under a low axial magnetic field [233]. They computed the 

distribution of TEC along liquid-solid interface and the velocities of TEM flows around the 

cells/dendrites (figure 1.18 (a)) with help of Dr. Gagnoud. In the same year, a group from 

Germany published their numerical and experimental investigations on a pure TEM flows 

problem. They found that TEM flows can be vigorous and may be able to stir melt in some 

metallurgical processes [234]. In order to extend the previous studies, Li and Gagnoud treated 

the phenomenon similar to the one published in 2009 but under lower transverse magnetic 

field [235]. They found a perfect agreement between the simulation and the experimental 

results (figure 1.18(b)). During this period, a distinguished work was taken by a Japanese 

scientist Prof. Yasuda. He should be the first one to attempt to in-situ observe the TEM flows 

during directional solidification of metallic alloys [236] although his results seems wrong. 

Figure 1.18 (c) shows two pictures from him that captured by the synchrotron X-ray imaging 

technology during solidification of Al-Cu alloy. Because more and more material researchers 

have noticed and began to study TEM flows in solidification TEM flows in different systems 

was uncovered. For instance, Ren et al. found that TEM flows can result in a dramatic 

increased dendrite number in superalloys DZ417 [237], and Shen et al. found TEM flows 

should respond the modification of mushy zone length when directionally solidifying the 

hypereutectic Al-Al2Cu alloy under different magnetic fields [238]. 

1.2.3 Review on researches of TEM force in solid during solidification 

It has been well known that TEM flows are driven by the Lorentz forces induced by the 

interaction of TEC and magnetic field in melt. In fact, such forces should act on solid as well 

because TEC flow through liquid and solid [239]. Similarly, we name such forces as TEM 

forces to emphasize their origin. According to the literatures, it can find that the influence of 

TEM forces in solid are nearly ignored at the early stage of studying on the interaction of 

TEC and magnetic field in solidification. This is because forces in solid are always hard to 

detect comparing to the flows in melt. Besides, TEM flows can be apparent even if the 

imposed magnetic field is moderate or weak but the influence fof TEM forces in solid can be 

aware only when the magnetic field is relatively high [240]. Moreover, blocked by the 

limitation of high magnetic field generating technique, researches on influence of TEM forces 
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in solid during solidification are rare before recent [241]. Thanks to the fast development of 

superconducting materials, utilization of high, even ultrahigh, magnetic field in solidification 

or industrial metallurgy is realizable nowadays [242]. Because TEM forces in solid can be 

very strong under high magnetic field their influences should be paid attention to if the 

solidification is conducted under a high magnetic field. Indeed, performing solidification 

under high magnetic field is a rising research topic because many unexprected and meaningful 

phenomena have been uncovered in the past decade. Even though, the specialized studies on 

the influence of TEM forces in solid during solidification process appear till very recently.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19 (a) Cell branching when Al-0.85wt%Cu alloy solidified at 5ȝm/s under 
different magnetic fields; (b) Illustration of torque caused by TEM forces on the top 
and the bottom of cell or dendrite; (c) Microstructure and EBSD map of Al-
4.5wt%Cu alloy solidified at 5ȝm/s without and with 10T magnetic field; (d) Local 
crystal misorientation map of samples solidified without and with a 10T magnetic 
field (white dotted line refers the liquid-solid interface shape). 
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It was 2007 when Li, Fautrelle and Ren tried to validate their analysis on TEM flows 

[232] they found that cells were broken and liquid-solid interface became uneven under a 10T 

magnetic field. Further calculation suggested that TEM flows should be mostly suppressed 

under such high field. This makes they realize that the breaking of cells and the uneven 

interface might be caused by TEM forces in solid. They continuously investigated these novel 

phenomena and uncovered two important effects that TEM forces in solid can cause 

Columnar to Equiaxed Transition (CET) and liquid-solid interface instability [243, 244]. 

Regarding on the breaking of cells or dendrites, they studied the morphological instability of 

cells and dendrites during directional solidification under a high magnetic field [245]. They 

found that cells or dendrites twisted and deflected from the solidification direction at lower 

growth rates and side-branching and tip-splitting of cells appeared at moderate growth rates as 

shown in figure 1.19 (a). They thought that TEM forces changed the surface chemical 

potential of solid and shifted the surface tension of cellular or dendritic tips. After that, with 

the aids of numerical simulations done by Gagnoud, Li et al. confirmed the existence of a 

torque in a cell or dendrite as illustrated in figure 1.19 (b). Moreover they pointed out the 

posibility of TEM forces causing CET in directional solidification. In order to prove this, they 

directionally solidified various alloys, such as Al-Cu, Pb-Sn, superalloys, Zn-Cu, Al-Si, and 

Al-Ni, without and with high magnetic fields [246]. Electron back-scattered diffraction 

(EBSD) examination of the microstructure obtained from those experiemnts revealed that 

CET did occur under a sufficient high magnetic field as shown in figure 1.19 (c). Upon the 

uneven interface, with the help of Yudong Zhang and Claude Esling, Li et.al examined the 

local misorientation map of samples and found that the crystal mismatch of sample solidified 

under 10T magnetic field was more severe than that without magnetic field (figure 1.19 (d)) 

[240]. This demonstrated that TEM forces did exist in the solid when magnetic field was 

present. Moreover, concerning the changing of interface shape and the splitting of planar 

interface, it is reasonable to argue that TEM forces in solid may cause the interface instability. 

This argument was validated in Zn-Cu alloy by their following paper [247]. 

1.3 Purposes and organization of present thesis 

It should be clear from the above introductions that electromagnetic fields have been 

widely used in metallurgical processes as an efficient flow field or microstructure controlling 

method. Therefore, investigation of ultilization of the magnetic field to optimize the solid 

structure of metallic materials will catch more and more attentions. Concerning TEC 

inherently exists in solidification process, TEM forces and TEM flows must appear once the 

external magnetic field is present. So that, how they affect the solidification and the 
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relationship between them and the magnetic field are desired to know. Although many studies 

on TEM forces and TEM flows in solidification have been made they are fragmentary. 

Therefore, it is the time to have a systematic investigation from the mechanism of how TEM 

forces and flows appear to their influences in solidification of metallic alloys. This motivates 

us to do the works in the present thesis that consists of six chapters. 

In chapter 1, introduction of two important crossovers that making the TEME in 

solidification aware is given. Story begins with the emergence of magnetohydrodynamics 

(MHD) theory becasue its applications in metallurgy permits the first crossover between 

magnetic field and solidification. Besides, this crossover gives the birn to a rising research 

field namend electromagnetic processing of materials (EPM). Works on this crossover are 

generally introduced as well. After that, we begin another trip to see the second corssover 

between TEME and solidification. Because TEME is resulted from the interaction of TEC and 

magnetic field, the introduction of how TEC meets magnetic field is given in advanced. 

TEME should exist and affect in the metallurgy process was pointed out by Prof. Shercilff. 

More indications of TEM flows in solidification process have been reported because appying 

magnetic field during solidification has become popular. Certainly, these pioneer attempts on 

studying the TEME in crystal growth and solidification of metallic alloys are also reviewed. 

In chapter 2, thermoelectric (TE) effect is introduced firstly, and then their corresponding 

phenomena in the solidification process are illustrated. Comparsion of the influence of 

different TE effects on solidification is taken and shows that TEC in accordance to Seebeck 

effect should be paid more attentions. Further, how TEM forces and TEM flows happen is 

phenomenologically described. Moreover, numerical simulations of TEC and TEME at the 

liquid-solid interface during solidification are taken after deducing the formulas of them to 

give a more intuitional view.  

In chapter 3, TEME is confirmed by in-situ and real time observation during 

directionally solidifying the Al-Cu alloys. TEM forces are confirmed by comparing the 

analytical calculating velocities of TEM forces driving movement of particles to the velocities 

of the movement of crystals observed in directional solidification of Al-4wt%Cu alloys under 

a transverse magnetic field. In the other side, because TEM flows being capable to transport 

the rejected solutes are demonstrated by simulations and the shape of liquid-solid interface is 

sensitive to the solute concentration of melt ahead, TEM flows are confirmed via observing 

the shape evolution of panar liquid-solid interface. 

In chapter 4, influence of TEM flows are examined with larger samples. Directional 

solidification of Al-Cu alloys under different axial and transverse magnetic fields is taken. 

Preliminary evaluation of the velocities of TEM flows are made before performing the 
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experiments. Results show that TEM flows are capable to change the liquid-solid interface 

shape whatever the morphology is. Numerical simulations of TEM flows with the same 

conditions used by experiments are taken and show reasonable agreement with the 

experimental results. The velocity evalutions, the experiments, and the simulations of TEM 

flows are consistent, and particularly, change tendency of the velocities of TEM flows with 

increasing magnetic fields that achieved from those three methods is perfectly consistent. 

In chapter 5, whether TEME can influence the solidification of near-eutectic alloys or 

not is examined. Hypoeutectic Al-26wt%Cu and hypereutectic Al-40wt%Cu alloys are 

directionally solidified under different axial static magnetic fields. It is found that TEM flows 

exist and modified the mushy zone length dring solidification of both hypo- and hypereutectic 

alloys. Becides, dramatic growth enhancement of faceted Al2Cu phase is found in Al-

40wt%Cu alloys solidified under high magnetic field. This is becasue the defect 

multiplication in faceted phase can be caused by TEM forces acting on it. Defects in solid are 

benefit to the growth of faceted phase. Moreover, coupled growth structure is found in the 

hypoeutectic Al-26wt%Cu alloy solidified under a 4T axial magnetic field. Because in the 

absence of high magnetic field the dendrite-plus-eutectic structure is prevailing under the 

given conditions, such discovery may provide a novel method to extend the composition 

range for hypoeutectic Al-Cu alloys forming coupled growth structure. Differential thermal 

analysis (DTA) test sugguests that high magnetic field changing the solidification temperature 

of the α-Al and the eutectic phases shoud respond to the formation of coupled growth 

structure in this case. 

In chapter 6, conlusions and prospects are given.  
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Chapter 2: Thermoelectric (TE) and thermoelectric magnetic 
effect (TEME) in solidification 

 
2.1 Thermoelectric (TE) and thermoelectric magnetic effect (TEME) in 

directional solidification process 

Considering thermal gradient at liquid-solid interface and the different physical 

properties of solid and liquid phases, such as thermal and electrical conductivities and 

absolute thermoelectric powers (ATP), it can be known that conditions at the liquid-solid 

interface naturally meet all the demands for the occurrence of TE currents in accordance to 

the Seebeck effect [248]. Therefore, TEME takes place once an external magnetic field is 

imposed. In order to more precisely and separately control the process conditions, directional 

solidification has been widely used in the investigations of solidification related problems 

[249]. Moreover, because the information of liquid-solid interface can be esealy obtained by 

such method this thesis uses directional solidification to study TEME in solidification as well. 

2.1.1 TE effect 

TE effect is an umbrella term used to describe the phenomena that direct conversion of 

temperature difference to electric voltage and vice-versa, which contains three separated 

effect that Seebeck, Peltier and Thomson effect [250]. About 200 years ago, with limited 

knowledge on the law of transition between heat and electric, it took 34 years from the first 

discovery of Seebeck effect related phenomenon to uncover the inner-relationship between 

these three separated effect [251]. However, at the atomic scale these effects and their 

relationship can be easily understood nowadays. Because charge carriers in material tending 

to diffuse from the hot to the cold part, electromotive force would appear if thermal gradient 

exists in a material [252]. 

 Seebeck effect 

Seebeck effect was firstly discovered by a German physicist, Thomas Johan Seebeck, in 

1821 [253]. He found that a circuit consisting of two dissimilar metals with junctions at 

different temperatures would deflect a compass magnet. He named such phenomenon 

‗thermomagnetic effect‘. A Danish physicist Hans Christian Ørsted reconsidered Seebeck‘s 

discovery and found that electromotive force existing in two dissimilar materials. Therefore, 

he rectified the ‗thermomagnetic effect‘ to ‗thermoelectricity effect‘ [254]. It can image that if 

the dissimilar materials are conducting electric currents can appear in the circuit, and this 

should be the real reason for the deflecting of the compass observed by Seebeck. In order to 

memorize the first discover ‗Seebeck effect‘ was used to represent this heat to electric 

http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Voltage
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transition phenomenon. Figure 2.1 graphically illustrates the story from Seebeck‘s experiment 

to the measurement of thermoelectromotive force in a circuit and then the schematic of how 

TE currents flow in a circuit consisting of two dissimilar metals. 

 

 

 

 

 

 

 

 

 

 

 Peltier effect 

Peltier effect refers to the phenomenon that heating or cooling happens at the junction of 

two dissimilar metals when there are electric currents flowing through. It was discovered by a 

French physicist named Jean Charles Athanase Peltier in 1834 [255]. 4 years later, 

relationship between the heating or cooling and the direction of electric currents was pointed 

out by Lenz [256]. Because the magnitude of heating or cooling at junction is proportional to 

the density of electrical currents flowing through, a proportionality coefficient named Peltier 

coefficient was defined [257]. Figure 2.2 (a) illustrates Peltier effect diagrammatically. 

 Thomson effect 

TE effect was full-fledged after the Thomson effect was predicted in 1854 and observed 

in 1855 by a British mathematical physicist William Thomson (later Lord Kelvin) [258]. 

Thomson effect was uncovered when Thomson attempted to establish a relationship of 

Seebeck and Peltier coefficient via introducing thermodynamics. Finally, Thomson 

relationships that describing the interdependency of these three separated phenomennon were 

found [259]: 

=S T       (2.1) 

=
d

S
dT

       (2.2) 

where, Ĳ (V/K) is Thomson coefficient, and π (V) and S (V/K) is same as defined in figure 2.1 

and figure 2.2. Based on this theory, Thomson believed that there must be a third 

phenomenon existing in the homogenous conductor, which was the later well-known 

Thomson effect. This phenomenon reveals that heat can be absorbed or emitted when electric 

Figure 2.1 (a) Instrument used by Seebeck when he discovered the deflection of 
compass needle; (b) Illustration of ‗thermoelectricity effect‘, V represents voltage; 
(c) TE currents flow in a circuit consisting of two dissimilar metals, SA and SB stands 
for ATP of metal A and B respectively, when SB>SA, TE currents flow from metal A 
to B at the hot junction. 
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currents flow in a material with thermal gradient. Thomson coefficient was defined to link 

heat with both electric currents and thermal gradient. The illustration of Thomson effect is 

shown in figure 2.2 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

Apart from TE effect, there is another phenomenon related to the conversion of heat and 

electric, which is Joule Heating. A British physicist and brewer James Prescott Joule studied 

and proposed such phenomenon in 1840s‘ [260]. Joule pointed out that electric currents 

flowing through a conductor can generate heat. However, Joule heating is not categorized to 

TE effect because it is not a thermodynamics reversible process. In the case of solidification, 

Joule heating is neglectable if there are no electric currents being imposed externally. This is 

because the density of TE currents is weak in most solidification process. Correspondingly, 

the electromigration of solutes caused by only TE currents can be neglected as well. 

2.1.2 TE effect in directional solidification process 

It must be found that the first step of TE effect is the appearance of TE currents, and this 

requests the circuit consisting of two dissimilar conductors and the temperature difference 

existing between the junctions. It is so happen that liquid-solid interface in directional 

solidification inherently meets the above requests. Generally, liquid and solid phase of alloy 

has different ATP and physical properties, so that they can be regarded as two dissimilar 

conductors. Bsides, solid and liquid phase must connect with each other at interface during 

the directional solidification proceeding. Moreover, thermal gradient exists at liquid-solid 

interface naturally. TE currents can appear at the vicinity of liquid-solid interface because the 

applied thermal gradient and the interface must not be perfectly orthometric in reality.  

Figure 2.2 (a) Illustration of Peltier effect, πA and πB represents the Peltier coefficient 
of metal A and B respectively; (b) Illustration of Thomson effect, two conductors 
have the same Thomson coefficient. 
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Take the typical morphologies of interfaces commonly obtained by directional 

solidification of metallic alloys (Figure 2.3 (a) to (c)), how TE effect takes place is illustrated. 

Select a small but representative element from each kind of interfaces as circled by the red 

rectangles, it can find that a simple geometry as drawn in figure 2.3 (d) can represent all the 

typical morphologies. In these cases, because upward thermal gradient provides a temperature 

difference between junctions and the different ATP and physical properties of solid and liquid 

phases TE currents can appear and flow as indicated by the dotted circle in figure 2.3 (d). 

Once there are electric currents flowing through the junctions between solid and liquid Peltier 

heating or cooling as indicated by the red or blue spot happens. Looking at the individual 

solid or liquid phase, heat absorbing or emitting occurs in accordance with Thomson effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 (a) Planar interface; (b) Cellular interface; (c) Dendritic interface; (d) 
Illustration of TE effect taking place at liquid-solid interface, G is thermal gradient 
and R is the growth velocity. S, π and Ĳ are the same as defined in figure 2.1 and 2.2. 
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2.1.3 TEM E in directional solidification process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a non-contact method of controlling flows in melt, applying external magnetic fields 

has become a popular approach in metallurgy. In fact, the fast development of magnet 

manufacturing technique has permit to apply high magnetic field (>1T) in some industrial 

metallurgy process. Therefore, the influence of the interaction of TE currents and applied 

magnetic field should be paid more attentions because TE effect inherently exist in 

solidification or crystal growth processes. We name the Lorentz forces cause by interaction 

between TE currents and applied magnetic field TEM forces in this thesis. As introduction in 

chapter 1, TEM forces have a number of influences in solidification of metallic alloys, such as 

TEM forces in liquid can result in TEM flows and in solid they may trigger the fragmentation 

of dendrites or change the total chemical potential [261]. Therefore, in order to intuitively 

explain the interaction between TE currents and applied magnetic in solidification, typical 

cases are graphically illustrated in figure 2.4. Similar to the illustration of TE effect at liquid-

solid interface, the structure drawn in figure 2.4 (a) and (c) can represent the planar, cellular 

Figure 2.4 Graphically illustration of TEME at the vicinity of liquid-solid interface. 
(a) Illustration of TEM forces and its direction under axial upward magnetic field; 
(b) Top view of TEM flows in a horizontal plane; (c) Illustration of TEM forces and 
its direction under transverse magnetic field; (d) Top view of TEM flows in a 
horizontal plane. 
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or dendritic morphology. Under the processing conditions given in figure 2.4 (a), TEM forces 

in liquid are swirling and result in TEM flows rotating around the solid front as indicated in 

figure 2.4 (b). Replace the axial upward magnetic field by a transverse one, TEM forces in 

liquid are pointing to the same direction as marked by the red arrows in figure 2.4 (c) and 

drive the one-way TEM flows at the adjacent of solid front as shown in figure 2.4 (d).  

2.2 Thermoelectric currents (TEC) in directional solidification process 

2.2.1 Neglect of Peltier and Thomson effects 

 

 

 

 

 

 

 

 

 

 

 

 

Although above descriptions show that all the three phenomena of TE effect can exist at 

liquid-solid interface during directional solidification, Peltier and Thomson effects are 

neglectable in most cases [262]. Without any externally imposed electric field, Seebeck effect 

is the sole source of electric currents. Therefore, the magnitudes of the influences of Peltier 

and Thomson effects depended on the density of TEC. Generally, ATP of metals is about 10-6 

V/K, electrical conductivity is about 107 (Ωm)-1 and given the thermal gradient is 103 K/m, the 

density of the resulting TEC is about 103 A/m2 during directional solidification of metallic 

alloys. Consequently, the flux of Peltier heating or cooling and heat production in accordance 

to Thomson effect is about 1 W/m2. This is negligible because the solidification is always 

conducted under the temperature of several hundreds degree, particularly for the metallic 

alloys. Except this approximate estimation, Dr. Matoko TANAKA had precisely investigated 

the influence of TE effect on the interface instability [263]. He also found that Peltier and 

Thomson effects can be neglected as revealed by curves in figure 2.5. It can be seen that, 

compared to the Mullins-Sekerka (MS) interface instability analysis, the interface instability 

Figure 2.5 Comparison of interface instability considered the influence of TE effect 
and electromigration with that considered only the Mullins-Sekerka model for 
different initial compositions in the bulk. 
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was almost not affected by Peltier and Thomson effects for the Ge-Ga alloys with 

composition less than 10wt%Ga. Even for the high composition alloys, the influence of these 

two effects on the interface instability was less than 2%. Take both analyses above into 

account we consider only TEC in the flowing studies on the influence of TEM effect in 

solidification. And more, TEC should not be neglected when magnetic field is present can be 

proved by a simple estimation that the TEM forces caused by intereaction between a 10T 

magnetic field and the TEC estimiated just now is about 104 N/m3. It is obvious that a 104 

N/m3 cannot be neglected no matter it acts in liquid or solid. 

2.2.2 Formulation of TEC 

Consider both the thermoelectric potential caused by temperature difference and the 

electromotive force induced by conducting substance moving through the magnetic field lines 

Ohm‘s law should be modified as [196]: 

= ( )j E u B S T         (2.3) 

in which ı is electrical conductivity, E denotes electrical field, u is velocity of moving 

substance in a magnetic field B, T stands for temperature difference and S is ATP. Assume 

the applied thermal gradient is upward, the temperature difference can be written as: 

= zT Gi       (2.4) 

here, G is constant thermal gradient and zi  is unit vector along z-axis. An effective scalar 

potential Wi=Vi+SiT should be defined before we formulate TEC in both liquid and solid, in 

which the subscript i stands for the state of concerning subject (s means solid and l means 

liquid). Further, it can set the thermoelectric potential as: 

( ) iU T S dT       (2.5) 

that integrated for the datum temperature. Because S is assumed as constant, then it has: 

i iU S T       (2.6) 

Considering TEC (Neglectu B ) only and using the effective scalar potential, Wi=Vi+SiT, 

expression 2.3 becomes: 

( )i i i i i ij V U W           (2.7) 

This togethers with the continuity of currents: 

0ij        (2.8) 

then it has: 
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2 0iW 
      (2.9) 

and, accordingly, Wi is harmonic. 

Considering boundary condition, continuity of normal component of TEC must be 

satisfied at liquid-solid interface that can be expressed as: 

GS
n

V
GS

n

V
ss

s
sll

l
l  


   (2.10) 

where, G stands for the normal component of the thermal gradient. Moreover, the scalar 

potential Vl should equal to Vs at interface in the meantime. 

In practice, ATP of materials is difficult to directly measure, but the ATP difference of a 

pair of dissimilar materials is easier to obtain. For the sake of showing how to use ATP 

difference, thermoelectric potential in a bimetallic thermocouple is calculated. As shown in 

figure 2.1 (c), TEC flows in the circuit can be described: ∮           (2.11) 

which integrated through that circuit and along the TEC flowing direction, it gets: 

( )
hot hot hot hot

cold cold cold

T T T T

hot cold B A B A BA

T T T Tcold

S T dr S T dr S S dT S dT                 (2.12) 

Because S is constant, then it has: 

hot cold BAS T         (2.13) 

Considering the continuity of currents gives: 

2 0hot cold         (2.14) 

It can be seen that, for a given system, ATP difference of two dissimilar materials can be 

achieved by measuring the voltage in their circuit with a constant temperature difference. 

Correspongdingly, given the ATP difference is known, the corresponding thermoelectric 

potential can be calculated as well. It is just the later relationship permitting us to quantitively 

investigate TE and TEM effect in magnetic field assisting solidification process.  

2.2.3 Simulation of TEC at liquid-solid interface 

In order to show TEC in directional solidification process more intuitively, such currents 

at the vicinity of liquid-solid interface were simulated by the commercial code COMSOL 

Multiphysics (version 4.2.0.228). This code solves physics-based systems of partial or 

ordinary differential equations via using the finite element method for spatial discretization 

[264]. COMSOL can conveniently perform the multiphysics simulations through selecting the 

predefined physics/engineering modules or specifying a series of user-specific partial 

differential equations [265]. Here, we select the predefined stationary electric currents module 

hot cold  
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to perform the 2D axisymmetric simulations of TEC at a curved planar liquid-solid interface. 

Such interface shape is typical and widely obtained, therefore it is only drawn but not from 

computation. The drawing in 2D r-z work plane and the 3D topography achieved by revolving 

the 2D work plane around the z-axis were shown in figure 2.6 (a) and (b) respectively. This 

geometry corresponds to a cylinder sample of 5mm in height and 3mm in diameter, which are 

the same diamensions of samples used in the following real experiments. 

 

 

 

 

 

 

 

 

 

Continuity of currents as described by expression 2.8 is applied in both solid and liquid 

and acts as the basic equation to describe the TEC. Based on the finite element method, 

projecting expression 2.8 in the basis of functions αi on domain Ω has:  

0i jd


         (2.15) 

because 

( )i i ij j j            (2.16) 

expression 2.15 becomes: 

( ) 0i i ijd j d jd  
  

            (2.17) 

and then, follow the theorem of divergence: 

0i ij nds jd 
 

           (2.18) 

where, Γ is the boundary of domain. The first term at left of expression 2.18 represents 

boundary condition, which is zero for the isulating walls, so that the second term should be 

zero as well. Moreover, consider j that expressed by 2.7 it gets: 

( ) 0i V S T d  

            (2.19) 

Figure 2.6 Geometry used in simulation of TEC at liquid-solid interface. (a) Drawing 
of the configuration in the 2D r-z work plane; (b) 3D topography of geometry. 

(a) (b) 

Liquid 

d 

Solid Interface 

Symmetric 
axis 

5m
m

 

R=1.5mm 

Liquid 

d 

Solid 

Interface 

app:ds:divergence


 

73 
 

This is the programing equation used in the simulation of TEC. Compare to equations 2.20 

that governing the electric current module in COMSOL, TEC is set as an external current 

density Je and wrriten in the same form of expression 2.7 in both liquid and solid. Q is set as 

zero to ensure the continuity of currents. 

VE

JEJ

QJ

e











        (2.20) 

 

  

 

 

 

 

 

 

 

 

The ‗extremely fine‘ triangular mesh as shown in figure 2.7 was used in simulation and 

created automatically under the control of physical phenomena. Electric insulating conditions 

are applied for the walls indicated by the green lines in figure 2.7. As the parameters list in 

table 2.1, simulations were performed for the Al-4wt%Cu alloy system because it is used in 

experiments as well, and a constant thermal gradient of 6000K/m is used. As shown in figure 

2.8 (a), the computed thermoelectric potential increases gradually from the solid (cold) to the 

liquid (hot). Contours of both r and z components TEC densities are given in 2D plane as 

shown in figure 2.8 (b) and (c) respectively, which shows that the desity of both componets of 

TEC increase from the cold to the hot region as well. Figure 2.9 (a) shows the streamlines of 

norm TEC, and red arrows in figure 2.9 (b) indicates their flowing directions. It can be seen 

that TEC circuit forms around the liquid-soid interface. Further, the magnitudes of red arrows 

obtained in accordance to norm TEC density show that TEC is big at the region near to the 

Figure 2.7 Mesh and boundary conditions used in simulation of TEC at liquid-solid 
interface with a 2D axisymmetric electric current module. 
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symmetry axis and gradually decrease in the regions that departing from the center. This can 

be more clearly seen in figure 2.9 (c) that the magnified figure of region near interface.  

Table 2.1 Relevant physical properties of Al-4wt%Cu alloys used for simulation of TEC 

Symbol Unit Solid Liquid 
S V/K -1.5×10-6 -2.25×10-6 
σ (Ωm)-1 7.9×107 4.0×106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 (a) Computed thermoelectric potential (V) represented by colored surface 
(thermal gradient, G, of 6000K/m); (b) Desitiy of the z component of computed TEC 
density (A/m2); (b) Desitiy of the r component of computed TEC density (A/m2). 
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Figure 2.9 (a) Streamlines of norm TEC density; (b) Norm TEC‘s flowing direction. 
(c) Magnified view of the region near liquid-solid interface. 
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Based on equations 2.7 and 2.19, it can be concluded that direction and magnitude of 

TEC dependent on the thermal gradient only if other conditions are fixed. In order to reveal 

this dependence, simulations of TEC at liquid-solid interface are performed under various 

thermal gradients. Current densitiy of both z and r components of TEC were detected along 

the green line as indicated in figure 2.9 (c) are taken and plotted versus the distance from the 

center to the crucible wall for each thermal gradient. As shown in figure 2.10, the magnitudes 

of TEC increase with the absolute values of thermal gradients increasing, and their direction 

reverses once the thermal gradient is imposed in an opposite direction. Moreover, in order to 

give a more clearly view of the dependence of direction of TEC on the direction of imposed 

thermal gradient, figure 2.11 gives the thermoelectric potential and corresponding norm TEC 

Figure 2.10 Curves of currents densities of z (a) and r (b) component of computed 
TEC varying with distance in r direction along the line at the middle height of curved 
interface under different thermal gradients. 
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generated by the thermal gradient of 3000 K/m and -3000 K/m respectively. It is obvious that 

direction of both thermoelectric potential and TEC reverse once the thermal gradient changes 

from positive to negative. In additions, one thing should be noticed that both r and z 

components of TEC rapidly decrease to zero at just the liquid-solid interface. This satisfies 

the currents continuity boundary conditions at interface and agrees with the physical reality, 

therefore, which can prove the validity of simulations performed above to a certain extent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because liquid and solid has different thermal conductivites, different thermal gradients 

in liquid and solid should be achived if the imposed termperature difference is constant. This 

is the common case in most directional solidification process [266]. For this reason, the 

thermal transfer module is coupled in the following simulations of TEC. Set the top wall as 

983.15K and the bottom wall as 953.15K, which gives a 6000K/m thermal gradient for the 

thermal conductivity uniform medium. Simulations containing both electric current and heat 

transfer modules are performed with the same geometry shown in figure 2.6. In order to get a 

reference, simulation of temperature fields in the thermal conducitivity uniform medium is 

Figure 2.11 Thermoelectric potential and corresponding norm TEC densities 
generated by the thermal gradient of 3000K/m and -3000K/m.  
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perform in advance. Compare the one in thermal conducitivity nonuniform media or saying 

the real case that setting different thermal conductivities to liquid and solid (95 W/mK for 

liquid and 150 W/mK for solid), as shown in figure 2.12 (a), no apparently influence from 

coupling heat transfer module is detected if the temperature difference is constant. However, 

when look at the magnified region near interface, change of both temperature field and 

thermal gradients are detectable as shown in figure 2.12 (b). This means that temperature field 

is not modified a lot by coupling heat transfer module and using the real materials parameters. 

However, because TEC at the liquid-solid interface is closely related to the temperature field, 

how such modified temperature field affects the distribution and magnitude of TEC should be 

determined. Therefore, magnitude of TEC densities computed without and with coupling heat 

transfer module were measured and shown in figure 2.13. Curves in figure 2.13 (a) are z 

component densities of computed TEC plotted along the horizontal line as indicated in figure 

2.9 (c), and figure 2.13 (b) shows the curves of r component dendities of computed TEC 

plotted along the vertical line as indicated in figure 2.12 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can find a tiny deviation as emphasized by the green circle in both figure 2.13 (a) and 

(b). Compare the deviations to the changes of temperature field and thermal gradient near 

Figure 2.12 (a) Temperature fields obtained by simulating with the constant and the 
real thermal conductivities for solid and liquid; (b) Contours of temperature (K) and 
arrows of thermal gradient (K/m) obtained by simulating with the same and the real 
thermal conductivities for solid and liquid.  
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interface, it can conclude that coupling heat transfer module and using real materials 

properties in simulation of TEC at liquid-solid interface have a neglectable influence. Indeed, 

the change tendency of TEC with the given temperature difference has not altered at all. This 

suggests that when performing only the qualitative analysis of TEC the heat transfer may not 

be necessary to take in consideration, on the contrary, if make the quantitative investigation 

the influenc of heat transfer should be paid more attentions to. Moreover, in addition to reveal 

the deviation of TEC at the vicinity of liquid-solid interface, figure 2.13 (b) provides another 

evidence for the validity of present simulations. It must have been found that TEC rapidly 

decreases in the region far from the interface both in liquid and solid. This just satisfies the far 

field conditions that no currents out of domains and agrees with the physical reality that 

Seebeck effect weakens quickly in the thermophysical property uniform medium [267].  
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Figure 2.13 Computed TEC with the same and the real thermal conductivities for 
liquid and solid. (a) Computed z component densities of TEC plotted along the 
horizontal line as indicated in figure 2.9 (c) ; (b) Computed r component densities of 
TEC plotted along the vertical line as indicated in figure 2.12 (a). 
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2.3 Thermoelectric magnetic effect (TEME) in directional solidification 
process  

As explained in chapter 2.1, once the external magnetic field is present it must interact 

with the internal TEC to casue TEME in the directional solidification process. Here, a 

preliminarily view of TEM forces and TEM flows will be unfolded by numerical simulations. 

Before simulations, TEME is formulated in the context of solidification, and the simulation 

method is verified after that.  

2.3.1 Formulation of TEME 

Interacting between electric current and magnetic field results in a body force named 

Lorentz or Laplace force, similarly, the major premise of TEME is a kind of Lorentz force 

that resulted from the interacting btween the internal TEC and the imposed magnetic field. 

According to the rule of electric current continuity, TEC at liquid-solid interface should flow 

cross both solid and liquid, consequently, TEM forces exist in both of them as well. Similarly 

to Lorentz force, TEM forces can be expressed by the classical formulation as well: 

=F j B      (2.21) 

that togethers with discussions in section 2.2.2, TEM forces acting on solid and liquid are 

expressed respectively as: 

s s sF S T B        (2.22) 

l l lF S T B        (2.23) 

According to the definition of fluid, existence of TEM forces in liquid can drive flows 

that the TEM flows. Insert an external volume force term to Navier-Stokes (N-S) equation, 

TEM flows can be described as: 

2( )
( )

u
u u p g u j B

t

               
(2.24) 

It should be noticed that u B  must be taken into account when calculate the electric currents 

j, because TEM flows must induce electromotive force once they appear in melt. Conseqently, 

it has: 

( )lj B F u B B        (2.25) 

with assumption that metl are incompressible Newton fluid, the conservation of mass 

becomes: 

0u       (2.26) 

app:ds:major
app:ds:premise
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Two approaches can be used to get the flow field of TEM flows governed by expressions 

2.24 to 2.26. One is directly solving the equations with several assumptions and 

approximations, and the other is numerical simulation. Here, we employ the latter one to 

display TEM forces and TEM flows in directional solidification process.  

2.3.2 Verification of the simulation method 

Before taking simulations of TEM effect, the using method should be verified. In order 

to do this, a simple case is considered. Assume an infinite-long cylinder immersed in its 

corresponding melts and a vertical constant thermal gradient exists in such system, TEM 

forces acting on the cylinder are both analytically calculated and numerically simulated. 

Comparing the consistency of TEM forces separately achieved by these two methods can 

provide the opinion on whether the simulation method is valid or not. The case of infinite-

long cylinder immersed in its metls can be treated as a pure 2D problem. Figure 2.14 shows 

the dimensions and geometry used by both analytical calculation and numerical simulation. 

 

 

 

 

 

 

 

 

 

Solve both expressions 2.7 and 2.22 in this case TEC forces acting on the cylinder can be 

expressed as: 

0( )sc sc sc z sc yF B V i S Gi       (2.27) 

with 

0 zB B i      (2.28) 

and 

yT Gi       (2.29) 

Figure 2.14 Dimensions and geometry used by both analytical calculation and 
numerical simulation and the coordinate.  Slc and Ssc are the ATP of liquid and solid 
respectively. ılc and ısc respectively presents electric conductivity of liquid and solid. 

y 

x 

B 

T

z 

Solid 

Liquid 

B 

0.5mm 

R=0.05mm 

0.5m
m

 

T

Slc ılc 

Ssc ısc 
 

app:ds:approximate


 

81 
 

where, B0 and G are constant and applied magnetic field flux intensity and thermal gradient 

respectively, zi  and yi  are unit vectors along z-axis and y-axis respectively, scV  is the scalar 

potential in solid cylinder, Ssc and ısc respectively presents ATP and electrical conductivity of 

the solid cylinder. Project expression 2.27 in three unit vectors, the corresponding 

components of TEM forces in the Cartesian frame can be achieved: 

0scy sczF F        (2.30) 

and 

0( )sc lc sc lc
scx

lc sc

GB S S
F

 
 

       (2.31) 

where, Fscx, Fscy, and Fscz respectively stands for TEM forces‘ x, y and z component acting on 

the solid cylinder, Slc is ATP of cylinder‘s corresponding melts, and ılc is its electrical 

conductivity, which are the same sa illustrated in figure 2.14. Further, becasuse TEM forces 

are constant within the cylinder, the total force of x component is: 

0( )sc lc sc lc
scx

lc sc

GB S S
F vol

 
 

      (2.32) 

vol is the cylinder‘s volume. 

It should be found that two aspects can be examined to validate the simulation method in 

accordance to the analytical solution. One is dependence of the direction of TEM forces‘ x 

component on the given conditions, such as the thermal gradients or imposed magnetic fields. 

The other is the exactly magnitude of TEM forces acting on the cylinder. In another aspect, 

considering the assumption that material properties are unique in each medium, examining 

whether or not TEC and TEM forces distribute uniformly within the solid can judge the 

valid of simulations to a certain extent. 

Because TEC is the only source of electric currents, simulation of TEC should be taken 

before TEM forces. TEC is simulated without coupling the heat transfer module in this pure 

2D case, because the analytical calculation did not take heat transfer into account as well. 

Figure 2.15 shows the computed TEC generated by a constant thermal gradient of 3000K/m. 

The gradually increasing thermoelectric potential with smoothly rising temperature (Figure 

2.15 (a)) agrees with the previous simuations of TEC at curved liquid-solid interface. Free of 

arrows in the region far from the cylinder as shown in figure 2.15 (b) suggests that TEC is 

nearly zero there, which satisfies the far field conditions and can validate this simulation 

method to a certain extent. Figure 2.16 is the view of magnified region near the solid cylinder, 

in which, (a) shows the streamlines of norm TEC, and (b) indicates the direction of norm TEC 

by red arrows. Parallelly arranged streamlines and arrows within the solid cylinder reflect the 
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uniformity distribution of TEC, which agrees with the assumption that thermophysical 

properties with each medium are unique. Further, simulations of TEC were performed under 

several thermal gradients in order to confirm their uniformity wthin the soid. Figure 2.17 

shows the curves y component densities of computed TEC plotted along the horizontal line as 

indicated by the white arrow in figure 2.15 (a) under different thermal gradients. The flat 

segments of each curve represent TEC within the solid cylinder. Combine the results shown 

in figure 2.16 (a) and (b), it can confidently say that TEC within the solid distributes 

uniformly. This uniform distribution can verify the validity of this simulation method in 

another aspect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15 Computed TEC (a) Thermoelectric potential generated by a constant 
thermal gradient of 3000K/m and (b) its corresponding TEC flowing direction 
indicated by red arrows. 
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Figure 2.16 (a) Streamlines of norm TEC in region within and near the solid cylinder 
and (b) its corresponding TEC flowing direction indicated by arrows. 

7500 A/m2 



 

83 
 

 

 

 

 

 

 

 

 

 

 

When TEC has been known, simulation of TEM forces acting on the cylinder can be 

done. Because TEM forces act as the external volume forces in the N-S equation that 

governing TEM flows, such forces can be obtained via solving the TEM flows field. 

Moreover, because there is no physical module in COMSOL suitable to computej B  only, 

TEM forces acting on cylinder are achieved by solving expression 2.24 in both liquid and 

solid. By setting an ultrahigh viscosity to solid, 106 Pas for instance (the viscosity of melts is 

about 10-4 Pas), the computed flow field in solid is almost zero, and the solution of flow field 

in liquid (melts) is not affected. Therefore, simulations of TEM flows field in both liquid and 

solid are performed for this pure 2D case by combining the COMSOL predefined electric 

current and fluid flow modules. The direct linear solver is used to solve the modified N-S 

equation. Figure 2.18 shows the computed TEM forces caused by TEC interacting with a 

0.08T magnetic field imposed in z direction, in which, red arrows have the same direction 

with TEM forces and their sizes suggest the magnitude of TEM forces. According to the 

coordinate defined in figure 2.14, positive thermal gradient and TEM forces mean they are in 

the same direction of positive y- and x- axis respectively. Because we use the same coordinate 

in both calculation and simulation, the comparison of their results can be taken directly. It can 

be found from the analytical calculation that the sign of Fscx should be opposite to that of the 

thermal gradient under a fixed magnetic field and vice versa. Highlighted by the big blue 

arrow at cylinder‘s centre, the same relationshipt between the direction of x compnent of 

computed TEM forces in solid and thermal gradient is obtained from the computed results. 

This perfect consistency verifies the validity of the using simulation method in one aspect. 

 

Figure 2.17 Profiles of y component densities of computed TEC along the horizontal 
line indicated in figure 2.15 (a) for different thermal gradients.  
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In another aspect, the exact magnitude of TEM forces obtained from both analytical 

calculation and numerical simulation should be compared. For this reason, simulations of 

TEM flows in both liquid and solid are performed under several thermal gradients and 

magnetic fields. Further, the magnitudes of x component of computed TEM forces are 

profiled along the vertical line as indicated in figure 2.15 (b). Figure 2.19 shows the 

corresponding curves. It can be seen that flat segment in each curve confirms the uniform 

distribution of TEM forces. As discussed previously, this agrees with the unique 

thermophysical property assumption and is able to verify the simulation method to a certain 

extent. Moreover, it can also find that inverse correspondence between the direction of TEM 

forces and the thermal gradients is revealed, and the magnitude of TEM forces in solid 

increases with the increasing of magnetic field and the absolute value of tha applied thermal 

gradient. All these features can be found from the analytical solution, and these consistencies 

Figure 2.18 Arrows of computed TEM forces resulted by different thermal gradients 
and a 0.08T magnetic field imposed in z direction. (a) G=3000K/m; (b) G=-
3000K/m; (c) G=6000K/m; (d) G=-6000K/m.  
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validate the simulation method. Even though, let us make the comparison of exact magnitude 

of TEM forces obtained from both analytical calculation and numerical simulation anyhow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because magnitude of computed TEM forces acting on solid is the one corresponding to 

flat segment of each curve in figure 2.19, there are several results can be used to compare with 

the analytical solutions. In another aspect, the analytical calculation can provide a continuous 

curve of Fscx as the function of thermal gradient or magnetic field. Therefore, as shown in 

figure 2.20, the comparison of exact magnitudes of TEM forces can be made by inserting the 

points standing for computed results to the continuous curve achieved by analytical 

calculation. Finally, it can conclude that computed results perfectly agree the analytical 

Figure 2.19 Curves of y component desities of compited TEC plottd along the 
vertical line indicated in figure 2.15 for different thermal gradients (a) with same 
magnetic field of 0.08T and different magnetic fields (b) with fixed thermal gradient 
of 3000K/m.  
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calculations, which then definitely verifies the validity of the simulation method used here. 

This enables us confidently to employ such method to uncover the TEM effect in the 

following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

2.3.3 Simulation of TEM effect in directional solidification process 

Use the same method that has been verified in chapter 2.3.2, and couple the fluid flow 

and electric current modules predefined in COMSOL, simulations are performed to uncover 

TEM effect in directional solidification process. Similar to the one used in chapter 2.2.3, 2D 

axisymmetric geometry is used as well. Moreover, in order to investigate the influence of heat 

Figure 2.20 Comparison of the exact x component magnitudes of TEM forces acting 
on the cylinder obtained by analytical calculation and numerical simulation. (a) TEM 
forces plotted under various thermal gradients with 0.08T magnetic field; (b) TEM 
forces plotted under different magnetic fields with constant thermal gradient of 
3000K/m.  
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transfer on TEM effect, both results of simulations without and with coupling the heat transfer 

module are examined. Consequently, simulations of TEM effect in this section should involve 

three physical phenomena that electric current, fluid flow and heat transfer. Consider so, the 

related material properties of Al-4wt%Cu alloy are given in table 2.2. 

Table 2.2 Materials properties of simulation system for TEM effect 

Symbol Unit Solid Liquid 
S V/K -1.5×10-6 -2.25×10-6 
σ (Ωm)-1 7.9×107 4.0×106 
ȝ Pas 2.0×106 2.9×10-3 
ț W/mK 150 95 
C J/KgK 0.9×103 1.08×103 
ρ Kg/m3 2.7×103 2.4×103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 (a) Mesh and non-slipping and insulating conditions (Green lines) used 
in simulation of TEM effect in solidification process; (b) Magnified region indicated 
by the red box in (a); (c) Magnified region indicated by the red box in (b) showing 
the boundary layers along interface; (d) Coordinate used in these 2D axisymmetric 
simulations. 
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Geometry, its dimensions and meshes are the same as used in chapter 2.2.3. But meshes 

in liquid should be refined because flow flied involved in this case. The refinement of meshes 

is realized by applying fluid flow phenomena controlling mesh in liquid.  Meshes of the 

whole domain after refinement is shown in figure 2.21 (a). It should be noticed that how the 

meshes in liquid like is hard to tell from figure 2.21 (a) because they are extremely fine. 

Therefore, figure 2.21 (b) gives a magnified view of meshes near the liquid-solid interface. 

Moreover, as shown in figure 2.21 (c), two boundary layers along interface are added at the 

liquid side because the complex flow field always appears very close to interface. Non-

slipping conditions are applied to the walls indicated by green lines in figure 2.21 (a) for fluid 

flow module and insulating conditions are also set to these walls for electric current module. 

Based on the coordinate defined in figure 2.21 (d), COMSOL permit input only r and z 

component external volume forces in 2D axisymmetric case. This limits the direction of 

applied magnetic field that must be in ĳ direction, which is because only ĳ direction magnetic 

field can produce the r and z component TEM forces with a z direction thermal gradient.  

Fortunately, although the constant ĳ direction magnetic field is not realistic, such setting does 

not affect the purpose of showing TEM effect in directional solidification process at all. 

It has been clearly that TEC is one of the premises for TEM effect. Therefore, 

simulations of TEM effect in solidification should begin with TEC as well. Moreover, 

considering that TEM flows in melt can induce an electromotive force described byu B , 

how this influences the finally TEC is shown in advanced. Add the u B  term to the 

expression governing the electric currents, simulation of TEC with considering the influence 

of induced electromotive force can be achieved by computing TEM effect but not TEC only. 

Apparently changes of TEC in liquid region can be observed via comparing the TEC without 

and with the influence of TEM flows inducing electromotive force as shown in figure 2.22. 
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Figure 2.22 Thermoelectric potential obtained without (a) and with (b) coupling the 
fluid flow module, streamlines and arrows of norm TEC obtained without (c) and 
with coupling the fluid flow module (d). Constant thermal gradient G of 6000K/m is 
used for both cases. A 0.8T magnetic field B is imposed in ĳ direction.  Unit of the 
legend is V. 
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Figure 2.23 (a) r component and (b) z component of Computed TEM forces achieved 
under a constant temperature gradient G of 6000K/m and a 0.08T magnetic field B. 
Unit of the legend is N/m3 
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Figure 2.24 Computed TEM flows fields, arrows and streamlines are norm velocities 
of TEM flows under a constant thermal gradient G of 6000K/m and different 
magnetic fields that (a) and (b) B=0.08T; (c)and (d) B=0.8T; (e) and (f) B=1.6T; (g) 
and (h) B=8T. Color surfaces stand for the magnitude of velocities of computed TEM 
flows. Unit of the legends is m/s. 
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Step to TEME, TEM forces should be shown in advance. Both r and z components of 

TEM forces achieved under a constant thermal gradient of 6000K/m and a 0.08T imposed 

magnetic field are displayed in figure 2.23. It can be seen that whatever the component is 

TEM forces exist near the liquid-solid interface only. This agrees with the distribution of TEC 

that regions departing from the interface in both liquid and solid are free of currents. Based on 

the coordinate defined in figure 2.21 (d) and magnitudes of TEM forces represented by 

colored surface in figure 2.23, the general direction of r and z components of computed TEM 

forces are pointed out by gray dotted arrows in figure 2.23 (a) and (b) respectively. It can find 

that the r component of TEM forces are outward from center in liquid and inward from 

periphery in solid, and the z component of TEM forces are downward at center and upward at 

Figure 2.25 Curves of z (a) and r (b) components velocities obtained under different 
magnetic fields and respectively plotted along the horizontal and vertical lines 
indicated by the green arrows in figure 2.24 (b). 
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periphery in both liquid and solid. In other words, in solid, a torque along the interface can be 

produced by the z component of TEM forces. Image the dimensions of geometry used in these 

simulations are small enough to represent a tip of cells or dendrites, the torque in solid may 

break their arms when TEM forces become sufficient big. Moreover, in liquid, indicate the z 

component of TEM forces by the dotted red arrows on the figure showing the r component of 

TEM forces, as shown in figure 2.23 (a), it can be known that a vertical vortex can be driven 

by such TEM forces in liquid.  

In order to prove the discussion about vertical vortex in liquid above, TEM flows under 

various magnetic fields are simulated and shown in figure 2.24. Meanwhile, in order to 

illustrate the flow field more precisely, magnitudes of z and r components velocities of TEM 

flows are measured and plotted respectively along a horizontal and vertical line as indicated in 

figure 2.24 (b). Figure 2.25 shows the corresponding curves. Just like predication based on the 

TEM forces in liquid shown in figure 2.23 (a), a vertical vortex appear as demonstrated in 

figure 2.24 (a) and (b). This suggests that, with a constant thermal gradient of 6000K/m, even 

such week magnetic field (0.08T) is able to drive detectable flows. It can also find that TEM 

flows slow down rapidly in the region far from the liquid-solid interface because the arrows 

and streamlines of their norm velocities are rare. This rapid velocity decreasing can be proved 

by the blue curves shown in figure 2.25 (b) as well. Another phenomenon should be noticed is 

that the vortex is small and locates at the region near to both the liquid-solid interface and the 

symmetric axis when the magnetic field is 0.08T. Increase the magnetic field, both the range 

and the center of vortex in liquid are changed. As shown in figure 2.24 (c) and (d), the vortex 

is enlarged and locates at the region near to the top and the periphery when the magnetic field 

is 0.8T. This can be proved by the red curve in figure 2.25 (b) as well because the period of 

this curve occupies almost the liquid region. When the magnetic field is 1.6T, the center of 

vortex is closer to the periphery than that achieved unde 0.8T magnetic field. Further, much 

higher magnetic field that 8T does not dramatically change the range and the position of the 

vertical vortex a lot. But a new phenomenon should be noticed in this high field case that new 

vortex very close to the liquid-solid interface and the very periphery wall appears as indicated 

by the red circle in figure 2.24 (g) and (h). This may be a special phenomenon occurring 

under high magnetic field (High hartmann number case) only, for example the Hartman layer 

problem. Because this new phenomena relates to another research topic and is out of the 

concerning range of the present thesis, here, no more discussions will be given. Regarding the 

magnitude of the velocities of TEM flows achieved under different magnetic fields, it can 

conclude from the curves in figure 2.25 that the absolute values of both z and r component 
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velocities of TEM flows increase with the increasing magnetic field until 1.6T and then are 

apparently suppressed when the magnetic field is over the thredhold value, 8T for instance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to investigate how the velocities of TEM flows vary with the imposed magnetic 

fields, the maximum velocities of TEM flows, as well as the average, are plotted versus 

magnetic fields as shown in figure 2.26. These curves suggest a unique change tendency of 

TEM flows with constantly increasing magnetic fields, which is TEM flows firstly speed up 

to a maximum velocity under a crtical magnetic field and then slow down when magnetic 

field increases further. Indeed, this should be resulted from the competition between TEM 

forces in liquid and magnetic damping forces that expressed as( )u B B  . It can be known 

from the expression 2.23 that TEM forces in liquid are proportional to B, on the contrast, the 

magnetic damping forces are proportional to B2. Conseqently, the competition between these 

two kinds of forces must lead to a critical magnetic field under which the velocities of TEM 

flows reach the maximum. 

Figure 2.26 Curves of maximum (a) and average (b) r and z component velocities of 
TEM flows varying with different magnetic fields. 
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For the sake of coming closer to the reality and investigating the influence of coupling 

heat transfer in simulation of TEME, the heat transfer module predefined in COMSOL is 

added to the simulations coupling both the electric current and the fluid flow modules. 

Because there are two phases involved in simulation, the governing equations of heat transfer 

in liquid and in solid are defined separately. In liquid, the initial values of flow field and 

pressure are set to use the calculating results from the previous stpe of computing TEM flows. 

In solid, governing equations of heat transfer in solid state predefined by the COMSOL are 

Figure 2.27 TEM flows fields simulated without and with coupling heat transfer 
under different magnetic fields. (a) B=0.08T; (b) B=0.8T; (c) B=1.6T; (d) B=8T. Unit 
of legend is m/s. 
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used. Meshes are kept the same as described in figure 2.21, and materials properties used in 

simulations can be found in table 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparisons of TEM flows fields obtained without and with coupling the heat transfer 

module under different magnetic fields are shown in figure 2.27, from which dramatic 

changes are uncovered. With the help of figure 2.28 that the arrows and streamlines of TEM 

Figure 2.28 Arrows and streamlines of TEM flows simulated with heat transfer under 
different magnetic fields. (a) B=0.08T; (b) B=0.8T; (c) B=1.6T; (d) B=8T. 
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flows simulated with heat transfer module under different magnetic fields, it can see that the 

general flow field one vertical vortex occupying the almost liquid region is not changed 

whaterver the heat transfer is coupled or not. However, differerent from the simulations 

without coupling heat transfer the center of the vortex obtained with coupling heat transfer 

module become closer and closer to the liquid-solid interface with increasing magnetic fields. 

Moreover, the lower part of the vortex becomes very thin and near to the interface when the 

magnetic field is 8T as indicated by the red region in figure 2.27 (d) or the gathered 

streamlines in figure 2.28 (d). Because the flows in liquid vastly affect the heat transfer, and 

TEC is partly decided by the temperature field, TEM flows fields are dramatically changed by 

coupling the heat transfer module should be reasonable and understandable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.29 Curves of z (a) and r (b) component velocities of TEM flows simulated 
without and with heat transfer module respectively plotted along the horizontal and 
vertical lines indicated by green arrows in figure 2.24 (b).  
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Except TEM flows fields, influence of heat transfer on the magnitudes of its velocities is 

examined as well. Both z and r components velocities of conmputed TEM flows are ploted 

and respectively shown in figure 2.29 (a) and (b). Because the minimum and maximum 

velocities of TEM flows appear respectively under 0.08T and 0.8T magnetic field, the 

influence of heat transfer on the magnitudes of velocities of TEM flows is compared for these 

two cases only. It can find that taking heat transfer into account decreases the velocities of 

TEM flows, which should be attributed to the homogenization effect of flows in liquid on the 

temperature field. Once heat transfer in liquid is considered, the temperature field of liquid 

must be homogenized by TEM flows, and the homogenized temperature field reduces the 

temperature difference that one of the determining factors for producing TEC. Conseqently, 

the reduced TEC slows down the TEM flows. In another aspect, as shown in figure 2.29, 

Figure 2.30 (a) Curves the maximum velcoties of TEM flows computed with 
coupling heat transfer module varys with different magnetic fields; (b) Curves the 
average velcoties of TEM flows computed with coupling heat transfer module varys 
with different magnetic fields 
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curves obtained by simulations coupling heat transfer module are smoother than those without 

considering influence of heat transfer, which can prove the homogenous effect as well. 

Moreover, it can find that the influence of heat transfer is more apparent under a 0.8T 

magnetic field than that under 0.08T. This can be another evidence for the homogenous effect 

of TEM flows on the initial temperature field because TEM flows under 0.8T magnetic field 

are faster. 

Similar to figure 2.26, how the velocities of computed TEM flows vary with different 

magnetic fields is worthy to investigate as well when the heat transfer module is coupled. 

Measure and plot the maximum and average velocities of TEM flows versus magnetic fields 

how the velocities of TEM flows vary with magnetic fields can be revealed by curves shown 

in figure 2.30. It can see that both maximum and average velocities increase to the maximum 

under a critical magnetic field and then decrease with further rising magnetic fields. This 

agrees with that obtained from simulations without coupling heat transfer module. Therefore, 

it can conclude that such tendency of how the velocities of TEM flows vary with imposed 

magnetic fields should be a general principle for TEM flows in directional solidification 

process.  

Although the purpose of this section is unfolding TEM forces and TEM flows in 

directional solidification process, it would be also interesting to examine the influence of 

TEM flows on the temperature field. It can be known that maximum velocities of TEM flows 

appear under a 0.8T magnetic field from the simulations above. Therefore, the temperature 

fields obtained without and with TEM flows generated by a 0.8T magnetic field are simulated 

and shown in figure 2.31. Moreover, the contours of r component thermal gradients are also 

given in figure 2.31. It can be found that the modification of temperature field by TEM flows 

is undetectable as indicated by the colored surface. However, as shown in figure 2.31 (b), the 

contours of r component thermal gradients at the top of liquid region suggests that the thermal 

gradients in liquid are changed a lot. More precise, both z and r component thermal gradients 

obtained without and with considering the influence of TEM flows are measured and  plotted 

along the vertical line indicated by the green arrow in figure 2.12 (a). Figure 2.32 shows the 

corresponding curves. It can see that the curves of thermal gradients obtained under influence 

of TEM flows are appreantly smoother than those without considering TEM flows. This 

enhances the conclusion that TEM flows are able to homogenize the intial temperature field. 

Moreover, deviation of r component thermal gradients as indicated by the blue circle suggests 

that TEM flows decrease the temperature difference in that region. This can explain, in 

another aspect, why slower TEM flows are obtained when simulations taken the heat transfer 

module into account. 
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Figure 2.31 Computed temperature fields (colored surface, K) and r component 
thermal gradients (contours, K/m) without (a) and with (b) considering the influence 
of TEM flows produced by a 0.8T magnetic field B and a constant thermal gradient of 
6000K/m G. 
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2.4 Summary 

Aim at unfolding TEM forces and TEM flows in solidification process, this chapter 

introduced the TE effect by the phenomenological analysis and the corresponding phenomena 

in directional solidification process in advanced. The approximate estimation of the influence 

of Peltier and Thomson effects on solidification showed these two effects are negligible. In 

fact, detail analyses about the influence of TE effect on liquid-solid interface instability made 

by Dr. Makoto Tanaka had proved that Peltier and Thomson effects can be neglected in 

solidification of metallic alloys neither. Therefore, considered Seebeck effect only, the 

governing equations and boundary conditions for TEC were formulated. Further, TEC at the 

liquid-solid interface in directional solidification was numerically simulated to intuitively 

display how it appears and acts. And then, TEME occurs when an external magnetic field was 

present. Phenomenological explanations of both TEM forces and TEM flows were given, and 

formulations of them closely followed. After that, numerical simulations of TEM forces and 

TEM flows in the context of directional solidification were performed to unfold how the 

TEME emergy and affect. Certainly, verification of the simulation method used here was 

taken prior to perform those simulations. Finally, comparisons of simulations of TEME 

without and with coupling the heat transfer module were made, which showed that the heat 

transfer cannot be neglected when dealing with the TEME problems. For this reason, 

simulations in the following chapters are performed by coupling three physical modules 

predefined in COMSOL that electric current, fluid flow and heat transfer. 

Figure 2.32 Thermal gradients computed without and with TEM flows generated by 
a 0.8T magnetic field plotted along the vertical line as indicated in figure 2.12 (a). Gz 
and Gr represent z and r component thermal gradients respectively. 
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Chapter 3: Visualization of thermoelectric magnetic effect (TEME) in 
directional solidification process  

Thanks to the discovery of synchrotron radiation beam and the development of X-ray 

imaging techniques, in-situ and real time observing the process of solidification of metallic 

alloys comes true [268]. During the past twenty years, this method has provided numerous 

precise data for critical validation of solidification theories and for the optimization of 

numerical simulation predictions [269]. Consequently, it becomes an efficient and reliable 

method to characterize and confirm phenomena those appear in solidification process [270]. 

So that we also try to prove the TEM forces and TEM flows in directional solidification 

process by in-situ observation in this chapter. Moreover, analytical calculations of TEM 

forces driving movement of a sphere and numerical simulations of TEM flows with the same 

conditions used by in-situ observation experiments are taken. Combine the in-situ observation, 

analytical calculation and numerical simulation, TEM forces and TEM flows in directional 

solidification process are more clearly uncovered, and its influence on solidification structure 

are revealed to a certain extent. 

3.1 Experimental apparatus 

3.1.1 General view of in-situ synchrotron X-ray imaging setup 

The in-situ and real-time observation of directional solidification of metallic alloys are 

taken in European Synchrotron Radiation Facility (ESRF) located at Grenoble, France. Based 

on the third generation X-ray beam, ESRF provides more than 40 beamlines to perform 

various scientific investigations. Beamline named BM05 is the one that provide in-situ 

synchrotron X-ray imaging facility. Indeed, experiments in the present thesis are all carried on 

this beamline. As shown by the photo taken before experiments and the corresponding sketch 

in figure 3.1, except the X-ray beam emitter main components of the setup used for in-situ 

synchrony X-ray imaging are ultrahigh vacuum Bridgeman furnace and fast readout-low 

noise (FReLoN) CCD camera that developed at ESRF. Sufficient high energy of synchrotron 

radiation source makes it possible to record images with enough contrast in a reasonable 

timescale (less than 1 second), which is fast enough to investigate some dynamic problems of 

solidification such as the growth and motion velocities of crystals or solute transportation 

driven by flows in melt. Moreover, the FReLoN can achieve a good compromise between 

larger field of view and satisfying spatial resolution (pixel size used is 7.47ȝm×7.46ȝm) that 

is sufficient for the concerned length scales in this thesis. 
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3.1.2 Ultrahigh vacuum Bridgeman furnace and samples 

In order to protect the heating elements and samples from oxidizing during experiments, 

an ultrahigh vacuum chamber made by stainless steels is used, which can subject to more than 

1015 Pa pressure difference. Several windows with various sizes as shown in figure 3.2 (b) 

were reserved to meet different demands such as linking vacuum pump, fixing translation 

device and permitting synchrotron X-ray beam passing through. In which, there is a 

reservation for changing samples as indicated by red circle in figure 3.2 (a), and the view seen 

from this window is shown in figure 3.2 (c).  

 

Figure 3.1 Photo and sketch of in-situ synchrony X-ray imaging setup. 
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Figure 3.3 shows the furnace that placed inside the ultrahigh vacuum chamber, as shown 

by the 3D drawing, which consists of two separated heating elements. In order to protect the 

surrounding electric devices from high temperature two layer water cooling jets are placed 

outside the heaters. Directional solidification is realized by the power down method, which 

applies the same cooling rate on two separated heating elements during the entire experiment. 

In fact, suc two heating elements design permits not only the directional solidification but also 

the isothermal solidification by setting the same temperature and the same cooling rate to both 

heating elements. Adjustment of samples position is achieved by the translation device fixed 

at the top of vacuum chamber as shown in figure 3.1 and 3.2, which can realize both vertically 

up/down travelling and horizontally revolving. Sample holder is linked to this device by a 

stainless steel tube as marked in figure 3.3. Constrained by the request that samples must be 

perpendicular to the synchrotron X-ray beam, there are maximum three samples can be put for 

each time. In fact, when the magnet system is installed only one sample can be used for each 

time because the limitation of space. 

 

 

 

Figure 3.2 Photos and 3D drawing of ultrahigh vacuum Bridgeman furnace. 
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Because absorption was the main source of image contrast and depends on the atomic 

number of elements or solute content, there is a restriction on the thickness of samples to 
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Figure 3.3 Photo and 3D drawing of Bridgeman furnace. 

Figure 3.4 (a) Dimensions of samples; (b) Illustration of assembling the samples; (c) 
Photo of assembling sample used in experiment. 

(a) (b) (c) 

Molybdenum 
holder 

Molybdenum 
diaphragms 

Molybdenum 
diaphragms 

Graphite foils 
 

Sample 

~
 40m

m
 

6mm 

200 ȝm 

Thermocouple 



 

106 
 

permit synchrotron X-ray beam passing through. In the present experiments, samples are 

about 150 to 250ȝm in thickness, 40mm in height and 4 to 6mm in width as shown in figure 

3.4 (a). The Al-Cu alloys used in this study are fabricated from pure Al and Cu elements. The 

prefabricated samples are sandwiched between two graphite foils and two molybdenum 

diaphragms, hold together with two clips and fixed to a holder as illustrated in Figure 3.4(b). 

Photo of the sample assemble used in experiments is shown in figure 3.4 (c). 

3.1.3 External magnet system 

In order to impose the magnetic field, an external magnet system should be installed. 

However, there are limited spaces left to do so because this ultrahigh vacuum Bridgeman 

furnace is intentionally designed to investigate solidification process without any external 

fields. For this reason, a samarium cobalt permanent magnet is chosen. The size of the magnet 

is 50mm×50mm×50mm. Figure 3.5 (a) and (b) show how it is mounted.  

 

 

 

 

 

 

 

 

 

 

 

 

Magnetic fields generated by this permanent magnet are simulated by using the static 

magnetic field and no current module predefined by COMSOL with this magnet‘s real 

property parameters. Figures 3.6 (a) and (b) respectively shows the geometry and mesh used 

in these simulations. As displayed in figure 3.6 (c), simulations are constricted within the 

vacuum chamber, and the magnetic fields fulfill the vacuum chamber as indicated by the blue 

streamlines that representing the magnetic field lines. Magnify region that we are most 

interesting, magnetic fields inside the furnace are given by red arrows in figure 3.6 (d). 

Further, near the furnace and the magnet, magnetic fields on both x-y and y-z planes were 

examined and displayed in figure 3.7 and 3.8 respectively. Based on the magnetic fields 

represented by arrows and contours, it can be reasonablly regarded that the magnetic fields 

(a) (b) 

Magnet 

Magnet Holder 

Holder 

Holder 

Furnace 

Figure 3.5 Photos illustrating how magnet system is mounted. 
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uniformly distribute within the sample region. More precisely, computed magnetic flux 

intensities varying along y and z direction as indicated by purple and green arrows 

respectively in figure 3.7 (b) and 3.8 (a) are profiled. The corresponding curves are 

respectively shown in figure 3.7 (c) and 3.8(c). In order to show the uniformity, the curve 

corresponding magnetic fields within the sample is magnified and inserted in figure 3.7 (c). 

Moreover, magnetic field flux intensities along y direction are measured and compared with 

the simulations in figure 3.7 (c) as well. The perfect consistent between the measurement and 

simulation verifies the validity of the simulations of magnetic field generated by that 

permanent magnet and the uniformity of magnetic field within the sample regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.6 (a) Geometry used in simulation of magnetic fields; (b) Meshes used in 
simulation of magnetic fields; (c) Streamlines and arrows of magnetic field 
distribution; (d) Arrows of magnetic field near the furnace and magnet. 
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Figure 3.7 (a) Magnitudes of magnetic fields near the magnet and furnace in x-y 
plane, unit of legend is T; (b) Arrows of magnetic fields responding to (a), the arrows 
are normalized; (c) Curves of computed and measured magnetic field flux intensities 
varying along y direction as indicated by the purple arrow in (b). 
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Figure 3.8 (a) Magnitudes of magnetic fields near the magnet and furnace in y-z 
plane, unit of the legend is T; (b) Contours of magnetic fields responding to (a); (c) 
Curve of computed and measured magnetic field flux intensities varying along z 
direction as indicated by the green arrow in (a). 
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3.2 In-situ observation of thermoelectric magnetic (TEM ) forces 

Considering it is hard to in-situ and real time observe or measure the stresses in solid, 

particularly during solidification process, TEM forces are thougth to be in-situ observed and 

proved if their directly resulting phenomenon is detected or recorded. The movements of 

crystals during directionally solidifying Al-Cu alloys under a transverse static magnetic field 

are observed and analyzed to uncover the TEM forces acting on the solid. Moreover, because 

the movements of crystals can be also driven by the flows in melt analytical calculations of 

TEM forces driving movements of sphere particles are taken. TEM forces in solid are 

confirmed by comparing the real movement velocities of crystals measured in the in-situ 

observation to the analytical calculating velocities of TEM forces driven movements of sphere 

particles. Indeed, for these in-situ observation experiments, flows in melt should be very week 

because the thickness of the sample is very thin that only about 200ȝm and thermal-solutal 

stable configuration (upward thermal gradient with heavier rejected solutes) [271] is used. 

3.2.1 Analytical calculations of TEM forces driving movements of sphere particles 

 

 

 

 

 

 

 

 

 

 

 

 

The calculations of TEM forces driving movements of sphere particles are taken by 

assuming the thermal conductivity and the other physical properties being unique within 

liquid and solid respectively. Moreover, it is supposed that the size of particles is small 

enough to avoid any influences from the container walls. The external magnetic field B is 

applied in x-axis direction, and liquids around the particle are considered as infinite. The 

velocities of TEM forces driving movements of sphere particles can be simply estimated by 

Figure 3.9 (a) Illustration of conditions used in analytical calculating the TEM forces 
driving movement of sphere particles immersed in its melts with a constant thermal 
gradient and under a static transverse magnetic field; (b) The model and spherical 
coordinates (r, ) used in analytical calculations and schematic of TEC. 
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balancing the TEM forces to the Stokes drag forces. Therefore, TEC and TEM forces should 

be calculated before that estimation. The temperature difference is prescribed as: 

ziGT
       (3.1) 

where G is the thermal gradient and zi


 is a unit vector along the z-axis. Neglect 

electromotive force induced by liquids moving across the magnetic field lines and apply 

Ohm‘s law, the equation governing the electric current density is: 

i i i i i z i ij V S Gi W           (3.2) 

where ıi and Si respectively denotes the electrical conductivity and the ATP, subscript i can 

be replaced by l for the liquid or s for the solid phase, and Wi is defined as an effective scalar 

potential: 

i i iW V S T       (3.3) 

here, Vi is the scalar potential. Regarding the continuity of electric current density: 

0j       (3.4) 

the effective scalar potential Wi is harmonic.  

The boundary condition at the liquid-solid interface requires the continuity of the normal 

component of electric current density: 
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   (3.5) 

and the scalar potential: 

ls VV       (3.6) 

where, n  is the normal component unit vector. Moreover, the normal component of current 

density should be zero at infinity. Because the liquid aroud the particle is regarded as infinity 

it has: 
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l
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    (3.7) 

Because we look at a sphere particle, TEC in this situation can easily be solved 

analytically in spherical polar coordinates. Based the spherical polar coordinates defined in 

figure 3.9 (b), the Laplace equation governing iW  can be: 
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Because the thermal gradient is symmetric along z-axis, it can be assumed that the electric 

potential is axisymmetric in the form: 
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~

rWW ii       (3.9) 

Replacing Wi in equation 3.8 by 3.9 leads to the following equation governing)(
~
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with the boundary conditions: 
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~ rWl      (3.11) 
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and )0(
~ rWs  is non-singular. R is the radius of the particle. The solution for )(

~
rWi is: 







2

3

)(
~

r

R
brWl      (3.13) 

rarWs )(
~

      (3.14) 
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TEM forces acting on particle can be expressed: 

s s xF j Bi        (3.15) 

with sss Wj  
. So that: 

s s s xF B W i         (3.16) 

In order to obtain the three components of TEM forces in Cartesian coordinates as defined in 

figure 3.9 (a), perform projections on the unit vectors ( zyx iii


,, ) it has: 

0 szsx FF       (3.17) 
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The single component of total TEM forces syF  acting on the particle is simply because TEM 

forces are constant within the solid: 
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sl

l
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where vol is the volume of the sphere particle.  

The simple estimation of TEM forces driving movements of particles are taken by 

equaling TEM forces expressed by 3.19 to the Stokes drag forces acting on the same particle: 
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here, U is the estimated velocity of particle, R is the radius of particle, ȝ is viscosity of the 

surrounding melt and vol is 34

3
R . Consequently, velocity of the sphere particle can be 

expressed: 

syF
R

U 
2

9

2         (3.21) 

It is clear that the comparison between the analytically calculated velocities of sphere 

particles and the directly measuring ones during in-situ observation experiments can be made 

in two aspects. One is the dependence of the main direction of crystals‘ movements on the 

direction of applied thermal gradients and magnetic fields. The other is the exact magnitude 

of the velocities of movements obtained by analytical calculation and direct measurement. 

Actually, if the movements of crystals are really driven by TEM foces acting on them the 

former comparison is easy to make by in-situ observation. This is because that the change of 

the main direction of movements should reverse when the magnetic field or thermal gradient 

changes to the opposite direction. In the other aspect, comparison of exact magnitude of 

velocities of movements must be made after the experiments because the velocity 

measurements of the movements of crystals need to trace each crystal image by image. In 

order to make the latter comparison, use the materials properties of Al-4wt%Cu alloy list in 

table 3.1 velocities of TEM forces driving movements of sphere particles were analytically 

calculated for different magnetic flux intensities and thermal gradients. Further, the 

calculating results are plotted versus the diameters of the sphere particles, and the curves are 

shown in figure 3.10. With respect to the coordinate defined in figure 3.9 (a), positive thermal 

gradient means the high temperature is at the positive z-axis, and positive magnetic field 

refers that the transverse field has the same direction with x-axis. It can be seen that the bigger 

the particle is the faster its TEM forces driving movement is. The TEM forces driving 

movements of sphere particles can be speeded up by increasing absolute value of thermal 

gradients, as well as the magnetic flux intensities. Moreover, sphere particles reverse the 

direction of their movements when the sign of thermal gradient or magnetic field changes to 

the opposite.  

Table 3.1 Materials properties of simulation system for TEM effect 

 

 

Symbol Unit Solid Liquid 
S V/K -1.5×10-6 -2.25×10-6 
σ (Ωm)-1 7.9×107 4.0×106 
ȝ Pas  2.9×10-3 
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3.2.2 Velocity measurement of movements of crystals during in-situ observation 
experiments  

According to discussions in the above paragraph, it must have been known that there are 

two aspects can be compared between the calculation and the in-situ observation experiments. 

They are the dependence of main direction of TEM forces driving movements on the direction 

of imposed magnetic fields or thermal gradients and the exact magnitudes of their velocities. 

Therefore, in-situ observation experiments are performed respectively under positive and 

negative magnetic fields with fixed thermal gradient of 3000K/m and with various thermal 

Figure 3.10 Analytical calculated velocities of particles plotted versus their diameters 
under different thermal gradients (a) under a 0.08T magnetic field and magnetic 
fields (b) under a thermal gradient of 3000K/m. 

(a) 

(b) 
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gradients under a fixed magnetic field of 0.08T. Before give the measurement results, it 

should be necessary to explain how to determinate the typical diameter of crystals and 

measure the distance between two positions of crystal in two successive images. It will be 

easily understood with the help of illustrations shown in figure 3.11. 

 

 

 

 

 

 

 

 

 

Figure 3.11 (a) shows a dendrite which is the common crystal observed during 

directional solidifications process. As shown in figure 3.11 (a), consider the two main arms of 

crystal as the long and the short axes of an ellipse and measure the length of these two axis to 

calculate the area of that ellipse as indicated by the blue solid line in figure 3.11 (a). Because 

the exact coordinate values of each pixel can be known by the free image analysis software 

named ImageJ the long and the short axis of the ellipse (a and b) can be calculated: 

12 2 2
2 4 2 4[( ) ( ) ]a y y z z          

(3.22) 

12 2 2
1 3 1 3[( ) ( ) ]b y y z z          (3.23) 

Calculate the area of this ellipse and equal it to the area of a circle:  

2ab r          (3.24) 

Then we can assigned the typical diameter of the crystal shown in figure 3.11 (a) as 2r. 

Moreover, because the resolution used here is 7.46×7.46ȝm2, the exact typical diameter can 

be obtained by 2r×7.46ȝm. 

When the typical length of crystals has been decided, it it the time to measure the 

distance between two positions of the cyrstal recorded in two successive images. With respect 

to the coordinates defined in figure 3.9 (a), the field of view obtained during in-situ 

observation experiments is in the y-z plane as indicated in figure 3.11 (b). Appoint the 

geometrical center of crystals representing their positions, as marked by the white points in 

figure 3.11 (b), the precise distance between two positions of the crystal can be obtained 
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Figure 3.11 (a) Illustration of how to determinate the typical diameter of a crystal; 
(b) Explanation of how to measure the distance between two positions of crystal. 



 

116 
 

because the exact coordinate values of the geometrical centers of crystals can be given by 

ImageJ as well. The interval, t, between two successive images can be known automatically 

during experiments. Movement velocities of the crystal, V (ȝm/s), can be approximately 

calculated:  

0 0 0 0

12 2 27.46[( ) ( ) ]t t t t t ty y z z
V

t
       (3.25) 

Indeed, only the y-axis direction speed of the movements of crystals can be compared because 

the total length of the moving path of a crystal like drawing by the blue dotted line in figure 

3.11 (b) can not be got. Therefore, the y-axis direction speed should be calculated: 

0 0
7.46( )t t ty

y

y yL
V

t t
        (3.26) 

In another aspect, the previously analytical calculation of movement velocities of sphere 

particles are also y-axis direction speed only because the calculation did not take the effect of 

gravity into account as well.  

The main movement direction of crystal can be revealed by a figure that is projected 

from several successive images containing the same crystal but at different positions as shown 

in figure 3.12. Figure 3.12 (a) is projected from 9 images, which displays the moving path of 

the crystal under a positive thermal gradient of 3000K/m and a 0.08T transverse magnetic 

field. More distinctly, region marked by a white rectangle in figure 3.12 (a) is magnified and 

shown in figure 3.12 (b), in which the white dotted line with arrows indicates the real moving 

path of the crystal, and the angle between the main direction of the movement marked by the 

yellow arrow and y-axis is defined as Φ. Similarly, moving path of the crystal under the same 

thermal gradient but a -0.08T transverse magnetic field is shown in figure 3.12 (c) that 

projected from 5 successive images. It can find that the angle between main direction of 

movement of this crystal and y-axis is π-Φ. These demonstrate that the crystals reversed their 

moving direction when the imposed magnetic fields changed to the opposite direction. 
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Figure 3.12 Pictures obtained by projecting successive images with the concerned 
crystal that captured during directionally solidifying Al-4wt%Cu alloys under (a) and 
(b) a 0.08T transverse magnetic field, (c) and (d) a -0.08T transverse magnetic field. 
(G=3000K/m, Cooling rates are the same that 2K/min) 

(d) 

π-Φ 

y 

z 
(c) 

G 

G 

B 
B 

Liquid 

Dendrite 

Crystal 

 

 

 

 
 

 

 

  

  

(a) 

(b) 

G 

B 

Φ 

B 
G 

Liquid 

Crystal 

Dendrite 



 

118 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Examples of measuring the exact magnitudes of velocities of crystals‘ 
movements during directionally solidifying Al-4wt%Cu alloys under transverse 
magnetic fields. (a-c) B=0.08T, typical diameter is 93.2ȝm; (d-f) B=0.08T, typical 
diameter is 126.8ȝm; (g-i) B=-0.08T, typical diameter is 116.1ȝm; (j-l) B=-0.08T, 
typical diameter is 107.6ȝm. (G=3000K/m, Cooling rates are the same that 2K/min) 

Time t0 t0+t 

200ȝm 200ȝm 200ȝm 

(d) (e) (f) 

G 

Moving path 
(273, 244) 

Liquid 

Dendrite 

(301, 211) 

B B B 

(a) 

G 

(210, 246) 

200ȝm 

(b) 

Moving path 

200ȝm 

(294, 260) 

(c) 

Liquid 

Dendrite 200ȝm 

B B B 

200ȝm 200ȝm 200ȝm G 

(g) (h) (i) 

Moving path 

(259, 192) 
(206, 154) 

Dendrite 

Liquid 

B B B 

200ȝm Dendrite 

Liquid 

Moving path 

200ȝm 200ȝm G 

(j) (k) (l) 

(149, 165) 
(69, 171) 

B B B 



 

119 
 

The exact magnitudes of movement velocities of crystals are carefully measured. Several 

free crystals were observed during experiments. Using the method introduced by figure 3.11, 

the velocity measurements were made on all of them. Upon each of the moving crystals, its 

final typical diameter is defined as the mean value of typical diameters obtained from all 

relevant images. Likewise, the mean value of velocities of a crystal achieved from every two 

successive images is regarded as its real velocity. Figure 3.13 (a) to (c) is the process of 

measuring a crystal with 93.2ȝm in diameter, and the crystal typical diameter is 126.8ȝm in (d) 

to (f). Reverse the magnetic field direction, figure 3.13 (g) to (i) show the crystal with 

116.1ȝm in diameter, and the typical diameter of crystal in (j) to (l) is 107.6ȝm. Further, these 

measured movementvelocities of crystals are plotted versus their typical diameters and shown 

in figure 3.14. It can be concluded that the big crystals have higher velocities than the small 

ones. Moreover, whatever the size of the crystals their movement velocities seem proportional 

to about the square of their typical diameters, which agrees with the analytical solutions.  

 

 

 

 

 

 

 

 

 

Based on the introductions of TEM effect in chapter 2 and the analytical calculations in 

this chapter, it can been known that the main direction of TEM forces driving movements of 

sphere particles does not only depend on the direction of imposed magnetic fields but also the 

direction of applied thermal gradients. Al-10wt%Cu alloys were directionally solidified with 

thermal gradients applied in different directions in order to examine the dependence of main 

directions of the movements of crystals on the direction of applied thermal gradients. 

Projecting 35 successive images captured during experiment under a negative thermal 

gradient into a figure, the main direction of movements of the crystal is unfolded. As shown 

Figure 3.14 Curves of measured movementvelocities of crystals plotted versus their 
typical diameters under positive and negative transverse magnetic fields and fixed 
positive thermal gradient of 3000K/m. 

Positive magnetic field 

Negative magnetic field 
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in figure 3.15 (a), path of each crystal is pointed out by the red arrows, and their main 

direction is marked by the yellow one. Kept the other conditions fixed, similar experiment 

was conducted without any thermal gradients (figure 3.15 (b)), it can find that crystals 

vertically sink down because they are heavier than the surrounding melt. Moreover, it can be 

revealed from figure 3.15 (c) that positive thermal gradient makes crystals moving from the 

right of the sample to the left. According to these observations, it should be clear that once the 

direction of applied thermal gradient is reversed the main direction of the movements of 

crystals turns to the opposite as well, and more, the horizontal movements of crystals must be 

casued by the applied thermal gradient and the imposed magnetic field together. In fact, the 

only result of the interaction between thermal gradient and magnetic field is TEME in the 

context of the present experiments. Additionally, influences of the magnitude of thermal 

gradients were also investigated. Figure 3.16 (a) to (c) respectively gives the projected figures 

showing the movement paths of crystals under a -0.08T transverse magnetic field and thermal 

gradients with different magnitudes. In these cases, as indicated by red arrows in each figure, 

the main directions of the movement of crystals are the same that from the right of sample to 

the left. Further, the angle between the main direction and the y-axis can be obtained as 

indicated by the yellow arrows crossing over the green one in figure 3.16. Indeed, based on 

the balance of forces acting on a crystal as illustrated in figure 3.12 (b), such angle is capable 

to represent the magnitudes of TEM forces acting on crystals because this angle is the tangent 

function of the gravity of a crystal and the TEM forces acting on it. Therefore, it can find that 

TEM forces acting on the crystals increase when the magnitude of thethermal gradient is 

elevated as well. 

Upon the velocity measurement of the movements of crystal, solidification of Al-

10wt%Cu provides more data to make the comparison with the analytical calculations. 

Velocity measurements were made only on the crystals with small change of their size during 

the whole solidification process in order to enhance the accuracy. Similar to figure 3.13, 

figure 3.17 gives four examples of velocity measurements in four different experiments. 

Applied different thermal gradients these experiements were conducted under fixed transverse 

magnetic field of -0.08T and with the same cooling rates of 2K/min. For each case, three 

different positions of a crystal captured during the in-situ observation experiments are 

respectively shown in three successive figures. Figure 3.18 shows curves of the measuring 

velocities of the movements of crystals plotted versus their typical diameters. It suggests that 

the velocities of crystals increase with the increasing of the magnitudes of thermal gradients. 

Moreover, it can be found that the velocities of crystals seem approximately proportional to 
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the square of their typical diameters, which agrees with the conclusion revealed from figure 

3.14 and the analytical calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Projecting figures of crystals‘ movements with different directions 
thermal gradients. (a) G=-2000K/m; (b) G=0K/m; (c) G=2000K/m. (B=-0.08T; 
Cooling rates are the same that 2K/min)  
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Figure 3.16 Projecting figures of crystals‘ movements with different magnitudes 
thermal gradients. (a) G=500K/m; (b) G=1000K/m; (c) G=2000K/m. (B=-0.08T; 
Cooling rates are the same that 2K/min)  
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Figure 3.17 Examples of measuring the exact velocities of crystals‘ movements 
during directionally solidifying Al-10wt%Cu alloys with different thermal gradients 
and the same transverse magnetic field of -0.08T. (a-c) G=-2000K/m; (d-f) 
G=500K/m; (g-i) G=1000K/m; (j-l) G=2000K/m. (Cooling rates are the same that 
2K/min). 
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3.2.3 Comparison of analytical calculations and in-situ measurement results  

Because the analytical calculations of the movements of sphere particles are based on the 

assumption that the driving forces are only the TEM forces acting on them the existence of 

TEM forces in solid can be confirmed if the observed movemements of crystals perfectly are 

consistent with the analytical calculations. Further, we can argue that TEM forces are in-situ 

and real time observed as well. For these reasons, comparison between the analytical 

calculations and in-situ measurement results are made in two aspects. One is the dependence 

of main direction of the movements of crystals on the given conditions, such as the direction 

of imposed magnetic fields and applied thermal gradients. The other is examining whether or 

not the movement velocities of crystals obtained by measuring can be comparable to the 

calculated velocities of TEM forces driving movements of sphere particles. As shown in 

figure 3.19, the former comparison can be made by a new coordinate consisting of the 

velocity acting as y axis and thermal gradient acting as z axis. Besides, it should be pointed 

out that ‗U‘ in figure 3.19 refers to velocity obtained by analytical calculation and ‗Vy‘ stands 

for velocity achieved by in-situ measurements, and both of them are represented by the 

velocity axis in the new coordinate. Based on this ccordinate, comparison of the calculated 

and measured main direction of the movement of crystals is easy to make. For example, under 

conditions given in the first quadrant that the applying magnetic field and thermal gradient are 

both positive, both of the calculated and measured main directions of the movement of 

crystals are the same and in positive y-axis direction. Similarly, look upon the cases belong to 

Positive thermal gradient 

Negative thermal gradient 

Figure 3.18 Curves of measuring velocities of the movements of crystals plotted 
versus their typical diameters under different applied thermal gradients and fixed 
transverse magnetic field of -0.08T. 
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the second and the fourth quadrant of this coordinate, it can draw the same conclusion that the 

main directions of the movements of crystals achieved by both analytical calculation and in-

situ measurement are the same. In another aspect, comparison between the cases respectively 

belongs to the first and the second quadrant shows that the crystals turn their movement 

directions when the magnetic field is reversed. Comparison between cases respectively 

belongs to the second and the forth quadrant of this coordinate indicates that the crystals also 

reverse their movement directions when the thermal gradient is applied in the opposite 

direction. Therefore, it can say that the main directions of the movements of crystals and their 

dependences on the given conditions are consistent no matter they are achieved by analytical 

calculations or in-situ measurements. This ensures us to conclude that the movements of 

crystals during directional solidification of Al-Cu alloys under an external transverse 

magnetic field must be driven by the TEM forces acting on them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Comparisons of dependence of the main directions of crystals‘ 
movements on the direction of applied thermal gradients and magnetic fields 
obtained by analytical calculations and in-situ measurement. 
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 Figure 3.20 Comparisons of velocities obtained by analytical calculations and in-situ 
measurements under (a) transverse magnetic fields in opposite directions and various 
thermal gradients that (b) 500K/m and (c) 2000K/m. 
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On the other aspect, comparisons of velocities of crystals‘ movements were made. Figure 

3.20 shows curves of both analytically calculating and in-situ measuring velocities plotted 

respectively versus the diameter of sphere particles and the typical diameters of crystals. 

Figure 3.20 (a) gives the velocities obtained under transverse magnetic fields in the opposite 

directions and with the fixed 3000K/m thermal gradient. Figure 3.20 (b) and (c) reveal 

velocities achieved under fixed transverse magnetic field of -0.08T and different thermal 

gradients of 500K/m and 2000K/m respectively. In figure 3.20 (a), positive velocities mean 

the sphere particles or crystals move toward to the positive y-axis direction, and negtive ones 

stand for they move to the opposite directions. Therefore, figure 3.20 (a) can manifest the 

dependence of main directions of the movements of crystals on the given conditions as well. 

The same conclusion as the one obtained from figure 3.19 can be drawn again. When look 

upon the velocity magnitudes of movements, deviations between analytical calculations and 

in-situ measurements must come to your eyes. More precisely, the velocities of crystals 

measured through the in-situ observation are slower than velocities of TEM forces driving 

movements of sphere particles obtained by analytical calculations. In fact, those deviations 

are reasonable because the very thin crucible (about 200ȝm) should more or less block the 

movements of crystals with the typical diameters of about 50ȝm to150ȝm but the analytical 

calculations did not take this into account. In another aspect, those deviations becoming 

bigger when the typical diameter is close to crucible‘s thickness as indicated in figure 3.20 (b) 

and (c) can also prove this wall blocking effect. For this reason, it can say that the movements 

of crystals observed during in-situ experiments have comparable velocities with the 

analytically calculated TEM forces driving movements of sphere particles. The conclusion 

that TEM forces in solid exist and drive the crystals to move during directionally solidifying 

the Al-Cu alloys under a static transverse magnetic field thus is confirmed further. 

Up to now, based on the analytical calculations of TEM forces driving movements of 

sphere particles, the in-situ measurement of the movements of crystals during directionally 

solidifying the Al-Cu alloys under a static transverse magnetic field and the comparisons 

between them, it can be confident to conclude that TEM forces in solid do exist and respond 

to the movements of crystals. It can also say that TEM forces are in-situ and real-time 

observed. 

3.3 In-situ observation of thermoelectric magnetic (TEM ) flows  

After directly seeing the effect of TEM forces in solid, it should step to the second 

phenomenon of TEME that TEM flows. Indeed, confirmation of TEM flows can be regarded 

as another evidence for the existence of TEM forces because TEM flows are produced by the 
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TEM forces in liquid. Similar to the forces, directly seeing the flows in melt by synchrotron 

X-ray imaging method is difficult as well. This is becaue the contrast used by X-ray 

radiography mainly comes from the different absorption abilities of the different compositions 

and densities of subjects. Although flows influence the mass transfer and then cause 

composition difference, such differences are not sufficient to achieve the clear contrast. 

Considering the solid and liquid phases can be distinguished clearly by synchrotron X-ray 

imaging, it is easier to detect if the liquid-solid interface are changed. Therfore, if some 

modifications of liquid-solid interface caused directly by the TEM flows during directional 

solidification can be seen, we can consider TEM flows to be in-situ observed as well. 

According to the widely accepted fact that the shape of liquid-solid interface during 

directional solidification is determined by the local solute distribution and temperature field 

[272-274], it can know that interface shape should be changed if the composition of nearby 

melt and temperature field is changed. Therefore, provided TEM flows appear near the 

interface the original composition and temperature field in front of the interface must be 

changed, and as well as the initial liquid-solid interface shape. Particularly, the shape change 

of interface can be apparently observed when it is planar. For these reasons, the directional 

solidification of Al-4wt%Cu with fixed thermal gradient in the presence and absence of a 

transverse magnetic field were taken and in-situ observed. However, whether TEM flows can 

appear or not under the available experimental conditions should be analyzed in advance.  

3.3.1 Simulations of TEM flows in in-situ experiments 

On account of discussions in chapter 2, TEC definitely exists during directional 

solidification of metallic alloys because most of their liquid and solid have different ATP. 

When these currents meet an external magnetic field, TEM forces can be produced and exist 

in both solid and liquid. However, based on the hydrodynamics theory, the flows can be 

driven only if the forces in fluid are not curl-free. Therefore, TEM flows cannot be driven at 

all if TEM forces in liquid are curl-free. Consider so, it is necessary to calculate the curl of 

TEM forces in liquid under the conditions that in-situ experiment can provide. Based on the 

introductions of experimental device in chapter 3.1, it can know that the imposed transverse 

magnetic field is parallel to x-axis and perpendicular to the y-z plane as shown in figure 3.6. 

Under this arrangement, the curl of TEM forces in liquid can be calculated: 

[ ] ( )l l x x lF j Bi Bi j          
(3.27) 

Since we have: 

l l l l l xj V S Gi          
(3.28) 
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here, V
l
 is electrical potential in liquid, and the curl of lj  is zero, accordingly: 

0lF         
(3.29) 

Meanwhile, note that the TEM forces in liquid are divergence free as well: 

[ ] ( ) 0l l x x lF j Bi Bi j          
(3.30) 

It can be concluded from above analysis that the curl of TEM forces would not be curl-

free only if lS is not constant. Although lS varies with melt composition, it is almost 

neglectable within one melt. This seems to break our wish for directly observing TEM flows. 

However, before entirely deny this proposal, it would be better to numerically simulate the 

TEM flows fields and then to confirm the validaty of the conclusion that TEM forces in liquid 

under conditions in-situ experiments can provide are unable to produce TEM flows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the shape of liquid-solid interface shown in figure 3.21 (a) that obtained by our 

collaborators during their no field experiments, three different interface shapes were chosen to 

cover as many kinds of shapes as possible. As shown in figure 3.21 (b), they are sideling, 

convex and concave interfaces, and the dimensions of the whole simulating domain are given 

in this figure as well. Mesh method used for these three different interface shapes is the same, 

so only the meshes for the sideling interface case are given in figure 3.22 as an example. 

These finer triangular meshes were created via selecting the fluid flow phenomenon as the 

controlling condition in COMSOL, and the region near liquid-solid interface was refined as 

shown in figure 3.22. More clearly, figure3.22 (b) gives the magnified view of the region 

Figure 3.21 (a) Liquid-solid interface shape obtained during in-situ observation of 
directionally solidifying Al-4wt%Cu alloys without magnetic field; (b) Geometries 
of sideling, convex and concave interface and the dimensions.  
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indicated by the green box in figure 3.22 (a), in which, red surface emphasizes the sideling 

liquid-solid interface. With the same parameters listed in table 2.2, the COMSOL predefined 

electric current, thermal transfer and fluid flow modules are selected and coupled to simulate 

the TEM flows field produced by the conditions that in-situ experiments can provide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The computed results obtained with three different interface shapes are shown in figure 

3.23. In figure 3.23 (a), (c) and (e), colored slices give the thermoelectric potential generated 

by a thermal gradients of 3000K/m, gray streamlines reveal the corresponding TEC and red 

arrows denote the TEM forces produced by a transverse 0.08T magnetic field interacting with 

the TEC. The arbitrary distribution of red arrows suggests that TEM forces are curl-free. 

Colored slices shown in figure 3.23 (b), (d) and (f) give the magnitude of the velocities of 

TEM flows. Dark blue color in the solid domains means no flows there, which verifies the 

validity of the simulation method used again. According to the color legends, it can find that 

even the highest velocity is negligible because it is less than 1 µm/s. This indicates that TEM 

forces in liquid cannot drive any TEM flows under conditions that in-situ experiments can 

provide. In addition, the computed TEM flows fields represented by the random distributing 

red arrows in figure 3.23 (b), (d) and (f) also suggest that TEM flows do not appear under 

these conditions.  

 

 

Figure 3.22 Example of meshes used in simulations of TEM flows field under 
conditions that in-situ experiments can provide. 
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Until now, it seems that wish for in-situ observing TEM flows should be broken down 

because both the calculation of the curl of TEM forces in liquid and simulations of TEM 

flows with the conditions that in-situ experiments can provide show no flows can appear. 

Fortunately, the reality is always not so ideal, such as the liquid-solid interface cannot be 

perfectly flat in the x-axis direction as indicated in figure 3.22. Indeed, the calculation of the 

curl of TEM forces in liquid and the simulations of TEM flow fields are pure 2D problems if 

interfae is perfectly flat in x-axis direction as in figure 3.24 (a). Therefore, the uneven liquid-

solid interface in x-axis as described in figure 3.24 (b) to (d) may provide us another 

possibility to have TEM flows under the present experimental conditions. In order to examine 

this idea, simulations using those more realistic interface shapes were taken. The interface 

shape in x-z plane cannot be known during in-situ experiment because the view field is in y-z 

plane. Moreover, because the experimental apparatus cannot realize the quenching process, 

interface shape in x-z plane cannot be revealed by post-mortem method as well. For these 

Figure 3.23 Computed thermoelectric potential denoted by colored slice, TEC 
represented by streamlines and TEM forces referred by red arrows: (a) Sideling 
interface case; (b) Convex interface case; (e) Concave interface case, and their 
corresponding TEM flows fields indicated by the colored slices and red arrows are 
respectively shown in (b), (d) and (f). Units for legends in (a), (c) and (e) are V, and 
those for legends in (b), (d) and (f) are m/s. (B=0.08T, G=3000K/m) 

z 
x y 

z 
x y 

B B 

(e) (f) 

G 
Solid 

Liquid Liquid 

Solid 



 

132 
 

reasons, three different interface shapes in x-z plane as shown in figure 3.24 (b) to (d) were 

used in order to cover all the possibilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometries with three different interface shapes in x-z plane were meshed with the same 

method. Therefore, only an example of them is given in figure 3.25. Fine triangular meshes 

were created under the control of fluid flow phenomenon, and meshes near the interface are 

refined as shown in figure 3.25 (b). Moreover, ten 5ȝm thickness boundary layers were added 

to the liquid-solid interface as revealed in figure 3.25 (c) in case the complex flow fields 

appear at the vicinity of the interface. Concerning the noises indicated from figure 3.23, 

simulations of TEC were performed with both normal and extremely fine meshes. Computed 

results show no apparent difference. Therefore, it is reasonable to neglect the system noises. 

Useing the same parameters listed in table 2.2 and combining the COMSOL predefined 

electric current, heat transfer and fluid flow modules, TEC, TEM forces and TEM flows were 

simulated with a thermal gradient of 3000K/m and a 0.08T transverse magnetic field. Figure 

3.26 shows z-component of TEC in (a), y-component of TEM forces in (b) and the magnitude 

of the velocities of TEM flows in (c). It can find that TEME in these cases mainly 

concentrates in the region near liquid-solid interface. Therefore, in the following parts the 

Figure 3.24 (a) Interface is flat in x-axis direction; (b) Interface is convex in x-axis 
direction and its dimensions; (c) Interface is concave in x-axis direction and its 
dimensions; (d) Interface sideling in x-axis direction and its dimensions. 
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details of computed results are given in this region only. Figure 3.26 (d) shows how TEC 

distributes around the liquid-solid interface with convex shape in x-z plane, and (e) is the view 

seen from x-z plane. This figure shows that TEC circuit is in x-z plane at the vicinity of 

interface. TEM forces in solid and liquid are displayed respectively in figure 3.26 (f) and (g), 

which reveal that TEM forces in solid all point to negative y-axis direction and they are 

toward to the opposite direction in liquid. In addition, figure 3.27 shows the results that TEC 

and TEM forces simulated with liquid-solid interface being concave and sideling in x-z plane 

respectively. Together the results shown in figure 3.26, it can conclude that the shape of 

liquid-solid interface in x-z plane has no influence on the districbution of TEC and the 

direction of TEM forces, but uneven interface in x-z plane is indispensable for the occurence 

of TEME under the present experimental conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 Example of meshes used in simulation of TEM flows with different 
interface shapes in x-z plane. (a) Fine triangular meshes used in all domains; (b) 
Meshes near interface are refined; (c) Ten 5ȝm thickness boundary layers are added 
to the liquid-solid interface. 
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Figure 3.26 Computed results with liquid-solid interface being convex in x-z plane. 
(a) z component of TEC, and unit of the legend is A/m2; (b) y component of TEM 
forces, and unit of the legend is N/m3; (c) Velocity magnitude of TEM flows, and 
unit of the legend is m/s; (d) Arrows of TEC near interface; (e) Arrows of TEC 
around interface viewed from x-z plane; (f) Arrows of TEM forces in solid; (g) 
Arrows of TEM forces in liquid. (B=0.08T; G=3000K/m) 
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Figure 3.27 Computed results with liquid-solid interface being convex (a)-(d) and 
sideling (e)-(h) in x-z plane: (a) and (e) Arrows of TEC near interface; (b) and (f) 
Arrows of TEC around interface viewed from x-z plane; (c) and (g) Arrows of TEM 
forces in solid; (d) and (h) Arrows of TEM forces in liquid. (B=0.08T; G=3000K/m) 
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Further, how the TEM flows act is simulated for three different interfaces shapes in x-z 

plane. Figure 3.28 shows the case that interfae is convex in x-z plane, figure 3.29 gives the 

case that interfaces is concave in x-z plane and figure 3.30 displays the case that interface is 

sideling in x-z plane. In these three figures, figure (a) show the 3D view of computed TEM 

flows in liquid, in which the colored slices stand for the magnitudes of the velocities of TEM 

flows and arrows near interface reveal their flowing direction. Figure (b) are the x-z planes cut 

at the position y=1.5mm, in which the colored surfaces represent the magnitudes of the 

velocities of TEM flows as well. Moreover, in order to get the exact magnitudes of the 

velocities, their y component velocities of TEM flows are profied along vertical lines locating 

at three different positions as indicated by the white lines in figure (b), and the corresponding 

curves are shown in figure (c). According to these similuations, it can conclude that TEM 

flows do appear at the vicinity of liquid-solid interface under the present experimental 

conditions when the interface is not perfectly flat in the x-z plane (Indeed, the interface being 

uneven in x-z plane is the common case). Moreover, the directions of computed TEM flows 

are always flowing toward the positive y-axis direction whatever the shapes of interface in x-z 

plane are. 

Concering the shape of the initial liquid-solid interface should be changed if the one-way 

flowing TEM flows are capable to transport and then redistribute the rejected solutes, the 

simulations of TEM flows with more realistic interface shapes relight our wish for in-situ 

observing TEM flows because the shape change of liquid-solid interface can be distinctly 

detected. However, not all the flows in melt can transport the solutes but only the ones are 

sufficiently intense. Whether the flows are sufficiently intense or not can be judged by a mass 

transfer characterizing dimensionless number Pec
, which is named Peclect numer and 

expressed as: 

Ce

UL
P

D
  

    
(3.31) 

where, U is velocity of flows with the unit of m/s, L is the characteristic length with the unit 

of m (here, the thickness of sample 200ȝm is used), and D is diffusion coefficient of solute in 

melts that 4×10-9m2/s [275]. Take the minimum velocities obtained in the three simulations as 

given in figure 3.28 (c), 3.29 (c) and 3.30 (c), 58.5ȝm/s, the Peclet number is 2.925. Because 

Peclect numer is bigger than unit even employing the minimum velocities of computed TEM 

flows, it can be concluded that TEM flows under the present experimental conditions are 

sufficiently intense to transport the rejected solutes. 

 



 

137 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.28 TEM flows simulated with an interface being convex in x-z plane. (a) 
Colored slices refer velocity magnitude and red arrows denote TEM flows fields; (b) 
TEM flows viewed from x-z plane cut at the position y=1.5mm, unit of legend is m/s; 
(c)  How y component velocities varying along vertical lines as indicated in (b). 
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Figure 3.29 TEM flows simulated with an interface being concave in x-z plane. (a) 
Colored slices refer velocity magnitude and red arrows denote TEM flows fields; (b) 
TEM flows viewed from x-z plane cut at the position y=1.5mm, unit of legend is m/s; 
(c)  How y component velocities varying along vertical lines as indicated in (b). 
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Figure 3.30 TEM flows simulated with an interface being sideling in x-z plane. (a) 
Colored slices refer velocity magnitude and red arrows denote TEM flows fields; (b) 
TEM flows viewed from x-z plane cut at the position y=1.5mm, unit of legend is m/s; 
(c)  How y component velocities varying along vertical lines as indicated in (b). 
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3.3.2 In-situ observation of shape change of liquid-solid interface 

Encouraged by the above simulations, the directional solidifications of Al-4wt%Cu alloy 

without and with external magnetic field were performed and in-situ observed. The no field 

experiment had been accomplished by our collaborators from Marseille University (IM2NP). 

Figure 3.31 shows 6 successive images captured during directionally solidifying the Al-

4wt%Cu alloy with a thermal gradient of 3000K/m and in the absence of magnetic field. The 

cooling rate used in the no field experiment is 0.1 K/min that corresponds to the growth 

velocity of about 0.55ȝm/s. The view field is in y-z plane as indicated by the 2D coordinates 

in figure 3.31 (a). Because figure 3.31 (a) was captured at almost the beginning of cooling, it 

can be seen that the initial liquid-solid interface shape is sideling in y-z plane. Let us define 

the angle between interface and y-axis as the measure of the sideling degree of interface. It 

can find that the sideling angle increases with time as indicated by figures 3.31 (b), (d) and (f). 

This is attributed to the appearance of one-way flowing solutal convections flowing with the 

pattern as marked by the yellow loop in figure 3.31 (e). Moreover, the appearance of solutal 

convections in this experiment is easy to understand because the rejected heavier copper 

solutes must sink down to the any low-lying region of the initial sideling interface. As 

solidification proceeds, more and more copper solutes will gather at the hollow part of 

interface, which suppresses the growth of the corresponding region of interface. However, at 

the same time, melt concentration ahead the heave part of interface diminishes, which 

enhances the local growth velocity. Consequently, these two counteractive effects together 

make the initial interface become more sideling.  

Figure 3.32 shows 6 successive images captured during directionally solidifying the Al-

4wt%Cu alloy with a thermal gradient of 3000K/m and a 0.08T transverse magnetic field. 

Figure 3.32 (a) is the moment that the solidification just began and gives the coordinate of the 

view field. It can see that the initial liquid-solid interface is sideling as well, and the right part 

of the interface is hollow. According to simulations of TEM flows above, yellow loop in 

figure 3.32 (b) simply indicates the pattern of TEM flows under the conditions used in this 

experiment. If these flows are sufficiently intense, the rejected copper solutes can be 

transported from the front of the hollow part of interface to its heave part, and then the 

enriched solutes slow down the local growth velocity. At the same time, low concentration 

melt in front of the hollow part of interface increases the growth velocity. Consequently, the 

sideling degree of the initial interface should decrease, and finally, the liquid-solid interface 

became nearly flat. Moreover, one thing should be emphasized that there exists an region with 

less dark color as marked by the purple dotted lines in figure 3.32 (d) to (f). Based on imaging 

principle used by the synchrotron X-ray imaging, the less dark color means that this area is 
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thinner compared to the other regions. The abruptly narrowing thickness can block or saying 

greatly reduces the permeability of TEM flows and as well as the solutes. So that, when the 

liquid-solid interface enters in this region, for example at about 136.8mins as shown in figure 

3.32 (d), solutes cannot be transported to the region with less dark color. Consequently, melt 

in the front of the middle of interface is greatly enriched by the solutes, and melt ahead the 

right side of interface become dilute at the same time. For this reason, the growth of the 

middle part of interface is depressed, and reversely, growth of the right side of interface is 

speeded up. Finally, the interface should slightly be concave in the middle and heave at the 

right side, which is just the case shown in figure 3.32 (e) and (f).  

With purpose to confirming the discussions above, how growth velocities of different 

parts of liquid-solid interface vary with time were measured along three vertical lines locating 

at different positions as indicated in figure 3.32(c). Curves shown in figure 3.33 suggest that 

both the right and the middle parts of interface grown faster than the left part at the early stage 

of solidification that was about the first 120mins. As the time going, the growth velocity of 

the left part of interface ran ahead. And finally, the growth of the initial hollow part of 

interface became the fastest one about 130 minutes after the solidification began. This makes 

the initial sideling interface becoming into nearly flat. However, such flat interface may not 

be maintained because the growth of the left and the right parts of interface‘ will speed up 

whilist the middle part will slow down predicted by the trendline of each curve shown in 

figure 3.33. This is reasonable because the abruptly narrowing thickness in front of the right 

side of interface will prevent the nearby melt from being further enriched, meanwhile, the 

rejected solutes will be continuously transported from the left part of interface to the middle 

by the left-to-right flowing TEM flows.  

Although the possibility of the occurence of TEM flows had been predicted by the 

simulation with the interface uneven in x-z plane, it is still necessary to check whether the 

left-to-right flowing TEM flows can or cannot appear with the observed initial sideling 

interface. To do so, used the same simulation method as stated in section 3.2.1 and parameters 

list in table 2.2, 3D simulations of TEM flows with the observed initial sideling interface were 

performed. Similarly, three different shapes of interface in x-z plane were all used. Results are 

shown in figure 3.34, in which, velocity magnitudes are represented by colored slice and 

velocity field are represented by red arrows. Besides, the mass transfer characterizing Peclet 

numbers were calculated for each case by using the maximum velocity given by the 

corresponding color legend. These simulations show that left-to-right flowing TEM flows do 

exist, and the corresponding Peclet number sugguests that these TEM flows are intense 

enough to transport the rejected solutes. Therefore, the shape change of liquid-solid interface 
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in directional solidification of Al-4wt%Cu alloy under a 0.08T transverse magnetic field is 

reasonably attribute to TEM flows. In another aspect, we can say that TEM flows are in-situ 

observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31 Six successive images captured during directionally solidifying Al-
4wt%Cu alloy without magnetic field (G=3000K/m; Cooling rate is 0.1K/min). (a) 
The moment that solidification just began and the coordinate of the view field; (b) 
The moment at t1 mins after beginning and the illustration of sideling angle; (c) The 
moment at t2 mins after beginning; (d) The moment at t3 mins after beginning; (e) 
The moment at t4 mins after beginning and the illustration of the pattern of solutal 
convections; (f) The moment at t5 mins after beginning. 
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Figure 3.32 Six successive images captured during directionally solidifying Al-
4wt%Cu alloy under a 0.08T transverse magnetic field (G=3000K/m; Cooling rate is 
0.1K/min). (a) The t≈1λ.5mins moment that almost the beginning of solidification 
and the coordinate of the view field; (b) The moment at t≈58.6mins and the simply 
drawing of the pattern of TEM flows in accordance with simulations with similar 
experimental conditions; (c) The moment at t≈97.5mins and the indication of paths 
for measuring growth velocities; (d) The moment at t≈136.8mins and the mark of the 
thinner crucible region; (e) The moment at t≈175.9mins; (f) The t≈289.9mins 
moment that the solidification almost finish. 
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Figure 3.33 Growth velocities of different parts of liquid-solid interface varying with 
time plotted along three vertical lines as indicated in figure 3.32 (c). From the left to 
right, these three vertical lines are at y1=0.5mm, y2=2.5mm and y3=4.5mm positions. 
(The width of the sample is 5mm.) 
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Figure 3.34 TEM flows simulated with the observed initial sideling interface and the 
same conditions used in the with magnetic field experiments. (a) Interface is convex 
in x-z plane; (b) Interface is concave in x-z plane; (c) Interface is sideling in x-z 
plane. (G=3000K/m, B=0.08T) 
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3.4 Summary 

For the purpose of directly observing TEME during directionally solidifying the metallic 

alloys, the live observation of phenomena TEM forces and TEM flows were introduced in 

chapter 3.2 and 3.3 respectively. Experimental apparatus used for in-situ observing the 

directional solidification process was introduced in chapter 3.1. Because both of TEM forces 

and TEM flows are difficult to directly detect by the synchrotron X-ray imaging, we regard 

TEM forces and TEM flows are visualized if their directly resulting phenomena are seen. 

Upon the TEM forces, the movements of crystals during solidification were measured and 

compared to analytical calculated TEM forces driving movements of sphere particles. It found 

that the observed movements of crystals were the same as the calculated ones. This suggested 

that the movements of crystals were directly casued by TEM forces in solid when the 

directional solidification was conducted under a 0.08T transverse magnetic field. And then, it 

can be stated that TEM forces in solid were in-situ oberaved. About the TEM flows, whether 

they can appear or not under the conditions used by in-situ experiments was analyzed by 

simulations in advance. Fortunately, the answer was positive. Simulations showed that left-to-

right flowing TEM flows near liquid-solid interface can be produced and sufficiently intense 

to transport the rejected solutes. It has been well known that the one-way flowing flows in 

melt can concentrate the solutes to one side of the sample, and then the enriched melt ahead 

the interface are able to change the liquid-sloid interface shape. Therefore, the shape change 

of interface observed during directionally solidifying the Al-4wt%Cu alloy under a 0.08T 

transverse magnetic field should be reasonable attributed to the left-to-right flowing TEM 

flows. And then, it can say that TEM flows were in-situ observed. At last, the 3D simulations 

with the same interface shape observed in the in-situ observation experiment were performed 

to further confirm the occurence and the direction of TEM flows. 
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Chapter 4: Influence of thermoelectric magnetic effect (TEME) on 
liquid-solid interface shape in directional solidification 
process 

Considering the formulations of TEC and TEME have been given, TEM forces and TEM 

flows have been unfolded by 2D axisymmetric simulations and their direct resulting 

phenomena have been in-situ observed by synchrotron X-ray imaging, we can confidently say 

that the existence of TEME in directional solidification process has been proved. Therefore, 

for the next step, whether TEME can or not influence the formation of structure during 

directional solidification should be examined. Although the in-situ experiments in chapter 3 

can indicate the possibility of TEME on modifying the solidified structures to a certain extent 

200ȝm thickness metal ingots are rarely used in practice. So that, directional solidifications of 

Al-Cu alloys with bigger samples that millimeter size in 3 dimensions are conducted without 

and with different magnetic fields. This chapter experimentally examines the influence of 

TEM flows on the shape of liquid-solid interface because which strongly influences the 

generation and propagation of defects [276], the radial compositional uniformity [277], grain 

size and orientation of phases [278], and the flows play a crucial role in modifying the shape 

of interface [279]. Moreover, 3D simulations of TEM flows are performed to confirm the 

experimental results and display TEM forces in these cases. Before step into the experiments 

and the simulations, quantitative evaluation of TEM flows is made.  

4.1 Evaluation of thermoelectric magnetic (TEM ) flows 

Although the formulas of TEC and TEM flows have been given in chapter 2 they are 

recalled here to make the evaluation of TEM flows coherent. Because the total electric 

currents considered here contain the currents caused by electric field E , currents generated 

via liquid moving across the magnetic field u B   and the TEC S T  , the Ohm‘s law 

should be expressed as: 

( )j E u B S T          (4.1) 

with 

0j         (4.2) 

where, ı, S, u  and B  respectively denotes electrical conductivity, ATP, velocity of flows in 

melt and the imposed magnetic field, and the units of these parameters can be found in table 

4.1. With the assumption that ATP within a single medium is constant and the liquid is 

incompressible, Navier-Stokes equations governing TEM flows can be written as: 
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2( )
( )

u
u u p g u j B

t

               
(4.3) 

with the continuity equation: 

0u         (4.4) 

where, ρ, ȝ and p is respectively the density, the dynamic viscosity and the pressure. The units 

of these parameters can be found in table 4.1 as well. 

Table 4.1 Physical properties used in evaluations and simulations of TEM flows 

Symbol Unit Solid Liquid 
S V/K -1.5×10-6 -2.25×10-6 
σ (Ωm)-1 1.3×107 4.0×106 
ȝ Pas 2.0×106 2.9×10-3 
ρ Kg/m3 2.7×103 2.4×103 

It must have been noticed that intereaction between electric currents j and the magnetic 

field B produces two types of Lorentz forces even when no external electric field is applied. 

One is TEM forces, and the other is generated by the interaction between the inducing 

currents and the magnetic field expressed by the term( )u B B   . The former in liquid 

drives TEM flows and are proportional to the first order of B and the latter ones act as the 

braker and are proportional to the square of B. Consequently, competition between the driving 

and the damping forces occurs, and it can know that the driving TEM forces dominate at the 

beginning and then the damping forces prevail as B constantly increases. Correspondingly, the 

resulting TEM flows in melt should firstly speed up to the maximum speed and then decrease 

with constantly increasing magnetic field. Therefore, let us evaluate TEM flows‘ increasing 

stage in advanced.   

According to the theory of hydrodynamics, if there are forces in liquid the velocity of 

their driving flows can be estimated via balancing the driving forces to inertia or viscous 

forces. So that, it has: 

2
1u

SGB    with s lS S S      (4.5) 

and 

2
2

u
SGB    with s lS S S    

  
(4.6) 

where, G, Sl and Ss respectively denotes the applied thermal gradient, the ATP of liquid and 

solid, u1 is the evaluated velocity via balance between TEM forces and inertia, u2 is obtained 

by equaling TEM forces to viscous forces. Further, it gets: 



 

149 
 

1

SG B
u

 


      
(4.7) 

2

2

SG B
u

 


      
(4.8) 

However, we need to judge which velocity we should take. This can be judged by a 

dimensionless number named Reynolds number, Re: 

u
Re




       
(4.9) 

where, u and Ȝ represents the velocity of flows in melt and typical length scale respectively. 

The criterion used by the Reynolds number can varies from 1 to 4 for the different concerning 

conditions. For the present cases, it defines that balance between TEM forces and inertia is 

used when Re > 1, and balance between TEM forces and viscous forces is valid when Re ≤ 1. 

Replace u in equation 4.9 by equations 4.7 or 4.8, it has: 

3

1

SG B
Re

 


      
(4.10) 

and 

3

2 2

SG B
Re

 


      
(4.11) 

here, Re1 and Re2 is respectively the Reynolds number of u1 and u2. Considering the criterion 

defined for the present cases is whether Re bigger or smaller than 1 the magnetic field range 

for equations 4.8 being valid can be obtained via seting Re1>1, and that for equation 4.9 can 

be obtained by seting Re2 ≤ 1. In fact, the threshold value of magnetic field for shifting using 

equiation 4.8 to using equation 4.9 to esitame the TEM flows can be calculated by equalling 

the equation 4.10 to 4.11. Correspondingly, it has: 

2

3eRB
SG


 

      
(4.12) 

where, BRe is the threshold magntic field over which the balance between TEM forces and 

inertia should be used to estimate the velocities of TEM flows, and below which balance 

between TEM forces and viscous forces should be used. It can be found from equations 4.12 

that this threshold magnetic field depends on the typical length, Ȝ, only when the system has 

been decided.Therefore, how select the suitable typical length should make clear. Based on 

the typical interface morphologies obtained in directional solidification as shown in figure 2.3 

(a) to (c), 1mm is regarded as typical length of the planar interface because this kind of 

interface has the same scale with the diameter of using crucible which is usually about several 
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millimeters; for the cellular or dendritic interface the size of their primary arms are regarded 

as their typical lengths that respectively 0.1mm and 0.01mm.  

Use the physical parameters in table 4.1 and the thermal gradient of 6000K/m that the 

same one used in the following experiments, the magnetic field ranges that respectively used 

to evaluate u1 and u2 were calculated for all the typical lengthes. The results are listed in table 

4.2. It can find that only the magnetic field weaker than about 1.95×10-4T should be used to 

evaluate TEM flows via balance between TEM forces and viscous forces when the typical 

length is 1 mm. Because 1.95×10-4T nearly equals to the terrestrial magnetic field that about 

10-4 to 10-5 T, the evaluation of TEM flows always use the balance between TEM forces and 

inertia for the 1mm typical length scale. Upon the case that typical length is 0.1mm, TEM 

flows should be evaluated by u2 when the magnetic field is lower than 0.195T or by u1 at 

higher magnetic fields. About TEM flows with the smallest typical length that 0.01mm, only 

the balance between TEM forces and viscous forces needs to care because the balance 

between TEM forces and inertia works when the magnetic field is higher than 194.6T that 

exceeds the highest static magnetic fields we can achieve on the earth [280].  

Table 4.2 Evaluation mechanisms and their corresponding magnetic field ranges for different 
typical length scales (Primary step of the evaluation of TEM flows) 

Typical length scales Force balance Re B (T) 

Ȝ = 1mm 
TEM forces ≈ viscous forces, u2 ≤1 0~1.95×10-4 

TEM forces ≈ inertia, u1 >1 ≥1.95×10-4 

Ȝ = 0.1mm 
TEM forces ≈ viscous forces, u2 ≤1 0~0.195 

TEM forces ≈ inertia, u1 >1 ≥0.195 

Ȝ = 0.01mm 
TEM forces ≈ viscous forces, u2 ≤1 0~194.6 

TEM forces ≈ inertia, u1 >1 ≥194.6 

It must be emphasized that these evaluations are very preliminary because they did not 

take the damping forces into account. Therefore, let us consider influenc of the damping 

forces in the following evaluations. On the basis of MHD theory that has been simply 

introduced in chapter 1, the inducing electric currents governed by the second item at the right 

side of equations 4.1 should appear once the melt moves and cut the magnetic field lines. 

Interaction of such inducting currents and the magnetic fields produces a kind of Lorentz 

forces to damp the melt movements. In the present cases, because TEM flows cannot be 

parallel to the imposed magnetic fields all the time the inducing electric currents as well as the 

damping forces emerge once the TEM flows appear in melt. For this reason, TEM flows 

should speed up with a decreasing acceleration and then gradually slow down as soon as the 

damping forces are comparable to the TEM forces as: 
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2
3SGB u B        (4.13) 

where, u3 is the evaluated velocity of TEM flows when the damping forces prevailing. Further, 

it has: 

3

SG
u

B


       
(4.14) 

Actually, equation 4.14 can be obtained from the MHD principle as well. It is because 

when the magnetic fields are sufficient high the viscous friction should be restricted within a 

layer named Hartmann layer that locate along the boundaries perpendicular to the magnetic 

fields. The thickness, δ, of Hartmann layer can be estimated: 

1

B

 
       

(4.15) 

And then, balance of TEM forces and viscous forces is modified as: 

3
2

u
SGB  

       
(4.16) 

It can be seen that u3 achieved from 4.16 has the same form as equation 4.14, which means 

the evaluation of u3 is also valid from the view of MHD theory.  

Schematically illustrate the evolution of these evaluated velocities that u1, u2 and u3 with 

respect to magnetic fields in figure 4.1, it can find that the maximum velocity of TEM flows 

can be approximately estimated via equall ing u1 or u2 to u3. Either the former or the latter 

equivalence should be used depends on the typical length scale. Therefore, it is necessary to 

have the expression of the critical magnetic field Bmax obtained by u1=u3 and Bmax‘ achieved 

by u2=u3: 

max

max

SG B SG

B

 
 

      
(4.17) 

and 

2
max'

max'

SG B SG

B

 
 

      
(4.18) 

thus, it has 

1 3
max ( )

SG
B




      
(4.19) 

and 

max'

1
B


 

       
(4.20) 
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Based on table 4.2, it can know that evaluation of TEM flows for the typical length of 

1mm should use u1 until the imposed magnetic fields reach Bmax, after that, u3 should be 

employed. Upon the typical length of 0.1mm, both Bmax and Bmax‘ should be calculated to 

judge the critical magnetic field over which TEM flows begin to slow down. Indeed, if Bmax‘ 

is higher than 0.195T that the upper limit of magnetic field range valid for u2, the maximum 

TEM flows will appear under Bmax. About the 0.01mm typical length scale, although u1 is 

valid in an unrealizable magnetic fields range both Bmax and Bmax‘ need be calculated as well 

because TEM flows will slow down when the imposed magnetic field is over Bmax‘ if Bmax is 

lower than 194.6T. Table 4.3 lists the results of calculations in accordance to the discussions 

above. According to table 4.3, how TEM flows vary with the imposed magnetic fields is 

evaluated for the three typical lengths respectively and the the results are shown in figure 4.2. 

Table 4.3 Critical magnetic fields corresponding to the maximum TEM flows and the 
regulations used to evaluate TEM flows 

Typical length scales Bmax (T) Bmax‘ (T) Regulations for evaluating TEM flows 

Ȝ = 1mm 0.139 - 
u1 is valid from 0T to 0.139T  

u3 is valid from 0.139T to infinite 

Ȝ = 0.1mm 0.300 
0.269 

(>0.195T) 

u2 is valid from 0T to 0.195T 

u1 is valid from 0.195T to 0.300T  

u3 is valid from 0.300T to infinite 

Ȝ = 0.01mm 
0.646 

(<194.6T) 
2.692 

u2 is valid from 0T to 2.692T  

u3 is valid from 2.692T to infinite 

 

Figure 4.1 Illustration of the evolution of u1, u2 and u3 with respect to imposed 
magnetic fields. 
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Figure 4.2 shows that no matter how long the typical length is TEM flows always speed 

up to the maximum and then slow down with the constantly increasing magnetic fields. 

Further looking at the speeding up period of TEM flows for each typical length, it can be 

found that the corresponding magnetic field range of the speeding up period is different for 

different typical length, moreover, the relationship between the velocities of TEM flows in the 

speeding up period and the magnitudes of imposed magnetic fields is different when the 

Figure 4.2 Curves of evaluating TEM flows varying with imposed magnetic fields 
for different typical scales: (a) Ȝ=1mm; (b) Ȝ=0.1mm (c) Ȝ=0.01mm. 
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typical length is changed. In the case of 1mm typical length, the velocities of TEM flows are 

proportional to the square root of the imposed magnetic field until it is about 0.14T as 

revealed by figure 4.2 (a). When consider cellular interface case that 0.01mm is the typical 

length, TEM flows linearly speed up with the imposed magnetic field until it is about 0.195T 

and then their velocities are proportional to a square root of the magnetic field until it is about 

0.3T as shown in figure 4.2 (b). If the typical length is 0.01mm, TEM flows speed up linearly 

with the imposed magnetic field until they reach the maximum velocity under about 2.69T 

magnetic field (figure 4.3 (c)). At last, one more thing should be stressed for these evaluations 

that the realistic curve of how TEM flows vary with the increasing magnetic fields should be 

the one indicated by the yellow dotted line in figure 4.3(c). This is because that the present 

evaluations are based on the force balance with only one pair of reactive forces, such as the 

balance between TEM forces and viscous forces. Indeed, the magnetic field damping forces 

must be added to the balance between TEM forces and inertia or viscous forces even when 

they do not dominate because they can change the accelerations of TEM flows anyway. For 

this reason, the acceleration of TEM flows at their speeding up period should not be constant 

but gradually decrease to zero until TEM flows reach the maximum velocities. With such 

kinds of acceleration, curve of speeding up of TEM flows should act like the yellow dotted 

line in figure 4.3(c). Fortunately, these simplifications are acceptable because the evaluations 

above can still provide the correct evolution tendency of TEM flows with the imposed 

magnetic fields increasing and approximate critical magnetic field corresponding to the 

maximum velocity of TEM flows. 

4.2 Experimental investigation of influence of thermoelectric magnetic 
(TEM ) flows on liquid-solid interface shape 

After TEM flows have been evaluated for different typical length scales, whether TEM 

flows behave in the same manner as predicted by the evaluations or not is experimentally 

examined in this section. In another aspect, these experiments can test and verify the ability of 

TEM flows to modify the structure during directional solidification as well.  

4.2.1 Experimental apparatus 

Al-0.85wt%Cu and Al-2.5wt%Cu used in the present study were both prepared with 

high-purity Al (99.99%) and Cu (99.99%). The master alloys were melted in a cold crucible 

electromagnetic induction furnace as shown in figure 4.3 (a) and melted for several times to 

achieve perfect uniformity. As shown in figure 4.3 (c), the prefabricated specimens with 3mm 

in diameter and about 150mm in length were prepared by the vacuum suction casting system 
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shown in figure 4.3 (b). The vacuum of suction casting system were pumped together with the 

induction furnace to about 10-5 Pa, and the fill the the induction furnace only with argon gas 

to about 105 Pa, which provides about a 1010 Pa pressure difference. This is sufficient high to 

hold an Al-Cu alloy melts column with about 150mm length. The prefabricated specimens 

were enveloped in a high-purity alumina tube with 3mm inner diameter and 200mm length for 

experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The entire experimental apparatus consists of two main parts which are external magnet 

and the Bridgman type directional solidification furnace. The external magnet is an 

electromagnet whose two copper coils are water cooled. In order to increase and concentrate 

the magnetic fields, iron yokes are used as shown in figure 4.4 (a). This electromagnet can 

provide static or alternating transverse magnetic fields depends on the type of input electric 

currents. According to the coordinate and (0, 0, 0) point defined in figure 4.4 (a), the 

distribution of static transverse magnetic field (TMF) in x-y plane at z=5cm and in x-z plane at 

y=6.5cm were measured and respectively shown in figure 4.4 (b) and (c). It can find that the 

nearly homogeneous magnetic field area in the middle part of the air gap is about 6×6cm2, 

which is sufficient big to ensure the concerning part of specimens being under a uniform 

magnetic fields. The air gap of this electromagnet is 10cm in width.  

 

 

Figure 4.3 (a) Cold crucible electromagnetic induction furnace used to melt master 
alloys; (b) Vacuum suction casting system used to prepare prefabricated specimens; 
(c) The prefabricated specimens and their dimensions. 
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Figure 4.5 shows the general assembly drawing of experimental apparatus. Bridgman 

type furnace made by nonmagnetic materials with negligible effect on the field uniformity can 

reach 1200K with the precision of ±1K. A water-cooled can containing Ga-In-Sn liquid metal 

is used to cool down the sample that called liquid metal cooling (LMC). The thermal gradient 

in the specimen can be adjusted via controlling the temperature of the hot zone in furnace that 

is insulated from the LMC cylinder by a refractory disc. The high-purity alumina tube with 

prefabricated specimen inside is sealed to a stainless steel rod, and this rod is controlled by a 

high-accuracy servo motor. This realizes the vertical movement of the tube and the specimen 

with constant velocity while the furnace is being fixed at the same time. The pulling-down 

speed ranges from 0.5ȝm/s to 5000ȝm/s with the precision of 0.01ȝm/s. In order to obtain the 

shape of liquid-solid interface, quenching experiments were carried out via quickly 

withdrawing the specimen into the LMC can to cool the specimen down to the room 

temperature immediately. Processing conditions were adjusted to form a planar, cellular and 

dendritic interface. Longitudinal and transverse microstructures of samples were examined in 

the etched conditions with an optical microscope, and the solute distributions were analyzed 

by electron probe mass analysis (EPMA).  

Figure 4.4 (a) Photo of electromagnet and the static magnetic fields distributing in x-
y plane (b) at z=5cm and x-z plane (c) at y=6.5cm. 

(a) 

y 
z 

x 

Copper 
coils 

Iron yokes 

Copper 
coils 

(0, 0, 0) 

0.6 

(c) 

B (T) 
0.5 

0.4 

0.3 

0.2 

0.0 

0.1 

2 4 6 8 10 12 14 16 
2 
4 

6 
8 
10 

z (cm) 

x (cm) 

0.5 ~0.6 T 
0.4 ~0.5 T 

0.3 ~0.4 T 

~6cm 

(b) 
0.5 

0.4 

0.3 

0.2 

0.1 

B (T) 

0.0 
1 3 5 7 9 11 13 15 

1 
5 

9 

13 
0.45 ~0.5 T 

0.3 ~0.35 T 

0.35 ~0.4 T 

0.4 ~0.45 T 

x (cm) 

y (cm) 

~6cm 



 

157 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Results and discussions 

As shown in figure 4.6 (a), typical planar liquid-solid interface has been achieved via 

pulling down the specimens of Al-0.85wt%Cu alloys at constant velocity, R, of 0.6ȝm/s and 

applying a constant thermal gradient, G, of 6000K/m. Kept all these conditions unchanged, 

directional solidifications were performed under different TMF flux intensities. The 

longitudinal structures of specimens obtained from these experiments are shown in figure 4.6 

(b) to (d). It can find that the planar interface is almost flat when TMF is zero. Imposed a 

0.05T TMF, planar interface can be achieved as well but its shape is not even anymore. The 

right part of the planar interface that adjoins to the wall of crucible became degenerated as 

shown in figure 4.6 (b). Increased the flux intensities of imposed TEM, figure 4.6 (c) and (d) 

Figure 4.5 General assembly drawing of experimental apparatus used under external 
static traverse magnetic fields. 

Thermal 
insulation 

Heating 
elements 

B 
Center 
plane 

Refractory 
disc 

Ga-In-Sn 
liquid metal 

(LMC) 

Crucible 

Cold water 

Water out Water 

Melt 

Mushy 
zone 

Pulling 
direction 

Solid Magnet Magnet 



 

158 
 

respectively shows the structure of liquid-solid interface obtained under 0.1T and 0.3T TMF. 

It suggests that the degeneration at the right part of the planar interface gradually disappears 

and becomes an entire flat interface when the TMF flux intensity is 0.3T. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has been well known that liquid-solid interface shape results from the joint effects of 

local solute concentration, temperature field and thermal conductivities of the solid and the 

crucible [281]. For the present cases, it is reasonable to attribute the degenerations to solute 

enrichment in the melt in front the right part of the interface because both alloys and 

processing conditions remained unchanged. In fact, the appearance of pits in solid following 

the degenerated interface as shown in figure 4.6 (b) and (c) can demonstrate the enrichment of 

Cu solutes in this region because the instability occurs at the interface with higher solute 

concentration melt ahead when the other conditions are the same. Even though, distributions 

of Cu element along the horizontal line as indicated by the yellow arrows in figure 4.6 (a), (b) 

and (c) were analyzed by EMPA in order to prove the solute enrichment. The results are 

displayed in figure 4.7. These curves clearly show that apparent Cu element segregation 

forms at the right side of the sample solidified under a 0.05T TMF, whilst, distribution of Cu 

element is almost uniform when the planar interface is flat whatever it is solidified without or 

wiht a 0.03T TMF. This confirms that the melt in front of degenerated interface are enriched 

Figure 4.6 Longitudinal (parallel to the growth direction and perpendicular to the 
magnetic field) structure of planar interface of Al-0.85wt%Cu alloy solidified under 
different TMF (R=0.6ȝm/s; G=60K/cm): (a) 0T; (b) 0.05T; (c) 0.1T; (d) 0.3T. 
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because the solid with high Cu composition must be solidified from the melt containing more 

Cu solutes. Next, mechanism leads to this solute enrichment should be made clear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the wide accepted fact that sufficient intense flows in melt close to the 

interface are capable to transport the rejected solutes [282] and discussions in chapter 3.3, it 

can argue that, the sole possibility to transport the rejected Cu solutes is TEM flows for the 

present case. Although TEC cannot appear if the planar interface is horizontal and perfectly 

flat with a vertical thermal gradient (no temperature difference existing along the interface), 

TEC can occur in the present cases because the planar interfaces are not perfectly flat as 

shown in figure 4.8. This figure is the magnified views of regions that outlined by the 

rectangle in figure 4.6 (a). Based on the classical interface stability theory [283-285], planar 

interface growth means that the perturbations of interface will not develop during 

solidification proceeding. So that perturbations or saying waves do exist at the interface. For 

this reason, the planar interface cannot be perfectly flat such as the waves at liquid-solid 

interface shown in figure 4.8 (a). Moreover, affect by the different surface tensions and 

wetting properties between the crucible and liquid or solid, their contacting angles cannot be 

90 degrees. Consequently, slight curved interface must be obtained at the periphery as shown 

in figure 4.8 (b). Just these small waves and slight curved interface at the periphery of 

samples permit the appearance of TEC in the present cases, and how these currents act is 

respectively illustrated in figure 4.9 (a) and (b) with respect to the waves and curved interface. 
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Figure 4.7 EPMA analysis of the distribution of Cu element along the horizontal 
lines at 1mm below the planar interface of directionally solidifying Al-0.85wt%Cu 
specimens. (R=0.6ȝm/s G=6000K/m)  
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Based on equations 4.1 and material parameters in table 4.1, TEC in these experiments 

should act in the manner as indicated by the black dotted circles with arrows in figure 4.9. 

TEM forces are produced by interaction between these TEC and the imposed TMF and point 

to the same direction as marked by the blue arrows. Consequently, TEM flows in melt are 

driven and flow from the left to the right. Brought by such left-to-right flowing TEM flows 

the rejected Cu solutes must concentrate to the right side of samples, and the solutes 

enrichment can slow down the local growth velocity of the interface and then lead to the 

degeneration. In another aspect, the recovery of the degenerated part of planar interface under 

higher magnetic field can be explained by the damping effect of magnetic field as evaluated in 

Figure 4.9 Schematic illustration of how TEC are caused by perturbations (a) and 
slightly curved (b) planar interface at the periphery of samples and the one-way 
flowing TEM flows produced by these TEC interacting with the TMF.    
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Figure 4.8 (a) View magnified from the region outlined by the red rectangle at the 
left side of figure 4.6 (a); (b) View magnified from the region outlined by the blue 
rectangle at the right side of figure 4.6 (a) 
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section 4.1. It seems the maximum velocities of TEM flows in these experiments appear 

under a 0.05T TEM that is slightly different from the evaluated Bmax with typical length scale 

of 3mm that is 0.097T. This difference can be partly from the inaccuracy of parameters used 

in evaluations, such as the real thermal gradient both in liquid and solid cannot be a constant 

value of 6000K/m during the whole solidification process. In another aspect, 0.05T TMF may 

not be the real Bmax for the planar interface growth because there are no directional 

solidification being conducted under TMF between 0.05T and 0.1T. 

Investigations of the ability of TEM flows to modify the interface shape were taken on 

the cellular interface growth as well. Increased the pulling-down speed to 5ȝm/s, kept the 

same thermal gradient that is 6000K/m and used the same alloy that is Al-0.85wt%Cu, typical 

cellular interfaces were achieved in the absence of external magnetic field as shown in figure 

4.10 (a). Additionally, longitudinal structure of liquid-solid interface of samples directionally 

solidified under 0.1T, 0.3T and 0.5T TMF are respectively displayed in figure 4.10 (b) to (d). 

It can be observed that except the slightly curved at the periphery of the sample the cellular 

interface shape is nearly flat in the case of no magnetic field. Similar to the phenomena 

observed in the planar interface growth, applying a relative weak TMF makes the interface 

become sideling to the right side, and the degree of the obliquity reaches the maximum when 

TMF is 0.1T. TMF higher than 0.1T make the cellular interfaces tend to gradually back to flat. 

Moreover, the corresponding transverse structures at the position that 100ȝm below liquid-

solid interface are examined and shown in figure 4.10 (e) to (h) respectively. It can be noticed 

that macrosegregation occurs and corresponds to the concave part of the cellular interface 

indicated in the longitudinal structure. This suggests that Cu solutes must be transported to 

these regions during solidification proceeding. Considering the area of macrosegregation can 

reasonably represent the magnitudes of segregations, it can also find that the 

macrosegregation reaches the maximum under 0.1T TMF as circled by the yellow dotted lines. 
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Figure 4.10 Longitudinal (a-d; parallel to the growth direction and perpendicular to 
the magnetic field) structure of cellular interface of Al-0.85wt%Cu alloy solidified 
under various TMF intensities and their corresponding transverse (e-h; perpendicular 
to the growth direction and parallel to the magnetic field) structure at the position 
that 100ȝm below the liquid-solid interface (R=5ȝm/s; G=6000K/m): (a) & (e) 0T; 
(b) & (f) 0.1T; (c) & (g) 0.3T; (d) & (h) 0.5T. 
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Furthermore, because it has been well know that flows or convections (natural or forced) 

within the mushy zone can decrease the sizes of cells [286-288]. The conclusion that left-to-

right flowing TEM flows exist in the cellular interface growth and are capable to transport the 

rejected Cu solutes from the left to the right can be confirmed via comparing the size of cells. 

Therefore, the sizes of cells solidified under different TMF intensities were measured. Figure 

4.11 shows the curve of the average sizes of those cells plotted versus the corresponding 

magnetic field flux intensities, which suggests that the sizes of cells decrease to the minimum 

when the imposed TMF is 0.1T and increase when TMF further rise. This demonstrates that 

there must be flows in the mushy zone once the TMF is presnt, and these flows should have 

the same flowing direction that from the left side of the sample to the right, moreover, such 

flows shoule speed up until TMF is 0.1T and slow down under higher TMF. Compare to the 

character of TEM flows predicted in accordance to the cellular interface growth conditons, it 

can conclude that the variation the sizes of cells should be attributed to the occrance of TEM 

flows in the cellular interface growth under TMF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

How TEM flows appear and behave in the cellular interface growth process are 

illustrated by figure 4.12, which is similar to the schematic shown in figure 2.4 (c) and (d) in 

chapter 2.1.3. Use equation 4.1 and material parameters in table 4.1, direction of TEC along 

the cell can be determined and indicated by the light-blue dotted circles with arrows in figure 

4.12. Intereactiong of these TEC and the imposed TMF produces TEM forces both in liquid 

Figure 4.11 The average sizes of cells solidified under different TMF intensities. 
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and solid, as marked by the green arrows in figure 4.12, and these TEM forces all point to the 

right that positive x-axis direction. TEM forces in liquid are able to drive TEM flows within 

the intercellular spaces as revealed by the red arrows in figure 4.12. Such TEM flows may 

cause the global one-way flowing motions of melt close to the front of the mushy zone, which 

are simply represented by the pink lines with arrows in figure 4.12. With those left-to-right 

flowing TEM flows, rejected Cu solutes should be transported from the left side of specimens 

to the right. This results in the appearance of macrosegregation and the degeneration of 

interface at these places as reflected by figure 4.10. Moreover, it should be noticed that the 

maximum velocities of TEM flows were achieved under a 0.1T TMF in this cellular growth 

case, which is higher than 0.05T the one obtained in planar interface growth case. This is 

because the typical length of cellular interface is smaller than that of planar interface. Indeed, 

0.1mm is usually chosen as the typical length of cellular interface in the evaluations of TEM 

flows, whilst, 1mm is used for planar interface case. The evolution of velocities of flows in 

melt with increasing TMF indicated by these cellular interface growths perfectly agrees with 

that obtained from evaluations of TEM flows in section 4.1, which can confirm that the flows 

in these experiments are TEM flows from another aspect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Schematic illustration of how TEC appear in cellular interface growth. 
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Figure 4.13 Longitudinal (parallel to the growth direction and perpendicular to the 
magnetic field) structure of dendritic interface of Al-2.5wt%Cu alloy solidified under 
various TMF flux intensities and their corresponding interface shape profile 
(R=50ȝm/s; G=6000K/m): (a) 0T; (b) 0.05T; (c) 0.3T; (d) 0.5T. 
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Using the higher compositional alloys of Al-2.5wt%Cu, increasing the pulling-down 

speed to 50ȝm/s and applying the thermal gradient of 6000K/m, typical dendritic interface 

were achieved as shown in figure 4.13 (a). The investigations of influence of TEM flows on 

dendritic interface growth were taken via imposing differernt flux intensities of TMF with 

other process conditions unchanged. The interface morphology and the corresponding profile 

of their shape obtained under 0.05T, 0.3T and 0.5T are shown in figure 4.13 (b) to (d) 

respectively. Similar to what obtained during cellular interface growth, it can observe that the 

shape of dendritic interface is nearly flat when TMF is absent. Presence of TMF leads to the 

degeneration at the right part of dendritic interface. However, dislike the planar and cellular 

interface cases, the degree of the obliquity of dendritic interface constnatnly increased till the 

TMF is 0.5T that the maximum magnetic field our electromagnet can provide. This is 

understandable because higher magnetic field is needed for TEM flows reach the maximum 

velocities when the typical length is smaller. Based on the evaluated of TEM flows with the 

typical length of 0.01mm that similar to the width of interdendritic space, TEM flows should 

reach the maximum velocities under about 3T TMF in dendritic interface growth. Therefore, 

decrese of the degrees of dendritic interfaces‘ obliquity cannot be observed in these 

experiments.  

 

 

 

 

 

 

 

 

 

Similar to the schematic illustration in figure 4.12, the left-to-right flowing TEM flows 

can be produced by TEC interacting with TMF as simply illustrated in figure 4.14. With such 

TEM flows, the rejected Cu solutes come from the left side of specimens to the right and 

concentrate there. Consequently, the solutes enrichment causes the degeneration of the 
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Figure 4.14 Schematic illustration of how TEC appear in dendritic interface growth. 
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corresponding parts of dendritic interfaces. Although thermoelectric potential exist along the 

secondary arms as well it resulting TEC should be generally along the primary arms of 

dendrites. This is because that the electric currents always flow through the smallest electrical 

resistivity path, and the resistivity is proportional to the reciprocal of the dimensions of 

subject. Moreover, considering the typical lengths of the primary and secondary arms of 

dendrites are respectively about 10 and 1 micrometer, the velocities of TEM flows between 

secondary arms should be 10 times slower than those between primary arms. This permits us 

to concern TEM flows produced by the TEC along the primary arms of dendrites and TMF 

only. However, it is also needed to emphasize that explanation and discussion above are valid 

only if the TMF flux intensity is lower than the one corresponding to the maximum velocities 

of TEM flows when the typical length is 0.01mm.  

Experiments above have proved the existence and the ability of TEM flows to affect the 

liquid-solid interface shape during directionally solidifying the alloys under TMF. Moreover, 

the evolution of the velocities of TEM flows with the imposed magnetic fields indicated from 

these experiments perfectly agrees with that obtained by evaluations. The deviations of the 

critical magnetic fields corresponding to the maximum velocities of TEM flows between 

experiments and evaluations should be attributed to the inaccuracy parameters used in 

evaluations, such as the typical length scales used for planar, cellular or dendritic interface 

may be not precise. Although the experimental results have been qualitatively explained by 

schematic illustrations 3D simulations with the same conditions used in above experiments 

are performed to get quantitive information about TEM flows in directional solidification of 

alloys in the following section. 

4.3 Numerical simulation of thermoelectric magnetic (TEM ) flows in 
directional solidification of Al-Cu alloys under static magnetic field 

Before consider the more general case, 3D simulations of TEM flows are firstly 

performed with the configuration that the planar interface is slightly curved at the periphery of 

the sample to further confirm and investigate how TEM flows appear and behave in the planar 

interface growth case. After that, a convex liquid-solid interface as the one employed to 

illustrate TEME in figure 2.3 (d) is selected to perform the 3D simulations of TEM flows for 

the general cases. This is because that except the planar interface the convex liquid-solid 

interface can be regarde as one cell or the tip of one dendrite when it has the same dimensions 

with the cells or dendrites. Moreover, how the velocities of TEM flows vary with the 

increasing magnetic fields is examined as well. In order to extend the knowledge on how 

TEM flows behave under different magnetic fields, 3D simulations of TEM flows for the 
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general cases are performed with both TMF and axial magnetic field (AMF). Thanks to the 

simulation method that introduced and verified in chapter 2.3, TEM forces in solid can be 

achieved from the computed results of TEM flows as well. Therefore, TEM forces in solid are 

aslo discussed in this section. 

4.3.1 Simulation of TEM flows in directional solidification under a transverse static 
magnetic field 

 

 

 

 

 

 

 

 

 

 

 

 

In order to confirm the possibility of the occurrence of TEC and TEME in the planar 

interface growth cases, the similar geometry was built as shown in figure 4.15 (b). Although 

two types of structures as shown in figure 4.8 may lead to TEC and then TEME only the 

small curved shape at the periphery of interface is concerned here. It is because that the waved 

interface can be approximately represented by the convex liquid-solid interface as well. 

Considering the simulation method has been introduced and verified in chapter 2.3, only the 

meshes and geometry used in the 3D simulations of TEM flows are respectively illustrated in 

figure 4.15 (a) and (c). Triangular meshes were created in solid under the physical phenomena 

control and in liquid under the fluid flow control. Besides, the liquid-solid interface was 
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Figure 4.15 (a) Meshes and dimensions of the computed domain; (b) Illustration of 
the similarity between structure obtained in planar interface growth and the geometry 
used in 3D simulations of TEM flows; (c) Boundary layer refinement.   
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refined by adding 10 boundary layers with 5ȝm in thickness to both solid and liquid sides as 

shown in figure 4.15 (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Used the parameters list in table 4.1 and combined the COMSOL predefining electric 

current and heat transfer modules, how TEC behave was simulated. Figure 4.16 shows the 3D 

view of the computed thermoelectric prtential and the corresponding TEC. It can observe that 

thermoelectric potential gradually increases from the bottom to the top with the applied 

thermal gradient, and TEC mostly concentrate at the vicinity of liquid-solid interface, 

particularly, at the peripheral curved places. The magnified view of regions marked by the 

circles in figure 4.16 (a) show that TEC close themselves along the curved interface. Further, 

imposing a 0.01T TMF and adding the fluid flow module, the TEM forces and flows are 

simulated and shown in figure 4.17 and 4.18 respectively. Because the N-S equation was 

solved in both liquid and solid TEM forces in liquid and solid can be achieved together and 

respectively shown in figure 4.17 (a) and (b). In liquid, TEM forces in the region very close to 

the crucible wall point to negative x-axis direction, and reversely, in the inner region they 

point to positive x-axis direction. In solid, TEM forces point to positive x-axis direction at the 

top part of interface and to the opposite direction at the bottom part of interface. TEM flows 

driven by such TEM forces in liquid are shown in figure 4.18, which suggests that their 

maximum velocities appear at the curved interface region. Moreover, it can be found that 

Figure 4.16 (a) 3D view of computed thermoelectric potential (colored slice) and 
TEC (red arrows), and the unit of legend is V; (b) & (c) Magnified view of TEC 
distribution in the regions marked by the circles in figure (a). (G=6000K/m)  
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TEM flows having maximum velocities mostly flow to negative x-axis direction at both 

positive and negative y-axis sides of the interface when we observe the flows field from the 

top of the crucible as shown in figure 4.18 (b) . The backflows return in the region higher in 

bulk liquid as indicated by figure 4.18 (c). Given the Al-0.85wt%Cu alloys are directionally 

solidified with such TEM flows in melt, it can image that Cu solutes rejected from the flat 

interface should be brought by the backflows to the positive x-axis side and sink down to the 

concave interface region because they are heavier than the surrounding melt. After that, these 

solutes together with the Cu solutes rejected from the curved interface are all transported to 

the negative x-axis side by the most intense TEM flows at the vicinity of curved interface. 

Consequently, melt at the region marked by the yellow circle in figure 4.18 (b) and (c) is 

greatly enriched by Cu solutes. In fact, if see the x-z plane from positive y-axis it can have the 

same view as shown in figure 4.6, and it can know that the sideling interface obtained when 

the directional solidification of Al-0.85wt%Cu alloys were conducted under weak TMF 

should be attributed to the TEM flows shown in figure 4.18. This further demonstrates the 

explanation that the small curved liquid-solid interface at the periphery can be the reason for 

the appearance of TEM and thus TEM flows in the nearly flat planar interface growth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 3D views of computed TEM forces in liquid (a) and solid (b), in which 
the colored slices denote the magnitudes of the x component of TEM forces and red 
arrows present the norm TEM forces, and the unit of legend is N/m3. (B=0.01T, 
G=6000K/m) 
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Because the configuration with convex liquid-solid interface as shown in figure 4.19 can 

reasonable stand for cellular or dendritic morphologies when it has the comaprable 

dimensions. The examination of how the velocities of TEM flows vary with constantly 

increasing magnetic field can be made by 3D simulations of TEM flows with such 

configureation. In another aspect, dependence of the critical magnetic field responding to the 

maximum velocities of TEM flows on the typical length scale can also be investigated when 

set the diameter of such geometry as 1mm, 0.1mm or 0.01mm. Besides, as indicated in figure 

4.20, H/D is remained constant in order to make sure the shap of interface to be the same 

when change its diameter. Triangular meshes were created under fluid flow condition control 

in liquid and physical phenomena control in solid. Meshes near the interface was refined by 

adding 10 boundary layers to both liquid and solid sides as shown in figure 4.19 (d). The 

thicknesse of these boundary learyers is respectively 10ȝm for 1mm diameter geometry, 1ȝm 

for 0.1mm and 0.1ȝm for 0.01mm. 

Figure 4.18 (a) General view of computed TEM flows (red arrows presente flow 
field, the colored slice is the magnitude of the x component velocities of TEM 
flows), and the unit of legend is m/s; (b) TEM flows near the interface seen from 
positive z-axis; (c) TEM flows in bulk liquid seen from positive y-axis. (B=0.01T, 
G=6000K/m) 
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Figure 4.19 Meshes and dimensions of three different sizes geometries (a) to (c) used 
in 3D simulations of TEM flows and the boundary layer refinement (d).  
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Figure 4.20 Illustration of dimensions of the convex liquid-solid interface shape that 
should be kept unchanged via setting H/D as a constant. 
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Combined the COMSOL predefining electric current and heat transfer modules and 

employed the relevant parameters list in table 4.1, TEC generated by applying a constant 

thermal gradient of 6000K/m was simulated with the geometry shown in figure 4.19 (a) that 

1mm in diameter. Figure 4.21 shows the computed thermoelectric potential and the 

corresponding TEC. It can see from the general 3D view shown in figure 4.21 (a) that the 

thermolelectric potential is coincident with the applying thermal gradient and the 

corresponding TEC mostly concentrate near the liquid-solid interface. Magnified the region 

near interface, figure 4.21 (b) and (c) shows the view of TEC seen from positive y- and x- axis 

respectively. These two figures suggest that TEC form the circuits along the liquid-solid 

interface and have the most intense densities in the region near interface. Further, it can find 

that TEC around the entire convex interface flow in the same direction as indicated by the 

white circles with arrows. It must be noticed that TEC at the middle part of solid are parallel 

to each other, which should be attribute to the assumption that ATP of solid is constant. This 

agrees with the predictions made by analytical calculation in chapter 2.3.2. 

Imposed a 0.1T TMF in positive y-axis direction, both TEM forces and TEM flows can 

be simulated by adding the fluid flow module to the previous electric current and heat transfer 

Figure 4.21 (a) General 3D view of computed thermoelectric potential (colored 
slices) and TEC (red arrows), and the unit of the legend is V; (b) TEC seen from 
positive y-axis; (c) TEC seen from positive x-axis. (G=6000K/m)  
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modules. Figure 4.22 shows the computed TEM forces in liquid and in solid respectively. 

Similar to the results shown in figure 4.17 (b), TEM forces have two opposite directions in 

solid. At the top and in the middle part of the solid side of interface TEM forces point to 

positive x-axis, and inversely, at the low and peripheral part of interface TEM forces in solid 

point to negative x-axis as marked by the magnified picture inserted in figure 4.22 (b). TEM 

forces in liquid have two reversed directions as well. The ones in the concave region of 

interface orientate to negative x-axis, and the others in front of the convex region of interface 

are in positive x-axis direction. The behavior of TEM flows driven by such TEM forces in 

liquid is shown in figure 4.23. Because TEC are very close to the liquid-solid interface TEM 

flows also gather in the interface nearby region as shown in figure 4.23 (a). Moreover, it can 

find that the most intense TEM flows appear surround the convex interface and locate at its 

concave region and these TEM flows unidirectionally flow from positive x-axis to the 

negative as revealed by by red arrows in figure 4.23 (b) and (c). The backflows flow through 

the region in melt ahead of the top of interface. Carried by such kind of TEM flows, the 

rejected solutes must be gathered at the places as pointed out by the yellow circles in figure 

4.23 (b) and (c) and make this parts of interface degenerate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Computed TEM forces (colored slice is the magnitude of the x 
component of TEM forces and red arrows denote the norm TEM forces), and the unit 
of legend is N/m3. (a) TEM forces in liquid; (b) TEM forces in solid. (B=0.1T, 
G=6000K/m)  
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Figure 4.23 Computed TEM flows presented by the red arrows and its x component 
magnitudes denoted by the colored slice: (a) General 3D view; (b) TEM flows seen 
from positive y-axis; (c) TEM flows seen from positive z-axis. (B=0.1T, 
G=6000K/m), and the unit of legend in (a) is m/s. 
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Figure 4.24 (a) to (c) Simulation of TEME with the geometry 0.1mm in diameter; (d) 
to (f) Simulation of TEME with the geometry 0.01mm in diameter. (a) & (d) Colored 
slices are thermoelectric potential (V) and red arrows are TEC; (b) & (e) Colored 
slices are magnitude of the x component of TEM forces (N/m3) and red arrows 
denote the distributuion of TEM force; (c) & (f) Colored slices present the magnitude 
of the x component velocities of TEM flows (m/s) and red arrows are TEM flows 
fields. (G=6000K/m, B=1T and B‘=10T)  
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Figure 4.25 Evolution of the velocities of computed TEM flows with increasing 
TMF intensities for different typical length scales: (a) TEM flows simulated with 
1mm diameter geometry; (b) TEM flows simulated with 0.1mm diameter geometry; 
(c) TEM flows simulated with 0.01mm diameter geometry. 
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TEC, TEM forces and TEM flows were simulated with the geometries have smaller 

diameters (typical lengths) of 0.1mm and 0.01mm as well. Figure 4.24 shows the computed 

results. It can see that the patterns of all TEC, TEM forces and TEM flows are the same as 

those obtained in simulation with geometry has 1mm diameter (typical length). However, the 

absolute values of computed TEC, TEM forces and flows are different when the diameters of 

geometries are different. TEM flows were simulated under various imposed TMF flux 

intensities and with the same thermal gradient of 6000K/m for geometries with three different 

diameters as shown in figure 4.19 (a) to (c). Plotted the maximum velocity of computed TEM 

flows versus the TMF flux intensities, how the velocities of TEM flows vary with constantly 

increasing TMF can be seen from the curves shown in figure 4.25. It shows that whatever the 

typical length scale is the change tendency of the velocities of TEM flows with magnetic 

fields is the same that TEM flows fi rstly speed up and reach the maximum velocities under 

the correspondingly critical TMF and then slow down when the TMF further rise. This agrees 

with the conclusion made by the evaluations of TEM flows in section 4.1. In fact, this 

consistent can be validated by the similarity between curves shown in figure 4.25 and the 

yellow line shown in figure 4.2 (c) as well. In another aspect, it can find that the critical TMF 

intensity responding to the maximum velcoties of TEM flows is about 0.5T for 1mm diameter 

geometry, 5T for 0.1mm and 50T for 0.01mm. It should be emphasized that the accurate 

critical TMF intensity for each typical length scale can be any value within the range as 

marked by the yellow rectangular boxed in figure 4.25 because the magnetic field difference 

between two simulating steps may not be sufficient small to give the accurate one. Further, it 

is also needed to point out that the deviations between the critical TMF intensity achieved by 

these simulations, experiments in chapter 4.2 and and the evaluations in chapter 4.1 are 

reasonable because the evaluations takes some simplifies and the parameters in real 

experiments must be difference from the ones used in evaluations and simulations. 

4.3.2 Simulation of TEM flows in directional solidification under an axial static 
magnetic field 

With the purpose to extend the knowledge on how TEM flows behave under an axial 

static magnetic field the corresponding 3D simulations were performed. Except refining the 

meshes at the top wall of the liquid domain by adding boundary laryers as shown in figure 

4.26, the same simulation method, geometries, dimensions, meshes and parameters used in 

chapter 4.2.2 are all employed in the following simulations as well. Similarly, coupled 

COMSOL predefining electric current and heat transfer modules, TEC were simulated with a 

constant thermal gradient of 6000K/m for three different typical length scales. The computed 
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results are shown in figure 4.27. It can be observed that the patterns of thermoelectric 

potentials obtained from the three cases are the same except their absolute values, and so do 

the flowing pattens of the corresponding TEC. These TEC mostly distribute near the interface 

and form the cirruits via flowing downward in solid and upward in liquid. Actually, the 

general pattern of TEC is determinated once the simulating system and the applied thermal 

gradient are decided. However, the densities of TEC depend on the geometery and its size 

such as the shape of liquid-solid interface. For the present cases, differences of the 

magnitudes of the simulated thermoelectric potential and TEC between three different typical 

lenghes should be mostly attributed to the differernt heights of the shape unchanged liquid-

olid interface shape. This is because both of thermoelectric potential and TEC are the function 

of temperature differentce that is linearly proportional to the height of interface once the 

applied thermal gradient is desided.  

  

 

 

 

 

 

 

 

 

 

 

 

TEM forces produced by interaction between the imposed AMF and the TEC shown in 

figure 4.27 were simulated, so do their resulting TEM flows in liquid. Figure 4.28 (a) to (c) 

gives the computed TEM forces both in liquid and solid for three different diameter 

geometries respectively. It shows that the patterns of TEM forces in these three cases are the 

same that vortically surround the z-axis and distribute near the interface. This must be easy 

understood because the direction of TEC and imposed upward axial static magnetic field are 

remained unchanged for these three cases. Furthermore, carefully examine the x component of 

TEM forces indicated by the colored slices, it can find that TEM forces in liquid are all 

Figure 4.26 Boundary layer refinements of meshes at the top of liquid domain used 
in 3D simulations of TEM flows under an axial magnetic field.  
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clockwise and in solid lead to a pair of opposite direction torques as uncovered by the inserted 

picture in figure 4.28 (a1), (b1) and (c1). This makes interface at the solid side tend to revolve 

anti-clockwise at the top and clockwise at the bottom, which may give rise to midifying the 

solidified structure during the solidification process. Indeed, some indications of the 

possibility of TEM forces in solid to affect the structure formation have been uncovered by 

some pioneer experimental attempts [246-248], but such topic would not be further discussed 

here because it has exceedd the concering range of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 displays TEM flows driven by the TEM forces in liquid shown in figure 4.28 

(a), (b) and (c) respectively. Under the axisymmetrically vortical distribution TEM forces, the 

rotational TEM flows formed as shown in figure 4.29 (a1), (b1) and (c1). Although the 

isotropous flows in melts during solidification may not cause any redistributuion of solutes, 

the rotational TEM flows can result in vertical secondary convections like the situation 

described by Geoffrey Ingram Taylor [289], which is able to affect the solutes distribution in 

melt. In another aspect, the centrifugal pulling effect of rotational flows can affect the 

transportation of solutes due to the density difference between the solutes enriched melt and 

the original ones. Therefore, the rotational flows concentrate the solutes at the periphery of 

Figure 4.27 Computed TEC generated by a thermal gradient of 6000K/m, G, for 
different diameter geometries (colored slices are thermoelectric potential and red 
arrows are TEC): (a) TEC in 1mm diameter geometry; (b) TEC in 0.1mm diameter 
geometry; (c) TEC in 0.01mm diameter geometry. The unit of legend is V. 
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the sample in accordance to the centrifugal pulling effect if the rejected solutes are heavier 

than the original metl. And then, the solutes enrichment can affect the formation of structure 

during solidification process. 
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Figure 4.28 Computed TEM forces with different diameter geometries (colored 
slices represent the magnitude of the x component of TEM forces and red arrows 
give the direction of norm TEM forces): (a) & (a1) TEM forces in 1mm diameter 
geometry; (b) & (b1) TEM forces in 0.1mm diameter geometry; (c) & (c1) TEM 
forces in 0.01mm diameter geometry. The unit of legend is N/m3. (G=6000k/m, 
B=0.1T, B‘=1T and B‘‘=10T)  
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Figure 4.29 Computed TEM flows with different diameter geometries (colored slices 
represent the magnitude of the x component velocities of TEM flows and red arrows 
give TEM flows fields). General 3D views of TEM flows in (a) 1mm, (b) 0.1mm and 
(c) 0.01mm diameter geometries, and their corresponding x-y plane views (a1) to (c1) 
seen from positive z-axis. The unit of legend is m/s. (G=6000k/m, B=0.1T, B‘=1T 
and B‘‘=10T) 
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(a) 

(b) 

(c) 

Figure 4.30 Evolution of the velocities of computed TEM flows with increasing 
AMF flux intensities for different typical length scales: (a) 1mm diameter geometry; 
(b) 0.1mm diameter geometry; (c) 0.01mm diameter geometry. 
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By simulating TEM flows under various AMF flux intensities, how the velocities of 

TEM flows vary with the AMF were investigated for different typical lengths as well. Figure 

4.30 displays the curves of the velocities of computed TEM flows plotted with AMF. It can 

find that the same change tendency of the velocities of TEM flows with the constantly 

increasing AMF is achieved from all the three different typical lengths. The only difference is 

that the critical AMF flux intensities responding to the maximum of TEM flows is about 0.6T 

for the typical length of 1mm, 6T for 0.1mm and 60T for 0.01mm. It must have been noticed 

that the critical AMF flux intensities are different from the TMF ones. This deviation should 

be attributed to inaccuracy selection of typical length scales because the areas perpendicular 

to the magnetic field lines are different when the magnetic field is imposed axially and 

transversely for the size fixed sample. In fact, how accurately select the typical length to 

perform the MHD related calculations is an important and unclear topic [290], so that the 

present thesis will not and cannot make any further discussions about that. Nevertheless, how 

the velocities of TEM flows vary with AMF has been found and shows reasonable agreement 

with the evaluations of TEM flows in chapter 4.1. Considering TEM flows obtained under the 

TMF, it can conclude that whatever the direction of the imposed magnetic fields are TEM 

flows in melt during directional solidification process always speed up firstly and reach their 

maximum velocites under a critical magnetic field and then slow down with the magnetic 

field further increasing. Finally, it can know that the geometry, dimensions, typical length, 

thermal gradient in both solid and liquid, direction of the imposed magnetic field and the real 

growth velocity of liquid-solid interface must be considered overall if we expect to precisely 

estimate the velocities of TEM flows for a given alloy. 

4.4 Summary 

Considering the size of the sampe (particularly the 200ȝm thinckness) used by the in-situ 

observation experiments in chapter 3 is not common in the pratical production, this chapter 

confirmed and investigated TEME and its influences in the directional solidification with 

relative bigger samples those are millimeter scales in three dimensiones. Before experiments, 

the evaluations of the velocities of TEM flows and how they vary with the imposed magnetic 

fields were taken. Because TEM forces are linearly proportional to the magnetic field flux 

intensity TEM flows always speed up firstly. The magnetic damping effect will occur once 

the melt begin to flow, and the corresponding damping forces increase with the increase of the 

velocities of TEM flows in melt. Finally, the damping forces should dominate under a 

sufficient high magnetic field because it is proportional to the square of magnetic field. So 

that, there is a critical magnetic field resulted from the competition between TEM forces and 
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damping forces. Under this critical magnetic field, TEM flows reach their maximum velcoties 

and then slow down when the imposed magnetic field over the critical value. Moreover, 

according to the evaluation in chapter 4.1 it can know that the critical magnetic field is closely 

related to the typical length sacle that varies with different morphologies in directional 

solidification. For instance, the typical length of a planar interface can be roughly regarded as 

1mm, and that of the cellular interface should be 0.1mm. Therefore, the critical magnetic field 

should be different for different solidified structures. Indeed, the smaller the typical length is 

the higher the critical magnetic field is. After the evaluations, some corresponding 

experiments were performed. In order to investigate how the velocities of TEM flows vary 

with imposed magnetic field for different typical lengths, three typical morphologies that 

planar, cellular and dendritic interface growth were realized and solidified under different 

TMF flux intensities. Experimental results showed reasonable consistent with the evaluations, 

particularly, the change tendency of the velocities of TEM flows with constantly increasing 

TMF obtained from experiments perfectly agreed with that achieved from evaluations. Based 

on the results achieved in experiments, how TEME appear was explained by schematic 

illustrations firstly and then confirmed by the 3D simulations. Further, the 3D simulations of 

TEME were performed with a general geometry for three different typical lengths. Computed 

results showed that either the imposed magnetic field is transverse or axial the change 

tendency of the velocities of TEM flows with constantly increasing magnetic fields kept fixed 

and was consistent with the results obtained in evolutions and experiments. Additionally, 

these simulations uncovered another important phenomenon that TEM forces in solid are 

anisotropic. Actually, TEM forces in solid under TMF point to positive x-axis at the top and 

middle of the solid side of interface and to negative x-axis at the very periphery. TEM forces 

in solid under AMF form a torque that makes the top of the solid side of interface tend to 

revolve anti-clockwise and the bottom part rotate clockwise at the same time. Dislike TEM 

forces in liquid, TEM forces in solid constantly increase with the imposed magnetic fields 

increasing. Therefore, TEM forces in solid can be sufficient strong when the imposed 

magnetic field is high, and the strong TEM forces in solid must play a crucial role on 

microstructure modification. This may be another promising direction for the research of 

TEME. 
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Chapter 5: Influence of magnetic field on formation of structure 
during directional ly solidifying near-eutectic alloys 

The ability of TEME to modify the structure of single phase alloys during directionally 

solidification has been examined in chapter 4. Except the single phase alloys, eutectic alloys 

are another kind of widely used metallic materials because the eutectic structure or saying 

coupled growth structure is the excellent candidate for in-situ composite materials [291]. So 

that how the external magnetic field, particularly the TEME, influences the formation of 

structure during directionally solidifying the near-eutectic alloys is examined in this chapter. 

Results show that distances between the tip of primary α-Al dendrites and the eutectic 

structure front that so-called mushy zone length changes when the hypoeutectic Al-26wt%Cu 

alloys are directionally solidified under different magnetic fields. More important, a nearly 

entire coupled growth structure is achieved under a 4T AMF. TEM flows and the change of 

nucleation temperature of the primary and the eutectic phases caused by the magnetic field are 

employed to explain these results. Indeed, a specialized differential thermal analysis (DTA) 

apparatus that can be used in high magnetic field is introduced and applied to verify the effect 

of magnetic field on changing the nucleation temperature of the primary and the eutectic 

phases. In another aspect, hypereutectic Al-40wt%Cu alloys are directionally solidified under 

various magnetic fields as well. The experimental results show that other than the alteration of 

the mushy zone length the growth of the intermetallic compound Al2Cu phase is enhanced by 

the magnetic field. Transmission electron microscope analysis suggests that the growth 

enhancement of the faceted Al2Cu phase should be attributed to the defects multiplication in 

this phase. TEM forces acting on solid during directional solidification can lead to the defects 

multiplication. 

5.1 Alloys and experimental apparatus 

Al-Cu alloys were chosen as the research object in this chapter as well because Al-Al2Cu 

is a typical eutectic alloy that widely used in electronic and engineering industries. Besides, 

thermophysical parameters of Al-Cu system are relatively complete. Hypoeutectic Al-

26wt%Cu and hypereutectic Al-40wt%Cu alloys were chosen because they have almost the 

same melting temperature and compositional difference between the eutectic reaction 

composition that Al-33.2wt%Cu, and more, they precipitate different primary phases and 

reject different types of solutes during solidification proceeding. Upon Al-26wt%Cu alloys, α-

Al phase is the primary phase and heaver Cu solutes are rejected, whereas, Al-40wt%Cu 
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alloys primarily precipitate the Al2Cu phase and reject lighter Al solutes. Figure 5.1 gives a 

partial phase diagram of Al-Cu system containing the two using alloys. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Al-26wt%Cu and Al-40wt%Cu alloys used in the present studies were both prepared 

with high-purity Al (99.99%) and Cu (99.99%) by the vacuum suction casting method as 

introduced in chapter 4.2.1. Therefore, dimensions of the prefabricated specimens are the 

same as indicated in figure 4.3 (c). Directional solidifications were performed with the same 

Bridgman type furnace detailedly described in chapter 4.2.1, but the magnet is different. In 

this chapter, a superconducting magnet as shown in figure 5.2 (b) that can provide the axial 

upward magnetic field up to 14T was used. This superconducting magnet was made by 

Oxford Instrument Company with a columnar working place 98mm in diameter and 1174mm 

in height. The magnetic field flux intensities along the axially central line of working column 

were measured when it was set as 10T, and the profile is shown in figure 5.2 (a). The 

corresponding Bz·(dBz/dz) was calculated and shown in figure 5.2 (a) as well.  

A specialized differential thermal analysis (DTA) apparatus that can be used in high 

magnetic field has been design and built by Changjun Li and Zhongming Ren et al. in 

Shanghai University [292]. Here, we employed this apparatus to verify the influence of high 

magnetic field on the nucleation temperature of the primary α-Al, Al 2Cu and the eutectic 

phases. Figure 5.3 (a) shows the general drawing of the DTA apparatus used in high magnetic 

field, and photo of real matter is given in figure 5.3 (b). 

Figure 5.1 Partial phase diagram of Al-Cu system that showing the composition of 
hypo- and hyper- eutectic alloys used in this chapter. 
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DTA is a thermo-analytic technique, during such process the studying sample and the 

inert reference together undergo an identical thermal cycles, and meanwhile, record any 

temperature difference between the sample and reference. Because the inert reference will not 

have any temperature fluctuation during the thermal cycles, heat absorption or release for 

instance, any temperature fluctuation of the studying sample compared to the reference can be 

detected [293]. And then, the differential temperature is plotted against temperature to obtain 

the DTA curve. Because the physical and chemical reactions of materials during heating or 

cooling are mostly accompanied thermal effect, particularly the metallic alloys, DTA curve 

can indicate the events that have happened during the thermal cycles [294], such as the 

beginning of nuclearation or saying solidification and phase transformation during cooling the 

metallic melts. Figure 5.4 (a) simply illustrates the basic principle of DTA, figure 5.4 (b) 

shows the example of data obtained during the experiments, and two typical DTA curves 

achieved during heating and cooling the metallic sample are given in figure 5.4 (c) and figure 

5.4 (d) respectively. 

 

 

 

Figure 5.2 (a) Profile of magnetic field measured at 10T along the axial direction and 
the corresponding vertical distribution of Bz·(dBz/dz); (b) Photo of the 
superconducting magnet. 
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Several parameters manifesting the events happening during melting or cooling can be 

achieved from the DTA curves [295-297] are explained with the help of examples shown in 

figure 5.4 (c) and (d). 

(1) Tp appears both in heating and cooling process that is the temperature at which the 

maximum temperature difference occurs. This parameter varies with the applied heating or 

cooling rate during the thermal cycles when the other conditions remain unchanged. 

(2) Tm appears in the DTA curve obtained during the heating process only, as illustrated 

in figure 5.4 (c), which responds to the intersection point between the extended basic line and 

the tangent line of the maximum slope of the low temperature side of endothermic peak. This 

temperature is generally regarded as the melting temperature of the studying sample. 

(3) Tn appears in the DTA curve obtained during the cooling process only, as illustrated 

in figure 5.4 (d), which responds to the intersection point between the extended basic line and 

the tangent line of the maximum slope of the high temperature side of exothermic peak. This 

temperature stands for the beginning of nucleation temperature of the studying sample. 

(4) The slop of the high temperature side of exothermic peak, tanα, as indicated in figure 

5.4 (d), can be regarded as the nucleation rate in some cases. 

Figure 5.3 (a) General drawing of differential thermal analysis apparatus used in high 
magnetic field; (b) Photo of real DTA apparatus. 
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(5) Half-width of the exothermic peak, w, reveals the scatter of obtained grain sizes. 

The smaller the w is the lower scatter of the grain sizes is. 

Except these parameters, for cooling a metallic sample, more information can be 

obtained through calculating the parameters directly achieved from the DTA curve. For 

example, Tn-Tp can uncover the rate of nuclearation or saying solidification. High value of 

(Tn-Tp) presents lower solidification rate, which means the crystals will grow slowly after 

their nuclearation. 

 

 

 

 

 

  

 

 

 

 

 

 
 
 
 
 
 
5.2 Influence of axial magnetic field during directionally solidifying 

hypoeutectic Al -26wt%Cu alloy 

As a typical hypoeutectic alloy, Al-26wt%Cu alloys are directionally solidified with an 

unchanged pulling-down velocity of 2ȝm/s and under various AMF flux intensities. Results 

Figure 5.4 (a) Schematic illustration of DTA; (b) Example of DTA curve; (c) 
Example of DTA curve obtained during heating a metallic sample (endothermic 
peak); (d) Example of DTA curve obtained during cooling a metallic sample 
(exothermic peak). 
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show that under low AMF the distance between the tips of primary α-Al dendrites and the 

eutectic front that the mushy zone length changes when AMF varies and a nearly entire 

coupled growth structure formed under a 4T AMF. 

5.2.1 Influence of low magnetic field on the mushy zone length during directionally 
solidifying Al-26wt%Cu alloy   

Generally, directional solidification of hypoeutectic alloys provides a dendrite-plus-

eutectic solid structure, in which, α-Al dendrites lead ahead the eutectic phase and act as the 

primary phase. Figure 5.5 (a) shows the longitudinal structure that achieved by directional 

solidifying the Al-26wt%Cu alloy with a constant pulling-down speed of 2ȝm/s. This is the 

typical solid structure of hypoeutectic Al-Cu alloys obtained by directional solidification. 

With the aids of Al-Cu alloy phase diagram as shown in figure 5.5 (b), the distance between 

the tips of leading α-Al dendrites and the eutectic front that so-called mushy zone length can 

be estimated approximately. Supposed the temperature of the tips of primary dendrites is 

regarded as the liquidus temperature of Al-26wt%Cu alloy as marked by the red dot in figure 

5.5 (b) that about 577.7 oC, and the temperature of eutectic front during growth is thought to 

be the eutectic temperature that is 548.2 oC, the mushy zone length can be roughly calculated 

when the applied thermal gradient is decided. Because the temperature difference between the 

the tips of dendrites and eutectic front is 29.5K in accordance to the phase diagram, the length 

of mushy zone can be obtained by dividing 29.5K by the applied thermal gradient of 

6200K/m, which is about 4.76mm. The mushy zone length obtained from experiment is about 

4.38mm as indicated in fiure 5.5 (a), which is shorter than the estimating one. It is 

understandable because Cu solutes will be rejected from the primary α-Al phase during the 

directional solidification and then enrich the melt ahead of the primary dendrites. This makes 

the primary dendrites surrounded by higher composition melt, and which make the growth 

temperature of the dendritic interfaces lower than the liquidus temperature of Al-26wt%Cu 

alloy. For this reason, the real temperature difference between the tips of the primary 

dendrites and eutectic front should be smaller, and as well as the mushy zone length if the 

thermal gradient is unchanged. Indeed, the growth temperature of both the tips of the primary 

dendrites and the eutectic front are affected by the pulling-down speed, R, as well. However, 

such influence is negligible because R is the high order term in the equation for calculating 

the real growth interface temperature of dendrites [298] and R was small here. In another 

aspect, using eutectic temperature presenting the eutectic growth interface temperature is 

reasonable because this is widely accepted simplification [299]. Therefore, it can be thought 

that the length of mushy zone during directional solidification is determined by the 
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composition of melt ahead of the tips of the primary dendrites if the pulling-down speed and 

the thermal gradient are fixed. With this in mind, influence of the magnetic field on the mushy 

zone length is discussed following.  Figure 5.6 is the longitudinal solid structure containing 

both dendritic and eutectic interfaces of hypoeutectic Al-26wt%Cu alloys directionally 

solidified under different AMF flux intensities, B, with constant thermal gradient of 6200K/m, 

G, and pulling-down speed of 2ȝm/s, R.  

 

 

 

 

 

 

 

 

Figure 5.5 (a) Longitudinal (parallel to the growth direction) structure of dendritic 
and eutectic interfaces achieved by directionally solidifying the Al-26wt%Cu alloy 
with a pulling-down speed R of 2ȝm/s in the absence of magnetic field; (b) 
illustration of method to simply estimate the mushy zone length. (G=6200K/m) 
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Figure 5.6 Longitudinal (parallel to both growth and magnetic field direction) structure containing both dendritic and eutectic interfaces 
achieved by directionally solidifying Al-26wt%Cu alloys under different AMF flux intensities that 0T, 0.005T, 0.05T, 0.1T and 0.5T. Red line 
marks the eutectic front, green dots indicate tips of dendritic interfaces and blue line approximately illustrates how the evaluating velocities of 
TEM flows vary with AMF flux intensities, and the measured mushy zone lengths are given at the top of each figure. (R=2ȝm/s, G=6200K/m) 
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It can be observed from figure 5.6 that the typical dendrite-plus-eutectic structure is 

remained under the AMF lower than 0.5T. However, the mushy zone length changes when 

the imposed AMF is different. Further, it can find that mushy zone elongates its length from 

about 4.38mm when the magnetic field is absent to about 5.72 when AMF is 0.05T, and 

further increasing AMF makes the mushy zone become shorter, finally, it is about 3.56mm 

when AMF is 0.5T. Based on the factors in determining the length of mushy zone as 

discussed above, it can attribute the elongating of mushy zone to the dilution of melt in front 

of the α-Al dendrites. In another word, reducing of the solute enrichment of melt ahead the α-

Al dendrites elongates the mushy zone length. Considering discussions about TEME in the 

previous chapters, TEM flows around the primary α-Al dendrites are capable to change the 

composition of melt surrounding and ahead. Therefore, it is thought that TEM flows should 

response to the change of mushy zone length under different AMF flux intensities.  

Table 5.1 Physical parameters of α-Al, Al 2Cu phase and the liquid used in simulation 

Names, symbols and units of the parameters           Magnitude 

Electrical conductivity of Al2Cu phase, ıS2, Ω
-1·m-1   6.20×106   [275] 

Electrical conductivity of α-Al phase, ıS1, Ω
-1·m-1    7.90×106   [275] 

Electrical conductivity of liquid, ıl, Ω-1·m-1     3.05×106   [275] 

Absolute thermoelectric power of Al2Cu phase, SS2, V·K-1     -0.60×10-6 [238] 

Absolute thermoelectric power of α-Al phase, SS1, V·K-1        -1.50×10-6 [238] 

Absolute thermoelectric power of liquid, Sl, V·K-1            -2.25×10-6 [238] 

However, whether TEME can occur or not in the typical dendrite-plus-eutectic structure 

needs to be verified. For this reason, used the simulation method has been validated in chapter 

2.3.2 and taken the geometry shown in figure 5.7 (a) TEC in a simplified case that 

considering only one primary α-Al dendrite followed by eutectic phase were simulated via 

combining the COMSOL predefining electric current and heat transfer modules. In addition, 

meshes used in this simulation and dimensions of the geometery are also indicated in figure 

5.7 (a). The meshes are extremely fine and triangular, which were created under the criterion 

of physical phenomena control. The physical parameters of α-Al, Al 2Cu phase and the liquid 

used in this 2D simulation of TEC are list in table 5.1. Figure 5.7 (b) shows the computed 

thermoelectric potential and the corresponding TEC obtained under a constant thermal 
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gradient of 6200K/m that the same one used in the experiments. Although there are some 

small TEC circuits along or between the secondary arms of the dendrites as shown by the 

inserted picture in figure 5.7 (b), it can see that the main and the more intense TEC form the 

global circuit along the first arms of the dendrites as indicated by the white lines with arrows 

in figure 5.7 (b). Moreover, this agrees with the discussions about the flowing path of TEC 

around the dendrites in chapter 4.2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further, imposing AMF and considering the main circuits of TEC as indicated by the 

white lines with arrows in figure 5.7 (b), how TEME happen and behave in the dendrite-plus-

eutectic structure is schematically illustrated in figure 5.8. It must have been known that TEM 

forces should be produced once the magnetic field is present if TEC exist. As indicated by the 

light-blue marks, TEM forces in liquid are perpendicular to and go out of the paper at the left 

side of the tip of α-Al dendrite, conversely, the ones at the right side point to the opposite 

direction. Driven by such TEM forces, swirl TEM flows should appear around the dendrites, 

particularly near their tips. These swirl TEM flows may respond to the reducing of the Cu 

solute enrichment of melt. It can image that if there are not any other disturbing factors the 

Figure 5.7 (a) Geometry, dimensions and meshes used in 2D simulation of TEC in 
the dendrite-plus-eutectic structure; (b) Computed thermoelectric potential (colored 
slice) and the corresponding TEC (red arrows) produced by the constant thermal 
gradient of 6200K/m. The unit of legend is V, and the red arrows are normalized. 
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rejected Cu solutes manifested by the yellow solid lines with arrows should sink down due to 

the gravity. However, TEM flows near to the dendrite should emerge and affect the sinking 

down of rejected Cu solutes once AMF is present. Although the isotropous swirl flows are 

commonly regarded as having no influence on the distribution of soluts in melt their 

conetrigual effect can facilitate the radially transport of the rejected Cu solutes as shown he 

dotted yellow lines with arrows in figure 5.8 due to the density difference between solute 

enriched and not enriched melt. Consequently, melt ahead the primary dendrites become 

dilute compared to those in the case no magnetic field is present. The dilute melt enable the 

dendrites to grow into higher temperature region and thus the mushy zone length elongates. 

This can explain the above experimental results that mushy zone increases its length as AMF 

incrases from 0T to 0.05T. Next, why the mushy zone becomes shorter under AMF higher 

than 0.05T should be answered as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Actually, shortening of mushy zone length as shown in figure 5.6 can be understood 

easily as long as the TEM flows is accepted to be able to affect the transportation of rejected 

Cu solutes. Based on the previous evaluations of TEM flows in chapter 4.1, there should be a 

critical magnetic field flux intensity under which TEM flows reach their maximum velocities. 
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Figure 5.8 Schematic illustration of the occurrence of TEME in the dendrite-plus-
eutectic structure based on the TEC simulated with the similar structure. 
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More intuitively, how the velocities of TEM flows vary with increasing magnetic field can be 

approximately revealed by the light-blue dot-dash line drawn in figure 5.6. It can know that 

TEM flows in the directional solidification of hypoeutectic Al-26wt%Cu reach their 

maximum velocities under 0.05T AMF, and thus the longest mushy zone should be achieved 

under the same AMF flux intensity. When AMF is higher than 0.05T it is natural to obtain 

shorter mushy zone because TEM flows slow down under such high AMF. Furthermore, 

another phenomenon is worthy to emphasize that the mushy zone obtained under 0.5T AMF 

is shorter than the one achieved without magnetic field. This should be attributed to the 

damping effect of the static magnetic field on the other flows in melt [300]. It has been well 

known that sinking of the rejected heaver Cu solutes can lead to vertically solutal convections 

during directional solidification of hypoeutectic Al-Cu alloys in the absent of magnetic field 

[301]. Therefore, if the solutal convections are damped by the sufficient high magnetic field 

as well, it should be certain to get farther shorter mushy zone length compared to the one 

obtained without magnetic field.  

5.2.2 Formation of coupled growth structure in hypoeutectic Al-26wt%Cu alloy 
solidified under high magnetic field 

Remaining the directional solidification conditions unchanged and continuously 

increasing the flux intensities of imposed AMF, evolution of the solidified structure of 

hypoeutectic Al-26wt%Cu alloy was investigated under higher magnetic field. The 

longitudinal solid structure containing both dendritic and eutectic interfaces and the 

corresponding transverse solid structure are shown in figure 5.9. It can be seen that the mushy 

zone achieved under 1T AMF is shorter than the one obtained under 0.5T AMF, and the 2T 

AMF does not make any obvious change of the mushy zone length. Further increasing AMF 

to 4T, a dramatic structure changing appeared that nearly entire coupled growth structure is 

achieved as shown in figure 5.9 (c) and (f). The farther shortening of mushy zone length 

under 1T should be attributed to the stronger damping of TEM flows and solutal convections 

by the higher magnetic field. Almost the same mushy zone length obtained under 2T AMF 

suggests that flows in melt cannot be slowed down farther even under much higher magnetic 

field, 2T for instance. In another word, flows in melt with the present conditions may have 
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been almost suppressed under a 1T AMF. Considering the mushy zone length should not 

become much shorter under 4T AMF, the the appearance of nearly entire coupled growth 

structure under such AMF suggesuts another mechanism. Here, it is thought to be attributed to 

the thermodynamic effect of magnetic field that high magnetic field can change the nucleation 

temperature of non-ferromagnetic alloy during solidification [302]. Before confirm this 

thermodynamic effect of the magnetic field, it is necessary to brief introduce the concept of 

coupled growth structure. 

 

 

 

 

 

 

 

 

 

Coupled growth structure refers a phenomenon that a similar eutectic structure forms 

over a range of compositions but not only from the eutectic point. This concept is originated 

from an experimental finding achieved by Sauveur and Boynton in 1903 that the pearlite 

could form over a range of compositions [303]. This discovery was confirmed by Tammann 

and Botschwar in the 1920s‘, they obtained a similar eutectic structure when solidified the 

transparent organics with compositions different from but near to the eutectic point [304]. 

After this, a series of the coupled growth structure of organics were reported by a German 

Figure 5.9 Longitudinal (parallel to both the growth and the magnetic field direction) 
structure containing both dendritic and eutectic interfaces of Al-26wt%Cu alloy 
solidified under various AMF flux intensities and the corresponding transverse 
(perpendicular to both the growth and the magnetic field direction) structure: (a) & 
(d) 1T; (b) & (e) 2T; (c) & (f) 4T. (R=2ȝm/s G=6200K/m) 

B 
Eutectic 
interface B B 

B B B 

~0.55mm ~0.57mm 

(a) (b) (c) 

(d) (e) (f) 

500ȝ
m 

500ȝ
m 

500ȝ
m 



 

200 
 

pharmacologist, Kofler. In another aspect, the coupled growth structure obtained by 

solidification of the metallic materials was firstly found in 1954 [305]. At that time, it was 

thought that such kind of structure can be achieved only by a sufficient high solidifying rate. 

This limitation was extended by Jackson and Hunt in 1966, they pointed out that directional 

solidification can provide the coupled growth structure for the alloys with composition near to 

the eutectic point (near eutectic alloys) at not only the sufficient high but also the low growth 

rate [306]. At almost the same time, Mollard and Flemings achieved the entire coupled 

growth structure of near eutectic Sn-Pb alloy by directional solidification and found that the 

composition range that permits the formation of coupled growth structure is proportional to 

the ratio of temperature gradient in front of liquid-solid interface and growth rate [307]. Since 

then, a novel method to obtain coupled growth structure from a relative wide composition 

range had been established. In order to precisely predict whether the proceeding conditions 

can provide coupled growth structure or not for a given alloy system, numerous investigations 

had been made [308-310]. Consequently, a general accepted principle is founded that the 

coupled growth structure can prevail if the growth temperature of the primary dendrite is 

lower than that of the eutectic front [311]. Together with the relationship between the growth 

temperatures of the primary and the eutectic phases and the given conditions [312] the 

boundary between dendrite-plus-eutectic and coupled growth structures can be approximately 

calculated as [313]: 

0( )
l

E

GD
V

m C C
       (5.1) 

where, V is the critical velocity responding the transition (m/s), G, Dl and mα denotes thermal 

gradient (K/m), diffusion coefficient (m2/s) and the liquidus slope of α-Al phase respectively, 

CE and C0 responds to the composition of the eutectic point and the studying hypoeutectic 

alloys. The coupled growth structure can be achieved only when the growth velocity is slower 

than the one calculated by equation 5.1. Use the parameters given in table 5.2, the curves 

responding to the transition between dendrite-plus-eutectic and coupled growth structures 

without and with magnetic field (considering the damping effect of magnetic field only) are 

shown in figure 5.10. It can find that, for hypoeutectic Al-26wt%Cu alloy, the coupled growth 

structure should be achieved when the growth velocity is about 0.48ȝm/s with the thermal 
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gradient of 6200K/m if magnetic field is absent. Although such predictions are approximate, 

it can reasonable enhance us to conclude that the coupled growth structure can not form under 

the present experimental conditions that thermal gradient of 6200K/m and pulling-down 

speeds of 2ȝm/s. Besides, one thing should be stated that though the real growth velocity is 

different from the pulling-down speed they can be regarded as the same uring the stable 

period if the pulling-down speed is small [314]. Therefore, the appearance of nearly entire 

coupled growth structure as shown in figure 5.9 (c) and (f) must be attributed to the presence 

of AMF, particularly, the higher one. 

Table 5.2 Physical parameters of hypoeutectic Al-26wt%Cu alloy  

Names, symbols and units of parameters Magnitude 

Diffusion coefficient, Dl, m
2/s  

Pure diffusion cases 2.4×10-9  [313] 
Case considering solutal convections 3.2×10-9  [313] 

Liquidus slope of α-Al phase, mlα, K·(wt pct.)-1 5.7    [313] 

Thermal gradient, G, K·m-1 6.2×103 

Eutectic composition of Al-Cu alloys, CE, wt pct. 33.2   [275] 

 

 

 

 

 

 

 

 

 

 

 

~0.48ȝm/s 

~0.36ȝm/s 

Dl=2.4×10-3mm2/s (with AMF higher than 1T) 

Dl=3.2×10-3mm2/s (without AMF) 

Figure 5.10 Calculated critical growth velocities corresponding to the ransition 
between the α-Al dendrites plus Al-Al2Cu eutectic structure and the coupled growth 
structure without and with AMF higher than 1T (considering the damping effect of 
high magnetic field only).  
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It had been discussed and proved that the mushy zone length is sensitive to the flows in 

melt around and ahead of the dendrites. Therefore, it is reasonable to argue that TEM flows 

and solutal convections were not slowed down farther when AMF increased from 1T to 2T. 

This is reasonable because it has been proved that flows in melt cannot be entirely stopped no 

matter how high the magnetic field is imposed [315]. This can explain why nearly no apparent 

change of mushy zone length is found between the strucutre shown in figure 5.9 (a) and (b) 

respectively. In another aspect, this explanation also reminds us that it cannot expect to 

shorten the mushy zone length by further increasing AMF intensities. So that, the appearance 

of nealy entire coupled growth structure shown in figures 5.9 (c) and (f) cannot be attricbuted 

to the stronger damping effect of high magnetic field. In fact, even though the pure diffusional 

phenomenon is assumed to be achieved under AMF higher than 1T, for example 4T, the 

dendrite-plus-eutectic structure should still prevail because the coupled growth structure can 

be achieved only when the growth velocity is lower than about 0.36ȝm/s as revealed by figure 

5.10. Therefore, there must be another mechanism leading to the appearance of nearly entire 

coupled growth structure under 4T AMF. It is thought to be the effect of high magnetic field 

Figure 5.11 DTA curves obtained during solidifying hypoeutectic Al-10at%Cu alloy 
without and with a 6T AMF, and the cooling rate is kept constant at 5K/min. 
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on the modification of the nucleation temperature and growth velocity of each phase during 

solidifying the hypoeutectic Al-Cu alloys.  

Table 5.3 Parameters obtained from DTA curves shown in figure 5.11 

B (T) 0T 6T Remarks 

Tn
1
 (℃) 601.58 596.52 

(-5.06) 
Nucleation temperature of α-Al decreases. 

Tp
1
 (℃) 592.81 586.36 ——— 

Tn
2
 (℃) 553.14 551.37 

(-1.77) 
Nucleation temperature of eutectic decreases. 

Tp
2
 (℃) 538.13 537.25 ——— 

Tn
1
 - Tn

2
 (K) 48.44 45.15  

(-3.29) 
Nucleation temperature difference between α-

Al and eutectic decreases. 

Tn
1
 – Tp

1
 (K) 8.77 10.16 

(+1.39) 
Growth velocity of α-Al decreases. 

Tn
2
 – Tp

2
 (K) 15.01 14.12 

(-0.89) 
Growth velocity of eutectic increase. 

In order to prove this suppose, DTA tests were taken during solidifying the hypoeutectic 

Al-10at%Cu alloy with a constant cooling rate of 5K/min in the absence and presence of 6T 

AMF. Al-10at%Cu (about Al-21wt%Cu) was selected to perform DTA test because it has 

bigger temperature difference between its liquidus and eutectic reaction temperatures and thus 

the exothermic peaks separate to each other distinguishedly. It can be observed that the 

exothermic peaks for both α-Al and eutectic phases switched to lower temperature region 

under a 6T AMF. According to the illustration of DTA curves in figure 5.4, this suggests that 

the imposed AMF retarded the nucleation of these two phases. Further, examined the exact 

values of parameters listed in table 5.3 that obtained from the DTA curves, it can be found 

that the retarding degrees of the nucleation temperatures of two phases are different. Indeed, 

the nucleation temperature of primary α-Al phase is decreased by 5.06K, and that of eutectic 

phase is retarded by 1.77K only. This shortens the nucleation temperature difference between 

α-Al and eutectic phases from 48.44K to 45.15K, which enhances the superiority of eutectic 

phase in the growth competition with the primary phase. In another aspect, based on the 

interpretation of parameters obtained from DTA curve at the end of chapter 5.1, the growth 

velocities of phases can be revealed by the difference between nucleation and peak 
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temperatures, Tn-Tp. Therefore, it can find from table 5.3 that the growth velocity of α-Al is 

slightly superessed by the 6T AMF, conversely, the growth velocity of Al-Al2Cu eutectic 

phase is increased by the 6T AMF. This can further enhance the eutectic phase to dominate in 

the final solidified structure. These DTA results enable us to conclude that the nearly entire 

coupled growth structure in the hypoeutectic Al-26wt%Cu alloy directionally solidified under 

4T AMF must be attributed to the influence of high magnetic field on the nucleation 

temperature and the growth velocity of  both α-Al and eutectic phases. In another aspect, it 

can find that, upon the hypoeutectic Al-Cu alloy, only the alloys with composition higher than 

31.45wt%Cu can form coupled growth structure under the present experimental conditions 

that G=6200K/m and R=2ȝm/s if there no magnetic field is imposed. Therefore, it can say 

that high static magnetic field extends the composition range for the hypoeutectic Al-Cu 

alloys forming coupled growth structure. 

5.3 Influence of axial magnetic field during directionally solidifying 
hypereutectic Al-40wt%Cu alloy 

Influence of imposing AMF during directionally solidifying the hypereutectic Al-

40wt%Cu alloys was investigated as well. Results show that length of the mushy zone, which 

referring to distance between the tips of primary Al2Cu dendrites and the following eutectic 

front here, changes when the AMF varys. Dislike the situation achieved in directional 

solidification of the hypoeutectic alloys, the lighter Al solutes are rejected during directionally 

solidifying the hypereutectic Al-Cu alloys. Therefore, TEM flows have the reversed effect on 

the variation of mushy zone length. Indeed, the mushy zone length decreases firstly as the 

AMF increase from 0T to 0.5T and reaches the minimum maginitude under 0.5T AMF, and 

then slightly increase with further increasing AMF. Further, longitudinal and transverse 

structures of solidified structures obtained under various AMF flux intensities are examined. 

It finds that the growth of primary Al2Cu phase is enhanced by the magnetic field, and this 

enhancement is dramatic when AMF is higher than 1T. This may be because that the metl 

within mushy zone become dilute when the flows are mostly suppressed by sufficient high 

magnetic field and the defect multiplication in faceted Al2Cu phase caused by TEM forces 

acting on them.  
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Figure 5.12 Longitudinal (parallel to both growth and magnetic field direction) solidified structure containing both dendritic and eutectic 
interfaces achieved via directionally solidifying the Al-40wt%Cu alloy under different AMF flux intensities that 0T, 0.1T, 0.5T, 1T and 2T. Red 
line marks the eutectic front, green stars point the tips of dendritic interfaces, blue line approximately illustrates how the velocities of TEM 
flows vary with AMF flux intensities, and the mushy zone lengths are given at the top of each figure. (R=2ȝm/s, G=6200K/m) 
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 5.3.1 Influence of low magnetic field on the mushy zone length during directionally 
solidifying Al-40wt%Cu alloy 

Place the eutectic front at the same height level, figure 5.12 compares the length of 

mushy zone obtained during directionally solidifying the hypereutectic Al-40wt%Cu alloys 

under different AMF flux intensities. It is clear that a typical dendrite-plus-eutectic structure 

is achieved when the magnetic field is absent and its mushy zone length is about 2.42mm. 

This length is also shorter than the one estimated via employing the method shown in figure 

5.5, because the rejected Al solutes make the composition of melt ahead the primary Al2Cu 

dendrite and in the mushy zone smaller than 40wt%Cu. Moreover, it can see that the mushy 

zone becomes shorter and shorter when the AMF is increased from 0T to 0.5T. Further 

increasing AMF flux intensities enlongates the mushy zone a little bit such as the ones 

obtained under 1T and 2T AMF. Simular to the mushy zone length variation observed in 

directional solidification of Al-26wt%Cu alloys, it is thought that the mushy zone length 

variation obtained here should be casued by TEM flows around the primary Al2Cu dendrites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to confirm whether TEME can occur or not in the structure that primary Al2Cu 

dendrite leading to the Al-Al2Cu eutectic phase with a certain distance, TEC was simulated 

with the similar sturcutre. Taken the relevant physical parameters listed in table 5.1 and 

applied the same conditions used in experiments, the 2D simulation of TEC were performed. 

Figure 5.13 (a) Computed thermoelectric potential (colored slice) and the 
corresponding TEC (red arrows and white streamlines), and the unit of legend is V; 
(b) Schematic illustration of TEME in case of Al2Cu dendrites being the primary 
phase during directionally solidifying hypereutectic Al-Cu alloys.  
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Figure 5.13(a) shows the computed thermoelectric potential and the TEC around the leading 

Al2Cu dendrites. It can be seen that TEC do exist in this case and flow through both the solid 

Al2Cu dendrite and the melt surrounding as shown by the white streamlines. Provided that 

such TEC are unchanged and impose an AMF, how TEME behave is schematically illustrated 

in figure 5.13(b). As it has been stated in the previous chapter, TEM forces should be 

produced once the magnetic field is imposed because TEC exist already. So that, in the 

present case, TEM forces exist in both the faceted Al2Cu phase and the surrounding melt as 

indicated respectively by the white and black marks in figure 5.13 (b). Consequently, as 

indicated by the white arrows in figure 5.13 (b), swirl TEM flows around the primary Al2Cu 

dendrite are driven by such kind of TEM forces in liquid. Considering the rejecte Al solutes 

are ligher than the original melts and based on the principle that lighter inclusions can be 

gathered by rotating the melt [316], the swirl TEM flows can disturb the floating of the Al 

solute enriched melt and gather them near to the primary dendirtes as revealed by the dotted 

light-grey arrows surrounding the Al2Cu phase in figure 5.13 (b). This increases the 

concentration of Al element of local melt and thus suppresses the growth of primary Al2Cu 

dendrite. Consequently, the mushy zone becomes shorter. The gathering effect of swirl TEM 

flows in the present cases can be confirmed by the longitudinal structure obtained under 0.1T, 

0.5T and 1T as well. As marked by the yellow dotted concave curves in figure 5.12, the 

degeneration of the middle region of mushy zone suggests that the rejected Al solutes are 

gathered at these regions. Beside, one thing must be pointed out that the floating of Al solutes 

should be taken into account when consider the gathering effect of the swirl TEM flows 

because the gathering effect can be apparent only if the velocities of TEM flows are higher 

than those of the floating of Al solutes. For this reason, it can be found that the shortening of 

mushy zone length is tiny (about 0.38mm) when TEM flows are relative weak under 0.1T, 

and apparent shortening (about 1.5mm) is found when TEM flows reached their maximum 

velocities under 0.5T AMF. Increased AMF to higher than 0.5T, as indicated by the light-blue 

dot-dash line in figure 5.12, TEM flows were damped. Correspondingly, the length of mushy 

zone increases slightly compared to the one achieved under 0.5T. The consistence between 

the change of mushy zone length and the variation of the velocities of TEM flows with the 

constantly increasing AMF flux intensities can prove that TEM flows do exist in directional 

solidification of both hypo- and hyper- eutectic alloys and are able to modify the mushy zone 

length.  

Figure 5.14 shows the mushy zone structure of Al-40wt%Cu alloys solidified under 

higher AMF flux intensities that are respectively 2T, 4T and 6T. It shows that the mushy zone 

elongates with AMF flux intensities rising, and it (about 2.39mm) become as the same long as 
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the one obtained without magnetic field (about 2.42mm) under a 6T AMF. This is because the 

floating of Al solutes does not affect a lot by the high AMF but the swirl TEM flows are 

almostly suprresed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2 Enhancement of the growth of Al2Cu phase in hypereutectic Al-40wt%Cu alloy 
solidified under high magnetic field 

In addition to observe the quenching interface, the solid structure of samples solidified 

under different AMF flux intensities were examined as well. Figure5.15 (a) shows a typical 

directionally solidified structure of hypereutectic Al-40wt%Cu alloy obtained without 

magnetic field. It can see that the Al2Cu phase is continuously growing along the heat flux 

direction and surrounded by the eutectic phase. The deformed structure of Al2Cu phase is 

observed in the structure achieved under a 0.5T AMF, at the same time, freckles appear as 

pointed out by the white arrows in figure 5.15 (b). According to the mechanism of the 

formation of freckles during solidification [317-319], these freckles can manifest the 

existence of new flows in melt around and ahead the primary Al2Cu phase. Therefore, this is 

another evidence for the occurrence of TEM flows when directional solidification is 

conduceted under magnetic field. Moreover, both the number and the magnitude of freckles 

decrease when TEM flows are suppressed under high magnetic field such as 6T and 12T 

AMF. In another aspect, it can find from the transverse structures that, the area fraction of the 

faceted Al2Cu phase increase when AMF rises from 0T to 12T. Further, the area measurement 

were made on both longitudinal and transverse solid structures of samples obtained under 

different AMF flux intensities to get quantitative information about the area fraction of the 

Figure 5.14 Longitudinal (parallel to both growth and magnetic field direction) 
mushy zone structure of Al-40wt%Cu alloys directionally solidified under different 
AMF flux intensities that 2T, 4T and 6T. Red line marks the eutectic front, the 
mushy zone length are given at the top of each figure. (R=2ȝm/s, G=6200K/m) 
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Al2Cu phase. The results are displayed in figure 5.16, which shows that the area of Al2Cu 

phase extended with AMF increasing. Moreover, as indicated by the red and blue dot-dash 

lines in the inserted curves, the area extension is slight when the AMF is lower than 1T and 

becomes apparent when AMF is higher than 1T. Because area fraction of the phase can 

approximately represent its growth during solidification [320, 321], it is reasonable to 

conclude that the growth of faceted Al2Cu phase is enhanced by the AMF.  

Considering TEM forces should appear and act on both solid and liquid if the directional 

solidification is conducted under a magnetic field, the enhancement of the growth of the 

faceted Al2Cu phase is thought to be caused by the TEM forces in solid. Dislike the velocities 

of TEM flows in melt the magnituedes of TEM forces in solid increase constantly with the 

raising magnetic fields if the solid does not move. Correspondingly, TEM forces in solid 

Al2Cu phase will constantly increase with the imposed AMF rising. Because it had been 

widely accepted and proved that the defects can be produced by stresses acting on the crystals 

during their growth and the defects in crystals are benefit on the thire growth [322-324], the 

constantly increasing TEM forces in Al2Cu phase can cause the defect multiplication and thus 

enchance the growth of primary Al2Cu phase. In fact, the defect multiplication caused by 

imposing high magnetic field during solidification of Al-40wt%Cu alloy had been proved by 

my colleagues [325]. As shown in figure 5.17, it can find abundant dislocations in both α-Al 

and Al2Cu phases when the Al-40wt%Cu alloy was directionally solidified under 10T AMF. 

At last, one thing should be stated briefly that the magnitude of the growth enhancement 

effect of TEM forces in solid slightly decreases when AMF is higher than 6T as revealed by 

the red and blue dotted lines in figure 5.16. This is because the sufficient strong TEM forces 

in solid will lead to the break of the brittle Al2Cu phase but not always increase the defects in 

them. The break of primary Al2Cu dendrites can be also indicated by the solid structures as 

shown in figure 5.15 (c) and (d). For this reason, the magnitude of the growth enhancement 

effect of TEM forces in solid must slightly decrease when they are strong enough to break the 

Al2Cu dendrites. 
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Figure 5.15 Longitudinal (parallel to both growth and magnetic field direction) and 
transverse (perpendicular to both growth and magnetic field direction) solid 
structures of Al-40wt%Cu alloys solidified under different AMF flux intensities that 
(a) 0T, (b) 0.5T, (c) 6T and (d) 12T. (R=2ȝm/s, G=6200K/m) 
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5.4 Summary 

With prospect to investigate the influence of magnetic field on formation of structure 

during directionally solidifying the near eutectic alloys, as well as examine whether the 

TEME can affect or not, hypoeutectic Al-26wt%Cu and hypereutectic Al-40wt%Cu alloys 

were directionally solidified under different AMF flux intensities. Without magnetic field, a 

Figure 5.16 Curves of area fractions of primary Al2Cu phase in solid structures 
plotted versus the imposed AMF flux intensities, and the magnified view of curves in 
the region marked by the yellow box. 
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Figure 5.17 Bright field transmission electron microscope image of Al-40wt%Cu 
alloys directionally solidified without (a) and with a 10T magnetic field (b). 
(G=37.8K/cm, R=1µm/s) 
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typical dendrite-plus-eutectic structures were achieved in both hypo- and hyper- eutectic 

alloys under the conditions that thermal gradient of 6200K/m and pulling-down speed of 

2ȝm/s. Imposed magnetic field lower than 1T, the mushy zone length changed with imposed 

AMF varying, and the length changes had the same tendency as the change of the velocities 

of TEM flows with the increasing magnetic fields. 2D simulations of TEC with the 

parameters used by the experiments and the configuration similar to the structure obtained in 

experiments were performed. The computed results showed that TEC can appear in the 

dendrite-plus-eutectic structures and mostly flow along the first arms of the primary dendrites. 

This gives rise to the occurrence of TEM forces as well as TEM flows when the magnetic 

field is present. According to the illustration, the TEM flows are swirl and around the primary 

dendrites. The swirl TEM flows may be capable to influence the composition of melt ahead 

and around the primary dendrites due to the density difference between the solute enriched 

melt and the original ones. Therefore, the mushy zone length was changed. Continously 

increase the flux intensities of AMF, a nearly entire coupled growth structure was achieved in 

Al-26wt%Cu alloy when the directional solidification was conducted under 4T AMF. DTA 

tests showed that this dramatic structure modification should be attributed to the change of the 

nucleation temperature of the α-Al and the eutectic phases and their growth velocit ies by the 

high magnetic field. This result suggests that the high magnetic field is capable to extend the 

composition range for the hypoeutectic Al-Cu alloys forming coupled growth structure. In 

another aspect, enhancement of the primary faceted Al2Cu phase was found in the solid 

structure of Al-40wt%Cu alloys solidified under AMF, and such growth enhancement became 

dramatic when AMF is higher than 1T. Because it has been well known that stresses in 

crystals can cause the defect multiplication, and the defects are benefit on the growth of the 

faceted phases, the enhancement of the growth of faceted Al2Cu phase was thought to be 

attributed to the TEM forces acting on them. TEM forces in Al2Cu phase are not all employed 

to increase the amount of defects because they will break the Al2Cu dendrites when they are 

surfficient strong under a high magnetic field, higher than 6T for instance. Break of the 

primary dendirtes can be proved by the increasing number of Al2Cu phases with decreased 

dimensions in the solid structure of Al-40wt%Cu solidified under 12T AMF. For this reason, 

the magnitude of the growth enhancement effect of TEM forces in solid should slightly 

decrease when the imposed magnetic field is high. Dislike the hypoeutectic system, high 

magnetic cannot extend but reduce the composition range for the hypereutectic Al-Cu alloys 

forming coupled growth structure. 
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Chapter 6: Conclusions and prospects 

Thermoelectric magnetic effect (TEME) is the result of interaction between internal 

thermoelectric currents (TEC) and external magnetic field, which contains two aspects named 

TEM forces and TEM flows. Before this thesis, many fragmented post-mortem experiments 

had provided some indications of the existence of these two phenomena when they studied the 

influence of imposing magnetic field on solidification. However, systematical investigation 

has not been made. With the desire to uncover TEME in the magnetic field assisting 

directional solidification of metallic alloys, this thesis firstly introduced the context of the 

related theories and illustrated TEC and TEME schematically and numerically, and secondly 

proved the existence of TEME in solidification by direct observation, and finally, 

experimentally examined whether TEME can or not affect in directional solidification of the 

single and the near eutectic Al-Cu alloys with relative big samples. 

 TEME in magnetic field assisting directional solidification is a newly and promising 
branch in electromagnetic process of materials (EPM) field, particularly, in the research 
topic of solidification under static magnetic field.  

 
The first proposal on studying thermoelectric magnetohydrodynamics (TEMHD) flows 

(the same ones we call TEM flows in this thesis) in metallurgy was put forward by Prof. 

Shercliff. Theory of TEMHD flows was given in his paper published in 1979. However, the 

unintentional indications of the existence of TEM flows in solidification can be found when 

Prof. Youdelis and Dorward studied the influence of magnetic field on directional 

solidification of Al-Cu alloys in 1965. This can be categorized to the EPM field, particularly, 

the research topic of solidification under static magnetic field. 

 TEC, TEM forces and TEM flows are formulated, schematically illustrated and 
numerically simulated. 

 

Aim at displaying the TEM forces and flows in solidification process, chapter 2 

introduced the thermoelectric (TE) effect and its corresponding phenomena in directional 

solidification process. It was found that TE effect is inevitable during directionally solidifying 

the metallic alloys because liquid and solid have different thermophysical properties such as 

ATP. According to the the approximate estimations the influence of Peltier and Thomson 

effects and the investigation from Dr. Makoto Tanaka [263], only Seebeck effect was 

considered in this thesis. Numerical simulations showed that TEC does exist and close their 

circuits along the liquid-solid interface. With such internal TEC, TEME appeared once the 

external magnetic field was present. Correspondingly, TEM forces and TEM flows in 
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magnetic field assisting directional solidification were illustrated schematically and 

numerically simulated. 

 TEM forces and TEM flows are proved by direct observation of the magnetic field 
assisting directional solidification process via synchrotron X-ray imaging method. 

 

With the purpose to directly observe TEME during directionally solidifying the metallic 

alloys, in-situ synchrotron X-ray imaging method was used to record the process of 

directional solidification of Al-4wt%Cu and Al-10wt%Cu alloys under a 0.08T static 

transverse magnetic field. Because it is hard to directly measure stresses, we consider TEM 

forces to be in-situ observed if their direct resulting phenomenon is seen. Therefore, the 

consistency between the observed movements of crystals and those predicted by analytical 

calculations proved the existence of TEM forces in solid. Similar, it is yet difficult to in-situ 

watch flows in melt, so that, once the direct resultant of TEM flows is observed we think that 

the in-situ observation of TEM flows is achieved. Considering the shape of liquid-solid 

interface is sensitive to the solute concerntration of melt ahead, and which should be 

influenced by flows in melt, abnormal change of liquid-solid interface shape under the 

external magnetic field was considered as the indication of the existence of TEM flows in 

melt. Moreover, 3D simulations of TEM flows showed that TEM flows in the in-situ 

experiments had the same direction as that of the solute transportation which can cause the 

observed abnormal shape change of the interface. 

However, there are still some lacks in the present synchrotron X-ray in-situ observation 

experiments, such as the direction and the magnitude of imposed magnetic field cannot be 

adjusted within a single solidification process. Supposed that these can be optimized, it would 

be possible to get more information about TEME in magnetic field assisting directional 

solidification. For example, whether or not the TEM forces in solid are able to break dendrites 

can be determined, and if yes, the exact critical magnetic field flux intensities responding to 

the fracture can be found. Moreover, the magnitude of forces responding to the fragmentation 

of dendrites can be known as well. 

 Influence of TEME in big smaple is studied by directional solidification of single phase 
Al-Cu alloys under various magnetic fields. 

 

Motivated by the wish to examine the influence of TEME in more realistic situations, 

directional solidification of Al-Cu alloys with big samples were conducted under various 

transverse magnetic field (TMF) flux intensities. Before experiments, the velocities of TEM 

flows were evaluated. It was found that TEM flows speed up firstly with increasing magnetic 

fields and reach their maximum velocities under a critical magnetic field, and then slow down 

when the imposed magnetic field further increased. Such critical magnetic field flux intensity 
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was estimated. It was found that the critical magnetic field was closely related to a parameter 

Ȝ that the so-called typical length scale, indeed, the smaller the Ȝ is the higher the critical 

magnetic field flux intensity is. Because the typical length scale varies with different 

morphologies of interfaces in directional solidification, the critical magnetic field flux 

intensity would be different for different solidified structures as well. Experimental results 

showed reasonable consistency with these evaluations, particularly, the change tendency of 

the velocities of TEM flows with increasing TMF. Schematic illustrations and corresponding 

3D simulations were made to explain how TEME appear in these experiments. Rather than 

this specialized case, 3D simulations were performed with a general geometry for three 

different typical lengths that 1mm, 0.1mm and 0.01mm. These simulations revealed that 

either the imposed magnetic field is transverse or axial the change tendency of the velocities 

of TEM flows with increasing magnetic fields is the same and has a highly consistent with the 

ones obtained from evaluations and experiments respectively. In addition, these simulations 

uncovered another important phenomenon that TEM forces in solid are anisotropic. When 

impose TMF, TEM forces in solid point to positive x-axis at the top and the middle of the 

solid side of interface and to negative x-axis at the periphery. In the case of imposing AMF, 

TEM forces in solid form a torque that makes the top of interface tend to revolve anti-

clockwise and the bottom part rotate clockwise.  

Dissimilar to TEM forces in liquid, TEM forces in solid will  constantly increase with the 

increasing magnetic fields. This is worth to be paid mare attentions in the future works 

because once the sufficient high magnetic field is imposed the strong TEM forces must exist 

in the solid. For example, about 106 N/m3 force in solid can be achieved if directionally 

solidifying the Al-Cu alloy under a 10T magnetic field. Such strong forces in solid must play 

a crucial role on microstructure modification. Besides, precisely determining the appropriate 

typical length scale of different morphologies should be also taken serious because it is an 

important parameter in the calculations and simulations of TEME problems in solidification. 

Further, whether or not the same typical length can be used when the direction of imposed 

magnetic field changes is another problem needs to be solved. 

 Influence of magnetic field as well as TEME on directional solidification of near-eutectic 
Al-Cu alloys is investigated respectively. 

 

With purposes to investigate the influence of magnetic field during directionally 

solidifying the near-eutectic alloys, as well as to examine whether the TEME can affect or not, 

hypoeutectic Al-26wt%Cu and hypereutectic Al-40wt%Cu alloys were directionally solidified 

under various AMF flux intensities. It was found that a typical dendrite-plus-eutectic 

structures were achieved in both hypo- and hyper- eutectic alloys solidified with a constant 
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thermal gradient of 6200K/m and pulling-down speed of 2ȝm/s in the absence of magnetic 

field. However, the mushy zone length that referring distance between the tips of primary 

dendrites and the eutectic front changed when the imposed AMF varied within 1T. It was 

thought that swirl TEM flows around the primary dendrites occurred and influenced the 

transportation of rejected solutes and thus modified the mushy zone length. Coupled growth 

structure was found in Al-26wt%Cu alloys solidified under a 4T AMF. DTA tests showed 

that the nucleation temperature and growth velocityof the α-Al and eutectic phases were 

changed by the high magnetic field, and which was benefit on the prevailing of coupled 

growth structure. This result suggests that the high magnetic field is capable to extend the 

composition range for hypoeutectic Al-Cu alloys forming coupled growth structure. Enhanced 

growth of the primary faceted Al2Cu phase was found in the Al-40wt%Cu solidified under 

AMF, and which became dramatic when AMF is higher than 1T. Because the stresses in 

crystals can cause defect multiplication, and defects in solid are able to facilitate the growth of 

faceted crystals, it can reasonable attribute the growth enhancement of Al2Cu phase to TEM 

forces acting on it. However, the magnitude of the growth enhancement effect of TEM forces 

in solid slightly decreased when TEM forces were strong under higher magnetic field because 

part of them would be employed to break the Al2Cu phase dendrites. Dislike the hypoeutectic 

alloys, high magnetic reduces but not exteneds the composition range for hypereutectic Al-Cu 

alloys forming coupled growth structure.  

Because the above investigationes are preliminary and other related studies are rare, 

more works are necessary to extend and deep our knowledge on the influence of magnetic 

field as well as TEME on the formation of structure during directionally solidifying the near 

eutectic alloys. 
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