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Wolfgang Pauli

Das Volumen des Festkörpers wurde von Gott geschaffen,

seine Oberfläche aber wurde vom Teufel gemacht.

God created the volume, whereas the surface was a work of the Devil.
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Introduction

Semiconductors are an integral component of many products in our daily life.

Today’s modern technology, such as computers and smartphones, would be unimag-

inable without powerful and highly developed chips all of which need semiconductors.

Silicon is undisputed the leading semiconductor currently used. The advantage of

silicon is, that its growth process and material characteristics are known in-depth.

Another benefit of silicon is its abundance and that it has its own native insulator

with truly exceptional properties (silicon dioxide). Furthermore, large wafers of

high quality can be grown cost-efficiently. However, silicon is not the semiconductor

of choice for all applications, in high temperature and high power electronics wide

band gap semiconductors, such as silicon carbide (SiC), are needed.

Contrary to silicon, the growth of silicon carbide crystals with large diameter,

low defect density and high crystalline quality is still a challenging subject. The

hard to handle polytype stability should be mentioned in this context. Although

there are, and there have been, great efforts and successes in improving the crystal

growth process, e.g. the drastic reduction of micropipes [1], there is still little

knowledge on the fundamental processes taking place during growth. Yet, these

processes might be the key to growing good SiC crystals.

This thesis will shed some light on the fundamental mechanisms taking place in

the initial growth of on-axis silicon carbide crystals from the vapour phase. The

growth proceeds via the incorporation of adatoms on spirals covering the surface.

F.C. Frank was the first who proposed the existence of spirals in 1949 in order

to explain the unexpected high growth rate at low supersaturations [2]. Shortly

afterwards, the presence of growth spirals was confirmed for several materials,

including also SiC [3][4]. Burton, Frank and Cabrera were the first who described

the spiral growth mathematically [5]. Their theory, nowadays usually called BCF

theory, is still one of the most important works concerning the spiral growth.

Nevertheless, there have been some refinements of the basic theory. Cabrera and

Levine, for example, determined the terrace width on spirals more precisely than

Burton, Cabrera and Frank [6]. Another refinement is the introduction of the back

stress effect, which takes the overlap of diffusion fields into account [7].

After Frank published his ideas on growth spirals, the research on them was a

really hot topic. The number of publications related to these growth spirals was
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highest during the fifties of the twentieth century, with a continuous decrease after-

wards. Currently, only few articles are published per year although there are still

many open questions concerning the spiral growth. The invention of atomic force

microscopy and scanning tunnelling microscopy in the eighties gave the opportunity

to have new views on the surface structure of materials. Moreover, the increase of

the computer performance in the last few decades allowed simulations even without

a supercomputer. The combination of both, detailed surface characterization and

simulations related to these experimental findings, offers a possibility to understand

the fundamental processes on crystal surfaces during growth as it was for example

done by Redinger et al. in the case of step edge barriers of spirals and mounds on

Pt(111) surfaces [8]. Other authors focused either on simulations [9] or experimental

work [10] on the spiral growth.

At the Laboratoire des matériaux et génie physique we are in the fortunate

position, to grow and characterize our own crystals. In addition, with the simulation

programs created in our laboratory, we are able to tackle the surface growth

mechanism of SiC.

The structure of this thesis is as follows. In the first chapter, a short overview

on the history and possible applications of SiC is given. Then, material related

properties, such as polytypism and defects, are discussed. Moreover, the theory

of Burton, Cabrera and Frank is introduced and the basic equations, necessary

for the understanding of the following chapters, are derived. These equations

relate the growth rate of the crystals as a function of the spiral terrace width and

supersaturation.

The second chapter deals with the description of the experimental setup and

preliminary experiments related to the on-axis growth of SiC, the crystal growth

conditions and characterization procedures are also specified. The experimental

results presented in this chapter are fundamental to the further spiral analysis in

the next chapter. The limiting step of the crystal growth, which is either the vapour

phase transport or processes on the crystal surface, is determined. Furthermore,

the randomly occurring nucleation on the spiral terraces is studied.

The third chapter is dedicated to the spiral growth on SiC. The formation of

spiral patterns on the surface is examined in the first section, followed by the

discussion of the spiral shapes. The growth modes of single and double spirals are

then analysed in detail. Spiral profiles from the samples are linked to simulations

allowing thus conclusions on the growth mechanism. The variation of the terrace

width with the growth rate, and hence supersaturation, is also studied in this

context. This has never been done before on SiC and reveals interesting results.

The final part of this chapter is about a novel spiral step structure. We will show

2



that spiral steps can dissociate under specific growth conditions. The possible

origin of the dissociation is discussed.

Finally, a conclusion summarizes the results of this thesis. Furthermore, some

propositions on further work are given.
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1 Fundamentals

In this chapter the history of silicon carbide (SiC) and its applications are presented

briefly. Then the crystallographic properties and the most important defects related

to this thesis are discussed. Finally, the growth process of SiC crystals is described.

The main equations necessary for the discussion of the experimental results are

also derived in this last section.

1.1 Introduction to SiC

1.1.1 History of SiC

Silicon carbide was first described in 1824 by Jöns Jacob Berzelius. He was probably

the first person who synthesized SiC and who proposed the existence of bonds

between silicon and carbon [11]. On earth, SiC very rarely occurs in nature and is

only found in meteorites - which explains its late discovery. The first SiC crystals in

nature were found by Henri Moissan in a meteorite in 1905 [12]. Therefore natural

SiC is also called Moissanite.

Edward Goodrich Acheson was the first to succeed in synthesizing SiC in a

large quantity (1890) [13]. He developed a process, called the Acheson process, in

which a mixture of carbon (coke) and silica or quartz sand is heated above 2000 ◦C

in an electric furnace. Small SiC crystals are obtained by this method. In fact,

Acheson first believed that he had synthesized a new compound based on carbon

and aluminium as he used aluminium silicate as source material. Therefore he

called the obtained crystals Carborundum, named after Corundum (Al2O3) and

carbon. The term Carborundum is still sometimes used today.

The interest in electronic applications of SiC arose in 1907 as H.J. Round noticed

that light was emitted by a SiC crystal when he applied 10V to it [14]. Actually,

Round had made the first light emitting diode (LED). H. Baumhauer discovered

in 1912 that SiC exists in many different structures and introduced the term

polytypism for this phenomenon [15]. In 1949 F.C. Frank proposed the spiral

mechanism of crystal growth at low supersaturations [2] and it was shown shortly

after by S. Amelinckx [4] and A.R. Verma [3] that crystal growth on on-axis α-SiC
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proceeds by this mechanism.

Due to its high hardness of HM = 9.08 (Mohs hardness scale, for comparison

diamond has a HM = 10) [16], SiC was used as abrasive from its discovery on.

SiC was not interesting as a semiconductor because of its low crystalline quality

until the middle of the 20th century. Then, J.A. Lely succeeded in growing SiC

crystals from the vapour phase (1955) [17]. The development of this technique was

a milestone in SiC growth and it is still used in a modified way to grow SiC crystals

with very low defect densities. Therefore it is referred to as the Lely method.

However, it is not suitable for industrial production due to a low yield (≈ 3%) [18].

As the interest in SiC rose, the first conference on SiC was held in Boston 1958.

Tairov and Tsetkov developed the seeded sublimation growth technique, also

known as modified Lely method, in 1978 [19]. Due to the high yield of this method

(≈ 90%), it is now the industry standard for growing SiC crystals [18].

In 1989 the Cree company brought the first commercial blue LED on the market

- two years after Cree was founded [20]. Cree is also one of the most important

manufacturer of SiC wafers. The availability of SiC wafers extended the research

efforts and industrial applications. While many SiC devices were demonstrated in

research during the last 20 years, e.g. different types of diodes and transistors [21],

the only available SiC devices on the market today are the Schottky diode and

MOSFET [22][23][20].

1.1.2 Applications of SiC

There are many different applications of silicon carbide: as an abrasive, ceramic

plates in bulletproof vests, brake discs in cars, jewellery and last but not least

electronic circuit elements. Here, the focus is on the latter, the use as an electronic

device. The reference material for all semiconductors is silicon as it is the basis of

almost all semiconductor devices and therefore it is compared with SiC below.

The availability of silicon as well as the research efforts and successes of this

material led to its widespread use in semiconductor industries. However, there

are some cases in which materials with different properties are desired and this

is where SiC comes into play. The wide band gap of SiC makes it a promising

material for high temperature semiconductors. In literature [21] the definition of

high temperature is ≈ 150 ◦C, the upper limit at which standard silicon devices still

work properly. Advanced technologies, such as silicon on insulator (SOI), make

temperatures up to 300 ◦C possible for silicon based devices [24]. With increasing

temperature the number of thermally generated carriers in a semiconductor rises

which in turn degrade the semiconducting properties. Fig. 1.1 shows the intrinsic

carrier concentration for several semiconductors. At 300 ◦C this concentration is

6
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more then ten orders of magnitude larger for silicon compared to 6H silicon carbide.

Currently, gallium nitride (GaN) is the most important competitor of SiC in the

field of high-temperature applications, but GaN crystals contain even more defects

than SiC [21].

Figure 1.1: Intrinsic carrier concentration as function of temperature of several

semiconductors. Image taken from [25].

Due to its physical properties (see Tab. 1.1), SiC is a promising material for

high temperature, power and frequency applications. Yet, there are currently not

many SiC based devices available. One of these devices is the Schottky diode

which can withstand reverse voltages above 200V. Other available SiC devices

are metal-oxide-semiconductor field-effect transistor (MOSFET) and junction gate

field-effect transistor (JFET). The device characteristics are very similar and the

main difference in design is that the MOSFET has an insulating oxide between gate

and channel. While Cree is producing SiC MOSFETs, Infineon focuses on JFETs

as they are expecting a higher failure risk for MOSFETs due to the additional oxide

layer [26]. Cree is also manufacturing LEDs based on SiC. Since SiC has an indirect

band gap, a pure SiC LED is not favourable. Other materials with direct band gap

and thus brighter emission, such as GaN and indium gallium nitride (InxGa1−xN),

are preferred for this application. However, there are currently no GaN wafers

available and therefore SiC wafers are used as substrates due to the similar lattice

constants.

7
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Table 1.1: Electrical properties of certain SiC polytypes [16][27][28].

Si GaN 3C SiC 4H SiC 6H SiC

band gap at 300K [eV] 1.11 3.4 2.3 3.2 3

breakdown field [MV/cm] 0.25 3.3 2.12 2.2 2.5

saturated electron drift velocity [107cm/s] 1 2.7 2.5 2 2

electron mobility at 300K [cm2/Vs] 1100 900 750 800 370

hole mobility at 300K [cm2/Vs] 480 — 40 115 90

thermal conductivity [W/cm K] 1.5 1.3 5 4.9 4.9

1.2 Polytypism and crystallography

The basic unit of all SiC crystals is a tetrahedron consisting of either SiC4 or CSi4
(there is no difference between these two configurations when considering the full

lattice). Fig. 1.2(a) shows such a tetrahedron and also the same tetrahedron turned

by 60◦ (Fig. 1.2(b)). Although it seems that there is no big difference between

these two tetrahedrons at first sight, these two configurations have an enormous

effect on the crystalline structure. Comparing the position of the central atoms in

both tetrahedrons one can notice that in case (a) the central atom is rather on the

left while it is rather on the right in case (b). The perpendicular bondings of the

central atoms are thus pointing towards two different atomic sites in the crystal.

Stacking these tetrahedrons in a certain repeating sequence results in different

crystal structures. Baumhauer was the first who described this phenomenon and

introduced the term polytypism [15].

The tetrahedrons are stacked in the c-direction of the crystal. This results in

an alternating sequence of silicon and carbon layers. The succeeding stacking of

one silicon and one carbon layer is referred to as a bilayer. Polytypes are defined

by the periodic stacking of these bilayers and accordingly the orientation of the

tetrahedrons. A tetrahedron always shares its corners with other tetrahedrons

restricting thus the possibilities for stacking. A common way to illustrate the

stacking of the different polytypes is shown in Fig. 1.3 where the atoms on the

(110) plane (hexagonal:(112̄0)) are regarded. In principle, there are three possible

positions for the atoms in the lattice: A, B and C. Due to the corner sharing of

the tetrahedrons it is not possible that two bilayers with atoms on the same lattice

position are stacked (e.g. first and second bilayer on A position). The 3C SiC, also

β-SiC, is the simplest polytype as there is only one type of tetrahedron (Fig. 1.3).

For the other polytypes a zigzag structure is visible that is related to the rotation

of the tetrahedrons (illustrated in Fig. 1.2(c)).

8



1.2 Polytypism and crystallography

(a) (b) (c)

Figure 1.2: Illustration of a SiC tetrahedron (a). The carbon atom (brown) is

coordinated with four silicon atoms (blue). Turning the tetrahedron by 60◦ (b)

results in a different orientation that make the occurrence of different stacking in the

crystal possible as illustrated in (c) for 6H SiC.

Due to the large number of SiC polytypes a notation is necessary to differentiate

between them. However, since the discovery of the polytypism of SiC many notations

have been proposed [16]. Here, the most important notations are presented. The

most popular one is the Ramsdell notation. It consists of a number in the beginning

that corresponds to the number of bilayers in a unit cell, followed by the letter

H, C or R. H indicates that the lattice symmetry is hexagonal, C cubic and R

rhombohedral. So 6H, for instance, means that there are six bilayers and the

symmetry is hexagonal. Another possibility to describe the polytypes is the ABC

notation. As previously mentioned, the letters A, B and C are related to atomic

positions in the crystal lattice. In order to determine the ABC notation, one

has to look at the stacking in the (112̄0) plane as illustrated in Fig. 1.3. The

atomic positions of the bilayers in a unit cell then give the name. For example, 6H

corresponds to ABC ACB. In some publications also the position of the carbon

atoms are added in this notation. The carbon layer below the silicon A position

is called α, below B β and below C γ. Consequently, 6H e.g. would be noted as

AβBγCα AγCβBα [29].

The use of the Jagodzinski notation is less common. The relative stacking of two

succeeding bilayers is compared and if the stacking continues in the same direction

the first bilayer is called c, that is derived from cubic. Otherwise, i.e. the stacking

direction changes, h for hexagonal is used. Brackets around a stacking sequence

followed by a subscripted number indicate a repeating sequence in an unit cell. For

6H e.g. it follows the notation (hcc)2 (Fig. 1.3). All notations presented here are

summarized for the most common polytypes in Tab. 1.2.

9
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Figure 1.3: Stackings of the most widespread polytypes of SiC. The white circles

correspond to silicon and the black filled circles to carbon atoms.

Table 1.2: Most common notations for certain SiC polytypes.

Ramsdell ABC short ABC long Jagodzinski

3C ABC AβBγCα c

4H AB CB AβBγ CβBα (hc)2
6H ABC ACB AβBγCα AγCβBα (hcc)2
15R ABCAC BCABA CABCB AβBγCαAγCβ BγCαAβBαAγ (hcchc)3

CαAβBγCβB

The stacking of the atoms can actually be observed by transmission electron

microscopy (TEM). Fig. 1.4 shows an image taken by TEM of the 15R polytype.

The contrast difference is caused by the different orientation of the tetrahedrons

and thus the typical zigzag-structure of SiC can be seen.

It is evident that the polytypism also affects the electronic and crystallographic

structure of SiC. The smallest indirect band-gap varies from 2.3 eV (3C) to 3.2 eV

(4H), while the direct band-gaps are much larger, e.g. 6.0 eV for 3C and 4.6 eV

for 6H SiC [16]. Further electronic properties are listed in Tab. 1.1. Due to the

different stackings the unit cell is also different for each polytype. The crystal

system is either cubic, hexagonal or rhombohedral. Lattice parameters and space

group for the here discussed polytypes are summarized in Tab. 1.3.

The difference in electronegativity of silicon (1.90 eV) and carbon (2.55 eV)

induces polarity into SiC crystals. It follows that the {0001} planes are polar as

they are either terminated by silicon ((0001) plane) or carbon atoms ((0001̄) plane)

10



1.2 Polytypism and crystallography

Figure 1.4: The stacking of the 15R polytype observed by TEM. The circles on

the left illustrate the stacking of the tetrahedrons.

as illustrated in Fig. 1.5. On-axis, i.e. oriented along the c-axis, crystal surfaces are

therefore further specified by Si-face (silicon terminated surface) or C-face (carbon

terminated surface). Pearson et al. calculated the surface energies for 3C SiC

and they found γ =2.2 J/m2 for Si-face and 0.3 J/m2 for C-face [30]. This energy

difference has a strong effect on the crystal growth as it will be shown later.

The faces of a crystal can be determined for example by potassium hydroxide

(KOH) etching [31]. Due to the differing surface energies, the etch rate is higher

on a C-face than on a Si-face resulting in etch pits only on the latter.

Figure 1.5: The surfaces of on-axis SiC crystals are either silicon (blue spheres) or

carbon (brown spheres) terminated thus inducing polarity to the crystal. The silicon

face is the (0001) plane and the carbon face the (0001̄) plane.

11



1 Fundamentals

Table 1.3: Crystallographic properties of certain SiC polytypes [16].

polytype c [Å] a [Å] space group

3C — 4.36 F4̄m

4H 10.08 3.08 P63mc

6H 15.12 3.08 P63mc

15R 37.80 3.08 R3m

1.3 Defects

Crystals are never perfect, neither those grown in nature nor those grown in

laboratories. In SiC many different defects are observed and it is still a key problem

to reduce the number of defects in order to obtain high quality wafers for industrial

applications. As there is in general a large variety of defects, they are usually

classified according to their dimensionality in 0D, 1D, 2D and 3D. Point defects,

such as vacancies or (self-)interstitials, are 0D (zero dimensional) defects since

they only affect a point in the crystal lattice. Dislocations are linear defects (1D)

and may propagate through the whole crystal. Stacking faults, inversion domain

boundaries, twins and many other defects belong to the planar (2D) defects category.

The last group of defects contains those that affect a volumetric zone in the crystal,

e.g. inclusions. Fig. 1.6 shows an overview of typical defects in a simple cubic

crystal. In the following the focus is on defects relevant for this work.

Figure 1.6: Typical defects in crystals: a) interstitial impurity atom, b) edge

dislocation, c) self interstitial atom, d) vacancy, e) precipitate of impurity atoms, f)

vacancy type of dislocation loop, g) interstitial type dislocation loop, h) substitutional

impurity atom. Image taken from [32].
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1.3 Defects

1.3.1 Perfect dislocations

In 1926 Frenkel introduced an equation to calculate the critical shear stress in a

crystal, i.e. the force necessary to plastically deform a crystal. In order to derive

this equation he supposed two rows of atoms that glide in opposite directions due

to shear stress. However, in experiments the observed values of the critical shear

stress were many orders of magnitudes lower. This difference was attributed to the

presence of dislocations in 1934 independently by Orowan, Polanyi and Taylor [33].

There are three types of dislocations:

• edge dislocations

• screw dislocations

• mixed dislocations

If a half-plane of atoms is introduced in or removed from a perfect crystal, an

edge dislocation is created (Fig. 1.7 (a) and (b)). Adding an extra half-plane in

ABCD results in a disturbance of nearby planes in the crystal for the most part

along the DC line.

Any type of dislocation can be described by its dislocation line and Burgers

vector. In the case of the edge dislocation the end of the extra half-plane is the

dislocation line. The Burgers vector ~b defines the magnitude and direction of the

lattice distortion caused by the dislocation. The most likely Burgers vector is the

shortest lattice vector in a crystal. Fig. 1.8(a) and (b) show how the Burgers vector

of an edge dislocation can be determined. In the plane perpendicular to the line of

the edge dislocation a circuit is done around the centre; in the given example this

is the circuit MNOPQ. The Burgers circuit is always performed clockwise when

looking on the dislocation line. Performing the same circuit in a perfect crystal

reveals that point M and Q are not at the same crystal position as for the crystal

containing a dislocation. The Burgers vector is thus defined by the vector from Q to

M. This vector is always perpendicular to the dislocation line for edge dislocations.

A screw dislocation can be illustrated by the slip of one part of a perfect

crystal as shown in Fig. 1.7(c). Looking, as for the edge dislocation, along the

dislocation line and performing the Burgers circuit round the screw dislocation and

again the same circuit in a perfect crystal reveals the Burgers vector. In the given

example in Fig. 1.8(c) and (d) the Burgers vector points again from Q to M but it

is parallel to the dislocation line, as it is always the case for a screw dislocation.

Mixed dislocations have both an edge and screw component.
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1 Fundamentals

(a) (b) (c)

Figure 1.7: Visualisation of dislocations. (a) A perfect simple cubic crystal. In the

lower right atoms are represented by black filled circles and the bondings between

them by springs. (b) Introducing a half-plane in ABCD results in a edge dislocation.

(c) A partial slip of the crystal creates a screw dislocation. Image taken from [33].

1.3.2 Partial dislocations and stacking faults

Partial dislocations possess a Burgers vector smaller than the shortest lattice

vector and thus the motion of such a dislocation always leaves an imperfect crystal

behind. The most known partial dislocations are the Frank and the Shockley

partial dislocations. In literature they are often referred to as a Frank and Shockley

partial.

The Frank partial is formed if a close packed {111} layer is inserted in or removed

from a face centred cubic (fcc) crystal, as illustrated in Fig. 1.9. It is an edge

dislocation that is sessile, meaning that the dislocation only propagates if stress is

applied or if the temperature is high enough for climbing.

The Shockley partial is of more interest for SiC as it is the most common type

of partial dislocation observed in this material. Fig. 1.10 illustrates the slipping

process in a fcc crystal. If an atom slips from one B to another B position it is

energetically more favourable to slip first to a C position than slipping directly to

B. This can be proven by Frank’s rule. The elastic strain energy of a dislocation

can be approximated by [33]

Eel = αGb2 (1.1)

where α ≈ 0.5− 1.0, G is the shear modulus and b the magnitude of the Burgers

vector. Consequently, the elastic strain energy is directly proportional to the square

magnitude of the Burgers vector. According to Frank’s rule, a dislocation will

decompose into two dislocations if [33]

(b22 + b23) < b21.

Applying Franks rule to Fig. 1.10 it follows that the creation of two Shockley

partials of the type ~b = 1/6〈121〉 is more favourable than one perfect dislocation
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1.3 Defects

(a) (b)

(c) (d)

Figure 1.8: How to determine the Burgers vector for edge and screw dislocations.

(a) Burgers circuit round an edge dislocation. (b) Same circuit in a perfects crystal.

The difference in the path of both circuits gives the Burgers vector. (c) Burgers

circuit round a screw dislocation and (d) same circuit in a perfect crystal. The path

between start and end defines the vector. Image taken from [33].

with ~b = 1/2〈110〉1. Contrary to Frank partials, Shockley partials are glissile as

they can slip easily.

Dislocations with the same sign repel each other in order to reduce their total

(a) (b)

Figure 1.9: (a)Removing (partially) a close packed layer in a fcc crystal results

here in the formation of 1
3
[111] Frank partial dislocation. (b) The slip of A atoms to

B positions on the line LM creates a Shockley partial dislocation with ~b = 1/6[12̄1].

Image taken from [33].

1Can be shown by entering the vectors in Franks rule: 2a2/36(12+12+22) < a2/4(12+12+0)
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(a) (b)

Figure 1.10: The images show the (111) plane of a fcc crystal. (a) A Shockley

partial can be created if a (111) plane partially slips e.g. from a B to C position. (b)

Illustration of a stacking fault caused by a Shockley partial. Images taken from [33]

and [34].

elastic energy. Shockley partials also repel each other, creating thus a faulted region

in-between them. Due to the deviation from the perfect crystal stacking in this

region the crystal energy is increased by the stacking fault energy. The equilibrium

of stacking fault energy and elastic interaction of the partials determines the size

of the faulted region.

1.3.3 Micropipes

Micropipes are screw dislocations with a large Burgers vector and an empty core.

This empty core forms if [35]

|~b| > 40πγ/G (1.2)

where |~b| is the magnitude of the burgers vector, γ the surface energy inside the

tube and G the shear modulus. In the case of SiC it follows that b > 1.7 nm for

γSi = 2.2 J/m2 [30]1 and G = 160GPa [36]. Assuming that |~b| = n · c, where n is a

positive integer and c the lattice constant, it follows that the core of a dislocation

in 6H SiC is closed if |~b| = 1.5 nm, that is an elementary dislocation (n = 1), and

open if |~b| ≥ 3 nm.

The large Burgers vector of micropipes entails a high strain energy especially in

the core. This strain energy is reduced by diffusion or sublimation of atoms along

1Here, the surface energy of the tube is approximated by the surface energy of the (111)

Si-face surface energy.
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the core of the dislocation where the strain energy is largest. The tube radius r0 of

a micropipe can be calculated by [35]

r0 = Gb2/8π2γ (1.3)

Consequently, the larger the Burgers vector the larger the radius of the core will

be. Fig. 1.11 shows a micropipe observed by atomic force microscopy (AFM)

on a C-face 6H SiC sample. The core radius of this micropipe is 370 nm. Using

the previous equation, it follows that the c-component magnitude of the Burgers

vector is 7.4 nm (assuming that G=160GPa [36] and γC=0.3 J/m2 [30]). The

magnitude can be verified by counting the number of branches around the core

and measuring their step height (that is the same for all branches). Ten branches

can be observed and their step height is 0.75 nm (half the c lattice constant of

6H SiC). The c-component of a micropipe must always be an integer multiple of

the c lattice constant. Thus it follows that the magnitude of the c-component is

(2 · 0.75 nm) · 5 = 7.5 nm, that is the same as for the calculated value.

Figure 1.11: Micropipe observed by AFM. The radius of the core is 370 nm.

For application of SiC in semiconductor industries it is of utmost importance to

reduce the micropipe density in substrates. Micropipes were found to drastically

reduce the breakdown voltage of SiC pn-junctions [37]. There was enormous

progress in the reduction of micropipes in SiC wafers in the last two decades as

shown in Fig. 1.12 and nowadays micropipes are no longer a major issue in SiC

growth.
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Figure 1.12: Evolution of the micropipe density of Cree wafers. Image taken from

[38].

1.4 Growth of SiC crystals

1.4.1 Polytype growth conditions

The main challenge for the growth of SiC crystals is that the stoichiometric

compound does not melt. From the phase diagram in Fig. 1.13 it is evident that

SiC decomposes at 2680 ◦C directly into vapour and graphite. It is worth noting

that this temperature is higher in other publications, e.g. 2800 ◦C in [39]. Also the

phase diagrams in other publications, e.g. [40], are not identical above ≈ 2000 ◦C to

the one shown here. Nevertheless, there is a small non-stoichiometric region, that is

similar in all publications, where a liquid of Si and C can be obtained. It is indeed

possible to grow SiC crystals in this region, yet this is a challenging subject. The

difficulty of handling the liquid at this temperature due to the corrosive silicon melt

and the morphological instabilities formed during growth have to be mentioned in

this context [41].

Hence, it is clear why the growth from the vapour phase is the most widespread

growth process for SiC. From the phase diagram the necessary growth conditions

of the different polytypes cannot be deduced. The diagrams of Knippenberg and

Inomata shown in Fig. 1.14 might be helpful in this case, as they indicate in

which temperature ranges the different polytypes occur. Both authors agree that

at elevated temperatures, i.e. 1800 ◦C and 1600 ◦C respectively, hexagonal and

rhombohedral phases can be formed. However, according to Knippenberg 3C SiC

grows at non-equilibrium conditions, whereas Inomata makes no special remarks

about this polytype. In the latter diagram, two dashed lines are visible. They

indicate the boundaries between 15R and 6H. The left dashed line was obtained by

growth from the liquid phase whereas the right line is derived from sublimation

growth. The region L.P denotes to long stacking sequence polytypes. Unfortunately

the original publications of both diagrams lack important information, such as

number of samples analysed and growth method. Nonetheless, these diagrams
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1.4 Growth of SiC crystals

Figure 1.13: Phase diagram of SiC at atmospheric pressure. V denotes vapour and

L liquid. Retraced image from [42].

might be used as starting point for the SiC growth but one has to keep in mind

that the growth of the different polytypes is influenced by many other parameters

besides temperature, for example seed polarity and polytype [43], supersaturation

[44] and impurities [45].

(a) (b)

Figure 1.14: Two diagrams showing temperature ranges for growing different

polytypes. Both authors agree that the hexagonal and rhombohedral polytypes occur

mixed. But in (a) 3C is formed in non-equilibrium conditions contrary to (b) where

nothing is remarked in addition. Images retraced from [46] and [47].
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1.4.2 Physical vapour transport deposition

The modified Lely method is the most widespread technique for growing bulk SiC

crystals. In the original growth method developed by Lely [17], SiC lumps are

stuffed between two concentric graphite tubes. Then the inner tube is removed and

a porous layer of SiC remains on the inner wall of the second tube. After closing

the tube with a graphite cover, the crucible is heated up to ≈2500 ◦C in argon

atmosphere. The SiC powder that is in direct contact to the inner wall sublimates

and nucleation starts on the inner surface of the powder where the temperature

is lower (Fig. 1.15(a)). By this method small platelets with a thickness of a few

millimetres and a diameter of about 1 cm can be obtained [27]. The quality of these

platelets is high, i.e. low defect density and high polytype purity. This method is

difficult to handle as the powder can easily crumble if the crucible is not inserted

carefully into the oven or during heating due to thermal expansion. This could

be avoided by introducing a porous graphite cylinder and filling the SiC lumps

between this cylinder and the crucible. But a major problem remains: there is no

focused growth as the nucleation occurs randomly.

Although there were some improvements of the Lely method, the actual break-

through of the sublimation growth came with the modified Lely method by Tairov

and Tsvetkov [19] and its further improvement. In literature this method is also

called seeded sublimation growth technique or more commonly physical vapour

transport deposition (PVT). The design of the growth furnace is similar to the Lely

method. The polycrystalline SiC source is in-between the graphite crucible and

porous graphite cylinder and the seed is attached to the lid of the crucible (inside

the porous cylinder). Due to a temperature gradient between the bottom (high

temperature) and the top (low temperature) as illustrated in Fig. 1.15(c), the SiC

vapour is diffusing to and depositing on the seed on the lid. Parasitic nucleation

on the porous graphite cylinder is thus suppressed. This technique was further

improved and nowadays the geometry shown in Fig. 1.15(b) is principally used.

The powder source is at the bottom of the crucible while the seed is attached to the

lid. Typically, SiC growth is performed in argon environment with a pressure of

10−4 to 1 bar and temperature in the range of 1800 to 2600 ◦C [27]. The polytype

can be, to a certain extent, controlled by the seed (polytype and polarity) and the

temperature.

During the growth process the SiC powder is sublimating. Diffusion, due to the

temperature gradient, and advection cause the transport of the gaseous species (Si,

SiC, SiC2,...) towards the seed. Then the absorbed species are incorporated into

the crystal resulting in the growth of the crystal. We will see that the growth rate

is determined by the temperature gradient between source and seed, pressure and
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(a) (b) (c)

Figure 1.15: (a) The original Lely method and (b) the modified Lely method

or physical vapour transport (PVT) technique: (1) carbon from decomposed SiC,

(2) SiC lumps, (3) deposited SiC on graphite walls, (4) SiC platelets, (5) graphite

crucible, (6) powder source, (7) seed, (8) grown crystal. (c) Temperature gradient of

the PVT technique. Images redrawn from [27] [18] [19].

the seed to source distance .

1.4.3 The Burton Cabrera Frank theory

In 1949 Frank [2] proposed that crystal growth can proceed by a spiral mechanism.

Up to that time it was assumed that 2D nucleation is necessary to grow crystals.

Frank noticed that the growth rate is much higher below the critical supersaturation

for 2D nucleation than expected and attributed this to the presence of screw

dislocations. At the emergence point on the crystal surface a step with kink sites

is created. This step winds up around the core forming thus a growth spiral as

shown in Fig. 1.16.

Two years later Burton, Cabrera and Frank showed theoretically how the growth

rate and terrace width of growth spirals can be derived [5]. This is now known

as BCF theory. In the following a simplified approach is used to derive the basic

equations. For simplicity it is assumed that the adatom incorporation into the edge

is not limiting the crystal growth and that there is no Ehrlich-Schwoebel effect.

The interested reader is referred to the textbook of Markov [48] for a full derivation

of the BCF theory.
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Figure 1.16: 6H SiC growth spiral.

The net flux on the crystal surface

The aim of this section is to obtain an equation for the crystal growth rate as a

function of the terrace width. The growth rate will depend on the lateral advance

of the spiral steps that is in turn controlled by the net flux of adatoms toward the

step. Thus the first step of this derivation is to obtain an expression for the net

flux on a terrace.

The flux in a small segment dx on the crystal surface is defined by the incoming

and leaving fluxes. Here, only one dimensional diffusion is assumed. The incoming

flux consists of the entering surface flux js(x + dx) and the vapour flux jv. The

adatoms are diffusing on the surface for a time τ , which is the mean residence time.

If the adatoms are not incorporated into the crystal within this residence time,

they re-evaporate and cause the flux jdes. In addition, there is flux js(x) leaving

the segment dx. Fig. 1.17 illustrates all the introduced fluxes.

Figure 1.17: The fluxes in a segment dx on the crystal surface.
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From flux conservation the following equation can be set up:

js(x)− jvdx = js(x+ dx)− jdesdx (1.4)

Without steps and equilibrium the vapour flux would result in a concentration

cm of adatoms on the surface. The lifetime of these adatoms is limited by the mean

residence time τ . Thus the concentration cm can be defined by

cm = jvτ. (1.5)

The concentration profile on a spiral terrace is described by cs. At the terrace

edge, i.e. x = ±Λ/2, the concentration corresponds to the equilibrium concentration

ceq.

The flux of the re-evaporating atoms depends on the surface concentration of

adatoms and also on the mean time of residence:

jdes =
cs
τ

(1.6)

The diffusion of the adatoms on the crystal surface is controlled by the concen-

tration gradient. Applying Fick’s first law gives

js(x) = −D
dcs
dx

(1.7)

where D is the surface diffusion constant.

Inserting the previously defined fluxes in Eq. 1.4 results, after rearranging, in:

−D
d2cs
dx2

=
1

τ
(cm − cs) (1.8)

The surface diffusion length is defined as [48]

λs =
√
Dτ. (1.9)

With the latter equation and Eq. 1.8 a differential equation for the surface

concentration can be set up:

λ2
s

d2(cs − cm)

dx2
− (cs − cm) = 0 (1.10)

The boundary condition for this equation is that at the edges the surface

concentration assumes the equilibrium value; i.e. cs(x = ±Λ/2) = ceq.
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Solving the differential equation with the approach (cs−cm) = A exp(Kx) results

in

(cs − cm) = A exp(x/λs) + B exp(−x/λs). (1.11)

Due to the symmetric boundary condition it follows that both constants A and

B are equal. Making further use of the relation cosh(x) = exp(x) + exp(−x) the

differential equation becomes

(cs − cm) = A cosh(x/λs). (1.12)

The boundary condition leads to an expression for the constant A:

A =
ceq − cm

cosh
(

Λ

2λs

) (1.13)

Thus the concentration on the surface is

cs = cm + (ceq − cm)
cosh(x/λs)

cosh(Λ/2λs)
. (1.14)

Fig. 1.18 illustrates the concentration on a terrace. If the surface diffusion length

is smaller than the half terrace width, a maximum builds up at the terrace centre.

The overlapping of the diffusion fields, i.e. λs > Λ/2, results in a lowered maximum

concentration. In this case, not only atoms close to the edge are incorporated into

the crystal but also those far away. As a consequence, the maximum concentration

is reduced.

Figure 1.18: The concentration profile on a spiral terrace.

The advance of a step is driven by the net flux of adatoms towards this step.

The net flux per unit surface jnet can be considered to be the difference between

the adatoms arriving on the surface from the vapour phase and the adatoms re-

evaporating from the terrace. The latter depends on the supersaturation function
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cs. Hence, the equation

jnet = jv −
1

Λ

Λ/2
∫

−Λ/2

cs
τ
dx (1.15)

can be set up for the net flux. The net flux can then be, after solving the integral

and using the relation sinh(x1)− sinh(x2) = 2 sinh
(

x1−x2

2

)

cosh
(

x1+x2

2

)

, expressed

by

jnet =
2λs

τΛ
(cm − ceq) tanh

(

Λ

2λs

)

. (1.16)

However, this equation is only valid for a straight step. If a step is curved this

flux is modified.

Surface concentration with Ehrlich-Schwoebel barrier

The surface concentration on terrace is changed if the Ehrlich-Schwoebel effect

is present [49][50]. The incorporation of adatoms from an upper terrace in a lower

edge can be impeded or even totally suppressed by this effect. In chapter 2.3.3 the

Ehrlich-Schwoebel effect is discussed in detail. Here, we focus on its influence on

the surface concentration profile.

Assuming that the incorporation of adatoms from an upper terrace is not possible

due to a large Ehrlich-Schwoebel barrier the boundary condition of the differential

equation 1.10 at the descending edge changes to dcs/dx |x=Λ/2= 0. The solution of

the surface concentration is then:

cs = ceq+(ceq−cm)−(ceq−cm) cosh

(

Λ + 2x

2λs

)

+(ceq−cm) sinh

(

Λ + 2x

2λs

)

tanh

(

Λ

λs

)

(1.17)

Fig. 1.19 shows a comparison of the concentration profile on a terrace with and

without Ehrlich-Schwoebel effect for λs < Λ/2. At the descending edge (Λ/2) the

concentration approaches ceq without and cmax with ES barrier. The net flux can

be calculated in an analogous manner as for a terrace without ES barrier. The

focus here is on the principle derivation of the BCF theory and therefore the ES

effect is neglected in the following.
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Figure 1.19: The concentration profile on terrace with (solid) and without (dashed)

Ehrlich-Schwoebel (ES) effect for λs < Λ/2.

The Gibbs-Thomson effect

The Gibbs-Thomson effect describes the fact that the chemical potential of a

straight step is not the same as for a curved one. As spiral steps are curved,

this effect has to be taken into consideration for the step advance. It results in a

modification of the equilibrium concentration ceq appearing in Eq. 1.16.

First, a two dimensional nucleus with the shape of a disc on a substrate of the

same nature is assumed. The radius of this disc is ρ and its height corresponds

to one mono-atomic layer a. If new atoms are incorporated at the disk edge, the

radius increases by dr (Fig. 1.20) and the perimeter changes by dP = 2πdρ.

Figure 1.20: A two dimensional disc with radius ρ expands by dρ.

The area occupied by the atoms of the disc ns is equal to the disc area, i.e.

nsa
2 = ρ2π. If a new layer is formed around the disc with dns atoms if follows that

dnsa
2 = 2πρdρ = ρdP. (1.18)

The latter equation can be multiplied by the specific edge energy κ on both

sides in order to get an expression in terms of energy. The work µv − µs, which is

the driving force, to transfer the atoms dns from the gas phase to the nucleus is
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compensating the increase of the edge energy and hence it follows that

(µv − µs)dns =
κa2

ρ
dns. (1.19)

The definition of the driving force reads [48]

∆µ = kBT ln

(

cc
ceq

)

(1.20)

where T is the temperature, kB the Boltzmann constant, cc the concentration of

adatoms at the edge of a curved and ceq the one of a straight step. Equating ∆µ

from Eq. 1.20 in Eq. 1.19 results, after rearranging, in

cc = ceq exp

(

κa2

ρkBT

)

≃ ceq

(

1 +
κa2

ρkBT

)

. (1.21)

The larger the radius ρ becomes, the more the concentrations at the edge of a

curved and a straight step approach. This agrees with the fact that a step becomes

almost straight for a large radius.

Now, the concentration on a terrace with curved steps is regarded. The difference

between the concentration on the middle of the terrace cm and the concentration

on the edge cedge is

∆c = cm − cedge = cm − ceq

(

1 +
κa2

ρkBT

)

(1.22)

Eq. 1.21 was used to replace cedge in this equation.

By adding and immediately subtracting ceq from Eq. 1.22, this equation can be

transformed to

∆c = (cm − ceq)

(

1 +
ceq

cm − ceq

κa2

ρkBT

)

. (1.23)

If ∆c is equal to zero, the disc is in equilibrium with the vapour phase. From

this condition the critical radius ρc can be derived:

ρc =
ceq

cm − ceq

κa2

kBT
(1.24)

Above this critical radius, a nucleus is stable and should continue to grow. If the

radius of the nucleus is lower than the critical one, it might decay.

Eq. 1.23 can be simplified to

∆c = (cm − ceq)

(

1 +
ρc
ρ

)

(1.25)
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by introducing the critical radius from Eq. 1.24.

The expression cm − ceq in Eq. 1.16 can be substituted by ∆c from Eq. 1.25 and

hence the net flux towards a curved step changes to

jnet =
2λs

τΛ
σcc tanh

(

Λ

2λs

)(

1− ρc
ρ

)

(1.26)

where σ = (cm − ceq)/ceq is the supersaturation.

The growth rate

The advance of a step is determined by the net flux on the terrace:

v = a2jnetΛ (1.27)

With the previously obtained equation for the net flux (Eq. 1.26) the velocity of

the step can be expressed by

v =
2a2

τ
λsσceq tanh

(

Λ

2λs

)(

1− ρc
ρ

)

= vs

(

1− ρc
ρ

)

(1.28)

where vs is the rate of advance of a straight step. This equation approximates the

spiral shape by concentric circular clusters with constant terrace width.

In the following derivation of the growth rate, the effect of the step curvature on

the step advance is neglected. The effect of the curvature decreases with 1/ρ and

therefore steps far away from the step can be treated like straight parallel steps. If

the spiral density is low, this is a reasonable approximation.

The crystal growth rate depends on the step density a/Λ and the step advance

rate [48]:

R =
a

Λ
v = 2

a3

τ

λs

Λ
σceq tanh

(

Λ

2λs

)

(1.29)

The advance rate of a straight step is used in the latter equation. In order to

simplify this equation, an expression for the terrace width is derived.

Assuming that the spiral is of the Archimedean type, the shape is described by

[48]

ρ = 2ρcϕ (1.30)

where ϕ is the rotation angle of the spiral.

The distance between two successive steps, or the terrace width, is

Λ = r(ϕ+ 2π)− r(ϕ) = 2ρc[(ϕ+ 2π)− ϕ] = 4πρc. (1.31)
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1.4 Growth of SiC crystals

Cabrera and Levine determined the terrace width more precisely to be [6]

Λ = 19ρc =
19κa2

σkBT
. (1.32)

Two limiting cases for the growth rate can be distinguished. The first one is that

the surface diffusion length is much smaller than the spiral terrace width λs ≪ Λ.

By inserting Λ from Eq. 1.32 and ρc from Eq. 1.24 in Eq. 1.29 the parabolic

growth law of Burton, Cabrera and Frank is obtained [5]:

R = C
2λskBT

19κa2
σ2 = C

σ2

σc

(1.33)

or equivalently

R = C
4λ2

s

Λ2
σc. (1.34)

where C = a3ccτ is a constant and σc = 19κa2/(2λskBT ) the critical supersatura-

tion. Above this supersaturation the derived law is no longer valid.

Then, the diffusion length is much larger than the terrace width (λs ≫ Λ) and

the growth rate becomes

R = Cσ = C
2λs

Λ
σc. (1.35)

Fig. 1.21 illustrates the two growth laws.

The supersaturation cannot be determined during the vapour growth of SiC.

However, the equations of BCF allow to determine the relative supersaturation by

measuring the spiral terrace widths and crystal growth rates.
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1 Fundamentals

Figure 1.21: At low supersaturation the growth rate of a spiral is a parabolic

function of the supersaturation. Above the characteristic supersaturation σc the

growth rate increases linear with the supersaturation. Image taken from [48].
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2 On-axis growth of SiC

In this chapter some aspects of the on-axis SiC growth are studied. First of all, the

experimental setup and the growth parameters are discussed. Then we will show,

that the PVT growth of SiC crystals is limited by the vapour phase transport.

Finally, the randomly occurring nucleation on the sample surfaces is analysed.

Growth spirals are excluded in this chapter as they are discussed in detail in

chapter 3.

2.1 Experimental setup and growth conditions

The aim of this thesis is to understand the fundamental processes on the crystal

surface during the PVT growth of SiC. This requires not only a knowledge of

the theoretical processes but also of the experimental growth conditions and the

analysis of the surfaces. Therefore, the experimental setup is presented in this

section followed by the description of the chosen growth conditions. Furthermore

the procedure for surface analysis is shown. The characterization tools themselves

are briefly described in the appendix.

2.1.1 Growth reactor

A home-made PVT reactor was used to grow SiC single crystals. The setup is

shown schematically in Fig. 2.1. Inside a quartz tube, a graphite crucible is heated

inductively. The quartz tube is double walled and cooled with water. The rotary

vane pump can be connected to the tube via an angle valve (V1). The needle valve

V2 is used for controlling the pump down rate. On top of the reactor a pyrometer

reads the temperature at the graphite crucible through a window. The pressure

is measured by the capacitance manometer P1 for p > 1mbar and by the cold

cathode pirani gauge P2 for p < 1mbar. For safety reasons a relief valve (V5) is

installed. Argon gas can be inserted into the reactor via valve V3.

The geometry of the crucible, shown in Fig.2.2, was developed and optimized in

previous work in the laboratory [51] [52] and is still issue of other theses in this

laboratory. The structure of the crucible reminds of a Matryoshka doll as there are

several stacked parts inside. Fig.2.3 shows a photo with all the graphite parts used.



2 On-axis growth of SiC

Figure 2.1: Schematic drawing of the basic PVT setup.

Figure 2.2: A schematic section of the used crucible.(1) plug to fix substrate and

avoid its evaporation; the small black rectangle below is the substrate (2) sample

holder (3) cone to confine the flux towards the substrate (4) SiC powder (5) crucible

(6) base (7) heating element (8) thermal insulation (9) spacer (10) top cover.
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2.1 Experimental setup and growth conditions

Figure 2.3: The crucible Matryoshka. The parts shown are (from left to right):

Thermal insulation, heating element with top cover, powder crucible on base, spacer,

cone, sample holder and plug.

SiC powder is filled in a crucible and a piece of silicon (mass about 0.6 g) is

placed on top. This is necessary to avoid the graphitization of the seed that occurs

due to the silicon loss during heating up. Graphitization causes the generation of

additional defects and is suppressed by introducing excess silicon in the crucible.

The flux of the sublimating SiC towards the substrate is confined by a cone.

The spacer around the cone sustains the sample holder. A widespread method

to fix the substrate is to glue it on the sample holder. In the setup used for this

thesis a non-gluing method is used. The sample is placed on a hole in the holder

(part 2 in Fig. 2.2). This hole is slightly smaller than the seed and thus prevents

it from falling on the powder. A plug above the seed fixes its position and also

suppresses its evaporation. There are important advantages of this non-glueing

method. The introduction of stress during heating due to different expansion

coefficients of substrate and sample holder is avoided. Furthermore the sample

cannot drop off as it is sometimes the case for glued seeds. In addition, for short

time experiments the sample holder and the cone can be re-used. Finally, parasitic

nucleation around the seed can be reduced.

The heating element, a solid graphite cylinder, is placed around powder source

and sample holder. An outer graphite foam tube acts as thermal insulation. All

parts of the crucible are made of graphite to avoid incorporation of impurities in

the growing crystal.

2.1.2 Seed preparation and growth conditions

For the growth of SiC crystals 6H and 4H on-axis substrates, epi-ready polished by

Novasic and cut to 0.9 cm2 squares, have been used. The polytype of the substrates

was confirmed by Raman spectroscopy. The defect densities of the substrates were

determined by KOH etching to be in the range of 2.9·104 cm−2 to 3.1·104 cm−2 (Fig.

2.4). The crystal face, C or Si, was chosen depending on the aim of the experiment.

The growth process was similar for all experiments and is exemplary shown in
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2 On-axis growth of SiC

(a) (b)

Figure 2.4: In order to determine the defect density of the substrates, they were

etched 5 minutes in KOH at 550 ◦C. (a) Surface of an etched substrate. (b) After

image processing with ImageJ the defects were counted.

Fig. 2.5. There are four stages of the growth process:

1. manual heat up

2. temperature ramp

3. deposition

4. cooling

Figure 2.5: Recorded data of a typical growth process. (1) Manual heating until

the pyrometer starts temperature reading (2) Automatic heat ramp (3) Deposition

(4) Cool down.

In the first step, the power in the induction coil was increased in small intervals

until the pyrometer started reading temperature (T≥1000 ◦C). Then the ramp

pressure was set by inserting argon while the temperature was kept stable at

1100 ◦C. This pressure was always larger than the deposition pressure in order to
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2.1 Experimental setup and growth conditions

avoid crystal growth at non-stable conditions. As the growth is limited by vapour

transport (see chapter 2.2), a high pressure in the reactor suppresses crystal growth.

For experiments with deposition pressures lower than 250mbar, the ramp pressure

was set to 300mbar. Above deposition pressures of 250mbar, the ramp pressure

was always 100mbar higher than the deposition pressure. During the heat ramp

the pressure increases due to outgassing of the graphite parts and the powder. The

heating rate was 7.5 ◦C/min for all experiments.

When the deposition temperature of 2100 ◦C was reached, the pressure in the

reactor was adjusted by pumping down. Both, pressure and temperature, remained

constant during deposition. Fig. 2.6 shows a picture of the crucible during crystal

growth at 2100 ◦C. The deposition time on Si-face substrates was always 2 hours

contrary to the C-face where the time was different for each experiment. This was

necessary in order to avoid the overgrowth of simple spirals by micropipes (see

chapter 3.2).

After deposition, the power in the induction coils was turned off and the pressure

was increased again by inserting argon to stop the growth process. The pressure

was the same as in the beginning of stage two. The decrease in pressure is caused

by the cooling of the gas.

Figure 2.6: The crucible at 2100 ◦ C.

2.1.3 Sample Characterization

The surfaces of the grown crystal were first analysed by an optical Leica DM LM

and a differential interference contrast (DIC) Zeiss Axioskop 40 microscope. A

map of each sample is stitched from images taken at lowest magnification (Fig.

2.7). Growth spirals were identified by DIC microscopy and their positions marked
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2 On-axis growth of SiC

on the stitched map. Then images of the same spirals were taken by a Veeco

dimension 3100 atomic force microscope (AFM) in contact or tapping mode. The

spiral polytype was verified by a Jobin-Yvon/Horiba LabRam Raman spectrometer

with a laser operating at 514 nm. Fig. 2.8 shows a typical Raman spectrogram.

A dial gauge was used to measure the crystal thickness. All these techniques are

non-destructive.

Figure 2.7: Map created from several optical images.

Figure 2.8: Example of a 6H SiC Raman spectrogram.

In some cases the samples were additionally analysed by field emission gun

scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM)

or Laue diffraction. However, FEG-SEM and TEM are both destructive methods

and thus only employed after full characterization of the sample. The FEG-SEM

deposits a carbon layer on the surface that could not be removed (Fig. 2.9).

TEM analysis either requires the deposition of a protection layer if the sample is

prepared by focused ion beam (FIB) or cutting and thinning. In both cases further
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2.2 Growth rate limiting step

characterization of the surface is not possible. Laue diffraction was performed

before TEM analysis to determine the orientation of the crystal. The analytic

methods and tools are described in short in the appendix.

(a) (b)

Figure 2.9: Taking a picture by FEG-SEM creates a non-removable carbon layer

on the surface. (a) detail of an AFM image showing the carbon layer deposited by

FEG-SEM (bright areas). (b) Re-scanning the same area with a lower magnification

also reveals a deposited carbon layer in the FEG-SEM. Note that the images are not

showing the same spiral.

2.2 Growth rate limiting step

Introduction

The growth rate of crystals grown in the vapour phase can be, in principle, limited

by two processes. The first might be the transport of the vapour phase. The solid

phase is sublimating and diffusing to the seed surface. The phase transition, from

solid to vapour, is accompanied by a change in volume causing the advective flow.

Due to the concentration gradient of the sublimating species Fickian diffusion is

taking place.

The second limiting process may be the surface diffusion and incorporation of

the adsorbed species on the crystal surface. If the crystal growth rate is limited by

the incorporation of the atoms, the surface concentration of adatoms is constant.

Thus, the arriving flux is not of importance for the growth rate.

In this section the growth rate limiting step of the PVT technique is determined.
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2 On-axis growth of SiC

Experimental details

The growth process is the same as described in chapter 2.1.2. As substrates 6H

on-axis SiC with Si- and C-face were used. The C-face substrates are cut from

two different wafers. The growth rate was controlled by the argon pressure set in

the reactor. The range of this pressure was 10 - 400 mbar. The growth rate was

determined by measuring the crystal thickness with a dial gauge.

Results and discussion

Fig. 2.10 shows a plot of the growth rate versus pressure. For the growth on the

C-face two different substrates were used, indicated by open triangles and squares.

The power exponent of the fitted Si-face data is -0.83. Consequently, the growth

rate is almost inversely proportional to the pressure in the reactor. The deviation

of the C-face data to the Si-face fit is small and thus it can be concluded that the

growth on both faces follows the same law. The inset illustrates the PVT growth

process and the concentration of adatoms on a terrace for λs ≪ Λ and without

Ehrlich-Schwoebel effect.

Figure 2.10: The growth rate is almost inversely proportional to the pressure for

Si- (open circles) and C-face (open triangles and squares). The exponent of the fit

(black line) is -0.83 and thus close to -1.

Following the derivation of E. Kaldis and M. Piechotka it can be shown that the

Fickian diffusion and advective flow in the vapour phase limit the growth rate [53].

A vapour phase with two components in an one-dimensional system is assumed.

The first component A is the crystallizing species and second component B the

inert gas. The flux JA of the crystallizing species from the powder source to the
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2.2 Growth rate limiting step

seed consists of an advective and diffusive flow [53]:

JA =
vadvpA
kBT

− DAB

kBT

dpA
dx

(2.1)

In this equation vadv is the advective velocity, pA the partial pressure of species

A and DAB the diffusion coefficient of species A into B. Assuming that the growth

rate is not limited by surface processes on the seed, JA is directly proportional to

the growth rate of the crystal.

The diffusion coefficient can be approximated by [53]

DAB = D0

(

T

T0

)n
p0
p

(2.2)

where D0 is the diffusion coefficient at a temperature T0 and a pressure p0. Ne-

glecting the advective flow in Eq. 2.1 results thus in an inversely proportional

dependence of JA on p. A more rigorous analysis can also be conducted as follows.

The inert gas flux JB, which is zero in total, can be defined by [53]:

JB =
vadvpB
kBT

− DBA

kBT

dpB
dx

= 0 (2.3)

Here, pB is the partial pressure of the inert gas and DBA the diffusion coefficient

of species B into A.

The total pressure in the reactor is the sum of both partial pressures p = pA+pB.

Assuming that the sublimating species A is not changing the total pressure it

follows that dp/dx ≈ 0. Adding both fluxes JA and JB up the following equation

is obtained:

JA + JB =
vadv
kBT

(pA + pB)−
DAB

kBT

dpA
dx

− DBA

kBT

dpB
dx

(2.4)

Since JB = 0 and d(pA + pB)/dx ≈ 0 the advective velocity can be expressed by

vadv =
JAkBT

p
. (2.5)

Substituting vadv in Eq. 2.1 by the one from Eq. 2.5 results in:

JA = −
(

pDAB

kBT

1

p− pA

)

dpA
dx

(2.6)

Since the diffusion constant is inversely proportional to the pressure, the principle

dependency reads JA ∝ 1/(p− pA). The deviation of the fit parameter in Fig. 2.10
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2 On-axis growth of SiC

can be consequently explained by the advective flow. This advective flow has also

been observed by other authors for the PVT growth [54] [55]. In this derivation

convection was neglected but nevertheless it should be mentioned that this effect

is also affecting the power exponent. Obviously, convection is dependent on the

crucible geometry. In the literature, however, the deviation of the fit exponent

from -1 is usually only explained by the advective flow.

To conclude, the growth rate is limited by the vapour phase transport and not

by the incorporation of the adatoms on the crystal surface. The kink density,

and consequently defect density, of the crystal is sufficiently high not to lower the

growth rate.

2.3 Nucleation

Nucleation is a well known growth mechanism that takes place above the critical

supersaturation. During the PVT growth of SiC, nucleation is randomly observed.

In general, this is an unwanted growth process as it is assumed that nucleation

induces stacking faults. Righi et al., for example, performed ab initio calculations

and concluded that the cubic phase is favored during layer-by-layer growth inde-

pendently of the substrate polytype [56]. Yet, this chapter shows that interesting

phenomena can be observed by analyzing the nuclei on the crystal surfaces.

2.3.1 Experimental details

During the surface characterization of the samples grown for the spiral analysis

in chapter 3.3, nucleation was occasionally observed on both Si- and C-face. One

sample per face was selected for the analysis. The Si-face crystal was grown for two

hours at 250mbar and the C-face crystal for four hours at 400mbar. The polytype

was in both cases 6H. Images of spiral surfaces were taken by AFM.

Only nuclei exceeding a critical size were considered in the following analysis.

On the C-face, this length was defined to be & 1.5µm. Nuclei whose diameter

correspond to this value show second layer nucleation and are thus assumed to

be the first nuclei formed. The critical length on the Si-face was & 0.9µm. The

shape of nuclei of this size is dendritic while smaller ones only show rudimentary

formation of dendrites.

In order to estimate the surface diffusion length the distance of the nuclei to their

next neighbour was measured. Furthermore, the relative position of the nuclei on

the terrace was measured. This gives information of the general nuclei distribution

on the terraces. Fig. 2.11 illustrates the measured quantities.
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2.3 Nucleation

Figure 2.11: Nucleation on a 6H spiral (Si-face). The distance between next

neighbouring nuclei d and the relative position y1 and y2 of the nuclei on the terrace

were measured.

2.3.2 Observed Nuclei

The nuclei shape is not observed to be dependent on the substrate polarity or

deposition pressure as demonstrated in Fig. 2.12. In most cases the nuclei are

irregularly shaped, but we also observed hexagonal or dendritic nuclei.

(a) (b) (c)

Figure 2.12: The shape of the nuclei could not be related to deposition pressure or

seed polarity. (a) 6H spiral Si-face, 300mbar. (b) 6H spiral Si-face, 150mbar. (c)

15R spiral C-face, 200mbar.

AFM images of the samples considered for the analysis of nuclei distribution are

shown in Fig. 2.13. We have chosen these samples since there is no continuous

layer formed on the edge of the spiral steps (as, for example, in Fig. 2.12 (a) and

(b)). On the Si-face the shape of the nuclei is dendritic and the height of the nuclei

corresponds to one bilayer (2.5 Å). Some nuclei show initial formation of a second

nucleation layer.
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2 On-axis growth of SiC

The nuclei on the C-face are circular shaped and ragged at the edges. Second

layer nucleation can be observed on many nuclei. The height is also 2.5 Å per layer.

In addition many small nuclei are present between the larger ones.

(a) (b)

(c) (d)

Figure 2.13: Samples used for the analysis. (a) and (b) are showing a spiral on

Si-face grown at 250mbar. (b) and (c) are images of the C-face sample grown at

400mbar.

Ogura et al. studied Au islands on Ir(111) and Pt(111) by scanning transmission

microscopy and performed simulations on the shape of the islands [57]. They

observed a transition from dendritic to triangular or hexagonal shape with increasing

number of deposited monolayers. Moreover they noticed that the nuclei shape is

dependent on the substrate. According to their simulations, anisotropic diffusion at

the island edges is responsible for the shape of the islands. Following the conclusion
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2.3 Nucleation

of Ogura et al., the nuclei shape on our samples should be dependent on the

spiral polytype. The different stacking sequences of the polytypes should affect

the anisotropic diffusion on the nuclei. Since we do not observe such a polytype

dependence of the nuclei, we conclude that the anisotropic diffusion of the adatoms

on the edges is not responsible for the island shape.

The shape of islands is also known to be temperature dependent. Michely and

Krug showed that the shape of Pt islands on Pt(111) changes from dendritic to

hexagonal with increasing deposition temperature [58]. Hence, it is assumed that

the temperature on the seed surface was not always the same during the crystal

growth. This seems to be reasonable as the temperature is not directly read on

the seed but on a graphite plug above. The contact between seed and graphite

plug is probably not always the same resulting in different thermal coupling and

thus different seed temperatures. Furthermore, it is not clear at which stage of the

growth process the nucleation is taking place. The polytypic transformation on the

C-face suggests that the nucleation is taking place during growth, but we cannot

exclude that the nuclei form during the cooling of the reactor at the end of the

crystal growth.

Another interesting aspect to be discussed in this context is the polytype of the

nuclei. Experimental results and first principle total energy calculations suggest

that, independent of the underlying substrate polytype, a newly formed layer

prefers the cubic stacking [59][56]. However, according to Fissel the 3C polytype is

not always the preferred one during nucleation [60]. Other polytypes may form

depending on pressure and temperature. Therefore it might be interesting to check

experimentally the stacking of the nuclei.

On the Raman spectra only the fingerprint of the 6H polytype is observable (Fig.

2.14). There are two possibilities to explain this spectra. The first one is, that the

polytypes of nuclei and substrate are the same and hence the spectra do not show

any other polytype.

From the nuclei distribution discussed in the next section, it is evident that

Ostwald ripening is taking place during growth. Therefore, the second possibility

to explain the spectra is that the nuclei might fully disintegrate. But even if the

polytype of the nuclei is different to the substrate, the volume of the nuclei is

probably too small to contribute to the Raman spectra. Hence, from the available

data it is not possible to clearly verify the nuclei polytype.

High resolution TEM characterization of a cross-section could reveal the real

stacking of the nuclei. However, the sample preparation by focused ion beam (FIB)

was not successful as it resulted in the amorphization of the top utmost surface.
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2 On-axis growth of SiC

Figure 2.14: Raman spectra (laser 514 nm) of the spirals shown in Fig. 2.13. Both

spectra show only peaks of the 6H polytype.

2.3.3 Nuclei distribution

The histogram of the nuclei on the Si- and C-face spiral steps are shown in Fig.

2.15. On the x-axis the relative position of the nuclei is plotted, i.e. 10% is close

to the rising step and 100% close to the descending step. The nuclei frequency

next to the rising step is on both faces low. This is the depletion zone and it will

be discussed at the end of this section.

Figure 2.15: The nuclei appear cumulated at the descending step of a terrace on

the C-face. Next to the rising step less nuclei are counted. Latter is similar for the

nuclei on Si-face but also at the descending step less nuclei are observed than in the

centre of the terrace.

Between 20 and 80% of the terrace width the nuclei frequency is almost constant
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2.3 Nucleation

on both faces. However, next to the descending spiral edge the nuclei frequency

is increasing on the C-face. This is contrary to the Si-face where the frequency is

decreasing in the same way as at the rising step.

The increased frequency of nuclei at the descending step on the C-face is probably

related to the Ehrlich-Schwoebel (ES) effect [49][50]. Fig. 2.16 shows a top view of

a fcc crystal surface and its section. The adatom A can diffuse easier to the crystal

edge than the adatom B on the upper terrace. When the adatom A is diffusing

towards the edge it is not only attracted by the atoms 1 and 2 but also by atom 3.

Thus the diffusion barrier ESD is reduced by EES2 for the adatoms on the lower

terrace. In contrast, the upper adatom B is not attracted by the atoms 1, 2 and

3 resulting in an barrier increased by EES1. Consequently, adatoms on the lower

terrace are rather diffusing towards the crystal edge than the adatoms on the upper

terrace. A similar histogram was reported by M. Klaua on the nucleation of Au on

a stepped Ag(111) surface [61] and he also concluded that the increase of nuclei at

the descending edge is due to an ES barrier.

(a) (b)

Figure 2.16: Schematic illustration of the Ehrlich-Schwoebel effect. (a) Top view

on a fcc crystal. (b) Section of the left image with potential diagram. Image taken

modified from [48].

The histogram suggests that the Ehrlich-Schwoebel effect is only present on the

C-face. However, regarding the AFM images in Fig. 2.12 it can be concluded that

the ES barrier can be also present on the Si-face. Note that the step height of the

spiral shown in Fig. 2.13 (a) and (b) is the same as those in Fig. 2.12 (a) and (b).

Thus a different step height cannot be accounted for the change in the ES barrier.

The previously discussed temperature difference on the samples might affect the

ES effect and explain its more pronounced appearance on some samples.
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Regarding the nuclei in Fig. 2.13 (c) and (d) it is apparent that there is no

prevailing Ehrlich-Schwoebel effect for second layer nucleation as these layers are

always located in the island centre. Thus, there is an height dependence of the

Ehrlich-Schwoebel barrier. Liu et al. showed by simulations of the {001} Al surface

that this barrier is increasing with the number of layers of an island [62]. For the

first layer the lowest barrier is obtained while saturation is reached when the island

consists of three layers. This indicates that the ES barrier is probably insignificant

on single bilayers of SiC but important on spiral steps.

The increasing number of nuclei at the descending edge on the C-face, indicates

that the diffusion length is larger than the half terrace width, i.e. λs > 3.12 ±
0.52µm. Adatoms can diffuse a larger distance on the C-face, but as the ES barrier

prevents adatom incorporation from an upper terrace, the concentration and hence

the number of nuclei increases at the descending edge.

Since this effect is not observed on the Si-face, we infer that the surface diffusion

length on this face is smaller than the half terrace width, i.e. λs < 3.28± 0.21µm.

At the beginning of this section it was mentioned that close to the edges the

number of nuclei is low on Si-face whereas it is only low at the rising step on the

C-face. The decrease of the amount of nuclei close to the rising edge is caused by

the advance of the spiral step and can be related to Ostwald ripening. The chemical

potential of the nuclei is higher than the one of the spiral step. Therefore most

nuclei close to the rising step will be disintegrated and the atoms are incorporated

into the spiral edge. The nuclei free zone next to the (spiral) edge is also called

depleted zone [63]. The same effect can be present on the descending edge if the

Ehrlich-Schwoebel barrier is low. The distance of the nuclei to the descending edge

is larger than for those close to a rising edge, since the step is moving away from

the nuclei.

Fig. 2.17 shows the distribution of the nuclei as a function of the edge distance

for Si- and C-face. The red bars correspond to distances measured between the

nuclei and the rising edge (d1) and the blue bars to the nuclei distance to the

descending edge (d2). From this histogram the length of the depletion zones at

both edges can be estimated by determining the position of the first maximum

from the left.

The length of the depletion zone on the Si-face is 0.8µm on the rising and 1.2µm

on the descending edge. On the C-face, the distance to the rising edge is also

0.8µm but only 0.4µm to the descending edge. A detailed study on the depletion

zone for the growth of e.g. Si on Si with varying surfactants has been done by

Voigtländer et al. [64]. According to the authors, the width of the depletion zone

is equal to the mean distance of the islands. This is what we observe for the Si-face
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but not for the C-face (Fig. 2.18). The next nucleus distance on the Si-face is 0.86

± 0.23µm and 2.77 ± 0.55µm. The accumulation of nuclei next to the descending

edge on the C-face was previously ascribed to the Ehrlich-Schwoebel effect. Also

Voigtländer et al. attribute the asymmetry of the depleted zones to an ES barrier.

Nevertheless, due to the large next nucleus distance one would expect a much larger

depletion zone next to the rising step on the C-face. We assume that the nuclei are

too big and can only be partially disintegrated close to this edge. Therefore, the

next nucleus distance does not correspond to the depletion zone on the C-face.

Figure 2.17: The distance of the nuclei to the rising (red, d1) and descending (blue,

d2) edge. The inset illustrates the distances of the nuclei to the edges.

Yet, nuclei close to the edge might not fully disintegrate and thus cause stacking

faults or a change of the polytype. Harada et al. described such a mechanism

for the top-seeded solution growth on 4H-SiC Si-face seeds [65]. They reported a

transition from 4H to 15R or 6H and attributed this polytypic transformation to

nucleation on the spiral terraces. Although this seems to be a possible mechanism

for the often observed change in the polytype, we will show in chapter 3.1 that a

polytypic transformation can take place without the occurrence of any nuclei.

2.3.4 Estimating the diffusion length from the nuclei density

The surface diffusion length is an important parameter for the simulation of surface

processes. An experimental measurement could be thus helpful for the optimization
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2 On-axis growth of SiC

Figure 2.18: Histograms of the next nucleus distances on the Si- and C-face.

of these simulations. In the following a short review on the estimation of the

diffusion length is given.

Nishizawa and Kimura [66] proposed that the surface diffusion length corresponds

to the half average distance between hillocks. They grew epitaxial layers of GaAs

by CVD on the {111}B facet of a GaAs substrate and observed the formation of

triangular hillocks. Due to the homogeneous distribution and the temperature

dependent density of these hillocks the authors concluded that surface migration is

the origin of their formation.

Another model for determining the surface diffusion length was proposed by

Kimoto and Matsunami [67]. They grew crystals on on-axis 6H SiC by CVD in

a temperature range of 1200 - 1600 ◦C for 10 to 300 s. Before the growth, mesa-

tables were formed on the substrate by photolithography and reactive ion etching.

The lateral advance of these tables was measured after growth and related to the

diffusion length λs. The authors compared their model to the one of Nishizawa

and Kimura and found a difference in the diffusion length of almost one order of
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magnitude. However, the tendency of the diffusion length as a function of the

temperature is similar in both cases.

The approach of Nishizawa and Kimura assumes that all adsorbed atoms are

incorporated into the nuclei and neglects thus desorption. This might be true for

low temperature processes but not for the PVT growth. Moreover, a direct relation

between surface diffusion length and nuclei density cannot be established as easily

as proposed by Nishizawa and Kimura. Calculations of Halpern showed that the

mean nuclei distance can be much larger or smaller than the surface diffusion

length [68]. Although a noticeable difference of the next nuclei distance is found

(Fig. 2.18) between Si- and C-face, a derivation of the diffusion length is hence not

possible.

The method of Kimoto and Matsunami can be adopted for the CVD process,

but it is only hardly employable on the PVT growth. The higher growth rates and

temperatures during PVT growth make an exact control of the nuclei step advance

difficult. Therefore we conclude, that there is no simple way to access the diffusion

length from the nuclei density.

However, due to the observed nuclei distribution we are able to assert that the

diffusion length on the C-face is larger than the half terrace width, i.e. λs >

3.12 ± 0.52µm, whereas it is smaller than the half terrace width on the Si-face,

i.e. λs < 3.28± 0.21µm. These results show the same tendency as published by

Matsunami et al. [67].

2.4 Conclusion on the on-axis growth of SiC

In this chapter various aspects of the on-axis SiC growth were discussed. The

crystal growth rate can be either limited by the vapour transport or by the surface

diffusion and incorporation of adatoms on kink sites. We observed that the growth

rate is almost inversely proportional to the pressure in the reactor and concluded

that the growth is limited by the vapour phase transport. Due to an advective flow

this inverse dependency is modified.

Nucleation is an unwanted process that is nevertheless randomly observed during

the growth of SiC. The increased number of nuclei on descending terraces suggests

that there is a significant Ehrlich-Schwoebel barrier on the C-face. Furthermore,

the nuclei distribution on the spiral terraces also indicates that the diffusion length

is larger on the C-face than on the Si-face. The exact surface diffusion length

cannot be obtained from the nuclei density in our case.
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This chapter deals with mechanisms related to the growth of spirals on SiC.

Although spirals have been thoroughly studied in the last decades, novel results on

their growth process on SiC are revealed.

For the first time the growth laws of spirals on SiC are systematically analysed.

We will show that the spiral growth law is not only dependent on the spiral type

but also on the seed polarity. Furthermore, it is reported that the C-face spirals do

not follow any known growth law. Simulations are performed to understand this

behaviour.

A dissociation of the top bilayer on C-face spirals was achieved under certain,

reproducible conditions. This new kind of spiral structure and its possible origin

are discussed.

Before we start the presentation and discussion on the spiral growth mechanism,

an insight is given on the surfaces and related spirals typically obtained from the

experiments.

3.1 Observed spirals

In the following, we will give an overview on spirals usually observed on the SiC

crystal surfaces. Furthermore, the shapes of the spirals are discussed.

3.1.1 Spiral types

On our samples, we obtained a huge variety of spiral types and patterns. Most of

them were already reported and discussed in the early days of growth spiral research

[69] but still not all mechanisms which lead to their formation are understood. The

aim of this section is to present the typical spiral patterns obtained by the PVT

growth of SiC. In addition, the established models to explain the pattern formation

are introduced.
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Single and double spirals

Simple and double spirals are mainly observed during the initial growth of the

crystals on 6H on-axis seeds (Fig. 3.1). The simple spirals consist of one branch

with a step height of the unit cell parameter c or, in case of the 15R polytype,

of c/3. Spirals with step heights larger than c form an open core and are thus

micropipes.

(a) (b)

Figure 3.1: Simple and double spirals with b = 1 have one or two branches

respectively and no hollow core.

The step height of the double spirals is 7.5 Å, i.e. their Burgers vector is the

same as for 6H simple spiral. Although these spirals were already observed by

Amelinckx in 1951 [70], there exists no explanation why there are two different 6H

spiral types for the same Burgers vector. The stacking of each branch is 3C but

for one branch the tetrahedrons are turned by 60◦ resulting thus in the ABC ACB

stacking [71]. The polygonization of the double spirals in their centre is discussed

in chapter 3.1.2.

On the Si-face crystals, mainly spirals of the 6H polytype were observed whereas

on the C-face, in addition, 4H and 15R polytypes were present. The Raman spectra

of the 4H and 15R spirals of thin crystals always show the fingerprint of the 6H

substrate (Fig. 3.2). Occasionally, the fingerprint of 6H, 4H and 15R were measured.

By measuring the step height of AFM images, the polytype on the surface can be

clearly determined.

The polytype stability is known to be higher on the Si-face than on the C-face

[72]. In the literature it is often reported that the polytype on the C-face transforms

from 6H to 4H [73][60][74] and less frequently to 15R [75]. Fissel noted that the

polytypic transformation is strongly affected by different growth parameters, such

as Si/C ratio and substrate temperature [60].
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3.1 Observed spirals

Figure 3.2: The Raman spectra of two spirals grown on C-face 6H seeds prove

the presence of the 6H (filled circles), 15R (filled squares) or 4H (filled rhombi)

polytype. The 6H fingerprint is visible in both cases. Note that some peaks of

different polytypes have (almost) the same wavenumber. In such a case only the

wavenumber of the 6H polytype is given. All relevant peak positions can be found in

the appendix (Tab. C.1).

In some publications it is suggested that the polytypic transformation on the

C-face is taking place due to nucleation on the spiral steps [72][65]. Although nuclei

are not always visible on the surfaces of transformed crystals, such a mechanism

cannot be excluded.

Another possibility is that stacking faults are formed during the growth. A

similar mechanism was discussed in detail by Pirouz and Yang for the α ↔ β SiC

transition [29]. According to their model the faulted regions are created by the

motion of partial dislocations. They analysed TEM images obtained from thermally

treated SiC crystals and related the observed stacking sequences to their model. As

they did not consider growth conditions but thermal treatment, their model cannot

be directly transferred to our observations. However, it can be concluded that the

polytypic transformation can also take place due to the creation of stacking faults.

The total energy differences of various polytypes relative to 3C was calculated

with the anisotropic next-nearest-neighbour Ising spin model by many authors

[76][77][78][79][80]. Cheng excepted, they all found that the total energy of the

4H polytype is lower than the one of the 6H. Limpijumnong also calculated the

energy of the 15R polytype and obtained an even lower energy for the 15R polytype.

Hence, it is in favour of the fact that if a polytypic transformation is occurring,

either the 4H or 15R polytype can form. The lower surface energy on the C-face

probably favours the formation of stacking faults and thus of the 4H and 15R

polytype as already suggested in [81].
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The simple and double spirals are further discussed in chapter 3.3, where their

growth modes are analysed in detail.

Micropipe formation

In 1951 Frank proposed the existence of micropipes [35]. This defect is a screw

(or mixed) dislocation with a large Burgers vector. Due to the high strain at the

centre of such a dislocation, the atoms in the core are evaporating leaving thus an

empty tube at the dislocation line behind.

Micropipes are observed in many different crystals, such as GaN [82], mica [83],

ZnS [84] and SiC [85]. Although micropipes are known now for more than 60 years,

there is still no generally accepted model explaining their formation.

Nevertheless, the amount of micropipes in commercial wafers has been drastically

decreased over the last years by optimizing the growth parameters. While the

micropipe density remained constant at 10 cm−2, the diameter of commercial wafers

increased from 50 (2 ′′) to 100mm (4 ′′) between 1999 and 2009 [86][1]. At the

present time, wafers with zero micropipe density are available from Cree [20].

Despite the progress in micropipe reduction, there is still a scientific interest in this

kind of defect, especially concerning the origin of the micropipes.

A key problem is the understanding of the initial micropipe formation. There

exist many models trying to explain the origin of micropipes. For instance, it was

observed that micropipes nucleate on inclusions of silicon or carbon [87][62]. The

overgrowth of the inclusions results in a lattice mismatch and hence a micropipe.

Another model is that high axial temperature gradients cause stress in the crystal

and thus the formation of micropipes [88]. Furthermore, it was proposed that

stacking fault clusters cause micropipes [89] or the coalescence of different domains

[90]. The problem of all these theories is, that they can only explain the micropipe

formation for a special case. It seems, that there is no general model to describe

the origin of micropipes.

On our samples we sometimes observed the agglomeration of spirals with likewise

signs (Fig. 3.3), some of them forming a micropipe (Fig. 3.3 (a) and (e)). This is

remarkable, since dislocations with opposite Burger vector signs annihilate whereas

those with same sign repel each other [33].

Once a micropipe is present it grows by absorbing other dislocations with likewise

sign in its vicinity. According to Pirouz the net force Fnet between a dislocation

and a micropipe is [91]

Fnet =
Gb2

2π(d+ r)

nd2 + 2ndr − r2

d(d+ 2r)
(3.1)
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3.1 Observed spirals

(a) (b) (c)

(d) (e)

Figure 3.3: Spirals with likewise sign agglomerate and may form a micropipe. On

these images two or more spirals are present.

where G is the shear modulus, b the Burgers vector, r the radius of the empty

micropipe core, d the distance between the dislocation and the surface of the empty

micropipe core and n the magnitude of the micropipe.

The force between dislocation and micropipe is attractive if [91]

d

r
<

(

n+ 1

n

)1/2

− 1. (3.2)

Due to the high growth temperatures, the mobility of the dislocations is suffi-

ciently large to reach micropipes far away of their origin. Apparently, the forces

between two dislocations without empty core (r = 0) are always repulsive. There-

fore, we suggest that screw dislocations with likewise signs can overcome the

repulsive forces at high growth temperatures and thus form a micropipe.

Frank-Read source

55
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The Frank-Read source is usually known in the context of dislocation multi-

plication [92]. A dislocation can be pinned on precipitations, inclusions or at

intersections with other dislocations for example. In such a case, the dislocation

is immobile only at this position. If a dislocation is pinned at two points, the

application of shear stress will result in glide of the segment in-between (Fig. 3.4).

First, the line will bow and then bend around the pinned points A and B (Fig. 3.4

(b) - (d)). Finally, the dislocation segment annihilates at m and n due to different

signs of the Burger vectors (Fig. 3.4 (e) and (f)). A closed loop detaches and

propagates through the crystal leaving a dislocation segment between A and B

behind. As a consequence, this mechanism is in principle regenerative and can

be repeated after each loop but since every loop reduces stress in the crystal, the

actual number of loops will be limited [69].

Figure 3.4: The Frank-Read mechanism of dislocation multiplication. Image taken

from [33].

The same process can take place at the surface of growing crystals when growth

spirals are present [48]. Two spirals with opposite signs create closed loops during

growth if the distance between the centre of both spirals is larger than 2ρc, i.e.

twice the critical radius. If the distance is smaller than 2ρc the dislocations will

annihilate.

Fig. 3.5 shows some examples of Frank-Read sources observed on our samples.
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3.1 Observed spirals

Depending on the growth progress, only a straight line ((c), hardly visible), or

bended steps, as on the other images, are visible. Furthermore it can be noticed,

that a single Frank-Read source creates a wedding cake like structure.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Two spirals with different sign create a Frank-Read source. When the

steps of two closely located spirals meet, a joint step is created which results in a

loop upon crystal growth. The joint steps are indicated by arrows.
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Spiral agglomeration

In many cases, an agglomeration of spirals on single domains was observed in

this work as shown in Fig. 3.6. On the one hand, the surface structures of such a

spiral agglomeration can be complex. On the other hand, the shapes on the surface

can be broken down into interactions of spirals with likewise and opposite sign.

As previously mentioned, spirals with likewise signs tend to arrange around

a centre and may form micropipes during further growth of the crystal. The

arrangement of those spirals is visible in Fig. 3.6 (b), (c) and (d) (on the left side).

Also a parallel alignment is possible as in Fig. 3.6 (d).

Spirals with opposite signs form Frank-Read sources, often over a wide distance

(centre to centre distance larger than 20µm).

The mixture of many spirals of these types result in the surface structures shown

in Fig. 3.6.

(a) (b)

(c) (d)

Figure 3.6: If many spirals are agglomerated, complex surface structures are formed.
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3.1.2 The shape of the spirals

The shape of growth spirals can vary from strongly polygonized (Fig. 3.7 (a)) to

perfectly round (Fig. 3.7 (d)) as it was already reported in the first publications

on spirals [85][69].

On our samples the spiral shape seems to depend mainly on the polytype. The

15R spirals are always roundly shaped, the 4H spirals are strongly polygonized, the

6H simple spirals are slightly and the 6H double are more polygonized than the

simple but less than the 4H spirals.

Several authors discussed the spiral shape and they all agree that the advance

rate of the spiral steps is determining the shape [69][93][94][71][95].

(a) (b)

(c) (d)

Figure 3.7: The degree of polygonization clearly depends on the polytype: (a) 4H

(C-face), (b) 6H double (Si-face), (c) 6H simple (Si-face), (d) 15R spiral (C-face).

Amelinckx proposed that the polygonization of a spiral depends on the kink

density at an edge [69]. This density is unequal for the different step orientations.

If the surface diffusion length is small, a polygonized spiral results as the low kink

density on some steps reduces their velocity. On the contrary, a roundly shaped
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spiral is obtained if the diffusion length is large. Then, all adatoms reach a kink site.

This reasoning cannot explain why the degree of polygonization varies with the

polytype. On the C-face, 4H and 6H (simple and double) spirals are polygonized

while 15R spirals are perfectly round. If the degree of polygonization was related

to the number of kink sites, the 15R polytype should be also polygonized. This is

regardless of whether the number of kink sites scales with the step height or not,

as the number of bilayers of the 15R polytype is in-between the 4H and 6H type.

Therefore, the explanation of Amelinckx can be excluded here.

Sunagawa suggested that the step roughness modifies the step velocity and hence

the spiral shapes [95]. The roughness of surface or step can be defined by the

Jackson factor α [96][18]

α =
(w

u

) ∆H

kBTm

(3.3)

where w is the number of next neighbouring adatoms on the growing face, u the

number of next neighbouring atoms in the crystal, ∆H the enthalpy of crystalliza-

tion and Tm the melting temperature of the crystal. The smaller α the rougher is

the step.

According to Sunagawa a small α (rough step) results in an isotropic step advance

rate and thus a round spiral. The spiral is polygonized for large α (smooth step).

It is argued that the strong bondings in the plane are responsible for the step

roughness and hence for the degree of polygonization. If the bondings are rather

weak the step is rough and the spiral roundly shaped.

This approach is non-satisfying for the spirals we observed since their shape is

determined by the polytype. This cannot be explained by the step roughness and

the Jackson factor which only considers material constants and indirectly growth

conditions (via w).

Let us have a closer look on the parameters entering the step velocity. Replacing

ρc in the previously defined step advance rate (Eq. 1.28) by the definition from Eq.

1.24 results in

v(ρ) = vs

(

1− κa2

kBTσρ

)

. (3.4)

From this equation it follows that there are two possible reasons for anisotropic

spirals [71]. Either the advance rate of a straight step vs is anisotropic. Then, the

anisotropy of the spiral is maintained all over its domain. Moreover, the specific

edge energy κ can be anisotropic. In this case, the polygonization diminishes with

increasing distance to the centre. This is what we observe as shown in Fig. 3.8.

In case of an isotropic advance rate vs a spiral is polygonized if the expression in

the brackets of Eq. 3.4 is smaller than unity (1− κa2/(kBTσρ) < 1), i.e. there is

60



3.1 Observed spirals

Figure 3.8: The polygonization of a 6H double spiral on the C-face decreases

continuously with increasing distance to the centre.

a strong anisotropic effect of the curvature. The spiral approaches a round shape if

the expression in the brackets is close or equal to unity (1−κa2/(kBTσρ) ≈ 1) [71].

The radius of curvature is increasing by every spiral turn and hence the influence

of an anisotropic specific edge energy is continuously diminished.

Previously a was defined as first neighbour distance of atoms on a step. This

definition is true for monoatomic steps but in case of spirals with step heights of

several atomic layers a corresponds to the step height [95]. Thus it is evident that

the degree of polygonization of a spiral increases with decreasing step height. This

is what we observe for the 4H (step height 10 Å) and 6H spirals (step height 15 Å).

In addition, from Eq. 3.4 it follows that the specific edge energy also plays a role.

Yet, we do not assert any effect of the specific edge energy as the polygonization of

simple 6H spirals is similar on Si- and C-face (Fig. 3.16 and 3.18). Therefore, either

the edge energies are similar or its influence on Eq. 3.4 is too small to observe it

experimentally.

Regarding Eq. 3.4 it follows also that the temperature or supersaturation affect

the degree of polygonization. The observed spiral shapes are similar for spirals

of the same polytype but the polygonization is slightly increasing with increasing

pressure and hence decreasing supersaturation (see Fig. 3.16, 3.17 and 3.18).

The presented mechanisms and parameters are not responsible for the shape of

the 15R spirals. Another possible origin for the round shape of the 15R spirals

could be the particular stacking of this polytype. The step height of spirals of this

polytype is 12.5 Å which corresponds to 5 bilayers. Therefore three spiral turns

are necessary to complete the unit cell. If we assume that the bilayer stacking
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of the first 5 bilayers is ABCBA, it follows that after one spiral turn a forbidden

stacking sequence would occur (ABCBA ABCBA) since two bilayers of the same

type are stacked on each other. This is not possible due to the direction of the

bondings [29]. As a consequence, the atoms must slip after one spiral turn and

create thus a stacking fault [97][98]. This is illustrated in Fig. 3.9. The stacking

sequence ABCBA winds up around the dislocation core and after a full turn the

atoms must slip from A to B, B to C and C to A. The previous considerations

pointed out that the anisotropy of the specific edge energy is responsible for the

polygonization. The stress field in the basal plane caused by the partial dislocation

is proportional to the magnitude of the Burgers vector b and inversely proportional

to the distance r (σxx ∝ b/r) [33]. Therefore it is conceivable that the specific

edge energy is modified by the stress field of the partial dislocation losing thus its

anisotropy.

Figure 3.9: The particular stacking of the 15R polytype requires the creation of a

partial dislocation on each spiral turn.

On the polygonized 4H spirals two different facets can be distinguished which are

both alternating (Fig. 3.7 (a)). One facet is straight and longer than the second

type which is also roundly shaped. The expected shape of a hexagonal polygonized
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spiral is illustrated in Fig. 3.10. In this figure it is assumed that the advance rate

of each facet is the same resulting in a continuous increase of the facet lengths

[48][94]. Hence, it can be concluded that the advance rate of the alternating facets

of the observed 4H spirals is unequal. As their shape does not correspond to the

one shown in Fig. 3.10 the term irregular hexagonal polygonized spirals is used for

them.

Figure 3.10: If the advance rate is the same for all steps of a hexagonal polygonized

spiral, the length of each facet should increase continuously.

The unequal step advance rate might be caused by anisotropic diffusion rates, a

mechanism which we present in the following.

Ogura et. al. grew Au islands on Ir(111) and Pt(111) surfaces1 and observed

dendritic and triangular islands [57]. The authors related the island shape to the

substrate symmetry. The threefold symmetry of the fcc (111) substrates results in

a triangular shape of growing islands due to anisotropic corner diffusion rates.

Such a mechanism is also conceivable in the case of 4H SiC. There are several

possibilities to form the 4H polytype by arranging its bilayers. There is either a

cubic sequence followed by a hexagonal bilayer (e.g. ABCB) or first the hexagonal

bilayer with a cubic sequence on it (e.g. BABC). The latter case is illustrated in

Fig. 3.11 and will be discussed in the following.

Let us assume a step on a (0001) plane as illustrated in Fig. 3.12. This image

does not correspond to the real case of a SiC step as only a monoatomic step is

drawn but it can be assumed that the surface process remains similar. Furthermore,

we suppose that the first bilayer of the step is the one with the slowest advance

rate and that this bilayer hence controls the total step advance. The adatom C

at the corner can either diffuse towards the A or the B step. The diffusion of this

atom depends on the barriers Eca and Ecb. If both barriers are equal both steps

advance with the same velocity. The barriers can also be different and then it is

clear that the adatoms at the corner preferably diffuse in direction of the lower

1The crystal structure of Au, Ir and Pt is fcc.
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Figure 3.11: One possible stacking of the 4H polytype (BABC). The three top

bilayers are arranged as for the cubic polytype.

barrier, increasing hence the growth rate of this step. The shape of the new layer is

therefore hexagonal for equal and triangular for unequal corner diffusion barriers,

as for example shown in [99][57].

Figure 3.12: Depending on the stacking, the diffusion rate from the corner to an A

or B step might be different. Image adapted from [57].

Following the reasoning of Ogura et al. we suppose that the particular BABC

stacking of the 4H polytype causes an anisotropic corner diffusion barrier. If a new

layer grows on this kind of stacking, the symmetry of the first bilayer is hexagonal

but the three bilayers below (and also above) are stacked as in a fcc crystal. The

threefold symmetry of these bilayers (triangle in Fig. 3.13) is imposed on the

on-growing layer and hence affecting its actual hexagonal symmetry. The change

of the hexagonal spiral shape towards a triangular one is probably due to the

anisotropic corner diffusion, introduced above.

Since the diffusion barriers are related to the atomic configuration, we assume
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Figure 3.13: The hexagonal shape is expected for a spiral with symmetric edge

diffusion barriers. For an increasing difference of this barrier the shape will pass

from an irregular hexagon into a triangle.

that these barriers are proportional to the specific edge energy. Therefore, the

decreasing polygonization with increasing radius of curvature can be explained by

Eq. 3.4.

3.2 Growth rate of micropipes

During the growth of C-face SiC crystals it seemed that the micropipe growth is

of higher importance than on the Si-face. For the same deposition time of two

hours on both faces we noticed that on the C-face almost always all spirals were

overgrown by the micropipe spirals. In contrast, the Si-face crystals were still

covered by growth spirals.

Fig. 3.14 shows the surfaces of crystals grown on a Si-face and a C-face seed.

The growth conditions were similar in both cases, i.e. two hours crystal growth at

50mbar. Mainly on the upper part of the Si-face crystal domains, marked by D, are

visible. The domains are irregularly shaped and limited by black lines (the domain

boundaries). Each domain contains at least one growth spiral, which can be seen

at higher magnifications. On the C-face, stripes oriented along the crystallographic

axes can be seen. These stripes originate from micropipes, indicated by M in the

image. Domains, as in the case for the Si-face crystal, are not present.

The problem of accumulated spirals with likewise signs has already been discussed

in literature [5][48]. If there are n dislocations either aligned on a straight line

with length L or in a circle with perimeter L the resulting terrace width x0 can be

expressed by [48]

x0 =
Λ

n′
(3.5)
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(a) (b)

Figure 3.14: DIC microscopy images of (a) a Si-face and (b) C-face crystal surface.

The Si-face image was post-processed to enhance the contrast of the domains. The

D indicates spiral domains while M is indicating micropipes. The diameter of the

growth area is 0.7mm.

where

n′ = n

(

1 +
L

Λ

)

−1

(3.6)

and Λ corresponds to the terrace width of a simple spiral.

There are two limiting cases for Eq. 3.5. If the dislocations are widely spaced

(L ≫ Λ) then the terrace width becomes [48]

x0 = L/n. (3.7)

Hence, the terrace width is independent of the supersaturation. In the second

limiting case, the dislocations are closely accumulated (L ≪ Λ) and it follows that

[48]

x0 = Λ/n. (3.8)

The width is a function of the supersaturation, which enters into the equation via

Λ (Eq. 1.32, Λ ∝ 1/σ).

As mentioned before, a micropipe is a screw dislocation with a large Burger

vector. An empty core is formed in the centre to reduce the strain energy. The

micropipe is now regarded as an accumulation of n simple spirals originating from

an empty core with diameter L (i.e. L ≪ Λ). Replacing Λ in Eq. 1.34 by x0 from
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Eq. 3.8 results in

Rm = nR (3.9)

where Rm is the growth rate of a micropipe with n branches and R the growth rate

of a simple spiral.

As a consequence of the latter equation, micropipes will always overgrow simple

spirals due to the linear scaling of the growth rate with the number of branches.

The faster growth of spirals with larger Burgers vector was experimentally shown

by Chernov [100]. He measured the growth rate of spirals on β-methyl naphthalene

crystals with Burgers vector of 4c, 40c and 60c and reported a significant increase

in growth rate with increasing Burgers vector.

The overgrowth of a domain is shown in Fig. 3.15. The black arrows are

indicating the direction of the lateral growth. This direction can be either identified

by AFM images or by regarding the step structure of microscope images. If a step

encounters a particle or emerging dislocation the step advance is locally lowered

resulting in bulges (visible on the lower left of Fig. 3.15 (a)). On AFM images

high points are bright whereas low points are dark. From Fig. 3.15 (c) it follows

that steps are overgrowing the visible spiral from the lower left. These images are

illustrating that domains can overgrow other domains and that steps of micropipes

are overgrowing domains containing closed core spirals.

(a) (b) (c)

Figure 3.15: Spirals are overgrown by micropipes or by domains with accumulated

spirals. The AFM image (c) corresponds to the area marked by the yellow square in

(b).

But why is the micropipe growth on the C-face of higher importance than on the

Si-face? As the growth rate scales with n on both faces comparably, the derived

equation does not give an answer to this question. Another explanation might be

the origin of the wafers. The Si- and C-face wafers used for the experiment were

produced by different companies. Therefore it is conceivable that although the
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density of defects is similar on both wafers, the amount of micropipes is higher on

the used C-face substrates.

Due to the different growth behaviours, the deposition time was adjusted to the

pressure on the C-face. Hence, the deposition time was reduced with decreasing

pressure.

3.3 Spiral growth modes

The access to growth parameters is limited during the PVT growth of SiC. Con-

trollable parameters are crucible geometry, temperature and pressure. The super-

saturation, which is the determining factor for the growth process, is inaccessible.

Furthermore, in-situ observation of the crystal surface, as for other growth tech-

niques [10], is not possible.

As detailed in chapter 1.4.3, the supersaturation can be indirectly estimated

via the growth rate and spiral terrace width. In addition, the growth law can be

determined from these two quantities.

In the following an ex-situ analysis of the growth spirals is performed. We will

show, that there are fundamental differences between the spirals on the Si- and C-

face. This is ascertainable by the spiral shapes and their growth laws. Simulations

are performed to confirm our experimental findings.

3.3.1 Experimental details and analysis

Growth process

The growth process was described before in chapter 2.1.2. The deposition time

was always two hours for Si-face substrates, except for the sample grown at 400mbar.

Due to the low growth rate at this pressure the deposition time was increased to

four hours. On the C-face the growth rate had to be varied in a wide range in

order to avoid the overgrowth of simple spirals by micropipes (see chapter 3.2).

Thus, the deposition time was set between 15min at 50mbar and 60min at 400mbar.

Surface characterization

The surfaces of the crystals were first analysed by DIC microscopy to pre-select

growth spirals. Then, an image of the spiral centre was taken by AFM in order to

verify that the spiral is either of the simple or double type. The spiral types are

discussed in the next section. The scan size varied between 20 and 40µm depending
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3.3 Spiral growth modes

on the domain size or particles on the surface. Although the spiral polytype can

be determined by its step height from AFM images, Raman spectroscopy was

performed additionally in order to identify the polytype without any doubt. The

crystal thickness was measured by a micrometer dial gauge.

Spiral choice

For the analysis of the shape, only simple and double 6H spirals were considered

on the Si-face. Simple spirals have one branch and their step height corresponds

to the c-lattice parameter (15 Å) of the 6H polytype. Fig. 3.16 shows one simple

spiral of each sample taken into consideration for the analysis.

The branches of double spirals are both leaving from the centre and the height

of each branch is c/2 (7.5 Å). Hence, the c-component of the Burgers vector is the

same for 6H simple and double spirals. Some exemplary double spirals are shown

in Fig. 3.17.

On the C-face mainly simple 15R spirals were present (Fig. 3.19). In addition,

4H spirals were found occasionally which were often interlaced. 6H spirals were

observed rarely and in most cases also interlaced. Therefore mainly 15R spirals

with a step height of c/3 (12.5 Å) and additionally some simple 6H spirals were

analysed on the C-face (Fig. 3.18).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.16: Simple 6H spirals observed on the Si-face crystal surfaces.
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(a) (b)

(c) (d) (e)

Figure 3.17: Double 6H spirals consist of two branches leaving from the centre.

(a) (b) (c)

Figure 3.18: Simple 6H spirals were only rarely observed on the C-face.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.19: Most simple spirals on the C-face were identified as 15R polytype.
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3.3 Spiral growth modes

Spiral analysis

From the AFM and DIC microscopy images the spiral profiles and average terrace

widths were extracted.

The AFM images were used to measure the terrace width as a function of the

spiral turns close to the emergence point of the dislocation (Fig. 3.20(a)). The

average terrace width and standard deviation of each sample was calculated for

the simple spirals on the Si-face, excluding the first and second turn. The terrace

width usually approached a constant value after a few turns.

In addition the maximum terrace width, which was usually observed within

the first turns, was determined and also averaged for each sample. The terrace

width of the double spirals on the Si-face and of the spirals on the C-face were

never observed to be constant. Therefore only their maximum terrace widths were

measured and averaged.

Furthermore, the terrace width was measured on DIC microscopy images outside

the spiral centres after each spiral turn in the direction with the largest distance to

a domain boundary (Fig. 3.20(b)). With the data from the AFM and DIC images

spiral profiles were created.

In total, 33 simple spirals on nine Si-face samples and ten double spirals on

five Si-face samples were analysed. On the C-face, 37 simple 15R spirals on eight

samples and ten simple 6H spirals on 3 samples were analysed.

(a) (b)

Figure 3.20: (a) The terrace width Λ was measured on the AFM images as indicated

by the white arrows. (b) The images from the DIC microscopy were used to extract

the terrace width in one direction on the domain (along the white arrow).
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3.3.2 Results and discussion

Profiles from experiment

The spiral profiles shown in Fig. 3.21 are essentially different for the simple

spirals on the Si-face and the C-face.

The terrace width of the simple spirals on the Si-face increases within the first

spiral turn. Then, the width is decreasing within the two following turns and

approaching a constant value. The higher the deposition pressure is, the less

pronounced the peak in the centre becomes. In addition, the average terrace width

increases with increasing pressure.

Also on the C-face, the terrace width is increasing first but the maximum is only

reached after two to four turns. Moreover, the width is then decreasing continuously

and contrary to the Si-face no plateau is observed. There is no tendency of the

terrace width on the pressure.

The profile of the double spirals on the Si-face is a mixture of the two shapes

observed for the simple spirals on the C- and Si-face. The terrace width sharply

increases within the first turn and decreases continuously afterwards. This decrease

is less pronounced than on the C-face, nevertheless, the terrace width does not

approach a constant value.

According to the BCF theory, the terrace width of a growth spiral is expected to

be constant for a given supersaturation and temperature (compare with Eq. 1.32).

Hence, regarding the spiral profiles, two questions arise:

1. Why is there an increase and decrease of the terrace width on the Si-face

within the first two spiral turns?

2. Why is the terrace width on the C-face and for the double Si-face spirals not

approaching a constant value?

The second question will be discussed in the simulations part at the end of this

section. Here, we will first focus on the maximum that appears within the first

spiral turns.

A process that can change the spiral shape is the back stress, or back force effect

[7][48]. If the surface diffusion length is small, i.e. the diffusion fields are nowhere

overlapping (Fig. 3.22 (a)), only adatoms not farther away than the diffusion length

are incorporated at a spiral edge. At the middle of the terrace the concentration

c0 is defined by the number of arriving and desorbing atoms. This changes when

the diffusion length is increasing and hence the diffusion fields are overlapping

(Fig. 3.22 (b-c)). Then, all adatoms on the surface might reach a kink site on

a step and most of the adatoms reaching a kink site are incorporated into the
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3.3 Spiral growth modes

Figure 3.21: Spiral profiles of simple spirals on the Si-face (open circles 25mbar,

open stars 50mbar, open squares, 400mbar) and of double spirals on the Si-face

(open circle with dot 50mbar, open triangle with dot 250mbar). The curves on

the C-face are obtained for simple 6H (open triangles and rhombi, 100mbar and

400mbar respectively) and 15R (open pentagons, 200mbar) spirals. The solid lines

are a guide for the eyes and have no physical meaning.

crystal due to the fast incorporation kinetics which we have verified in chapter 2.2.

Consequently, the maximum concentration in the middle of the terrace c1 and thus

the supersaturation decreases (Fig. 3.22(d)).

The decrease of the supersaturation caused by the back stress effect leads,

according to the BCF theory (Λ ∝ 1/σ, Eq. 1.32), to an increased terrace width.

Therefore, the presence of the back stress effect should result in an increased average

terrace width as illustrated in Fig. 3.23.

The influence of the back stress effect on the spiral shape was simulated by
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(a) (b) (c)

(d)

Figure 3.22: (a) When the surface diffusion length is small, the diffusion fields

(red area) do not overlap. (b-c) With increasing diffusion length, the diffusion fields

overlap. (d) The corresponding concentration profile to (c), i.e. if the surface

diffusion length is larger than the terrace width.

Karma and Plapp [9]. They found that the terrace width of the first two spiral

turns is a few percent smaller than the width far away from the centre. The

velocity of the steps, and hence the supersaturation, increases after the first turns

and that is why the step spacing also increases. Nevertheless, the terrace width

approaches also a constant value which is larger than in the case without back

stress effect. Accordingly, the appearance of a maximum within the first turns

cannot be explained by the back stress effect.

Regarding the step velocity it becomes clear that the origin of the observed spiral

shape is related to a (or several) local effect at the spiral centre. In Fig. 3.24 a

step segment of an Archimedean spiral is highlighted red. This segment is first

located close to the emergence point of the dislocation (Fig. 3.24 (a)) and after

one spiral turn it will be at the position indicated in Fig. 3.24 (b). If the advance

rate of this segment is constant all over the spiral it follows that the terrace width

should always be the same. This is usually expected but not observed in our case.
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3.3 Spiral growth modes

Figure 3.23: If the surface diffusion length is larger than the half average terrace

width, the terrace width increases due to the back stress effect.

The increasing terrace width within the first turns is equivalent to an increase of

the step velocity in the centre. When the maximum terrace width is reached, the

velocity is reducing and approaching a constant value.

(a) (b)

Figure 3.24: In the case of an Archimedean spiral the advance rate of a step

segment is always the same and thus the step spacing remains constant.

From the discussion of the nucleation on the spiral terraces we know, that there

might be an Ehrlich-Schwoebel barrier on the Si-face grown crystals (which is

probably smaller than on the C-face). At the spiral centre this barrier can be

lowered or even cancelled by two effects as illustrated in Fig. 3.25. First of all, the

stress field of the screw dislocation facilitates the adatom incorporation from an

upper terrace. Secondly, adatoms on the upper terrace at the centre can diffuse

around the spiral centre to the lower edge. In both cases, the surface of collection

is increased at the edge and hence the advance rate increases as well. However,

2D numerical simulations are necessary to verify that these two effects actually

play a role in the spiral centre. Such simulations would go beyond the scope of

this thesis and therefore we have to leave the question open if the different adatom

incorporation in the centre is responsible for the observed spiral shape.
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Figure 3.25: The Ehrlich-Schwoebel barrier may be of less importance at the spiral

centre (atom A) due to the stress field of the screw dislocation (1) or adatom diffusion

around the centre (2). Adatoms which are not located at the centre (e.g. adatom B)

can only diffuse along the descending step in case of a strong ES barrier.

Experimental spiral growth laws

The measured values of the average terrace width for the simple spirals on the

Si-face are plotted as a function of the growth rate in Fig. 3.26. In addition,

the maximum terrace width of the simple and double spirals are plotted in this

graph. The error bars indicate the standard deviation of the terrace widths. For

the maximum of the double spiral we do not show error bars due to the low number

of samples.

The average terrace width of the simple spirals shows an inverse square root

dependence on the growth rate and follows thus perfectly the BCF theory in the

case of λs ≪ Λ. In contrast, the growth law of the maximum value of the simple

and double spirals is different. The fit exponent is -0.27 and -0.17 for the maximum

values of the simple and double spirals respectively. Although we are not able to

determine the supersaturation directly, this graph shows that the supersaturation

increases with increasing growth rate (R ∝ σ2, Eq. 1.33).

The increase of the fit exponent for the maximum terrace width of the simple

spirals may also be related to the effect of changed adatom incorporation at the

spiral centre. The supersaturation at the centre might be less dependent on the

variation of the pressure since this edge is not only supplied by adatoms from the

lower but also from the upper terrace. But as mentioned before, such a mechanism

is speculative and needs verification by simulations.

Previously, it has been discussed that the back stress effect changes the spiral

shape. In addition, this effect also changes the growth law [7][9]. Karma and Plapp

performed simulations on the spiral growth considering this effect and found a
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3.3 Spiral growth modes

Figure 3.26: The terrace width as a function of the growth rate on the Si-face.

The exponent from the power fits is -0.5 for the average of the simple spirals (filled

squares), -0.27 for the maximum of the simple spirals (open triangles) and -0.17 for

the maximum of the double spirals (open circles).

dependency of the terrace width Λ on the growth rate R of the form Λ ∝ R−n [9].

If n is equal to 1/2 there is no back stress effect present and the classical BCF

theory is applicable. The back stress effect is of importance if n is between 1/3

and 1/2.

Regarding the simple spiral shapes the presence of this effect can be excluded

due to the validity of the BCF theory that follows from the fit exponent. However,

for the double spirals the back stress effect may play a role. Due to the different

advance rates of the two branches, they approach each other on the hexagonal axes.

The diffusion length exceeds then the terrace width resulting in the overlap of the

diffusion fields and hence the back stress effect. Yet, the fit exponent of -0.17 is

still higher than in the simulations of Karma and Plapp. This may be attributed

to a limited domain size as will be shown later on in the simulations section.

Some remarks are necessary for the correct interpretation of the results of Karma

and Plapp. In their paper, they actually derived a dependence for Λ on σ, which is

Λ ∝ σ−n. As we do not have any mean to determine the supersaturation, we have

to replace the supersaturation by the growth rate. The back stress effect is only

possible if the surface diffusion length is larger than the terrace width and then it

follows for the growth rate that R ∝ σ (see chapter 1.4.3 for a detailed derivation).

This results in the relation Λ ∝ R−n. The exponent n is in case of the back stress

effect always between 1/3 and 1/2. But if the classical BCF theory applies, the

law for the rate is different (R ∝ σ2) and hence the exponent n depends on which

relation is considered. For Λ ∝ R−n the BCF exponent is 1/2 whereas it changes
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to 1 for Λ ∝ σ−n.

Tab. 3.1 summarizes the exponent for the different cases. When we compare

our results with those obtained from other authors it is important to know if they

obtained it by considering the supersaturation or the growth rate. For example, an

exponent close to 0.5 clearly indicates the back stress effect if the supersaturation

was measured in the experiment. Contrary, if the growth rate was determined

instead an exponent of almost 0.5 corresponds (rather) to the BCF theory.

Table 3.1: The exponent n for the different growth relations.

Λ ∝ σ−n Λ ∝ R−n

nBCF 1 1/2

nbs 1/3 < n < 1/2 1/3 < n < 1/2

Experimental verifications of the BCF theory or the back stress effect are rare

in literature. Ranguelov et al. analysed the spiral growth on Si (111) surfaces

[10]. A source Si wafer is placed parallel to a second Si wafer. The source wafer

is evaporated resulting in spiral growth on the second wafer. These spirals were

observed in-situ by low distortion reflection electron microscopy and the authors

found that n = 0.45± 0.05. As the authors determined the supersaturation, it is

evident that the back stress effect is present.

Another experimental observation of the back stress effect was by Wiesauer and

Springholz [101]. They studied the terrace width as a function of the growth rate

for PbTe spirals grown on BaF2 (111) substrates. The film was grown by molecular

beam epitaxy. The authors found an exponent of 1/3 which is clearly indicating

the back stress effect.

The terrace width of the spirals on the C-face is completely independent of the

supersaturation since the terrace width is constant for both 6H and 15R polytype

(Fig. 3.27). In chapter 3.2 it has already been shown, that the terrace width can

be constant if there are many dislocations on a single domain. Furthermore, the

width can become almost constant if the steps are generated by a micropipe.

The latter has been experimental verified by De Yoreo et al. [102]. They grew

crystals of potassium dihydrogen phosphate (KH2PO4, KPD) and analysed the

surfaces by AFM. The observed spirals always had an open core, i.e. they were

micropipes. The measured terrace widths were almost constant over a large super-

saturation range. This was attributed to the presence of the hollow core. However,

such an effect can be excluded in our case since we only considered single indepen-

dent spirals without empty core. In the following we will present simulation results
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Figure 3.27: The terrace width as a function of the growth rate on the C-face. The

fit of the 15R simple spirals is constant. The scale is the same as in Fig. 3.26.

which suggest that if both a substantial ES effect and a large surface diffusion

length are present, the variation of the terrace width with the growth rate becomes

small.

Simulations

The aim of the simulations is to find an explanation for the double Si-face and

single C-face spiral shapes and, moreover, for the corresponding growth laws. If

diffusion fields are overlapping, the back stress effect can reduce the power law

exponent down to 1/3 [9]. The additional presence of an Ehrlich-Schwoebel barrier

is certainly affecting the growth law. Its effect on the spiral and two dimensional

nucleation growth of Pt(111) was studied by Redinger et al. [8]. However, the

authors focused on the comparison between the shape of a hillock formed by spirals

and by nucleation. They did not report about the terrace width as a function of the

growth rate. The reported spiral shapes from their experiments and simulations

show similarities to the C-face spirals observed here, as the terrace width is first

increasing followed by a strong decrease. The authors attribute the latter decrease

to the finite size of the phase field simulation and hence the limited domain size of

the spirals. Also in our experiments the domain size of the spirals is always limited,

either by other surrounding domains or by the overgrowth of micropipes.

A simulation programme created in our laboratory was used to study the effect

of the surface diffusion length, domain size and Ehrlich-Schwoebel barrier on the

spiral shape as well as on the growth law [103]. The numerical approach is quite

similar to the one developed by van der Hoek et al. [71]. These authors simulated
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the shape of double spirals considering the anisotropy of the specific edge energy.

In our simulations the advance rate of a step depends only on the concentration

gradient at the rising edge. Incorporation of adatoms from the terrace above is

forbidden. This is equivalent to a strong Ehrlich-Schwoebel effect. The simulation

starts with a straight step fixed at one end which corresponds to the emergence

point of the dislocation. On this step there is a given number of points. The

velocity of each point is calculated similar to Eq. 1.28 but without reducing the

exponential function to its first order as in Eq. 1.21:

v = v0σ

{

1 +
1

σ

[

1− exp

(

ρc
ρσ

)]}

tanh

(

Λ

2λs

)

(3.10)

On the initial straight step the points used to calculate the step velocity are

equidistant. As the step proceeds during growth, the distance between the points

is changing. Due to the curvature of the step the points in the centre are closer

located to each other than outside. Therefore points are added where the curvature

becomes higher and deleted where the curvature becomes smaller, as proposed by

van der Hoek et al. [71].

Before the step velocity can be calculated, the local concentration and then the

terrace width must be determined first. The concentration profile in a segment

on the terrace is calculated as indicated by the grey shaded areas in Fig. 3.28.

For the terrace width, the normal to the current position in direction of the next

descending step is created. The terrace width is then obtained by interpolating the

intersection coordinates between the normal and the step. The advantage of this

approximation is, that the concentration profile does not need to be solved two

dimensionally accelerating thus computation time. But at the centre of a simple

spiral, this approximation becomes inaccurate since the local supersaturation is

affected by diffusion around the dislocation centre (Fig. 3.28, red shaded area). A

higher accuracy is hence obtained by simulating double spirals.

Our simulation is capable to include anisotropic effects and the stress field of the

dislocation but for simplicity these two effects are neglected. For each simulated

spiral it is ensured that the steady state of growth is reached.

The importance of the diffusion length on the spiral shape in case of a strong ES

effect is shown in Fig. 3.29. A diffusion length smaller than the terrace width results

in independent and equidistant steps (Fig. 3.29 (a)). When the distance between

a step and the domain boundary becomes smaller than the equilibrium terrace

width, which is the width without a domain boundary, the adatom concentration

decreases and thus the terrace width is reduced progressively.

The coupling of the diffusion fields, i.e. λs ≫ Λ, results in a spiral with

continuously decreasing terrace width towards the domain boundary. Consequently,
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(a) (b)

Figure 3.28: The accuracy of the simulation is lower on (a) single than on (b)

double spirals since diffusion at the centre is less important in the second case.

However, outside the centre, this does not play a role.

the terrace width is a function of the number of spiral turns and the size of the

domain.

Fig. 3.30 shows the maximum terrace width as a function of the domain size

and with the supersaturation as parameter for λs ≫ Λ. At low supersaturations

the domain size influences strongly the maximum terrace width. With increasing

supersaturation the variation of the terrace width diminishes. The actual diffusion

(a) (b)

Figure 3.29: Spiral shapes obtained (a) for small surface diffusion length (λs ≪ Λ)

and (b) large diffusion length (λs ≫ Λ). The spiral growth is limited to a disk which

corresponds to the domain size.
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on the surface is getting confined under the assumption of a strong Ehrlich-

Schwoebel barrier with increasing supersaturation as the terrace width decreases.

The larger the terrace width is, the larger is also the “catchment” area of adatoms.

As a consequence, the influence of a large diffusion length is of higher importance

for lower supersaturations.

The large possible variation of the maximum terrace width with the domain

size for a given supersaturation is also observed in our experiments, especially for

the 15R spirals (indicated by the error bars in Fig. 3.27). For instance, on the

sample with a growth rate of 12µm/h the measured maximum terrace width varies

between 7.03 and 17.4µm. This can be ascribed to the different domain sizes of the

spirals. This also implies, that the growth law can be partially concealed by the

variation of the domain size. Yet, according to the simulation results the maximum

terrace width is not independent of the supersaturation.

Figure 3.30: Simulated variation of the maximal terrace width xM versus the

ratio of finite domain size ρ0 and surface diffusion length λs with supersaturation as

parameter.

Experimentally we observed that the terrace width is constant after one turn on

the Si-face whereas there is a continuous decrease after a maximum on the C-face.

We also simulated the terrace width as a function of the number of spiral turns for

varying surface diffusion length normalized to the critical radius defined in Eq. 1.24

(Fig 3.31). For diffusion lengths smaller than or equal to half the terrace width

(λs/ρc = 500 in Fig 3.31) the terrace width is constant after a few turns except
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close to the domain border. As the surface diffusion length increases, the constant

plateau decreases and finally only a broad peak remains. The simulated spiral

shape agrees in principle with the observed shapes for the spirals on the C-face

and the double spirals on the Si-face (Fig. 3.21). Deviations between experiment

and simulation can be explained by the assumption of a strong Ehrlich-Schwoebel

effect in our simulations, which completely forbids the incorporation of adatoms

from upper terraces. We do not suppose that this corresponds to the real situation

during the growth.

Figure 3.31: Simulated variation of the terrace width with the number of turns N ,

with the diffusion length λs as parameter.

The conclusion that the diffusion length is larger on the C-face than on the

Si-face is in agreement with the results from nucleation (see chapter 2.3.3) and the

publication by Matsunami et al. [67].

3.4 Spiral step dissociation

The spiral growth on SiC on-axis crystals is a well known and understood growth

process. During the growth of SiC crystals on C-face substrates in this work it was

observed that under certain reproducible growth conditions the top bilayer of a

spiral dissociated as shown in Fig. 3.32(a). This phenomenon has not yet been

described or reported in literature.
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(a) (b)

Figure 3.32: (a) A 4H spiral on a C-face substrate. The top bilayer (2.5 Å)

dissociated while the other bilayers remain bunched (height 7.5 Å). (b) A 6H spiral

on a Si-face sample showing no dissociation. The step height is 15 Å.

3.4.1 Experimental

SiC crystals were grown on 6H on-axis Si- and C-face substrates. The growth

process was the same as described in chapter 2.1.2. The deposition pressure was

varied between 10 and 400mbar and the deposition time between 30min and

5 h. The growth spirals on the sample surfaces were characterized as explained in

chapter 2.1.3. On the Si-face substrates the grown crystal were always of the 6H

polytype. In contrast, the domains grown on the C-face were either of the 4H or

15R polytype. The 6H polytype was mainly observed on micropipes on the C-face.

3.4.2 Results

A spiral step dissociation on the sample surfaces was observed when

1. a C-face substrate and

2. a fresh SiC powder source

were used for the growth process.

The dissociation of the top bilayer was observed for any polytype (4H, 6H, 15R),

for any pressure and any deposition time studied. The height of 2.5 Å of this layer

was confirmed by AFM in all cases and is exemplary shown in Fig. 3.33. The

other bilayers below the dissociated one remained bunched. Fig. 3.35 shows some

examples of dissociation for different growth conditions. The spiral dissociation

was also observed on a crystal grown on a C-face Lely seed (Fig. 3.36).

Experiments on the Si-face with the same growth parameters as on the C-face

never resulted in dissociated growth spirals, even when a fresh SiC powder was used.
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(a) (b) (c)

Figure 3.33: Step profiles measured by AFM of (a) a 4H spiral, (b) a 6H micropipe

and (c) a 15R spiral. Only the top bilayer dissociates and its height is always 2.5 Å.

On the C-face the dissociation was only observed with a fresh powder, otherwise

the step profile was the same as on the Si-face.

Having a closer look on the dissociated bilayers it can be noticed that next to

the emerging point of the screw dislocation the steps are bunched and that there is

no dissociation. However, within the first half turn of the spiral, the top bilayer

detaches. The width of the dissociated bilayer is in most cases around half the

total terrace width as illustrated in Fig. 3.34. The term total terrace width means

the distance between two bunched steps. In addition, the dissociated bilayers are

usually unstable and show fluctuations. The phenomenon of parasitic nucleation

that was observed on some samples was discussed previously in chapter 2.3.

Figure 3.34: The position of the dissociated bilayer is schematically illustrated

for the 4H polytype. The edge of the dissociated step is observed to be around the

middle of two bunched steps for all polytypes.
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Figure 3.35: The step dissociation was observed for all polytypes (a-c), varying

pressures (d-f) and deposition times (g-i). Note that all shown spirals are from

different samples.
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3.4 Spiral step dissociation

Figure 3.36: A dissociated spiral grown on a Lely seed. The dissociation is

maintained over the whole spiral.
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3.4.3 Discussion

Related phenomenons

The step height of closed core growth spirals is usually an integer value of the c

lattice parameter. Amelinckx was the first who observed that 6H spirals may form

double growth spirals [70]. These spirals consist of two branches with step heights

of 7.5 Å. Thus one branch corresponds to three bilayers or a half unit cell. Also the

step height of 15R spirals is with one third of the unit cell (12.5 Å) smaller then

the actual c lattice parameter [3]. However, all these steps are still higher than the

single bilayer observed in this work.

Another phenomenon often discussed in the field of SiC growth is step bunching.

Several steps on the surface bunch to form macroscopic steps whose height can be

some tenth of the unit cells. Step bunching is usually observed in the step flow

growth on off-axis substrates where straight steps are growing laterally [104] but

also on growth spirals [95]. The formation of these macrosteps is explained by the

relative movement of two steps. While one step is moving slowly the step above

moves faster and is thus catching up to the lower step resulting in a macrostep.

This idea of step bunching does not correspond to the observations made in this

work as the top layer is detaching from the main step. Yet, the bilayers below the

dissociated step are here referred to as bunched in order emphasize the difference

to the top bilayer.

Origin of the spiral step dissociation

Kimoto et al. studied the CVD growth of 4H, 6H and 15R SiC on substrates

off-oriented 3 − 8◦ towards the 〈112̄0〉 direction [105][106]. They observed that

on the Si-face the step height mostly corresponds to two (4H) or three bilayers

(6H and 15R) while on C-face mainly single bilayer steps exist. The off-angle and

polytype has only a low impact on the step height contrary to the C/Si ratio that

can drastically change the morphology. High C/Si ratios, i.e. 5 whereas 2 is low,

rather lead to bunched steps. They suggest that a low C/Si ratio results in a higher

nitrogen doping concentration which may impede the advance of the steps and

maintain hence the single bilayers. This argument is based on a publication of

Larkin et al. who reported that nitrogen and carbon compete for the incorporation

on C sites in the crystal and that a C-rich environment results in a lower nitrogen

concentration in the crystal [107].

Based on the experimental observations of Kimoto et al. Monte Carlo simulations

were performed by Stout and in addition by Borovikov et al. [108][109]. Stout
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3.4 Spiral step dissociation

simulated the growth of various polytypes (2H, 4H, 6H, 3C) on 8◦ off-oriented

(0001) surface towards the 〈11̄00〉 directions. The steps of the 3C polytype remained

unbunched, i.e. of single bilayer step height, while for the hexagonal polytypes

step bunching occured. The step configuration is 2 bunched bilayers for the 2H,

1+3 bilayers for the 4H and 1+1+4 bilayers for the 6H polytype. According to

Stout, this is caused by the different bonding configurations of the bilayers.

A similar argument is brought forward by Borovikov et al. Depending on the

orientation of the tetrahedrons in the bilayer, two bonding configurations are

possible at the step edge (Fig. 3.37). The jump of an adatom from an upper

layer to the lower step is more difficult at a SN than at a SD step. Two jumps

are required for an adatom at a SN step in order to get attached to the step. On

the other hand, only one jump is necessary for an adatom at a SD step. Hence,

adatom incorporation on a SN step impeded resulting in a lower step velocity. The

Ehrlich-Schwoebel barrier is consequently different for both step types.

The difference between the simulations of Stout and Borovikov et al. is that in the

latter publication a scaling factor is introduced, which can be interpreted as adatom

surface diffusion length. This length is dependent on the tetrahedron orientation of

the underlying bilayer. Thereby ”beyond-nearest-neighbor interactions”, which are

responsible for the long range formation of a polytype, are taken into consideration.

The scaling factor is taken from Righi et al. who determined this factor for the

Si-face [56].

As a result, Borovikov et al. found that on a (0001) surface with a miscut

towards the 〈11̄00〉 direction first a stepped structure of 3+3 bilayers is formed

which then further bunches to steps with 6 bilayers. A miscut towards the 〈112̄0〉
always results in 3+3 bilayers. This configuration remains stable due to a zigzag

step shape with alternating SN and SD segments within one step. On the C-face

similar results are obtained. Due to the lack of data for the scaling factor on the

C-face, they used the same factor on both faces. The authors suggest that this

causes the similar results.

The experimental results of Kimoto et al. and the related simulations of Borovikov

et al. and Stout show, that the seed polarity and the step orientation plays an

Figure 3.37: The advance rate of a step depends on the bonding configuration at

the edge. Image taken from [109].
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important role for their configuration. Now coming back to the spiral dissociation,

we can conclude that the phenomenon observed by Kimoto et al. is not related to

our dissociation. The spirals are continuously changing their step orientation when

they wind up which is completetly different to the miscut induced step morphology

of Kimoto et al. The simulations of Borovikov et al. show that the bunching

behavior is depending on the step orientation which is conflicting with a spiral

shape. Therefore, there is probably another mechanism responsible for the spiral

step dissociation.

Since the different step configurations are unlikely to cause the spiral dissociation,

we will briefly examine the suggestion of Kimoto et al., that the amount of impurities

might be important for the step structure. The analysis of the SiC powder before

and after the growth process by X-ray diffraction (Fig.3.38) reveals that only the

fresh powder contains silica (SiO2). Thus it can be concluded that the silica in

the powder evaporates completely during the heat ramp and initial SiC growth.

This possibly changes the partial pressures of the sublimating SiC species and

hence the C/Si ratio. This might also enhance the incorporation of impurities, as

reported by Larkin et al., which result in the spiral dissociation. Moreover, such a

mechanism would agree with the observation of step bunching if the crystals are

grown from an used powder which does not contain silica. The incorporation of

nitrogen impurities is known to be easier on the C- than on the Si-face [110][51].

Another difference between a fresh and used powder is their different porosity. A

fresh powder can adsorb more air and hence nitrogen during air exposure than a

used powder with reduced porosity. This might explain why the dissociation is

only observed on the C-face growth with a fresh powder.

For the sake of completeness, it should be mentioned that the doping via nitrogen

can result in step bunching. This was reported by Papaioannou et al. for the CVD

growth on 3.5◦ off-oriented (0001) substrates [111]. They used N2 and NH3 as

doping gas and observed a strong increase in step bunching compared to undoped

crystals. The nitrogen concentration in the crystals is not mentioned. Ohtani et al.

studied the formation of meandering macrosteps due to nitrogen doping [112]. The

step structure of doped (N = 1 ·1019 cm−3) and undoped (N = 4 ·1017 cm−3) crystals

grown on the {0001} faces were analyzed by AFM. The undoped C-face crystal

and the doped Si-face crystal show both perfectly straight and equidistant steps.

On the doped C-face crystal the formation of meandering macrosteps of 7 to 15 nm

is observed. They suggest that this is caused by a competition between modified

step kinetics due to the nitrogen incorporation and the elastic step interactions.

In both studies, step bunching is observed if additional nitrogen is introduced

to the growth process. The authors of both publications agree, that the usual
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3.4 Spiral step dissociation

Figure 3.38: X-ray diffraction pattern of a fresh and a used SiC powder. The

different phases found in the diffraction pattern for SiC are not indicated individually

in order to emphasize that the main difference between the powders is the SiO2

content.

unintentional doping does not result in bunching. Therefore we can conclude, that

the doping phenomena reported by Papaioannou et al. and Ohtani et al. are not

of importance in our case.

Chernov reported for the vapour growth of β-methyl naphthalene and p-toluidine

crystals that macroscopic steps gradually disintegrate into microscopic steps with

increasing supersaturation [100]. We do not observe an effect of the pressure, and

hence supersaturation, on the spiral dissociation and therefore we infer that the

observations of Chernov rely on another mechanism.

It is known that bulk strain can change the structure of the steps on a vicinal

surface [113]. This is usually observed and studied on heteroexpitaxial growth

of thin films [113][114][115]. Xie et al. studied for example the step structure of

Ge0.5Si0.5 films and found that the step energy strongly increases (decreases) if the

layer is under tensile (compressive) strain [113]. The spiral steps are under shear

strain of the screw dislocation and hence there is no tensile or compressive strain

(except if the dislocation is of the mixed type). There exists no literature on the

influence of the shear strain of a dislocation on the step structure but we assume

that the dissociation is impeded by the shear in the center, since the top bilayer

detaches not directly in the centre but after around a half spiral turn.

In summary, a mixture of several effects might cause the spiral step dissociation.

One of them is possibly the enhanced impurity incorporation when silica is present.

As the nitrogen incorporation rate is higher on the C-face than on the Si-face the
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polarity dependence of the dissociation might be explained. However, the shear

strain rather impedes the step detachment in the centre. Further investigation are

necessary to understand the mechanism of the dissociation.

The role of SiO2

In order to check if the SiO2 content in the powder is of importance for the step

dissociation, two additional experiments were performed. The aim was to force

the step dissociation where previously only bunched steps were observed, i.e. on

C-face with a used powder and on Si-face with a fresh powder.

Firstly, 0.54 g SiO2 powder was dispersed on top of an already used SiC powder

crucible. A piece of silicon (0.74 g) was placed on the powder. Then a SiC crystal

was grown on a C-face substrate for one hour at 200mbar. On the sample surface

15R and 4H spirals were observed. While the steps of the 15R decomposed into

single bilayers at the step edge, the 4H steps remained perfectly bunched (Fig.

3.39). It is clear that the SiO2 has an effect on the 15R step structure but it is

curious that the 4H steps remain straight and bunched. Hence, the specific step

configuration of each polytype might be important for the stability of a step.

(a) (b) (c)

Figure 3.39: Adding SiO2 powder to a used SiC powder source for the growth of a

SiC crystal on the C-face results in destabilization of the steps for the (a)(b) 15R

but not for the (c) 4H polytype. On the 15R polytype the bunched step decomposes

into single bilayers.

For the second experiment, a fresh SiC powder was used. On the top 19.90 g

SiC powder was mixed with 4.34 g SiO2. In addition, a silicon piece of 0.58 g was

added as illustrated in Fig. 3.40 (a). Again, a SiC crystal was grown for one

hour at 200mbar but this time on a Si-face substrate. On the sample surface only

polygonized 6H spirals were observed. The steps are straight but small triangularly
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3.4 Spiral step dissociation

shaped bilayers are located at the step edges. Furthermore, few large islands

are visible on the terraces. A step dissociation is not present and therefore it is

concluded that the addition of SiO2 to the powder is not sufficient to force the

dissociation on the Si-face.

(a) (b) (c)

Figure 3.40: (a) SiO2 was mixed with SiC powder on top of the crucible. (b) The

sample surface of SiC crystal grown on Si-face is covered by polygonized 6H spirals.

(c) On the spiral surfaces islands and small triangular bilayers close to the step edges

are visible.

From these experiments it is not clear if the SiO2 content in the powder may

affect the step structure. Experiments with varying SiO2 content in the powder

might give more information on the role of silica during the growth process.

Fluctuations of the top bilayer edges

All dissociated bilayers show fluctuations on their edges, i.e. they are not as

straight or perfectly round shaped as the bunched steps. In order to understand

why only single layers are diffuse we will give a short overview on the roughening

of surfaces and steps.

The roughening transition describes the change from a smooth to rough surface

due to an increase of the driving force or temperature. The Jackson factor α,

already introduced briefly in chapter 3.1.2, is a measure for the surface roughness

[96]. If α ≤ 2 the surface is expected to be rough, if α > 3 it is smooth. Typically,

for metals the Jackson factor is 2, for semiconductors 2 < α < 3 and for oxides and

silicates α > 3 [95]. A surface is rough if 50% of the available sites are randomly

covered by atoms whereas a surface is smooth if there are either no atoms on the

surface or if the coverage is 100%.

The effect of the surface roughness on the spiral growth was simulated by Gilmer
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[116]. The growth spirals only contribute significantly to the growth rate at

low supersaturations and low temperatures. If the supersaturation is high, 2D

nucleation dominates the growth process. At high temperatures the number of

kink sites provided by the spirals is low compared to those generated by the surface

roughening. Consequently, the spiral arms are smoother at lower temperatures.

Gilmer did not study the roughness of a spiral step as a function of their height.

There is, to our knowledge, no publication on the relation between spiral step

height and their roughness. But, there is a similar effect on stepped surfaces, the

step diffusivity, which has been studied thoroughly.

In the literature there are many examples of studies on the diffusivity of steps

(see ref. [117] for an extensive list). For instance, Pai et al. related the fluctuations

on Ag (110) steps with the dominating mass transport mechanism on the surface

[118]. An expression which relates the diffusivity of a step with its stiffness was

derived by Bartelt et al. [119]. It has also been observed, that the step stiffness is

dependent on the step orientation. On silicon the reported values for the stiffness

vary in a wide range from 0.72meV/Å on the (113) surface to 68meV/Å on the

(111) surface at 900◦C [120][121].

By making use of the expressions from Bartelt et al., Sudoh and co-workers

analysed the diffusivity of steps as a function of their height on the Si(113) surface

[122]. They determined the fluctuations on single (height 1.63 Å), double, triple

and quadruple steps from STM images and deduced the corresponding stiffnesses.

According to their results small steps are more diffuse, i.e. show more fluctuations,

than high steps. Their conclusion is that the step stiffness is proportional to the

step height. This scaling has been confirmed by Yoon et al. also for steps on the

Si(113) surface [120].

This reasoning is also valid for the spiral steps which we have observed. On our

SiC samples the fluctuations are only observable on steps of single bilayer height.

Fig. 3.41 shows bunched steps of 5.0 Å height and dissociated single bilayers of

2.5 Å height next to two micropipes. Hence, steps that are at least 5.0 Å high are

stiff enough to form a straight edge at the given growth temperature (2100 ◦C).

The diffusivity varies in a wide range for the single bilayers on the different

samples. This might indicate that the fluctuations are very sensitive to the growth

temperature. Although the temperature was set to 2100 ◦C for all experiments,

variations cannot be excluded as the temperature is only read on top of the graphite

crucible. The contact between seed and crucible is probably not always identical

causing thus temperature differences on the seed surface.
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3.4 Spiral step dissociation

Figure 3.41: Step fluctuations are only observed for single bilayers.

The position of the dissociated step

The position of the dissociated step on a terrace was measured on AFM images

of spirals with at least two turns. The latter condition is necessary to verify that

the dissociated step approaches a stable position. The relative position of the

dissociated step between two bunched steps, which is the upper to total terrace

width ratio, is plotted in Fig. 3.42 for different polytypes.

Figure 3.42: The relative position of the most dissociated steps is around 0.5

(dashed line), i.e. in the middle of a terrace. Λr is the distance of the dissociated

step to the rising step and Λd respectively to the descending step. The green squares

correspond to the 6H, the black circles to the 15R and the red triangles to the 4H

polytype.
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The average of all relative positions is 0.47 ± 0.13 and hence the dissociated

step is located around the middle between two bunched steps. The data points at

75mbar for the 15R polytype are obtained from one sample and indicate that there

can be a large variation of the step position even for spirals grown on the same

sample. Therefore, we infer that the principal dissociation is caused by the general

growth conditions (seed polarity and powder preparation) but the relative position

is influenced by local parameters. This could be, for example, the local impurity

concentration. It is conceivable that a higher local impurity concentration results

in a stronger retardation of the dissociated step and hence a position closer to the

rising step.

The question is now, why the dissociated step remains at its position in the

middle of a terrace even far from the spiral center. We suggest that this is related

to the elastic interactions between the steps.

If one considers two steps with different heights but with a similar net flux

towards them, one would expect a faster advance rate for the lower step. Less

adatoms are necessary for the advance of this step. The experiments show that

the dissociated steps are located around the middle of a terrace, independent of

the growth time. This indicates that the velocity of the bunched and dissociated

steps is equal despite their unequal heights. If their velocities were different, the

faster step would catch up the slower one and hence only bunched steps should be

present.

Atoms on a stepped surface do not have the same bonding configuration as the

atoms on a flat surface. This causes a distortion of the perfect crystal lattice and

hence a strain field. Consequently, each step is correlated to a elastic energy Wint

and in the case of two steps of the same material but different step height and

terrace width it follows [123]

Wint = 2h1h2

(1− ν)2

πE
d2biγ

2

(

1

Λ2
r

+
1

Λ2
d

)

(3.11)

where ν is the Poisson ratio, E Young’s modulus, h1 and h2 the number of bilayers

per step, dbi the height of one bilayer (2.5 Å), γ the surface energy, Λr and Λd the

terrace widths as illustrated in the inset of Fig. 3.42.

In principle, this equation could be used to perform simulations and hence to

check if the assumption is right that the elastic interactions are responsible for

the stable position of the dissociated bilayer. This is a challenging task, as the

growth process is highly dynamic. The dynamics of this process become clear if

we consider only one dissociated bilayer exactly located in the middle of a terrace.

By incorporating an adatom at the step edge, this step advances and the elastic

interactions with the nearby steps, and hence the surface concentrations on the
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steps, are changing. As a consequence, the advance rates of the bunched steps is

also affected. The simulation of such a dynamic process is beyond the scope of

this thesis and therefore we have to leave the question open whether the elastic

interactions are responsible for the stable position of the dissociated step.

We would like to note that despite of elastic interactions the position of the dis-

sociated step is not pinned to the centre of a terrace. Simulations and experimental

results prove that the increased mobility of kink sites at elevated temperatures

results in a variation of the average distances between steps [124][121]. A Gaussian

distribution of step-step distances is obtained if there are repulsive forces, such as

elastic interactions, between the steps [125]. This is what we actually observe for

the dissociated step as shown in Fig. 3.43.

Figure 3.43: Distribution of the dissociated step on a terrace. The dashed line

corresponds to a Gauss fit.

The drop at exactly 0.5 is however odd and indicates that step positions close to

the terrace centre, but not in the centre, are preferred. But as the number of data

points is low, the uncertainty of this histogram is high. Further studies are needed

in order to verify and understand this distribution.

3.5 Conclusion on the growth spirals

In this chapter, the focus was on growth spirals on SiC. We have observed that the

degree of polygonization of a growth spiral is depending on the polytype. Since

the polygonization decreases with increasing distance to the centre we concluded

that the specific edge energies are different for the two types of facets.

The average terrace width of the simple spirals on the Si-face as a function of

the growth rate follows perfectly the BCF theory for λs ≪ Λ. The supersaturation

is higher for low pressures, or equivalently high growth rates, but no statement on
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the absolute supersaturation can be made. The growth law of the double spirals is

assumed to be strongly affected by the overlapping diffusion fields of the terraces.

The maximum terrace widths on the C-face are constant for a wide range of growth

rates. This has never been observed before for closed simple spirals. We assume

that a limited domain size, the back stress effect and a strong Ehrlich-Schwoebel

barrier contribute to this constant terrace width on the C-face.

Under certain growth conditions, we achieved a dissociation of the top spiral step.

This novel observation is attributed to impurity incorporation and shear strain of

the screw dislocation but further studies are necessary to understand the underlying

mechanism. We have demonstrated that the stiffness of the dissociated step is

extremely low which is why these steps show large fluctuations. The dissociated

step is usually located around the middle of a terrace. We assume that elastic

interactions between the step are responsible for the position of the dissociated

step.
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Conclusion

In this thesis the on-axis growth of silicon carbide crystals was studied. New

insights on the growth mechanism were obtained through a detailed analysis of

surfaces grown by PVT and complimentary simulations.

We have ascertained that the growth of SiC by physical vapour transport is limited

by the vapour phase transport and not by the surface diffusion and incorporation

kinetics of adatoms at the surface. Therefore we conclude that the density of

growth spirals, or kink sites respectively, is sufficiently large that the growth rate

is not lowered.

Nucleation was occasionally observed on both Si- and C-face. The analysis

of the nuclei revealed that the Ehrlich-Schwoebel barrier is more pronounced on

the C- than on the Si-face. Due to the nuclei distribution on the spiral steps we

conclude that the diffusion length on the C-face is larger than half the terrace width

(λs > 3.12µm) at the used growth conditions. On the contrary we found that the

diffusion length on the Si-face is smaller than half the terrace width (λs < 3.28µm).

Although we could not determine the exact diffusion lengths, the obtained orders

of magnitude can be helpful for other simulations on SiC.

For the first time, the growth modes of the spirals on the Si- and C-face of SiC

were studied. The experimental results show that the growth mode of the spirals

depends not only on the seed polarity, but also on the spiral type. The single

spirals on the Si-face follow perfectly the BCF theory. However, the growth mode

of the double spirals is different due to the back stress effect. The terrace widths

are smaller than the diffusion length resulting in overlapping diffusion fields and a

modified spiral growth.

The spirals on the C-face do not show any variation of the terrace width for

changing growth rates. This has never been observed before for closed core spirals.

Our simulations suggest that for a limited domain size, a strong Ehrlich-Schwoebel

effect and the back stress effect can significantly lower the dependency of the terrace

width on the growth rate. Yet, according to the simulation results the terrace

width is not totally independent of the supersaturation. Hence, the simulations

cannot entirely explain our experimental results.

The analysis of the spiral terrace width as a function of the growth rate does

not give direct access to the supersaturation. However, the results on the Si-face
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reveal that the growth rate increases with the supersaturation. Therefore, we can

determine on which sample the supersaturation was higher if we compare their

terrace widths.

Finally, we observed a novel dissociation of spiral steps into a single bilayer and a

bunched step. This dissociation is only obtained if a fresh powder and a C-face seed

is used. The origin of this effect could not be clearly determined but we assume

that impurity incorporation play an important role. The position of the dissociated

step is around the centre of two bunched steps. We suggest that this is caused by

the elastic interactions between the steps.

Our studies revealed new mechanisms on the spiral growth of SiC. Yet, we could

not answer satisfactorily all questions caused by our observations. Hence, there is

still some work to do.

The independence of the C-face spiral terrace widths on the supersaturation

requires further study. As our simulations demonstrated, the domain size is a

critical parameter influencing the terrace width. The initial domain size cannot be

determined, but selecting only the spirals which are alone on a large domain might

reveal if the terrace width is really fully independent of the supersaturation.

Another unresolved issue is the origin of spiral step dissociation. The experimental

observations suggest that the SiO2 content in the powder plays a crucial role on this

effect. One approach to check if the SiO2 is of importance for dissociation would

be to grind the used powder and perform grow experiments with increasing SiO2

content in this powder. Hence, a dissociation should be observable for a certain

amount of SiO2. It would be also interesting to attempt if a further increase of the

SiO2 content in the powder results in a dissociation of all steps.

We assume that the position of dissociated step is maintained due to elastic inter-

actions between the steps. This assumption has still to be verified by simulations.
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A Appendix

A. Differential interference contrast (DIC)

microscopy

The DIC microscopy, also Nomarksi microscopy, is an optical microscopy technique

used to image samples with little contrast in normal optical microscopes.

The optical setup of a DIC microscope can be either in transmission or reflection

mode. The reflection mode will be described here as it was used for this thesis.

Fig. A.1 shows the principal setup of the reflection mode. First the entering light

is linearly polarized. Then the polarized light is split into two rays polarised at

90 ◦ to each other by a Nomarski prism.

Figure A.1: Optical arrangement of a DIC microscope in reflection mode.(1)

Polarizer; (2) Nomarski prism; (3) objective lens; (4) light reflector; (5) analyzer.

Image taken modified from [126].

This prism consists of two birefringent crystals (e.g. quartz) wedges that are
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cemented together in a manner that the optical axis of the first wedge is parallel

to the surface and the optical axis of the second one obliquely to the surface.

The two rays are aligned parallel by the objective lens. The distance between

these two rays is called shear and is much smaller than the resolving power of the

objective. The rays are reflected on the sample surface and recombined by the

Nomarski prism. If the optical path is identical, the beam is recombined to linear

polarized light and blocked by the analyzer that is in crossed position with the

polarizer. However, if there is a difference in the optical path the Nomarski prism

recombines the beams to elliptically polarized light which is not blocked by the

polarizer.

Thus areas where the height changes appear bright whereas flat areas appear

dark on the image. The obtained image seems like a pseudo 3D image. This is

actually not the case as the bright regions only indicate a change in height but it

is not clear if one sees e.g. a mound or sink. The advantage of DIC microscopy

compared to normal optical microscopy is that even very small changes in height

can be observed. The smallest by DIC microscopy seen spiral step height was 7.5 Å

in this thesis (Fig. A.2).

Figure A.2: Close to the height resolution limit of the used Normaski microscope:

a 6H double spiral with a step height of 7.5 Å.

B. Atomic force microscopy (AFM)

The atomic force microscope is a tool to measure surface properties. In this work

the AFM was used to analyze the surface topography of the samples. There are

two modes to do this: contact and tapping mode. The principal setup which is

shown in Fig. B.1 is the same in both cases. A probe scans the surface line per

line. The piezo tube controls the x,y and z movement of this probe. On the back

side of the probe a laser is reflected towards a photodetector.
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Figure B.1: Scheme of an AFM setup. (1) x,y and z piezo tube, (2) Cantilever and

probe, (3) Laser, (4) Photodetector, (5) oscillation piezo, (6) Sample. Image taken

modified from [127].

In contact mode, the probe is in direct contact with the sample surface. The

setpoint of the force exerted by the probe on the sample is in the repulsive regime as

illustrated in Fig. (a). The position of the laser on the photodetector is maintained

constant by the AFM feedback system. If the height of the sample is changing

during scanning the laser is deflected from the setpoint on the detector and the

feedback system corrects this deflection by changing the z position of the piezo

tube. The response to the change in height is not instantaneously as it is affected

for instance by scanning frequency, gain parameters and sample topography (flat

or rough). Therefore the deflection signal gives the error of the measurement. The

amplitude of this signal indicates how fast the feedback system reacts on a height

change.

Contrary to the contact mode, the probe is not in permanent contact with the

sample surface when the tapping mode is used. An oscillating signal is generated

and applied to the piezo between the piezo tube and the cantilever. Thus the

cantilever is oscillating mechanically. The frequency is chosen to be close to the

resonance frequency of the cantilever. If the probe is close to the surface, van

der Waals forces cause a shift of the resonant frequency that is measured by the

feedback system. Then the z position of the probe is adjusted in order to keep

the resonant frequency constant. In tapping mode the error signal corresponds

to the measured amplitude of the cantilever. In addition to the scan parameters
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in contact mode, the amplitude of the cantilever oscillation can be set in tapping

mode. The smaller this amplitude is, the closer the probe is to the surface and the

stronger the interactions between probe and sample surface become.

The advantage of the contact mode is that the response of the tip is directly

related to the change in height and thus the surface can be measured fast. However,

this mode might damage the sample surface or cause wear of the probe. The

tapping mode is slower but damages the surface less. Also the signal to noise ratio

is better in tapping mode.

C. Raman spectroscopy

Raman spectroscopy is a widespread method to identify the polytype(s) of a SiC

crystal. The sample is irradiated with monochromatic light which is scattered

either elastically or inelastically. A photon can excite molecular vibrations to a

higher level if the frequency of the photon is the same as the difference between the

two vibrational states as illustrated in Fig. C.1. After excitation the vibrational

state returns to a lower state by emitting a photon. If this state is the same as

the initial one, the photon frequency is also the same and the light was scattered

elastically. This is also called Rayleigh scattering. Yet, the vibrational state can be

higher than the initial one and consequently the frequency of the emitted photon

will be smaller than of the exciting photon. This is Strokes scattering and it is

an inelastic scattering process. A third possibility is, that a molecular vibration

already at a higher level is excited to an even higher state and that after photon

emission the initial vibrational state is obtained. Then the frequency of the emitted

photon will be larger than the frequency of the exciting photon. This is also an

inelastic scattering event and is called Anti-Stokes scattering.

Figure C.1: Possible excitations of molecular vibrations. Image taken modified

from [126].

In the first case, the elastic or Rayleigh scattering, the frequency of the light does

not change. However, the frequency of the light changes if it is scattered inelastically,
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i.e. energy is transferred to the crystal during the scattering process (Strokes and

Anti-Strokes scattering). Since Anti-Strokes scattering requires an already excited

state, its intensity is significantly lower than for the Strokes scattering. The

frequency change caused by the inelastic scattering is the Raman shift.

Raman spectra are showing the intensity of the Raman shift in terms of wavenum-

ber ν̄. The wavenumber is defined as ν̄ = 1/λ = ν/c. The observed bands in the

Raman spectra correspond to molecular vibration frequencies. The spectra in this

thesis were analyzed by the fingerprint method. The reference of Raman shifts

given in Tab. C.1 is compared to the measured spectra in order to determine the

polytypes.

Table C.1: Raman shifts of various SiC polytypes. Table taken from [128].

polytype x = q/qB

frequency (cm−1)

planar acoustic planar optic axial acoustic axial optic

FTA FTO FLA FLO

3C 0 - 796 - 972

2H
0 - 799 - 968

1 264 764 - -

4H

0 - 796 - 964

2/4 196, 204 776 - -

4/4 266 610 838

6H

0 - 797 - 965

2/6 145, 150 789 - -

4/6 236, 241 504, 514 889

6/6 266 767 - -

8H

0 - 796 - 970

2/8 112, 117 793 - -

4/8 203 403, 411 917, 923

6/8 248, 252 - -

8/8 266 767 - -

15R

0 - 797 - 965

2/5 167, 173 785 331, 337 932, 938

4/5 255, 256 769 569, 577 860

21R

0 - 797 - 967

2/7 126, 131 791 241, 250

4/7 217, 220 780 450, 458 905, 908

6/7 261 767 590, 594
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D. Field emission gun scanning electron microscopy

(FEG-SEM)

Electrically conductive sample surfaces can be imaged by scanning electron mi-

croscopy (SEM). The resolution of the SEM is about a few nm and the magnification

can be set between 10x - 500 000x.

Fig. D.1 shows a schematic drawing of a SEM. In the used Quanta 250 SEM

the electron beam is generated by a field emission gun (FEG). A high electric

field is applied to a very sharp metallic tip and as a result electrons are drawn off

the metal due to the tunneling effect. The brightness of the FEG is much higher

(∼ 5 · 108Acm−2sr) than for a thermoionic emission gun (∼ 5 · 105Acm−2sr) but

requires a high vacuum to avoid emission instabilities due to residual gas [126].

The condenser lenses demagnify the electron beam. The objective lens focus the

beam on the sample surface.

Figure D.1: Schematic drawing of a SEM. Image taken from [129].

The electron beam interacts with the specimen surface in various ways. Inelastic

scattering causes the emission of secondary electrons (SE) from atoms in the sample.

Due to their low energy, only SE generated close to the surface can be detected.

Therefore, the SE are used to obtain topographic images.
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Electrons of the incident beam can also be elastically scattered by the nuclei

of the sample atoms. These backscattered electrons (BSE) give information on

the chemical composition as the probability of backscattering is depending on the

atomic number.

Elements can be further detected by emitted X-rays. The electrons of the beam

can eject core electrons of atoms in the sample. An electron of this atoms in a

higher state can fall to the lower state of the ejected electron. Since there is an

energy difference between these two states, this process is accompanied by the

emission of a X-ray photon. The energy of this photon is characteristic for the

element and can be detected by a detector. Hence, chemical compositions of a

sample can be analyzed.

The SEM is a popular tool in science due to the multiple possibilities to image

and characterize samples. However, in the case of SiC, its application is limited.

The electron beam reacts with residuals of the vacuum pump which cause a

carbonization of the surface. Furthermore, exact height information of the sample

surface cannot be extracted. Also the spiral steps are hard to image, as the small

step height only generates a low contrast. The advantage of the SEM is that it can

image a larger area than the AFM.

E. High resolution transmission electron microscopy

(HRTEM)

Atomic structures can be imaged by high resolution transmission electron microscopy

(HRTEM). The resolution limit of the used JEOL 2010 is 1.9 Å.

Fig. E.1 shows a schematic drawing of a TEM. An electron beam is generated by

a field emission gun (see appendix D.). The beam is demagnified by the condenser

lenses. The intermediate lens is used to switch between image and diffraction

mode. Finally, the image is magnified on the detector or fluorescent screen by the

projector lens.

In general, the electron scattering on the sample causes two different types of

contrast. The electrons of the beam can be scattered by the atomic nuclei in the

sample. The contrast created by this scattering depends on sample thickness and

density. The contrast is controlled by the scattered electrons which can pass the

objective aperture.

Images can also be generated by the diffraction contrast. Electrons also follow

Bragg’s law (nλ = 2dsinθ) and if the conditions this law are fulfilled constructive

diffraction occurs. The magnetic lenses below the sample can be adjusted to view

the diffraction pattern on the screen, which is the diffraction mode. Moreover, the

113



A Appendix

optical path can be changed to the image mode so that either the transmitted

or diffracted beam can be used to generate the image. Bright field images are

obtained when the diffracted beams are blocked by an aperture. For dark field

images, only one diffracted beam is used for the image.

Figure E.1: Schematic drawing of TEM. Image taken from [129].

High resolution images are obtained from two electron beams with different

phases. The diffracted beam changes its phase after passing crystalline sample

with periodic lattice (Fig. E.2) while the direct beam maintains its phase. The

image is formed by the recombination of these two beams.

Samples must be sufficiently thin, around 100 nm depending on the atomic weight,

for the TEM analysis. If the sample is too thick, the electron beam is absorbed.

A sample can be prepared by the sandwich method. For this, the thickness is

reduced by polishing. Then, two slices of the sample are glued with their surfaces

facing each other. A hole is created at the interface of these two slices by ion

beam milling with low angle (about 4◦). The thickness at this hole is thin enough

for the TEM. It is clear that this technique requires a homogeneous surface. In

order to prepare a slice of a certain area on a sample, focused ion beam milling is
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F. X-ray diffraction

Figure E.2: Formation of a phase contrast image by HRTEM. Image taken from

[129].

performed. The region of interest is identified by the SEM. A platinum or gold

layer is deposited to protect the sample from the ion bombardment of the following

ion milling. Although this technique is also employed to analyze surfaces by TEM,

we were not able to prepare a sample without creating an amorphous layer on the

utter surface.

F. X-ray diffraction

The structure and phases of crystalline samples can be studied by X-ray diffraction.

A Bruker D8 Advance diffractometer with copper source in the θ-2θ geometry

was used in the present work. Fig. F.1 shows an illustration of the geometric

arrangement.

X-rays are generated in a tube by accelerating electrons towards a target. The

deceleration of the electrons in the target produces the white X-rays with a large

range of wavelengths. The smallest wavelength corresponds to the maximum

acceleration voltage of the electrons. An incident electron can also excite another

electron in the inner shell of an atom to higher state. When the electron falls back

to its initial state, a characteristic X-ray with a specific wavelength is emitted.

Apparently, this wavelength depends on the electronic configuration of the atom

and is hence depended on the element. The most common target materials are

chromium, iron, copper and molybdenum.

Soller slits are collimating the X-rays generated by the source. On the sample, the

X-rays are diffracted according to Bragg’s law (nλ = 2dsinθ). A monochromator
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in front of the detector let only pass the Kα radiation.

Figure F.1: Schematic illustration of an X-ray diffractometer. Image taken from

[126].

The sample is rotated during measurements and hence the measured spectrum

shows the X-ray intensity as a function of 2θ. As the diffraction angle θ depends on

the plane spacing of the crystal the obtained spectra are unique for each crystalline

phase. The phase(s) of the crystal can be identified by comparing the spectra with

the data of a database.

G. Laue diffraction

The orientation of a single crystal can be determined by X-ray diffraction in Laue

geometry. Contrary to the θ-2θ method introduced in the previous section, a

transmission and not reflection geometry is employed. Furthermore, the X-ray

beam is polychromatic in order to get as many reflexes as possible. The geometry

of the used Philips PW1730 is illustrated in Fig. G.1.

The X-ray beam is diffracted by the sample, which is fixed on a goniometer, and

therefore spots corresponding to the lattice planes are generated on the film. The

distance D between the sample and film must be measured for the correct indexing

of the spots. The Bragg angle θi of the is spot can be determined by [126]:

θi =
1

2
tan−1

(

Ri

D

)

(A.1)

Ri is the distance from the transmitted beam in the center to the is spot.
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Inserting this angle into Bragg’s law results in [126]

di =
λ

2 sin
[

1

2
tan−1

(

Ri

D

)] (A.2)

where di is the lattice spacing to the corresponding spot.

Computer simulations with the given parameters are compared with the photo-

graph (Fig. G.2). The tilt of the sample can be corrected, if necessary, to perfectly

orientate the sample. In our case this was not necessary, as the Laue diffraction

was only performed to determine the crystallographic directions on the sample.

The stacking of SiC can only be observed by HRTEM if the sample was cut in the

right direction, e.g. perpendicular to [112̄0].

Figure G.1: The Laue geometry for X-ray diffraction. Image taken modified from

[126].
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Figure G.2: A Laue photograph of a SiC sample with the corresponding simulation.
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[10] B. Ranguelov, J.J. Métois, and P. Müller. Spirals on Si(111) at sublimation

and growth: REM and LODREM observations. Surface Science, 600(21):4848

– 4854, 2006.

[11] J.J. Berzelius. Untersuchung über die Flussspathsäure und deren
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Introduction

Les semi-conducteurs sont des éléments essentiels d’une multitude de produits dans

la vie de tous les jours. La technologie moderne, par exemple les ordinateurs ou

les smartphones, seraient inimaginables sans puces très performantes et poussées

qui reposent sur les semi-conducteurs. Le silicium est, sans aucun doute, le semi-

conducteur le plus répandu actuellement. L’avantage du silicium est que le procédé

de croissance et ses caractéristiques sont bien connus. Un autre avantage du silicium

est son abondance et le fait qu’il possède un oxyde naturel avec des propriétés

exceptionnelles. De plus, il est possible de fabriquer des substrats de grand diamètre

et de haute qualité à bas coût. Cependant le silicium n’est pas toujours le meilleur

semi-conducteur, notamment pour l’électronique à haute température et haute

puissance pour laquelle on peut préférer des semi-conducteurs avec une bande

interdite large, par exemple le carbure de silicium (SiC).

A l’inverse du silicium, la croissance de cristaux de SiC ayant un grand diamètre,

une faible densité de défaut et une bonne qualité cristalline est encore un défi.

Dans ce contexte on peut, par exemple, mentionner la stabilité de polytypes qui

est difficile à contrôler. Bien qu’il y ait et qu’il y eût des efforts et progrès énormes

dans l’amélioration du procédé de croissance, par exemple la réduction des défauts

de type ≪ micropipe ≫, la connaissance des processus fondamentaux pendant la

croissance est faible. Pourtant, ces processus pourraient être la clé pour améliorer
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la qualité des cristaux de SiC.

L’objectif de cette thèse est de comprendre les mécanismes fondamentaux qui

se déroulent pendant la croissance de cristaux de SiC non désorientés à partir

de la phase gazeuse. La croissance procède par l’incorporation des adatomes aux

spirales qui recouvrent la surface. F.C. Frank est la première personne qui a proposé

l’existence de spirales sur la surface en 1949, pour expliquer la vitesse de croissance

étonnamment élevée pour les sursaturations faibles. Peu après, l’existence de spirales

était confirmée pour plusieurs minéraux, dont le SiC. Burton, Cabrera et Frank

ont été les premiers à établir des équations pour la croissance de spirales et leur

théorie, qui s’appelle aujourd’hui la théorie de BCF, est encore essentielle pour la

recherche dans le domaine des spirales de croissance. Néanmoins, il y a eu plusieurs

affinements de cette théorie fondamentale. Cabrera et Levine, par exemple, ont

déterminé la largeur de marche de façon plus exacte que Burton, Cabrera and

Frank. Un autre affinement a été l’introduction de l’effet ≪ back-stress ≫ qui prend

en compte le fait que les champs de diffusion peuvent se chevaucher.

Après que Frank ait publié ses idées sur la croissance de spirales, la recherche

dans ce domaine est devenue très populaire. Le nombre de publications par année

sur les spirales a atteint son maximum pendant les années cinquante, suivi par

une diminution continue. A présent, le nombre de publications par an est faible

bien qu’il y ait encore beaucoup de questions non résolues concernant la croissance

de spirales. L’invention du microscope à force atomique et du microscope à effet

tunnel dans les années quatre-vingt a donné un moyen d’analyser les surfaces de

matériaux en détail. De plus, l’augmentation de la performance des ordinateurs

pendant les dernières décennies permet de simuler même sans superordinateur.

La combinaison de ces deux acquis, la caractérisation de surface en détail et la

simulation de ces résultats expérimentaux, permet de comprendre les processus

fondamentaux concernant la surface de cristaux pendant la croissance, comme

Redinger et al. le firent pour les barrières d’énergie associées aux marches de spirales
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et d’autres formes de surfaces à marches, telles que des tertres [8]. Dans d’autres

publications les auteurs se focalisent soit sur les simulations soit sur les expériences

de la croissance de spirales.

Dans le Laboratoire des matériaux et du génie physique, nous avons la chance

de pouvoir fabriquer et caractériser nos cristaux. De plus, les programmes de

simulation créés dans notre laboratoire nous permettent d’aborder les mécanismes

de croissance à la surface du SiC.

Le présent travail est organisé en trois chapitres. Dans le premier chapitre, nous

donnons un historique du SiC et quelques exemples d’applications. Ensuite, les

propriétés spécifiques du SiC, comme le polytypisme et les défauts, sont discutés

en détail. De plus, la théorie de Burton, Cabrera et Frank est introduite et les

équations nécessaires pour les discussions suivantes sont démontrées. Ces équations

associent la vitesse de croissance des cristaux à la largeur de marche des spirales et

la sursaturation.

Le deuxième chapitre porte sur la description du réacteur de croissance et les

expériences précédentes liées à la croissance du SiC non désorienté. De plus, les

paramètres de croissance et les procédures de caractérisation sont expliqués. Les

résultats fondamentaux pour l’analyse de spirales sont présentés dans le chapitre

suivant. Le processus contrôlant la croissance de cristaux, qui est soit le transport en

phase gazeuse soit la diffusion et incorporation à la surface, est déterminé. Ensuite,

la nucléation fortuite sur les marches de spirales est analysée.

Le troisième chapitre est dédié à la croissance de spirales sur le SiC. Dans la

première section les différents types de spirales sont discutés. Le mode de croissance

de spirales simple et double est analysé en détail. Des informations supplémentaires

sur les mécanismes de croissance sont obtenues à partir de profils de spirales

correspondant à des simulations numériques. La variation de largeur de marche en

fonction de la vitesse de croissance, et par conséquent la sursaturation, est aussi

étudiée, dans le cas du SiC, pour la première fois. La dernière partie de ce chapitre
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montre une nouvelle structure pour les marches de spirales. Nous allons montrer

que les marches d’une spirale peuvent se dissocier dans des conditions spécifiques.

L’origine de cette dissociation est discutée.

Enfin, les résultats de cette thèse sont récapitulés avant de conclure, et quelques

propositions pour les futurs travaux de recherche sont données.

Chapitre 1

Histoire

Jöns Jacob Berzelius a probablement été la première personne capable de

synthétiser le carbure de silicium (SiC) en 1824. Le procédé pour fabriquer le

SiC a été amélioré par Edward Goodrich Acheson en 1890, ce qui lui a permis de

pouvoir produire du SiC en grande quantité. Baumhauer découvrit en 1912 qu’il

ya une multitude de structures pour le SiC, et il appela cette variété de structures

polytypisme. En 1955 J.A. Lely développa une méthode pour faire des cristaux de

SiC de haute qualité. Cette percée en croissance du SiC permit de l’utiliser pour

des applications électroniques. Ensuite, Tairov et Tsetkov modifièrent la méthode

de Lely pour obtenir un meilleur rendement.

Utilisation du SiC

Grace à sa dureté, le SiC est utilisé comme abrasif mais aussi dans les gilets pare-

balles. Dans cette section nous nous focalisons sur les applications électroniques.

Bien que le silicium soit le semiconducteur le plus utilisé et le mieux optimisé,

il y a des applications pour lesquelles il n’est pas le mieux qualifié. En effet, la

concentration de porteurs est plus faible pour le SiC et c’est pourquoi il peut opérer

aux températures élevées, contrairement au silicium. De plus, le SiC est intéressant
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pour les électroniques de haute puissance et de haute fréquence (fort champ de

claquage et vitesse de saturation élevée).

Polytypisme et cristallographie

Le SiC est composé de tétraèdres qui partagent leurs sommets. En principe, deux

configurations inéquivalentes sont possibles pour ces tétraèdres et, par conséquent,

une large variété d’empilements et de mailles peuvent se former. Baumhauer

introduisit le terme polytypisme pour ce phénomène. Les propriétés physiques et

cristallographiques sont influencées par le polytypisme. La bande interdite, par

exemple, peut varier entre 2.3 eV pour le 3C et 3.2 eV pour le 4H.

La multitude de polytypes exige une notation pour les distinguer. La notation

plus populaire aujourd’hui est celle de Ramsdell. Dans la direction de l’axe c du

cristal, il y a une succession de bicouches de silicium et de carbone. Le premier

chiffre de la notation Ramsdell indique le nombre de bicouches dans la maille et

la lettre suivante la symétrie du cristal. Cette lettre est soit C (cubique), soit H

(hexagonale), soit R (rhomboédrique). Les polytypes les plus communs sont le 3C,

4H, 6H et 15R (figure R.1).

Figure R.1: Empilements des polytypes les plus communs.

145
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A cause de l’électronégativité différente entre le silicium (1.90 eV) et le carbone

(2.55 eV), il y a une polarité dans le cristal. La surface d’un cristal non désorienté

est soit terminée par les atomes Si soit par les atomes C, et par conséquent l’énergie

de surface varie (figure R.2).

Figure R.2: Les surfaces des cristaux SiC non désorientés sont soit terminées par

les atomes de silicium, soit par les atomes de carbone.

Défauts

Les défauts les plus conséquents dans le SiC sont les dislocations. On distingue

trois types de dislocations parfaites. Une dislocation coin est créée si un demi-

plan d’atome est enlevé ou ajouté. La dislocation vis peut se former si une partie

du cristal glisse. Le troisième type est la dislocation mixte qui comprend une

composante coin et une composante vis. Le vecteur de Burgers de ces dislocations

est toujours un multiple entier du vecteur de maille le plus court. En plus des

dislocations parfaites, il existe aussi les dislocations partielles qui peuvent créer

des fautes d’empilement. Si le vecteur Burgers est plus large que la constante de

réseau c, un trou se forme au centre de la dislocation à cause d’un excès d’énergie

élastique. On appelle ce défaut ≪ micropipe ≫ (figure R.3). Grace au développement

conséquent de la technique de croissance du SiC, les micropipes ne posent plus de

problème aujourd’hui.
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Figure R.3: Image AFM d’une micropipe.

Diagrammes de phases du SiC

Le diagramme de phases montre qu’il n’existe pas de liquide congruent de SiC

(figure R.4). Au-dessus de 2680◦C, le SiC se décompose en graphite et en une phase

gazeuse. C’est pourquoi la croissance à partir de la phase gazeuse est la méthode

préférentielle.

D’autres diagrammes montrent que les polytypes apparaissent dans une gamme

de température définie. Cependant, ces gammes se croisent, et plusieurs polytypes

peuvent se former à une température donnée. De plus, le polytype qui se forme

pendant la croissance dépend d’autres paramètres, par exemple la polarité du

substrat et son polytype, la sursaturation et les impuretés.

Transport physique en phase vapeur (≪ Physical vapour

transport ≫)

La méthode Lely modifiée, aussi appelée ≪ physical vapour transport technique ≫

(PVT, transport physique en phase vapeur), est la méthode la plus répandue dans

l’industrie aujourd’hui. Un creuset qui contient de la poudre SiC est chauffé au-delà
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Figure R.4: Diagramme de phase d’après [42].

de 1800◦C. La poudre se sublime et, à cause d’un gradient de température, les atomes

et molécules gazeuses diffusent vers le substrat, où ils sont incorporés dans le cristal.

La théorie de Burton, Cabrera et Frank

En 1949 Frank proposa que la croissance des cristaux se fasse par l’incorporation

des adatomes aux marches des dislocations vis qui forment ainsi des spirales de

croissance. Deux ans plus tard, Burton, Cabrera et Frank (BCF) établirent des

équations de la vitesse de croissance en fonction de la sursaturation, ou de la largeur

de marche. Dans cette thèse une approche simplifiée est utilisé pour obtenir les

équations clé.

Tout d’abord les flux arrivant et sortant d’un segment sur la surface du cristal sont

considérés en association avec la première loi de Fick. La solution de cette équation

différentielle donne la concentration des adatomes à la surface. Ensuite, le flux net
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vers une marche est obtenu en considérant la concentration de surface précédemment

établie. Du fait de la courbure d’une marche spirale, l’effet Gibbs-Thomson est pris

en compte pour corriger le flux net.

L’avancée d’une marche et aussi la vitesse de croissance est proportionnelle à

ce flux. Si la longueur de diffusion à la surface est très inférieure à la largeur de

marche on trouve une dépendance parabolique pour la vitesse de croissance en

fonction de la sursaturation. Dans le deuxième cas, c’est-à-dire lorsque la longueur

de diffusion est plus large que la largeur de marche, la loi est linéaire (figure R.5).

Figure R.5: La vitesse de croissance est une fonction parabolique pour les sursa-

turations faible. Au-dessus d’une sursaturation critique la loi est linéaire. D’après

[48].
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Chapitre 2

Paramètres expérimentaux et conditions de croissance

Nous avons utilisé un réacteur PVT pour la croissance des cristaux du SiC.

Souvent, le substrat est collé sur un support en graphite mais dans notre réacteur

le support employé peut porter le substrat sans colle. Grace à cette méthode, on

peut éviter la formation de contraintes dans le substrat due aux coefficients de

dilatation thermique différents entre le support et substrat. De plus, il y a plusieurs

autres bénéfices, par exemple on peut réutiliser les pièces de graphite.

Les substrats 6H et 4H ≪ epi-ready ≫ polis par Novasic et coupés en carrés de

0.9mm sont utilisés pour la croissance. La densité de dislocations et micropipes,

déterminée par une attaque KOH, était entre 2.9·104 et 3.1·104 cm−2.

On peut différencier quatre phases pendant la croissance (figure R.6). La puissance

du chauffage inductif est réglée manuellement jusqu’ à 1000◦C. A partir de cette

température, le pyromètre peut mesurer la température. La pression est réglée au

moins à 250mbar, puis le réacteur est chauffé jusqu’ à 2100◦C par une rampe de

7.5◦C/min. A 2100◦C, la pression de croissance est réglée. La durée de la croissance

varie entre 30min et 5 h, selon la pression utilisée. Après cette phase de croissance,

la pression est encore augmentée, et le réacteur de chauffage inductif est arrêté.

Les échantillons sont caractérisés par un microscope optique Leica DM LM et

un microscope à contraste interférentiel Zeiss Axioskop 40 pour cartographier la

surface et trouver des spirales. Ces spirales sont visualisées par un microscope à

force atomique Veeco dimension 3100 en mode tapping ou contact. Le polytype

des spirales est vérifié par un spectromètre Raman Jobin-Yvon/Horiba LabRam

à 514 nm. L’épaisseur des échantillons est mesurée pour déterminer la vitesse de

croissance. Des caractérisations supplémentaires, par exemple par un microscope

électronique à balayage, sont effectuées dans certains cas.
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Figure R.6: Phases de croissance : (1) Préchauffage, (2) Rampe, (3) Croissance, (4)

Refroidissement.

Processus limitant de la vitesse de croissance

Deux processus peuvent limiter la vitesse de croissance. La sublimation de la

poudre SiC et le transport en phase gazeuse est le premier processus. Le deuxième

est la diffusion des adatomes à la surface du cristal et leur incorporation.

Nous avons observé la vitesse de croissance en fonction de la pression de croissance

pour trouver le processus limitant. La vitesse de croissance est presque inversement

proportionnelle à la pression pour la face silicium et la face carbone (figure R.7).

Le processus limitant est, par conséquent, le transport en phase gazeuse. De plus,

il y a un flux advectif qui influence la loi observée.

Formation de germes

La formation de germes a été observée occasionnellement sur les cristaux. La

hauteur de germes est normalement de 2.5 Å, mais dans certains cas les germes

sont assez larges pour que d’autres germes se forment sur les germes déjà existants.
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Figure R.7: La croissance par PVT est limitée par le transport en phase gazeuse.

Nous avons tracé le nombre de germes en fonction de leur position sur les marches

(figure R.8). Sur la face silicium, le nombre de germes est faible aux extrémités des

marches et constant entre les deux. Par contre, sur la face carbone, le nombre de

germes est faible aux abords de la marche croissante et très large vers la marche

décroissante. Entre les deux marches, le nombre est constant. En conséquence, il y

a une barrière d’Ehrlich-Schwoebel uniquement sur la face carbone. Toutefois, des

germes sur d’autres échantillons suggèrent qu’on peut aussi trouver cette barrière

sur la face silicium, mais avec une énergie plus faible.

Figure R.8: L’effet Ehrlich-Schwoebel est plus important sur la face carbone.

On ne peut pas estimer la longueur de diffusion à la surface à partir de la
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distance entre les germes, pour les cristaux fait par PVT, à cause de la désorption

des adatomes (figure R.9). Une autre méthode communiquée dans la littérature

est de mesurer l’avancée de bord d’un germe. Toutefois, la vitesse de croissance en

mode PVT est trop large pour appliquer cette méthode.

Figure R.9: L’histogramme de la distance entre les germes les plus proches ne

donne pas d’information sur la longueur de diffusion.

Chapitre 3

Spirales observées

Sur nos échantillons, nous avons observé plusieurs types de spirales. Les plus

importants pour l’analyse dans ce chapitre sont les spirales simple et double. Une

spirale simple a une branche dont la hauteur correspond au paramètre de maille

c, ou c/3 dans le cas d’une spirale 15R. Les spirales doubles ont toujours deux
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branches et la hauteur d’une branche est 7.5 Å, c’est-à-dire que les deux branches

correspondent au paramètre de maille c de 6H. On parle de spirale s’il n’y a pas

de trou au centre, autrement il s’agit d’une ≪ micropipe ≫. Souvent les spirales

n’existent pas isolées mais mélangées.

Nous avons discuté les origines possibles de la polygonisation de spirales. Dans

notre cas la polygonisation dépend de la hauteur de marche et du polytype (figure

R.10). La forme de spirales 15R correspond toujours à celle d’une spirale ronde,

c’est-à-dire qu’elles ne sont pas polygonisées. L’empilement particulier du 15R

demande la création d’une dislocation partielle toutes les cinq bicouches. Nous

supposons que cette dislocation influence l’énergie spécifique de marche et par

conséquent la forme de la spirale.

(a) (b)

(c) (d)

Figure R.10: La forme de la spirale dépend du polytype.
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Pendant la croissance des cristaux de SiC nous avons observé que les micropipes

recouvrent les spirales. La modification de la loi BCF montre que la vitesse de

croissance d’une micropipe augmente avec le nombre de branches. Pour cette raison,

il est nécessaire de limiter le temps de croissance, sinon on n’est plus capable

d’observer des spirales simples.

Mode de croissance des spirales

L’accès aux paramètres de croissance est limité quand on utilise la méthode PVT

pour la croissance de SiC. Les seuls paramètres influençables sont la température,

la pression et la géométrie du creuset. La sursaturation, qui contrôle la croissance,

n’est pas accessible.

Cependant, il est possible d’estimer la sursaturation relative entre différents

échantillons par l’analyse de la vitesse de croissance et la largeur de marche de

spirales. De plus, on peut déterminer la loi de croissance.

Nous avons mesuré la vitesse de croissance et la largeur de marche de spirales

simple et double sur la face silicium et face carbone (figure R.11). Les spirales

simples sur la face silicium suivent bien la loi de BCF. La loi trouvée pour les

spirales doubles sur la face carbone n’est pas la même. A cause de la vitesse

anisotrope de marche, la distance entre les deux branches est plus petite que la

longueur de diffusion à la surface. Les champs de diffusion peuvent se chevaucher et

c’est pourquoi les spirales suivent la loi de ≪ back stress ≫. Sur la face carbone, la

largeur de marche en fonction de la vitesse de croissance reste toujours constante.

Nous supposons que la taille de domaine limitée, l’effet back stress et une barrière

Ehrlich-Schwoebel très large sont responsables de l’invariance de la largeur de

marche.

Nous avons aussi analysé la variation de largeur de marche en fonction de la

distance au centre. Cette analyse a suggéré que l’incorporation des adatomes au
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Figure R.11: La loi de croissance dépend de la polarité de germe et de type de

spirale.

centre est probablement modifiée par le champ de contrainte de la dislocation

vis. Sur la face carbone notre simulation a montré que la largeur de marche est

fortement influencée par la taille du domaine.

La dissociation de marche de spirales

Pendant la croissance de SiC, nous avons observé que la bicouche supérieure

d’une marche de spirale unitaire peut se dissocier pour des paramètres de croissance

spécifiques (figure R.12). Cette dissociation n’a pas encore été rapportée dans la

littérature.

Nous avons observé la dissociation quand nous avons utilisé une poudre de SiC

neuve et en même temps un substrat face carbone non désorienté. La bicouche

dissociée se retrouve au centre d’une terrasse et la position ne change pas lorsqu’on

est loin du centre. Dans la littérature il y a des publications sur l’observation de

bicouche seule sur les substrats d’orientation vicinale et la formation de ces bicouches

est expliquée par l’orientation des marches suivant des directions particulières. Dans

notre cas, l’orientation de marche change en continu et c’est pourquoi les résultats
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Figure R.12: Spirale dissocié de polytype 15R sur la face carbone.

des substrats vicinaux de la littérature ne sont pas transférables aux marches de

spirales. Nous supposons que la dissociation est liée à la silice contenue dans la

poudre neuve. La dissociation est probablement causée soit par l’incorporation

d’adatomes, soit par le rapport C/Si modifié par la silice dans la phase gazeuse.

De plus, la contrainte de dislocation vis pourrait faciliter la dissociation au centre

de la spirale.

Nous supposons que les interactions élastiques entre les marches contraignent

probablement la position de la bicouche dissocié au centre des terrasses (figure

R.13).

Sur les images AFM nous avons observé des fluctuations prononcées pour les

bicouches seules. Par contre, il n’y a pas de fluctuation pour les marches d’une

hauteur de plus de deux bicouches. Pour le silicium il est connu que la rigidité

d’une marche augmente avec sa hauteur. Nos observations montrent que la rigidité

augmente aussi avec la hauteur de marche pour le SiC.
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Figure R.13: Position de la marche dissociée.

Conclusion

Dans cette thèse nous avons étudié la croissance de cristaux de SiC non désorientés.

La caractérisation de surface des cristaux fabriqués par PVT et les simulations

complémentaires donnent un nouvel aperçu des mécanismes de croissance.

Nous avons constaté que la croissance du SiC par PVT est limitée par le transport

en phase gazeuse plutôt que par la diffusion en surface et l’incorporation des

adatomes. Par conséquent, la densité de défauts est assez grande pour que la vitesse

de croissance ne soit pas limitée par les mécanismes de surface.

La nucléation a été observée occasionnellement sur la face silicium et la face

carbone. L’analyse de germes a démontré que l’effet Ehrlich-Schwoebel est plus

important sur la face carbone que sur la face silicium. Grâce à l’étude de la

distribution de ces germes nous avons pu conclure que la longueur de diffusion sur

la face carbone est plus grande qu’une demi-largeur de marche (λs > 3.12µm) pour

les paramètres de croissance utilisés. Sur la face silicium, au contraire, nous avons

trouvé que la longueur de diffusion est plus petite que la demi-largeur de marche

(λs < 3.28µm). Bien que nous n’ayons pas trouvé la valeur exacte de la longueur

de diffusion, l’ordre de grandeur déterminé peut être utile pour les simulations et

expliquer divers résultats.

158



Conclusion

Nous avons étudié les modes de croissance de spirales du SiC sur la face silicium

et face carbone en fonction de la sursaturation, ce qui n’avait jamais été fait de

manière systématique et pour les deux faces. Les résultats expérimentaux montrent

que le mode de croissance dépend non seulement de la polarité du germe mais aussi

du type de spirale. Les spirales simples sur la face silicium suivent parfaitement la

loi de BCF alors que le mode de croissance est différent pour les spirales doubles sur

la même face à cause de l’effet ≪ back stress ≫. Les largeurs de marches sont plus

petites pour ces spirales et c’est pourquoi les champs de diffusion se chevauchent et

la loi de croissance en spirale est modifiée.

Sur la face carbone, la largeur de marche reste constante pour toutes les vitesses

de croissance. C’est la première fois qu’une telle indépendance est observée pour des

spirales n’étant pas des ≪ micropipes ≫, c’est-à-dire pour les spirales sans trou au

centre. Les simulations suggèrent qu’une taille de domaine limité, un effet Ehrlich-

Schwoebel fort et l’effet ≪ back stress ≫ réduisent la dépendance de la largeur de

marche par rapport à la vitesse de croissance. Toutefois, selon les simulations, la

largeur de marche n’est pas totalement indépendante de la sursaturation, et par

conséquent de la vitesse de croissance. C’est pourquoi les simulations ne peuvent

pas expliquer complètement nos résultats expérimentaux.

L’analyse de la largeur de marche de spirales en fonction de la vitesse de croissance

ne donne pas accès à la sursaturation dans le réacteur. Cependant, les résultats sur

la face silicium montrent que la vitesse de croissance augmente avec la sursaturation.

Pour cette raison nous pourrions déterminer pour quel échantillon la sursaturation

est plus grande en comparant les largeurs de marches.

Enfin, nous avons observé une nouvelle dissociation de marches de spirales en une

bicouche et une marche de bicouches regroupées en paquet. Cette dissociation est

obtenue quand on utilise une poudre neuve et un germe face carbone. L’origine de

cette dissociation n’est pas encore comprise mais nous supposons que l’incorporation

des impuretés joue un rôle très important. Nous supposons que la position de la
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marche dissociée est restreinte au centre d’une terrasse par les forces élastiques

entre les marches.

Nos études ont révélé de nouveaux mécanismes de la croissance de spirales sur le

SiC. Pourtant, nous ne pouvons pas encore expliquer tous les phénomènes observés

de manière satisfaisante. Nos résultats ouvrent donc des perspectives intéressantes

de travail théorique.

L’indépendance de la largeur de marches par rapport à la sursaturation sur la

face carbone demande une étude approfondie. Nos simulations ont montré que

la taille de domaine influe fortement sur la largeur de marche. Si on choisissait

seulement des spirales isolées sur un domaine très large, on pourrait probablement

encore mieux vérifier si la largeur de marche est vraiment indépendante de la

sursaturation.

Un autre sujet non résolu est l’origine de la dissociation. Les résultats expérimentaux

suggèrent que la silice présente dans la poudre joue un rôle important pour ce

phénomène. Pour vérifier cette supposition on pourrait mélanger la poudre utilisée

avec des fractions de plus en plus importantes de silice. La dissociation devrait

devenir observable pour une certaine fraction de silice si notre supposition est

pertinente. De plus, il serait intéressant de vérifier si toutes les marches peuvent

être dissociées lors de l’augmentation de la fraction de silice.

Des simulations pourraient par ailleurs montrer quantitativement si les forces

élastiques entre les marches restreignent bien la position des bicouches uniques

dissociées au centre des terrasses formées entre deux marches constituées de regrou-

pements de bicouches.
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Abstract

Silicon carbide is a promising semiconductor for high temperature and power

electronics. Its growth process has been refined continuously in the last years but

there is still little knowledge on the surface processes taking place during growth.

This thesis is dealing with these processes by analysing the initial growth of on-axis

crystals.

The growth rate limiting step of the physical vapour transport technique is

determined. The study of nuclei occasionally observed gives insight on the present

Ehrlich-Schwoebel barriers and allows furthermore to estimate the order of magni-

tude of the surface diffusion length.

For the first time the growth laws of spirals on both Si- and C- face SiC surfaces

are systematically analysed. Simulations are performed in order to check the

influence of a limited domain size and overlapping diffusion fields on the spiral

shapes and growth laws.

A novel spiral step structure is observed on C-face spirals. The top bilayer

dissociates under certain and reproducible conditions. The experimental parameters

are reported and further analysis of this new step structure is performed.

Résumé

Le carbure de silicium est un semi-conducteur prometteur pour les applications

en électronique haute température et haute puissance. La croissance de SiC a été

améliorée continuellement pendant les dernières années mais la connaissance des

processus à la surface pendant la croissance est encore faible. Dans cette thèse

ces processus sont étudiés par l’analyse de la croissance initiale de cristaux non

désorientés.

Le processus qui limite la vitesse de croissance est déterminé. L’étude des

germes observés occasionnellement permet d’avoir un aperçu des barrières Ehrlich-

Schwoebel existantes et, de plus, d’estimer l’ordre de grandeur de la longueur de

diffusion à la surface.

Pour la première fois les lois de croissance de spirales sont systématiquement

analysées sur la face silicium et la face carbone du SiC. L’influence d’un domaine

limité et du chevauchement de champs de diffusion sur la forme des spirales et les

lois de croissance est analysée par des simulations.

Sur les spirales de la face carbone, une nouvelle structure de marches est observée.

La bicouche supérieure se dissocie à certaines conditions définies et reproductibles.

Les conditions expérimentales sont clairement identifiées et une analyse de cette

nouvelle structure est effectuée.
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