B. Figure, 13 C NMR of BB1 (400 MHz, D2O, ref Acetone): ? = 175

C. Nmrof and B. , 250 MHz, D2O, ref Acetone): ?= 176

R. 1. Buck, L. , and A. R. , A Novel Multigene Family May Encode Odorant Receptors, Journal of General Physiology, vol.98, issue.6, p.3, 1991.

N. Savage, Technology: The taste of things to come, Nature, vol.486, issue.7403, pp.18-27, 2012.
DOI : 10.1038/486S18a

J. Chandrashekar, M. Hoon, N. Ryba, and C. Zuker, The receptors and cells for mammalian taste, Nature, vol.24, issue.7117, pp.288-94, 2006.
DOI : 10.1038/nature05401

N. Bakalar, Sensory science: Partners in flavour, Nature, vol.99, issue.7403, pp.4-5, 2012.
DOI : 10.1038/486S4a

L. Buck, Unraveling the Sense of Smell (Nobel Lecture), Angewandte Chemie International Edition, vol.93, issue.38, pp.6128-6168, 2005.
DOI : 10.1002/anie.200501120

A. Menini, L. Lagostena, and A. Boccaccio, Olfaction: From Odorant Molecules to the Olfactory Cortex, News in Physiological Sciences, vol.19, issue.3, pp.101-105, 2004.
DOI : 10.1152/nips.1507.2003

H. Breer, Olfactory receptors: molecular basis for recognition and discrimination of odors, Analytical and Bioanalytical Chemistry, vol.377, issue.3
DOI : 10.1007/s00216-003-2113-9

M. Spehr and S. Munger, Olfactory receptors: G protein-coupled receptors and beyond, Journal of Neurochemistry, vol.24, issue.Suppl 3
DOI : 10.1111/j.1471-4159.2009.06085.x

C. Su, K. Menuz, and J. Carlson, Olfactory Perception: Receptors, Cells, and Circuits, Cell, vol.139, issue.1
DOI : 10.1016/j.cell.2009.09.015

URL : http://doi.org/10.1016/j.cell.2009.09.015

B. Malnic, J. Hirono, T. Sato, and L. Buck, Combinatorial Receptor Codes for Odors, Cell, vol.96, issue.5, 1999.
DOI : 10.1016/S0092-8674(00)80581-4

Y. Vlasov, Y. Ermolenko, A. Legin, A. Rudnitskaya, and V. Kolodnikov, Chemical sensors and their systems, Journal of Analytical Chemistry, vol.65, issue.9, pp.880-98, 2010.
DOI : 10.1134/S1061934810090029

A. Umali and E. Anslyn, A general approach to differential sensing using synthetic molecular receptors, Current Opinion in Chemical Biology, vol.14, issue.6, pp.685-92, 2010.
DOI : 10.1016/j.cbpa.2010.07.022

J. Lavigne and E. Anslyn, Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors Electronic tongue: Chemical sensor systems for analysis of aquatic media, Angewandte Chemie-International Edition. Vlasov YG, Legin AV, Rudnitskaya AM Russian Journal of General Chemistry, vol.4078, issue.1412, pp.3119-302532, 2001.

J. Gardner and P. Bartlett, A brief history of electronic noses, Sensors and Actuators B: Chemical, vol.18, issue.1-3, pp.211-231, 1994.
DOI : 10.1016/0925-4005(94)87085-3

Y. Kobayashi, M. Habara, H. Ikezazki, R. Chen, Y. Naito et al., Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores, Sensors, vol.10, issue.4, pp.3411-3454
DOI : 10.3390/s100403411

Y. Tahara and K. Toko, Electronic Tongues-A Review, Ieee Sensors Journal, 2013.

A. Gutes, F. Cespedes, M. Del-valle, D. Louthander, C. Krantz-rulcker et al., A flow injection voltammetric electronic tongue applied to paper mill industrial waters Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review, Sensors and Actuators B-Chemical. Analytica Chimica Acta, vol.13115426, issue.202, pp.3001-11390, 2001.

D. Natale, C. Macagnano, A. Davide, F. , D. Amico et al., Multicomponent analysis on polluted waters by means of an electronic tongue, Sensors and Actuators B: Chemical, vol.44, issue.1-3
DOI : 10.1016/S0925-4005(97)00169-X

R. Young, W. Buttner, B. Linnell, R. Ramesham, C. Bessant et al., Electronic nose for space program applications Sensors and Actuators B-Chemical):7-16. 23. ; [cited 24 06 2013]; Available from Monitoring haemodialysis using electronic nose and chemometrics Rudnitskaya A, Legin A. Sensor systems, electronic tongues and electronic noses, for the monitoring of biotechnological processes, Biosensors & Bioelectronics Jul Journal of Industrial Microbiology & Biotechnology, vol.9319, issue.25, pp.1581-90, 2003.

L. Bonifacio, G. Ozin, and A. Arsenault, Photonic Nose-Sensor Platform for Water and Food Quality Control. Small, Nov, vol.187, issue.22, pp.3153-3160, 2011.

L. Escuder-gilabert and M. Peris, Review: Highlights in recent applications of electronic tongues in food analysis, Analytica Chimica Acta, vol.665, issue.1, pp.15-25, 2010.
DOI : 10.1016/j.aca.2010.03.017

E. Baldwin, J. Bai, A. Plotto, and S. Dea, Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries, Sensors, vol.11, issue.12, pp.4744-66, 2011.
DOI : 10.3390/s110504744

E. Barbri, N. Llobet, E. , E. Bari, N. Correig et al., Application of a portable electronic nose system to assess the freshness of Moroccan sardines Materials Science & Engineering C- Biomimetic and Supramolecular Systems, pp.5-6666, 2008.

M. Woodka, V. Schnee, and M. Polcha, Fluorescent Polymer Sensor Array for Detection and Discrimination of Explosives in Water, Analytical Chemistry, vol.82, issue.23, pp.9917-9941, 2010.
DOI : 10.1021/ac102504t

E. Oh, H. Song, and T. Park, Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme and microbial technology, 32. Wilson AD, Baietto M. Advances in Electronic-Nose Technologies Developed for Biomedical Applications. Sensors, pp.6-7427, 2011.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles, Nature Nanotechnology, vol.9, issue.10, pp.669-73, 2009.
DOI : 10.1038/nnano.2009.235

K. Arshak, E. Lyons, G. M. Harris, J. Clifford, and S. , A review of gas sensors employed in electronic nose applications, Sensor Review, vol.24, issue.2, pp.181-98, 2004.
DOI : 10.1108/02602280410525977

E. Stussi, R. Stella, D. Rossi, and D. , Chemoresistive conducting polymer-based odour sensors: influence of thickness changes on their sensing properties, Sensors and Actuators B: Chemical, vol.43, issue.1-3
DOI : 10.1016/S0925-4005(97)00147-0

A. Wilson, D. Lester, and C. Oberle, Application of conductive polymer analysis for wood and woody plant identifications. Forest Ecology and Management, pp.207-231, 2005.

M. Otto and J. Thomas, Model studies on multiple channel analysis of free magnesium, calcium, sodium, and potassium at physiological concentration levels with ion-selective electrodes, Analytical Chemistry, vol.57, issue.13, pp.2647-51, 1985.
DOI : 10.1021/ac00290a049

P. Ciosek and W. Wroblewski, Sensor arrays for liquid sensing ??? electronic tongue systems, The Analyst, vol.20, issue.285
DOI : 10.1039/b705107g

D. Valle and M. , Sensor Arrays and Electronic Tongue Systems, International journal of electrochemistry. [Review Article], vol.2012, p.11, 2012.

K. Toko, Taste sensor with global selectivity Materials Science & Engineering C-Biomimetic Materials Sensors and Systems, pp.69-82, 1996.

Y. Vlasov, A. Legin, and A. Rudnitskaya, Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal ions, Sensors and Actuators B: Chemical, vol.44, issue.1-3, 1997.
DOI : 10.1016/S0925-4005(97)00241-4

A. Legin, A. Rudnitskaya, Y. Vlasov, A. Rudnitskaya, L. Lvova et al., Application of electronic tongue for qualitative and quantitative analysis of complex liquid media Technical Digest of the Seventh International Meeting on Chemical Sensors Evaluation of Italian wine by the electronic tongue: recognition, quantitative analysis and correlation with human sensory perception, Analytica Chimica Acta, vol.484, issue.1, pp.232-433, 1998.

Y. Vlasov, A. Legin, A. Rudnitskaya, D. Amico, A. et al., ??Electronic tongue?? ??? new analytical tool for liquid analysis on the basis of non-specific sensors and methods of pattern recognition, Sensors and Actuators B: Chemical, vol.65, issue.1-3, pp.1-3235, 2000.
DOI : 10.1016/S0925-4005(99)00323-8

F. Winquist, P. Wide, and I. Lundstrom, An electronic tongue based on voltammetry, Analytica Chimica Acta, vol.357, issue.1-2, pp.21-31, 1997.
DOI : 10.1016/S0003-2670(97)00498-4

F. Winquist, Voltammetric electronic tongues ??? basic principles and applications, Microchimica Acta, vol.18, issue.1???2
DOI : 10.1007/s00604-007-0929-2

URL : http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11634

B. Goldsmith, J. Mitala, J. J. Castro, A. Lerner, M. Bayburt et al., Biomimetic Chemical Sensors Using Nanoelectronic Readout of Olfactory Receptor Proteins, ACS Nano, vol.5, issue.7, 2011.
DOI : 10.1021/nn200489j

V. Akimov, E. Alfinito, J. Bausells, I. Benilova, I. Paramo et al., Nanobiosensors based on individual olfactory receptors. Analog Integrated Circuits and Signal Processing, 2008.
DOI : 10.1007/s10470-007-9114-0

URL : http://www.springerlink.com/content/a7u3j56076806737/fulltext.pdf

G. Gomila, I. Casuso, A. Errachid, O. Ruiz, E. Pajot et al., Advances in the production, immobilization, and electrical characterization of olfactory receptors for olfactory nanobiosensor development. Sensors and Actuators B-Chemical, pp.66-71, 2006.

J. Minic, M. Persuy, E. Godel, J. Aioun, I. Connerton et al., Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening, FEBS Journal, vol.5, issue.2, pp.524-561, 2005.
DOI : 10.1111/j.1742-4658.2004.04494.x

E. Pajot-augy, M. Crowe, G. Levasseur, R. Salesse, and I. Connerton, Engineered Yeasts as Reporter Systems for Odorant Detection, Journal of Receptors and Signal Transduction, vol.25, issue.16, pp.155-71, 2003.
DOI : 10.1126/science.279.5348.237

S. Lee, O. Kwon, H. Song, S. Park, J. Sung et al., Mimicking the human smell sensing mechanism with an artificial nose platform, Biomaterials, vol.33, issue.6, pp.1722-1731, 2012.
DOI : 10.1016/j.biomaterials.2011.11.044

P. Hauptmann, R. Borngraeber, J. Schroeder, and J. Auge, Application of novel sensor electronics for quartz resonators in artificial tongue, Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052), pp.100-105, 2000.
DOI : 10.1109/FREQ.2000.887337

S. Jacesko, J. Abraham, J. T. Varadan, V. Cole, M. Gardner et al., Investigations on an electronic tongue with polymer microfluidic cell for liquid sensing and identification. Smart Materials & Structures, pp.1010-1016, 2005.

J. Vivancos, Z. Racz, M. Cole, and J. Gardner, Surface acoustic wave based analytical system for the detection of liquid detergents. Sensors and Actuators B-Chemical, pp.469-77, 2012.

H. Lang, M. Baller, R. Berger, C. Gerber, J. Gimzewski et al., An artificial nose based on a micromechanical cantilever array, Analytica Chimica Acta, vol.393, issue.1-3, pp.1-359, 1999.
DOI : 10.1016/S0003-2670(99)00283-4

D. Karabacak, L. Sieben-xu, M. Vandecasteele, Y. Van-andel, D. Wouters et al., Toward a Miniaturized Low-Power Micromechanical Electronic Nose, IEEE Sensors Journal, vol.12, issue.11
DOI : 10.1109/JSEN.2012.2193566

M. Crego-calama, S. Brongersma, D. Karabacak, and M. Van-bavel, A low???power integrated electronic nose system, Sensor Review, vol.32, issue.1, pp.72-78, 2012.
DOI : 10.1108/02602281211198485

J. Abraham, S. Karjathkar, S. Jacesko, V. Varadan, and J. Gardner, Identification of soft drinks using MEMS-IDT microsensors. Smart Structures and Materials, M. Cantilever-like micromechanical sensors, pp.414-438, 2005.

S. Rochat, J. Gao, X. Qian, F. Zaubitzer, and K. Severin, Cross-Reactive Sensor Arrays for the Detection of Peptides in Aqueous Solution by Fluorescence Spectroscopy, Chemistry - A European Journal, vol.21, issue.1, pp.104-117, 2010.
DOI : 10.1002/chem.200902202

J. Lavigne, S. Savoy, M. Clevenger, J. Ritchie, B. Mcdoniel et al., Solution-Based Analysis of Multiple Analytes by a Sensor Array:?? Toward the Development of an ???Electronic Tongue???, Journal of the American Chemical Society, vol.120, issue.25
DOI : 10.1021/ja9743405

A. Goodey, J. Lavigne, S. Savoy, M. Rodriguez, T. Curey et al., Development of multianalyte sensor arrays composed of chemically derivatized polymeric microspheres localized in micromachined cavities Multishell microspheres with integrated chromatographic and detection layers for use in array sensors, Journal of the American Chemical Society Mar Journal, vol.120123125, issue.6710, pp.6429-302559, 1998.

T. Mayr, C. Igel, G. Liebsch, I. Klimant, and O. Wolfbeis, Cross-reactive metal ion sensor array in a micro titer plate format. Analytical Chemistry, pp.4389-96, 2003.

N. Greene, S. Morgan, and K. Shimizu, Molecularly imprinted polymer sensor arrays

N. Greene and K. Shimizu, Colorimetric Molecularly Imprinted Polymer Sensor Array using Dye Displacement, Journal of the American Chemical Society, vol.127, issue.15, pp.5695-700, 2005.
DOI : 10.1021/ja0468022

C. Zhang and K. Suslick, A Colorimetric Sensor Array for Organics in Water, Journal of the American Chemical Society, vol.127, issue.33, pp.11548-11557, 2005.
DOI : 10.1021/ja052606z

C. Zhang and K. Suslick, Colorimetric Sensor Array for Soft Drink Analysis, Journal of Agricultural and Food Chemistry, vol.55, issue.2, pp.237-279, 2007.
DOI : 10.1021/jf0624695

C. Zhang, D. Bailey, and K. Suslick, Colorimetric Sensor Arrays for the Analysis of Beers:?? A Feasibility Study, Journal of Agricultural and Food Chemistry, vol.54, issue.14, pp.4925-4956, 2006.
DOI : 10.1021/jf060110a

H. Zhou, L. Baldini, J. Hong, A. Wilson, and A. Hamilton, Pattern Recognition of Proteins Based on an Array of Functionalized Porphyrins, Journal of the American Chemical Society, vol.128, issue.7, pp.2421-2426, 2006.
DOI : 10.1021/ja056833c

L. Baldini, A. Wilson, J. Hong, and A. Hamilton, Pattern-Based Detection of Different Proteins Using an Array of Fluorescent Protein Surface Receptors, Journal of the American Chemical Society, vol.126, issue.18, pp.5656-5663, 2004.
DOI : 10.1021/ja039562j

M. Stojanovic, E. Green, S. Semova, D. Nikic, and D. Landry, Cross-Reactive Arrays Based on Three-Way Junctions, 78. Bunz UHF, Rotello VM. Gold Nanoparticle-Fluorophore Complexes: Sensitive and Discerning "Noses" for Biosystems Sensing, pp.6085-93268, 2003.
DOI : 10.1021/ja0289550

S. Stewart, A. Syrett, A. Pothukuchy, S. Bhadra, A. Ellington et al., Identifying Protein Variants with Cross-Reactive Aptamer Arrays, ChemBioChem, vol.74, issue.13, pp.2021-2025, 2011.
DOI : 10.1002/cbic.201100046

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3454492

R. Kirby, E. Cho, B. Gehrke, T. Bayer, Y. Park et al., Aptamer-based sensor arrays for the detection and quantitation of proteins. Analytical Chemistry Buryak A, Severin K. A chemosensor array for the colorimetric identification of 20 natural amino acids, Journal of the American Chemical Society, vol.76127, issue.8111, pp.4066-753700, 2004.

K. Severin, Pattern-based sensing with simple metal???dye complexes, Current Opinion in Chemical Biology, vol.14, issue.6, pp.737-779, 2010.
DOI : 10.1016/j.cbpa.2010.07.005

A. Thete, T. Henkel, R. Gockeritz, M. Endlich, J. Kohler et al., A hydrogel based fluorescent micro array used for the characterization of liquid analytes, Analytica Chimica Acta, vol.633, issue.1, pp.81-90, 2009.
DOI : 10.1016/j.aca.2008.11.030

D. Margulies and A. Hamilton, Combinatorial protein recognition as an alternative approach to antibody-mimetics, Current Opinion in Chemical Biology, vol.14, issue.6, pp.705-717, 2010.
DOI : 10.1016/j.cbpa.2010.07.017

A. Wright, M. Griffin, J. Mcdevitt, and E. Anslyn, Differential receptors create patterns that distinguish various proteins Abstracts of Papers of the, U578-U. 86. Collins BE, Anslyn EV. Pattern-based peptide recognition, pp.4700-4708, 2005.

M. Reddy and T. Kodadek, Protein "fingerprinting" in complex mixtures with peptoid microarrays, Proceedings of the National Academy of Sciences, vol.102, issue.36, pp.12672-12679, 2005.
DOI : 10.1073/pnas.0501208102

E. Savariar, S. Ghosh, D. Gonzalez, and S. Thayumanavan, Disassembly of Noncovalent Amphiphilic Polymers with Proteins and Utility in Pattern Sensing, Journal of the American Chemical Society, vol.130, issue.16, p.5416, 2008.
DOI : 10.1021/ja800164z

D. Gonzalez, E. Savariar, and S. Thayumanavan, Fluorescence Patterns from Supramolecular Polymer Assembly and Disassembly for Sensing Metallo- and Nonmetalloproteins, Journal of the American Chemical Society, vol.131, issue.22
DOI : 10.1021/ja900579g

R. Phillips, I. Kim, P. Ghosh, and U. Bunz, Array-based sensing of proteins using conjugated polymers Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays, Proceedings of the National Academy of Sciences of the United States of America, pp.7708-16318, 2007.

R. Phillips, O. Miranda, C. You, V. Rotello, and U. Bunz, Rapid and Efficient Identification of Bacteria Using Gold-Nanoparticle???Poly(para-phenyleneethynylene) Constructs, Angewandte Chemie International Edition, vol.100, issue.14, pp.2590-2594, 2008.
DOI : 10.1002/anie.200703369

M. De, R. S. Akpinar, H. Miranda, O. Arvizo, R. Bunz et al., Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein, Nature Chemistry, vol.9, issue.6, pp.461-466, 2009.
DOI : 10.1038/nchem.334

O. Miranda, B. Creran, and V. Rotello, Enzyme-Amplified Array Sensing of Proteins in Solution and in Biofluids, Journal of the American Chemical Society, vol.132, issue.14, pp.5285-5294, 2010.
DOI : 10.1021/ja1006756

S. Stranick, S. Atre, A. Parikh, M. Wood, D. Allara et al., Nanometer-scale phase separation in mixed composition self-assembled monolayers, Nanotechnology, vol.7, issue.4, 1996.
DOI : 10.1088/0957-4484/7/4/025

C. Campbell and G. Kim, SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics, Biomaterials, vol.28, issue.15, pp.2380-92, 2007.
DOI : 10.1016/j.biomaterials.2007.01.047

G. Steiner, Surface plasmon resonance imaging, Analytical and Bioanalytical Chemistry, vol.379, issue.3
DOI : 10.1007/s00216-004-2636-8

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy et al., A polypyrrole protein microarray for antibody???antigen interaction studies using a label-free detection process, Analytical Biochemistry, vol.347, issue.2, pp.193-200, 2005.
DOI : 10.1016/j.ab.2005.09.033

URL : https://hal.archives-ouvertes.fr/inserm-00144353

M. Villiers, S. Cortes, C. Brakha, J. Lavergne, C. Marquette et al., Peptide???protein microarrays and surface plasmon resonance detection: Biosensors for versatile biomolecular interaction analysis, Biosensors and Bioelectronics, vol.26, issue.4, pp.1554-1563, 2010.
DOI : 10.1016/j.bios.2010.07.110

URL : https://hal.archives-ouvertes.fr/hal-00916635

E. Mercey, R. Sadir, E. Maillart, A. Roget, F. Baleux et al., Polypyrrole oligosaccharide array and surface plasmon resonance imaging for the measurement of glycosaminoglycan binding interaction. Analytical Chemistry, pp.3476-82, 2008.

R. Karamanska, J. Clarke, O. Blixt, J. Macrae, J. Zhang et al., Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays, Glycoconjugate Journal, vol.77, issue.1, pp.69-74, 2008.
DOI : 10.1007/s10719-007-9047-y

P. Guedon, T. Livache, F. Martin, F. Lesbre, A. Roget et al., Characterization and Optimization of a Real-Time, Parallel, Label-Free, Polypyrrole-Based DNA Sensor by Surface Plasmon Resonance Imaging, Analytical Chemistry, vol.72, issue.24, pp.6003-6012, 2000.
DOI : 10.1021/ac000122+

M. Naka, K. Hattori, T. Ohashi, and K. Ikeuchi, Evaluation of the effect of collagen network degradation on the frictional characteristics of articular cartilage using a simultaneous analysis of the contact condition, Clinical Biomechanics, vol.20, issue.10, pp.1111-1119, 2005.
DOI : 10.1016/j.clinbiomech.2005.06.009

L. Elodie, . Sb, M. Géraldine, and F. Chiraz, Biomarker Discovery using Surface Plasmon Resonance Imaging. [cited 24-06-2013]; Available from: http://www.horiba.com/uploads/media/R39e_12_082_Biomarker_Discovery_05.pdf. 107. Smith EA, Corn RM. Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format Applied Spectroscopy]; Available from: https-Osuna R. Pattern Analysis for Machine Olfaction: A Review, Biacore. Ieee Sensors Journal, vol.572, issue.1083, pp.320-352, 2002.

L. Eriksson, P. Andersson, E. Johansson, and M. Tysklind, Megavariate analysis of environmental QSAR data. Part I -A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD) Molecular Diversity, pp.169-86, 2006.

J. Iglesias, H. Lis, and N. Sharon, Purification and Properties of a

Y. Hou, M. Genua, D. Batista, R. Calemczuk, A. Buhot et al., Continuous Evolution Profiles for Electronic-Tongue-Based Analysis, Angewandte Chemie International Edition, vol.14, issue.41, pp.10394-10402, 2012.
DOI : 10.1002/anie.201205346

URL : https://hal.archives-ouvertes.fr/hal-00871193

C. Laguri, F. Arenzana-seisdedos, and H. Lortat-jacob, Relationships between glycosaminoglycan and receptor binding sites in chemokines -the CXCL12 example. Carbohydrate Research, pp.2018-2041, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274461

H. Lortat-jacob, The molecular basis and functional implications of chemokine interactions with heparan sulphate, Current Opinion in Structural Biology, vol.19, issue.5, pp.543-551, 2009.
DOI : 10.1016/j.sbi.2009.09.003

URL : https://hal.archives-ouvertes.fr/hal-00455247

H. Lortat-jacob, A. Grosdidier, and A. Imberty, Structural diversity of heparan sulfate binding domains in chemokines, Proceedings of the National Academy of Sciences of the United States of America, pp.1229-1263, 2002.
DOI : 10.1073/pnas.032497699

URL : https://hal.archives-ouvertes.fr/hal-00307346

J. Murphy, Y. Cho, A. Sachpatzidis, C. Fan, M. Hodsdon et al., Structural and Functional Basis of CXCL12 (Stromal Cell-derived Factor-1??) Binding to Heparin, Journal of Biological Chemistry, vol.282, issue.13, pp.10018-10045, 2007.
DOI : 10.1074/jbc.M608796200

R. Sadir, F. Baleux, A. Grosdidier, A. Imberty, and H. Lortat-jacob, Characterization of the Stromal Cell-derived Factor-1??-Heparin Complex, Journal of Biological Chemistry, vol.276, issue.11, pp.8288-96, 2001.
DOI : 10.1074/jbc.M008110200

URL : https://hal.archives-ouvertes.fr/pasteur-00166877

L. Yu, J. Cecil, S. Peng, J. Schrementi, S. Kovacevic et al., Identification and expression of novel isoforms of human stromal cell-derived factor 1, Gene, vol.374, issue.119, pp.174-183, 2006.
DOI : 10.1016/j.gene.2006.02.001

C. Svensson, S. Teneberg, C. Nilsson, A. Kjellberg, F. Schwarz et al., High-resolution Crystal Structures of Erythrina cristagalli Lectin in Complex with Lactose and 2???-??-l-Fucosyllactose and Correlation with Thermodynamic Binding Data, Journal of Molecular Biology, vol.321, issue.1, pp.69-83, 2002.
DOI : 10.1016/S0022-2836(02)00554-5

H. Lortat-jacob, J. Turnbull, and J. Grimaud, -binding domain in heparan sulphate, Biochemical Journal, vol.310, issue.2, pp.497-505, 1995.
DOI : 10.1042/bj3100497

URL : https://hal.archives-ouvertes.fr/hal-00307346

D. Bonnaffe, Bioactive synthetic heparan sulfate and heparin derivatives: From long fragments mimetics to chimeras, Comptes Rendus Chimie, vol.14, issue.1, pp.59-73, 2011.
DOI : 10.1016/j.crci.2010.06.002

B. Suslick, L. Feng, and K. Suslick, Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas. Analytical Chemistry, pp.2067-73, 2010.

M. Sim, T. Shya, M. Ahmad, A. Shakaff, A. Othman et al., Monitoring of Milk Quality With Disposable Taste Sensor, Sensors, vol.3, issue.9, pp.340-349, 2003.
DOI : 10.3390/s30900340

M. Bernfield, R. Kokenyesi, M. Kato, M. Hinkes, J. Spring et al., Biology of the Syndecans: A Family of Transmembrane Heparan Sulfate Proteoglycans, Annual Review of Cell Biology, vol.8, issue.1, pp.365-93, 1992.
DOI : 10.1146/annurev.cb.08.110192.002053

J. Kreuger, D. Spillmann, J. Li, and U. Lindahl, Interactions between heparan sulfate and proteins: the concept of specificity, The Journal of Cell Biology, vol.99, issue.3, pp.323-330, 2006.
DOI : 10.1172/JCI200113662

O. Oyelaran and J. Gildersleeve, Glycan arrays: recent advances and future challenges, Current Opinion in Chemical Biology, vol.13, issue.4
DOI : 10.1016/j.cbpa.2009.06.021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749919

J. De-paz and P. Seeberger, Deciphering the glycosaminoglycan code with the help of microarrays, Molecular BioSystems, vol.129, issue.7, pp.406-13707, 2008.
DOI : 10.1039/b802217h

N. Gandhi, R. Mancera, A. Imberty, H. Lortat-jacob, and S. Perez, The Structure of Glycosaminoglycans and their Interactions with Proteins Structural view of glycosaminoglycan-protein interactions. Carbohydrate Research, Chemical Biology & Drug Design Feb, vol.72342, issue.26, pp.455-823, 2007.

T. Rudd, M. Skidmore, M. Guerrini, M. Hricovini, A. Powell et al., The conformation and structure of GAGs: recent progress and perspectives Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, Current Opinion in Structural Biology, vol.20446, issue.1327139, pp.567-741030, 2007.

M. Petitou and C. Van-boeckel, A Synthetic Antithrombin III Binding Pentasaccharide Is Now a Drug! What Comes Next?, Angewandte Chemie International Edition, vol.43, issue.24, pp.3118-3151, 2004.
DOI : 10.1002/anie.200300640

E. Saesen, S. Sarrazin, C. Laguri, R. Sadir, D. Maurin et al., Insights into the Mechanism by Which Interferon-?? Basic Amino Acid Clusters Mediate Protein Binding to Heparan Sulfate, Journal of the American Chemical Society, vol.135, issue.25, pp.9384-90, 2013.
DOI : 10.1021/ja4000867

URL : https://hal.archives-ouvertes.fr/hal-00847973

B. Skurkovich and S. Skurkovich, Anti-interferon-gamma antibodies in the treatment of autoimmune diseases. Current Opinion in Molecular Therapeutics, Feb, vol.5, issue.1, pp.52-59, 2003.

G. Bouma and W. Strober, The immunological and genetic basis of inflammatory bowel disease, Nature Reviews Immunology, vol.3, issue.7
DOI : 10.1038/nri1132

S. Sarrazin, D. Bonnaffe, A. Lubineau, and H. Lortat-jacob, Heparan sulfate mimicry: a synthetic glycoconjugate that recognizes the heparin binding domain of interferon-gamma inhibits the cytokine activity. The Journal of biological chemistry, pp.37558-64, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00274500

M. Farrar and R. Schreiber, The Molecular Cell Biology of Interferon-gamma and its Receptor, Annual Review of Immunology, vol.11, issue.1
DOI : 10.1146/annurev.iy.11.040193.003035

M. Randal and A. Kossiakoff, The structure and activity of a monomeric interferongamma:alpha-chain receptor signaling complex, Structure. Feb, vol.79, issue.2, pp.155-63, 2001.

M. Randal and A. Kossiakoff, Crystallization and preliminary X-ray analysis of a 1:1 complex between a designed monomeric interferon-gamma and its soluble receptor, Protein Science, vol.149, issue.4, 1998.
DOI : 10.1002/pro.5560070424

H. Lortat-jacob and J. Grimaud, Interferon-gamma binds to heparan sulfate by a cluster of amino acids located in the C-terminal part of the molecule. FEBS letters, pp.152-156, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00955793

H. Lortat-jacob and J. Grimaud, Binding of interferon-gamma to heparan sulfate is restricted to the heparin-like domains and involves carboxylic--but not N-sulfated--groups. Biochimica et biophysica acta, pp.126-156, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00955795

C. Vanhaverbeke, J. Simorre, R. Sadir, P. Gans, and H. Lortat-jacob, NMR characterization of the interaction between the C-terminal domain of interferon-?? and heparin-derived oligosaccharides, Biochemical Journal, vol.384, issue.1, pp.93-102, 2004.
DOI : 10.1042/BJ20040757

URL : https://hal.archives-ouvertes.fr/hal-00123106

E. Saesen, Bases Sructurales de la regulation de cytokines par les héparanes sulfates

H. Lortat-jacob, H. Kleinman, and J. Grimaud, Connective matrix and localization of a biological signal: demonstration of a matrix receptor for interferon-gamma in basement membranes]. Comptes rendus de l'Academie des sciences, pp.143-150, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00955769

R. Sadir, E. Forest, and H. Lortat-jacob, The heparan sulfate binding sequence of interferongamma increased the on rate of the interferon-gamma-interferon-gamma receptor complex formation. The Journal of biological chemistry, pp.10919-10944, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00274674

H. Lortat-jacob, H. Kleinman, and J. Grimaud, High-affinity binding of interferon-gamma to a basement membrane complex (matrigel). The Journal of clinical investigation, pp.878-83, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00274681

H. Lortat-jacob, F. Baltzer, and J. Grimaud, Heparin Decreases the Blood Clearance of Interferon-?? and Increases Its Activity by Limiting the Processing of Its Carboxyl-terminal Sequence, Journal of Biological Chemistry, vol.271, issue.27, pp.16139-16182, 1996.
DOI : 10.1074/jbc.271.27.16139

URL : https://hal.archives-ouvertes.fr/hal-00274679

S. Sarrazin, Caractérisation des interactions glycosaminoglycannes/potéines dans le but de développer des molécules d'interêt therapeutique: Exemples de l'Endocan et de l'IFNg: Université de Grenoble, p.153, 2007.

J. De-la-fuente and S. Penades, Glyconanoparticles: Types, synthesis and applications in glycoscience, biomedicine and material science, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1760, issue.4, pp.636-51, 2006.
DOI : 10.1016/j.bbagen.2005.12.001

A. Wei, J. Mehtala, and A. Patri, Challenges and opportunities in the advancement of nanomedicines, Journal of Controlled Release, vol.164, issue.2, pp.236-282, 2012.
DOI : 10.1016/j.jconrel.2012.10.007

N. Reichardt, M. Martin-lomas, and P. S. Glyconanotechnology, Glyconanotechnology, Chemical Society Reviews, vol.47, issue.10, pp.4358-76, 2013.
DOI : 10.1039/c2cs35427f

X. Huang, S. Neretina, and M. El-sayed, Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications, Advanced Materials, vol.17, issue.126, pp.4880-910, 2009.
DOI : 10.1002/adma.200802789

P. Jain, X. Huang, I. El-sayed, and M. El-sayed, Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine, Accounts of Chemical Research, vol.41, issue.12, pp.1578-86, 2008.
DOI : 10.1021/ar7002804

C. Probst, P. Zrazhevskiy, V. Bagalkot, and X. Gao, Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev, pp.703-721, 2013.

R. Qiao, C. Yang, M. Gao, K. Saha, A. Bajaj et al., Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications Beauty is Skin Deep: A Surface Monolayer Perspective on Nanoparticle Interactions with Cells and Biomacromolecules. Small, Journal of Materials Chemistry, vol.197, issue.16014, pp.6274-931903, 2009.

M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philosophical Transactions of the Royal Society of London, vol.147, issue.0
DOI : 10.1098/rstl.1857.0011

. Light, The Royal Society, pp.145-81, 1857.

D. Giljohann, D. Seferos, W. Daniel, M. Massich, P. Patel et al., Gold Nanoparticles for Biology and Medicine, Angewandte Chemie International Edition, vol.131, issue.19, pp.3280-94, 2010.
DOI : 10.1002/anie.200904359

M. Daniel and D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantumsize-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, pp.293-346, 2004.
DOI : 10.1002/chin.200416213

P. Mukherjee, R. Bhattacharya, P. Wang, L. Wang, S. Basu et al., Antiangiogenic properties of gold nanoparticles. Clinical Cancer Research, pp.3530-3534, 2005.

E. Dreaden, M. Mackey, X. Huang, B. Kang, and M. El-sayed, Beating cancer in multiple ways using nanogold, Chemical Society Reviews, vol.20, issue.7, pp.3391-404, 2011.
DOI : 10.1039/c0cs00180e

E. Dickerson, E. Dreaden, X. Huang, I. El-sayed, H. Chu et al., Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery, Expert Opinion on Drug Delivery, vol.2697, issue.1675, pp.57-66577, 2008.

E. Dreaden, A. Alkilany, X. Huang, C. Murphy, and M. El-sayed, The golden age: gold nanoparticles for biomedicine, Chem. Soc. Rev., vol.45, issue.135, pp.2740-79, 2012.
DOI : 10.1039/C1CS15237H

S. Rana, A. Bajaj, R. Mout, and V. Rotello, Monolayer coated gold nanoparticles for delivery applications Advanced Drug Delivery Reviews, Feb, vol.64, issue.2, pp.200-216, 2012.

N. Rosi and C. Mirkin, Nanostructures in biodiagnostics, Chemical Reviews, 2005.

Y. Liu, Z. Wu, G. Zhou, Z. He, X. Zhou et al., Simple, rapid, homogeneous oligonucleotides colorimetric detection based on non-aggregated gold nanoparticles, Chemical Communications, vol.78, issue.26, pp.3164-3170, 2012.
DOI : 10.1039/c2cc16741g

K. Aslan, J. Lakowicz, and C. Geddes, Nanogold-plasmon-resonance-based glucose sensing, Analytical Biochemistry, vol.330, issue.1
DOI : 10.1016/j.ab.2004.03.032

S. Penn, L. He, and M. Natan, Nanoparticles for bioanalysis, Current Opinion in Chemical Biology, vol.7, issue.5, pp.609-624, 2003.
DOI : 10.1016/j.cbpa.2003.08.013

H. Jans and Q. Huo, Gold nanoparticle-enabled biological and chemical detection and analysis, Chem. Soc. Rev., vol.83, issue.6
DOI : 10.1002/bio.1311

L. Hirsch, J. Jackson, A. Lee, N. Halas, and J. West, A whole blood immunoassay using gold nanoshells. Analytical Chemistry, pp.2377-81, 2003.

M. Bowman, T. Ballard, C. Ackerson, D. Feldheim, D. Margolis et al., Inhibition of HIV Fusion with Multivalent Gold Nanoparticles, Journal of the American Chemical Society, vol.130, issue.22, 2008.
DOI : 10.1021/ja710321g

D. Baram-pinto, S. Shukla, A. Gedanken, and R. Sarid, Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by Functionalized Multivalent Gold Nanoparticles. Small, pp.1044-50, 2010.

J. Bresee, K. Maier, C. Melander, and D. Feldheim, Identification of antibiotics using small molecule variable ligand display on gold nanoparticles, Chemical Communications, vol.82, issue.40, pp.7516-7524, 2010.
DOI : 10.1039/c0cc02663h

J. Bresee, K. Maier, A. Boncella, C. Melander, and D. Feldheim, Growth Inhibition of Staphylococcus aureus by Mixed Monolayer Gold Nanoparticles. Small, Jul, vol.187, issue.14, pp.2027-2058, 2011.

H. Gu, P. Ho, E. Tong, L. Wang, and B. Xu, Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters, pp.1261-1264, 2003.

W. Huang, P. Tsai, and Y. Chen, Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria, Nanomedicine, vol.2, issue.6, pp.777-87, 2007.
DOI : 10.2217/17435889.2.6.777

B. Saha, J. Bhattacharya, A. Mukherjee, A. Ghosh, C. Santra et al., In??Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics, Nanoscale Research Letters, vol.27, issue.12, pp.614-636, 2007.
DOI : 10.1007/s11671-007-9104-2

A. Rai, A. Prabhune, and C. Perry, Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings, Journal of Materials Chemistry, vol.14, issue.793, pp.6789-98, 2010.
DOI : 10.1039/c0jm00817f

L. Vigderman and E. Zubarev, Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules, Advanced Drug Delivery Reviews, vol.65, issue.5, pp.663-76, 2013.
DOI : 10.1016/j.addr.2012.05.004

A. Iyer, G. Khaled, J. Fang, and H. Maeda, Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today, pp.17-18812, 2006.

K. Cho, X. Wang, S. Nie, Z. Chen, and D. Shin, Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, pp.1310-1316, 2008.

T. Doane and C. Burda, Nanoparticle mediated non-covalent drug delivery, Advanced Drug Delivery Reviews, vol.65, issue.5
DOI : 10.1016/j.addr.2012.05.012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747039

C. Mcintosh, E. Esposito, A. Boal, J. Simard, C. Martin et al., conjugation of inorganic nanoparticles for targeted delivery Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters, Adv Drug Deliv Rev. 2013 Journal of the American Chemical Society, vol.65123, issue.531, pp.677-887626, 2001.

G. Han, C. Martin, and V. Rotello, Stability of Gold Nanoparticle-Bound DNA toward Biological, Physical, and Chemical Agents, Chemical Biology <html_ent glyph="@amp;" ascii="&"/> Drug Design, vol.222, issue.1, pp.78-82, 2006.
DOI : 10.1038/38444

K. Sandhu, C. Mcintosh, J. Simard, S. Smith, V. Rotello et al., Gold nanoparticle-mediated Transfection of mammalian cells Bioconjugate Chemistry Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles, VM. Nanoparticles featuring amino acid-functionalized side chains as DNA receptors. Chemical Biology & Drug Design, pp.3-6747, 2002.

P. Ghosh, C. Kim, G. Han, N. Forbes, and V. Rotello, Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles, ACS Nano, vol.2, issue.11
DOI : 10.1021/nn800507t

H. Wang, Y. Chen, X. Li, and Y. Liu, Synthesis of oligo(ethylenediamino)-beta-cyclodextrin modified gold nanoparticle as a DNA concentrator. Molecular Pharmaceutics, 2007.

M. Thomas and A. Klibanov, Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells, Proceedings of the National Academy of Sciences of the United States of America, pp.9138-9181, 2003.
DOI : 10.1073/pnas.1233634100

N. Rosi, D. Giljohann, C. Thaxton, A. Lytton-jean, M. Han et al., Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation, Science, vol.312, issue.5776, pp.1027-1057, 2006.
DOI : 10.1126/science.1125559

D. Seferos, D. Giljohann, N. Rosi, and C. Mirkin, Locked nucleic acid-nanoparticle conjugates. Chembiochem, Jul, vol.238, issue.11, pp.1230-1232, 2007.
DOI : 10.1002/cbic.200700262

C. Tsai, A. Shiau, P. Cheng, D. Shieh, D. Chen et al., A Biological Strategy for Fabrication of Au/EGFP Nanoparticle Conjugates Retaining Bioactivity, Nano Letters, vol.4, issue.7, 2004.
DOI : 10.1021/nl049523l

C. Agbasi-porter, J. Ryman-rasmussen, S. Franzen, and D. Feldheim, Transcription Inhibition Using Oligonucleotide-Modified Gold Nanoparticles, Bioconjugate Chemistry, vol.17, issue.5, pp.1178-83, 2006.
DOI : 10.1021/bc060100f

C. Medley, J. Smith, Z. Tang, Y. Wu, S. Bamrungsap et al., Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Analytical Chemistry, Feb, vol.1580, issue.4, pp.1067-72, 2008.

D. Bhumkar, H. Joshi, M. Sastry, and V. Pokharkar, Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharmaceutical Research, pp.1415-1441, 2007.

R. Visaria, R. Griffin, B. Williams, E. Ebbini, G. Paciotti et al., Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery

J. Stone, N. Thornburg, D. Blum, S. Kuhn, D. Wright et al., Gold nanorod vaccine for respiratory syncytial virus, Nanotechnology, vol.24, issue.29, p.295102, 2013.
DOI : 10.1088/0957-4484/24/29/295102

K. El-boubbou and X. Huang, Glyco-Nanomaterials: Translating Insights from the

B. Applications, Current Medicinal Chemistry 209. de la Fuente JM, Penades S. Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology, Glycoconjugate Journal, vol.1821, issue.14, pp.2060-783, 2004.

H. Otsuka, Y. Akiyama, Y. Nagasaki, and K. Kataoka, Quantitative and Reversible Lectin-Induced Association of Gold Nanoparticles Modified with ??-Lactosyl-??-mercapto-poly(ethylene glycol), Journal of the American Chemical Society, vol.123, issue.34, pp.8226-8256, 2001.
DOI : 10.1021/ja010437m

C. Lin, Y. Yeh, C. Yang, G. Chen, Y. Chen et al., Quantitative analysis of multivalent interactions of carbohydrate

M. Kemp, A. Kumar, S. Mousa, E. Dyskin, M. Yalcin et al., Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties, Nanotechnology, vol.20, issue.45
DOI : 10.1088/0957-4484/20/45/455104

H. Kim, S. Jun, Y. Koo, S. Cho, and Y. Park, Green Synthesis and Nanotopography of Heparin-Reduced Gold Nanoparticles with Enhanced Anticoagulant Activity, Journal of Nanoscience and Nanotechnology, vol.13, issue.3, pp.2068-76, 2013.
DOI : 10.1166/jnn.2013.6906

J. Rojo, V. Diaz, J. De-la-fuente, I. Segura, A. Barrientos et al., Gold Glyconanoparticles as New Tools in Antiadhesive Therapy, ChemBioChem, vol.14, issue.3, pp.291-298, 2004.
DOI : 10.1002/cbic.200300726

X. Liu, M. Atwater, J. Wang, and Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands, Colloids and Surfaces B: Biointerfaces, vol.58, issue.1, pp.3-7, 2007.
DOI : 10.1016/j.colsurfb.2006.08.005

N. Thanh and L. Green, Functionalisation of nanoparticles for biomedical applications, Nano Today, vol.5, issue.3
DOI : 10.1016/j.nantod.2010.05.003

C. Fang, N. Bhattarai, C. Sun, and M. Zhang, Functionalized Nanoparticles with Long-Term Stability in Biological Media. Small, Nano Today. Jul, vol.55, issue.1714, pp.213-301637, 2009.

S. Takae, Y. Akiyama, H. Otsuka, T. Nakamura, Y. Nagasaki et al., Lectin with Lactose Installed to the Distal End of Tethered PEG Strands on Gold Surface, Biomacromolecules, vol.6, issue.2
DOI : 10.1021/bm049427e

Y. Zhang, N. Kohler, and M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials, vol.23, issue.7, pp.1553-61, 2002.
DOI : 10.1016/S0142-9612(01)00267-8

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen et al., In Vivo MRI Detection of Gliomas by Chlorotoxin-Conjugated Superparamagnetic Nanoprobes, Small, vol.143, issue.3, pp.372-381, 2008.
DOI : 10.1002/smll.200700784

N. Kohler, G. Fryxell, and M. Zhang, A Bifunctional Poly(ethylene glycol) Silane Immobilized on Metallic Oxide-Based Nanoparticles for Conjugation with Cell Targeting Agents, Journal of the American Chemical Society, vol.126, issue.23, pp.7206-7217, 2004.
DOI : 10.1021/ja049195r

Y. Zhang, C. Sun, N. Kohler, and M. Zhang, Self-Assembled Coatings on Individual Monodisperse Magnetite Nanoparticles for Efficient Intracellular Uptake, Biomedical Microdevices, vol.6, issue.1, pp.33-40, 2004.
DOI : 10.1023/B:BMMD.0000013363.77466.63

B. Zhu, T. Eurell, R. Gunawan, and D. Leckband, Chain-length dependence of the protein and cell resistance of oligo(ethylene glycol)-terminated self-assembled monolayers on gold, Journal of Biomedical Materials Research, vol.13, issue.3, pp.406-422, 2001.
DOI : 10.1002/1097-4636(20010905)56:3<406::AID-JBM1110>3.0.CO;2-R

A. Ulman, Wetting studies of molecularly engineered surfaces. Thin Solid Films, 1996.