
HAL Id: tel-00965934
https://theses.hal.science/tel-00965934v1

Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and verification of functional and non
functional requirements of ambient, self adaptative

systems
Manzoor Ahmad

To cite this version:
Manzoor Ahmad. Modeling and verification of functional and non functional requirements of ambient,
self adaptative systems. Other [cs.OH]. Université Toulouse le Mirail - Toulouse II, 2013. English.
�NNT : 2013TOU20098�. �tel-00965934�

https://theses.hal.science/tel-00965934v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l'obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSEDOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par
l'Université Toulouse II - Le Mirail

Discipline ou spécialité :
Informatique

JURY
Charles CONSEL - Professor, University of Bordeaux , France (Examiner)

João ARAÚJO - Assistant Professor, Universidade Nova de Lisboa, Portugal (Examiner)
Pierre-Jean CHARREL - Professor, University of Toulouse, France (Member)
Régine LALEAU - Professor, Université Paris-Est Créteil, France (Member)

Jean-Michel BRUEL - Professor, University of Toulouse, France (Supervisor)
Nicolas BELLOIR - Maître de Conférences, UPPA Pau, France (Co-Supervisor)

Ecole doctorale : Mathématiques Informatique Télécommunications (MITT)
Unité de recherche : Institut de Recherche en Informatique de Toulouse (IRIT)

Directeur(s) de Thèse : Jean-Michel BRUEL et Nicolas BELLOIR
Rapporteurs : João ARAÚJO et Charles CONSEL

Présentée et soutenue par
Manzoor AHMAD
Le 07-10-2013

Titre :

Modeling and Verification of Functional and Non Functional

Requirements of Ambient, Self-Adaptive Systems

Abstract

The context of this research work is situated in the field of Software Engineering for Self
Adaptive Systems. Software Engineering applies a systematic approach to the development,
operation, and maintenance of a software product using a sequence of activities. Our work
resides in the very early stages of the software development life cycle i.e. at the Requirements
Engineering phase. We focus on requirements elicitation, modeling and verification aspects
of the Requirements Engineering process.

Due to the continuous growth in size, complexity, heterogeneity and the inherent un-
certainty of systems, it becomes increasingly necessary for computing based systems to
dynamically self adapt to changing environmental conditions, these systems are called Self
Adaptive Systems. These systems modify their behavior at run-time in response to changing
environmental conditions. In order to take into account the changing environmental factors,
Requirements Engineering languages must deal with the inherent uncertainty present in
these systems, which we can capture during the early phases of its development life cycle.
Requirements provide the basis for estimating costs and schedules as well as developing
design and testing specifications. Changes identified during the later stages of the software
development life cycle are hard to reflect and impacts the cost, schedule, and quality of
the resulting software product. For Self Adaptive Systems, Non Functional Requirements
play an important role, and one has to identify as early as possible those Non Functional
Requirements that are adaptable. Non Functional Requirements are requirements that are
not specifically concerned with the functionality of a system, they place restrictions on the
product being developed and the development process.

The overall contribution of this thesis is to propose an integrated approach for modeling
and verifying the requirements of Self Adaptive Systems using Model Driven Engineering
techniques. Model Driven Engineering is primarily concerned with reducing the gap between
problem and software implementation domains through the use of technologies that support
systematic transformation of problem level abstractions to software implementations. By using
these techniques, we have bridged this gap through the use of models that describe complex
systems at multiple levels of abstraction and through automated support for transforming
and analyzing these models. We take requirements as input and divide it into Functional and
Non Functional Requirements. We then use a process to identify those requirements that are
adaptable and those that cannot be changed. We then introduce the concepts of Goal Oriented
Requirements Engineering for modeling the requirements of Self Adaptive Systems, where

iii

Non Functional Requirements are expressed in the form of goals which is much more rich and
complete in defining relations between requirements. We have identified some problems in
the conventional methods of requirements modeling and properties verification using existing
techniques, which do not take into account the adaptability features associated with Self
Adaptive Systems. Our proposed approach takes into account these adaptable requirements
and we provide various tools and processes that we developed for the requirements modeling
and verification of Self Adaptive Systems. We validate our proposed approach by applying it
on two different case studies in the domain of Self Adaptive Systems.

iv

Acknowledgement

Completing my PhD degree is probably the most challenging activity of my first 32 years
of life. The best and worst moments of my doctoral journey have been shared with many
people. It has been a great privilege to spend several years in MACAO (IRIT) at University of
Toulouse, and its members will always remain dear to me.
Foremost, I would like to express my sincere gratitude to my advisor Prof. Jean-Michel
BRUEL for the continuous support during my Ph.D study and research, for his patience,
motivation, enthusiasm, and immense knowledge. I could not have imagined having a better
advisor and mentor for my Ph.D study. I would also like to express my sincere gratitude to
my co-advisor Nicolas BELLOIR. Their guidance helped me in all the time of research and
writing of this thesis.
Besides my advisors, I would like to thank the thesis committee: Prof. Charles CONSEL,
Assistant Prof. João ARAÚJO, Prof. Pierre-Jean CHARREL and Prof. Régine LALEAU for
their encouragement, insightful comments, and questions. It is no easy task, reviewing a
thesis, and I am grateful for their thoughtful and detailed comments.
I would like to thank Cristophe GNAHO and Farida SEMMAK whose work on goal oriented
requirements engineering and the discussions that we have had inspired us to integrate it in
our research work.
I thank my fellow lab mates specially Iulia DRAGOMIR for the healthy discussion that we
have had on properties verification.
I also offer my gratitude to HEC (Higher Education Commission) of the Government of
Pakistan which financed this thesis in its early days.
I would like to thank my parents, their love provided me inspiration and was my driving
force. I owe them everything and wish I could show them just how much I love and appreciate
them.
I would like to thank my family and friends: my brother and sisters who were always there
to encourage and motivate me.
Last but not the least, I would like to thank my wife Faiza AHMAD whose love and
encouragement allowed me to finish this journey. She was always there cheering me up and
stood by me through good and bad times.

v

Contents

Acknowledgement v

Contents vii

List of Figures xi

1 Introduction 1

1.1 Problem Statement . 2
1.2 Objectives of the Thesis . 2
1.3 Structure of the Thesis . 3

I Context 7

2 Self Adaptive Systems 9

2.1 What are Self Adaptive Systems? . 10
2.2 How Self Adaptive Systems Differs from other Systems? 10
2.3 Self Adaptive Systems Examples . 11
2.4 From Requirements Discovery to Adaptation Choices of Self Adaptive Systems 12
2.5 Conclusion . 12

3 Software Engineering 15

3.1 Software Engineering . 16
3.1.1 What is Software Engineering . 16
3.1.2 Origin of Software Engineering . 16
3.1.3 Activities of Software Engineering . 16

3.2 Model Driven Engineering . 19
3.2.1 General Principles of Model Driven Engineering 19
3.2.2 Why Model Driven Engineering for Self Adaptive Systems? 23

3.3 Requirements Engineering . 23
3.3.1 The Importance of Requirements Engineering 23
3.3.2 Definition of Requirement . 24
3.3.3 Functional Requirements v/s Non Functional Requirements 25

vii

Contents

3.3.4 Activities of Requirements Engineering 25
3.4 Approaches of Requirements Engineering . 26

3.4.1 Scenario Based Requirements Engineering 27
3.4.2 Aspect Oriented Requirement Engineering 27
3.4.3 Problem Frame Requirements Engineering 28
3.4.4 Goal Oriented Requirement Engineering 28
3.4.5 Discussion . 31

3.5 Conclusion . 32

4 Requirements Engineering & Properties Verification of Self Adaptive Systems 33

4.1 Requirements Engineering for Self Adaptive Systems 34
4.1.1 Levels of Requirement Engineering for Modeling 34
4.1.2 REcording of Assumptions in RE . 35
4.1.3 Awareness Requirements . 36
4.1.4 RELAX augmented with CLAIMS . 36
4.1.5 AutoRELAX . 37
4.1.6 Fuzzy Live Adaptive Goals for Self-Adaptive Systems 37
4.1.7 Discussion . 38

4.2 Properties Verification of Self Adaptive Systems 39
4.2.1 MEDISTAM-RT . 39
4.2.2 Timed UML and RT-LOTOS Environment 39
4.2.3 UPPAAL . 40
4.2.4 SysML with B Specifications . 40
4.2.5 The OMEGA2 UML/SysML Profile . 41
4.2.6 IFx Toolset . 41
4.2.7 Discussion . 41

4.3 Conclusion . 42

5 Basic Elements 43

5.1 RELAX . 44
5.1.1 RELAX Vocabulary . 44
5.1.2 RELAX-ed v/s Invariant Requirements 44
5.1.3 RELAX Operators . 45
5.1.4 RELAX Grammar . 45
5.1.5 RELAX Process . 47
5.1.6 Discussion . 48

5.2 SysML/KAOS . 49
5.2.1 SysML . 49
5.2.2 KAOS . 51
5.2.3 Why SysML/KAOS? . 51
5.2.4 SysML/KAOS Meta Model . 52
5.2.5 Discussion . 53

viii

Contents

5.3 The OMEGA2 UML/SysML Profile and IFx Toolset 53
5.3.1 The OMEGA2 Profile . 54
5.3.2 IFx Toolset . 56

5.4 Conclusion . 58

II Contribution 59

6 Proposed Approach 61

6.1 Overall View of our Proposed Approach . 62
6.1.1 Problem 1 . 62
6.1.2 Problem 2 . 62
6.1.3 Problem 3 . 64

6.2 The Proposed Approach . 64
6.3 The Solutions . 66

6.3.1 Solution 1 . 66
6.3.2 Solution 2 . 66
6.3.3 RELAX Improvements . 67

6.4 Integration of the Approaches . 67
6.4.1 Relatonship b/w RELAX, SysML/KAOS and SysML 68
6.4.2 Uncertainty Factors/Impacts . 69
6.4.3 Verification of Ambient System’s Properties through Formal Methods . 69
6.4.4 Discussion . 70

6.5 Tools Support . 70
6.5.1 DSL for RELAX . 71
6.5.2 RELAX Editor . 73
6.5.3 RELAX to SysML/Kaos Transformation 74

6.6 Conclusion . 77

7 Experimentation And Analysis 79

7.1 Requirements Modeling of the AAL Case Study 80
7.1.1 The AAL Case Study . 80
7.1.2 Discussion . 83

7.2 Properties Verification of the AAL system with OMEGA2/IFx Profile and Toolset 83
7.2.1 Modeling the AAL system with OMEGA2 Profile 84
7.2.2 Properties Verification of the AAL system 87

7.3 Requirements Modeling of the bCMS Case Study 94
7.3.1 The bCMS Case Study . 94
7.3.2 High Level Goal Model . 94
7.3.3 Low Level Goal Model . 96
7.3.4 Discussion . 97

7.4 Assessment . 97

ix

Contents

7.5 Conclusion . 100

8 Conclusion & Perspectives 101

8.1 Problem Recall . 102
8.2 Our Contribution . 102
8.3 Perspectives . 105

8.3.1 Perspective for Requirements Modeling of Self Adaptive Systems . . . 105
8.3.2 Perspectives for Properties Verification of Self Adaptive Systems 105
8.3.3 Perspective for the Empirical Studies . 106

Author’s Bibliography 107

International Conferences . 107
National Conferences . 107
Workshops . 107

Bibliography 109

Acronyms 117

x

List of Figures

1.1 Thesis Chapters Organization . 4

3.1 The Software Engineering Process [86] . 18
3.2 Relationship between System and Model [19] . 20
3.3 The 3+1 MDA Architecture [18] . 22
3.4 Model Transformation Example [44] . 23
3.5 Projects Success Rates 1994 to 2009 [40] . 24
3.6 Reasons for Resource Overspend [39] . 25
3.7 Non Functional Requirement Definitions [35] . 26
3.8 The Requirements Engineering Process [86] . 27
3.9 KAOS Models . 30

5.1 Relax Operators [96] . 46
5.2 Relax Process [96] . 47
5.3 SysML UML Relationship . 50
5.4 SysML Diagrams . 50
5.5 SysML/Kaos Meta Model [36] . 52
5.6 IFX Workflow [91] . 56
5.7 If2gui Interface [91] . 57

6.1 Conventional Requirements Modeling using SysML/Kaos 63
6.2 Conventional Properties Verification using OMEGA2/IFx 63
6.3 Overall View of Our Approach . 65
6.4 Overall View of Our Approach Showing Input Output and Contributions 67
6.5 Relationship b/w SysML/Kaos SysML and Relax 70
6.6 Relax Grammar . 71
6.7 Generated Requirement Diagram . 72
6.8 Generated Code . 72
6.9 RELAX File . 73
6.10 RELAX Model Example . 74
6.11 Meta Models Paths . 74
6.12 In and Out Declarations . 75
6.13 Relaxed Requirement to Abstract Goal Mapping . 75

xi

List of Figures

6.14 ENV to Elementary Goal Mapping . 75
6.15 MON to Contribution Goal Mapping . 75
6.16 SysML/Kaos Model . 76
6.17 ATL Transformation Hierarchy . 76
6.18 Generated SysML/Kaos Model using ATL Transformations 77

7.1 AAL Case Study . 81
7.2 RELAX Requirement Example . 81
7.3 High Level Goal Model . 82
7.4 Security Goal Model . 83
7.5 Main Internal Block Diagram . 85
7.6 AAL System Blocks . 86
7.7 Fridge Internal Block Diagram . 86
7.8 Patient State Machine Diagram . 87
7.9 Food State Machine Diagram . 88
7.10 Property1 State Machine Diagram . 89
7.11 Property2 State Machine Diagram . 90
7.12 Property3 State Machine Diagram . 91
7.13 XMI to IF Compilation . 91
7.14 IF to Executable file Compilation . 92
7.15 Model Checker results in Error Scenarios . 92
7.16 Initial Simulation Interface . 93
7.17 Error State Food Observer Simulation Interface . 93
7.18 Model checking successful . 93
7.19 bCMS Case Study Overall View . 94
7.20 Availability RELAX-ed Requirement Uncertainty Factors 95
7.21 High Level Goal Model . 96
7.22 Integrity RELAX-ed Requirement Uncertainty Factors 96
7.23 Integrity Goal Model . 97
7.24 Assessement Table . 98
7.25 Pros and Cons of our Proposed Approach . 99

8.1 Overall Conclusion . 104

xii

CHAPTER 1
Introduction

Contents

1.1 Problem Statement . 2

1.2 Objectives of the Thesis . 2

1.3 Structure of the Thesis . 3

1

1. Introduction

1.1 Problem Statement

Self Adaptive Systems (SAS) are highly adaptive, they modify their behavior at run-
time in response to changing environmental conditions. For these systems, Non Functional
Requirements (NFRs) play an important role, and one has to identify as early as possible those
requirements that are adaptable. The distributed nature of SAS and changing environmental
factors (including human interaction) makes it difficult to anticipate all the explicit states in
which the system will be during its lifetime. As such, an SAS needs to be able to tolerate
a range of environmental conditions and contexts, but the exact nature of these contexts
remains imperfectly understood. A feature common to all the previous works regarding
Requirements Engineering (RE) for SAS is that they assume that all adaptation choices are
known and enumerated at design time and does not take unanticipated adaptations into
account. The fact that the point of adaptation for SAS should be identified as early as possible
drive the research on these systems. We base our hypothesis on how to identify the point
of adaptation while defining the requirements for these systems and how to verify these
requirements while keeping in mind the adaptability associated with these systems.

We have identified some problems associated with requirements modeling and verification
using existing approaches. On one hand, existing requirements modeling approaches do
not take into account the uncertainty factors associated with SAS, on the other, hand we are
exposed to the state space explosion problems associated with existing properties verification
techniques for these systems.

1.2 Objectives of the Thesis

The main objective of this thesis is to provide an integrated approach to identify the point
of flexibility as early as possible while defining the requirements of SAS and to provide a
mechanism for verifying the requirements of these systems. We are of the view that, on one
hand, requirements for SAS should consider the notion of uncertainty while defining it, on
the other hand, there should be a way to verify these requirements as early as possible, even
before the development of these systems starts. In order to handle the notion of uncertainty
in SAS, RE languages for these systems should include explicit constructs for identifying the
point of flexibility in its requirements [96]. Goal Oriented Requirements Engineering (GORE)
techniques can be used to define and model the requirements of SAS [37, 100, 58, 99] and we
aim to provide an integrated approach where we can define and model the requirements of
these systems to obtain a detailed description of the system and its environment.

We base our proposition on using Relax [96] which is an RE language for SAS and
which helps in the differentiation of those requirements that can be Relax-ed from those
requirements that can not be changed. For SAS, Relax-ed requirements play an important
role as these are associated with the adaptability features of these systems. We then integrate
Relax with SysML/Kaos [36] which is a GORE approach for modeling the requirements
of SAS. Then we aim to provide an efficient approach for verifying the properties of these

2

1.3. Structure of the Thesis

systems. The concepts of Model Driven Engineering (MDE) are used at each step of our
proposed approach as it is the main theme of our research team 1 and also due to the
benefits associated with it [33]. MDE is primarily concerned with reducing the gap between
problem and software implementation domains through the use of technologies that support
systematic transformation of problem-level abstractions to software implementations.

Our proposed approach comprises of some tools and processes to address the problems
defined above, which are listed below.

1. To bridge the gap between requirements and the overall system model, we provide a
Domain Specific Language (DSL) for Relax, which takes requirements in textual format
as input and transform it into SysML requirements diagram.

2. To automate the requirements of SAS by taking into account the different uncertainty
factors associated with each Relax-ed requirement, we provide a tool called Relax

COOL editor.

3. To take benefits of GORE approaches, we provide a correlation between Relax and
SysML/Kaos concepts.

4. To use SysML/Kaos in the context of SAS, we provide a mechanism so that only
Relax-ed requirements are injected into SysML/Kaos and not the NFRs in general.

5. To model the Relax-ed requirements in the form of goal models, these requirements
are transformed into SysML/Kaos goal concepts using the correlation table.

6. The validation of our integrated approach by applying it on Ambient Assisted Living
(AAL) and barbados Car Crash Crisis Management System (bCMS) case studies.

7. To verify some properties of the AAL against the system design, we adapt the profile
and the toolset used for verification to take into account the adaptability features
associated with SAS requirements.

The choice of Relax is motivated by the fact that it avoids the problem posed by unan-
ticipated adaptations, i.e. by specifying declaratively the ways in which a requirement may
be Relax-ed. Relax does not require all possible alternative adaptations to be specified
during RE. This flexibility leaves open the design choice as to how to achieve adaptation and
therefore supports designs based on adaptation rules, planning algorithms, control theory
algorithms, etc. This work resides in the framework of self adaptation but we do not treat
the development of self adaptation mechanisms as we are at the very early stage of the SAS
development life cycle.

1.3 Structure of the Thesis

The thesis is organized as follows. In chapter 2, I give a description of the main context of
our work i.e. what is SAS and how it differs from other systems, I then give few examples
of SAS. In chapter 3, I give a description of Software Engineering (SE) and what are its

1. ❤tt♣✿✴✴✇✇✇✳✐r✐t✳❢r✴✲❊q✉✐♣❡✲▼❆❈❆❖✲

3

http://www.irit.fr/-Equipe-MACAO-

1. Introduction

Figure 1.1: Thesis Chapters Organization

activities, then I introduce MDE along with its basic concepts and show why is it useful
to use MDE techniques for SAS. As this thesis is centered around defining an integrated
approach for the RE of SAS, I describe the different approaches of RE. GORE techniques are
detailed as we base our proposition on using these techniques for defining and modeling
the requirements of SAS. chapter 4 gives a description of the state of the art of the different
approaches i.e. RE for SAS and properties verification using formal methods. In chapter 5, I
describe Relax, which is an RE language for SAS and SysML/Kaos which is an extension
of the SysML requirements model with concepts of the Kaos goal model. Both Relax and
SysML/Kaos serve us as a starting point for proposing our integrated approach. I then
introduce OMEGA2/IFx profile and toolset that we used for the properties verification and
model simulation of the SAS. OMEGA2 is an executable Uml/SysML profile used for the
formal specification and validation of critical real-time systems. It is based on a subset of
Uml 2.2/SysML 1.1 containing the main constructs for defining the system structure and
behavior. The OMEGA2 Profile is supported by the IFx toolset which provides mechanisms
for the model simulation and properties verification of SAS. chapter 6 gives an overall view
of our proposed approach, defining the various processes, tools and documents used in it. I
start with introducing the reasons that motivated us to propose this approach by showing
some problems that we identified with existing approaches. I then explain the need for an
integrated approach which takes into account the different features that we propose and to
provide an integrated tooling environment for dealing with the identified problems. I then
give a description of the tools that we developed in order to validate the proposed approach.
The tools comprises of: a DSL for Relax which is acting as a bridge between the requirements
and overall system model and using this DSL, we have transformed requirements in textual
format to a graphical format i.e. SysML requirements diagram using Relax grammar, a Relax

editor which is capabale of automating the Relax-ed requirements by taking into account
the uncertainty factors associated with each Relax-ed requirement, a Relax2SysML/Kaos

editor which models the requirements of the case studies that we have worked with and
which is the result of the application of transformation rules from Relax-ed requirements
into SysML/Kaos goal concepts. In order to validate the proposed approach, chapter 7
gives a description of the two case studies i.e. AAL and bCMS, and the modeling of some
of its requirements. I then show the verification of some of the properties of the AAL case

4

1.3. Structure of the Thesis

study using OMEGA2/IFx profile and toolset. This chapter also shows an assessment of the
proposed approach in terms of the problems identified and the solution provided by using it.
chapter 8 shows the summary of this thesis and the perspectives that we identified. Figure 1.1
shows the organization of the parts and chapters of this thesis.

5

Part I

C O N T E X T

CHAPTER 2
Self Adaptive Systems

Contents

2.1 What are Self Adaptive Systems? . 10

2.2 How Self Adaptive Systems Differs from other Systems? 10

2.3 Self Adaptive Systems Examples . 11

2.4 From Requirements Discovery to Adaptation Choices of Self Adaptive Systems 12

2.5 Conclusion . 12

9

2. Self Adaptive Systems

2.1 What are Self Adaptive Systems?

An adaptive system is a set of interacting or interdependent entities, real or abstract,
forming an integrated whole that together are able to respond to environmental changes or
changes in the interacting parts. A system has goals that must be satisfied and, whether these
goals are explicitly identified or not, system requirements should be formulated to guarantee
goal satisfaction. This fundamental principle has served systems development well for several
decades but is founded on an assumption that goals are fixed. In general, goals can remain
fixed if the environment in which the system operates is stable [95].

As applications continue to grow in size, complexity, and heterogeneity, it becomes in-
creasingly necessary for computing based systems to dynamically self adapt to changing
environmental conditions. These systems are called Dynamic Adaptive Systems (DAS) [96].
Example applications that require DAS capabilities include automotive systems, telecom-
munication systems, environmental monitoring, and power grid management systems. The
distributed nature of DAS and changing environmental factors (including human interaction)
makes it difficult to anticipate all the explicit states in which the system will be during its
lifetime. As such, a DAS needs to be able to tolerate a range of environmental conditions
and contexts, but the exact nature of these contexts remains imperfectly understood. One
overarching challenge in developing DAS therefore, is how to handle the inherent uncertainty
posed by the respective application domains.

2.2 How Self Adaptive Systems Differs from other Systems?

The complexity of current software systems has led the SE community to investigate
innovative ways of developing, deploying, managing and evolving software-intensive systems
and services. In addition to the ever increasing complexity, software systems must become
more versatile, flexible, resilient, dependable, energy-efficient, recoverable, customizable,
configurable, and self-optimizing by adapting to changes that may occur in their operational
contexts, environments and system requirements. Therefore, self-adaptation:

"systems that are able to modify their behavior and/or structure in response to their

perception of the environment and the system itself, and their goals"

has become an important research topic in many diverse application areas.
It is generally accepted that errors in requirements are very costly to fix [62]. The

avoidance of erroneous requirements is particularly important for the emerging class of
systems that need to adapt dynamically to changes in their environment. Many such DAS
are being conceived for applications that require a high degree of assurance [85], in which
an erroneous requirement may result in a failure at run-time that has serious consequences.
The requirement for high assurance is not unique to DAS, but the requirement for dynamic
adaptation introduces complexity of a kind not seen in conventional systems where adaptation,
if it is needed at all, can be done off-line. This dynamic adaptation consequent complexity is

10

2.3. Self Adaptive Systems Examples

manifested at all levels, from the services offered by the run-time platform, to the analytical
tools needed to understand the environment in which the DAS must operate.

DAS are systems designed to continuously monitor their environment and then adapt their
behavior in response to changing environmental conditions. DAS tend to be cyber-physical
systems, where the physical environment is tightly intertwined with the computing-based
system. For these systems, the software may need to be reconfigured at run time (e.g.,
software uploaded or removed) in order to handle new environmental conditions [20].

RE is concerned with what a system ought to do and within which constraints it must do
it. RE for SAS, therefore, must address what adaptations are possible and what constrains
how those adaptations are carried out. In particular, questions to be addressed include: what
aspects of the environment are relevant for adaptation? Which requirements are allowed to
vary or evolve at run-time and which must always be maintained? In short, RE for SAS must
deal with uncertainty because the expectations on the environment frequently vary over time.

The need for DAS is typically due to two key sources of uncertainty. First is the uncertainty
due to changing environmental conditions, such as sensor failures, noisy networks, malicious
threats, and unexpected (human) input; the term environmental uncertainty is used to capture
this class of uncertainty. IBM, for example, originally proposed the area of autonomic com-
puting [48] to handle environmental uncertainty, thereby enabling computing-based systems
to use high-level application goals and requirements to guide run-time self-management,
including self-monitoring, self-healing, and self-configuration. A second form of uncertainty
is behavioral uncertainty. Whereas environmental uncertainty refers to maintaining the same
requirements in unknown contexts, behavioral uncertainty refers to situations where the
requirements themselves need to change. For example, the requirements of a space probe
may change mid flight in order to pursue science opportunities not foreseen by the designers.
It is difficult to know all requirements changes at design time and, in particular, it may not be
possible to enumerate all possible alternatives [96].

An increasingly significant requisite for software based systems is the ability to handle re-
source variability, ever-changing user needs and system faults. Certain standard programming
practices, such as capacitating extensive error handling capabilities through exception catch-
ing schemes, do contribute towards rendering systems fault-tolerant or self-adaptive, however,
these methods are tightly coupled with software codes and are highly application-specific
[34].

2.3 Self Adaptive Systems Examples

SAS like AAL are common in industrialized countries. Below, I cite few examples of such
SAS.

– The Aware Home Research Initiative (AHRI) 1 at Georgia Institute of Technology is
an interdisciplinary research endeavor aimed at addressing the fundamental technical,
design, and social challenges for people in a home setting. Researchers at the AHRI

1. ❤tt♣✿✴✴❛✇❛r❡❤♦♠❡✳✐♠t❝✳❣❛t❡❝❤✳❡❞✉✴

11

http://awarehome.imtc.gatech.edu/

2. Self Adaptive Systems

are interested in three main research areas: Health and Well-being, Digital Media and
Entertainment, and Sustainability, investigating how new technologies can impact the
lives of people at home.

– Maison Intelligent IUT de Blagnac 2 provides services especially home support to people
i.e. to provide dependent and disabled people a reliable service that allows them to
live almost independently in its familiar environment and with the constant safety as
continuously assisted by an adapted infrastructure, potentially making use of human
assistance.

– Mary AAL home 3: Mary is a patient and she need hypo caloric diet. She needs
to maintain minimum liquid intake and the various sensor enabled tools helps her
maintain her daily intake of food and water. Advanced smart homes, such as Mary’s
AAL, rely on adaptivity to work properly.

– DiaSuiteBox 4 is an Open application platform for smart homes. It proposes an applica-
tion store that gathers the devices deployed at home. The DiaSuiteBox platform runs an
open-ended set of applications leveraging a range of appliances and web services.

We use Mary’s AAL home case study for the validation of our proposed approach. We
model the requirements and then verify some of the properties of the AAL case study using
our proposed approach.

2.4 From Requirements Discovery to Adaptation Choices of Self

Adaptive Systems

Goal based modeling notations has been applied to the discovery and specification of
DAS requirements [96] such as i* [98]. Goal models have proven to be useful for specifying
the adaptation choices that a DAS must make [37, 58] as well as for the specification of
monitoring and switching between adaptive behaviors [81]. A particular strength of goal
based modeling is that it supports the modeling of non-functional trade-offs, which can be
used to capture some elements of environmental uncertainty. [59] show that requirements
goal models can be used as a foundation for designing software that supports a space of
behaviours, all delivering the same function, and that is able to select at runtime the best
behaviour based on the current context. The advantages of this approach include the support
for traceability of software design to requirements as well as for the exploration of alternatives
and for their analysis with respect to quality concerns of stakeholders.

2.5 Conclusion

In this chapter, I show a description of the context of our work i.e. SAS. Then, I describe
the specificity of these systems and show how these systems differs from other systems. I

2. ❤tt♣✿✴✴♠✐✳✐✉t✲❜❧❛❣♥❛❝✳❢r✴

3. ❤tt♣✿✴✴✇✇✇✳✐❡s❡✳❢r❛✉♥❤♦❢❡r✳❞❡✴❢❤❣✴✐❡s❡✴♣r♦❥❡❝ts✴♠❡❞♣r♦❥❡❝ts✴❛❛❧✲❧❛❜✴✐♥❞❡①✳❥s♣

4. ❤tt♣✿✴✴♣❤♦❡♥✐①✳✐♥r✐❛✳❢r✴s♦❢t✇❛r❡✴❞✐❛s✉✐t❡❜♦①

12

http://mi.iut-blagnac.fr/
http://www.iese.fraunhofer.de/fhg/iese/projects/med projects/aal-lab/index.jsp
http://phoenix.inria.fr/software/diasuitebox

2.5. Conclusion

then cite few examples of SAS as these systems like Mary’s AAL are developed to facilitate
the daily lives of the patient. The technologies show promise in helping people to live
independently and in comfort. As our work is about the RE of SAS, I talk about the very
initial stages of the SAS life cycle as we are interested in providing a framework for self
adaptation but not any mechanisms for achieving it.

13

CHAPTER 3
Software Engineering

Contents

3.1 Software Engineering . 16

3.1.1 What is Software Engineering . 16

3.1.2 Origin of Software Engineering . 16

3.1.3 Activities of Software Engineering . 16

3.2 Model Driven Engineering . 19

3.2.1 General Principles of Model Driven Engineering 19

3.2.2 Why Model Driven Engineering for Self Adaptive Systems? 23

3.3 Requirements Engineering . 23

3.3.1 The Importance of Requirements Engineering 23

3.3.2 Definition of Requirement . 24

3.3.3 Functional Requirements v/s Non Functional Requirements 25

3.3.4 Activities of Requirements Engineering 25

3.4 Approaches of Requirements Engineering . 26

3.4.1 Scenario Based Requirements Engineering 27

3.4.2 Aspect Oriented Requirement Engineering 27

3.4.3 Problem Frame Requirements Engineering 28

3.4.4 Goal Oriented Requirement Engineering 28

3.4.5 Discussion . 31

3.5 Conclusion . 32

15

3. Software Engineering

In this chapter, I introduce SE and its main activities. I then introduce the MDE concepts
which we used to develop the tools support for our proposed approach. Our proposed
approach takes requirements as input, so I give a description of the different techniques used
for RE. GORE are described in detail as these are most widely used for the RE of SAS.

3.1 Software Engineering

Software systems are abstract and intangible. They are not constrained by the properties
of materials, governed by physical laws, or by manufacturing processes. This simplifies SE,
as there are no natural limits to the potential of software. However, because of the lack of
physical constraints, software systems can quickly become extremely complex, difficult to
understand, and expensive to change. This is why they need specific engineering processes
and techniques to take into account these considerations.

3.1.1 What is Software Engineering

SE is an engineering discipline that is concerned with all aspects of software production
from the early stages of system specification to maintaining the system after it has gone into
use. Following are the definitions of SE:

– The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to
software [43].

– The establishment and use of sound engineering principles in order to obtain economi-
cally software that is reliable and works efficiently on real machines [67].

A good software should deliver the required functionality and performance to the user
and should be maintainable, dependable, and usable.

3.1.2 Origin of Software Engineering

The notion of SE was first proposed in 1968 at a conference held to discuss what was
then called the Software Crisis [67]. It became clear that individual approaches to program
development did not scale up to large and complex software systems. These were unreliable,
cost more than expected, and were delivered late. Throughout the 1970’s and 1980’s, a variety
of new software engineering techniques and methods were developed, such as structured
programming, information hiding and object-oriented development. Tools and standard
notations were developed and are now extensively used.

3.1.3 Activities of Software Engineering

The systematic approach that is used in SE is sometimes called a software process. A
software process is a sequence of activities that leads to the production of a software product
[86]. There are four fundamental activities that are more or less common to all software
processes. I describe it in the following sub sections.

16

3.1. Software Engineering

3.1.3.1 Software Specification

Software specification or RE is the process of understanding and defining what services
are required from the system and identifying the constraints on the system’s operation and
development. RE is a particularly a critical stage of the software process as errors at this
stage inevitably lead to later problems in the system design and implementation. The RE
process in Figure 3.8 aims to produce an agreed requirements document that specifies a
system satisfying stakeholder requirements. Requirements are usually presented at two
levels of detail. End-users and customers need a high-level statement of the requirements;
system developers need a more detailed system specification. I describe the RE activities in
section 3.3.4.

3.1.3.2 Software Design and Implementation

A software design is a description of the structure of the software to be implemented, the
data models and structures used by the system, the interfaces between system components
and, sometimes, the algorithms used. Designers do not arrive at a finished design immediately
but develop the design iteratively. They add formality and detail as they develop their design
with constant backtracking to correct earlier designs. Depending upon the system, it may
not be possible to do constant backtracking as in the case of system engineering of complex
systems.

The implementation stage of software development is the process of converting a system
specification into an executable system. The development of a program to implement the sys-
tem follows naturally from the system design processes. Although some classes of programs,
such as safety-critical systems, are usually designed in detail before any implementation
begins, it is common for the later stages of design and program development to be interleaved.
Software development tools may be used to generate a skeleton program from a design. This
includes code to define and implement interfaces, and, in many cases, the developer need
only add details of the operation of each program component.

3.1.3.3 Software Validation

Software validation or, more generally, verification and validation is intended to show
that a system both conforms to its specification and that it meets the expectations of the
system customer. Program testing, where the system is executed using simulated test data,
is the principal validation technique. Validation may also involve checking processes, such
as inspections and reviews, at each stage of the software process from user requirements
definition to program development. Because of the predominance of testing in general, the
majority of validation costs are incurred during and after implementation.

A three-stage testing process is often used: first the system components are tested then
the integrated system is tested and, finally, the system is tested with the customer’s data.
Ideally, component defects are discovered early in the process, and interface problems are
found when the system is integrated. However, as defects are discovered, the program must

17

3. Software Engineering

Figure 3.1: The Software Engineering Process [86]

be debugged and this may require other stages in the testing process to be repeated. Errors
in program components may come to light during system testing. The process is therefore an
iterative one with information being fed back from later stages to earlier parts of the process.

3.1.3.4 Software Evolution

The flexibility of software systems is one of the main reasons why more and more
software is being incorporated in large, complex systems. Once a decision has been made to
manufacture hardware, it is very expensive to make changes to the hardware design. However,
changes can be made to software at any time during or after the system development. Even
extensive changes are still much cheaper than corresponding changes to system hardware.
However, it does not mean that changes at software level are cheaper, according to [39, 40],
errors related to RE activity of the SE process are more costlier and even results in the failure
of software projects.

The different activities of SE varies extensively with the type of software system being
developed. Different types of software systems exists ranging from simple embedded systems
to complex, worldwide information systems, SAS etc. It is pointless to look for universal
notations, methods, or techniques for SE because different types of software require different
approaches. Developing an organizational information system is completely different from
developing an SAS. Neither of these systems has much in common with a graphics-intensive
computer game. All of these applications need SE; they do not all need the same SE
techniques. While all software projects have to be professionally managed and developed,
different techniques are appropriate for different types of systems. Therefore, one can not say
which method is better than another.

Software processes are the activities involved in producing a software system. Software
process models are abstract representations of these processes. General process models

18

3.2. Model Driven Engineering

describe the organization of software processes. Examples of these general models include
the ‘waterfall’ model, incremental development, and reuse-oriented development. The four
basic process activities of specification, development, validation and evolution are organized
differently in different development processes. Figure 3.1 shows the four software process
activities. In our context, we are interested in using MDE techniques for the requirements
modeling and verification of SAS, so I describe the MDE concepts in the following section.

3.2 Model Driven Engineering

MDE aims at shifting the focus of software development from coding to modeling [97].
The term MDE is typically used to describe software development approaches in which
abstract models of software systems are created and systematically transformed to concrete
implementations [33]. MDE software development approach has the potential to address
the identified challenges of SE. It offers an environment that ensures the systematic and
disciplined use of models throughout the development process of software systems. The
essential idea of MDE is to shift the attention from program code to models. This way models
become the primary development artifacts that are used in a formal and precise way [61].

A significant factor behind the difficulty of developing complex software systems e.g.
SAS is the wide conceptual gap between the problem and the implementation domains of
discourse [33]. Bridging the gap using approaches that require extensive handcrafting of
implementations gives rise to accidental complexities that make the development of complex
software difficult and costly. MDE is primarily concerned with reducing the gap between
problem and software implementation domains through the use of technologies that support
systematic transformation of problem-level abstractions to software implementations. The
complexity of bridging the gap is tackled through the use of models that describe complex
systems at multiple levels of abstraction and from a variety of perspectives, and through
automated support for transforming and analyzing models. In the MDE vision of software
development, models are the primary artifacts of development and developers rely on
computer-based technologies to transform models to running systems.

3.2.1 General Principles of Model Driven Engineering

3.2.1.1 What is a Model?

In literature, different definitions of a model exists [66, 82, 52, 19], at various levels of
abstraction, introducing conceptual frameworks or pragmatic tools, describing languages or
environments, discussing practices and processes. Modeling is now permeating all fields of
SE.

"A model is a simplification of a system built with an intended goal in mind. The model

should be able to answer questions in place of the actual system. [19]"

The answers provided by the model should be the same as those given by the system
itself, on the condition that questions are within the domain defined by the general goal of

19

3. Software Engineering

Figure 3.2: Relationship between System and Model [19]

the system. In order to be useful, a model should be easier to use than the original system.
To achieve this, many details from the source system are abstracted out, and only a few are
implemented in the target model. This simplification or abstraction is the essence of modeling.
Following are the characteristics of useful models [83].

– Abstract: Emphasize important aspects while removing irrelevant ones.
– Understandable: Expressed in a form that is readily understood by observers.
– Accurate: Faithfully represents the modeled system.
– Predictive: Can be used to answer questions about the modeled system.
– Inexpensive: Much cheaper to construct and study than the modeled system.

3.2.1.2 The Concept of Meta Model

A meta-model is the explicit specification of an abstraction (a simplification). It uses a
specific language for expressing this abstraction: e.g. Meta Object Facility (MOF) 1. In order to
define the abstraction, the meta-model identifies a list of relevant concepts and a list of relevant
relationships between these concepts. In some cases this may suffice, but in many situations
it needs to be completed by a set of logical assertions. With MOF, a specific formalism for the
assertions must be added like Object Constrained Language (OCL) 2. Figure 3.2 illustrates
relationships between systems, models and meta-models.

"A meta-model is a collection of concepts, it defines the set of well-formed productions to

represent a given reality."

A model M is said to ConformTo a given meta-model MM if it can be obtained through a
legal collection of concepts as defined by meta-model MM. The organization of the classical
four level architecture of the Object Management Group (OMG) 3 should more precisely be
named a 3+1 architecture as illustrated in Figure 3.3 [18]. At the bottom level, the M0 layer
is the real system. A model represents this system at level M1. This model conforms to its
meta-model defined at level M2 and the meta-model itself conforms to the meta-meta-model
at level M3. The meta-meta-model conforms to itself.

1. ❤tt♣✿✴✴✇✇✇✳♦♠❣✳♦r❣✴♠♦❢✴

2. ❤tt♣✿✴✴✇✇✇✳♦♠❣✳♦r❣✴s♣❡❝✴❖❈▲✴

3. ❤tt♣✿✴✴✇✇✇✳♦♠❣✳♦r❣

20

http://www.omg.org/mof/
http://www.omg.org/spec/OCL/
http://www.omg.org

3.2. Model Driven Engineering

3.2.1.3 Model Driven Architecture

In 1997, OMG created the Uml
4 standard which is a general purpose modeling language.

The OMG is an international, open membership, computer industry standards consortium.
Founded in 1989, OMG standards are driven by vendors, end-users, academic institutions
and government agencies. The Uml includes a set of graphic notation techniques to create
visual models of object-oriented software-intensive systems. It has become one of the most
used modeling languages.

In 2000, the OMG proposed the Model Driven Architecture (MDA) 5. MDA engulfs the
definition of several standards like MOF, OCL, Query View Transformation (QVT) 6 and
XML Metadata Interchange (XMI) 7. The need for MOF resulted from the fact that Uml was
only one of the meta-models in the software development landscape. Because of the risk
posed by the presence of a variety of different, incompatible meta-models being defined
and evolving independently (data warehouse, work flow, software process, etc.), there was
an urgent need for a global integration framework for all the meta-models in the software
development industry. The solution was therefore a language for defining meta-models, i.e. a
meta-meta-model. This is the role of the MOF. As a consequence, a layered architecture has
now been defined. This layered architecture has the following levels.

– M3: the meta-meta-model level (contains only the MOF)
– M2: the meta-model level (contains any kind of meta-model, including the Uml meta-

model)
– M1: the model level (any model with a corresponding meta-model from M2)
– M0: the concrete level (any real situation, unique in space and time, represented by a

given model from M1)

3.2.1.4 Model Transformations

MDE ensures that models are formally defined and precise, thus a partial automation of
the software development process can be achieved. It is commonly accepted that automation
is by far the most effective technological means for boosting productivity and reliability [83].
The automated parts of the development process are achieved through model transformations.
According to [50]:

"A model transformation is the automatic generation of one or more target models from

one or more source models, according to transformation definition(s). A transformation

definition is a set of transformation rules that together describe how a model in the source

language can be transformed into a model in the target language . A transformation rule

is a description of how one or more constructs in the source language can be transformed

into one or more constructs in the target language."

4. ❤tt♣✿✴✴✇✇✇✳♦♠❣✳♦r❣✴s♣❡❝✴❯▼▲✴✷✳✹✴■♥❢r❛str✉❝t✉r❡✴❇❡t❛✷✴P❉❋✴

5. ❤tt♣✿✴✴✇✇✇✳♦♠❣✳♦r❣✴♠❞❛✴

6. ❤tt♣✿✴✴✇✇✇✳♦♠❣✳♦r❣✴s♣❡❝✴◗❱❚✴

7. ❤tt♣✿✴✴✇✇✇✳♦♠❣✳♦r❣✴t❡❝❤♥♦❧♦❣②✴①♠❧✴

21

http://www.omg.org/spec/UML/2.4/Infrastructure/Beta2/PDF/
http://www.omg.org/mda/
http://www.omg.org/spec/QVT/
http://www.omg.org/technology/xml/

3. Software Engineering

Figure 3.3: The 3+1 MDA Architecture [18]

In a nutshell, a transformation define a mapping between a source and a target model.
MDE aims to automate many of the complex but routine development tasks which still have
to be done manually today [9] with model transformations. Figure 3.4 shows a snapshot of
the model transformation from Model Ma to Model Mb [44].

There exists many classes of model transformations, [63] proposes a taxonomy of model
transformations. In order to transform models, these models need to be expressed in some
modeling language (e.g., Uml for design models, and programming languages for source
code models). The syntax and semantics of the modeling language itself is expressed by a
meta-model (e.g., the Uml meta-model). Based on the language in which the source and target
models of a transformation are expressed, a distinction can be made between endogenous and
exogenous transformations. Endogenous transformations are transformations between models
expressed in the same language. Exogenous transformations are transformations between
models expressed using different languages. Another distinction to be made is between
horizontal and vertical transformation. A horizontal transformation is a transformation where
the source and target models reside at the same level of abstraction. A typical example of
horizontal transformation is refactoring. A vertical transformation is a transformation where
the source and target models reside at different levels of abstraction. A typical example is
refinement, where a specification is gradually refined into a full-fledged implementation by
means of successive refinement steps that add more concrete details.

22

3.3. Requirements Engineering

Figure 3.4: Model Transformation Example [44]

3.2.2 Why Model Driven Engineering for Self Adaptive Systems?

The major advantage of using MDE is that we express models using concepts that are
much less bound to the underlying implementation technology and are much closer to the
problem domain relative to most popular programming languages. This makes the models
easier to specify, understand, and maintain. It also makes models less sensitive to the chosen
computing technology and to evolutionary changes to that technology.

Research on MDE has mainly focused on the use of models during software development.
This has produced relatively mature techniques and tools that are currently being used
in industry and academia to manage software complexity during software development.
Works on SAS has produced significant results, but many problems remain. In our proposed
approach, we provide tools and processes for the requirements modeling and verification
of SAS. MDE techniques help us to develop these various tools. It provides a mechanism
through automated support for models transformation and analysis to accomplish our desired
objectives.

3.3 Requirements Engineering

RE emphasizes the use of systematic and repeatable techniques that ensure the complete-
ness, consistency, and relevance of the system requirements [87].

3.3.1 The Importance of Requirements Engineering

Various studies of the Standish Group 8 state that inappropriate RE is one of the most
important reasons for project failures. The frequently cited Standish Group Report from 1995
[39] reports that only 52.7% of the projects analyzed in the study were finished, but they
exceeded the estimated budget by up to 189%. Moreover, on average only 42% of the planned

8. ❤tt♣✿✴✴st❛♥❞✐s❤❣r♦✉♣✳❝♦♠

23

http://standishgroup.com

3. Software Engineering

Figure 3.5: Projects Success Rates 1994 to 2009 [40]

system functions were implemented. Of the projects, 16.1% were finished on time, within
budget and realized all the planned system functions. Of all projects, 31.1% were canceled
and did not deliver the desired results.

Figure 3.5 provides an overview of the project success rates from 1994 to 2009 [40]. It
shows that the percentage of successfully finished projects in 2009 was significantly higher
than in 1994. However, the value has been stagnating since 1996 at a rate around 30%. In all
the studies summarized in Figure 3.5 at least 65% of the projects failed or finished with an
overspend above the estimated resources and/or with restricted implemented functionality.
Thus the situation has not changed significantly since 1996. Figure 3.6 depicts the different
reasons and the percentage of each reason stated by the project participants. Reasons that are
definitely related to insufficient and poor requirements engineering are highlighted in dark
grey. Together, they sum up to 48%.

3.3.2 Definition of Requirement

The importance of complete, consistent and well documented software requirements is dif-
ficult to overstate [31]. As requirements are the starting point of every software development
process. The IEEE 610.12-1990 standard [43] defines the term "requirement" as follows:

– A condition or capability needed by a user to solve a problem or achieve an objective.
– A condition or capability that must be met or possessed by a system or system compo-

nent to satisfy a contract, standard, specification, or other formally imposed document.

24

3.3. Requirements Engineering

Figure 3.6: Reasons for Resource Overspend [39]

– A documented representation of a condition or capability as in the first two forms.

3.3.3 Functional Requirements v/s Non Functional Requirements

Requirements can be divided into functional and non functional requirements. IEEE
610.12-1990 standard [43] defines a Functional Requirements (FR) as a requirement that
specifies a function that a system or system component must be able to perform. There is no
such consensus for defining NFRs [35]. Figure 3.7 gives an overview of selected definitions
from literature or the web, which are representative of the definitions that exist.

3.3.4 Activities of Requirements Engineering

RE needs several activities in order to provide a consistent requirements model. Specifi-
cally, RE encompasses the following activities.

1. Feasibility study: An estimate is made of whether the identified user needs may
be satisfied using current software and hardware technologies. The study considers
whether the proposed system will be cost-effective from a business point of view and if
it can be developed within existing budgetary constraints. A feasibility study should be
relatively cheap and quick. The result should inform the decision of whether or not to
go ahead with a more detailed analysis.

2. Requirements elicitation and analysis: This is the process of deriving the system
requirements through observation of existing systems, discussions with potential users
and procurers, task analysis, and so on. This may involve the development of one or
more system models and prototypes. It helps to understand the system to be specified.

3. Requirements specification: Requirements specification is the activity of translating the
information gathered during the analysis activity into a document that defines a set

25

3. Software Engineering

Figure 3.7: Non Functional Requirement Definitions [35]

of requirements. Two types of requirements may be included in this document. User
requirements are abstract statements of the system requirements for the customer and
end-user of the system; system requirements are a more detailed description of the
functionality to be provided.

4. Requirements validation: This activity checks the requirements for realism, consistency,
and completeness. During this process, errors in the requirements document are
inevitably discovered. It must then be modified to correct these problems.

The activities in the requirements process are not simply carried out in a strict sequence.
Requirements analysis continues during definition and specification and new requirements
come to light throughout the process. Therefore, the activities of analysis, definition, and
specification are interleaved. Figure 3.8 shows the different activities of the RE process.

3.4 Approaches of Requirements Engineering

In literature, different approaches exist for RE. Each one of these approaches concentrate
on a specific activity of the RE process. Following are some of the approaches that we have
studied.

26

3.4. Approaches of Requirements Engineering

Figure 3.8: The Requirements Engineering Process [86]

3.4.1 Scenario Based Requirements Engineering

In Scenario Based RE [88, 79], requirements are described in the form of scenarios. A
scenario can be defined as a description of a possible set of events that might reasonably
take place. The main purpose of developing scenarios is to stimulate thinking about possible
occurrences, assumptions relating these occurrences, possible opportunities and risks, and
courses of action [46]. Scenarios have been advocated as an effective means of communicating
between users and stakeholders and anchoring requirements analysis in real world experience.
Unfortunately scenarios are extremely labor-intensive to capture and document; furthermore,
few concrete recommendations exist about how scenario-based RE should be practiced, and
even less tool support is available [88].

3.4.2 Aspect Oriented Requirement Engineering

Aspect Oriented Requirements Engineering (AORE) [78] is based on an improved support
for separation of crosscutting functional and non-functional properties during RE which
results in an improved understanding of the problem and ability to reason about it. AORE
approaches adopt the principle of separation of concerns at the analysis phase (the early
separation of concerns). In other words, AORE approaches provide a representation of
crosscutting concerns in requirements artifacts. These approaches also focus on the compo-
sition principle: it should be possible to compose each concern/requirement with the rest
of the concerns/requirements of the system under construction to understand interactions
and trade-offs among concerns. This composability of requirements is a central notion of
AORE [64]. It allows not only reviewing the requirements in their entirety, but also detection
of potential conflicts very early in order to either take corrective measures or appropriate
decisions for the next development step. The mapping of the concerns at the requirement

27

3. Software Engineering

level to concerns in later life cycle stages reveal whether the concern maps to a crosscutting
artifact or whether it becomes absorbed into other artifacts.

3.4.3 Problem Frame Requirements Engineering

Problem Frame Requirements Engineering [45] is based on the assumption that You can’t

solve a software development problem until you understand it. Problem Frames offer a systematic,
realistic way to grasp the other half of the development challenge i.e. the problem that must
be solved. This approach is mainly valid for functional requirements.

Problem Frames are a systematic approach to the decomposition of problems that allows us
to relate requirements, domain properties, and machine specifications. Having decomposed
a problem, one approach to solving it is through a process of composing solutions to
sub-problems. Given a good decomposition of a problem into sub-problems, a range of
benefits would arise if we were able to provide a solution by solving the sub-problems in
isolation and then composing the partial solutions to give a complete system. The benefits
include: scalability (due to working at the level of simpler sub-problems), traceability (since
sub-problems map directly to their solutions), and easier system evolution (changes to
sub-problems can be addressed by modifying corresponding solutions or compositions) [57].

3.4.4 Goal Oriented Requirement Engineering

The birth of the GORE approach goes back more than two decades with the precise work
of K. Yue [101], who was the first to assert that the explicit modeling of goals in requirements
models may provide a criterion for requirements completeness. [27, 55] define a goal as:

"An objective that the system and its environment must achieve through the cooperation

of different agents (hardware, software or human)."

A goal placed under the responsibility of a system agent is called a requirement, while
a goal placed under the responsibility of an agent of the system environment is called
an expectation. The following main activities are normally present in most of the GORE
approaches: goals elicitation, refinement of goals, different types of goals analysis and the
attribution of the responsibility for a goal to an agent. In what follows, I present a range of
methods adopting the GORE paradigm.

3.4.4.1 The Non Functional Requirement Framework

The Non Functional Requirement (NFR) framework [22] is a framework of goal modeling.
The analysis begins with softgoals that represent NFRs which stakeholders agree upon.
Softgoals are goals that are hard to express, but tend to be global qualities of a software
system. These could be usability, performance, security and flexibility in a given system.
These softgoals are then usually decomposed and refined to uncover a tree structure of goals
and sub-goals e.g. the flexibility softgoal. Once uncovering tree structures, one is bound
to find interfering softgoals in different trees, e.g. security goals generally interferes with

28

3.4. Approaches of Requirements Engineering

usability. These softgoal trees now form a softgoal graph structure. The final step in this
analysis is to pick some particular leaf softgoals, so that all the root softgoals are satisfied.

3.4.4.2 The i* Framework

The i* framework [98] proposes an agent-oriented approach to RE centering on the
intentional characteristics of the agent. Agents attribute intentional properties (such as
goals, beliefs, abilities, commitments) to each other and reason about strategic relationships.
Dependencies between agents give rise to opportunities as well as vulnerabilities. Networks
of dependencies are analyzed using a qualitative reasoning approach. Agents consider
alternative configurations of dependencies to assess their strategic positioning in a social
context.

The i* framework was developed for modeling and reasoning about organizational envi-
ronments and their information systems. It consists of two main modeling components. The
Strategic Dependency (SD) model, which is used to describe the dependency relationships
among various actors in an organizational context and the Strategic Rationale (SR) model,
which is used to describe stakeholder interests and concerns, and how they might be ad-
dressed by various configurations of systems and environments. The framework builds on a
knowledge representation approach to information system development.

3.4.4.3 Goal Based Requirements Analysis Method (GBRAM)

The GBRAM [6] is useful to identify, elaborate, refine and organize goals for requirements
specification. GBRAM comprises two activities: analysis and refinement of goals. Analysis of
the goals is to explore the sources of information to identify goals, organize and classify them.
The interest of GBRAM is that it makes the distinction between achievement goals (Functional
Goal (FG)) and maintenance goals (Non Functional Goals (NFGs)). The goals refinement
activity concerns the goals evolution from the time they are identified until they are translated
into operational requirements. Throughout the goals refinement activity, GBRAM defines the
precedence relation which is to find goals that precede other goals. All GBRAM concepts
(goals, Agents, stakeholders) are specified only in textual form in goals patterns, without
providing any graphical notation.

3.4.4.4 Attributed Goal-Oriented Requirements Analysis Method

Attributed Goal-Oriented Requirements Analysis Method (AGORA) [47] is an extended
version of the goal-oriented requirements analysis method, where attribute values, e.g.
contribution values and preference matrices, are added to goal graphs. An analyst attaches
contribution values and preference values to edges and nodes of a goal graph respectively
during the process for refining and decomposing the goals. The contribution value of an
edge stands for the degree of the contribution of the sub-goal to the achievement of its parent
goal, while the preference matrix of a goal represents the preference of the goal for each
stakeholder. These values can help an analyst to choose and adopt a goal from the alternatives

29

3. Software Engineering

Figure 3.9: KAOS Models

of the goals, to recognize conflicts among goals, and to analyze the impact of requirements
changes. Furthermore the values on a goal graph and its structural characteristics allow the
analyst to estimate the quality of the resulting requirements specification, such as correctness,
unambiguity, completeness etc. The estimated quality values can suggest which goals should
be improved and/or refined.

3.4.4.5 ESPRIT CREWS

The ESPRIT CREWS [79] approach aims to discover requirements through a bi-directional
coupling between goals and scenarios. Three characteristics of the proposed approach
contribute to the achievement of this objective: First, a bidirectional goal-scenario coupling.
The second characteristic of the approach is the distinction between the refinement relationship
and the AND/OR relationships among goals. The third characteristic is the methodological
support provided in the form of enactable guiding rules embodied in a computer software
environment called L’Ecritoire. As a result, it is possible to guide the requirements elicitation
process through interleaved goal modeling and scenario authoring. Here, the focus is on the
discovery of goals from scenarios. The discovery process is centered around the notion of a
Requirement Chunk (RC) which is a <Goal, Scenario> pair.

3.4.4.6 The Knowledge Acquistion in autOmated Specification (KAOS) Method

Kaos [55] is a methodology for RE enabling analysts to build requirement models and to
derive requirement documents from Kaos models. Kaos is based on goals treated at a high
level of abstraction. The Kaos language is a multi-paradigm language used for modeling
goals in order to specify requirements in an RE process. It consists of several models, which
are connected to each other through rules of inter-model consistency.

30

3.4. Approaches of Requirements Engineering

Kaos serves in building a model for the requirements which helps in describing the
problem to be solved and the constraints that must be fulfilled by any solution provider.
Kaos helps in: problem description by allowing to define and manipulate concepts relevant
to problem description, to improve the problem analysis process by providing a systematic
approach for discovering and structuring requirements, to clarify the responsibilities of all
project stakeholders and to let the stakeholders communicate easily and efficiently about the
requirements.

Goals are desired system properties that have been expressed by some stakeholder. Using
Kaos, the analyst discovers the new system by interviewing current and future users and by
analyzing the existing systems, reading the available technical documents. Kaos enables the
analyst to structure the collected goals into directed, acyclic graphs so that each goal in the
model (except the roots, the top most strategic goals) is typically justified by at least another
goal that explains why the goal was introduced in the model and that each goal (except the
leaves, the bottom goals) is refined as a collection of sub-goals describing how the refined
goal can be reached. A Kaos model aggregates four complementary and interrelated views
on the information system 9.

– The goal model refers to the goals wished by the stakeholders involved in the informa-
tion system, i.e., the owners, the users, the business managers, regulations etc. and the
requirements on the information that are needed in order to achieve these goals.

– The responsibility model refers to the inventory of human and automated agents
located inside the system or belonging to its environment and to whom responsibility
for achieving the requirements is assigned.

– The object model defines the problem domain in terms of domain concepts and rela-
tionships over those concepts.

– The operation model defines the behavior that those agents must undertake in order to
achieve or maintain the requirements for which they are responsible.

Figure 3.9 shows the four Kaos models.

3.4.5 Discussion

The most important RE approaches of recent years are goal oriented. This success is due
to the fact that when the GORE process finish its work, all the other approaches starts from
there [56]. Goals concentrate on the activities before the requirements formalization [70].
Most of the other approaches of RE concentrate on what the software should do and how
to do it but not on the reasoning about the requirements. Consequently, it will be difficult
afterwards to understand the requirements and to judge whether, they really capture the
stake holders needs.

Traditional approaches of RE focus on the specification of the system-to-be alone and
do not consider its environment, which is one of the reason of the inadequacy of these
approaches when dealing with more and more complex systems. In the context of this thesis,
we aim to provide an integrated approach for defining and modeling the requirements of SAS,

9. ❤tt♣✿✴✴✇✇✇✳♦❜❥❡❝t✐✈❡r✳❝♦♠✴❢✐❧❡❛❞♠✐♥✴❞♦✇♥❧♦❛❞✴❞♦❝✉♠❡♥ts✴❑❛♦s❚✉t♦r✐❛❧✳♣❞❢

31

http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

3. Software Engineering

thats the reason why traditional approaches of RE can not cope with the uncertainty posed
by these systems, however, consideration of the environment is critical for SAS. Moreover,
an SAS is treated as a collection of target systems with varying environmental conditions,
so each target system’s requirements are modeled, and the adaptive logic that serves for
transition between configurations are treated as separate concerns [103]. Therefore, we need
an approach that can provide support for reasoning about alternative system configurations
where different solutions can be explored and compared. GORE approaches try to solve
these issues. They take into account stakeholders’ intentions and make use of goal models
for specifying these intentions [54]. Various studies [37, 100, 58, 99] suggest that goals can be
used to systematically model the requirements of a SAS.

The choice of Kaos [55] is motivated by the fact that it permits the expression of several
models (goal, agent, object, behavioral models) and the relationship between them. It also
provides a powerful and extensive set of concepts to specify goal models. This facilitates
the design of goal hierarchies with a high level of expressiveness that can be considered at
different levels of abstraction.

3.5 Conclusion

SE is concerned with all the phases of software development i.e. from software spec-
ification till maintenance of the resulting software. SE engulfs different activities while
a software is developed i.e. software specification, software design and implementation,
software validation and software evolution. Software specification or more specifically, RE is
one of the most important activity of SE. Different technical reports have shown that errors at
this stage of the software development life cycle are the most costlier to be addressed in the
later stages i.e. it results in resource overspending and in some cases even in the failure of
software. In literature, we have different approaches of RE. GORE approaches have gained
success due to the use of goal models where we can easily identify the stakeholders involved,
resolve conflicts, assign responsibility to agents. Due to the specific needs of SAS, we need an
approach that best takes into account the uncertainty posed by SAS and which must support
alternative system configurations, that are provided by GORE approaches. MDE techniques
are permeating all the fields of SE. We take benefit of MDE techniques for the development
of tools in order to validate our propose approach.

32

CHAPTER 4
Requirements Engineering &

Properties Verification of Self

Adaptive Systems

Contents

4.1 Requirements Engineering for Self Adaptive Systems 34

4.1.1 Levels of Requirement Engineering for Modeling 34

4.1.2 REcording of Assumptions in RE . 35

4.1.3 Awareness Requirements . 36

4.1.4 RELAX augmented with CLAIMS . 36

4.1.5 AutoRELAX . 37

4.1.6 Fuzzy Live Adaptive Goals for Self-Adaptive Systems 37

4.1.7 Discussion . 38

4.2 Properties Verification of Self Adaptive Systems 39

4.2.1 MEDISTAM-RT . 39

4.2.2 Timed UML and RT-LOTOS Environment 39

4.2.3 UPPAAL . 40

4.2.4 SysML with B Specifications . 40

4.2.5 The OMEGA2 UML/SysML Profile 41

4.2.6 IFx Toolset . 41

4.2.7 Discussion . 41

4.3 Conclusion . 42

33

4. Requirements Engineering & Properties Verification of Self Adaptive Systems

In this chapter, I describe the state of the art of the different approaches of requirements
modeling and properties verification.

Different road map papers on SE for SAS [21, 28] discusses the state of the art, its
limitations, and identify critical challenges. [21] presents research road map for SE of SAS
focusing on four views, which are identified as essential: requirements, modeling, engineering,
and assurances. The focus is on development methods, techniques, and tools that seem to be
required to support the systematic development of complex software systems with dynamic
self adaptive behavior. The most recent road map paper [28] discusses four essential topics
of self-adaptation: design space for self-adaptive solutions, software engineering processes
for self-adaptive systems, from centralized to decentralized control, and practical run-time
verification and validation for SAS.

Traditionally, requirements documents make statements such as The system shall do this.
For SAS, the prescriptive notion of shall needs to be relaxed and could, for example, be
replaced with The system may do this or it may do that or If the system cannot do this, then it

should eventually do that. This idea leads to a new requirements vocabulary for SAS that gives
stakeholders the flexibility to account for uncertainty in their requirements documents. RE for
SAS, therefore, must address what adaptations are possible and what constrains how those
adaptations are carried out. In particular, questions to be addressed include: what aspects
of the environment are relevant for adaptation? Which requirements are allowed to vary or
evolve at run-time and which must always be maintained. In short, RE for SAS must deal
with uncertainty because the expectations on the environment frequently vary over time.

4.1 Requirements Engineering for Self Adaptive Systems

An SAS is able to modify its behavior according to changes in its environment. As such,
an SAS must continuously monitor changes in its context and react accordingly. But here the
questions arises as what aspects of the environment should the SAS monitor. Clearly, the
system cannot monitor everything. And exactly what should the system do if it detects a less
than optimal pattern in the environment. Presumably, the system still needs to maintain a
set of high level goals that should be maintained regardless of the environmental conditions.
But non critical goals could well be Relax-ed, thus allowing the system a degree of flexibility
during or after adaptation. These questions (and others) form the core considerations for
building SAS. This section gives an overview of the state of the art regarding RE for SAS.

4.1.1 Levels of Requirement Engineering for Modeling

Levels of Requirement Engineering for Modeling (LoREM) [37] is an approach for mod-
eling the requirements of a DAS using i* goal models [98]. This approach reifies each of
the original levels to describe the work performed by a specific type of DAS developer to
produce i* goal models that are intended to be integrated with those produced by the other
developers. The i* goal models are used to represent the stakeholder objectives, non-adaptive
system behavior (business logic), adaptive behavior, and adaptation mechanism needs of a

34

4.1. Requirements Engineering for Self Adaptive Systems

DAS. Each of these i* goal models addresses the three RE concerns (conditions to monitor,
decision-making procedure, and possible adaptations) from a specific developer’s perspective.
The original four Levels of RE done for a DAS specified by [14] are as follows:

– Level 1 is the traditional RE work done for a system. Specifically, it deals with the
application domain of a DAS and identifies all possible steady-state systems that can
be executed by the DAS after adaptation.

– Level 2 is the RE work done by the DAS itself at run time to detect the need to adapt
and to select the appropriate target system to adopt.

– Level 3 is the RE work done to select and configure the DAS adaptation infrastructure
for a specific DAS application (e.g., what kinds of monitoring options exist to support
a given monitoring need?). A given adaptation mechanism may be used for multiple
adaptation needs within a given DAS, and there may be many different adaptation
mechanisms from which to choose.

– Level 4 is the RE research into adaptation to identify the adaptation infrastructure
needs. For example, what type of monitoring support (e.g., software sensors, hardware
sensors) is needed? What is the granularity of the monitoring data types? What type of
monitoring (e.g., centralized, distributed real-time) needs to be performed?

The LoREM reify the levels in four key ways: First, Level 2 describes the work performed
by a developer. In the original Levels of RE, Level 2 referred to the RE work done by a DAS
at run time. Feedback from DAS developers indicated that while this is true for idealistic
(and futuristic) DAS, it is not realizable with current technology. Second, four types of
developers are identified, where each level corresponds to the work of a different developer to
construct goal model(s) describing their requirements for a DAS. Third, each level describes
the modeling work performed by the specific developer, models constructed, and how to
integrate the models constructed at the other levels. The task of each developer is identified by
refining the work description in the original levels to describe modeling activities present in
the Model Driven Development (MDD) of a DAS. Fourth, to provide context for the LoREM
and guidance for integrating the RE work into an overall development process for a DAS,
each level is annotated with the MDD phase(s) in which its activities occurs.

4.1.2 REcording of Assumptions in RE

Self adaptation is often used to mitigate an inability to accurately predict the range of
environmental contexts that a system will encounter at run-time. The specification and design
of SAS is thus often subject to uncertainty, forcing the developer to make assumptions in
order to identify and define the means to achieve the system’s goals. Using Claims, an
assumption made in selecting a goal realization strategy can be made explicit. In REcording
of Assumtions in RE (REAssuRE) [94], the i* SR models used in LoREM [37] is extended
with Claims. Claims are attached to softgoal contribution links and are used to record the
rationale for a choice of goal realization strategy when there is uncertainty about the optimum
choice. In REAssuRE, if data collected by monitoring provides evidence that an assumption
is false, the effects can be propagated to the goal models used to specify the goal realization

35

4. Requirements Engineering & Properties Verification of Self Adaptive Systems

strategy, which can then be automatically re-evaluated. This may trigger the system to adapt
by binding to an alternative means of goal realization.

4.1.3 Awareness Requirements

Awareness Requirements (AwReqs) [80] are requirements that talk about the success or
failure of other requirements. More generally, AwReqs talk about the states requirements can
assume during their execution at run-time. There is much and growing interest in software
systems that can adapt to changes in their environment or their requirements in order to
continue to fulfill their mandate. Such adaptive systems usually consist of a system proper
that delivers a required functionality, along with a Monitor-Analyze-Plan-Execute (MAPE)
[48] feedback loop that operationalizes the system’s adaptability mechanisms. AwReqs
are characterized syntactically as requirements that refer to other requirements or domain
assumptions and their success or failure at run-time. AwReqs are represented in a formal
language and can be directly monitored by a requirements monitoring framework.

Like other types of requirements, AwReqs are systematically elicited. Since they refer
to the success/failure of other requirements, their elicitation takes place after the basic
requirements have been elicited and the goal model constructed. In AwReqs, the alternative
requirements refinement are captured using OR decompositions of goals and unanticipated
adaptations are not taken into account.

4.1.4 RELAX augmented with CLAIMS

Claims [94, 93] were applied as markers of uncertainty to record the rationale for a
decision made with incomplete information in a DAS. The work in [76] integrates Relax and
Claims to assess the validity of Claims at run time while tolerating minor and unanticipated
environmental conditions that can otherwise trigger adaptations. Certain properties about
the DAS or its execution environment might not be known until run-time. This uncertainty
forces developers to make assumptions about the design or configuration of the system. A
Claim can be used at design time to document and analyze assumptions about how a DAS
achieves its goals in different operational contexts. For example, a Claim can be used to
document that data should be encrypted since a network might not be secure. A Claim can
also be monitored at run time to prove or disprove its validity [94], thereby triggering an
adaptation to reach more desirable system configurations if necessary. Nevertheless, Claims

are also subject to uncertainty, in the form of unanticipated environmental conditions and
unreliable monitoring information, that can adversely affect the behavior of the DAS if it
spuriously falsifies a claim.

In this approach, a stepwise process for Relax-ing Claims is defined. First, sources of
uncertainty that can disprove the validity of a Claim is identified. Next, a Claim applicability
metric is derived to compute the veracity of a Claim at run time. Both ordinal and temporal
Relax operators can be applied to Relax the constraints that define this applicability metric.
At run time, if the value produced by a Relax-ed Claim applicability metric drops below

36

4.1. Requirements Engineering for Self Adaptive Systems

a predetermined threshold, then the value of the corresponding contribution link must be
updated and, if necessary, the system may have to reconfigure towards a different goal
realization strategy depending on the current set of valid Claims.

4.1.5 AutoRELAX

Relax can be used in goal oriented modeling approaches for specifying and mitigating
sources of uncertainty in a DAS [20]. AutoRELAX [77], is an approach that generates Relax-
ed goal models that address environmental uncertainty by identifying which goals to Relax,
which Relax operators to apply, and the shape of the fuzzy logic function that defines the
goal satisfaction criteria.

AutoRELAX explicitly handles environmental uncertainty in a DAS by automatically
Relax-ing goals in a Kaos goal model. In particular, AutoRELAX specifies whether a goal
should be Relax-ed, and if so, which Relax operator to apply, and to what degree to lessen
the constraints or bounds that define a goal’s satisfaction criteria. AutoRELAX can be applied
to automatically generate one or more Relax-ed goal models, each of which enables a DAS
to cope with specific manifestations of system and environmental uncertainty while reducing
the number of adaptations performed. AutoRELAX follow the same analogy as that of
requirements, a goal can also be classified either as an invariant or a non-invariant. While a
system must always satisfy invariant goals, a system may tolerate the temporary violation of
a non-invariant goal [77].

AutoRELAX requires a goal model of the Functional Requirements (FRs) that the DAS
must satisfy. A requirements engineer must derive utility functions that can monitor the
satisfaction of requirements in a DAS [75, 89]. Each utility function comprises mathematical
relationships that map monitoring data to a scalar value between zero and one. This value is
proportional to how well a given goal or requirement is satisfied at run time. AutoRELAX
uses these utility functions to evaluate how goal Relax-ations can affect DAS behavior.
AutoRELAX also requires an executable specification of the DAS, such as a simulation or a
prototype, that applies the set of utility functions to measure how well the DAS satisfies its
requirements in response to adverse conditions.

AutoRELAX provides automated tool support that relieves the requirements engineer from
the daunting task of considering a large number of strategies for dealing with uncertainty.
For the experimental setup of AutoRELAX, a null hypothesis is defined which states that
there is no difference between a Relax-ed and an unRelax-ed goal model. For the time being,
AutoRELAX focuses only on Relax-ing the satisfaction of functional non-invariant goals, it
could be extended to also automatically Relax the satisfaction criteria of soft goals.

4.1.6 Fuzzy Live Adaptive Goals for Self-Adaptive Systems

Fuzzy Live Adaptive Goals for Self-Adaptive Systems (FLAGS) [11] is an innovative
goal model which deal with the challenges posed by SAS. Goal models have been used
for representing systems’ requirements, and also for tracing them onto their underlying

37

4. Requirements Engineering & Properties Verification of Self Adaptive Systems

operationalization. However, goals do not directly address adaptation. To do this, goals
must cope with changes and how they can modify themselves and, if needed, the whole goal
model.

FLAGS generalizes the basic features of the Kaos model (i.e., refinement and formalisa-
tion), and adds the concept of adaptive goal. These goals define the countermeasures that
one must perform if one or more goals are not fulfilled satisfactorily. Each countermeasure
produces changes in the goal model. Countermeasures may prevent the actual violation of a
requirement, enforce a particular goal, or move to a substitute one. The selection at run-time
depends on the satisfaction level of related goals and the actual conditions of the system and
of the environment. As for goal satisfaction, a crisp notion (yes or no) would not provide
the flexibility necessary in systems where some goals cannot be clearly measured (softgoals),
properties are not fully known, their complete specification with all possible alternatives
would be error-prone, and small/transient violations must be tolerated. This is why, besides
crisp goals, fuzzy goals [74] are proposed, specified through fuzzy constraints, that quantify
the degree to which a goal is satisfied/violated.

FLAGS is based on the fact that there is not a clear-cut criterion to decide whether soft
goals are satisfied or not. This is why FLAGS distinguishes between crisp and fuzzy goals.
The fulfillment of the former is boolean, while the latter can be satisfied up to a certain
level. Crisp goals are rendered in Linear Temporal logic (LTL), while fuzzy goals use a fuzzy
temporal language. The semantics of the fuzzy language is inspired by the theory of fuzzy
sets, originally proposed by [102].

4.1.7 Discussion

Few of the existing approaches for RE provide the capability of capturing the uncertainty
surrounding SAS. In goal modeling notations such as Kaos [27] and i* [98], there is no explicit
support for uncertainty or adaptivity. Scenario based notations generally do not provide
any support either although Live sequence charts (LSC) [41] have a notion of mandatory
versus potential behavior which could possibly be used in specifying adaptive systems. In
AwReqs, the fact that a system may fail in achieving any of its initial requirements is in place.
Critical requirements are supplemented by AwReqs that ultimately lead to the introduction
of feedback loop functionality into the system to control the degree of violation of critical
requirements. Thus, the feedback infrastructure is there to reinforce critical requirements
and not to monitor the satisfaction of Relax-able requirements. The introduction of feedback
loops in AwReqs is ultimately justified by criticality concerns.

FLAGS proposes adaptive goals as means to conveniently describe adaptation counter-
measures in a parametric way, that is with respect to the satisfaction level of the other goals or
the environmental conditions. Each countermeasure comes with a set of constraints (trigger
and conditions) that identify the execution points where it must be performed, an objective to
be achieved, and a sequence of actions applied on the goal model to fulfill the aforementioned
objective. FLAGS is based on the use of adaptation goals for introducing adaptivity in SAS.
LoREM reifies the different levels of RE for DAS by integrating the concepts of MDD. We also

38

4.2. Properties Verification of Self Adaptive Systems

take benefit of the MDE techniques in our proposed approach for the requirements modeling
of SAS.

4.2 Properties Verification of Self Adaptive Systems

Formal methods are intended to systemize and introduce rigor into all the phases of
software development. This helps us to avoid overlooking critical issues, provides a standard
means to record various assumptions and decisions, and forms a basis for consistency among
related activities. By providing precise and unambiguous description mechanisms, formal
methods facilitate the understanding required to coalesce the various phases of software
development into a successful endeavor 1. In this section, I give an overview of the state of
the art of the existing techniques regarding properties verification.

4.2.1 MEDISTAM-RT

[13] present a verification approach based on MEDISTAM-RT which is a methodological
framework for the design and analysis of real-time systems and timed traces semantics, to
check the fulfillment of non-functional requirements. It focuses on safety and timeliness
properties, to assure the correct functioning of AAL systems and to show the applicability of
this methodology in the context of this kind of systems.

The specification and verification of critical systems starts by modeling the system using a
semi-formal notation based on Uml-RT [84]. The behavior of each one of the components of
a critical system architecture has strong requirements that should always be satisfied. The
formal specification of this behavior and the requirements these components should fulfill
allows to verify that the components work as expected. For the formalizations of NFRs, the
properties to be satisfied by a system or a process are defined in terms of timed traces. This
definition characterizes some traces as acceptable and some as non-acceptable. A process
complies with its specification if all its executions are acceptable, that is, none of its executions
by the system violates its specification.

4.2.2 Timed UML and RT-LOTOS Environment

[7] introduce a profile named Timed UML and RT-LOTOS Environment (TURTLE) which
extends the Uml class and activity diagrams with composition and temporal operators.
TURTLE is a real-time Uml profile with a formal semantics expressed in Real Time Language
Of Temporal Ordering Specifications (RTLOTOS) [26]. With its formal semantics and toolkit,
TURTLE enables a priori detection of design errors through a combination of simulation and
verification/validation techniques. The “simulation” means a partial exploration of the system
state space. It is often used for debugging purposes and to quickly increase confidence in a
design. For finite state space systems, exhaustive analysis is also possible. Verification relies
on the exploration of the whole system state space in order to prove absence of deadlocks

1. ❤tt♣✿✴✴✇✇✇✳❝s✳❝♠✉✳❡❞✉✴⑦s✈❝✴

39

http://www.cs.cmu.edu/~svc/

4. Requirements Engineering & Properties Verification of Self Adaptive Systems

for instance and other general properties that should be satisfied by any system. Validation
also relies on exhaustive analysis to demonstrate that a model meets specific requirements,
or exhibits a certain behavior. Here verification and validation are distinguished; the term
“verification” is used for checking general properties any system should exhibit, and the term
“validation” for system’s specific properties such as the validation of a design against the
requirements.

4.2.3 UPPAAL

UPPAAL 2 is a tool box for validation (via graphical simulation) and verification (via
automatic model-checking) of real-time systems [60]. The name UPPAAL is an acronym for
the universities of Uppsala, Sweden and Aalborg, Denmark. It consists of two main parts: a
graphical user interface and a model-checker engine. The idea is to model a system using
timed automata, simulate it and then verify properties on it. Timed automata are finite state
machines with time (clocks). A system consists of a network of processes that are composed of
locations. Transitions between these locations define how the system behaves. The simulation
step consists of running the system interactively to check that it works as intended. Then the
verifier checks the reachability properties, i.e., if a certain state is reachable or not. The main
purpose of a model-checker is to verify the model w.r.t. a requirement specification. Like
the model, the requirement specification must be expressed in a formally well-defined and
machine readable language. Several such logics exist in the scientific literature, and UPPAAL
uses a simplified version of Timed Computation Tree Logic (TCTL).

4.2.4 SysML with B Specifications

The main idea behind this work is to extend the SysML with concepts of existing RE
methods [53]. An extension to SysML with concepts from the goal model of the Kaos method
(SysML/Kaos) is presented with rules to derive a formal B [1] specification from this goal
model. The B formal method is a complete method that supports a large segment of the
software development life cycle: specification, refinement and implementation. It ensures,
thanks to refinement steps and proofs, that the code matches to the specification. The B
method is based on Abstract Machine Notation (AMN) and the use of formally proved
refinements. Its mathematical basis is extracted from first-order logic, integer arithmetic
and set theory. A B specification is structured in machines which contain state variables,
invariant properties expressed on the variables and operations specified in the generalised
substitution language, which is a generalisation of the Dijkstra’s guarded command notations.
Each operation have to preserve the invariant of the machine. Kaos on the other hand, is a
goal base RE method. Kaos requires the building of a data model in Uml-like notation. The
particularity of Kaos is that it is able to implement goal-based reasoning. A goal defines an
objective the system should meet, usually through the cooperation of multiple agents such as
devices or humans.

2. ❤tt♣✿✴✴✇✇✇✳✐t✳✉✉✳s❡✴r❡s❡❛r❝❤✴❣r♦✉♣✴❞❛rts✴✉♣♣❛❛❧

40

http://www.it.uu.se/research/group/darts/uppaal

4.2. Properties Verification of Self Adaptive Systems

The transition from the requirements phase to the formal specification phase is one of the
most difficult steps in software development. A possible solution for bridging this gap is to
automatically derive B specifications from Kaos goal models. Unfortunately, this solution is
very complicated and hard to set up since it is necessary to construct the body of B operations.
To overcome these difficulties, this approach provides a simpler solution that consists in
defining a mapping between requirements and B models to improve traceability. The main
idea behind this approach is to build the architecture of the specifications from the goal
model. It consists in defining what a B machine contains and the links between the different
machines.

4.2.5 The OMEGA2 UML/SysML Profile

OMEGA2 [71] is an executable Uml/SysML profile dedicated to the formal specification
and validation of critical real-time systems. It is based on a subset of Uml 2.2/SysML 1.1
containing the main constructs for defining the system structure and behavior.

For specifying and verifying dynamic properties of models, OMEGA2 uses the notion of
observers. Observers are special classes/blocks monitoring run-time state and events. They
are defined by classes/blocks stereotyped with ✓♦❜s❡r✈❡r✔. They may have local memory
(attributes) and a state machine describes their behavior. States are classified as ✓s✉❝❝❡ss✔

and ✓❡rr♦r✔ states to express the (non)satisfaction of safety properties. The main issue in
modeling observers is the choice of events which trigger their transitions, and which must
include specific Uml/SysML event types. The trigger of an observers transition is a match
clause specifying the type of event (e.g., receive), some related information (e.g., the operation
name) and observer variables that may receive related information (e.g., variables receiving
the values of operation call parameters). Besides events, an observer may access any part of
the state of the Uml model: object attributes and state, signal queues.

4.2.6 IFx Toolset

OMEGA2 models can be simulated and properties can be verified using the IFx toolset [17].
The IFx toolset relies on a translation of Uml/SysML models towards a simple specification
language based on an asynchronous composition of extended timed automata and on the
use of simulation and verification tools available for it. The translation takes an input model
in XMI 2.0 format. The compiler verifies the set of well-formedness rules imposed by the
profile and generates a model that can be further reduced by static analysis techniques. This
model is subject to verification that either validates the model with respect to its properties or
produces a list of error scenarios that can be further debugged using the simulator.

4.2.7 Discussion

For the properties verification of SAS, we use OMEGA2/IFx profile and toolset. The
advantage of OMEGA2 profile is that it provides the notion of observers for specifying and
verifying dynamic properties of models. OMEGA2 models can be simulated and properties

41

4. Requirements Engineering & Properties Verification of Self Adaptive Systems

can be verified using the IFx toolset. The choice of OMEGA2I/Fx is in part due to our
familiarity with it as it is developed and maintained in our research team and also it has been
applied for the verification and validation of industry grade models [30] providing interesting
results.

4.3 Conclusion

This chapter describes the state of the art of the different approaches that we used in this
research work. It covers two main themes i.e. RE for SAS and properties verification of these
systems. For the RE of SAS, the most promising approaches to date are goal oriented. Most
of the work that I cited uses goal models for RE. For the properties verification part, I give a
description of some formal methods techniques used for it. We use OMEGA2/IFx profile
and toolset for the properties verification and model simulation of AAL system. A detailed
description of OMEGA2/IFx is given in chapter 5.

42

CHAPTER 5
Basic Elements

Contents

5.1 RELAX . 44

5.1.1 RELAX Vocabulary . 44

5.1.2 RELAX-ed v/s Invariant Requirements 44

5.1.3 RELAX Operators . 45

5.1.4 RELAX Grammar . 45

5.1.5 RELAX Process . 47

5.1.6 Discussion . 48

5.2 SysML/KAOS . 49

5.2.1 SysML . 49

5.2.2 KAOS . 51

5.2.3 Why SysML/KAOS? . 51

5.2.4 SysML/KAOS Meta Model . 52

5.2.5 Discussion . 53

5.3 The OMEGA2 UML/SysML Profile and IFx Toolset 53

5.3.1 The OMEGA2 Profile . 54

5.3.2 IFx Toolset . 56

5.4 Conclusion . 58

43

5. Basic Elements

In this chapter, I describe the basic concepts that we used in this research work. I introduce
Relax which is an RE language for SAS along with its vocabulary, operators, grammar and
process. I then give a description of SysML/Kaos, which is a GORE technique. We have
integrated SysML/Kaos in our proposed approach (chapter 6) for modeling the requirements
of SAS. The chapter concludes with an introduction to OMEGA2/IFx profile and toolset that
we used for the properties verification and model simulation of SAS.

5.1 RELAX

Relax is an RE language for DAS, where explicit constructs are included to handle
uncertainty. The need for DAS is typically due to two key sources of uncertainty. First is the
uncertainty due to changing environmental conditions, such as sensor failures, noisy networks,
malicious threats, and unexpected (human) input; the term environmental uncertainty is used
to capture this class of uncertainty. A second form of uncertainty is behavioral uncertainty,
whereas environmental uncertainty refers to maintaining the same requirements in unknown
contexts, behavioral uncertainty refers to situations where the requirements themselves need
to change. It is difficult to know all requirements changes at design time and, in particular, it
may not be possible to enumerate all possible alternatives [96].

5.1.1 RELAX Vocabulary

The vocabulary of Relax is designed to enable the analysts to identify the requirements
that may be Relax-ed when the environment changes. Relax addresses both types of
uncertainties. For example, the system might wish to temporarily Relax a non-critical
requirement in order to ensure that critical requirements can still be met. Relax outlines
a process for translating traditional requirements into Relax requirements. The only focal
point is for the requirement engineers to identify the point of flexibility in their requirements.

5.1.2 RELAX-ed v/s Invariant Requirements

Relax takes the form of a structured natural language, including operators designed
specifically to capture uncertainty [95], their semantics is also defined. Typically textual
requirements prescribe behavior using a modal verb such as SHALL that defines the func-
tionality that a software system must always provide. For SAS however, environmental
uncertainty may mean that it is not always possible to achieve all of those SHALL statements;
or behavioral uncertainty may allow for trade-offs between SHALL statements to Relax

non-critical statements in favor of other, more critical ones. Therefore Relax identifies two
types of requirements: one that can be Relax-ed in favor of other ones called variant or
Relax-ed and other that should never change called invariant. It is important to note that the
decision of whether a requirement is invariant or not is an issue for the system stakeholders,
aided by the requirements engineer.

44

5.1. RELAX

5.1.3 RELAX Operators

Figure 5.1 shows the set of Relax operators, organized into modal, temporal, ordinal
operators and uncertainty factors. The conventional modal verb SHALL is retained for
expressing a requirement with Relax operators providing more flexibility in how and when
that functionality may be delivered. More specifically, for a requirement that contributes to the
satisfaction of goals that may be temporarily left unsatisfied, the inclusion of an alternative,
temporal or ordinal Relax-ation modifier will define the requirement as Relax-able.

The Relax operators are designed to enable requirements engineers to explicitly identify
requirements that should never change (invariants) as well as requirements that a system
could temporarily Relax under certain conditions. Relax can also be used to specify
constraints on how these requirements can be Relax-ed. Each of the Relax-ation operators
define constraints on how a requirement may be Relax-ed at run-time. In addition, it is
important to indicate what uncertainty factors warrant a Relax-ation of these requirements,
thereby requiring adaptive behavior. This information is specified using the MON (monitor),
ENV (environment), REL (relationship) and DEP (dependency) keywords. The environment
properties capture the state of the world i.e., they are characteristics of the operating context of
the system. Often, however, environmental properties cannot be monitored directly because
they are not observable. The MON keyword is used to define those properties which are
directly observable and which may contribute information towards determining the state
of the environment. Relax is intended to be used at the software requirements phase once
hardware constraints have already been defined. In particular, e.g. physical sensors (denoted
by MON) are assumed to be known. The REL keyword is used to specify in what way the
observables (given by MON) can be used to derive information about the environment (given
by ENV). Finally requirements dependencies are delimited by DEP, as it is important to assess
the impact on dependent requirements after Relax-ing a given requirement [96].

5.1.4 RELAX Grammar

The syntax of Relax expressions is defined by the grammar given below. Parameters of
Relax operators are typed as follows: p is an atomic proposition, e is an event, t is a time
interval, f is a frequency and q is a quantity. An event is a notable occurrence that takes
place at a particular instant in time. A time interval is any length of time bounded by two
time instants. A frequency defines the number of occurrences of an event within a given time
interval. If the number of occurrences is unspecified, then it is assumed to be one. A quantity
is something measurable, that is, it can be enumerated. In particular, a Relax expression ϕ is
said to be quantifiable if and only if there exists a function ∆ such that ∆(ϕ) is a quantity. A
valid Relax expression is any conjunction of statements s1 . . . sm where each si is generated
by the following grammar:

45

5. Basic Elements

Figure 5.1: Relax Operators [96]

ϕ := true | f alse | p | SHALL ϕ

| MAY ϕ1OR MAY ϕ2

| EVENTUALLY ϕ | ϕ1UNTIL ϕ2

| BEFORE e ϕ | AFTER e ϕ | IN t ϕ

| AS CLOSE AS POSSIBLE TO f ϕ

| AS CLOSE AS POSSIBLE TO q ϕ

| AS {EARLY, LATE, MANY, FEW}

AS POSSIBLE ϕ

The semantics of Relax expressions is defined in terms of Fuzzy Branching Temporal
Logic (FBTL) [42]. FBTL can describe a branching temporal model with uncertain temporal

46

5.1. RELAX

Figure 5.2: Relax Process [96]

and logical information. It is the representation of uncertainty in FBTL that makes it suitable
as a formalism for Relax.

5.1.5 RELAX Process

Figure 5.2 shows the Relax process. First of all, the conventional process of requirement
discovery has been applied to get SHALL statements. Relax process is then used to identify
the requirements as invariant and Relax-ed. For each SHALL statement, the following steps
are applied:

1. Must SHALL statement always be satisfied?: For each SHALL statement, determine
whether it must always be satisfied (e.g., safety property), or whether it could be Relax-
ed under certain circumstances. In the former case, leave the SHALL statement as is,
and denote it as an invariant requirement. A non-invariant requirement is potentially
Relax-able, thus implying that some form of run-time adaptation may be necessary to
make the best use of the available resources while delivering acceptable behavior.

2. Identify uncertainty factors for each potentially Relax-able requirement: Here the
objective is to help the requirement engineer ascertain whether uncertainty exists in
the ENV, thus potentially making satisfaction of the requirement problematic and
necessitate its Relax-ation. Here also the observable properties of the environment
are identified. The ENV/MON relationship is made explicit by REL and DEP is used

47

5. Basic Elements

to identify the inter-dependencies between requirements as these are important to
understand when assessing the uncertainty surrounding a requirement.

3. Must SHALL statement be Relax-ed to handle uncertainty factors?: Analyze the un-
certainty factors to determine if sufficient uncertainty exists in the environment that
makes absolute satisfaction of the requirement problematic or undesirable. If so, then
this SHALL statement needs to proceed to the next step for introducing Relax operators.
If, however, the analysis reveals no uncertainty in its scope of the environment, then the
requirement is potentially always satisfiable and therefore identified as an invariant.

4. Introduce Relax operator(s): Given the sources of uncertainty, determine whether a
requirement should be Relax-ed to introduce ordinal, temporal, or modal behavior
flexibility at run time. Sources for uncertainty include: contention for resources, adverse
environmental conditions, timing of events, and the duration of conditions.

Note that the process describes a way of incrementally building up a model of the envi-
ronment. This approach is in contrast to including an explicit task to model the environment.
The latter is difficult in practice because it may not be clear which environmental factors
might be relevant. It is also important to note that each iteration of the Relax-ation process
implicitly includes a form of regression assessment to ensure that the dependencies between
the requirements are considered. After the application of Relax process on traditional
requirements, we obtain invariant and Relax-ed requirements.

5.1.6 Discussion

In Relax, some requirements are treated as invariants that must always be achieved and
Non critical requirements - those that can be violated from time to time - are Relax-ed. Relax

then provide the machinery to conclude at run-time that while the system may have failed to
fully achieve its Relax-ed requirements, this is acceptable. So, while Relax-ed requirements
are monitored at run-time, invariant ones are analyzed at design time and must be guaranteed
to be always achievable at run-time.

The advantage of Relax for the RE of SAS is that it gives a means to establish the
boundaries of adaptive behavior. That is, one must explicitly distinguish invariant from non-
invariant requirements, identify and monitor the sources of uncertainty, and then describe
what dimensions of the requirements can be Relax-ed and satisfied by adaptive behavior.
The invariants provide a point of reference for adaptive behavior. Second, the Relax process
consider each non-invariant requirement in isolation, with the effect of incrementally revealing
each requirements interdependencies and generating what is effectively trace information in
the DEP attribute [92]. Third, by separately describing the environment and the monitoring,
one can identify deficiencies in the monitoring infrastructure. Given that a DAS can only
adapt based on its monitoring information, e.g. missing or insufficient sensors for the
environment in question significantly impact the effectiveness of the DAS.

Relax-ed requirement supports a high degree of flexibility that goes well beyond the
original requirements. Once the requirements engineer determines that indeed a level of

48

5.2. SysML/KAOS

flexibility can be tolerated, then the downstream developers, including the designers and
programmers have the flexibility to incorporate the most suitable adaptive mechanisms to
support the desired functionality. These decisions may be made at design time and/or run
time [15, 21]. To uncover missing monitoring requirements for each Relax-ed requirement,
the requirements engineer asks what information is necessary to invoke the adaptation
corresponding to the requirement. If the current monitoring infrastructure does not provide
enough information about the environment, then either the monitoring infrastructure should
be extended or, if resources do not permit it, the adaptive capability must be reduced. This
kind of trade-off analysis can be effectively modeled using goal-based requirements languages
[96], in particular, obstacle analysis in Kaos [55]. In the next section, I introduce SysML/Kaos,
which extends SysML with Kaos concepts.

5.2 SysML/KAOS

The SysML/Kaos [36] model is an extension of the SysML 1 requirements model with
concepts of the Kaos goal model [55]. As SysML is an extension of Uml

2, it provides concepts
to represent requirements and to relate them to other model elements, allowing the definition
of traceability links between requirements and system models. The SysML/Kaos meta-model
is implemented as a new profile, importing the SysML profile.

5.2.1 SysML

SysML is a general purpose modeling language for systems engineering applications.
SysML is a Uml profile that represents a subset of Uml 2.0 with extensions. Figure 5.3
shows the relationship between SysML and Uml. It supports the specification, analysis,
design, verification and validation of a broad range of systems and systems-of-systems. These
systems may include hardware, software, information, processes, personnel, and facilities.
In particular, the language provides graphical representations with a semantic foundation
for modeling system requirements, behavior, structure, and parametrics, which is used to
integrate with other engineering analysis models. The SysML diagram types are shown in
Figure 5.4.

The «block» is the basic unit of structure in SysML and can be used to represent hard-
ware, software, facilities, personnel, or any other system element. The system structure is
represented by Block Definition Diagram (BDD) and Internal Block Diagram (IBD).

– The BDD describes the system hierarchy and system/component classifications.
– The IBD describes the internal structure of a system in terms of its parts, ports, and

connectors.
– The package diagram is used to organize the model.
The behavior diagrams include the use case diagram, activity diagram, sequence diagram,

and State Machine Diagram (SMD).

1. ❤tt♣✿✴✴✇✇✇✳♦♠❣s②s♠❧✳♦r❣✴

2. ❤tt♣✿✴✴✇✇✇✳♦♠❣✳♦r❣✴s♣❡❝✴❯▼▲✴

49

http://www.omgsysml.org/
http://www.omg.org/spec/UML/

5. Basic Elements

Figure 5.3: SysML UML Relationship

Figure 5.4: SysML Diagrams

– The use-case diagram provides a high-level description of functionality that is achieved
through interaction among systems or system parts.

– The activity diagram represents the flow of data and control between activities.
– The sequence diagram represents the interaction between collaborating parts of a

system.
– The SMD describes the state transitions and actions that a system or its parts perform

in response to events.
– The parametric diagram represents constraints on system property values such as

performance, reliability, and mass properties, and serves as a means to integrate the
specification and design models with engineering analysis models.

50

5.2. SysML/KAOS

SysML also includes an allocation relationship to represent various types of allocation,
including allocation of functions to components, logical to physical components, and software
to hardware. SysML includes a graphical construct to represent text based requirements
and relate them to other model elements. The requirements diagram captures requirements
hierarchies and requirements derivation, and the «satisfy» and «verify» relationships allow
a modeler to relate a requirement to a model element, e.g. «block», that satisfies or verifies
the requirements. The requirement diagram provides a bridge between typical requirements
management tools and system models.

5.2.2 KAOS

Kaos is a methodology for RE enabling analysts to build requirements models and to
derive requirements documents from Kaos models. The first key idea behind Kaos is to
build a model for the requirements, that is, for describing the problem to be solved and the
constraints that must be fulfilled by any solution provider. Kaos has been designed:

– to fit problem descriptions by allowing to define and manipulate concepts relevant to
problem description

– to improve the problem analysis process by providing a systematic approach for
discovering and structuring requirements

– to clarify the responsibilities of all the project stakeholders
– to let the stakeholders communicate easily and efficiently about the requirements

5.2.3 Why SysML/KAOS?

SysML and Kaos have some advantages and weak points, but these are complementary
to each other based on the following points:

– Requirements description: A textual description in SysML and a description in the form
of goals in Kaos.

– Relation between requirements: SysML has «contain» and «derive» relations; these
relations do not have a precise semantics which leads into confusion. Kaos has
refinement relations AND/OR.

– Traceability relations: «satisfy» and «verify» relations in SysML allow to define traceabil-
ity. Kaos does not have explicit relations.

– Tools: A number of tools exist for SysML; most of them are open source. Kaos propose
a tool Objectiver 3 which is proprietary.

In Kaos, NFRs are taken into account only at the architectural level. Due to the complexity
of systems, NFRs should be processed much more early; at the same level of abstraction
as FRs which will allow taking into account these properties for the evaluation of alternate
options, risk and conflict analysis.

The benefit of SysML is that it allows throughout the development cycle to relate require-
ments to other model elements, thus ensuring continuity from the requirements phase to the

3. ❤tt♣✿✴✴✇✇✇✳♦❜❥❡❝t✐✈❡r✳❝♦♠✴

51

http://www.objectiver.com/

5. Basic Elements

Figure 5.5: SysML/Kaos Meta Model [36]

implementation phase. However, the proposed concepts of requirements in SysML are not as
rich as in the other RE methods (especially GORE). SysML/Kaos is the result of motivation
to benefit from the contributions of SysML, while ensuring a more precise definition of the
concepts. The SysML/Kaos model allows both FRs [53] and NFRs [36] to be modeled.

5.2.4 SysML/KAOS Meta Model

Figure 5.5 shows the extended meta-model of SysML/Kaos, non functional concepts are
represented as yellow boxes, the gray boxes represent the SysML concepts. The instantiation
of the meta-model allows us to obtain a hierarchy of NFRs in the form of goals. NFGs are
organized in refinement hierarchies. The meta-class Non Functional Goal represents the Non
Functional Goal (NFG), it is specified as a sub-class of the meta-class Goal which itself is
a sub-class of the meta-class Requirement of SysML. An NFG represents a quality that the
future system must have in order to satisfy a FR. The NFGTYPE specify the type of NFG and
the attribute TOPIC represent the domain concept concerned by this type of requirement.
An NFG can thus be represented with the following syntax: NFGType [Topic]. An NFG is
either an Abstract NFG or an Elementary NFG. A goal that cannot be further refined is an
Elementary Goal. The refinement of an Abstract Goal by either abstract or elementary goals
is represented by the Association Class Refinement. An Abstract NFG may contain several
combinations of sub goals (abstract or elementary). The relationship Refinement becomes
an Association Class between an Abstract NFG and its sub goals. It can be specialized to
represent And/Or goal refinements. At the end of the refinement process, it is necessary to
identify and express the various alternative ways to satisfy the Elementary Goals. For that, the

52

5.3. The OMEGA2 UML/SysML Profile and IFx Toolset

SysML/Kaos meta-model consider the concept of contribution goal meta-class Contribution

Goal. A Contribution Goal captures a possible way to satisfy an Elementary Goal. The Association

Class Contribution describes the characteristics of the contribution. It provides two properties:
ContributionNature and ContributionType. The first one specifies whether the contribution is
positive or negative, whereas the second one specifies whether the contribution is direct or
indirect. A positive (or negative) contribution helps positively (or negatively) to the satisfaction
of an Elementary Goal. A direct contribution describes an explicit contribution to the Elementary

NFG. An indirect contribution describes a kind of contribution that is a direct contribution to
a given goal but induces an unexpected contribution to another goal. Finally, the concept
of Impact is used to connect NFGs to Functional Goals (FGs). It captures the fact that a
Contribution Goal has an effect on FGs.

5.2.5 Discussion

SysML/Kaos extends the requirements model of SysML with Kaos goal model concepts
particularly the NFGs. To support this extension, a tool SysML/Kaos editor is developed. In
order to provide traceability links between the requirements analysis and specification phases,
the idea behind SysML/Kaos is to include SysML because it covers all the phases of system
development. The follow up of SysML/Kaos is to take into account the formal specification
of the system. This need arises from the gap between textual or semi formal requirements
and the initial formal specification. The validation of this initial formal specification is very
difficult due to the inability for customers to understand formal models. Moreover it is hard
for designers to link them with the initial requirements. Consequently, the gap between the
requirements phase and the formal specification phase becomes larger and larger and the
reconciliation seems more and more difficult. To bridge this gap a method is defined using
an RE approach and the B formal method [53]. Using this method, derivation rules from
SysML/Kaos to a formal B specification are defined.

We aim to provide a mechanism to bridge the gap between the requirements phase and the
initial formal specification phase by using MDE techniques and more specifically using model
checking techniques in our proposed approach. The constraint of using MDE techniques in
this thesis for the properties verification of SAS is due to the fact that the main theme of our
research team is MDE and also the tool that we use is developed and maintained by our team
members 4. In the next section, I give a description of OMEGA2/IFx profile and toolset that
we use for the properties verification and model simulation of AAL system.

5.3 The OMEGA2 UML/SysML Profile and IFx Toolset

The specification and verification of NFRs in the early stages of the AAL (chapter 7)
development cycle is a crucial issue [68]. These systems require clear and precise specifications
in order to describe the system behavior and its environment. The formal specification of the

4. ❤tt♣✿✴✴✇✇✇✳✐r✐t✳❢r✴✐❢①✴✐♥❞❡①✳❤t♠❧

53

http://www.irit.fr/ifx/index.html

5. Basic Elements

system behavior supported by mathematical analysis and reasoning techniques improve their
development process and enable the verification of these systems.

5.3.1 The OMEGA2 Profile

Formal methods provide tools to verify the consistency and correctness of a specification
with respect to the desired properties of the system. For this reason, We use these methods
to prove some of the properties of the system before the system development even starts.
OMEGA2 profile is an executable Uml/SysML profile used for the formal specification
and validation of critical real-time systems. It is based on a subset of Uml 2.2/SysML
1.1 containing the main constructs for defining the system structure and behavior. The
OMEGA2 Profile is supported by the IFx toolset [73] which provides mechanisms for the
model simulation and properties verification of the AAL system. The OMEGA2/IFx approach
has been applied for the verification and validation of industry grade models [30] providing
interesting results.

The OMEGA2 Uml/SysML profile [71] defines the semantics of Uml/SysML elements
providing the means to model coherent and unambiguous system models. In order to make
the models verifiable, it presents as extension the observers mechanism for specifying dynamic
properties of models. The OMEGA2 Uml/SysML Profile is implemented by the IFx toolbox
which provides static analysis, simulation and timed automaton based model checking [23]
techniques for validation.

5.3.1.1 System Structure

The architecture of an OMEGA2 model is described in Class/Block Definition Diagrams
by classes/blocks with their relationships. Each class/block defines properties and operations,
as well as a state machine. The hierarchical structure of a model is defined in composite
structures/Internal Block Diagrams: parts that communicate through ports and connectors.
The Uml/SysML Profile leaves open several semantic variation points for which OMEGA2
defines a set of well formedness rules that result in a strong typing language [72].

– Class diagrams (Uml): Classes and their relationships, interfaces, basic types, signals,
composite structures (ports, parts, connectors).

– Block diagrams (SysML): Block Definition Diagram (BDD): blocks and their relationships
(Association, Aggregation, Generalization), interfaces, basic types, Signals.

5.3.1.2 Class/Block behavior

– State machines (excluding: history states, entry point, exit point, junction).
– Actions: the profile defines a concrete syntax for Uml 2.2 actions. This syntax is used for

example to define operation bodies and transition effects in state machines. The textual
action language is compatible with the Uml 2.2 action meta model and implements its
main elements: object creation and destruction, operation calls, expression evaluation,

54

5.3. The OMEGA2 UML/SysML Profile and IFx Toolset

variable assignment, signal output, return action as well as control flow structuring
statements.

5.3.1.3 Operational and Timed Semantics of OMEGA2

The operational semantics of OMEGA2 relies on an asynchronous timed execution model.
Each class/block is represented by a timed input-output automata, potentially executing in
parallel with other blocks and communicating via asynchronous operation calls and signals.
The OMEGA2 profile can model timed behavior, where the model time base can either be
discrete or continuous and it is specified by the user at verification. The time model is
controlled by primitives from automata with urgency [16]: clocks, time guards and transition
urgency annotations. The clock is represented by a Timer block on which we can perform
actions as: set for setting the clock a delay and reset to restore the clock to 0. Time guards are
either described as inequalities or specified via the timeout operation that verifies that a certain
delay has elapsed. With respect to time progress, transitions can also define a particular
semantics based on their stereotype: eager defines that time progress is disabled in a state
(i.e., the actions on a transition are executed as soon as possible), delayable means that the
time progress is enabled but it is bounded by a limit and lazy specifies that time progress is
enabled and unbounded (i.e. time can progress to infinity). Based on these notions, one can
also model synchronous communication in OMEGA2 model.

5.3.1.4 Observers

For specifying and verifying dynamic properties of models, OMEGA2 uses the notion of
observers. Observers are special classes/blocks monitoring run-time state and events. They
are defined by classes/blocks stereotyped with «observer». They may have local memory
(attributes) and a state machine describes their behavior. States are classified as «success»

and «error» states to express the (non)satisfaction of safety properties. The main issue in
modeling observers is the choice of events which trigger their transitions, and which must
include specific Uml/SysML event types. One can observe:

– Events related to signal exchange: send, receivesignal, acceptsignal.
– Events related to operation calls: invoke, receive (reception of call), accept (start of actual

processing of call – may be different from receive), invokereturn (sending of a return
value), receivereturn (reception of the return value), acceptreturn (actual consumption
of the return value).

– Informal events explicitly specified by the modeler using the informal action.

The trigger of an observers transition is a match clause specifying the type of event (e.g.,
receive), some related information (e.g., the operation name) and observer variables that may
receive related information (e.g., variables receiving the values of operation call parameters).
Besides events, an observer may access any part of the state of the Uml model: object
attributes and state, signal queues.

55

5. Basic Elements

Figure 5.6: IFX Workflow [91]

5.3.2 IFx Toolset

OMEGA2 models can be simulated and properties can be verified using the IFx toolset
[17]. The IFx toolset provides the following functions:

– Verification: It designates the automatic process of verifying whether an OMEGA2
Uml/SysML model satisfies (some of) the properties (i.e. observers) defined on it. The
verification method employed in IFx is based on systematic exploration of the system
state space (i.e., enumerative model checking).

– Simulation: It designates the interactive execution of an OMEGA2 Uml/SysML model.

56

5.3. The OMEGA2 UML/SysML Profile and IFx Toolset

Figure 5.7: If2gui Interface [91]

The execution can be performed step-by-step, random, or guided by a simulation
scenario (for example an error scenario generated during a verification activity).

The IFx toolset relies on a translation of Uml/SysML models towards a simple specifica-
tion language based on an asynchronous composition of extended timed automata, the IF

language 5, and on the use of simulation and verification tools available for IF. The translation
takes an input model in XMI 2.0 format. The compiler verifies the set of well-formedness
rules imposed by the profile and generates an IF model that can be further reduced by static
analysis techniques. This model is subject to verification that either validates the model with
respect to its properties or produces a list of error scenarios that can be further debugged
using the simulator. The overall workflow of IFx Toolset [91] is shown in Figure 5.6.

Following are the steps for the compilation and execution of IF statements.

1. Export OMEGA2 model as XMI 2.0: In this step, we export the OMEGA2 model into
XMI format.

2. Compiling the OMEGA2 model to if file by using uml2if : In this step we compile the
OMEGA2 model in XMI format to an if file. The output of uml2if is either a list of error
messages or, if there is no error, an if file containing the translation.

3. Compiling the if model to an executable file using if2gen: The output of if2gen is either
a list of error messages or, if there is no error, an executable file containing the if model

5. ❤tt♣✿✴✴✇✇✇✲✐❢✳✐♠❛❣✳❢r✴

57

http://www-if.imag.fr/

5. Basic Elements

and the simulation/verification functions. The executable generated by if2gen is then
used to perform both automatic verification and interactive simulation.

4. Automatic verification (model.exe): At this step, model checking is performed. Here the
properties that are defined on the model are verified, if there is no error at this step, it
means that the properties are satisfied and that all the states and variables are checked.
If there are errors at this step, we can simulate it through the interactive simulation
function of the IFx toolset. The errors found in this step correspond to an error in the
specification of the system and/or the property.

5. Interactive Simulation using if2gui: if2gui is a graphical user interface that can be
launched from command line.

Figure 5.7 shows the Simulation interface.

5.4 Conclusion

This chapter shows the concepts that serves us as a basis for this research work. I introduce
Relax which is an RE language for SAS. I give a description of the Relax vocabulary,
operators, grammar and process. Relax base its assumptions on the distinction between two
types of requirements i.e. invariant and Relax-ed. This distinction motivated us to use Relax

and then to combine it with SysML/Kaos approach which extends the SysML meta-model
with Kaos goal concepts. SysML/Kaos has its own meta-model and an editor is developed
with the help of which one can model the requirements of SAS. For the properties verification
part, I give a detail description of OMEGA2/IFx profile and toolset that we used for the
properties verification and model simulation of AAL system (chapter 7).

58

Part II

C O N T R I B U T I O N

CHAPTER 6
Proposed Approach

Contents

6.1 Overall View of our Proposed Approach . 62

6.1.1 Problem 1 . 62

6.1.2 Problem 2 . 62

6.1.3 Problem 3 . 64

6.2 The Proposed Approach . 64

6.3 The Solutions . 66

6.3.1 Solution 1 . 66

6.3.2 Solution 2 . 66

6.3.3 RELAX Improvements . 67

6.4 Integration of the Approaches . 67

6.4.1 Relatonship b/w RELAX, SysML/KAOS and SysML 68

6.4.2 Uncertainty Factors/Impacts . 69

6.4.3 Verification of Ambient System’s Properties through Formal Methods 69

6.4.4 Discussion . 70

6.5 Tools Support . 70

6.5.1 DSL for RELAX . 71

6.5.2 RELAX Editor . 73

6.5.3 RELAX to SysML/Kaos Transformation 74

6.6 Conclusion . 77

61

6. Proposed Approach

In this chapter, I introduce the overall view of our proposed approach keeping in mind the
context that is already introduced in chapter 5 i.e. Relax and SysML/Kaos. I highlight some
problems that we identified while modeling and verifying the requirements of SAS. I then
show how these problems are treated in our proposed approach. To validate our proposed
approach, we need an integrated tooling environment, to show what processes or tools are
needed, consequently showing the steps to follow in order to achieve the aforementioned
objectives described in chapter 1. We have developed these tools and processes during the
course of this thesis. The proposed approach is applied on two different case studies that I
introduce in chapter 7.

6.1 Overall View of our Proposed Approach

In the previous chapter, I have described the basic elements of our research study. I now
instantiate the problems identified in the problem statement (section 1.1 of chapter 1) with
existing approaches of requirements modeling and properties verification. SysML/Kaos is
used for the requirements modeling and OMEGA2/IFx is used for the properties verification
of SAS. We have addressed these problems in our proposed approach as shown below.

6.1.1 Problem 1

In the conventional process of modeling NFRs, the requirement engineers elicit require-
ments from the system and then divide it into FRs and NFRs. These NFRs are then mapped to
NFGs. NFGs are then modeled using a GORE approach. For SAS, this process is not suitable
as for these systems, an important aspect is to differentiate between those requirements that
are adaptable and those that are invariant. Most of the existing GORE approaches does
not take into account the adaptability features associated with SAS. The requirements that
are adaptable i.e. Relax-ed, should be considered as early as possible while modeling the
requirement of SAS.

We use SysML/Kaos for modeling the NFRs of SAS. After eliciting requirements from
the system and then mapping it to NFGs using the SysML/Kaos meta-model, these NFGs are
then modeled using SysML/Kaos. To take into account those requirements that are important
for SAS, we must provide a mechanism as early as possible. In Kaos [27], there is no explicit
support for uncertainty or adaptivity [21], so the SysML/Kaos approach does not take into
account the adaptability features associated with SAS. The requirements that are adaptable
i.e. Relax-ed, should be considered as early as possible while modeling the requirement of
SAS. Figure 6.1 shows the conventional process of NFRs modeling using SysML/Kaos.

6.1.2 Problem 2

The second problem that we identified concerns the existing approaches of properties
verification where properties are injected into a properties verification framework without
mentioning which properties are to be given priority. For SAS it is very important to

62

6.1. Overall View of our Proposed Approach

Figure 6.1: Conventional Requirements Modeling using SysML/Kaos

Figure 6.2: Conventional Properties Verification using OMEGA2/IFx

differentiate those requirements that are adaptable from those that are invariant. Most of
the properties verification frameworks use model checking techniques for the properties
verification and model simulation, so when the number of state variables in the system
increases, the size of the system state space grows exponentially and we are exposed to the
problems linked with state space explosion [24]. The exponential growth of the state space is
normal for systems like SAS.

We use OMEGA2/IFx profile and toolset for the properties verification of SAS. In
OMEGA2/IFx, we inject the FRs and NFRs, without differentiating those requirements that
are adaptable from those that are invariant, which in the case of SAS is very important.
As OMEGA2/IFx use model checking techniques for the properties verification and model
simulation, so we are exposed to the problems linked with state space explosion i.e. the more
we have state variables, there will be an exponential growth in the state space. We provide a

63

6. Proposed Approach

way to tackle this problem in our proposed approach. Figure 6.2 shows the conventional way
of properties verification using OMEGA2/IFx profile and toolset.

6.1.3 Problem 3

Relax is a structured natural language which include operators to define the requirements
of self adaptive systems. It defines uncertainty factors, a process to derive Relax-ed and
invariant requirements but it does not provide any tool. We had to cope with this problem.
We had to take into account this problem in our proposed approach as Relax serves as the
basis of our work.

6.2 The Proposed Approach

We provide an integrated approach comprising of tools, processes and documents for
the requirements modeling and properties verification of SAS. In the following, each step of
the proposed approach is explained with associated input and output. Figure 6.3 shows the
overall view of our proposed approach.

1. The overall approach that we proposed, takes requirements as input. These require-
ments are elicited in the form of SHALL statements by a requirement engineer. These
requirements are then divided into FRs and NFRs.

2. For SAS, an important aspect is to find the adaptation point in requirements as early as
possible. In order to achieve this objective, we apply Relax process (section 5.1.5) on
these FRs and NFRs to get those requirements that are associated with the adaptability
features of SAS called Relax-ed requirements and those that are fixed called invariant
requirements.

3. The resulting Relax-ed requirements are then automated using an editor that we devel-
oped called Relax COOL editor. This editor takes into account the uncertainty factors
associated with each Relax-ed requirement. Xtext 1 is used for the development of this
editor which provides many functions including editor generation, text highlighting,
text completion and code generation etc.

4. At this point, we use a process for the conversion of Relax-ed requirements into
goal concepts i.e. SysML/Kaos. We use a correlation table (section 6.4.1) for the
correspondence between Relax-ed requirements and SysML/Kaos concepts [5].

5. At this step, we have a full list of Relax-ed requirements with uncertainty factors
converted into SysML/Kaos goal concepts.

6. The mapping between Relax and SysML/Kaos concepts results in the transformation
of Relax uncertainty factors into SysML/Kaos goal concepts. For this purpose, we
have developed a tool called Relax2SysML/Kaos editor, which is based on Atlas

1. ❤tt♣✿✴✴✇✇✇✳❡❝❧✐♣s❡✳♦r❣✴❳t❡①t✴

64

http://www.eclipse.org/Xtext/

6.2. The Proposed Approach

Figure 6.3: Overall View of Our Approach

Transformation Language (ATL) transformations. For the time being, the tool helps in
mapping the Relax concepts to SysML/Kaos concepts but not the inverse.

7. The non functional Relax-ed requirements in the form of SysML/Kaos goal concepts
can now be modeled with the help of SysML/Kaos editor.

8. This step shows the system design. The Relax-ed requirements of the SAS are now
modeled and we have a snapshot of the system design.

9. The resulting system design and the OMEGA2/IFx observers are used to verify the

65

6. Proposed Approach

properties of SAS. For specifying and verifying dynamic properties of models, OMEGA2
uses the notion of observers. Observers are special classes/blocks monitoring run-time
states and events. They are defined by classes/blocks stereotyped with «observer». They
may have local memory (attributes) and a state machine describes their behavior. The
input to this step are the OMEGA2/IFx observers which are the Relax-ed and invariant
requirements that we identified in an earlier step. The verification either results in the
fulfillment of all the properties or if there is an error produced during verification, it
can be simulated through the interactive simulation interface of the IFx toolset in order
to identify the source of the error and then subsequently correct it in the model.

In chapter 7, I introduce two case studies i.e. AAL and bCMS, that we used for the
validation of our proposed approach. The requirements of both case studies are modeled using
Relax and SysML/Kaos and properties of AAL case study are verified using OMEGA2/IFx.
The solutions that we provide in our proposed approach for the identified problems are given
below. The provided solutions takes the form of an integrated approach.

6.3 The Solutions

6.3.1 Solution 1

To solve the problem of which properties to be modeled, we propose the introduction of
the Relax process in the overall approach. The application of Relax process on FRs and NFRs
results in adaptable i.e. Relax-able and invariant requirements. Relax-able requirements can
then be mapped to SysML/Kaos NFGs and can be modeled. This will help in taking into
account the uncertainty factors associated with each Relax-ed requirement of the SAS. The
resulting SysML/Kaos model will now best represent the uncertainty associated with these
systems.

6.3.2 Solution 2

The problem that we identified with the existing approaches of properties verification is
that they do not take into account Relax-ed and invariant requirements for the properties
verification but a bunch of FRs and NFRs. In our approach, we consider those requirements
for verification that better suits the needs of SAS i.e. Relax-ed requirements. Invariant
requirements can also be verified using our proposed approach. The verification method
employed in IFx is based on systematic exploration of the system state space (enumerative
model checking). Properties Verification techniques explore all possible system states in a
brute-force manner. A model checker, the software tool that performs the model checking,
examines all possible system scenarios in a systematic manner. In this way, it can be shown
that a given system model truly satisfies a certain property or not [10]. The state space of a
system may be very large for any reasons (the system is complex by nature, contains a lot of
dependent parallel activities etc), this is why we base our proposition to verify only those

66

6.4. Integration of the Approaches

Figure 6.4: Overall View of Our Approach Showing Input Output and Contributions

properties of the SAS that are important e.g. Relax-ed or invariant requirements to avoid the
state explosion problem associated with model checking techniques.

6.3.3 RELAX Improvements

Our first experience with Relax started with the automation of its uncertainty factors
i.e. ENV, MON, REL and DEP. The Relax vocabulary, grammar and process were already
defined but no tool was developed. We have developed Relax COOL editor. The editor is
capable of taking into account the uncertainty factors associated with Relax-ed requirements
of SAS. All the operators of Relax are also implemented while Relax-ing a requirement. We
then use Relax in our proposed approach for modeling the requirements of SAS using the
correlation between Relax and SysML/Kaos.

6.4 Integration of the Approaches

We start from the very early analysis of requirements and we provide a high level design
of the system. The design along with observers is then verified using OMEGA2/IFx to look for
errors in the system. We provide an integrated model based environment for early analysis
and verification of requirements. The problems that we identified in the previous section are
solved using our integrated approach. The tools, processes and documents needed to achieve

67

6. Proposed Approach

the integrated environment are developed during the course of this research work. Figure 6.4
shows the overall view of our integrated approach in a tabular form with the associated
input and output at each step. The table also shows the contribution at each step, with (MA)

showing our contribution. In the following section, I explain the different steps that forms
the basis of our integrated approach.

6.4.1 Relatonship b/w RELAX, SysML/KAOS and SysML

In our integrated approach, we take benefit of SysML/Kaos while modeling Relax-ed
requirements of SAS. In Figure 6.5, we show how several key concepts are taken into account
in the selected approaches. Most of the time, the concepts are not fully covered (e.g. ✓s❛t✐s❢②✔
for monitoring in SysML, this stereotype is used between a block and a requirement), but
we have indicated in the Figure 6.5 the closest mechanism that supports the concepts. The
concepts are taken from Relax and are then compared with the three different approaches.

– In SysML/Kaos, requirements are described in the form of goals Abstract Goals and
Elementary Goals; Abstract Goal is a goal that needs further refinement, a goal that cannot
be further refined is an Elementary Goal. SysML describes requirements in textual form,
it provides requirements diagram for modeling the requirements and the relationship
between requirements and other SysML model elements. Relax requirements are also
in textual form with an enhanced version i.e. requirements divided into invariant and
Relax-ed requirements with uncertainty factors added to it. The uncertainty factors
helps in capturing the uncertainty present in SAS. We have developed Relax COOL
editor for automating the Relax-ed requirements along with the uncertainty factors
associated with each Relax-ed requirement. For the correspondence between Relax

and SysML/Kaos,Relax-ed requirement serves as an Abstract Goal in SysML/Kaos and
the ENV uncertainty factor of Relax serves as an Elementary Goal of SysML/Kaos.

– In Relax monitoring is used to define a set of properties that can be monitored by the
system. To deal with monitoring, SysML/Kaos has the Contribution Goal concept which
is used to satisfy an Elementary NFG, SysML has «satisfy» which is used when a «block»

satisfies a «requirement» while for Relax, we have the concept of MON which is used to
measure the environment i.e. ENV. The MON uncertainty factor of Relax serves as a
Contribution Goal in SysML/Kaos.

– SysML/Kaos has the concept of Contribution which is an Association Class between
Contribution Goal and Elementary NFG. Contribution describes the characteristics of the
contribution. It provides two properties: ContributionNature and ContributionType. The
first one specifies whether the contribution is positive or negative, whereas the second
one specifies whether the contribution is direct or indirect. A positive (or negative)
contribution helps positively (or negatively) to the satisfaction of an Elementary NFG. A
direct contribution describes an explicit contribution to the Elementary NFG. An indirect

contribution describes a kind of contribution that is a direct contribution to a given goal
but induces an unexpected contribution to another goal. SysML has «verify» and «refine»

relationships while for Relax, we have REL variable which identifies the relationship

68

6.4. Integration of the Approaches

between ENV and MON or more precisely how MON achieves ENV. For the correlation,
the REL uncertainty factor of Relax becomes Contribution in SysML/Kaos.

– For Dependency/Impact, SysML/Kaos describes it as an Impact of an NFG on an FG.
In SysML/Kaos meta-model (Figure 5.5), the Impact is an Association Class between
Contribution Goal and FG. It captures the fact that a Contribution Goal has an impact on
an FG. The Impact describes the characteristics of this impact. It also has the same two
properties i.e. ContributionNature and ContributionType. This impact can be positive or
negative and direct or indirect. In SysML, we have the concept of «derive» which shows
the dependency between requirements, Relax has positive and negative dependency
which shows the dependency of a Relax-ed requirement on other requirements as it
is important to assess the impact on dependent requirements after Relax-ing a given
requirement. For the correlation between Relax and SysML/Kaos, the DEP uncertainty
factor of Relax is equivalent to the Impact of SysML/Kaos.

– For the tools available for each approach, SysML/Kaos has a tool called SysML/Kaos

editor, SysML has a number of tools e.g. eclipse 2, papyrus 3, topcased 4 etc. and for
Relax, we have developed eclipse based Relax COOL editor [12].

The table in Figure 6.5 shows the correspondence between different concepts treated by
each approach. Based on this, we have developed Relax2SysML/Kaos editor which map the
Relax uncertainty factors to SysML/Kaos concepts.

6.4.2 Uncertainty Factors/Impacts

Relax Uncertainty factors especially ENV and MON are particularly important for docu-
menting whether the system has means for monitoring the important aspects of environment.
By collecting these ENV and MON attributes, we can build up a model of the environment in
which the system will operate, as well as a model of how the system monitors its environment.
Having said this, SysML/Kaos can complement Relax by injecting more information in
the form of positive/negative and direct/indirect impacts. The grammar of Relax acts as a
meta-model for our Relax COOL editor, while SysML/Kaos has extended the meta-model of
SysML with goal concept. As both meta-models are close to the SysML meta-model, we have
bridged Relax and SysML/Kaos using our proposed approach.

6.4.3 Verification of Ambient System’s Properties through Formal Methods

Using our proposed approach, we provide a strong consistency between models. This
can be ensured thanks to the use of formal methods that provide verification tools for the
properties verification and model simulation of SAS. We have integrated OMEGA2/IFx for
properties verification and model simulation of these systems in our proposed approach.
By doing this, we bridge the gap between the requirements phase and the initial formal
specification phase.

2. ❤tt♣✿✴✴✇✇✇✳❡❝❧✐♣s❡✳♦r❣✴

3. ❤tt♣✿✴✴✇✇✇✳♣❛♣②r✉s✉♠❧✳♦r❣

4. ❤tt♣✿✴✴✇✇✇✳t♦♣❝❛s❡❞✳♦r❣✴

69

http://www.eclipse.org/
http://www.papyrusuml.org
http://www.topcased.org/

6. Proposed Approach

Figure 6.5: Relationship b/w SysML/Kaos SysML and Relax

6.4.4 Discussion

Both Relax and SysML/Kaos are complementary for each other [4]. Relax can take bene-
fit from the direct/indirect and positive/negative contributions and impacts of the SysML/Kaos

approach. To find a correlation between the two approaches, we have proposed a corre-
spondence table which shows how the two approaches deals with different concepts. Based
on this correlation table, we model the requirements of two case studies (section 7.1.1 and
section 7.3.1 of chapter 7). Another important aspect is to provide a means to verify the
properties of SAS. In our proposed approach, we treat properties verification through the use
of OMEGA2/IFx profile and toolset. We verify three properties of the AAL system [5] which
is discussed in section 7.2.2 of chapter 7.

6.5 Tools Support

In the previous section, I described our proposed approach for the requirements modeling
and properties verification of SAS. The proposed approach requires different tools and
processes to provide an integrated approach in order to take into account the different aspects
of SAS. We have developed these tools during the course of this research work. In this section,
I introduce these tools that validates our proposed approach.

70

6.5. Tools Support

Figure 6.6: Relax Grammar

6.5.1 DSL for RELAX

Domain Specific Languages (DSLs) are small languages, focused on a particular aspect of
a software system [32]. [90] define a DSL as:

"A domain specific language is a programming language or executable specification

language that offers, through appropriate notations and abstractions, expressive power

focused on, and usually restricted to, a particular problem domain."

As DSLs are conceived for a specific domain, it is easy to absorb the main concepts and
features inherent to this domain , and bring them to the language constructors [51]. The most
claimed advantage of using DSLs is the possibility of integrating domain experts in later
stages of the software development life-cycle [38].

The need for a DSL for Relax is the result of the motivation to bridge the gap between
requirements even in a formatted version such as Relax statements and the overall system
model [2]. For the development of DSL for Relax, Xtext is used. Xtext is a framework
for the development of DSLs and other textual programming languages and helps in the
development of an Integrated Development Environment (IDE) for the DSL. Some of the
IDE features that are either derived from the grammar or easily implementable are: syntax
coloring, model navigation, code completion, outline view, and code templates. For this
purpose, Xtext is used for the code editor generation of Relax.

Xtext comes up with a handful of wizards, with the help of which one can define their
DSL. After defining the DSL, the next step to follow is to define the grammar. The grammar
specifies the meta-model and the concrete syntax for the DSL. The grammar of Relax is used
as a meta-model for the DSL. Here we introduce the MDE concepts. To specify the grammar,

71

6. Proposed Approach

Figure 6.7: Generated Requirement Diagram

Figure 6.8: Generated Code

Xtext grammar language is used. Figure 6.6 shows a snapshot of the Relax grammar written
in Xtext.

6.5.1.1 Requirements Transformation

To show the DSL for Relax; we start by taking some NFRs. These requirements are taken
from a case study for a car crash crisis management system [49].

– Non Functional Requirement 1: The system shall be available and operational 24 hours
a day.

– Non Functional Requirement 1.1: The system shall be operational throughout the year
except for a maximum downtime of 2 hours every 30 days for maintenance.

– Non Functional Requirement 1.2: The system shall recover in a maximum of 30 seconds
upon failure.

72

6.5. Tools Support

Figure 6.9: RELAX File

These requirements are shown in text format and we are interested in transforming these
textual requirements into graphical form so that the gap between the textual requirements
and the overall system model should be bridged. NFRs in textual format are transformed
into graphical format with the help of Relax grammar. Figure 6.7 shows a snapshot of the
generated requirement diagram.

6.5.1.2 Code Generator

Among the benefits of Xtext, we have benefited from the code generation framework that
is automatically generated from the grammar. A code generator has been written that is
capable of processing the models created with the DSL editor. Figure 6.8 shows the generated
code. On the right side of the screenshot, the generated SysML requirements are shown.

6.5.2 RELAX Editor

For the generation of Relax editor, Xtext is used. The Relax grammar is used as a
meta-model for this editor. The Relax meta-model is generated by Xtext which we call
Relax.ecore. Figure 6.9 shows an example of the Relax file with uncertainty factors. The
Relax file is represented with an extension .rlx. Once we have the .rlx file, we can transform
it into an XMI model. The XMI model can then be manipulated and will serve us for
the model transformation from Relax to SysML/Kaos as explained in the next section.
Figure 6.10 shows the generated Relax model in XMI format. The XMI is an OMG standard
for exchanging meta-data information via Extensible Markup Language (XML). It can be
used for any meta-data whose meta-model can be expressed in MOF. Effectively, the XMI
format standardizes how any set of meta-data is described and requires users across many
industries and operating environments to see data the same way. All the Relax operators are
implemented in Relax editor.

73

6. Proposed Approach

Figure 6.10: RELAX Model Example

Figure 6.11: Meta Models Paths

6.5.3 RELAX to SysML/Kaos Transformation

The use of model transformation languages in GORE helps in the correspondence between
different approaches. The need for model transformation can be attributed to: refine an
organizational level model to a system level model; compare different approaches and decide
which one is more expressive for a particular domain or to an organization culture; facilitate
the communication between professionals specialized in different approaches.

In [65], a model transformation framework is proposed, called MDGore, to transform
i* models into Kaos models through rules defined in ATL 5. To achieve this, i* and Kaos

models are specified using tools that were developed in Eclipse platform, LDE i* [69] and
modularKAOS framework [29]. The application of the transformation rules is done at abstract
syntax level, defined in the meta-model of each one of the frameworks, and uses the ATL
model transformation language.

In our approach, we want to transform Relax-ed requirements uncertainty factors into
SysML/Kaos goal concepts. This transformation will help in taking into account the adaptabil-
ity features associated with SAS in the form of uncertainty factors of Relax-ed requirements
and then modeling these requirements in SysML/Kaos. In this way, we can benefit from the
advantages offered by GORE. For this purpose, the Relax and SysML/Kaos meta-models
are used. The correlation between these two concepts is shown in chapter 6.

5. ❤tt♣✿✴✴✇✐❦✐✳❡❝❧✐♣s❡✳♦r❣✴❆❚▲✴❯s❡r❴●✉✐❞❡

74

http://wiki.eclipse.org/ATL/User_Guide

6.5. Tools Support

Figure 6.12: In and Out Declarations

Figure 6.13: Relaxed Requirement to Abstract Goal Mapping

Figure 6.14: ENV to Elementary Goal Mapping

Figure 6.15: MON to Contribution Goal Mapping

6.5.3.1 ATL Rules

ATL is a model transformation language and toolkit. It provides a way to produce a
number of target models from a set of source models. An ATL transformation program
is composed of rules that define how source model elements are matched and navigated
to create and initialize the elements of the target models. The generation of target model
elements is achieved through the specification of transformation rules. ATL defines two
different kinds of transformation rules: the matched and the called rules. A matched rule
enables to match some of the model elements of a source model, and to generate from them
a number of distinct target model elements. A called rule has to be invoked from an ATL
imperative block in order to be executed. ATL imperative code can be defined within either
the action block of matched rules, or the body of the called rules.

Figure 6.11 shows the two meta-models path. In Figure 6.12, after the module name
declaration, the meta-model ID with create and from keywords are specified.

6.5.3.2 Mapping between RELAX and SysML/Kaos Elements

Here, we present the relationship between Relax and SysML/Kaos elements. This
relationship is established based on the concepts of the two approaches introduced in
chapter 5 and based on the abstract syntax of each approach. The Relax abstract syntax is

75

6. Proposed Approach

Figure 6.16: SysML/Kaos Model

Figure 6.17: ATL Transformation Hierarchy

defined in the Relax meta-model. In turn, the SysML/Kaos abstract syntax is defined in the
SysML/Kaos meta-model.

Figure 6.5 shows the mapping between the two concepts. For the ATL transformation
rules, a Relax-ed requirement is mapped to an Abstract Goal as shown in Figure 6.13, an ENV
is mapped to an Elementry Goal as shown in Figure 6.14 and MON is mapped to Contribution

Goal as shown in Figure 6.15. Figure 6.16 shows the generated SysML/Kaos model after the
application of ATL rules.

Figure 6.17 shows the ATL transformation hierarchy. In black box, we have the ATL file
path; in red, we have the source and target meta-models paths i.e. Relax and SysML/Kaos

respectively; in green, the path of the Relax model in XMI format which is the source model
and which confirms to the Relax meta-model; in yellow, we have the SysML/Kaos model
path which is the target model and which confirms to the SysML/Kaos meta-model; this is
the model that will be created by the ATL transformation. Figure 6.18 shows the SysML/Kaos

76

6.6. Conclusion

Figure 6.18: Generated SysML/Kaos Model using ATL Transformations

model.

6.6 Conclusion

In this chapter, I described the overall view of our proposed approach. We identified some
problems related to requirements modeling and properties verification of SAS. Requirements
modeling using SysML/Kaos does not take into account the adaptability features associated
with SAS. For properties verification using OMEGA2/IFx, we are exposed to the state
explosion problem which comes with model checking techniques. The identified problems
are taken into account in our proposed approach by providing processes and tools to solve
it. The proposed approach also highlights the need for an integrated tooling environment
which is based on different correlations that exists between the basic concepts that we treated
in this research work i.e. Relax and SysML/Kaos. We base our proposition on using MDE
techniques for the requirements modeling and properties verification of SAS. For the tools
support that we provide, we have developed: a DSL for Relax which takes requirements in
textual format and transforms it into SysML requirements diagram, Relax COOL editor which
takes into account the uncertainty factors associated with Relax-ed requirements and which
provide a mechanism to automate Relax-ed requirements and finally Relax2SysML/Kaos

editor which is based on ATL transformations, the tool helps in mapping the Relax concepts
to SysML/Kaos concepts. These tools are developed during the course of this thesis work.

77

CHAPTER 7
Experimentation And Analysis

Contents

7.1 Requirements Modeling of the AAL Case Study 80

7.1.1 The AAL Case Study . 80

7.1.2 Discussion . 83

7.2 Properties Verification of the AAL system with OMEGA2/IFx Profile and
Toolset . 83

7.2.1 Modeling the AAL system with OMEGA2 Profile 84

7.2.2 Properties Verification of the AAL system 87

7.3 Requirements Modeling of the bCMS Case Study 94

7.3.1 The bCMS Case Study . 94

7.3.2 High Level Goal Model . 94

7.3.3 Low Level Goal Model . 96

7.3.4 Discussion . 97

7.4 Assessment . 97

7.5 Conclusion . 100

79

7. Experimentation And Analysis

The ongoing aging process that is noticeable in all industrialized societies, especially
in North America and Europe, has raised serious problems with the growing share of
handicapped and elderly people being unable to conduct their normal lives at home, thereby
becoming more and more isolated from family, friends, and public life. The goal of AAL
solutions is to apply ambient intelligence technology to enable people with specific demands,
e.g. handicapped or elderly, to live in their preferred environment [13]. In order to achieve
this goal, different kinds of AAL systems can be proposed and most of them pose reliability
issues and describe important constraints upon the development of software systems [25].

To validate our proposed approach, we model the requirements of two different case
studies. The first case study is about an AAL 1 home which ensures the health of a Patient. The
second case study is about bCMS 2 which is responsible for coordinating the communication
between a Fire Station Coordinator (FSC) and a Police Station Coordinator (PSC) to handle a
crisis in a timely manner.

7.1 Requirements Modeling of the AAL Case Study

7.1.1 The AAL Case Study

The AAL case study describes a smart home for assisted living. Figure 7.1 shows an
excerpt of the case study which highlights the need to ensure Patient’s health in the AAL
home. Advanced smart homes, such as Mary’s AAL, rely on adaptivity to work properly. For
example, the sensor-enabled cups may fail, but since maintaining a minimum of liquid intake
is a life-critical feature, the AAL should be able to respond by achieving this requirement in
some other way.

In our proposed approach (chapter 6), we start by applying the Relax process on FRs and
NFRs of SAS. The Relax process results in the distinction of Relax-ed requirements which
are adaptable and invariant requirements which are fixed. Figure 7.2 shows an example of
Relax-ed requirement from the Mary’s AAL home, which results from the application of the
Relax process on the traditional requirement: The Fridge shall read, store and communicate RFID

information on food packages. In the following, I show the modeling of the AAL case study
Relax-ed requirements using SysML/Kaos. We have mapped the Relax-ed requirements to
SysML/Kaos goal concepts through a correlation table as shown in Figure 6.5.

7.1.1.1 AAL Case Study Requirements Modeling

We have merged Relax and SysML/Kaos in order to obtain a detailed and strong
requirements description of the system and its context. For modeling the requirements
of AAL system, we start by identifying an NFG: Reliablility [AAL System] which in Relax

terminology is a Relax-ed requirement. This goal must be refined progressively using goal

1. ❤tt♣✿✴✴✇✇✇✳✐❡s❡✳❢r❛✉♥❤♦❢❡r✳❞❡✴❢❤❣✴✐❡s❡✴♣r♦❥❡❝ts✴♠❡❞❴♣r♦❥❡❝ts✴❛❛❧✲✲❧❛❜✴✐♥❞❡①✳❥s♣

2. ❤tt♣✿✴✴❝s❡r❣✵✳s✐t❡✳✉♦tt❛✇❛✳❝❛✴❝♠❛✷✵✶✷✴❈❛s❡❙t✉❞②✳♣❞❢

80

http://www.iese.fraunhofer.de/fhg/iese/projects/med_projects/aal--lab/index.jsp
http://cserg0.site.uottawa.ca/cma2012/CaseStudy.pdf

7.1. Requirements Modeling of the AAL Case Study

Figure 7.1: AAL Case Study

Figure 7.2: RELAX Requirement Example

models to obtain final requirements of the system so that they can be satisfied by Contribution

Goal.

7.1.1.2 High Level Goal Model

From the AAL system problem statement, we have identified Reliability[AAL system] as a
non functional high level goal. In fact, one of the expected qualities of the system is to run
reliably. This is very important for several reasons and particularly because frequent visit of
technician could be a factor of disturbance for Mary and unfeasible due to the large number
of AAL houses across the world. In SysML/Kaos, an NFG can be written in the form of:
NFGType [Topic] where the attribute NFGType specify the type of NFG and the attribute Topic

81

7. Experimentation And Analysis

Figure 7.3: High Level Goal Model

represent the domain element effected by this type of requirement. The refinement of an NFG
can be either refinement by type NFGType or refinement by subject Topic. The high level goal
Reliability [AAL System] is AND-refined into four sub goals using refinement by type: Precision

[AAL System], Security [AAL System], Robustness [AAL System] and Performance [AAL System].
Each sub goal can be further refined until the refinement stops and we reach an Elementary

Goal which can then be assigned to a Contribtuiot Goal. The sub goal Precision [AAL System] is
AND-refined into two sub goals: Precision [Location Detection] and Precision [Sensors] using
refinement by subject. The sub goal Precision [Sensors] is then AND-refined into three sub
goals using refinement by subject: Precision [Location Sensors], Precision [Medical Data Sensors]

and Precision [Fridge Sensors]. The sub goal Precision [Location Detection] can be satisfied by
a positive and direct contribution by one of the following Contribution Goal: combine data

from multiple sensors, combine multiple features and use redundant features. The Contribtuiot Goal

combine data from multiple sensors, contribute indirectly and negatively to the satisfaction of
sub goal Performance [AAL System]. Figure 7.3 shows the high level goal model of AAL.

7.1.1.3 Low Level Goal Model

In order to further extract new goals from the AAL system, we identify another goal
Security [fridge input data] which is an abstract NFG that can be AND-refined into three sub
goals using refinement by type: Confidentiality [fridge input data], Integrity [fridge input data]

and Availability [fridge input data]. Similarly, the sub goal Availability [fridge input data] can be
refined into two sub goals using refinement by subject: Availability [Storing RFID information]

and Availability [Sensors data]. Consider for example the Elementary Goal Confidentiality [fridge

input data], a possible solution to meet this goal is to use a code PIN; another solution
is to require an additional identifier. These two solutions represent thus direct and positive
contribution to this goal. Similarly, having high-end sensors contributes directly and positively

82

7.2. Properties Verification of the AAL system with OMEGA2/IFx Profile and Toolset

Figure 7.4: Security Goal Model

to the goal Availability [Sensors data], and may contributes indirectly and positively to Integrity

[fridge input data]. Figure 7.4 shows the security goal model of AAL.

7.1.2 Discussion

Our proposition is based on the fact that both Relax and SysML/Kaos are complementary
for each other [4]. Both these approaches treats NFRs. We provide tools and processes in our
proposed approach to take benefit of the two approaches. The correlation table of Figure 6.5
is used for the correspondence between Relax and SysML/Kaos, based on this, we have
modeled Relax-ed requirements of the AAL case study. Another important aspect is to
provide a means to verify the properties of the AAL system. In our proposed approach, we
treat properties verification through the use of OMEGA2/IFx profile and toolset. We verify
three properties of the AAL system [5]. The concepts related to properties verification is
discussed in the next section.

7.2 Properties Verification of the AAL system with OMEGA2/IFx

Profile and Toolset

The specification and verification of NFRs in the early stages of the AAL development
cycle is a crucial issue [68]. These systems require clear and precise specifications in order
to describe the system behavior and its environment. The formal specification of the sys-
tem behavior supported by mathematical analysis and reasoning techniques improve their
development process and enable the verification of these systems.

Formal methods provide tools to verify the consistency and correctness of a specification
with respect to the desired properties of the system. It is important as the development of
an AAL system involves different technologies e.g. medical services, surveillance cameras,

83

7. Experimentation And Analysis

intelligent devices etc. and it will provide a strong consistency between models. For this
reason, we are interested to use these methods to prove some of the properties of the system
before the development even starts. We provide a mechanism to bridge the gap between the
requirements phase and the initial formal specification phase by using MDE techniques and
more specifically using model checking techniques in our proposed approach. To model the
AAL system, we used Rational Rhapsody 7.5.2 in combination with OMEGA2 profile [71]
which is an executable Uml/SysML profile used for the formal specification and validation
of critical real-time systems. The OMEGA2 Profile is supported by the IFx toolset which
provides mechanisms for the model simulation and properties verification of the AAL system.
The OMEGA2/IFx approach has been applied for the verification and validation of industry
grade models [30] providing interesting results.

The OMEGA2 Uml/SysML profile defines the semantics of Uml/SysML elements provid-
ing the means to model coherent and unambiguous system models. In order to make the
models verifiable, it presents as extension the observers mechanism for specifying dynamic
properties of models. The OMEGA2 Uml/SysML Profile is implemented by the IFx toolbox
[73] which provides static analysis, simulation and timed automaton based model checking
[23] techniques for validation.

7.2.1 Modeling the AAL system with OMEGA2 Profile

This section shows the AAL system specification and architecture. It shows the structural
diagrams i.e. IBD, BDD, SMD and behavioral diagrams and the properties defined on the
AAL system that we verified using the OMEGA2/IFx profile and toolset.

7.2.1.1 Using OMEGA2 Profile

OMEGA2 models use a profile and a predefined library provided with the tool (OMEGA2.sbs
and OMEGA2Predefined.sbs). Any other Uml2.2 or SysML1.1 editor supporting profiling
and exporting in the XMI 2.0 standard compatible with Eclipse ecore can be used for OMEGA2
models. In OMEGA2, ports are unidirectional, meaning that we can only send messages
through the port or receive messages through the port. If a component can send and receive
messages, we have to model this with at least two ports. Every port has to define a contract.
A contract is an interface containing operations definition (without the body) and signals
reception for which the block and/or the port knows how to react. If we have two or more
interfaces defining the needed requests, we need to define a new interface that inherits from
the others. This interface has to be stereotyped with InterfaceGroup and it defines the type
of the port. A port’s usual behavior is to forward messages according to its direction. A
required port may be modeled either using the stereotype reversed or using the reversed
checkbox in the port’s properties. In this case the requests are transferred to the environment.
If the port is owned by a block and has to forward messages to the block, the port must be
set declared as provided port (i.e. in Rhapsody a provided port is a behavior port).

84

7.2. Properties Verification of the AAL system with OMEGA2/IFx Profile and Toolset

Figure 7.5: Main Internal Block Diagram

7.2.1.2 System Specification

First, we start by taking into account the structural part of the AAL system. Those parts
are considered that are concerned with the daily calories intake of the Patient in the AAL
house. The AAL system is composed of Fridge and Patient, these parts are modeled along
with the interaction that takes place between them. The Fridge partially contributes to the
minimum liquid intake of the Patient; it also looks at the calories consumption of the Patient

as the Patient needs not to exceed it after a certain threshold.

7.2.1.3 System Architecture

Figure 7.5 shows the main IBD. The important parts of the AAL system are Patient and
Fridge. Figure 7.6 shows the blocks with ports that are identified in the AAL system i.e.
Fridge, Display, Alarm, Controller, Food and Patient. The Fridge interacts with the AAL system.
Figure 7.7 shows the IBD for the Fridge block. Each of the four blocks behaviors is modeled
in a separate SMD. A Fridge is composed of Display, Alarm, Controller, and Food blocks. The
block Food contains information about the Food items in the Fridge, the calories contained by
each item, the total number of calories the Patient has accumulated and the calories threshold
that should not be surpassed. The Fridge Display is used to show the amount of calories
consumed by the Patient. The Alarm is activated in case the Patient’s calories level surpasses a
certain threshold.

The communication between different blocks takes place through ports. A port bears
a type. In OMEGA2, the type of a port must be an Interface. The type specifies the set of
requests (operation calls and/or signals) that are transferred between parts (components) by
means of ports and connectors. In Figure 7.5, the Patient block has a standard port named
pToFridge. This port has a contract named Patient2Fridge and is acting as a provided interface
of the Patient block. The Interface Patient2Fridge defines an operation eat(int item, int quantity).
This interface is then used as a type of pToFridge port. At the same time, the Patient block has
a required interface named pFromPatient.

85

7. Experimentation And Analysis

Figure 7.6: AAL System Blocks

Figure 7.7: Fridge Internal Block Diagram

Figure 7.8 shows the SMD for the Patient block. In the Patient SMD, the exchange of
information between Patient and Fridge takes place. The number and quantity of each item
present in the Fridge are identified. If a certain product still present in the Fridge is chosen by
the Patient then the information is communicated with the Fridge. Otherwise the Fridge is
empty and the Patient will wait for the Fridge to be refilled. Also, if the Alarm of the Fridge is
raised due to high intake of calories, the Patient stops eating and waits for the system to be
unblocked.

The Food block models the knowledge of the Fridge about what it contains. Figure 7.9

86

7.2. Properties Verification of the AAL system with OMEGA2/IFx Profile and Toolset

Figure 7.8: Patient State Machine Diagram

shows its SMD. Here, the number of items and the amount of calories associated with each
item present in the Fridge are defined. Then the total number of calories accumulated by the
Patient is calculated. If the total number of calories is greater than or equal to the maximum
calories allowed for the Patient, then a message is sent and the Alarm is raised or if the total
number of calories is greater than the maximum calories allowed minus 500, then the Patient

is warned with a message that the calories level is approaching the maximum amount of
calories allowed.

7.2.2 Properties Verification of the AAL system

The properties of AAL system that are modeled and verified are obtained after Relax

process is applied on its traditional requirements. Below are the properties that we verified
[5].

7.2.2.1 Traditional/RELAX-ed Requirement

The Fridge SHALL detect and communicate with Food packages

Relax-ed version of this requirement is as follows:
Property 1 : The Fridge SHALL detect and communicate information with AS MANY Food

packages AS POSSIBLE

Below are the uncertainty factors associated with the given Relax-ed requirement.

87

7. Experimentation And Analysis

Figure 7.9: Food State Machine Diagram

– ENV: Food locations, Food item information (type, calories), Food state (spoiled and
unspoiled)

– MON: RFID readers, Cameras, Weight sensors
– REL: RFID tags provide Food locations and Food information; Cameras provide Food

locations (Cameras provide images that can be analyzed to estimate Food locations),
Weight sensors provide Food information (whether eaten or not)

The satisfaction of this requirement contributes to the balanced diet of the Patient. The
choice of this property for verification is motivated by the fact that it is important for the
AAL system to know about how many Food items are present in the Fridge. Figure 7.10 shows
the SMD of the Property 1. Here, the first task is to identify the number of items consumed
by the Patient and the total number of items in the Fridge. Then the identity of the Patient is
verified, if the person is identified as the Patient, the next step is to calculate the number of
items consumed by the Patient. After this, the number of items left in the Fridge is calculated
which is equal to the sum of all the items present in the Fridge. Then in the last step, we
calculate if ((total number of items - number of items consumed - number of items left) >-1)
and ((total number of items - number of items consumed - number of items left) <1), it means

88

7.2. Properties Verification of the AAL system with OMEGA2/IFx Profile and Toolset

Figure 7.10: Property1 State Machine Diagram

that we have reached the «success» state by having information about all the items present in
the Fridge, i.e. it should be 0 (which means that there is no information loss). Inversely, if it is
less than -1 and greater than 1, then it means that we are missing information about some of
the items present in the Fridge and the observer passes into the «error» state. Following are the
two invariant requirements that we verified.

7.2.2.2 Invariant Requirement 1

Property 2 : The System SHALL raises an Alarm if the total number of calories is equal to or more

than a certain threshold

The information gathered from the Fridge is used to calculate the amount of calories
accumulated by the Patient. The total amount of calories accumulated by the Patient should be

89

7. Experimentation And Analysis

Figure 7.11: Property2 State Machine Diagram

checked and kept at a certain threshold as the Patient needs a hyper caloric diet. Figure 7.11
shows the SMD of the Property 2. Here, we check that the Alarm shall be raised as soon as
the total number of calories equals or surpasses the maximum allowed calories for the Patient,
thats the reason why, we have only one state i.e. a «success» state. This requirement is treated
as invariant because if the number of calories equals or surpasses the threshold allowed and
the Alarm is not raised, it will have serious consequences on the health of the Patient.

7.2.2.3 Invariant Requirement 2

Property 3 : The Alarm SHALL be raised instantaneously if the total number of calories surpasses

the maximum calories allowed for the Patient

This property ensures that the Patient should stop eating as soon as the total number
of calories surpasses the maximum calories allowed and that the Alarm should be raised.
Figure 7.12 shows the SMD for this property. This requirement implies that the Alarm shall be
immediately raised as soon as the total number of calories equals or surpasses the maximum
calories allowed for the Patient. If it happens then the Patient should stop eating and we
will reach a «success» state but if the Patient continues to eat, it means that we are reaching
an «error» state. Here, we have modeled the two states which differentiate it from the first
invariant requirement.

90

7.2. Properties Verification of the AAL system with OMEGA2/IFx Profile and Toolset

Figure 7.12: Property3 State Machine Diagram

Figure 7.13: XMI to IF Compilation

7.2.2.4 Verification Results

Untill now, the AAL system is modeled along with the properties to be verified on the
model. We now show how to verify these properties using the IFx toolset. Figure 7.13
shows the snapshot of the compilation of the AAL model named AAL2. The AAL2 model is
first exported into AAL2.xmi and then using the IFx toolset the AAL2.xmi is compiled into
AAL2.if.

Figure 7.14 shows the snapshot of the compilation of AAL2.if into an executable file i.e.

91

7. Experimentation And Analysis

Figure 7.14: IF to Executable file Compilation

Figure 7.15: Model Checker results in Error Scenarios

AAL2.x. While verifying the AAL model, the model checker has found several error scenarios,
as one can see in Figure 7.15. Any of the error scenario can then be loaded through the
interactive simulation interface of the IFx toolset to trace back the error in the model and then
correct it.

In order to debug a model, firstly we import it into the simulator as shown in Figure 7.16.
We check the states of the observers in order to identify which property has not been satisfied.
One can observe in Figure 7.17 that Property 3 fails. While checking the state of the entire
system for this property, we discover that the «error» state contained the maximal allowed
number of calories for the total number of calories consumed and subsequently eat requests
are sent by the Patient. This implies that the Alarm function of the intelligent Fridge doesn’t
function properly. The Alarm function of the Fridge is strictly linked to its Food process. One
can observe in the SMD of the Food block (Figure 7.9) that the Alarm is raised only if the total
number of consumed calories is strictly superior than the maximum allowed; condition which
doesn’t satisfy the request that the Alarm is raised as soon as possible. The correction consists
in raising the Alarm in case the total number of consumed calories is equal to the maximum
allowed threshold. Once this error is corrected, the verification succeeds. Figure 7.18 shows

92

7.2. Properties Verification of the AAL system with OMEGA2/IFx Profile and Toolset

Figure 7.16: Initial Simulation Interface

Figure 7.17: Error State Food Observer Simulation Interface

Figure 7.18: Model checking successful

the result of the model checker on the correct model.

In the next section, I show the modeling of the bCMS requirements using our proposed
approach.

93

7. Experimentation And Analysis

Figure 7.19: bCMS Case Study Overall View

7.3 Requirements Modeling of the bCMS Case Study

bCMS case study is responsible for coordinating the communication between an FSC and
a PSC to handle a crisis in a timely manner.

7.3.1 The bCMS Case Study

We model the requirements of the bCMS case study using our proposed approach [3].
The usual process of requirements discovery is applied to extract FRs and NFRs. We then
apply the Relax process on the FRs and NFRs of the bCMS case study to get invariant and
Relax-ed requirements. For Relax-ed requirements, all the uncertainty factors are identified.
Then using the correlation in Figure 6.5 [4] b/w Relax and SysML/Kaos, we model the
bCMS Relax-ed requirements in the form of NFGs with SysML/Kaos editor.

The bCMS is a distributed crash management system that is responsible for coordinat-
ing the communication between an FSC and a PSC to handle a crisis in a timely manner.
Information regarding the crisis as it pertains to the tasks of the coordinators is updated
and maintained during and after the crisis. There are two collaborative sub-systems. Thus,
the global coordination is the result of the parallel composition of the (software) coordina-
tion processes controlled by the two (human) distributed coordinators (i.e., PSC and FSC).
Figure 7.19 shows the overall view of the bCMS case study.

7.3.2 High Level Goal Model

Figure 7.20 shows the uncertainty factors associated with the Availability (The crisis details

and route plan of the fire station and the police station shall be available with the exception of AS

CLOSE AS POSSIBLE To 30 minutes for every 48 hours when no crisis is active.) Relax-ed
requirement. This requirement is then mapped to SysML/Kaos goal model concepts and
modeled with SysML/Kaos editor.

For modeling the bCMS case study, only NFGs are considered. FGs are considered to
show the impact of a Contribution Goal on an FG which in turn helps to show the impact
of an NFG on an FG. The goal at the highest level is identified as Security[bCMS System],

94

7.3. Requirements Modeling of the bCMS Case Study

Figure 7.20: Availability RELAX-ed Requirement Uncertainty Factors

which is an abstract NFG and is AND-refined into two sub goals using refinement by type:
Integrity[bCMS System] and Availability[bCMS System]. The goal Availability[bCMS System] is
an abstract NFG and is AND-refined into three sub goals using refinement by type: The crisis

details and route plan of the fire station and the police station shall be available with the exception of a

total of 30 minutes for every 48 hours when no crisis is active[bCMS System], The crisis details and

route plan of the fire station and the police station shall be available with the exception of a total of 5

minutes during the time period when at least one crisis is active[bCMS System] and The information

related to the identification of the coordinators shall be available with the exception of a total of 5

minutes during the time period when at least one crisis is active[bCMS System]. The goal The crisis

details and route plan of the fire station and the police station shall be available with the exception of a

total of 30 minutes for every 48 hours when no crisis is active[bCMS System] is an abstract NFG and
is AND-refined into two elementary goals using refinement by type: The crisis details and route

plan of the fire station shall be available[bCMS System] and The crisis details and route plan of the

police station shall be available[bCMS System]. The goal The crisis details and route plan of the fire

station shall be available[bCMS System] is satisfied by the ContributionGoal Fire Station Coordinator

having a direct and positive contribution on it and the goal The crisis details and route plan

of the police station shall be available[bCMS System] is satisfied by the Contribution Goal Police

Station Coordinator which also has a direct and positive contribution on its accomplishment.
The Contribution Goal Communication Compromiser contributes directly and negatively towards
the satisfaction of the two elementary goals whose objective is to disrupt the response to the
crisis for some personal gain. Figure 7.21 shows the high level goal model of the bCMS case
study.

The SysML/Kaos approach helps in modeling the impact of an NFG on an FG. As shown
in the SysML/Kaos meta-model of Figure 5.5, the concept of Impact helps in linking an NFG
with an FG. It is clear from the meta-model that the Contribution Goal has an impact on an FG.
An FG express a requirement that the future system will exhibit and an NFG is the quality
to be achieved in the future system which is satisfied by a Contribution Goal. The concept of
Impact is represented as an Association Class between a Contribution Goal and an FG which in
turn helps to show the impact of an NFG on an FG. In Figure 7.21, the abstract FG An FSC

maintains control over a crisis situation by communicating with the PSC as well as firemen is refined
into three sub goals: To get resources to the crisis location, To handle crisis related information and

95

7. Experimentation And Analysis

Figure 7.21: High Level Goal Model

Figure 7.22: Integrity RELAX-ed Requirement Uncertainty Factors

To provide executable instructions to staff. The Contribution Goal Fire Station Coordinator has a
direct and positive impact on each of the three functional sub goals.

7.3.3 Low Level Goal Model

Figure 7.22 shows the uncertainty factors associated with the Integrity (The system shall

ensure that the integrity of the communication between coordinators regarding crisis location, vehicle

number, and vehicle location is preserved AS CLOSE AS POSSIBLE TO 99.99% of the time.)
Relax-ed requirement.

To continue further with modeling, another goal Ensure the integrity of communications

b/w coordinators[bCMS] is identified which is an abstract NFG and is AND-refined into two
sub goals using refinement by type: Integrity of communication b/w coordinators[bCMS] and
Authenticity of coordinators[bCMS]. The goal Integrity of communication b/w coordinators[bCMS]

is satisfied by the Contribution Goal Secure communication channel. Considering the goal Authen-

96

7.4. Assessment

Figure 7.23: Integrity Goal Model

ticity of coordinators[bCMS], one possible way to achieve this goal is to use PIN code, another
solution is to use additional information. The Contribution Goal Communication Compromiser has
a direct and negative impact on the goal Integrity of communication b/w coordinators[bCMS].
Figure 7.23 shows the low level goal model of the bCMS case study.

7.3.4 Discussion

The modeling of the requirements of the bCMS case study has helped us in acquiring more
information about the system. The Contribution Goal Communication Compromiser has a negative
and direct impact on the elementary goal Integrity of communication b/w coordinators[bCMS]. If
we have modeled the requirements of the bCMS case study using a GORE technique which
does not take into account the concept of negative contribution, we would have missed
important information. Also the Contribution Goal Communication Compromiser has a negative
and indirect impact on the FG To estimate resources. Thanks to the use of SysML/Kaos in
combination with Relax, we are able to obtain a detailed description of the requirements of
the system and its environment.

In the following section, I give an assessment of our proposed approach. The assessment
is explained with the help of a table which shows the problems that we identified in existing
methods of requirements modeling and properties verification of SAS and the solutions that
we provide in our proposed approach.

7.4 Assessment

We propose an integrated approach for requirements modeling and properties verification
of SAS. The proposed approach takes requirements as input and results in its modeling and
then verification using different processes and tools. It helps in bridging the gap between
the requirements phase and the initial formal specification phase. In this section, I discuss
different problems that we identified and addressed in our proposed approach.

97

7. Experimentation And Analysis

Figure 7.24: Assessement Table

We follow the V Software development life cycle, where we start from the requirements.
We do early analysis of requirements and based on it we define the high level system
design. For this, we take requirements as input and divide them into FRs and NFRs. These
requirements are then passed through the Relax process which results in Relax-ed and
invariant requirements. Relax-ed requirements are concerned with the adaptive features of
SAS. It is at this point in time that we introduce the Relax process in our approach. We are
interested in modeling those requirements of SAS which are adaptable i.e. Relax-ed. The
resulting Relax-ed requirements are then automated using an editor that we developed called
Relax COOL editor. This editor takes into account the uncertainty factors associated with
each Relax-ed requirement. We then provide a mechanism to map Relax-ed requirement
with goal oriented concepts, to take benefit from it while modeling the requirements of SAS.
We use SysML/Kaos for this mapping which uses a correlation table for the correspondence
between Relax-ed requirements and SysML/Kaos concepts. In the conventional process
of requirements modeling using SysML/Kaos, it takes as input NFRs. We aim to inject
those requirements that are Relax-able in place of NFRs to take into account the adaptability
features of SAS which justifies the inclusion of the Relax process in our approach. The Relax

process takes input as FRs and NFRs and divides into it Relax-ed and invariant requirements.
The mapping between Relax and SysML/Kaos concepts results in the transformation of
Relax uncertainty factors into SysML/Kaos goal concepts. For this purpose, we have
developed a tool called Relax2SysML/Kaos editor, which is based on ATL transformations.

For the formal specification phase, we use OMEGA2/IFx for the properties verification

98

7.4. Assessment

Figure 7.25: Pros and Cons of our Proposed Approach

and model simulation of SAS. The conventional process of OMEGA2/IFx profile and toolset
takes the FRs and NFRs, without differentiating those requirements that are adaptable and
those that are invariant, which in the case of SAS is very important. This exposes us to the
problems linked with state space explosion which is inherent in model checking techniques
used by the IFx toolset for properties verification. As the number of state variables in the
system increases, the size of the system state space grows exponentially. We provide a way to
tackle this problem in our proposed approach. We take into account those requirements that
are important for SAS e.g. Relax-ed or invariant requirements to avoid the state explosion
problem associated with model checking techniques.

For the validation of our proposed approach, we use two case studies i.e. AAL and bCMS.
We model the Relax-ed requirements of both case studies. For the properties verification
part, we verify three properties of the AAL case study. The overall proposed approach
need an integrated tooling environment for taking into account the different transformations
and automations identified. We provide an integrated model based environment for early
analysis and verification of requirements. Figure 7.24 shows a table with the problems that
we addressed in our proposed approach.

Our proposed approach is usable and understandable as we base our proposition on
using concepts already present in RE. The cons of our proposed approach is that we do not
provide any empirical studies for the validation, as this research work is not conducted in an
industrial setup. Apart from the two case studies, we did not applied our proposed approach
on any such concrete case studies that can provide any empirical data e.g. what will we gain
in terms of time and budget, which is one of the main criteria for the evaluation of any new
proposed approach. We are of the view that an ideal situation will be to develop an SAS using
our proposed approach that is already developed with another approach. This will provide
interesting results and will show to what extent our proposed approach is better than the

99

7. Experimentation And Analysis

other approaches. Consequently, we are not able to calculate the Return On Investment (ROI)
by using our approach. Figure 7.25 shows a table with the pros and cons of our proposed
approach.

7.5 Conclusion

We provided a model based integrated approach for the requirements modeling and
properties verification of SAS. The context of our work resides in self adaptation and we
are at the very initial stage of the SAS development life cycle which means that we do not
provide any mechanism for self adaptation which is beyond the scope of this thesis.

The proposed combination of Relax and SysML/Kaos approach models the NFRs of SAS.
Both these approaches treat NFRs at the high level of abstraction. The table in Figure 6.5 is
used which shows the correlation between different concepts treated by each approach. First
of all, Relax-ed requirements with uncertainty factors are identified in the case studies and
based on the correlation table, they are mapped to SysML/Kaos concepts. SysML/Kaos is
then used to model these Relax-ed requirements. The NFRs of the bCMS case study are also
modeled using the proposed approach.

In our proposed approach, we provided a mechanism to verify the requirements of SAS.
We start from modeling the structural and behavioral parts of AAL system. OMEGA2 profile
is used for specification and verification of dynamic properties of models through observers.
For the verification and simulation part, IFx is used which is a toolset for the simulation of
OMEGA2 models and the verification of properties defined on these models. Three properties
of the AAL system are verified using the IFx toolset, these properties are obtained after the
Relax process is applied on its traditional properties. In one case, the verification results in
errors which can then be simulated through the interactive simulation interface of the IFx
toolset in order to identify the source of the error and then subsequently correct it in the
model. In other case, after correcting the error, the verification results in the fulfillment of all
the three properties.

100

CHAPTER 8
Conclusion & Perspectives

Contents

8.1 Problem Recall . 102

8.2 Our Contribution . 102

8.3 Perspectives . 105

8.3.1 Perspective for Requirements Modeling of Self Adaptive Systems . . 105

8.3.2 Perspectives for Properties Verification of Self Adaptive Systems . . 105

8.3.3 Perspective for the Empirical Studies 106

101

8. Conclusion & Perspectives

The context of this research work is situated in the field of SE for SAS. This work resides
in the very early stages of the software development life cycle i.e. at the RE phase. The overall
contribution of this thesis is to propose an integrated approach for modeling and verifying
the requirements of SAS using MDE techniques.

Our proposed approach takes requirements as input and then by applying various
processes and tools, we integrate the notion of adaptability in requirements which we model
using GORE techniques. Once we have the system design, we then introduce a mechanism
for the properties verification of SAS.

8.1 Problem Recall

Because of the high adaptive nature of SAS, they modify their behavior at run-time in
response to changing environmental conditions. For these systems, NFRs play an important
role, and one has to identify as early as possible those requirements that are adaptable. The
distributed nature of SAS and changing environmental factors (including human interaction)
make it difficult to anticipate all the explicit states in which the system will be during its
lifetime. As such, an SAS needs to be able to tolerate a range of environmental conditions
and contexts, but the exact nature of these contexts remains imperfectly understood. A
feature common to all the previous works regarding RE for SAS is that they assume that all
adaptation choices are known and enumerated at design time and does not take unanticipated
adaptations into account.

We have identified some problems associated with requirements modeling and verification
using existing approaches. On one hand, existing requirements modeling approaches do
not take into account the uncertainty factors associated with SAS, on the other, hand we are
exposed to the state space explosion problems associated with existing properties verification
techniques of these systems.

8.2 Our Contribution

We treat NFRs from the very beginning i.e. at the same level of abstraction as FRs. RE
methods for SAS must consider the inherent uncertainty of these systems. This results in the
conception of new RE languages. Keeping in mind this uncertainty, we provide an integrated
approach for dealing with requirements modeling and properties verification of SAS. For
this we put forward our proposed approach which aim to solve different problems that we
identified regarding requirements modeling and properties verification. We are interested in
using MDE techniques for the RE and properties verification of SAS.

We identified the gap that exists between the requirements and the overall system model.
SysML provides the notion of requirements diagram, which provide the relationship between
requirements and also the relationship of requirements with other model elements thus
allowing the definition of traceability links between requirements and other model elements.
We start from the very beginning of the system development life cycle i.e. from requirements.

102

8.2. Our Contribution

These requirements are then divided into NFRs and FRs. We used Relax which is an RE
language for SAS and which can introduce flexibility in NFRs to adapt to any changing
environmental conditions. The essence of Relax for SAS is that it provides a way to relax
certain requirements for other requirements in situations where the resources are constrained
or priority must be given to requirements. To bridge this gap, we provide a DSL for Relax,
which takes requirements in textual format as input and transform it into SysML requirements
diagram.

Relax provides new vocabulary and terminology for the RE of SAS. It provides the notion
of uncertainty factors which are associated with requirements. The Relax process takes input
as FRs and NFRs and results in the distinction of those requirements that are adaptable called
Relax-ed requirements and those that are fixed called invariant requirements. To take benefit
of Relax-ed and invariant requirements, we integrate it in our proposed approach. For this
purpose we have developed a tool called Relax COOL editor which is used to automate the
formalization of SAS requirements by taking into account the different uncertainty factors
associated with each Relax-ed requirement. This tool is developed using Xtext which is a
framework for the development of DSLs and other textual programming languages and helps
in the development of an IDE for the DSL.

Because of the inherent uncertainty in SAS, goal based approaches can help in developing
the requirements of these systems. We use SysML/Kaos which is an extension of the SysML
requirements model with concepts of the Kaos goal model. SysML/Kaos provides an editor
for modeling the NFRs in the form of NFGs which is much more rich and complete in defining
relations between requirements (refinement relations, conflict identification and resolution,
positive/negative and direct/indirect impacts). Here, invariant requirements are captured
by the concept of FGs whereas Relax-ed requirements are captured by the concept of NFGs.
SysML/Kaos takes as input a set of NFRs without differentiating between those requirements
that are adaptable and those that are not which is an important aspect of SAS. We have
merged SysML/Kaos and Relax so that we obtain a detailed and strong requirements
description of the system and its context and to take into account the adaptability features
associated with SAS.

In our proposed approach, we have provided a correlation table that helps in mapping
the Relax and SysML/Kaos concepts. Using this table, the Relax-ed requirements are then
transformed to SysML/Kaos goal concepts. This mapping is done using ATL, which is a
model transformation technique and which takes as input a source model and transforms it
into a target model. For this purpose, we have developed a tool called Relax2SysML/Kaos

editor. This editor is capable of modeling the Relax-ed requirements in the form SysML/Kaos

goal concepts.

In order to validate our proposed approach, we modeled the requirements of two case
studies: an AAL and a bCMS case study using the same correlation table that shows the
mapping between Relax and SysML/Kaos. The Relax2SysML/Kaos editor is then used to
model the requirements of the two case studies.

In our proposed approach, we provide a mechanism to verify some properties of the

103

8. Conclusion & Perspectives

Figure 8.1: Overall Conclusion

SAS even before the actual development of these systems. We used OMEGA2/IFx for the
properties verification and model simulation of these systems. OMEGA2 is an executable
Uml/SysML profile dedicated to the formal specification and validation of critical real-time
systems. It is based on a subset of Uml 2.2/SysML 1.1 containing the main constructs
for defining the system structure and behavior. We used IFx toolset for OMEGA2 models
simulation and properties verification. The system design that resulted from SysML/Kaos

can be injected into OMEGA2/IFx for the properties verification. The problem with the
conventional method of properties verification using OMEGA2/IFx is that it takes FRs and
NFRs as input and then verify it. In the context of SAS, we need to inject those properties into
OMEGA2/IFx for verification that are either adaptable or invariant but not all the properties.
In this way, we can overcome problems like state space explosion by verifying only those
properties that are of interest for the SAS. This step is accompanied by observers which are the
properties that we want to verify on the system. While verifying the properties, the compiler
produced errors, which we simulated by using the interactive simulation interface of the IFx
toolset to trace back the error in the model and then corrected it.

To sum up, we provide a means to bridge the gap between the requirements phase and
the initial validation phase. The proposed approach takes input as requirements and then
using different processes and tools that either existed or we developed, we model those NFRs
that can be Relax-ed. This helps in capturing the adaptability features associated with SAS.
We then verify some of the properties of these systems. As we are in the very early stages
of the system development life cycle so the aspects related to adaptation mechanisms and
strategies for adaptation are beyond the scope of this work. Figure 8.1 shows a table with the
processes and tools that we used in our proposed approach and the results achieved.

104

8.3. Perspectives

8.3 Perspectives

In the following, I mention some of the perspectives that we identified regarding require-
ments modeling and properties verification of SAS.

8.3.1 Perspective for Requirements Modeling of Self Adaptive Systems

To take benefits of GORE techniques while modeling the requirements of SAS, we pro-
vided a correlation table between Relax and SysML/Kaos. Based on this table we have
mapped the Relax-ed requirements uncertainty factors to SysML/Kaos goal concepts. ATL
is used for the model transformation between the two approaches. For the time being, our
Relax2SysML/Kaos tool is capable of mapping the Relax concepts to SysML/Kaos concepts
but not the inverse. We have identified the inverse mapping between the two concepts as a
perspective so that those people who are familiar with SysML/Kaos can map goal concepts to
Relax concepts to which they are unfamiliar, so that to provide an additional knowledge base
regarding requirements modeling of SAS. This will help in identifying the uncertainty factors
associated with each requirement. The resulting Relax-ed requirements can be subjected
to various tools and processes and can be used with various other methods for answering
questions regarding self adaptivity like which conditions to monitor, which decision-making
procedures and possible adaptations strategies to follow.

8.3.2 Perspectives for Properties Verification of Self Adaptive Systems

The verification of Relax-ed requirements in our proposed approach is done using
OMEGA2/IFx. We can do the validation of these requirements at execution time. But the
wealth of information associated with run-time phenomena is particularly a challenging prob-
lem. A promising approach to managing complexity in runtime environments is to develop
adaptation mechanisms that leverage software models, referred to as Models@run.time [15].
Research on Models@run.time seeks to extend the applicability of models and abstractions
to the runtime environment, with the goal of providing effective technologies for managing
the complexity of evolving software behavior while it is executing [8]. Runtime adaptation
mechanisms that leverage software models extend the applicability of MDE techniques to the
runtime environment. Contemporary mission-critical software systems are often expected to
safely adapt to changes in their execution environment. Given the critical roles SAS play, it
is often inconvenient to take them offline to adapt their functionality. Consequently, these
systems are required, when feasible, to adapt their behavior at run-time with little or no
human intervention [15]. Different seminars 1 and workshops 2 are now dedicated to the mix
of MDE and SAS.

We did not treated these aspects as we were at the very early stages of the SAS development
life cycle. To be precise, our work resides in the framework of self adaptation but we do

1. ❤tt♣✿✴✴✇✇✇✳❞❛❣st✉❤❧✳❞❡✴❡♥✴♣r♦❣r❛♠✴❝❛❧❡♥❞❛r✴s❡♠❤♣✴❄s❡♠♥r❂✶✶✹✽✶

2. ❤tt♣✿✴✴st✳✐♥❢✳t✉✲❞r❡s❞❡♥✳❞❡✴▼❘❚✶✷✴

105

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=11481
http://st.inf.tu-dresden.de/MRT12/

8. Conclusion & Perspectives

not treat the development of self adaptation mechanisms. We help the SAS developers by
providing a mechanism for identifying the adaptive features associated with the requirements
of these systems. The use of Models@run.time in our proposed approach is a perspective that
we have identified.

In our proposed approach, for the properties verification using OMEGA2/IFx, we model
the observers and then we check these observers against the system design to see if the
properties are verified or not. Right now, we model these observers as an SMD. We would like
to automate this process of observers modeling by automatically generating it from Relax-ed
and invariant requirements. We can then provide the resulting system design from the
application of our proposed approach to be used with these automatically generated observers,
to verify the properties against the system design using OMEGA2/IFx.

Another perspective that we identified is based on using formal method techniques like
B. The use of model checking techniques used by OMEGA2/IFx exposes us to the problem
of state explosion problem which is inherent in these techniques. We handle this problem
in our proposed approach by only injecting Relax-ed or invariant requirements i.e. those
requirements that are of interest for SAS. But we can counter this problem using formal
methods like B. There are already some works done for the mapping between SysML/Kaos

and B in this regard. A method is defined for bridging the gap between the requirements
analysis level (Extended SysML) and the formal specification level (B) [53]. This method
derives the architecture of B specifications from SysML goal hierarchies. We believe that using
proof based formal methods like B can help in overcoming the state space explosion problem
associated with model checking techniques.

8.3.3 Perspective for the Empirical Studies

As a proof of concept, we applied our proposed approach on two case studies in the
domain of SAS. The requirements of both case studies were modeled and the properties of
one of the case study were verified using our proposed approach. An ideal situation will be
to apply it on a real world system, which will help us to assess the validity of our proposed
approach against some predefined evaluation criteria. For this, the first step would be to
define the evaluation criteria. Then we need to provide enough experience to measure the
defined criteria which will provide statistical data about its applicability on one hand and the
improvements that can be brought about on the other hand.

The evaluation criteria can be defined, for example in terms of the usability of our
proposed approach, correctness of the transformation rules between Relax and SysML/Kaos

concepts. We can then model and verify the NFRs of the real world SAS using our approach
and compare it with the conventional methods of requirements modeling and verification.
This will provide a true assessment of our proposed approach.

106

Author’s Bibliography

International Conferences

1. Manzoor Ahmad, Iulia Dragomir, Jean M. Bruel, Iulian Ober and Nicolas Belloir. Early
Analysis of Ambient Systems SysML Properties using OMEGA2-IFx, SIMULTECH 29-31
July 2013, Reykhavík Iceland.

2. Manzoor Ahmad, Jean M. Bruel, Régine Laleau and Christophe Gnaho. Using Relax,
SysML and Kaos for Ambient Systems Requirements Modeling. Procedia Computer
Science Volume 10, 2012, Pages 474–481, The 3rd International Conference on Ambi-
ent Systems, Networks and Technologies August 27-29, 2012, Niagara Falls, Ontario,
Canada.

3. Manzoor Ahmad. First Step towards a Domain Specific Language for self-Adaptive
Systems. IEEE Proceedings, Tunisia Chapter, DANCE 30 May 2010, Tozeur Tunisia.

National Conferences

1. Manzoor Ahmad, Jean M. Bruel, Régine Laleau et Christophe Gnaho. Modélisa-
tion des Exigences pour les Systèmes Auto-adaptatifs: Intégration des Techniques
Relax/SysML/Kaos. Journées GDR - GPL - CIEL 19 et 20 juin 2012.

2. Manzoor Ahmad , Jean M. Bruel, Requirement Language Tooling with Xtext, UBIMOB
2011 : 7es Journées francophones Mobilité et Ubiquité Toulouse, Museum d’Histoire
Naturelle 6 juin 2011 - 8 juin 2011.

Workshops

1. Jean M. Bruel, Nicolas Belloir, Manzoor Ahmad. SPAS: Un Profil SysML pour les
Systèmes Auto-Adaptatifs. Dans: 15ème Colloque National de la Recherche en IUT
(CNRIUT), Lille, 08/06/09-10/06/09.

2. Manzoor Ahmad, Jean M. Bruel, Antoine Beugnard. From Composition to Connectors.
In: 4th International School on Model Driven Development for Distributed Real-time
Embedded Systems, Aussois, France, 20/04/09-24/04/09.

107

Bibliography

[1] Jean R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, New
York, NY, USA, 1996.

[2] Manzoor Ahmad. First Step Towards a Domain Specific Language for Self-Adaptive Systems.
In 10th Annual International Conference on New Technologies of Distributed Systems (NOTERE’10),
pages 285–290. IEEE, 2010.

[3] Manzoor Ahmad, João Araújo, Nicolas Belloir, Régine Laleau Jean M. Bruel, Christophe Gnaho,
and Farrida Semmak. Self-Adaptive Systems Requirements Modelling: four Related Approaches
Comparison. In Comparing *Requirements* Modeling Approaches Workshop (CMA@RE), RE 2013,
Rio de Janeiro Brazil, 2013. IEEE Computer Society Press.

[4] Manzoor Ahmad, Jean M. Bruel, Régine Laleau, and Christophe Gnaho. Using RELAX, SysML
and KAOS for Ambient Systems Requirements Modeling. In The 3rd International Conference

on Ambient Systems, Networks and Technologies (ANT ’12). Elsevier Procedia Computer Science,
Volume 10, Pages 474 - 481, 2012.

[5] Manzoor Ahmad, Iulia Dragomir, Jean M. Bruel, Iulian Ober, and Nicolas Belloir. Early Analysis
of Ambient Systems SysML Properties using OMEGA2-IFx. In 3rd International Conference on

Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH’13), 2013.

[6] Annie I. Anton. Goal-Based Requirements Analysis. In Proceedings of the 2nd International

Conference on Requirements Engineering (ICRE ’96). IEEE Computer Society, 1996.

[7] L. Apvrille, J. P. Courtiat, C. Lohr, and P. de Saqui-Sannes. TURTLE: A Real-Time UML Profile
Supported by a Formal Validation Toolkit. IEEE Trans. Softw. Eng., 30(7), 2004.

[8] Uwe Aßmann, Nelly Bencomo, Betty H. C. Cheng, and Robert B. France. Models@Run.Time
(Dagstuhl Seminar 11481). Dagstuhl Reports, 1(11), 2011.

[9] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamodeling Foundation.
IEEE Softw., 20(5), 2003.

[10] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and Mind

Series). The MIT Press, 2008.

[11] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy Goals for Requirements-Driven
Adaptation. In Proceedings of the 2010 18th IEEE International Requirements Engineering Conference,
RE ’10, pages 125–134, Washington, DC, USA, 2010. IEEE Computer Society.

[12] Jérémy Bascans, Jérémy Walczak, Jérôme Zeghoudi, Manzoor Ahmad, Jacob Geisel, and Jean M.
Bruel. COOL RELAX Editor, M2ICE Project, Université de Toulouse le Mirail, 2013.

109

Bibliography

[13] Benghazi, Kawtar and Visitación Hurtado, María and Rodríguez, María Luisa and Noguera,
Manuel. Applying Formal Verification Techniques to Ambient Assisted Living Systems. In
OnTheMove Workshop (OTM ’09). Springer-Verlag Berlin Heidelberg 2009, 2009.

[14] Daniel M. Berry, Betty H. C. Cheng, and Ji Zhang. The Four Levels of Requirements Engineer-
ing for and in Dynamic Adaptive Systems. In In 11th International Workshop on Requirements

Engineering Foundation for Software Quality (REFSQ, 2005.

[15] Gordon S. Blair, Nelly Bencomo, and Robert B. France. Models@ Run.Time. Computer, 42(10):22–
27, 2009.

[16] Sebastien Bornot and Joseph Sifakis. An Algebraic Framework for Urgency. In Information and

Computation (IC ’00). Elsevier, 2000.

[17] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The IF Toolset. In
Formal Methods for the Design of Real-Time Systems (FMDRTS ’04). Springer Berlin/Heidelberg,
2004.

[18] Jean Bézivin. On the Unification Power of Models. Software Systems Modeling, 4(2), 2005.

[19] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the OMG/MDA Framework. In
Proceedings. 16th Annual International Conference on Automated Software Engineering, 2001. (ASE

2001)., 2001.

[20] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. A Goal-Based Modeling
Approach to Develop Requirements of an Adaptive System with Environmental Uncertainty. In
Proceedings of the 12th International Conference on Model Driven Engineering Languages and Systems

(MODELS’09), Berlin, Heidelberg, 2009. Springer-Verlag.

[21] Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Ander-
sson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo,
Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor
Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A.
Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon
Whittle. Software Engineering for Self-Adaptive Systems. chapter Software Engineering for
Self-Adaptive Systems: A Research Roadmap, pages 1–26. Springer-Verlag, Berlin, Heidelberg,
2009.

[22] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-Functional Requirements in

Software Engineering. Springer, 1st edition, 1999.

[23] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, London,
1999.

[24] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model Checking and
the State Explosion Problem. In Bertrand Meyer and Martin Nordio, editors, Tools for Practical

Software Verification, volume 7682 of Lecture Notes in Computer Science, pages 1–30. Springer Berlin
Heidelberg, 2012.

[25] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. Automated Classification
of Non-Functional Requirements. Requir. Eng., 12(2):103–120, May 2007.

[26] J. P. Courtiat, C. A. S. Santos, C. Lohr, and B. Outtaj. Experience with RT-LOTOS, a Temporal
Extension of the LOTOS Formal Description Technique. Comput. Commun., 23(12), 2000.

110

Bibliography

[27] Anne Dardenne, Axel V. Lamsweerde, and Stephen Fickas. Goal-directed Requirements Acquisi-
tion. In SCIENCE OF COMPUTER PROGRAMMING, 1993.

[28] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson, Luciano
Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron Desmarais, Schahram
Dustdar, Gregor Engels, Kurt Geihs, Karl M. Goeschka, Alessandra Gorla, Vincenzo Grassi,
Paola Inverardi, Gabor Karsai, Jeff Kramer, Marin Litoiu, Antonia Lopes, Jeff Magee, Sam
Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè,
Christian Prehofer, Wilhelm Schäfer, Rick Schlichting, Bradley Schmerl, Dennis B. Smith, João P.
Sousa, Gabriel Tamura, Ladan Tahvildari, Norha M. Villegas, Thomas Vogel, Danny Weyns,
Kenny Wong, and Jochen Wuttke. Software engineering for self-adaptive systems: A second
research roadmap.

[29] Ana Dias, Vasco Amaral, and João Araújo. Towards a Domain Specific Language for a Goal-
Oriented approach based on KAOS. In RCIS, pages 409–420, 2009.

[30] Iulia Dragomir, Iulian Ober, and David Lesens. A Case Study in Formal System Engineering
with SysML. In 17th International Conference on Engineering of Complex Computer Systems (ICECCS

’12). IEEE, 2012.

[31] Marvin M Early. Relating Software Requirements to Software Design. SIGSOFT Softw. Eng.

Notes, 11(3):37–39, July 1986.

[32] Martin Fowler. Domain-Specific Languages. Addison-Wesley Professional, 1 edition, 2010.

[33] Robert France and Bernhard Rumpe. Model-driven Development of Complex Software: A
Research Roadmap. In 2007 Future of Software Engineering, FOSE ’07, pages 37–54, Washington,
DC, USA, 2007. IEEE Computer Society.

[34] Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. Self-healing Systems
- Survey and Synthesis. Decis. Support Syst., 42(4):2164–2185, January 2007.

[35] Martin Glinz. On Non-Functional Requirements. In 15th IEEE International Requirements Engi-

neering Conference, RE ’07. IEEE, 2007.

[36] Christophe Gnaho and Farida Semmak. Une Extension SysML pour l’ingénierie des Exigences
Non-Fonctionnelles Orientée But. In Ingénierie des Systèmes d’Information. Lavoisier Paris FRANCE,
2010.

[37] HeatherJ. Goldsby, Pete Sawyer, Nelly Bencomo, Betty H.C. Cheng, and Danny Hughes. Goal-
Based Modeling of Dynamically Adaptive System Requirements. In Proceedings of the 15th Annual

IEEE International Conference and Workshop on the Engineering of Computer Based Systems, ECBS ’08,
Washington, DC, USA, 2008. IEEE Computer Society.

[38] Jeff Gray, Kathleen Fisher, Charles Consel, Gabor Karsai, Marjan Mernik, and Juha-Pekka
Tolvanen. DSLs: The Good, The Bad, and The Ugly. In Companion to the 23rd ACM SIGPLAN

conference on Object-oriented programming systems languages and applications, OOPSLA Companion
’08, pages 791–794, New York, NY, USA, 2008. ACM.

[39] The Standish Group. Chaos report 1995. Technical report, The Standish Group, 1995.

[40] The Standish Group. Chaos report 2009. Technical report, The Standish Group, 2009.

[41] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based Programming Using LSC’s and the

Play-Engine. Springer-Verlag New York, Inc., 2003.

111

Bibliography

[42] Seong ick Moon, K.H. Lee, and Doheon Lee. Fuzzy branching temporal logic. In IEEE Transactions

on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004.

[43] IEEE. IEEE Standard Glossary of Software Engineering Terminology 610.12-1990. IEEE Press, 1999.

[44] Eclipse Indigo. ATL Guide.

[45] Michael Jackson. Problem frames: Analyzing and Structuring Software Development Problems.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[46] Matthias Jarke, X. Tung Bui, and John M. Carroll. Scenario Management: An Interdisciplinary
Approach, 1999.

[47] Haruhiko Kaiya, Hisayuki Horai, and Motoshi Saeki. AGORA: Attributed Goal-Oriented
Requirements Analysis Method. In RE. IEEE Computer Society, 2002.

[48] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. Computer, 36(1),
2003.

[49] Jörg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz. Crisis Management Systems: A Case Study for
Aspect-Oriented Modeling. In Transactions on Aspect-Oriented Software Development VII, volume
6210 of Lecture Notes in Computer Science, pages 1–22. Springer Berlin Heidelberg, 2010.

[50] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Architecture:

Practice and Promise. Addison-Wesley Professional, 1st edition edition, 2003.

[51] Toma Kosar, Pablo E. Martinez López, Pablo A. Barrientos, and Marjan Mernik. A preliminary
Study on Various Implementation Approaches of Domain-Specific Language. Inf. Softw. Technol.,
50(5):390–405, 2008.

[52] Thomas Kühne. What is a Model? In Jean Bezivin and Reiko Heckel, editors, Language

Engineering for Model-Driven Software Development, Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2005. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany.

[53] Régine Laleau, Farida Semmak, Abderrahman Matoussi, Dorian Petit, Ahmed Hammad, and
Bruno Tatibouet. A First Attempt to Combine SysML Requirements Diagrams and B. Innovations

in Systems and Software Engineering, 6, 2010.

[54] Axel V. Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In Proceedings

of the Fifth IEEE International Symposium on Requirements Engineering. IEEE Computer Society,
2001.

[55] Axel V. Lamsweerde. Requirements Engineering: From System Goals to UML Models to Software

Specifications. Wiley, 1st edition edition, 2009.

[56] Axel V. Lamsweerde and Emmanuel Letier. From Object Orientation to Goal Orientation: A
Paradigm Shift for Requirements Engineering. In Radical Innovations of Software and System

Engineering, Montery’02 Workshop, Venice(Italy). Springer-Verlag, 2003.

[57] Robin Laney, Leonor Barroca, Michael Jackson, and Bashar Nuseibeh. Composing Requirements
Using Problem Frames. In Proceedings of the Requirements Engineering Conference, 12th IEEE

International, RE ’04, pages 122–131, Washington, DC, USA, 2004. IEEE Computer Society.

112

Bibliography

[58] Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and Yijun Yu. Towards Requirements-
Driven Autonomic Systems Design. In Proceedings of the 2005 workshop on Design and evolution of

autonomic application software, DEAS ’05, pages 1–7, New York, NY, USA, 2005. ACM.

[59] Alexei Lapouchnian, Yijun Yu, Sotirios Liaskos, and John Mylopoulos. Requirements-Driven
Design of Autonomic Application Software. In Proceedings of the 2006 conference of the Center for

Advanced Studies on Collaborative research, CASCON ’06, Riverton, NJ, USA, 2006. IBM Corp.

[60] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. International Journal on

Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[61] Tomaž Lukman and Marjan Mernik. Model-Driven Engineering and its Introduction with
Metamodeling Tools. In 9th International PhD Workshop on Systems and Control: Young Generation

Viewpoint Izola, Slovenia, 2008.

[62] Robyn R. Lutz. Targeting Safety-Related Errors during Software Requirements Analysis. J. Syst.

Softw., 34(3), 1996.

[63] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Electron. Notes Theor.

Comput. Sci., 152, 2006.

[64] Ahmed Yakout A. Mohamed, Abdel Fatah A. Hegazy, and Ahmed R. Dawood. Aspect Oriented
Requirements Engineering. Computer and Information Science, 3(4):135–154, 2010.

[65] Rui Monteiro, João Araújo, Vasco Amaral, Miguel Goulão, and Pedro Miguel Beja Patrício.
Model-Driven Development for Requirements Engineering: The Case of Goal-Oriented Ap-
proaches. In Ricardo Machado João Pascoal Faria, Alberto Silva, editor, 8th International Conference

on the Quality of Information and Communications Technology (QUATIC 2012), number 8 in Quality
of Information and Communications Technology, pages 75–84. IEEE Computer Society, 09 2012.

[66] Pierre A. Muller, Frédéric Fondement, and Benoit Baudry. Modeling Modeling. In Andy Schürr
and Bran Selic, editors, Model Driven Engineering Languages and Systems, volume 5795 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2009.

[67] Peter Naur and Brian Randell. Software Engineering Report, 1968.

[68] Jürgen Nehmer, Martin Becker, Arthur Karshmer, and Rosemarie Lamm. Living Assistance
Systems: an Ambient Intelligence Approach. In Proceedings of the 28th international conference on

Software engineering (ICSE ’06). ACM, 2006.

[69] Carlos Nunes, João Araújo, Vasco Amaral, and Carla T. L. L. Silva. A Domain Specific Language
for the i* Framework. In ICEIS (1), pages 158–163, 2009.

[70] Bashar Nuseibeh and Steve Easterbrook. Requirements Engineering: A Roadmap. In In

Proceedings of the Conference on The Future of Software Engineering (ICSE’00). ACM Press, 2000.

[71] Iulian Ober and Iulia Dragomir. OMEGA2: A New Version of the Profile and the Tools. In 15th

International Conference on Engineering of Complex Computer Systems (ICECCS ’10). IEEE, 2010.

[72] Iulian Ober and Iulia Dragomir. Unambiguous UML Composite Structures: The OMEGA2
Experience. In Theory and Practice of Computer Science (SOFSEM ’11), volume 6543, pages 418–430.
Springer, 2011.

[73] Iulian Ober, Susanne Graf, and Ileana Ober. Validating Timed UML Models by Simulation and
Verification. In International Journal on Software Tools for Technology Transfer (STTT ’06). Springer,
Volume 8, Issue 2, pp 128-145, 2006.

113

Bibliography

[74] Liliana Pasquale. A Goal-Oriented Methodology for Self-Supervised Service Compositions. PhD thesis,
Politecnico di Milano, Milan, Italy, 2011.

[75] Andres J. Ramirez and Betty H. C. Cheng. Automatic Derivation of Utility Functions for
Monitoring Software Requirements. In Proceedings of the 14th international conference on Model

driven engineering languages and systems, MODELS’11, pages 501–516, Berlin, Heidelberg, 2011.
Springer-Verlag.

[76] Andres J. Ramirez, Betty H. C. Cheng, Nelly Bencomo, and Pete Sawyer. Relaxing Claims:
Coping with Uncertainty While Evaluating Assumptions at Run Time. In RobertB. France,
Jürgen Kazmeier, Ruth Breu, and Colin Atkinson, editors, Model Driven Engineering Languages

and Systems, volume 7590 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012.

[77] Andres J. Ramirez, Erik M. Fredericks, Adam C. Jensen, and Betty H. C. Cheng. Automatically
RELAXing a Goal Model to Cope with Uncertainty. In Proceedings of the 4th international

conference on Search Based Software Engineering, SSBSE’12, pages 198–212, Berlin, Heidelberg, 2012.
Springer-Verlag.

[78] Awais Rashid and Ruzanna Chitchyan. Aspect-oriented Requirements Engineering: A Roadmap.
In Proceedings of the 13th international workshop on Early Aspects. ACM, 2008.

[79] Colette Rolland, Carine Souveyet, and Camille B. Achour. Guiding goal modelling using
scenarios. In IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, volume 24. IEEE, 1998.

[80] Vítor E. S. Souza, Alexei Lapouchnian, William N. Robinson, and John Mylopoulos. Awareness
Requirements for Adaptive Systems. In Proceedings of the 6th International Symposium on Software

Engineering for Adaptive and Self- Managing Systems, SEAMS ’11, pages 60–69, New York, NY,
USA, 2011. ACM.

[81] Mohammed Salifu, Yijun Yu, and Bashar Nuseibeh. Specifying Monitoring and Switching
Problems in Context. In Requirements Engineering Conference, 2007. RE ’07. 15th IEEE International,
pages 211–220, 2007.

[82] Ed Seidewitz. What Models Mean. Software, IEEE, 20(5), 2003.

[83] Bran Selic. The Pragmatics of Model-Driven Development. IEEE Softw., 20(5):19–25, September
2003.

[84] Bran Selic and Jim Rumbaugh. Using UML for Modeling Complex Real-Time Systems, 1998.

[85] Eric P. Kasten Seyed M. Sadjadi, Philip K. McKinley. Architecture and Operation of an Adaptable
Communication Substrate. In Proceedings. The Ninth IEEE Workshop on Future Trends of Distributed

Computing Systems FTDCS’03, 2003.

[86] Ian Sommerville. Software Engineering. Addison-Wesley, 9th edition edition, 2010.

[87] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Practice Guide. Wiley, 1st
edition edition, 1997.

[88] Alistair Sutcliffe. Scenario-based Requirements Engineering. In 11th IEEE International Require-

ments Engineering Conference, 2003. IEEE, 2003.

[89] Gerald Tesauro and Jeffrey O. Kephart. Utility Functions in Autonomic Systems. In Proceedings

of the First International Conference on Autonomic Computing, ICAC ’04, pages 70–77, Washington,
DC, USA, 2004. IEEE Computer Society.

114

Bibliography

[90] Arie V. Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages: an Annotated
Bibliography. SIGPLAN Not., 35:26–36, 2000.

[91] Verimag and Irit. OMEGA2-IFx for UML/SysML v2.0, Profile and Toolset, User Manual Document

v1.1, 2011.

[92] Kristopher Welsh and Pete Sawyer. Requirements Tracing to Support Change in Dynamically
Adaptive Systems. In Proceedings of the 15th International Working Conference on Requirements

Engineering: Foundation for Software Quality, REFSQ ’09, pages 59–73, Berlin, Heidelberg, 2009.
Springer-Verlag.

[93] Kristopher Welsh and Pete Sawyer. Understanding the Scope of Uncertainty in Dynamically
Adaptive Systems. In Requirements Engineering: Foundation for Software Quality. Springer Berlin
Heidelberg, 2010.

[94] Kristopher Welsh, Pete Sawyer, and Nelly Bencomo. Towards Requirements Aware Systems:
Run-Time Resolution of Design-Time Assumptions. In Proceedings of the 2011 26th IEEE/ACM

International Conference on Automated Software Engineering. IEEE Computer Society, 2011.

[95] Jon Whittle, Pete Sawyer, Nelly Bencomo, and Betty H. C. Cheng. A Language for Self-Adaptive
System Requirements. In International Workshop on Service-Oriented Computing: Consequences for

Engineering Requirements, 2008. SOCCER ’08., 2008.

[96] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean M. Bruel. RELAX:
Incorporating Uncertainty into the Specification of Self-Adaptive Systems. In Proceedings of

the 2009 17th IEEE International Requirements Engineering Conference, RE, RE ’09, pages 79–88,
Washington, DC, USA, 2009. IEEE Computer Society.

[97] Tjerk Wolterink. The Future of Software Engineering: Model Driven Engineering, 2010.

[98] Eric S. K. Yu. Towards Modeling and Reasoning Support for Early-Phase Requirements Engi-
neering. In Proceedings of the 3rd IEEE International Symposium on Requirements Engineering. IEEE
Computer Society, 1997.

[99] Yijun Yu, Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and Julio C. S. P. Leite. From
Goals to High-Variability Software Design. In Proceedings of the 17th international conference on

Foundations of intelligent systems, ISMIS’08, pages 1–16, Berlin, Heidelberg, 2008. Springer-Verlag.

[100] Yijun Yu, Julio C.S.P. Leite, and John Mylopoulos. From Goals to Aspects: Discovering Aspects
from Requirements Goal Models. In Proceedings of the Requirements Engineering Conference, 12th

IEEE International, RE ’04, pages 38–47, Washington, DC, USA, 2004. IEEE Computer Society.

[101] K Yue. What Does It Mean to Say that a Specification is Complete? In International Workshop on

Software Specification and Design (IWSSD’87), 1987.

[102] Lofti Zadeh. Fuzzy Sets. Information and Control, 8(3):338–353, 1965.

[103] Ji Zhang and Betty H. C. Cheng. Model-based Development of Dynamically Adaptive Software.
In Proceedings of the 28th international conference on Software engineering (ICSE’08). ACM, 2006.

115

Acronyms

AGORA Attributed Goal-Oriented Requirements Analysis Method

AAL Ambient Assisted Living

AHRI Aware Home Research Initiative

AMN Abstract Machine Notation

AORE Aspect Oriented Requirements Engineering

ATL Atlas Transformation Language

AwReqs Awareness Requirements

BDD Block Definition Diagram

DSL Domain Specific Languages

DSLs Domain Specific Languages

DAS Dynamic Adaptive Systems

DSL Domain Specific Language

FLAGS Fuzzy Live Adaptive Goals for Self-Adaptive Systems

bCMS barbados Car Crash Crisis Management System

FSC Fire Station Coordinator

FBTL Fuzzy Branching Temporal Logic

FRs Functional Requirements

FR Functional Requirements

FGs Functional Goals

FG Functional Goal

GBRAM Goal Based Requirements Analysis Method

GORE Goal Oriented Requirements Engineering

GUI Graphical User Interface

GMF Graphical Modeling Framework

IBD Internal Block Diagram

IDE Integrated Development Environment

117

Acronyms

KAOS Knowledge Acquistion in autOmated Specification

LoREM Levels of Requirement Engineering for Modeling

LSC Live sequence charts

LSCs Live Sequence Charts

LTL Linear Temporal logic

MAPE Monitor-Analyze-Plan-Execute

MDD Model Driven Development

MDE Model Driven Engineering

MDA Model Driven Architecture

MOF Meta Object Facility

UML Unified Modeling Language

NFGs Non Functional Goals

NFG Non Functional Goal

NFRs Non Functional Requirements

NFR Non Functional Requirement

OCL Object Constrained Language

OMG Object Management Group

PIM Platform Independent Models

PSC Police Station Coordinator

QVT Query View Transformation

RTLOTOS Real Time Language Of Temporal Ordering Specifications

REAssuRE REcording of Assumtions in RE

RE Requirements Engineering

RC Requirement Chunk

SysML System Modeling Language

SE Software Engineering

SAS Self Adaptive Systems

SMD State Machine Diagram

SD Strategic Dependency

SR Strategic Rationale

TCTL Timed Computation Tree Logic

TURTLE Timed UML and RT-LOTOS Environment

XML Extensible Markup Language

XMI XML Metadata Interchange

118

Thesis Author

Modeling and Verification of Functional and Non Functional

Requirements of Ambient, Self Adaptive Systems

Thesis Supervisors:
Jean-Michel BRUEL — Professor, University of Toulouse, France
Nicolas BELLOIR — Maître de Conférences, UPPA Pau, France

PhD defended october 07, 2013 at IUT de Blagnac

Abstract

The overall contribution of this thesis is to propose an integrated approach for modeling
and verifying the requirements of Self Adaptive Systems using Model Driven Engineering
techniques. Model Driven Engineering is primarily concerned with reducing the gap between
problem and software implementation domains through the use of technologies that support
systematic transformation of problem level abstractions to software implementations. By using
these techniques, we have bridged this gap through the use of models that describe complex
systems at multiple levels of abstraction and through automated support for transforming
and analyzing these models. We take requirements as input and divide it into Functional and
Non Functional Requirements. We then use a process to identify those requirements that are
adaptable and those that cannot be changed. We then introduce the concepts of Goal Oriented
Requirements Engineering for modeling the requirements of Self Adaptive Systems, where
Non Functional Requirements are expressed in the form of goals which is much more rich and
complete in defining relations between requirements. We have identified some problems in
the conventional methods of requirements modeling and properties verification using existing
techniques, which do not take into account the adaptability features associated with Self
Adaptive Systems. Our proposed approach takes into account these adaptable requirements
and we provide various tools and processes that we developed for the requirements modeling
and verification of Self Adaptive Systems. We validate our proposed approach by applying it
on two different case studies in the domain of Self Adaptive Systems.

Keywords: Software Engineering, Requirements Engineering, Model Driven Engineering,
Self Adaptive Systems, Ambient Systems, RELAX, RELAX-ed Requirements, Non Functional
Requirements Modeling, Properties Verification.

Discipline: Informatique

Institut de Recherche en Informatique de Toulouse — UMR 5505

Université de Toulouse Le Mirail, 5 Allée Antonio Machado 31100 Toulouse, France

Thesis Author

Modélisation et Vérification des Exigences Fonctionnelles et Non

Fonctionnelles des Systèmes Ambiants, Auto-Adaptatifs

Directeurs de thèse :
Jean-Michel BRUEL — Professeur, Université de Toulouse, France

Nicolas BELLOIR — Maître de Conférences, UPPA Pau, France
Thèse soutenue le 07 octobre, 2013 à l’IUT de Blagnac

Résumé

Le contexte de ce travail de recherche se situe dans le domaine de Génie Logiciel, et plus
spécifiquement vise les systèmes auto-adaptatifs. Le travail de recherche vise les tous premiers
stades du cycle de vie du développement logiciel : la phase de spécification des exigences.
Nous nous concentrons sur la définition et la modélisation des exigences ainsi que de leur
vérification. La contribution globale de cette thèse est de proposer une approche intégrée pour
la modélisation et la vérification des exigences des SAS à l’aide de techniques d’ingénierie
des modèles. Nous prenons les exigences en entrée de notre processus et les divisons en
exigences fonctionnelles et non fonctionnelles. Ensuite, nous appliquons un processus pour
identifier les exigences qui sont adaptables et celles qui sont invariantes. Les progrès récents
dans les techniques basées sur les buts en Ingénierie des Exigences nous ont poussé à intégrer
ces techniques dans notre approche. En (Goal Oriented Requirements Engineering, GORE),
les exigences non fonctionnelles sont exprimées sous la forme de buts, ce qui est beaucoup
plus riche et complet dans la définition des relations entre les exigences. Ici, les exigences
invariantes sont capturées par le concept de buts fonctionnels et les exigences adaptables sont
capturées par le concept des buts non fonctionnels. Nous avons identifié quelques problèmes
dans les méthodes classiques de modélisation des exigences et la vérification des propriétés.
Ces approches ne tiennent pas compte les caractéristiques d’adaptabilité associées avec les
systèmes auto-adaptatifs. Afin de valider notre approche, nous avons modélisé les exigences
de deux études de cas et vérifié les exigences d’un étude de cas.

Mots-clés : Génie Logiciel, Ingénierie des Exigences, Ingénierie de Modèles, Transforma-
tion de Modèles, Systèmes Auto-Adaptatifs, Systèmes Ambiant, RELAX, Exigences Non
Fonctionnelles, Vérification des Propriétés.

Discipline: Informatique

Institut de Recherche en Informatique de Toulouse — UMR 5505

Université de Toulouse Le Mirail, 5 Allée Antonio Machado 31100 Toulouse, France

	Acknowledgement
	Contents
	List of Figures
	Introduction
	Problem Statement
	Objectives of the Thesis
	Structure of the Thesis

	I Context
	Self Adaptive Systems
	What are Self Adaptive Systems?
	How Self Adaptive Systems Differs from other Systems?
	Self Adaptive Systems Examples
	From Requirements Discovery to Adaptation Choices of Self Adaptive Systems
	Conclusion

	Software Engineering
	Software Engineering
	What is Software Engineering
	Origin of Software Engineering
	Activities of Software Engineering

	Model Driven Engineering
	General Principles of Model Driven Engineering
	Why Model Driven Engineering for Self Adaptive Systems?

	Requirements Engineering
	The Importance of Requirements Engineering
	Definition of Requirement
	Functional Requirements v/s Non Functional Requirements
	Activities of Requirements Engineering

	Approaches of Requirements Engineering
	Scenario Based Requirements Engineering
	Aspect Oriented Requirement Engineering
	Problem Frame Requirements Engineering
	Goal Oriented Requirement Engineering
	Discussion

	Conclusion

	Requirements Engineering & Properties Verification of Self Adaptive Systems
	Requirements Engineering for Self Adaptive Systems
	Levels of Requirement Engineering for Modeling
	REcording of Assumptions in RE
	Awareness Requirements
	RELAX augmented with CLAIMS
	AutoRELAX
	Fuzzy Live Adaptive Goals for Self-Adaptive Systems
	Discussion

	Properties Verification of Self Adaptive Systems
	MEDISTAM-RT
	Timed UML and RT-LOTOS Environment
	UPPAAL
	SysML with B Specifications
	The OMEGA2 UML/SysML Profile
	IFx Toolset
	Discussion

	Conclusion

	Basic Elements
	RELAX
	RELAX Vocabulary
	RELAX-ed v/s Invariant Requirements
	RELAX Operators
	RELAX Grammar
	RELAX Process
	Discussion

	SysML/KAOS
	SysML
	KAOS
	Why SysML/KAOS?
	SysML/KAOS Meta Model
	Discussion

	The OMEGA2 UML/SysML Profile and IFx Toolset
	The OMEGA2 Profile
	IFx Toolset

	Conclusion

	II Contribution
	Proposed Approach
	Overall View of our Proposed Approach
	Problem 1
	Problem 2
	Problem 3

	The Proposed Approach
	The Solutions
	Solution 1
	Solution 2
	RELAX Improvements

	Integration of the Approaches
	Relatonship b/w RELAX, SysML/KAOS and SysML
	Uncertainty Factors/Impacts
	Verification of Ambient System's Properties through Formal Methods
	Discussion

	Tools Support
	DSL for RELAX
	RELAX Editor
	RELAX to SysML/Kaos Transformation

	Conclusion

	Experimentation And Analysis
	Requirements Modeling of the AAL Case Study
	The AAL Case Study
	Discussion

	Properties Verification of the AAL system with OMEGA2/IFx Profile and Toolset
	Modeling the AAL system with OMEGA2 Profile
	Properties Verification of the AAL system

	Requirements Modeling of the bCMS Case Study
	The bCMS Case Study
	High Level Goal Model
	Low Level Goal Model
	Discussion

	Assessment
	Conclusion

	Conclusion & Perspectives
	Problem Recall
	Our Contribution
	Perspectives
	Perspective for Requirements Modeling of Self Adaptive Systems
	Perspectives for Properties Verification of Self Adaptive Systems
	Perspective for the Empirical Studies

	Author's Bibliography
	International Conferences
	National Conferences
	Workshops

	Bibliography
	Acronyms

