N
N

N

HAL

open science

Progressive and Random Accessible Mesh Compression

Adrien, Enam Maglo

» To cite this version:

Adrien, Enam Maglo. Progressive and Random Accessible Mesh Compression. Other. Ecole Centrale

Paris, 2013. English. NNT: 2013ECAP0043 .

tel-00966180

HAL Id: tel-00966180
https://theses.hal.science/tel-00966180
Submitted on 26 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00966180
https://hal.archives-ouvertes.fr

— ECOLE CENTRALE DES ARTS

ET MANUFACTURES
i "ECOLE CENTRALE PARIS" a
CENTRALE
P A R | S

PHD THESIS

in candidacy for the degree of

Doctor of Ecole Centrale Paris
Specialty : COMPUTER SCIENCE

Defended by
Adrien MAGLO

Progressive and Random Accessible
Mesh Compression

prepared at Ecole Centrale Paris, MAS Laboratory

Jury :

Chairman: Pr. Mohamed Daoudi LIFL, Institut Mines-Télcom, Télécom Lillel, France
Reviewers: Dr. Marc Antonini Laboratoire 13S, Sophia-Antipolis, France

Dr. Raphaélle Chaine LIRIS, CNRS, Université Lyon 1, France
Ezxaminers: Pr. Florent Dupont LIRIS, CNRS, Université Lyon 1, France

Dr. Frank Ledoux CEA, DAM, DIF, France
Invited member: Dr. Pierre Alliez INRTIA Sophia-Antipolis - Méditerranée, France
Advisors: Dr. Céline Hudelot Laboratoire MAS, Ecole Centrale Paris, France

Dr. Tan Grimstead Cardiff School of Computer Science & Informatics,

Cardiff University, United Kingdom
Pr. Marc Aiguier Laboratoire MAS, Ecole Centrale Paris, France

© Copyright by Adrien Maglo, 2013.
All rights reserved.

Abstract

3D virtual models are today of common usage in various domains such as computational simulation, medical
imaging, computer-aided design, entertainment, digital heritage and e-commerce. One way to represent
3D virtual object is to use meshes. A surface (or volume) mesh is a collection of adjacent elementary
polygons (or cells) that together constitute a piecewise approximation of a represented surface (or volume).
This representation is today ubiquitous. Specific chips dedicated to the efficient rendering of images with
such representations are today integrated into many devices, from the smartphone to the high performance
computer cluster.

In all the application domains that use meshes, the need for precision has never ceased to rise, thus leading
to the generation of very large models. For instance today, numerical simulations can use meshes that contain
several billions of cells. The storage of large models consumes a lot of disk space and their transmission over
the network can take a lot of time in limited bandwidth conditions. Besides, the visualization and more
generally the processing of large meshes are also problematic because they consume a lot of computation time
and memory. Accessing to large meshes on a device with low resource need some 3D adaptation strategies.

The thesis presented in this manuscript is that 3D mesh compression is an efficient method for 3D data
adaptation. The first aim of 3D mesh compression is to reduce the size of an input model. As a consequence
the data can better fit storage and network constraints. Single-rate algorithms simply restore during the
decompression the initial mesh. However, alternative types of algorithms enable the decompression of several
versions of the input mesh depending on the decoded parts of the compressed data. Thus, progressive com-
pression techniques embed a multiresolution structure inside the compressed data. During the decompression,
a coarse version of the input mesh is progressively refined as more data is decompressed. Random-accessible
techniques allow to decompress only requested parts of the mesh. Finally progressive random accessible
techniques allow to decompress any part of the mesh at any level of detail. With these different types of
algorithms, mesh compression can adapt 3D mesh data to save bandwidth, memory, computation time and
increase the user interactivity.

Previous work on progressive mesh compression focused on triangle meshes but meshes containing other
types of faces are commonly used. Therefore, we first propose a new progressive mesh compression method
that can efficiently compress meshes with arbitrary face degrees. Its compression performance is competitive
with approaches dedicated to progressive triangle mesh compression.

Progressive mesh compression is linked to mesh decimation because both applications generate levels of
detail. Consequently, we propose a new simple volume metric to drive the polygon mesh decimation. We
apply this metric to the progressive compression and the simplification of polygon meshes.

We then show that the features offered by progressive mesh compression algorithms can be exploited for
3D adaptation by the proposition of a new framework for remote scientific visualization.

Progressive random accessible mesh compression schemes can better adapt 3D mesh data to the various
constraints by taking into account regions of interest. So, we propose two new progressive random-accessible
algorithms. The first one is based on the initial segmentation of the input model. Each generated cluster is
compressed independently with a progressive algorithm. The second one is based on the hierarchical grouping
of vertices obtained by the decimation. The advantage of this second method is that it offers a high random
accessibility granularity and generates one-piece decompressed meshes with smooth transitions between
parts decompressed at low and high levels of detail. Experimental results demonstrate the compression and
adaptation efficiency of both approaches.

iii

Résumé

Les modeéles 3D virtuels sont aujourd’hui couramment utilisés dans de nombreux domaines d’application
tels que la simulation numérique, I'imagerie médicale, la conception assistée par ordinateur, I'industrie du
divertissement, la sauvegarde numérique du patrimoine ainsi que le commerce électronique. Les maillages
sont souvent utilisés pour représenter des objets 3D virtuels. Un maillage surfacique (ou volumique) est un
ensemble de polygones (ou de cellules) élémentaires adjacents qui, ensemble, constituent une approximation
par partie de la surface (ou du volume) représentée. Les maillages sont aujourd’hui omniprésents dans
toutes les applications qui nécessitent le rendu d’objets 3D. Des composants électroniques dédiés au rendu
d’images a partir de maillages sont intégrés dans de nombreux terminaux, de 'ordiphone au calculateur
haute performance.

Dans tout les domaines d’applications qui utilisent des maillages, les besoins de précision ne cessent
d’augmenter. Cela engendre la génération de modéles de plus en plus importants. Par exemple aujourd’hui,
des applications de simulation numérique peuvent utiliser des maillages qui contiennent plusieurs milliards
de mailles. Or le stockage de gros modéles consomme beaucoup d’espace disque. Leur transmission sur un
réseau a faible bande passante peut prendre beaucoup de temps. De plus, la visualisation interactive et plus
généralement le traitement de maillages de grande taille sont problématiques car ils requiérent beaucoup
de temps de calcul et de mémoire. Des stratégies d’adaptation 3D sont donc nécessaires pour accéder a un
important maillage & partir d’un périphérique a faible ressources.

La thése présentée dans ce manuscrit voit la compression de maillages comme une méthode efficace pour
I’adaptation des données 3D. Le premier but de la compression de maillages est en effet de réduire la taille
des données du modeéle d’entrée. Les données peuvent ainsi étre stockées et transmises plus aisément. Les al-
gorithmes de compression & simple taux restaurent uniquement, au moment, de la décompression, le maillage
initial. Cependant d’autres types d’algorithmes permettent de décompresser plusieurs versions du maillage
initial en fonction de la partie des données qui est décodée.

Ainsi, les algorithmes de compression progressive embarquent dans les données compressées une structure
de donnée multirésolution. Durant la décompression, une version grossiére du maillage initial est progres-
sivement raffinée au fur et & mesure que des données supplémentaires sont décompressées.

Les techniques de compression avec accés aléatoire permettent de décompresser juste les parties du maillage
requises par l'utilisateur.

Enfin, les techniques de compression progressive avec accés aléatoire permettent de décompresser différentes
parties du maillage & différents niveaux de détail.

La compression de maillages permet donc, grace a ces différents types d’algorithmes, d’adapter les mail-
lages 3D pour économiser de la bande passante, de la mémoire et du temps de calcul. Elle permet aussi
d’augmenter la capacité de 1'utilisateur d’interagir avec les données.

Les travaux de I’état de I’art en compression progressive de maillages se sont concentrés sur les maillages
triangulaires. Mais les maillages contenant d’autres types de faces sont aussi couramment utilisés. Par
conséquent, nous proposons en premier lieu une nouvelle méthode de compression progressive qui peut effi-
cacement encoder des maillages avec des faces de degrés arbitraires. Ce nouvel algorithme atteint un niveau
de performance comparable aux algorithmes progressifs dédiés a la compression de maillages triangulaires.

La compression progressive est liée a la décimation de maillages car ces deux applications générent des
niveaux de détail. Par conséquent, nous proposons une nouvelle métrique volumique simple pour guider
la décimation de maillages polygonaux. Nous appliquons cette métrique & la compression progressive et la
simplification de maillages polygonaux.

Nous montrons ensuite que les possibilités offertes par les algorithmes de compression progressive peuvent
étre exploitées pour adapter les données 3D en proposant un nouveau cadre applicatif pour la visualisation
scientifique distante.

Les algorithmes de compression progressive avec accés aléatoire peuvent mieux adapter les données 3D aux
différentes contraintes en prenant en compte les régions d’intérét de I'utilisateur. Nous proposons donc deux
nouveaux algorithmes progressifs avec accés aléatoire. Le premier algorithme est basé sur une segmentation
préliminaire du maillage d’entrée. Chaque grappe est ensuite compressée de maniére indépendante par
un algorithme de compression progressif. Le second algorithme est basé sur le groupement hiérarchique des

iv

sommets obtenu par la décimation. L’avantage de cette seconde méthode est qu’elle offre une forte granularité
d’accés aléatoire et génére des maillages décompressés en une piéce avec des transitions lisses entre les parties
décompressées a un faible et un haut niveau de détail. Des résultats expérimentaux démontrent D'efficacité
des deux approches en terme de compression et d’adaptation.

Acknowledgements

There are of course many people I should thank for having made possible this work. I will try here to not
forget some of them.

The first person to thank is of course my advisor Céline Hudelot who trusted me to start this thesis. She
gave me a lot of autonomy, guided me excellent advises and introduced me to great people. Thus, I would
like also to thank Ian Grimstead for having offered me the opportunity to work at Cardiff university under
his supervision and Pierre Alliez for the very rich experience of co-authoring a paper with him. T am also
thankful to Marc Aiguier for accepting to co-direct my research and Pascale Le Gall for her advices.

The work described in this thesis was developed in the context of the ANR Collaviz project. It has been
a pleasure to collaborate with all its members, especially with the people of LIRIS laboratory in Lyon: Ho
Lee, Guillaume Lavoué, Florent Dupont and Cagatay Dikici.

I would like also to thank the other members of my PhD jury that I did not mention until here: Raphaélle
Chaine, Marc Antonini, Frank Ledoux and Mohamed Daoudi. I really appreciated their questions and
remarks to improve my work.

I thank also all my former colleagues and friends at the MAS laboratory of the Ecole Centrale Paris:
Konstantin Todorov for our talks and his wide culture, Clément Courbet for his strong views and having
shown me the way, Nicolas James for our geek discussions, Bilal Kanso for teaching me about Lebanon,
Adith Perez for teaching me about Columbia and latin america, Nesrine Ben Mustapha and Dong Bui for
our funny table football plays, Sofiane Karchoudi and Marc-Antoine Arnaud for their humor, Amel Znaidia
for her determination, Walid Hachicha for his good work, Emmanuelle Gallet for having remembered me
at the end of my thesis the motivation of the starting PhD student, Jose Pablo Escobedo for his friendly
company, Anthony Grisey for his good mood and last but not least Hichem Bannour for a lot of things... I
have also a thought about all the other members of the laboratory I have been mixed with, especially Annie
Gloméron, Sylvie Dervin for their always efficient logistical support and the director Frédéric Abergel for
maintaining a good working atmosphere inside the laboratory.

I would also like to thank all the people I met at the Cardiff School of Computer Science & Informatics
at Cardiff university: Yaser Alosefer for his limitless motivation and our rich discussions, Ioan Petri for his
sense of humor and Rafael Tolosana Calasanz, Ricardo J. Rodriguez, Raquel Plumed Ferrer, Jose Angel
Banares for bringing some Spanish sun in Cardiff and the great time spent together.

This acknowledgement section would not be complete without mentioning my family: my parents Patrice
and Patricia, my little sisters Léna and Célia. It was awesome to grow and evolve among them.

Of course completing this thesis would not have been possible without the unconditional support and
the patience of the cold pow marmot.

vi

To Cécile, Lucette, Marie-Josée and Théophile.

vii

viii

Contents

Abstract L iii
Résumeé o e iv
Acknowledgements L vi
List of Tables o o o e XV
List of Figures e xvii
Introduction 1

1 Preliminaries on meshes and compression 9
1.1 Introduction oL o e 9
1.2 Definition of amesh 9

1.2.1 Practical definitiono 9
1.2.2 Valence and regularity 11
1.2.3 Formal definition L e 12
1.2.4 Manifold property e e e e e 12
1.2.5 Euler characteristic e e 13
1.3 Storingamesh 14
1.3.1 Indexed data structure L Lo e e 15
1.3.2 Winged-edge data structure L o 15
1.3.3 Halfedge data structure L 16
1.4 Data compression o e e e e e e e e 16
1.4.1 Shannon entropy v o v v vt i e e e e e e e e e 17
1.4.2 Entropy encoding L e 18

2 State of the art on single-rate mesh compression 19
2.1 Introduction o . L e e e e 19
2.2 Connectivity compressiono e 20

2.2.1 Triangle strip encodingo 20
2.2.2 Spanning tree encoding of planar graphso Lo 21
2.2.3 Spanning tree encoding of mesheso 22
2.2.4 Triangle traversal encodingo Lo oL 23

ix

2.2.6 Compressing polygon meshes L L 28
2.2.7 Compressing volume meshes Lo 28
2.3 Geometry compression e e e e 29
2.3.1 Quantization e e 29
2.3.2 Prediction oL e e 30
2.3.3 Geometry-driven COMpPressiono v vi i e e e e e e e 33
2.3.4 Compressing floating-point positions oL Lo oo 33
2.4 Handling large meshes L 33
2.5 Compression and remeshing oL 34
2.6 Conclusion 34
State of the art on progressive mesh compression 37
3.1 Introductiono e e e e e e 37
3.2 Connectivity-preserving schemes L L e 38
3.2.1 Edge collapse and vertex split e 38
3.2.2 Vertexremovals. L 40
3.2.3 Geometry-driven progressive mesh compression 42
3.2.4 Wavelet for irregular meshes oL oL oL 43
3.2.5 Progressive compression through reconstruction 43
3.2.6 Geometry compression with the Laplacian operator 45
3.27 Polygonmeshes 45
3.2.8 Volume meshes L 46
3.2.9 Compression of attribute data L 46
3.3 Connectivity-oblivious schemes L 46
3.3.1 Wavelet for semi-regular meshes 46
3.3.2 Geometry image Lo e e e e 48
3.3.3 MeshGrid 48
3.4 Conclusion e e 48
Progressive compression of manifold polygon meshes 51
4.1 Introduction o . oL e e e 51
4.2 Basealgorithm 52
4.2 1 Compressiono e e 52
4.2.2 Decompression oo e e e e e e 59
4.3 Tmproving connectivity and geometry encoding 59
4.3.1 Predicting connectivity from geometry 59
4.3.2 Curvature prediction for geometry encoding 59
4.4 Improving the rate-distortion Lo 61

4.4.1 Wavelet formulation of the geometry compression

4.4.2 Adaptive quantization L L Lo e e e
4.5 Experimental results oL Lo
4.5.1 Progressive compression of polygon meshes
4.5.2 Progressive compression of triangle meshes o000 oL L
4.6 Conclusion

A simple volume metric for polygon mesh decimation

5.1 Introduction o L e e e e
5.2 Polygon mesh decimationo
5.2.1 Principle e e e e e
5.2.2 The simple volume metric L
5.23 Results . . . L e
5.3 Progressive compression guided by the volume metric
5.4 Conclusion L e e e

Remote visualization of progressive Meshes

6.1 Introduction L e e e e
6.2 Previous work on 3D data streaming and adaptationo L.
6.3 Adaptation and streaming framework with X3D o000
6.3.1 The adaptation parameters
6.3.2 The adaptation algorithm oL oL
6.3.3 Streaming levels of detail with X3D Lo
6.4 Experiments e e e
6.4.1 Progressive encoding scheme L Lo Lo
6.4.2 Complete streaming and adaptation framework
6.5 Conclusion e

State of the art on random accessible mesh compression

7.1 Introduction L L e e e e
7.2 Random accessible compression oL 0 oL L
7.3 Progressive and random accessible compression L. Lo o oL
7.3.1 Connectivity-preserving schemes o
7.3.2 Connectivity-oblivious schemes 0
7.3.3 Data structures for view dependent visualization
7.4 Conclusion L e

Progressive and random accessible mesh compression based on mesh segmentation
8.1 Introduction o e e e e e

8.2 Variational segmentationo Lo

xi

71
71
72
72
73
74
75
75

79
79
80
82
82
83
84
84
85
86
88

8.2.1 Principle 101

8.2.2 Topological problem handling L o 102
8.2.3 Results L e e 103
8.3 Decimation-based segmentation L L L e 105
8.3.1 Getting the segmentation from the decimation 105
8.3.2 Results oL 105
8.4 CompressSiOn i e e e e e e e e 107
8.4.1 Wire-net mesh encoding oL L 107
8.4.2 Wire compression o e e e e e e e e e 107
8.4.3 Chart compression e 107
8.4.4 Experimental compression results Lo Lo 108
8.5 Decompression scheme e e e e 110
8.5.1 View-dependent decompressiono L e 110
8.5.2 Dealing with boundaries L 110
8.5.3 Decompression timeo e e e e 111
8.6 Conclusion 111

9 Progressive and random accessible mesh compression based on hierarchical vertex clus-

tering 115
9.1 Introduction o e e e 115
9.2 OVEIVIEW . . . o it e e e e e e e e e 116
9.3 Decimation e e e 117
9.4 Compression and reconstruction L0 e e e e e e e e e 118
9.4.1 Global levels of detail encoding and reconstruction 119

9.4.2 Clustered levels of detail encoding and reconstruction 119

9.4.3 Entropy coding and compressed file o L0 o 121

9.5 Decompression L e e e e e e 121
9.6 Choice of the number of clusters 122
9.7 Experimental results L 123
9.8 Comparisons and discussion e e e 125
9.8.1 Progressive and random accessible compression L0 0L 125

9.8.2 Progressive compressiono e 129

9.8.3 Compressing large meshes e e e 129

9.8.4 Data structures for interactive visualization Lo, 129

9.9 Conclusion 129
General conclusion 131
Appendix: Introduction in French 135

xii

Bibliography 145

xiii

xiv

List of Tables

2.1

3.1

4.1

6.1

6.2

6.3

7.1

7.2

8.1

8.2

9.1

Summary of the main single-rate compression algorithms approximately ranked by their con-
nectivity compression performance. L. Lo

Summary of the main progressive mesh compression algorithms.
Compression rates in bits per vertex, without any rate-distortion optimizations.

Lossless compression results for several objects from scientific simulations with the algorithm
from [Lee et al., 2012]. e

Results of our test of progressive download and rendering of our model with different view-
points and a common resolution. L e e e e e

Results of our test of progressive download and rendering of our model with a common view-
point and different screen resolutions. L e

Summary of the main random accessible mesh compression algorithms.

Summary of the main progressive random accessible mesh compression algorithms.

Experimental compression results of PRAM with a 12 bit quantization.

Comparison of the experimental compression rates of PRAM obtained with the two segmen-
tation methods. L e

Experimental compression results of the POMAR codec, the CHuMI viewer and the hierar-
chical approach. L e

XV

xvi

List of Figures

Tt = W N =

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3D mesh examples. oL e 2
Modeling a 3D part with a CAD software. e 2
A frame of the Big Buck Bunny animation movie. 3
An example of a scientific visualization mesh. oL L. 4
The four types of mesh compression algorithms and the modalities they offer at decompression

TINE. .« . e e e e 6
Elements of a mesh. L e 9
Tllustration of the connectivity and the geometry of amesh. 10
Textured mesh with its associated 2D texture.. L oo 10
Surface mesh with a boundary. oL Lo 11
Volume and surface meshes. e 11
Regular, semi-regular and irregular meshes. o o o 0oL 12
Manifold and non-manifold vertices.o 13
Mesh orientation. L 13
Mesh genus. e 14
Indexed mesh data structure. L L e 15
Winged-edge mesh data structure. L e 16
Halfedge mesh data structure. e 17
Curve of the function f(z) = —zloga(z). o 17
A triangle fan, a triangle strip and a generalized triangle strip. 20
Turan’s succinct representation of graphs 0oL oL 22
Geometric compression through topological surgery. 23
Encoding a mesh with a triangle traversal. o oo oL 24
The five patch configurations of the Edgebreaker algorithm. 24
An encoding traversal of the Edgebreaker algorithm. 25
The five symbols of the Angle-Analyser encoder. 26
An encoding traversal of the Touma and Gotsman algorithm. 27
Uniform scalar quantization example of a 2D mesh. 30
Parallelogram prediction. L 31

2.11 Parallelogram prediction for quadrangles.

2.12 Multiway prediction.o

3.1 Edge collapse and vertex split operations. L
3.2 Progressive forest split.
3.3 Encoding of compressed progressive meshes. e e
3.4 Progressive compression with colored patches. o0 oL
3.5 Decimation of a regular mesh by the Alliez-Desbrun progressive encoder.
3.6 Progressive geometry encoding of the Gandoin-Devillers algorithm in 2D.
3.7 Connectivity encoding of Wavemesh scheme [Valette and Prost, 2004b].
3.8 Incremental parametric refinement [Valette et al., 2009].

3.9 Butterfly or Loop’s subdivision

4.1 Levels of detail of the quadrangle elephant model generated by our progressive compression
algorithm for polygon meshes.

4.2 The four compression steps of the PPMC algorithm.
4.3 Decimation of a patch with non-triangle faces. o0
4.4 Decimation of a border patch. oL
4.5 Decimation of a patch with triangle faces. o o000
4.6 Decimation of an intermediate level of detail of the bunny model.
4.7 Examples of two successive decimations of regular connectivities.
4.8 One example decimation step. e e e
4.9 Encoding of the geometry residual ry, in the local Frenet frame (ti, to, m).
4.10 Example of a patch encoding traversal. 0o o
4.11 Example of an edge encoding traversal.o
4.12 Structure of the compressed data generated by our coder.
4.13 Result of a decimation traversal. oL Lo
4.14 Example of connectivity symbol distributions after one decimation step.
4.15 Transversal views of a mesh during the compression with the lifting scheme enabled.
4.16 One level wavelet analysis and synthesis lifting scheme.

4.17 Progressive mesh traditional simplification vs. Lee’s method for adaptive quantization
[Lee et al., 2012]. o e

4.18 Rate-distortion curves for the compression of the Triceratops model with 10 bits quantization.

4.19 Input meshes from Table 4.1 and their tessellations.
4.20 Levels of detail generated by PPMC.o Lo
4.21 Decompression of the Bimba model (15770 quads) with the lifting scheme.
4.22 Rate-distortion curves for the compression of the Horse model with 12 bits quantization. . . .

4.23 Rate-distortion curves for the compression of the Rabbit model with 12 bits quantization. . .

5.1 Decimation operators. L e e e e e

39

54

61
63

64
65

69
70
70

5.2
5.3
5.4
3.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

9.1
9.2
9.3

Decimation operators.o e 73

Update of the operation costs. e e 73
The volume metric. L e 74
Polygonal decimation exampleso e 76

Rate-distortion curves for the compression of the Rabbit and Fertility models with 12 bits

quantization. L L e e e e e e e e e 7
Progressive decompression of the radiator model. 79
Computation of metric Fgp. o o 0 i o e e 82
The adaptation algorithm. 0 83
Format of the encoded stream. e 84
Integration of our progressive compressed remote mesh representation in X3D. 84
Our streaming architecture for progressive 3D meshes. 85
Our corpus of 3D models of scientific data. 85
Progressive decompression of the radiator Iso model. 000 86

Snapshots taken during our test of progressive download and rendering of our model with
different viewpoints. 87

Snapshot of the viewpoint used during our test of progressive download and rendering of our

model with different screen resolutions. oL Lo Lo 89
Cluster-based random-accessible mesh compression. 92
Random-accessible hierarchical decompression of a triangle mesh. 93
Example of a view-dependent decompression of the fandisk model. 99
Visualization viewpoint of the radiator model. o o 0oL 100
Overview of our progressive and randomly accessible compression scheme. 101
Smoothing the border between two charts. L oo 102
Topological problems generated by the segmentation and how to fix them. 103
Segmentations obtained with the variational shape approximation method. 104
Merging faces for the decimation-based segmentation. 105

Wire-net mesh and segmentations obtained with the incremental polygonal decimation method.106

Wire compression. o e e e e e e e 107
Encoding chart border vertices. Lo 107
Typical distributions of s...o 108
The choice of the decompression level of detail (1) for each chart. 110
Geometry constraint for the decimation of border vertices. 111
Partial decompression obtained with PRAM. 112
Selective decompression of the original raptor model.o 115
Patches modified by halfedge collapse and vertex split operations. 117
Examples of levels of detail generated by our decimation algorithm.. 118

Xix

9.4
9.5
9.6
9.7
9.8

9.9
9.10
9.11

9.12

9.13
14
15
16
17
18

Encoding process of a level of detail. o o 119

Local Fresnet frame (t1,t2,n) used to encode the geometry residual r. 120
Encoding traversal. Lo 120
Structure of compressed files generated by POMAR. 122
Required levels of detail map M displayed on the base clustered mesh and the obtained

decompressed mesh. L L e e e 123
Decompression example of the Ramesses model (826266 vertices). 124
Decompression examples of the dinosaur model (14070 vertices). 124
Compression rate in function of the number of clusters for the Igea model (134345 vertices).

Geometry in quantized to 12 bits.o Lo 125
Rate-distortion curves for the progressive compression of the rabbit model (67039 vertices)

and the horse model (19851 vertices) with a 12 bit quantization. 126
Partial decompressions obtained with POMAR. 128
Exemples de maillages 3D. Lo 136
Modeler une piéce en 3D avec un logiciel de CAO. 137
Une image du film d’animation Big Buck Bunny. 138
Un exemple de maillage de visualisation scientifique. 138

Les quatre types d’algorithmes de compression de maillage et les modalités qu’ils offrent durant
la décompression. Lo e e 140

XX

Introduction

Context

Computers have often been used to host and process, through the data, representations of real or virtual
worlds. In the computer science history, some of the first use cases of computers were the simulation
of natural or artificial processes (trajectory computation, stress computation inside a structure...). Today,
computers are still used for this purpose, but many other applications have emerged such as office automation
or entertainment. Another important usage of computers is related to communication, data and information
sharing, with the huge development of the word wide computer network, the Internet.

As vision and hearing allow us to capture and then to interpret our environment, some data representa-
tions and algorithms have been developed to allow computers to process audio, images and dynamic images
through videos. We refer to this field as multimedia processing. The analog physical quantities of the real
world have to be digitalized to fit the constraint that computers can only process binary signals. The devel-
opment of multimedia applications allowed the user to watch images and videos and listen to sounds thanks
to their computer. The content was, however, brought to the user under the same exact form as during
its creation. Quickly, the users have shown the desire to interact with the data, for instance by changing
the image or video viewpoints in order to move into the scene. A new domain then emerged: the virtual
reality. Computer were here used to produce successive images of a saved scene according to the viewpoint
defined by the interactive orders of the user. The users could thus navigate inside virtual environments.

A three dimensional (3D) representation of objects was required to enable the rendering of images of a
scene from different viewpoints. 3D surface meshes were quickly adopted for this purpose. A 3D surface
mesh consists in a collection of adjacent elementary polygons called faces that together constitute a piecewise
approximation of the represented surface. Like images, meshes can be either static or dynamic if they vary or
not with time. In this thesis, we will only deal with static meshes. Several ways exist to produce 3D surface
meshes. They can be either created directly by designers on a computer (synthetic meshes) or reconstructed
from data coming from 3D scanners (reconstructed meshes). These capture devices reconstruct a 3D mesh
from the acquisition of multiple points belonging to the object to represent. The Figure 1 depicts examples
of synthetic and reconstructed 3D meshes.

The 3D surface mesh representation became popular because it was simple and could easily be processed
by computers. Electronic chips dedicated to the rendering of images from 3D meshes were designed. They
are today called Graphical Processing Units (GPUs) and are present in most personal computers and smart-
phones. Application Programming Interfaces (APIs) such as OpenGL' and Microsoft Direct3D? have been
developed to allow software to use the GPU to render 3D data.

During the same time, computational simulation applications developed the usage of massive volume
meshes. Volume meshes consist in a collection of adjacent elementary polyhedron called cells that together
constitute a piecewise approximation of the represented volume. Indeed, when simulating physical phenom-
ena, some equations cannot be solved analytically. To find an approximative solution, one must resort to
discretization through meshes. The equations are then numerically solved on the elementary cells until the
convergence is obtained. If the studied phenomenon has a 3D nature, one must resort to volume meshes.

Thttp://wuw.khronos.org/opengl
?http://msdn.microsoft.com

Figure 1: 3D mesh examples. a. A synthetic mesh. b. A reconstructed mesh.

In this thesis, we will mostly study 3D surface meshes. They are today used in numerous application
domains for the representation and the visualization of 3D objects.

e In Computed-Aided Design (CAD), the engineers can visualize their models in 3D and interact with
them through their surface mesh representations (see Figure 2). For example, Catia® from Dassault

Systémes is a well known software suite that allows to design complex industrial products with 3D
views.

WCADID 36 Back

WOOm 1 DirSut Dm L
W' file Ed Mew Tooh Fan Simok Paametic Windows Help

NS w I R R - NPT BL A A
4 908 28 2@

167775 4388 . I |

Figure 2: Modeling a 3D part with a CAD software. FreeCAD - www.freecadweb.org

Industrial objects acquired with a 3D scanner can be reverse engineered so as to find their design
primitives. Injected in CAD software, the virtual representations of the objects can then be modified.

The users have commonly access to virtual reality through their computer screen. Immersive display
environments, such as caves and image walls, were also developed to put the user at the center of a

3http://www.3ds.com/products/catia/welcome/

virtual world. Some installations have even been equipped with a stereo vision system, thus providing
to the user the feeling that the virtual scene has a depth. These systems have many advantages in the
context of product development. For instance, they allow to partially test a car without any costly
physical prototyping.

e Some 3D medical imaging methods allow to build 3D mesh representations of the organs of a patient
to ease the diagnosis. They also enable the simulation of medical examinations or surgical gestures. For
example in [Kiihnapfel et al., 2000], the authors present a virtual reality training system for endoscopic
surgery.

e The digital capture of heritage enables the convenient access to artwork from anywhere at anytime.
It is therefore also easier to have access to great pieces of history and to conduct research on it. Koller
et al. exhibit the challenges behind the creation of digital archives of 3D cultural heritage models
[Koller et al., 2010].

e E-commerce applications have also found benefits in offering to customers interactive virtual replicas
of sold products. Companies such as PackshotCreator® already propose automatic systems that can
take pictures of product from different viewpoints. On the product web page, the customer can then
interactively change the viewpoints of the displayed image to watch the product from different view
points.

With the development of the WebGL technology®, which enables the inclusion of interactive 3D content
inside web pages, future e-commerce web sites may include mesh representations of their products.
They indeed offer more varied rendering features and user interactions.

Some augmented reality frameworks have also been developed to allow customers to virtually try
clothes [Hilsmann and Eisert, 2009] or shoes |Eisert et al., 2007|. These systems can display the 3D
model of the tested product on the captured image of the customer.

e The entertainment industry is also a big 3D mesh producer. Indeed, meshes are used to represent
the environments and the characters in 3D video games and animation movies (see Figure 3). In
this domain, a lot of research is conducted to answer to the commercial need to generate games and
animation movies as physically realistic as possible.

Figure 3: A frame of the Big Buck Bunny animation movie - Blender Foundation | www.blender.org. The
characters of the movie were modeled with 3D meshes.

e Regarding computational simulation, the results of the computations are often visualized under the
form of surface meshes with, for example, colors at nodes or cells that represent the computed values.

“http://www.packshot-creator.com/
Shttp://www.khronos.org/webgl/

This application is called scientific visualization. An example of scientific visualization mesh is shown
on Figure 4.

The work described in this thesis was developed in the context of the Collaviz project [Dupont et al., 2010].
The aim of the project was to design a collaborative platform for the remote scientific visualization. It
had to allow scientists working on remote sites to share, discuss and interact with simulation results. The
output of the simulations performed on a high performance computer cluster were pushed to a common
central server. Then, each of the members of the collaborative visualization session could ask for a specific
post-processing operation, which produced a 3D mesh. This mesh was then transmitted to each of the clients
to enable the interactive visualization. The users could then collaborate by sharing common annotations
or viewpoints on the 3D data and discuss through a chat system. The Collaviz project was decomposed
into 8 sub-projects. The aim of the sub-project in which this thesis took place was to develop solutions for
the remote scientific visualization of meshes. Consequently, we built tools to stream and visualize
efficiently such models. The Collaviz platform was designed to allow the users to access their data under
different network and terminal conditions. This is why, as explained in the following, we had to resort to
3D data adaptation.

Figure 4: An example of a scientific visualization mesh. Colors at vertices allow to visualize the temperature
on the surface of the object.

In all the previously described application domains, the needs of precision have never ceased to rise. For
example, the meshes generated for the simulation have an increasing number of cells in order to get results
that are close as possible to what is happening in the real process. For other fields such as digital heritage,
the precision of 3D capture devices is also improving, thus producing larger data.

As a 3D surface mesh is a discrete approximation of a surface composed of polygons, increasing the
precision means increasing the number of polygons. The more polygons a mesh contains, the bigger the
mesh data is. The application domains, like remote scientific visualization for the Collaviz project, require
this data to be stored and sometimes transmitted over networks. Data storage and transmission have an
economic cost. Some meshes are today so big that their storage and transmission represent a significant
cost. Mesh compression can help to reduce these costs.

The diversity of the computing devices used to visualize, or more generally process large meshes, is also
challenging. A large scientific visualization mesh that needs a graphic computer cluster to be visualized
cannot be directly rendered on a smartphone. Between these two systems, there is a tremendous difference
of available storage, central memory, CPU and GPU resources. The same problem arises for the network.
The amount of available bandwidth of an optic fiber connexion and the bandwidth of a DST. connexion are
not of the same order. Yet, the user may want to access his data in all these different conditions. To allow
the universal access, one must resort to adaptation.

3D data adaptation consists in transforming an input set of 3D objects into alternative modalities to
achieve the best visualization experience according to network characteristics, device capabilities and user

4

preferences. Such adaptation mechanism allows, for the remote user, an optimal streaming of the 3D scene.
In the next section, we explain why we think that mesh compression can stand as an adaptation solution for
3D data.

Mesh compression

3D mesh compression aims at encoding an input model with less bytes than its original representation. The
complete decompression operation restores a mesh that is identical (lossless compression) or close to the
input model (lossy compression). By reducing data size, mesh compression allows an easier storage and
a faster transmission, which is useful in low resource conditions. Mesh compression therefore adapts 3D
mesh data to storage and transmission constraints. Besides, some types of algorithms can give access during
the decompression to different versions of the input mesh. These versions can either be different levels of
detail or different parts of the original mesh. Consequently, they contain less polygons than the input model
and can be more easily visualized on devices with low computational resources. Mesh compression in these
cases adapts 3D mesh data to visualization constraints. Nevertheless, compression must be used keeping
in mind that compression and decompression are complex operations that are time consuming. Sometimes,
the positive effects produced by the reduction of data size can have negative effects in term of computation
time.

We classify mesh compression algorithms into four different types, depending on the features they offer
during the decompression.

Single-rate algorithms (see Figure 5 a) are the most simple schemes. They build a compact representation
of an input mesh. The decompression algorithm generates a mesh that is identical to the input model or
that slightly differs. The main motivation of these approaches is the storage and simple transmission.

Progressive algorithms (see Figure 5 b) embed in the compressed data a multiresolution representation of
the input mesh. The decompression algorithm reconstructs successive levels of detail as more data is
decoded. Progressive schemes are interesting for the remote visualization since the user do not have to
wait for the full data to be downloaded and decompressed to visualize the model. An other advantage
of this type of algorithms is that it is possible to select the best level of detail to display according to
the device rendering capabilities, the network constraints or the visualization viewpoint.

With the two previous types of algorithms, the full data must be downloaded and decompressed to access
a specific region of interest of the input mesh at the original resolution. In such case, the efficiency of these
approaches is therefore strongly limited. By downloading and decompressing the full model while the user
only requires a part, network and computational resources are wasted. Besides, the user must wait for
data he does not need. The two next families of mesh compression algorithms can partially answer to this
problem.

Random accessible algorithms (see Figure 5 ¢) allow to decompress only requested parts of the input
mesh. The decompression algorithm restores an extracted part of the input model. The data that
codes the others parts of the mesh are ignored. These methods enable the access to models that do
not fit into the device main memory. However, the user does not have any overview of the not selected
parts.

Progressive random accessible algorithms (see Figure 5 d) combine the features of progressive and ran-
dom accessible algorithms. Different parts of the input model can be decompressed at different levels
of detail, thus allowing view-dependent decompression. The decompressed mesh offers a good visual-
ization experience at a given viewpoint with an affordable cost in term of transmitted data and number
of polygons.

a. Single-rate decompression

b. Progressive decompression

NN
SSEe

c. Random-accessible decompression

d. Progressive random-accessible decompression

Figure 5: The four types of mesh compression algorithms and the modalities they offer at decompression

time.

Contributions

The work described in this thesis deals with mesh compression as a method for 3D adaptation. Consequently,
we focused on progressive and random-accessible techniques. After having studied the related literature,
we developed a progressive polygon mesh compression algorithm, a metric for polygon mesh decimation,
an adaptation framework for remote visualization and two progressive random accessible algorithms. We
designed each of our schemes keeping in mind the following qualities:

High compression performance. The data produced by the compression algorithms should be as small
as possible to allow the efficient storage and transmission of the compressed models.

High rate-distortion performance. With a minimum amount of data, the decompression algorithm
should output a mesh that is as close as possible to the original model.

High random-access granularity. The developed random-accessible schemes should be able to decom-
press the smallest requested parts of the input mesh with the least possible overhead.

Low processing times. The compression and the decompression algorithms should be as fast as possible
to not extend too much the time needed to access to the mesh.

Memory efficient. The compression and the decompression algorithms should be able to run with a low
amount of memory. More particularly, the decompression algorithm should be able to run on mobile
devices that have few resources.

Generic. The proposed approaches should handle all the different types of mesh topologies or be easily
adaptable to do so.

Parallel. As the architecture of modern computers is evolving towards many computing cores, the com-
pression and decompression algorithms should be able to perform as many steps as possible in parallel.

Easy to implement. The implementation of the proposed algorithms relying on well-known third-party
libraries should be as easy as possible.

Existing progressive mesh compression schemes have exclusively been designed to compress surface meshes
only composed of triangle faces. Nevertheless, surfaces meshes composed of other types of polygons are com-
monly used. We therefore designed a new progressive mesh compression scheme called PPMC (Progressive
Polygon Mesh Compression). It compresses manifold polygon meshes with arbitrary face degrees. Starting
from a simple scheme based on a new polygonal decimation operator, we proposed connectivity prediction
schemes, a wavelet formulation and an adaptive quantization method to increase the rate-distortion perfor-
mance of the algorithm. As progressive mesh compression is linked to mesh decimation, we also proposed a
new simple volume metric to drive the simplification of polygon meshes.

Progressive mesh compression algorithms such as PPMC allow to adapt 3D data to storage, transmission
and visualization constraints. However, they must be used in conjunction with an adaptation framework
that chooses which level of detail, must be downloaded, decompressed and displayed to the user according
to the various constraints. In the context of the Collaviz project, we proposed an adaptation framework
for the remote scientific visualization of meshes. This framework was designed to optimize the user remote
interactive visualization experience by taking into account constraints coming from the network (bandwidth),
the visualization device (memory, computational capabilities and screen resolution) and the user (distance
to the model).

Nevertheless, with progressive mesh compression algorithms, to access to a specific part of the mesh at
the finest resolution, the full model must be downloaded and decompressed. A better efficiency would be
possible if the decompression could adapt to an additional parameter: the user region of interest. Progressive
random accessible algorithms allow to download and decompress any part of the input mesh at any level of
detail. The decompression algorithm can refine on-demand the regions of interest and keep the others at a
coarse level of detail. This enables view-dependent decompression. Such schemes adapt the number and the
location of the decompressed polygons according to what the user wants to see.

7

We first designed a progressive random accessible triangular mesh compression scheme based on an ini-
tial segmentation of the input model. We named it PRAM (Progressive Random Accessible Mesh). The
generated clusters are compressed independently by a progressive algorithm. With an appropriate segmen-
tation, this approach is suited to view-dependent decompression but it cannot combine a high granularity
random-access with a high compression performance. The closing of holes between partially decompressed
clusters remains also problematic.

We therefore designed a second progressive random accessible triangular mesh compression scheme named
POMAR (Progressive Oriented Mesh Accessible Randomly). It allows a much finer random access gran-
ularity. With this approach, no initial segmentation is performed. The decompression algorithm generates
one piece decompressed models with a smooth transition between regions decompressed at high and low
levels of detail. All the decompressed triangles come directly from the decimation and therefore respect its
metric.

Overview

In the first two chapters, we recall some preliminary knowledge and previous work about meshes and single-
rate mesh compression.

e The Chapter 1 introduces preliminary knowledge about 3D meshes and data compression. It defines a
mesh and what are its elements and properties. After a description of general data structures to store
meshes, it provides the general principles of data compression.

e The Chapter 2 is a state-of-the-art about single rate mesh compression. Starting from the pioneering

work, we review all relevant approaches proposed for the compression of static meshes.

The next four chapters are dedicated to previous work and our contribution about progressive mesh
compression, mesh decimation and mesh adaptation.

e The Chapter 3 is a state-of-the-art about progressive mesh compression.

e The Chapter 4 describes PPMC, our polygon progressive mesh compression algorithm. Experimental
results are provided to demonstrate the performance of the approach.

e The Chapter 5 is about polygon mesh simplification. It presents our new simple volume metric that
can drive the decimation of polygon meshes. It also show how this metric can in some cases improve
the rate-distortion performance of PPMC.

e The Chapter 6 demonstrates the utility of progressive mesh compression algorithms in a context of
remote scientific visualization. It describes a new simple adaptation framework that manages the
multiple constraints of this application.

The last three chapters deal with previous work and our contribution about progressive random accessible
mesh compression.

e The Chapter 7 is a state-of-the art about random accessible and progressive random accessible mesh
compression.

e The Chapter 8 describes PRAM, our first progressive random accessible mesh compression algorithm
based on the segmentation of the input mesh. Experimental results demonstrate the efficiency of the
approach.

e The Chapter 9 deals with POMAR, our second progressive random accessible mesh compression algo-
rithm. Experimental results are also included in this chapter.

Finally, this thesis ends by a general conclusion that outlines general perspectives for future work.

8

Chapter 1

Preliminaries on meshes and compression

1.1 Introduction

This chapter aims at providing preliminary knowledge to understand the rest of this thesis. This manuscript
is about mesh compression. So the Section 1.2 describes what is a mesh in a practical and a formal way
and what are its properties. The Section 1.3 then addresses the mesh storage in a computer memory trough
specific data structures. Finally, the Section 1.4 introduces some general notions about data compression.

1.2 Definition of a mesh

1.2.1 Practical definition

A 3D mesh is a discrete representation of the surface or the volume of a 3D object. It can be seen as
an unstructured grid or a graph with geometric properties. A mesh is actually a hierarchical assembly of
different elements represented on Figure 1.1.

a. b.

Figure 1.1: Elements of a mesh. a. A set of vertices. b. Vertices are connected two by two through edges.
c. Closed paths of edges constitute faces. d. The interior of the surface defined by faces forms a cell.

e Vertices are the base elements of the mesh. They define a position in a common 3D Cartesian space.
e Edges are segments that connect two vertices of the mesh.
e Faces are polygons defined by a closed path of edges.

e Cells are polyhedron defined by a closed surface of faces.

The information contained in a mesh is often divided into three categories.

9

e The geometry information is the position of each vertex of the mesh in the 3D Cartesian space.

e The connectivity information (sometimes called topology or structure) describes the incidence re-
lations between the mesh elements. It is commonly studied as a graph and as a consequence the
vocabulary and the results of the graph theory can be applied to mesh connectivities.

The Figure 1.2 depicts the geometry and the connectivity information of a simple mesh.

e The optional attribute information associates scalar or discrete properties to the mesh elements
(vertices, edges, faces and cells) useful for the applications. For example, a color, defined by three
floating-point numbers can be associated to each vertex or face. Textures coordinates, stored as two
floating-point numbers per vertex, allows to apply a 2D texture to a 3D mesh by creating a mapping
between the image of the texture and the surface of the mesh. Vertices normals, defined by three
floating-point numbers, allow to render a mesh with lightening effects.

a. b. c.
Figure 1.2: Tllustration of the connectivity and the geometry of a mesh. a. A simple mesh. b. A mesh with

the same connectivity as the first mesh but with a different geometry. ¢. A mesh with the same geometry
as the first mesh but with a different connectivity.

Figure 1.3: Textured mesh with its associated 2D texture.
A 3D mesh can be either surfacic or volumic as show on Figure 1.5.

Surface meshes do not contain cells. They only define surfaces that can be closed or not. Most of the
models used in video games and animation films are surfacic because only the exterior shape of the
model is used to render them. A surface mesh is said to contain boundaries if some of its edges are
adjacent to only one face as depicted on Figure 1.4.

Volume meshes have their inner volume filled by their cell elements. They are often used in 3D computa-
tional simulations. For instance, finite elements methods decompose a volume domain in elementary
cells and apply iteratively the physic equations to all these elements until the convergence is obtained.

10

LSS

-~

NS

SANZAVSAYS

I ™

BRI\ SrS2
DO A5

AW
(IR
AN

i

Figure 1.4: Surface mesh with a boundary. Edges in red are adjacent to only one face.

Figure 1.5: Volume and surface meshes. a. An exploded view of the cells of a volume mesh. b. A surface
mesh.

1.2.2 Valence and regularity

In graph theory, the number of edges incident to a vertex is called the wvalence (or degree) of this vertex. For
meshes, the number of edges of a face or the number of faces of a cell are also called valence (or degree) of
this face or this cell. The faces can have a degree superior or equal to three. The common cases for surface
meshes are degree three (triangle face) and degree four (quadrangle or quad face). In the same way, the
common cases for volume meshes are cells with a degree equal to three (tetrahedron) or four (hexahedron).

Triangle or quadrangle faces may be privileged according to the context. For instance, a triangle mesh
can better represent a spherical surface while quadrangle will more suit to the representation of a cylindrical
surface. These properties are often used by mesh designers. By stating that triangle propose a linear approx-
imation and quadrangle a bilinear approximation, the work of D’Azevedo [D’Azevedo, 2000] demonstrates
the efficiency of these two types of polygons according to the shape of the surface to represent.

Some mesh connectivities are said to be regular because they are composed of the repetition of the same
pattern. If only few elements of the mesh do not have a regular connectivity, then the mesh is said to be
semi-regular. When the connectivity of the mesh does not contain at all regular structures, it is said to be
irregular. Figure 1.6 shows examples of mesh connectivities with different regularities. The vertex degrees
of a regular triangle mesh are always six. And the vertex degree of a regular quad mesh is always four.

11

a

/INN/WY\
JAVAVAVAVAVAVAYA
VAVAVAVAVAVAN)Y
AVANAVAVAVAVA'A
N\WAVAVAVAVAVAY;
N

Figure 1.6: Regular, semi-regular and irregular meshes. a. A regular triangle mesh. The degree of each
inner vertex is always 6. b. A semi-regular mesh. The red vertices has a valence of 5 while the other inner
vertices have all a valence of 6. b. An irregular triangle mesh. The degree of each vertex is undefined.

1.2.3 Formal definition

The previous section provides a practical definition of a mesh. For most applications, this definition is
sufficient to be able them. Nevertheless, when some topological properties of a mesh need to be defined,
checked or manipulated, a formal definition becomes mandatory. In this subsection, we outline several ways
of formally defining a mesh.

In the literature, 3D meshes have often been defined as polytopal complexes or simplicial complezxes
[Edelsbrunner, 2001, Edelsbrunner and Harer, 2010] through algebraic topology.

A polytope in the Mathematics literature, can reference several objects that are not equivalent. The
mathematician Ludwig Schlafli [Schléfli, 1901] originally defines it by first stating that a 0-dimensional
polytope is a vertex. A 1-dimensional polytope is an edge and bounds two 0-dimensional polytopes. A
2-dimensional polytope is a polygon and bounds n 1-dimensional polytopes. A 3-dimensional polytope
is a cell and bounds m 2-dimensional polytopes, and so forth. Therefore, a mesh is a polytopal complez,
an assembly of polytopes.

A Simplex or k-simplex refers to a polytope that is the convex hull of its k£ — 1 elements. Thus, a 0-simplex
is a vertex. A l-simplex is an edge. A 2-simplex is a triangle. And a 3-simplex is a tetrahedron. A
simplicial complez is built by gluing together simplices. What is called a triangular mesh is often a
simplicial complex that has additional topological properties.

The work of Ledoux and Shepherd described in [Ledoux and Shepherd, 2010] focuses on hexahedral
meshes. However, it starts with general definitions for any kind of meshes. Their definition of a mesh is
not based on polytopes but on what they call i-dimensional cells. Cells, like polytopes, have a dimension: a
vertex is a 1-dimensional cell, an edge is a 2-dimensional cell and so on. They define formally cell incidence
and adjacency relations to finally propose their definition of a n-dimensional topological mesh or n-mesh,
where n is the maximum dimension of the mesh cells.

1.2.4 Manifold property

A surface mesh is 2-manifold if all its vertices have a neighborhood homomorphic to a closed or open fan, as
shown on Figure 1.7. The neighborhood of a vertex is homomorphic to an open fan if its contains boundaries.
The manifold property of a mesh is important as a lot of algorithms and data structures are only compatible
with 2-manifold meshes.

The formal definition of the manifold property of Ledoux and Shepherd [Ledoux and Shepherd, 2010]
states that a n-mesh is manifold if there exists, for each of its cells, a n-topological ball surrounding it inside
the mesh. For Popovi¢ and Hoppe [Popovi¢ and Hoppe, 1997|, a mesh is 2-manifold if each of its vertex has

12

ﬂ' b. % Ed. | 3
Figure 1.7: Manifold and non-manifold vertices. a. The red vertex is manifold because its neighborhood is
equivalent to a closed fan. b. The red vertex is manifold because its neighborhood is equivalent to an open

fan. ¢. & d. The red vertex is non-manifold because its neighborhood is not equivalent to an open or closed
fan.

a neighborhood homomorphic to R? or Ri_ where Ri_ = {x € R? : 21 > 0}, which seems equivalent to the
previous definition.

It is possible to associate an orientation to each face of a 2-manifold surface mesh. This orientation of a
face corresponds to a chosen cyclic order of its vertices. The orientations of two adjacent faces are compatible
if they are opposite. A mesh is said to be orientable if all the orientations of its faces are compatible (see
Figure 1.8 a). In the other case, it is said to be non-orientable (see Figure 1.8 b).

a. b.
f 33 oj
Figure 1.8: Mesh orientation. a. An orientable mesh: every faces have a compatible orientation. 5. A
non-orientable mesh: a simple version of the Mébius strip.

1.2.5 FEuler characteristic
The Euler characteristic y of an 2-manifold orientable mesh defines its topological type. It is equal to:
x=v-e+/,

where v, e and f are respectively the number of vertices, edges and faces of the mesh. A mesh is said to have
genus ¢ if it can be cut along 2g closed loops without disconnecting it. Intuitively, the genus is the number
of handles of the mesh as illustrated on Figure 1.9.

It can be proven that the Euler characteristic is also equal to:

X:2(S_g)_b7

where s is the number of connected components of the mesh and b is its number of boundary loops. Con-
sequently, the following equation can be written for an orientable 2-manifold mesh with one connected
component and no boundary:

v—e+ f=2-2g. (1.1)

13

=

AV

Ay
S

S

Figure 1.9: Mesh genus. a. A mesh with a genus 0. . A mesh with a genus 2.

In the case of a triangular mesh, each face has 3 edges and each edge is incident to two faces. If we start
with one triangle face and we add to the other side of its edges new faces, we have created three times the
previous number of faces and two times the previous number of edges. Therefore, the following relation can
be written:

3f = 2e. (1.2)

By substitution of Equation 1.2 in Equation 1.1, the following relations can be obtained:

M b (1.3)
2
e=3v—2+2g). (1.4)

If the genus of the mesh is low and it has a significant number of faces, the equation 1.3 becomes:
f=2v.

So, a 2-manifold orientable triangle mesh has about twice more faces than vertices.

Each edge is incident to two vertices. It is counted when calculating the degree of both vertices. So, the
average degree of a vertex in an 2-manifold orientable triangle mesh is equal to:

AverageDegree = 2e/v
Integrating the Equation 1.4, this expression becomes:
AverageDegree = 6(v — 2 4 2g) /v

Therefore, by considering that the mesh has a significant number of vertices and a low genus, we can conclude
that the average degree of the vertices of a 2-manifold orientable triangle mesh is 6.

1.3 Storing a mesh

As meshes are virtual objects processed by computers, data structures are needed to store them in memory
or disk. Criteria to choose a mesh data structure are its compactness, the types of meshes it can store and
the ability to perform incidence queries on the mesh elements. This section describes three basic mesh data

structure. For a short review on data structures that allow random-accessible and progressive access, we
refer the reader to the Section 7.3.3.

14

1.3.1 Indexed data structure

A lot of mesh file formats (OFF, PLY, OBJ, VRML, X3D) are based on an indexed data structure. The
first part of an indexed data structure is composed of the list of all the vertex coordinates. This list stores
the mesh geometry but also introduces an ordering of the mesh vertices. Vertices get their number identifier
from their position in the list. The second part of the data structure describes the connectivity of the mesh.
Each line is related to one face and lists all its vertices in a cyclic order. For volume meshes, the faces of
each cell can also be stored in the same way. The Figure 1.10 shows an example of an indexed data structure
that stores a surface mesh.

v1

vertices B
faces
x1lylzl
v3 V2 X2 y2 z2
O)):2 zi ;i Geometry
x5y5 z5
va v5 X6 y6 26

Face degrees 4 - 3 25 4 Connectivity

Vertex indexes

v6
Figure 1.10: Indexed mesh data structure.

This data structure has the advantage of being simple. It can also store any type of mesh. However, it
does not allow incidence queries from one element of a mesh.

1.3.2 Winged-edge data structure

The winged-edge data structure [Baumgart, 1975] can only store 2-manifold orientable polygon meshes. Its
reference element is the edge. Each edge of the mesh is stored in a table (the edge table) with:

its start and end vertices that define the orientation of the edge,

its left and right face,
e its previous and next adjacent edges on its left face,

e its previous and next adjacent edges on its right face.

A separate table (the vertex table) stores each vertex with one of its incident edge and its position in the
space. At last, each face is stored in the face table with one of its incident edge. The Figure 1.11 depicts a
winged-edge data structure.

This data structure allows to perform incidence queries from a specified vertex, edge or face. For example,
it is possible to retrieve all the neighbor vertices of one given vertex without going over the whole tables of
elements. Nevertheless, it is not very efficient in term of storage size.

15

Edge | Vertices | Faces |Left traverse|Right traverse
name |startlend| leftfright|{prev | next | prev | next

7 2|3 2|1 4 3 1 2
b. , -
Vertex name | Incident edge | Position
2 | 7 [x2y222
C.
Face name | Incident edge
2 | 7

Figure 1.11: Winged-edge mesh data structure. a. The edge table with an example entry. b. The vertex
table with an example entry. ¢. The face table with an example entry.

1.3.3 Halfedge data structure

The halfedge data structure or doubly connected edge list [Muller and Preparata, 1978] can also only store
2-manifold orientable polygon meshes. It is a simplified version of the winged-edge data structure that offers
the same functionalities. Its base element is the half-edge: one oriented side of an edge. A table stores for
each halfedge of the mesh:

e the next halfedge in the same face,
e the vertex it points to,
e the face it belongs to,

e its opposite halfedge that belongs to the same edge.

A separate table stores for each face one incident halfedge. An other one stores for each vertex its position
and one incident halfedge. The Figure 1.12 depicts an halfedge data structure.

The advantage of the halfedge data structure over the winged-edge data structure is its compactness. It
can store the same types of meshes and allows the same incidence queries with fewer element identifiers.

1.4 Data compression

As this thesis deals with mesh compression, this section introduces general definitions and principles about
data compression. They are the basis of the algorithms presented in the following chapters.

In computer science, data compression consists in encoding an information in fewer bits than its original
representation. Data compression can be either lossless or lossy. Lossless compression allows to restore the
original data without any alteration after the decompression. Lossy compression retrieves an altered version
of the information. Distortion has been introduced to further reduce the size of the data. Data compression
is used to reduce the data storage and transmission costs. It also sometimes raises the comfort of the user
by shortening the processing times.

16

a.
Halfedge | Next halfedge |Vertex | Face | Opposite halfedge

v3 v2 T | 16 [2
b.) , »
h3{]{ha h7|f|hs Vertex id | Incident halfedge | Position
5 5 [x5y52z5
V4 V5 C. . .
Face id | Incident halfedge

2 | 2

V6

Figure 1.12: Halfedge mesh data structure. a. The halfedge table with an example entry. b. The vertex
table with an example entry. c¢. The face table with an example entry.

1.4.1 Shannon entropy

The Shannon entropy [Shannon, 1948] of a signal characterizes its average unpredictability or its information
content. The Shannon entropy of a signal X with n symbols {z; : i = 1,...,n} can be expressed in bits as:

=1

where p,, is the probability of appearance in the signal of the symbol x;. The Shannon entropy of a signal
stands for the theoretical limit of the compression rate a lossless encoder can achieve.

0.6
0.5
0.4 -

0.3 -
/

02| |

0 0.2 0.4 0.6 0.8 1

Figure 1.13: Curve of the function f(z) = —xloga(z). The function extended to 0 is equal to 0.

Looking at the shape of the function f(z) = —xloga(z) (Figure 1.13), it can be deduced that the
Shannon entropy of a signal is low when this signal has a small number symbols with a biased distribution
of probabilities. To minimize the entropy, symbols must be very frequent (high probability) or very little
frequent (low probability). The common method to transform a signal into an other one that has a smaller
entropy is to use predictions. The encoder makes an assumption on the next value to encode in function of
previous values already encoded. It then encodes the difference between the prediction and the actual value.

17

If the prediction function is well chosen, the distribution of the residuals is concentrated around 0 and has
a small number of different values. This allows an entropy coder to compress efficiently.

1.4.2 Entropy encoding

Entropy encoding is a variable length encoding technique that exploits the entropy of a signal to represent
it with fewer bits than its original representation. We present in this section some popular schemes.

Huffman encoding [Huffman, 1952] is one of the most well-known entropy encoding technique. It has been
widely used for sound, image and video compression. The encoder assigns to each symbol a sequence
of bits, which length depends on the probability of the symbol. Symbol with a high probability are
encoded with less bits than symbols with a low probability. Sequences of bits are chosen to be prefiz-
free: this means that a sequence cannot be the prefix of an other one. This allows the decoder to
know the size of each sequence during the decoding. This technique has the advantage of being easily
implementable. Furthermore, the compression and decompression algorithms are usually very fast.
Nevertheless, as a symbol is always encoded with an integer number of bits, the optimal limit of the
compression rate cannot be always reached.

Arithmetic encoding [Rissanen, 1976, Rissanen and Langdon, 1979, Witten et al., 1987] does not code a
symbol with a fixed number of bits. The principle of this technique is to code a signal with a real
number from the interval [0, 1[. The compression starts by subdividing the interval [0, 1] in one interval
per symbol. The width of these intervals depends on the probability of their corresponding symbols.
The interval of the current symbol to encode is selected to be subdivided as previously described for the
encoding of the next symbol. At the end of this progressive subdivision process, when there is no more
symbol to encode, a real number belonging to this interval represents the whole signal. Arithmetic
encoding is generally slower than Huffman encoding, but by not being limited to integer sequence of
bits, it allows to get close to the Shannon entropy, the theoretical limit of the compression rate.

Range encoding [Martin, 1979] is very similar to arithmetic encoding. The difference is that the interval
[0, 1] is changed to an integer interval [0, n™[. Its interest is that its implementation is often faster than
arithmetic coding. Besides, it is claimed as being patent free. This means that range encoding can be
used in a system without having to pay any license fee. It is often, however, slightly less efficient than
arithmetic encoding.

The entropy coders need a symbol probability table to encode a signal. There is four different types of
models which allow to build these tables:

e Static models hardcode the probability table inside the encoder and decoder.

e Semi static models get the symbol probabilities with a first pass on the signal. Then a second pass
encodes the symbols with the probabilities obtained with the first pass. The probability table must
then be provided with the compressed data.

e Adaptive models dynamically modify the probabilities tables each time a symbol is encoded. If the
encoder and the decoder starts with an equiprobable model, just the number of different symbols has to
be transmitted with the compressed data. However, the compression performance of the first symbols
is reduced.

e Quasi static models dynamically modify the probabilities tables each time K symbols have been
encoded. The principle is otherwise the same as with adaptive models.

18

Chapter 2

State of the art on single-rate mesh
compression

2.1 Introduction

Single-rate mesh compression consists in encoding an input model with fewer bytes than its original repre-
sentation. The decompression then decodes the compressed data to output a mesh that is identical to the
input model or that slightly differs. As it reduces data size, single-rate mesh compression is therefore a way
to adapt 3D mesh data to network bandwidth and storage constraints.

Compressing meshes is different than compressing other types of multimedia data such as sound, images
or videos. The common point between sound, images and videos is that their structure is known in advance
by the encoder and the decoder. For instance, an image is a two-dimensional signal. It is always structured
as a grid of pixels. Image compression consists in compressing the three color components of each pixel.
The traversing order is fixed inside the encoder and the decoder. Some image compression schemes use
the scanline order, which traverses the pixel rows from the left to the right, starting from the top row to
the bottom one. A mesh is, however, not necessarily regularly structured. Its connectivity is completely
unknown to the encoder before the compression. So, besides having to code the vertex positions, as the pixel
colors would be coded for an image, a mesh encoder must encode the structure, which is the connectivity.

Since the end of the 1990’s, mesh compression has been an active research topic, pushed by the
development of the applications related to 3D. Very good reviews about mesh compression, describing
the fundamental approaches, have been published in 2005 [Alliez and Gotsman, 2005, Peng et al., 2005].
More recently, Avilés and Moran proposed a short state-of-the-art article about static mesh compression
[Aviles and Moran, 2008]. But since 2005, no complete reviews including the novel advances in the domain
have been published. The state-of-the-art chapters of this thesis aim at providing a list as most complete as
possible of the relevant mesh compression approaches starting from the pioneering techniques and going to
the most recent work.

This chapter focuses on the single-rate compression of static meshes. As the problem of mesh compression
is often decomposed in two parts, connectivity and geometry encoding, this chapter is organized as follow.
The Section 2.2 deals with the encoding the connectivity information of a mesh. The Section 2.3 addresses
the encoding of the geometry. The fourth part lists some strategies developed to encode large models. Finally
the fifth part describes some algorithms that do not restore the initial connectivity. The chapter ends with
a conclusion that proposes perspectives for future work on this topic.

19

2.2 Connectivity compression

This section aims at describing the different approaches developed to encode the connectivity of 3D meshes.
The general principle behind all these techniques is to perform a traversal of the mesh elements and emit
symbols depending on the encountered configurations.

2.2.1 Triangle strip encoding

The first needs for compact mesh representations have actually been motivated by rendering applications
that needed efficient mesh representation to quickly transfer the data between different memory units of the
computer.

The rendering of a significant 3D mesh is a task that requires high computational capabilities. Tt is
possible to perform all the required operations on the CPU. Nevertheless when the complexity of models
increases, this solution becomes rapidly inadequate to achieve interactive frame rates. This problem has
motivated the development of specific hardware. The GPUs are designed to perform the mesh rendering
operations quickly in parallel. Specific API such as OpenGL or DirectX have been designed as portable
ways to program GPUs. Efficient solutions to transfer the mesh data from the central memory to the GPU
memory became of prime interest. Memory transfer in a computer is indeed a costly operation that consumes
a lot of CPU cycles. So, a good method to transfer mesh data can significantly decrease the rendering time.
Triangle strips and triangle fans are mesh representations that have been used for this purpose.

4 3
. 0,1,2)
0,2,3)
5 0,34)
0 (04,5)
6 1 (0/5/6)
(0,1,2,3,4,5,6)

012
2 4 0 8 (123)
234)
(34,5)
0 5 (45,6)

3 7 (567)
(0,12,3,45,67,8) 67,8

—_

0,1,2)

1,2,3

5 . 23
2,3,4)

(3/4/3)

0 (4,3,5)
6 (3,5,6)

8

1 3 (5,6,7)
(0,1,2,34,3,5,6,7,8) (6,7,8)

N

Figure 2.1: A triangle fan, a triangle strip and a generalized triangle strip. The numbers inside the parenthesis
correspond to the indices of each triangle. a. A triangle fan. b. A triangle strip. ¢. A generalized triangle
strip. The dummy triangle is in red and its corresponding added vertex is also in red.

A triangle fan is a sequence of vertices that defines a set of triangles sharing a common center vertex. The
Figure 2.1 a shows an example triangle strip.

20

A triangle strip is a sequence of vertices where each added vertex defines with the two previous vertex of
the strip a new triangle. The Figure 2.1 b shows an example of a triangle strip.

These methods are much more efficient than the indexed representation that requires three vertex in-
dices to code each triangle. Indeed, after having encoded the first triangle, a new vertex index codes the
connectivity of a new triangle. The mesh connectivity encoding with triangle strips and triangle fans can
significantly reduce the data size.

In a triangle strip, to form a new triangle, the vertices are always taken in the same order: {n—2, n—1,
n}. Generalized triangle strips do not always respect this order so as to generate longer strips. However, to
preserve the triangle strip structure, a dummy triangle is added when the standard order is not preserved
as shown on Figure 2.1 ¢. This dummy triangle is flat, therefore not rendered. Even if it costs one vertex,
it is cheaper than the start of a new strip that costs two vertices. If the generalized triangle strip is long
enough, the ratio between the number of triangles and the number of vertices is close to 1.

Optimal generation of triangle strips on a mesh was demonstrated as being an NP-complete prob-
lem [Evans et al., 1996a]. Consequently, strategies with heuristics must be employed [Evans et al., 1996b,
Xiang et al., 1999]. Yet, these methods are still computationally intensive. So, it may be interesting to store
a mesh with its stripification information.

One of the first work in mesh compression is the generalized triangle mesh format of Deering
[Deering, 1995], which is based on generalized triangle strips. Deering noted that, in a generalized
triangle strip, many of the interior vertices are repeated twice. So, instead of encoding twice their positions
traversing the mesh, he proposed to push them in a 16 positions queue and refer to them by their location
in the queue when needed.

Chow [Chow, 1997] designed an alternative method based on generalized triangle meshes. His approach
allows to reuse more vertices than the original approach of Deering [Deering, 1995]. The algorithm starts
from a mesh boundary and creates the first strip with the triangles incident to this boundary. It then removes
these triangles and starts the second iteration with the new boundary. The algorithm knows a significant
part of the new strip vertices because the new strip is incident to the boundary encoded at the previous
iteration.

Bajaj et al. [Bajaj et al., 1999] proposed to compress triangular meshes with a layered decomposition.
Vertex layers are vertex strings that cannot intersect each others. In most cases, they are separated by a
distance of one edge between them, forming concentric circles. The triangles between the vertex strings
form the triangle layers. Triangle layers contain triangle strips and fans, useful for the rendering. In this
scheme, the connectivity data is composed of the layout of the vertex layers and their triangle strips and
fans. This method compresses the mesh connectivity at about 1.5 to 6 bits per vertex. Besides, it can process
non-manifold meshes.

2.2.2 Spanning tree encoding of planar graphs

As stated in Section 1.2.1, the connectivity of a mesh can be modeled as a graph. For surface meshes, the
vertices are the nodes of the graph that are linked through edges to form faces. This analogy between meshes
and graphs explains why some well-known results from the graph theory can be applied to the compression
of mesh connectivity.

Tutte first proposed formula that enumerate planar triangulations [Tutte, 1962] and planar maps
[Tutte, 1963]. He answered to the following question. How many combinatorially distinct rooted planar
maps (with a set face orientation) are there with n edges or with k vertices or with [faces? Tutte’s
enumerations of planar triangulations [Tutte, 1962] and planar maps [Tutte, 1963] allow to calculate what
was later called the Tutte’s entropy. This entropy, approximately equal to 3.25 bits per vertex, stands
for an upper bound of the entropy of any arbitrary surface triangular mesh connectivity. This result is,
however, only theoretical. Tutte did not propose any compression scheme able to encode an arbitrary planar
triangulation at a compression rate equal to this entropy. Nevertheless, Tutte’s entropy value has been later
used to prove the optimality of several mesh connectivity encoding schemes [Alliez and Desbrun, 2001b].

21

Turan [Turdn, 1984] was one of the first to propose a practical method to encode in a compact represen-
tation a planar unlabeled graph. His encoding algorithm starts by numbering all the graph vertices. It then
builds a spanning tree on the graph that connects all the vertices from a chosen root node. A depth-first
traversal of the spanning tree is performed to construct a cyclic sequence of vertices (Figure 2.2 a). The
edges of the graph not belonging to the previous spanning tree are listed (Figure 2.2 b). The generation of
the symbol list transforms the cyclic sequence of vertices previously obtained ((see Figure 2.2 ¢) by:

e putting a ‘+‘ symbol when the current vertex directs away the root node of the spanning tree,
e putting a ‘-* symbol when the current vertex directs towards the root node,

e putting a ‘(‘ symbol if the next vertex is the first vertex of an edge not belonging to the spanning tree,

putting a ‘) symbol if the next vertex is the second vertex of an edge not belonging to the spanning
tree.

Finally, each previously described symbol is replaced by its corresponding 2 bit code to obtain a compact
representation of the graph. This connectivity encoding methods requires at maximum 12 bits per vertex.

a.1-2-3-2-4-2-1-5-6

b.(3-4) (2-5)
(5-4) (4-9)

Gt (4 (<) (+--))+) +

Figure 2.2: Turan’s succinct representation of graphs. The edges belonging to the spanning tree are in green
while the others are in black. The root node is the node number 1. a. The cyclic sequence of vertices
obtained by following the red arrows. b. The list of edges not belonging to the spanning tree. c¢. The
generated symbol list.

The algorithm of Keeler and Westbrook [Keeler and Westbrook, 1995] is also based on the encoding of
a spanning tree with additional information for the edges not belonging to the spanning tree. The authors
state that their method can encode an unlabeled planar triangulations in about 4,6 bits per vertex with their
scheme. Chuang et al. [Chuang et al., 1998] later proposed a more efficient scheme based on a canonical
ordering of the graph vertices in the spanning tree and multiple types of parenthesis.

2.2.3 Spanning tree encoding of meshes

The influence of the previously described planar graph encoding techniques can be felt on some of the first
3D mesh encoding techniques. For instance, the topological surgery algorithm of Taubin and Rossignac
[Taubin and Rossignac, 1998] encodes a triangular mesh with two spanning trees.

A wvertex spanning tree is first generated on the mesh (Figure 2.3 a). The sections of the spanning tree
that only contain vertices connected to two other vertices of the tree are called verter runs. In the article,
some approaches are proposed to maximize the length of vertex runs. The vertex spanning tree is encoded by
a depth first algorithm. Starting from a root leaf vertex, it encodes for each run, its length, a bit indicating
whether the run has right sibling and a bit indicating whether the run ends with a leaf vertex. The vertex
spanning tree is also used to encode the position of the mesh vertices as explained in Section 2.3.2.

22

As with the planar graph encoding techniques, the edges not belonging to the vertex spanning tree need
also to be stored. That is why a topological surgery is performed on the mesh. The mesh is cut along the
edges belonging to the vertex spanning tree. This generates a decomposition of the mesh in triangle strips
(Figure 2.3 b). The dual graph of the cut mesh is the triangle spanning tree. It is encoded in the same way
as the vertex spanning tree. The length of its runs and one bit per run telling if the run ends with a leaf
triangle are stored.

The topological surgery algorithm allows to compress the connectivity of a manifold triangle mesh with
about 2.5 to 7 bits per vertex.

2

Figure 2.3: Geometric compression through topological surgery. a. The input mesh. The colored edges
represent the runs of the vertex spanning tree. b. The input mesh is flattened after being cut along the
edges of the vertex spanning tree. The triangle spanning tree is shown in red.

Diaz-Gutierrez et al. [Diaz-Gutierrez et al., 2005] proposed an original approach that encodes a genus-0
mesh with two vertex spanning trees, always distant of one edge, and additional information to define the
triangles between the two trees. One advantage of this representation is that it embeds a hierarchyless
multiresolution structure (through the two trees collapsible edges) and a stripification. Experimental results
report connectivity compression rates of about 1.5 bits per vertex on average.

The algorithm of Li and Kuo [Li and Kuo, 1998a] encodes the connectivity of a triangle mesh with its
dual graph. Each node of the dual graph is incident to three edges. So, the encoding traversal has just to
perform a breadth-first traversal of the mesh dual graph and outputs one binary symbol per edge telling if
this edge is connected to an already visited node or not.

2.2.4 Triangle traversal encoding

Vertex spanning trees do not contain all the mesh edges. They do not represent the whole mesh connectivity.
That is why, in the previously described encoding methods, edges that do not belong to the vertex spanning
tree are encoded in a separate step. A triangle spanning tree can, however, capture all the mesh faces and
therefore represent the full connectivity. That is why some algorithms were proposed to encode a mesh with
a region growing approach by generating a triangle spanning tree. To generate such trees, the algorithm
iteratively processes the mesh triangles with a breadth first traversal. This means that the next triangles
to process are always adjacent to already processed triangles and the first triangles that were added to the
neighbor triangle list are processed first. As shown on the Figure 2.4, at each step of the compression, some
faces have already been traversed and other not. There can have one or several closed edge borders between
these two types of faces.

The Cut-Border machine [Gumhold and Strafer, 1998] follows this face traversal strategy. It extends the
border formed by an initial triangle by iteratively traversing adjacent triangles. 7 different symbols code

23

Figure 2.4: Encoding a mesh with a triangle traversal. The already traversed faces are in gray. The next
face to process is in blue. The edge border between processed and not processed faces is in red.

whether the extension of the border on a new triangle was done by inserting a new vertex or not. If no
vertex insertion is performed, the symbol describes how the new adjacent triangle is connected to the border.
These symbols also code the closing of a border, its split or the union of two distinct borders. The scheme
can compress 2-manifold triangle meshes. Experimental results reports connectivity compression rates of
about 4 bits per vertex.

The Edgebreaker algorithm of Rossignac [Rossignac, 1999] encodes the connectivity of triangular meshes
by iteratively nibbling the faces. It traverses the mesh faces by entering through one of their edges called
the gate. The mesh connectivity is encoded by a code that describes the patch configuration of the vertex
v belonging to the current triangle X in front of the active gate. The patch of v is the set of faces adjacent
to v. There are five different configurations as shown on Figure 2.5. X is then removed from the mesh. The
next gate points to the triangle adjacent to X that is on the right of the active gate. If there is no such
triangle, the next gate is popped out from a stack. An example of encoding traversal is shown on Figure 2.6.
An extension of the algorithm is proposed to handle non manifold meshes and meshes with a genus superior
to 0. Experimental results report connectivity compression rates of about 4 bits per vertex.

LN SN
N 4

R E S
Figure 2.5: The five patch configurations of the Edgebreaker algorithm. v is the patch center vertex and X
is the current triangle. The active gate is the blue edge. C: there is a complete triangle fan around v. L:
there are missing triangles at the left of the active gate. R: there are missing triangles at the right of the
active gate. E: v is only adjacent to X. S: there are missing triangles elsewhere than the left or the right of
the active gate.

Some Edgebreaker derived schemes were proposed to guarantee a worst-case coding cost of 3.67
bits per vertex [King and Rossignac, 1999a] and then 3.55 bits per vertex [Gumhold, 2000]. Decod-
ing algorithms with linear time and space complexities were proposed [Isenburg and Snoeyink, 2000b,
Rossignac and Szymczak, 1999]. Szymczak et al. [Szymczak et al., 2001] optimized the original scheme to
encode meshes with a high regularity. This methods has a worst-case coding rate of 1.62 bits per vertex

24

sl

Figure 2.6: An encoding traversal of the Edgebreaker algorithm. For each step the active gate is in red,
the current patch is in gray and its vertex v is blue. At step 3, 6, 7, 9 and 10 the gate is popped out the
stack because the previous current triangle did not have a right triangle. The connectivity is encoded by the
following symbol list: CR SLRE CRL E.

for large regular meshes. Coors and Rosignac [Coors and Rossignac, 2004] added a connectivity prediction
method based on the mesh geometry. They claim to obtain, on average, connectivity compression rates
that are below 0.75 bits per vertex. Gumhold [Gumhold, 2005] proposed to optimize a Markov model, for
which each Edgebreaker symbol is a state, in order to design an asymptotic optimal arithmetic coder for the
Edgebreaker encoder. Ying et al. [Ying et al., 2010] designed an algorithm to select the next edge gate to
proceed in order to minimize the number of ’S” symbols. They also built a table that ranks the Edgebreaker
symbols depending on the number of traversed faces connected to the gate vertices. This code-mode, which
stands for a connectivity prediction method, allows after a highly improved entropy coding (about 2.2
bits per vertex on average). Jong et al. [Jong et al., 2005] replaced the symbols E and S of the origin
Edgebreaker encoder [Rossignac, 1999] by two new symbols: J and Q. The symbol Q encodes at the same
time two triangles that share the same new vertex. The symbol J allows to skip the current new vertex
to avoid boundary splitting overhead. Liu et al. [Liu et al., 2007] later improved this encoding method by
using also a code-mode. They built a probability table to predict the current symbol in function of the
previous one.

The angle-analyser scheme [Lee et al., 2002] encodes the connectivity of a triangular mesh with five
symbols depicted on Figure 2.7. This algorithm also iteratively traverses the mesh triangles through one
of their edges called the gate. If the vertex in front of the gate has not yet been visited, a 'C’ symbol is
generated. If the front vertex has already been visited a ’‘CW’ or '"CCW’ symbol is generated depending on
its location (right or left) of the edge of the new triangle that has not already been visited. If their is no
front vertex, the gate is on a boundary, a 'S’ symbol is generated. Finally, if the front vertex has already

25

been conquered but the two other edges of the new triangle were not, a ’J’ symbol following by an offset to
locate the vertex is generated. The next gate to proceed is chosen in order to maintain the border between
conquered and not conquered regions of the mesh the most convex as possible. This algorithm is reported to
compress manifold mesh connectivity at 1.5 bits per vertex on average. Lee and Park [Lee and Park, 2005]
later showed that this rate can be slightly reduced by using contexts for the arithmetic coder based on the
angle between successive gates.

% @ @B &N

Figure 2.7: The five symbols of the Angle-Analyser encoder. The conquered triangles are in gray. The gate
is in red and the front vertex is in blue.

2.2.5 Valence encoding

Triangle spanning trees can be built on a mesh by starting from an initial triangle and iteratively expending
its boundaries. A symbol is generally generated for each newly processed triangle. The insertion of the
new triangle can add or not a new vertex to the processed region. But as seen in Section 1.2.5, a manifold
triangle mesh contains approximately twice less vertices than triangles. So, an algorithm that focuses on
the insertion of new vertices and generates one symbol per vertex produces less symbols. Consequently, it
may lead to a better connectivity compression performance. One way to describe vertex connectivities is to
encode their valences. Schemes that exploit this idea are called valence-driven approaches.

The pioneering valence-driven approach is the algorithm of Touma and Gotzman [Touma and Gotsman, 1998].
The encoder first adds a dummy vertex to each boundary loop of the mesh to close the connectivity. The
encoder then starts from an initial triangle and pushes its vertices in the active list. Then, it pops a focus
vertexr from the active list and pushes all its adjacent not processed vertices in the active list. The valence
of all these vertices is encoded. The algorithm then continues with another focus vertex popped out the
active list. In some cases, the algorithm needs to code active list split or merge operations with special
symbols like the Cut-Border machine [Gumhold and Strafer, 1998]. This process is illustrated on Figure
2.8. In typical meshes, the valences of the vertices are concentrated around 6. Therefore, the generated list
of vertex valences can be very efficiently compressed by an entropy coder. This algorithm can compress the
connectivity of manifold triangle meshes at about 2.0 bits per vertex. It is still today seen as one of the
most efficient compression method.

Alliez and Desbrun [Alliez and Desbrun, 2001b] proposed some modifications of the original Touma and
Gotsman algorithm to further reduce the compression rates. Their method minimizes the number of split
codes by selecting the next focus vertex in the active list in function of the number of not conquered edges in
its neighborhood. They also improved the coding of the split operations with a prediction method based on
the mesh geometry. Finally, only one dummy vertex is used when a mesh with several boundaries is encoded.
Experimental results report connectivity compression rates up 18% lower than the results of the Touma
and Gotsman encoder with irregular models. The authors demonstrated that their method upper bound
compression rate for an arbitrary mesh matches Tutte’s entropy [Tutte, 1962] (see Section 2.2.2). Thus,
they claimed having demonstrated the optimality of valence-based approaches to encode the connectivity
of manifold triangle meshes. This does not mean that valence-driven approaches always outperforms other
coders. It is possible to construct pathologic examples where other coders perform better. But this means
that it uses no more bits than needed to encode a connectivity [Isenburg, 2002].

The Freelence encoder [Kilberer et al., 2005] has a slightly different approach. Instead of directly en-
coding the valence of vertices, it codes the number of not conquered edges incident to the processed vertex.
This method goes along with a geometry-driven mesh traversal to keep the active list as convex as possible

26

Figure 2.8: An encoding traversal of the Touma and Gotsman algorithm. The active list is represented by
the red edges. The focus vertez is the red vertex. a. The initial mesh. . A dummy vertex is added to close
the mesh. ¢. The three vertices of the initial triangle are added to the active list and encoded. One focus
vertex is selected. d-g. Neighbor vertices are added to the active list and encoded. h. The focus vertex is
moved. i. A new vertex is encoded and added to the active list. j. The active list is split into two. k. The
focus vertex is moved. The dummy vertex is encoded. I. The first active list is completed. The next focus
vertex is taken from the second active list. m. A new vertex is encoded and added to the active list. n. The
focus vertex is moved. o. A new vertex is encoded and added to the active list. The focus vertex is moved.
p. The second active list is completed. The encoding is finished.

like the angle-analyzer encoder [Lee et al., 2002]. This algorithm yields an average improvement of 35%
compared to the Alliez and Desbrun approach [Alliez and Desbrun, 2001b] for the compression of manifold
triangle mesh connectivities.

Mamou et al. [Mamou et al., 2009] proposed an extended valence approach to encode non-manifold
triangle meshes. This algorithm partitions a non-manifold triangle mesh into a set of triangle fans, a set
of triangles that share a common central vertex. For each triangle fan, the encoded information is: its
configuration code among 10 (boundary, faces visited or not), its degree and additional data for cases that
would correspond to a 'merge’ configuration of the Touma and Gotsman algorithm.

27

2.2.6 Compressing polygon meshes

Triangles are the most common types of faces inside meshes but not the only one. The modeling of meshes
with other types of polygons has also its interest (see Section 1.2.1). As a consequence, the compression of
polygon meshes has also been studied in the literature.

An indirect approach to deal with polygon meshes consists in first triangulating the mesh polygon faces
before resorting to an existing method restricted to triangle meshes. While being simple at first glance,
this approach is not efficient when caring about restoring the initial connectivity. It requires encoding an
extra information to remove the edges added during triangulation, and conceptually adds more connectivity
information by adding more edges than necessary. The theoretical result of Tutte’s entropy [Tutte, 1963]
states that the entropy of a planar graph is expressed in bits per edge (see Section 2.2.2). This result
confirms the intuition that adding extra edges increases entropy and hence that the size of the compressed
triangulated mesh is in general superior to that of the compressed original mesh. Consequently, specific
schemes targeted to the compression of polygon mesh connectivity were proposed.

The algorithm of King et al. [King et al., 1999] generalizes the Edgebreaker algorithm [Rossignac, 1999,
Rossignac and Szymezak, 1999| to allow the compression of quad mesh connectivity. Its principle is to split
each quadrangle into two triangles that are on the same Edgebreaker traversal sequence. This leads to efficient
compression of quad meshes connectivity (from 0.25 to 0.85 bits per vertex) because some combinations of
the Edgebreaker algorithm become impossible.

The Face Fizer algorithm [Isenburg and Snoeyink, 2000a] compresses the connectivity of manifold poly-
gon meshes with arbitrary face degrees using a face traversal of the mesh. The encoder generates one symbol
per edge. Experimental results yields connectivity compression rates ranging from 1.7 to 2.9 bits per ver-
tex. The connectivity encoder of Kronrod and Gotsmam [Kronrod and Gotsman, 2000] codes the degree
of each face of the mesh and its relation to the active border. The authors report their method as being
slightly less efficient than [Isenburg and Snoeyink, 2000a| but easier to describe and implement. Liu and Wu
[Liu and Wu, 2006] later showed that much better rates can be obtained by entropy coding the generated
symbols.

Isenburg [Isenburg, 2002] and Khodakovsky et al. [Khodakovsky et al., 2002] independently proposed
valence-based approaches to encode the connectivity of manifold polygon meshes. Inspired by the work of
Touma and Gotsman [Touma and Gotsman, 1998], their approaches encode both the valence of vertices and
faces with a face traversal of the mesh. Khodakovsky et al. [Khodakovsky et al., 2002] demonstrated the
optimality of such schemes by proving that the entropy of the two valence lists matches Tutte’s entropy for
planar graphs [Tutte, 1963]. For both methods, experimental results range approximately from 0.8 to 2.6
bits per vertex, thus improving over the Face Fixer scheme [Isenburg and Snoeyink, 2000a].

Krivograd et al. [Krivograd et al., 2006] proposed an encoder adapted to the compression of quad meshes
connectivities. Based on a quad traversal through halfedges, it generates four main different symbols. Exper-
imental results shows that it is slightly more efficiency (10 percent) than the encoder from [Isenburg, 2002]
to compress the connectivity of quad meshes with more than 20000 vertices.

2.2.7 Compressing volume meshes

The compression of volume meshes has also been studied in the literature because they are used a lot for
the simulation of physic phenomenon.

Szymczak and Rossignac [Szymczak and Rossignac, 1999] proposed a spanning tree approach to encode
tetrahedral meshes. The compressed format is composed of a tetrahedral spanning tree string and a folding
spanning tree. This second tree codes the folding operations on the tetrahedral spanning tree edges needed
to restore the initial mesh. This scheme encodes a tetrahedral mesh with about 7 bits per tetrahedral.
Gumbhold et al. [Gumhold et al., 1999] proposed a border extension approach based on the original Cut-
Border machine [Gumhold and Strafer, 1998]. But here, instead of being a curve composed of edges, the
border is a surface composed of triangles. Ten different symbols encode the connectivity. The connectivity
of the tested tetrahedral meshes is compressed at less than 2.4 bits per tetrahedron.

28

Isenburg and Alliez [Isenburg and Alliez, 2002a] investigated the compression of hexahedral volume
meshes with a valence-driven approach. It encodes the mesh edge degrees, their number of incident faces,
during an iterative traversal of all the mesh hexahedra. The obtained average compression rate is 1.5 bits
per hexahedron for the tested models. The hexahedral mesh connectivity compressor of Krivograd et al.
[Krivograd et al., 2008] first compresses the mesh boundary with the quad mesh connectivity encoder from
[Krivograd et al., 2006]. Then, the interior of the mesh is compressed with six different symbols and vertex
degrees. Experimental results show that this approach compresses better (up to 50%) big meshes with a
low genus compared to the scheme of Isenburg and Alliez [Isenburg and Alliez, 2002a]. However, smaller
models are compressed worse (up to 45%).

Lindstrom and Isenburg [Lindstrom and Isenburg, 2008] proposed an original approach to compress hexa-
hedral mesh connectivity. Their method encodes the vertex indices from the input file indexed data structure.
In this file, the hexahedra are described by a table with 8 columns of vertex indices. The principle is to
compress independently each column of the table. Indeed, if the vertices are coherently ordered, a context of
few indices can accurately predict the next value. The prediction residual are then coded with byte-aligned
variable length coding. The obtained string is later compressed by a standard gzip data compression algo-
rithm. Even if this algorithm is not as efficient as state-of-the-art approaches, it has numerous advantages.
Among them, it is fast and memory efficient. It processes non-manifold meshes without any adaptation. It
is easy to implement: it does not need any particular mesh data structure and it heavily relies on the freely
available data compression algorithm gzip.

Prat et al. [Prat et al., 2005] described a generic algorithm to compress the connectivity of any kind
of manifold meshes (surface or volume, orientable or not, with arbitrary face or cell degrees). They based
their scheme on a generalized map data structure containing a single type of primitive elements called darts.
Connectivity relations between these elements called involutions are also stored. Even if this method is not
competitive in term of compression rates with specialized approaches, its main advantage is its genericity.

2.3 Geometry compression

As seen in the Section 2.2.2, the first mesh compression approaches were inspired by work on compact
encoding of planar graphs and focused on the encoding of the mesh connectivity. Yet, the geometry also
takes up a significant part of the mesh data, often the biggest. Consequently, efficient geometry compression
schemes are also very important.

Usually the compression of the geometry of a mesh begins with the gquantization of all the coordinates
of its vertices. Then, during each compression iteration, the position of an encoded vertex is predicted from
its already encoded neighbors. If the prediction is accurate, the prediction error or residual, the difference
between the predicted position and the real position of the inserted vertex is small. So, it can be later
efficiently entropy-coded.

2.3.1 Quantization

In input files, or in the memory of computers, the vertex coordinates in the space are often represented
by 3 IEEE 32-bit floating-point numbers. As reported by Deering in [Deering, 1995], this representation
allows positions “to span the known universe: from a scale of 15 billion light years, down to the radius of
sub-atomic particles”. The precision provided by such a representation is not needed for most applications.
So quantization can significantly reduce the quantity of data to encode without any identifiable quality loss.

Scalar quantization consists in transforming the floating-point number positions into integer positions.
The mesh bounding box is partitioned into a 3D grid. The number of cells per axis depends on the
maximum integer that can be coded with the number of quantization bits. The size of each cell can be
either uniform or non-uniform. Each vertex of the mesh is moved to the center of the cell it belongs
to. The integer position is then composed of the three index coordinates of the cell. The Figure 2.9
illustrates this process.

29

Most of the geometry encoders that go along with the previously described well-known connectivity
compression schemes [Deering, 1995, Taubin and Rossignac, 1998, Rossignac, 1999, Touma and Gotsman, 1998|
use a uniform scalar quantization. The number of quantization bits usually ranges from 8 to 16. Lossy
compression is therefore applied to the mesh geometry contrary to the connectivity.

a. b.

Figure 2.9: Uniform scalar quantization example of a 2D mesh. a. The mesh before the quantization. b.
The mesh after a 2 bits quantization. Vertices are moved to the center of the cells. Some triangle disappear
because they become flat.

Bajaj et al. [Bajaj et al., 1999] and then Lee et al. [Lee et al., 2002] proposed to encode the vertex po-
sitions with three angles. For the angle-analyzer encoder [Lee et al., 2002] two internal angles and one
dihedral angle are computed. Instead of being performed on global vertex coordinates, the quantiza-
tion is performed on these local angles. By applying different quantizations to the different angles, this
method can achieve a better rate-distortion performance. The quantization ranges can be set before
the compression. An alternative method is to determine bounding ranges for all the vertex positions
encoded in the local frames with a first mesh traversal. These positions are locally quantized and
encoded in a second step. Lee and Park [Lee and Park, 2005] proposed to locate the vertices within 4
different range sizes as they noticed that very few vertices are located in the biggest range. To encode
the position of the vertex within a range, the ranges are more or less subdivided depending on their
size. The position of the vertex is therefore encoded by the type of the range and the subcell number.

Vector quantization is an alternative technique that divides the set of points to quantize into arbi-
trary shaped groups. Quantization cells are no longer cuboids. Their shape can better adapt to
the data. Each group has a representative point. All of these points constitutes the codebook that
must be saved with the compressed data. For mesh geometry compression, it was not applied di-
rectly to vertex positions as with scalar quantization but it was applied to the prediction residual
vectors. Vector quantization has experimentally demonstrated its ability to achieve better rate-
distortion performance than scalar quantization technique [Lee and Ko, 2000, Chou and Meng, 2002,
Bayarzit et al., 2007, Chen et al., 2010, Meng et al., 2010]. However, the determination of the quanti-
zation cells can lead to intensive computations. All of these schemes, except [Lee and Ko, 2000], use
vector quantization with parallelogram prediction (see Section 2.3.2). Some approaches [Li et al., 2007,
Lu and Li, 2008] dynamically build codebooks for different qualities by just varying a parameter.

2.3.2 Prediction

The first mesh compression approaches [Deering, 1995, Chow, 1997] only used delta prediction. This method
assumes that two vertices close in the mesh connectivity graph are close in the 3D space. So, the position
of the next vertex to encode is predicted to be the position of the previous vertex. The delta, the vector
between the two positions, is then encoded. Bajaj et al. [Bajaj et al., 1999] uses a second order predictor
that encodes the differences between consecutive delta predictions.

30

The topological surgery algorithm [Taubin and Rossignac, 1998] uses linear prediction. The position of
the next vertex to encode is predicted to be a linear combination of the K previous vertices in the vertex
spanning tree. The K parameters of the linear function minimize the mean square prediction error over the
mesh. Their values are stored in the compressed file to be available to the decoder.

Besides valence-driven connectivity encoding, Touma and Gotsman also introduced parallelogram predic-
tion [Touma and Gotsman, 1998]. Like valence-driven connectivity encoding, parallelogram prediction is a
founding idea that has inspired many later schemes. The compression algorithm introduces a new vertex
with a triangle from one edge. The new vertex predicted position forms a parallelogram with the two edge
vertices and the third vertex of the opposite triangle (Figure 2.10 a). However, this prediction assumes
incorrectly that the whole mesh is planar. A better prediction could be obtained by taking into account
the crease angle between the two triangles. So the authors proposed to estimate this angle with the crease
angles between the reference triangle and its adjacent triangles already encoded. Experimental results show
that triangle mesh geometry can be compressed at about 8.5 bits per vertex with a 8 bit quantization.

The dual parallelogram prediction [Sim et al., 2003] uses the average position given by two parallelogram
predictions whenever it is possible (Figure 2.10 b). Dual parallelogram can be used in about 75 percent of
the cases. It results to slight improvements over parallelogram prediction.

Figure 2.10: Parallelogram prediction. The already encoded part is in gray. a. Simple parallelogram
prediction. b. Dual parallelogram prediction. The predicted position is the average of the two parallelo-
gram prediction. ¢. Freelence prediction. The predicted position is the average of the three parallelogram
prediction.

Isenburg and Alliez [Isenburg and Alliez, 2002b] showed that parallelogram prediction can also be used
for the geometry compression of polygon meshes with arbitrary face degrees. As polygons are in most cases
fairly planar and convex, they noticed that predictions within polygons (Figure 2.11 b) are more accurate
than predictions across polygons (Figure 2.11 a). By performing as many as possible inner predictions, this
method can reduce the compression rate by 10 to 40 percent. Isenburg et al. [Isenburg et al., 2005a] later
presented a generalization of the parallelogram prediction for arbitrary polygons. Missing vertex positions
of a polygon are predicted with weights computed for polygons of different degrees with different known
vertices. These weights come from a Fourier decomposition of polygons where the highest frequencies are
set to 0 to ensure that the polygon are nicely shaped.

The Freelence coder [Kilberer et al., 2005] uses the combination of three parallelogram predictions to
encode the geometry of triangular meshes: two standard ones, as with dual parallelogram prediction, and a
new one applied across a virtual edge joining the two outer vertices (Figure 2.10 ¢).

Cohen-or et al. introduced multiway prediction [Cohen-Or et al., 2002]. The principle is to predict
the position of new vertices with as many as possible parallelogram predictions based on already encoded
vertices (see Figure 2.12). The model to compress is first segmented. The position of the boundary vertices
are explicitly encoded. Then the algorithm builds a rough approximation of the mesh. It starts from
boundary vertices and iteratively computes the multiway prediction of inner vertices. A relaxation approach
tries to keep the edge lengths uniform. Finally a smoothing operation is applied to vertex positions. The
difference between the current positions of vertices and their real position is compressed. In a similar way,
the geometry predictor of Gumhold and Amjoun [Gumhold and Amjoun, 2003] performs as many as possible

31

Figure 2.11: Parallelogram prediction for quadrangles. a. Across quadrangles. b. Within quadrangle. The
encoded region of the mesh is in light gray. The known vertices are filled in back. The prediction error is
represented by the blue segment.

parallelogram predictions to determine the tangential components of the prediction. However, to estimate
the normal component, encoded by a dihedral angle, the encoder fits a high order surface to the already
encoded part of the geometry. The predicted position is therefore at the intersection of the higher order
surface with the circle defined by the tangential components. Ahn et al. [Ahn et al., 2006] also use as many
as possible parallelogram predictions. They also added their own dihedral angle prediction scheme that
averages all the neighboring dihedral angles.

Figure 2.12: Multiway prediction. The encoded parts of the mesh are in gray. The predicted position is the
average of the four parallelogram prediction.

Recently, Vasa and Brunett [Vasa and Brunnett, 2013] proposed weighted parallelogram prediction meth-
ods, which weights are calculated in function of the vertex valences. The three proposed weight calculation
methods have an increasing computational cost. Experimental results report that residuals have a computed
Shannon entropy up to 20 lower than with standard parallelogram prediction.

Courbet and Hudelot [Courbet and Hudelot, 2011] used a Taylor expansion to determine prediction
weights for various prediction stencils. This method allows to theoretically determine the best weights
for the parallelogram prediction [Touma and Gotsman, 1998]. It proves that the Freelence weights
[Kélberer et al., 2005] work better than the dual parallelogram prediction weights [Sim et al., 2003] and
determines better weights for the polygon prediction [Isenburg et al., 2005a].

Regarding volume meshes, Gumhold et al. [Gumhold et al., 1999] resorted to delta coding to encode the
geometry of tetrahedral meshes. Isenburg and Alliez [Isenburg and Alliez, 2002a] compressed the geometry
of hexahedral meshes with intra and inter hexahedron parallelogram predictions.

32

2.3.3 Geometry-driven compression

For a compressed mesh, the size of the geometry information is often superior to the size of the connectivity.
Nevertheless for most algorithms, the encoding is driven by the mesh connectivity. So, the idea of focusing
on geometry encoding before connectivity has emerged in the mesh compression community.

Kronrod and Gotsman [Kronrod and Gotsman, 2002] designed a compression scheme where the mesh
encoding is driven by the geometry. This approach builds a mesh cover tree that contains all the mesh
vertices. This tree, which defines a particular traversal of the mesh vertices, is generated to minimize the
parallelogram prediction errors needed for each vertex position. The geometry compression becomes up
to 50 percent more efficient at the cost of a slightly higher connectivity compression rate. This approach
particularly benefits to CAD models, which often have a non-smooth geometry.

The tetrahedral mesh compression scheme of Chen et al. [Chen et al., 2005] is also driven by the geometry.
It tries to build an optimal traversal tree that minimizes the prediction errors of the new vertex positions.
The used predictor is the generalization of the parallelogram prediction for tetrahedral meshes.

Shikhare et al. [Shikhare et al., 2001] pushed the geometry-driven compression idea one step further.
Their scheme tries to find repeated geometric patterns inside 3D models. The recognized patterns can be
either components, regions within components or region across components. This approach particularly
benefits to large CAD or digital heritage models. Cai et al. [Cai et al., 2009] later proposed a similar scheme
that achieves slightly better performance. They included scaling transformations for the repeated patterns.

The connectivity encoding of the previous schemes is guided by the mesh geometry. But the mesh ge-
ometry and connectivity are compressed at the same time and their data is interleaved in the compressed
stream. Lewiner et al. [Lewiner et al., 2005, Lewiner et al., 2006] with the GEncode algorithm proposed an
alternative geometry-driven encoding technique. The mesh geometry is first compressed completely indepen-
dently from the connectivity by encoding a kd-tree decomposition of the quantized space. Then, a surface
reconstruction algorithm iteratively attaches new triangles to the border of the mesh by selecting a new
vertex among candidates around. The reference to the right vertex among the candidates is encoded. This
algorithm can compress any kind of triangle meshes. This approach is very competitive for the compression
of tetrahedral meshes [Lewiner et al., 2006] compared to the Grow & Fold [Szymczak and Rossignac, 1999]
and streaming [Isenburg et al., 2006] approaches.

In a similar idea, Chaine et al. [Chaine et al., 2007, Chaine et al., 2009] proposed a mesh connectivity
compression scheme based on surface reconstruction. For the decompression, this technique assumes that
the geometry has already been decoded. For both the encoding and decoding, a Delaunay triangulation
is generated from the point sets. Then a convection algorithm, sometimes constrained by encoded orders,
restores the initial connectivity of the input mesh. The connectivity of meshes generated with similar
techniques is therefore encoded at a very low cost.

2.3.4 Compressing floating-point positions

As described above, most of the mesh compression algorithms quantize the coordinates of the vertices.
But some applications may require the exact restoration of the floating-point coordinates. Isenburg et al.
[Isenburg et al., 2005b] investigated the lossless compression of floating-point geometry. The floating-point
coordinates are broken into sign, exponent, and mantissa components. The prediction errors of these com-
ponents are compressed independently with different arithmetic contexts. This method is able to compress
the geometry of a mesh at about 35 bits per vertex.

2.4 Handling large meshes

Some models are too large to fit into the main memory of computers. As swapping (using a part of the hard
disk as an extension of the main memory) is generally not an efficient solution, out-of-core schemes were
designed to compress such models. Out-of-core algorithms allow to process a mesh without fully loading it

33

in the main memory of the computer. The different parts of the mesh are dynamically loaded and unloaded
depending on the currently processed region of the mesh.

In [Ho et al., 2001], the authors proposed to partition the input model. Each part is then compressed
independently in-core. The Edgebreaker compression algorithm [Rossignac, 1999] compresses the connec-
tivity. Additional symbols are integrated to stitch the parts together during the decompression. For the
geometry compression the parallelogram prediction [Touma and Gotsman, 1998] is used. In the same idea,
Ueng [Ueng, 2003] proposed to compress large tetrahedral meshes connectivity by dividing them into blocks
called octans with an octree data structure based on the geometry. Each octan is compressed in-core by
encoding tetrahedral strips.

Isenburg and Gumbhold [Isenburg and Gumbhold, 2003] proposed an out-of-core mesh data structure for
the compression of large polygon meshes. This data structure is built on a segmentation of the input
mesh. However, contrary to the previous out-of-core approaches, the clusters are compressed together with
a streaming approach. During the compression, the data structure dynamically loads the mesh clusters that
are on the active list of the Touma and Gotsman encoder [Touma and Gotsman, 1998] and unload them
when they are no longer needed. The decompression is performed with a small memory footprint composed
only of the active list. The authors claim that the obtained compression rates are about 25 percent lower
and the decompression speeds about 100 times faster than Ho et al. scheme [Ho et al., 2001].

Following their idea of processing meshes with a streaming approach, Isenburg and Lindstrom
[Isenburg and Lindstrom, 2005] proposed a general 1/O efficient streaming format for meshes. This
format interleaves indexed triangles and vertices with extra information describing when mesh elements are
introduced and finalized. Therefore, the application keeps only in memory the small active part of the mesh
currently being processed. The authors propose several strategies to reorder the meshes indices in a layout
compatible with streaming.

This framework has been the basis of several streaming compression techniques such as [Isenburg et al., 2005¢]
for triangle meshes, [Isenburg et al., 2006] for tetrahedral meshes and [Courbet and Isenburg, 2010] for hex-
ahedral meshes. Compared to their non-streaming counterparts, these techniques have in general equivalent
geometry compression rates but higher connectivity compression rates. Yet, the I/O efficiency of the
streaming approach allows them to compress large meshes quickly with a very low memory footprint.

2.5 Compression and remeshing

Most of the compression schemes do not alter the connectivity of the mesh. But some applications do not
require the restoration of the initial connectivity after the decompression. In this case, the compression rates
can be further improved by exploiting this new degree of freedom.

Szymczak et al. [Szymczak et al., 2002] proposed a remeshing algorithm that produces piecewise regular
meshes. The input mesh is first segmented into approximately flat regions called reliefs. Each relief belongs
to one of six different directions. They are then resampled over a regular hexagonal grid defined by three
families of parallel lines. All the original vertices, except the boundary ones, are collapsed. A stitching
algorithm reforms a closed mesh. This scheme is associated with an Edgebreaker compression algorithm
optimized for regular meshes for the connectivity. The tangential and normal components of the geometry
are compressed independently. The Swingwrapper scheme [Attene et al., 2003] produces also a semi-regular
meshes. It aims at generating isosceles triangles to encode only one quantized dihedral angle when their
inserted vertex is encoded by an Edgebreaker encoder.

2.6 Conclusion

Pioneering work on single-rate mesh compression focused on connectivity encoding. Schemes based on
triangle strips allowed to encode efficiently the mesh connectivity. The aim was to speed up the rendering
by transferring quickly data between the CPU and GPU memory. Work on compact graph coding later

34

inspired approaches based on the encoding of vertex spanning trees. Better compression rates were obtained
by compressing face spanning trees rather than vertex spanning trees. The best compression performances
were obtained by valence-driven schemes, which optimality was proven. Seeing that the size of the geometry is
often much more significant than the size of the connectivity, the community started getting more interested
in developing efficient geometry predictors and quantization methods. We summarized in the Table 2.1 what
we judged as the main single-rate mesh compression approaches.

Connect. Compress | Embed
Algorithm comp. polygon strips Remarks
rates (bpv) meshes
Deering
[Deering, 1995] 1 1o yes
Topological surgery
[Taubin and Rossignac, 1998] 25107 1o 1o
Cut border machine 44
[Gumhold and Strafer, 1998] on avg. 1o 1o
Edgebreaker
[Rossignac, 1999] 3.55 max. no yes
[Gumhold, 2000]
Touma & Gotsmam 2.3 Introduced parallelogram
[Touma and Gotsman, 1998] on avg. 1o no prediction for geom. coding
Valence polygonal 1.8 Proven near-optimality
[Khodakovsky et al., 2002] on avg. for yes no of the connect. coding
[Isenburg, 2002] poly. meshes
Valence coder 2.1 Proven optimality
[Alliez and Desbrun, 2001a] on avg. 1o 1o of the connect. coding

Table 2.1: Summary of the main single-rate compression algorithms approximately ranked by their connec-
tivity compression performance.

Looking at the entries of the Table 2.1 and more generally the references of this chapter, the period 1998-
2003 seems to have been the golden age of mesh compression. It is during this period than most of the main
approaches were proposed. Among them, the Touma-Gotsman algorithm [Touma and Gotsman, 1998] has
left its strong mark as it introduced two major concepts: valence-driven encoding for connectivity encoding
and parallelogram prediction for geometry encoding. It is still seen today as one of the most efficient method.

We see the future of single-rate mesh compression directed by the following points.

Geometry compression. While no major progress seems to have been done lately on connectivity encoding
because the optimality of valence encoding was proven, we think that there is still some perspectives
for the geometry compression. Efficient mesh geometry compression is an important challenge as it
often constitutes the bigger part of the compressed data.

Genericity. Some of the already proposed approaches can already compress meshes with specific connec-
tivities but we think that an algorithm that can process meshes of arbitrary topology (arbitrary genus,
surface or volume, manifold or not, with borders or not...) at a low cost may be of great interest for
the industry. The proposal of such algorithm could help the process of standardization already begun
in the MPEG or X3D communities.

Parallelism. As the architecture of modern computers is evolving from one core too many cores, the design
of parallel mesh compression algorithms may be the future trend to cope with the non-stopping in-
crease of data size. This work has actually already begun. A straightforward way to parallelize a mesh
compression algorithm can be to segment the input mesh and assign one thread to one cluster. The com-
pression and decompression are then run independently on each chart. Zhao et al. [Zhao et al., 2012]
followed this approach in their encoder based on the Edgebreaker scheme [Rossignac, 1999]. Recently

35

Meyer et al. [Meyer et al., 2012] proposed a more innovative method. They built a new mesh com-
pression scheme based on generalized triangle strips encoded in parallel with scan-operations. Both
approaches did not, however, address the problem of parallel geometry compression.

The next chapter is a state-of-the-art about progressive mesh compression. Contrary to single-rate
algorithms, progressive schemes build a multiresolution representation of the input model useful for the
transmission and the adaptation of the data.

36

Chapter 3

State of the art on progressive mesh
compression

3.1 Introduction

Compression is a efficient tool for mesh storage and transmission because its aim is to reduce the data size.
To access to a compressed model, single-rate algorithms presented in the Chapter 2 require the full data to
be downloaded (in a transmission context) and decompressed. If the input model is large, these operations
can take a significant time. More interactivity can be provided by allowing the user to first access to a coarse
version of the compressed model, called the base mesh. Then, as more data is received and decompressed, the
base mesh is progressively refined until the input model is restored. The generated multiresolution structure
is also useful to adapt the mesh resolution to the device capabilities. For instance, a high performance
graphic station may not render the same level of detail as a smartphone.

The main focus of progressive mesh compression schemes has always been to achieve the best rate-
distortion performance. The generated levels of detail must be as close as possible to the input model
while being coded with the lowest possible number of bits. Consequently, the performance of progressive
mesh compression algorithms is not only measured with final compression rates but also with rate-distortion
curves. In the literature, the Hausdorff distance or the Root Mean Square (RMS) distance have often
been chosen as distortion measures. Moreover, they were implemented in the well-known METRO tool
[Cignoni et al., 1998].

Most of the progressive mesh compression algorithms generate levels of detail thanks to decimation
operators. These operators iteratively simplify the input model by removing vertices, faces and edges and
locally remeshing the surface. Progressive mesh compression is therefore highly related to mesh simplification.
Metrics adapted to the decimation operators have also been proposed to drive the mesh simplification or to
forbid the removal of important vertices during the progressive compression.

This chapter is a review on progressive mesh compression algorithms. We classified the progressive mesh
compression algorithms into two categories.

Connectivity-preserving schemes restore during the decompression the connectivity of the input model.
We listed them in the Section 3.2.

Connectivity-oblivious schemes resort to remeshing to encode an input model with a higher compression
performance. We listed them in the Section 3.3.

The chapter ends with a conclusion that proposes perspectives for future work in this research field.

37

3.2 Connectivity-preserving schemes

The compression schemes described in this section restore the compressed model with no connectivity mod-
ification when the full data is decompressed.

3.2.1 Edge collapse and vertex split

Hoppe first introduced the concept of progressive meshes (PM) [Hoppe, 1996]. The idea is to incrementally
decimate a mesh using the edge collapse operator (see Figure 3.1) driven by an optimization procedure that
minimizes an energy function. The energy function includes a term that aims at minimizing the squared
distance between the simplified and input meshes. A second term aims at regularizing the mesh faces.
The third and fourth terms preserve the scalar and discontinuous attributes of the original mesh. The
compressed representation consists of the base mesh followed by all parameters required for the incremental
reverse operations, called wvertex splits. Hoppe encoded the connectivity of a vertex split by storing the index
of the vertex vy and approximately five bits to select the vertices v; and v, among the vertices adjacent to v
(see Figure 3.1). For the geometry encoding, the vertex positions are globally quantized and encoded through
delta prediction. The main advantage of this scheme is its high multi-resolution granularity, together with
the possibility to perform selective refinement during decoding. Such granularity is achieved at the cost of
low compression rates: in the order of 37 bits per vertex (bpv) with 10 bits quantization.

Popovié and Hoppe in [Popovié¢ and Hoppe, 1997] generalized the PM representation to arbitrary simpli-
cial complexes. They introduced the generalized vertex split and its inverse, the vertex unification operations
for simplices of any dimension (see Section 1.2.3). With this representation, an arbitrary triangulation re-
quires about 50 bpv with a 10 bit quantization.

Edge collapse

Vertex split

Figure 3.1: Edge collapse and vertex split operations. The edge collapse merges the vertex v, with the vertex
vs. The vertex split inserts the vertex v, and the two triangles with the red edges.

In order to come closer to compression rates of single-rate methods, some methods were proposed to
encode the vertex split operations in batches. Taubin et al. [Taubin et al., 1998] build a progressive mesh
compression scheme inspired by the single-rate topological surgery algorithm [Taubin and Rossignac, 1998]
(see Section 2.2.3). Their progressive forest split representation encodes a manifold triangular mesh with a
base mesh and a sequence of forest split operations. The forest split operation, during the decompression,
consists in cutting the mesh through several sets of connected edges (the trees), filling the generated holes
with triangles and relocating the vertices. The connectivity is encoded by marking the cut edges and the
way the holes are retriangulated. After a tree split has been performed, the vertex position are smoothed
and then restored to their original position thanks to an encoded geometry correction.

Pajarola and Rossignac [Pajarola and Rossignac, 2000] proposed to perform as many as possible edge
collapse operations to generate of a new level of details. Vertex splits are then encoded by building a
vertex spanning tree on the mesh and marking each split vertex. The cut edges of the vertex splits are
encoded by their indices in the sorted list of the edges incident to the split vertex. This list starts from
the edge that links the split vertex to its parent in the spanning tree and contains the other adjacent

38

Figure 3.2: Progressive forest split. a. The input mesh. b. Cut along the edge of the tree in red. ¢. A finer
level of detail is obtained after the retriangulation of the holes.

edges added in a clockwise order as shown on Figure 3.3 a. The distortion introduced by an edge collapse
is measured with a variation of the Quadric Error Metric [Garland and Heckbert, 1997]. To improve the
geometry encoding, they designed a new prediction scheme inspired by the Butterfly subdivision scheme
[Zorin et al., 1996]. In [Pajarola and Rossignac, 2000], the vertex positions are uniformly quantized but Li
et al. [Li et al., 2006] later demonstrated that the use of vector quantization (see Section 2.3.1) improves
the rate-distortion performance of the algorithm.

Cut edges
encoding

{0,3}

{14}

Figure 3.3: Encoding of compressed progressive meshes. a. The vertex spanning tree is represented by the
red edges. The doted edges represent the cut edges. b. Level of detail obtained after the vertices were split.
The red faces were added by the split operations.

Karni et al. [Karni et al., 2002] adapted the Pajarola and Rossignac scheme [Pajarola and Rossignac, 2000]
to design a progressive compression scheme which enables the fast rendering of all the LODs with vertex
buffers. Vertex buffers have been introduced by the graphic hardware manufacturers to accelerate rendering
with the reuse of vertex data through generalized triangle strips (see Section 2.2.1). The first step of the
proposed algorithm is to create an efficient vertex rendering sequence composed of series of incident vertices.
The mesh is then decimated by collapsing edges along this sequence.

Better compression ratios are achieved with these approaches (about 30 bpv [Taubin et al., 1998] and 22
bpv [Pajarola and Rossignac, 2000] for 10 bits quantization). Nevertheless the multiresolution granularity is
impacted compared to the PM representation.

More recently Cellier et al. [Cellier et al., 2012] described a parallel simplification algorithm based on
edge collapse. It consists in searching and performing in parallel, for each point of the mesh, the collapse that
has the lowest cost in its 2-ring neighborhood. The refinement approach is suitable for mesh compression
and streaming. Vertex splits operations are encoded in batches in order to double the number of vertices per
level of detail. They are described by the valence at which the two inserted vertices will become candidates

39

for a split, the indices of the split edges and one bit specifying how the new vertices are connected to the
generated triangles. The authors report connectivity compression rates of about 15 bits per vertex.

3.2.2 Vertex removals

Other progressive compression schemes use vertex removals instead of edge collapses. Li and Kuo
[Li and Kuo, 1998b] pioneered a method based on vertex removal followed by a local patch retriangulation.
The connectivity is encoded with a local index which specifies the patch pattern and a global index which
locates this pattern in the whole mesh. The geometry data is encoded with a barycentric error prediction.
The authors also pioneered the idea of adapting the vertex quantization along the transmission of the LOD.

Cohen-Or et al. [Cohen-Or et al., 1999] used the same decimation mechanism. However, they grouped
the vertex removal into batches to generate discrete levels of detail. For the generation of a new level, all
the patches of the removed vertices must be independent. The patches are then identified by assigning the
same color to triangles belonging to the same patch. Two adjacent patches must of course have a different
assigned color and the triangles that do not belong to a patch have a null color assigned. The authors
remarked that, in most cases, 3 colors are enough that can be coded with 2 bits per triangle (see Figure 3.4).
A deterministic Z-triangulation of the patches is also proposed to encode the patch pattern with only one bit
per triangle. The triangles inside the Z have the 1 bit assigned while the others have the 0 bit. Compression
rates competitive with single rate techniques can be achieved with this method (about 23bpv with 12 bits
quantization).

' lAﬁA‘VA

AV viva

ST
W,

. ﬂAA

Figure 3.4: Progressive compression with colored patches. a. The red vertices are selected to be removed.
b. The red vertices were removed. Patches have been remeshed and assigned a color among three.

Alliez and Desbrun [Alliez and Desbrun, 2001a] proposed what could be seen as a progressive version
of the Touma-Gotsman single-rate encoder [Touma and Gotsman, 1998]. At each iteration, the mesh is
decimated by two deterministic mesh traversals. The decimating conquest removes vertices with a valence
inferior or equal to 6. Considering the border vertices, only vertices with a valence of 3 or 4 are removed. A
deterministic retriangulation strategy fills the created holes. The cleansing conquest removes only valence 3
vertices. The mesh connectivity is encoded through the valence of the removed vertices plus one null patch
code to encode triangles not belonging to patches. Border vertices are encoded with specific symbols that
are different from valence 3 and 4 inner vertices. As the patches are retriangulated in a deterministic way
set by the mesh traversal, the decompression, which performs the same traversal, can restore the initial
connectivity with only these integer codes. As valence approaches have demonstrated their high efficiency to
compress single-rate meshes (see Section 2.2.5), this technique improves significantly progressive connectivity
encoding compared to previous approaches. The geometry is encoded through the patch barycentric error
prediction in a local Frenet frame. To prevent the decimation of important vertices, the author proposed

40

a metric based on the volume of the patch to decimate. The obtained compression rates are about 21 bpv
with 12 bit quantization.

Figure 3.5: Decimation of a regular mesh by the Alliez-Desbrun progressive encoder. a. The red vertices
and the red edges of the input mesh will be removed by the decimating conquest. b. The deterministic
triangulation fills the holes with the green edges. The blue vertices will be removed by the cleansing conquest.
c. The obtained decimated mesh.

Since valence-driven encoding of the mesh connectivity has demonstrated its efficiency for single-rate and
progressive mesh compression, the original Alliez-Desbrun has inspired a lot of numerous derived schemes
that have improved its rate-distortion performance.

For instance, Cheng et al. [Cheng et al., 2006, Gang et al., 2010] forbid during the decimation conquests
the removal of some vertices called anchors, detected by their principle curvatures. Experiments show that
keeping these vertices in all levels of detail allows to improve the rate-distortion performance.

Lee et al. [Lee et al., 2012] demonstrated that the rate-distortion trade-off of the Alliez-Desbrun coder
is improved by using an adaptive quantization method. The idea consists in interleaving decimation op-
erations with global quantization operations. The decimation operations are the classic Alliez-Desbrun
decimation and cleansing conquests while the quantization operations are encoded with Peng and Kuo ap-
proach [Peng and Kuo, 2005] (see section 3.2.3). The decision of performing a decimation or a quantization
operation can be made with a costly optimal approach that computes both meshes and chooses the one
with the smallest distortion. The authors also show that this optimal behavior can be approximated with
a parameterized formula. They obtain both better R-D performances and compression rates (about 1bpv
improvement with a 12 bit quantization).

Ahn et al. [Ahn et al., 2011] proposed another improvement of the Alliez-Desbrun coder through an
optimized mesh traversal to maximize the number of removed vertices per decimation step. A curvature
prediction is also used for encoding the geometry. The latter shares the general idea of spectral methods
(see. Section 3.2.6) because a topology-based Karhunen-Loéve transform concentrates the distribution of
geometry residuals. The residuals are entropy coded with a bit plane coder. Decimation conquests are
interleaved with the transmission of bit planes to improve the R-D performance. They significantly improve
the compression rates of the Alliez-Desbrun coder (about 4 bpv reduction with a 12 bit quantization).

Lee et al. |Lee et al., 2011] significantly improved the geometry compression (up to 60%) by introducing
two new prediction methods. The dual ring prediction aims at having the same barycentric prediction for
one vertex and its one-ring neighbor vertices. The minimum mean square error prediction constructs a linear
predictor based on vertices having a topological distance of 1 or 2 with the predicted vertex. The algorithm
first segments the input level of details by an algorithm based on the mesh connectivity. Then, the most
efficient method is chosen to encode each cluster.

To improve the connectivity encoding, Kim et al. [Kim et al., 2011] proposed to predict the valence of the
current patch inserted vertex during the decoding. With the geometry information, each patch possibility
corresponding to one valence value is tried. The position of the inserted vertex is provided by the encoded
geometry information. Then all the possibilities are ranked by measuring the regularity of the generated

41

triangle. The predicted possibility is the one with the highest regularity. For each level of details, the
frequencies of each valence value is also used for better prediction.

3.2.3 Geometry-driven progressive mesh compression

As with single-rate mesh compression (see Section 2.3.3), the idea of focusing on geometry compression
before connectivity has also been tested for progressive mesh compression.

In the scheme of Gandoin and Devillers [Gandoin and Devillers, 2002], the vertex positions are stored
in a kD-tree by cell subdivision. The algorithm starts by constructing a cell that contains all the mesh
vertices. Its width is equal to 2¢ where ¢ is the number of quantization bits. The number of vertices inside
the cell is encoded. This cell is successively split in the three axis directions. For each split, the number
of vertices contained in one sub-cell is entropy coded. The number of vertices of the second generated cell
can be calculated with the number of vertices of the parent cell. After the three subdivisions of the root
cell, the obtained child cube cells are recursively split in the same way and the vertices become more and
more accurately localized. The subdivision process stops once the precision set by ¢ is reached. The Figure
3.6 illustrates this process in 2D. To encode the connectivity, cells and their vertices are remerged through
edge collapse and vertex unification operations. The reverse vertex splits and generalized vertex splits are
encoded with prediction mechanisms based on the geometry.

® o ® o ® o
o W . 44 0
° °
° 7 ° °
° ° °
e o e o o o
2 le e
| © | ©
) ° 010]2e]|1
o |o |2 o |eo

Figure 3.6: Progressive geometry encoding of the Gandoin-Devillers algorithm in 2D. For each step, the
emitted symbols are the numbers that represent the number of vertices in each cell.

Peng and Kuo also developed a geometry-driven progressive mesh compression algorithm [Peng and Kuo, 2005]
based on an octree data structure. After a subdivision, instead of encoding the number of vertices inside
each cell as in [Gandoin and Devillers, 2002], the number of non-empty child cells is encoded. Then, the
neighbor vertices allow to predict which cells may be non-empty. Rate-distortion performance is improved
by prioritizing the subdivision of important cells. The connectivity of the mesh is encoded through vertex
splits. The number of vertices connected to the two vertices generated by the split, called pivot vertices is
encoded. Then a prediction algorithm based on the geometry determines the most probable candidates.
Triangle meshes are compressed at about 15 bpv with a 12 bit quantization. Tian et al. [Tian et al., 2012]
later proposed an alternative method to predict non-empty cells based on smoothness measure. They also
rank the cell to subdivide only with their valence.

42

Hongnian et al. [Hongnian et al., 2009] used a binary tree to progressively encode the geometry informa-
tion of a mesh. The mesh bounding box is divided into cells, which contains an unique vertex. To construct
the binary tree, the mesh bounding box is recursively split sequentially in the three axis directions and the
child cell are numbered accordingly. After a subdivision, a symbol among 3 is emitted to code if the left,
right or both cells contain one vertex. After each subdivision, the connectivity transformation is encoded
through vertex splits and generalized vertex splits. The simple encoding scheme saves the list of the edges
between the generated vertices and their neighbors.

One advantage of these progressive compression methods based on space subdivision is that they can
compress arbitrary simplicial complexes. Besides, they achieve very good compression rates with manifold
meshes. However, their rate-distortion performance suffers at low rates due to the low quantization. No
control of the important vertices removal is permitted. The mesh simplification cannot be driven with a
metric contrary to connectivity-guided approaches.

3.2.4 Wavelet for irregular meshes

Wavelet frameworks are traditionally reserved for semi-regular connectivities as explained in Section 3.3.1 but
Valette et al. proposed a subdivision scheme that can generate irregular meshes [Valette and Prost, 2004a.
They later built a progressive mesh compression algorithm based on this framework: Wavemesh
[Valette and Prost, 2004b]. The initial mesh is progressively decimated with the subdivision scheme
tailored to irregular meshes. The connectivity data is composed of all face subdivision operations. A
triangle face can be subdivided into 4, 3, 2 faces or be unchanged.

The connectivity is encoded with three types of data. One bit per edge is encoded to tell if a new vertex
is inserted to split an edge (see Figure 3.7 a). In the case where a face is subdivided into 3 faces, 1 bit
is required to indicate the orientation of generates faces (see Figure 3.7). Finally, as some connectivity
configurations do not allow to merge faces with the proposed subdivision schemes, the encoder performs
some edge flips. Therefore 1 or 2 supplementary bits are needed in the case a face is subdivided into two
so as to encode edge flips (see Figure 3.7 ¢). The geometry is encoded through a wavelet lifting scheme.
The positions of the inserted vertices are predicted as being at the middle of their parent edges. A wavelet
geometrical criterion was proposed to control the removal of sharp vertices.

The obtained compression rates are slightly better than those from [Alliez and Desbrun, 2001a]
(about 19bpv with 12 bits quantization). Nevertheless, as the Wavemesh decimation scheme re-
moves 75% of the mesh vertices at each decimation, while the Alliez and Desbrun decimation scheme
[Alliez and Desbrun, 2001a] removes only 33% of the vertices, the Wavemesh representation generates less
levels of detail.

Lee et al. [Lee et al., 2013] improved the compression performance of the original Wavemesh scheme
by 16.9% on average. To improve the connectivity encoding, they proposed methods based on mixture of
Gaussian probability models to predict the inserted vertices, the face directions and the edge flips from the
geometry. For the geometry encoding, they divide the new vertices of a level of detail into three groups. To
encode the vertex positions of a later group, the encoder uses the positions of the already encoded group(s).
Vertex positions are predicted with the dual-ring prediction scheme from [Lee et al., 2011]. The residuals
are encoded in a local coordinate frame like in [Alliez and Desbrun, 2001a] with a bit plane coder.

3.2.5 Progressive compression through reconstruction

Valette et al. [Valette et al., 2009] cast the progressive mesh compression problem as a mesh generation
problem in their incremental parametric refinement framework. The encoder starts from a coarse version of
the initial mesh generated by the simplification scheme from [Garland and Heckbert, 1997]. The base mesh
is incrementally refined by splitting the longest edge. The position of the inserted vertex corresponds to the
position of one vertex of the original mesh. Positions are adaptively quantized. The number of quantization
bits depends on the level of refinement. At each refinement step, the triangulation is modified by means of
edge flips to satisfy a local Delaunay property or to fix connectivity drifts. This process is summarized on

43

—_

1-to-4

a.&

b. & é

VAV,
: Wl\/o/xv
7

Figure 3.7: Connectivity encoding with the Wavemesh scheme [Valette and Prost, 2004b]. a. The four types
of face subdivisions. Red vertices are added to split the edges. b. In the case a face is subdivided into 3
faces, one bit encodes the direction of the faces. c¢. In the case a face is subdivided into 2, to restore an
initial connectivity modified to merge faces, one bit encodes if an edge needs to be flipped. If yes, an other
bit codes which edge has to be flipped.

-to-2 unchanged

JAN

T
= g

&
" [

Figure 3.8. When all vertices of the original mesh have been inserted, the initial connectivity is restored by
flipping edges guided by a flip distance heuristic. A bit per edge is encoded to tell if an edge must be flipped.
This algorithm is known to compress efficiently (about 15bpv with 12 bits quantization) and achieves good
rate-distortion performances. The complete connectivity restoration process is, however, not guaranteed to

succeed.
@ %@ %@

Figure 3.8: Incremental parametric refinement [Valette et al., 2009]. a. The longest mesh edge in red is
selected for refinement. a. The red edge is split into two. b. The two blue edges are flipped to satisfy a local
Delaunay property.

The idea of computing the best decimated version of an initial mesh has been recently further investigated
[Peng et al., 2010]. The algorithm starts from the initial mesh vertex set and recursively splits it into several
child subsets using generalized Lloyd algorithm [Lloyd, 1982]. Each time a new vertex subset is generated,
a representative vertex of this set is selected to be close to the geometric center of the set and to have high
curvature. In this hierarchy, the number of children of a set is encoded. The offsets between a representative
and its parent representative are predicted in a cylindric frame and adaptively quantized. The connectivity
is encoded through vertex splits with prediction of pivot vertices. This algorithm yields compression rates
at about 16 bpv with a 12 bit quantization.

44

3.2.6 Geometry compression with the Laplacian operator

Fourier analysis has been commonly used for sound and image compression. Projecting the data into the
frequency domain and encoding the low frequencies often allows to retrieve during the decompression a
quality approximation of the original signal with few data. Karni and Gotsman |Karni and Gotsman, 2000]
proposed to apply this technique to compress mesh vertex positions. To project the coordinates from the
space domain to the frequency domain, the encoder uses the mesh Laplacian operator. The Laplacian matrix
L of a mesh with n vertices is a n x n matrix defined by:

1 ifi=j
L;j =< —1/degree(v;) if v; and v; are adjacent
0 else

The eigenvectors of L form an orthogonal basis of R™ and their associated eigenvalues are considered
as frequencies. The projections of each coordinate component vectors on the basis vector are the mesh
spectrum. The underlining principle is that if the geometry is smooth enough, its spectrum will be con-
centrated around low frequencies. So the spectral coefficients of low frequencies, after being quantized
and entropy coded, are sufficient to build a good approximation of the initial mesh. In practice, spec-
tral compression achieves excellent R-D performance with few coefficients. Incidentally, Ben-Chen and
Gotsman [Ben-Chen and Gotsman, 2005] proved that spectral compression is optimal for certain classes of
geometric mesh models as it is equivalent to principal component analysis on these classes. Mahadevan
[Mahadevan, 2007] replaced the laplacian bases by diffusion wavelet bases and showed their ability to better
represents an input mesh with the same number of basis functions.

As eigenvector decomposition is a high complexity operation (O(n?)), the mesh must be segmented
in regions of about 500 vertices in [Karni and Gotsman, 2000]. The computation becomes realist but
is still very heavy. A later approach [Karni and Gotsman, 2001] proposed to use a fixed basis derived
from a regular connectivity mapped to the irregular connectivity of the mesh. The hope is that the av-
erage energy will still be concentrated on low frequencies. The compression becomes less efficient but
the decompression is accelerated since the eigenvector decomposition is not anymore computed. Bayazit
et al. [Bayazit et al., 2010] reduced the computational complexity of the mapping method. They also
used a bit plane encoder for the spectral coefficients as also presented in [Konur et al., 2008]. Cayre et
al. [Cayre et al., 2003, Rondao-Alface et al., 2003] showed that rate-distortion gains can be obtained by
introducing overlap between the segmented regions.

Mamou et al. [Mamou et al., 2010] devised an algorithm that computes the Laplacian matrix of a mesh.
The mesh is then approximated by solving a heat equation with a minimal set of control points. The vertex
locations are encoded as residuals from the approximation given by the heat equation. The connectivity is
encoded by the Touma and Gotsman single-rate encoder [Touma and Gotsman, 1998]. This scheme achieves
an excellent compression ratio (about 10 bpv with a 12 bit quantization). However, its high complexity due
to solving the heat equation is a significant drawback.

3.2.7 Polygon meshes

Most of the approaches described above can only compress triangular meshes. For some of them, simple
extension were proposed to compress meshes with arbitrary face degrees.

As stated in Section 2.2.6, a preliminary triangulation allows to compress polygon meshes with an ex-
isting method restricted to triangle meshes. Additional data has then to be encoded to restore the initial
connectivity after the decompression. Taubin et al. [Taubin et al., 1998] followed this approach to extend the
progressive forest split algorithm. Li et al. stated also that their compression scheme [Li and Kuo, 1998b] can
be used on polygonal meshes. However, they provide no details about how the algorithm would be adapted. It
can also be noticed that the experimental results presented in [Taubin et al., 1998] and [Li and Kuo, 1998b]
do not compare favorably with recent state of the art techniques (see Section 3.2.1 and Section 3.2.2).

45

In more recent work [Peng and Kuo, 2005], Peng and Kuo discussed the progressive compression of
polygon meshes by an octree coder (see Section 3.2.3). As their algorithm can compress arbitrary connectivity
between vertices, it is possible to modify the face construction algorithm to reconstruct polygon faces. The
mesh connectivity is encoded through vertex splits and efficient prediction of pivot vertices (see Section
3.2.3). By definition, pivot vertices are connected to the two vertices of the edge generated by a vertex split,
but there is no pivot vertex when the adjacent faces of this edge are not triangles. This encoding scheme is
therefore optimized to compress triangle meshes and is not best suited to polygon meshes.

3.2.8 Volume meshes

As far as we know, very few work have been proposed for the progressive compression of volume meshes.
Pajarola et al. [Pajarola et al., 1999] designed a progressive compression algorithm for the connectivity of
tetrahedral meshes. To generate the levels of detail, batches of independent edge collapses are performed. The
connectivity is encoded by marking with one bit the vertices that must be split during the decompression and
identifying the cut-faces around a split-vertex. An alternative approach can be to use the geometry-driven
approaches [Gandoin and Devillers, 2002, Peng and Kuo, 2005] (see Section 3.2.3) as they can compress
arbitrary simplicial complexes. They, however, do not integrate the notion of cells.

3.2.9 Compression of attribute data

The compression of mesh associated properties (see Section 1.2.1), like colors, plays a secondary role in
state of the art compression schemes. However, mesh properties can often be of greater size than the other
data flows of a mesh and can carry a great part of the relevant information, in particular in scientific
visualization. Basically very few progressive mesh coders allow the encoding of color information; Cai et
al. [Cai et al., 2007] and Cirio et al. [Cirio et al., 2010] proposed two geometry-based methods (respectively
based on octree and kd-tree decompositions) that handle colors. However, these methods are limited by the
poor quality of the intermediate models. Lee et al. [Lee et al., 2012] specifically adapted their connectivity-
driven scheme to efficiently compress meshes with color attributes at vertices. The obtained visual quality

of colored intermediate levels is much better than with geometry-based methods.

3.3 Connectivity-oblivious schemes

If the application do not require the restoration of the original connectivity of the mesh, this degree of
freedom can be exploited to further reduce the compression rates by resorting to semi-regular remeshing or
other kind of geometry representation. This section briefly enumerates approaches exploiting this idea.

3.3.1 Wavelet for semi-regular meshes

As for single-rate mesh compression (see Section 2.5), when the restoration of the initial mesh connectivity is
not crucial, resorting to remeshing can further reduce the compression rates. In the general case, progressive
mesh compression schemes based on wavelet start from a coarse irregular version of the input mesh and
progressively refines it with a subdivision scheme that produces semi-regular meshes. After each subdivision,
the vertices are moved to reduce as much as possible the distortion between the subdivided model and
the input mesh. These delta displacements, which are the wavelet coefficients, are then encoded. Loop’s
subdivision [Loop, 1987] or the butterfly [Dyn et al., 1990] subdivision are often used for this purpose. The
Figure 3.9 illustrates the subdivision of a mesh with such schemes.

In image coding, wavelet representation are known to decorrelate efficiently the original data. As a con-
sequence, Khodakovsky et al. [Khodakovsky et al., 2000] proposed to also use wavelet for the compression
of surfaces of arbitrary topology. However, this compression scheme cannot encode any connectivities. A
remeshing of the input model is performed by the MAPS algorithm [Lee et al., 1998]. The wavelet trans-
form, based on Loop’s subdivision [Loop, 1987], replaces the original mesh with a coarsest irregular mesh

46

Figure 3.9: Butterfly or Loop’s subdivision. a. The input mesh b. New vertices split all mesh edges. Their
positions are computed with a formula given by the subdivision scheme c. Edges to link the added vertices
are inserted to form the new faces. Old mesh vertices may be moved depending on the subdivision scheme.

and a sequence of wavelet coefficients expressing the difference between successive semi-regular levels of
detail. The wavelet coefficients are represented in a local frame and later encoded with a zero-tree coder.
This scheme was later improved [Khodakovsky and Guskov, 2003] thanks to the normal mesh representation
[Guskov et al., 2000]. Normal mesh is a wavelet decomposition where the detail coefficients contain only one
normal component wherever it is possible (above 90% of the cases) instead of three coefficients for standard
subdivision. As there is only one wavelet coefficients to encode instead of three, normal mesh compression
yields significantly better compression ratios.

Payan and Antonini [Payan and Antonini, 2002, Payan and Antonini, 2005, Payan and Antonini, 2006]
allocate the bits across the wavelet sub-bands for the standard and normal mesh representations in order to
improve the rate distortion performance. The proposed optimization framework varies the quantization of
the wavelet coefficients to minimize the global reconstruction error. To improve the compression of normal
meshes, Lavu et al. [Lavu et al., 2003] optimize locally the quantization of the normal component based on
values previously encoded in the neighborhood. The encoder of Sim et al. [Sim et al., 2002] allocates bits
to each cluster defined on the normal mesh representation [Guskov et al., 2000] in order to achieve the best
rate-distortion performance. It also allows to allocate more bits to regions defined as important. In a similar
idea, Zheng et al. [Zheng et al., 2004] proposed a scheme that focuses on the encoding of regions of interest.

Kammoun et al. [Kammoun et al., 2011, Kammoun et al., 2012] proposed to optimize the prediction
scheme of lifting-based wavelet, transforms (Butterfly and Loop). For each level of detail, the best parameters
of the predictor are computed to minimize the set of detail coefficients. Experimental results show that,
compared to classic wavelet decomposition, the root mean square distortion is slightly reduced (about 2%)
at similar rate. Chourou et al. [Chourou et al., 2008] resorted to mesh segmentation in order to optimize
the wavelet operators for each of the generated clusters. The parameters of lifting scheme prediction step
are chosen to minimize the variance of the detail coefficients. Zhao et al. [Zhao et al., 2011] based their
compression scheme on matrix-valued Loop’s subdivision for better shape control. The encoder of Denis et
al. [Denis et al., 2010] exploits the statistical dependencies between the intraband and composite wavelet
coefficients to determine the best quantizers.

Chen et al. [Chen et al., 2008] proposed to compress an input surface by regularly remeshing it with
quads. The quadrilateral subdivision splits each face into 4 new faces by inserting one vertex. The wavelet
decomposition is formulated through a lifting scheme. Zero-tree coding is also used to encode the coefficients.

Li et Fan [Li and Fan, 2010] claimed that surfacelet transform (3D wavelet transform) better captures
the features of 3D models. They compared the distortion of the reconstructed models. However, they did
not provide any experimental compression rates.

Other mesh methods using wavelet transforms focus on mobile decompression [Ma et al., 2009] and the
support of lossy transmission [Luo and Zheng, 2008]. The ideas behind are to reduce the number of com-
putations needed for the decompression and to use error protection techniques to fit mobile computational
capabilities and lossy networks.

As wavelet-based compression schemes resort to remeshing, it is not really possible to give absolute
compression rates for compressed models. Indeed, neither the geometry (even with a set quantization) or

47

the connectivity are restored during the decompression. Nevertheless in general, wavelet-based algorithms
provide a significantly better rate-distortion performance compared to their lossless counterparts.

3.3.2 Geometry image

Geometry image [Gu et al., 2002] is an original approach that compresses manifold meshes with a wavelet
image compression scheme. To resample the input model over a regular 2D grid, the mesh is first cut in order
to be homeomorphic to a disc. Then a parametrization function that maps the points of the cut mesh to the
points of an unit square allows to compute x y z values for each pixel of the image. During the decompression,
the geometry image pixels are used to build a triangle mesh approximation of the original mesh. However,
the lossy compression leads to ’cracks’ along the surface cuts. Hoppe and Praum [Hoppe and Praun, 2005]
later proposed to construct the geometry image using a spherical remeshing approach. To unfold the sphere
on to geometry image, they proposed a scheme based on a regular octahedron domain and an other scheme
based on flattened octahedron domain. The geometry of these domain fits nicely with the use of spherical
wavelet, thus avoiding boundary reconstruction issues.

Shi et al. [Shi et al., 2012] improved the compression of normal-map images since they are generally
more difficult to compress due to their high variations. Their framework exploits the correlation between
the normal-map image and the geometry image and between the three components of the normal-map
image. Sander et al. [Sander et al., 2003] mapped the surface piecewise on several charts so as to reduce
the distortion. Peyré and Mallat [Peyré and Mallat, 2005] investigated the compression of geometry images
with bandelets. The aim of the bandeletization is to remove the correlation between high amplitude wavelet
coefficients. Experimental results show that the distortion can be reduced by about 1,5 db compared to
classical wavelet compression at similar rates.

Mamou et al. proposed a progressive mesh compression method based on b-splines and geometry images.
After a segmentation of the input mesh, each patch are parameterized and approached by a b-spline surface.
The B-Spline control points are quantized and encoded into three gray-scales geometry images (one per axis)
with the progressive JPEG 2000 encoder. The connectivity of the patches is lossless encoded with the Touma
and Gotsman algorithm [Touma and Gotsman, 1998]. Additional encoded information allow to recover the
patch adjacency relations.

Ochotta and Saupe [Ochotta and Saupe, 2008] proposed an alternative image-based surface compression
method. The input mesh is first partitioned. Each region is then projected on a plane. The resulting height
fields are transformed into images and compressed with an adaptive wavelet coder. After the decompression,
the partition are stitched in order to generate a close mesh. The obtained experimental results are similar
to the results of the normal mesh approach [Guskov et al., 2000].

3.3.3 MeshGrid

Salomie et al. proposed a new surface representation, named MeshGrid [Salomie et al., 2004], based on a 3D
connectivity wireframe and a reference grid defined in the 3D space. The grid vertices are not necessarily
regularly spaced. The connectivity wireframe describes how the input surface goes through the 3D grid.
One wireframe per level of detail is encoded. The 3D grid is compressed with a 3D wavelet coder. Munteanu
et al. [Munteanu et al., 2010] later experimentally showed that local error control of the grid vertex posi-
tions based on an L-infinite distortion metric can improve the rate-distortion performance of the MeshGrid
representation.

3.4 Conclusion

We summarized in the Table 3.1 what we judged as the main progressive compression approaches. We think
that several points from this review should be highlighted.

48

e Progressive algorithms that do not restore the initial connectivity (wavelet-based approaches, geometry
images...) lead to a much better rate-distortion performance compared with the lossless algorithms.
This fact seems intuitive as, if we do not care about the connectivity, this leaves a larger margin to
focus on the geometry encoding. Consequently, when the connectivity restoration is not crucial, such
schemes should be preferred.

e Among lossless progressive algorithm, the geometry-driven approaches based on space subdivision
provide very good final compression performance. However, the rate-distortion performance suffers at
low rates due to the low quantization.

e Algorithms based on reconstruction methods yield very good rate-distortion performance.

Recently, Berjon et al. [Berjon et al., 2013] reviewed the different geometry metrics to compare static
mesh compression algorithms. Their conclusion is that there is still a need for formal methodologies as in
the image processing field. Metrics that well represent the human perception should be preferred to the
traditional RMS or Hausdorff distances because the final destination of a compressed model is often to be
shown to an human. Corsini et al. [Corsini et al., 2012] have written a very complete review on perceptual
metrics for 3D meshes.

Lavoué [Lavoué, 2011] has proposed a multiscale perspective metric (MSDM2) based on Gaussian-
weighted curvature. Subjective experiments with human observers demonstrated that this metric can better
capture a voluntary introduced distortion than the RMS or Hausdorff distances. Comparing the rate-
distortion curves of progressive mesh compression algorithm drawn with this metric yields different results.
This fact is interesting as, before this work, progressive mesh compression algorithms were never evaluated
with such metrics. Consequently, a complete study might change deeply the currently admitted ranking of
algorithms.

As for single-rate mesh compression (see Section 2.6), we see the future of the research in progressive
mesh compression in genericity and parallelism.

Genericity The processing of non-manifold triangle meshes has already been studied with geometry-driven
approaches. A solution was also proposed for the progressive compression of tetrahedral meshes. But
as far as we know, no scheme was proposed for the processing of polygon surface meshes. It was never
studied as a standalone problem. Only extensions of schemes targeted to the progressive compression
of triangle meshes were proposed. The algorithm we present in the Chapter 4 fills this gap.

Parallelism To our knowledge, no parallel progressive mesh compression algorithm have been proposed in
the literature. As the modern computing architectures are evolving towards more and more computing
cores, we believe that future work should address this problem. The progressive random-accessible
approach described in Chapter 8 can compress and decompress in parallel all the generated clusters.
This leads to a faster decompression compared to traditional progressive approaches.

49

Lossless Total Compress Progr.
Algorithm connect. comp. non-manifold | granularity Remarks
comp. | rates (bpv) meshes
Progr. simplicial complexes 50
[Popovi¢ and Hoppe, 1997] yes (10 bit) 1o 5/5
Progr. meshes 37
[Hoppe, 1996] yes (10 bit) 1o 5/5
Progressive forest split 30
[Taubin et al., 1998] ves (10 bit) 1o 3/5
Compressed progr. meshes 22
[Pajarola and Rossignac, 2000] yes (10 bit) 1o 3/5
Colored patches o 23 o 3/5
[Cohen-Or et al., 1999] Y (12 bit) Y
Valence encoder o 21 o 3/5
[Alliez and Desbrun, 2001a] e (12 bit)
Wavemesh o 19 o 1/5 Low number of
[Valette and Prost, 2004b] Y (12 bit) levels of detail
Spectral compression o 19 o 3/5 No progr. coding
arni an otsman, 1t of the connect.
Karni and G 2000 Y 12 bi f th
.Kd—tree co.der yes 19. yes 2/5 High distortion
[Gandoin and Devillers, 2002] (12 bit) at low rates
yes . yes ike above
[Pengztrfﬁeﬁieg()()m (121f)1t) 2/5 Like ab
Incremental parametric 15 Original connect,.
refinement yes (12 bit) no 5/5 may fail to be
[Valette et al., 2009] restored
[et . 5000] o : o | ik, modes
Wavelet compression o 8 o 3/5 Fits well to smooth
odakovsky et al., eq. it and dense meshes
Khodakovsk 1., 2000 12 bi dd h
[Giﬁf}iﬁf Sh;(foo] 1o (eq 162 bit) 1o 3/5 Like above

Table 3.1: Summary of the main progressive mesh compression algorithms. Approaches are approximately
ranked by their compression performance.

50

Chapter 4

Progressive compression of manifold
polygon meshes

Figure 4.1: Levels of detail of the quadrangle elephant model generated by our progressive compression
algorithm for polygon meshes.

4.1 Introduction

As described in the Chapter 3, progressive lossless mesh compression algorithms allow during decompression
to first obtain a coarse version of the mesh. This first level of detail is then progressively refined as more
data is transmitted and decompressed, until the input mesh is restored. The general goal of progressive mesh
compression algorithms is to achieve the best rate-distortion performance in the sense that each decoded
level of detail must be as close as possible to the original mesh with the minimum amount of decoded data.

Progressive mesh compression algorithms reduce the data size, which is useful in a context of storage and
transmission. The fact that the user can have an access to the data without having fully downloaded and
decompressed it is also interesting because it reduces the waiting time. Finally, the level of detail structure
embedded in the compressed data allows to choose the best resolution that can be smoothly visualized on the
user device. We therefore think that progressive mesh compression is an efficient tool for the adaptation
of 3D meshes to storage and transmission constraints.

The Chapter 3 shows that previous work on progressive mesh compression has focused on the compres-
sion of triangle surface meshes. However, a significant number of carefully designed meshes are composed
of polygon faces. In addition, many recent work focused on quad mesh processing. Moreover, for appli-
cations such as remote scientific visualization, meshes can contain not only triangular faces and the de-

51

compression must restore the initial connectivity. While some approaches have been proposed for single-rate
compression [King et al., 1999, Isenburg and Snoeyink, 2000a, Kronrod and Gotsman, 2000, Isenburg, 2002,
Khodakovsky et al., 2002] (see Section 2.2.6) or random-accessible compression [Courbet and Hudelot, 2009]
(see Section 7.2), to our knowledge no specific approaches were proposed for their progressive compression
until now. Only not efficient simple extensions of schemes targeted to the compression of triangle meshes
were proposed [Taubin et al., 1998, Li and Kuo, 1998b, Peng and Kuo, 2005] (see Section 3.2.7). Following
our objective of genericity, we therefore designed a new progressive compression scheme that can compress
efficiently manifold polygon meshes. We named it PPMC for Progressive Polygonal Mesh Compression.

The content of this chapter can be summarized as follows.

e We first present a new simple progressive polygon mesh compression algorithm that compresses
any 2-manifold mesh with arbitrary face degrees. Levels of detail are generated with a new decimation
operator that combines vertex removal and local remeshing. The connectivity is encoded with two
lists of boolean symbols: one for the faces with a removed vertex and one for the edges inserted by
the remeshing. The geometry is encoded with a barycentric error prediction of the removed vertex
coordinates.

e We then describe a curvature prediction method to improve the geometry coding and a connec-
tivity prediction scheme based on the geometry to further reduce the size of connectivity.

e We propose a wavelet formulation of the geometry compression that contains a lifting step. After
the decimation of one level of detail, the remaining vertices are moved in function of the position of the
removed vertices. This formulation improves the rate-distortion performance of the encoder without
increasing the final compression ratio.

e We also include the adaptive quantization algorithm from [Lee et al., 2012] that interleaves decima-
tion traversals with global quantization operation. This method further improves the rate-distortion
performance but increases the final compression rate.

e We demonstrate the efficiency of the proposed techniques by presenting experimental results.

4.2 Base algorithm

4.2.1 Compression

The proposed algorithm is based on mesh decimation. It is composed of four main steps that are successively
repeated until the initial mesh M™ cannot be further simplified (see Figure 4.2).

Patch Edge
.| .
encoding encoding

_—

Connectivity symbols
S

ek
Connectivity symbols 1 Entropy COmpr- data
of M"!

S coding
Geometry symbols

Iy,

M! |[——|Decimation |——

Figure 4.2: The four compression steps of the PPMC algorithm.

e The decimation step consists in applying a new decimation operator for polygon meshes, the patch
decimation operator, to generate the mesh level of detail M!'~' from M!. This operator removes
vertices and adds new edges to the mesh.

52

e The patch encoding step builds the face symbol list S; and the geometry residual list S,. A deterministic
face traversal of the mesh encodes the faces with a removed center vertex and the position of the
removed vertices.

e The edge encoding step builds the edge symbol list S, from the edge flags. A deterministic edge
traversal encodes which edges have or have not been inserted.

e The entropy coding step compresses the Sy, S, and S, symbol lists.

In the following of the section, we detail the four steps.

Decimation step

The decimation step tries to simplify as much as possible a mesh LOD M to generate M'~! using the patch
decimation operator. This new operator combines the removal of one vertex and the insertion of edges. It
can decimate polygon meshes with arbitrary face degrees.

A patch is a set of faces with a common center vertex. The decimation algorithm starts by randomly
selecting a patch on the current level of detail. The degree of its center vertex v; must be greater than two
(see Figure 4.3(a)). It then creates a polygon f; around v;. To do so, it splits every faces around v; that
is not a triangle by inserting an edge between the two vertices of this face that are adjacent to v;. We call
this local remeshing operation re-edging (see Figure 4.3(b)). This operation aims at generating faces with
low degree because they have more chance to be convex. The inserted edges, are marked. v; is removed (see
Figure 4.3(c)) and the residual

ry = p'Uj - bfia (41)

where p,; is the position of v; and by, is the barycenter of f; vertices, is stored. The barycenter of the
vertices of a face f; is simply defined as:

1
bfi = T Z Puy,
| fi =

where Vy, is the set of the f; vertices. ry, represents the geometry data. f; becomes a face of the mesh. It
is marked as having a removed center vertex and can no longer be implied in a patch decimation operation
in the current decimation step.

If v; is a border vertex, the re-edging operation also creates a face with the three border vertices of
the patch. The edge inserted to create this face is also marked as added. The stored residual becomes
the difference between the position of v; and the position of the center of this edge. When the algorithm
decimates a mesh with boundaries, it considers that there is a fake face at the outer side of each boundary
edge. The fake face f; at the outer side of the inserted boundary edge is marked as having a removed center
vertex. The decimation of a border patch is illustrated on Figure 4.4.

By definition, the patch decimation operation always removes one vertex v; from the mesh. If v; has
t incident triangles, the variation of the number of faces in the mesh caused by the operation is equal to
1 —t. This means that, if v; is only incident to non-triangle faces, t = 0. One face is inserted to the patch
but the degree of the other patch faces is decremented by one (see Figure 4.3). Other patch decimations on
neighbor vertices may make these faces progressively disappear. If v; is only incident to triangle faces, then
no re-edging is needed and the number of faces in the mesh decreases (see Figure 4.5).

Patch decimation operations must preserve the manifold property of the mesh, so that if a patch border
vertex shares an edge with more than 2 other patch border vertices, the patch is not decimated. The
generated faces are not necessarily planar. This is not a problem since non-planar faces can be good local
approximations. Concave faces may yet be problematic to render and may lead to further deteriorations
during decimation. In our scheme, a face is said concave if its edges, projected on a plane directed by the face

53

Figure 4.3: Decimation of a patch with non-triangle faces. a. The active patch is in blue. b. The faces are
split by the re-edging operation with the inserted blue edges in order to create a new polygon around v;. c.
v; is removed. f; is marked as having a center vertex removed.

a. b. c.
fi
Figure 4.4: Decimation of a border patch. a. The active patch is in blue. b. The faces are split by the
re-edging operation with the inserted blue edges in order to create a new polygon around v;. A triangle face

formed by the three border vertices is inserted c. v; is removed. The fake face f; on the boundary is marked
as having a center vertex removed.

normal, form a concave polygon. A triangle face is by definition always convex. The normal of a non-planar
face is computed with Newell’s method [Tampieri, 1992].

Concave faces in a polygon mesh are difficult to render and, as a consequence, are often avoided. Our
compression algorithm can be configured to only generate convex faces. In this case, the first decimation
steps generate only convex faces. When it is no longer possible, the next decimation steps further simplify
the mesh by allowing the generation of concave faces. The aim of these last decimation steps is to generate a
minimal base mesh. During the decompression, the first LOD displayed to the user is the first that contains

only convex faces.
a. ? b. i(

Figure 4.5: Decimation of a patch with triangle faces. a. The active patch is in blue. b. v; is removed. f;
is marked as having a center vertex removed.

54

Figure 4.6: Decimation of an intermediate level of detail of the bunny model. Left: the initial level of detail.
Right: the new level of detail after decimation. The inserted edges are depicted in blue. Faces with a
removed vertex are depicted in green.

—,

- NANNNNNN/

NN NNNNNN

Figure 4.7: Examples of two successive decimations of regular connectivities. a. A regular grid is decimated
into a larger regular grid pivoted of 45°. b. A regular triangle mesh is decimated into a regular hexagonal
mesh. ¢. A regular hexagonal mesh is decimated into a regular triangle mesh.

In order to not too much deteriorate the shape of the input mesh, the decimation algorithm can also
skip the decimation of important vertices through a volume-based metric such as the one proposed in the
Chapter 5.

Once the current patch decimation is over, the algorithm attempts to create other patches with faces not
marked as having a removed center vertex. The patch decimation order is not constrained. In our current
implementation, the algorithm starts from a random seed vertex and progressively traverses the whole mesh
by trying to generate new patches with adjacent vertices that do not belong to already marked faces. An

55

4 5 6

Figure 4.8: One example decimation step. 1. A seed vertex (in red) is chosen to form the dark gray patch.
2. The non-triangular faces of the patch are split by inserting edges (in blue) between their two vertices
connected to the center vertex. 3-5. The patch center vertex is removed. The face generated by the vertex
removal is marked as having a center vertex removed (in green). Its vertices are marked as visited (in
blue). All its unvisited adjacent vertices are added to a FIFO queue in the counterclockwise order. A new
patch center vertex (red) is popped out of the FIFO. If the decimation of the corresponding patch is invalid
because, for example, it does not preserve the manifold property (the case of the green vertex at the step 3),
the unvisited vertices adjacent to the current vertex are added to the FIFO and an other vertex is popped.
6. No more patches can be decimated. The current decimation step is finished. The results are: a set of
faces with a center vertex removed (green), a set of faces without a removed center vertex (pink), a set of
inserted edges (blue) and a set of original edges (black).

example is depicted in Figure 4.8. In the Section 5.3, we propose an alternative decimation algorithm guided
by a volume metric.

A new mesh LOD M'~! is obtained when no more patch decimation operations can be performed. The
result of the decimation step is the simplified level M'~! with a set of marked inserted edges and a set of
marked faces with a removed center vertex (see Figure 4.6). Experimentally, about 30% of the vertices of a
LOD are removed during a decimation step.

The decimation algorithm stops when no more decimation steps can be performed. The lowest LOD MY
is called the base mesh. Its size depends on the complexity of the mesh but is generally less than 1% of
the total file size. For the decimation of regular meshes, the results are roughly similar to those depicted in
[Kovacevic and Sweldens, 2000]. As shown on the Figure 4.7, the decimation step preserves the regularity
of the infinite regular structure it decimates. In practice however, the regularity gets progressively worse
during decimation, as the meshes are not specifically designed to preserve regularity during decimation.

Patch encoding step

The patch encoding step produces the list Sy of Boolean face symbols sy, and the list S, of the residuals r,.
sy, codes if f; has a removed vertex or not. The algorithm uses a gate FIFO queue to perform a deterministic
region growing traversal of the mesh. A gate is an edge between a traversed and an untraversed face. The
first gate of the patch encoding step is specified for the whole mesh compression and hence can not be
removed. When a face (or a fake face for meshes with boundaries) f; is traversed, its symbol sy, is added to
Sy¢. If sy, is true, we also add the projection of r, in the local Frenet frame to S, (see Figure 4.9). To avoid
the post-quantization step mentioned in [Alliez and Desbrun, 2001a] and slightly reduce the entropy, we use
the bijection proposed in [Lee et al., 2009] to transform the coordinates. This bijection corresponds to three

56

successive rotations plus rounding operations. The rotation angles are minimized to reduce the entropy of
the residuals. The gates of f; are then added to the queue in the counterclockwise order starting from the
current gate. The next face to traverse is the one pointed by the next gate in the queue. The same traversal
order is followed by the decoder during the decompression. An example of a patch encoding step is depicted
in Figure 4.10.

A n
Vi
I
Y
t,

Figure 4.9: Encoding of the geometry residual ry, in the local Frenet frame (ty, to, n). t; takes the direction
of the gate edge (in blue). n is the patch normal. And ty = —t; An.

gl LS BALS
A RS

FIFO: g, FIFO: g;, 83, 84 FIFO: g3, 84, 85, 86, 87
S¢: - S¢: true S¢: true, false

L
L

910

b:?@ 7

FIFO: g, g5 8o 87, 85 8o 8100 FIFO: g5, 8¢, 87, 88, 89, 810, FIFO: go, 87, 88, 89, 810, 811,
g 211,812, 813, 814 812,813, 814 -
S¢: true, false, true S¢: true, false, true, false S¢: ..., true, false, false

2

Figure 4.10: Example of a patch encoding traversal. Faces with, resp. without, a removed center vertex are
depicted in green, resp. pink. Traversed faces are depicted in gray. The straight arrows represent the gates.
The circular arrows represent the order of insertion of the gates into the FIFO.

Edge encoding step

To build the edge symbol list S,, a deterministic full traversal of the mesh edges is performed using an edge
FIFO queue. When an untraversed edge e is encountered, a symbol s., is generated to code if e, was
inserted. Note that if e belongs to two faces that do not have a removed center vertex, it is inevitably
original. Therefore, no symbol is generated in this case. The neighboring edges of one ej vertex are then
added to the queue. The next edge to traverse is extracted from the queue. An example of an edge encoding
step is given by Figure 4.11.

57

7S
2

2

FIFO: e,
Se: false

FIFO: e, e, €4, €5
Se: false, false

FIFO: e;, ey, €5, €, €7, €4
Se: false, false, false

FIFO: ey, €5, e, €7, €5, €9, €19
Se: false, false, false, true

Figure 4.11: Example of an edge encoding traversal. The inserted edges are depicted in blue. The edges
in the FIFO queue are depicted in bold. The traversed edges are depicted in gray. The circular arrows

(X

%

LN

FIFO: e5, e, €7, €5, €, €19, €11,

€12
Se: ..., false, true, true

represent the order of insertion of the gates into the FIFO.

Entropy encoding

The previously described face and edge binary symbol lists Sy and S, represent the connectivity data. The
simplification process, depending on the LOD, may lead to biased binary distributions of their symbols (see
Figure 4.14). Therefore, an entropy coder with one adaptive context per list is used to encode Sy and Se.

The geometry data, the S, list, is also entropy coded with two adaptive contexts: one for the tangential
components of ry, and one for its normal component. In our current implementation, we used the range
encoder from Michael Schindler [Schindler, 1998] (see Section 1.4.2). Figure 4.12 depicts the structure of the

compressed data generated by our coder.

File header

FIFO: e, €7, €5, €y, €19, €13, €1,
€13/ €14
Se: ..., true, true, true

Data to Data to
build M, build M,
— _l —
interleaved interleaved
— (0] — (0]
[Vp] (V] wn [0p]
o - o +)
= N (9} u— N [}
= — — — —
0 % o o % © o
o = = = & Q leoeee
€ = £ = = £ <
) 8 > > 8 > >
0 (%2} (7] ()] (2]
© E T Q E © ()
m >S5 =) >S5 ()]
@l ke] @l ke]
iel ©
Q= L () o= wi
S 3 29
L x L x

Figure 4.12: Structure of the compressed data generated by our coder.

58

4.2.2 Decompression

The mesh decompression starts by reconstructing M°. Then, by applying the reverse operations of the
decimation step, the successive LOD M' are progressively restored to finally obtain A/™. Thus, for each
LOD M!, a first full traversal is performed to decode the faces with a removed center vertex. These vertices
are then inserted at their original positions from the encoded geometry data. A second full traversal decodes
and removes the edges that were not present in M.

4.3 Improving connectivity and geometry encoding

The scheme described above allows compressing and decompressing any 2-manifold polygon mesh. We de-
scribe next improvements to further reduce the size of the connectivity and geometry. They make our scheme
competitive in term of compression ratio with triangle specialized approaches. The typical improvement is
0.3 bpv for geometry and 0.7 bpv for connectivity.

4.3.1 Predicting connectivity from geometry

As depicted in Figure 4.13, after one decimation step, the average area of the faces with a removed center
vertex is greater than the average area of the other faces. This observation allows predicting connectivity from
geometry. The prediction algorithm works as follows. During the patch encoding and decoding traversals,
the average area of the two types of faces are progressively updated when new faces are traversed. If the area
of the current face is closer to the average area of faces with a removed center vertex than to the average area
of faces without a removed center vertex, then it is predicted as having a removed center vertex. Else, it is
predicted as not having a removed center vertex. A binary symbol is generated to indicate if the prediction
is verified. This symbol replaces sy, and is also later entropy coded. The binary distribution of this new
symbol is for most cases more biased than the simple coding distribution.

For some connectivities, however, such as the decimation of a regular hexagonal mesh (see Figure 4.7(c)),
the average area of the two types of faces can be equal. In this case, the type of a face can be predicted
from the type of its neighbors. When the difference between the face type percentages is below a threshold
(experimentally set at 10%), our algorithm predicts the type of a face as the inverse of the type that is the
most represented among the adjacent already traversed faces.

A similar algorithm is used for the prediction of the edge symbols s.,. If the polygons are well-shaped,
then the inserted edges are in general longer than the original edges due to the re-edging process.

To predict the group a face or an edge belongs to, we use average values of face areas and edge lengths
computed on the part of the mesh already traversed. We make the assumption that the mesh is uniformly
sampled. When the current LOD regularity is bad or the last decimation step removed few vertices, the
simple coding scheme is more effective. Therefore, at the beginning of each connectivity entropy encoding
step, a bit is written to indicate if the connectivity prediction algorithm is used or not.

4.3.2 Curvature prediction for geometry encoding

As described in Section 4.2.1 the geometry data is composed of the removed vertex residuals ry,. To improve
the geometry data encoding, we use a curvature prediction method. Instead of directly encoding the residual
ry,, we encode:

8f =Tf — alfiv (4'2)

where 1y, is the average Laplacian of the set Vy, of the vertices of f;. We define the Laplacian of a vertex v;

as:
lvv - E P, Pv;
J |ij| J

vE €V

59

/

Figure 4.13: Result of a decimation traversal. The average surface of the face with a removed center vertex
(green) is larger than the average surface of the other faces (red). The average length of the inserted edges
(blue) is also superior to the average length of the others (black).

Distribution of Sf Distribution of Se

Faces with Faces
aremoved without

Inserted Original
center 3 removed edges edgges
vertex center

vertex
Predictions of Sf Predictions of Se

True True

predictions predictions

Figure 4.14: Example of connectivity symbol distributions after one decimation step. The first row shows
the distribution of Sy and S.. The second row shows the distributions of the prediction symbols.

with V,,, the set of neighbor vertices of v; and p,, is the position of the vertex v;. Therefore we have:

1

1l

In our experiments, we set a = 0.5. For most meshes, gs, has a more biased distribution than the one of
ry, and hence can be more effectively entropy coded.

60

4.4 TImproving the rate-distortion

We now describe the inclusion to our codec of two methods that improve its rate-distortion performance.
The first is based on a wavelet decomposition with a lifting step. It improves the rate-distortion ratios at
low rates by about 25% without impacting the final compression rate. The second is the adaptive global
quantization method taken from [Lee et al., 2012]. It improves the rate-distortion ratios at low rates by
about 35% but increases the final compression rate by 1 to 2 bpv.

4.4.1 Wavelet formulation of the geometry compression

We formulate here the mesh geometry compression as a wavelet decomposition using the lifting scheme
[Sweldens, 1996]. The idea of using a wavelet decomposition for the geometry compression of irregular
meshes is not new [Valette and Prost, 2004b]. However, the wavelet decomposition we present in this section
is specific to our method as we use different mesh decimation operators and geometry encoding schemes.

When a new level of detail is generated, two types of geometry data are computed during the wavelet
decomposition:
cit=4Alcl, (4.3)

D=1 = Bl.C. (4.4)

C'=1 is the m x 3 global matrix of the coarse coefficients, the m vertex coordinates of M!~1. D!~ is the
p x 3 global matrix of the detail coefficients, the p local ry, values that are encoded. The analysis filters Al
and B! are defined by the decimation operations completed to generate M'~!. Al is the matrix that extracts
the vertex positions of M'~! from the vertex positions of M. B! is the matrix that computes all the detail
coefficients, as locally defined in (4.1) (see Figure 4.15 a).

Figure 4.15: Transversal views of a mesh during the compression with the lifting scheme enabled. a. The
mesh before decimation is depicted in green. The mesh after decimation is depicted in black. The detail
coefficients ry, are the vectors between the barycenter of the face vertices (by,, by, and by,) and the removed
vertices (vs, v4 and vs). b. The mesh before the lifting step is in black. The mesh after is in blue. The
lifting step moves the position of the remaining vertices v; and vy according to the neighbor face ry, values
to improve the rate-distortion distortion performance.

During the decompression, once the connectivity has been decoded, the coarse coefficients C! can be
obtained from the coarse coefficients C'*~! because the vertices of M'~! are a subset of the vertices of M.

The detail coefficients D'~! are decoded from the compressed data. From (4.1), we have:

Py, =Ty + by,

61

So, thanks to this local formula, it is possible to recover C* from C*~! and D'~'. This process can be written
under the form of the following equation:

c'=pP.c" + QD!

where P! and Q' are the synthesis filters determined by the previously described process.

This scheme corresponds to the lazy wavelet transform. It just separates the low and high frequency
terms during the compression and put them together during the decompression.

Lifting step

To improve the rate-distortion performance of our coder, after a decimation step the position of the mesh
remaining vertices (C'~1) are moved in function of the positions of the removed vertices (see Figure 4.15 b).
Each vertex position p,; is locally modified as follows:

1
p’Uj = p’Uj + ’yﬁ f; ry,
i vj

where F,; is the set of the neighbor faces of v;. If a face f; does not have a removed vertex, then ry, = 0.
In our experiments, we set v = 0.5 because it provided the best results with our datasets.

This local process can be formulated as a lifting step in our global wavelet formulation. So, (4.3) and
(4.4) become:
ct=Alc +4LL.BL.CY,

D=t = BL.C!

where L' is the matrix that computes the average residual of the neighbor faces (second term of the formula
4.4.1). During the decompression it is possible to rebuild the matrix L' and then to restore the vertex
positions with the decoded residuals using the following formula:

C'=P.(C"7 — 4L DY) + QL.D L

Curvature prediction and residual projection

As explained in Section 4.3.2, the entropy coder does not directly encode the residuals ry, but instead encodes
the g, values projected in the local Frenet frames. Given (4.2), the global matrix of the symbols values

S'=1 is determined by the following equation:
Sl—l — Ul_l.(Dl_l _ OlGl_l.Cl_l)

where G'~! is the matrix used to compute the 1y, values and U'~! is the matrix used to perform the local
projections. During the decompression, the wavelet coefficients matrix can be restored with

Dl—l _ Vl_l.(sl_l 4 OéGl_l.Cl_l),

where V!~ is the matrix that performs the reverse local projections, before applying the rest of the lifting
scheme. The whole process is summarized by Figure 4.16.

4.4.2 Adaptive quantization

To get the best rate-distortion performance when compressing a mesh, two variables can be played with: the
number of vertices V' and the number of geometry quantization bits B. For the single rate compression of
triangle mesh, King and Rossignac proposed in [King and Rossignac, 1999b] methods to optimize the choice
of V and B to minimize either the approximation error or the file size. For the progressive compression of

62

A
h\
<%>
A\
Q‘\
L
;V
~®
A
w‘\

A

o
B & o5 Foai (%

Figure 4.16: One level wavelet analysis and synthesis lifting scheme.

triangle meshes, Lee et al. [Lee et al., 2012] showed that the rate-distortion performance of the original AD
coder [Alliez and Desbrun, 2001a] can be significantly improved by interleaving decimation conquests with
vertex global quantization operations (see Figure 4.17). The main rationale is that a precise level of the
initial quantization is not needed for low LODs which have very few vertices. The decimation contests are
encoded with the AD coder and the quantization contests are encoded with the Peng and Kuo geometry
coder [Peng and Kuo, 2005].

Lee et al. propose two methods to choose at each iteration whether to decimate the mesh or to quantize
its vertex positions. In the first method, denoted by optimal the decimated mesh and the quantized mesh
are generated with their compressed data. The two rate-distortion ratio are then compared. The chosen
operation is the one that yields the lowest ratio. This method provides the best rate-distortion performance
for all levels of detail but is computationally intensive. It requires to generate both meshes, to determine the
size of the encoded data and to measure the two distortions with the initial mesh. Therefore, the authors
recorded the choices made by their optimal coder on a mesh corpus to learn the parameters p and 3 of a
function ¢o(K¢) that provides the best number of quantization bits according to the level of decimation:

g (Kg) = round(u * log(K¢g) — 58)
where round() corresponds to the nearest integer rounding function. K, is defined as:

volume of bounding box
area x number of vertices’

Kg =

1= —1.248 and 8 = —0.954 are reported as the best parameter values for the selected triangle mesh corpus.
We used these values in our experiments as a first attempt to prove that the adaptive quantization is also
suitable for polygon mesh compression.

A second method, denoted by quasi-optimal, was proposed to choose at each iteration whether to decimate
or to quantize. If the current qo(K¢) value is lower than the current number of quantization bits, then the
mesh is quantized. Else, it is decimated. The authors experimentally demonstrated that the quasi-optimal
and optimal methods yield similar results. We implemented Lee’s quasi-optimal method to improve the
rate-distortion performances of our coder at low rates.

4.5 Experimental results

To demonstrate the efficiency of our scheme, we implemented the encoder and the decoder in C+-+ using
the halfedge data structure of the CGAL library'. We divided the experiments in two parts. In the first
part, we experimented the compression of polygon meshes. In the second part, we studied the compression
of triangle meshes.

Thttp://wuw.cgal.org/

63

>

Number of quantization bits

Level of detail (fine-to-coarse)
:> Traditional progressive mesh simplification algorithm

Lee's method of adaptive global quantization [Lee et al., 2012]

Figure 4.17: Progressive mesh traditional simplification vs. Lee’s method for adaptive quantization
[Lee et al., 2012]. Figure inspired from [Lee et al., 2012].

For both type of meshes, we measured the performance of the approach by determining final compres-
sion rates and drawing rate-distortion curves. All results presented in this section were obtained with the
predictions described in Section 4.3. For the rate-distortion curves, we measured the distortion through the
METRO software tool [Cignoni et al., 1998], after triangulating each polygon through inserting a vertex at
the barycenter of its vertices and connecting it with all the polygon vertices.

We observed in our experiments that the computation times are approximately linear in the number of
vertices. A 10 M face mesh is compressed in 1 min 48 s and decompressed in 1 min 22 s on a desktop
computer equipped with an Intel Core i7 CPU clocked at 2.80 GHz and 8 GB of RAM.

4.5.1 Progressive compression of polygon meshes

This section presents polygon mesh compression results. The Figure 4.18 shows that the lifting scheme
presented in Section 4.4.1 clearly improves the rate distortion curve at low rates without increasing the final
compression rate. The rate-distortion optimization algorithm provides even better distortion at low rates
but increases the overall compression rate.

The Table 4.1 lists compression rates on polygon models depicted in the Figure 4.19. In order to compare
the effectiveness of our method against simple triangulation prior to compression (see Section 3.2.7), we
triangulate polygonal models by choosing for each polygon an arbitrary vertex as pivot and adding edges
between this vertex and all the others. The triangulated models are then compressed with the state of the
art progressive compression method specialized to triangle meshes [Lee et al., 2012]. We add to the obtained
compression rates the cost of the edge flag encoding required to restore the mesh initial connectivity after
decompression (see Section 3.2.7). This cost is computed for each mesh with the Shannon entropy of the
Boolean symbol sequence. The obtained values clearly improve over the trivial one. For our polygon mesh
corpus, the trivial method costs on average 4 more bpv than our method.

64

0,020

E
c
S 0,016
S
©
x
o
Qo
o
£
el
c
§ 0,012
»
[0}
2
S
»
2
2 0,008
4
(o]
S
k]
% —— Base algorithm + predictions
£ —m— Lifting scheme
c
$ 0,004 —#— R-D optimization
2
a

0,000

0 2 4 6 8 10 12 14 16 18 20

Rate (bpv)

Figure 4.18: Rate-distortion curves for the compression of the Triceratops model with 10 bits quantization.

Our codec results are also compared with the results of the single-rate coder from [Isenburg and Alliez, 2002b]
to evidence the cost of the progressiveness. This cost is high for the simple models (Shark, Teapot, Tricer-
atops, Beethoven, Fandisk, Elephant) as their regularity gets rapidly worse during the decimation. Complex,
regular models (Neptune, Chinese lion, Gargoyle, Rabbit) are efficiently compressed. Our algorithm performs
well with irregular models (Horse, Fertility, Ramesses, Dinosaur) compared to the single-rate approach. It
even improves on very irregular models such as the VSA-remeshed [Cohen-Steiner et al., 2004] Lucy or the
Hippo models. The Figure 4.21 depicts the decompression of the Bimba quadrangle surface mesh. The
Figure 4.20 shows levels of detail generated by PPMC.

4.5.2 Progressive compression of triangle meshes

We now compare our coder with state-of-the-art compression methods specialized to triangle meshes. Fig-
ure 4.22 and 4.23 depict rate-distortion curves obtained with methods specialized to triangle meshes, and
our algorithm. Some of the results of these coders were already published in [Lee et al., 2012]. For our
algorithm, we provide a curve with the lifting scheme and a curve with the adaptive quantization algorithm.
We notice that several coders achieve better results in term of compression ratio and rate-distortion curves
than our algorithm. In particular, [Mamou et al., 2010] performs very well, at the price of high compres-
sion and decompression times (3 minutes for a mesh with 20,000 vertices). The approach of Valette et al.
[Valette et al., 2009] also provides very good results: the compression ratio are high and the rate-distortion
curve is excellent with the rabbit model, at the price of not guaranteeing the restoration of the initial connec-
tivity. The octree coder [Peng and Kuo, 2005] gives good compression rates but the distortion is high at low
rates. The rate-distortion optimized coder from [Ahn et al., 2011] also performs well in terms of compression
ratio but is weaker than our coder in terms of distortion at low rates. For triangle meshes, our algorithm
provides similar distortion at low rates than the approach described in [Lee et al., 2012]. It also yields better
compression rates as shown in the second part of Table 4.1. For the two presented triangle meshes, the
lifting scheme yields slightly better final compression rates than the adaptive quantization method. For the
irregular horse model, however, the rate-distortion performance is worse at some point.

65

s 1

[]
LS
L 17

SN NAVp AN
SNSRI
IINITSINZSN
N7 NSEX A,
i PR v
WA V“;‘Y}‘.J‘h‘
2SISALIN LN

Figure 4.19: Input meshes from Table 4.1 and their tessellations. a. Beethoven b. Bunny c. Triceratops d.
Teapot e. Elephant f. Shark g. Neptune h. Gargoyle 7. Lucy VSA j. Chinese lion k. Hippo [Fandisk m.
Rabbit n. Dinosaur o. Venusbody p. Fertility ¢. Horse r. Ramesses.

66

R
O
MSRIANY Ny

>

TN

X

X

S

tail generated by PPMC.
67

Figure 4.20: Levels of de

Model # poly. | Quant. C_O“r é‘_”hemé‘ot_ Lee 2012 | Tsen. 2002
Beethoven 2812 10 5.7 | 16.7 | 22.4 26.0 16.6
Bunny 8814 10 3.8 | 11.8 | 15.6 20.3 12.2
Elephant 10895 12 3.4] 123 | 15.8 25.4 11.8
Shark 2562 10 51 | 11.4 | 16.5 21.0 8.1
Teapot 1290 10 4.7 1 13.9 | 18.6 25.5 12.2
Triceratops 2834 10 5.4 | 12.6 | 18.0 22.1 11.9
Neptune 112658 12 1.5 | 6.7 8.1 17.8 5.6
Chinese lion 128339 12 1.4 | 80 9.4 19.6 6.9
Gargoyle 32126 12 2.7 | 12.5 | 15.3 23.9 12.1
Lucy VSA 76646 12 5.4 | 13.8 | 19.2 21.5 20.3
Hippo 32658 12 4.0 | 11.8 | 15.8 21,8 16.0
Horse 39698 12 4.1 | 15.2 | 19.3 20.4 19.1
Fandisk 12986 10 3.9 | 11.9 | 15.8 15.7 9.8
Dinosaur 28136 12 4.6 | 16.3 | 21.0 21.2 20.2
Venusbody 22720 12 3.6 | 12.6 | 16.1 16.9 13.4
Rabbit 134074 12 3.2 | 11.4 | 14.6 16.2 12.1
Fertility 483226 12 3.6 | 10.2 | 13.7 14.7 13.4
Ramesses 1652528 12 4.2 | 7.7 | 11.9 12.3 11.9

Table 4.1: Compression rates in bits per vertex, without any rate-distortion optimizations. The first part of
the table contains meshes with arbitrary face degrees. The second part contains only triangle meshes. C.
stands for connectivity. G. stands for geometry. To compress polygon meshes with the method of Lee et al.
[Lee et al., 2012], a preliminary triangulation is performed. We add to the obtained compression rates the
cost of the edge flags required to restore the original connectivity. The results of our scheme are compared
against the results from the algorithms described in [Lee et al., 2012] and [Isenburg and Alliez, 2002b]

While being more general than progressive coders specialized to triangle meshes, our coder achieves
competitive results for the compression of triangle meshes. It works with any 2-manifold mesh and exhibits
good rate-distortion performances at low rate and average compression rates.

4.6 Conclusion

In this chapter, we introduced PPMC, a new progressive mesh compression algorithm. One distinctive
property of our method is that it can handle surface meshes with arbitrary face degrees unlike previous
approaches which only implement triangle mesh compression. It therefore answer to our objective of building
generic approaches. However, the adaptation of this scheme to non-manifold connectivities does not seem
to be trivial.

Starting from a simple algorithm based on decimation traversals, we propose solutions to improve the
compression of both geometry and connectivity. We then incorporate two methods to optimize the rate-
distortion performance: one based on wavelet lifting scheme, and the other based on adaptive global quanti-
zation. Experimental results show the effectiveness of our technical choices. Beside being more general than
previous approaches, our method is also competitive for the compression of surface triangle meshes.

In our current implementation of the adaptive quantization method from [Lee et al., 2012|, parameters
computed with a corpus or triangular meshes are used. As our algorithm can compress polygon meshes,
parameters suited for these models may yield better performances.

We also think that a better control of the decimation would improve the performance of the approach.
This can be easily done since the decimation and encoding steps are independent. The Chapter 5 deals
with the decimation of polygon meshes and introduces a simple volume metric. In the Section 5.3, a new

68

Figure 4.21: Decompression of the Bimba model (15770 quads) with the lifting scheme. The final compression
rate is 13.8bpv with 12 bits quantization.

decimation method for PPMC is experimented. It removes first the vertices which removal would introduce
the lowest distortion and allows in some cases to achieve better rate-distortion performance.

The multiresolution structure embedded in the compressed data generated by PPMC is an efficient tool
for the adaptation of 3D data to network, visualization device capabilities and user preferences. In the
Chapter 6, we show how an adaptation framework can take benefit of the features offered by a progressive
mesh compression algorithm to enable the efficient remote visualization of scientific visualization meshes.

69

0,0010 4

0,0008 - 9 i i
—— Our algo. (adapt quant)
—&— Our algo. (lifting)
[Alliez and Desbrun, 2001a;
—¥—[Ahn et al., 2011]
—&— [Lee et al., 2012]
[Mamou et al., 2010]
—<— [Peng et al., 2010]
~—¥4— [Peng and Kuo, 2005]

—X— [Valette et al., 2009]
—— [Valette and Prost, 2004]

0,0006 |

0,0004 -

0,0002 |

Distortion (max of the RMS distances / bounding box diagonal)

OY 0000 T T T T T T T T T T 1
Rate (bpv)

Figure 4.22: Rate-distortion curves for the compression of the Horse model with 12 bits quantization.

0,0010 4
T 10,0008
(=}
3
©
x
8
[=2}
£
2
_§ 0,0006
3
e —— Our algo. (adapt quant)
2 —+— Our algo. (lifting)
kel
" [Alliez and Desbrun, 2001a]
20,0004 —¥— [Ahn et al., 2011]
2 —— [Lee et al., 2012]
E [Mamou et al., 2010]
g —<— [Peng et al., 2010]
< ¥4~ [Peng and Kuo, 2005]
'g 0,0002 —X— [Valette et al., 2009]
é’ —— [Valette and Prost, 2004]
S —
0,0000 T T T T T T T T |
0 2 4 6 8 10 12 14 16 18

Rate (bpv)

Figure 4.23: Rate-distortion curves for the compression of the Rabbit model with 12 bits quantization.

70

Chapter 5

A simple volume metric for polygon
mesh decimation

Figure 5.1: Simplification (100 faces) of the Moai model (20000 faces).

5.1 Introduction

Progressive mesh compression algorithms offer interesting features for the adaptation of 3D mesh to net-
work, visualization device capabilities and user preferences. As seen in Chapter 3 and 4, progressive mesh
compression implies the generation of levels of detail. So, progressive mesh compression is linked to mesh
decimation. To well preserve the input mesh features, mesh simplification algorithms must be driven by a
metric. For progressive mesh compression algorithms, the quality of the decimation is important to achieve
a high rate-distortion performance. The choice of metrics for triangle mesh decimation has been widely
studied [Matias van Kaick and Pedrini, 2006]. The case of general polygon meshes retained less interest.

Polygonal remeshing has been presented in the literature as an efficient way to represent a surface with few
polygons of arbitrary degree. Alliez et al. proposed an Anisotropic Polygonal Remeshing method based on the
determination of the mesh curvature directions [Alliez et al., 2003]. The Variational Shape Approximation
of Cohen-Steiner et al. [Cohen-Steiner et al., 2004] is based on the clustering of the input mesh faces driven
by a normal-based metric. More Recently, Lévy and Liu proposed an anisotropic polygonal remeshing

71

method based on their L,-Centroidal Voronoi Tessellation framework [Lévy and Liu, 2010]. Pellenard et
al. in [Pellenard et al., 2013] proposed an extension of the Variational Shape Approximation framework to
generate rectangle-shaped polygons.

As far as we know, no incremental decimation approaches with a corresponding metric have been proposed
for general polygonal mesh simplification. Some incremental algorithms were proposed for quad meshes
simplification [Tarini et al., 2010, Daniels et al., 2009]. However, the simplification of meshes with faces of
arbitrary degrees seems to have not yet been studied.

The content of this chapter can be summarized as follows.

e We first describe a very simple polygon mesh decimation algorithm and its corresponding volume
metric. Used together, they generate decimated meshes with anisotropic faces of arbitrary degrees.

e We then apply the presented volume metric to the selection of the patches to decimate for PPMC,
the progressive algorithm presented in Chapter 4.

e We demonstrate the efficiency of the both techniques by presenting experimental results.

5.2 Polygon mesh decimation

We present in this section an incremental decimation algorithm that generate polygon meshes. At each step,
it performs the simplification operation that has the lowest cost until a stopping criterion is met.

5.2.1 Principle

Two basic operators are used for the decimation: the halfedge collapse and the edge removal. An halfedge
collapse operation consists in merging a vertex with one of its neighbors and removing the degenerated faces
if needed. It is depicted on Figure 5.2 a. An edge removal operation merges two adjacent faces by removing
their common edge. It is depicted on Figure 5.2 b. We call patch, a set of faces that are modified by a
decimation operation. To preserve the quality of the mesh, the algorithm does not perform the following
operations:

e The operations that generate non-manifold connectivities.

e The operations that generate concave faces. To determine if a non-planar polygon is concave, we
first compute its normal with Newell’s method [Tampieri, 1992]. Then, the polygon is said concave if
its edges, projected on a plane directed by its normal, form a concave polygon.

e The operations that generate normal flips. The algorithm checks for each face modified by an halfedge
collapse that its normal before and after the collapse are not opposite. Following a similar idea, two
faces that have an opposite normal cannot be merged by an edge removal.

All the authorized operations are ranked according to a volume metric detailed in Section 5.2.2. The
operation that has the lowest cost, i.e that modify the least the volume of the mesh, is performed first. If
a halfedge collapse operation and an edge removal operation have the same lowest cost, the edge removal is
privileged.

When an operation has been performed, the operations related to the modified faces need to be rechecked
and their cost updated. Thus, after an halfedge collapse, we check and update all the collapse costs of the
halfedges of the faces adjacent to the vertex to split. We also update the removal costs of the edges of these
faces. This process is illustrated on Figure 5.3 a. After an edge removal, for each vertex of the face that
is left, we check and update the collapse cost of its incoming and outgoing halfedges. We also update the
removal cost of all the edges incident to these vertices. This process is illustrated on Figure 5.3 b.

The decimation ends when a stopping criterion is met. This can either be that the targeted number of
vertices or faces has been reached or that the next operation has a cost superior to a set threshold.

72

DAY
1A

Figure 5.2: Decimation operators. a. The halfedge collapse. The halfedge in red is collapsed. b. The edge
removal. The edge in red in removed.

N
||

B
LN
%@

-
s

i
<
u

o

Figure 5.3: Update of the operation costs. In the second column, the halfedges which collapse costs are
recomputed are in blue. The edges which removal costs are recomputed are also in blue. a. After an
halfedge collapse. b. After an edge removal.

5.2.2 The simple volume metric

The simple volume metric we used measures the volume difference generated by a decimation operation.
This volume is a polyhedron bounded by the local surface before the operation and the local surface after
the operation. It is illustrated on Figure 5.4.

We use the divergence theorem to compute the volume of this polyhedron. We consider a polyhedron
that bounds a volume with a surface S, a normal n defined at all the point of S and a vector field F. The
divergence theorem can be expressed with the following formula:

/Q/(V-F)da—zéé(b‘-n)ds

73

Figure 5.4: The volume metric. a. The mesh before the halfedge collapse shown in red. 5. The mesh after
the halfedge collapse. ¢. The value of the volume metric is equal to the volume of the red polyhedron that
represent the difference between the volume of the mesh before and after the collapse.

It we consider the vector field F(x) = %x, its divergence V - F is equal to 1. Therefore, the divergence
theorem becomes:

Volume()) = #(F -n)dS

S

We need to define analytically the surface generated by each non-planar polygonal face to compute this
integral. This question is not trivial. It can have many answers but we chose a very simple solution that
proved to be sufficient in our experiments. Each face of the polyhedron is triangulated by introducing a
vertex at its barycenter and creating a triangle fan around it with the other face vertices. Therefore, the
formula simplifies to:

1
Volume(Q)) = 3 in n; Aj,
fi

where x; is the position of any point of the face f;, n; is the normal of f; and A; is the area of f;. As f;
is a triangle, A; and n; are easy to compute.

5.2.3 Results

We implemented this simple decimation algorithm in C++ using the halfedge data structure from OpenMesh
[Botsch et al., 2002]. The algorithm simplifies a mesh at about 2000 vertices per second on a desktop
computer with an Intel Core i7 processor at 2.80 GHz.

The Figure 5.5 shows some examples of polygonal simplifications. Anisotropic polygons are naturally
produced by the method. The shape of the input model is well preserved. Comparing to previous techniques
[Alliez et al., 2003, Cohen-Steiner et al., 2004, Pellenard et al., 2013], the shape regularity of the generated
polygons seems inferior. We think that our decimation method has, however, some advantages over previous
work.

e It can simplify polygon mesh as input.

e It is incremental. The decimation algorithm outputs a valid mesh at any step. It can stop when the
targeted number of faces or vertices is reached or when the metric value exceeds a threshold.

e Its implementation is simple. The method is based on elementary decimation operators and a simple
volume metric. An implementation based on a library integrating an halfedge data structure is easy
to built.

74

One way to improve the decimation quality could be to relocate the vertex to split after an halfedge
collapse to produce nicely shaped polygons. Vertex relocation after an edge collapse has been widely used
for progressive triangle meshes [Hoppe, 1996, Garland and Heckbert, 1997]. However, as far as we know, the
case of polygonal models has never been studied.

5.3 Progressive compression guided by the volume metric

We presented in the Chapter 4 PPMC, a progressive mesh compression algorithm that can compress polygon
meshes. As explained in Section 4.2.1, local patch decimation operations are applied to generate the succes-
sive levels of details. The order of the operations is not constrained. Therefore it is possible to prioritize the
operations that modify the least the volume of the mesh.

The decimation algorithm of PPMC described in Section 4.2.1 starts from a random seed vertex and
progressively conquers the whole mesh by trying to generate new patches with adjacent vertices that do not
belong to already marked faces. We propose here a different strategy. To generate a new level of detail,
all the allowed decimation operation costs are computed. The volume metric described in Section 5.2.2
computes the volume defined by the local surface before the patch decimation and the local surface after
the patch decimation. Then at each step, the algorithm performs the operation that has the lowest cost.
After a decimation, some neighbor operations become no longer possible because they would modify the
just decimated patch. The cost of other neighbor operations has also to be recomputed because of the last
re-edging operation.

This new decimation techniques used together with the lifting scheme proposed in Section 4.4.1 benefits
to the rate-distortion performance at low rates for the compression of irregular meshes. However, as this
decimation method tends to remove less vertices per step, the final compression rate is increased. This is also
why this method does not improve the rate-distortion performance for the compression of regular meshes.
The Figure 5.6 compares the rate performance of this new decimation method, the simple lifting scheme and
the adaptive quantization method for the compression of irregular models.

5.4 Conclusion

We showed in this chapter that a simple volume metric can efficiently drive the simplification of meshes with
arbitrary face degrees. We first described a polygon mesh decimation algorithm based on two operators: the
halfedge collapse and the edge removal. We then presented a decimation strategy for the PPMC algorithm
(see Chapter 4) that performs first the decimation operations that modify the least the volume of the mesh.
This new method improves the rate-distortion performance at low rates for the progressive compression
of irregular meshes.

Regarding the simplification application, we think that there is much space to improve the quality of
the decimated model by allowing vertex relocation after an halfedge collapse. A fast vertex relocation
scheme that produces well shaped polygon and minimizes the distortion, such as the approach of Garland
[Garland and Heckbert, 1997] for triangle meshes, would be a significant contribution.

The next chapter shows how an adaptation framework can take benefit of the multiresolution structure
provided by a progressive mesh compression algorithm to enable the efficient remote visualization of scientific
visualization meshes.

75

Figure 5.5: a. venusbody (200 faces). b. fandisk (100 faces). c. bunny (500 faces). d. horse (300 faces). e.
rocker arm (500 faces). f. rabbit (100 faces). g. fertility (300 faces). h. cow (600 faces).

76

0,0006 -

3
c
o
(=}
o
©
x
o
Qo
@ 0,0004 -
£
c
=3
o
o
»
Q
e
Z
3 —&— Our algo. (adapt quant)
2 —— Our algo. (lifting)
%) 0,0002 - —>— Our algo. (lifting + prioritized decimation)
=
©
£
=4
(=}
£
2
@2
a
0,0000 T T T T T T T 1
0 2 4 6 8 10 12 14 16
Rate (bpv)
0,00030
igj 0,00025 |
o
g
=l
<
2
© 0,00020 |
£
2
5
2
8
é 0,00015
E —— Our algo. (adapt quant)
s —a— Our algo. (lifting)
é) 0,00010 —— Our algo. (lifting + prioritized decimation)
E
8
s
£ 0,00005 -
z
0,00000 T T T T T T T
0 2 4 6 8 10 12 14

Rate (bpv)

Figure 5.6: Rate-distortion curves for the compression of the Rabbit and Fertility models with 12 bits
quantization.

7

78

Chapter 6

Remote visualization of progressive

Meshes

Figure 6.1: Progressive decompression of the radiator model. Tts original X3D size is 953 KB (16002 vertices).

6.1 Introduction

In the Chapter 3, we presented a state-of-the-art on progressive mesh compression. In the Chapter 4, we
described a new progressive mesh compression algorithm that can compress manifold polygon meshes. In
these previous chapters, we claimed that the multiresolution structure embedded in data compressed with
progressive algorithms is useful tool for 3D data adaptation. In this chapter, we demonstrate how to
exploit this feature in the context of remote visualization of scientific data. This use case comes from the
Collaviz project [Dupont et al., 2010], which aimed at building a remote collaborative platform for simulation
applications.

As with other application fields using meshes, increasing needs for precision and quality in scientific
simulation lead to an important increase in the complexity of 3D data sets. For instance, the number
of mesh elements used in finite element resolution methods can now reach about one billion. Moreover,
these data is nowadays produced in high performance computing centers and have to be analyzed by teams
of scientists and engineers who are more and more often geographically distant. Nevertheless, even with
the increase of available network bandwidth together with the available computational power resources,
remote visualization of large 3D scientific datasets still suffers from several shortcomings among which the
downloading time, the lack of interactivity and the management of different transmission, visualization and
user constraints. Therefore, the idea of providing an efficient and fast remote access to large 3D scientific data

79

has motivated three related research and engineering areas in these twenty last years: 3D mesh streaming,
3D mesh compression and 3D data adaptation.

We present in this chapter a basic streaming and adaptation framework for remote scientific visu-
alization of 3D meshes generated by finite element computation methods. The aim of this framework is to
provide high quality intermediate colored meshes and efficient adaptation mechanisms dealing with different
constraints (network bandwidth, display capabilities, etc.). We also propose to embed this framework into
an extension of the X3D specification since it represents a well-known standardized format for 3D data
exchange.

In the studied case, the targeted representations are surfacic. Color values representing scalar fields are
linked to the vertices of the meshes. They are of prime importance for the visualization and the analysis. The
meshes are encoded with the progressive compression algorithm described in [Lee et al., 2012] (see Section
3.2.2). Based on the valence-driven progressive approach of Alliez and Desbrun [Alliez and Desbrun, 2001a],
it achieves a good rate-distortion performance compared with equivalent schemes. We chose to use this
scheme rather than the progressive PPMC approach described in the Chapter 4 for two reasons. The first
reason is that we designed this adaptation framework before PPMC. The second reason is that the approach
of Lee et al. [Lee et al., 2012] was designed to efficiently compress meshes with color attributes at vertices
(see Section 3.2.9) while our current implementation of PPMC cannot handle them.

The content of this chapter can be summarized as follows.

e First, we describe previous work on 3D streaming and adaptation, particularly in the context of the
X3D file format.

e Then, we present the proposed streaming and adaptation framework and its integration to the
X3D format.

e Finally, the utility of the approach is illustrated by some experimental results of the compression
scheme and the full framework.

6.2 Previous work on 3D data streaming and adaptation

3D data streaming can be defined as the continuous and real-time delivery of 3D content over network
connections in order to:

e enable user interactions without a full download of the data,

e provide a visual quality as if the data were stored locally.

3D data can be streamed over lossless or lossy network. In the case of a lossy network, various approaches
have been proposed to handle data loss during the transmission of 3D mesh [Bischoff and Kobbelt, 2002,
Chen et al., 2003, Cheng and Basu, 2007]. Data redundancy techniques and the influence of packet loss
over the reconstructed data were studied for the different schemes. The application of remote scientific
visualization do not tolerate data loss. Therefore, in the case of a lossy network, error correction schemes
must be set up, as for instance in the TCP/IP protocol. The channel can then be considered as lossless.

Two kinds of approaches exist related to adaptive 3D streaming. On the one hand, work has been
proposed to stream efficiently progressive meshes with a view-dependent way [Southern et al., 2001,
Cheng and Ooi, 2008], by optimizing the rendering perception [Chen and Nishita, 2002] or packetiza-
tion [Cheng et al., 2007a]. On the other hand, the rendering of progressive 3D models taking into
account device capabilities and user perception have also been studied in [Funkhouser and Séquin, 1993,
Gobbetti and Bouvier, 1999, Pasman and Jansen, 2002]. The framework of Tack et al. [Tack et al., 2005,
Tack et al., 2006] optimizes the levels of detail of each object or part of object inside the 3D scene thanks
to Pareto plots (error in function of rendering cost).

However, these two problems have not been much studied together, i.e. for the case when 3D models are
rendered over networks. The framework built in [Jessl et al., 2005] delivers progressive meshes over networks

80

using subdivision-surface wavelets. Fixed thresholds, related to the transmission and the visualization,
are used to drive the transmission. In [Schneider and Martin, 1999] the authors propose a client server
architecture to deliver 3D model at interactive frame rates over networks. Their approach optimizes trade-
offs between all the constraints (networks, device capabilities, user preferences). They use benchmarks to
measure the environment characteristics.

Martin [Martin, 2000] describes a framework dedicated to the automatic selection of the best represen-
tation modality for objects in a scene. Their performance model takes into account, for each modality,
the estimated delivery time, the quality of the representation and the degree of interaction it supports.
In [Teler and Lischinski, 2001, Deb and Narayanan, 2004, Fathy et al., 2011], an adaptive framework for re-
mote walkthrough applications is proposed. In [Ngoc et al., 2002], a QoS framework for the delivery of
3D content over network is built. The authors define a benefit, cost optimization problem solved by using
heuristics. PSNR is used as the quality metric of rendered models.

X3D is an open software standard that describes a XML-based file format for the interactive 3D data
storage and delivery. X3D is the successor to the Virtual Reality Modeling Language (VRML). It can be
used for a board range of applications such as computer aided design, computational simulation, geographical
information system or medical imaging. Mechanisms have been proposed in X3D to allow the efficient delivery
of 3D data by selecting the best modality in function of the user viewpoint.

First, as it is not always needed to render the finest representation of an object, particularly when it is
far from the user viewpoint, the X3D specification includes an adaptation mechanism called LOD'. This
mechanism enables the manual specification, by the scene designer, of multiple alternatives (e.g. for instance
the entire mesh in different level of resolutions) for an object together with a set of distance ranges indicating
when alternatives have to be rendered. In [Pasman and Jansen, 2002], a similar idea has been proposed based
on impostors, accuracy curves describing the minimal amount of resources required to reach an accuracy
and a slight extension of the VRML node specification.

Nevertheless, these X3D/VRML specifications do not fit yet to the constraints and challenges of remote
scientific visualization:

e The proposed specifications need the complete description of each alternative and thus does not enable
progressive representation.

e The specifications do not define strategies related to the transmission and streaming part, i.e. intelligent
transmission of the different alternatives.

e The level of detail techniques are more bounded to the 3D scene and not to the interaction of the user.

Related to the first issue, approaches based on a client-server architecture have been proposed
[Fogel et al., 2001, Guéziec et al., 1998]. In [Guéziec et al., 1998], the authors propose their own pro-
gressive mesh representation where an external file, downloaded on demand, holds the level of detail data.
[Fogel et al., 2001] extends the VRML/X3D language with two nodes: progIndezedTriSet which extends
the node IndexedFaceSet and ProgLOD which holds the level of detail data (triangle index, coordinates,
normal, etc.). An alternative is also the specification of URLs of external files which contain the different
binary compressed representations of the data. Both approaches do not specify how to use the progressive
representation for progressive download and rendering.

Related to the other issues, the basic transmission strategy consists in downloading the entire scene and
in rendering it. In [Arikawa et al., 1996], this issue is tackled by the proposition of a dynamic LOD VRML
extension and a client server architecture enabling user-dependent level of detail streaming and rendering.
Nevertheless, this approach does not use progressive representation of meshes. Besides, it is much designed
for remote walkthrough and not for remote scientific visualization.

As far as we know, no work have been proposed addressing the particular case of adaptive remote 3D
scientific visualization.

Thttp://wuw.web3d.org/x3d/specifications/IS0-IEC-19775-1.2-X3D-AbstractSpecification/index.html

81

6.3 Adaptation and streaming framework with X3D

This section is dedicated to the description of our adaptation framework for 3D scientific visualization over
networks. It uses a basic client-server architecture.

6.3.1 The adaptation parameters

Our adaptation framework takes into account constraints coming from the network, the device graphic
capabilities and the user view-point and preferences. The algorithm aims at maintaining the following
metrics below their threshold:

e T, (M), the total time spent to download successively levels of detail of a mesh M. The download of
new level is halted when Ty (M) overtakes Taimaz-

e (), the total quantity of memory taken by all the level of detail data. New level downloading is stopped
when @ is above Qqz-

e T, the rendering time of an image which measures the difficulty for a device to render a 3D scene. If
T, is above the threshold T},,.:, then the scene complexity must be reduced.

e Fgp(M;, R, P), the element distinction metric, where i is the current level index of M. As the visual-
ization devices have not the same resolution, our adaptation framework tries to find the best level of
a mesh M to render for a given viewpoint P and a screen resolution R. Fgp represents the ability for
a user to well distinguish the mesh cells. Rendering faces which sizes are below the size of one pixel of
the screen is in most cases a waste of computing resources.

We compute Fgp by randomly extracting a set of triangles of M; (about 10%) and using the following
formula: .
Fpp(M;, R, P) = —

n2

where n, is the number of pixels of the lines when the triangles are rendered in line mode and ns is
the number of pixels of the triangles when they are rendered in filled mode. These two renderings are
done with no lighting and anti-aliasing filters and with uniform colors distinct from the background
(see Figure 6.2).

»

Figure 6.2: Computation of metric Fgp. a. The object with its visualization attributes is shown. b. 10% of
the triangles are rendered in filled mode. ns is obtained by counting gray pixels. c. The same triangles are
rendered in line mode. n; is obtained by counting black pixels.

If Fgp is near 0, it means that the mesh elements can be well distinguished in the screen space. On the
contrary, the more it is far from 0 the more the elements are small and cannot be easily distinguished.
Fgp has to stay below Fgpmaz-

The size of the randomly extracted triangle set is important. It sets the accuracy of the metric for the
current viewpoint. Indeed, if all the faces are rendered with a depth test, only the visible faces are

82

taken into account in the metric computation. However, this is done at the expense of the computation
time.

As the following section describes it, we benefit from the inactivity of the computational resources, when
the user has found the viewpoint he is interested in, to compute this metric and ask, if needed, for refinements.
In our current implementation, we extract 10% of the triangles to compute Fgp. For the highest levels, the
computation time is approximately half of the rendering time.

6.3.2 The adaptation algorithm

Our adaptation algorithm is triggered by events. An event can be: an addition of a new mesh into the scene,
a first rendering after a mesh refinement, a first rendering after a mesh coarsening, a changing visibility of
one object or a changing view-point. Note that the adaptation algorithm is run when the user has found
his interest view-point and does not move anymore. The adaptation algorithm computation time does not
impact the frame rate during transient moves.

L is the set of the meshes from the scene that the user has selected to be visible. After each event the
adaptation algorithm is started. Basically it chooses among these three choices:

e do nothing,
o if T, > Trpmax * (1 4+ 1), coarse the mesh M of L with the highest Frp(M;, R, P),
o if T, < Tymas, refine a mesh M of L given by the findMesh() function.

An hysteresis thresholding (introduced by the r parameter experimentally set) avoids jumps between
levels because of T, varying around T}.,q.. It allows T). to overtake 1.4, Without spawning detail reduction.

The findMesh() function returns the mesh with the minimal Fgp(M;, R, P) which satisfies all the fol-
lowing constraints:

[Q < Qmarv
° le(M) < Taimaz,
e and FED(MZ',R, P) < FE‘Dmaw-

The whole adaptation algorithm is written in pseudo-code in Figure 6.3.

if T, <T,mae then
M = findMesh()
if M exists then
if M, is not in memory then
start downloading M, ; and store it in memory
end if
replace M; by M,
end if
else if T, > Typmaz x (1 4+ 1) then
select the visible mesh M with the highest Frp(M;, R, P)
replace M; by M;_1
end if

Figure 6.3: The adaptation algorithm. The first rendering after a mesh refining or coarsening triggers a new
run of the adaptation procedure.

As the user may be interested in visualizing the highest level of detail of a certain mesh M of the scene,
he can force the rendering of its highest level M,, even if it can not be achieved at an interactive frame rate.

83

In this case, all the levels are downloaded and M, is rendered without taking into account the results of the
previous adaptation algorithm.

6.3.3 Streaming levels of detail with X3D

At the client side, the resources in terms of network bandwidth, device capabilities (CPU, RAM, graphic
computational power, etc.) are limited while the resources at the server side can be managed. Therefore,
we use a client-server architecture to stream the progressive meshes.

The Figure 6.4 presents the compressed stream provided by the Lee et al. algorithm [Lee et al., 2012].
This stream is naturally decomposed into several parts, each standing for a certain level of detail and each
containing connectivity (C), geometry (G) and color (Cl) information. The first part is the base mesh (usually
several dozens of vertices) which is encoded using a standard mono-resolution compression technique; then
each part of the stream, together with the already decompressed level, allows to build the next level of detail.
At the end of the stream decoding the original object is retrieved.

Base i
mesh [|ZS9[®] €] ¢ S
Level1l Level?2 Level 3 Level n

Figure 6.4: Format of the encoded stream. Each part of the stream contains geometry (G), connectivity (C)
and color (Cl) data needed for mesh refinement.

We integrate our framework to the X3D language with the same approach as in [Fogel et al., 2001].
The 3D scene is described in a X3D file which contains a ProgrTriSet node for each object. ProgrLOD
nodes receive the URL indicating where to download the level of detail data (see Figure 6.5). When a
client requests a mesh, it receives this X3D file. Then, it can start downloading the levels according to the
previously described adaptation strategy.

<ProgrTriSet>
<ProgrLLOD level="0" url="http://collaviz.org/lod0.ps" />
<ProgrLOD level="1" url="http://collaviz.org/lodl.ps" />
<ProgrLOD level="2" url="http://collaviz.org/lod2.ps" />
<ProgrLOD level="3" url="http://collaviz.org/lod3.ps" />

</ProgrTriSet>

Figure 6.5: Integration of our progressive compressed remote mesh representation in X3D. ".ps’ files corre-
spond to the binary level of detail data generated by our progressive mesh encoding scheme.

Our client asks for new levels of detail using HTTP requests. The server responds by delivering the mesh
level of detail data that has been already computed off-line by our progressive compression scheme. Once the
client has received a new level, it restarts the adaptation procedure in order to maximize the user experience
and maintain the metrics below their thresholds. Using the HTTP(S) protocol with its standard TCP /IP
port, the proposed traffic can pass through most of the firewalls and proxy servers deployed in companies
for their connection to the Internet.

6.4 Experiments

We divided our experiments in two parts. The first part reports compression results obtained by compressing
scientific visualization meshes with the progressive coder embeded in our framework [Lee et al., 2012]. The
second part relates experiments obtained with the complete streaming and adaptation framework. The
experiments ran on a station with 2,8 Ghz processor and a NVIDIA Quadro FX 580.

84

Internet

HTTP(S) 4I> Client
server i

. Visualization
device

Mesh LoDs I

Figure 6.6: Our streaming architecture for progressive 3D meshes. Using the HTTP(S) protocol, we are able
to pass through most of proxy servers and firewalls.

Figure 6.7: Our corpus of 3D models of scientific data. First row: radiator, radiator Iso and wvelocity.
Second row: tank, vistcurb_ CP and wvelocity CP.

6.4.1 Progressive encoding scheme

We tested the progressive compression method of Lee et al. [Lee et al., 2012] on several 3D models coming
from post-processing (cutting-plane, iso-surfacing) applied on volumetric scientific simulation results (Fluid
Dynamics and geophysics). These six models (see Figure 6.7) are X3D ASCII files and all contain color
information on vertices except radiator _Iso.

The Table 6.1 presents respectively the original sizes of the models (X3D ASCII file format) and the sizes
of the compressed streams corresponding to a lossless compression (all levels of detail) with 11 bits precision.
The compression ratios are very good (between 2.75% and 4.51%). For comparison a binary encoding method

85

like GZIP provides compression ratios between 15% and 20%. The whole decompression times (all levels)
are between 0.14 and 6,015 seconds, respectively for vistcurb (4.3Kvertices) and tank (123Kvertices) on a
2Ghz processor. The number of levels is automatically determined so as to obtain a base mesh of around a
hundred vertices. It goes from 10 (wistcurd) to 26 (tank). This number of levels depends on both the number
of vertices and the shape complexity of the model.

Name Original (KB) | Compressed (KB) | Ratio
velocity CP 7739 227.9 2.94%
velocity 2979 834 2.80%
radiator 953 27.0 2.83%
radiator Iso 713 19.6 2.75%
vistcurb CP 354 16.0 4.51%
tank 10065 266.0 2.64%

Table 6.1: Lossless compression results for several objects from scientific simulations with the algorithm from
[Lee et al., 2012].

The Figure 6.1 illustrates several levels of detail from the progressive decoding of the radiator model;
even after decoding only a very small amount of data (eg. 4.3 KB, corresponding to a decompression time
of 30 ms) the resulting models are nevertheless visually correct allowing the client to be able to visualize a
nice model even through a very low bandwidth channel.

These levels of detail also allow to adapt the resolution of the scene to the processing capacity of the
display device. The Figure 6.8 illustrates several levels of detail of the radiator_Iso model. If only a small
part of the stream is decoded then the resulting model owns only a small number of triangles allowing an
efficient rendering even on low capacity devices. As it is shown in the next experiments, these properties
combined to our adaptation algorithm will allow a very efficient streaming framework.

446 Vertices 2023 Vertices 7411 Vertices
9% of the stream 25% of the stream 100% of the stream

Figure 6.8: Progressive decompression of the radiator_Iso model.

6.4.2 Complete streaming and adaptation framework

We have tested our whole framework by simulating a remote scientific visualization session with a mesh
coming from a real study case [Rupp I., 2008] of 460192 facets. All the level of detail data were stored
on an HTTP server. Our adaptation framework successively downloaded and rendered them. We did two
experiments which are described below.

Viewpoint adaptation. The first experiment consisted in studying the effects of our adaptation framework
when the user changes the viewpoint. After each move, we waited for the data requested by our
adaptation algorithm to be completely downloaded before taking snapshots of the new rendering.
Then, we compared these snapshots with their equivalent taken with the full model by computing the
PSNR. The results of this experiment are presented in the Table 6.2. Snapshots of the viewpoints used

86

Figure 6.9: Snapshots taken during our test of progressive download and rendering of our model with different
viewpoints.

87

during the experiment can be seen on Figure 6.9. We computed the Fgp metrics by extracting 10%
of the triangles for each level. It took a maximum time of 110 ms for the finest level of detail.

Results demonstrate that our framework permits to achieve a good visualization quality and interactive
frame rates for a global viewpoint by downloading a low amount of data (see Figure 6.9 a). Indeed,
for this level of detail, only 27% of the data need to be downloaded and only 50000 vertices have to be
displayed. Then when the user zooms on a specific part of the model, more data is downloaded and
the level of detail increases.

Point of view (Figure 6.9) a. b. c.
Level of detail 29/34 | 32/34 | 34/34
Nb of triangles 50412 | 150650 | 460192
% of downloaded data 26.6 52.1 100
T, (ms) 45 230 266
PSNR (dB) 35.83 37.80 -

Table 6.2: Results of our test of progressive download and rendering of our model with different viewpoints.
We set Fgpmaz = 1.8, Trmae = 200 and 7 = 0, 5.

Resolution adaptation. The second experiment consisted in studying the effects of our adaptation frame-
work when considering a single viewpoint (see Figure 6.10) but using three different screen resolutions:
one of a mobile device (640x480), one of a standard notebook computer (1280x800) and one (1882x932)
which can be reached on a powerful graphic station with a 24 inches monitor. For each screen reso-
lution, our algorithm automatically adapted the level of detail of the 3D model. Like in the previous
experiment, we compared, using the PSNR, the snapshots obtained with the level of detail selected by
the framework with the snapshots taken with the full mesh; the results are given in the Table 6.3 and
attest the efficiency of our adaptation algorithm since the PSNR values remain quite high.

Resolution 640x480 | 1280x800 | 1882x932
Level of detail 30/34 32/34 33/34
Nb of triangles 70862 150650 238720
% of downloaded data 31.5 52.1 70.1
PSNR (dB) 35.61 40.64 44.13

Table 6.3: Results of our test of progressive download and rendering of our model with a common viewpoint
and different screen resolutions. We set Fgpmaz = 1.8, Trmae = 200 and 7 = 0, 5.

6.5 Conclusion

In this chapter, we have proposed an adaptive and progressive streaming framework dedicated to remote
scientific visualization. Targeted data is surfacic representations of 3D meshes computed with finite ele-
ments methods. Due to the importance of the scalar fields linked to the vertices of the meshes for the
visualization and the analysis, our framework integrates a progressive encoding method that handles colors
[Lee et al., 2012]. Efficient adaptation mechanisms have been proposed to tackle different constraints: net-
work bandwidth, device capability and user preferences. Based on previous works on X3D, the proposed
framework is also X3D-compliant. Our first results on 3D scientific models show the relevance of the ap-
proach. We demonstrated how to take benefit from the multiresolution structure offered by progressive
mesh compression algorithms in an applicative context of remote visualization. We therefore experimentally
prove that progressive mesh compression is a powerful tool for 3D data adaptation in a context of remote
visualization.

88

Figure 6.10: Snapshot of the viewpoint used during our test of progressive download and rendering of our
model with different, screen resolutions.

Nevertheless, the constraint modeling as well as the adaptation algorithm are basic. Thus, our element
distinction metric Fgp relies on a simple concept. Its main advantage is that it can be quickly implemented
with OpenGL. Yet, as it is based on the determination of an average number of pixels per rendered triangle,
if the triangles of the current level of detail do not have an uniform size, this metric might lead to wrong
adaptation choices. Furthermore this metric requires intense computations: the GPU has to perform the
two rendering only useful for the metric. The generated images have to be transfered to main memory in
order to count the pixels with the CPU. Better performance may be obtained by computing directly the
metric on th GPU.

The last limitation of this approach comes from the nature of progressive mesh compression algorithms.
If the user is interested in a precise region of the mesh at the highest level of detail as in Figure 6.9 ¢, all the
levels of detail and therefore the full object must be downloaded and decompressed. Progressive compression
algorithms are not very efficient in this case since the majority of the processed data is useless. Random-
accessible mesh compression approaches are a solution to this issue: they allow to download to decompress
only the requested regions of a mesh. In the following of this thesis, the Chapter 7 review existing work
on random accessible mesh compression. The Chapters 8 and 9 propose two new random-accessible and
progressive mesh compression algorithms, which are also suited to 3D mesh adaptation.

89

90

Chapter 7

State of the art on random accessible
mesh compression

7.1 Introduction

The main idea developed in this thesis is that mesh compression is an efficient adaptation tool for the
storage, the transmission and the visualization of meshes. In the Chapter 6, we demonstrated how the
multiresolution nature of data generated by progressive mesh compression algorithms is interesting for adap-
tation purposes. They allow to display progressively refined models as more data is decoded and to choose
the best level of detail in function of the viewpoint or the visualization device capabilities.

Progressive mesh compression techniques have, however, an important limitation. If the user wants only
to visualize a particular region of interest of the mesh at the highest level of detail, the full model must be
downloaded and decompressed. This can represent a significant waste of network and computing resources.
Moreover, if the compressed model is too large, it may even not be possible to decompress and visualize it
in low resource conditions.

Random accessible mesh compression techniques have been developed to address this issue. During the
decompression the user can interactively select which part of the mesh he is interested in and the
algorithm then decompresses just this region of interest. Yet, the user will not have any overview of
the other regions of the mesh. He will not be able to easily locate an other region of interest.

Progressive random accessible mesh compression algorithms allow to decompress any part of the input
mesh at any level of detail. The user can therefore refine more the regions he wants to visualize while
seeing what the other parts of the mesh look like.

This chapter presents a state of the art on random-accessible mesh compression and progressive random-
accessible mesh compression. The multiple modalities they offer during the decompression allow the adap-
tation of the 3D data to its efficient transmission and visualization, even in low resource conditions.

7.2 Random accessible compression

As seen in the Chapter 2, single-rate mesh compression algorithms mainly target the reduction of the mesh
storage size. This is often achieved at the cost of inserting dependencies between the mesh elements. Con-
sequently, if the user wants to access to a specific part of a mesh, he must wait for the decompression of the
whole mesh. When the mesh is big, the compression and the decompression can be time and memory con-
suming. Some out-of-core approaches such as streaming mesh compression [Isenburg and Lindstrom, 2005,

91

Isenburg et al., 2005¢| have a limited resource usage, but the data dependency is still persistent (see Section
2.4). The aim of random accessible mesh compression is to partially remove the dependencies between the
mesh elements. Before the decompression, the user can select which regions of interest of the mesh he is
interested in and the algorithm will decompress just these regions. Two paradigms were proposed in the
literature: the cluster-based and the hierarchical representations.

Cluster-based random accessible compression

The algorithm of Choe et al. [Choe et al., 2004, Choe et al., 2009] first segments the input mesh using
Lloyd’s method [Lloyd, 1982]. Generated charts are desired to be planar and compact in order to achieve
high compression ratios. The important characteristic of this codec is that each chart is is independently
compressed using the single rate Angle Analyzer encoder [Lee et al., 2002]. In order to not duplicate the ge-
ometry information of the border vertices shared by two charts, their positions are compressed independently
in sequences called wires. The position of the next wire vertex to encode is predicted as a linear combination
of the two previously encoded positions. The connectivity between the clusters is encoded under the form
of a polygonal mesh with the encoding scheme proposed by Khodakovsky et al. [Khodakovsky et al., 2002].
The Figure 7.1 illustrates this compression scheme. Experimental results show that this method has a small
overhead that increases with the number of clusters.

Wire-net mesh
Encoded wire-net mesh
} 00011010.
Compressed w1res\ Rand ibl
) andom accessible
0001 1010.. decompression

Compressed charts

> [ooor1000..

Input mesh

Segmented mesh

Figure 7.1: Cluster-based random-accessible mesh compression. The approach of Choe et al.
[Choe et al., 2004, Choe et al., 2009] is illustrated in this figure.

Chen et al. [Chen and Georganas, 2008] used a segmentation algorithm that generates meaningful re-
gions. Each cluster is then compressed with the Edgebreaker algorithm [Rossignac, 1999]. The difference
here is that the boundaries between the clusters are triangle strips and not wires. These strips are also
compressed by the Edgebreaker algorithm but no geometry information is embedded in the border data.
The vertex positions are encoded inside each cluster.

Yoon and Lindstrom [Yoon and Lindstrom, 2007] also built a cluster-based random accessible compres-
sion scheme. They added the random-accessible support to streaming mesh compression [Isenburg et al., 2005c¢].
The mesh is compressed by sequentially accessing and grouping the mesh triangles and vertices in a cache-
oblivious layout. Each cluster is composed of a constant number of triangles (a few thousand) and are
compressed independently with the streaming mesh compression scheme. The geometry information of the
border vertices is not duplicated: it is encoded one time in a cluster and referenced for the others. This
scheme comes with a mesh access programming interface that allows to access any element of the mesh
by their identifier at a low computational cost. Experimental results report 45:1 speedup over standard
streaming mesh compression. However, the compression overhead is about 40% compared to the approach
of Choe et al. [Choe et al., 2004].

The approach of Yoon and Lindstrom [Yoon and Lindstrom, 2007] was recently extended to support ge-
ometry random access by compressing bounding volume hierarchies composed of axis-aligned bounding boxes

92

[Kim et al., 2010]. In this hierarchy, a parent bounding volume is split into two children. The compression
aims at preserving the cache coherency of the generated hierarchy. A set of bounding volume clusters that
contains about four thousand bounding volumes are generated. These clusters are then compressed indepen-
dently to enable the random access. The vertex indices of the triangles are encoded for each leaf bounding
volume to enable the geometry random access to the mesh surface.

Hierarchical random accessible compression

Courbet and Hudelot proposed in [Courbet and Hudelot, 2009] a alternative hierarchical representation
based on sequences of vertices also called wires. The input mesh, which contains an already encoded exterior
boundary, is split into two balanced partitions. The start and end vertices of the border wire between the two
clusters as well as its size are encoded and form the connectivity information. The wire geometry is encoded
with the same linear predictor as in [Choe et al., 2009]. Both partitions are then recursively split in the same
way until each partition contains only one polygon. This tree structure allows the decompression of only
one of its paths. Therefore, the random accessibility granularity is high (see Figure 7.2). Besides, polygon
meshes can be directly compressed. However, the compression efficiency for triangle meshes is inferior to the
two previous approaches.

Figure 7.2: Random-accessible hierarchical decompression of a triangle mesh. This figure illustrates the
approach of Courbet and Hudelot [Courbet and Hudelot, 2009]. The target points the requested part of the

mesh. For each step, the current decompressed wire is in blue. It forms with the red wire, the cluster that
is split in the next step.

7.3 Progressive and random accessible compression

As explained in the previous section, random accessible mesh compression schemes allow the decompression
of only the required part of the mesh but do not provide any overview of the other parts. Progressive schemes
allow to extract levels of detail during the decompression but the full mesh must be decompressed even if
only a specific region of interest is required at the finest level of detail. These drawbacks are addressed by
progressive and random accessible schemes, which allow the decompression of different parts of a mesh at
different levels of details. Therefore, they embed a multiresolution random-accessible data structure.

In this section, we will firstly talk about the progressive random accessible compression approaches that
restore the initial connectivity after the decompression. Then, we will present some schemes that resort to
semi-regular remeshing.

7.3.1 Connectivity-preserving schemes

We distinguished two types of progressive random accessible connectivity-preserving compression schemes.

Connectivity-based algorithms

Kim et al. [Kim et al., 2006] based their multiresolution random accessible mesh compression algorithm on
their previous mesh refinement framework [Kim and Lee, 2001]. During the decompression, a vertex can be
split even if its neighbors are not the same than during the decimation. This breaks the symmetry of the
operations of standard progressive mesh representation [Hoppe, 1996]. Thus, on the decompressed model
finely refined regions can be adjacent to coarse regions. The connectivity and the geometry are compressed
through an efficient encoding of the vertex split hierarchy. This approach is therefore connectivity-based. It
offers a fine-grained multiresolution random access but the compression performance is limited (11 bits per
vertex for the connectivity and 20 bits per vertex for the geometry with a 12-bit quantization).

Cheng et al. [Cheng et al., 2007b] described a progressive random accessible mesh compression algorithm
based on an initial meaningful segmentation. The clustering is obtained by cutting the mesh into parts along
concave feature contours. Each part of the mesh is then encoded with a modified version of the progressive
encoder from [Alliez and Desbrun, 2001a] (see Section 3.2.2). The positions of inserted vertices are encoded
with polar coordinates and different quantizations for each component. No attention is, however, provided
to the part boundaries. The article does not tell if the border vertex information is duplicated. It does not
neither describe how the holes between parts decompressed at different levels of detail are handled to output
closed meshes.

Geometry-based algorithms

Better compression performances were obtained by geometry-based encoders. Jamin et al. [Jamin et al., 2009]
and Du et al. [Du et al., 2009] proposed both to add random access support to the original Gandoin and
Devilliers progressive algorithm [Gandoin and Devillers, 2002] (see Section 3.2.3). Both algorithms are
out-of-core (see Section 2.4). During the decompression, different levels of detail can be selected for the
different cells of the kd-tree. However, a post-processing step must handle the boundaries between cells
decompressed at different levels of detail.

The CHuMI viewer from Jamin et al. [Jamin et al., 2009] partitions the mesh bounding box into a
hierarchical structure called nSP-tree. This structure is composed of SP-cells encoded independently. A
SP-cells must contain a minimal number of triangles to be split into child cells. The vertices that belong
to several SP-cells are duplicated to allow independent decoding of each cell. Each SP-cell is subject to
a Gandoin and Devilliers kd-tree decomposition [Gandoin and Devillers, 2002]. This decomposition stops
when the minimal precision of the current SP-cell is reached. It encodes the connectivity and geometry
information as in the original progressive algorithm. The authors also bring a solution to the problem of
blocky effect at low rates due to the low quantization. Their scheme encodes some geometry bits in advance,
in relation to the connectivity.

The approach of Du et al. [Du et al., 2009] decomposes the kd-tree of the original Gandoin and Dev-
illiers algorithm [Gandoin and Devillers, 2002] into two layers. The top tree is the first layer while the set
of its child subtrees are in the second layer. The top tree and each of the child sub-trees are compressed
separately to enable the random access. During the decompression, the border vertices can be decompressed
independently from the internal vertices. This feature is useful since there is a prefixz dependency relationship
between the subtrees. They must be compressed and decompressed in a predefined order. Thus, to fully
decompress a subtree, the border vertices of the previous subtrees in the dependency list must be decom-
pressed. These vertices can be later collapsed if they are not interesting to the user. As this scheme do not
duplicate the border vertices, the compression performance should be higher compared to the CHuMI viewer
[Jamin et al., 2009]. Yet, the prefix dependency implies that not desired data is decompressed, which is not
the case with the CHuMI viewer.

94

7.3.2 Connectivity-oblivious schemes

As for single-rate and progressive mesh compression algorithms, resorting to remeshing for progressive and
random accessible compression offers a new degree of freedom that allows to achieve better compression
rates. These schemes are often based on wavelet decomposition framework for semi-regular meshes as their
progressive counterparts (see Section 3.3.1).

In the algorithm of Liu and Zhang [Liu and bin Zhang, 2004], each independently compressed cluster
corresponds to a triangle of the base mesh. 3 zero-trees, one for each edge, are associated to this base
mesh triangle. Sim et al. [Sim et al., 2005] used the normal mesh representation [Guskov et al., 2000]. They
describe their own scheme that assigns new edges to clusters after the butterfly subdivision. This framework
also includes a distortion model, a visibility test method and a visibility priority method to view-dependently
decompress the model. In [Roudet, 2010], one level of the wavelet decomposition of an input semi-regular
mesh is used to segment the model into regions of homogeneous coefficient magnitudes. Each of these regions
are later projected on the input semi-regular model to be later encoded separately. The framework presented
by Gioia et al. [Gioia et al., 2004] allows to dynamically add and remove wavelet coefficients to refine or

coarse the model without having to decode the whole decomposition.

Wavelet schemes have a key advantage for progressive random accessible mesh compression. No complex
algorithms have to be developed to access randomly the original connectivity graph. The difficulty comes
indeed from the fact that the connectivity must be compressed into independent clusters. For wavelet
schemes, the only requirement is that the wavelet decomposition of one cluster must only depend on the
vertices of this cluster. The connectivity is only set by the base mesh and the subdivision scheme. Tt has
not to be encoded for each level of detail.

7.3.3 Data structures for view dependent visualization

The two previous sections describe progressive random accessible mesh compression algorithms. But progres-
sive and randomly accessible compact mesh data structures were also studied in the context of visualization.
Most of these structures are not compressed but they allow, like progressive random accessible mesh com-
pression schemes, the rendering of huge meshes by dynamically coarsening and refining the mesh regions
depending on the visualization view point. This section outlines the various propositions that have been
developed.

Based on progressive mesh [Hoppe, 1996], the VDPM data structure [Hoppe, 1997] allows local refine-
ments by encoding the dependency between vertex splits. An extension for huge terrain grid rendering that
allows out-of-core processing and geomorph transitions was then proposed in [Hoppe, 1998]. Pajarola later
described the FastMesh data structure [Pajarola, 2001, Pajarola and DeCoro, 2004] that requires less mem-
ory than VDPM. However, it is restricted to manifold meshes as it is based on an halfedge data structure.
The method proposed by Yoon et al. [Yoon et al., 2004] first clusters the input mesh and then builds a
progressive mesh representation for each cluster. Guthe et al. [Guthe et al., 2003] used a geometry octree
to partition the mesh. Each node of the octree is simplified with a bottom-up approach. The approach
of Shaffer and Garland [Shaffer and Garland, 2005] also decomposes the mesh with an octree. It then as-
signs to each node a representative vertex computed to minimize the approximation error. Cignoni et al.
[Cignoni et al., 2004] proposed to decompose the mesh with a tetrahedral structure. Other methods were also
proposed to build parallel view dependent progressive meshes [Hu et al., 2009, Derzapf and Guthe, 2012].

7.4 Conclusion

Random accessible mesh compression algorithms can efficiently adapt 3D data to transmission and visual-
ization constraints. Contrary to single-rate and progressive mesh compression schemes, they do not require
the full data to be decompressed to provide an access to a specific part of the mesh. Compared to single-rate
and progressive mesh compression, few approaches have been proposed for random-accessible and progressive
random-accessible mesh compression.

95

For single-rate random accessible mesh compression, two paradigms were proposed. The first relies on an
initial segmentation of the input mesh. The generated clusters are then encoded independently. The second
relies on a hierarchical decomposition of the input mesh that compresses the geometry and the connectivity
through wires.

For progressive random accessible mesh compression, the wavelet-based schemes have shown their high
rate-distortion performance. However, as these methods rely on semi-regular remeshing, they do not recover
the initial connectivity. Connectivity-preserving schemes guided either by the mesh connectivity or the
geometry have also been proposed for the application that do not tolerate remeshing.

We summarized in the Table 7.1 and the Table 7.2 what we judged as the main random accessible and
progressive random accessible compression approaches.

Lossless Total Compress Random
Algorithm connect. comp. non-manifold access Remarks
comp. | rates (bpv) meshes granularity
Streaming random accessible 28 Preserve the
[Yoon and Lindstrom, 2007] ves (12 bit) 1o 2/5 streaming layout
Hierarchical compression 20
[Courbet and Hudelot, 2009] yes (12 bit) 1o 5/5
Chart-based compression 16
[Choe et al., 2009] ves (12 bit) 1o 3/5

Table 7.1: Summary of the main random accessible mesh compression algorithms. Approaches are approxi-
mately ranked by their compression performance.

Lossless Total Compress Random
Algorithm connect. comp. non-manifold access Remarks
comp. | rates (bpv) meshes granularity
Dependency free vertex splits 31
[Kim et al., 2006] yes (12 bit) 1o 5/5
Kd-tree cell compression o 21 o 3/5
[Jamin et al., 2009] Y (16 bit) Y
Layered Kd-tree compression 17
[Du et al., 2009] yes (16 bit) yes 3/5
Wavelet compression o o o 2/5 Fits well to smooth
[Liu and bin Zhang, 2004] ’ and dense meshes
Normal mesh compression 9 .
[Sim et al., 2005] no ? no 2/5 Like above

Table 7.2: Summary of the main progressive random accessible mesh compression algorithms. Approaches
are approximately ranked by their compression performance.

The recovery of the input mesh connectivity with a random access is a complex problem. To achieve it
at competitive compression rates is still more difficult. When a new random-accessible compression scheme
is designed, a trade-off must be made between the offered random-access granularity and the compression
performance. Seeing the few work proposed, we think that there is still space for alternative approaches
with alternative trade-offs.

Consequently, in the Chapter 8 and Chapter 9, we propose two new progressive random accessible
approaches. The first scheme is based on an initial segmentation of the input mesh. Each generated cluster
is then compressed independently by a state-of-the-art progressive mesh algorithm. A particular attention is
provided to the boundaries to not duplicate information in the compressed data and produce mesh with no
hole at decompression time. The second scheme requires no initial segmentation. The random-accessibility
is permitted thanks to clustered encoding of refining operation and the requirement of one level of detail of

96

difference between adjacent clusters. This approach directly generates one piece decompressed models. It
does not need any post-processing steps to stitch adjacent clusters decompressed at different levels of detail.

97

98

Chapter 8

Progressive and random accessible mesh
compression based on mesh segmentation

Figure 8.1: Example of a view-dependent decompression of the fandisk model. The side parts of the mesh
are decompressed at a higher level of detail compared to the front parts.

8.1 Introduction

We showed in the Chapter 7 that the progressive random accessible mesh compression schemes offer great
features for 3D data adaptation. In a context of remote visualization, downloading, decompressing and
rendering only the required regions of the model while having an overview of the other regions can greatly
improve the interactive experience of the user. Less memory and computing resources are needed to provide
an access to the data. The network bandwidth is also saved as only the required data is downloaded.

We believe that, among the different types of mesh compression algorithms (single-rate, progressive,
random accessible and progressive random accessible), progressive random accessible approaches are the
most interesting for 3D data adaptation. Contrary to single-rate and progressive approaches, they do not
require the full model to be decompressed to access a specific part of the mesh at the highest level of detail.
Moreover, contrary to random accessible approaches, they can refine more or less different parts of the mesh.

99

The aim of this chapter is to propose a new progressive random accessible algorithm tailored to view-
dependent decompression of manifold triangular meshes. If we look at the example of Figure 8.2, it seems
obvious that, with this viewpoint, the front face of the model should be more refined that its side faces.

b VR

Side faces

oy

Front face

Figure 8.2: Visualization viewpoint of the radiator model. The front face should be more refined than the
side faces.

Our new scheme is called PRAM for Progressive Random Accessible Mesh. It is based on a pre-
liminary segmentation of the input model. According to the review of Shamir about mesh segmentation
[Shamir, 2008], there is two main types of approaches. Part-type segmentation aims at partitioning the
object defined by the mesh into semantic or meaningful parts. Surface-type segmentation builds on the
mesh surface patches based on geometrical properties like normal or curvature. The proposed segmentation
algorithms of PRAM belong to the second group. We indeed wanted random-accessibility regions to be
suited to the view-dependent visualization. It seems intuitive from Figure 8.2 that a good segmentation
should produce clusters of faces that have approximately the same normal.

PRAM is based on the single-rate random-accessible mesh compression scheme from Choe et al.
[Choe et al., 2009]. The input mesh is first segmented with one of the two proposed approaches. Then,
each of the generated clusters, called charts, is compressed independently. We replaced the single-rate chart
encoder with the progressive algorithm from [Lee et al., 2012]. As for our adaptation framework for remote
scientific visualization presented in the Chapter 6, we chose this algorithm rather than our own progressive
polygonal approach PPMC (see Chapter 4) for two reasons. The first reason is that the approach of Lee et
al. [Lee et al., 2012] can efficiently compress vertex colors, which is particularly useful for applications such
as remote scientific visualization. The second reason is that we designed PRAM before PPMC.

In order to prevent duplication of the geometry and color information of the chart border vertices,
they are compressed independently through wires. Therefore, we modified the progressive mesh encoder
from [Lee et al., 2012] to get the position and color of the chart border vertices from the wire data. The
connectivity between the charts is encoded as a polygonal mesh where each face corresponds to one cluster.
This mesh is called the wire-net mesh as each of its edges has a corresponding wire. It can also be seen as a
very coarsely remeshed version of the input model. PRAM allows then to decompress any chart at any level
of detail. A post processing algorithm stitches the adjacent charts together to obtain a closed decompressed
model. The Figure 8.3 illustrates the global scheme.

The content of this chapter can be summarized as follows.
e We first describe the original segmentation approach from [Choe et al., 2009] based on a variational

shape approximation method. We list additional segmentation topological problems that may
appear with some models. We explain how to fix them.

e As an alternative solution, we propose a second segmentation approach based on the polygonal
mesh decimation algorithm described in Chapter 5. This second method produces segmentations
with much less topological problems.

e We then detail the compression scheme and provide some experimental results.

100

e Finally, we present our view-dependent decompression framework.

Wire-net mesh
,;‘r

Encoded wire-net mesh

—> (00011010... ']

S

e

OOy Compressed wires View-dependent
’ m ; . -
—" |.| 00011010... > decompression
[¥
Charts

=N
=t
/

Compressed charts

B PN Lo~ L] 2
Input mesh Segmented mesh ’ 00011010... e

Figure 8.3: Overview of our progressive and randomly accessible compression scheme.

8.2 Variational segmentation

To be able to compress charts independently, the input mesh must first be partitioned. The segmentation
approach, originally described in the article of Choe et al. [Choe et al., 2009], is similar to the variational
shape approximation of Cohen-Steiner et al. [Cohen-Steiner et al., 2004]. It is based on Lyod’s clustering
algorithm [Lloyd, 1982]. In this section, we first describe the segmentation algorithm before talking about
the potentially generated topological problems and presenting some experimental segmentation results.

8.2.1 Principle

The segmentation is performed by a region-growing algorithm that takes as input parameter the number of
charts to generate. It first randomly selects one seed face per chart. At each iteration, it tries to connect to
each chart one of its adjacent faces. The chosen face is the one that has the lowest connecting cost presented
below.

The aim of the segmentation is to generate charts that are planar, compact and that have approximatively
the same number of triangles. The cost of the connection of a face f to a chart ¢ is defined by

F(fie) = (j}fc) (A~ (No - N) (1Ps — P,
avg

1

where #f. is the current number of faces of ¢, # fu.4 is the current average number of faces per charts,
N, - Ny is the scalar product between the average normal of the faces of ¢ and the normal of f, |P; — P,|
represents the geodesic distance between the barycenter of f and the barycenter of the face n adjacent to
f and belonging to ¢. The first term of F' aims at uniforming the number of faces per chart to guarantee
a bounded I/O time for arbitrary random access. The second term ensures that the generated charts are
planar and the third term that they are compact. \ is a parameter that regulates the relative influence of
the compactness and planarity terms. In our experiments, it is set to 1.

Once all the faces have been assigned to one chart, the chart centroids are selected as the new seed
faces. A new iteration of the segmentation algorithm is then started. At the end of this iteration, we obtain
the final mesh segmentation. More iterations could be performed as in [Cohen-Steiner et al., 2004] but we
want the segmentation to be quick to minimize the total compression time. The segmentation quality is

101

very important, as it directly affects the final compression ratio. The more regular and flat the charts are,
the better the compression ratio will be. In practive, two iterations are enough to produce a satisfying
segmentation.

To allow an efficient compression of the wire data, the boundaries between the charts are smoothed at the
end of the segmentation thanks to the following rule. A triangle face that is adjacent to two faces belonging
to the same chart belongs also to this chart. This process is illustrated on the Figure 8.4.

b.

Figure 8.4: Smoothing the border between two charts. a. Before the smoothing. b. After the smoothing. A
triangle face that is adjacent to two faces belonging to the same chart belongs also to this chart.

8.2.2 Topological problem handling

The connectivity between the charts is encoded as a polygonal mesh: the wire-net mesh. The previously
described segmentation algorithm may generate particular connectivities invalid to be converted into meshes.
We automated the detection and the fixing of these problems. We made an other classification of the possible
issues than the one of Choe et al. [Choe et al., 2009]. We also discovered a new case. If at the end of the
segmentation the following cases are encountered, the original segmentation must be modified:

e A donut shaped chart, a chart that fully surrounds one or several charts (see Figure 8.5 a, chart 1).
e Two charts sharing two distinct boundaries (see Figure 8.5 b, charts 1 and 5)

e A border chart with only one neighboring chart (see Figure 8.5 ¢, chart 2). This case was not cited in
[Choe et al., 2009] but can happen when compressing a mesh with boundaries.

These invalid segmentation topologies are therefore modified as described below and illustrated on the
bottom line of the Figure 8.5.

e To fix a donut shaped chart, we divide it into three charts. A region-growing algorithm starts with three
faces regularly distributed on one border of the donut shaped chart. At each iteration, an adjacent
face is assigned to each of the three sub-charts until no free face is left.

e To fix two charts that share two distinct boundaries, we split one of the chart with the same iterative
algorithm.

e To fix a border chart with only one neighboring chart, we split the chart connected to the problematic
chart.

In some case, the used iterative conquest algorithm creates other problematic configurations. This is
why, the generated sub-charts have also to be checked and fixed if needed. Meshes with a high genus can be
problematic as their segmentation can generate many donut shaped charts, which must be split several times
to obtain a correct topology. Moreover, in the case of the original mesh containing holes, the segmentation can
create non-manifold charts. As the chart compression algorithm of Lee et al. [Lee et al., 2012] is restricted
to handling manifold meshes, some faces must be connected to another neighboring chart to create a fan,
thus making the chart manifold. More generally, if the input model contains too much of such topologies,
the fixing algorithms may fail to generate a proper segmentation.

102

=

Figure 8.5: Topological problems generated by the segmentation (top row) and how to fix them (bottom
row). a. The chart 1 fully surrounds the charts 2, 3 and 4. This case is fixed by splitting the chart 1 into
3 charts. b. The charts 1 and 5 shares two distinct boundaries. This case is fixed by splitting the chart 5
into 2 charts. ¢. The chart 2 has only one neighbor chart. This case is fixed by splitting the chart 1 into 2
charts.

8.2.3 Results

The Figure 8.6 shows examples of obtained segmentations. The objectives of generating charts that are
planar, compact and that have the same number of faces seems to be respected. The Tank model (see Figure
8.6 d) illustrates that where the mesh has small handles (here the drilling at the middle of the model), charts
need to be split to produce a topologically valid wire-net mesh. This explains why there is a high number
of charts with irregular shapes around the drillings.

103

Figure 8.6: Segmentations obtained with the variational shape approximation method. a. The Ramesses
model with 166 charts. . The Neptune model with 406 charts. c. The Dragon model with 725 charts. The
Tank model with 142 parts.

104

8.3 Decimation-based segmentation

The second segmentation method we propose in this section is based on the polygon mesh simplification
algorithm described in Chapter 5. This algorithm is based on two incremental decimation operators: the
halfedge collapse and the edge removal.

8.3.1 Getting the segmentation from the decimation

Figure 8.7: Merging faces for the decimation-based segmentation. a. After an halfedge collapse. b. After an
edge removal. The encircled numbers represent the ids of the faces stored inside the list of each face.

At the beginning of the decimation, the algorithm assigns to each face an id. During the decimation, the
input mesh faces progressively merge into adjacent faces thanks to the halfedge collapse and edge removal
operations. The algorithm keeps in memory, for each face, a list containing its id and all the ids of the faces
that are merged into it.

e When an halfedge collapses, the triangle faces adjacent to collapsed edge vanish. The id list of these
faces are transferred to the id list of their adjacent faces belonging to the patch. This process is
depicted on Figure 8.7 a.

e When an edge is removed, the id list of the disappearing face is transfered to the id list of the remaining
face of the patch as depicted on Figure 8.7 b.

At the end of the decimation, each face of the input model has therefore a corresponding face in the deci-
mated mesh. The segmentation is obtained by creating charts with faces that have a common corresponding
face in the decimated model.

It is still possible that the generated segmentation contains the same topological problems as described
in Section 8.2.2. In practice this happens much more rarely than with the variational segmentation method.
Indeed, the constraint of generating only convex faces can prevent the formation of donut-shaped charts or
two charts sharing two distinct boundaries.

8.3.2 Results

On the Figure 8.8, some decimations and corresponding segmentation results are shown. The quality of the
obtained segmentation is inferior to the results of the variational method. The number of faces per chart
is not constant as the method is not designed to respect this constraint. Charts are also less compact and
planar. As reported in Section 8.4.4, this leads to inferior compression rates. Nevertheless, one advantage
of this method over the previous one is that it produces less topological problems.

105

Figure 8.8: Wire-net mesh and segmentations obtained with the incremental polygonal decimation method.
a. The Ramesses model with 168 charts. b. The Neptune model with 204 charts. ¢. The Dragon model
with 362 charts. The Tank model with 257 parts.

106

8.4 Compression

This section now describes how PRAM compresses the different elements of the input model to enable the
decompression of any chart at any level of detail.

8.4.1 Wire-net mesh encoding

The original approach of Choe et al [Choe et al., 2009] compresses the wire-net mesh with a single-rate
polygon mesh compressor [Khodakovsky et al., 2002]. PRAM simply encodes it in an indexed data structure
(see Section 1.3.1) to ease the implementation. In our experiments, the wire-net mesh represents always less
than 0.7 percent of the whole compressed data.

8.4.2 Wire compression

Chart border vertices are encoded independently because they are shared between two charts. This avoids
the significant duplication of geometry and color information in the compressed data (see Section 8.4.4).
Wires are compressed as a sequence of vertices as described in [Choe et al., 2009]. The positions of the first
vertex and last vertex are encoded in the wire-net mesh. For the other vertices, a prediction is made and
the residual is encoded. The position of the second vertex is predicted as being the same as the position of
the first vertex. Else, the position of a vertex i is predicted as a linear combination of the position of the
two previous vertex in the wire:

PredPos(i) =2 x Pos(i — 1) — Pos(i — 2). (8.1)
This process is illustrated on Figure 8.9. The color of the wire vertices is encoded in the same way.
All the prediction errors are encoded with a range coder that uses one static model for all the wires. The

probability table is generated with the data for all the wires and it is stored with the compressed data.

Prediction
Prediction error

Vertex to encode

Figure 8.9: Wire compression.

8.4.3 Chart compression

Concerning the chart compression, we reused the progressive mesh compression scheme that can handle vertex
colors from [Lee et al., 2012], which is based on [Alliez and Desbrun, 2001a]. This algorithm is described in

ir=3 Sc=-1
2 A——i=4

Figure 8.10: Encoding chart border vertices. The numbers are the vertex indices in the wire. The patch
border vertex to encode (yellow) is predicted (green) as being the vertex of the wire that is the closest to
the patch barycenter v, (red). The difference s. between the index of the predicted vertex (green) and the
real vertex (yellow) is encoded.

107

Section 3.2.2. PRAM therefore benefits from the good rate-distortion performance of this algorithm. We
modified the compressor and decompressor to integrate it in our randomly-accessible framework.

e We prevent wire-net mes vertices from being removed during the decimation passes in order to attribute
easily wires to chart boundaries after the decompression.

e The decimation conquest of the algorithm of Lee et al. [Lee et al., 2012] only removes valence 3 and
4 border vertices. In order to not duplicate the border vertices geometry data for adjacent charts,
we created two new connectivity symbols to encode the border vertices belonging to a wire: one for
border valence 3 vertices and one for valence 4 vertices. These symbols are followed by another symbol
that allows to find the index 4, of v, in the wire. This symbol is determined by first computing the
current patch barycenter vp. Then, the index i, of the vertex in the wire that is the closest from v
is computed. The encoded symbol s., corresponds to i, — i,, (see Figure 8.10). As it can be seen on
Figure 8.11, for most cases s, is null. Therefore, it can be efficiently entropy encoded. The achieved
gains of the compression of border vertices in wires can be found in the Table 8.1 (normal vs no wire
columns).

Figure 8.11: Typical distributions of s..

8.4.4 Experimental compression results

We implemented PRAM using the halfedge data structures from OpenMesh [Botsch et al., 2002] and CGAL
[Flato et al., 1999]. The Table 8.1 and 8.2 report experimental compression results obtained with both seg-
mentation methods: the variational segmentation and the decimation-based segmentation. The experiment
ran on a desktop computer with an Intel Core i7 processor at 2.80 GHz with 8 GB of RAM. In this section
we comment the results and compare our approach with previous compression schemes.

Compression rates

The obtained compression rates of PRAM highly depend on the number of charts. Generally, the bigger
the charts are, the better the compression is, as shown with the Ramesses example in the Table 8.1. To
demonstrate the utility of the compression of chart border vertices inside wires, we provide in the Table
8.1 a compression rate with the border vertices duplicated inside each chart. This corresponds to the 'no
wire’ column. We also provide a compression rate with geometry constraints enabled to facilitate the chart
stitching as explained in Section 8.5.2.

In the Table 8.2, compression rates obtained with the two presented segmentation methods are compared.
We set up each method to generate approximately the same number of charts. The inferior segmentation
quality of the decimation-based method is confirmed here by the inferior compression rates. Consequently,
we recommend to use this method only if the input model has a complex topology (high genus, holes). To
compare PRAM with other compression schemes, we will always refer to results obtained with the variational
segmentation.

108

Comparing the compression rates of several random accessible mesh compression schemes is not a triv-
ial task as all the methods do not provide the same random accessibility. With about 20.000 faces per
chart, the compressed data produced by PRAM are twice smaller than with the approach described in
[Kim et al., 2006]. If the number of charts is low (below 500), PRAM achieves similar compression rates
than the CHuMI viewer [Jamin et al., 2009]. In order to get a fair comparison, we tuned both algorithms to
have approximately the same number of SP-cells (the unit of random accessibility for the CHuMI viewer)
than the number of charts. We expect that the approach of Du et al. [Du et al., 2009] would give slightly
better compression rates as it does not duplicate any geometry information. No experimental compression
results of the method of Cheng et al. are provided in [Cheng et al., 2007b].

The Table 8.1 also includes compression rates obtained with the progressive approach from [Lee et al., 2012]
to illustrate the cost introduced by the random-accessibility. An interesting fact is that our method can
sometimes achieve better results than the progressive approach. This happens with particular CAO models
such as the Tank, which is decomposed by the segmentation into planar and highly regular charts. The
generated charts can then be efficiently compressed.

Segmentation quality

The advantage of PRAM over some previous methods is that the random accessible clusters are appropriate
to the view dependent decompression. Indeed, they tend to be composed of faces with uniform normals as
opposed to schemes based on space subdivision [Jamin et al., 2009, Du et al., 2009]. These geometry-driven
approaches provide a random-access based on the decomposition of the space into cubes. Consequently,
parts of the mesh that are not visible to the user may be decompressed if they belong to the same cell
than visible parts. The meaningful segmentation proposed in [Cheng et al., 2007b] is in the same way not
suitable for view-dependent decompression. The clusters generated by this method do not have low varying
face normals. Yet, the approach of Kim et al. allows to finely refine the mesh according to the view-point.

Random access granularity

To decompress a cell with the approach of Du et al. [Du et al., 2009], the top tree and all the border vertices
of previous cells in the dependency list must be decoded (see Section 7.3). Consequently, if the requested
cell is at the end of the dependency list, a significant number of border vertices must be decompressed. The
algorithm of Kim et al. [Kim et al., 2006] allows to split a vertex with no neighborhood restriction. However,
the hierarchy allowing selective refinements is divided into data blocks, which are the atomic unit for the
random accessibility. Consequently, some vertices must be decompressed even if they are not inserted to
the decompressed model. The CHuMI viewer [Jamin et al., 2009] can decompress a nSP-cell independently
of its neighbors if its parent cells have been decoded. The different charts of PRAM can be decompressed
totally independently after the wire-net mesh and the wires have been decoded. The data dependency is
therefore low compared to previous techniques.

Compression times

The chart compression can be easily multithreaded as after the segmentation each chart is compressed
independently. However, the compression operations that take the most time are the segmentation and
topology problem handling steps. These steps can represent about 80% of the total compression time. The
PRAM encoder can therefore be faster or slower than the progressive coder of Lee et al. [Lee et al., 2012],
depending on the topology of the input mesh as shown in the Table 8.1. It is, however, in the best case
about twice slower than the CHuMI encoder.

109

8.5 Decompression scheme

The main advantage of PRAM is that it can decompress any chart at any requested level of detail. We
designed for PRAM a simple selective decompression framework that exploits this feature and tries to
produce an output model without holes between charts.

8.5.1 View-dependent decompression

Progressive random accessible mesh compression such as PRAM allows to decompress different parts of
the mesh at different level of detail depending on the visualization viewpoint. The regions of the mesh
that contribute the most to the rendered images are more refined than the other regions. The number of
decompressed and displayed elements of the mesh is therefore optimized in function of the viewpoint. No
computational or network resources are wasted.

To select an appropriate level of detail [for each chart, at decompression time we compute the average
normal d. of each chart thanks to its coarsest level of detail. The algorithm then computes the angle between
d. and the opposite of the view direction d, (see Figure 8.12 a). If this angle is inferior to a parameter a
set by the user (30° in our experiments), the chart is decompressed at its finest level. Otherwise, the value
[is determined by a linear curve for which the highest level of detail corresponds to « and the lowest to 90°
(see Figure 8.12 b). Indeed, when the view direction is perpendicular to the chart normal, the user cannot
see it.

Our selective decompression scheme can also take into account the screen resolution in order to avoid
excessively refining a mesh when the new details cannot be observed at the given screen resolution. This is
achieved by computing for a given chart level of detail the average surface of a triangle S;. Given the screen
resolution, the view frustum and the distance between the viewpoint and the chart d, we determine how
many triangles with a surface S; on a plane perpendicular to the view direction and distant of d could be
displayed. Then, we deduce the number of pixels per triangle. If this number is below a threshold, the mesh
refinement, is stopped.

Figure 8.12: The choice of the decompression level of detail (1) for each chart. a. A chart with an average
normal d. inside the view frustum directed by d,. b. The curve giving the decompression level of detail (1)
in function of the scalar product —d.. - d,.

8.5.2 Dealing with boundaries

One significant drawback of the progressive and randomly-accessible mesh compression schemes based on
clusters is that they produce cracks between parts that may be observed as holes. As a first solution to
solve this problem, we implemented a quick chart stitching algorithm. For a given boundary between two
charts, vertices of the boundary with the highest number of vertices are moved to the positions of their
nearest neighbor vertices of the boundary with the lowest number of vertices. The remaining holes are then
triangulated; the cracks vanish but some visualization artifacts still remain.

A better stitching can be achieved by checking, for each patch decimation, that v, is not inside the new
border patch after the retriangulation as shown on Figure 8.13. For valence 3 border vertices, we check that
the line defined by v,- and the normal of the patch intersects the triangle of the patch after the removal. For

110

valence 4 border vertices, we first check that the quadrangle of the patch after the removal is convex. If it
is convex, we then check that the line defined by v, and the patch normal intersects this quadrangle. This
constraint increases the number of null patches of the progressive chart compression algorithm. Therefore
its usage leads to lower compression performance as shown on the Table 8.1 in the ’constrained’ column.
The Figure 8.14 shows some partial decompression examples.

Figure 8.13: Geometry constraint for the decimation of border vertices. If v, is not inside the new border
patch after the retriangulation, the removal is not performed.

8.5.3 Decompression time

An advantage of PRAM is that the decompression, as the compression, can be easily multi-threaded because
each chart is processed independently. Therefore, compared to progressive method such as [Lee et al., 2012],
a faster full decompression is achieved in our experiments (see Table 8.1). In our experiments, the decom-
pression takes about 5 us per vertex.

8.6 Conclusion

We demonstrated in this chapter that it is possible to build a progressive extension of the cluster-based
random accessible mesh compression scheme described in [Choe et al., 2009]. With PRAM, the input mesh
is segmented with one of the two described methods: the original variational segmentation or the decimation-
based segmentation. The segmentation has then to be checked and sometimes modified because the chart
adjacency relations are coded under the form of a polygon mesh. Each chart is encoded with the progressive
algorithm from Lee et al. [Lee et al., 2012]. The border vertices information is, however, stored separately
to avoid duplications.

PRAM combines multiresolution and random accessibility with an acceptable cost in term of compression
rates. It allows to decompress any generated chart at any level of detail. Only the required data is decom-
pressed. PRAM is therefore an efficient tool for 3D mesh adaptation to storage, network and visualization
constraints.

PRAM benefits from the good rate-distortion performance of the progressive chart compression
algorithm [Lee et al., 2012]. Nevertheless cracks can appear between adjacent charts not totally decom-
pressed. A chart stitching algorithm that moves vertices and adds new faces is proposed to generate closed
intermediate meshes.

The multi-threaded decompression makes PRAM fits well with the multi-core architectures of recent
computers. It allows a fast decompression of the mesh. To compress huge meshes, an out-of-core imple-
mentation of the compression algorithm could be simply made by using an out-of-core mesh segmentation
algorithm.

Nevertheless, the random accessibility offered by this approach is limited as charts must be composed of
a significant number of faces to be efficiently compressed. Besides, the proposed chart stitching algorithm
sometimes fails to remove all the artifacts. The new progressive and random accessible compression scheme
described in the Chapter 9 does not have these issues as it is does not rely on an initial segmentation of
the input mesh. Tt offers a fine random-access granularity. Without any post-processing step, it generates a
closed decompressed mesh with smooth transitions between coarse and refined regions of the mesh.

111

WA\
T

;‘1/2:‘{"1 &\
7

A
X

=
»
K

=

Wi

v
SUAN

Figure 8.14: Partial decompression obtained with PRAM.
112

eIl

Our scheme [Lee et al., 2012]
. Comp. ratio (bpv Times (s Comp. ratio Times (s Cost
Model # vertices || 7 charts Normal NE)) wire (anltrained Comp. D((ec)omp. (ll))pv) Comp. Dic)omp.

333 15.5 16.5 16.7 25.3%
166 14.3 15.0 15.2 15.5%
Ramesses 826,266 84 13.5 14.1 14.3 24 3 12.4 36 25 9.6%
37 13.0 13.4 13.5 5.3%
21 12.6 12.9 13.0 2.1%
Neptune 2,003,932 204 10.4 11.0 11.5 59 10 9 73 61 14.7 %

Dragon 3,609,600 362 9.4 10.0 10.4 117 17 - - - -

Statuette 4,999,996 526 11.3 11.8 12.5 179 25 - - - -
Tank (colored) 230,068 114 19.8 22.5 24.5 18 2 20.4 7 7 -2.8%

Table 8.1: Experimental compression results of PRAM with a 12 bit quantization. The last column gives the cost of the normal compression with our
scheme compared to [Lee et al., 2012].

Model 4 vertices Variational seg. Decimation seg.

charts | Comp. ratio (bpv) || # charts | Comp. ratio (bpv)
Ramesses 826,266 166 15.2 168 17.5
Neptune 2,003,932 204 11,5 204 12.2
Dragon 3,609,600 362 10.4 362 11.1
Thai Statue | 4,999,996 526 12.5 526 15.5

Table 8.2: Comparison of the experimental compression rates of PRAM obtained with the two segmentation methods, 12 bit quantization and
constrained chart decimation.

114

Chapter 9

Progressive and random accessible mesh
compression based on hierarchical vertex
clustering

Figure 9.1: Selective decompression of the original raptor model. It was compressed at 15.0 bits per vertex
with a 12 bit quantization.

9.1 Introduction

We know from the Chapters 7 and 8 that progressive random accessible mesh compression schemes are
useful for 3D mesh adaptation to storage, network and visualization constraints. They allow to not waste
resources by downloading and decompressing only the data required by the user.

In the Chapter 8, we showed that PRAM, our first progressive random accessible approach based on a
preliminary partition of the input model is particularly interesting for view-dependent decompression. It
allows to well adapt the decompression level of detail of each cluster depending on the viewing angle. Indeed,
the generated clusters have an approximately uniform normal. There is, however, two major problems with
this approach:

e The compression performance is poor with a high number of clusters. The random access granularity
must be limited to achieve good compression rates.

115

e The problem of filling the holes between clusters not totally decompressed is difficult to solve perfectly.
Even after a post-processing stitching, there is often remaining artefacts appearing in the decompressed
models.

In this chapter, we describe a new progressive random accessible algorithm, called POMAR for Pro-
gressive Oriented Mesh Accessible Randomly. It can compress manifold oriented triangle meshes. During
the decompression, each region of the mesh can be decompressed at the level of detail requested by the user.
The restriction is that two adjacent regions must have at most one level of detail of difference.

POMAR has been designed for efficient mesh storage and transmission but it also offers interesting
features for interactive visualization. It generates decompressed models with visually good triangles and
no artefacts. Unlike PRAM (see Chapter 8) or the CHuMI viewer [Jamin et al., 2009], no post-processing
operations have to be performed on the boundaries between the regions decompressed at different levels of
detail. The decompression algorithm requires a low delay and produces smooth transitions between the fine
and coarse regions of the mesh.

The content of this chapter can be summarized as follows:

o We first give an overview of the algorithm.

e The decimation step is then described. It generates discrete levels of detail with halfedge collapse
operations. The hierarchy of collapse operations allows then to define the random accessible clusters.

e The compression and the decompression both reconstruct the successive levels of detail by perform-
ing the reverse operations of the decimation, the vertex splits. During the compression, vertex splits
are encoded with four connectivity symbols and a barycentric error prediction for the geometry. The
coarse levels of detail are compressed globally as with a standard progressive compression algorithm.
However, the finest levels of detail are compressed independently for each random accessible cluster.

e The influence of the number of clusters for the random access granularity is then studied.

e We also provide experimental results and compare POMAR with PRAM and other previous
schemes.

9.2 Overview
The POMAR compression algorithm performs three main tasks.

Mesh decimation. The input model is first simplified with halfedge collapses to generate discrete levels
of detail. The decimation stops when a coarse version of the input model, called the base mesh, is
obtained. All the performed operations are kept in memory to allow the later mesh reconstruction by
the encoding steps.

Global level of detail compression. Starting from the base mesh, the successive levels of detail generated
by the decimation are reconstructed by performing the reverse operations of the halfedge collapses,
the wvertex splits. The symbols needed to rebuild the levels are encoded for the whole mesh, in the
same way as a progressive compression algorithm. We call cluster a set of vertices of the input mesh
that hierarchically collapsed into a common vertex during the decimation. The global level of detail
compression stops when, in the current level of detail, there are as many vertices as desired random
accessible clusters. This level is called the base clustered mesh.

Clustered level of detail compression. Starting from the base clustered mesh, the levels of detail re-
construction assigns inserted vertices to clusters in function of the vertex splits hierarchy. Each vertex
of the base clustered mesh has a corresponding random-accessible cluster. The vertices that collapsed
into a common vertex v. of the base clustered mesh belong to the cluster of v.. The independent,
encoding of the vertex splits for each cluster enables the random-accessible decompression.

116

The mesh decompression happens in the same order as the two compression steps. However, only the
desired regions of the mesh are decoded and reconstructed with the constraint that there must be at maximum
one level of detail of difference between adjacent clusters.

9.3 Decimation

The aim of the decimation step is to generate discrete levels of detail. The decimation operator used is the
halfedge collapse. It consists of merging a vertex with one of its neighbors and removing the degenerated
faces. A patch is the set of faces modified by an halfedge collapse. We call v¢,.,, the vertex that is going
to merge with the vertex v.,, which does not move. After the collapse, v,.s is the vertex of the patch that
makes with vy, the longest edge generated by the collapse. After the collapse of a border vertex, v.ef is the
other border vertex of the patch that becomes connected to vy,.

vy and v, are the two vertices that are connected to vf.om and vy, before the collapse. v; is on the left of
the collapsed halfedge and v, on the right. All these vertices are represented on Figure 9.2.

Vi

Vio
Halfedge collapse

Vertex split VI

ref

Vio Vref

Halfedge collapse

Vertex split V|

Figure 9.2: Patches modified by halfedge collapse and vertex split operations. The collapsed halfedge is in
red. The top case illustrates the collapse of an inner vertex. The bottom case illustrates the collapse of a
border vertex.

To generate a new level of detail [, all the halfedges that can be collapsed without violating the manifold
property of the mesh are ranked according to an edge length metric. The value of this metric corresponds to
the length of the edge vy, vycf. The halfedges with the smallest metric values are collapsed first. An halfedge
cannot be collapsed if its collapse would generate face normal flips. We ensure that the normals are not
altered beyond a certain threshold. We verify for each face of the patch that the cosine of the angle between
the normal before and after the collapse does not exceed a threshold (set to 0.7 in our experiments). After a
collapse, no more halfedges that would modify the patch can be collapsed for generation of the current level
of detail. So these halfedges are marked with a flag.

The generation of the new level of detail [is finished when there are no more halfedge candidates to be
collapsed. The generation of the level [— 1 then begins after having reset all the halfedge flags. In this way,

117

successive levels of detail are generated until the targeted number of vertices for the base mesh (I = 0) is
reached.

Other existing decimation metrics, such as the Hausdorff distance in [Pajarola and Rossignac, 2000], the
volume metric from [Alliez and Desbrun, 2001a] or the well-known Quadric Error Metric [Garland and Heckbert, 1997],
could be used. Nevertheless, our simple edge length metric goes together with the predictions involved
in the compression scheme (see Section 9.4). Therefore, the generated levels of detail can be efficiently
compressed. Our decimation scheme produces levels of detail with uniform triangle sizes as illustrated by
the Figure 9.3.

P

\‘
Yrin,

NQ
1%araX
AT

VAV,
o8

:‘ \7
o s

Vl@‘{ ROV
RS

¥

X

BN
A v
D/
&

I3
=
AN
N
A
D

i
\:_

v
4
73
o,
AN
.
ew

AR
.
A
KORE
RS
g

i
<

el
v @7’

Y,

Figure 9.3: Examples of levels of detail generated by our decimation algorithm.

All the performed halfedge collapses are kept in memory because the reverse vertex split operations will
have to be performed during the mesh compression. Vertex positions are quantized before the reconstruction

and compression steps.

9.4 Compression and reconstruction

Starting from the base mesh (I = 0), the successive levels of detail [of the mesh are reconstructed and
encoded. The vertex splits, the reverse operations of the halfedge collapses performed during the decimation,
are applied. A vertex must be split if it was the v, vertex of an halfedge collapse operation performed during
the decimation of the current level of detail.

The reconstructed levels of detail are split into two layers. The coarse levels are not clustered. During the
reconstruction, the mesh is uniformly refined as it would be with a progressive mesh compression algorithm.
However, the finest levels of detail are clustered. A cluster can be refined more or less than its neighbors.
This enables the random access during the decompression.

118

9.4.1 Global levels of detail encoding and reconstruction

i Select an Encode Add neighbour P:g(t);r(n Level 1+1
Level | |—|unvisited vertex|—| vertex |—| unvisisted vertices solits v
\from the FIFO splits L, to the FIFO 5P
C°“‘;i“;ve“ysf o b°ls Entropy Compr. data
Geometry symbols RCOding of level [+1

Figure 9.4: Encoding process of a level of detail.

The encoding process of a level of detail is illustrated on Figure 9.4. For each level of detail, vertex splits
are first encoded before being performed. Two types of information need to be compressed to perform the
same operation during the decompression: the connectivity and the geometry.

The connectivity information of a vertex split operation on a triangle mesh can be defined by three
vertices: vy,, v; and v,. We made the choice to encode a vertex split with one additional vertex: v,..y. The
reason is that v,y can be easily predicted with the length of the edge vy vycy. When v,.s is known, v; and
v, can be efficiently encoded with offsets.

A deterministic traversal of the mesh vertices is performed. It consists of a breadth-first traversal also
carried out by the decoder in the same order. In the base mesh, the first halfedge of the first face is pushed
into a FIFO queue. This halfedge is selected since it can be retrieved by the decoder with the base mesh
data. It will always be the first processed halfedge for all the global levels of detail. To process a new
vertex, an halfedge is popped out the FIFO queue (Figure 9.4, step 1). The data of the vertex it points to
is encoded if this vertex has not already been visited (Figure 9.4, step 2). Then, all the outgoing halfedges
of the current vertex are added to the FIFO queue in clockwise order (Figure 9.4, step 3). The traversal is
continued by popping out another halfedge from the FIFO queue.

For each vertex, we encode its number of splits, the s, symbols. Thus, the v, vertices will be known by
the decoder. If the current vertex has a number of splits different from zero, then the corresponding split(s)
must be encoded. The surrounding edges of vy, are ranked from the longest to the shortest. The second
vertex of these edges are the possible v,.s vertices. This ranking forms a stack, the longest edge being on
the top of the stack. The algorithm counts the number of edges it has to unstack before getting the correct
Vpey. This count is the s, symbol and thus encodes v,.f.

To encode the v; vertex, the algorithm simply counts the number of vertices belonging to the patch
between v,.; and v; and so obtains the s; symbols. The v, vertex is encoded in the same way with the s,
symbol. For vertices inserted on the boundary, only one of these two symbols are needed.

The geometry information of a vertex split is the position of vy,.o,. It is encoded with the residual vector
r between the barycenter of the patch b and the position of v,p,. This residual is projected in a local Frenet
frame. This frame is constructed with the direction of the edge vy, v,..y and the average normal of the two
faces adjacent to the same edge as illustrated in Figure 9.5. To avoid a post-quantization step and slightly
reduce the entropy, we use the bijection proposed in [Lee et al., 2009] to project r from the global (x,y,z)
frame to the local Frenet frame (tq,t2,n).

Once all the split operations of the current level of detail have been encoded, these operations are
performed (Figure 9.4, step 4). So, the level of detail [is obtained. The encoding and then the reconstruction
of the next level [+ 1 is performed in the same manner. An encoding traversal is illustrated on Figure 9.6.

9.4.2 Clustered levels of detail encoding and reconstruction

The base clustered mesh is obtained once the mesh contains the number of desired clusters for the random
accessibility. This corresponds to the level of detail [.. In the base clustered mesh, each vertex is the parent

119

oooNOUI~

)
5,:..0,0,0,0,00
: 3,0
S 1, 0
5:0,1

Figure 9.6: Encoding traversal. The vertices are iteratively processed by a deterministic traversal. The
current vertex is in red. 1-15: Vertex splits are encoded with the s,, s., s; and s, symbols. The symbols
related to the current vertex are in bold. 16: Vertices are finally split once the encoding traversal is finished.

of one cluster. In the next level of detail, if a vertex v. of the base clustered mesh is split, then the inserted
vertices will belong to the cluster of v.. In the following levels, these vertices may also be split, thus adding
new vertices to the cluster of v.. In the end, the cluster corresponding to v. will be the set of vertices of
the input mesh that are the descendant of v. by vertex splits. The adjacency relations between the base
clustered mesh vertices are the same as the adjacency relations between their respective clusters.

To enable the random access during the decompression, the clusters are compressed independently. Sepa-
rate deterministic traversals that encode the splits are performed for each cluster instead of being performed
once for the whole mesh. In this way, only the vertex splits related to the current cluster are encoded in its
data block.

For each cluster, the first halfedge to process needs to be selected with a method also available to the
decoder. The same breadth-first traversal as during the global levels of detail encoding is performed on the

120

base clustered mesh. When the current halfedge points to a unvisited vertex, it is set as the first halfedge
for the encoding of the vertex cluster.

The encoding traversal of each cluster follows the same principle as the encoding traversal of the global
levels of detail. The encoded data is also the same. However, if a current halfedge points to a vertex
belonging to another cluster, it is simply omitted.

When the encoding traversal has been performed for all the clusters, the vertices are split to reconstruct
the new level. The inserted vertices inherit their cluster id from their parents. The encoding of the next
clustered level of detail then starts.

To split a vertex v, and obtain vgyom, the patch must be in the same configuration as during the
simplification. The vertices v;, v, and v,.y among others must be present. wv,, v;, v, and v,.s belong to
the level [— 1, while vt.o, belongs to the level [. If some patch vertices belong to neighboring clusters,
the decoder will simply need to reconstruct these neighboring clusters at the level of detail [— 1. The data
dependency does not include the same level of detail on the whole mesh as with standard progressive mesh
compression algorithms. To decompress a cluster Cj at a set level [, (' and all its adjacent clusters must
be reconstructed at the level [— 1. The V-partition multiresolution model described in [Cignoni et al., 2005]
also uses this principle to generate smooth transitions between mesh partitions belonging to several levels of
detail.

9.4.3 Entropy coding and compressed file

The connectivity symbols s,, s, s, and s; are compressed by a range coder [Schindler, 1998] with a quasi-
static probability model for each symbol (Figure 9.4, step 5). The tangential components of r and its normal
components are also encoded by a range coder. One model is used for the tangential components and a
different one for the normal.

The compressed file starts with header information such as the mesh bounding box and the number
of quantization bits. The base mesh is then stored and not compressed in an indexed data structure (see
Section 1.3.1). The compressed data of all the global levels of detail is saved just after, as it allows the
restoration of the base clustered mesh. To perform random accessible decompression, the decoder needs to
know the position in the file of each data block of compressed cluster data. Hence the size of each cluster
compressed data has to be stored to generate a location index. The main bulk of the file is stored at end,
containing the compressed data of all the clusters. The Figure 9.7 illustrates the compressed file structure.
In a transmission context, each block of the file can be streamed on-demand. Thus, only the data required
to decompress the requested parts of the mesh are transmitted to the client.

9.5 Decompression

The decompression starts by reconstructing the base mesh. The global levels of detail are then decompressed
until the base clustered mesh is obtained. A map of the required level of detail M for each cluster Cy must
then be generated. The user selects the set R, of clusters he is interested in by picking their corresponding
vertex in the base clustered mesh. He then chooses at which clustered level of detail [;, he wants to decompress
the selected clusters:

VC; € R, M(Ck) = 1.

This map must be completed with the following constraint: there must be at maximum one level of detail
of difference between a cluster and its neighbors. This completion can be expressed with the formula:

M(Cy) = max({ max (M(C)) — dt(Ck,Cl)),O})

VCER,

121

Header

Base mesh

|
|
| Global LOD n°1
|
|

Global LOD n°2
Global LOD n°3

| Data sizes of each cluster |

| LOD n®lcyq

N |
c
s LOD n°lc;, |
%
= | LOD n®l.45 |

Figure 9.7: Structure of compressed files generated by POMAR.

where d:(Cy, C}) is the minimum topological distance in number of edges between the parent vertex of
the cluster C and the parent vertex of the cluster C; in the base clustered mesh. In practice, this map is
generated with an algorithm that, starting from the parent vertex of each cluster of R, traverses all the
base clustered mesh vertices and assigns them a required level. Figure 9.8 shows an example of a required
levels of detail map and the obtained decompressed mesh.

Once the map M is complete, the decompression of the clustered levels of detail begins. The random
access to each cluster data block in the compressed file is permitted thanks to the location table generated
with the stored size of each cluster data block. When the required clustered level of detail of one cluster is
null, then its data block is completely omitted.

For each clustered level of detail, only the required levels for all the refined clusters are decompressed.
The levels are then reconstructed as during the compression. The difference is that only the decompressed
parts of the mesh are refined.

The main point of the POMAR decompression is that it is possible to have up to one level of detail of
difference between one cluster and its neighbors. So, the decompression can generate a smooth transition
between the clusters that the user wants to see at the highest level of detail and the clusters not of interest.
The shape of the triangles in the partially decompressed meshes is good as shown in Figure 9.9 because they
have been generated by the decimation step guided by the metric.

9.6 Choice of the number of clusters

The choice of the number of clusters is important as it directly influences the random accessibility, the
locality of the refinements and the compression performance of the algorithm. The user chooses the number
of clusters by setting which generated level of detail /. will correspond to the base clustered mesh. The base
clustered mesh is the coarsest level of detail the user has access before selecting the clusters to refine more.
We will now study the impact of the value of /. on the random accessibility with two examples. Whatever
the value of [, is, the total number of levels of detail is always constant.

A low value of [, means a low number of clusters. There will be a high number of clustered levels of
detail, but during the decompression there can be only one level of detail of difference between two neighbor

122

£

AN i B el

AT S d
s

Figure 9.8: Required levels of detail map M displayed on the base clustered mesh and the obtained decom-
pressed mesh. The two black vertices have been chosen to decompress their clusters at the finest levels of
detail. The red areas of the base clustered mesh are decompressed at a high clustered level of detail while
the blue areas are decompressed at a low clustered level of detail.

clusters. Therefore, if a cluster of the mesh is selected to be decompressed at the finest level of detail, a
significant part of the mesh will have to be decompressed to respect this constraint.

If a high value of . is chosen, the base clustered mesh will be very refined and there will be a low number
of clustered levels of detail. The full decompression of one cluster will only impact a small region of the
mesh and there will be a weak gradation between the coarse and refined clusters.

The consequence of this behavior is that, in order to guarantee a correct random accessibility and good
compression rates, we advise to choose [, so that the number of clusters is between 1% and 5% of the input
mesh number of vertices. Figure 9.10 illustrates the influence of the number of clusters on the random
accessibility and the locality of the refinements. We also study the impact of the number of clusters on the
compression rates in Section 9.7.

9.7 Experimental results

We implemented our algorithm using the halfedge data structure from OpenMesh [Botsch et al., 2002] and
the range coder from Michael Schindler [Schindler, 1998]. We provide in Table 9.1 experimental results
obtained with our first implementation of the POMAR codec, the progressive and random accessible algo-
rithm of the CHuMI viewer [Gandoin and Devillers, 2002] and the random accessible hierarchical approach
[Courbet and Hudelot, 2009]. Experiments ran on a desktop computer with an Intel Core i7 CPU at 2.80 Ghz
with 8 GB of RAM. Comparing the compression performance of the POMAR codec with the performance
of the CHuMI viewer is difficult, as both algorithms do not provide the same type of random accessibil-
ity. Nevertheless, each cluster generated by our compression algorithm can be decompressed independently.
This is also the case of each nSP-cell of the CHuMI viewer. Therefore we tried, for each tested mesh, to
have approximatively the same number of clusters as the number of nSP-cells. Some models could not be
compressed with the hierarchical approach as it does not handle meshes with a genus superior to zero or the
compression took too much time to complete.

We implemented a selective decompression application to demonstrate the features of our scheme. The
user selects, by drawing a rectangle, the clusters he wants to decompress at the highest level of detail on the

123

s
gy Vg
7 s "gb
b /4

o
A\ /2 Ny
BN

Ay,
ST RKB
R W\
SRV
USRI

SOV N
E“ 0 %A‘“ Y

e

va¥)
SIS

v

) e

Ay SO KICRIME R
SRR IR S
SRRR L

RS
N v
SN]
ety AL T
ST ‘;v‘v;"

-
ViV 4 ' &
it

S

Figure 9.9: Decompression example of the Ramesses model (826266 vertices). On the top image, the ver-

tices belonging to the same cluster have the same colour. The red cluster on the eye was selected to be
decompressed at the highest level of detail.

Figure 9.10: Decompression examples of the dinosaur model (14070 vertices). On the left, the model was
compressed with a high number of clusters. On the right, it was compressed with a low number of clusters.
For both cases, a cluster on the end of the nose was selected to be decompressed at the highest level of detail.

base clustered mesh by their parent vertices. The map M of the required levels of detail for each cluster is
computed as described in Section 9.5. The Figure 9.13 shows some examples of partial mesh decompression.

We studied for one mesh the influence of the number of clusters on the compression rate. Figure 9.11 shows
the obtained curve. The compression performance decreases when the number of clusters increases. This
relation is asymptotically linear with a significant slope. We indeed use a different quasi-static probability
model to independently build the probability tables of the entropy coder for each level of detail and each
cluster. The more clusters there are, the less the models can well adapt to the data. As a consequence, the

choice of the number of clusters must be taken with care as it also influences the random-accessibility (see
Section 9.6).

124

POMAR CHuMI Hierarchical

Model # vertices

clust. | c. g. tot. time # cells | tot. | time tot. time
Igea 134,345 5192 84 | 15. 23.4 7s 5249 27.4 3s 27.19 21s
Armadillo 172,974 9268 9.1 | 15.0 | 241 9s 9217 26.0 3s 24.7 46s
Fertility 241,607 2551 81 | 11.8 | 19.8 14s 2561 22.7 5s - -
Raptor 1,000,080 4869 76 | 7.0 | 14.6 47s 4801 16.44 | 10s - -
Ramesses 826,266 4480 7.6 | 84 | 16.0 508 4481 174 | 11s 22.4 | 2m 44s
Neptune | 2,003,932 10498 | 7.7 | 5.7 | 13.5 | 2m 7s 10497 | 14.7 | 24s - -
Dragon 3,609,600 14383 | 7.4 | 5.7 | 13.0 | 3m 40s || 14337 | 15.0 | 27s 20.0 | 53m 13s
Statuette | 4,999,996 19094 | 79| 5.9 | 13.8 | 4m 51s || 19073 | 15.0 | 335s - -

Table 9.1: Experimental compression results of the POMAR codec, the CHuMI viewer [Jamin et al., 2009]
and the hierarchical approach [Courbet and Hudelot, 2009]. Geometry is quantized to 12 bits. The com-
pression rates are in bits per vertex. c. stands for connectivity and g. stands for geometry.

25,5

24,5

N
w
&)l

Compression rate (bpv)

0 2000 4000 6000 8000 10000 12000 14000
clusters

Figure 9.11: Compression rate in function of the number of clusters for the Igea model (134345 vertices).
Geometry in quantized to 12 bits.

The POMAR scheme can also be used in pure progressive compression mode. In this case, only global
levels of detail are encoded as described in Section 9.4.1. We measured the rate-distortion performance of
our algorithm and previous approaches in progressive mode. The results are shown on Figure 9.12.

9.8 Comparisons and discussion

9.8.1 Progressive and random accessible compression

Compression rates

In the conditions described in Section 9.7, the results of Table 9.1 show that, for the tested models, POMAR
always provides better compression rates than the CHuMI viewer. The duplication of the vertices belonging
to several nSP-cells by the CHuMI encoder may explain why our algorithm provides better compression
rates. POMAR does not duplicate any geometry or connectivity information. We expect that the scheme
of Du et al. [Du et al., 2009] would provide slightly better results than the CHuMI viewer with the same
random access granularity. Both algorithms are a random accessible extension of the original Gandoin and
Devilliers algorithm [Gandoin and Devillers, 2002], but the algorithm of Du et al. does not duplicate border
vertices. The compression rates provided by POMAR are about 10 bits per vertex lower than the rates

125

0,0006

0,0004

0,0002 -

Distortion (max of the RMS distances / bounding box diagonal)

== POMAR
—e— PPMC
—a— [Alliez and Desbrun, 2001]
—#— [Valette and Prost, 2004]
—»4¢— [Peng and Kuo, 2005]
—X— [Valette et al., 2009]

0,0000

0,0010 4

0,0008 -

0,0006 |

0,0004

0,0002

Distortion (max of the RMS distances / bounding box diagonal)

0,0000

Rate (bpv)

== POMAR progressive
—e— PPMC

—— [Alliez and Desbrun, 2001]
—m— [Valette and Prost, 2004]
—¢—[Peng and Kuo, 2005]
—X— [Valette et al., 2009]

Rate (bpv)

Figure 9.12: Rate-distortion curves for the progressive compression of the rabbit model (67039 vertices) and
the horse model (19851 vertices) with a 12 bit quantization.

126

given by the approach of Kim et al [Kim et al., 2006] and PRAM (see Chapter 8) does not support the high
granularity random access of our experiments.

Random-accessibility granularity

With POMAR, to decompress a cluster at a given level of detail [, the global levels of detail must be
fully decompressed and the neighbor clusters must be decompressed at the level [— 1. This constraint
spreading on the mesh affects the locality of the refinements and the random-access. To decompress a
cell with the approach of Du et al. [Du et al., 2009], the top tree and all the border vertices of previous
cells in the dependency list must be decoded. Consequently, if the requested cell is at the end of the
dependency list, a significant number of border vertices must be decompressed. The algorithm of Kim et al.
[Kim et al., 2006] allows to split a vertex with no neighborhood restriction. However, the hierarchy allowing
selective refinements is divided into data blocks, which are the atomic unit for the random accessibility.
Consequently, some vertices must be decompressed even if they are not inserted to the decompressed model.
The CHuMI viewer [Jamin et al., 2009] can decompress a nSP-cell independently of its neighbors if its parent
cells have been decoded. The charts of PRAM (see Chapter 8) can also be decompressed independently after
their border vertices have been decoded.

Mesh quality

POMAR has the advantage of reconstructing without any post-processing one piece decompressed models
with good triangle shapes. All the decompressed triangles come directly from the decimation and therefore
respect its metric. The CHuMI viewer [Jamin et al., 2009] and PRAM (see Chapter 8), however, require a
post-processing algorithm to stitch adjacent nSP-cells and clusters together. As for both approaches there
is no strong constraint on the boundaries, this step may produce anisotropic triangles and artefacts. The
approach of Du et al. [Du et al., 2009] does not need any post-processing step to stitch adjacent cells but
if they are decompressed at different levels of detail, anisotropic transition triangles are generated by the
decompression.

Progressive compression algorithms based on space subdivision are known to generate decompressed
models that have a high distortion at low rates because of the low quantization. This fact is illustrated by
the rate-distortion curve of the octree coder on Figure 9.12. To remove this well-known block effect, Jamin
et al. [Jamin et al., 2009] proposed for the CHuMI viewer to encode some connectivity information before
the geometry, thus increasing the complexity of the compression algorithm. Du et al. [Du et al., 2009] did
not address this issue.

Compression times

The POMAR decimation algorithm is based on a ranking of the halfedge candidates to be collapsed. The
mesh simplification needs more time than the CHuMI encoder that uses a spatial kd-tree decomposition to
simplify the mesh. As expected, the approach of Du et al. [Du et al., 2009] is reported as having similar
compression times than the CHuMI encoder.

Decompression times

In our experiments, the decompression takes approximately 4 us per vertex. Our selective decompression
experiments show that the decompression is fast enough to allow interactive decompression like the CHuMI
viewer [Jamin et al., 2009] and PRAM (see Section 8.5). The schemes of Du et al. [Du et al., 2009] and Kim
et al. [Kim et al., 2006], however, did not demonstrate their ability to perform interactive decompression.

127

Y

B e
-

e
A A
\ WG
e
> 4N \}‘

JONG

A
TN g%§§s€“<y

S5

| >
N
VS

X
Van (V= 2% B
e ‘4'%‘{%}‘7:" al” S

7
L\

i
Ny
e

KON

=)
%

Figure 9.13: Partial decompressions obtained with POMAR.

128

SR/

N

9.8.2 Progressive compression

As shown on Figure 9.12, compared to previous progressive compression approaches, POMAR, achieves
competitive rate-distortion performance at low rate. However, the final compression rate, which is illustrated
by the right most point of the curve, is superior to the rates obtained by progressive coders. The reason is
that our connectivity compression scheme, needed for the progressive random access to clustered levels, is
costly. It uses 4 different symbols (s,, s., s; and s,.) while approaches like the progressive valence encoder
[Alliez and Desbrun, 2001a] use only one symbol. Nevertheless, we would like to point out that another
quality of the POMAR encoder is its simplicity of implementation.

9.8.3 Compressing large meshes

The approaches described in [Jamin et al., 2009, Du et al., 2009] can compress large meshes that do not fit
in main memory. An adaptation of our encoder would also enable out-of-core compression without impacting
the final compression rate.

If the input mesh cannot fit in memory, the mesh decimation must be performed out-of-core. One
solution is to resort to a block-based simplification as described in [Hoppe, 1998]. Each block is simplified
in-core independently without modifying its boundary. Adjacent blocks are then merged into bigger blocks
to continue the decimation.

The reconstruction and the compression of global levels of detail would be performed in-core as described
in Section 9.4.1. It indeed seems fair that the base clustered mesh can fit in main memory since it is the basis
data structure of the random access. The reconstruction and the compression of clustered levels of detail
would follow a different strategy. Starting from the base clustered mesh, each cluster would be reconstructed
and then compressed separately. As there must be at most one level of detail of difference between adjacent
clusters, the compression of one cluster would involve the partial reconstruction of its neighbors. Full levels
of detail would not be reconstructed as described in Section 9.4.2.

9.8.4 Data structures for interactive visualization

As seen in Section 7.3.3, progressive and random-accessible mesh data structures have been proposed in the
literature for the interactive visualization of large meshes. Most of them were designed to be compact since
they must allow the storage of huge meshes either in main memory, in GPU memory or on disk. Their key
concept is to enable fast mesh adaptation mechanisms by a quick access to a multiresolution data structure.
Consequently, most of these data structures are not compressed. In the recent work of Derzapf and Guthe
[Derzapf and Guthe, 2012], which integrates a compressed data structure, the connectivity of the mesh is
stored at about 4 bytes per vertex, while our scheme requires about 1 byte. Even if the scheme described in
[Derzapf and Guthe, 2012] stores the normal of the mesh vertices while POMAR does not, it saves a mesh
with around 11 to 14 bytes per vertex while POMAR requires around 3 bytes per vertex.

The current implementation of POMAR does not support automatic refinement and coarsening of the
mesh depending on the viewpoint. This feature is left for future work. The mesh access is slower than with
the previously described GPU data structure. It also allows less flexible mesh adaptation. Yet, we think
that the much higher compression performance of our approach with its relative progressive and random
access to the data is particularly useful for efficient mesh storage and transmission.

9.9 Conclusion

We presented in this chapter POMAR, a new progressive random accessible manifold triangle mesh com-
pression algorithm based on hierarchical vertex clustering. Unlike PRAM (see Chapter 8) or the CHuMI
viewer [Jamin et al., 2009], it is not based on a space-subdivision data structure or a initial segmentation
of the input model. The levels of detail generated by the decimation are decomposed into two layers. The

129

levels of the first layers are compressed globally as with a standard progressive mesh compression algorithm.
The levels of the second layer are, however, compressed independently for each cluster to allow the random
access. During the decompression, the global levels of detail are first decoded. Then each cluster can be
decompressed at different levels of detail with the constraint that there must be at most one level of detail
of difference between two adjacent cluster.

We believe that POMAR is an interesting tool for the 3D mesh adaptation to storage and transmission
but it has also nice features for visualization. It enables a fine-grained random access to the compressed
data. It directly generates one-piece decompressed meshes with smooth transitions between the fine and
coarse decompressed regions of the mesh. All the triangles of the decompressed models come from the
decimation and therefore respect its metric.

Experimental results show that POMAR compares favourably with previous progressive and random
accessible approaches in terms of compression rates with similar random access. Its fast decompression
algorithm is suitable for iterative selective decompression. Used as a standard progressive algorithm, it
achieves good rate-distortion performance at low rates.

POMAR could be improved in several ways. The generalisation of the algorithm to non-manifold meshes
could be made by replacing the vertex split operator by generalized vertex splits. A decimation algorithm
that better preserves the mesh shape and its adapted compression algorithm could also be investigated.
Finally, we also wish to work on a mixed CPU/GPU implementation of our framework to enable automatic
refinement, and coarsening of the model for interactive visualization. The decompression of the data would
be performed by the CPU, while a compact representation of the refinement data would then be transferred
to GPU for the rendering.

We also believe that the constraint of having one level of difference between adjacent clusters to allow
the random access is a strong idea. It can still be exploited to build new schemes with better performance.
Thus, proposing an alternative decimation algorithm that is able to remove more vertices per level of detail
than the halfedge collapse operator could increase the locality of the refinements. We think that the wavelet
formulation for irregular meshes of Valette and Prost [Valette and Prost, 2004a] (see Section 3.2.4) should
be investigated for this purpose.

130

(zeneral conclusion

Contributions
The contributions presented in this manuscript can be summarized as follows:

1. We proposed a new state-of-the-art on mesh compression. In particular, we identified four types
of mesh compression algorithms: single-rate, progressive, random-accessible and progressive random-
accessible. Previous reviews have only described single-rate and progressive mesh compression ap-
proaches. Starting from the pioneering work, we tried to exhaustively describe and compare the
relevant approaches.

2. The previous state-of-the-art revealed that, as far as we know, progressive compression of meshes with
arbitrary face degrees was never studied as a standalone problem. Therefore, we proposed in the Chap-
ter 4, PPMC, a new progressive mesh compression algorithm for polygon meshes. The input
surface is decimated by several traversals that generate successive levels of detail through a specific
patch decimation operator which combines vertex removal and local remeshing. The mesh connectivity
is encoded by two lists of Boolean symbols: one for the inserted edges and the other for the faces with a
removed center vertex. The connectivity encoding performance is improved with predictions based on
the mesh geometry. The mesh geometry is encoded with a barycentric error prediction of the removed
vertex coordinates and is improved by integrating a local curvature prediction. We also included two
methods that improve the rate-distortion performance: a wavelet formulation with a lifting scheme
and an adaptive quantization technique. Experimental results demonstrate the effectiveness of our
approach in terms of compression rates and rate-distortion performance, even for the compression of
triangle meshes.

3. Progressive mesh compression is linked to mesh simplification as both applications require the gen-
eration of levels of detail. So, in the Chapter 5, we proposed a simple volume metric to drive
the simplification of polygon meshes. To demonstrate the efficiency of this metric, we proposed
a simple polygon mesh decimation algorithm based on two operators: the halfedge collapse and the
edge removal. At each iteration of the algorithm, the operation that has the lowest metric value
is performed. Experimental results show that this scheme can generate coarse polygon meshes with
anisotropic polygon faces. We also used this metric to propose an other decimation strategy for PPMC,
our progressive polygon mesh compression algorithm. At each decimation step, it prioritizes the patch
decimation operations that have the lowest costs. This new strategy leads to better rate-distortion
performance at low rates for irregular models.

4. Progressive mesh compression is useful for the remote visualization of 3D meshes. Indeed, it allows to
quickly display a coarse model to the user and progressively refine it as more data is received. The
multiresolution structure of compressed models is also interesting to adapt the mesh to the computa-
tional capabilities of the rendering device. We proposed in the Chapter 6 an applicative adaptation
framework for remote scientific visualization. Targeted data was 3D meshes with color at-
tributes on their vertices. This framework is based on the progressive mesh compression algorithm
from [Lee et al., 2012] that can handle vertex colors. The adaptation algorithm chooses the best level
of detail to download and display, taking into account constraints coming from the network, the device

131

graphic capabilities and the user view-point and preferences. We also propose an extension of the X3D
file format to support progressive meshes.

. The problem of progressive mesh compression algorithms is that when a specific part of the input
model needs to be decompressed at the maximum resolution, the full data must be decompressed.
Resources are therefore spent to decompress irrelevant parts of the mesh. Progressive random-accessible
mesh compression schemes are a solution to this problem since they allow to decompress different
parts of the input model at different levels of detail. We described in the Chapter 8, PRAM, a
new progressive random accessible compression algorithm based on the random-accessible mesh
compression algorithm from Choe et al. [Choe et al., 2009]. We described two methods to segment
the input model. The first method is the face clustering algorithm of Choe et al. [Choe et al., 2009].
The second method is based on the polygon mesh simplification algorithm described in the Chapter 5,
which has the advantage of generating less invalid clustering topologies. To progressively compress the
clusters, we replaced the single-rate compression algorithm of the original scheme by the progressive
algorithm from [Lee et al., 2012]. We modified this algorithm to compress independently in wires
the geometry of the cluster border vertices because they belong to two clusters. At the end of the
decompression, adjacent charts are stitched to produce a closed decompressed model. By adding some
constraints on the removed chart border vertices, models with few artifacts are obtained. Since the
decompression can be easily multithreaded, compared to progressive approaches, the model can be
decompressed faster on multi-core architectures. Experimental compression results show that the cost
of the random-accessibility is moderate with a low number of charts.

. Progressive random-accessible mesh compression schemes based on an initial segmentation of the input
model need, at decompression time, a post-processing step to stitch together adjacent parts. Besides,
to be efficiently compressed, parts must have a significant number of faces. POMAR, our second
progressive and random accessible mesh compression algorithm, presented in the Chapter 9,
does not, require the input model to be segmented. The compression algorithm is composed of three
main steps.

e The first step generates levels of detail by performing halfedge collapses. It keeps in memory the
connectivity of the performed operations as well as the positions of the removed vertices.

e The second step, starting from the base mesh, successively reconstructs the levels of detail by
performing the vertex splits. The connectivity is encoded with four integer symbols. The geometry
is encoded with a barycentric error prediction of the removed vertex coordinates projected in a
local Fresnet frame. The first encoded levels of detail are global, as with a standard progressive
algorithm, until the base clustered mesh is obtained.

e The third step of the compression generates clustered levels. A cluster is a set of adjacent vertices
that hierarchically collapses into a common vertex of the base clustered mesh. Each cluster is
encoded independently to allow the decompression random-access.

By imposing a maximum of one level of detail of difference between adjacent clusters, the decompression
algorithm always generates a closed mesh with smooth transitions without artifact. Experimental
results also show that this approach compares favorably with previous techniques.

Our aim in this thesis was to use mesh compression as an efficient tool for the adaptation of 3D mesh
to storage, transmission and visualization constraints. By reducing the size of the data, all the proposed
compression approaches presented in this thesis enable the efficient storage of 3D data. They also allow to
reduce the transmission times. The progressive nature of the data generated by PPMC allows to quickly
display a model to the user, even if the whole compressed data has not yet been transmitted and decom-
pressed. Tt also allows to select the best model level of detail in function of the terminal capabilities and
the viewpoint chosen by the user. Our progressive random accessible mesh compression approaches PRAM
and POMAR allow to download, decompress and display to the user the mesh with the minimum number
of polygons according to the region of interest he has defined. The decompressed models can therefore be
finely adapted to the various conditions.

132

Some of the contributions presented in this thesis have been published or will shortly appear
in international conferences and journals [Maglo et al., 2010, Maglo et al., 2011, Maglo et al., 2012,
Maglo et al., 2013].

Future work

Besides all the possible improvements of the proposed techniques we included in the conclusion of each
chapter, we have identified four main trails for future work.

Genericity and industrialization. We think that many techniques in the mesh compression field are now
mature enough to be used by the industry. However, tools that can handle all the different types of
meshes used by the industry and that are easy to use are missing. As a consequence, we think that,
for example, the adaptation of the POMAR algorithm presented in Chapter 9 to the compression of
non-manifold meshes may be interesting.

Mesh compression for the web. With the WebGL technology integrated in recent web browsers, it is
today possible to interactively visualize 3D meshes inside web pages. As stated in the introduction,
3D meshes can represent a significant amount of data. In such a case, mesh compression can have
a positive impact to save bandwidth and possibly reduce the page loading time. Today, there is no
standard mesh compression format integrated inside browser, as image compression formats (JPEG,
PNG, GIF ...) are integrated. One way to bring mesh compression to the web is to program a decoder in
Javascript and embed its code inside the web page. Javascript is indeed the scripting language included
in the HTML 5 standard. Implementing a fast compression algorithm in a scripting language might be
challenging. However currently, there is a war between the web browser vendors to propose the fastest
Javascript interpreting engine. We know that a team of the LIRIS laboratory has already begun to
work on this topic. They successfully ported in Javascript their progressive decompression algorithm
|Lee et al., 2012]. Nevertheless, there is still work to be done in order to choose the techniques that
are the most convenient for 3D inside the web.

Parallel mesh compression and decompression. The modern computer architectures are evolving to-
wards more and more computing cores. The desire to perform the decompression on the GPU in
order to preserve a concise representation of the mesh all over the pipeline is also emerging. GPU
are already composed of a high number of computing cores. Traditional mesh compression algorithms
are monothreaded because they aim at transforming a 3D mesh into a bit string. The algorithm we
presented in the Chapter 8 is multithreaded but it suffers from two drawbacks. The computation of
the initial segmentation takes times. There is a significant overhead in term of compression rate. We
believe that the design of a parallel algorithm with a low overhead is a challenging problem. As seen
in the Chapter 2, some approaches have already been proposed for the parallel single-rate encoding
and decoding of the connectivity [Meyer et al., 2012, Zhao et al., 2012]. Geometry encoding as well as
the progressive and random accessible parallel compression have still to be studied.

Distribution of geometry prediction residuals. In mesh compression, the encoding of the mesh vertex
coordinates often relies on the prediction paradigm. The position of a new vertex is predicted in
function of the already encoded vertices. The difference between the predicted and real positions of
the vertex is then entropy coded. Now, the entropy coder needs a symbol probability table to efficiently
encode the residuals. There are two solutions to build this model detailed in Section 1.4.2. We believe
that if we could well model the probability distribution of residuals with a low number of parameters,
the entropy coder could use, since the beginning of the encoding, an efficient model with a very low
amount of overhead data transmitted.

Progressive random accessible mesh compression. An important part of the future research in mesh
compression may be related to progressive and random accessible approaches. Indeed, these techniques
offer important and useful features for 3D mesh adaptation. Regarding interactive visualization scenar-
ios, the convergence between compression approaches and efficient data structures (or view-dependent

133

progressive meshes) should be explored. Indeed, performing the decompression directly on the device
that renders the mesh can allow to save time. Compression approaches have the advantage of produc-
ing very compact data. However, they are much less flexible than view-dependent progressive meshes
for adaptation purposes. Besides, contrary to view-dependent progressive meshes, very few GPU im-
plementations of compression algorithms have been proposed in the literature. The data structure
described in [Derzapf and Guthe, 2012] is a first step towards this convergence. The proposed data
structure is compressed and highly flexible. Yet, its compression rates are far from being competitive
with compression approaches.

134

Appendix: Introduction in French

Contexte

Les ordinateurs ont toujours été utilisés pour stocker et traiter les données de mondes réels et virtuels. Parmi
les premiers cas d’utilisation des ordinateurs, on trouve la simulation de processus naturels ou artificiels (cal-
culs de trajectoires, calculs de contraintes & 'intérieur d’une structure...). Aujourd’hui les ordinateurs sont
toujours utilisés pour la simulation, mais beaucoup d’autres applications ont émergé comme la bureautique
ou le divertissement. Avec le développement du réseau mondial que constitue I'Internet, un autre usage
important des ordinateurs est aujourd’hui la communication, le partage de données et d’informations.

Comme la vision et I'ouie nous permettent de capturer et d’interpréter notre environnement, des modes
de représentation des données ont été développés pour permettre aux ordinateurs de traiter du son, des
images et des images dynamiques & travers les vidéos. Ce domaine est appelé le traitement multimédia.
Les quantités physiques analogiques du monde réel sont numérisées pour se plier a la contrainte que les
ordinateurs ne peuvent traiter que des données binaires. Le développement d’applications multimédia a
permis aux utilisateurs de visionner des images et des vidéos et d’écouter des sons sur leur ordinateur.
Cependant le contenu était diffusé a I'utilisateur sous la méme forme que durant sa création. Rapidement,
les utilisateurs ont exprimé le désir de pouvoir interagir avec les données. Par exemple, ils voulaient pouvoir
changer le point de vue d’une image ou d’une vidéo afin de pouvoir se déplacer virtuellement dans la scéne.
Un nouveau domaine a alors émergé: la réalité virtuelle. Les ordinateurs étaient ici utilisés pour produire
des images successives d'une scéne enregistrée selon le point de vue défini par les consignes interactives de
I'utilisateur. Ce dernier pouvait ainsi naviguer a l'intérieur d’environnements virtuels.

Une représentation des données tridimensionnelles (3D) était nécessaire pour permettre le rendu d’images
d’une scéne a partir de différents points de vue. Les maillages 3D surfaciques furent rapidement adoptés pour
satisfaire ce besoin. Un maillage 3D surfacique est constitué de polygones élémentaires adjacents appelés
faces qui ensemble forment une approximation par parties de la surface représentée. Les maillages, comme
les images, peuvent étre statiques ou dynamiques, si ils varient ou non au cours du temps. Dans cette thése,
nous nous intéressons seulement aux maillages statiques. Plusieurs méthodes permettent de générer des
maillages 3D surfaciques. Ils peuvent étre créés directement par un opérateur sur un ordinateur (maillages
synthétiques) ou reconstruits & partir de données provenant de scanners 3D (maillages reconstruits). Ces
périphériques de capture reconstruisent un maillage 3D grace a l'acquisition dans l'espace tridimensionnel
de multiples points appartenant & 'objet a représenter. La Figure 1 illustre un exemple de maillage 3D
synthétique et un exemple de maillage 3D dynamique.

Les maillages 3D sont rapidement devenus populaires car, étant simples, ils peuvent étre facilement traités
par des ordinateurs. Des composants électroniques dédiés au rendu d’images a partir de maillages 3D furent
développés. Appelés unités de traitement graphique (GPU), ils sont aujourd’hui présents dans la plupart des
ordinateurs personnels et des smartphones. Des interfaces de programmation d’applications (APIs) telles
qu’OpenGL! et Microsoft Direct3D? ont été développées pour permettre aux logiciels d’utiliser le GPU pour
calculer des images de rendu 3D.

Thttp://www.khronos.org/opengl
2http://msdn.microsoft.com

135

Figure 14: Exemples de maillages 3D. a. Un maillage synthétique b. Un maillage reconstruit.

Durant cette méme période, les applications de simulation numériques ont, accru 'usage d’importants
maillages volumiques. Les maillages volumiques sont constitués de polyédres élémentaires adjacents appelés
cellules qui ensemble forment une approximation par partie du volume représenté. En effet, lorsque 'on
simule un phénoméne physique, certaines équations ne peuvent pas étre résolues analytiquement. Pour
parvenir & une solution approximative, il faut recourir & une discrétisation de I’espace a travers des maillages.
Les équations sont alors résolues numériquement sur les cellules jusqu’a obtenir une convergence. Si le
phénomeéne étudié a une nature tridimensionnelle, alors il faut utiliser un maillage volumique.

Dans cette thése, nous nous intéressons principalement aux maillages 3D surfaciques. Ils sont aujourd’hui
utilisés dans de nombreux domaines d’application pour la représentation et la visualisation d’objets 3D.

e En Conception Assistée par Ordinateur (CAQ), les ingénieurs peuvent visualiser leurs modéles
en 3D et interagir avec eux a travers leur représentation sous forme de maillage surfacique (voir Figure
15). Par exemple, Catia® de Dassault Systémes est une célébre suite logicielle qui permet de concevoir
des produits industriels complexes a I'aide de vues 3D.

Il est aussi possible de retrouver les primitives de conception d’un objet industriel en faisant de la rétro-
ingénierie a partir d’acquisitions 3D. Injectées dans un logiciel de CAQ, les représentations virtuelles
générées peuvent ensuite étre modifiées.

Les utilisateurs ont communément acces a la réalité virtuelle & travers leur écran d’ordinateur. Mais les
environnements d’affichage immersifs, tels que les caves et les murs d'images, mettent 'utilisateur au
centre d’un monde virtuel. Certaines installations sont équipées d'un systéme de vision stéréographique,
ce qui donne I'impression & 'utilisateur que la scéne a une profondeur. Ces systémes présentent de
nombreux avantages pour la conception d’un nouveau produit. Par exemple, ils permettent de tester
partiellement une voiture sans aucun prototypage physique cotiteux.

e Certaines méthodes d’imagerie médicale 3D permettent de construire des représentations 3D sous
forme de maillage des organes d’un patient pour faciliter le diagnostique. Ils permettent aussi la
simulation d’examens médicaux ou de gestes chirurgicaux. Par exemple, dans [Kiithnapfel et al., 2000],
les auteurs présentent un systéme de réalité virtuelle pour I’entrainement & la chirurgie endoscopique.

e La capture numérique du patrimoine favorise I'accés aux ceuvres d’art a partir de n’importe
ou a n’importe quelle heure. Elle permet 'accés et I’étude d’importantes piéces historiques. Koller
et al. dans [Koller et al., 2010] pointent les challenges présents derriére la création d’archives 3D de
patrimoines numériques.

Shttp://www.3ds.com/products/catia/welcome/

136

wﬁ: ot s W Y
BBl Edt Vew Tooh Ean Simole Pwamevs Windows Hslp e -- WeR O NEwcut Demofilugin,

$CADIDA 26 Sleck Dirww DIR L Dir Gut 0

[e [l . N - . . J -;Fi: UnHilh O eaD [Searchjhisme
24 ‘g5z @man [0 MedfyDelete
? @08 2R

| Tiee view FR
| Lubsls & Atibutes
| Agpicaton
| Uanamed
|a I Unramed!

T Block
Propity view L1]
Fropery Vi
. Niew [\ Duin
| gt view

|

SR e] 2 9CARID

200001 107,37 & 6399 mim

Figure 15: Modeler une piéce en 3D avec un logiciel de CAO. FreeCAD - www.freecadweb.org

e Les applications de commerce électronique trouvent aussi des bénéfices a fournir & 'utilisateur
des répliques virtuelles interactives de produits vendus. Des entreprises telles que PackshotCreator?
proposent déja aujourd’hui des systémes automatiques qui prennent des photos d’objets & partir de
points de vue multiples. Sur la page web du produit, le client peut ainsi changer interactivement le

point de vue de I'image affichée afin de pouvoir le visualiser sous tous ses angles.

Avec le développement de la technologie WebGL®, qui permet ’inclusion de contenus interactifs 3D a
Iintérieur de pages web, les sites web de commerce électronique pourront inclure des représentations
de leur produits plus complétes grace aux maillages. En effet, les maillages permettent des modes de
rendu et d’interactions plus variés.

Des systémes de réalité augmentée ont été aussi développés pour permettre aux clients d’essayer
virtuellement des vétements [Hilsmann and Eisert, 2009] ou des chaussures [Eisert et al., 2007]. Ils
affichent le modéle 3D du produit testé sur la vidéo capturée du client.

e L’industrie du divertissement est aussi une grande productrice de maillages 3D. En effet, ces
derniers sont souvent utilisés pour représenter des environnements et des personnages dans les jeux
vidéos ou les films d’animation (voir Figure 3). Dans ce domaine, beaucoup de recherche sont menées
pour générer des jeux et des films d’animation aussi physiquement réalistes que possible.

e Concernant la simulation numérique, les résultats des calculs sont souvent visualisés sous la forme
de maillages surfaciques avec, par exemple, des couleurs aux nceuds ou aux cellules représentant les
valeurs obtenues. On parle alors de visualisation scientifique. Un exemple de maillage de visualisation
scientifique est illustré sur la Figure 4.

Le travail présenté dans cette thése fat mené dans le contexte du projet Collaviz [Dupont et al., 2010]. Le
but de ce projet était de concevoir une plate-forme collaborative pour la visualisation scientifique distante.
Cette plate-forme devait permettre & des scientifiques travaillant sur des sites distants de partager, discuter
et interagir avec leurs résultats de simulations effectuées sur un grappe de calcul & haute performance. Les
résultats étaient sauvegardés sur un serveur central commun puis chacun des membres de la session de vi-
sualisation pouvaient demander & ce qu’une opération de post-traitement produisant un maillage surfacique
soit effectuée. Ce maillage était alors transmis & chacun des clients afin qu’ils puissent le visualiser. Les
utilisateurs pouvaient collaborer en partageant des annotations sur les modéles 3D ou des points de vue com-
muns. Ils pouvaient aussi échanger a travers une messagerie instantanée. Le projet Collaviz était décomposé

“http://www.packshot-creator.com/
Shttp://www.khronos.org/webgl/

137

Figure 16: Une image du film d’animation Big Buck Bunny - Blender Foundation | www.blender.org. Les
personnages du film ont été modélisés avec des maillages 3D.

en 8 sous-projets. Le but du sous-projet englobant cette thése était de développer des solutions pour la
visualisation scientifique distante de maillages. Nous avons donc concu des outils pour transmettre
et visualiser de maniére efficace ces modeéles. Les utilisateurs devaient pouvoir accéder & leurs données avec
différentes conditions de réseau et de terminal. C’est pourquoi, comme expliqué dans la suite, nous avons
di recourir a des techniques d’adaptation de données 3D.

!
YT
it
d*“ﬂ‘@

Figure 17: Un exemple de maillage de visualisation scientifique. Les couleurs aux sommets permettent de
visualiser la température sur la surface de I’'objet.

Dans tous les domaines d’application précédemment décrits, les besoins en terme de précision ne cessent
de croitre. Par exemple, les maillages générés pour la simulation possédent un nombre croissant de cellules
afin d’obtenir des résultats aussi proche que possible de la réalité. Pour d’autres domaines tels que la
sauvegarde numérique du patrimoine, la précision des périphériques de capture s’améliore sans arrét; ce qui
génére des données de plus en plus importantes.

Comme un maillage 3D surfacique est une approximation discréte d’une surface composée de polygones,
augmenter la précision signifie augmenter le nombre de polygones. Plus un maillage contient de polygones,
plus les données pour le représenter sont importantes. Les domaines d’applications, tels que la visualisation
scientifique pour le projet Collaviz, nécessitent que ces données soient stockées et parfois transmises sur
un réseau. Or le stockage et la transmission de données ont un coit économique. Certains maillages

138

sont aujourd’hui si gros que leur stockage et leur transmission représentent un cotit non négligeable. La
compression de maillage peut aider a réduire ces cotts.

La diversité des périphériques utilisés pour visualiser, ou plus généralement traiter d’importants maillages,
est aussi problématique. Un gros maillage de visualisation scientifique qui nécessite I'utilisation d’une grappe
de calcul graphique pour étre rendu ne peut étre directement visualisé sur un smartphone. Entre ces
deux systémes, il y a une énorme différence de stockage, de mémoire centrale, de ressources CPU et GPU
disponibles. Le méme probléme se pose aussi avec le réseau. La quantité de bande passante disponible sur
une connexion a fibre optique et une connexion ADSL ne sont pas du méme ordre. Cependant, I'utilisateur
veut pouvoir accéder a ses données dans ces différentes conditions. Pour permettre ’accés universel, il est
nécessaire de recourir & de I'adaptation de données.

I’adaptation des données 3D consiste & transformer un ensemble d’objets 3D en entrée en des modalités
alternatives afin d’offrir a 'utilisateur la meilleure expérience de visualisation en fonction des caractéristiques
du réseau, des capacités de son terminal ainsi que ses préférences. Les mécanismes d’adaptation permettent
de transmettre de maniére optimale la scéne 3D. Dans la section suivante, nous expliquons pourquoi nous
pensons que la compression de maillages peut étre une solution efficace pour ’adaptation des données 3D.

La compression de maillages

La compression de maillages 3D a pour but d’encoder un maillage d’entrée avec moins d’octets que sa
représentation initiale. L’opération de décompression compléte restaure un maillage identique au maillage
d’entrée (compression sans perte) ou proche de celui-ci (compression avec pertes). En réduisant leur taille, la
compression de maillages permet de stocker plus facilement et transmettre plus rapidement les données. Elle
peut donc s’avérer utile dans des conditions de faibles ressources. La compression adapte donc les maillages
3D aux contraintes de stockage et de transmission. Certains types d’algorithmes permettent d’accéder
durant la décompression a différentes versions du maillage. Ces versions peuvent étre soit différents niveaux
de détail, soit différentes parties du maillage d’entrée. Celles-ci contiennent moins de polygones que le modéle
d’entrée et peuvent étre plus facilement visualisées sur des périphériques a faibles ressources. Dans ce cas,
la compression adapte les maillages 3D aux contraintes de visualisation. Néanmoins, la compression doit
étre utilisée en gardant a 'esprit que la compression et la décompression sont des opérations complexes qui
consomment du temps de calcul. Parfois, les effets positifs produits par la réduction de la taille de données
peuvent avoir des conséquences négatives en terme de temps de calcul.

Nous classons les algorithmes de compression de maillages selon les caractéristiques qu’ils offrent durant
la décompression. Nous distinguons quatre types.

A taux unique. Les algorithmes a taux unique (voir Figure 5 a) sont les plus simples. L’algorithme de
compression génére une représentation compacte du modele d’entrée. L’algorithme de décompression
génére un maillage qui est identique au maillage d’entré ou qui différe légérement. La motivation
principale de ces approches est le stockage et la transmission simple.

Progressif. Les algorithmes progressifs (voir Figure 5 b) incorporent dans les données compressées une
représentation multi-résolution du modéle d’entrée. L’algorithme de décompression reconstruit les
niveaux de détail successifs au fur et & mesure que des données supplémentaires sont décodées. Ces al-
gorithmes présentent un intérét pour la visualisation distante car 1'utilisateur n’a pas besoin d’attendre
que l'ensemble des données soit téléchargées et décompressées pour pouvoir visualiser le modéle. Un
autre avantage de ce type d’algorithme est qu’il est possible de sélectionner le meilleur niveau de détail
selon les capacités de rendu du terminal, les contraintes réseau ou le point de vue de visualisation.

Avec les deux précédents types d’algorithmes, ’ensemble des données doit étre téléchargé et décompressé
pour accéder & une région d’intérét spécifique du maillage d’entrée a la résolution originale. Dans un tel cas,
lefficacité de ces approches est fortement limitée. En téléchargeant et décompressant le modéle en entier
alors que l'utilisateur a juste besoin d’une petite partie, des ressources de calcul et de réseau sont gachées.

139

a. Décompression a taux unique

s
“«N\\;vuu 0000/
g, TN
W

e
R
A
K

W

RS
7 va
o)

NS
Y]
Hﬂo«»ﬂ«»«»

b. Décompression progressive

c. Décompression avec accés aléatoire

léatoire

N

z

écompression progressive avec acces a

d. D

AR

Figure 18: Les quatre types d’algorithmes de compression de maillage et les modalités qu’ils offrent durant

la. décompression.

140

De plus, l'utilisateur doit attendre des données dont il n’a pas besoin. Les deux types d’algorithmes de
compression de maillages suivants permettent de répondre en partie & ces problémes.

Avec accés aléatoire. Les algorithmes avec accés aléatoire (voir Figure 5 ¢) permettent de décompresser
seulement les parties requises du maillage d’entrée. Les données qui codent les autres parties du
maillage sont ignorées. Ces méthodes permettent d’accéder & des modéles qui ne tiennent pas dans la
mémoire centrale du terminal. Par contre, 'utilisateur n’a aucune vue d’ensemble sur les parties du
maillage non sélectionnées.

Progressif avec accés aléatoire. Les algorithmes progressifs avec accés aléatoire (voir Figure 5 d) com-
binent les caractéristiques des algorithmes progressifs et des algorithmes avec accés aléatoire. Des
parties différentes du modéle d’entrée peuvent étre décompressées & des niveaux de détail différents.
Cela permet ainsi de décompresser un maillage en fonction du point de vue choisi par 'utilisateur. Le
maillage ainsi obtenu offre une bonne expérience de visualisation & un point de vue donné avec un cott
raisonnable en terme de quantité de données décompressées et de nombre de polygones.

Contributions

Le travail décrit dans cette thése présente la compression de maillage comme une méthode pour adapter les
données 3D. Par conséquent, nous avons mis l'accent sur le développement de techniques progressives et avec
acceés aléatoire. Aprés avoir effectué une étude bibliographique, nous avons développé un premier algorithme
de compression progressive pour les maillages polygonaux, une métrique pour la décimation des maillages
polygonaux, un cadre applicatif pour la visualisation distante ainsi que deux algorithmes de compression
progressive avec accés aléatoire. Nous avons congu chacune de ces approches en gardant en téte les qualités
suivantes:

Forte performance de compression. Les données générées par 'algorithme de compression devraient
étre les plus petites possible pour permettre le stockage et la transmission efficaces des modéles com-
pressés.

Bon compromis débit-distorsion. Avec une quantité minimale de données, I’algorithme de compression
devrait sortir un maillage qui est le plus proche possible du maillage original.

Forte granularité d’accés aléatoire. Les approches de compression avec accés aléatoire développées de-
vraient étre capable de décompresser les parties demandées les plus petites possibles, avec le moins de
surcoiit possible.

Faibles temps de traitement. Les algorithmes de compression et de décompression devraient étre les plus
rapides possible pour ne pas rallonger le temps nécessaire pour accéder au maillage.

Efficace en mémoire. Les algorithmes de compression et de décompression devraient pouvoir fonction-
ner en consommant une faible quantité de mémoire. IL’algorithme de décompression devrait, plus
particuliérement, pouvoir étre lancé sur des périphériques mobiles & faibles ressources.

Générique. Les approches proposées devraient pouvoir traiter tous les différents types de topologies de
maillages, ou étre facilement adaptables pour pouvoir le faire.

Paralléle. Comme I'architecture des ordinateurs modernes évolue vers de plus en plus de cceurs de calcul,
les algorithmes de compression et de décompression devraient étre capable d’effectuer autant d’étapes
de calcul que possible en paralléele.

Facile a implémenter. Une implémentation des algorithmes proposés se reposant sur de célébres biblio-
théques tierces devrait étre aussi simple que possible.

141

Les procédés existants de compression progressive de maillages ont été congu pour compresser des mail-
lages surfaciques seulement composés de faces triangulaires. Néanmoins, d’autres types de polygones sont
aussi couramment utilisés dans les maillages surfaciques. Nous avons par conséquent con¢u un nouvel algo-
rithme de compression progressive de maillages que nous avons appelé PPMC (Progressive Polygon Mesh
Compression). Cet algorithme compresse les maillages polygonaux manifolds. Partant d’une approche simple
basée sur un nouvel opérateur de décimation, nous avons proposé des méthodes de prédiction de la connec-
tivité, une formulation ondelette et une méthode de quantification adaptative pour améliorer le compromis
débit-distorsion. Comme la compression progressive est liée & la décimation de maillage, nous avons aussi
proposé une nouvelle métrique volumique simple pour guider la simplification des maillages polygonaux.

Les algorithmes de compression progressive tels que PPMC permettent d’adapter les données 3D aux
contraintes de stockage, transmission et visualisation. Cependant, ils doivent étre utilisés en conjonction avec
un cadre applicatif d’adaptation qui choisit quel niveau de détail doit étre téléchargé, décompressé et affiché
a l'utilisateur selon ses contraintes. Nous avons donc proposé, dans le contexte du projet Collaviz, un cadre
applicatif d’adaptation pour la visualisation scientifique distante de maillages. Ce dernier a été congu pour
optimiser 'expérience interactive de visualisation distante en prenant en compte les contraintes provenant du
réseau (bande passante), du terminal de visualisation (mémoire, capacités de calcul et résolution de I’écran)
ainsi que de l'utilisateur (distance au modéle).

Néanmoins, avec les algorithmes de compression progressive, pour accéder & une partie spécifique du
maillage & la résolution maximale, le modéle entier doit étre téléchargé et décompressé. Une meilleure
efficacité est possible si la décompression peut s’adapter & un paramétre additionnel: la zone d’'intérét de
I'utilisateur. Les algorithmes progressifs avec accés aléatoire permettent de télécharger et de décompresser
différentes parties du maillage d’entrée & différent niveaux de détail. L’algorithme de décompression peut
raffiner & la demande les régions d’intérét et laisser les autres régions a un niveau de détail grossier. Cela
rend possible la décompression en fonction du point de vue. Ces approches adaptent le nombre et la position
des polygones décompressés en fonction de ce que I'utilisateur souhaite voir.

Dans un premier temps, nous avons con¢u un algorithme de compression progressive avec accés aléatoire
de maillages triangulaires basé sur une segmentation initiale du modeéle d’entrée. Nous l’avons nommé
PRAM (Progressive Random Accessible Mesh). Les groupes de faces générés sont compressés de maniére
indépendante par un algorithme progressif. Avec une segmentation adéquate, cette approche permet de
décompresser un maillage en fonction du point de vue choisi par I'utilisateur. Par contre, elle ne permet pas
de combiner une forte granularité d’accés aléatoire avec une forte performance de compression. De plus, le
remplissage des trous entre des groupes partiellement décompressés reste aussi problématique.

Nous avons par conséquent congu un second algorithme de compression progressive avec acces aléatoire
de maillages triangulaires nommé POMAR (Progressive Oriented Mesh Accessible Randomly). Ce dernier
permet un accés aléatoire beaucoup plus fin. Avec cette approche, aucune segmentation initiale n’est requise.
[’algorithme de décompression génére un modéle décompressé avec des transitions lisses entre les régions
décompressés a un haut et un faible niveau de détail. Tout les triangles décompressés proviennent directement
de I’étape de décimation et par conséquent respectent sa métrique.

Contenu de la thése

Dans les deux premiers chapitres, nous rappelons les préliminaires et les travaux précédents sur les maillages
et les algorithmes de compression de maillages a taux unique.

e Le chapitre 1 rappelle des connaissances préliminaires relatives aux maillages 3D et & la compression
de données. Il définit les maillages et leurs propriétés. Aprés une description générale des structures
de données qui permettent de les stocker, il décrit les principes généraux de la compression de données.

e Le chapitre 2 est un état de I'art sur la compression de maillages & taux unique. En partant des travaux
pionniers, nous évoquons toutes les approches pertinentes proposées pour la compression des maillages
statiques.

142

Les quatre chapitres suivants sont dédiés aux travaux précédents et & nos contributions sur la compression
progressive, la décimation et 'adaptation des maillages 3D.

e Le chapitre 3 est un état de I'art sur la compression progressive de maillages.

e Le chapitre 4 décrit PPMC, notre algorithme de compression progressive de maillages. Des résultats
expérimentaux illustrent la performance de ’approche.

e Le chapitre 5 traite de la simplification de maillages polygonaux. Il présente notre nouvelle métrique
simple qui peut controler la décimation de maillages polygonaux. Il montre aussi comment cette
métrique peut dans certains cas améliorer le compromis débit-distorsion de PPMC.

e Le chapitre 6 démontre 'utilité des algorithmes de compression progressive de maillages dans un
contexte de visualisation scientifique distante. Il décrit un nouveau cadre applicatif simple qui gére les
contraintes multiples de ce cas d’utilisation.

Les trois derniers chapitres traitent des travaux précédents et de nos contributions concernant la com-
pression progressive et avec accés aléatoire de maillages.
e Le chapitre 7 est un état de I’art sur la compression progressive et avec accés aléatoire de maillages.

e Le chapitre 8 décrit PRAM, notre premier algorithme de compression progressive avec accés aléatoire
de maillages basé sur la segmentation du modéle initial. Des résultats expérimentaux illustrent la
performance de ’approche.

e Le chapitre 9 porte sur POMAR, notre second algorithme de compression progressive avec accés aléa-
toire. Des résultats expérimentaux sont aussi inclus dans ce chapitre.

Enfin, cette thése se termine par une conclusion générale qui esquisse des perspectives générales pour de
futurs travaux.

143

144

Bibliography

[Ahn et al., 2006] Ahn, J.-H., Kim, C.-S., and Ho, Y.-S. (2006). Predictive compression of geometry, color
and normal data of 3-d mesh models. IEEE Transactions on Circuits and Systems for Video Technology,
16(2):291-299.

[Ahn et al., 2011] Ahn, J.-K., Lee, D.-Y., Ahn, M., and Kim, C.-S. (2011). R-d optimized progressive
compression of 3d meshes using prioritized gate selection and curvature prediction. The Visual Computer,
27:769 779.

[Alliez et al., 2003] Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. (2003).
Anisotropic polygonal remeshing. In Proceedings of SIGGRAPH, pages 485—493.

[Alliez and Desbrun, 2001a] Alliez, P. and Desbrun, M. (2001a). Progressive compression for lossless trans-
mission of triangle meshes. In Proceedings of SIGGRAPH, pages 195-202.

[Alliez and Desbrun, 2001b] Alliez, P. and Desbrun, M. (2001b). Valence-driven connectivity encoding for
3d meshes. Computer Graphics Forum, 20(3):480-489.

[Alliez and Gotsman, 2005] Alliez, P. and Gotsman, C. (2005). Recent advances in compression of 3d meshes.
In Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages 3—26.

[Arikawa et al., 1996] Arikawa, M., Amano, A., Maeda, K., Aibara, R., Shimojo, S., Nakamura, Y., Hiraki,
K., Nishimura, K., and Terauchi, M. (1996). Dynamic lod for qos management in the next generation
vrml. In Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems,
pages 24 —27.

[Attene et al., 2003] Attene, M., Falcidieno, B., Spagnuolo, M., and Rossignac, J. (2003). Swingwrapper:
Retiling triangle meshes for better edgebreaker compression. ACM Transactions on Graphics, 22(4):982—
996.

[Aviles and Moran, 2008] Aviles, M. and Moran, F. (2008). Static 3d triangle mesh compression overview.
In Proceedings of the IEEE International Conference on Image Processing, pages 2684—2687.

[Bajaj et al., 1999] Bajaj, C., Pascucci, V., and Zhuang, G. (1999). Single-resolution compression of ar-
bitrary triangular meshes with properties. In Proceedings of the Data Compression Conference, pages
247-256.

[Baumgart, 1975] Baumgart, B. G. (1975). A polyhedron representation for computer vision. In Proceedings
of the May 19-22, 1975, national computer conference and exposition, AFIPS 75, pages 589 596.

[Bayazit et al., 2010] Bayazit, U., Konur, U., and Ates, H. (2010). 3-d mesh geometry compression with set
partitioning in the spectral domain. Circuits and Systems for Video Technology, IEEE Transactions on,
20(2):179-188.

[Bayazit et al., 2007] Bayazit, U., Orcay, O., Konur, U., and Gurgen, F. S. (2007). Predictive vector quan-
tization of 3-d mesh geometry by representation of vertices in local coordinate systems. Journal of Visual
Communication and Image Representation, 18(4):341 353.

145

[Ben-Chen and Gotsman, 2005] Ben-Chen, M. and Gotsman, C. (2005). On the optimality of spectral com-
pression of mesh data. ACM Transactions on Graphics, 24(1):60-80.

[Berjon et al., 2013] Berjon, D., Moran, F., and Manjunatha, S. (2013). Objective and subjective evaluation
of static 3d mesh compression. Signal Processing: Image Communication, 28(2):181-195.

[Bischoff and Kobbelt, 2002] Bischoff, S. and Kobbelt, L. (2002). Towards robust broadcasting of geometry
data. Computers & Graphics, 26(5):665 675.

[Botsch et al., 2002] Botsch, M., Steinberg, S., Bischoff, S., and Kobbelt, L. (2002). Open-mesh a generic
and efficient polygon mesh data structure. In OpenSG Symposium. http://www.openmesh.org)/.

[Cai et al., 2009] Cai, K., Jin, Y., Wang, W., Chen, Q., Chen, Z., and Teng, J. (2009). Compression of
massive models by efficiently exploiting repeated patterns. In Proceedings of the ACM Symposium on
Virtual Reality Software and Technology, pages 229-230.

[Cai et al., 2007] Cai, S., Qi, Y., and Shen, X. (2007). 3d data codec and transmission over the internet. In
Web3D ’07: Proceedings of the twelfth international conference on 3D web technology, pages 53-56.

[Cayre et al., 2003] Cayre, F., Rondao-Alface, P., Schmitt, F., Macq, B., and Maitre, H. (2003). Applica-
tion of spectral decomposition to compression and watermarking of 3d triangle mesh geometry. Signal
Processing: Image Communication, 18(4):309 — 319.

[Cellier et al., 2012] Cellier, F., Gandoin, P.-M., Chaine, R., Barbier-Accary, A., and Akkouche, S. (2012).
Simplification and streaming of gis terrain for web clients. In Web3D °12: Proceedings of the 17th Inter-
national Conference on 3D Web Technology, pages 73 81.

[Chaine et al., 2007] Chaine, R., Gandoin, P.-M., and Roudet, C. (2007). Mesh connectivity compression
using convection reconstruction. In Proceedings of the ACM Symposium on Solid and physical modeling,
pages 41-49.

[Chaine et al., 2009] Chaine, R., Gandoin, P.-M., and Roudet, C. (2009). Reconstruction algorithms as a
suitable basis for mesh connectivity compression. Automation Science and Engineering, IEEE Transac-
tions on, 6(3):443 453.

[Chen and Nishita, 2002] Chen, B.-Y. and Nishita, T. (2002). Multiresolution streaming mesh with shape
preserving and qos-like controlling. In Web3D ’02: Proceedings of the seventh international conference on
3D Web technology, pages 35—42.

[Chen et al., 2005] Chen, D., Chiang, Y.-J., Memon, N., and Wu, X. (2005). Geometry compression of
tetrahedral meshes using optimized prediction. In Proceedings of the European Conference on Signal
Processing.

[Chen and Georganas, 2008] Chen, L. and Georganas, N. D. (2008). Region-based 3d mesh compression
using an efficient neighborhood-based segmentation. Simulation, 84(5):185-195.

[Chen et al., 2008] Chen, R., Luo, X., and Xu, H. (2008). Geometric compression of a quadrilateral mesh.
Computers € Mathematics with Applications, 56(6):1597 — 1603.

[Chen et al., 2010] Chen, Z., Bao, F., Fang, Z., and Li, Z. (2010). Compression of 3d triangle meshes
with a generalized parallelogram prediction scheme based on vector quantization. In Proceedings of the
International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pages 184
187.

[Chen et al., 2003] Chen, Z., Bodenheimer, B., and Barnes, J. F. (2003). Robust transmission of 3d geom-
etry over lossy networks. In Web3D ’03: Proceedings of the eighth international conference on 3D Web
technology, page 161.

[Cheng and Basu, 2007] Cheng, I. and Basu, A. (2007). Perceptually optimized 3-d transmission over wire-
less networks. IEEE Transactions on Multimedia, 9(2):386 396.

146

[Cheng and Ooi, 2008] Cheng, W. and Ooi, W. T. (2008). Receiver-driven view-dependent streaming of
progressive mesh. In NOSSDAV ’08: Proceedings of the 18th International Workshop on Network and
Operating Systems Support for Digital Audio and Video, pages 9 14.

[Cheng et al., 2007a] Cheng, W., Ooi, W. T., Mondet, S., Grigoras, R., and Morin, G. (2007a). An analytical
model for progressive mesh streaming. In MULTIMEDIA ’07: Proceedings of the 15th international
conference on Multimedia, pages 737-746.

[Cheng et al., 2006] Cheng, Z., Jin, S., and Liu, H. (2006). Anchors-based lossless compression of progressive
triangle meshes. In Proceedings of Pacific Graphics, pages 45-50.

[Cheng et al., 2007b] Cheng, Z.-Q., Liu, H.-F., and Jin, S.-Y. (2007b). The progressive mesh compression
based on meaningful segmentation. The Visual Computer, 23(9-11):651 660.

[Choe et al., 2009] Choe, S., Kim, J., Lee, H., and Lee, S. (2009). Random accessible mesh compression
using mesh chartification. IEEE Transactions on Visualization and Computer Graphics, 15(1):160 173.

[Choe et al., 2004] Choe, S., Kim, J., Lee, H., Lee, S., and Seidel, H.-P. (2004). Mesh compression with
random accessibility. In Proceedings of the 5th Korea-Israel Bi-National Conference on Geometric Modeling
and Computer Graphics, pages 81-86.

[Chou and Meng, 2002] Chou, P. and Meng, T. (2002). Vertex data compression through vector quantiza-
tion. Visualization and Computer Graphics, IEEE Transactions on, 8(4):373-382.

[Chourou et al., 2008] Chourou, A., Antonini, M., and Benazza-Benyahia, A. (2008). 3d mesh coding
through region based segmentation. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 1381 —1384.

[Chow, 1997] Chow, M. (1997). Optimized geometry compression for real-time rendering. In Proceedings of
Visualization, pages 347-354.

[Chuang et al., 1998] Chuang, R.-N., Garg, A., He, X., Kao, M.-Y., and Lu, H.-I. (1998). Compact en-
codings of planar graphs via canonical orderings and multiple parentheses. In Automata, Languages and
Programming, volume 1443 of Lecture Notes in Computer Science, pages 118 129.

[Cignoni et al., 2004] Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., and Scopigno, R.
(2004). Adaptive tetrapuzzles: efficient out-of-core construction and visualization of gigantic multiresolu-
tion polygonal models. In Proceedings of SIGGRAPH, pages 796-803.

[Cignoni et al., 2005] Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., and Scopigno, R.
(2005). Batched multi triangulation. In Proceedings of Visualization, pages 207-214.

[Cignoni et al., 1998] Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro: Measuring error on sim-
plified surfaces. Computer Graphics Forum, 17(2):167 174.

[Cirio et al., 2010] Cirio, G., Lavoue, G., and Dupont, F. (2010). A framework for data-driven progressive
mesh compression. In Proceedings of the International Conference on Computer Graphics Theory and
Applications, Lecture Notes on Computer Science.

[Cohen-Or et al., 1999] Cohen-Or, D., Levin, D., and Remez, O. (1999). Progressive compression of arbitrary
triangular meshes. In Proceedings of the IEEE Visualization Conference.

[Cohen-Or et al., 2002] Cohen-Or, D., Rami, C., and Irony, R. (2002). Multi-way geometry encoding. Tech-
nical report, The School of Computer Science, Tel-Aviv University.

[Cohen-Steiner et al., 2004] Cohen-Steiner, D., Alliez, P., and Desbrun, M. (2004). Variational shape ap-
proximation. In Proceedings of SIGGRAPH, pages 905-914.

[Coors and Rossignac, 2004] Coors, V. and Rossignac, J. (2004). Delphi: geometry-based connectivity pre-
diction in triangle mesh compression. The Visual Computer, 20:507 520.

147

[Corsini et al., 2012] Corsini, M., Larabi, M. C., Lavoué, G., Petiik, O., Vaga, L., and Wang, K. (2012).
Perceptual metrics for static and dynamic triangle meshes. Computer Graphics Forum, pages no—no.

[Courbet and Hudelot, 2009] Courbet, C. and Hudelot, C. (2009). Random accessible hierarchical mesh
compression for interactive visualization. In Proceedings of the Symposium on Geometry Processing, pages
1311-1318.

[Courbet and Hudelot, 2011] Courbet, C. and Hudelot, C. (2011). Taylor prediction for mesh geometry
compression. Computer Graphics Forum, 30(1):139-151.

[Courbet and Isenburg, 2010] Courbet, C. and Isenburg, M. (2010). Streaming compression of hexahedral
meshes. The Visual Computer, 26:1113 1122.

[Daniels et al., 2009] Daniels, J., Silva, C. T., and Cohen, E. (2009). Localized quadrilateral coarsening.
Computer Graphics Forum, 28(5):1437-1444.

[D’Azevedo, 2000] D’Azevedo, E. (2000). Are bilinear quadrilaterals better than linear triangles? SIAM
Journal on Scientific Computing, 22(1):198-217.

[Deb and Narayanan, 2004] Deb, S. and Narayanan, P. (2004). Design of a geometry streaming system. In
Proceedings of ICVGIP, pages 296 301.

[Deering, 1995] Deering, M. (1995). Geometry compression. In Proceedings of SIGGRAPH, pages 13 20.

[Denis et al., 2010] Denis, L., Satti, S., Munteanu, A., Cornelis, J., and Schelkens, P. (2010). Scalable
intraband and composite wavelet-based coding of semiregular meshes. IEEE Transactions on Multimedia,
12(8):773-789.

[Derzapf and Guthe, 2012] Derzapf, E. and Guthe, M. (2012). Dependency-free parallel progressive meshes.
Computer Graphics Forum, pages 2288 2302.

[Diaz-Gutierrez et al., 2005] Diaz-Gutierrez, P., Gopi, M., and Pajarola, R. (2005). Hierarchyless simplifica-
tion, stripification and compression of triangulated two-manifolds. Computer Graphics Forum, 24(3):457-
467.

[Du et al., 2009] Du, Z., Jaromersky, P., Chiang, Y.-J., and Memon, N. (2009). Out-of-core progressive
lossless compression and selective decompression of large triangle meshes. In Proceedings of the Data
Compression Conference, pages 420 —429.

[Dupont et al., 2010] Dupont, F., Duval, T., Fleury, C., Forest, J., Gouranton, V., Lando, P., Laurent, T.,
Lavoué, G., and Schmutz, A. (2010). Collaborative scientific visualization: The collaviz framework. In
Proceedings of the Joint Virtual Reality Conference of EuroVR - EGVE - VEC.

[Dyn et al., 1990] Dyn, N., Levine, D., and Gregory, J. A. (1990). A butterfly subdivision scheme for surface
interpolation with tension control. ACM Transactions on Graphics, 9(2):160-169.

[Edelsbrunner, 2001] Edelsbrunner, H. (2001). Geometry and Topology for Mesh Generation. Cambridge
University Press.

[Edelsbrunner and Harer, 2010] Edelsbrunner, H. and Harer, J. (2010). Computational Topology: An Intro-
duction. Applied mathematics. American Mathematical Society.

[Eisert et al., 2007] Eisert, P., Rurainsky, J., and Fechteler, P. (2007). Virtual mirror: Real-time tracking of
shoes in augmented reality environments. In Proceedings of the IEEE International Conference on Image
Processing, volume 2, pages 557 560.

[Evans et al., 1996a] Evans, F., Skiena, S., and Varshney, A. (1996a). Completing sequential triangulations
is hard. Technical report, Department of Computer Science, State University of New York at Stony Brook.

[Evans et al., 1996b] Evans, F., Skiena, S., and Varshney, A. (1996b). Optimizing triangle strips for fast
rendering. In Proceedings of Visualization, pages 319-326.

148

[Fathy et al., 2011] Fathy, G., Hassen, H., Gamal, R., and Sheta, W. (2011). Dynamic transmission of 3d
mesh in wireless walkthrough applications. In Proceedings of the IEEE International Symposium on Signal
Processing and Information Technology, pages 71 79.

[Flato et al., 1999] Flato, E., Halperin, D., Hanniel, 1., and Nechushtan, O. (1999). The design and imple-
mentation of planar maps in cgal. In Algorithm Engineering, volume 1668 of Lecture Notes in Computer
Science, pages 154-168. http://www.cgal.org/.

[Fogel et al., 2001] Fogel, E., Cohen-Or, D., Ironi, R., and Zvi, T. (2001). A web architecture for progressive
delivery of 3d content. In Web3D ’01: Proceedings of the sixth international conference on 3D Web
technology, pages 35—41.

[Funkhouser and Séquin, 1993] Funkhouser, T. A. and Séquin, C. H. (1993). Adaptive display algorithm
for interactive frame rates during visualization of complex virtual environments. In Proceedings of SIG-
GRAPH, pages 247-254.

[Gandoin and Devillers, 2002] Gandoin, P.-M. and Devillers, O. (2002). Progressive lossless compression of
arbitrary simplicial complexes. In Proceedings of SIGGRAPH, pages 372 379.

[Gang et al., 2010] Gang, D., Zhi-quan, C., Jingwen, Z., Liang, L., and Shiyao, J. (2010). An improved
progressive lossless compression algorithm. In International Conference on Audio Language and Image
Processing, pages 249-253.

[Garland and Heckbert, 1997] Garland, M. and Heckbert, P. S. (1997). Surface simplification using quadric
error metrics. In Proceedings of SIGGRAPH, pages 209-216.

[Gioia et al., 2004] Gioia, P., Aubault, O., and Bouville, C. (2004). Real-time reconstruction of wavelet-
encoded meshes for view-dependent transmission and visualization. IFEE Transactions on Circuits and
Systems for Video Technology, 14(7):1009-1020.

[Gobbetti and Bouvier, 1999] Gobbetti, E. and Bouvier, E. (1999). Time-critical multiresolution scene ren-
dering. In VIS °99: Proceedings of the conference on Visualization '99, pages 123-130.

[Gu et al., 2002] Gu, X., Gortler, S. J., and Hoppe, H. (2002). Geometry images. In Proceedings of SIG-
GRAPH, pages 355-361.

[Gumbhold, 2000] Gumbhold, S. (2000). New bounds on the encoding of planar triangulations. Technical
Report WSI-2000-1, University of Tiibingen.

[Gumbhold, 2005] Gumbhold, S. (2005). Optimizing markov models with applications to triangular connectiv-
ity coding. In Proceedings of the annual ACM-SIAM symposium on Discrete algorithms, pages 331-338.

[Gumhold and Amjoun, 2003] Gumbhold, S. and Amjoun, R. (2003). Higher order prediction for geometry
compression. In Proceedings of Shape Modeling International, 2003, pages 59 66.

[Gumbhold et al., 1999] Gumhold, S., Guthe, S., and Straer, W. (1999). Tetrahedral mesh compression with
the cut-border machine. In Proceedings of the conference on Visualization '99: celebrating ten years, VIS
’99, pages 51-58.

[Gumbhold and Strafer, 1998] Gumhold, S. and Strafer, W. (1998). Real time compression of triangle mesh
connectivity. In Proceedings of SIGGRAPH, pages 133-140.

[Guskov et al., 2000] Guskov, 1., Vidiméce, K., Sweldens, W., and Schréder, P. (2000). Normal meshes. In
Proceedings of SIGGRAPH, pages 95-102.

[Guthe et al., 2003] Guthe, M., Borodin, P., and Klein, R. (2003). Efficient view-dependent out-of-core
visualization. In Proceedings of the 4th International Conference on Virtual Reality and its Application in
Industry, pages 428-438.

149

[Guéziec et al., 1998] Guéziec, A., Taubin, G., Lazarus, F., and Horn, W. (1998). Simplicial maps for
progressive transmission of polygonal surfaces. In Proceedings of the third symposium on Virtual reality
modeling language, pages 25 31.

[Hilsmann and Eisert, 2009] Hilsmann, A. and Eisert, P. (2009). Tracking and retexturing cloth for real-time
virtual clothing applications. In Computer Vision/Computer Graphics Collaboration Techniques, volume
5496 of Lecture Notes in Computer Science, pages 94-105.

[Ho et al., 2001] Ho, J., Lee, K. C., and Kriegman, D. (2001). Compressing large polygonal models. In
Proceedings of the conference on Visualization 01, VIS ’01, pages 357—-362.

[Hongnian et al., 2009] Hongnian, L., Bo, L., and Hongbin, Z. (2009). Progressive geometry-driven compres-
sion for triangle mesh based on binary tree. In Proceedings of International Conference in Visualisation,
pages 229-234.

[Hoppe, 1996] Hoppe, H. (1996). Progressive meshes. In Proceedings of SIGGRAPH, pages 99 108.

[Hoppe, 1997] Hoppe, H. (1997). View-dependent refinement of progressive meshes. In Proceedings of SIG-
GRAPH, pages 189-198.

[Hoppe, 1998] Hoppe, H. (1998). Smooth view-dependent level-of-detail control and its application to terrain
rendering. In Proceedings of Visualization, pages 35-42.

[Hoppe and Praun, 2005] Hoppe, H. and Praun, E. (2005). Shape compression using spherical geometry
images. In Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages
27 46.

[Hu et al., 2009] Hu, L., Sander, P. V., and Hoppe, H. (2009). Parallel view-dependent refinement of pro-
gressive meshes. In Proceedings of the symposium on Interactive 8D graphics and games, pages 169 176.

[Huffman, 1952| Huffman, D. (1952). A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, 40(9):1098-1101.

[Isenburg, 2002] Isenburg, M. (2002). Compressing polygon mesh connectivity with degree duality prediction.
In Graphics Interface Conference Proceedings.

[Isenburg and Alliez, 2002a] Isenburg, M. and Alliez, P. (2002a). Compressing hexahedral volume meshes.
In Proceedings of Pacific Graphics, pages 284-293.

[Isenburg and Alliez, 2002b] Isenburg, M. and Alliez, P. (2002b). Compressing polygon mesh geometry with
parallelogram prediction. In Proceedings of the conference on Visualization ’02, VIS 02, pages 141-146.

[Isenburg and Gumhold, 2003] Isenburg, M. and Gumhold, S. (2003). Out-of-core compression for gigantic
polygon meshes. In Proceedings of SIGGRAPH, pages 935-942.

[Isenburg et al., 2005a] Isenburg, M., Ivrissimtzis, I., Gumhold, S., and Seidel, H.-P. (2005a). Geometry
prediction for high degree polygons. In Proceedings of the Spring Conference on Computer Graphics,
pages 147-152.

[Isenburg and Lindstrom, 2005] Isenburg, M. and Lindstrom, P. (2005). Streaming meshes. Proceedings of
Visualization, pages 231-238.

[Isenburg et al., 2006] Isenburg, M., Lindstrom, P., Gumhold, S., and Shewchuk, J. (2006). Streaming
compression of tetrahedral volume meshes. In Proceedings of Graphics Interface, pages 115-121.

[Isenburg et al., 2005b] Isenburg, M., Lindstrom, P., and Snoeyink, J. (2005b). Lossless compression of
predicted floating-point geometry. Computer-Aided Design, 37(8):869-877.

[Isenburg et al., 2005¢] Isenburg, M., Lindstrom, P., and Snoeyink, J. (2005¢). Streaming compression of
triangle meshes. In Proceedings of the Eurographics Symposium on Geometry Processing, pages 111-118.

150

[Isenburg and Snoeyink, 2000a] Isenburg, M. and Snoeyink, J. (2000a). Face fixer: compressing polygon
meshes with properties. In Proceedings of SIGGRAPH, pages 263-270.

[Isenburg and Snoeyink, 2000b] Isenburg, M. and Snoeyink, J. (2000b). Spirale reversi: Reverse decoding
of edgebreaker encoding. In Proceedings of the 12th Canadian Conference on Computational Geometry.

[Jamin et al., 2009] Jamin, C., Gandoin, P.-M., and Akkouche, S. (2009). Chumi viewer: Compressive huge
mesh interactive viewer. Computers € Graphics, 33(4):542 — 553.

[Jessl et al., 2005] Jessl, J., Bertram, M., and Hagen, H. (2005). Web-based progressive geometry transmis-
sion using subdivision-surface wavelets. In Web3D °05: Proceedings of the tenth international conference
on 3D Web technology, pages 29 35.

[Jong et al., 2005] Jong, B.-S., Yang, W.-H., Tseng, J.-L., and Lin, T.-W. (2005). An efficient connectivity
compression for triangular meshes. In Proceedings of the International Conference on Computer and
Information Science, pages 583-588.

[Kammoun et al., 2011] Kammoun, A., Payan, F., and Antonini, M. (2011). Optimized butterfly-based
lifting scheme for semi-regular meshes. In IEEE International Conference on Image Processing, pages
1269-1272.

[Kammoun et al., 2012] Kammoun, A., Payan, F., and Antonini, M. (2012). Sparsity-based optimization of
two lifting-based wavelet transforms for semi-regular mesh compression. Computers € Graphics, 36(4):272
282.

[Karni et al., 2002] Karni, Z., Bogomjakov, A., and Gotsman, C. (2002). Efficient compression and rendering
of multi-resolution meshes. In Proceedings of the conference on Visualization, pages 347-354.

[Karni and Gotsman, 2000] Karni, Z. and Gotsman, C. (2000). Spectral compression of mesh geometry. In
Proceedings of SIGGRAPH, pages 279 286.

[Karni and Gotsman, 2001] Karni, Z. and Gotsman, C. (2001). 3d mesh compression using fixed spectral
bases. In Proceedings of Graphics interface, pages 1-8.

[Keeler and Westbrook, 1995] Keeler, K. and Westbrook, J. (1995). Short encodings of planar graphs and
maps. Discrete Applied Mathematics, 58(3):239 — 252.

[Khodakovsky et al., 2002] Khodakovsky, A., Alliez, P., Desbrun, M., and Schréder, P. (2002). Near-optimal
connectivity encoding of 2-manifold polygon meshes. Graphical Models, 64:147 168.

[Khodakovsky and Guskov, 2003] Khodakovsky, A. and Guskov, I. (2003). Compression of normal meshes.
In Geometric Modeling For Scientific Visualization, pages 189—206.

[Khodakovsky et al., 2000] Khodakovsky, A., Schroder, P., and Sweldens, W. (2000). Progressive geometry
compression. In Proceedings of SIGGRAPH, pages 271-278.

[Kim et al., 2006] Kim, J., Choe, S., and Lee, S. (2006). Multiresolution random accessible mesh compres-
sion. Computer Graphics Forum, 25(3):323 331.

[Kim and Lee, 2001] Kim, J. and Lee, S. (2001). Truly selective refinement of progressive meshes. In
Proceedings of Graphics interface, pages 101-110.

[Kim et al., 2011] Kim, J., Nam, C., and Choe, S. (2011). Bayesian ad coder: Mesh-aware valence coding
for multiresolution meshes. Computers & Graphics, 35(3):713-718.

[Kim et al., 2010] Kim, T.-J., Moon, B., Kim, D., and Yoon, S.-E. (2010). Racbvhs: Random-accessible
compressed bounding volume hierarchies. Visualization and Computer Graphics, IEEE Transactions on,
16(2):273-286.

[King and Rossignac, 1999a] King, D. and Rossignac, J. (1999a). Guaranteed 3.67 v bit encoding of planar
triangle graphs. In Proceedings of the 11th Canadian Conference on Computational Geometry.

151

[King and Rossignac, 1999b] King, D. and Rossignac, J. (1999b). Optimal bit allocation in compressed 3d
models. Computational Geometry: Theory and Applications, 14:91-118.

[King et al., 1999] King, D., Szymczak, A., and Rossignac, J. R. (1999). Connectivity compression for
irregular quadrilateral meshes. GVU Technical Report GIT-GVU-99-36.

[Koller et al., 2010] Koller, D., Frischer, B., and Humphreys, G. (2010). Research challenges for digital
archives of 3d cultural heritage models. Journal on Computing and Cultural Heritage, 2(3):7:1-7:17.

[Konur et al., 2008] Konur, U., Bayazit, U., Ates, H. F., and Giirgen, F. S. (2008). Spectral coding of mesh
geometry with a hierarchical set partitioning algorithm. pages 682227-682227-8.

[Kovacevic and Sweldens, 2000] Kovacevic, J. and Sweldens, W. (2000). Wavelet, families of increasing order
in arbitrary dimensions. IEEE Transactions on Image Processing, 9(3):480 496.

[Krivograd et al., 2006] Krivograd, S., Trlep, M., and Zalik, B. (2006). A compression method for fem
quadrilateral data. In Proceedings of the 6th WSEAS international conference on Applied computer science,
pages 402-407.

[Krivograd et al., 2008] Krivograd, S., Trlep, M., and Zalik, B. (2008). A hexahedral mesh connectivity
compression with vertex degrees. Computer-Aided Design, 40(12):1105 1112.

[Kronrod and Gotsman, 2000] Kronrod, B. and Gotsman, C. (2000). Efficient coding of non-triangular mesh
connectivity. In Proceedings of the 8th Pacific Conference on Computer Graphics and Applications, page
235.

[Kronrod and Gotsman, 2002] Kronrod, B. and Gotsman, C. (2002). Optimized compression of triangle
mesh geometry using prediction trees. In Proceedings of the International Symposium on 3D Data Pro-
cessing Visualization and Transmission, pages 602—608.

[Kélberer et al., 2005] Kélberer, F., Polthier, K., Reitebuch, U., and Wardetzky, M. (2005). Freelence -
coding with free valences. Computer Graphics Forum, 24(3):469 478.

[Kithnapfel et al., 2000] Kiithnapfel, U., Gakmak, H., and Maaf, H. (2000). Endoscopic surgery training
using virtual reality and deformable tissue simulation. Computers & Graphics, 24(5):671-682.

[Lavoué, 2011] Lavoué, G. (2011). A multiscale metric for 3d mesh visual quality assessment. Computer
Graphics Forum, 30(5):1427-1437.

[Lavu et al., 2003] Lavu, S., Choi, H., and Baraniuk, R. (2003). Geometry compression of normal meshes
using rate-distortion algorithms. In Proceedings of the Eurographics/ACM SIGGRAPH symposium on
Geometry processing, pages 52—61.

[Ledoux and Shepherd, 2010] Ledoux, F. and Shepherd, J. (2010). Topological and geometrical properties
of hexahedral meshes. Fngineering with Computers, 26:419-432.

[Lee et al., 1998] Lee, A. W. F., Sweldens, W., Schroder, P., Cowsar, L., and Dobkin, D. (1998). Maps:
multiresolution adaptive parameterization of surfaces. In Proceedings of SIGGRAPH, pages 95 104.

[Lee et al., 2011] Lee, D.-Y., Ahn, J.-K., Ahn, M., Kim, J., Kim, C., and Kim, C.-S. (2011). 3d mesh
compression based on dual-ring prediction and mmse prediction. In Proceedings of the IEEE International
Conference on Image Processing, pages 905—908.

[Lee et al., 2013] Lee, D.-Y., Sull, S., and Kim, C.-S. (2013). Progressive 3d mesh compression using mog-
based bayesian entropy coding and gradual prediction. The Visual Computer, pages 1 15.

[Lee and Ko, 2000] Lee, E.-S. and Ko, H.-S. (2000). Vertex data compression for triangular meshes. In
Proceedings of Pacific Graphics, pages 225 —234.

[Lee et al., 2002] Lee, H., Alliez, P., and Desbrun, M. (2002). Angle-analyzer: A triangle-quad mesh codec.
Computer Graphics Forum, 21(3):383-392.

152

[Lee et al., 2009] Lee, H., Lavoué, G., and Dupont, F. (2009). Adaptive coarse-to-fine quantization for opti-
mizing rate-distortion of progressive mesh compression. In Vision, Modeling, and Visualization Workshop.

[Lee et al., 2012] Lee, H., Lavoué, G., and Dupont, F. (2012). Rate-distortion optimization for progressive
compression of 3d mesh with color attributes. The Visual Computer, 28:137-153.

[Lee and Park, 2005] Lee, H. and Park, S. (2005). Adaptive vertex chasing for the lossless geometry coding
of 3d meshes. In Advances in Multimedia Information Processing - PCM 2005, volume 3767 of Lecture
Notes in Computer Science, pages 108-119.

[Lewiner et al., 2005] Lewiner, T., Craizer, M., Lopes, H., Pesco, S., Velho, L., and Medeiros, E. (2005).
Gencode: Geometry-driven compression in arbitrary dimension and co-dimension. In Proceedings of the
Brazilian Symposium on Computer Graphics and Image Processing, pages 249 256.

[Lewiner et al., 2006] Lewiner, T., Craizer, M., Lopes, H., Pesco, S., Velho, L., and Medeiros, E. (2006).
Gencode: Geometry-driven compression for general meshes. Computer Graphics Forum, 25(4):685 695.

[Li and Fan, 2010] Li, J. and Fan, H. (2010). Progressive 3d model compression based on surfacelet. In
Entertainment for Education. Digital Techniques and Systems, volume 6249 of Lecture Notes in Computer
Science, pages 582-591.

[Li and Kuo, 1998a] Li, J. and Kuo, C.-C. (1998a). A dual graph approach to 3d triangular mesh compres-
sion. In Proceedings of the International Conference on Image Processing, volume 2, pages 891-894.

[Li and Kuo, 1998b] Li, J. and Kuo, C.-C. J. (1998b). Progressive coding of 3-d graphic models. In Pro-
ceedings of the IEEE, volume 86.

[Li et al., 2006] Li, J., Tian, D., and AlRegib, G. (2006). Vector quantization in multiresolution mesh
compression. IEEE Signal Processing Letters, 13(10):616 619.

[Li et al., 2007] Li, Z., Lu, Z.-M., and Sun, L. (2007). Dynamic extended codebook based vector quantization
scheme for mesh geometry compression. In Proceedgins of the International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, volume 1, pages 178-181.

[Lindstrom and Isenburg, 2008] Lindstrom, P. and Isenburg, M. (2008). Lossless compression of hexahedral
meshes. In Proceedings of the Data Compression Conference, pages 192-201.

[Liu and bin Zhang, 2004] Liu, B. and bin Zhang, H. (2004). Wavelet based progressive mesh compression
with random accessibility. In Proceedings of 2004 International Symposium on Intelligent Multimedia,
Video and Speech Processing, pages 615-618.

[Liu et al., 2007] Liu, Y., Liu, X., and Wu, E. (2007). Variable code-mode based connectivity compression
for triangular meshes. In Proceedings of the IEEE International Conference on Computer-Aided Design
and Computer Graphics, pages 276 281.

[Liu and Wu, 2006] Liu, Y. and Wu, E. (2006). Connectivity compression for non-triangular meshes by
context-based arithmetic coding. In Proceedings of the International conference on Computer graphics
and interactive techniques in Australasia and Southeast Asia, pages 417-424.

[Lloyd, 1982] Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129-137.

[Loop, 1987] Loop, C. (1987). Smooth subdivision surfaces based on triangles. Master’s thesis, University
of Utah, Department of Mathematics.

[Lu and Li, 2008] Lu, Z.-M. and Li, Z. (2008). Dynamically restricted codebook-based vector quantisation
scheme for mesh geometry compression. Signal, Image and Video Processing, 2:251-260.

[Luo and Zheng, 2008] Luo, X. and Zheng, G. (2008). Progressive meshes transmission over a wired-to-
wireless network. Wireless Networks, 14:47 53.

153

[Lévy and Liu, 2010] Lévy, B. and Liu, Y. (2010). Lp centroidal voronoi tessellation and its applications. In
Proceedings of SIGGRAPH, pages 119:1-119:11.

[Ma et al., 2009] Ma, J., Chen, Q., Chen, B., and Wang, H. (2009). Mobile 3d graphics compression for
progressive transmission over wireless network. In Proceedings of the IEEE International Conference on
Computer-Aided Design and Computer Graphics, pages 357-362.

[Maglo et al., 2012] Maglo, A., Courbet, C., Alliez, P., and Hudelot, C. (2012). Progressive compression of
manifold polygon meshes. Computers € Graphics, 36(5):349-359. Shape Modeling International (SMI)
Conference 2012.

[Maglo et al., 2011] Maglo, A., Grimstead, I., and Hudelot, C. (2011). Cluster-based random accessible and
progressive lossless compression of colored triangular meshes for interactive visualization. In Proceedings
of Computer Graphics International.

[Maglo et al., 2013] Maglo, A., Grimstead, I., and Hudelot, C. (2013). Pomar: Compression of progres-
sive oriented meshes accessible randomly. Computers & Graphics. Shape Modeling International (SMI)
Conference 2013 - Accepted with minor revisions.

[Maglo et al., 2010] Maglo, A., Lee, H., Lavoué, G., Mouton, C., Hudelot, C., and Dupont, F. (2010).
Remote scientific visualization of progressive 3d meshes with x3d. In Web3D ’10: Proceedings of the 15th
International Conference on Web 3D Technology, pages 109-116.

[Mahadevan, 2007] Mahadevan, S. (2007). Adaptive mesh compression in 3d computer graphics using mul-
tiscale manifold learning. In Proceedings of the international conference on Machine learning, pages
585 592.

[Mamou et al., 2010] Mamou, K., Dehais, C., Chaieb, F., and Ghorbel, F. (2010). Shape approximation for
efficient progressive mesh compression. In Proceedings of the IEEE International Conference on Image
Processing.

[Mamou et al., 2009] Mamou, K., Zaharia, T., and Préteux, F. (2009). Tfan: A low complexity 3d mesh
compression algorithm. volume 20, pages 343—-354.

[Martin, 1979] Martin, G. N. N. (1979). Range encoding: An algorithm for removing redundancy from
a digitised message. In Proceedings of the Institution of Electronic and Radio Engineers International
Conference on Video and Data Recording, volume 43.

[Martin, 2000] Martin, I. (2000). Adaptive rendering of 3d models over networks using multiple modalities.
IBM research report.

[Matias van Kaick and Pedrini, 2006] Matias van Kaick, O. and Pedrini, H. (2006). A comparative evalua-
tion of metrics for fast mesh simplification. Computer Graphics Forum, 25(2):197-210.

[Meng et al., 2010] Meng, S., Wang, A., and Li, S. (2010). Compression of 3d triangle meshes based on
predictive vector quantization. In International Symposium on Systems and Control in Aeronautics and
Astronautics, pages 1403-1406.

[Meyer et al., 2012] Meyer, Q., Keinert, B., Sufner, G., and Stamminger, M. (2012). Data-parallel decom-
pression of triangle mesh topology. Computer Graphics Forum, 31(8):2541-2553.

[Muller and Preparata, 1978] Muller, D. and Preparata, F. (1978). Finding the intersection of two convex
polyhedra. Theoretical Computer Science, 7(2):217 — 236.

[Munteanu et al., 2010] Munteanu, A., Cernea, D., Alecu, A., Cornelis, J., and Schelkens, P. (2010). Scalable
l-infinite coding of meshes. IEEE Transactions on Visualization and Computer Graphics, 16(3):513-528.

[Ngoc et al., 2002] Ngoc, N., Van Raemdonck, W., Lafruit, G., Deconinck, G., and Lauwereins, R. (2002).
A qos framework for interactive 3d applications. In The 10-th International Conference on Computer
Graphics and Visualization 2002, pages 317 324. Citeseer.

154

[Ochotta and Saupe, 2008] Ochotta, T. and Saupe, D. (2008). Image-based surface compression. Computer
Graphics Forum, 27(6):1647-1663.

[Pajarola, 2001] Pajarola, R. (2001). Fastmesh: efficient view-dependent meshing. In Proceedings of Pacific
Conference on Computer Graphics and Applications, pages 22—30.

[Pajarola and DeCoro, 2004] Pajarola, R. and DeCoro, C. (2004). Efficient implementation of real-time
view-dependent multiresolution meshing. Visualization and Computer Graphics, IEEE Transactions on,
10(3):353-368.

[Pajarola and Rossignac, 2000] Pajarola, R. and Rossignac, J. (2000). Compressed progressive meshes. IEEE
Transactions on Visualization and Computer Graphics, 6:79-93.

[Pajarola et al., 1999] Pajarola, R., Rossignac, J., and Szymczak, A. (1999). Implant sprays: compression
of progressive tetrahedral mesh connectivity. In Proceedings of the conference on Visualization, pages
299 305.

[Pasman and Jansen, 2002] Pasman, W. and Jansen, F. W. (2002). Scheduling level of detail with guaranteed
quality and cost. In Web3D ’02: Proceedings of the seventh international conference on 3D Web technology,
pages 43-51.

[Payan and Antonini, 2002] Payan, F. and Antonini, M. (2002). 3d mesh wavelet coding using efficient
model-based bit allocation. In Proceedings of the First International Symposium on 3D Data Processing
Visualization and Transmission, pages 391-394.

[Payan and Antonini, 2005] Payan, F. and Antonini, M. (2005). An efficient bit allocation for compressing
normal meshes with an error-driven quantization. Computer Aided Geometric Design, 22:466—486.

[Payan and Antonini, 2006] Payan, F. and Antonini, M. (2006). Mean square error approximation for
wavelet-based semiregular mesh compression. IEEE Transactions on Visualization and Computer Graph-
ics, 12(4):649 657.

[Pellenard et al., 2013] Pellenard, B., Morvan, J.-M., and Alliez, P. (2013). Anisotropic rectangular metric
for polygonal surface remeshing. In Proceedings of the International Meshing Roundtable, pages 367 384.

[Peng et al., 2010] Peng, J., Huang, Y., Kuo, C.-C. J., Eckstein, I., and Gopi, M. (2010). Feature oriented
progressive lossless mesh coding. Computer Graphics Forum, 29(7):2029-2038.

[Peng et al., 2005] Peng, J., Kim, C.-S., and Kuo, C.-C. J. (2005). Technologies for 3d mesh compression:
A survey. Journal of Visual Communication and Image Representation, 16(6):688-733.

[Peng and Kuo, 2005] Peng, J. and Kuo, C.-C. J. (2005). Geometry-guided progressive lossless 3d mesh
coding with octree (ot) decomposition. In Proceedings of SIGGRAPH, pages 609-616.

[Peyré and Mallat, 2005] Peyré, G. and Mallat, S. (2005). Surface compression with geometric bandelets.
In Proceedings of SIGGRAPH, pages 601-608.

[Popovi¢ and Hoppe, 1997] Popovi¢, J. and Hoppe, H. (1997). Progressive simplicial complexes. In Proceed-
ings of SIGGRAPH, pages 217-224.

[Prat et al., 2005] Prat, S., Gioia, P., Bertrand, Y., and Meneveaux, D. (2005). Connectivity compression
in an arbitrary dimension. The Visual Computer, 21:876-885.

[Rissanen and Langdon, 1979] Rissanen, J. and Langdon, G. G. (1979). Arithmetic coding. IBM Journal of
Research and Development, 23(2):149 162.

[Rissanen, 1976] Rissanen, J. J. (1976). Generalized kraft inequality and arithmetic coding. IBM Journal
of Research and Development, 20(3):198 203.

155

[Rondao-Alface et al., 2003] Rondao-Alface, P., Macq, B., Cayre, F., Schmitt, F., and Maltre, H. (2003).
Lapped spectral decomposition for 3d triangle mesh compression. In Proceedings of the International
Conference on Image Processing, volume 1, page 781.

[Rossignac, 1999] Rossignac, J. (1999). Edgebreaker: Connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics, 5:47-61.

[Rossignac and Szymczak, 1999] Rossignac, J. and Szymczak, A. (1999). Wrap&zip decompression of the
connectivity of triangle meshes compressed with edgebreaker. Computational Geometry, 14(1-3):119-135.

[Roudet, 2010] Roudet, C. (2010). A region-based progressive coding of semi-regular 3-d meshes for view-
dependent transmission. Proceedings of the International Conference on Signal Image Technology and
Internet Based Systems, pages 51-59.

[Rupp 1., 2008] Rupp I., Peniguel C., T.-M. M. (2008). Large scale finite element thermal analysis of bolts
of a french pwr core internal baffle structure. In Proceedings of the 7th International Topical Meeting on
Nuclear Reactor Thermal Hydraulics, Operation and Safety NUTHOS-7.

[Salomie et al., 2004] Salomie, 1., Munteanu, A., Gavrilescu, A., Lafruit, G., Schelkens, P., Deklerck, R.,
and Cornelis, J. (2004). Meshgrid-a compact, multiscalable and animation-friendly surface representation.
IEEE Transactions on Circuits and Systems for Video Technology, 14(7):950 966.

[Sander et al., 2003] Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and Hoppe, H. (2003). Multi-chart
geometry images. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, pages 146-155.

[Schindler, 1998] Schindler, M. (1998). A fast renormalisation for arithmetic coding. In Proceedings of the
Data Compression Conference, 1998, page 572. http://www.compressconsult.com /rangecoder/.

[Schlafli, 1901] Schléfli, L. (1901). Theorie der vielfachen kontinuitit. Cornell University Library historical
math monographs. George & Company.

[Schneider and Martin, 1999] Schneider, B. and Martin, I. (1999). An adaptive framework for 3d graphics
over networks. Computers & Graphics, 23(6):867-874.

[Shaffer and Garland, 2005] Shaffer, E. and Garland, M. (2005). A multiresolution representation for massive
meshes. IEEE Transactions on Visualization and Computer Graphics, 11(2):139-148.

[Shamir, 2008] Shamir, A. (2008). A survey on mesh segmentation techniques. Computer Graphics Forum,
27(6):1539-1556.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical
Journal, 27(3):379-423.

[Shi et al., 2012] Shi, Y., Wen, B., Ding, W., Qi, N., and Yin, B. (2012). Realistic mesh compression based
on geometry image. In Picture Coding Symposium (PCS), 2012, pages 133 —136.

[Shikhare et al., 2001] Shikhare, D., Bhakar, S., and Mudur, S. P. (2001). Compression of large 3d engi-
neering models using automatic discovery of repeating geometric features. In Proceedings of the Vision
Modeling and Visualization Conference, pages 233 240.

[Sim et al., 2005] Sim, J.-Y., Kim, C.-S., Kuo, C.-C., and Lee, S.-U. (2005). Rate-distortion optimized
compression and view-dependent transmission of 3-d normal meshes. IEEE Transactions on Circuits and
Systems for Video Technology, 15(7):854-868.

[Sim et al., 2002] Sim, J.-Y., Kim, C.-S., Kuo, J.-C., and Lee, S.-U. (2002). Normal mesh compression based
on rate-distortion optimization. In Proceedings of the IEEE Workshop on Multimedia Signal Processing,
pages 13-16.

[Sim et al., 2003] Sim, J.-Y., Kim, C.-S., and Lee, S.-U. (2003). An efficient 3d mesh compression technique
based on triangle fan structure. Signal Processing: Image Communication, 18(1):17-32.

156

[Southern et al., 2001] Southern, R., Perkins, S., Steyn, B., Muller, A., Marais, P., and Blake, E. (2001).
A stateless client for progressive view-dependent transmission. In Web3D ’01: Proceedings of the sixth
international conference on 3D Web technology, pages 43 50, New York, NY, USA. ACM.

[Sweldens, 1996] Sweldens, W. (1996). The lifting scheme: A custom-design construction of biorthogonal
wavelets. Applied and Computational Harmonic Analysis, 3(2):186—200.

[Szymczak et al., 2001] Szymczak, A., King, D., and Rossignac, J. (2001). An edgebreaker-based efficient
compression scheme for regular meshes. Computational Geometry, 20(12):53-68.

[Szymczak and Rossignac, 1999] Szymczak, A. and Rossignac, J. (1999). Grow & fold: compression of
tetrahedral meshes. In Proceedings of the fifth ACM symposium on Solid modeling and applications, pages
54 64.

[Szymczak et al., 2002] Szymczak, A., Rossignac, J., and King, D. (2002). Piecewise regular meshes: Con-
struction and compression. Graphical Models, 64(3 4):183 198.

[Tack et al., 2006] Tack, K., Lafruit, G., Catthoor, F., and Lauwereins, R. (2006). Platform independent
optimisation of multi-resolution 3d content to enable universal media access. The Visual Computer,
22:577-590.

[Tack et al., 2005] Tack, N., Lafruit, G., Catthoor, F., and Lauwereins, R. (2005). Pareto based optimization
of multi-resolution geometry for real time rendering. In Web3D ’05: Proceedings of the tenth international
conference on 3D Web technology, pages 19-27.

[Tampieri, 1992] Tampieri, F. (1992). Newell’s method for computing the plane equation of a polygon, pages
231-232.

[Tarini et al., 2010] Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. (2010). Practical quad
mesh simplification. Computer Graphics Forum, 29(2):407-418.

[Taubin et al., 1998] Taubin, G., Guéziec, A., Horn, W., and Lazarus, F. (1998). Progressive forest split
compression. In Proceedings of SIGGRAPH, pages 123-132.

[Taubin and Rossignac, 1998] Taubin, G. and Rossignac, J. (1998). Geometric compression through topo-
logical surgery. ACM Transactions on Graphics, 17:84-115.

[Teler and Lischinski, 2001] Teler, E. and Lischinski, D. (2001). Streaming of complex 3d scenes for remote
walkthroughs. Computer Graphics Forum, 20(3):17 25.

[Tian et al., 2012] Tian, J., Jiang, W., Luo, T., Cai, K., Peng, J., and Wang, W. (2012). Adaptive coding
of generic 3d triangular meshes based on octree decomposition. The Visual Computer, 28:819 827.

[Touma and Gotsman, 1998] Touma, C. and Gotsman, C. (1998). Triangle mesh compression. In Graphics
Interface 98 Conference Proceedings, pages 26—-34.

[Turén, 1984] Turan, G. (1984). On the succinct representation of graphs. Discrete Applied Mathematics,
8(3):289-294.

[Tutte, 1962] Tutte, W. (1962). A census of planar triangulations. Canadian Journal of Mathematics,
14:21-38.

[Tutte, 1963] Tutte, W. (1963). A census of planar maps. Canadian Journal of Mathematics, 15:249 271.

[Ueng, 2003] Ueng, S.-K. (2003). Out-of-core encoding of large tetrahedral meshes. In Proceedings of the
Eurographics/IEEE TVCG Workshop on Volume graphics, pages 95-102.

[Valette et al., 2009] Valette, S., Chaine, R., and Prost, R. (2009). Progressive lossless mesh compression
via incremental parametric refinement. In Proceedings of the Symposium on Geometry Processing, pages
1301-1310.

157

[Valette and Prost, 2004a] Valette, S. and Prost, P. (2004a). Wavelet-based multiresolution analysis of ir-
regular surface meshes. Visualization and Computer Graphics, IEEE Transactions on, 10(2):113-122.

[Valette and Prost, 2004b] Valette, S. and Prost, R. (2004b). Wavelet-based progressive compression scheme
for triangle meshes: Wavemesh. IEEE Transactions on Visualization and Computer Graphics, 10:123-129.

[Vasa and Brunnett, 2013] Vasa, L. and Brunnett, G. (2013). Exploiting connectivity to improve the tan-
gential part of geometry prediction. IEEE Transactions on Visualization and Computer Graphics.

[Witten et al., 1987] Witten, 1. H., Neal, R. M., and Cleary, J. G. (1987). Arithmetic coding for data
compression. Communication of the ACM, 30(6):520 540.

[Xiang et al., 1999] Xiang, X., Held, M., and Mitchell, J. S. B. (1999). Fast and effective stripification of
polygonal surface models. In Proceedings of the Symposium on Interactive 3D graphics, pages T1-78.

[Ying et al., 2010] Ying, L., Mingli, D., Zhongming, H., and Dagao, D. (2010). An edgebreaker & code-mode
based connectivity compression for triangular meshes. In Proceedings of the International Conference on
Advanced Computer Control, volume 2, pages 96-101.

[Yoon and Lindstrom, 2007] Yoon, S.-E. and Lindstrom, P. (2007). Random-accessible compressed triangle
meshes. Visualization and Computer Graphics, IEEE Transactions on, 13(6):1536 1543.

[Yoon et al., 2004] Yoon, S.-E., Salomon, B., Gayle, R., and Manocha, D. (2004). Quick-vdr: interactive
view-dependent rendering of massive models. In IEEFE Visualization, pages 131 138.

[Zhao et al., 2011] Zhao, C., Sun, H., and Qin, K. (2011). Efficient wavelet-based geometry compression.
Computer Animation and Virtual Worlds, 22(2-3):307-315.

[Zhao et al., 2012] Zhao, J., Tang, M., and Tong, R. (2012). Connectivity-based segmentation for gpu-
accelerated mesh decompression. Journal of Computer Science and Technology, 27(6):1110-1118.

[Zheng et al., 2004] Zheng, H., Liu, B., and Zhang, H. (2004). Region-of-interest coding of 3d mesh based
on wavelet transform. In Multi-Agent Security and Survivability, 2004 IEEE First Symposium on, pages
438 441.

[Zorin et al., 1996] Zorin, D., Schroder, P., and Sweldens, W. (1996). Interpolating subdivision for meshes
with arbitrary topology. In Proceedings of SIGGRAPH, pages 189 192.

158

