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“Better try and fail

To worry as life passes by

Better still try in vain

To sit down and wait until the end

I prefer walking in the rain

To hide in sad days

I’d rather be happy, mad though,

To a conformity life.”

Martin Luther King Jr.
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Résumé

Business Intelligence Team

MAS Laboratoire

Doctor of Philosophy

Real-time Distributed Computation of Formal Concepts and Analytics

by Cassio Melo

Les progrés de la technologie pour la création, le stockage et la diffusion des données

ont considérablement augmenté le besoin d’outils qui permettent effectivement aux util-

isateurs les moyens d’identifier et de comprendre l’information pertinente. Malgré les

possibilités de calcul dans les cadres distribuées telles que des outils comme Hadoop

offrent, il a seulement augmenté le besoin de moyens pour identifier et comprendre les

informations pertinentes.

L’Analyse de Concepts Formels (ACF) peut jouer un rôle important dans ce contexte,

en utilisant des moyens plus intelligents dans le processus d’analyse. ACF fournit une

compréhension intuitive de la généralisation et de spécialisation des relations entre les

objets et leurs attributs dans une structure connue comme un treillis de concepts.

Cette thèse aborde le problème de l’exploitation et visualisation des concepts sur un

flux de données. L’approche proposée est composé de plusieurs composants distribués

qui effectuent le calcul des concepts d’une transaction de base, filtre et transforme les

données, les stocke et fournit des fonctionnalités analytiques pour l’exploitation visuelle

des données.

La nouveauté de notre travail consiste à: (i) une architecture distribuée de traitement et

d’analyse des concepts et l’exploitation en temps réel, (ii) la combinaison de l’ACF avec

l’analyse des techniques d’exploration, y compris la visualisation des règles d’association,

(iii) des nouveaux algorithmes pour condenser et filtrage des données conceptuelles et

(iv) un système qui met en uvre toutes les techniques proposées, Cubix, et ses étude

de cas en biologie, dans la conception de systèmes complexes et dans les applications

spatiales.
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Formal Concept Analysis (FCA) has been extensively used in a wide range of problems,

e.g, as the basis for semantic search engines and as a means of organising information

based on its meaning. FCA has also been used to mine data for groups of items and their

associated transactions to identify, for example, groups of products that are frequently

purchased together.

One critical issue of the traditional concept lattice visualisation is that it grows dra-

matically with the number of objects and attributes. On the other hand, the analysis

process can be greatly enhanced with aid of visual analytics techniques.

Following a user-centered design methodology, the present thesis addresses the problem

of mining and visualising concepts over a data stream. The proposed approach is twofold:

First, compute formal concepts in a data stream using a distributed architecture, in order

to overcome the limitations of scalability of traditional approaches. Second, we design a

visual analytics interface to allow selecting, comparing, filtering, detailing and overview

of concept lattice features.

We present three use cases that demonstrate the application of the proposed techniques

in a real-world setting. The three use cases are: a) Aircraft cabin design, where new

visualisations for continuous data helped analysts to quickly identify classes of comfort

for passengers; b) Genes co-expression analysis using a combination of both analytics

features and semantic integration; and c) Prediction of possible failures from telemetry

data in real-time.



Acknowledgements

I would never have been able to finish this thesis without the guidance of my committee

members, help from friends, and support from my family.

I sincerely thank my supervisors Marie-Aude Aufaure and Bénédicte Le Grand for their

endless support and encouragement without which this research work would not have

been attainable. Marie-Aude always motivated me to deliver the best and offered me

many great opportunities. Bénédicte guided my through the course of my Ph.D. with

brilliant ideas and discussions. I felt encouraged every time I attended her meeting.

I woud like to express my greatest gratitude to professors Nizar Messai and Anasta-

sia Bezerianos for their useful comments, remarks and engagement through the learning

process of this thesis.

Thanks to everyone who I interacted with at École Centrale, all MAS-BI members,
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Chapter 1

Introduction

1.1 Introduction

Last century was pivotal in the course of humanity. World War I and World War II were

the deadliest moments in history, yet these were notable landmarks in the development

of new technologies. The need of secure transmission of information motivated the

emergence of the field today known as cryptography. The first cryptographic machine,

Enigma, was invented by a German at the end of World War I and used by Britain’s

codebreakers as a way of deciphering German signals traffic during World War II. It has

been claimed that thanks to the information gained through this machine, the war was

reduced by two years.

Computing technology quickly scaled in importance during and after WWW I and II, a

period when a number of breakthroughs were conceived, such as the transistor in early

1950s, space exploration missions between 1957 and 1975, personal computers with

Apple I in 1976, to name a few. Great computing power and new techniques fostered

innovations in virtually all areas, from military to science, government, manufacturing,

agriculture, and even literature. In the late twentieth century, the world saw the rise

of Capitalism, an economic system based on capital accumulation. Capitalism’s focus

on economic growth kept the wheels of technology turning at even greater pace. As

Capitalism had started to spread more widely by the end of the last century, almost the

entire world shared one ambition: produce more to sell more and produce efficiently to

cost less. A new world, with an number of possibilities ever experienced by humanity.

1
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We now live in a age of acceleration with a torrent of inventions, devices and intercon-

nectedness. The advance of technology is a by-product of humans eagerness to consume,

accumulate wealth and live longer. Understanding the forces that drive these innova-

tions is a preamble to any modern scientific research. Moreover, dealing with the huge

volume of information generated daily has become a challenge.

Humans deal with information complexity by seeing patterns, using their imagination,

experience and intuition. Computers can only deal with numbers as they have no intu-

ition, as commonly thought. The idea that machines could outstrip humans intellectually

is a question that long appeared in science fiction. A range of technologies that enhances

human cognition are used to discover patterns, predict trends; they have allowed us to

take better and fast decisions, in ways that were previously unachievable.

Information has become the umbrella resource of many applications to a point where

unimportant information prevails over meaningful information by a large margin. In this

context, Business Intelligence (BI) emerged as a discipline that aims to take all relevant,

available data and convert it into knowledge. BI uses technologies and applications to

gather, represent and analyse data to support decision making.

The greater computing power achieved by recent distributed computation techniques

made it more challenging to extract relevant information. Although the field of data

mining is being heavily investigated, there are still few methods able to convey a large

volume of stream data in meaningful insights.

1.2 Motivation

For each produced bottle of milk, there are roughly 2,000 transactions involved in the

whole process from harvesting to distribution. The whole milk, once approved for use, is

pumped into storage silos where it undergoes pasteurization, homogenization, separation

and further processing. In each phase, hundreds of transactions are produced and serve

as input for the subsequent phases. A transaction in this case may contain information

about the operation performed, current state, history, nutritional information, batch,

validity, and other domain specific properties (FAO, 1999).
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In other contexts, WalMart records 20 million sales transactions in a single day, whereas

Google handles 150 million searches, and AT&T produces 270 million call records. The

figures also hold for an increasing number of small-sized institutions that are generating

more data, more often. It is not only important to process huge amounts of data stream,

but do fast and reliably.

Data in transactions are an increasingly part of our daily lives and there is a growing

need to extract relevant information from them. Facebook reached 4 billion active users

as of 2011. Youtube claims they reached the same number by 2013. Although being

known for their huge IT infrastructure, none of theses services can deal effectively with

the entirety of data their users produce everyday. Facebook’s CEO Mark Zuckerberg

has admitted that they were unable to answer a simple question such as “Who was the

4 billionth user to sign up?”. Like most companies, sampling is Facebook’s best bet.

“Doing data analytics at this scale is a big challenge, and one of the things

you have to do is sample” (BusinessWeek, October 04 2012).

Distributed computation techniques such as Map/Reduce along with powerful frame-

works like Hadoop1 have helped fill this gap by employing a divide-and-conquer ap-

proach: big problems are split into smaller parts that can be computed concurrently

and partial results are merged at the end of the computation.

Despite the great computing opportunities these frameworks provide, it has only in-

creased the need for means of identifying and understanding relevant information. Mod-

ern support decision programs have shift from purely “number crunching” methods in

favour of more semantic approaches.

Formal Concept Analysis (FCA) may play an important role in this context, by employ-

ing more intelligent means in the analysis process. FCA became popular in the early

80’s as a mathematical theory of data analysis based on the philosophical notion of a

concept and concept lattice (Ganter and Wille, 1999).

In FCA, concepts are formalized as groups of objects (representing studied elements)

associated with groups of attributes, which are the objects’ features. Hierarchical rela-

tionships between these groups are formed and visualized and can be used for information

1Apache Hadoop. http://hadoop.apache.org
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retrieval. Information organized in this way has a close correlation to human perception

and the combination with visualisation is therefore interesting for Business Intelligence.

FCA has been used as the basis for semantic search engines (Ducrou et al., 2008) and

as a means of organising information based on its meaning (Becker and Correia, 2005).

FCA has also been used to mine data for groups of items and their associated transac-

tions (Lakhal and Stumme, 2005) to identify, for example, groups of products that are

frequently purchased together. Other use case examples of FCA include:

• Marketing: finding groups of customers with similar behaviour given a large

database of customer data containing their properties and past buying records;

• Biology: hierarchical classification of plants, animals, genes, given their features;

• Internet: document classification; clustering clickstream data to discover groups

of similar access patterns and creating recommender systems;

• Search: Google’s algorithm predicts and displays search queries based on other

users search activities.

• E-Commerce: Amazon Recommendation, e.g. customers who bought digital cam-

era, may be interested in a memory card or extra battery.

Formal concept mining is a computationally intensive task and the vast majority of

existing algorithms do not take advantage of concurrent processing techniques (Krajca

et al., 2008). In the case of data stream mining, this becomes even more important

as data stream algorithms should not block their process when new data arrives in the

stream.

Another gap in the application of FCA to Business Intelligence concerns visual analytics.

In FCA, the hierarchical relationships between concepts are displayed in a structure

called concept lattice, which is traditionally represented by a static node-link diagram

called Hasse diagram (Ganter and Wille, 1999). The concept lattice visualisation can be

greatly enhanced by visual analytics features and interlinked with best practices from

known BI visualisations. Visual analytics features may be used to manage and navigate

the complex concept interrelationships, by condensing and clustering the results, and

by sub-dividing and filtering data. Today, only a small number of tools are able to deal
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with lattice visualisation and the support for interactive analysis is limited (Carpineto

and Romano, 2004a, Eklund et al., 2010, Bach, 2010, Kuznetsov et al., 2007).

1.3 Current Challenges

Business Intelligence traditionally focuses on storing large amounts of structured data

into a data warehouse and makes use of OLAP (OnLine Analytical Processing) to provide

multi-dimensional analytical queries capabilities.

Two new trends, Semantic BI and Real-time BI, are emerging in order to deal with

unstructured data and real-time reporting, respectively (see Figure 1.1 for a comparison

of traditional BI, Semantic BI and Real-Time BI life cycles). Semantic BI employs the

RDF conceptual model instead of traditional “star schema” approaches. It transforms

and stores a wide variety of data types in RDF triplestores (information warehouse)

and implicit facts can be inferred within the database using sound logical rules. The

semantic analytics deals mostly with qualitative information and usually relies on graph-

based visualisations.

Real-time BI is designed to provide computation results over a stream as soon as they

become available. In Real-time BI, the processing runs indefinitely as the system ag-

gregates statistics every time new data arrives in the stream. Storage of computed

information is usually kept in memory allowing fast read/write of data.

Real-time FCA mining over data stream poses several theoretical and practical chal-

lenges:

Computational Complexity. Best performing FCA algorithms such as In-Close2

(Andrews, 2011), FCbO (Outrata and Vychodil, 2012a), Norris (Norris, 1978) and Bor-

dat (Bordat, 1986) have polynomial computational complexity regarding the number

of objects or attributes in a dataset. In contrast, lookups in stream mining must have

linear complexity at most in order to avoid the lack computational resources. To achieve

low time-complexity, the stream mining algorithm should make use of techniques such as

caching, pipelining and hash checking, to store and use results of previous computation.

Memory Space. A stream mining algorithm needs to guarantee that data will fit

in current storage space. In worst case, mining concepts generates 2M itemsets for
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Figure 1.1: Lifecycle of different Business Intelligence paradigms: Classical BI; Se-
mantic BI and Real-time BI. The scope of this thesis is highlighted in red.

each data stream of size M , thus the memory space requirement may quickly scale.

Some computing models have been proposed to limit the computation to portions of the

stream, like the sliding-window model. Although the model enables monitoring gradual

changes in the data stream, capturing recent data and keeping the size of memory under

control is a challenging task.

Parallelism and Distribution. There is an increasing need for parallel and distributed

algorithms to deal effectively with big data analysis. Parallel algorithms avoid blocking

the process (and thus new data) when a concept is being computed. Very few algorithms

in FCA are designed to run in parallel and carry the needed changes incrementally rather

than in batch when a data arrives in the stream. In a distributed environment, this adds

extra challenges: resource competition between nodes, fault-tolerance, and security are

some of them.

Real-time User Feedback. A stream mining algorithm runs indefinitely when de-

ployed, therefore results of the current computation should be promptly available at

user’s request. The real-time system should push updates to user’s interface without
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further request. For instance, in case of monitoring systems, analysts are usually con-

cerned with data within the most recent window of time (current day, last few hours,

etc).

Interactive Visualisations. User interaction with data is closely related to its visual

representation. Interactive visualisation technology displays numerous aspects of mul-

tidimensional data using interactive pictures and charts. The colour, size, shape and

motion of objects represent the multidimensional aspects of the data. Card et al. (1999)

defined information visualisation as “the use of computer-supported, interactive, visual

representations of abstract data to amplify cognition”. A good visual representation can

amplify user cognition by providing more information, faster, with less cognitive effort.

BI platform vendors are currently promoting these technologies as an alternative and en-

richment to traditional reporting and online analytical processing capabilities (Andrews

et al., 2008).

The objectives of this thesis are presented in the following Section.

1.4 Goals

The goals of this thesis are two-fold: Firstly, to provide distributed scalable real-time

computing of formal concepts over data stream. Real-time computation in FCA

goes beyond the aggregate functions used in traditional batch processing of concepts

and poses several challenges, as explained in the previous Section. In particular, high-

performance computing and low memory footprint will be required to deal with large

data streams.

Secondly, to develop new visual analytic features to navigate in complex concept

interrelationships, by going beyond the standard approaches used for FCA hierarchical

structures visualization, and by interlinking with best practices from known BI visual-

izations. In particular, by adding new features such as condensing and clustering the

results, and sub-dividing and filtering data.

The the proposed solution is outlined in next section.
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1.5 Overview of the Proposed Solution

In order to meet the first goal, a novel distributed approach for mining formal concepts

over data streams is proposed. It computes and maintains closed itemsets incrementally

and can return the current closed frequent itemsets in real time on user’s request. The

approach is comprised of several components that carry out the computation of concepts

from a basic transaction, filter and transform data, store and provide analytic features

to visually explore data.

To meet the second goal, a visual analytics tool for FCA is implemented, called Cubix.

The techniques implemented in Cubix allow selecting, comparing, filtering, detailing

and overview of concept lattice features. Cubix’s workflow allows users to carry out an

analysis starting from a real data set, converting it into a formal context, simplifying

the context to make it manageable, and visualizing the result as a concept lattice.

Another way of providing a different perspective of the conceptual structure is to rep-

resent it as a tree rather than as a lattice. Transforming a concept lattice into a tree

can thus be useful for navigating in large lattices. In the experiments, statistically moti-

vated criteria were explored to evaluate single parent concepts in the tree transformation

process.

Our approach was tested in three real-world use cases. The three use cases are: a)

Aircraft cabin design, where new visualisations for continuous data helped engineers to

quickly identify classes of comfort for passengers; b) Genes co-expression analysis using

a combination of both analytics features and semantic integration; and c) Prediction of

possible failures from telemetry data in real-time.

Contributions. The novelty of the work consists of: (i) a distributed processing and

analysis architecture for mining concepts in real-time; (ii) the combination of FCA with

visual analytics and exploration techniques, including association rules analytics; (iii)

new algorithms for condensing and filtering conceptual data and (iv) a system that

implements the proposed visual analytics techniques, called Cubix, and its use cases in

Biology, Complex System Design and Space Applications.
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This work is part of a three year FP7 funded project CUBIST2, which aims at uniting

Semantic Technologies and Business Intelligence in order to facilitate analysis of large

volumes of structured and unstructured data.

1.6 Thesis Organisation

The remainder of this thesis is organised as follows.

Chapter 2 provides an overview of FCA algorithms and their place in modern computing

systems. This chapter defines what formal concepts are mathematically and describes

the main concept mining algorithms. It also describes the challenges when mining con-

cepts in the light of big data applications.

Chapter 3 describes the proposed approach for the real-time distributed computation

of formal concepts. It provides an overview of the main paradigms and data structures

used for frequent itemset pattern mining over data stream. The frequent itemsets min-

ing algorithms we examine are based on candidate generation, batch algorithms, closed

frequent itemset (CFI) and CFI over a sliding window model. The distributed architec-

ture of the proposed approach is built on top of a real-time platform called Storm. At

the end of the chapter, benchmarks of the approach compared with current state of the

art algorithms are presented.

Chapter 4 presents the Visual Analytics techniques developed in this thesis. The chapter

starts by providing an overview on the current state of art of concept lattice drawing

algorithms. New proposed visualisations are explained such as the concept-matrix and

the concept-sankey visualisation. Several analytics features that allow filtering, selecting,

searching and clustering data are also described. Finally, a new approach for transform-

ing concept lattices into trees is presented, in order to facilitate lattice browsing in large

contexts. We finish the chapter with a case study in the web tourism domain.

We introduce the use cases for our approach in Chapter 5. It describes Cubix, an ana-

lytics tool for Formal Concept Analysis that implements all the visual analytics features

presented in Chapter 4. In Chapter 5 we present three use cases that demonstrate the

application of the approach in real-world settings. The three use cases are: a) Aircraft

2Combining and Uniting Business Intelligence with Semantic Technologies - www.cubist-project.eu
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cabin design, where new visualisations for continuous data helped analysts to quickly

identify classes of comfort for passengers; b) Genes co-expression analysis using a com-

bination of both analytics features and semantic integration; and c) Our distributed

approach was used to the prediction of possible failures from telemetry data in real-

time.

Finally, a summary of the contributions of this thesis is presented in Chapter 6, along

with the conclusions and future work.

Appendices A to B contain other material that you will find helpful as you read this

thesis.



Chapter 2

Background on Formal Concept

Analysis

2.1 Introduction

Formal Concept Analysis (FCA) is a field of mathematics based on a formalization of the

philosophical notion of concept and concept hierarchy. In a seminal paper from Rudolf

Wille in 1982, “Restructuring Lattice Theory” (Wille, 1982), Wille creates the basis

of FCA upon previous works on applied lattice theory and order theory that emerged

in the 30’s. He advocates for a formal interpretation basis that would allow a ratio-

nal communication. In the popular book “Formal Concept Analysis: Foundations and

Applications” (Ganter and Wille, 1999), the following quote expresses the ambitions of

FCA community:

The aim and meaning of Formal Concept Analysis as mathematical the-

ory of concepts and concept hierarchies is to support the rational communi-

cation of humans by mathematically developing appropriate conceptual struc-

tures which can be logically activated. (p.2)

The notion of formal conceptual logics for communication is not new, though. It draws

its roots from Propositional Logics which seeks to define a formal system to assess the

validity of statements while avoiding the bias of natural language. The development of

11
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the modern so-called “symbolic” logic from mid-nineteenth century is one remarkable

event in paving the ground for FCA as we know it.

An important aspect of Formal Concept Analysis, in contrast to its philosophical notion,

is that it relies on a context rather than reality. Therefore, the real-world meaning of a

concept lattice is subject to a particular interpretation depending on the context. One

implication is that concepts may not have an explicit correspondence between different

contexts. Some effort has been put to make FCA constructs flexible enough to comply

with different degrees of interpretation (see Fuzzy FCA Quan et al. (2004)).

Nowadays, FCA find its practical applications in a wide range of problems, e.g., as the

basis for semantic search engines (Ducrou et al., 2008) and as a means of organising

information based on its meaning (Becker and Correia, 2005). FCA has also been used

to mine data for groups of items and their associated transactions (Lakhal and Stumme,

2005) to identify, for example, groups of products that are frequently purchased together.

2.2 Terminology and Formalism

In the following, FCA terminology used in this thesis will be introduced. We used the

same terminology employed in the original work by Ganter and Wille (1999) where G

denotes the set of objects (in German: Gegenstände) and M the set of attributes (in

German: Merkmale). More details can be found in monographs (Ganter and Wille,

1999) and (Carpineto and Romano, 2004b).

In classic FCA, data is converted into a binary matrix called formal context through a

process involving discretisation and booleanisation. Discretisation (Jin et al., 2007)

refers to the process of converting continuous data into sets of intervals or classes, e.g. age

from 18 to 25, 26 to 50, etc, whereas data booleanisation (Imberman et al., 1999) involves

creating a binary relation with pairs of attribute-values for each attribute’s value. This

process is known as “Scaling” and can be seen as a type of binned aggregation.

In mathematical terms, a formal context is defined as a triple K = (G,M, I), with G

being a set of objects, M a set of attributes and I a relation defined between G and

M. The relation I is understood to be a subset of the cross product between the sets it
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relates, so I ⊆ G×M . If an object g has an attribute m, then g ∈ G relates to m by I,

so we write (g,m) ∈ I, or gIm.

Definition (Derivation Operators). For a subset of objects A ⊆ G, a derivation

operator ↑ is defined to obtain the set of attributes, common to the objects in A, as

follows:

A↑ = {m ∈ M | ∀g ∈ A : gIm}

In a similar manner, for a subset of attributes B ⊆ M, the derivation operator ↓ is

defined to obtain the set of objects, common to the attributes in B, as follows:

B↓ = {g ∈ G | ∀m ∈ B : gIm}

Operators ↑: 2X −→ 2Y and ↓: 2Y −→ 2X form the so-called Galois connection (Ganter

and Wille, 1999). We may use the single quote symbol ’ as a replacement for ↑ and ↓.

The double derivation operator ↑↓ (”) is a closure operator. The images of a closure

operator are closed sets.

Definition (Formal Concept). A pair 〈A,B〉 is a formal concept in a given formal

context (G,M, I) only if A ⊆ G, B ⊆ M, A↑ = B and B↓ = A. The set A is the extent

of the concept and the set B is the intent of the concept. A formal concept is, therefore,

a closed set of object/attribute relations, in that its extension contains all objects that

have the attributes in its intension, and the intension contains all attributes shared by

the objects in its extension.1 The Table 2.1 shows an example of a formal context of

some living organisms in the water.

For example, w.r.t. the context in Table 2.1, {has limbs}’ = {bream, frog, dog} is not

a formal concept because {bream, frog, dog}’ = {needs water to live, can move, has

limbs}. Notice that formal concepts forms maximal rectangles in the incidence matrix.

A partial order ≤ can be established between concepts iff :

〈A,B〉 ≤ 〈C,D〉 ←→ 〈A,B〉 ⊆ 〈C,D〉

1Formal concepts are also known as closed itemsets. The data mining community often uses the word
“item” for what we call “attribute” here. “Itemsets” are thus just the subsets of M.
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Table 2.1: Example of a formal context.
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fish leech × × ×

bream × × × ×

frog × × × × ×

dog × × × × ×

water weeds × × × ×

reed × × × × ×

bean × × × ×

corn × × × ×

The set K = (G,M, I) together with ≤ form a complete lattice whose structure is

described by the Main Theorem of Formal Concept Analysis (Ganter and Wille, 1999).

Property (Concept Lattice). Let CK be a set with all concepts in context K and

L = 〈CK,≤ K〉 be a complete lattice where the supremum and infimum are defined

respectively as:

n
∨
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(Ai, Bi) = ((
n
⋃

i=1

Ai)
′′,

n
⋂

i=1

Bi) and

n
∧

i=1

(Ai, Bi) = ((
n
⋂

i=1

Ai, (
n
⋃

i=1

Bi)
′′)

2.3 Concept Lattices

As mentioned above, FCA analysis produces lattices, usually represented as layered

directed acyclic graph graphs, named Hasse diagrams illustrating the groupings of

objects described by common attributes. Hasse diagrams display the partially ordered

sets (posets) between concepts in a hierarchical fashion, where each concept may have

several parent concepts. The following concept lattice about organisms that live on the

water was generated by the formal context in Table 2.1 (Figure 2.1). The partial order

among concepts of the lattice is materialized through the generalization and specializa-

tion relationships. For instance, the concept representing the set of animals that “has

limbs” (middle left) is more specific than the concept “can move” (upper left), in other
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words, all animals that “has limbs” can move, but not all animals that “can move” has

limbs, which is the case of “fish leech”2. This partial order provides different levels of

abstraction and native navigation links from a given concept.

Figure 2.1: Concept lattice for the life in the water context. Dark background labels
represent attributes, white background labels represent objects.

Concept lattices in particular suffer from considerable edge crossings, especially if the

number of concepts exceeds a few dozen as is the case in more real word applications

(Kuznetsov et al., 2007), which leads to reduced graph readability and aesthetics (Ware

et al., 2002) (Figure 2.2).

To reduce the complexity of lattices, simplified diagrams can be produced by condensing

or clustering concepts according to similarity (Gerd et al., 2002a). Visualisations can

also be restricted to portions of the data (Ducrou et al., 2008), and concept size reduction

is possible by incorporating conditions into the data mining process (Zaki and Hsiao,

2005). Finally, conceptual measures can be applied to identify the most relevant concepts

and filter outliers (Le Grand et al., 2009).

To deal specifically with the visual complexity of Hasse diagrams, several approaches

allow users to dynamically explore and reveal specific parts of the diagram, using visual

2Statement valid for the particular formal context in question.
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Figure 2.2: Concept lattice containing 83 concepts.

query languages (Blau et al., 2002, Cruz et al., 1987, Consens and Mendelzon, 1993).

However these techniques do not provide a clear view of the entire lattice.

Other FCA visualisation approaches map the distances between concepts to visual vari-

ables, in order to highlight patterns. For example in Michel Soto (2009) similar concepts

are represented as similarly coloured pixels placed in the 2D space along a Peano-Hilbert

curve, so that similar concepts are placed close to each other. Nevertheless, in these rep-

resentations detailed relationships between concepts are lost.

Finally, systems often provide users with hybrid/combined lattice visualisation, e.g.

showing both a general Hasse diagram and a tag cloud for representing the neighbours

of a specific concept (for a review see Eklund and Villerd (2010)).

There are many algorithms for drawing such lattices, additive-line diagrams, hybrid

layouts and even 3D layouts have been proposed. In Chapter 4 we will discuss them in

detail.
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2.4 Overview of FCA algorithms

A naive algorithm for computing concepts would check if every combination of subsets

B ⊆ M is a closed itemset. This would require an exponential number of lookups in a

list that may have exponential size3. Instead, FCA algorithms typically employ some

heuristic to verify if a given subset is worth of computation. This can be done for

example, using extra canonicity tests, defining an ordering between subsets, using data

structures for storing previous results, etc.

The algorithms in FCA are basically divided in three classes: The batch algorithms,

which procedure takes into account the entire context for batch processing; Incremen-

tal algorithms, which build the concept lattice from each object in the context and

update the structure as a new object is added; and the assembling algorithms de-

rive new concepts from previously calculated subsets (for a survey see (Kuznetsov and

Obiedkov, 2002)). In the following sections, we describe the mainstream algorithms in

each category.

2.4.1 Batch Algorithms

Batch algorithms generate sets of concepts from scratch, in a top-down fashion (from

minimal to maximal intents) or vice-versa. Bernhard Ganter (Ganter, 2010) introduced

the idea of defining a lexicographic order for subsets in order to avoid multiple compu-

tations of the same concept. A lexicographic order relation A � B exists if there is some

lexically-ordered element e ∈ A that does not belong to B. For example, {a, c, d} comes

before {a, c, e} because d is the smallest item that belongs to A but not B. This is a

common technique among FCA algorithms.

Ganter’s NextClosure algorithm (Ganter, 2010) works by finding closures incremen-

tally from a lexicographically ordered group of items. The generation of a concept is

considered canonical if its extent contains no object preceding the current object. The

procedure is illustrated in Algorithm 1.

NextClosure takes as input a subset B ⊆M of the lexicographic next closure set. It starts

from the last (lexicographic) attribute (line 4) and checks if attribute is not already in

3For a set with N elements, there exists 2N possible subsets (powerset).
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Algorithm 1: NextClosure

Data: A closed subset B such that B ⊆M .
1 begin
2 /* Print or list < B′, B > as a formal concept */

3 print(< B′, B >)

4 i←− |M |
5 success←− False
6 while not success and i > 0 do
7 i←− i− 1
8 if not B[i] then
9 D ←− B ∪ {i}

10 C ←− D′′

11 if C \B contains no element < i then
12 NextClosure(C)
13 success←− True

14 end

15 end

16 end

17 end

the subset (line 11). It then creates a new pair (C,D) = ((B ∪ {i})′′, B ∪ {i}) (lines

9-10). If the canonicity test4 passes (line 11) the algorithm selects the pair as concept

candidate and continues the execution with the new concept as input (line 12). In the

example, the algorithm implemented is recursive.

Ganter’s algorithm computes the set of all concepts in time O(|G|2|M ||L|), where |L| is

the size of the concept lattice, and has polynomial delay O(|G|2|M |).

Another class of algorithms has a slightly different way of checking concepts: the Close-

by-One (CbO) familly of algorithms (Krajca et al., 2010). It is possible to determine

if a concept is new by efficiently examining its canonicity. The original CbO procedure

is illustrated in Algorithm 2.

The procedure takes as input a formal concept 〈A,B〉 and an attribute y ∈ M (first

attribute to be processed) as its arguments. The procedure recursively descends through

the space of formal concepts, beginning with 〈A,B〉 = 〈∅′, ∅′′〉. In line 3, the algorithm

checks the halting condition: when the least formal concept has been reached or y > |M |,

i.e., there are no more remaining attributes to be processed. If the halting condition test

fails, the algorithm goes through all attributes j ∈ Y such that j >= y and j is not in

4The canonicity test checks if a given concept is closed, in that none of its immediate supersets has
the name support as the current concept.
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Algorithm 2: Close-by-One

Data: A concept < A,B > such that A ⊆ G and B ⊆M and an attribute y ∈M .
1 begin
2 /* Print or list < A,B > as a formal concept */

3 print(< A,B >)

4 if B = M or y > |M | then
5 return;
6 end
7 for j ← y to |M | do
8 if j /∈ B then
9 C ←− A ∩ {j}′

10 D ←− C ′

11 if B ∩Mj = D < ∩Mj then
12 CloseByOne(< C,D >, j + 1)
13 end

14 end

15 end

16 end

the intent B (lines 5 and 6). A new formal concept is then created (lines 9-10) and the

canonicity test is performed with Mj = {m ∈ M |m < j} (line 11). If the new concept

passes the canonicity test, the procedure uses it in the next recursive call. Otherwise,

the concept is skipped and the procedure continues with the next attribute in the order.

Although CbO’s complexity is O(|G|2|M ||L|) in worst case, in average it performs better

than NextClosure because it prunes computation steps with its canonicity test.

An improvement over the original CbO was proposed in (Outrata and Vychodil, 2012a)

called Fast Close-by-One or FCbO. The algorithm used an extra canonicity test to

avoid redundant computations. The result is equivalent to a pruned CBo recursion tree

where the number of comparisons is drastically reduced.

The new canonicity test takes advantage of the fact that the failure in the canonicity

test in line 11 of CbOs algorithm can be propagated to sub-nodes and thus eliminating

the need of extra computation. Because this information must be propagated in the

top-down direction, from the root node of the call tree to the leaves, the algorithm uses

a breath-first search strategy as opposed to the recursive calls of the original CbO. The

algorithm and proof of its correctness can be found in (Outrata and Vychodil, 2012a).

Notice that in the worst case, FCbO collapses into CbO (all branches are computed)

with an additional linear time-delay overhead introduced by the new canonicity test.
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In this scenario (worst case) FCbO has polynomial time-delay O(|G||M |3). However,

heuristically it performs better than the previously mentioned algorithms because the

pruning happens frequently (A performance comparison can be found in Outrata and

Vychodil (2012b)).

Parallel and distributed versions of FCbO were proposed (Krajca et al., 2008). We will

discuss them in Section 2.5.4.

Another variant of CbO is the In-Close algorithm (Andrews, 2009). It uses incremental

closure and matrix searching to quickly compute all formal concepts in a formal context.

While in CbO the closure is computed at each iteration, In-Close on the other hand,

completes closure incrementally and only once per concept, as it iterates across the

attributes. As a result the test of canonicity requires iteration over a relatively small

portion of the formal context.

A new version of In-Close was proposed in (Andrews, 2011). In In-Close2, attributes

tested in parents are propagated down in the tree, so that during the closure of a child

concept these attributes do not need to be tested for inclusion. In-Close2 also reorders

the context table in a way that maximal rectangles formed by the incidence relation are

grouped for performance gain. Experiments show that in average, In-Close2 outperforms

FCbO by a small margin (Andrews, 2011).

Whilst batch FCA algorithms can perform better in average than the other classes of

algorithms, it requires several lookups in the entire dataset. Any change in the context

table means that the algorithm should re-compute all items again. As we will see further

in this chapter, this become an issue as a growing number of applications have dynamic

datasets.

2.4.2 Incremental Algorithms

The incremental paradigm aims at carrying efficiently the required changes of the current

result leading to its updated version. The incremental update of an existing lattice

L starts from a single object oi ∈ G, and progressively incorporates any new object

oi+1 upon its arrival in the lattice, carrying out a set of structural updates. A good

incremental algorithm will make the necessary changes at a minimal cost.
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An incremental version of the CbO algorithm is presented in (Norris, 1978), commonly

referred to as Norris’ algorithm.

In Godin’s algorithm (Godin et al., 1995) lattice construction can be described in terms

of four sets of concepts: modified concepts, generator concepts, new concepts and old

concepts. A concept 〈C,D〉 ∈ lattice Li+1 is new if D is not an intent of any concept

in Li. We call a concept 〈A,B〉 ∈ Li modied if B ⊆ g since g has to be added to its

extent in Li+1 (lines 19-22). Otherwise, B ∩ g = D = B for some concept 〈C,D〉 ∈ Li+1

(line 24). If 〈C,D〉 is a new concept, then 〈A,B〉 is called a generator of 〈C,D〉; if not,

〈A,B〉 is called old (lines 25–30).

To decrease the number of comparisons, the algorithm uses a hash with the intent’s

cardinality in its key and a corresponding list of subsets with that cardinality (line 14).

The execution goes through the subsets with lower cardinality, checking if a concept

needs to be updated and carrying out the changes (lines 17–30).

In (Merwe et al., 2004) authors presented the AddIntent algorithm. The algorithm

uses new heuristics to identify all modied concepts (in order to add o to their extents)

and all canonical generators of new concepts (in order to generate every new concept

exactly once).

AddIntent approaches this problem by traversing the diagram graph of Li in a recursive

fashion. Whenever the algorithm finds a non-canonical generator, it uses the diagram

graph to find the canonical generator of the same concept. It then works only with

concepts above that canonical generator, ignoring all other concepts above the non-

canonical generator. AddIntent’s time-complexity is O(|G|2|M ||L|).

Particularly interesting for dynamic contexts, the incremental algorithms are more suit-

able to stream processing because updating the concept lattice is less computationally

expensive than building the concept lattice from scratch for each transaction in the

stream. As we demonstrate in Chapter 3, we implemented a distributed algorithm

FCAStream which draws principles from incremental algorithms in FCA.

2.4.3 Assembling Algorithms

The Assembly algorithms are an evolution of incremental algorithms in that they assem-

ble lattices from partial structures based on context concatenation upon a shared object
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Algorithm 3: Godin’s incremental algorithm

Data: A new object o ∈ G and its corresponding attributes B ⊆M .
1 begin
2 /* Concept 〈X,Y 〉 is the top concept in the lattice */

3 〈X,Y 〉 = sup(L)
4 if 〈X,Y 〉 = 〈∅, ∅〉 then
5 replace 〈X,Y 〉by〈{o}, B〉
6 else if not B ⊆ Y then
7 if X = ∅ then
8 Y ∪B
9 else

10 create 〈C,D〉 ←− 〈∅, (Y ∪B)〉
11 add link 〈X,Y 〉 → 〈C,D〉

12

13 /* H is a hash with keys as cardinalities and values as a list of

intents */

14 H ←− {key : |B ⊆M |, value : list([B])}
15 Hprime←− []
16 for i← 0 to |M | do
17 foreach pair Hi in H do
18 if Hi ⊆ B then
19 /* Hi is a modified intent */

20 H ′
i ←− H ′

i ∪ {o}
21 append Hi to Hprime

22 else
23 newIntent←− Hi ∩B
24

25 if newIntent not in Hprime then
26 /* Hi is a generator intent */

27 create new concept 〈E,F 〉 ←− 〈newIntent, (Hi ∪ {o})〉
28 add link from 〈E,F 〉 to 〈Hi, H

′
i〉

29 /* Change existing links to accommodate the new concept */

30 ModifyEdges(〈E,F 〉)

31

32 end

33 end

34 end
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set. The only known algorithm of this family is the algorithm Divide & Conquer

(Valtchev and Missaoui, 2001). It divides a formal context into parts (vertical or hor-

izontal split) and then calculates the concept lattice for each corresponding part. The

partial lattices are finally assembled into a single one. One advantage of this approach

is that the computation of partial lattices can be done in parallel, thus making this

approach one of the most scalable among all existing FCA algorithms.

2.4.4 General Remarks on FCA Algorithm’s Performance

The behaviour of an FCA algorithm may vary significantly depending on a number

of factors including the relative sizes of G and M , the size of I, and the density of the

context, i.e., the size of I relative to the product |G||M | (Kuznetsov and Obiedkov, 2002).

Experimental results of (Kuznetsov and Obiedkov, 2002) highlight Norris (incremental),

CloseByOne and NextClosure (both bottom up) algorithms as the best algorithms when

the context is dense and large, whereas Godin’s algorithm should be used for small and

sparse contexts.

Evidently, the construction of the lattice diagram graph requires an additional compu-

tational effort. Hence, algorithms generating only the concept set are in general faster

than those that carry the ordering and linking of concepts.

Most FCA algorithms employ techniques to avoid repetitive generation of the same

concept. In this task, choosing an adequate data structure is essential. For instance

Bordat (Bordat, 1986) uses a tree structure to store previously computed concepts and

allow efficient search. Godin’s algorithm (Algorithm 3) uses a hash based on intent

cardinality.

Subsets of attributes can be represented by a bit-array where each bit corresponds to an

attribute in lexicographic order. Set operations can be replaced by the corresponding

logical operations, e.g. A ∩B = bit array(A) & bit array(B).

For example, if M = {a < b < c < d < e < f}, the subset S = {a, c, d, e} will be written

as:

Figure 2.3: Bit-array illustration for the set S = {a, c, d, e}.
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Some algorithms for FCA achieve better performance if attributes are processed in a

particular order. The overhead of physically sorting the context is outweighed by the

saving in memory load. For example, In-Close2 (Andrews, 2011) sorts context columns in

ascending order of support. This allows quick memory retrieval according to the spatial

locality principle of memory. It also sorts rows in the context to reduce the Hamming

Distance, i.e., the number of positions in which the corresponding symbols are different

in a string or, in their case, a bit-array. Experiments show that these techniques improve

the algorithm’s efficiency over 33% for large contexts (Andrews, 2011).

2.5 Current Issues in FCA for Big Data Analysis

In this section we discuss the challenges current FCA algorithms face in the light of big

data analysis, when the input data exceeds hundreds of thousands objects/attributes.

2.5.1 Size and Complexity of Data

Since the number of concepts can grow dramatically with the number of attributes and

objects, reducing the number of concepts generated has become a major challenge in the

FCA community (Priss, 2000, Gerd et al., 2002b, Carpineto and Romano, 2005). Data-

intensive applications like biogenetics, space telemetry data and real-time monitoring

generate massive, noisy data, impractical to handle with current FCA representations.

Density and noise of a context are factors that increase the number of formal concepts

(Andrews and Orphanides, 2010). In this case, relevance measures such as stability and

support can minimise input data needed for the computation of concept lattices (Godin

et al., 1998).

The problem of reduction in FCA is analogous to the dimensionality reduction in data

mining. The assumption is that not all variables or dimensions are important or that a

few set of variables are significant for understanding the phenomena of interest. However,

in FCA, concepts add a new challenge: how to remove information while preserving some

of the most essential conceptual features?

Reduction methods are basically divided into two strategies: those that group similar

objects or concepts, and those that act by removing irrelevant concepts. Reduction can
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take place in the scaling phase, for instance, reducing the columns with low support or

through the creation of sub-contexts (Andrews, 2011), during the concept mining phase,

e.g. keeping concepts with enough support (Gerd et al., 2002b), or in the concept lattice,

through visual cluttering reduction techniques (Michel Soto, 2009).

An intuitive solution for reducing the formal context is to select sub-contexts or restrict

the scaling of data to only attributes and values of interest (Cole and Eklund, 1999). For

instance, it is possible to specify larger intervals for a continuous attribute such as ‘date’;

or group together similar objects and attributes. Kumar et al. (Aswani Kumar and

Srinivas, 2010) use Fuzzy K-Means (FKM) clustering to collapse certain rows of a formal

context, introducing equivalence relations between certain nodes of the object-attribute

lattice. Another intuitive idea is to filter out irrelevant objects and/or attributes below

a certain frequency threshold, thus simplifying the context table (Gerd et al., 2002b).

Many reduction methods are based on the factorisation of the binary table into some

canonical form, thereby simplifying the formal context. A direct application of Singular

Value Decomposition (SVD) and Non-negative Matrix Factorisation was done to reduce

formal contexts in (Snsel et al., 2008). Although this method is able to ‘compress’ the

formal context, it does not take into consideration any conceptual heuristic and it is

not clear to the user which changes were made to the original context. On the other

hand, the number of nodes and edges of a lattice could be significantly reduced by

establishing an equivalence relationship between certain nodes of the lattice with aid of

matrix factorisation methods.

Cheung and Vogel (Cheung and Vogel, 2005) introduce the notions of ‘congruence′

and ‘quotient′ that use SVD to define the equivalence relation for the construction of

quotient lattices. The resulting context is a merge of rows or columns that maintains the

homomorphism in a simplified concept lattice. These methods are very sensible to noise,

meaning that minor differences in data may lead to highly biased contexts during the

factorisation process. Another problem is that the computational complexity of SVD

methods makes it impractical for large matrices (Aswani Kumar and Srinivas, 2010).

Alternatively, reduction can happen at concept level, during or after concepts com-

putation. The selection of relevant concepts and groupings can be performed by the

algorithm that computes concepts. For instance, the ‘Iceberg’ lattice approach (Gerd
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et al., 2002b) removes concepts below a certain frequency threshold, i.e. minimum sup-

port. One problem with the support is that it tends to select the most generic concepts

as they are more likely to contain more objects. The stability index measures the pro-

portion of subsets of objects of a given concept whose derivation is equal to the intent of

this concept. In other words, stability indicates the probability of preserving a concept

intent while removing some objects of its extent (Kuznetsov et al., 2007).

The notion of clustering is well known in the data-mining domain. It is a process of

grouping together entities based on their similarities. Clustering of concepts (as opposed

to clustering of objects or attributes) can be useful to facilitate the browsing of concepts

and to identify zones of interest. Some conceptual similarity measures can be based

on: a) the concept lattice topology (e.g. counting the number of links between two

concepts); b) the intent/extent similarity (e.g. applying Jaccard) or c) calculating the

confidence between pairs of concepts.

2.5.2 Scaling

FCA method is usually limited by the rigidity of its input format (binary data). Some

works have proposed to extend it to complex data (Ferré and Ridoux, 2000, Ganter and

Kuznetsov, 2001, Messai et al., 2008), among them the Similarity-based Formal Con-

cept Analysis (SFCA) method which considers similarity to directly classify non-binary

data into lattice structures called Many-Valued Concept Lattices (MV lattices)

(Messai et al., 2008). Besides extending FCA to complex data and avoiding loss of infor-

mation in transformation phases, the SFCA classification process produces MV lattices

with different granularity levels which allows progressive data exploration (Messai et al.,

2010).

Another approach consists in transforming continuous-valued formal context into many-

valued formal context first, then on the basis of many-valued formal context, finding

equivalence classes for the continuous-value contexts (Ganter and Meschke, 2009).

Scaling in a data stream is dynamic, that is, the process of scaling occurs as new data

arrives in the stream. For example, in many cases one cannot know the distribution and

possible maximal and minimal values in case of continuous attributes. A temperature

sensor can transmit streams of data with current temperature, but it is not known
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Table 2.2: A ‘noisy’ and a ‘quiet’ context

1 2 3 4 5 6

a × × ×

b × × × × ×

c × ×

d × ×

1 2 3 4 5 6

a × × ×

b × × × ×

c × ×

d

a priori whether a given temperature is the possible maximum. Because of this, the

minimum and maximum values need to be maintained and eventually updated for each

incoming data, thus requiring the scaling process to restart.

2.5.3 Noisy and Missing Data

Quite often, a data set contains outliers or missing data. These exceptions can drastically

increase the number of concepts generated (Andrews and Orphanides, 2010, Pensa and

Boulicaut, 2005, Boulicaut et al., 2003). Noise is most common in real data such as

surveys, logs, genes expression, when values can be biased, missing or some mistake was

introduced in the data. Table 2.2 illustrates a noisy and a ‘quiet’ data set (Andrews and

Orphanides, 2010).

Reduction of formal contexts can be achieved by removing noise or outliers from the

data. The notion of fault-tolerant FCA5 was introduced by Pensa and Boulicaut in

(Pensa and Boulicaut, 2005) to allow a certain number of ‘exceptions’ to occur in a

concept. Based on the idea of “free-sets” (Boulicaut et al., 2003), the method seeks to

find maximal rectangles of true values in the context bounded by δ exceptions.

Andrews and Orphanides (2010) proposed a method to reduce noise based on mining

a context for concepts that satisfy a minimum support (and/or stability) and then

re-writing the context using only those concepts. One advantage of their approach

compared to the “truncation” of formal context is that it preserves the concepts essential

features at a cost of computing concepts twice.

5The noisy/missing data problem is often referred in the FCA literature as fault tolerance, although
this term is commonly used in distributed systems. In this thesis, we refer to “fault tolerance” as the
ability of a distributed system to keep running even when some of its computation units are shut down.
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2.5.4 Parallel and Distributed Computation of Concepts

Most existing FCA algorithms were designed to work on small binary tables, with less

than hundreds objects/attributes stored in the memory of a single computer. Among

the few parallel and distributed algorithms, a parallel variant of FCbO was proposed,

called Parallel FCbO (Krajca et al., 2008). The authors later proposed a distributed

map-reduce version of the FCbO algorithm (Krajca and Vychodil, 2009). The algorithm

modifies the original CbO (Algorithm 2) splitting it into two parts, one (Map function)

responsible for the iteration over the attribute set and concept generation (equivalent to

lines 1-10 of CbO’s algorithm); and the other (Reduce function) performs the canonicity

test (equivalent to line 11 of Algorithm 2). If the canonicity test passes then the input

pair is passed on to the next iteration. Experiments showed that the distributed variant

significantly outperforms the original version with at least five computing nodes. Since

the problem of computing formal concepts can be translated to the computation of closed

frequent itemsets of their intents, research in distributed frequent itemset mining can

offer insights on the algorithm design. Surveys on the issues related to the distributed

frequent itemset mining can be found in (Zaki, 1999) and (Kumar et al., 2010).

2.5.5 Data Stream Processing

High memory and computational requirement of FCA based algorithms prohibits their

use in data stream environment. Each node of the concept lattice stores the extent

(set of transactions) along with the intent (a closed itemset) which contributes to high

memory usage. Furthermore, processing of a new transaction involves computation of

the intersection of its extent with the extent of different nodes in the lattice, making it

computationally expensive (Gupta et al., 2010).

2.5.6 Visualisation of Large Concept Lattices

The Hasse diagram used to represent FCA is well suitable for a small number of con-

cepts. When it expands to a few dozens of concepts, as is the case in more real word

applications, its comprehension becomes compromised. This is an issue in relation to the

amount of data displayed, as well as graph readability and aesthetics (Melo et al., 2011a).

In spite of this, concept lattice visualisation saw a marginal improvement over several



Chapter 2. Background on Formal Concept Analysis 29

years, and current FCA tools are mostly limited to the Hasse diagram representation

(Figure 2.4).

Figure 2.4: Tools for visualising concept lattice.

To deal specifically with the visual complexity of Hasse diagrams, several approaches

allow users to dynamically explore and reveal specific parts of the diagram, using visual

query languages (Blau et al., 2002, Cruz et al., 1987). Layout algorithms like the ad-

ditive lines diagram (Ganter and Wille, 1999) have the advantage of being configurable

through the choice of the representation set, and the technique produces a high number

of parallel edges, which in turn improves readability. Nested lines diagrams (Kuznetsov

and Obiedkov, 2001) have been proposed to display the direct product of two concept

lattices, however, they are not always simple to interpret.

2.5.7 Visual Analytics Features

Visual analytics techniques are often used in Business Intelligence to synthesize infor-

mation and provide insights in the decision making process (Keim et al., 2008). Cur-

rent FCA tools lack interactive features that allow selecting, filtering, searching and

transforming conceptual data. Recent studies have highlighted that the visualisation of

concept lattices can be greatly enhanced with aid of visual analytics techniques.
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To cite a few examples, Priss (2000) use the lattice representation to show the concepts

hierarchy in thesauri. Each concept is viewed as a facet in an information retrieval sys-

tem. In (Akand et al., 2010) authors propose an algorithm that generates a browse-able

concept lattice designed for biology applications. Ducrou et al. (2006) introduce Im-

ageSleuth, a tool for browsing and searching annotated collections of images. It allows

drill-up and drill-down the results and it suggests similar concepts if none was retrieved

by the user’s query. In (Villerd et al., 2007) authors use visual analytics in an indexed

document collection to display concept lattices in a global view and concept details in a

local view. The system expands/collapses information according to selections made in

the concept lattice. Toscana (Becker and Correia, 2005) and ConExp6 also use concept

lattice representations but do not provide further interaction and other visualisation

features (Figures 2.5(a) and 2.5(b) respectively). These tools focus on the usability of

concept lattices and consider them as primary interface for interacting with a formal con-

text. A more interactive tool, ConfExplore7 uses animated transitions and incremental

lattice exploration (Figure 2.5(c)). More recently, Bach (2010) introduces a FCA tool,

called Facettice, for faceted navigation and lattice exploration for multidimensional tax-

onomies (Figure 2.5(d)).

In common with these studies is that they are application-specific and provide few

analytic features, mostly based on drawing options and attribute/object selection. There

is little or no emphasis on the knowledge discovery beyond what the concept lattice

inherently provides. In this thesis, we focus on the combination of techniques to support

analytical reasoning and insights based on concept lattices.

2.6 Chapter Summary

This chapter introduced FCA, its formal definitions and the terminology that will be

used throughout this thesis. We investigated the mainstream algorithms in the FCA

literature: batch algorithms, incremental algorithms and assembling algorithms. Each

algorithm has strengths and weaknesses, and its success will largely depend on the

constraints imposed by the application domain, such as dynamic data, availability of

resources, concept lattice visualisation, and so on.

6http://conexp.sourceforge.com
7http://code.google.com/p/openfca/
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(a) ToscanaJ. Nested line diagram. (b) Conexp. Drawing options of the left, concept
lattice in the center and attribute/object selection
on the right.

(c) Confexplore. On top, drawing options, con-
cept lattice in the center and attribute/object
selection on the right.

(d) Facettice. On the left, the facet and value
hierarchy, Facet Lattices on top, the concept
lattice in the center and the lists of results on
the right.

Figure 2.5: Visual Analytic tools for Formal Concept Analysis.

We listed the main issues that current FCA methods face when applied to Big Data

analysis. To reduce the complexity of lattices simplified diagrams can be produced by

condensing or clustering concepts. Visualisations can also be restricted to portions of

the data and concept size reduction is possible by incorporating conditions into the data

mining process, such as minimum support and stability. Conceptual measures can be

applied to identify the most relevant concepts and filter outliers.

There is not a single all-encompassing method to solve all the mentioned problems. In

general, combined approaches are required to tackle with domain specific issues. We

therefore conclude that a) Incremental FCA algorithms are more suitable to handle

stream data; b) There are few FCA algorithms able to run in a parallel or distributed

environment, and c) Synthetic and meaningful representations for concept lattices are

needed.





Chapter 3

Real-time Distributed

Computation of Formal Concepts

3.1 Introduction

A data stream is an sequence of items that arrive in timely order. As opposed to

data in static databases, data streams are unbounded, infinite and data distribution

may vary with time (Chi et al., 2006). In BI, stream concept analysis help users both

qualitatively (co-occurrence among items, classes and hierarchies) and quantitatively

(number of co-occurrences, strength of the implication, distribution of sub-items, etc).

Computing formal concepts can be seen as computing the closed frequent itemsets of

their intents. Frequent itemsets can also be used to derive Association Rules, which

provide a valuable information on how the frequent patterns are related to each other.

There is a growing number of applications in association rule stream mining, for example,

to predict frequency estimation of Internet packet streams (Demaine et al., 2002); to

discover alarming incidents from data streams (Cai et al., 2004); or to estimate missing

data in sensor networks (Halatchev and Gruenwald, 2005).

Although the field of data stream mining is being heavily investigated, there is still a

lack of a holistic approach for mining closed itemsets from very large data streams. The

bottleneck arises due to the limit in computational resources for stream mining, while

most algorithms cannot run in parallel (Jiang and Gruenwald, 2006a).

33
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This chapter addresses this problem by employing a divide-and-conquer approach: big

problems are split into smaller parts that can be computed concurrently and partial

results are merged at the end of the computation. This technique has been proven

very effective to process large volumes of data when it is associated with a distributed

environment, such as Hadoop1.

A distributed environment brings extra challenges to the computation of formal con-

cepts, for example, it must guarantee that data shared across nodes are consistent.

Another issue is that the number of signals transmitted among nodes should be the

minimum possible to prevent network overflow and latency, thus caching and pipe-lining

of operations are desirable.

Our distributed approach is not limited to the concept miner algorithm. We propose

an architecture covering the entire data stream mining overflow, from data filtering and

transformation, to closed itemset processing, and real-time visualisation.

The remainder of the chapter is organised as follows. A review of the particular issues

of data stream mining is provided in Section 3.2. Section 3.3 formalises the terminology

and presents a review of the state of the art on frequent itemset mining algorithms. Our

approach for distributed computation of concepts is presented in Section 3.4 along with

conclusions in Section 3.5.

3.2 General Issues in Mining Data Streams

The primary goal of data stream mining is to compute all subsets of items, hereafter

called “transactions”, which occur in at least a fraction of the stream. A data stream

is a unbounded sequence of tuples continuously generated at a rapid rate. In contrast

with batch algorithms, stream mining algorithms should satisfy the requirements listed

below.

Each transaction should take at most once to look up a data stream, that means that

stream mining algorithms should have linear time O(N) where N is the size of the

stream. Anything above this constraint may fall into a ever increasing, unmanageable

computational cost (Jiang and Gruenwald, 2006a).

1Apache Hadoop. http://hadoop.apache.org
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Another issue is to maintain memory usage within a limited range, although new data

elements are continuously arriving from a data stream. This indicates that, at some

point, some data must be discarded. As we will see later, this is a non-trivial task

and may affect either the correctness or completeness (or both) of the stream mining

algorithm.

The stream mining algorithm should use the result of previous computation and make

the changes incrementally at minimum cost. This is usually done using a synopsis data

structure, typically a prefix-tree, to store and maintain itemsets and frequency count in

a compact way.

Finally, a stream mining algorithm runs indefinitely when executed. However, the real-

time analysis of a data stream requires that results be promptly available when requested,

therefore partial results should be provided.

3.2.1 Data Processing Model

In most cases, it is not practical to store and compute the entire data from the stream.

Instead, most algorithms select portions of the stream that should be processed to mine

itemsets, while insignificant data is discarded. Not all itemsets have equal importance in

the mining of new itemsets. For example, an itemset that has much less support than a

predefined minimum support is not necessarily monitored since it cannot be a frequent

itemset in the near future, nor can it generate closed itemsets. Similarly, old itemsets

may not me as relevant as new itemsets because users are, in general, interested in the

recent itemsets. There are three main processing model to cope with this problem: the

landmark model, the damped model and sliding window model.

3.2.1.1 Landmark Model

The Landmark model mines all frequent itemsets over the entire history of stream data

from a specific time point called landmark to the present (Figure 3.1). This is the case

of most batch itemset mining algorithms, such as FP-Growth (Han et al., 2000a) and

CHARM (Zaki and Hsiao, 1999) when used to mine streams. Notice that, because it

is an accumulative model, the required amount of memory grows with the number of

transactions.
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Figure 3.1: An illustration of the Landmark model (circle indicates a transaction).
As a new transaction arrives it is added to the processing.

3.2.1.2 Damped Model

The Damped model mines frequent itemsets in stream data where each transaction has

a weight, which decreases over time causing recent transactions to be more important

than previous ones (Figure 3.2). A decay function is typically employed to assign weights

to transactions. For example, in (Gupta et al., 2010), the decay function affects the

support count of the transaction, with older transactions contributing less.

In contrast with the Landmark model, the Damped model may have newer transactions

out of the window if its support, combined with the decay function, does not reach the

minimum threshold (e.g. Figure 3.2 time span 3). This is a remarkable feature of this

model vis-à-vis the Sliding Window model.

Figure 3.2: An illustration of a Damped model for stream processing. Circle indicates
a transaction, diameter indicates its weight. Grey nodes represent the transactions that

are out of the window.

3.2.1.3 Sliding Window Model

The Sliding Window model operates on a dynamically selected set of transactions,

called transaction window. New transactions are added to the window while others are
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removed. Sliding window models are further classified into two categories: transaction-

sensitive and time-sensitive (Figures 3.3(a) and 3.3(b) respectively). The transaction-

sensitive type is bounded by a fix number of transactions, in a FIFO data structure,

while the time-sensitive window is dictated by fixed units of time, which may lead to a

varying number of transactions in the window.

A strong feature in favour of this model is that it guarantees that data can fit into the

memory, because the number of transactions to manage is constrained by the size of the

sliding window. Nevertheless, all transactions in the window need to be maintained in

order to remove their effects on the current mining results when they are out of range

of the sliding window. This model is used by many algorithms (Chi et al., 2006, Chang

and Lee, 2003, Li et al., 2009) including the algorithm proposed in this thesis.

(a) Sliding Window model (transaction-
sensitive)

(b) Sliding Window model (time-sensitive)

Figure 3.3: An illustration of the Sliding Window model.

3.2.2 Data Structure

Having an appropriate data structure is fundamental for handling large amounts of data

streams coming continuously. An inefficient data structure will largely affect the mining

process, ultimately leading to a bottleneck in the system, if the stream rate is greater

than what the data structure is able to handle in linear time.

One of the tasks of the data structure is to keep an overall state of the mining process in

order to use the results of previous computation to make changes incrementally. Besides

managing itemsets, the data structure should keep the state like frequency count, itemset

statuses, transactions in the current window, etc. Frequent Itemset mining algorithms
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typically employ some variant of a Prefix-tree (also known as Trie) to store transactions

and itemsets. A prefix-tree can handle insertions and searching operations in linear time

in worst case (O(M) where M is the size of the transaction).

For example, in (Chang and Lee, 2003), the different combinations of items that appear

in each transaction are maintained in a prefix-tree lattice structure. A node in the

lattice contains an item and it denotes an itemset composed of items that are in the

nodes of its path from the root. In (Manku and Motwani, 2002a) a lattice data structure

is used to store itemsets, approximate frequencies of itemsets, and maximum possible

errors in the approximate frequencies. In some cases more than one data structure is

necessary. For example, Chi et. al. (Chi et al., 2006) propose a variant of a prefix tree

called Closed Enumeration Tree (CET) to store closed frequent itemsets, while another

prefix-tree, FP-Tree is used to store all transactions. Additionally, a hashset is used to

store information about closed itemsets for checking in constant time (O(1)). We will

describe some of these data structures in detail in the following sections.

3.3 Frequent Itemsets Mining Over Stream

3.3.1 Preliminaries

Before proceeding, let us formalise our terminology to avoid ambiguity. Let M =

{i1, i2, . . . , in} be a set of n elements, called items. A subset Y ⊆ M is called an

itemset. Each transaction I is a set of items in M . Given a set of transactions T , the

support of an itemset I is the number of transactions that contain I.

We assume that there is a lexicographical order among the items in M and we use

X ≺ Y to denote that itemset I is lexicographically smaller than item J . For the sake

of clarity, we may represent an itemset e.g. {A,B,C} as ABC, given A ≺ B ≺ C.

Formal concepts are mathematically defined as closed itemsets for their intents. Al-

though both terms differ in their philosophy2, we may use both terms interchangeably.

Recalling the definition of formal concept in Section 2.2, let T and Y be subsets of all

the transactions and items appearing in a data stream D, respectively. A closed item-

set can be defined by two operators, ↓ and ↑ where T ↑ = {j ∈ M |∀t ∈ T, j ∈ t} and

2FCA has a particular emphasis on the dual relationship of objects and attributes.
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Y ↓ = {t ∈ D|∀i ∈ Y, i ∈ t}. An itemset X is said to be closed if and only if ↑: 2T −→ 2Y

and ↓: 2Y −→ 2T where the composite function ↑↓ (”) is called a closure operator.

3.3.2 Overview on Algorithms for Frequent Itemsets Mining

Frequent Itemsets Mining (FIM) over streams are not fundamentally different from those

processing relational data. Indeed, most stream mining algorithms are variants of non-

stream ones. Nevertheless, as explained in Section 3.2, the applicability of the former

type of algorithms may be compromised for stream processing. For example, FIM algo-

rithms that require several scans over the data may fall into exponential computational

complexity as opposed to incremental ones, which build a intermediary structure and

carry only the needed changes as new data arrives. The frequent itemsets mining al-

gorithms can be either deterministic or approximative, i.e., itemsets are discovered if

they score higher than some probability threshold. We are interested in the determin-

istic class of algorithms for this study. This section provides an overview of the most

relevant algorithms, starting from frequent itemset mining algorithms for static data,

closed itemsets mining, stream algorithms and lastly, closed itemsets mining algorithms

for stream data. A timeline with the algorithms is provided in Appendix A.

3.3.2.1 Mining Frequent Itemsets with Candidate Generation: The Apriori

algorithm

One of the most popular frequent itemset mining algorithm is the Apriori algorithm

(Agrawal and Srikant, 1994). It uses a twofold approach to generate candidate itemsets

and test if they are frequent. As intuition suggests, generating all possible candidate

itemsets is a costly operation. The testing phase compare candidate’s support with a

given threshold.

Although the Apriori algorithm suffers from considerable overhead by generating poten-

tially useless candidates, it is widely regarded as a pioneer algorithm for itemset mining

and its simplicity serves as a good pedagogic example to contrast with other approaches.



Chapter 3. Real-time Distributed Computation of Formal Concepts 40

3.3.2.2 Mining Frequent Itemsets without Candidate Generation

Another branch of frequent itemsets mining algorithms correspond to those without

candidate itemset generation. The widely known algorithm FP-Growth (Han et al.,

2000a) is also a two steps approach: First it builds a compact data structure called the

FP-Tree, which is in fact a prefix tree. Then it extracts frequent itemsets directly from

the FP-tree. An example of a FP-Tree is as follows. Nodes in the FP-Tree correspond

to items and have a counter. FP-Growth reads 1 transaction at a time and maps it to

a path in the tree (Figure 3.4).

A lexicographical ordering is applied to the itemsets, so paths can overlap when trans-

actions share items (when they have the same prefix), in this case, counters are in-

cremented. Pointers are maintained between nodes containing the same item, creating

singly linked lists (dotted lines). The more paths that overlap, the higher the compres-

sion in this structure. This allows FP-tree to fit in memory, given a number of itemsets.

It is worth noting that in the worst case scenario each itemset would produce a path

in the tree. If this happens, the storage space is no better than the plain storage of

itemsets cause a FP-Tree requires additional space for pointers and counters3.

The second step consists in mining frequent itemsets extracted from the FP-Tree by

traversing it in bottom-up fashion.

Mining frequent patterns can be viewed as first mining 1-itemset and progressively grow-

ing each 1-itemset by mining on its “conditional pattern” base recursively. A “condi-

tional pattern” are the items which sufix is dependent of. For example, in Figure 3.4(d)

one conditional pattern for {e} is {c,d,a:1} and the other is {a,d}. Then, for each con-

ditional pattern, frequent itemsets are derived as permutations of the items, e.g. for {e}

and {c,d,a} we have: {e},{e,a},{e,c},{e,d},{e,a,c},{e,a,d},{e,c,d} and {e,a,c,d}.

An item header table is used to record the occurrences of the same item across the tree

(e.g. Figure 3.4(c)).

FP-Groth is not adapted for stream mining, because it scans data multiple times. For

mining frequent itemsets over stream, Chang and Lee (2003) proposed a damped window

based algorithm, called estDec for finding recent frequent itemsets adaptively over an

3Heuristically the worst case scenario is highly unlikely for most applications. In text mining, however,
computation may lead to worst case scenario.
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Table 3.1: Transactions table.

TID Items

1 {a,b}

2 {b,c,d}

3 {a,c,d,e}

4 {a,d,e}

(a) After reading
TID=1

(b) After reading TID=2

(c) After reading TID=3 (d) After reading TID=4

Figure 3.4: An example of a FP-Tree after reading each transaction.

online data stream. The effect of old transactions on the mining result of the data

steam is diminished by decaying the old occurrences of each itemset as time goes by.

Lower-weighted itemsets may be pruned from the prefix tree (called monitoring lattice).

A single pass algorithm was proposed to count frequency of data elements over a data

stream in (Manku and Motwani, 2002b). In the Lossy Counting algorithm, the set of

frequent itemsets in a data stream is found when a maximum allowable error rate and

a minimum support is given. A set of newly generated transactions in a data stream is

loaded together into a fixed-sized buffer in main memory and they are batch-processed4.

The information about the previous mining result up to the latest batch operation is

maintained in a linear data structure containing the information about the itemset,

count and error.

4Also known as offline stream processing
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3.3.2.3 Mining Closed Frequent Itemsets

Whilst mining all itemsets is desirable, it is not necessary to compute them all. It is

sufficient to compute only closed itemsets which is a set much smaller than all and all

other rules can be derived from them (Zaki and Hsiao, 1999). Several algorithms have

been proposed to mine closed itemsets over static datasets: Closet (Pei et al., 2000),

CHARM (Zaki and Hsiao, 1999), Closet+ (Wang et al., 2003), CHARM-L (Zaki

and Hsiao, 2005), FP-Close (Grahne and Zhu, 2003), DCI-Closed (Lucchese, 2004)

(see (Duneja and Sachan, 2012) for a survey).

CHARM (Zaki and Hsiao, 1999) is among the first algorithms to mine closed frequent

itemsets and the technique influenced a number of other modern algorithms. CHARM

works by pruning candidates based not only on subset infrequency (i.e., no extensions

of an infrequent itemset are tested), but also branches based on non-closure property,

which means that any non-closed itemset is pruned. The algorithm uses no internal data

structures like hash or prefix tree, and the procedure goes into recursion only if a node

is a good candidate. This feature makes this algorithm unsuitable for stream data.

Among the algorithms for mining closed itemsets over a data stream, the Moment

algorithm (Chi et al., 2006) is arguably the most referenced. This algorithm maintains

a dynamically selected set of itemsets which can be classified as: infrequent gateway

nodes, unpromising gateway nodes, intermediate nodes, and closed nodes. A summary

data structure, called Closed Enumeration Tree (CET), maintain those itemsets over

a transaction-sensitive sliding window. The selected itemsets consist of closed frequent

itemsets and a boundary between closed frequent itemsets and the rest of the itemsets.

When a new transaction arrives, it checks the closed frequent itemsets stored in a hash

table with its support and tidsum information to decide its node type according to the

node properties and incrementally updates the associated nodes information.

An improvement over the original algorithm is presented in (Li et al., 2009), called New-

Moment. The NewMoment algorithm uses a bit-sequence representation for itemsets in

order to meet the requirement of limited memory space of the maintenance of closed fre-

quent itemsets generated. Experiments show that NewMoment outperforms the original

Moment algorithm and has smaller memory footprint.
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Jiang and Gruenwald (2006b) propose a new algorithm for mining closed itemsets in

a sliding window, called CFI-Stream. When performing addition and deletion opera-

tions, the CFI-Stream algorithm checks each itemset in the transaction on the fly and

updates the associated closed itemsets supports. Current closed itemsets are maintained

and updated in real time in a prefix-tree called DIrect Update (DIU) tree. In contrast

with Moment, CFI-Stream maintains only closed itemsets in the structure and checks

closure as a new transaction arrives. Author’s benchmark shows that CFI-Stream and

Moment algorithm have comparable running times, but CFI-Stream requires less storage

space.

In (Chen and Li, 2007) the authors propose an algorithm that exploits the lexicographic

order relation combined with the closure climbing technique which obtains closure gen-

erators for itemsets. This algorithm uses an in memory data structure called GC-Tree

(Generator and frequent Closed itemsets Tree) to store all the frequent closed itemsets

in the current sliding window.

Gupta et al. (2010) proposed an algorithm, CLICI (Concept Lattice based Incremental

Closed Itemset), for mining all recent closed itemsets in landmark window model. The

algorithm uses a decay function to assign higher weights to recent itemsets. The synopsis

data structure, called CILattice, stores all recent closed itemsets in the stream. Period-

ically, the lattice is traversed and all nodes having a support count less than threshold

are are removed from the lattice.

Our contribution. In this chapter, we propose a novel distributed architecture for

mining formal concepts over data streams. It computes and maintains closed itemsets

online and incrementally, and can output the current closed frequent itemsets in real

time based on users’ query. Our approach is comprised of several components that carry

the computation of concepts from a basic transaction, filter and transforms data as well

as provides analytic features to visually explore data.

The core of our approach is the distributed concept mining algorithm. The algorithm is

a variant of the Moment algorithm introduced in (Chi et al., 2006). We chose Moment

because it has fairly decoupled procedures and, with some modifications, the CET op-

erations may run in parallel. Other approaches seemed to require much more effort or

were impractical. Nevertheless, when implementing and analysing the original Moment

algorithm, we noticed the following issues:
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• When deleting an transaction from the CET, a closed item set may become in-

termediate, however, there is no guarantee that the algorithm will carry out this

change because only nodes added in the list F will be visited, and for a itemset be

added in F it needs to become non-frequent (see Explore in Chi et al. (2006)). The

algorithm ignores the fact that a closed frequent itemset may become intermediate.

• The leftCheck( ) procedure might cause the pruning of a node that contains a

closed itemset in its descendants (see Deletion in Chi et al. (2006)).

We tackle these issues in our approach and we introduce an extra verification step

to reduce the amount of useless subsets generated (Section 3.4.3.2). To the best of our

knowledge, this is the first distributed approach to compute and visualise formal concepts

over a data stream.

3.4 A Distributed Approach to Compute Formal Concepts

over Data Streams

In this section, we describe our distributed approach for mining concepts in real-time over

a data stream. For this task, we used Storm5, a distributed real-time data processing

platform. Strom provides abstractions to carry on distributed computation similarly

to “Map Reduce jobs” in Hadoop, however, when jobs in Hadoop eventually finish, in

Storm a topology runs until the process is interrupted by the user. Storm is able to

process over a million tuples per second per node. It is scalable, fault-tolerant, and uses

persistent queuing to guarantee that the data will be processed. A brief introduction to

Storm is given in the next section.

We may refer to “node” as an object in one of our data structures. “Node” is a term

often used in distributed computation to refer to independent computation units. In

this case we will refer to them hereafter as “computation unit”.

3.4.1 Storm Topologies, Spouts and Bolts

There are three abstractions in Storm: spouts, bolts, and topologies. A spout is a

source of streams in a computation. A bolt processes any number of input streams

5http://github.com/nathanmarz/storm
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and produces any number of new output streams. Most of the logic of a computation

is into bolts, such as functions, filters, streaming joins, database calls, etc. Each bolt

may have one or several instances running in parallel. A topology is a network of

spouts and bolts, with each edge in the network representing a bolt subscribing to the

output stream of some other spout or bolt. In Storm, topologies run indefinitely when

deployed. Figure 3.5 illustrates a Storm topology for the distributed computation of

concepts. Each bolt is introduced below and explained in detail in the following sections.

Each bolt runs sequentially with regard to a given transaction, but many transactions

are processed in parallel in this schema. A memory dataset is employed to keep the data

structures synchronized across the bolts. This adds an extra challenge to manage the

state synchronized and to manage “race conditions”6. The orange colour indicate which

bolts access the memory dataset.

Figure 3.5: An illustration of a Storm topology with bolts and spouts.

TelemetrySpout. It is a stream generator for the telemetry use case we discuss in

Chapter 5. This unit produces tuples from sensor data to the rest of the topology.

FilterBolt. It emits a transaction only if a condition is satisfied for the incoming

transaction.

ScalingBolt. It processes a transaction and replaces continuous-valued attributes to

multi-categorical values.

FPTreeBolt. It adds the transaction to the FP-Tree and emits the input transaction.

6When multiple nodes request the same resource.
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SubsetGenBolt. It generates and stores the subsets of items of a given transaction by

traversing the Closed Enumeration Tree (CET) described in Section 3.4.3.4. It emits

the transaction.

IncrementBolt. It increments the support count and tidsum of the nodes in the FPTree

and emits the current transaction to AddToCETBolt.

AddToCETBolt. Responsible for appending the transaction to CET and carrying the

necessary changes. It may emit a tuple to SubsetGenBolt when necessary.

DecrementBolt. It decrements the support count and tidsum from the oldest trans-

action in the sliding window. It emits the oldest transaction in the sliding window to

the RemoveFromCETBolt.

RemoveFromCETBolt. It deletes the oldest transaction in the sliding window from

the CET tree. Notice that the deletion bolts run concurrently with the addition bolts.

In the following section we describe how the above Storm topology fits in the overall

architecture we propose in this thesis.

3.4.2 System Architecture

The architecture of the real-time system is a client-server comprising mainly of three

components: the concept mining algorithm that runs on top of a Storm topology; the

user interface/analytics component, called Cubix; and a Node.js server that pushes

updates to the client browsers in real-time (RT) (Figure 3.6).

The concept mining algorithm works offline in that no user interaction is required. It

works independently of the other modules and outputs all formal concepts in the current

window.

The user interaction is done in the Cubix analytics. It provides visualisations, filtering

and searching capabilities, and a number of analytics tools (discussed in Section 4).

When the user makes a request, Cubix passes the request to the Node.js server which

collects the current closed concepts from the CET and pushes updates to client browsers

in real-time via websockets.
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Figure 3.6: System architecture showing system’s components (in blue) and the re-
quests between them.

3.4.3 Storing Itemsets in the Window

Having an efficient way to store and retrieve itemsets and transactions is a key factor in

FIM algorithms. In a distributed environment it adds an extra challenge: the structure

is shared across multiple computing units, thus it is necessary to manage a consistent

state and racing conditions. In the next sections, we describe the data structures we are

using for storing transactions and itemsets.

3.4.3.1 CET Node Properties

We use a synopsis data structure called Closed Enumeration Tree - CET, described in

Section 3.4.3.4, to monitor only the frequent itemsets that may become closed itemset or

has a closed itemset in their descendants. We then prune all descendants of “unpromis-

ing” and “infrequent” itemsets. This approach was first proposed in (Chi et al., 2006)

and it defines node properties to make assumptions about potential closed itemsets.

We introduce a new node property, “Idle” to indicate itemsets that are to be deleted

from the CET if not updated after a number of transactions δ. The rationale for

this property is as follows. After analysing common bottlenecks in the performance
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of frequent itemset mining algorithms using the sliding window model, we discovered

that the re-computation of previously deleted itemsets can be amortized by keeping the

itemset in the synopsis. This way, if a node has become infrequent and then frequent

in a interval < δ is will not need to be generated again. This situation occurs notably

when the minimum support has a low value (which is often the case in anomaly detection

systems we explain in Section 5.5).

The CET node properties are described as follows.

Infrequent gateway nodes. All descedants of a infrequent gateway node are also

infrequent.

This definition is derived from the apriori property (Agrawal and Srikant, 1994). If an

item set occurs N times, all its subsets occurs at least N times, in other words, if nI is

an infrequent gateway node, then any node nJ where J ⊃ I represents an infrequent

itemset. All descendants of infrequent gateway nodes are pruned from the CET.

Unpromising gateway nodes. An unpromising gateway node has no closed itemset

in its descendants.

A node nI is an unpromising gateway node if there exists a closed frequent itemset J

such that J ≺ I, J ⊃ I, and J occurs in the same transactions of a frequent itemset I.

Descendants of an unpromising gateway node are pruned because no closed nodes can

be found there.

Idle nodes. An itemset marked as “idle” is to be removed from CET if it is not updated

after δ transactions. A node nI is idle if it one of its antecedents is either “infrequent” or

”unpromising”. If a idle node is not updated after δ transactions it is then permanently

deleted from the CET.

Intermediate nodes. An intermediate node has at least one child with the same sup-

port.

If nI is a intermediate node, it has a child node nJ such that J has the same support

as I does and nI is not an unpromising gateway node. Intermediate nodes must not be

pruned from the CET tree because it has at least one closed node among its descendants.

Closed nodes. An itemset is closed if none of its immediate supersets has the same

support.
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A node nI is closed if there is no parent node nJ such that J has the same support

as I. These nodes represent closed frequent itemsets in the current sliding window (see

definition in Section 2.2).

3.4.3.2 An Extra Checking to Reduce the Number of Itemsets Generated

The original Moment algorithm judges closed itemsets not via closure checking as it

is traditionally done, but through checking and updating the nodes properties as de-

scribed in the previous section. A drawback of this approach is that it needs to store

extra information besides the closed itemsets themselves. The CFI-Stream algorithm

for instance, uses closure check on the fly through a series of conditions, and only the

closed frequent itemsets need to be stored (Jiang and Gruenwald, 2006b). Nevertheless,

benchmarks showed no significant performance difference between the two approaches

(Jiang and Gruenwald, 2006b).

The bottleneck of Moment’s algorithm is that the explore routine needs to generate

subsets and check node properties. As we mention in Section 2.4.4, we can incorporate

conditions to the algorithm in order to reduce the number of unnecessary comparisons.

The extra checking we propose takes advantage of the fact that if an itemset I and a

newly generated J such that J ⊂ I have the same support, I cannot be closed because J

is a smaller set containing all items of I, therefore I does not need to be generated. In the

example of figure 3.7, the itemset AC do not need to be generated because ABC ⊂ AC

and supp(ABC) = supp(AC).

Figure 3.7: Itemset generation phase. AC is not generated because of ABC.

This checking is done in the SubsetGenBolt we describe in Section 3.4.6.



Chapter 3. Real-time Distributed Computation of Formal Concepts 50

3.4.3.3 Storing Transactions in the FP-Tree

Each transaction in the stream is identified by an unique ID (we refer to it as TID),

which is given by the current time in milliseconds in our case. The support of an itemset

is the sum of the TIDs comprising all transactions in which the itemset takes part. We

call it tidsum.

We need to store all transactions in order to calculate the support and the tidsum for

transactions in the window. This can be done efficiently with a prefix tree like the

FP-Tree (Han et al., 2000b), as introduced in Section 3.3.2.

In our implementation, we store the FP-Tree in a key-value memory cache where each

node contains information about its items, support, children and the next item in the

linked list. Table 3.2 illustrates the storage for the FP-Tree in Figure (3.8).

Figure 3.8: An example of a FP-Tree with itemsets {a,b} and {b,c,d}.

Table 3.2: Storage of a FP-Tree in a key-value database.

Key Value

fpnode 1 items: [ ], supp: 1, children: [“fpnode 2”, “fpnode 4”]

fpnode 2 items: “a”, supp: 1, children: [“fpnode 3”], next: null

fpnode 3 items: “b”, supp: 1, children: [ ], next: “fpnode 4’

fpnode 4 items: “b”, supp: 1, children: [“fpnode 5”], next: null

fpnode 5 items: “c”, supp: 1, children: [“fpnode 6”], next: null

fpnode 6 items: “d”, supp: 1, children: [ ], next: null

To compute support and tidsum in this structure, we iterate through each item in the

header table, navigating through the concerned nodes in the tree using the linked list

(dotted arrows). The insertion and search in the tree have O(logN) time complexity in

average and O(N) in the worst case (i.e. when every itemset form a separate branch in

the tree).
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3.4.3.4 Marking Boundaries with a Closed Enumeration Tree (CET)

A prefix-tree is used in several stream mining algorithms to store transactions and

itemsets in a compact way (Chi et al., 2006, Jiang and Gruenwald, 2006a, Chang and Lee,

2003, Li et al., 2009, Grahne and Zhu, 2003, Lucchese, 2004). The Closed Enumeration

Tree (CET) was introduced in the Moment algorithm (Chi et al., 2006) to store a

dynamically selected group of itemsets (Figure 3.9). The itemsets in CET tree are used

to determine “boundaries” to represent closed itemsets, itemsets that may become closed

in the future, and itemsets that cannot generate closed itemsets.

As explained in Section 3.4.3.1, some heuristics are applied at each insertion to the CET

to unecessary storage space and computation. In the example of Figure 3.9(b), node

{c,d} is not generated because {c} is a unpromising gateway node.

(a) After reading {a, b} (b) After reading {b, c, d}

Figure 3.9: An example of a Closed Enumeration Tree (CET). Dashed nodes: Un-
promising gateway nodes; Borderless: Intermediate nodes; Solid rectangles: Closed

Itemsets.

Like the FP-Tree previously mentioned, the CET is stored in a key-value memory

database in a similar fashion, with one caveat: children ID’s are stored in a lexico-

graphically sorted collection7. This is because we are often exploring those itemsets

using the ≺ and ≻ relations.

In addition to the CET, we use an additional hash table to enable quick lookup about

which transactions a given closed itemset occurs. The key of the hash is comprised of

both tidsum and support, and it stores a pointer to the corresponding closed node in the

CET. We will refer to this hash table as CET hash table.

7Redis provides a built-in sorted collection, called ZSET, which insertion time is proportional to the
logarithm of the number of elements.
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3.4.4 Filtering and Scaling

Two major pre-processing tasks in FCA is to filter irrelevant attributes and objects, and

distribute multi-valued attributes into ranges so that each value of a multi-valued at-

tribute becomes nominally a one-valued attribute (see Discretisation and Booleanisation

in Section 2.2).

This algorithm in the FilterBolt transmits a transaction only if pre-defined filter con-

dition is satisfied. For example, some types of analysis may be focused on transactions

containing particular attributes-values. The filtering conditions are pre-defined by a

domain expert.

The ScalingBolt transforms multi-valued attributes (Algorithm 4). It takes as input

the transaction I, a intervals mapping M and a dictionary D. The intervals mapping

is a dictionary containing the partitions for each attribute8. This is only possible if the

maximum and minimum values of a given attribute is known apriori. For example,

if a sensor is sending information about temperature in Celsius, the dictionary would

contain intervals such as “[<-100]”, “[-100:-50]”, ..., “[>100]”. For each multi-valued

attribute a corresponding interval inM (lines 4 and 5).

One may argue in favour of a “floating” intervals approach, where the system auto-

matically redistributes ranges according to the upcoming values of attributes. However,

in the sliding window approach, keeping a floating interval would require the update of

maximum and minimum values for each multi-valued attribute at each addition/deletion

of a transaction from the window. This could be done efficiently with a double-ended

priority queue, where the consultation time complexity is O(1) and insertion O(log N).

Most importantly, it would require the re-computation of all itemsets with the new

attribute scales.

In order to reduce the amount of memory used to store the string representation of

attributes, the algorithm uses a second dictionary D to replace the name of each attribute

by a more compact representation, typically a index number (line 9). A bit array

representation for itemsets may be used, however, large bit arrays tend to have long

streams of zeroes or ones. This phenomenon wastes storage and processing time. Each

pair attribute-value is represented by a bit in the bit array, this representation would

8The interval mapping is typically defined by a domain expert.
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not be suitable for sparse data such a text, where the number of 0’s would account for

most storage space. Thus, instead of compressing bit arrays as streams of bits, we might

assign them a index from the dictionary D.

Algorithm 4: ScalingBolt

Data: A transaction T , intervals mappingM and a dictionary D.
1 begin
2 /* Scaling of multi-valued attributes */

3 foreach multi-valued item t ∈ T do
4 find the interval [a, b] inM where a ≤ t < b
5 replace t by the interval [a, b]

6 end

7 /* Replace string representation */

8 foreach item t ∈ T do
9 replace t by the corresponding string in the dictionary D

10 end
11 send modified transaction T to FPTreeBolt

12 end

3.4.5 Update FPTree

After the transaction has been manipulated by the ScalingBolt, it is sent to FPTree-

Bolt which adds the itemset to the FP-Tree mentioned before. The algorithm iterates

over each item in the transaction, finding its way through the paths of the FP-Tree

in a top-down fashion. If the current item in the transaction exists in the FP-Free, it

updates the tidsum and support for the node, otherwise, it appends a new node with the

current item and proceeds to the next item in the transaction. Figure 3.10 illustrates

the addition of a new transaction in the FP-Tree. Notice that the existing {d} node

have its “next” pointer updated to the newly created node.

Experiments of Moment show that the boundary in CET is stable so the update cost is

little.

3.4.6 Subset Generation

Once that FPTreeBolt added the transaction to the FP-Tree, we start the frequent

itemset mining phase with the SubsetGenBolt. This module generates subsets of

item-ids along with their frequencies in the current transaction in lexicographic order.
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(a) Original FP-Tree (b) After reading {a, b, d}

Figure 3.10: An example of adding a new transaction {a,b,d} to the FP-Tree. Support
and Tidsum are updated for existing nodes and a new node is appended.

Not all possible subsets need to be generated. As we have seen earlier, unpromising and

infrequent nodes cannot generate closed itemsets and thus the subsets of these nodes do

not need to be generated. Algorithm 5 shows the procedure.

First, it skips any unpromising or infrequent nodes (lines 2 and 3). Then, for each

item in the current transaction, it goes recursively through the corresponding CET path

incrementally appending new items (if they are not there already) until it completes the

powerset of the transaction (lines 8-17).

The powerset generation has exponential time complexity O(2N ), and this is the most

costly operation in the entire system. Fortunately, this operation is not frequent since

most itemsets should fit in some existing branch of the CET and most importantly,

this is a non-blocking operation due to the parallelism the approach provides. For

example, while the SubsetGenBolt is running the procedure, another thread (or machine)

is consuming the incoming tuples. Alternatively, the system administrator can increase

the number of threads for SubsetGenBolt without affecting the topology. Load balancing

and fault-tolerance are managed by Storm.

3.4.7 Updating CET Tree

For each upcoming transaction we need to update the support in the FPTree and the

parts of the CET related to the transaction. We also need push the transaction to

the sliding window and pop the oldest one from it. These tasks are performed by the

IncrementBolt, AddToCETBolt, DecrementBolt and RemoveFromCETBolt.

In the following sections we explain each of them in detail.



Chapter 3. Real-time Distributed Computation of Formal Concepts 55

Algorithm 5: SubsetGenBolt

Data: CET node nI and a transaction T .
1 begin
2 if nI is unpromising gateway or infrequent then
3 return
4 end

5 lastIdx ← index of an item t in T which is the last item of nI

6 for j ← lastIdx to |T | do

7 curItem ← T[j]
8 if nI has no children containing curItem then
9 newNode ← nI ∪ curItem

10 /* Store newNode and add it as child of nI */

11 Store(newNode)
12 AddChild(nI , newNode)
13 /* Continue the recursion with the newly generated itemset */

14 SubsetGenBolt(newNode, T )

15 else
16 /* n′I is the child node of nI containing curItem */

17 SubsetGenBolt(n′I , T )

18

19 end

20 end

3.4.7.1 Adding a Transaction to the Sliding Window

To add a transaction in the CET, the IncrementBolt updates the tidsum and support

of the corresponding nodes (Algorithm 6 - line 3). If a node becomes frequent, its

powerset needs to be generated by the SubsetGenBolt (line 5).

Algorithm 6: IncrementBolt

Data: Itemset nI and transaction I.
1 begin
2 foreach node n′I child of nI do
3 update support and tidsum of n′I
4 if n′I is newly frequent then
5 emit to generateSubsetsBolt(n′I)
6 end

7 end
8 AddToCETBolt(I)

9 end

The AddToCETBolt is a depth-first procedure that visits itemsets in lexicographical

order and update node properties. It goes recursively through the leaves of the tree

until the top. The function hashCheck( ) checks if if there exists a previously discovered
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closed itemset nJ that has the same support as nI and J ⊃ I (line 4). If so, mark it

as unpromising gateway node (line 5)9. Otherwise, if a child node n′I does not contain

all items of nI but has the same support, mark nI as a intermediate node (lines 6 and

7). If none of the above conditions are satisfied, nI is a closed node. If nI is currently

marked as an unpromising gateway node, we need to generate its powerset (line 11) and

check if any of its children is a closed node by looking at the hash table (line 15). If

so, mark nI as unpromising gateway and return. The worst-case time complexity of the

AddToCETBolt is O(N) (without powerset generation).

Algorithm 7: AddToCETBolt

Data: Itemset nI and transaction I.
1 begin
2 foreach node n′I child of nI do

3 AddToCETBolt(n′I)

4 if hashCheck(n′I) = true then
5 mark n′I as unpromising gateway
6 else if Exists a child node n′′I with same support as n′I then
7 mark n′I as intermediate
8 else
9 if n′I is unpromising gateway then

10 /* This branch was prunned, needs to be generated again. */

11 emit to SubsetGenBolt(n′I)

12 end
13 mark n′I as closed

14 /* Check if a new child is closed */

15 if hashCheck(n′I) = true then
16 mark n′I as unpromising gateway
17 end

18

19 end

20 end

Figure 3.11 illustrates the updates in the CET after reading each transaction.

3.4.7.2 Removing a Transaction from the Sliding Window

When deleting a transaction from the window, we decrement the support count and

tidsum for each node (RemoveFromCETBolt 8 line 3). If the node has become

infrequent its descendants must be pruned and the node marked as infrequent (lines 5

and 6).

9see Unpromising gateway nodes property in Section3.4.3.1
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(a) After adding {a, b} (b) After adding {b, c, d}

(c) After adding {a, b, c} (d) After adding {c, d}

Figure 3.11: Changes on the CET when adding transactions. Consider minimum
support = 2. Dashed circles: Infrequent gateway nodes; Dashed squares: Unpromising

gateway nodes; Borderless: Intermediate nodes; Solid square: Closed nodes.

Algorithm 8: DecrementBolt

Data: Itemset nI and transaction I.
1 begin
2 foreach node n′I child of nI do
3 update support and tidsum of n′I
4 if n′I is newly infrequent then
5 mark n′I as infrequent gateway node
6 mark all descedants of n′I as Idle

7 end

8 end
9 RemoveFromCETBolt(I)

10 end

In the RemoveFromCETBolt, for each “promising’ ’child n′I of nI it checks if there

is a node with the same support and containing all items of the current node using

hashCheck( ) (line 5). If so, n′I is unpromising and has its descendants pruned from

CET (lines 6 and 7). Otherwise, the procedure goes recursively until it reaches the

leaves of the CET (line 10). Then, the procedure verifies if closed nodes have changed

by looking at their immediate children. If the current node n′I is closed and there is a

child n′′I with the same support as n′I , mark n′I as intermediate and remove its entry in
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the hashtable (lines 12-15). If there is no child with the same support as n′I , it remains

closed and its entry in the hashtable is updated (line 17).

Algorithm 9: RemoveFromCETBolt

Data: Itemset nI and transaction I.
1 begin
2 foreach node n′I child of nI do

3 if n′I is an unpromising gateway or infrequent gateway node then
4 continue
5 else if hashCheck(n′I) = true then
6 mark n′I as unpromising gateway
7 mark all descedants of n′I as Idle

8 else
9 foreach node n′′I child of n′I do

10 RemoveFromCETBolt(n′′I , I)
11 end
12 if n′I is closed then
13 if there is child node n′′I of n′I with the same support as n′I then
14 mark n′I as intermediate
15 remove n′I tidsum and support from hashtable

16 else
17 update n′I tidsum and support on hashtable
18

19 end

20

21 end

22 end

Figure 3.12 illustrates the updates in the CET when deleting each transaction.

3.4.8 The Distributed Caching Problem

In a distributed environment, locally caching of data may become a problem when nodes

request the data stored in the cache of another node. Consider the following scenario.

A node “A” generates a new itemset I, stores it in its cache and proceeds generating the

children of I. When the powerset of the itemset I is complete, the cache flushes data to

the database. Another node “B” generating an itemset J needs to know if J or any of

its children was already generated. However, J may have been generated by node “A”

but it is stored in its cache.

In our experiments this situation occurred frequently. There should be a trade-off be-

tween the amount of data in the cache and the frequency in which it is flushed to the
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(a) After removing {a, b} (b) After removing {b, c, d}

(c) After removing {a, b, c} (d) After removing {c, d}

Figure 3.12: Changes on the CET when deleting transactions. Minimum support =
2. Dashed circles: Infrequent gateway nodes; Dashed squares: Unpromising gateway

nodes; Borderless: Intermediate nodes; Solid square: Closed nodes.

database. A workaround is to assign a hash key for each itemset processed so that a

newly created itemset will be stored in the same storage address of the existing one, thus

avoiding duplicates. That does not solve, however, the fact that multiple nodes might

be computing the same itemset. As future work, we will investigate a strategy based on

broadcasting across bolts in order to communicate which itemsets are being processed

by which node.

3.5 Chapter Summary

This chapter described a novel distributed architecture to mine formal concepts over

a data stream. A review on the main algorithms for itemset mining over stream was

provided in Section 3.3.2. Using a synopsis data structure, typically a prefix-tree, stream
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mining algorithms use the result of previous computation and make changes incremen-

tally as new data arrives in the stream.

In most cases, it is not practical to store and compute the entire data from the stream.

Instead, most algorithms select portions of the stream that should be processed to mine

itemsets. The main processing models are: the Landmark model, the Damped model

and Sliding Window model.

Our proposed distributed approach is described in Section 3.4. The distributed mining

algorithm checks and maintains closed itemsets in an incrementally and in parallel.

Information are shared across the bolts using a remote memory database. An extra

checking is done in order to reduce the number of itemsets generated (Section 3.4.3.2).

The next chapter is dedicated to the Visual Analytics component of the architecture

presented in Section 3.4.2.



Chapter 4

Visual Analytics for Formal

Concept Analysis

4.1 Introduction

When FCA is applied to Business Intelligence, data is typically large, complex and

dynamic - new questions are raised everyday by business experts and managers alike.

The analysis is performed on a more frequent basis than traditional applications of FCA,

therefore interactive features are needed. Because the nature of the task is not linear,

which is the case of information retrieval systems, it is necessary to provide a number

of tools. For most tasks, only a few of these tools are used, but they are all important

in the sense that they can be combined to address different analysis needs. This is the

“Photoshop” paradigm.

FCA provides semantic groupings of objects and attributes based on their co-occurrence.

In real-world datasets the resulting concept lattices are often too large to allow users to

answer their analysis questions. Through a series of participatory design sessions with

our user groups, we assessed the benefits of FCA in their analysis goals and investigated

alternative ways to improve the visual representation and exploration of the lattice

structure.

This chapter discusses our proposal for visual analytics for concept lattices, where new

visualisations are proposed together with novel visual analytics features that enhance

61
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data representation and support different analysis tasks (Section 4.3). We extended the

visual analytics to Association Rules, as we explain in Section 4.4. Finally, in Section

4.5, we propose a tree extraction algorithm to simplify lattice browsing and visualisation

while preserving the most essential features of the original structure. As we will discuss

in Section 4.5, trees are common and have easily understandable visual representations.

We consider them as a visualisation alternative to large cluttered concept lattices, which

preserves all lattice entities and some of its structure. Finally, Section 4.6 introduces

Cubix, an analytics tool for Formal Concept Analysis that implements all proposed

visual analytics features. It runs in the distributed architecture described in Chapter 3.

4.2 Visual Representation of Concept Lattices

Concept lattices carry meaningful information on how formal concepts are related to

each other and their properties are well defined in the FCA literature (Gerd et al.,

2002a, Eklund and Villerd, 2010, Kuznetsov and Obiedkov, 2001, Wille, 1989). As R.

Wille noted in his 1989 paper (Wille, 1989):

”Lattices in data analysis are more than just mathematical structures:

They carry meaning. Therefore, drawings of such lattices should not only

reflect the mathematical structure but also give a meaningful presentation

for the data.” (p.2)

The Hasse diagrams used in FCA are usually layered graphs, where concept vertices

are assigned to horizontal layers according of the number of common attributes in each

concept, and are ordered within each layer to reduce edge crossings. FCA lattices in

particular suffer from considerable edge crossings, especially if the number of concepts

exceeds a few dozen; this is unfortunately the case in most real word applications (Roth

et al., 2008), which leads to reduced graph readability and aesthetics (Ware et al., 2002).

A good lattice representation will provide a clear overview of the structure, allowing a

clear understanding of specialization and generalization for a given concept. Eades and

Tamassia (1988) listed the following qualities for a graph drawing algorithm:

• display of symmetry;
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• avoidance of edge crossings;

• avoidance of bends in edges;

• uniformity of edge lengths;

• uniformity of distribution of vertices.

For general graphs, the problem of a determining a planar layout of a graph with least

edges crossing (the Crossing Number) is NP-hard. Therefore some heuristic methods

are used, like the force based layout algorithms where initial vertex placement by

continuously moving the vertices according to a system of physical forces.

Layout algorithms like the additive line diagram (Ganter and Wille, 1999) have the

advantage of being configurable through the choice of the representation set, and the

technique produces a high number of parallel edges, which in turn improves readability.

4.2.1 New Alternative Visualisations for Concept Lattices

We propose alternative visualisations for the concept lattice, based on the Hasse diagram

and tree-like visualisations. In order to display a tree visualisation the concept lattice

has some of its edges pruned, as we explain in Section 4.5. Each visual component of

the interface is seen as a view, i.e. a “perspective” on the underlying data, in our design

pattern model. This is important to keep the visualisation states synchronized across

the analytic features, as we explain in Section 4.4.1.

In the following sections we discuss the three proposed visualisations for the Hasse

diagram: matrix, sankey and heat map.

4.2.1.1 Matrix

A Matrix is a traditional and compact way to visualise dense relationships relationships

among entities. Figure 4.1 shows a new matrix visualisation for concept lattices, where

objects are displayed in rows and attributes in columns. Each formal concept is depicted

as coloured, overlapping layers in the relation. This visualisation also reacts to mouse

over and highlights the same concept in other object × attribute squares.
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Figure 4.1: Visualisation of a concept lattice using matrix.

The relevant part of the drawing algorithm is illustrated in Algorithm 11 in Appendix

B. First, it iterates over each relation I in the context K. Then it iterates over the cells

of a object-attribute matrix drawing rectangles on the cells for each concept found in

that relation (lines 4-17). To allow user visualisation and selection, the inner rectangles

have smaller widths and heights than its predecessor (lines 15 and 16).

This visualisation is particularly interesting for BI experts because of their familiarity

with tabular data. Additionally, it facilitates the understanding of the relations among

entities through a conceptual point of view, i.e, noticing which sets of objects and sets

of attributes may form a concept. Whilst the matrix visualisation for concepts was well

received by our users, it is limited to certain applications. It only makes sense with a

small set of objects and attributes that can fit on a screen, since scrolling could poten-

tially cause the user to loose reference of the same occurring concept on the cells out of
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the visible screen. Second and most importantly, it is not able to display hierarchical

features of a concept lattice1. To tackle specifically that issue, an alternative to the

matrix visualisation is a variant of a diagonally-filled matrix, called GeneaQuilts (Bez-

erianos et al., 2010), which can represent hierarchies through links between the different

layers in the matrix. A major drawback is, however, that the drawing of links between

non-subsequent layers may result in multiple edges crossing.

4.2.1.2 Sankey

Another proposed visualisation for concept lattices is the Sankey diagrams (Schmidt,

2006). This class of diagrams are usually employed to depict flow, in which the width of

the arrows is shown proportionally to the flow quantity. In the case of a concept lattice,

this flow can correspond to the actual links between concepts. There is a strong focus on

how entities are connected, therefore, it can be used to guide the exploration of links in

the concept lattice. One advantage of this visualisation is that it makes easy to see, for

instance, how objects are boiled down in throughout the hierarchy of concepts. Figure

4.2 shows an example of this visualisation for a concept lattice.

Any Hasse drawing algorithm can be used as a basis for the Sankey diagram for concept

lattices, provided the following changes: The diagram is rotated 90 counter-clockwise,

so it is read from left to right. The width of a node is equal to the sum of the thickness

of the edges connecting to it. Edges follow a Bézier path to give an idea of flow. The

space between the layers are noticeably larger than the usual Hasse diagram.

4.2.2 A “Heat map” Visualisation for Multi-Valued Concepts

Similarity Formal Concept Analysis (SFCA) compute formal concepts without the need

of data scaling, multi-valued attributes are grouped together with respect to a similarity

threshold (Messai et al., 2008). The result of SFCA are multi-valued concept lattices, in

which concepts may have attributes with continuous values.

To help the analyst to quickly identify intervals in the concepts and compare with other

concepts in the lattice, we designed a new visualisation based on “heat maps”. In this

visualisation, each concept is depicted as an array of rectangles (Figure 4.3). Each

1Unless we establish a drawing order to the overlapping rectangles, for example.
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Figure 4.2: Visualisation of a concept lattice using the Sankey diagram. Edges thick-
ness is given by the confidence value of the implication between two concepts.

rectangle represents an attribute, its colour indicates the interval of the attribute value

in a continuous colour scale from blue to red. Its width is proportional to the size of

the range. If an attribute is not present in the concept the corresponding rectangle is

empty in order to keep the position of the rectangles consistent.

Figure 4.3: A “heat map” visualisation for concept lattice. Colour indicates position
in the range (from blue to red), width shows the length of the interval.
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4.3 Visualisation of Association Rules

It is possible to compute association rules from formal concepts via subset generation.

Association Rules are of the form {premise} =⇒ {conclusion}, e.g. {“fly”, “lay eggs”}

=⇒ {“bird”} and are known to establish implication among categorical variables. One

of the most known use case is themarket basket analysis, which seeks to discover products

that are often brought together, for example, butter is often bought together with milk.

Whilst the example is obvious, there are cases where association rules can highlight

interesting relationships. For example is known that babydiapers and beer are often

bought together (fathers going to buy nappies for their babies, would buy beer as well).

Because most items are categorical, association rules carry very little information about

the way they can be visualised. Data mining software typically represent them as a list

of logical sentences, impractical for a large number of rules.

We implemented two new visualisations combined with statistics and charts to enable

progressive exploration of the ruleset. A Matrix view display each rule in a row and

the concerned pairs of attribute-value in columns (Figure 4.4). In this visualisation, the

colour of the cells indicates whether the attribute is in the premise (purple) or in the

conclusion (yellow) of a rule. The confidence of each rule is represented by the opacity

of each cell: the brighter the colour, the higher the confidence is. Rules are sorted from

premise to conclusion and in lexicographic order for convenience.

In the example of Figure 4.4, rule id15 has the highest confidence. It represents the

implication between {dance} and {electro} music. The matrix visualisation provides

a good overview of the ruleset and the integration with the analytics features allows

filtering and drilling down of rules.

The second visualisation is a Radial graph showing how attribute-value pairs imply one

to the other (Figure 4.5). The confidence of a rule is represented by the thickness of

the connecting line. The connecting line is a gradient from purple to yellow, to indicate

premise and conclusion respectively. The algorithm to generate this visualisation has a

special treatment to position labels. The X, Y coordinates of a label and the angle of

rotation is given by the following equations:
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Figure 4.4: Visualisation of Association Rules using the Matrix visualisation.

posX =

|M |
∑

i=0

cos(2iπ) (4.1)

posY =

|M |
∑

i=0

sin(2iπ) (4.2)

θ = arctan

(

posY

posX

)

×
180

π
(4.3)

The positions follow a circular path given by PosX and PosY. The label is rotated θ

degrees to “flip” the label to be read conveniently, i.e., avoid placing labels up-side down

as illustrated in Figure 4.6.
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Figure 4.5: Visualisation of a concept lattice using the Radial graph visualisation.

Figure 4.6: Illustration of labels positioning in the Radial AR Visualisation.

In the next section, we describe the proposed interactive features that play together with

the lattice visualisation.
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4.4 Visual Analytics of Concept Lattices

Visual analytics can be seen as an integral approach combining visualisation, human

factors and data analysis (Keim et al., 2008). According to Thomas et al., “Visual

analytics is the science of analytical reasoning facilitated by interactive visual interfaces”

(Thomas and Cook, 2006). It is the tight integration of computational analysis by

algorithms and highly interactive visualisations. The human intuition and background

knowledge are key aspects in the process, orchestrating the interface elements to produce

(or induce) a desired state that will ultimately lead to some knowledge gain. The system,

on the other hand, has to provide meaningful representations and exploration methods

on the data. Interactions that affect the state of the interface should provide smooth

transitions to help users cognitive memory and traceability.

The potential of using analytics features to enhance FCA was acknowledged as early as

in 1995, when Carpineto & Romano implemented a visual interface for large lattice called

Ulysses (Carpineto and Romano, 1995). They suggested a “Fish eye” representation

of concept lattices so that the focus on one concept node would expand its similar

neighbours proportionally. Ulysses allows users to reduce the search result space by

adding constraints to the lattice. Later with CREDo (Carpineto and Romano, 2004a)

only parts of the lattices are displayed similar to file/folder displays, where a second level

of the hierarchy is indented and can be expanded or collapsed interactively by users.

Priss (2000) used the lattice representation to show the concepts hierarchy in thesauri.

Each concept is viewed as a facet in an information retrieval system. Akand et al.

(2010) propose an algorithm that generates a browse-able concept lattice designed for

biology applications. Villerd et al. (2007) used visual analytics in an indexed document

collection to display concept lattices in a global view and concept details in a local view.

The system expands/collapses information according to selections made in the concept

lattice. More recently, Bach (2010) proposed an interface, called Facettice, for faceted

navigation and data analysis using interactive Hasse diagrams. In the diagram, nodes

have additional information encoded as bar charts to depict the distribution of values

for a given attribute in the concept. Additional attribute-lattices2 are visualised and

allows filtering by node clicking.

2Concept lattices generated for each attribute and its values.
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In the next sections we describe each of the proposed analytic features for concept

lattice: a dashboard, the use of visual variables to enhance lattice exploration, search

and selection, visual filters and clustering. All the proposed analytics work analogously

for concept lattices and association rules. The techniques were implemented in Cubix,

which will be discussed in detail in Section 4.6.

4.4.1 The Model-View-ViewModel (MVVM) Pattern

Typical visual analytic tasks include exploration, filtering, selection and data transfor-

mation. All interface elements must be consistent at each operation. For example, when

the user searches for “all retail stores with revenue above X ” he or she will expect that

the visualisations change to match with his or her query.

Maintaining a consistent state across multiple visualisations and triggering updates only

to concerned parts is a challenge faced by modern analytics systems. To cope with

this, we implemented a variant of the Model-View-Controller pattern, called Model-

View-ViewModel (MVVM)3. A ViewModel is an abstraction of the view that serves

to mediate between a view (e.g. Hasse diagram) and a model (e.g. concept lattice).

The application maintains a synchronized state through event handlers (for a detailed

explanation on MVVM, see Hall (2010)). For example, when the user click on a filter,

the action is sent to the data model which in turn triggers the corresponding event

listeners causing the visual components to be updated. It also allows switching visual

components without affecting the underlying data structure.

4.4.2 Dashboard

In addition to the main concept lattice visualisation, several charts display different

aspects of the underlying conceptual structure such as co-occurrence of attributes, con-

cepts distribution, stability versus support, etc. (Figure 4.7). Some charts are updated

when the user points the mouse over a concept, highlighting details of the concept. Sim-

ilarly, a selection of a point/series in the chart will highlight the concerned concepts in

the lattice. This technique is called Linking and Brushing (Ward, 2009).

3“ViewModel” is usually spelled without spaces, supposedly to refer to a combined entity.
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Figure 4.7: Dashboard for FCA a) Distribution chart, b) Co-occurrence chart, c)
Comparison chart and d) Attribute implication graph.

Distribution chart. This chart show the distribution of attributes/values of a given

concept when the user places the mouse pointer over it (Figure 4.7 - a).

Co-occurrence chart. Some FCA tasks involve discovering co-occurrence patterns

among two or more attribute values. This can be done with the co-occurrence chart

(Figure 4.7 - b).

Comparison chart. This polar diagram is activated when the user selects two or more

concepts in the lattice for comparison. Each attribute is represented by an axis and each

concept value is draw as a line of a particular colour. In the example of Figure 4.7 - c,

three concepts are selected for comparison.

Attribute Implication graph. The attribute implication chart displays the implica-

tion relationship among attributes. The stronger the implication between two attributes,

the thicker the line connecting them both (Figure 4.7 - d).
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4.4.3 Visual Variables

Common analytic techniques include the assignment of different colours, shapes and

sizes to nodes and edges, according to different dimensions or properties. This approach

is underused in traditional lattice visualisations, where the main visual variable used is

node/link colour to reflect user selections or node size to indicate the immediate presence

of an extent or intent as displayed in ConExp4.

We use these as well as other visual variables in a Hasse diagram to enhance the un-

derstanding of conceptual data. Prominent features of the lattice like specialization and

generalization can be better understood, for instance, the confidence of implications of

different concepts can be rendered by edge thickness. Figure 4.8 shows a concept lattice

where the size of the node is proportional to its support, the confidence by edge thickness

and colour to represent the cluster the concept belongs to.

Figure 4.8: Concept lattice enhanced with visual variables depicting different prop-
erties.

4Concept Explorer (ConExp) - www.conexp.org
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4.4.4 Search and Selection

Search and selection are two of the most common operations in decision-support sys-

tems.In our analytic tool, a concept can be selected manually (by clicking) or by search-

ing for properties in the concept lattice.

A search bar provides auto-completion of text and highlights the selected concepts in

lattice (Figure 4.9).

Figure 4.9: Search in the concept lattice.

4.4.5 Visual Filters

The number of concepts can grow dramatically with the number of objects and at-

tributes, yielding poorly readable concept lattices. The filter bar displays the current

distribution of attributes in the lattice and allows the user to visually select and filter

concepts (Figure 4.10). The filter bar has an additional visualisation, which is a lat-

tice view for each attributes (Figure 4.11). This visualisation allows identification of

attribute-value correlations and it is particularly interesting for complex multi-valued

attributes. A history of activated filters is displayed at the bottom and it allows the

user to remove a given filter non-sequentially.
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It is worth noticing that the filters act on the concept lattice rather than on the context

itself. Current FCA tools such as ToscanaJ and Conexp, allow filtering on the context,

and the lattice needs to be computed again.

Figure 4.10: Visual filter bar.

Figure 4.11: Lattice filter bar.

4.4.6 Concept Clustering

Clustering of concepts can be useful to facilitate the analysis and to identify zones of

interest. Some similarity measures are based on the concept lattice topology (e.g. count-

ing the number of links between two concepts); Intent/extent similarity (e.g. Jaccard);

or confidence between two pairs of concepts.

Concept similarity (Jaccard). It is a coefficient for calculating the ratio of shared

attributes between concepts. We define concept similarity as:

CSim(A,B) =
|ma ∩mb|

|ma|+ |mb|
+
|ga ∩ gb|

|ga|+ |gb|
(4.4)

Proximity. Conceptual proximity is the topological distance between concepts A and

B in the concept lattice.

prox(A,B) = 1−
shortestDistance(A,B)

diameter(Lattice)
(4.5)
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Strength. It is the average concept similarity value (CSim) along the shortest path

between a pair of concepts.

In the example of Figure 4.8, a k-means clustering algorithm (Hartigan and Wong, 1979)

was used to identify clusters (the number of clusters is defined by the user).

4.5 Tree Extraction and Visualisation from Concept Lat-

tices

Browsing concept lattices becomes a problem as the number of clusters grows signif-

icantly with the number of objects and attributes. Interpreting the lattice through a

direct visualisation of the Hasse diagram rapidly becomes difficult and more synthetic

representations are needed. A common approach is to show or hide parts of the lattice

via interactive exploration of subsets of terms or neighbours of a focus concept (Ducrou

et al., 2008). Carpineto and Romano (2005) defined constraints to be applied to the

concept lattice in order to simplify lattice querying and navigation.

Trees are good alternatives to represent concept lattices in this context, because they do

not suffer from edges crossings and they are natural metaphors for navigation history

since there is only one parent per child. Additionally, users are familiar with that struc-

ture as trees are used to navigate through folders and files in most operating systems.

In (Carpineto and Romano, 2005) it was noted that trees are particularly interesting

structures to represent concept lattices for browsing, however, authors pointed out that

their main disadvantage is the amount of replicated information when concepts have

multiple parents. In the current work we avoid duplication by selecting only one parent

for each concept in the lattice. One inherent challenge is to formally define the notion

of best parent among the potentially numerous parents of a concept. A previous work

by Le Grand et al. (2009) used an approach to extract trees from lattices based on the

assignment of weights to attributes. Concepts with higher average weights were selected

as parents while the other concepts were removed from the resulting tree.

Our approach consists in representing lattices not as Hasse diagrams, but as trees. As

we explain in the next section, we propose different criteria to extract trees from lattices

and visualise the resulting trees. Trees are inherently simpler hierarchical structures
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than Hasse diagrams and due to their applicability in many domains, there is a plethora

of tree representations. These include: indented outline trees, sometimes called “tree

lists” (common in file browsers such as windows Explorer), traditional layered node-link

diagrams in 2D or 3D (e.g. ConeTrees - Robertson et al. (1991)), spatially transformed

tree diagrams (e.g. Radial trees Bachmaier et al. (2005)) as well as several space

optimization (Space Optimized trees Nguyen and Huang (2002)) and space-filling

tree visualisation techniques (e.g. TreeMaps Johnson and Shneiderman (1991)).

4.5.1 Tree Extraction based on the Selection of One Parent per Layer

In a previous work by Le Grand et al. (2001), authors presented an approach to extract

trees from concept lattices based on the selection of one parent concept per hierarchical

layer in the lattice. The process starts by collecting all most specific concepts (i.e. the

lower bound parent concepts at the second lowest layer of the concept lattice) so all

objects are present in the new structure. A single parent concept is then selected for

each of these concepts, and the process continues recursively until reaching the top of

the lattice. The choice of a single parent for each concept therefore removes links and

eventually concepts5.

The goal is to select parents according to their relevance from user’s point of view, for

example, taking into account the attributes that are most significant to him or her. The

challenge is to find the set of criteria that best suits users’ expectations. Trees extracted

from the same concept lattice can be very different, as shown in Figures 4.13 and 4.13,

which represent two distinct trees extracted from the lattice of Figure 4.12. Notice that

the concept C6 is lost in the tree extraction process illustrated in Figure 4.14.

Trees are displayed in three different forms: the left one (Figure 4.13(a)) represents the

tree as extracted from the lattice, the one in the middle (Figure 4.13(b)) is the traditional

representation of a tree without crossing links, and the visualisation on the right (Figure

4.13(c)) shows the layers of the tree as concentric arcs, from the most generic (outer

layers) to the most specific (inner layers). The size of each arc is proportional to the

number of children in the corresponding sub-tree.

5If a concept is not selected as a single parent by any of its children concepts, it is removed from the
lattice
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Figure 4.12: Original concept lattice.

(a) Original lattice (b) Tree from the lattice (c) Radial visualisation

Figure 4.13: An example of tree extraction without concept loss.

(a) Original lattice (b) Tree from lattice (with concept
loss)

(c) Radial visualisation

Figure 4.14: An example of tree extraction with concept loss.

A hierarchy of parent selection criteria was defined in (Riadh et al., 2010) to extract a

tree from the concept lattice generated from on a corpus of 126 web pages dedicated to

tourism. The algorithm works as follows:

• For each concept, called the current concept, it selects the parent concept which

is located at the shortest distance from the upper bound of the lattice (in order to
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minimize the number of links);

• if several parent concepts satisfy this condition, it favours those which have already

been selected as a single parent by other concepts of the same level as the current

concept;

• If the last condition is not sufficient, it selects the concept with higher average of

attribute weights, previously assigned by the user.

Figure 4.15 shows the conceptual tree extracted according to these criteria from the

lattice generated from the tourism data set. Outer arcs represent most general concepts,

i.e., those situated on the top in Hasse diagrams. To facilitate the interpretation of the

tree, the intent of each of the concepts in the top layer is displayed. The surface of

each arc is proportional to the number of leaves of the corresponding sub-tree to provide

a glimpse of the most significant topics in the data set, in this case pages devoted to

France, food, camping, and the region Loire. This visualisation has some limitations.

While it is easy to see the top-most categories, children nodes have smaller drawing

space than their parents, even though they are more numerous. The nested nodes in the

tree are thus harder to discern. We addressed this issue by inverting the drawing order

of parents and children, as we explain in Section 4.5.3.

Figure 4.15: Tree extracted using the one parent selection per layer approach.
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4.5.2 Tree-extraction based on Conceptual Indexes

The initial tree extraction approach presented above has one main disadvantage: the

elimination of concepts which can lead to a loss of information. The present approach

leverages conceptual measures as criteria to select parent concepts, keeping the link with

the parent that scored the best with the considered index. As with the previous ap-

proach, the process starts with the most specific concepts i.e., at the bottom of the Hasse

diagram and recursively computes the index for each of the candidates and eliminate

links to all parent concepts except the one with the selected parent. The pseudo-code

of the algorithm is provided in Algorithm 10.

Choosing a single parent concept at each step leads to some information loss, although

in this case only links are removed. Our goal is to minimize this loss by selecting

parents using the most relevant criteria according to the kind of analysis performed by

the analyst. In the following sections we consider various strategies for selecting parent

concepts, including the stability (Kuznetsov et al., 2007) and support (Gerd et al., 2002a)

indexes from FCA literature, as well as the confidence and similarity measures.

Algorithm 10: ExtractTree

Data: A concept lattice L.
1 begin
2 foreach concept 〈A,B〉 in Concepts(L) do
3 Parents[〈A,B〉] ←− list of parent concepts of 〈A,B〉

4 if |Parents[〈A,B〉]| > 1 then
5 max score ←− -1

6 foreach concept 〈C,D〉 in Parents[〈A,B〉] do
7 Score[〈C,D〉] ←− score for concept 〈C,D〉
8 if Score[〈C,D〉] > max score then
9 SelectedParent[〈A,B〉] ←− 〈C,D〉

10 max score ←− Score[〈C,D〉]

11 end

12 end

13 end

14 end

15 end
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4.5.2.1 Parent Selection based on Stability and Support

The stability index measures the proportion of subsets of objects of a given concept whose

derivation is equal to the intent of this concept (Kuznetsov et al., 2007). In other words,

stability indicates the probability of preserving a concepts intent while removing some

objects of its extent. A more stable concept is less dependent on individual members in

the extension. We recall the definition of stability:

Definition. Let K = (G,M, I) be a formal context and 〈A,B〉 be a formal concept of

K. The stability index of 〈A,B〉 is defined as:

stability(A,B) =
|C ⊆ A|C ′ = B|

2|M |
(4.6)

Using the context in table 1 as an example, we calculate the stability for concepts 3 and

5 in order to select a parent for concept 6 (0.25 and 0.5 respectively); we keep the one

with highest stability, in this case we therefore remove the edge between concepts 3 and

6. The idea behind the choice of the parent concept with the highest stability is that we

expect to keep parent concept’s meaning even if some of the objects or attributes are

removed. On the other hand, the support measure is the relation between the intent

closure and the total number of objects (Gerd et al., 2002a):

Definition. Let B ⊂M . The support count of the attribute set B in K is:

support(B) =
|B′|

|G|
(4.7)

The use of support as parent selection criterion may lead to trees containing concepts

with fewer specialization levels since generic concepts generally have higher support

values than their most specific counterparts.

4.5.2.2 Parent Selection Based on Similarity

This measure relies on clustering parent and child concepts that share most of their

attributes or objects. A parent and a child concept having a great number of attributes
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(a) The formal context of Animals (b) The concept lattice of Animals

Figure 4.16: An example of Concept Lattice.

in common are supposed to be grouped together following the principle of similarity

clustering and local predictability (Hannan and Pogel, 2006). It can be defined as:

Definition. Let a concept 〈A,B〉 be such that A ∈ G and B ∈ M . Let concept

〈C,D〉 be a child (specialization) of 〈A,B〉. The shared attribute index of an edge

E = 〈C,D〉 → 〈A,B〉:

similarity(E) =
|B ∩D|

|M |
(4.8)

In the same animals’ context of Figure 4.16(a), we have potential parent concepts 3 and

5 sharing the same number of objects with concept 6, but concept 5 has more attributes

in common with concept 6, so it should be chosen as the unique parent of concept 6 if

the similarity criterion is considered.

4.5.2.3 Parent Selection Based on Confidence

The confidence value of a concept estimates how likely it is that an object with an

attribute set A, also has an attribute set C (Ganter and Wille, 1999). In other words,
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it tries to measure how strong the implication of the parent concept to a child concept

is. For instance, considering the formal context in Table 1, what is the probability of

a given object that is {Bird, Flying} to be also {Bird, Flying, Preying}? The following

paragraph formalizes its definition.

Definition. Let a concept 〈A,B〉 be such that A ∈ G and B ∈ M . Let concept

〈C,D〉 be a child (specialization) of 〈A,B〉. The shared attribute index of an edge

E = 〈C,D〉 → 〈A,B〉:

confidence(E) =
|C|

|M |
(4.9)

An advantage of this method is its consistency with the interpretation of concept lattices.

Taking our context as example (Figure 4.16), there is a 50% probability that an animal

that is a {Flying, Bird} be also a {Flying, Preying, Bird}. By contrast, a {Preying,

Mammal} has only 33% of chance of being also a {Flying, Bird}.

4.5.3 A “Sunburst” Visualisation for Concept Lattice

We improved the radial-filling visualisation shown Figure 4.12. Because the number of

concepts tends to increase in the most specific levels, the previous visualisation suffered

from decreasing inner space. We decided to invert the way the hierarchy is displayed,

top nodes are now in inner layers while more specific concepts are located in outer,

more spacious layers. This visualisation layout is called “Sunburst” (Stasko, 2000) and

provides a overview of the distribution (depicted as the size of the arcs, Figure 4.17(c)).

One challenge is to assign label to concepts in a tree visualisation like the sunburst.

Concepts are labelled using elements from its intent and/or extent. It may become an

issue if the number of attributes or objects is too long to be displayed, causing text

overlaps. In the sunburst for example, layers with a large number of concepts tend to

have smaller arc size. A common technique to cope with this problem is to only assign

labels that were not previously assigned to any of its parents, i.e., avoid repeating labels

that already appeared in parent concepts. We used this technique combined with a logic

that hides the label of a concept if the arc size is too small to fit the text. Optionally,

the user can zoom in the areas of interest and hidden labels will appear accordingly.
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(a) Original lattice (b) Tree extracted from lattice (c) Sunburst visualisation

Figure 4.17: Tree-extraction process and Sunburst visualisation.

4.5.4 Case Study of the Tree Extraction Process on the Tourism Web

Pages Data Set

In this section, we discuss a case study of a concept lattice to qualitatively examine the

nature of the trees resulting from different criteria. Figure 4.18 shows the Hasse diagram

of a lattice containing 2,214 concepts and 7,758 links, constructed from a corpus of 126

web pages dedicated to tourism, characterized by their most common words from 60

words extracted from thesaurus.

Figure 4.18: Concept lattice for the tourism web pages data set.

For the sake of the example, we selected a sub-context from the dataset containing only

87 concepts. In this particular context, the original concept lattice depicted by the Hasse

diagram contained 216 edges between concepts, reduced to 82 after the tree extraction

(38% of the original edges). Each of the proposed measures revealed particular aspects

on the analysis of a lattice, as illustrated in Figures 4.19 and 4.20.

The left column in Figures 4.19 and 4.20 shows the complete tree extracted from the

lattice using the corresponding criterion, whereas the column on the right displays a
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particular part of the tree that we discuss. As explained previously, each concept is la-

belled in a non-repetitive way, i.e., labels assigned to parents are not be displayed in the

respective children. Since labels can change from one visualisation to the other depend-

ing on the parent selected, colours were applied to each concept for easy identification

(all concepts have the same colour in all visualisations e.g. “loisirs/voyage/camping”).

Figure 4.19(a) shows the tree generated with extent support as parent selection criterion.

This criterion tends to group concepts that have frequent objects in their extent. Notice

that the concept containing {“montagne”} (mountain) accounted for many other con-

cepts containing that attribute in contrast with confidence and similarity, for instance.

This occurs because there are many web pages relating the keywords {“montagne”,

“ski”} and {“montagne”, “restaurant”}, thus making the corresponding concepts more

likely to be selected as parent in this criterion. On the other hand, the concept which

contains {“ski”} has only one sub-concept {“voyage”} in contrast with the trees ex-

tracted using confidence and similarity (Figures 4.20(a) and 4.20(c)). We can infer that

pages containing {“ski”} alone are not as popular as other keywords, because they are

commonly associated with either {“montagne”, “transport”} or {“loisir”, “voyage”} as

the corresponding concepts show.

The stability (intent) index was the criterion that generated the tree in Figure 4.19(c).

With this index, concepts that retain the same set of web pages when some of their

keywords are removed are the best candidates for parent selection. In the detail of Figure

4.19(d) the concept containing {“gastronomie”, “ski”, “montagne”} was the preferred

parent to append the child concept {“gastronomie”, “ski”, “montagne”, “voyage”,

“loisir”} contrarily to the selection made in the tree using support (Figure 4.19(b))

where the parent is {“montagne”, “ski”, “voyage”}. This suggests that despite having

fewer occurrences (web pages), the concept {“gastronomie”, “ski”, “montagne”} has a

smaller set of keywords that together correspond to the same pages. For instance, pages

that talk about “gastronomy in the mountains” can cite “ski” as one activity to do in

the mountains but the absence of that keyword is not crucial to describe the page.

Figure 4.20(a) depicts the tree generated by the similarity criterion. Parent concepts

sharing most objects with a particular child concept were the best candidates. As an

example, the concepts involving {“gastronomie”, “ski”} were appended to the concept

{“ski”} because there are more pages in common with the later than there are pages
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(a) Support (Extent) (b) Support (Extent) Detail

(c) Stability (Intent) (d) Stability (Intent) - Detail

Figure 4.19: Trees generated from the lattice in Figure 4.18 using Support and Sta-
bility as parent selection criteria. Colour is assigned for each concept for comparison.

shared with the concept {“gastronomie”}. The same rationale explains the same parent

selection for the confidence criteria: a page containing both keywords “gastronomie” and

“ski” is more likely to be about “ski’ than about “gastronomie”. These choices contrast

with those using stability and support (Figures 4.19(a) and 4.19(c)).
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(a) Similarity (b) Similarity

(c) Confidence (d) Confidence

Figure 4.20: Trees generated from the lattice in figure 4 for each proposed measure.

In Figures 4.20(c) the tree was generated using the confidence criterion, i.e. children

concepts are associated with the parent to which the relationship of confidence is the

highest among the candidates. As a consequence, the concept {“voyage”} was the parent

selected for the concept containing {“camping”, “voyage”} as opposed to the concept
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{“camping”}, because usually camping implies going on a trip whereas going on a trip

does not necessarily mean to go camping.

4.5.5 Guidelines on How to Choose the Parent Selection Criteria

The extraction of a tree from the original lattice implies that some links are removed

and in some cases this can be misleading, depending on the selection criteria. Never-

theless, the process is able to keep some of the most essential conceptual features and

provides different perspectives to the analysis, for example, on frequent patterns or on

the implications between the concepts. It is also possible to display different trees at

once in order to get a more comprehensive view.

When two parent concepts have the same score, the parent with the first computed score

is selected by the algorithm. This could lead to an undesired non-deterministic result for

the same input parameters. We stress that even non-deterministically in those cases, the

process yields results consistent with the chosen metric. One way of tackling the issue

is to define “tie-break” scores, i.e., other indexes to be used to define the best parent.

For instance, if two concepts have the same support, the parent selection second criteria

can be stability.

The choice of parent selection criteria for tree transformation corresponds to a classifi-

cation problem. Deciding if a “Lion” is more “mammal” than it is “preying” it is not

always straightforward, hence we rely on the measures that attempt to keep the context

semantics when looking at the entire concept lattice. For instance, if we have more

objects described by the “mammal” set which are semantically closer to “Lion” than

other concepts, then it may reasonable to be chosen as its parent. To guide the user in

the choice of the selection criteria, the visual variables presented in Section 4.4.3 may be

used to highlight the effect a given parent selection criteria yields. Table 4.1 presents a

general recommendation for the parent selection criteria that are more suitable for some

analysis tasks.
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Table 4.1: General recommendation for parent selection criteria.

Criteria Description Rationale Suitable
for

Stability Measures how likely a con-
cept is to change if some of
their attributes or objects
are removed.

Stable concepts are less im-
pacted by noise and usu-
ally represent strong corre-
lation with real world en-
tities (e.g.: a concept that
encapsulates our notion of
“mammal”).

Observing
real world
analogies

Support Measures the frequency of
the concept itemset.

Frequent concepts are usu-
ally generic concepts since
they aggregate a larger
number of objects than the
specialized ones.

Frequent
pattern
analysis

Similarity Represents the degree of
similarity between parent
and child nodes.

Concepts that share most
attributes or objects
should be linked together
because they are similar.

Similarity
analysis

Confidence Measures how strong the
implication is between a
parent concept in a child
concept.

Implication is one of the
most intuitive interpreta-
tion of a concept lattice.

Implication
analysis

4.6 Cubix: A Visual Analytics Tool for FCA

Cubix is a Visual Analytics tool that implements all proposed techniques described in

this chapter. Cubix is part of a three-year project CUBIST6 ad result of a series of

participatory design with our end users. As a first step we conducted interviews with

three types of use cases attempting to find patterns within their data: a company con-

ducting market intelligence, computational biology, and a space control centre operation

monitoring. All users had in common large amounts of data of which they wanted to

answer mainly the following types of questions: frequent pattern detection, anomaly

detection and pattern comparison. An example of frequent pattern detection is “during

the first stage of a mouse embryo development what are the genes expressed together

most often?”. An example of an anomaly detection is “what are the sensor and telemetry

logs of a space load on the International Space Station that may be related to a spe-

cific instrument malfunction?”. Finally, a pattern comparison question would be “Are

the jobs available in Liverpool similar to those in Manchester?” FCA allowed them to

6http://www.cubist-project.eu
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create semantic groupings of objects and attributes based on their co-occurrence and

progressively explore the lattice to look for answers to their questions.

4.6.1 System Overview

Figure 4.21: Cubix user interface displaying the adult data set. Its main components:
1) Toolbar; 2) Visualisation canvas; 3) Dashboard; 4) Selection & entities bar and; 5)

Filter bar.

Figure 4.21 shows the layout organisation of Cubix and its main components. All panels

are collapsible allowing a novice user to view only the concept lattice or, to an expert

user, several tools can be displayed on the screen.

The header contains functions to open a new formal context in the CXT file format

(when deployed with FCA service) and to analyse the current context. The concept

lattice is shown in the canvas region. On the left, a toolbar provides options related

to the concept lattice, such as alternative visualisations, size and label assignments.

The search bar on top highlights the selected concepts. On the right, the dashboard

displays different aspects of the conceptual structure. The selection and entities bar

show the selected concepts (by search or manual selection) and attribute/object filtering,

respectively. Finally, on the bottom, the filter bar allows the user to drill down on the

concepts by selecting attribute-values.
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4.6.1.1 Workspaces and Data Sources

Cubix allows grouping of different data such as files, databases and a data streaming

API, on a single workspace to perform analysis. Each workspace provides options for

filtering and merging data from different sources.

4.6.1.2 Data Scaling

In FCA, scaling of data refers to the process of discretizing data in order to generate

formal concepts. Cubix automatically identifies categorical, location and date/time

fields, and it allows the filtering of attributes/objects and selection of sub-contexts. It

automatic identifies and scales single attributes into boolean values, e.g. “mammal” →

“mammal-yes” and “mammal-no”.

4.6.1.3 Concept Lattice Analytics

Cubix combines visualization techniques with data mining, allowing users to interactively

analyse the conceptual data, by filtering and selecting, transforming and clustering con-

cepts (see Section 4.4 for details). Figure 4.21 - 2 displays the selected visualization for

the concept lattice (sunburst). The other visualizations available are: Hasse diagram,

Matrix, Sankey, Icicle and Tree.

A filter bar (Figure 4.21 - 5) has two functions, first it allows the filtering of concepts

through the visual selection of attributes; second, it displays the current conceptual

distribution for each attribute.

As seen in Section 4.4.4, it is possible to perform text searches of attributes in concepts,

with an auto-completion feature to help users easily search for both attributes and values

in concepts. The results are dynamically highlighted as the user searches in the different

concept nodes.

Based on recommendations from our users, we use the notions of support, stability

and association (explained in Section 4.5.2.1) as filters, since these strategies help our

users answer questions of the form most frequent pattern. But we also represent these

notions visually on the lattice to enhance data understanding. For instance, the power

of implications of different concepts can be rendered by edge thickness. In this way users
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can be guided in understanding and choosing criteria for reducing their lattices. Using

these criteria we can also extract a tree structure to simplify the lattice representation

(Section 4.5).

4.6.1.4 Association Rule Analytics

Similar to the concept lattice analytics, all interface controls work analogously with

association rules (Figure 4.22). The semantic dashboard adapts to the analysis of as-

sociation rules, for instance, one chart displays support, stability and confidence on a

scatterplot matrix. If an item from the chart is selected it filters the association rules to

be displayed.

Figure 4.22: Association Rules Analytics in Cubix.

4.6.1.5 Ontology Integration

Cubix can be integrated with a RDF/OWL triple store which enables the conceptual

analysis on top of SPARQL queries. The conceptual analysis of ontologies provides

unique information on the semantic data, by grouping entities belonging to particular

properties in a hierarchical fashion. The process starts when the user enters a SPARQL

query, which is then sent to the triple store via Cubix. The results are automatically

scaled to a formal context, formal concepts are then mined and visualized in the analytics

view. Currently, only Sesame and Owlim are supported in Cubix.
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4.6.2 Similar Tools

Over the past decade a number of FCA analysis and visualization tools have appeared.

Their purpose is to generate the concept lattice of a given formal context and the cor-

responding association rules. ToscanaJ7, Galicia8 and Concept Explorer (ConExp)9 are

among the most popular ones. They can compute and visualize concept lattices but

are not designed to do so for large numbers of concepts and the support for interactive

analysis is limited.

Recently, OpenFCA10, an open source FCA-based web application has drawn attention

in the area for its ability to create formal contexts, mine and visualize concepts and

explore association rules. It is one of the first tools with a highly interactive layout for

concept analysis. There are a few limitations however, for instance, the only method for

reducing large lattices is based on defining a maximum tree depth.

Specialized tools like FCA Bedrock11 can scale data into formal contexts and has become

a essential step in order to employ FCA in a Business Intelligence context. Facettice,

a tool for visualizing and navigating in concept lattices demonstrated that visualization

and interaction techniques can greatly enhance the understanding of conceptual data.

However, the tool was not designed to support interactive analysis.

Cubix extends the features of existing tools, from data scaling to the visual exploration

of the concept lattice and association rules.

4.7 Chapter Summary

In this chapter, we described techniques for the visual exploration of concept lattices

through searching, filtering and sub-selection of concepts and attributes; clustering and

transforming concepts, and encoding lattice’s properties using visual variables. We pre-

sented novel visualisations for concept lattice and association rules. Additional informa-

tion can be found in (Melo et al., 2012) and (Melo et al., 2011b).

7toscanaj.sourceforge.net
8iro.umontreal.ca/~galicia
9www.source-forge.net/projects/conexp

10www.code.google.com/p/openfca
11www.source-forge.net/projects/fcabedrock
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In order to facilitate navigation in large concept lattices, we propose a transformation

approach to extract trees from concept lattices, attempting to minimize both semantic

and conceptual loss in favour of readability and interpretation. This is an important

step in the visual analysis of conceptual structures, as the resulting tree structures are

visually easier to understand than cluttered lattice graphs. Each of the tree construction

measures proposed in our work provides particular insights valuable to different analysis

tasks, identified in our work as recommendations.

These contributions represent an important step in the visual analysis of conceptual

structures, as domain experts can get semantically rich insights that traditional FCA

tools do not provide.



Chapter 5

Case Studies

5.1 Introduction

This chapter provide details of each of the three use cases that demonstrate the ap-

plication of the proposed techniques in a real-world setting. The three use cases are:

a) Aircraft cabin design (Complex Systems Design Laboratory, CSDL), where new vi-

sualisations for continuous data helped analysts to quickly identify classes of comfort

for passengers; b) Genes co-expression analysis using a combination of both analytics

features and semantic integration (Heriot-Watt University, HWU); and c) Prediction of

possible failures from telemetry data in real-time (Space Application Services, SAS).

The first part of the chapter describes the design and evaluation methodology carried

throughout the thesis. It outlines the procedures, test users and evaluation results. The

second part of this chapter discusses the idiosyncrasies of each use case and presents

further discussion from an user-centered perspective.

5.2 Methodology

It is widely recognized that understanding social and organisational context is critical

for the success of many systems today. Human Computer Interaction (HCI) literature

provides methods that help the system designer to collect and analyse users and their

surrounding environment, and further enhancing the interface (Lazar et al., 2010). In

the User-Centered Design (UCD) paradigm end users have an active role during all

95
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phases of the development process, as opposed to traditional software engineering where

user evaluations are usually conducted in later stages (Fitton et al., 2005).

Users are only a part of the puzzle. They carry information, perform tasks, collaborate,

adapt to new circumstances, set goals, in a complex and dynamic environment. It is

therefore, necessary to have a holistic approach to study users and their environment

where the system can be seen as a medium in which the user will serve to accomplish

his or her goals. One of the most important aspects of system modelling is the task

analysis (Hackos and Redish, 1998). For this reason, users from the three use cases were

encouraged to participate in the design and prototyping sessions in a task-oriented way,

besides the usual evaluation at the end of the process. The methodology is described in

the following sections.

5.2.1 Design and Prototyping

As a first step we conducted interviews with three types of users attempting to find

patterns within their data: users conducting market intelligence, computational biology,

and space control centre operation monitoring. All users had in common large amounts

of data within which they wanted to answer 3 types of questions: frequent pattern

detection, anomaly detection and pattern comparison. An example of frequent pattern

detection is “during the first stage of a mouse embryo development what are the genes

expressed together most often?”. An example of anomaly detection is ‘what are the

sensor and telemetry logs of a space load on the International Space Station that may

be related to a specific instrument malfunction”. And a pattern comparison question

would be “are the jobs available in Liverpool similar to those in Manchester?”.

Open questionnaires were used to gather information about user’s background, common

tasks and goals (Appendix C. The interviews were complemented with observations in

order to get insights on implicit tasks1. All users had previous experience with analytics

systems at different levels and this aspect was taken into account.

1The implicit tasks are those that the user cannot easily express in an interview because they are not
the focus of attention, e.g. checking if there are new notifications in the monitoring system.
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5.2.1.1 Low-Level Tasks Taxonomy for Formal Concept Analysis

To guide our analysis, the main low-level tasks for Formal Concept Analysis were identi-

fied. These are common tasks performed by users on a concept lattice in order to match

with the use cases aforementioned. This is based on works of Amar et al. (2005) and

Lee et al. (2006) on graph analysis complemented by user interviews. Table 5.1 outlines

the most important tasks for FCA.

Table 5.1: Low-Level Analytic Tasks for Formal Concept Analysis.

Concept Lattice
Tasks

Description

Follow Path Display concept hierarchy for a given concept

Find specialization/-
generalization

Find antecedents or descendants for a given concepts

Filter Find concepts satisfying some conditions on objects
and attributes

Find Classes Given a set of items, find the frequent co-occurrence
patterns

Characterize Distri-
bution

Given a concept and a quantitative attribute, find the
distribution of the items in the concept

Cluster Find similar concepts

Correlate Items Determine useful relationships between concepts

Scan Quickly review a set of items

Set Operation Find the intersection of two or more concepts

Although concept lattice analysis share some similarities with graph analysis, they differ

on a few important points. For example, graphs have much more topological importance

than lattices, so finding neighbours or central nodes or clusters does not make much sense

in concept lattice analysis. Concept lattice analysis in turn, has much more browsing

and correlation tasks requirements. A comprehensive study on low-level task for FCA

remains to be done in the literature.

5.2.1.2 Participatory Design

Once the subset of tasks the interface should act upon are identified, the first prototypes

can be designed. In the participatory design sessions users are encouraged to create their

own version of the interface and communicate its behaviour. Although this technique is

not intended to literally design the interface, it provides a good understanding on how

users expect the interface to behave, what are the expected inputs and outcomes. Figure
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5.1 shows some low fidelity prototypes designed by users from the biological use case

(HWU). Notice that Figure 5.1(c) influenced our dashboard / FCA views described in

Section 4.4.2.

(a)

(b) (c)

Figure 5.1: Prototypes designed by the users of the biological use case (HWU).

The main features were identified across the three use cases, in a way that the prototyping

focused in the commonalities rather than individual aspects. The following table (Table

5.2) summarises the differences between the three use cases given five high-level features:

Data browsing, lattice exploration, multiple facets, visual analytics and search.

Table 5.2: General recommendation for parent selection criteria.

Use
Case

Data
Browsing

Lattice
Explo-
ration

Multiple
facets

Visual
Analytics

Search

CSDL × × ×

HWU × × × × ×

SAS × ×

5.2.2 Early Evaluations

This section describes the evaluation methodology in the early stages of the development

process. Sections 5.3, 5.4 and 5.5 provide an in-depth discussion on each use case with
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further evaluation results.

5.2.2.1 Test Users

Operators from the Space Control Center at SAS, biologists and bio-informaticians at

Heriot-Watt University took part in the evaluation. These two populations have different

background experience with analytic systems as operators are far more experienced than

both biologists and bio-informaticians. This poses a challenge to the design: How can

the interface be simple enough so that less experienced users make good use of it and at

the same time allowing experienced users to use its advanced functions? The solution

we propose, as we will see later in this chapter, consists on a set of configurable views

for each use case and user skill.

5.2.2.2 Procedure

In an evaluation, data is gathered from users which reflects their judgement of their

usage of the evaluated product (Hackos and Redish, 1998). The first evaluation was

carried with the aid of a leader user for each use case to conduct the evaluation in place.

Before the evaluation, we provided some material about Cubix, including a short tutorial

describing its main functionalities.

To evaluate the features of our first version of the prototype, we have used a sample of

a traffic accident dataset2 and conduced an analysis for most common causes between

different combinations of attributes (e.g. road surface, weather, accident severity, etc).

FCA allowed us to answer pattern identification questions such as “What can be consid-

ered the main causes of accident severity: serious’?” or “how many accidents are ’light

conditions: darkness’ and ’accident severity: serious’?”.

The evaluation consisted of three parts: 1) A leader user from each use case provided

three tasks that should be performed using Cubix with the dataset provided; 2) The

users performed the assigned tasks while communicating their thought process3 as we

record audio and screen capture; 3) A survey (Appendix D) is collected from users and

conduct an interview with the leader user.

2Traffic accidents dataset released by the Department for Transport:
http://data.gov.uk/dataset/road-accidents-safety-data

3Also known as the “Think Aloud” method (Fonteyn et al., 1993)
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Some examples of tasks are:

• How many accidents are “light conditions: darkness” and “accident severity: seri-

ous” ? Do you think this should be another way of doing this task? How?

• What can be considered the main causes of accident severity: serious”?

• How likely is an and “accident severity: serious” occur during weekends (Sat-Sun)?

• What about the surface conditions of the fatal accidents?

• What the probability of causing serious or fatal accidents when it snows?

• what are the differences between accidents on Saturday or Sunday?

The choice of a common, unfamiliar dataset for the evaluation was intended to avoid

domain-specific bias when performing the tasks in the prototypes.

5.2.2.3 Evaluation Results

Below, we outline the results of the quantitative evaluation for each component.

Figure 5.2: UI Component Questions.

Figure 5.3: UI Component Questions.

Figure 5.4: UI Component Questions.

The detailed evaluation for each use case is described in the following sections.
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Figure 5.5: UI Component Questions.

5.3 Case Study: Genes Expression Analysis Enhanced by

Visual Analytics

A gene is a unit of instructions that directs the body how to do one essential task,

i.e. create a protein. Gene expression information describes whether or not a gene is

expressed (active) in a location. There are many types of gene expression experiment.

This case study focused on a technology called in situ hybridisation (ISH) gene expres-

sion. Completed ISH experiments are published online. For the mouse, one of the main

resources in this field is EMAGE4.

EMAGE documents the result of an experiment using a series of textual annotations.

Each annotation is a triple: gene tissue-level of expression. For the sake of brevity,

both genes are referred to by short names or identifiers rather than their full name. For

example, the gene bone morphogenetic protein 4 is referred to as Bmp4. Tissues are

often present in several Theiler Stages and there can be multiple instances of a tissue in

a single Theiler Stage. Thus each TS has its own anatomy called EMAP and each tissue

is uniquely identified by an EMAP number. For example the orbito-sphenoid bone in

TS 23 is EMAP:8385.

A number of computational methods have been proposed to help biologists discover un-

expected patterns and formulate interesting hypotheses. Popular techniques employ un-

supervised classification methods such as clustering, to group and visualise co-expressed

genes (see Prelić et al. (2006) for a survey). The main limitation of most clustering

algorithms is that they do not allow clusters to overlap, a counter-intuitive idea in this

domain as genes are not restricted to a specific function and usually take part in several

biological processes when interacting with other genes.

4http://www.emouseatals.org/emage/
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Figure 5.6: An Illustration of an Annotated Schema for In situ Gene Expression Data
in Theiler Stage 14.

One of the main motivations for the use of FCA in life sciences comes from the idea that

FCA provides an intuitive understanding of generalisation and specialisation relation-

ships among objects and their attributes. In (Kaytoue-Uberall et al., 2008) for example,

FCA was used to extract groups of genes with similar expressions profiles from data of

the fungus Laccaria bicolor. In (Blachon et al., 2007) authors developed a tool to query

a set of extracted formal concepts in a human gene expression data set according to

various criteria (e.g. presence of a keyword in a gene description) and then to cluster

concepts according to similarity, in terms of the attributes (samples) and the objects

(genes above a threshold of expression) constituting the concepts. They called these

clusters quasi-synexpression-groups (QSGs).

In (Andrews and McLeod, 2011) authors presented an approach to use FCA to analyse

large clusters of gene co-expressions. The approach makes use of the formal context

creator FcaBedrock5 and the formal concept miner In-Close6 (the aforementioned tools

have been developed in Cubix) to convert and simplify formal contexts. The workflow

is explained as follows. The user supplies metadata for conversion in FcaBedrock, such

as the names of the genes or tissues and their values, and with decisions as to what to

convert and how to convert it. These metadata are used to create a formal context.

User-defined constraints, such as object exclusion, attribute exclusion and attribute

restriction, applied to the data, allow different analyses to be carried out and the creation

of sub-contexts which only focus on particular portions of the data. Next, In-Close

5http://sourceforge.net/projects/fcabedrock
6http://sourceforge.net/projects/inclose
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is applied to the context file generated in the previous step. Using a trial and error

approach, the user has to find an appropriate minimum size to mine a small number of

large concepts, i.e., find the largest co-expressions of genes within the data. Finally, a

third tool, Concept Explorer7 was used to visually display the corresponding concept

lattice.

Whilst the above workflow required three standalone tools and FCA expertise, the same

workflow can be achieved through a combination of different techniques provided by

Cubix. Most of the complexity has been hidden, empowering the biologists to run the

entire workflow themselves. Additionally, whilst FCA could only be visualised via a

static lattice, Cubix provides a series of analytical features and is able to deal with the

implicit relationships and inconsistencies in the EMAGE data.

In this case study we investigated how Cubix can address the challenges of gene ex-

pression analysis, through filtering and clustering of large amounts of data, interactive

exploration of co-expressed genes and display of relevant statistics.

5.3.1 Querying and Converting the Gene Expression Ontology Data

to Formal Contexts

In contrast with traditional FCA, which takes as input a binary table of objects and

attributes, our approach is based on the querying of ontology data which is then con-

verted to a formal context in a process transparent to the user. The conceptual analysis

of ontologies provides unique information of gene expression data, by grouping entities

belonging to particular properties in a hierarchical fashion and highlighting patterns

of co-occurrence for those groups. Because biologists have little or no knowledge of

SPARQL, the language we use to query ontologies, a set of pre-defined queries are avail-

able.

The procedure consists in translating each object o, attribute a and their incidence

relation I in the result table such as o ∈ G and a ∈ M , to create the formal context

K = (G,M, I). As the number of variables in a query can be arbitrary, Cubix has an

option that allows users to select whether a given column in the result table is an object

column, attribute or none. Contrarily to traditional FCA tools, in Cubix the formal

7http://sourceforge.net/projects/conexp
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context is transparent to the user. The data is displayed in a table where its rows

contain attributes, followed by attribute values and objects, in the columns (Figure

5.7). We found that this structure is more accessible to non-FCA experts. Filtering,

sub-selection and conversion operations are possible through functionalities that came

from the aforementioned tool FcaBedrock.

Figure 5.7: Genes, tissues and level of expression in Theiler Stage 9.

The formal context, once created, is passed to the concept miner, which returns the

number of formal concepts to the user. If the number of formal concepts is too high, the

user can exclude from the computation concepts with fewer than a user-specified number

of attributes and objects (so-called minimum support), to simplify the context further.

Apart from the user being able to manually define minimum-support criteria, in Cubix,

the minimum-support feature is being reconfigured to be automatically calculated and

applied to the formal context without user intervention.
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5.3.2 Visual Analysis of Expression Clusters

Figure 5.8 visualises a tree as a Sunburst (Stasko, 2000) extracted from the concept

lattice using support as parent selection criteria. The context in Figure 5.7 was filtered

to focus on gene Bpm4. In this visualisation, each concept is an arc and the hierarchy

is represented from the innermost to the outermost layer.

Clustering of concepts (as opposed to clustering of objects or attributes) can be useful to

facilitate the browsing of concepts and to identify zones of interest in the gene expression

data. In our experiment (Figure 5.8), biologists used Cubix’s K-means clustering algo-

rithm to identify 5 clusters of gene expression information. The zones identified can be

roughly described as follows. The blue cluster represents the concepts that occurrences

of the gene Bmp4 in similar tissues. The orange cluster contains the concepts related to

the “Theiler Stage-20”, whereas in the red cluster we find the concepts comprising both

“Theiler Stage-18” and “Theiler Stage-19”.

Figure 5.8: A radial-filling “Sunburst” visualisation of the gene expression data with
colours depicting clusters.
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Cubix has a dashboard where several charts display different aspects of the underlying

conceptual structure such as co-occurrence of attributes, concepts distribution, stability

vs. support, etc. Interestingly, by looking at the “attribute implication” chart, biologist

were able to see how properties are related to gene Bmp4, in this case, “strength-

detected” and “Theiler Stage-20” are highly related to the occurrence of this gene (Fig-

ure 5.9).

Figure 5.9: A radial-filling “Sunburst” visualisation of the gene expression data with
colours depicting clusters.

5.3.3 Using Association Rules to Highlight Gene Expression Occur-

rence Patterns

The use of association rules analytics brought complementary insights to the analysis

of gene co-expression clusters. For example, after filtering the rules generated for the

context in Figure 5.7 by confidence down to a manageable size, results revealed a few

interesting facts. A significant amount (75%) of the genes detected in the embryo were

also detected in the primitive endoderm (Figure 5.10) in TS9. This is not surprising,

since the later tissue is part of the former in the anatomy hierarchy. On the other hand,

another rule showed that 71% of the genes detected in the mesoderm were detected also

in the ectoderm (against 62% the other way around) in TS9. This follows an intuitive

reasoning since both tissues are part of the same organ.
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Figure 5.10: Genes, tissues and level of expression in Theiler Stage 9.

5.3.4 Discussion

This use case demonstrated the use of Cubix to the analysis of gene expression data

where overlapping groupings are generated by Formal Concept Analysis and interactively

analysed in Cubix. Cubix’s workflow allows users to carry out an analysis starting from

querying a semantic database, converting it into a formal context, simplifying the context

to make it manageable, and visualising the result as a concept lattice and associated

relevant statistics.

Existing tools for genes expression analysis, such as Cytoscape8 and Orange9 have spe-

cific advantages, e.g. Cytoscape can run efficient analysis in network data and Orange

is a machine learning tool with some predictive features. In contrast, Cubix operates

at a conceptual level and it is less data-mining centric and more analytics oriented (i.e,

dashboards, drill-down, selection and filtering, etc). Besides, those tools are designed to

run locally whereas Cubix is being designed to run on a cluster of computers eventually

8http://www.cytoscape.org
9http://orange.biolab.si
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in the cloud. This will allow scalable analysis of data of orders of magnitude higher than

the mentioned tools.

Although most of the functionalities in Cubix can be used with other data than EMAGE

(with the corresponding scaling of data), as future work we will extend our experiments

to other genes expression data sets like cancer and brain development. We also intend

to provide a public web service API to allow interoperability with other platforms.

For further information about this use case see (Melo et al., 2013).

5.4 Case Study: A Visual Analytics Approach for Aircraft

Cabin Design

This case study is part of the Complex System Design Lab (CSDL)10 project which

involves 27 industrial and academic partners and aims at providing a collaborative en-

vironment for complex system design. Since the simulation of design choices usually

outputs large and high dimensional datasets, the CSDL platform should allow efficient

analysis of such datasets to identify the right conception choices.

CSDL industrial partners have provided a use case which corresponds to a commercial

aircraft cabin air control system. In this use case, the goal is to identify relevant design

configurations which ensure comfort conditions in terms of air temperature and velocity

inside the cabin. Typical fields of temperature and velocity are obtained using the same

fluid model as in (Bui et al.) and the comfort design problem is parametrized by 13

continuous parameters each evolving in a range interval of possible values.

These design parameters are: angles of air injection at 4 passengers’ personal fan (Al-

pha 1..4), blown air speed at 4 passengers’ personal fan (Uair 1..4), temperature of

blown air at main inlet (Tair In), temperature of blown air at 4 passengers’ personal

fan (Tair P), blown air speed at main inlet (Uair In), external temperature (T ext), and

fuselage thermal conductivity (Kappa F). The mean values of temperature and velocity

for each of the four passengers’ seats (see Figure 5.11) have been computed to assess the

passengers’ comfort, which resulted in eight output criteria (two per passenger) related

10http://www.systematic-paris-region.org/fr/projets/csdl
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Figure 5.11: Aircraft cabin schema and the main simulated input parameters.

to the comfort. Moreover, a measure of the energy consumed by the air-conditioning

system is also considered to estimate the price at which this comfort comes.

As we discussed previously, in FCA, complex data needs to be transformed into a boolean

matrix in the scaling process. In order to provide flexible scaling we used a concept

miner algorithm based on Similarity Formal Concept Analysis (SFCA) introduced by

Messai et al. (2008). SFCA considers similarity to directly classify non-binary data into

lattice structures called Many-Valued Concept Lattices (MV lattices) using a similarity

threshold θ for each multi-valued attribute.

Besides extending FCA to complex data and avoiding the loss of information due to

truncation in FCA scaling, SFCA produces MV lattices with different granularity levels

(i.e. similarity levels) to allow progressive data exploration.

In this use case we investigated the usefulness of Cubix to provide a support for com-

bining numerical values (quantitative) analysis together with qualitative analysis to aid

decision makers in the process of complex system design. In particular, we show how

Cubix can be used to highlight crucial information a designer may need to validate

design choices. The analysis is facilitated by a novel visualization for MV concepts.
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5.4.1 Simulation Dataset of the Aircraft Cabin Test Case

The use case dataset corresponds to the simulation results of 100 randomly chosen

configurations of design parameters (the 13 input parameters). 9 output criteria have

been defined to assess the quality of each configuration in terms of passengers comfort

and energy cost. The mean values of temperature and velocity of each of the four seats

are computed which resulted in 8 criteria associated with the comfort of the passengers.

The dissipated energy is computed based on the velocity as a measure of the loss of

energy due to the fluid viscosity.

In order to quickly appreciate the comfort in each seat and hence simplify the dataset

exploration and the experiments evaluation, comfort scores were computed for the values

of the comfort output criteria (temperature and velocity). The scores are in a three

points scale (0: uncomfortable, 1: acceptable, 2: comfortable) computed according to

ANSI/ASHRAE Standards (ASHRAE, 2004) as follows:

score(T) =



























0 if T < 21 or T > 24

1 if 21 ≤ T < 22.5 or 23.5 < T ≤ 24

2 if 22.5 ≤ T ≤ 23.5

score(V) =



























0 if V > 1

1 if 0.2 < V ≤ 1

2 if V ≤ 0.2

These rules can be translated as expressions for a given score in Cubix (Figure 5.12). The

score is then computed for each concept in the lattice and it may be used for filtering

or assigning colours according to the resulting value. If two or more expressions are

satisfied for a given concept, the last added rule has the priority.

5.4.2 Extracting Comfort Classes and Their Corresponding Design Pa-

rameters’ Ranges

Our objective is to determine the design parameters that are important to qualify the

experiments such that all of the four passengers seats are satisfied. We make the as-

sumption that the temperature is more important than the velocity to define the thermal

comfort of the passengers. Therefore, we focus our analysis on the experiments that offer

the maximum comfort for the passengers from the temperature point of view only: we
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Figure 5.12: Creating conceptual scores in Cubix.

keep only the concepts such that the score for the temperature is 2 and we called this

subset Ssilver.

Then, following a strategy for choosing the similarity thresholds as explained in (Messai

et al., 2012), we applied SFCA to build the corresponding MV lattice shown on Fig-

ure 5.13. Notice that colours were assigned according to the score we defined in Figure

5.12.

Figure 5.13: MV lattice generated on Ssilver.

By analysing this MV lattice, it turns out that Ssilver can be described using three
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Table 5.3: Extracted ranges of the 13 comfort design problem parameters for different
classes of comfort.

Parameter Range “Maximum com-
fort”

“Intermediate
comfort”

“Poor comfort”

Alpha 1 (◦) [-90, -80] [-86.61, -83.05] [-89.83, -80.56] [-89.83, -80.56]

Alpha 2 (◦) [-100, -45] [-96.65, -54.66] [-96.65, -46.52] [-96.65, -46.52]

Alpha 3 (◦) [-135, -90] [-133.35, -100.3] [-134.22, -91.59] [-134.22, -91.59]

Alpha 4 (◦) [-120, -80] [-105.77, -87.14] [-105.77, -81.15] [-105.77, -81.15]

Uair 1
(m/s)

[0.2, 0.7] [0.30, 0.69] [0.20, 0.69] [0.20, 0.69]

Uair 2
(m/s)

[0.2, 0.7] [0.38, 0.67] [0.23, 0.67] [0.23, 0.67]

Uair 3
(m/s)

[0.2, 0.7] [0.39, 0.63] [0.20, 0.63] [0.20, 0.63]

Uair 4
(m/s)

[0.2, 0.7] [0.24, 0.64] [0.24, 0.68] [0.24, 0.68]

Uair In
(m/s)

[0.6, 3] [2.59, 2.82] [1.68, 2.98] [0.81, 2.98]

Tair In
(◦C)

[22, 25] [22.82, 23.45] [22.71, 23.53] [22.71, 24.65]

Tair P (◦C) [22, 25] [22.08, 22.88] [22.08, 24.29] [22.08, 24.74]

T ext (◦C) [-65, -50] [-64.84, -52.86] [-64.97, -50.25] [-64.97, -50.25]

Kappa F
(W/K)

[1e−4, 4e−4] [1.03e−4, 1.28e−4] [1.03e−4, 1.99e−4] [1.03e−4, 1.99e−4]

distinct main comfort classes: (i) ”Maximum comfort” (concept n◦3): maximum score

for both temperature and velocity for the 4 seats, (ii) ”Intermediate comfort” (concepts

n◦2 and 5): the score for velocity for seat 4 is not maximum, and (iii) ”Poor comfort”

concept (concept n◦2, 4, and 6): the score for velocity for seats 2 and 4 is not maximum.

These three comfort classes can be directly read on Figure 5.13. Each class is given by

one MV concept in the lattice and the order defined on the MV concepts also holds for

the comfort classes : Concepts 3, 5 and 6 corresponding respectively to maximum, inter-

mediate, and poor comfort classes. The colors linked to concept scores in Figures 5.13

and 5.14 allow to quickly identify the concepts corresponding to the most relevant design

configurations and to extract ranges of variation of the corresponding design parameters.

These extracted ranges are given in Table 5.3.
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5.4.3 Identifying Comfort Classes Using the “Heat map” Visualization

When the relevant concepts are identified, i.e. the comfort classes in our case, the analyst

will take decisions based on concepts that fit best his or her goals.

The filtering capabilities provided by Cubix helped the analytics to boil down the large

number of concepts to a handful of concepts. The task of the analyst is then to identify

which concepts contains the parameters within the intervals he or she is looking for.

For example, for the parameters of air speed and temperature, large ranges mean that

comfort may be compromised. On the other hand, smaller ranges indicate stronger

guarantees on comfort. The heat map visualisation described in Section 4.2.2 has been

useful in this context. Figure 5.14 shows the concepts as an array of square rectangles

where each rectangle represents an attribute, its width is proportional to the size of the

interval and the colour indicates the average (median) value of the interval, varying from

blue to red.

Figure 5.14: The MV concept view for the lattice in Figure 2. Colour indicates
position in the range (from blue to red), width shows the length of the interval.

This representation allows to straightforwardly read the maximal ranges of variation of

all the design parameters together with the corresponding comfort score for temperature

and air speed in each concept.

5.4.4 Discussion

In this use case we presented a visual and conceptual approach for decision support

applied in a collaborative complex system design project. The approach takes advantage

of the use of Similarity-based Formal Concept Analysis (SFCA) to classify, visualize,

and explore simulation data in order to help system designers to identify relevant design

choices.
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The approach is illustrated on an aircraft cabin design case study which concerns the

simulation of different configurations of the ventilation system to study the passengers

comfort in the cabin. The classification of simulation data with their corresponding

comfort scores using Cubix allows to derive for each simulated input parameter the

maximal interval of values which guarantee an acceptable comfort level.

We implemented a new visualisation for MV lattices that consists on the filtering and

assigning colours to concepts based on user-defined scores. A colour gradient is assigned

according to the “global score” of a concept. For instance, the score of “maximum

comfort” is attributed when the scores of velocity and and temperature are equal to

2 and the colour. This simplification is important because in Complex System Design

the number of parameters are usually overwhelming to the analyst to overview and

compare. Alternatively, users can filter concepts that are below a score threshold. This

is particularly important during the extraction of comfort classes.

The obtained results have been evaluated by new simulations which converged to the

same solutions in terms of passengers comfort as well as in terms of input parameters

ranges. Details of this study can be found in (Messai et al., 2012).

5.5 Case Study: Real-Time Concept Analysis for Anomaly

Detection in Space Telemetry Data

Three instruments make up the solar observatory (SOLAR, Figure 5.15) payload in

the International Space Station (ISS). These instruments, SOVIM, SOLSPEC and SO-

LACES, measure with a remarkable degree of accuracy the spectral energy irradiance

of the Sun, over virtually the entire spectrum. These studies are of primary importance

for atmospheric modelling, atmospheric chemistry and climatology. Over the last three

years, the SOLAR science teams have gathered precious data during the minimum of

solar activity. It provided the most comprehensive measurements available about the

solar minima of 2008-2010 and at the time this thesis is written, it has been recording

information about the solar maxima of 2012-2013.

It may happen that the payload manifests an unforeseen thermal situation. For example,

when the temperature of one or several sensors changes in an unusual way, albeit within
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Figure 5.15: Solar observatory device (SOLAR) attached to the International Space
Station.

the nominal limits. The operator is then charged with finding similar occurrences inside

the telemetry archive and with the determination of typical thermal and power profiles.

Analysing such a large number parameters is a tough task even to the most experienced

operator. Figure 5.16 shows the user interface of the SOLAR monitoring system.

Figure 5.16: SOLAR monitoring system.

Whenever there is an anomaly, it is important for the operators to quickly retrieve

information about the telecommands sent during a specific time period and the results
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of those commands. Other examples of unexpected behaviour include:

• A telemetry parameter was out of its predefined soft values;

• An error code was issued by SOLAR;

A clear need is to find patterns of failure in the flow of telemetry parameters with

the aim to transpose these to the prediction of future failures (forensic analysis). This

is a common problem in many stream mining systems such as aeronautics, military

surveillance, biochemical analysis and fraud analysis.

Several anomaly detection techniques have been proposed in literature. Some are based

on machine learning algorithms, such as neural networks (Zhang et al., 2001), distance-

based algorithms to detect outliers (Lazarevic et al., 2003) or adapted clustering algo-

rithms (Wu and Zhang, 2006) (See (Ahmed et al., 2007) for a review).

In this use case, we apply Formal Concept Analysis to retrieve the combination of param-

eters that indicates an anomalous behaviour. The analysis of all possible combinations

of parameters is boiled down to a handful of formal concepts.

5.5.1 Telemetry Dataset

SOLAR has been operational for more than four years, already, sending one telemetry

packet every second or so. Over a year, this represents approximately 3.10e7 packets.

Each telemetry packet contains 343 parameters. 44 parameters do not change at all

or very rarely. Among the others, 135 have binary readings, such as ON and OFF.

Others are continuous valued attributes. Example of parameters include: temperature,

power supply, pointing device telemetry and system variables for the different parts of

the device.

Telemetry data from the SOLAR payload is managed by Space Applications Services

(SAS). A subset of the data, covering the 30-day period (26-Sep- 2008 / 25-Oct-2008)

related to the particular SOVIM failure, has been provided to the CUBIST project.
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5.5.2 Anomaly Detection with Real-Time Distributed Computation of

Concepts

Our approach consists in simulating the telemetry stream to identify which pairs of

parameters-values are related to an anomaly. Anomalies are characterized by a particular

attribute in the transaction. We also investigate the sequence of concepts that preceded

a anomaly, in an attempt to predict new anomalies. Because anomalies occur very rarely,

we filter concepts according to maximum support rather than minimum support.

The anomaly detection mechanism works as follows. We applied the approach described

in Chapter 3 to mine formal concepts in the current sliding window.

Whenever an anomaly occurs, all current concepts in the window are stored in a monitor

data structure (a linked list) in the sequence they appeared prior to the error. Then,

whenever a new transaction appears in the window, the algorithm checks for the oc-

currences in the monitoring table sequentially. The assumption is that if an anomaly

occurs, looking at the sequence of previous concepts may be a good indicator of when

the next anomaly may occur. Figures 5.17(a) and 5.17(b) illustrate the process.

(a) A transaction with a error (A,E) enters in
the window.

(b) All concepts preceding the anomaly
are monitored.

Figure 5.17: Monitoring concepts in the current window prior to an anomaly.

Concepts {B,C}, {A,D}, {A,B}, {C,D}, in this order, are currently in the window

when a transaction {B,E} arrives (E is a flag to indicate error, Figure 5.17(a)). All

concepts in the current window are then stored in the monitor list (Figure 5.17(b)).

New transactions in the stream are matched with those in the monitoring table. If a

sequence of transactions in the stream matches with any subsequence of concepts in the

monitoring table, a signal is send to the interface to indicate increase in the risk of a

new anomaly. Otherwise, if the order of concepts arriving in the stream does not match

with the one in the monitoring list, the risk signal set to 0.
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Experiments showed that the real-time analysis of telemetry data can be useful to restrict

the number of parameters that need to be analysed when an anomaly happens. In one

experiment, operators discovered that variation in voltage in two connected circuits may

lead to an increase in the temperature in another device, which eventually causes it to

overheat and trigger an error.

We implemented a user interface to show the current concepts in the window, the stored

sequence of concepts when the last anomaly happened and the risk status (Figure 5.18).

As explained before, if any upcoming transaction matches with the sequence, the risk

signal is incremented and displayed in form of a gauge.

In this first version of the UI, operators had difficulty in tracking every change in the

concepts within the current window, as concepts may change too frequently11. As future

work, we plan to use a time-sensitive sliding window that updates the window every hour,

so operators can carefully investigate each concept in the current window.

We are currently investigating the minimum number of attributes that are most likely

to cause an anomaly. In the experiments, concepts related to an anomaly had between

50 and 200 pairs parameter-value. Heuristically, operators can discard most of the a

attributes. For instance, “SOLAR PB1 Ovtemp” is a flag to indicate if the temperature

of the internal PB1 device is above normal conditions. It is therefore expected that the

parameter “SOLAR PB1 temp” used to indicate PB1’s temperature, displays a high

temperature value. Reducing the number of attributes that are not involved in the

occurrence of an anomaly can greatly improve operators’ productivity in discovering the

causes of it.

5.5.3 Discussion

Our real-time approach helped operators to identify the combination of parameters that

could potentially cause a breakdown. In most cases there is no explicit correlation

between the parameters and the error; it is assumed that the co-occurrence of certain

pairs of parameters-values is most likely to cause an anomaly. Operators can use Cubix

for further analysis on static telemetry data, once the monitoring parameters are known.

11In some periods many concepts were created and removed within a few seconds
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Figure 5.18: Anomaly Detection UI.

Although it is hard to claim that the sequence insight worked due to the limited amount

of data available for the experiments, the preliminary results are encouraging. It pro-

vided insights on how some anomalies are related to a sequence of concepts, e.g. the

variation off the voltage of a particular device may lead to its malfunction.

One important issue that appeared during our experiments concerns the scaling of con-

tinuous attributes. Some sequences of transactions did not match those in the mon-

itoring structure because of a small difference in the way the scaling was done. For

example, a given temperature attribute is scaled in equals intervals of 10 degrees, e.g.,

“Temperature:[20-30]”. A new transaction containing “Temperature=31” will be scaled

to the interval “Temperature:[30-40]”, and two concepts are considered unrelated even

if their difference is only one degree in temperature (among 342 other attributes). We

believe that a more flexible approach would be more effective in comparing different, al-

beit similar concepts. Similarity Formal Concept Analysis (SFCA, Messai et al. (2012)),

used in the aircraft cabin design use case in Section 5.4 is a alternative to consider.

SFCA is able to mine concepts over continuous attributes using a similarity threshold

instead of scaling data.
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5.6 Chapter Summary

This chapter presented the three use cases where our approach was evaluated. Cubix

was used to highlight genes co-expression clusters, filter and highlight patterns in genes

expression data. Cubix was also used in the design of complex systems, where the

number of simulation parameters was reduced to a few concepts. The visualisation

of multi-valued lattices helped the analyst to take decisions about which intervals of

parameters they want to guarantee for each comfort class. Finally, the distributed

approach was used as an attempt to predict possible failures from telemetry data in

real-time.



Chapter 6

Conclusions and Future Work

6.1 Recap

The advances in technology for creation, storage and dissemination of data have dramati-

cally increased the need for tools that effectively provide users with means of identifying

and understanding relevant information. As more institutions are incorporating real-

time solutions in their business practices, many traditional data mining methods are

simply not suitable to this end. New data mining methods have to be developed taking

into account the strict constraints that stream processing requires: one pass algorithm,

limited memory space and incremental changes.

Formal Concept Analysis (FCA) is a relatively young discipline and has drawn the atten-

tion of Business Intelligence (BI) analysts because of its simplicity and unique insights

it provides. In FCA, the concept lattice displays the generalization and specialization

relationships among objects and their attributes. This hierarchical structure can pro-

vide reasoning for classification and clustering, implication discovery and rule learning.

Concept mining is a computationally intensive task and the vast majority of existing

algorithms do not take advantage of parallel processing techniques.

The present thesis addressed the problem of mining and analysing formal concepts over

a data stream. The proposed approach is comprised of several distributed components

that carry the computation of concepts from a basic transaction, filter and transforms

data, stores and provides analytic features to visually explore data. The distributed

architecture is built on top of a real-time platform called Storm.

121
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In addition to the concept mining architecture, we proposed several visual analytics tech-

niques to enhance data understanding and exploration in FCA. These analytics features

allow filtering, selecting, searching and clustering concepts in the concept lattice and

association rules. We have proposed new visualisations such as the Matrix of concepts,

the Sankey lattice and the Heat map visualisation for multi-valued concepts.

Transforming a concept lattice into a tree can be useful for browsing large concept

lattices. In our experiments we explored statistically motivated criteria to evaluate

single parent concepts in the tree extraction process. A case study on the web tourism

domain demonstrated the usefulness of the tree extraction method.

Based on our participatory design session, we developed a visual analytics tool for FCA

called Cubix. Cubix’s workflow allows users to carry out an analysis starting from a

real data set, converting it into a formal context, simplifying the context to make it

manageable, and visualizing the result as a concept lattice. Cubix can also generate

formal contexts from SPARQL queries to a triplestore.

Finally, we presented three use cases that demonstrate the application of the approach in

real-world settings: aircraft cabin design, where new visualisations for continuous data

helped analysts to quickly identify classes of comfort for passengers; Genes co-expression

analysis using a combination of both analytics features and semantic integration; and

real-time telemetry data analysis for anomaly detection. Experimental evaluations show

that our approach is useful and provides better insights than current state of the art in

FCA.

6.2 Summary of Contributions

In a nutshell, the contributions of this thesis are:

Distributed concept mining over data stream:

• Distributed concept mining architecture;

Visual Analytics:

• New visualisations for concept lattice and association rules;
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• Combination of visual analytics features with conceptual metrics;

• Tree extraction algorithm from concept lattices;

• Visual analytics tool for Formal Concept Analysis: Cubix.

Although there is a growing interest on distributed frequent itemset mining over data

stream, such systems are still in their infancy, and a lot of exciting work remains to be

done in the design, implementation, and visualisation. I hope that this thesis will serve

as a reference for the state of the art for both researchers and practitioners interested

in building visual analytics and distributed Formal Concept Analysis systems.

6.3 Limitations and Future Work

Improvements in the Frequent Itemset Mining Algorithm. In the future, the

algorithm could be improved by incorporating extra canonicity tests to assess if a item-

set may become a closed itemset in the future. The PFCbO algorithm (Outrata and

Vychodil, 2012b)) and CFI (Jiang and Gruenwald, 2006b) are good examples of how a

good canonicity test can drop the computation cost when mining formal concepts. Also,

with some changes, the CET Nodes can be represented in the FP-tree, thus reducing

the storage space needed.

Performance Benchmarks. We are currently evaluating the performance and scala-

bility of our approach in comparison with the state of the art algorithms. To provide

a fair comparison, we implemented a distributed version of the Moment algorithm (Chi

et al., 2006). The datasets are provided by the IBM Quest Synthetic Data Generator1,

which is commonly used in the benchmarks of data stream mining algorithms. The

results of this evaluation are going to be published along with the benchmark code.

Large Concept Lattice Visualisation. We plan to explore other visual metaphors

and more sophisticated navigation and interaction techniques for dealing with very large

lattices (up to 10k concepts), and ways to navigate and zoom into different levels of

concepts clusters. We also plan to release the tool under an open source license. A

recent paper by Liu et al. (2013) showed how interactive visualisations for big data can

1http://sourceforge.net/projects/ibmquestdatagen/
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take advantage of binned aggregation and data cubes to restrict the amount of data to

be computed and visualised.

Evolution of the Concept Lattice over Time. Interestingly, when incrementally

updating the concept lattice in real-time in the sliding window we noticed that some

patterns seem to be appear systematically. For example, concepts located in the bottom

of the lattice (most specific) are likely to change more frequently than those located

in the top. Some concepts appear to last longer and always together with particular

concepts. Concepts with long “durability” can be seen as more stable over time. There

may be a way of characterizing the evens in a dynamic concept lattice. Statistical indexes

may be proposed to reveal insights about those events.



Appendix A

Timeline of FCA and Frequent

Pattern Mining Algorithms
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landscape orientation in the next page.
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Appendix B

Matrix Visualisation Drawing

Algorithm

Algorithm 11: DrawConceptMatrix

Data: A context K = (G,M, I) and a list of formal concepts L.
1 begin

2 /* map all concepts for each pair object-attribute */

3 matrixConcepts ←− map{key : g ∈ G, value : (map{key : m ∈M, value :
listofconcepts〈A,B〉 ∈ L|gIa ∈ 〈A,B〉})}

4 for i← 0 to |G| do
5 currentObject ←− G[i]
6 posX ←− i*cellHeight
7 posY ←− 0
8 rect ←− drawRectangle(posX, posY, width, cellHeight)

9 /* Iterate over pairs object-attribute */

10 for j ← 0 to |M | do
11 currentAttribute ←− M[j]
12 shift ←− 0
13 foreach concept 〈A,B〉 in matrixConcepts[currentObject][currentAttribute]

do
14 /* draw overlapping rectangles for each concept in the

relation object × attribute */

15 innerWidth ←− cellWidth - shift*margin
16 innerHeight ←− cellHeight - shift*margin
17 drawRectangle(posX, posY, innerWidth, innerHeight)
18 shift++

19 end

20 end

21 end

22 end
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Appendix C

Interview Questions

1. Please shortly describe the tasks you conducted with CUBIST

2. What do you expect from a system to fulfill these tasks?

3. Did the system offer you the right information to fulfill your analytical tasks?

(a) If yes, what kind of information and system functionality provided did you

find especially helpful?

(b) If no, what was missing from your point of view (regarding data provided/

visualization possibilities/ interaction possibilities) to derive the desired in-

formation?

4. Did you discover new facts during your analysis tasks that you had not expected

to discover at all before?

(a) If yes, what kind of new facts did you discover that were most surprising for

you?

(b) No.

5. If the tasks fulfilled are typical for your daily work, do you think the tool can

enrich your daily work by offering new ways to analyze your data?

(a) Yes, because...

(b) No, because...

(c) Partly, because...

129
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6. Which analytical systems do you currently use in your daily work?

(a) The tools are for example:

(b) None.

7. From your point of view:

(a) Please shortly describe what is missing in current systems to use them effec-

tively for your daily tasks:

(b) Do you think CUBIST fills an analytical gap or provides functionalities that

better fit your analytical tasks? Why do you think so?

8. Next to the data/use case currently implemented in the system, do you see any

content from your daily life (private and professional) to be integrated in the

system in future? Why do you think this would be benefit?

9. For which kind of tasks from you daily work do you believe the system can be

especially useful? Please describe the tasks and the possible benefit shortly:

10. For which kind of tasks from your daily work do you believe the system is annoying

/ ineffective? Please describe the tasks and the possible drawbacks shortly:



Appendix D

Post-Evaluation Surveys
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Figure D.1: UI Component Questions.
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Figure D.2: Visualisations Questions.
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