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Introduction

The use of composite materials has spread during the last decade, especially in aeronautics

and automotive. The best known example is probably the Airbus A380 aircraft, of which about

25 % of the mass is composed of composite materials. Composite materials considered here, are

obtained by a combination of an organic matrix, which ensures the cohesion of the material, and

fiber reinforcement (fibers of carbon, glass fibers, etc..) that gives the material its mechanical

properties . The advantage of composite materials is that they have high properties weight

ratio compared with metals. Composite materials take part in the reduction of the weight of the

structures, allowing the reduction of the energy transportation costs. In addition, composite

pieces can be tailored in such a way that their reinforcement direction permit to deal with the

multi-directional mechanical sollicitations.

However, several obstacles may affect the use of composite materials, their costs and more

generally their development. Usually, we distinguish two types of manufacturing processes: wet

processes and dry processes. In wet processes, fiber reinforcements are sold pre-impregnated

with resin. This makes easier the development of the piece, and provides a good control of the

fiber fraction, which is of paramount importance in composite materials performance. How-

ever, these processes are expensive because they require refrigerated storage of pre-impregnated

reinforcements and heavy hand costs. To reduce this cost, wet processes have been developed

in the last years. They consist in infusing the resin into fibrous preforms during the manufac-

turing process. However, the control of these processes is more difficult, it is hard to control

the most critical properties related to the final piece like the volume fraction of fibers. For

this reason, this work is conducted to propose a numerical methodology to simulate the resin

infusion process which will help to control them and therefore to tune the process parameters

to control the final piece geometrical as well as physical properties

Especially, we are interested in manufacturing large pieces. In this case, the resin is fed over

the preforms (not impregnated yet) in a fluid distribution medium of a very high permeability.

Then, under the action of mechanical pressure, exerted by the atmosphere when the vacuum

is pulled, the resin is infused in the thickness of preforms. The complete modelling of this

process is very complex and involves several physical phenomena. First, the dry preforms are

compacted, and undergoing also large deformations. The thermoset resin flows then in the

fluid distribution medium then into preforms. During its infusion, the resin undergoes, during
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its infusion thermochemical transformations that affect its viscosity. The pressure applied by

the resin into fibers network causes the inflation of preforms which modifies their porosity and

therefore their permeability. This phenomenon is observed when coupling solid and fluid me-

chanics.

Moreover, one should take into consideration the cooling phase, during the development of

internal stress. However, in this work, we have isothermal conditions and the resin is considered

as Newtonian incompressible fluid with constant viscosity. We model the flow of resin into the

fluid distribution medium using Stokes’ equations. The flow of resin into preforms is described

by Darcy’s equations with low permeability of order 10−14m2. The deformations of wet and

dry preforms are considered with an elastic non linear law.

An important part of this work is dedicated to solve, using the finite element method,

Stokes-Darcy coupled problem. This work is based on the work of Guillaume Pacquaut which

defended his phd at École Nationale des Mines de Saint-Étienne in december 2010. Following

this work, we adopted a monolithic approach for the Stokes-Darcy coupled problem, which

means that we use one single mesh for Stokes and Darcy. The interface which separates these

two domains is represented by the isovalue zero of a level set function φ defined as a distance

function to the interface. The coupled problem is classically solved by formulating first a mixed

velocity-pressure problem. It is known, relatively to Brezzi-Babũska theory that the pair of the

chosen interpolations should mainly satisfy two conditions (V0 ellipticity of a and the inf-sup

condition on b in their classical notations) which conducts to a discrete problem well-posed

(existence and unicity of the solution). The difficulty of the choice of stable elements for

Stokes-Darcy coupled problem is that the stable elements for Stokes are not stable for Darcy

and vice versa. Therefore, the inf-sup condition presents a problem in the choice of the pair of

elements in Stokes, especially in the choice of pressure space while the problem in Darcy is the

V0 ellipticity condition and the control of the divergence of the velocity. Briefly, it does not exist

a standard stable finite element pair for both Stokes and Darcy. The choice of different stable

pairs (defined in two different discretized spaces) succeeds in decoupled approach where every

domain is represented by a mesh independently from the other domain. However, in a mono-

lithic approach, this is not possible because it conducts to a loss of consistency of the solution

and oscillations around the interfaces. This is the limitation of the approach proposed by Guil-

laume Pacquaut which relies on the MINI-element in Stokes (linear elements for velocity and

pressure, the velocity is enriched by a bubble function) and a linear element for pressure and
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velocity in Darcy stabilized with a Variational MultiScale method (Hughes Variational Mul-

tiScale). This pair of elements (P1+/P1-HVM) does not ensure the continuity of the normal

velocity on the interface (consistency error) and leads to oscillations of velocity on the interface.

In this work, velocity and pressure fields, in Stokes and Darcy are approximated by linear

and continuous functions per element (triangle or tetrahedron). The pair P1−P1 (linear-linear)

is not stable for Stokes and Darcy. For this reason, we modify the discrete variational formu-

lation of the problem by adding additionnal terms depending on the size of mesh and residual

finite elements to make them stable. In addition, we use stabilization methods called "Vari-

ational MultiScale". Developed twenty years ago, these methods offer a generic and formal

framework for the stabilization of the finite elements formulations. They consist in decompos-

ing the unknown and the test functions of the problem into two components: one corresponding

to the unresolvable scale which is not captured by the mesh and another one corresponding to

the resolvable scale which is the finite element solution. After this step, we establish fine scale

problem and coarse scale problem (finite element problem). The approximation of the fine scale

problem is injected in the finite element problem which allows the generation of stabilization

terms.

When the Stokes-Darcy coupled problem is solved, we use it for the simulation of resin

infusion processes, where the thickness of the fluid distribution medium is very low relatively

to the thickness of the piece, and the permeability of fibrous reinforcement is small. The second

level set function is used to describe the moving flow front, this function is initially defined

by hyperbolic tangent form of the signed distance function to the resin front, and is constant

outside a neighbourhood of this front. We adopt an Updated Lagrangian approach to solve the

solid mechanics problem, i.e the deformation of dry preforms under their compaction due to

a mechanical pressure and the deformation of wet preforms due to the pressure of the infused

resin. The coupling between the resin flow and the deformation of preforms is carried out

incrementally via the pressure of the resin in the expression of the wet preforms mechanical

response, then via the porosity and the permeability which is a parameter present in Darcy’s

equations.

Our manuscript is organized as follow:

– The first chapter introduces the definition of composite materials with organic matrix

and their manufacturing processes. Then, we concentrate on the description and the
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modelling of the process that we take into consideration which is "LRI" (Liquid Resin

Infusion)

– The second chapter is an essential bibliographic study concerning the mixed finite ele-

ments used to solve Stokes’and Darcy’s equations and then Stokes-Darcy coupled prob-

lem. We introduce the theoretical framework of Brezzi-Babũska which allows to establish

the conditions of existence, unicity and stability of the solutions of both the discrete and

continuous problem.

– The third chapter presents the method that we choose to couple Stokes and Darcy

in a single approach: the finite element formulation is stabilized by using Variational

MultiScale method called "ASGS" method (Algebraic SubGrid Scale). An analysis about

the constants of stabilization which appear in this method is carried out.

– The fourth chapter is dedicated to the numerical validation of Stokes-Darcy coupled

problem using ASGS method in the conditions imposed by LRI process. Different tests

are conducted to validate the coupling conditions on the interface, such as a flow per-

pendicular to the interface, a flow parallel to the interface, and we use the manufactured

solution method to study the order of convergence. In addition, we compare the ob-

tained results with those obtained by another monolithic approach and by a decoupled

approach.

– The fifth chapter is made up of two distinct parts. In the first part, we present a bib-

liographic study of the numerical methods of interface capturing. After this, we detail

the method chosen to model the fluid front, the level set method combined with a hyper-

bolic tangent filter. In the second part of this chapter, we deal with the deformation of

preforms. We introduce the theoretical context of large deformations, then we formulate

the mechanical problem with a Lagrangian Updated approach. Finally, we formulate the

coupling between the deformations of preforms and the flow of the resin into preforms

– The sixth chapter proposes some simulations of resin injection (Stokes-Darcy and level

set) then the infusion of resin (Stokes-Darcy, level set and deformation of preforms). 2D

and 3D simulations are considered on simple cases, and then on complex pieces presenting

curvatures and thickness. A comparison with existing experimental results is proposed

on a simple geometry.
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1.1. Introduction

1.1 Introduction

Composite materials consist of a combination of materials that are mixed together to achieve

specific structural properties. A composite material is made of a reinforcement material embed-

ded in a resin matrix. The properties of the composite material are superior to the properties

of the individual materials from which it is constructed. The main advantages of composite

materials are their high strength and stiffness, combined with low density, when compared

with bulk materials, allowing for a weight reduction in the finished part. Composite materials

have gained popularity (despite their high cost) in high performance products that need to be

lightweight and "strong" enough such as aerospace structures, tails, wings, fuselages, bicycle

frames and racing car body (Figure 1.1). In the first part of this chapter, we will introduce

composite materials properties and their manufacturing processes. Then, we will detail the

resin infusion processes that we will model and show the difficulties related to their modelling.

In the second part of this chapter, we will present the modelling of resin infusion processes

taking into consideration the coupling between different physical phenomena occuring in resin

infusion processes.

Figure 1.1: Composite materials products: (a) GD - Aston Martin V12 Vanquish, (b)
HP - Boeing 787 Dreamliner

1.2 Composite materials constituents

1.2.1 Matrix

Synthetic resins are used as matrix materials in organic composites. Resins are generally

either thermoplastic resins or thermosetting resins.

Thermosetting resins are the most diverse and widely used of all man-made materials. They

are linked together by tight bounds of a chemical nature. After their polymerization by ap-
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plying heat in the presence of a catalyst, these resins lead to geometric structure that can be

destroyed only by a considerable application of thermal energy. For this reason, thermoset-

ting resins have high thermomecanical properties. The principal thermosetting resins used in

manufacturing composite materials are polyethanes, polyester and epoxy. Epoxy resins are the

most widely used in high-performance composites. Polyester resins are the most widely used

because of their low production cost, their flexibility and their stiffness.

In thermoplastic resins, macromolecular chains are linked together by weak bonds of physical

nature. The advantage of thermoplastic resins lies in their low cost and recyclability. Nev-

ertheless, this low cost is associated with low thermomechanical and mechanical properties.

Their mechanical applications include helicopter rotor blades, and fairing panels on civil air-

crafts. The most commonly used contemporary compounds are polyethylene, polyester and

polycarbonate.

1.2.2 Reinforcements

Reinforcements bring to the composite material its mechanical properties [Berthelot 2005].

They are commercialized in the form of preforms of various architectures which can be dry or

pre-impregnated with resin. Fibers are the most commonly used reinforcements. There are

different types of fibers: Carbon, Glass fibers and Aramid fibers which can be purchased in

various formats (chapped fibers, long fibers, fiber tows · · · ).

Glass fibers and Aramid fibers

Glass fibers are often used for helicopter rotor blades, for secondary structure on aircraft such

as fairings and wings tips. Glass fibers have lower cost than other fibers. Composite materials

made up by Glass fibers are available as a dry fabric or prepreg material. There are several

types of Glass fibers: E-glass,D-glass,C-glass, R or S glass.

– E-glass accounts for 90 % of the glass fiber market and is used mainly in a polyester

matrix and it has good electrical properties.

– D-glass has high dielectric properties.

– C-glass has good chemical resistance.

– R-glass or S glass has high mechanical resistance.

Aramid fibers are light weight, strong and tough [Dursapt 2007]. Aramid fibers have high resis-

tance to impact damage, however, they are weak in compression due to the interface weakness.

The most well-known and used aramid fibers is Kevlar.
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Carbon fibers

Carbon fibers are the dominant advanced composite materials for aerospace, automobile, sport-

ing goods due to their high strength, high modulus, low density and reasonable cost. There are

several types of Carbon fibers: fiber with high resistance (HR), fiber with intermediate mod-

ulus (IM) and fiber with high modulus (HM). Table 1.1 allows to compare the characteristics

of the different types of fibers.

Preforms architecture

The diameter of fibers is small, for this reason, preforms are commercialized in different forms

of products which contain million of fibers, architectured in different forms. Several types

of fibers architecture can be used depending on the number of directions occupied by fibers:

Unidirectional (UD), bidirectional and multidirectional. Figure 1.2 shows the different types

of preforms architecture.

Characteristics E-glass R-glass Carbon Carbon Aramide
HR HM

Young modulus
E (GPa) 73 85 240 400 135

Tensile strength
R (MPa) 3500 4500 3800 1600 3100

Compressive strength Medium Medium Good Good Bad
Shock resistance Medium Medium Weak Weak Excellent

Sensibility
to humidity Yes Yes No No Yes

Density
2,6 2,6 1,75 1,9 1,5

Expansion coefficient
(10−6mm/mm/C) 5 4 1 1 0

Relative price 1 4 30 60 10

Table 1.1: Comparison of different types of fibers [Dursapt 2007].

8



Chapter 1. Composite materials, LCM processes and their modelling

Figure 1.2: Different types of preforms architecture

1.3 Manufacturing processes of composite materials

Manufacturing processes for composite materials are numerous. They can be classified into

two categories: dry route processes and wet route processes.

1.3.1 Dry route processes

Dry processes correspond to processes where composite material is formed by stacking

“prepregs”. Prepregs are composite reinforcements (glass fibers, carbon fiber, aramid, etc.)

that are pre-impregnated with resin. Dry processes have the advantage of convenient use and

can easily master the final properties of the final product especially the volume fraction of

fibers. The stacking of “Prepregs” is then placed in a mould for manufacturing the composite

material. Prepreg materials are cured with an elevated temperature within an autoclave, oven

or heat blanket. These processes allow to obtain composite pieces with excellent mechanical

properties resulting from a low porosity and a high volume fiber fraction. However, the cost of

storage is high because Prepreg material must be stored in a freezer at a temperature below

0◦ C to delay the curing process.
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1.3.2 Wet route processes

These processes appear to reduce the costs with performance and properties identical to

those obtained with dry processes. Wet processes are used for the development of composite

materials in aeronautics, automative and shipbuilding.

There are two main types of processes. First there are processes based on injection of the resin

into a mould like RTM (Resin Transfer Molding), VARTM (Vacuum Assisted Resin Transfer

Molding) and ICRTM (Injection Compression Resin Transfer Molding).

Second, to solve the problems of filling met in manufacturing large pieces without high costs,

infusion processes appeared twenty five years ago. The most known processes based on infusion

of the resin are VARI (Vacuum Assisted Resin infusion), RIFT (Resin infusion under Flexible

film infusion), LRI (Liquid Resin Infusion) and RFI (Resin Film Infusion). Below, we will

describe RTM processes in the field of processes based on injection, LRI and RFI processes in

the field of processes based on infusion.

1.3.2.1 RTM processes

Resin Transfer molding (RTM) is a composite manufacturing process in which fibrous pre-

forms one placed in a closed mold, then a viscous resin is injected into the mold to fill the

empty spaces between the network of fibers. Then a cycle of temperature is applied to allow

the reticulation of resin taking place. The injection of resin occurs mainly in the plane of

preforms. The pieces obtained with this process can be complex with a well controlled final

thickness. However, it is important to achieve a large filling of the mold for large pieces. In

this process, the vent location is one of the most important variable in process design, it has a

great impact on mold filling time and resin flow pattern, which increases the process efficiency

and the quality of products.

1.3.2.2 RFI (Resin Film Infusion)

RFI processes consist in depositing fibrous preforms under a layer of solid resin (Figure

1.3). A punched mold can be placed on the top of stacking to improve efficient finishing of the

surface. The bleeder and a vacuum bag are placed on top of the assembly. Bleeder absorbs the

mass of excess resin. First, a cycle of temperature is applied to maintain the resin in its liquid

state and to allow the infusion of the resin through the preforms under the action of pressure

cycle. Then, at the end of infusion, a cycle of temperature and pressure is applied again to

lead to the crosslinking of the resin.
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Figure 1.3: Resin Film Infusion (RFI) schematic

1.3.2.3 LRI processes (Liquid Resin Infusion)

In LRI processes, a resin bed is formed through a highly permeable fluid distribution

medium placed on the top of fiber preforms. The deformation of the fluid medium is assumed to

be negligible compared with the deformations into preforms due to its high stiffness distribution.

A punched mold can be placed on the top of the stacking of preforms to improve the finishing of

the surface which is not in contact with the mould (Figure 1.4). A vacuum bag is then placed,

and vacuum is pulled out to compact the stack of preforms. This also serves as a driving

force for infusing the resin across the preforms. Indeed, the difference of pressure between the

resin inlet, located in the fluid distribution medium, and the vacuum vent, set on the base of

the preform, causes the infusion of resin into the fluid medium then across the thickness of

preforms. When the infusion is complete, a cycle of pressure and temperature is applied to

realize the crosslinking of the resin.

Figure 1.4: Liquid Resin infusion process principle [Wang et al. 2010]
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1.4 Industrial context

Resin infusion processes have been developed in recent years. They show an advantage rel-

atively to "Prepregs" processes which have high storage costs and are limited to small pieces.

Resin infusion processes allow a manufacturing of large pieces because they consist in infusing

resin across the thickness of preforms rather then in their plane. Distances travelled by resin

are small compared with the distances that are involved in processes by injection (RTM) and

a good impregnation of resin is ensured which permits to obtain pieces with good mechanical

properties. However, in LRI processes, some mechanical (thickness of preforms) and geometri-

cal properties (fiber-volume fraction) are not well controlled. Numerical simulation will allow

a better understanding of the influence of the LRI process parameters (pressure, temperature,

viscosity, permeability) onto the final piece characteristics. This will lead to drastic reduction

in turning these promissing manufacturing processes, and eventually to optimize the industrial

process configurations.

1.5 Challenges and motivation of this work

Numerical simulation is necessary to optimize process promotion to reach infusion time

and to master, above all, thickness and fibers volume fraction. Infusion process is a very

complex problem to solve, it must rely on general model which couples all the mechanical (solid-

fluid) and thermochemical phenomena. Decoupled representation of each phenomenon does not

represent the physical reality. The difficulties met in this work is to model the isothermal flow

of resin into preforms undergoing large deformations through two coupled mechanisms: the flow

of resin (developed in chapter 2) and the deformation of preforms (developed in chapter 5). The

second difficulty is the conservation of the fluid mass and the capture of moving flow fronts.

To represent the moving flow front, we have two approaches. Lagrangian approaches where the

moving flow front is presented by marks which correspond to the nodes of the boundary of the

mesh. These marks change their position over the time with a velocity equal to the velocity of

the resin. Eulerian approaches where the mesh is fixed. The front of the resin passes through

the mesh and is represented by a function computed in the domain. In this case, we have

to solve transport equation to detect the evolution of the resin flow front. Consequently, to

simulate the resin infusion processes taking into consideration all the physical problems already

cited, one has to propose a numerical multi-physical model able to describe the flow of resin into

preforms undergoing large deformations. To this day, two models exist, one developed by Celle

[Celle et al. 2008] and one developed by Pacquaut [Pacquaut 2009]. Celle uses a decoupled
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approach which consists in using two different meshes matching at the interface which separate

the resin (fluid) and the preforms (porous). Pacquaut uses a monolithic approach which consists

in using one single mesh for resin and preforms and represents the interface between porous

and fluid domains with a level set function. The numerical model developed by Pacquaut

presents some accuracy problems such as consistensy errors and oscillations of velocity in

severe cases corresponding to physical reality (complex geometries, curved interfaces and low

permeabilities). The aim of this work, based on the work from Pacquaut is to propose a robust

numerical multi-physical model to simulate resin infusion processes in an industrial context

by using one mesh for resin and preforms. This model will be able to deal with physical and

numerical problems met in literature [Pacquaut 2009] and to deal with severe cases matching

with industrial reality.

Conclusions

We introduced in this first part, composite material and their manufacturing processes. In

addition, we presented resin infusion processes which are hard to control (thickness of preforms,

fiber-volume fraction). The numerical simulation will allow to understand this process and to

reduce the costs of experimental turning. To understand the simulation methods, we will

introduce in the next part the ways of modelling resin infusion processes.

1.6 Modelling scales

Composite materials are heterogenous materials consisting of fibers and resin. The first

step implied to model these materials is to choose the scale of description of the physical

mechanisms. In general, the more the modelling scale is low, the more we get close to the

fundamental physical problem and the less we have to determine experimental parameters.

However, the lower the modelling scale, the more we must have local meshes and inducing

higher computational costs. There are several possible approaches: microscopic, mesoscopic

and macroscopic approaches. Figure 1.5 illustrates these different scales in the case of a flow

of resin through a fiber bed.

1.6.1 Microscopic scale

The microscopic scale corresponds to the scale where one is able to describe the flow of

resin between the filaments (Figure 1.5). Due to the large difference between the diameter of a

fiber (7− 10µm) and the dimensions of a composite piece (of the order of a meter), this scale

is usually not considered in simulation methods. In this approach, we use a representative
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Figure 1.5: The different modelling scales of resin infusion processes

elementary volume (VER). This approach allows an accurate characterization of the behavior

of fibers and resin because it consists in studying separatly their behavior using local models.

However, this approach is difficult to implement in the case of industrial applications since the

computation time associated with such models is prohibitive.

1.6.2 Mesoscopic scale

The mesoscopic scale is the scale where one is able to describe the flow of resin between

the tows (Figure 1.5). The working scale corresponds to the tow dimension, typically one to

several millimetres.

1.6.3 Macroscopic scale

The macroscopic scale corresponds to the scale of the piece, the tows are not represented

and the stacking of tows is considered as a homogeneous equivalent medium (Figure 1.5).

This approach is more convenient for the industrial cases. Indeed, the time of computation

associated with these models is generally lower than the time associated with microscopic

models. However, the physical characteristics of the enviromnent are complex to characterize

and difficult to observe. To study the influence of process parameters ( pressure, temperature)

on the final piece characteristics, we will use macroscopic approach to model resin infusion

process through reinforcements represented as equivalent homogeneous medium.

1.7 Multi-domain modelling

Taking into account, the description of LRI process, we will adopt Multi-domain modelling

described in Figure 1.6 where we decompose our domain into three different zones corresponding

to:

14



Chapter 1. Composite materials, LCM processes and their modelling

– The fluid distribution medium corresponding to the draining fabrication so-called "Stokes

zone".

– Preforms impregnated with resin (wet preforms).

– Preforms not impregnated yet with resin (dry preforms).

Figure 1.6: Representation of the domain decomposition into three zones during the
modelling of resin infusion processes: fluid distribution medium with resin, dry preforms
and wet preforms

1.8 Multi-phyiscal modelling

Resin infusion processes involve several complex physical phenomena. In reality, resin

infusion process modelling consists in modelling and coupling four physical problems: fluid

mechanics problem, solid mechanics problem, thermal problem, and resin cross-linking problem.

Figure 1.7 illustrates the different physical phenomena and the interactions between these

phenomena.

Fluid mechanics problem corresponds to the flow of resin in the fluid distribution medium

and into preforms. This problem is coupled with the thermal transfer and the cross-linking

kinetics. The cross-linking of resin affects the viscosity, then it affects the flow. This problem

is coupled with the solid mechanics problem because it influences the deformation of preforms

due to the pressure of the resin inside the pores. On the other hand, the solid mechanics

problem influences the flow of resin because it changes the permeability of preforms i.e the

capability of the preforms to be infused by the resin. Thermal and cross-linking problems are
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1.8. Multi-phyiscal modelling

Figure 1.7: Physical phenomena occuring in the modelling of resin infusion processes

also important to model. The cross-linking changes the viscosity, then it affects the resin flow.

In addition, cross-linking influences the thermal transfer because it produces heat during the

resin exothermal polymerization. Converse, thermal transfer influences the cross-linking kinetic

because the temperature is essential for the activation of the resin polymerization reaction. The

temperature has also an effect on the resin flow because it changes the viscosity and affects the

deformation of preforms by expansion.

In this work, we will concentrate on fluid mechanics and solid mechanis without taking into

consideration thermal and cross-linking aspects. In chapter 2, we will develop the modelling

of fluid mechanical problem and in chapter 5, we will develop the modelling of solid mechanics

problem.
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1.9 Conclusions

In this chapter, composite materials and their manufacturing processes were briefly de-

scribed to define the general context of our work. Then, we presented the numerical simulation

considered as an essential way to control resin infusion processes, especially the impregnation

of resin into deformable preforms, which will allow to reduce the costs in turning composites

materials manufacturing. In addition, we described briefly the bibliographic study of the mod-

elling of resin infusion processes, taking into consideration all the physical phenomena included

in this modelling. In the next chapter, we will describe the physical and mathematical models

to describe the flow of resin in the fluid distribution medium and preforms, and the different

stabilized methods used to discretize the associated mathematical model using finite element

methods.
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2.1. Introduction

2.1 Introduction

In this chapter, we will present the modelling of the resin flow, the resin being considered

as an incompressible fluid. It consists on modelling the resin into the fluid distribution medium

and into preforms. We present separately Stokes equations and Darcy equations. Then, we

present the discretized finite element method used for Stokes and Darcy, and the different

stabilized methods used in the literature which lead to stabilize the Galerkin’s formulation of

Stokes and Darcy’s equations. Then, we present the "unified" and "decoupled" strategies used

in coupling Stokes and Darcy flows and the way to choose compatible finite elements for both

Stokes and Darcy in the coupling problem.

2.2 Stokes-Darcy coupled problem: strong and weak formula-

tions

In this section, we will present the modelling of the fluid. For that we first introduce Stokes’

equations and their weak formulation. Then, we present the modelling of the resin flow into

preforms. For this we introduce Darcy’s equations and their weak formulation. Finally, we

present the Stokes-Darcy coupled problem and its weak formulation.

2.2.1 Modelling of the fluid part

2.2.1.1 Incompressible Newtonian fluid

The first assumption is related to the resin which is classically considered as a Newtonian

incompressible fluid:

σs = 2µε̇(vs)− ps I (2.1)

where σs is the cauchy stress tensor, ε̇(vs) is the strain rate tensor which is defined by ε̇(vs) =
1
2(∇vs +∇vs

T ), vs is the resin velocity, ps is the hydrostatic pressure, µ is the viscosity and

I is the second order identity tensor.

2.2.1.2 Stokes equations

Let us consider Ωs the region occupied by the fluid, the motion of which is described by

both the momentum and mass balance equations. We consider ∂Ωs the boundary of Ωs that

can be split into two distinct parts, ∂Ωs = Γs,D ∪ Γs,N with Γs,D ∩ Γs,N = ∅, corresponding

to two different kinds of boundary conditions: Dirichlet or essential condition, Neumann or
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natural condition. The velocity is enforced over Γs,D (Dirichlet condition), while the normal

stress is enforced over Γs,N (natural condition). The Stokes system, which expresses momentum

and mass balances when inertia effect is neglected, is written as: find the velocity vs and the

pressure ps fields defined by:

−div(2µε̇(vs)) +∇ps = fs in Ωs

div vs = hs in Ωs

vs = v1 on Γs,D

σn,s = −pext,s.ns on Γs,N

(2.2)

where fs is the volume force, v1 is the velocity prescribed on the boundary Γs,D, ns is the unit

vector normal to the boundary of Ωs and σn,s is the normal stress prescribed on Γs,N to be

equal to −pext,s.ns. If the fluid is incompressible then hs = 0.

2.2.1.3 Weak formulation of Stokes equations

In order to solve Stokes equations by the finite element method, the weak formulation has

to be established. We introduce some spaces that we will use for the velocity, pressure and test

functions in the weak formulation of Stokes equations:

Qs = L2(Ωs) = {u : Ωs → R |
∫

Ωs

u2dΩ <∞} (2.3)

H1(Ωs)
m = {u ∈ L2(Ωs)

m | ∇u ∈ L2(Ωs)
m×m} (2.4)

Vs = H1
Γs,D

(Ωs)
m = {u ∈ H1(Ωs)

m | u = u1 on Γs,D} (2.5)

Vs
0 = H1,t

Γs,D
(Ωs)

m = {u ∈ H1(Ωs)
m | u = 0 on Γs,D} (2.6)

L2(Ωs) is the Lebesgue space of square integrable functions and H1
Γs,D

(Ωd)
m is the Sobolev

space where m is the dimension of the problem (m = 2 or 3).

In the entire chapter, we note ‖.‖0 and ‖.‖1 the L2 and H1 norms defined by:

‖q‖0 = (

∫

Ωs

q2dΩs)
1/2
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‖w‖1 = (‖w‖20 +
m∑

j=1

‖ ∂w
∂xj
‖20)1/2

The weak formulation of Stokes problem is obtained by multiplying the Stokes Equation (2.2)

by weighting functions ws ∈ V 0
s and qs ∈ L2(Ωs) and then by integrating by parts on the

domain Ωs. For the sake of simplicity, < ., . > denotes the scalar product of functions in

L2(Ωs).

The integration by part of the first term of the Stokes equation gives (Equation(2.2)):

− < div(2µε̇(vs)),ws > = < 2µ ˙εij
∂ws,i

∂xj
> − < 2µ ˙εijnj , ws,i >Γs,N

= < 2µε̇(vs) : ε̇(ws) > − < (2µε̇(vs).ns),ws >Γs,N

(2.7)

Note: The integral < −2µε̇(vs).ns,ws >Γs reduces to < −2µε̇(vs).ns,ws >Γs,N
because the

test function ws vanishes on Γs,D(w|Γs,D
= 0).

The integration by parts of the second term of Equation (2.2) gives:

< ∇ps,ws >= − < ps, divws > + < ps,ws.ns >Γs

with

< ps,ws.ns >Γs=< ps,ws.ns >Γs,N

since w|Γs,D
= 0.

Consequently, we obtain the weak formulation of Stokes equations:

Find [vs, ps] ∈ Vs ×Qs such as:

< 2µε̇(vs) : ε̇(ws) > − < ps, divws >=< −pext,s.ns,ws >Γs,N
+ < fs,ws > (2.8)

The weak formulation of Stokes equations can be written as:

Find vs ∈ Vs and ps ∈ Qs such that:

Bs([vs, ps], [ws, qs]) = Ls([ws, qs]), ∀ws ∈ Vs0, ∀qs ∈ Qs (2.9)

The bilinear form Bs and the linear form Ls are defined by:

Bs([vs, ps], [ws, qs]) = 2µ < ε̇(vs) : ε̇(ws) > − < ps, divws > + < divvs, qs > (2.10)
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Ls([ws, qs]) =< fs,ws > + < hs, qs > − < pext,s.ns,ws >Γs,N
(2.11)

Let us note that this formulation corresponds to the dual weak formulation of Stokes equations.

2.2.2 Flow of resin into preforms

Ωd is the region occupied by the preforms. To model the infiltration of resin into preforms in

a macroscopic approach, one represents classically the preforms as an equivalent homogeneous

porous medium. Consequently, the laws used to describe the flow into preforms are these

from the mechanics of porous media, the classical laws proposed by Darcy [Darcy 1856] and

Brinkman [Brinkman 1947]. The Reynolds number Re is the dimensionless number which

allows to simplify the modelling and measures the importance of the inertial forces compared

with the viscous forces. It is written as Re =
|vd| d ρ
µ

where d is the average pore diameters,

|vd| is the fluid velocity in the pores and ρ is the fluid density. The flow is considered as

laminar if the Reynolds number is much smaller than 1. Sometimes, it is difficult to know with

precision the average pore diameter d. This is why some authors prefer to consider the root of

the permeability 1, denoted by
√
k instead of d [Bear 1990]. In this case, the Reynolds number

can be written as: Re =
vd

√
k ρ

µ . For more typical values corresponding to the case considered

in this work, vd = 1m/s, µ = 0.1Pa.s, k = 10−14m2, ρ = 103Kg/m3 the Reynolds number is

equal to 10−3. Hence, the inertial forces are negligible compared with the viscous forces.

2.2.2.1 Darcy’s law

The Darcy’s law is a derived constitutive equation that describes the flow of a fluid through

a porous medium. The law was formulated by Henry Darcy [Darcy 1856], it is a simple first

gradient proportional relationship between the volume flux (m/s) and the pressure change per

unit length of the porous media. If the flow is one dimensional, the gradient of pressure is dp
dx ,

the Darcy’s law is q = k
µ

dp
dx . k is the permeability (m2), µ is the viscosity (Pa.s).

This law is convenient for a low Reynolds number (Re << 1), which is the case where

viscous forces dominate inertial forces. In this case, the gradient of pressure is proportional to

the velocity of the fluid flow. This Darcy’s law can be generalized as [Hassanizadeh 1983]:

vd = −k

µ
∇pd

with pd the pressure, k is the second order permeability tensor and vd the average of the ve-

1. Permeability describes the ability of a porous medium to be penetrated by a fluid
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locity. To compute the actual fluid velocity in the pores, one has to divide vd by the porosity

ψ which is the ratio between the volume of pores and the total volume. Then, the real velocity

denoted by vr is

vr =
vd

ψ

2.2.2.2 Brinkman’s law

An increasing number of articles use Brinkman’s equations in place of Darcy’s equation for

describing flows in porous media. Brinkman’s law introduced in [Brinkman 1947] proposes

to describe the flow into porous media by generalizing Navier-Stokes equations. This isotropic

law for the flow of a Newtonian fluid through a swarm of fixed particles is in the form:

∇pd = −µ
kvd + µe∆vd (2.12)

where µe is the effective viscosity (sometimes called "apparent viscosity"). The practical advan-

tage of Equation (2.12) stands in the fact that it is a slight modification of Stokes equations.

Theoretical investigations of the domain of validity of Brinkman equation yield to µe = µ

[Vernescu 1990] and it is estimated that the effective viscosity µe goes to µ as the porosity

increases to 1 which corresponds to important permeability while in resin infusion processes,

on the contrary we have small permeabilities (10−8m2 ≤ k ≤ 10−15m2).

Both Darcy’s law and Brinkman’s law are valid at a large scale compared with the pore

scale. It means they correspond to a macroscopic approach of the resin flow into preforms. In

this manuscript, we will use Darcy’s equations considering the permability that we will use for

preforms is typically between 10−8m2 and 10−15m2.

2.2.2.3 Darcy’s equations

Let us consider Ωd the region occupied by the preforms. We consider ∂Ωd the boundary of

Ωd that can be split into two distinct parts ∂Ωd = Γd,D ∪Γd,N , corresponding to the two differ-

ent kinds of boundary conditions: Dirichlet and Newman. Respectively, the Darcy’s equations

are then expressed as:

Find the velocity vd and pressure pd such as:

24



Chapter 2. Stabilized finite element methods for Stokes, Darcy and
Stokes-Darcy coupled problem

µ
kvd +∇pd = fd in Ωd

div vd = hd in Ωd

vd.nd = gd on Γd,D (dual) or Γd,N (primal)

pd = pext,d on Γd,N (dual) or Γd,D (primal)

(2.13)

where k is the permeability reduced to a scalar in the isotropic case considered here, pext,d is

a pressure to be prescribed on Γd,N , nd is the outward unit vector normal to the boundary of

Ωd and fd is the volume force. If the fluid is incompressible then hd = 0.

2.2.2.4 Weak formulation of Darcy equations

In order to solve Darcy problem by a finite element method, the weak formulation has to

be established. The general spaces of velocity, pressure and test functions are defined by:

Qd = L2(Ωd) = {qd : Ωd −→ R |
∫

Ωd

q2dΩ <∞}

H(div,Ωd) = {u ∈ L2(Ωd)
m | div(u) ∈ L2(Ωd)}

Vd = {u ∈ H(div,Ωd) |u.n = u2 on Γd,D}
V 0
d = {u ∈ H(div,Ωd) |u.n = 0 on Γd,D}

(2.14)

We have two weak formulations of the Darcy problem: the dual formulation and the primal

formulation.

Dual weak formulation

The dual weak formulation for Darcy’s equations is obtained by multiplying Equations (2.13)

by the weighting functions wd ∈ V d
0 and qd ∈ Qd and then by integrating by parts the term of

pressure in the first equation. Then the dual weak formulation of Darcy is:

Find vd ∈ Vd and pd ∈ Qd such that:

Bd([vd, pd], [wd, qd]) = Ld([wd, qd]) (2.15)

∀wd ∈ V 0
d , ∀qd ∈ Qd

where the bilinear form Bd and the linear form Ld are defined in Darcy by:
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Bd([vd, pd], [wd, qd]) = µ
k < vd,wd >

− < pd, divwd >

+ < qd, div vd >

+ < pd,wd.nd >Γd,N

(2.16)

Ld([wd, qd]) = < fd,wd >

+ < hd, qd >

+ < pext,dn,wd >Γd,N

(2.17)

Primal weak formulation

The primal weak formulation of Darcy problem is obtained by multiplying Equations (2.13) by

the weighting functions wd ∈ L2(Ωd)
m and qd ∈ H1

Γd,D
(Ωd) and then by integrating by parts

the mass conservation equation. Then, the primal weak formulation of Darcy problem writes:

Find vd ∈ L2(Ωd)
m and pd ∈ Qd such that:

Bd([vd, pd], [wd, qd]) = Ld([wd, qd]) (2.18)

∀wd ∈ L2(Ωd)
m and qd ∈ H1,t

Γd,D
(Ωd)

The bilinear form Bd is defined by:

Bd([vd, pd], [wd, qd]) = µ
k < vd,wd >

+ < ∇pd,wd >

− < vd,∇qd >
+ < qd,v.nd >Γd,N

(2.19)

In our approach, we will use the dual formulation of Darcy’s equations in order to have the

same finite elements for pressure and velocity in Stokes and Darcy. This will be detailed later.

2.2.3 Stokes-Darcy coupled problem

The "Stokes-Darcy" coupled problem has been studied by many researchers in many fields

of engineering. The main strategies found in the literature to solve the coupling problem are

either "decoupled" strategies or "unified" strategies. The decoupled approach consists in using

two different discrete spaces to solve Stokes’ and Darcy’s equations [Riviere & I.Yotov 2005].

Conversely, the monolithic approach consists in using the same finite element spaces [E.Burmana

& P.Hansbob 2007], [T.Karper et al. 2009], [Arbogast & Brunson 2007]. The originality of
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our approach is to use the "unified" approach for coupling Stokes-Darcy in a multi-physics

framework in severe transient regimes. Now, we will present the coupling between Stokes and

Darcy equations. Let us define Ω ⊂ Rm (m = 2 or m = 3) a bounded domain made up by two

non overlapping subdomains Ωs and Ωd separated by a surface Γ = ∂Ωs ∩ ∂Ωd (Figure 2.1).

Index s is used to denote everything that concerns the purely fluid domain (Stokes), and index

d for porous medium (Darcy domain). Γ is the interface between Stokes and Darcy. We note

v the velocity and p the pressure. When coupling Stokes and Darcy, the velocity and pressure

in Stokes are noted by vs = v|Ωs
, ps = p|Ωs

. The velocity and pressure in Darcy are denoted

by vd = v|Ωd
and pd = p|Ωd

. Conditions have to be considered on the interface Γ of normal

n = ns. These conditions are:

Figure 2.1: Computational domain

Continuity of normal velocity

The mass conservation through the interface Γ is expressed by the continuity of the normal

velocity field v across Γ.

vs.ns + vd.nd = 0 on Γ (2.20)

By considering n = ns = −nd, Equation (2.20) can be written as

vs.n = vd.n on Γ (2.21)

Continuity of the fluid normal stress

The continuity of normal stress over the interface Γ is expressed by
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n.σn.n = n.σd.n onΓ (2.22)

The stress in Stokes is defined in Equation (2.1) by σs = (2µε̇(vs)− psI) and the stress in

porous media is σd = −pdI [Layton et al. 2003]. Then, this condition becomes:

ps − 2µn.ε̇(vs).n = pd on Γ (2.23)

Beaver-Joseph-Saffman condition

The Beaver Joseph Saffman condition allows the tangential velocity to be specified on the

interface Γ. For an isotropic permeability, the interface condition can be written as

2n.ε̇(vs).τj = − α√
k
(vs.τj), j = 1, 2 (2.24)

where α is a dimensionless parameter, so-called slip coefficient, and τj are the tangentiel vectors

on the interface.

2.2.3.1 Weak formulation in pressure and velocity for the coupled problem

In order to solve the Stokes-Darcy coupled problem by a finite element method, the weak

formulation has to be established. The weak formulation of Stokes-Darcy coupled problem is

obtained by summing up both weak formulations of Stokes and Darcy [J.M.Urquiza et al. 2008].

We will rewrite the weak formulation of Stokes problem detailed in Section 2.2.1.3 and the weak

formulation of Darcy’s equations detailed in Section 2.2.2.4 to show how we can take interface

conditions into consideration in these formulations.

2.2.3.2 Weak formulation of Stokes equations

By multiplying the Stokes Equations (2.2) by weighting functions ws ∈ V 0
s and qs ∈ Qs

and then by integrating by parts on the domain Ωs, we obtain:

< 2µ ε̇(vs) : ε̇(ws) >Ωs − <
(
2µ ns.ε̇(vs).ns

)
, (ws.ns) >Γ − <

(
2µ ns.ε̇(vs).τ

)
, (ws.τ ) >Γ

− < ps, divws >Ωs + < ps,ws.ns >Γ=< ts,ws >Γs,N
+ < fs, ws >Ωs

(2.25)

< qs, div vs >Ωs=< hs, qs >Ωs (2.26)
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Using the continuity of the normal stress (2.22) and the BJS interface condition (2.24), we

obtain the weak formulation of the Stokes equations:

Find vs ∈ Vs and ps ∈ Qs, such that

Bs([vs, ps], [ws, qs]) = Ls([ws, qs]) ∀ws ∈ V 0
s , ∀qs ∈ Qs (2.27)

with the bilinear form Bs and the linear form Ls defined in Stokes by:

Bs([vs, ps][ws, qs]) = 2µ < ε̇(vs) : ε̇(ws) >Ωs − < ps, divws >Ωs + < divvs, qs >Ωs

+< pd,ws.ns >Γ
︸ ︷︷ ︸

A

+ <
αη√
k
(vs.τ ), (ws.τ ) >Γ

Ls([ws, qs]) =< fs,ws >Ωs + < hs, qs >Ωs + < ts,ws >Γs,N

2.2.3.3 Weak formulation of Darcy’s equations

The weak formulation of Darcy is obtained by multiplying the equations of Darcy (2.13)

by the weighting functions defined in V 0
d and qd ∈ Qd and then, by integrating by part on the

domain Ωd:

<
µ

K
vd,wd >Ωd

− < pd, divwd >Ωd
− < pd, wd.ns >Γd

= < fd,wd >Ωd

− < divvd, qd >Ωd
= < hd, qd >Ωd

(2.28)

with n = ns = −nd.

Using the fact that wd.nd vanishes on Γd,D and that the weighting functions are in the

same spaces (ws ≡ wd), we obtain the so-called dual weak formulation of the Darcy equations

which is:

Find vd ∈ Vd and pd ∈ Qd, such that

Bd([vd, pd], [wd, qd]) = Ld([wd, qd]), ∀wd ∈ V 0
d , ∀qd ∈ Qd (2.29)

The bilinear form Bd and the linear form Ld are defined in Darcy by:

Bd([vd, pd][wd, qd]) =
µ

k
< vd,wd >Ωd

− < pd, divwd >Ωd

− < qd, divvd >Ωd
−< pd, ws.ns >Γ
︸ ︷︷ ︸

B

Ld([wd, qd]) = < fd,wd >Ωd
+ < hd, qd >Ωd

+ < pext,wd >Γd,N

(2.30)
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2.2.3.4 Mixed weak formulation of Stokes-Darcy coupled problem

The mixed weak formulation of Stokes-Darcy is obtained by summing up Equations (2.28)

and (2.30) and taking into consideration the conditions imposed on the Stokes-Darcy interface

described in Section 2.2.3. The terms denoted by A and B in Equations (2.28), (2.30) respec-

tively vanish when summing up these two formulations. The integrals over Ωs and Ωd have

to be redefined. For this, we introduce the Heaviside function Hi (equal to 1 in the domain i

(i = s or d) and vanishing elsewhere), and we have:

∫

Ωi

( ) =

∫

Ω
( )HidΩ

Hence, the variational formulation of the Stokes-Darcy coupled problem consists in finding

[v, p] ∈ Vc ×Qc such that:

Bc([v, p], [w, q]) = Lc([w, q])

∀[w, q] defined inV 0
c ×Qc

.

Vc = Vs × Vd

V 0
c = V 0

s × V 0
d

Qc = Qs ×Qd

The bilinear form Bc and the linear form Lc are defined by:

Bc([v, q], [w, q]) = < 2µε̇(v) : ε̇(w)Hs >Ω + <
µ

k
v,wHd >Ω

− < p , divw >Ω + < q, divv >Ω

+ <
αµ√
k
v ,w >Γ

(2.31)

Lc([v, p], [w, q]) = < f ,w >Ω + < h, q >Ω + < ts,w >Γs,N
+ < pext,w >Γd,N

(2.32)

(f , h) are defined by (fd,hd) in Darcy and (fs,hs) in Stokes.
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2.3 Stability of the mixed continuous and discretized problems

2.3.1 Stability of the mixed continuous problem

Some problems can not be solved using the Lax–Milgram theorem enunciated in Appendix

A. To allow a better understanding of the theorems mentioned before, we will take the Stokes’

problem as an example:

−µ∆vs +∇ps = fs in Ωs

div vs = hs in Ωs

vs = v1 on Γs,D

σn = −pext,s.ns on Γs,N

(2.33)

Then, the weak formulation associated with the Stokes system defined in Equation (2.33) is:

Find [vs, ps] such that:

Bs([vs, ps], [ws, qs]) = Ls([ws, qs] (2.34)

∀[ws, qs] ∈ V 0
s ×Qs

where the bilinear form Bs([vs, ps], [ws, qs]) and the linear form Ls([ws, qs]) are defined by:

Bs([vs, qs], [ws, qs]) = 2µ < ∇vs,∇ws >Ωs

− < ps, divws >Ωs

+ < divvs, qs >Ωs

(2.35)

Ls([ws, qs]) = < fs,ws >Ωs

+ < pext,s.ns,ws >Γs,N

(2.36)

To make an attempt at proving the coercivity of Bs(., .) one computes:

Bs([vs, ps], [vs, ps]) =

∫

Ωs

|∇vs|2dΩ (2.37)

Equation (2.37) cannot be lower bounded by ||[vs, ps]|| since ||ps||0 is absent in the identity

above (2.37).Then, the mixed formulation cannot be studied in the usual framework of the

Lax-Miligram theorem.

In this section, we will enunciate two theorems used to prove the existence and uniqueness

of the solution for this type of problems. The first theorem is dedicated to the mixed problems

written in their abstract form (P). Let us consider the following problem (P):
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Find v and p such that:

(P )

{

a(v,w) + b(v, p) = L(w) ∀w ∈ V
b(w, q) = F (q) ∀q ∈M

(2.38)

V and M are Hilbert spaces. a and b are bilinear continuous forms, L and F are linear

continuous forms.

We remark that for all w ∈ V , the application: w −→ a(v,w) is linear and continuous (because

of the bilinearity of a(., .)). Then, by using the Riesz representation, it exists a unique vector

Av such that:

a(v,w) = (Av,w)V ∀w ∈ V

In addition, we do the same with b which is also bilinear and continuous from V ×M to R, we

introduce B ∈ L(V,M) and its adjoint B
′ ∈ L(M,V ) (L is the set of the linear forms) such

that:

∀w ∈ V, ∀q ∈M, b(w, q) = (Bw, q)M = (w, B
′

q)V

We can do the same thing with the vectors l ∈ V and f ∈M such that:

∀w ∈ V, L(w) = (l,w)V

∀q ∈M,F (q) = (f , q)M
(2.39)

Using the operators introduced before, the problem can be written as:

Find v ∈ V and p ∈M such that :

Av +B
′

p = l

Bv = f
(2.40)

Let us note,

Z = {w ∈ V such thatB(w, q) = 0, ∀q ∈M} = {w ∈ V such thatBw = 0} = KerB

and

Zf = {w ∈ V such that b(w, q) = F (q), ∀q ∈M} = {w ∈ V such thatBw = f}

The initial problem (P ) can be associated with (P
′

) such that:
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(P ′)

{

Findv ∈ Zf ∈M such that

a(v,w) = L(w) ∀w ∈ Z
(2.41)

If we suppose that Zf is not empty, then ∃v0 ∈ Zf such that v1 = v − v0, the problem

(P
′

) is equivalent to the following problem (Q):

(Q)

{

Find v1 ∈ Z such that

a(v1,w) = L(w)− a(v0,w) ∀w ∈ Z
(2.42)

The space Z is closed in V , then we can apply the Lax-Miligram theorem on the problem

(Q) under the hypothesis that the bilinear form a is coercive on Z = KerB. Consequently,

the Lax-Miligram theorem under this hypothesis imposes the following conditions:

Continuity:

∃M > 0, ∀v, ∀w ∈ V
|a(v,w)| ≤M ||v||V ||w||V

(2.43)

Coercivity or (ellipticity) on Z = KerB:

∃α > 0, ∀w ∈ Z = KerB, a(w,w) ≥ α||w||2X (2.44)

If this condition is realized, problem (P
′

) admits a unique solution v ∈ Zf . In addition,

to have the uniqueness and existence of the solution of the initial problem (P ) (existence and

uniqueness of the pressure p), we have to add the following hypothesis:

the operator B : V −→ M is surjective. Since v is unique, consequently if B is surjective,

it exists a unique solution p = B(l − Av). The surjectivity of the operator B : V −→ M is

equivalent to the following inf-sup condition satisfied by b and defined in equation(2.45).

inf
q∈M

sup
w∈V
| b(v, q)

||w||V ||q||M
≥ C (2.45)

Then, the Brezzi-Babũska theorem used to prove the existence and uniqueness of the solu-

tion of problem (P ) is enunciated as:

Brezzi-Babũska theorem :
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i)The bilinear form a(., .) is continuous and coercive on Z = ker(B).

ii)The inf-sup condition inf
q∈M

sup
w∈V

b(v,q)
||w||V , ||q||M ≥ C is satisfied onV ×M,

this condition is also equivalent to: the operatorB : V −→M is surjective.

(2.46)

Existence and uniqueness of the solution with the Babũska theorem

In some cases, particulary to study the stabilized bilinear forms, it is preferable to use the

following form of the problem (P ):

Find [v, p] ∈ V ×Q such that:

B([v, p], [w, q]) = L([w, q]) ∀ [w, q] ∈ V 0 ×Q0

where B is a bilinear continuous form and L is a linear continuous form. In this case, (P )

admits a unique solution if and only if it satisfies Babũska theorem (2.47).

Babũska theorem :

i) Suppose thatB is weakly coercive: for some constant c > 0 and all [v, p] ∈ V ×Q :

sup
||[w,q]||=1

|B([v, p], [w, q])| ≥ c× ||[v, p]||

ii) For[w, q] 6= 0 ∈ V, ∃c1 > 0 :

sup
||[v,p]||=1

|B([v, p], [w, q])|| ≥ c1||[w, q]||

(2.47)

These two conditions are also equivalent to:

∃C > 0 for all [v, p] ∈ V ×Q, ∃[w, q] ∈ V 0 ×Q0such that :

B([v, p], [w, q]) ≥ C ||[v, p]||V×Q ||[w, q||V 0×Q0

(2.48)

To allow a better understanding of the application of these theorems, we will take the

"Stokes" problem as example. We will apply the "Brezzi-Babũska" theorem on Stokes problem,

for this reason, we will write it in its abstract form.

a(vs,ws) + b(ws, ps) = < fs,ws >Ωs + < pext,s.ns,ws >Ωs

b(vs, qs) = 0
(2.49)
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Taking into consideration the Riesz representation, explained before, we will have A = −∆,

B = −div and B
′

= ∇. Consequently, Z will be defined by:

Z = KerB = {vs ∈ Vs, divvs = 0} (2.50)

For that, we will prove the existence and unicity of the solution of Stokes problem by using

the Brezzi-Babũska theorem(2.46).

First, to prove the condition (i) of theorem (2.46), we will demonstrate the continuity of a,

then its coercivity on KerB.

Continuity of a(., .):

|a(vs,ws)| = | < ∇vs,∇ws > |
≤ ||∇vs||0 ||∇ws||0 (Cauchy-Shwarz)

≤ ||vs||1 ||ws||1
(2.51)

Coercivity of a(.,.)

a(vs,vs) = ||∇vs||20

||vs||12 = ||vs||02 + ||∇vs||02

≤ c′||∇vs||02 + ||∇vs||02(use of Poincaré inequality)

≃ (c′ + 1)||∇vs||02
(2.52)

Then, ||∇vs||0 ≥ C|vs||1, which means the coercivity of the bilinear form a(., .) over Vs×Vs.
Consequently, the bilinear form of Stokes problem a(., .) satisfies the condition (i) of the

theorem (2.46).

The second condition of theorem (2.46) comes from the following corollary:

Let Ω be an open and connected set with a Lipshitz boundary, then the operator div is surjective

from H1
0 (Ω) −→ L2

0(Ω) [F.Brezzi & M.Fortin 1991]. By satisfying these two conditions of

theorem (2.46) the existence and uniqueness of the solution of Stokes problem has been proved.

2.3.2 Stability of the Galerkin discretized mixed problem

The whole domain Ωs ⊂ Rm is discretized with one single mesh made up of triangles if

m = 2 and of tetrahedrons if m = 3. Let us consider for all the methods proposed here:

- Vh,s the finite element space of discretized velocity,
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- V 0
h,s the finite element space of discretized test function of velocity,

- Qh,s the finite element space of discretized pressure.

The discretized form of the abstract formulation consists in finding (vh,s, ph,s) ∈ Vh,s × Qh,s

such that:

a(vh,s,wh,s) + b(vh,s, ph,s) = < fs,vh,s >

b(vh,s, qh,s) = < h, qh,s >
(2.53)

and the discretized algebraic operators, Ah : Vh,s −→ V ′
h,s, Bh : Vh,s −→ Q′

h,s can be defined

as:

< Ahvh,s,wh,s >= ah(vh,s,wh,s)

< Bhvh,s, qh,s >= bh(vh,s, qh,s)

If the problem is well defined and can be studied using the Lax-Miligram theorem on a

space Vs, any of its finite element space Vh,s ⊂ Vh can be also treated by the Lax-Miligram

theorem. The discrete problem inherits the properties of the continuous problem and therefore

the well-posedness. However in some cases, the well posedness of the mixed variational problem

(2.49) does not imply in general that its discrete contrepart is also well posed. The reasons for

this are:

– First, if one defines Zh,s = KerBh = {vh,s ∈ Vh,s, ∀qh,s ∈ Qh,s, b(vh,s, qh,s) = 0}, then if

Vh,s * Vs, and the continuous problem satisfies property (i) of theorem (2.46) on KerB,

it does not imply that the discrete problem satisfies the analogous property on KerBh.

– Second, the inf-sup condition on Vs ×Qs:

∃β > 0 inf
qs∈Qs

sup
vs∈Vs

b(vs,qs)
||vs||1||qs||0 > β (2.54)

only implies

∃β > 0 inf
qh,s∈Qh,s

sup
vs∈Vs

b(vs,qh,s)
||vs||1||qh,s||0 > β (2.55)

which is an inf-sup condition on Vs×Qh,s. The latter does not imply in general an inf-sup

condition on Vh,s ×Qh,s even if Vh,s ⊂ Vs.
Therefore, it is necessary to prove that assumptions (i) and (ii) of theorem (2.46) are

satisfied by the discrete problem on Vh,s × Qh,s itself. In many practical cases, the inf-sup

condition and the coercivity of the bilinear form a(., .) are not satisfied if spaces Vh,s and Qh,s

are not compatible. For example, as we will see in the next section, some finite element spaces
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are compatible to satisfy the conditions of theorem (2.46). In opposite to this situation, in

some cases, we have to find adequate norms on Vh,s and Qh,s and a stabilized bilinear form

which satisfies the "Babũska" theorem (theorem (2.47)). The condition of stability generated

by the "Babũska" theorem leads to:

inf
[vh,s,ph,s]∈Vh,s×Qh,s

sup
[wh,s,qh,s]∈V 0

h,s
×Qh,s

Bs([vh,s, ph,s], [wh,s, qh,s])

||[vh,s, ph,s]||||[wh,s, qh,s]||
≥ β

equivalent to the stability condition:

∀[vh,s, ph,s] ∈ Vh,s ×Qh,s, ∃[wh,s, qh,s] ∈ V 0
h,s ×Qh,s such that

Bs([vh,s, ph,s], [wh,s, qh,s]) ≥ β||[vh,s, ph,s]|Vh,s×Qh,s
||[wh,s, qh,s]||V 0

h,s
×Qh,s

(2.56)

In the next sections, we will detail the compatible stable elements for Stokes where theorem

(2.46) is satisfied, then, we will detail some stabilized methods on uncompatible spaces. After,

we will do the same with the mixed variational formulation of Darcy problem

2.4 Mixed stable and stabilized finite elements for Stokes prob-

lem

Section 2.3.2 has provided the theoretical results needed for analyzing the Galerkin dis-

cretization of the variational mixed problem, especially the Stokes problem. For the Stokes

problem, as we mentioned before, the main difficulty is to find spaces Vh,s and Qh,s that satisfy

the inf-sup condition (2.46 i) applied to discretized problem:

∃βh > 0, inf
qh,s∈Qh,s

sup
vh,s∈Vh,s

∫

Ωs
qh,sdivvh,s

||vh,s||1||qh,s||0
≥ βh (2.57)

For example, the pairs Pr/Pr for r ≥ 1, and P1/P0 are known to be unstable. This means

that the spaces Vh,s and Qh,s built on these finite elements do not satisfy the inf-sup condition

(2.57). In the next sections, we will see some examples of stable pairs of finite elements

for Stokes problem, then we will see some stabilized methods which modify unstable Stokes

discretized equations to make them stable.
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2.4.1 Stable mixed finite elements

These finite elements are defined in particular finite element spaces with specific orders of

approximations for pressure and velocity. These elements satisfy the usual inf-sup condition

((2.46) i)) and converge for both pressure and velocity. Crouzeix-Raviart in [Crouzeix &

Raviart 1973], MINI-elements in [Arnold et al. 1984], Taylor-Hood elements in [C.Taylor &

P.Hood 1973] are mixed stable elements for the Stokes problem. In this section, we will detail

Taylor-Hood elements and the MINI-element (P1+/P1).

2.4.1.1 Taylor Hood elements

The dimensional finite element spaces for velocity, pressure and test functions are:

Vh,s = {vh,s ∈ C0(Ωs)
m,vh,s|K ∈ Rl(K)}

V 0
h,s = {wh,s ∈ C0(Ωs)

m,wh,s|K ∈ Rl(K),wh,sΓs,D
= 0}

Qh,s = { qh,s ∈ C0(Ωs), ph,s|K ∈ Rl−1(K)}
(2.58)

Here, Vh,s ⊂ Vs, V 0
h,s ⊂ V 0

s and Qh,s ⊂ Qs.

The Lagrangian finite element spaces Rl(K) are defined by:

Rl(K) =

{

Pl(K) if K is a tetrahedron or triangles

Ql(K) if K is a quadrilateral or hexahedrons
(2.59)

where Pl are polynomial of order l and Ql are quadratics of order l. The Taylor Hood elements

satisfy the inf-sup conditions (2.46 ii)), it means ∀[wh,s, qh,s] ∈ V 0
h,s ×Qh,s the bilinear form

Bs([vh,s, ph,s], [wh,s, qh,s]) is stable over Vh,s ×Qh,s.

Taylor Hood approximations for the Stokes problem lead to the following error estimates:

||ps − ph,s||0 ≤ c hl+1(|vs|l+2 + |ps|l+1)

||vs − vh,s||1 ≤ c hl+1(|vs|l+2 + |ps|l+2)
(2.60)

|| ||0 and || ||1 are the general L2 and H1 norms. Those rates of convergence are optimal for

pressure in L2 norm and for velocity in H1 norm.

The most popular and simple element form in the Taylor Hood families is the P2/P1

element. This element is related to families of high order elements and to the popular Taylor

Hood element (Figure 2.2). It has 15 degrees of freedom in 2D (12 for velocity and 3 for

pressure) and 34 degrees of freedom (30 for velocity and 4 for pressure). It is more expensive in

space and CPU time than P1+/P1 elements which we detail in section 2.4.1.2. This element
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satisfies the usual inf-sup condition (2.46 i)).

Figure 2.2: P2/P1 element

2.4.1.2 MINI-elements (P1+/P1 element)

Another popular stable element is the so-called P1+/P1 pair, also known as the MINI-

element. This element is introduced in [Arnold et al. 1984]. It consists of adding to the P1/P1

element one degree of freedom for each component of the velocity on the barycenter of the

triangles (m = 2) or of the tetrahedrons (m = 3). Let bh,s denotes a function which takes

the value 1 at the barycenter of the element K and vanishes on its boundary ∂K and verifies

0 ≤ bh,s ≤ 1 such a function is known as a "bubble function". To write the discretized form

of the Stokes problem solved with the MINI-element, we decompose the velocity into its linear

part vh,s and its bubble part bh,s:

v1
h,s = vh,s + bh,s

v1
h,s ∈ V 1

h,s = Vh,s ⊕Bh,s

(2.61)

Vh,s is the space of the piecewise linear and continuous functions, Bh,s is the space of bubble

functions. Vh,s and Bh,s are defined by:

Vh,s = {vh,s |vh,s ∈ C0(Ωs)
m,vh,s|K ∈ P1(K)m} (2.62)
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Bh,s = {bh,s ∈ C0(Ωs)
m ,bh,s = 0 on ∂K,bh,sSTi ∈ P1(STi)

m} (2.63)

where STi are the sub-elements of the element K ( i = 1, 2, 3 if m = 2). This element satisfies

the usual inf-sup condition (2.46 ii)), and the inf-sup constant βh of this MINI-element is

independant of h which ensures convergence rates. P1+/P1 has 9 degrees of freedom, in 2D

(6 for velocity and 3 for pressure), and 16 degrees of freedom, in 3D (12 for velocity and 4 in

pressure). Figure 2.3 shows the degrees of freedom for P1+/P1 element in 2D and 3D.

Figure 2.3: P1+/P1 element

Conclusions

After introducing the compatible elements for Stokes, where conditions of theorem (2.46) are

satisfied on the discretized velocity and pressure spaces generated by these elements, we will

describe next some stabilization methods used for the finite element spaces where the ellipticity

is not satisfied on KerB, it does not satisfy the condition (i) of theorem (2.46). The use of

stabilization methods generates a stable bilinear form which satisfies the conditions of Babũska

theorem (2.47).

2.4.2 Residual and penalized methods

In these methods, the standard Galerkin formulation is modified by the addition of mesh-

dependent terms which are residuals of the differential equations. By this technique, it is
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possible to avoid the stability problem related to the classical mixed methods and hence the

convergence can be established for a wide family of simple interpolations. This methodol-

ogy was first used in connection with advective flows in the works of Brooks and Hughes

[T.J.R.Hughes 1982], Hughes et al. [T.J.R.Hughes & A.N.Brooks 1979], [T.J.R.Hughes

et al. 1989]. Developments of these formulations to mixed methods started in Hughes et

al [Hughes et al. 1986], motivated by the stabilization procedure proposed by Brezzi and

Pikaranta [F.Brezzi & J.Pitkaranta ] to the Stokes problem, relying on linear elements for

both velocity and pressure. Different from the formulation proposed by Brezzi and Pitkaranta,

the work in Hughes et al. [Hughes et al. 1986] presented a consistent formulation which al-

lowed the construction of a higher order approximation with optimal accuracy. Later numer-

ous variants and extension have been proposed and analysed such as in Hughes and Franca

[T.J.R.Hughes 1987], Franca et al [L.Franca & T.J.R.Hughes 1988], Brezzi and Douglas

[F.Brezzi & J.Douglas 1988], Douglas and Wang [J.Douglas & J.wang 1989], Silvester and

Kechkar [D.J.Silvester & N.Kechkar 1990a], and Franca et al [L.P.Franca et al. ]. In the next

sections, we will develop the first method developed in [Hughes et al. 1986] and the method

developed in [J.Douglas & J.wang 1989].

2.4.2.1 Hughes-Balestra-Franca methods [Hughes et al. 1986]

Hughes, Balastra, and Franca [Hughes et al. 1986] proposed to modify the discretized form

of Stokes equations. One proposes to consider a non conforming space of pressure (Qh,s * Qs)

by taking the space of ph,s in H1(Ωs) rather than L2(Ωs) and to test the first equation (mo-

mentum balance) of the system defined in (2.33) against ∇qh,s, (qh,s ∈ Qh,s) over each triangle

(m = 2) or tetrahedron (m = 3), then multiply the result by h2k (hk is the size of mesh) and

add their sum to the weak formulation of the first equation of the system defined in (2.33).

Remark: This method is based on homogenous conditions for velocity, it means that

vs = 0 on Γs,D, because of the coercivity of the bilinear form of Stokes which is demonstrated

in a manner which requires the homogeneity on the solution vh,s ∈ V 0
h,s ⊂ V 0

s rather than

Vh,s ⊂ Vs. To define a procedure over the space Vh,s (for velocity), we have to introduce a

method based on some ideas corresponding to those discussed by Nitshe for Dirichlet problems

[J.Nitsche 1977].

Then we have to solve the discretized form of Stokes defined by:

Find [vh,s, ph,s] ∈ V 0
h,s ×Qh,s such as:
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Bs,stable([vh,s, ph,s], [wh,s, qh,s]) = Ls,stable([wh,s, qh,s]) (2.64)

∀[wh,s, qh,s] ∈ V 0
h,s ×Qh,s

where the bilinear form Bs,stable and the linear form Ls,stable are defined by:

Bs,stable([vh,s, ph,s], [wh,s, qh,s]) = Bs([vh,s, ph,s], [wh,s, qh,s])

+ β
∑

K

h2k < ∇ph,s,∇qh,s >K −2µβ
∑

K

h2k < ∆(vh,s),∇qh,s >K

︸ ︷︷ ︸

residual

(2.65)

Ls,stable[wh,s, qh,s] = Ls([wh,s, qh,s])

+β
∑

K

h2k < fs,∇qh,s >K
(2.66)

The constant β should be chosen so that the bilinear form Bs,stable is coercive with respect to

the norm:

||[vh,s, ph,s]||a = [‖vh,s‖21 +
∑

K

h2k‖∇ph,s‖20]1/2

One can propose that whenever Vh,s and Qh,s consist of C0 piecewise polynomial spaces of fixed

degrees, if the Dirichlet boundary condition (vs|Γs,D=0) holds, we have the desired stability

relatively to the norm || ||a for small values of β. In addition, this stability implies immediatly

the existence and uniqueness of a solution [vh,s, ph,s]. A convenience of this method is the

choice of approximation spaces Vh,s and Qh,s (defined in Equations (2.67)) without specifying

particular fixed degrees. The finite element spaces can be defined as:

Vh,s = {vh,s ∈ C0(Ωs) : vh,s|K ∈ Pn(K)m} n ≥ 1

V 0
h,s = {wh,s ∈ C0(Ωs) : wh,s|K ∈ Pn(K)m,wh,sΓs,D

= 0} n ≥ 1

Qh,s = {ph,s ∈ C0(Ωs) : p|K ∈ Pl(K)} l ≥ 0

(2.67)

In this case, Vh,s ⊂ Vs, V 0
h,s ⊂ V 0

s but Qh,s * Qs because Qh,s belongs to H1(Ωs).
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2.4.2.2 Douglas and Wang methods [J.Douglas & J.wang 1989]

Due to the constraints imposed on the value of β and the necessary homogeneity of the

velocity (vs|Γs,D
= 0) in the previous method, Douglas and Wang proposed a modification of

the method of [Hughes et al. 1986]. This method is called "an absolute stabilized finite ele-

ment method for Stokes problem". The authors assume that the velocity on the boundary ∂Ωs

vs|ΓD
= v1 should only respect the compatibility condition

∫

∂Ωs

v1.nsds = 0. Douglas and

Wang modify also the method proposed by [Hughes et al. 1986] to deal with non continuity of

pressure interpolation by introducing a jump operator. We will not detail here the jump term

in the discontinous case for this method.

The discretized spaces of velocity and pressure are defined by:

Vh,s = {vh,s ∈ C0(Ωs)
m : vh,s|K ∈ Pn(K)m}

V 0
h,s = {wh,s ∈ C0(Ωs)

m : wh,s|K ∈ Pn(K)m,wh,sΓs,D
= 0}

Qh,s = {ph,s ∈ L2(Ωs) ∩H1(Ωs) : ph,s|K ∈ Pl(K)}

where l and n are the degrees of polynomials and l can be independant of n.

In this case, Vh,s ⊂ Vs, V 0
h,s ⊂ V 0

h and Qh,s ⊂ L2(Ωs). The mesh dependant norm ||| ||| on

Vh,s ×Qh,s is defined by:

|||(vh,s, ph,s)||| = ||∇vh,s||20 + |||∇ph,s − µ∆vh,s|||20 (2.68)

where |||∇ph,s −∆vh,s|||20 = β
∑

K

h2k ||∇ph,s − µ∆vh,s||20,K

Then we have to solve the discretized form of Stokes defined by:

Find [vh,s, ph,s] ∈ Vh,s ×Qh,s such that:

Bs,stable([vh,s, ph,s], [wh,s, qh,s]) = Ls,stable([wh,s, qh,s]) (2.69)

∀[wh,s, qh,s] ∈ V 0
h,s ×Qh,s
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where the stabilized bilinear Bs,stable and the linear Ls,stable forms are defined by:

Bs,stable([vh,s, ph,s], [wh,s, qh,s]) = Bs([vh,s, ph,s], [wh,s, qh,s])

+β
∑

K

h2k < ∇ph,s − µ∆vh,s,∇qh,s − µ∆wh,s >

︸ ︷︷ ︸

residual

(2.70)

Ls,stable([wh,s, qh,s]) = Ls([wh,s, qh,s])

+β
∑

K

h2k < fs,∇qh,s − µ∆wh,s >
(2.71)

One has been demonstrated that the coercivity of the bilinear form then the uniqueness

and the existence of the solution do not depend on the value of β. One can choose β = 1 for

the sake of simplicity [J.Douglas & J.wang 1989] which makes the essential difference between

this method and the method proposed by [Hughes et al. 1986].

Different numerous variants and extensions of these two methods have been proposed and

analysed [R.Duran & R.Notchetto 1989], [L.P.Franca & R.Stenberg 1991a], [D.J.Silvester &

N.Kechkar 1990b] and [franca et al 1990].

2.4.3 Multiscale Methods

These methods are different from the penalized and residual methods because they use

stabilization terms provided by the effect of the fine scales which are not captured by the finite

element solution and not captured with the residual of differential equations as the residual

methods introduced above. A theoretical formulation for multiscale methods can be found in

the homogenization theory [Bramble & Xu 1989]. One multiscale method that has its roots

in this theory and has got lot of recognition is the multiscale finite element method presented

by Hou and Wu [T.Y.Hou & X.-H.Wu 1997].

In this method, the standard finite element basis functions are replaced by new basis functions

containing fine scale structure. These new functions are calculated by solving local fine scale

problems. Lately, Aarnes [J.E.Aarnes et al. 2005] have extended this method to the mixed

problems. We have two essential types of Multiscale Methods: the Variational Multiscale

Methods (VMS) and the Adaptive Variational Multiscale Methods. In the next sections, for

Stokes and Darcy problems, we are interested in developing the Variational Multiscale Method

widely used in stabilizing Stokes and Darcy problems.
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The original idea of the subgrid scale methods is introduced in [Hughes 1988] and in

[Hughes 1995]. The Variational MultiScale method (VMS) is based on the idea of

splitting the finite element spaces into a coarse and a fine parts (X = Xh +X ′). The coarse

spaceXh is a standard finite element space but the fine spaceX ′ is an infinite dimensional space.

Hughes suggests that the fine scale solution x′ could be solved by analytical approximation on

each coarse element in terms of xh. After this is done, xh can be calculated directly in the coarse

space Xh. In the literature, we can find two important Variational Multiscale Methods: Hughes

Variational Method (HVM) developed in [Nakshatrala et al. 2006a], and used for stabilizing

Stokes and Darcy; and another type of methods which introduces operators of projection onto

the fine scale spaces. These methods are the Algebraic SubGrid Scale (ASGS) and Orthogonal

SubGrid Scale (OSGS) methods developed in [S.Badia & R.Codina 2010]. We will develop the

HVM method in the stabilization methods of Darcy problem, while we will develop both ASGS

and OSGS methods in the next chapter. But we note that the essential difference between these

two methods is that the "HVM" method consists in decomposing only the spaces of velocity

onto coarse and fine spaces while both "ASGS" and "OSGS" methods consist in decomposing

both spaces of velocity and pressure onto coarse and fine spaces.

2.4.4 Stabilized finite element methods based on multiscale enrichment of

Stokes problem and Petrov Galerkin approximation

The justification of the "stabilized methods" becomes a subject of interest. In [Baiocchi

et al. 1993], [Russo 1996] and [Barrenechea & Valentin 2002] the connection between stabilized

finite element methods and Galerkin methods enriched with bubble functions has been used to

propose new stabilized finite element methods used to solve the Stokes equations.

In this section, we choose to describe the method of Araya, Barrenchea Valention method

developed in [Araya et al. 2006] which uses multiscale functions to enrich the standard poly-

nomial spaces of velocity. On the other hand, the test function space is enriched with bubble

functions and consequently, to use Petrov-Galerkin approximation.

This method is stable for P1/P0 elements and P1/P1 elements. We will be interested to detail

continuous and linear elements in this section (P1/P1 elements).

The finite element spaces of velocity, pressure and test functions are defined by:
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Vh,s = {vh,s ∈ C0(Ωs)
m,vh,s|K ∈ P1(Ωs)}

V 0
h,s = {wh,s ∈ C0(Ωs)

m,wh,s|K ∈ P1(Ωs),wh,sΓs,D
= 0}

Qh,s = {Ph,s ∈ C0(Ωs), ph,s|K ∈ P1(Ωs)}
(2.72)

In this method, Vh,s ⊂ Vs, Qh,s ⊂ Qs and V 0
h,s ⊂ V 0

s .

Let Eh ⊂ V 0
s be the finite dimensional space called "multiscale space". The Petrov-Galerkin

method proposes to find vh,s + vh,e ∈ V 0
h,s ⊕ Eh and ph,s ∈ Qh,s such that:

Bs([vh,s + vh,e, ph,s], [wh,1, qh,s]) = Ls([wh,1, qh,s]) (2.73)

∀wh,1 = wh,s +wh,b ∈ V 0
h,s ⊕H1,t

Γs,D
(Ωs)

m and qh,s ∈ Qh,s

By replacing wh,1 by its expression (wh,s +wh,b) we get two systems:

Bs([vh,s + vh,e, ph,s], [wh,s, qh,s]) = Ls([wh,s, qh,s]) (2.74)

∀[wh,s, qh,s] ∈ V 0
h,s ×Qh,s

Bs([vh,s + vh,e, ph,s], [wh,b, qh,s]) = Ls([wh,b, qh,s]) (2.75)

∀[wh,b, qh,s] ∈ H1,t
Γs,D

(Ωs)
m ×Qh,s

Equation (2.75) is equivalent to:

< −µ∆vh,e,wh,b >K = < fs + µ∆vh,s −∇ph,s,wh,b >K (2.76)

One proposes to introduce approximation operators to solve Equation (2.76) (this is the

idea of multiscale stabilization used in this method). This operator is defined by:

MK : L2(Ωs)
m −→ H1,t

Γs,D
(Ωs)

m

such that:

vh,e =
1

µ
Mk(fs + µ∆vh,s −∇ph,s) (2.77)

The algebraic operator 1
µMk in Equation (2.77) can be approximated by τk =

c1 h2

k

µ [Araya

et al. 2006]. By replacing the approached solution vh,e by the expression in Equation (2.74),
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the stabilized formulation of Stokes and Darcy problem becomes:

Find [vh,s, ph,s] ∈ V 0
h,s ×Qh,s such that:

Bs,stable([vh,s, ph,s], [wh,s, qh,s]) = Ls,stable([wh,s, qh,s]) (2.78)

∀[wh,s, qh,s] ∈ V 0
h,s ×Qh,s

The stabilized bilinear and linear forms Bs,stable and Ls,stable are defined by:

Bs,stable([vh,s, ph,s], [wh,s, qh,s]) = Bs([vh,s, ph,s], [wh,s, qh,s]

+τk
∑

K

< −µ∆vh,s +∇ph,s, µ∆wh,s +∇qh,s >

(2.79)

Ls,stable([wh,s, qh,s]) = Ls([wh,s, qh,s)]

+τk
∑

K

< fs, µ∆wh,s +∇qh,s > (2.80)

Remarks: If the normal components of velocity are not continous, we have to add a stabilized

jump term to the bilinear form which is

∑

K

[[µ
∂vh,s

∂n
]][[µ

∂wh,s

∂n
]]

If we want to take the case of P1/P0 elements, we have to take into consideration the jump

terms of pressure corresponding to the discontinuities of pressure over the interior edges.

[Araya et al. 2006] proves improvements to this multiscale formulation for piecewise linear

elements for velocity and pressure (P1/P1 elements) and for piecewise linear/piecewise constant

(P1/P0 elements). The constant c1 in the stabilization term τk =
c1 h2

k

µ [Araya et al. 2006]

has been suggested to be equal to 1
8 . This eliminates the numerical costs spent to select

an adequate value for the numerical constant c1. Then, the stabilization term τk depends

essentially on the size of mesh hk. This method arises from multiscale enrichment of the

space of velocity coupled with Petrov Galerkin strategy. Petrov Galerkin strategy yields the

possibility of statical condensation of bubbles at the element level and at the edges (in the case

of discontinuities). Then the method takes the form of classical stabilized finite elements with

jump terms and stabilization parameter known exactly.
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2.5 Stabilized finite elements for discretization of Darcy’s equa-

tions

Some numerical method for the Darcy’s equations are based on a mixed two field velocity-

pressure formulation. It is well known that the choice of the finite element spaces for the mixed

formulation is subject to the inf-sup stability condition as we explained in section 2.3 for Stokes

problem. The whole domain Ωd ⊂ Rm is discretized with a mesh made up of triangles if m = 2

and of tetrahedrons if m = 3. Let Vh,d, V 0
h,d and Qh,d be the finite element spaces which contain

the finite element solution of velocity vh,d, the test function of velocity wh,d and the finite

element solution of pressure ph,d. As for the Stokes problems, the standard mixed finite element

method for Darcy problem is based on finding a pair of finite element spaces Vh,d×Qh,d which

satisfies the condition i) and ii) of the Brezzi-Babũska theorem (2.46) such as:

inf
qh,d∈Qh,d

sup
wh,d∈V 0

h,d

< divwh,d, qh,d >

‖wh,d‖1,d ‖qh,d‖0
> β (2.81)

|| ||1,d is a norm defined on the space of velocity Vh,d ⊂ H(div,Ωd). The norm can be defined

in different forms depending on the stabilized method that is used and β is a positive constant

independant of the size of mesh hk. In the sections below, we will present some methods used

in literature to stabilize dual formulations of Darcy’s equations.

Some elements are stable for the Darcy’s problem, as Raviart-Thomas (RT) and Brezzi-

Douglas-Marini (BDM) finite elements. Approches based on these elements show good ac-

curacy for both velocity and pressure. This accuracy has its draw back complexity as we

will see in the next section for RT elements. Stabilized finite element methods have been ex-

tended to the Darcy’s equations. Some stabilization methods are based on the residual of the

Darcy’s law which is added to the classical Galerkin formulation to make the stable formulation

for all combination of conforming continuous velocity-pressure approximations [A.Masud &

Hughes 2002]. Another class of stabilized methods has been derived using Galerkin methods

enriched with bubble functions [Araya et al. 2006], [G.R.Barrenechea et al. 2007]. Alter-

native stabilization techniques based on a least-square formulation have been proposed by

[Hughes & L.Franca 1989], [Franca et al. 1989], [Bochev & Gunzburger 1998], [L.P.Franca

& R.Stenberg 1991b] and [J.J.Droux & Hughes 1994]. In addition, some methods based on

Variational MultiScale methods, consisting in finding the part of the solution that is missed in

classical finite element approximation, is also used to stabilize the Darcy’s equations [Codina

& S.Badia 2010]. Recently, local projection methods that seem less sensitive to the choice of
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parameters and have better local conservation properties were proposed. The pressure gradi-

ent stabilization method for Darcy’s equations developed in [Nafa & Wathen 2008], [Nafa &

Wathen 2009], [Nafa 2009] proved its stability by constructing an interpolant with additional

orthogonality property with respect to the projection space.

In this section, we will developp the stable elements for Darcy like BDM and RT elements, a

method based on residual stabilization idea, a method based on Variational MultiScale method

(HVM: Hughes Variational MultiScale method) and a method based on Least-square principle.

2.5.1 Stable mixed elements

Some stable mixed elements introduced in Stokes (Taylor-Hood elements) are stable for

Stokes and not stable for Darcy. The MINI-element is a stable mixed element for the primal

formulation of Darcy and not for the dual formulation. Raviart-Thomas and Brezzi-Douglas-

Marini introduce in [P.A.Raviart & J.M.Thomas 1977] new mixed stable elements for Darcy

problem with a structure close to the Taylor-Hood space structure. These spaces, compatible

for Darcy problem, allows the discretized problem to satisfy the conditions of the Brezzi-

Babũska theorem (2.46). On the other hand, on some spaces where the discretized problem is

not elliptic on KerB, we will use methods of stabilization which make the problem satisfying

the conditions introduced in the Babũska theorem (2.47).

The Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) vector spaces [P.A.Raviart

& J.M.Thomas 1977] are commonly used as approximation spaces of H(div,Ωd). For l ∈ N ,

Pl denotes the set of polynomials of degree l, associated with the unknown vector X = (xi)

with 1 ≤ i ≤ m. For the sake of simplicity, we will define the finite element of Raviart-Thomas

of first order 1.

The Raviart-Thomas (RT) vector spaces of order 1 is defined by:

RT (K) = P0(K)2 + xP0(K) (2.82)

P0 is the polynomial of order 0 which means that if f(X) ∈ RT (K) then, f(X) = a+λX with

a ∈ Rm and λ ∈ R

The Brezzi-Douglas-Marini (BDM) spaces are defined by:

BDMl(K) = P0(K)2 (2.83)

To explain the finite element of Raviart-Thomas of order 1, we have also to introduce Σ,
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the set of linear forms (l) defined on RT , such as:

l = {li : f(X) −→ f(mi).ni}

with 1 ≤ i ≤ s where s is the number of edges of the triangle or the tetrahedron K, mi is the

middle of the edges and ni is the normal on each edge. The triplet K,RT (K), l is called the

finite element of order 1 of Raviart-Thomas.

The discretized spaces of velocity using (RT) or (BDM) vector spaces are defined by:

Vh,d = {vh,d|K ∈ (RT (K) orBDMl(K))}
V 0
h,d = {wh,d|K ∈ (RTl(K) orBDMl(K)),wh,dΓd,D

= 0}
(2.84)

In this case, Vh,d ⊂ Vd and V 0
h,d ⊂ V 0

d .

Commonly used stable elements for the velocity and pressure approximation of Darcy equa-

tions are the Raviart-Thomas pairs (RTl for velocity and discontinous Pl for pressure) and the

Brezzi-Marini-Pairs (BDMl+1 for velocity and discontinous Pl for pressure) [P.A.Raviart &

J.M.Thomas 1977]. The simplest is also the use of RT (K) elements of order one for velocity

with P0 elements for pressure.

This method seems to be sometimes complicated because the element unknowns are the

normal fluxes on the faces, but all components are needed inside every element domain. This

make the implementation complex especially in three dimensional problems.

2.5.2 Residual and penalized methods

The philosophy of stabilized residual techniques for Darcy problem is to strengthen the

classical variational formulations, with stabilization additional terms which are residual of

differential equations. Then the unstable Galerkin formulation becomes stable and convergent.

The technique consists of perturbating the indefinite problem in such a way that the finite

element approximation can violate the inf-sup condition in the functional continuous problem.

One of the methods based on this technique is the method proposed by Masud and hughes

that we will develop in the next paragraph.

In the method of Masud and Hughes method [A.Masud & Hughes 2002], we search

also a "stability norm". The natural "stability norm" is the norm which provides L2(Ωd)

control for the velocity on its space (⊂ H(div,Ωd)). In the continuous pressure case, the

pressure is stable in H1(Ωd). Any combination of continous velocity and pressure converges

in the stability norm. Therein, the stabilized problem in this case imposes that the pressure
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belongs to H1(Ωd) (non-conforming discretized space for pressure). The stability norm, in this

method, is then defined by:

||[vh,d, ph,d]||stab = 1
2 (

µ
k ||vh,d||20 + k

µ ||∇ph,d||20)
1

2 (2.85)

Then, the stabilized formulation of Darcy problem is:

Find the velocity vh,d and the pressure ph,d in Vh,d ×Qh,d such that:

Bd,stable([vh,d, ph,d], [wh,d, qh,d]) = Ld,stable([wh,d, qh,d]) (2.86)

∀[wh,d, qh,d] ∈ V 0
h,d ×Qh,d

Vh,d = {vh,d ∈ C0(Ωd)
m, vh,d|K ∈ Pl(K)}

V 0
h,d = {vh,d ∈ C0(Ωd)

m, vh,d|K ∈ Pl(K),vh,dΓd,D
= 0}

Qh,d = {qh ∈ H(Ωd), qh ∈ C0(Ωd), qh|K ∈ Pn(K)}
(2.87)

In this case, the space Qh,d * Qd because Qh,d belongs to H1(Ωd) but, Vh,d ⊂ Vd and the

stabilized bilinear and linear forms are defined by:

Bd,stable([vh,d, ph,d)], [wh,d, qh,d]) = Bd([vh,d, ph,d)], [wh,d, qh,d])

+1
2 < −

µ
kwh,d +∇qh,d, kµ(

µ
kvh,d +∇ph,d) >

(2.88)

Ld,stable([wh,d, qh,d] = Ld([wh,d, qh,d])

−1

2
< −µ

k
wh,d +∇qh,d,

k

µ
fd >

︸ ︷︷ ︸

residual

(2.89)

The most interesting feature of this formulation is that there are no mesh-dependant pa-

rameters in the stabilization terms.

2.5.3 Multiscale Methods

Some subgrid scale methods used to stabilize Darcy’s equations are introduced in [S.Badia

& R.Codina 2010] and in [Nakshatrala et al. 2006a]. In [Nakshatrala et al. 2006a], where the

HVM method is introduced for Darcy problem, the "fine scale" of velocity is only taken into

consideration while in [S.Badia & R.Codina 2010], where variational multiscale methods are
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introduced, "fine scale" of pressure and velocity are taken into consideration. In this section

we will detail "HVM" methods and in the next chapter we will detail "VMS" methods.

HVM formulation used in stabilization of Darcy’s equations [Nakshatrala et al. 2006a] is

a derivation from the previous formulation introduced in section 2.5.2, the interesting feature of

the previous formulation is that there is no mesh dependant parameters. However, the robust-

ness of the new formulation is preserving the advantage by performing numerical simulation

on complex geometries [Nakshatrala et al. 2006a].

HVM formulation consists in decomposing the velocity field vd into coarse scale and fine scale

components:

vd = vh,d + v′
h,d

where v′
h,d is the fine scale which cannot be captured by the finite element solution. We

decompose also the test functions into coarse scale wh,d and fine scale w′
h,d. By taking into

consideration that the fine scale components vanish along each element boundary, the Darcy’s

problem can be written as two subproblems:

The coarse scale problem:

Bd([vh,d + v′
h,d, ph,d], [wh,d, qh,d]) = Ld([wh,d, qh,d]) (2.90)

and the fine scale problem:

Bd([vh,d + v′
h,d, ph,d], [w

′
h,d, qh,d]) = Ld([w

′
h,d, qh,d]) (2.91)

The main idea of the HVM formulation is to solve the fine scale problem (2.91) to obtain

the fine scale velocity v′
h,d in terms of the coarse scale vh,d and ph,d, then substitute the fine

scale solution into the coarse scale problem (2.90).

The approximation form of the fine scale solution is:

v′
h,d = −vh,d + k

µ(∇ph,d + fd) onK (2.92)

Then, the stabilized formulation of Darcy problem consists in finding vh,d ∈ H(div,Ωd)

and pd ∈ L2(Ωd) such that:

Bd,stable([vh,d, ph,d], [wh,d, qh,d]) = Ld,stable([wh,d, qh,d]) (2.93)

where the stabilized bilinear and linear forms are defined by:
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Bd,stable([vh,d, ph,d], [wh,d, qh,d]) = Bd([vh,d, ph,d], [wh,d, qh,d])

+
∑

K

τ <
−µ
k

wh,d +∇qh,d,vh,d +
k

µ
∇ph,d >Ωd

(2.94)

τ is a constant (taken in general equal to 1/2).

Ld,stable([wh,d, qh,d]) = Ld([wh,d, qh,d])

+
∑

K

−τ < fd,
−µ
k

wh,d +∇qh,d > (2.95)

2.5.4 Galerkin Least Squares methods

Least square methods are based on a completely different variational principle associated

with unconstrained global minimization of a problem-dependant quadratic functional. Many

types of methods based on this concept were developed in [Hughes & L.Franca 1989], [Franca

et al. 1989], [Bochev & Gunzburger 1998], [L.P.Franca & R.Stenberg 1991b] and [J.J.Droux

& Hughes 1994].

In this section we will detail the basic scheme of these methods introduced by [Hughes &

L.Franca 1989], the L2 least square method introduced by [Bochev & Gunzburger 1998]

and GLS method in connection with the Galerkin gradient least square method developed

in [Franca et al. 1989].

2.5.4.1 Least-square methods [Hughes & L.Franca 1989]

The basic scheme of these methods is introduced in [Hughes & L.Franca 1989]):

Find [vh,d, ph,d] such that:

Bd([vh,d, ph,d], [wh,d, qh,d]) = Ld([wh,d, qh,d]) (2.96)

derived from the classical formulation:

A[vh,d, ph,d] = [fd, hd]

A is a scalar advection-diffusion operator of this scheme such that:

A[vh,d, ph,d] = [µkvh,d +∇ph,d,−divvh,d] (2.97)
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The basic scheme (idea) of Galerkin Least Square stabilization is to find [vh,d, ph,d] satis-

fying:

Bd([vh,d, ph,d], [wh,d, qh,d]) + τ < A[vh,d, ph,d], A[wh,d, qh,d] >=

Ld([wh,d, qh,d]) + τ < [fd, hd], A[wh,d, qh,d] >
(2.98)

The operator A defined in Equation (2.97), is well posed in the space Vh,d × Qh,d and the a

priori estimate verifies:

||[vh,d, ph,d]||c ≤ C||A([vh,d, ph,d])||d (2.99)

|| ||c is a norm defined on Vh,d ×Qh,d and || ||d is a norm defined on Rm+1.

In order to set up a "normal-functional", residual of Equation (2.98) must be measured

in the norms indicated by the a priori estimate (Equation (2.99)). We associate a quadratic

least-square functional of the form:

J([vh,d, ph,d]) = 1
2(||A([vh,d, ph,d])− [fd, hd]||2d) (2.100)

A minimizer of (Equation (2.100)) is given by:

Find [vh,d, ph,d] ∈ Vh,d ×Qh,d such that:

J([vh,d, ph,d]) ≤ J([wh,d, qh,d]) (2.101)

∀[wh,d, qh,d] ∈ V 0
h,d ×Qh,d

Condition defined in (2.101) is equivalent to find [vh,d, ph,d] such that:

Bd([vh,d, ph,d], [wh,d, qh,d]) = [fd, hd]([wh,d, qh,d]) (2.102)

Consequently, we have:

Bd([vh,d, ph,d], [vh,d, ph,d]) = A([vh,d, ph,d])([vh,d, ph,d]) (2.103)

A consequence of the a priori estimate norm (2.99) is that the bilinear form Bd is coercive

because:

Bd([vh,d, ph,d], [vh,d, ph,d]) ≥
1

C
||[vh,d, ph,d], [vh,d, ph,d]||c
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Then, the existence and uniqueness of minimizers lead to a stable solution of the problem

which makes the bilinear form stable. Then, to apply the least square method principle on

Darcy’s equations (some methods of least square are also compatible for stabilized form of

Stokes equations), we have to choose a functional setting and a finite-dimensional subspace

which can be conforming (Vh,d ×Qh,d ⊂ Vd ×Qd) or non-conforming (Vh,d ×Qh,d * Vd ×Qd).

Different methods based on the least square formulation have been developed [Franca et al. 1989]

to stabilize Darcy’s equations. In next sections, we will detail one of these methods.

2.5.4.2 GLS method [Franca et al. 1989]

Another Galerkin least-squares method is based on the concept of the Galerkin gradient

least squares method introduced by Franca and Dutra in [Franca et al. 1989]. The spaces of

pressure, velocity and test functions are defined in Equations (2.104).

Vh,d = {vh,d : vh,d|K ∈ Pl(K)}
V 0
h,d = {wh,d : wh,d|K ∈ Pl(K),vh,dΓs,D

= 0}
Qh,d = {ph,d : ph,d|K ∈ Pn(K)}

(2.104)

In this method, Qh,d is a conforming space (Qh,d ⊂ Qd).

The stabilized form of Darcy problem is obtained by summing up the standard Galerkin equa-

tions with the least squares. This least squares formulation writes

µ

K
< divvh,d + fd, divwh,d > + < k

µcurl(
µ
kvh,d), curl(

µ
kwh,d) >

∗ (2.105)

< , >∗ is used to denote the adjoint form of the L2 scalar product. Then, the stabilized

bilinear formulation of Darcy’s equations consists in finding [vh,d, ph,d] such that:

Bd,stable([vh,d, ph,d], [wh,d, qh,d]) = Ld,stable([wh,d, qh,d])

∀[wh,d, qh,d] ∈ V 0
h,d ×Qh,d

Bd,stable and Ld,stable are defined by:

Bd,stable([vh,d, ph,d], [wh,d, qh,d]) = Bd([[vh,d, ph,d])

+µ
k < divvh,d, divwh,d >

+ k
µ < curl(µkvh,d), curl(

k
µwh,d) >

(2.106)
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Ld,stable([wh,d, qh,d]) = Ld([wh,d, qh,d])

−µ
k < fd, divwh,d >

(2.107)

2.6 Stabilized finite elements for Stokes-Darcy coupled problem

In Stokes domain, many types of stabilized finite elements were described in Section 2.4.

In the porous medium, many types of stabilized finite elements were described in Section 2.5.

But, the key issue in the stabilized Stokes-Darcy coupling is that we cannot couple any stable

elements for Stokes with any stable elements for Darcy. The choices are different between "uni-

fied" and "decoupled" approaches. In this section, we will explain how to choose compatible

stable finite elements for Stokes and Darcy in both approaches.

Decoupled strategies use different spaces for Stokes and Darcy. For this reason, coupling of

different finite elements leads to stable formulations in coupling problems for decoupled strat-

egy and not for unified strategies.

The main decoupled strategies used in the literature for coupling Stokes-Darcy are:

– Taylor-Hood for Stokes (Section 2.4.1.1) with C0 Lagrangian for Darcy, this coupling is

presented in [M.discacciati et al. 2007].

– Taylor-Hood for Stokes (Section 2.4.1.1) with Raviart-Thomas elements for Darcy, this

coupling is presented in [W.J.Layton et al. 2003].

– MINI-element for Stokes and MINI-element for primal formulation of Darcy’s equations,

this coupling is developed in [Celle et al. 2008].

For a unified strategy, it is argued that finite element discretizations based on the same finite

element spaces for both region will have some advantages with respect to the implementation.

However, the difficulty is that the stable Stokes elements will not be stable in the Darcy region

and that most of stable Darcy elements will not be stable with Stokes problem. For example,

we cannot use MINI-elements for Stokes and MINI-elements for primal formulation of Darcy’s

equations within a unified approach, because the velocity in Stokes belongs to H1(Ωs) and the

pressure belongs to L2(Ωs) while with the stable P1 + /P1 used for the primal formulation of

Darcy’s equations, the velocity belongs to L2(Ωd) and the pressure belongs to H1(Ωd) which

is compatible for decoupled strategy and uncompatible for unified strategy. Then, the plan

for choosing finite elements stable for Stokes, stable for Darcy and compatible with a unified

coupling is:
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– Start from a stable finite element space for Stokes (Taylor-Hood element, for example,

introduced in Section 2.4.1.1, particularly in this case ph,s ∈ L2(Ωs).

– Construct a compatible stabilization for Darcy problem, i.e take stabilization methods

for Darcy where the pressure is stable in L2(Ωd) in H1(Ωd)(for example Galerkin Least

Squares stabilization (GLS) (Section 2.5.4.2))

– Prescribe interface conditions between Stokes’ and Darcy’s domains.

The goal in this example is to obtain a finite element method with the same structure of

Taylor-Hood approximation in both domains with compatible spaces. Different standard "finite

element couples" are used to couple "Stokes" and "Darcy" in a unified strategy:

– P1/P0 with pressure stabilization (jump terms) for Stokes and Darcy problems. This

coupling is introduced in [E.Burmana & P.Hansbob 2007].

– Taylor-Hood element or MINI-element for Stokes (detailed in Sections 2.4.1.1 and 2.4.1.2

respectively) with BDM or RT elements in Darcy (Section 2.5.1). This coupling is devel-

oped in [W.J.Layton et al. 2003].

– Mixed finite element method designed for the entire Stokes-Darcy system [Arbogast &

Brunson 2007]

2.7 Conclusions

We presented in this chapter residual and penalized stable methods for Stokes and Darcy,

subgrid scale methods for Stokes and Darcy, stable mixed elements for Stokes and Darcy,

pressure projection method and Galerkin-Least-Square method to stabilize Darcy’s equations.

Then, we presented the two main strategies to couple Stokes and Darcy, the "unified" strat-

egy and the "decoupled" strategy and the way to choose"compatible finite elements" for each

strategy.

We are interested in this manuscript in using the "unified approach". Hence, it is difficult,

as shown in Section 2.6, to find a standard finite element couple which statisfies the Brezzi-

Babũska condition for both Stokes and Darcy equations and which exhibits accuracy properties.

The use of "MINI- element" (in Stokes) with "HVM" method in Darcy leads to some accuracy

problems: oscillations around the interface and consistency errors [Pacquaut et al. 2012]

especially for low permeabilities (K < 10−9m2) while the preforms in composite materials have

a permeability down to 10−15m2. P1/P0 used in [E.Burmana & P.Hansbob 2007] requires

special interpolation orders and constant pressure which is not a general case. Taylor-Hood
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elements with Raviart-Thomas elements used in [W.J.Layton et al. 2003] is expensive in space

and CPU time and the resulting mixed interpolations are expensive and in some cases restricted

to specific typologies of meshes. In order to overcome these difficulties, especially difficulties

met with P1+/P1 coupled with HVM in severe regimes, we choose the use of Variational

Multiscale Methods for both Stokes and Darcy’s domains that we will developp in the next

chapter.
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3.1. Introduction

3.1 Introduction

Stabilized methods based on the Variational MultiScale method (VMS) decomposition are

in fact Subgrid scale methods introduced by [Hughes 1995]. The view point of these methods is

that there are two sets of scales, one associated with the "fine scale" numerically unresolvable,

one associated with the "large scale" numerically resolvable.

This kind of approach was introduced as a framework for incorporating missing fine scale

effects into numerical problems governing coarse scale behavior ("large scale"). This chapter,

will develop the theory of Variational MultiScale method for Stokes, Darcy and Stokes-Darcy

coupling problem.

3.2 Variational MultiScale method "VMS" applied to Darcy

problem

3.2.1 Stability of the continuous problem of Darcy

The definition of a norm over velocity and pressure spaces of Darcy’s equations should hold

for the continuous functional form of the continuous problem. This means that the continuous

problem should verify the inf-sup condition (2.46 (ii)) relatively to this norm . We define the

spaces of velocity and pressure Vd ×Qd and the space of test functions V 0
d ×Qd by:

Qd = {pd,
∫

Ωd

p2d <∞}, ‖q‖0 = (

∫

Ωs

q2dΩd)
1/2

Vd = {vd ∈ L2(Ωd)
m, div vd ∈ L2(Ωd) ,vd.nd = g onΓd,D}

V 0
d = {wd ∈ L2(Ωd)

m, div vd ∈ L2(Ωd),vd.nd = 0 onΓd,D}

(3.1)

The inf-sup condition (2.46 i) which is a condition of the stability of the bilinear form of

the continuous Darcy problem is satisfied relatively to the regularity of the data:

– The term fd should be well defined in V ′
d, the dual space of V .

– h = −divvd should be well defined in (L2(Ωd))
′ = L2(Ωd).

In order to introduce the new ideas of "VMS" method, we will define a new norm on the space

V ×Q. For Darcy problem, we need to control ||vd||0 and ||divvd||0 to obtain stability in Vd.

The L2 norm is denoted by || ||0 in all this chapter and defined in Equation (3.1).

A method to incorporate both norms in a single way is through the introduction of a

characteristic length scale L0 independant of the size of mesh hK . Thus, the new norm on Vd

is defined by:
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||vd||Ld
= ||vd||0 + L0||divvd||0 (3.2)

The functional setting is well posed as a consequence of the inf-sup condition:

∃β > 0, inf
qd∈L2(Ωd)

sup
vd∈Ht

Γd,D
(div,Ωd)

< qd, divwd >

||qd||0||wd||Ld

≥ 0 (3.3)

This condition is true because the divergence operator is surjective from H(div,Ωd) to

L2(Ωd), then < qd, divwd > is well defined (see the condition ii) of Theorem (2.46)).

Let now ||| |||d be the norm on Vd ×Qd defined by:

|||[vd, pd]|||d = µ
k ||vd||20 + µ

kL
2
0||divvd||20 + k

µ
1
L0

2||pd||20 (3.4)

The existence and unicity of the solution of the continuous problem is verified using the

condition of Babũska theorem (2.48). By defining the bilinear form of Darcy problem in

Equation (3.5), Babuska condition is enunciated in Equation (3.6).

Bd([vd, pd], [wd, qd]) = µ
k < vd,wd >Ωd

− < pd, divwd >Ωd

+ < qd, div vd >Ωd

+ < pd, wd.nd >Γd,N

(3.5)

Then ∀[vd, qd] ∈ Vd×Qd, ∃[wd, qd] ∈ V 0
d ×Qd and C > 0 such that [Codina & S.Badia 2010],

[S.Badia & R.Codina 2008]:

Bd([vd, pd], [wd, qd]) > C|||[vd, pd]|||d|||[wd, qd]|||d (3.6)

This condition (3.6) is obtained because the inf-sup condition (3.3) is verified and the

data (fd, hd) is regular enough which lead to the continuity of the linear form Ld, [S.Badia &

R.Codina 2008], [Codina & S.Badia 2010].

3.2.2 Stabilized finite element method based on "VMS" theory

The use of the Variational MultiScale method ("VMS") is introduced in [T.J.R.Hughes 1995]

and in [Nakshatrala et al. 2006b]. The essential difference between the Variational Multiscale

Methods developed in [S.Badia & R.Codina 2008] and the other methods is the introduction of
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3.2. Variational MultiScale method "VMS" applied to Darcy problem

a characteristic length scale L0 which appears in the stabilization terms. Four different choices

of this length scale will lead to different numerical methods with interesting properties. More-

over, a subgrid projection appears when we stabilize our equations with "VMS" methods. The

choice of this subgrid projection leads to two different types of "VMS" methods so called "Al-

gebraic Subgrid Scale" method (ASGS) and Orthogonal Subgrid Scale method (OSGS). The

ideas of such projection subgrid scale approach, especially the "Orthogonal Subgrid Scale", ap-

pear to stabilize transient incompressible flows in [Codina 2002]. Stabilization methods based

on "VMS" can be stable for continuous and discontinuous approximations. In this chapter, we

will detail continuous approximations which correspond to our approach.

3.2.3 VMS method for Darcy problem

As indicated previously, the technique used in "VMS" method is based on the decomposi-

tion of the unknowns into their finite element scale (or resolvable scale) and a finer scale (or

unresolvable scale) which cannot be captured by the finite element solution. Here, the domain

Ωd ⊂ Rm is discretized with one unstructed mesh made up of triangles if m = 2 and of tetra-

hedrons if m = 3. Let Vh,d and Qh,d be the finite element spaces of the piecewise continuous

functions, which contain the solution vh,d and ph,d. In order to have a unique decomposition,

the spaces are such that Vd×Qd = Vh,d×Qh,d
⊕
V ′
d ×Q′

d. This decomposition is only true for

the conforming approximations because Vh,d ⊂ Vd and Qh,d ⊂ Qd (conforming spaces). The

velocity, pressure and test functions are decomposed as:

vd = vh,d
︸︷︷︸

finite element scales

+ v′
d

︸︷︷︸

fine scales

wd = wh,d
︸ ︷︷ ︸

finite element scales

+ w′
d

︸︷︷︸

fine scales

pd = ph,d
︸︷︷︸

finite element scales

+ p′d
︸︷︷︸

fine scales

qd = qh,d
︸︷︷︸

finite element scales

+ q′d
︸︷︷︸

fine scales

(3.7)

Invoking the decomposition of pressure and velocity in Darcy for both solution and test

functions as given in Equation (3.7), the system (3.8) is decomposed in two-scale systems.

Bd([vd, pd], [wd, qd]) = Ld([wd, qd]) (3.8)
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∀wd ∈ V 0
d , ∀qd ∈ Qd

where the bilinear form Bd is defined in Equation (3.5) and the linear form Ld is defined in

Equation (3.9) by:

Ld([wd, qd]) = < fd,wd >Ωd

+ < hd, qd >

+ < pext,d.n,wd >Γd,N

(3.9)

The finite element problem writes:

Bd([vh,d, ph,d], [wh,d, qh,d]) + Bd([v
′
d, p

′
d], [wh,d, qh,d])

= Ld([[wh,d, qh,d])

The fine scale problem writes:

Bd([vh,d, ph,d], [w
′
d, q

′
d]) + Bd([v

′
d, p

′
d], [w

′
d, q

′
d])

= Ld(w
′
d, q

′
d])

(3.10)

for all [wh,d, qh,d] ∈ V 0
h,d ×Qh,d and [w′

d, q
′
d] ∈ V ′

d ×Q′
d.

We assume that the fine scale functions [w′
d, q

′
d] vanish on the boundary of every mesh element.

After integration by parts of some terms, and assuming that the subgrid component can be

localized inside every finite element, one gets:

Bd([vh,d, ph,d], [wh,d, qh,d]) +
∑

K

< v′
h,d,

µ

k
wh,d +∇qh,d >K

+
∑

K

< p′h,d,−divwh,d >K

+
∑

K

< v′h,d,+∇qh,d >K

= Ld([wh,d, qh,d])

(3.11)

Remark: < p′h,d,wh,d.nd >Γd,N
= 0 because p′h,d vanishes on the boundary of Ωd.

The fine scale problem (3.10) writes:

< µ
kv

′
h,d +∇p′h,d + µ

kvh,d +∇ph,d,wh,d > = < fd,wh,d >

< divv′
h,d + divvh,d, qh,d > = < hd, qh,d >

(3.12)
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3.2. Variational MultiScale method "VMS" applied to Darcy problem

which is equivalent to:

P ′([
µ

k
v′
d +∇p′d, divv′

d]) = P ′([fd −
µ

k
vh,d −∇ph,d,hd − divvh,d]) (3.13)

where P ′ is the L2 broken onto V ′
d × Q′

d. Equation (3.13) is the subgrid equation. Inside

every element, the subgrid projection P ′ is approximated by an appropriate approximation

P ′
h := [P ′

h,v, P
′
h,p] where P ′

h,v is the L2 projection onto V ′
h,d and P ′

h,p is the L2 projection onto

Q′
h,d. Then Equation (3.13) becomes:

P ′
h,v(

µ
kv

′
d +∇p′d) = P ′

h,v(fd − µ
kvh,d −∇ph,d)

P ′
h,p(divv

′
d) = P ′

h,p(hd − divvh,d)
(3.14)

The next step consists in replacing the operators µ
kv

′
d + ∇p′d and divv′

d by algebraics

operators where the stabilization terms τu and τp are used such as [Codina & S.Badia 2010]:

µ
kv

′
d +∇p′d ≃ τ−1

u v′
d

divv′
d ≃ τ−1

p p′d
(3.15)

In this case, we obtain:

v′
d = τuP

′
h,v(fd − µ

kvh,d −∇ph,d)
p′d = τpP

′
h,p(hd − divvh,d)

(3.16)

Using these expressions for the subscales in the finite element problem (3.11), we get the

stabilized forms Bd,stable and Ld,stable. Stabilized Darcy problem finally writes:

Find [vh,d, ph,d] ∈ Vh,d ×Qh,d such as:

Bd,stable([vh,d, ph,d][wh,d, qh,d]) = Ld,stable([wh,d, qh,d]) (3.17)

∀[wh,d, qh,d] ∈ V 0
h,d ×Qh,d

Bd,stable([vh,d, ph,d], [wh,d, qh,d]) = Bd([vh,d, ph,d], [wh,d, qh,d])

+τu
∑

K

< P ′
h,v(

µ

k
vh,d +∇ph,d

︸ ︷︷ ︸

residual

),−µ
k
wh,d +∇qh,d >K

+τp
∑

K

< P ′
h,p(divvh,d), divwh,d >K

(3.18)
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Ld,stable([wh,d, qh,d]) = Ld([wh,d, qh,d])

+τp
∑

K

< P ′
h,p(hd),∇.wh,d >K

+τu
∑

K

< P ′
h,v(fd),−

µ

k
wh,d +∇qh,d >K

(3.19)

where Bd([vh,d, ph,d], [wh,d, qh,d]) and Ld([wh,d, qh,d]) are defined in (3.5) and (3.9).

3.2.4 Choice of the subgrid projection

We have at least, two choices of the subgrid projection P ′
h when acting on the FE residual.

The simplest choice is to consider P ′
h the identity operator, then the method is so called "ASGS"

(Algebraic SubgridScale) method. Invoking this, the bilinear form (3.18) and the linear form

(3.19) become:

Bd,stable([vh,d, ph,d], [wh,d, qh,d]) = Bd([vh,d, ph,d], [wh,d, qh,d])

+τp
∑

K

< divvh,d, divwh,d >K

+τu
∑

K

<
µ

k
vh,d +∇ph,d,−

µ

k
wh,d +∇qh,d >K

(3.20)

Ld,stable([wh,d, qh,d]) = Ld([wh,d, qh,d])

+τp
∑

K

< hd, divwh,d >K

+τu
∑

K

< fd,−
µ

k
wh,d +∇qh,d >K

Another choice of the subgrid projector is the orthogonal subgrid projector. Let PX be the

L2 projection defined by:

PX : L2(Ωd)→ X (3.21)

where X is a Hilbert space. ∀g ∈ L2(Ωd), g|K ∈ L2(K), PX(g|K) is the solution of:

(PX(g), u) =
∑

K

< g, u >K ∀u ∈ X (3.22)

Introducing
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3.2. Variational MultiScale method "VMS" applied to Darcy problem

P⊥
X = g − PX(g) ∈ L2(Ωd) (3.23)

the orthogonal projection [P ′
h,v, P

′
h,p] is then defined by:

[P ′
h,v, P

′
h,p] := [P⊥

Vh
, P⊥

Qh
] (3.24)

This method is called "OSGS" (Orthogonal SubGrid Scale). The bilinear form defined in

(3.18) and the linear form defined in (3.19) become:

Bd,stable([vh,d, ph,d], [wh,d, qh,d]) = Bd([vh,d, ph,d], [wh,d, qh,d])

+τp
∑

K

< P⊥
Qh

(divvh,d), divwh,d >

+τu
∑

K

< P⊥
Vh
(∇ph,d),+∇qh,d >

(3.25)

Ld,stable([wh,d, qh,d]) = Ld([wh,d, qh,d]) (3.26)

Codina in [S.Badia & R.Codina 2010] mentioned that this formulation of OSGS method

introduces a consistency error that does not spoil the accuracy of the discrete solution and

explains that the introduction of P⊥
Qh

(g) and P⊥
Vh
(f) makes the OSGS formulation of Darcy

problem more consistent when Ld([wh,d, qh,d] (3.19) becomes:

Ld,stable([wh,d, qh,d]) = Ld([wh,d, qh,d])

+τp
∑

K

< P⊥
Qh

(hd), divvh,d >K

+τu
∑

K

< P⊥
Vh
(fd),∇qh,d >K

(3.27)

We consider that µ
kvh,d ∈ Vh,d. For this we have P⊥

Vh
(µkvh,d) = 0.

This formulation introduces less stabilization terms than the ASGS method, but it imposes two

additional resolutions of equations to get P⊥
Qh

(divvh,d) and P⊥
Vh
(∇ph,d) with the non consistent

version of OSGS. With the consistent version, we have also to determine P⊥
Vh
(f) and P⊥

Qh
(g).

3.2.5 Choice of the length scale

The stabilization terms τu and τp are defined using a heuristic Fourier transformation.

The details of the computation of these stabilization parameters are given in [Codina &
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S.Badia 2010].

The stabilization parameters are:

τu =
h2

l2u

k

µ

τp =
µ

k
l2p

(3.28)

where lu and lp are parameters that have the dimensions of lengths. Different choices of lu and

lp lead to different methods [Codina & S.Badia 2010]:

Method A : lu = cu × h and lp = cp × h
Method B : lu = cu × L

1

2

0 × h
1

2 and lp = cp × L
1

2

0 × h
1

2

Method C : lu = cu × L0 and lp = cp × L0

Method D : lu = cu × h and lp = cp × L0

(3.29)

cu and cp are algorithmic dimensionless constants.

Discussion of the choice of lu and lp

The accuracy, optimality and stability of the method depend on the choices of lu and lp (for

continuous and discontinuous approximations) and on the order of interpolations of pressure

and velocity.

Let Vh,d and V 0
h,d be the finite element spaces of velocity and the test functions of velocity

respectively and Qh,d the finite element space of pressure.

Vh = {vh,d ∈ C0(Ωd)
m : vh,d|K ∈ Pn(K)m}

V0,h = {wh,d ∈ C0(Ωd)
m : wh,d|K ∈ Pn(K)m,vh,dΓd,D

= 0}
Qh = {qh,d ∈ C0(Ωd) : ph,d|K ∈ Pl(K)}

(3.30)

Three cases will be discussed:

– n < l: it is unusual to find this situation in porous media flow applications because

the velocity field can not be approximated by piecewise constant velocities, this is the

method for the Poisson problem of Darcy (∆p = 0).

– n = l: we have the same interpolation orders for both velocity and pressure, this method

requires less CPU time than elements where interpolation orders are different. In the case

of continuous approximations of velocity and pressure with equal orders of interpolations,

method B is the most accurate and optimal.

– n > l: this method is optimal if n = l + 1 for any interpolation pairs (such as P2/P1

elements). Method C is the most accurate in this case.
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3.2. Variational MultiScale method "VMS" applied to Darcy problem

We conclude that "VMS" methods conduct to different and essential methods stable for

Darcy problem: method C optimal for different orders of velocity-pressure and method B

optimal for the same orders of velocity-pressure.

In our case, we will use continuous and linear elements for Darcy problem (P1/P1) elements

then we test method B which must be the most accurate in this case.

3.2.6 Stability of the ASGS method for Darcy problems

Following Codina [S.Badia & R.Codina 2008], [Codina & S.Badia 2010], we choose the

subgrid projection operator equal to identity (ASGS method) and as we mentioned in the

previous subsection, we will use P1/P1 elements and the following parameters of stabilization

corresponding to method B.

τu =
h2

cuL0h

k

µ

τp =
µ

k
cpL0h

(3.31)

The finite element spaces of velocity, pressure and test functions are:

Vh,d = {vh,d ∈ C0(K)m : vh,d|K ∈ P1(K)m}
V 0
h,d = {wh,d ∈ C0(K)m : wh,d|K ∈ P1(K)m,wh,dΓd,D

= 0}
Qh,d = {ph,d ∈ C0(K) : ph,d|K ∈ P1(K)}

(3.32)

Stability of the bilinear stabilized form of Darcy

The ASGS method applied to Darcy problem is stable if and only if the bilinear form

Bd,stable([vh,d, ph,d], [wh,d, qh,d]) defined in Equation (3.20) is stable over Vh,d×Qh,d. The mesh

dependant-norm defined on Vh ×Qh is ||| |||h,d defined by:

|||[vh,d, ph,d]|||2h,d = |||[vh,d, ph,d]|||2h +
k

µ

1

L2
0

||ph,d||20 (3.33)

with

|||[vh,d, ph,d]|||2h =
µ

k
||vh,d||20,K + τp

∑

K

||divvh,d||20,K + τu
∑

K

||∇ph,d||2K (3.34)

By introducing this mesh-dependant norm, we have to control
∑

K

||divvh,d||0,K and
∑

K

||∇ph,d||0,K .

This control is obtained if at the element level, we have:

– ∇Qh,d ⊂ Vh,d
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– divVh,d ⊂ Qh,d

– The second item divVh,d ⊂ Qh,d in our case is satisfied naturally since the divergence

operator is surjective from HΓd,D
(div,Ωd) to L2(Ωd) then divvh,d ∈ L2(K) for all K.

– Also, in our case, by using P1/P1 elements ∇Qh,d ⊂ Vh,d because ∇ph,d has constant

components due to the linearity of ph,d. Then ∇ph,d ∈ L2(K)m∀K a triangle (m = 2) or

tetrahedrons (m = 3) and div(∇ph,d) = 0 ∈ L2(K), which means that ∇Qh ⊂ Vh.
Then, we have by choosing these elements, the control on ||vh,d||0,K and ||∇ph,d||0,K ∀K.

These conditions also do not affect the conforming conditions which implies that Vh ⊂ V and

Qh ⊂ Q, necessary in the theory of "VMS" methods.

Proof of the stability for the stabilized bilinear form and conditions on numer-

ical constants

The stability of the bilinear form means that, [Codina & S.Badia 2010], [S.Badia & R.Codina 2008]:

∀[wh,d, qh,d] ∈ V 0
h,d ×Qh,d∃C > 0 and [vh,d, ph,d] ∈ Vh,d ×Qh,d such that :

Bd,stable([vh,d, ph,d], [wh,d, qh,d]) ≥ C|||[vh,d, ph,d]|||h,d|||[wh,d, qh,d]|||h,d
(3.35)

We take [wh,d, qh,d] = [vh,d, ph,d] then

Bd,stable([vh,d, ph,d], [vh,d, ph,d]) = µ
k ||vh,d||2

+ < ph,d,vh,d.nd >Γd,N

+τp
∑

K

||divvh,d||20,K

+τu
∑

K

||∇ph,d||20,K

−τu
∑

K

||µ
k
vh,d||20,K

(3.36)

In the general case, also in [Codina & S.Badia 2010], one considers that the imposed

pressure on Γd,N , ph,d|Γd,N
= 0, then the term < ph,d,vh,d.nd >Γd,N

in Equation (3.36) is zero,

in this case:
Bd,stable([vh,d, ph,d], [vh,d, ph,d]) = ||vh,d||20(1− τu µ

k )

+τp
∑

K

||divvh,d||20,K

+τu
∑

K

||∇ph,d||20,K

(3.37)

Then Bd,stable([vh,d, ph,d], [vh,d, ph,d]) ≥ C|||[vh,d, ph,d]|||h if and only if 1− τu µ
k > 0 Since,
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3.3. Variational MultiScale method "VMS" applied to Stokes problem

τu = h2

c2uL0h
in the method B, then

h

c2u L0
< 1

.

Because |||[vh,d, ph,d]|||h and |||[vh,d, ph,d]|||h,d are equivalent norms then the bilinear form

Bd,stable[., .] is coercive over Vh,d ×Qh,d with respect to the mesh-dependant norm |||.|||h,d.

3.3 Variational MultiScale method "VMS" applied to Stokes

problem

It was shown by Codina that the ASGS stabilization was convergent [S.Badia & R.Codina 2008],

[Codina & S.Badia 2010]. Here we propose to detail this state to the slightly Stokes problem

and to show its convergence.

3.3.1 Stability of the continuous Stokes problem

The spaces of velocity and pressure in Stokes problem and the regularity of the source

terms fs and hs are important to maintain the continuity of the general functional setting of

the problem.

Let Vs = H1
Γs,D

(Ωs)
m be the space of velocity and Qs = L2(Ωs) the space of pressure. The

data is such that fs ∈ (Vs)
′ = H−1

Γs,D
(Ωs)

m the dual space of H1
Γs,D

(Ωs)
m, and hs = divvs ∈

(Qs)
′ = L2(Ωs).

To control the velocity in H1
Γs,D

(Ωs)
m, we have to control ||∇vs||0 and ||v||0. Due to the

inequality of Poincare defined in Equation (3.38), the semi-norm ||∇vs||0 is sufficient to control

the norm of velocity vs in all the space H1
Γs,D

(Ωs)
m.

∀vs ∈ H1
Γs,D

(Ωs)
m, ∃C > 0 ||vs||0 ≤ C||∇vs||0 (3.38)

Then, a stability estimate in the semi-norm ||∇vs||0 is sufficient. The introduction of length

scale is unnecessary contrary to Darcy’s equations. The norm defined in the space of velocity

is then µ||∇vs||0 and the norm defined in the space of pressure is (
1

µ
||qs||20 − ||∇qs||2H−1). The

norm on the dual space H−1
Γs,D

(Ωs)
m is defined by Equation (3.39):

||∇qs||H−1 = sup
ws∈Vs

< ∇qs,ws >

||ws||H1

(3.39)

and the norm on the space Vs, denoted by ||vs||H1 is:
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||vs||H1 = µ||∇vs||0 (3.40)

The norm on the whole domain Vs ×Qs is defined by:

|||[vs, ps]|||2s = µ||∇vs||20 + 1
µ ||qs||20 + ||∇qs||2H−1

(3.41)

The functional setting of Stokes problem is well posed as a consequence of the inf-sup

condition:

inf
qs∈Qs

sup
ws∈Vs

< qs, divws >

||qs||0||∇ws||0
> β (3.42)

This condition is well-posed because the divergence operator is well defined fromH1
Γs,D

(Ωs)
m

to L2(Ωs) (Theorem (2.46) ii)),[F.Brezzi & M.Fortin 1991]. This inf-sup condition (3.42) and

the regularity of the data (fs, hs) lead to the stability of the bilinear form Bs proved in Equa-

tion (3.43) which means the existence and unicity of the solution of the continuous problem of

Stokes due to the Babũska theorem (2.47).

∀[vs, ps] ∈ Vs ×Qs, ∃[ws, qs] ∈ V 0
s ×Qs andC > 0

Bs([vs, ps], [ws, qs]) ≥ C|||[vs, ps]|||s|||[ws, qs]|||s
(3.43)

3.3.2 VMS method for Stokes problem

Let Vh,s and Qh,s be the finite element spaces of the discretized velocity and pressure, which

contain the solutions vh,s and ph,s. Similarly to the Darcy problem, the "VMS" technique

consists in splitting the continuous solution [vs, ps] of the continuous problem, into the finite

element solution [vh,s, ph,s] and the subgrid scale residual [v′
s, p

′
s]. This decomposition is applied

for velocity, pressure and test functions as we did in Equation (3.7) for Darcy problem. We

invoke the decomposition of pressure and velocity in the bilinear and linear equations of the

continuous problem (3.44) and (3.45) for both solution and test functions as in Equation (3.7).

Bs([vs, ps], [ws, qs]) = 2µ < ε̇(vs) : ε̇(ws) >Ωs

− < ps, divws >Ωs

+ < divvs, qs >Ωs

(3.44)

Ls([ws, qs]) =< fs,ws >Ωs + < hs, qs >Ωs − < pext,s.ns,ws >Γs,N
(3.45)
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The finite element problem writes:

Bs([vh,s, ph,s], [wh,s, qh,s]) + Bs([v
′
s, p

′
s], [wh,s, qh,s])

= Ls([wh,s, qh,s])
(3.46)

and the fine scale problem writes:

Bs([vh,s, ph,s], [w
′
s, q

′
s]) + Bs([v

′
s, p

′
s], [w

′
s, q

′
s])

= Ls([w
′
s, q

′
s])

(3.47)

for all [wh,s, qh,s] ∈ V 0
h,s ×Qh,s and [w′

s, q
′
s] ∈ V ′

s ×Q′
s.

The Variational MultiScale method for Stokes problem is stable for any interpolation orders

of the velocity and pressure. Here, we choose the continuous and linear elements (P1/P1

elements) according to the Darcy problem. Then, the finite element spaces Vh,s, V 0
h,s and Qh,s

can be written as:

Vh,s = {vh,s ∈ C0(K)m : vh,s|K ∈ P1(K)}
V0,h = {wh,s ∈ C0(K)m : wh,s|K ∈ P1(K),wh,sΓs,D

= 0}
Qh = {: qh,s ∈ C0(K), qh,s|K ∈ P1(K)}

(3.48)

We assume that the fine scale functions vanish on the boundary of every mesh element.

After integration by parts of some terms, problem (3.46) writes as:

Bs([vh,s, ph,s], [wh,s, qh,s]) + < v′
s, 2µ(∆wh,s − grad(div(wh,s)) >

+ < divv′
s, qh,s > + < ∇p′s,wh,s >

= Ls([wh,s, qh,s])

(3.49)

Since velocity is linear and continuous (P1 element), ∆wh,s−grad(div(wh,s)) = 0. Problem

(3.47), can then be written as:

< ∇p′s,w′
s > + < divv′

s, q
′
s >=< fs −∇ph,s,w′

s > + < hs − divvh,s, q
′
s > (3.50)

for all [w′
s, q

′
s] ∈ V ′

s ×Q′
s.

We consider P′ the L2 projection operator onto V ′
s × Q′

s. The subgrid projection P′ is
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approximated by P ′
h := [P ′

h,v, P
′
h,q] where P ′

h,v is the L2 projection onto V ′
s and P ′

q is the L2

projection onto Q′
s. Then problem (3.50) becomes:

P ′
h,v(∇p′s) = P ′

h,v(fs −∇ph,s) (3.51)

P ′
h,q(divv

′
s) = P ′

h,q(hs − divvh,s)

The next step consists in replacing the operators ∇p′s and divv′
s by Fourier operators where

we use the stabilization terms τv and τq [S.Badia & R.Codina 2008] :

∇p′s ≈ τ−1
v v′

s (3.52)

divv′
s ≈ τ−1

q p′s

In this case, we obtain :

v′
s = τvP

′
h,u(fs −∇ph,s) (3.53)

p′s = τqP
′
h,p(hs − divvh,s)

Using these expressions for the subscales in the finite element problem (3.49), we get the

stabilized forms of Bs and Ls:

Bs,stable([vh,s, ph,s], [wh,s, qh,s]) = Bs([vh,s, ph,s], [wh,s, qh,s])

+τq
∑

K

< P ′
h,p(divvh,s), divwh,s >K

+τv
∑

K

< P ′
h,u(∇ph,s),−∇qh,s >K

Ls,stable([wh, qh]) = Ls([wh, qh])

+τq
∑

K

< P ′
h,p(hs), divwh,s >K

+τv
∑

K

< P ′
h,p(fs),∇qh,s >K

As explained, in Section 3.2.4, we have two possibilities for the L2 projection operator onto

V ′
s × Q′

s, the identity operator (ASGS method) and the orthogonal operator(OSGS method).

In order to apply the same method in Stokes and Darcy’s domain, we choose the Algebraic

SubgridScale method (P
′

= I).

Then, the Stokes problem stabilized with ASGS method becomes:
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Find [vh,s, ph,s] ∈ Vh,s ×Qh,s such as:

Bs,stable([vh,s, ph,s], [wh,s, qh,s]) = Ls,stable([wh,s, qh,s]) (3.54)

∀[wh,s, qh,s] ∈ V 0
h,s ×Qh,s

where the stabilized bilinear (Bs,stable) and linear (Ls,stable) are defined in Equations (3.55)

and (3.56).

Bs,stable([vh,s, qh,s], [wh,s, qh,s]) = Bs([vh,s, ph,s], [wh,s, qh,s])

+τq
∑

K

< ∇.vh,s,∇.wh,s >K

+τv
∑

K

< ∇ph,s,+∇qh,s >K

(3.55)

Ls,stable([wh,s, qh,s]) = Ls([wh,s, qh,s])

+τq
∑

K

< hs,∇.wh,s >K

+τv
∑

K

< fs,+∇qh,s >K

(3.56)

3.3.3 Stability of the ASGS method for Stokes problem

The stability of the discretized problem of Stokes stabilized with ASGS method is proved

relatively to a mesh dependant-norm on the space Vh,s×Qh,s. Let us define the mesh dependant

norm on Vh,s ×Qh,s:

|||[vh,s, ph,s]|||2h,s = |||[vh,s, ph,s]|||2h + 1
µ ||ph,s||20 (3.57)

where |||[vh,s, ph,s]|||h is defined by:

|||[vh,s, ph,s]|||2h = µ||∇vh,s||20 + τv
∑

K

||∇ph,s||20,K (3.58)

In this mesh dependant norm, ||∇vh,s||0 is well controlled due to the definition of the operator

div from H1
Γd,D

(Ωs)
m to L2(Ωs)

m, ||ph,s||0 is well defined because the pressure ph,s is in L2(Ωs).

To control ||∇ph,s||K which is the L2 norm defined locally on the triangles or tetrahedrons K of

the domain, the order of approximation of velocity and pressure must verify at the element level

"∇Qh,s ⊂ Vh,s". In our case, the use of linear continous elements (P1/P1 elements), verifies this

condition because ∇ph,s is formed by constant components which mean that ∇ph,s ∈ L2(K)
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for every triangle or tetrahedrons K. Then, ||∇ph,s||0,K is well defined.

The parameters of stabilization τv and τq are obtained by heuristic Fourier transformation, the

details of computation are in [S.Badia & R.Codina 2008]:

τv = 1
c1µ
h2K

τq = c1µ
(3.59)

with c1 is an algorithmic constant and hK is the size of mesh.

Remark:

We note that the term of stabilization τq does not appear in the mesh-dependant norm in

Stokes because the control over ||divvh,s||K is not required as for the Darcy problem. We

can deduce that the pressure subscale can be neglected in Stokes because the H1(Ωs) stability

comes from Galerkin terms and only the pressure ph,s requires an inf-sup condition. For the

Darcy problem, this pressure cannot be neglected, the term of stabilization τq (which is the

result of the introduction of fine scales (p′s) for pressure) appears in the mesh dependant-norm

|||[vh,d, qh,d]|||h,d and allows to control ||divvh,d||0 since the Galerkin terms do not control the

velocity in H(div,Ωd).

Proof of the stability of the bilinear form of Stokes stabilized with ASGS method

The bilinear form of Stokes stabilized with ASGS method is stable if and only if

Bs,stable([vh,s, ph,s], [wh,s, qh,s]) is stable on Vh,s ×Qh,s ∀[wh,s, qh,s] ∈ V 0
h,s ×Qh,s.

Then, we have to prove that:

∀[vh,s, ph,s] ∈ Vh,s ×Qh,s, ∃[wh,s, qh,s] ∈ V 0
h,s ×Qh,s and ∃C > 0 such as

Bs,stable([vh,s, ph,s], [wh,s, qh,s]) ≥ C|||[vh,s, ph,s]|||h,s|||[wh,s, qh,s]|||h,s
(3.60)

Let us take [wh,s, qh,s] = [vh,s, ph,s], then

Bs,stable([vh,s, ph,s], [vh,s, ph,s]) = 2µ||ε̇(vh,s)||20
+τq

∑

K

||divvh,s||20,K + τv
∑

K

||∇ph,s||20,K (3.61)

Consequently,

Bs,stable([vh,s, ph,s], [vh,s, ph,s]) ≥ µ||∇vh,s||20 + τv
∑

K

||∇ph,s||20,K

= ||[vh,s, ph,s]||2h
(3.62)
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Either, ||[vh,s, ph,s]||h and ||[vh,s, ph,s]||h,s are equivalent, then

∃C > 0 such that ∀[vh,s, ph,s] ∈ Vh,s ×Qh,s

Bs,stable([vh,s, ph,s], [vh,s, ph,s]) ≥ C||[vh,s, ph,s]||2h,s
(3.63)

without any condition on the algorithmic constant c1.

3.4 "VMS" methods applied to Stokes-Darcy coupled problem

As it was introduced in Stokes and Darcy problems in Chapter 2, the Galerkin approxi-

mation requires the use of velocity-pressure interpolations able to satisfy the conditions (i and

ii) of theorem (2.46). Different interpolations detailed in Chapter 2 satisfy this condition, but

the key issue is to find interpolations that satisfy the inf-sup condition for both problems at

the same time. The important concept with VMS methods is that we are able to deal with

both problems at the same time with the same technique and with the possibility to use any

velocity-pressure pair. In our approach, we choose the continuous and linear elements (P1/P1)

for Stokes-Darcy coupling problem. The most important feature is that the finite element

spaces are conforming Vh×Qh ⊂ V ×Q and that the finite element spaces in Stokes and Darcy

are the same because we use monolithic approach. Also, the possibility of using the same

orders of interpolation for each problem offered by stabilized formulations clearly simplifies the

enforcement of the transmission conditions.

Remark: Let us note, that even if in the discussion of "VMS" methods applied to Stokes

problem, we claimed that the fine subscales of pressure decomposition can be eliminated, we

take them into consideration to have the same technique applied to "Stokes" and "Darcy" at

the same time.

3.4.1 Generalized study of the continuous coupled problem

It was explained for Stokes and Darcy separately that the functional setting of the problem

will be determined by an inf-sup condition and the regularity of the data. The inf-sup condition

of the continuous problem (2.46 ii) is translated into stability of the bilinear form of the

continuous problem, which implies the existence and uniqueness of the velocity and pressure.

Let us redefine the general bilinear form of Stokes-Darcy coupled problem that was detailed

in Chapter 2.
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Bc([v, q], [w, q]) = < 2µε̇(v) : ε̇(w)Hs > + <
µ

k
v,wHd >

− < p , divw > + < q, divv > + <
αµ√
k
v ,w >Γ

(3.64)

Lc([v, p], [w, q]) = < f ,w > + < h, q >

+ < ts,w >Γs,N
+ < pext,w >Γd,N

(3.65)

The spaces of velocity, pressure and test functions are defined by:

Vc = Vs × Vd

V 0
c = V 0

s × V 0
d

Qc = Qs ×Qd

The term f = fs should be in V ′
s = H−1

Γs,D
(Ωs)

m and h = hs should be in Q′
s = L2(Ωs).

The term f = fd should be in V ′
d and h = hd should be in Q′

d = L2(Ωd).

The norm associated with the spaces Vc ×Qc for the coupled problem is:

|||[v, p]|||2c = µ||Hs∇v||20 + µ
k

∑

K

||Hddivv||20,K

+ 1
µ ||Hsq||20 +

∑

K

k

µL2
0

||Hdq||20,K

+||∇q||L′

(3.66)

Hi is the Heaviside function equal to 1 in the domain i (i = s or i = d) and vanishing elsewhere.

– If Hs = 1, v = v|Ωs
= vs and p = p|Ωs

= ps.

– If Hd = 1, v = v|Ωd
= vd and p = p|Ωd

= pd.

– The term µ||Hs∇v||20 is well defined because velocity in Stokes is in H1
Γs,D

– The term 1
µ ||Hsp||20 is well defined because pressure is in L2(Ωs).

– The terms
µ

k
||Hddivv||20 is well defined because of the surjectivity of the divergence

operator from HΓd,D
(div,Ωd) to L2(Ωd), which means that divv ∈ L2(Ωd), then ||divv||20

is well defined.

– The term k
µL2

0

||Hdp||20 is well defined because the pressure is in L2(Ωd).

77



3.4. "VMS" methods applied to Stokes-Darcy coupled problem

– The norm ||∇qi||L′ is defined by:

||∇qi||L′ = sup
vi∈L

|<∇qi,vi>|
||vi||L (3.67)

where L is H1
Γs,D

(Ωs)
m or H1

Γd,D
(div,Ωd), and L′ denotes the dual space of L, i is s in Stokes

and d in Darcy. This norm is the finest norm in which one can prove the stability of Stokes-

Darcy coupled problem. Badia and Codina in [S.Badia & R.Codina 2008] demonstrate the

stability of the bilinear form Bc([v, q], [w, q]) on the space Vc×Qc relatively to the norm ||| |||c
defined in Equation (3.66). Then:

∀[v, p] ∈ Vc ×Qc, ∃[w, q] ∈ V 0
c ×Qc andC > 0 such that

Bc([v, q], [w, q]) ≥ C|||[v, p]|||c|||[w, q]|||c
(3.68)

3.4.2 Stokes-Darcy problem stabilized with ASGS method

The formulation of Stokes-Darcy coupled problem is obtained by summing up the formula-

tions of Darcy stabilized with ASGS method (3.20) and (3.21) and the formulations of Stokes

stabilized with ASGS method (3.55) and (3.56). For Stokes and Darcy flow coupled through

their interface, the stabilized problem with ASGS can be written as follows:

Find [vh, ph] ∈ Vh,c ×Qh,c such as:

Bc,stable([vh, ph][wh, qh]) = Lc,stable([wh, qh]) (3.69)

∀[wh, qh] ∈ V 0
h,c ×Qh,c

Bc,stable([vh, ph], [wh, qh]) = Bc([vh, ph], [wh, qh])

+τp,c
∑

K

< divvh, divwh >K

+τu
∑

K

< Hd(
µ

k
vh +∇ph),−

µ

k
wh +∇qh >K

+τv
∑

K

< Hs∇ph,+∇qh >K

(3.70)

Lc,stable([wh, qh]) = Lc([wh, qh])

+τp,c
∑

K

< hc,∇.wh >K

+τu,c
∑

K

< fc,−
µ

k
∇qh >K

+τu
∑

K

< Hdfd,−
µ

k
wh >

(3.71)
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τp,c, τu,c, τu and τv are the stabilization parameters obtained by Fourier transformation,

that we compute as [S.Badia & R.Codina 2008]

τp,c = cp
µ

k
l2p + c1µ

τu,c = (c1µ+ cu
µ

k
l2u)

−1h2K (3.72)

τu =
h2K

cu × l2u
k

µ
(3.73)

τv =
1

c1µ
h2K (3.74)

(3.75)

In our case, we use method B (Equation (eq3:darcy-methods)), which means that lu = lp =
√
L0 h

3.4.3 Stability of the bilinear form of the Stokes-Darcy coupled problem

To prove the stability of the bilinear form of the Stokes-Darcy coupled problem on the finite

element spaces Vh,c ×Qhc, we have to define a mesh dependant-norm:

|||[vh, ph]|||h,c = µ||Hs∇vh||20 +
µ

k
||Hdvh||20 +

µ

k
τp
∑

K

||Hddivvh||20

+
1

µ
||Hsph||20 +

k

µL0
||Hdph||20

+τv
∑

K

||Hs∇ph||2K + τu
∑

K

||Hd∇ph||2K

(3.76)

where τp, τv and τu are the stabilization parameters in Stokes and Darcy respectively.

As explained for Darcy and Stokes separately, all these norms are well controlled in the

specific spaces of velocity and pressure. In our cases we choose P1/P1 elements for Stokes and

Darcy, then ∇ph is a constant vector ∈ L2(K)

The stability of the bilinear form Bc,stable([vh, ph], [wh, qh]) leads to:

∃C > 0, ∃[wh, qh] ∈ V 0
h,c ×Qh,c, ∀[vh, qh] ∈ Vh,c ×Qh,c

Bc,stable([vh, ph], [wh, qh]) ≥ C|||[vh, ph]|||h,c|||[wh, qh]|||h,c
(3.77)
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Bc,stable([vh, ph], [vh, ph]) = 2µ||Hsε̇(vs)||2 +
∑

K

µ

k
||Hdvh||20,K(1− τu

µ

k
)

+
∑

K

||∇ph||20,K(Hsτv +Hdτu)

+
∑

K

τp,c||divvh||20,K +
αµ√
k
||vh.τ ||2

≥ C|||[vh,ph]|||2h

(3.78)

if and only if 1− τu µ
k ≥ 0, i.e, if and only if h

c2u×L0
< 1 (because we use also method B for

Darcy’s problem in Stokes-Darcy coupling problem).

Either, |||[vh,ph]|||h and |||[vh,ph]|||h,c are equivalent, then Bc,stable([vh, ph], [wh, qh]) is

coercive if and only if h
c2u×L0

< 1. We conclude, that also for the Stokes-Darcy coupled problem,

the more efficient conditions are the conditions reported above on the algorithmic constants of

the stabilization parameters of Darcy’s equations.

3.5 Interface capturing

The interface Γ separating both Stokes and Darcy domains is not described by a set of

boundary elements. This interface passes throughout the mesh elements, consequently a func-

tion φ has to be introduced to depict this interface. φ is chosen as the signed function to Γ

defined by:

φ(x, t = 0) =







min
p∈Γ

‖x− p‖ if x ∈ Ωs

−min
p∈Γ
‖x− p‖ if x ∈ Ωd

(3.79)

Consequently, Γ is the zero isosurface of φ: Γ = {φ = 0}. Considering the discrete problem,

φ is approximated by a piecewise linear function φh. As the interface does not correspond to

some boundaries of elements, we have two ways to compute the surface integral involved in

(3.64): either the surface integral is turned into a volume integral by introducing a Dirac delta

function, or it is computed exactly by rebuilding a piecewise linear interface. In what follows

we will introduce these two different methods to compute the surface integral over the interface.
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3.5.1 Turning a surface integral into a volume integral

The transformation of surface integrals into volume integrals in presented in [Cottet &

E.Maitre 2006]. First, a function L is defined by:

L(
φ

ǫ
) =

{
1
2(1 + cos(π φ

ǫ )) if −ǫ < φ < ǫ

0 if |φ| > ǫ
(3.80)

where ǫ corresponds to the width of the interface. The Dirac delta function is approximated

by the expression introduced in [Cottet & E.Maitre 2006]:

δ{φ=0} ≃
1

ǫ
L(
φ

ǫ
)||∇φ|| (3.81)

Consequently, by using the expression of (3.81), the surface integral can be approximated by a

volume integral: ∫

Γ
f(x)ds ≃

∫

Ω

1

ǫ
L(
φ

ǫ
) ||∇φ||f(x)dv

In our case, the function f is given by the BJS condition: f(x) = αµ√
k
(vh.τ)(wh.τ).

3.5.2 Exact computation of the surface integral

This technique consists in retrieving the segments (m = 2), triangles or quadrilaterals

(m = 3) from the intersection of the interface with mesh elements. The surface integral can

then be exactly computed on this set of segments or plans.

2D case

The mesh is made up by a set of triangles. The first step is to select the triangles which inter-

sect the isovalue function Γ = {φ = 0}. For this, on every triangle K of the mesh, we consider

the function φ at the nodes x0, x1, andx2 of a triangle. If φ has the same sign at these nodes

(Equation (3.82)), the triangle doest not intersect the interface.

φ(x0)φ(x1) > 0

φ(x0)φ(x2) > 0
(3.82)

If the sign of φ at the nodes is different, we note j0 the node of different sign and the two others

j1 and j2. The intersection with the triangle K is the segment [a, b] (see figure 3.1), where the

points a and b are defined by:
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a = θ1j0 + (1− θ1)j1
b = θ2j0 + (1− θ2)j2

(3.83)

where θ1 and θ2 are defined by:

θ1 =
φ(j1)

φ(j1)− φ(j0)
θ2 =

φ(j2)

φ(j2)− φ(j0)
(3.84)

Figure 3.1: The segment of intersection of the triangle with the Stokes-Darcy interface
Γ defined as the isovalue zero of a level set function

Remark: Some particular cases have to be considered:

– If φ vanishes at a node of the triangle K and keeps the same sign on the other nodes, the

triangle does not intersect the interface Γ.

– If φ vanishes on two nodes of the triangle K then these nodes represent the segment of

intersection.

– If φ vanishes on three nodes of the triangle K, we have to exclude this triangle from the

mesh, because it is a degenerated case.

3D case

The mesh is made up by a set of tetrahedrons. The first step is to select the tetrahedrons

which intersect the isovalue zero of φ. For this, on a tetrahedron K of the mesh, we consider

the function φ on the nodes x0, x1, x2 andx3. If φ has the same sign at these nodes (Equation

(3.85)), the tetrahedron does not intersect the zero level set.

82



Chapter 3. Variational MultiScale method to stabilize Stokes, Darcy and
Stokes-Darcy coupled problem

φ(x0)φ(x1) > 0

φ(x0)φ(x2) > 0

φ(x0)φ(x3) > 0

(3.85)

If φ changes its sign at the nodes, two cases have to be considered:

Case 1

If the function φ has the same sign on three nodes and a different sign on the fourth, we note

j0 the node of different sign. In this case, the intersection is a triangle noted "abc" (See figure

3.2) where:

a = θ1j0 + (1− θ1)j1
b = θ2j0 + (1− θ2)j2
c = θ3j0 + (1− θ3)j3

(3.86)

where θ1, θ2 and θ3 are defined by:

θ1 =
φ(j1)

φ(j1)− φ(j0)
θ2 =

φ(j2)

φ(j2)− φ(j0)
θ3 =

φ(j3)

φ(j3)− φ(j0)

(3.87)

Figure 3.2: The triangle of intersection of the tetrahedron with the zero level set function
Γ

We have some particular cases:

– If φ vanishes on a node or on two nodes and keeps the same sign on the other node or
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the two other nodes, the tetrahedron does not intersect the level set.

– If φ vanishes on three nodes of the tetrahedrons, then the triangle formed by these three

nodes is the triangle of intersection.

– If φ vanishes on four nodes of the tetrahedrons, then the tetrahedron is excluded from

the computation, we are in a degenerated case.

Case 2

If the level set function φ has a negative sign on two nodes q0 and q1 and a positif sign on the

other two nodes q2 and q3, the intersection is a quadrilateral (see Figure 3.3).

a = θ1q0 + (1− θ1)q2
b = θ2q1 + (1− θ2)q2
c = θ3q0 + (1− θ3)q3
d = θ4q1 + (1− θ4)q3

(3.88)

where θ1, θ2, θ3 and θ4 are defined by:

θ1 =
φ(q2)

φ(q2)− φ(q0)
θ2 =

φ(q2)

φ(q2)− φ(q1)
θ3 =

φ(q3)

φ(q3)− φ(q0)
θ4 =

φ(q3)

φ(q3)− φ(q1)

(3.89)

Figure 3.3: The quadrilateral of intersection of the tetrahedron with the zero level set
function Γ

In the next chapter, we will see that rebuilding the interface gives more accurate results.
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3.6 Conclusions

In this chapter, we have motivated the set of VariationalMultiScale methods for the numer-

ical approximation of Stokes, Darcy and Stokes-Darcy coupling problems. We used piecewise

continuous linear elements (P1/P1 elements) and the optimal method prescribed for the case

of equal interpolation orders. We proved the stability of the bilinear forms of Stokes, Darcy and

Stokes-Darcy coupled problems taking into consideration some conditions on the algorithmic

constants in the parameters of stabilization. Finally, we presented the ways of computing the

surface integral which appears in Stokes-Darcy coupling problem due to the presence of "BJS"

condition.
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4.1. Introduction

4.1 Introduction

As mentioned before, coupling Stokes-Darcy using a "monolithic approach" may be quite

challenging because of the difficulty to find some elements which are stable at the same time

for both Stokes and Darcy. For this, we motivated the use of "VMS" methods. In this chapter,

we will test ASGS method for Stokes, Darcy and Stokes-Darcy coupled problem. To evaluate

the "ASGS" method we carried out two types of tests. First, we assess the convergence of this

method along with the code robustness and performance using manufactured solutions. Sec-

ond, we realise some tests where the analytical solution is known. In addition, our method is

tested in severe regimes (permeability down to 10−15 m2 and complex geometries). Some cases

are compared with another "monolithic" coupling [Pacquaut et al. 2012], [Pacquaut 2009]

to show the relevance of the ASGS method with respect to the VMS method. Moreover, we

compare our "monolithic" approach in some cases to a decoupled approach [Celle et al. 2008]

which is used to simulate industrial cases. In this chapter, we will validate Stokes problem with

Poiseuille flow, then we will test its convergence using manufactured solutions. Furthermore,

we will valid Darcy problem with a radial flow and test its convergence. Finally, we will test the

convergence of Stokes-Darcy coupled problem with manufactured solutions, and will validate

this coupled problem using different tests in 2D and 3D in severe regimes (perpendicular flow,

parallel flow, inclined flow and complex flows). We will validate also the different methods of

Stokes-Darcy interface capturing.

Remark: All the numerical simulations are implemented in Zebulon code based on C++

langage 1

4.2 Validation of the Stokes problem

The numerical constant c1 in the stabilization terms τv and τq (Equation (3.59)) is taken

equal to 1 in all the tests [S.Badia & R.Codina 2008].

4.2.1 Poiseuille flow

In order to validate the Stokes problem stabilized with an "ASGS" method, we carried out

a Poiseuille flow test. The incompressible fluid flows through rectangular geometry of length

1. This code is developed at École Nationale Supérieure des Mines de Paris, ONERA, Northwest Numerics
and Modeling society (USA) and École Nationale Supérieure des Mines de Saint-Etienne.
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L and of height H in Figure 4.1. We apply a parabolic velocity on the entry of the domain,

defined as

Figure 4.1: Domain of study of Poiseuille test used in Stokes problem

vs =

{

vs,x = 6Q
H3 (yH − y2)

vs,y = 0
(4.1)

Other boundary conditions are such that in Figure 4.1, on the output of the domain at x = L,

the first component of the normal stress is zero and the second component of the velocity

is vs,y = 0. Other boundaries represent sticking conditions. The analytical solution of the

velocity is given by the parabolic velocity imposed at the entry of the domain, defined in

Equation (4.1). The analytical solution of pressure is:

ps = (
−12Qµ

H3
)x+ p0 (4.2)

where p0 is a constant. This problem is solved for H = 1, L = 5, µ = 1 and Q = 1.

Figure 4.2 and 4.3 show the isovalues for velocity and pressure respectively. A comparison

between analytical and numerical solutions of Stokes velocity in Figure 4.4 shows an excellent

correlation of the results. The same conclusion can be drawn in Figure 4.5 for the pressure.

This proves the stability of numerical solutions obtained for Stokes flow stabilized with an

ASGS method.
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Figure 4.2: Isovalues of velocity for Poiseuille test (Figure 4.1)

Figure 4.3: Isovalues of pressure for Poiseuille test, (Figure 4.1)
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Figure 4.4: Comparison between numerical and analytical solutions of velocity for
Poiseuille test, (Figure 4.1)

Figure 4.5: Comparison between numerical and analytical solutions of pressure for
Poiseuille test, (Figure 4.1)
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4.2.2 Study of the rate of convergence

To verify the implementation and to investigate the convergence of the "ASGS" method

used to stabilize the Stokes problem, the method of manufactured solution [Chamberland

et al. 2010], [Salari & Knupp 2000] is used. It consists in building an analytical solution that is

fed into the system of equations under consideration and permits to compute the corresponding

right-hand side terms. These terms are subsequently implemented into the numerical code to

obtain the numerical solution of the discrete problem. Finally the difference between the general

analytical solution and the numerical one is computed and permits to assess the capability of

the method to solve the PDE set of equations.

Let us recall that we have to solve the following system for Stokes

−div (2µε̇(vs)) +∇ps = fs onΩs,D

div vs = hs on Ωs,D

vs = 0 on Γs,D

(4.3)

Let us consider the following velocity and pressure fields [Donea & Huerta 2003]:

vs,x = x2(1− x)2(2y − 6y2 + 4y3)

vs,y = −y2(1− y)2(2x− 6x2 + 4x3)

ps = x(1− x)
(4.4)

From which one deduces the term fs for the corresponding Stokes problem in Equation

(4.3).

fs,x = (12− 24y)x4 + (−24 + 48y)x3

+ (−48y + 72y2 − 48y3 + 12)x2

+ (−2 + 24y − 72y2 + 48y3)x+ 1− 4y + 12y2 − 8y3

fs,y = (8− 48y + 48y2)x3 + (−12 + 72y − 72y2)x2

+ (4− 24y + 48y2 − 48y3 + 24y4)x− 12y2 + 24y3 − 12y4

andhs = 0

(4.5)

This problem is solved numerically on a square [0, 1]× [0, 1]. The studied area is divided into

squares, each square is itself divided into two triangles. In this way, a regular mesh is obtained.

Several meshes are used: 10 × 10, 20 × 20, 40 × 40 and 80 × 80. A Dirichlet condition of

zero velocity is imposed on the overall boundary of the domain Ωs. For every mesh and every
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numerical solution vh,s and ph,s, the errors are calculated using the following norms.

– L2 Norm:

‖u‖0,Ωs =
(∫

Ωs

u2dΩs

)1/2
(4.6)

– H1 Norm :

‖u‖1,Ωs =
(

‖u‖20,Ωs
+

m∑

j=1

∥
∥
∥
∂u

∂xj

∥
∥
∥

2

0,Ωs

)1/2
(4.7)

For the Stokes equations, the use of linear and continuous elements implies rates of conver-

gence which verify [A.Ern 2005]:

‖v − vh‖1,Ωs + ‖p− ph‖0,Ωs 6 C h(‖v‖2,Ωs + ‖p‖1,Ωs) (4.8)

where C is a constant and ‖.‖2,Ωs is the H2 norm:

‖u‖2,Ωs =
(

‖u‖20,Ωs
+

m∑

j=1

∥
∥
∥
∂u

∂xj

∥
∥
∥

2

0,Ωs

+
m∑

i,j=1

∥
∥
∥
∂2u

∂xixj

∥
∥
∥

2

0,Ωs

)1/2
(4.9)

Table 4.1 shows the error on velocity in L2 and H1 norms and the error on pressure in L2

norm.

mesh h ||vs − vh,s||L2 ||vs − vh,s||H1 ||ps − ph,s||L2

10× 10 0.1 0.00087005 0.015 0.0018497
20× 20 0.05 0.000231 0.0079 0.000486
40× 40 0.025 5.975 10−5 0.00398 0.00016041
80× 80 0.0125 1.46 10−5 0.00199 4.8 10−5

Table 4.1: Errors of velocity and pressure for the Stokes problem

Figure 4.6 (a) shows that pressure converges with a rate [1.64 : 1.92] in L2 norm. Figure

4.6 (b) shows that velocity converges with a rate [1.93 : 2.04] in norm L2 (theoretical order is

equal to 2) and with a rate [0.93 : 1.74] in norm H1 (theoretical order is equal to 1). These

results correspond to the theoretical convergence rates determined by Equation (4.8). Figures

4.7 (a) and 4.7 (b) show the isovalues of pressure and velocity.

93



4.2. Validation of the Stokes problem

a) b)

Figure 4.6: Convergence of the error for pressure (a) and velocity (b) for the Stokes
problem, with µ = 1Pa.s, h = 0.0125m

a) b)

Figure 4.7: Isovalues of the pressure (a) and velocity (b) fields for the Stokes problem,
with µ = 1Pa.s, h = 0.0125m
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4.3 Validation of the Darcy problem

The numerical constants in the stabilization terms τu and τp (Equation (3.28)) in Darcy

problem are taken cu = 2, cp = 2 and L0 =
m
√

meas(Ωd) where meas(Ωd) is the surface of Ωd

in 2D and the volume of Ωd in 3D [S.Badia & R.Codina 2008].

4.3.1 Radial flow

To validate the implementation of the ASGS method for the Darcy’s flow, we test a radial

flow. The geometry of the domain is given in Figure 4.8. The analytical solutions of the radial

velocity and of pressure are given in Equation (4.10).

Figure 4.8: Domain of study and boundary conditions for the radial flow







vr =
−k
µ

1

r

pe − pi
ln( reri )

pr = pi + (pe − pi)
ln( r

ri
)

ln( reri )

(4.10)

where ri and re are respectively the inner and outer radius of the disc, while pe and pi are the

internal and external pressure applied to the disc. The physical parameters of this simulation

are: k = 10−10m2, µ = 1Pa.s re = 1mri = 0.1mpe = 105Pa and pi = 0Pa. Figure 4.9 and

4.10 show the isovalues of velocity and pressure. Figure 4.11 shows a comparison between ana-
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lytical and numerical solutions of pressure. The result shows an excellent correlation between

analytical and numerical solutions which illustrates the stability of "ASGS" method applied to

Darcy’s equations.

Figure 4.9: Isovalues of velocity for radial flow, (Figure 4.8)

Figure 4.10: Isovalues of pressure for Darcy flow, (Figure 4.8)
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Figure 4.11: Comparison between analytical solution and numerical solution of pressure
for the radial flow, (Figure 4.8)

4.3.2 Study of the rate of convergence

An analysis similar to the convergence rate analysis proposed for Stokes is carried out for

both pressure and velocity in the porous medium Ωd. Contrary to the previous case where

hs = 0, here the chosen velocity for the manufactured solution is not divergence-free and

hd 6= 0. In this case, a compatibility condition has to be satisfied [Masud & Hughes 2002]:

∫

Ωd

div vd dΩd =

∫

Ωd

hd dΩd =

∫

∂Ωd

vd.nd dΩd =

∫

∂Ωd

gd dΩd (4.11)

with

hd = div(vd) inΩd

gd = vd.nd on ∂Ωd

In this case, the permeability is k = 1m2 and the viscosity is µ = 1Pa.s. The analytical

pressure is [Masud & Hughes 2002], [Codina & S.Badia 2010]:

pd = sin(2πx) sin(2πy) (4.12)

while the velocity field is computed using the Darcy’s law vd = k
µ∇pd = ∇pd, and the right
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hand side term hd is computed from the divergence of vd .

vx,d = −2πcos(2πx)sin(2πy)

vy,d = −2πsin(2πx)cos(2πy)

hd = divvd = 8π2 sin(2πx) sin(2πy)

Dirichlet condition on pressure is prescribed on the overall boundary of the domain Ωd. For

the Darcy’s resolution, using linear approximation per elements, the rate of the convergence

has to satisfy [A.Ern 2005]:

‖vd − vh,d‖0,Ωd
+ ‖div(vd − vh,d)‖0,Ωd

+ ‖(pd − ph,d)‖0,Ωd

6 C h(‖vd‖1,Ωd
+ ‖divvd‖0,Ωd

+ ‖pd‖1,Ωd
) (4.13)

where C is a constant. Table 4.2 shows the pressure errors in both L2 and H1 norms and the

velocity error in L2 norm.

mesh h ||vd − vh,d||L2 ||pd − ph,d||L2 ||pd − ph,d||H1

10× 10 0.1 0.27 0.035 1.3
20× 20 0.05 0.055 0.0041 0.7
40× 40 0.025 0.015 0.0015 0.33
80× 80 0.0125 0.0037 0.00045 0.164

Table 4.2: Errors of velocity and pressure in Darcy’s domain

Figure 4.12 (a) shows a superconvergence of the pressure [1.85 : 2.9] (theoretical order is

2) in L2 norm. The pressure converges with the rate [0.93 : 1.05] in H1 norm (theoretical

order is 1). Figure 4.12 (b) shows also a superconvergence of the velocity [2 : 2.59] in norm L2

(theoretical order is 2). This result corresponds to the theoretical convergence rates determined

by Equation (4.13), in [S.Badia & R.Codina 2008], [Codina & S.Badia 2010]. Figure 4.13 (a)

and 4.13 (b) show the isovalues of pressure and velocity.

98



Chapter 4. Validation of ASGS method for Stokes-Darcy coupled problem in
severe regimes

a) b)

Figure 4.12: Convergence of the error for (a) the pressure and (b) the velocity for Darcy
problem, with µ = 1Pa.s, k = 1m2

a) b)

Figure 4.13: Isovalues of pressure and velocity for Darcy problem, with µ = 1Pa.s,
k = 1m2, h = 0.0125m.
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4.4 Validation of Stokes-Darcy coupled problem

The constants in the stabilization parameters are taken as for Stokes and Darcy problems,

c1 = 1, cu = 2,cp = 2 and L0 =
m
√

meas(Ωd).

4.4.1 Study of the rate of convergence

The coupled problem is solved on a square [0, 1] × [0, 1]. Interface Γ corresponds to the

line x = 0.5 (See Figure 4.14). The purely fluid domain Ωs is located on the left side of the

interface (x < 0.5) and the porous medium on the right side (x > 0.5). We have chosen the

following velocity and pressure fields (Equation(4.15)) and (Equation(4.14)).

Figure 4.14: Domain of study for the manufactured solutions for Stokes-Darcy coupled
problem.

pd = −y4exp(x)
vx,d = y4exp(x)

vy,d = −1

5
y3exp(x) (4.14)
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ps = −y4exp(x)
vx,s = y4exp(x)

vy,s = −1

5
y5exp(x) (4.15)

Dirichlet conditions are prescribed on the boundary of the domain with respect to the

analytical fields (Equations (4.14), (4.15)) chosen for the manufactured solutions. Additional

terms are added to the interface conditions in Equations (4.16) and (4.17), as follows

ps − 2µn.ε̇(vs).n = pd + µ1 on Γ (4.16)

vs.τu =
−
√
k

α
2n.ε̇(vs).τu + µ2 on Γ (4.17)

where µ1 and µ2 are given by

µ1 = −2y4ex (4.18)

µ2 = −2

5
y5exp(x) + 4 y3exp(x) (4.19)

The physical parameters are µ = 1Pa.s, α = 1 and k = 1m2.

An analysis of the convergence is carried out for both pressure and velocity in the subdo-

mains Ωs and Ωd. We compare our results with the results from a previous monolithic approach

developed in [Pacquaut et al. 2012] which uses a linear approximation for both velocity and

pressure fields stabilized with P1 + /P1 in Stokes domain and with HVM method in Darcy’s

domain. The errors obtained in Stokes domain are presented in Table 4.3 for both ASGS and

P1+/P1-HVM methods.

The rate of convergence for the velocity is [1.17 : 3.2] in norm L2 for the ASGS method, a

superconvergence is noticed when hK decreases from 0.05 to 0.025 due to the optimal choice of

the constant c1 while the rate of convergence decreases when the mesh size hk decreases from

0.025 to 0.0125. For P1+/P1-HVM method, the rate of convergence for velocity is 1.73. The

rate of convergence for the pressure in norm L2 for ASGS method is [1.14 : 2.4] (theoretical

order is 1) while the rate of convergence for P1+/P1-HVM is [0.98 : 1.1].

101



4.4. Validation of Stokes-Darcy coupled problem

ASGS HVM/P1+P1
h ‖v − vh‖L2,Stokes ‖p− ph‖L2,Stokes ‖v − vh‖L2,Stokes ‖p− ph‖L2,Stokes

0.1 0.8 0.8 0.04 0.17

0.05 0.178 0.2917 0.01 0.08

0.025 0.018 0.053 0.0026 0.044

0.0125 0.008 0.024 0.00073 0.022

Table 4.3: Errors for velocity and pressure in norm L2 for both ASGS and P1+/P1-HVM
methods in Stokes domain

ASGS HVM/P1+P1
h ‖v − vh‖L2,Darcy ‖p− ph‖L2,Darcy ‖v − vh‖L2,Darcy ‖p− ph‖L2,Darcy

0.1 0.75 0.092 0.08 0.32

0.05 0.27 0.046 0.04 0.21

0.025 0.034 0.0044 0.021 0.15

0.0125 0.017 0.002 0.0106 0.107144

Table 4.4: Errors for velocity and pressure in L2 norm for both ASGS and P1+/P1-HVM
methods in Darcy’s domain

Also, an analysis of the convergence is carried out and shown in Table 4.4 for both pressure

and velocity in the Darcy’s subdomain. The convergence orders of the P1+/P1-HVM method

are low: the rate of convergence for the velocity in norm L2 is of order [0.5 : 0.6] (theoretical

order is 2) and the rate of convergence for the pressure in norm L2 is of order 1 (theoretical

order is 2). The presence of the interface deteriorates the order of convergence. However, for

ASGS method, the rate of convergence is [1.1 : 2.98] for velocity in norm L2 (theoretical order

is 2). ASGS method solves therefore the deterioration of the convergence for the velocity, even

if the rate of convergence decreases when we pass to a small size of mesh.

The rate of convergence for pressure in L2 norm is [1.14 : 3.3], the superconvergence of

the method is noticed when we pass from h = 0.05 to h = 0.025. Figure 4.15 (a) shows the

isovalues of pressure for Stokes-Darcy coupling problem stabilized with ASGS method, Figure

4.15 (b) shows the isovalues of pressure obtained with P1+/P1-HVM method. The oscillations

present especially around the interface with P1+/P1-HVM method disappear completely with

ASGS method. The same comparison for the velocity is shown in Figures 4.16 (a) for ASGS

method and 4.16 (b) for P1+/P1-HVM method.
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a) b)

Figure 4.15: Isovalues of pressure obtained with ASGS method (a) and with P1+/P1-
HVM method (b) for µ = 1Pa.s, k = 1m2 and α = 1
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a) b)

Figure 4.16: Isovalues of velocity obtained with ASGS method (a) and with P1+/P1-
HVM method (b) for µ = 1Pa.s, k = 1m2 and α = 1

This comparison between ASGS method and P1+/P1-HVM shows the relevance of VMS

methods for coupling Stokes-Darcy problem. Figure 4.17 (a) and Figure 4.17 (b) show in

logarithmic scale the convergence of the errors for pressure and velocity in Stokes for the

Stokes-Darcy coupled problem stabilized with ASGS method. Figure 4.18 (a) and Figure 4.18

(b) show in logarithmic scale the convergence of the errors for pressure and velocity in Darcy

for the Stokes-Darcy coupled problem stabilized with ASGS method.
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(a) pressure

(b) velocity

Figure 4.17: Convergence of the error for the pressure and velocity in Stokes domain for
Stokes-Darcy coupled problem with µ = 1Pa.s,k = 1m2,α = 1.
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(a) pressure

(b) velocity

Figure 4.18: Convergence of the error for the pressure and velocity in Darcy domain for
Stokes-Darcy coupled problem with µ = 1Pa.s,k = 1m2,α = 1
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4.4.2 Perpendicular flow

2D simulation

To validate the enforcement of the normal velocity continuity on the Stokes-Darcy interface,

we study the case of a flow perpendicular to the interface of normal y in the global frame,

which is a quite severe test. Normal velocity in Stokes depends solely on the Darcy normal

velocity since no other boundary condition will set this velocity. Let us consider a domain

Ω = [0, 5]× [0, 2]m2 composed of two subdomains: a purely fluid domain Ωs = [0, 5]× [1, 2]m2

and a porous medium Ωd = [0, 5]× [0, 1]m2. A pressure pext of 1 bar is applied on the top and

a zero pressure is imposed on the bottom of the domain (Figure 4.19). Additional boundary

conditions are zero normal velocity on the left and right hand sides of the geometry.

Figure 4.19: Computational domain of perpendicular flow and associated boundary con-
ditions

The theoretical velocity is vd = − k
µ∇p, then for k = 10−11m2, µ = 1 Pa.s and pext =

105 Pa, vd,y = −10−6 m/s. The normal velocity in Stokes should be equal to the normal

velocity in Darcy due to the continuity of normal velocity applied on the Stokes-Darcy interface.

Figure 4.20 shows spurious oscillations around the interface (y = 1m) when using the P1+/P1-

HVM method, while a quasi absence of oscillations is noticed with the ASGS method for this

low value of permeability k = 10−11m2. To assess the accuracy of the ASGS method for

very low permeability, we did the same comparison with k = 10−14m2. Figure 4.21 shows

larger oscillations of velocity around the interface for P1+/P1-HVM method and absence of
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oscillations around the interface with the ASGS method. Moreover, a consistency error appears

when using the P1+/P1-HVM method, since the normal velocity in Stokes is not equal to the

one in Darcy. The ASGS method does not exhibit such a behaviour and ensures the continuity

of the normal velocity, even when the ratio k/µ is small.

Figure 4.20: Comparison of velocity in perpendicular flow test between ASGS method
and P1+/P1-HVM method, with k = 10−11m2, µ = 1Pa.s, p = 105Pa and α = 1

These results are obtained with structured meshes. With unstructured meshes, some os-

cillations may appear around the Stokes-Darcy interface, even with ASGS method. However

their intensity is low and their effect is limited to a few nodes contrary to the P1+/P1-HVM

method. Furthermore, those oscillations do not affect the consistency and the convergence of

the method. The monolithic approach stabilized with "ASGS" method is also compared with

the decoupled approach developed by [Celle et al. 2008]. Results show clearly that the ASGS

method stabilization is as robust as the one used in industrial framework such as the decoupled

approach developed in École des Mines de Saint-Étienne and by ESI group, to simulate resin

infusion processes [Celle et al. 2008], [L.Abouorm et al. ], [A.Dereims 2013]. Indeed ,Figure

4.22 presents the normal velocities obtained with both monolithic and decoupled approaches in

the domain Ω, normalized by the normal velocity of the Darcy medium, µ = 1Pa.s, α = 1. As
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Figure 4.21: Comparison of velocity in perpendicular flow test between ASGS method
and P1+/P1-HVM method, with k = 10−14m2, µ = 1Pa.s, p = 105Pa and α = 1

it can be seen, in both approaches the continuity of the normal velocity is verified. The slight

difference ∆ between values of normal velocity computed with both decoupled and monolithic

approaches is equal to 0.001× 10−6m/s if k = 10−11m2 and 0.01× 10−9 if k = 10−14m2.
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(a) K = 10
−11

m
2

(b) K = 10
−14

m
2

Figure 4.22: Normalized normal velocity vy for viscosity µ = 1Pa.s with different per-
meabilities and α = 1
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Convergence of the solution, as well as relative errors, have been considered for the case of

the perpendicular flow. We compare the numerical results obtained with ASGS and P1+/P1-

HVM methods respectively, with analytical ones given previously for k = 10−14 m2. The error

is computed as ‖verror‖ = ‖v−vh‖L2

‖v‖
L2

. Several regular meshes are used (100 ×10, 100 × 25, 100

× 50 and 100 × 100). The large drop in the relative error between ASGS and P1+/P1-HVM

methods shown in Table 4.5, demonstrates the good behavior of the ASGS approach contrary

to P1+/P1-HVM approach [Pacquaut et al. 2012].

Results for pressure field are presented in Figure 4.23. The pressure distribution does not

depend on the permeability (but only on the enforced normal stress), and coincides with the-

oretical results.

ASGS HVM/P1+P1 [Pacquaut et al. 2012]
h, [m] ‖vy,error‖stokes, [%] ‖vy,error‖darcy, [%] ‖vy,error‖stokes, [%] ‖vy,error‖darcy, [%]
0.15 0.77 % 1.13 % 12.41 % 9.37 %

0.077 0.38 % 0.242 % 10.41 % 9.37 %

0.041 0.14 % 0.069 % 6.32 % 5.94 %

Table 4.5: Relative errors for normal velocities in Stokes and Darcy regions, ASGS
method and P1+/P1-HVM, k = 10−14 m2, perpendicular flow.

Figure 4.23: Isovalues of pressure for perpendicular flow with k = 10−14m2, p = 1 bar,
µ = 1Pa.s and α = 1

111



4.4. Validation of Stokes-Darcy coupled problem

3D extension

For the case of perpendicular flow, 3D simulations are carried out. Geometry and boundary

conditions are the same as in 2D case, extruded along the z axis. We use structured mesh in

this case. Results for pressure are presented in Figure 4.24 and for velocity in Figure 4.25, for

pext = 105Pa, k = 10−14m2 and µ = 1Pa.s. These results are in accordance with the results

obtained for the 2D case. Normal velocity is continuous, and the oscillations disappear around

the interface contrary to P1+/P1-HVM where oscillations are still more important in 3D cases.

For unstructured meshes, some oscillations may appear around the Stokes-Darcy interface.

However, their intensity is weak and their effect is limited to a few nodes. Furthermore, they

do not affect the consistency and the convergence of the method.

Figure 4.24: Isovalues of pressure for perpendicular flow in 3D with k = 10−14m2, p =
1 bar, µ = 1Pa.s and α = 1

4.4.3 Parallel flow

The case of a flow parallel to the Stokes / Darcy interface is now investigated in order to

validate the enforcement of the BJS condition (see [Gartling et al. 1996]). Hence, we consider

a domain Ω composed of two sub-domains: a purely fluid domain Ωs = [0; 5] × [0; 1]m2 and

porous medium Ωd = [0; 5] × [−2; 0] m2 .The boundary conditions on ∂Ω for velocity and

pressure are shown in Figure 4.26. The physical parameters for this simulation are µ = 1Pa.s,
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Figure 4.25: Isovalues of velocity for perpendicular flow in 3D with k = 10−14m2, p =
1 bar, µ = 1Pa.s and α = 1

α = 1 (slip coefficient), pext = 105 Pa and k = 10−14 m2. In the Stokes domain, the normal

velocity vy is equal to zero, while the tangential velocity vx, solution of the Stokes equations

and verifying both the BJS condition on the interface Γ and the condition vx = 0 on the upper

side (i.e. for y = Hs), can be analytically calculated [Pacquaut et al. 2012]:

vx = − k

2µ

(λ2 + 2αλ

1 + αλ

)dp

dx

(

1 +
α√
k
y
)

+
1

2µ

(

y2 + 2αy
√
k
)dp

dx
vy = 0

λ =
Hs√
k

(4.20)

where Hs is the thickness of the Stokes domain.

Since pressure is linear, its derivative is consequently equal to (p1−p0)
L , p1 is the pressure

applied on the right side, equal to 105Pa, and p0 is the pressure applied on the left hand side,

equal to 0Pa, and L is the width of Ω. This leads to a pressure equal to p(x) = (p1−p0)
L x+ p0,

the Darcy’s velocity is then equal to
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Figure 4.26: Computational domain for parallel flow and boundary conditions

vx = −k
µ
∇p = −k

µ

p1 − p0
L

(4.21)

vy = 0

Figures 4.27 and 4.28 show the distribution of velocity and pressure. Note that the values

of this velocity, depending only on the imposed pressure gradient, are not in a real physical

range but are relevant in this validation case. Different tests with different permeabilities

(down to 10−14m2) are realized. Figure 4.29 compares the Stokes tangential velocity obtained

by simulation with the analytical solution (4.20). One can verify a good correlation between

the analytical and the numerical solutions, which shows that the BJS condition is correctly

computed. The largest difference ∆ between the analytical and numerical solution is equal

to 85m/s ( ∆
vmax

= 0.03(3%)), it is due to the mixture on the interface for elements belonging

both to the Stokes and Darcy domains. A reduction of the mesh size around the interface may

reduce this difference. However, that does not affect the validity of our comparison, and could

be removed just by changing the physical units. Figure 4.30 compares the analytical solution for

pressure with the simulation results for both ASGS and P1+/P1-HVM methods. It appears

clearly that the simulation with ASGS method provides the expected linear pressure, while

with the P1+/P1-HVM method some perturbations appear on either side of the computational

domain.
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Figure 4.27: Isovalues of pressure (Pa) for parallel flow with k = 10−14m2, µ = 1, α = 1
and p = 105Pa

Figure 4.28: Isovalues of velocity (magnitude-velocity m/s) for parallel flow with k =
10−14m2, µ = 1, α = 1 and p = 105Pa
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Figure 4.29: Comparison between analytical solution and numerical solution of Stokes
velocity for k = 10−14m2, µ = 1, α = 1 and p = 105Pa, 2D parallel flow.

Figure 4.30: Comparison between analytical pressure, numerical pressure obtained with
ASGS method and numerical pressure obtained with P1+/P1-HVM method for parallel
flow with k = 10−14m2, µ = 1, α = 1 and p = 105Pa.
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3D extension

For the case of parallel flow, 3D simulations are conducted. Geometry and boundary conditions

are the same as in 2D case, extruded along the z axis. We use a structured mesh in this case.

Results for pressure are presented in Figure 4.31 and velocity in Figure 4.32 for pext = 105Pa,

k = 10−14m2, µ = 1Pa.s and α = 1. These results are in accordance with the results obtained

for the 2D case. With ASGS method, the pressure does not show any problem on the boundary

contrary to P1+/P1-HVM method, for which the pressure shows, as in 2D cases, some problems

on the boundary.

Figure 4.31: Isovalues of pressure for parallel flow with k = 10−14m2, µ = 1, α = 1 and
p = 105Pa.

Figure 4.32: Isovalues of velocity for parallel flow with k = 10−14m2, µ = 1, α = 1 and
p = 105Pa.
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4.4.4 Interface capturing

As explained in Chapter 3, Section 3.5, we have two methods to compute the surface integral

which appears due to the presence of BJS condition on the interface (
αµ√
k

∫

Γ
(v.τ).(w.τ)). In

this section, we will show the results of the flow parallel to the interface in 3D case, with the

following physical parameters: µ = 1Pa.s, k = 10−14m2, p = 105Pa and α = 1 in a domain

Ωs = [0; 5]× [1; 2]× [0; 0.3] and Ωd = [0, 5]× [0, 1]× [0; 0.3] In this case, we compute successfully

the surface integral by exact integration and by turning it into a volume integral. Figure

4.33 shows a zoom on the mesh used in this test, the interface which cuts the elements and

ensures that tests are conducted on coarse meshes. Figure 4.34 shows a comprarison between

the analytical solution of the velocity, the numerical solution obtained by turning the surface

integral into a volume integral and the numerical solution obtained by exact integration of

the surface integral on the interface. Figure 4.34 shows that we have more accurate results

when we compute exactly the integral on the interface. Let us note that the difference between

analytical solution and numerical solution is due to the elements on the interface which belong

to Stokes and Darcy’s domains at the same time.

Figure 4.33: Part of the computational domain of the interface-capturing test and zoom
on the interface which cuts the elements
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Figure 4.34: Comparison of numerical solutions for monolithic approaches for a parallel
flow, with analytical solution. Velocity is normalized by the maximum analytical velocity
(vx,max,analytical). Interface reconstruction and Dirac approximation for the surface
integral are presented, k = 10−14m2, pext = 1Bar, µ = 1Pa.s and α = 1

4.4.5 Inclined interface

The case of an inclined Stokes / Darcy interface is now considered in order to evaluate the

proposed monolithic approach when the interface is not parallel to some mesh element edges.

This test allows again to verify the influence of the BJS condition on the tangential velocity.

The mesh of the domain which is the unit square is described in Figure 4.35 (a) with the Stokes

domain size Hs which varies from 0.8 (for x = 0) to 0.2 (for x = L = 1). Prescribed boundary

conditions in velocity and pressure are shown in Figure 4.35 (b). We set: µ = 1 Pa.s, k = 10−11

m2, α = 1 and pext = 105 Pa. Figure 4.36 shows the pressure field obtained with the presented

monolithic approach. In Figures 4.37(a) and 4.37(b), we compare the distribution of velocity

obtained with both ASGS method and the P1+/P1-HVM method. It is clear that also in this

case of inclined interface, the ASGS method shows an improved robustness compared with

P1+/P1-HVM method, especially in ensuring the continuity of normal velocity and reducing

the oscillations around the interface.

To demonstrate the validity of "ASGS" method in this case, we compare the test of inclined
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interface between monolithic approach and decoupled approach for a very low permeability

10−15m2, with α = 1, µ = 1Pa.s and pext = 105Pa. Pressure p in the middle of the domain

(x = 0.5) is plotted against position across the thickness in Figure 4.38(a) and the velocity v

in the middle of the domain (x = 0.5) is plotted in Figure 4.38(b) for both approaches. As we

can see, there are no oscillations and the normal velocity is continue through the interface. A

good correlation can be noticed for both studied methods with a maximum difference on the

y velocity component ∆ = 0.19m/s (Figure 4.38(b)).

a)
b)

Figure 4.35: (a) The mesh of the inclined domain with the interface (in red) which cuts
the elements, (b) Computational domain with inclined interface and boundary conditions
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Figure 4.36: Isovalues of pressure (Pa) for ASGS method for k = 10−11m2

(a) ASGS

(b) P1+/P1-HVM

Figure 4.37: 2D simulation for the 2D flow with inclined interface, (k = 10−11m2, α =
1, µ = 1Pa.s, Pext = 1bar), magnitude-velocity (m/s)
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(a) Pressure

(b) Velocity

Figure 4.38: Profil of pressure and velocity in the middle of the domain, x = 0.5m,
k = 10−11m2, p = 1bar, µ = 1Pa.s and α = 1
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4.5 Complex geometries

The Stokes-Darcy coupled problem is used here to simulate stationary regimes in complex

composite pieces elaborated through infusion processes [Celle et al. 2008], [Wang et al. 2010].

Previously, the mathematical models for this simulation were derived, and the monolithic

approach where analytical solution is available, i.e tests with simple geometry, was validated.

But in infusion processes, pieces with complex geometries have to be considered. In this section

coupled problems for 2D and 3D pieces with complex geometries are investigated.

4.5.1 Curved interface, 2D simulation

A case deriving from the parallel flow is first considered, with a 2D curved interface (Figure

4.39) with k = 10−14 m2, µ = 1 Pa.s, α = 1 and for a Stokes region thickness of 1
10 of the total

thickness.

Initialization of the distance function (level set function)

The technical difficulty in the case of curved interface is that the interface which separates

Stokes and Darcy domains does not have a simple geometrical shape. To initialize the level

set function, we have to compute the smallest distance from every node to the segments that

constitute the interface.

Let us consider Mj the nodes of the domain and [Ai, Bi] the set of the segments that define the

zero level set. Furthermore, we consider M ′
j the orthogonal projection from Mj on (Ai, Bi).

Two cases are possible, if M ′
j belongs to the segment [Aj , Bj ], the distance is MjM

′
j . Else if

M ′
j is outside the segment, the distance is the minimum between MjAi and MjBi (see Figure

4.40). After computing the distance from a node Mj to any segment [Ai, Bi] which constitutes

the interface, we take the minimum of all these distances and initialize our distance function

(level set function). Figure 4.41 shows the isovalues of this level set function.

Numerical results

Results for pressure field are presented in Figure 4.42, while the velocity field is shown in Figure

4.43. The results obtained for pressure and velocity are in correlation with those obtained for

the parallel and perpendicular flow cases. Note that the normal to this interface involved in

the BJS coupling condition is simply calculated through the gradient of the distance function

describing the interface: n = ∇φ/‖∇φ‖. Despite this curved interface, velocity and pressure

fields computed with the monolithic approach do not exhibit any spurious oscillations.
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Figure 4.39: Computational domain with curved interface

Figure 4.40: Computation of the smallest distance between a node Mj and the segments
of the zero level set
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Figure 4.41: Isovalues of the level-set function between Stokes and Darcy, the black curve
represents the isovalue zero of the level-set function (Stokes-Darcy interface).

Figure 4.42: Isovalues of pressure, 2D flow with curved interface

4.5.2 3D simulation

4.5.2.1 Flow in a 3D regular geometry with an injection inlet

The computational domain has dimensions of 56mm× 292mm× 20mm with an injection

channel (Figure 4.44). The boundary conditions prescribed for this simulation are a normal

stress on the inflow part of the domain, and a null pressure over the bottom surface of Darcy’s

region. Boundary conditions of zero velocity and zero normal velocity are imposed on Stokes

and Darcy domains respectively, except the bottom surface which acts like a vent.

Results for velocity field are presented in Figure 4.44 and results for pressure are presented
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Figure 4.43: Isovalues of velocity, 2D flow with curved interface (m/s)

in Figure 4.45. Physical parameters in these simulations are k = 10−14m2, p = 105Pa and

µ = 1Pa.s.

Figure 4.44: Isovalues of pressure (Pa), 3D flow on a regular piece with injection channel

4.5.2.2 3D simulation with curved interface

For the 3D flow in a piece with complex geometry (Figure 4.46), a simulation is considered

for k = 10−9m2µ = 1Pa.s andα = 1. Geometry, mesh and boundary conditions are presented

in Figure 4.48 (a). Geometry consists in two layers, a layer of thickness 2 mm, that corresponds

to the Stokes region, and layer of thickness 10mm that corresponds to Darcy region. For the

boundary conditions, pressure is prescribed on the right hand side in Stokes region, and vent is

present on the bottom of Darcy region. Also conditions of zero velocity for Stokes region and

zero normal velocities for Darcy region are prescribed for all the other boundaries of the piece
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Figure 4.45: Isovalues of velocity (m/s), 3D flow on a regular piece with injection channel

except the bottom surface. Note that the normal velocity is enforced on the curved boundary

by using a nodal penalty technique [Bruchon et al. 2009]. Similar to the 2D case, the difficulty

in this case is that the interface which separates Stokes and Darcy domains does not have a

simple geometrical shape. To overcome this problem, we define it by a set of points Ai and we

compute the minimal distance between each node of the mesh and the points Ai. Figure 4.46

shows in red the isovalue zero of the level set function (Γ) and Figure 4.47 shows the isovalues

of this level set function.

The stationary case, presented in Figures 4.48 (a) and 4.48 (b), illustrates the capability to

represent realistic geometries. Presented results for pressure field, as well as results for velocity

field are in accordance with expected results.

One of the advantages of the method in this case, is that the geometry can be meshed "inde-

pendently" of the interface position. However, from a practical point of view, we have choosen

here to define the interface from nodes coordinates.

One will have noticed that velocity ranges in the cases presented can vary. This can be due

to the effect of the regime (transverse flow, or parallel flow, or mixed), but more certainly due

to the ratio of the Stokes thickness with respect to the Darcy thickness. This will be further

investigated in chapter 6.
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Figure 4.46: The isovalue zero of the level-set function between Stokes and Darcy

Figure 4.47: Isovalues of the level-set function between Stokes and Darcy.
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(a) Pressure (Pa)

(b) Cutting plane of the velocity, magnitude velocity (m/s)

Figure 4.48: 3D simulation for the flow in 3D complex piece with curved interface,
(k = 10−9m2, α = 1, µ = 1Pa.s, Pext = 1bar)
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4.6 Conclusions

Manufactured solutions were conducted to study the convergence of the ASGS method for

Stokes, Darcy and Stokes-Darcy coupled problem. The given rates of convergence are optimal

and correspond to the theoretical orders of convergence. In addition, numerical simulations of

a flow perpendicular to the interface, a flow parallel to the interface, and an inclined interface

flow were presented to verify both the continuity of normal velocity and the BJS condition

enforcement. These tests were conducted for permeability down to 10−15m2, different values

of fluid viscosity and thickness of the fluid distribution medium. Also it was shown that the

methods can be used for more complex geometries, which is essential in the sense of industrial

applications.

Results obtained with "ASGS" method were compared with the results obtained with "P1+/P1-

HVM" method and showed how ASGS method manages all the problems generated with

P1 + /P1 − HVM [Pacquaut et al. 2012] method. Furthermore, the monolithic approach

were compared with the decoupled approach in a recent submitted article 2. The results are

comparable in an industrial context, but meshes are simpler in the monolithic approach be-

cause only one single mesh is considered contrary to the decoupled approach where one has

to define two meshes and the interface for each case. Also the monolithic approach is more

efficient in term of computation time. Finally, it was shown that the method could be used

for more complex geometries and with a wide range of permeability, which is essential in the

industrial applications.

2. Stokes/Darcy coupling in severe regimes: monolithic approach versus decoupled approach. L.Abouorm,
R.Troian, S.Drapier, J.Bruchon, N.Moulin
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5.1 Introduction

To reach the essential goal of this work, the "simulation of resin infusion processes", we

have to develop a numerical method able to follow the evolution of the fluid front during its

infusion into the fluid distribution medium and preforms. In the first part of this chapter we

will describe the movement of "interfaces", where "interface" is the current word used to design

the boundary between two different physical domains. In our simulations, the fluid modelling

problem deals with two interfaces, one between air and resin and one between Stokes and Darcy.

This second interface moves also because preforms undergo large deformations. Consequently,

these deformations have to be taken into consideration in the modelling of processes. The

second part of this chapter is devoted to take into consideration the deformation of preforms.

For this reason, we will describe in this chapter the Lagrangian updated formulation used to

deal with these deformations. In the third part, we will focus on the behavior of wet and dry

preforms during their deformations taking into consideration that preforms have a non linear

elastic behavior and that fluid will modify the wet preforms response also.

5.2 Interface capturing

5.2.1 Monitoring of interfaces

In this section, we will detail the most popular numerical methods used in literature to

describe moving interfaces. There exist two main descriptions: the Lagrangian description and

the Eulerian description.

5.2.1.1 Lagrangian description

In Lagrangian description of fluid flow, individual fluid particles are marked, and their po-

sitions, velocities · · · are described as a function of time. Interface tracking methods based on

Lagrangian description are called "front tracking" methods. They can be divided into three

categories with increasing flexibility and computational complexity. These are surface tracking

methods, volume tracking methods and Lagrangian methods.

Surface tracking methods

Surface tracking methods are specified by an ordered set of marker points located on the

interface [B.J.Daly & W.E.Pracht 1968]. Each marker point is moved by the velocity of the

physical problem. Between these points, surface is approximated by an interpolant, usually
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a piecewise polynomial. The marker points may be represented by the distance from some

reference surface: some straight segments, defined by a height function (Figure 5.1 a)) or by a

parametric interpolant (Figure 5.1 b)). This method permits to determine the position of the

interface with high precision in simple cases. In addition, the interface location and orientation

are known at each time step. But, this method presents many disadvantages:

– this method fails when interface geometry becomes complex.

– the interface position is stored and dynamically updated, in addition, one has to make

regular operations to redistribute markers to ensure their a good distribution of the

markers on the interface.

– these operations become more and more complicated in 3D cases.

a) b)

Figure 5.1: (a) definition of height function and (b) parametric interpolant [Hyman 1984]

Volume tracking method

The volume tracking method has been developed by Harlow and Welch [F.H.Harlow & J.E.Welch 1965]

in 1965. An example of the use of this method is Marker and Cell (MAC). It consists in dis-

tributing the markers in the fluid to be followed. These markers move through a fixed grid,

their motion is given by the differential Equation (5.1)

dxn
dt

= vn(xn, t) (5.1)

where xn is the position vector of the marker n at the time t and vn is the velocity at this

point. This differential equation is solved using an Euler explicit scheme for example:

xt+∆t
n = xtn +∆tvn(xn, t) (5.2)
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where ∆t is the time step. This method presents many disadvantages:

– we cannot resolve details of the interface smaller than the mesh size.

– it is expensive in computer time and memory.

Lagrangian method

In the Lagrangian method, the grid follows the fluid motion. This method permits to represent

explicitly the interface as a set of segments (2D) or a set of faces (3D). However, a remeshing

operation is necessary to improve the quality of elements since they can be strongly deformed

during the movement of the interface. This operation can be time and memory consuming and

causes sometimes a loss of informations during the transfer of fields from a mesh to another.

Hence, this method is difficult to use in complex flows involving large distortions of the interface.

5.2.1.2 Eulerian description

As we have seen that in the methods based on a Lagrangian description, the grid is adaptive,

the points on interface are convected by transport equation and a new interface is found by

fitting a curve through the advected points. On the contrary, with an Eulerian description, as

we will detail in the following section, the grid is fixed and we have to introduce a new field

to describe two different domains on either side of the interface (Level-set function or volume

fraction). In these two cases, the field is convected by a transport equation(5.3):

∂φ

∂t
+ v.∇φ = 0 (5.3)

where v is the velocity computed from the physical problem. There exist two types of such

methods, "Volume Of Fluid" methods where the function φ which separates the two domains

is discontinuous, and the "Level-set" method in which the function φ is continuous.

Volume of fluid method (VOF)

The method was introduced by Hirt and Nichols in 1981 [C.W.Hirt & B.D.Nichols 1981]. The

philosophy of this method consists on an implicit representation of the interface. A fraction

(C), or color function is defined to indicate the local fraction of the mesh that is filled with

a particular phase, i.e the fraction of the mesh-cell that is filled. Basically, when the element

(cell) is empty, with no fluid inside, the value of C is zero, when the element (cell) is fully filled,

C = 1, and when the interface cuts the element (cell), then 0 < C < 1. The geometry of the

interface can be reconstructed from the values of the color function C, and there are several

schemes to perform this interface reconstruction:
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SLIC (Simple Line Interface Calculation) [W.Noh & P.Woodward 1976]:

The SLIC algorithm rebuilds the front by defining simple lines (in 2D) or planes (3D) inside the

cells. These straight lines are parallel to one of the coordinate directions and their direction

and position are deduced from the values of the volume fraction of liquid in the cells in a

certain nighbourhood of the considered element. Figure 5.2 shows a schematic representation

of the original geometry and Figure 5.3 (a) shows the reconstruction obtained by using the

SLIC method for x direction and Figure 5.3(b) shows the reconstruction for y direction.

Hirt-Nichols [C.W.Hirt & B.D.Nichols 1981]: Like the SLIC method, the interface is

reconstructed using straight lines in 2D (planes in 3D) parallel to the coordinate directions.

The difference is that the interface is computed by considering nine-cell neighbourhood. Figure

5.2 represents the original geometry and Figure 5.4 (a) shows the reconstruction obtained by

using the Hirt-Nichols method.

Young method [D.L.Youngs 1982]: This method uses a more accurate interface recon-

struction algorithm than SLIC and Hirt-Nichols method. An orientation β of a line segment in

2D (or plane in 3D) cuts the element (cell) in such a way that the fractional fluid volume (the

value of the color function) does not change. Figure 5.2 shows a schematic representation of the

original geometry and figure 5.4 (b) shows the reconstruction obtained by using the Young’s

method.
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Figure 5.2: Actual geometry [M.Rudman 1997]

a) b)

Figure 5.3: (a) SLIC (x) and (b) SLIC (y)

a) b)

Figure 5.4: (a) Hirt-Nichols and (b) Young-VOF

Level set method

The level set method was introduced by Osher and Sethian [S.Osher & J.A.Sethian 1988],
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[J.A.Sethian 1999]. It has become popular in many disciplines such as image processing, com-

putational geometry, optimization and computational fluid dynamics. The level set method

represents a closed curve Γ using a higher dimensional function φ, called the level set function,

and such as

Γ(t) = {(x) |φ(x, t) = 0}

φ is assumed to take positive values inside the region delimited by Γ and negative values

outside. The advantage of the level set method lies in its performance to describe complex

curves and complex surfaces on the fixed mesh without requiring a parametrization of these

objects. Indeed, contrary to VOF methods, the interface is explicitly defined through the level

set function. Moreover, with level set function, it is quite easy to follow the shapes that change

of topology in 2D and 3D cases (coalescence or separation of interfaces). Furthermore, it is

easy to compute geometrical quantities such as the curvature or the normal vectors associated

with the interfaces. The level set function is convected by the velocity of the physical problem

which can depend on position, time and geometry of the interface [S.Osher & R.P.Fedkiw 2001].

The disadvantage of the level set method is related to the volume conservation which cannot

be ensured by transporting φ while VOF methods ensure a volume conservation. For that, a

special care has to be paid to conserve the volume (Section 5.2.2.3).

5.2.1.3 Choice of the method

The fluid mechanics and the large distortions of interfaces in liquid resin infusion processes

prevent us to use methods based on a Lagrangian description of the fluid front. Therefore,

we will choose a method based on an Eulerian description. VOF approaches do not allow to

have a precise description of the interface. Moreover, it is difficult to have a good estimation of

the curvature and of the normal. Eventually, with this method, we choose a level set method

which will offer a good management of the topological changes, and access to the geometrical

properties. In the next section, we will detail the level set method, used to simulate the moving

flow fronts in resin infusion processes.

5.2.2 Interface capturing with level set method

Let Ω ⊆ Rm be the bounded domain such that Ω = Ωf ∪ Ωa and Γfa = Ωf ∩ Ωa where a

denotes the air and f denotes the fluid domain. To define the interface Γfa which separates Ωa

and Ωf , we define a level-set function φ which is a smooth function given by Equation (5.4).
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Figure 5.5: Level set function

φ(x, t) =







min
p∈Γ
||x− p||, if x ∈ Ωf

−min
p∈Γ
||x− p||, if x ∈ Ωa

(5.4)

where min
p∈Γ
||x− p|| is the Euclidean distance from any point x to the interface Γfa. The level

set function is smooth, continuous and its gradient is unitary ||∇φ|| = 1.

Figure 5.5 shows the level set function corresponding to a circle of radius R = 0.3 centered

in x = 0.5 and y = 0.5. The z axis represents the values of φ. Figure 5.6 represents the

discretized linear function φh which is the distance between every node and the isosurface Γfa.

5.2.2.1 Transport equation

The interface evolution is governed by the transport Equation (5.5). Particular boundary

conditions must be taken into consideration, we have to impose an initial condition at time

t = 0, (φ(x, t = 0) = φ0(x)) and a boundary condition on the inflow boundary ∂Ω−1 (φ(x, t) =

g(x, t)). The inflow boundary is defined by ∂Ω− = {x ∈ ∂Ω |v.n < 0}. Then, we have to solve

the following problem:
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Figure 5.6: Discretized level set function φh







∂φ

∂t
+ v.∇φ = 0 ∀(x, t) ∈ Ω× [0, T ]

φ(x, t = 0) = φ0(x) ∀x ∈ Ω

φ(x, t) = g(x, t) ∀ x ∈ ∂ Ω−, ∀ t ∈ [0, T ]

(5.5)

Some difficulties are related to the use of the level set method. First, we have to compute

the values of φ0, this may not be easy, especially for complex geometries. Second, we have to

define precisely the function g(x, t) on the inflow boundary ∂Ω−. To simplify the choice of this

function, we propose to take g(x, t) = φ(x, t−∆t).

5.2.2.2 Geometrical properties of level set function

The level set function allows us to compute geometrical informations of the interface, the

normal and curvature. Normal n can be computed as n = ∇φ
||∇φ|| , ||∇φ|| = 1 if ∇φ is close to

the interface and the curvature is computed as κ = divn.

5.2.2.3 Reinitialization step

The resolution of Equation (5.5) does not ensure that ||∇φ|| = 1. When we convect the

level set function φ with velocity v, function φ(t + ∆t) can present steep gradients close to

the interface, leading to numerical problems (degeneration of the interface). To avoid this, we
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perform a reinitialization process to keep ||∇φ|| = 1. It consists on iteratively correcting the

level set function φ in order to recover ||∇φ|| = 1 [T.Coupez 2006], [O.Basset 2006].

The reinitialization of φ consists in finding a new function ϕ with the same zero level set (which

does not move) but with ||∇ϕ|| = 1, by solving a Hamilton-Jacobi equation. We use this new

function ϕ(x, t) until the next round of reinitialization. A virtual time τ is introduced:

∂ϕ

∂τ
+ sign(φ)(||∇ϕ|| − 1) = 0

ϕ(x, τ = 0) = φ(x, t)
(5.6)

where sign(φ) is a signed function defined by:

sign(φ) =







1 if φ > 0

−1 if φ < 0

0 if φ = 0

(5.7)

If φ = 0, the sign function sign(φ) is zero, and consequently Equation (5.6) is reduced to
∂ϕ
∂τ = 0 on the interface Γ. Position of the interface (isovalue zero) is then preserved during the

reinitialization step. The sign function is discontinuous, for this reason, a smooth sign function

is defined as sign(φ) = φ√
φ2+h2

K

[M.Sussman et al. 1994] where hK is the size of the element

K. For practical purpose, Equation (5.6) can be written as an advection equation:

∂ϕ

∂τ
+ vr∇ϕ = sign(φ)

ϕ(x, 0) = φ(x, t)
(5.8)

where vr is the unit velocity normal to the interface, defined by vr = sign(φ) ∇ϕ
||∇ϕ|| , because

||∇ϕ||2 = ∇ϕ · ∇ϕ.

The weak formulation defined in Equation (5.8) is also stabilized using the SUPG method.

To summarize the level set method resolution, we present the reinitialized level set algorithm

(Algorithm (1)).

In this algorithm, ǫ is the convergence criteria and τ∗ is the time which corresponds to

the steady state where ∂ϕ
∂τ = 0, and then ||∇ϕ|| = 1. The reinitialization Equation should be

solved until the steady state is reached ||∇ϕ|| = 1. But, in practical cases, One will usually

generate a maximum of 5 iterations of reinitialization which is sufficient to ensure the metric

properties of the function ϕ around the interface.
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Algorithm 1 Reinitialized level set algorithm
t← 0
φ0(x, t = 0)← definition of the geometry of isovalue zero at t = 0
while t < T do

v← From the physical problem (Stokes-Darcy coupled problem)
φ(x, t+∆t)← From Equation (5.3)
while (|||∇ϕ− 1|||) < ǫ do

ϕ(x, τ = 0) = φ(x, t+∆t)
ϕ(x, τ)← From Equation (5.6)
τ ← τ +∆τ

end while
φ(x, t+∆t)← ϕ(x, τ∗)
t← t+∆t

end while

5.2.3 Numerical scheme to transport the level set function

In this section we will present the weak formulation of the transport equation, the spatial

and temporal discretizations of the weak formulation and the reinitialization algorithm used

to keep the property of distance functions (||∇φ = 1||). Then, we will show with a simple test

the importance of the choice of the time discretization scheme.

Weak formulation of the transport equation

The functionnal spaces used to establish the weak formulation of the transport equation are:

V g = {q ∈ H1(Ω) | q = g on ∂Ω−}
V 0 = {q ∈ H1(Ω) | q = 0 on ∂Ω−}

(5.9)

H1(Ω) is the Sobolev space included in L2(Ω) and L2(Ω) is the space of square integrable

functions.

L2(Ω) = {q,
∫

Ω
q2 dΩ < ∞}

H1(Ω) = {q ∈ L2(Ω) | ∇q ∈ L2(Ω)m}
(5.10)

To obtain the weak formulation of the transport equation, we have to multiply Equation

(5.5) by a test function φ∗, this yields: Find φ ∈ V g such that:

∫

Ω

∂φ

∂t
φ∗ dv +

∫

Ω
v.∇φφ∗ = 0, ∀φ∗ ∈ V 0 (5.11)

Discretization of the weak formulation of transport equations
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To solve numerically this problem, a finite element approximation has to be taken into consid-

eration. This discretization involves the approximation of the level set function by φh and the

discretization of the computational domain Ω.

We have also to construct V g
h and V 0

h the discretized spaces of V g and V 0. The computation

domain Ω is discretized using non necessarily structured mesh Th(Ωh). The elements of Th(Ωh)

are triangles in 2D and tetrahedrons in 3D such that:

Ωh =
⋃

K ∈Th(Ωh)

K

Then, the weak space-discretized formulation is:

Find φh ∈ V g
h such that:

∫

Ωh

∂φ

∂t
φ∗hdv +

∫

Ωh

v.∇φhφ∗hdv = 0, ∀φ∗h ∈ V 0
h (5.12)

Time discretization

The time discretization consists in decomposing the time interval [0, T ] into N intervals:

[0, T ] =
⋃

N

[tn, tn+1]

and to discretize the time derivative operator using a specific numerical scheme. In this section,

we will introduce the θ method which lead to three numerical schemes: explicit Euler scheme,

implicit Euler scheme and Cranck Nicholson scheme.

If we use an explicit scheme, a criterion on the time step must be added to ensure the stability

of the scheme. With this type of equation, we obtain the stability by using a CFL condition

("Courant-Friedrichs-Lewy"):

hk
∆t

> |v| ⇐⇒ ∆t <
h

max|v|

This condition prevents the interface to progress of more than an element during a time step

∆t.

This condition can also be written as:

∆t = cfl
h

max|v|

where cfl is a number between 0 and 1, the so called "number of Courant-Friedrichs-Lewy".
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Next, we present the standard general θ method currently used.

The θ method applied to the time discretization leads to:

φ(tn+1)− φ(tn)
∆t

+ (θv · ∇φ(tn+1) + (1− θ)v · ∇φ(tn)) = 0 (5.13)

– If we choose θ = 1, we obtain the implicit Euler scheme:

φ(tn+1)− φ(tn)
∆t

+ v · ∇φ(tn+1) = 0 (5.14)

– If we choose θ = 0, we obtain the explicit Euler scheme:

φ(tn+1)− φ(tn)
∆t

+ v · ∇φ(tn) = 0 (5.15)

– If we choose θ = 1
2 , we obtain the Cranck Nicholson scheme:

φ(tn+1)− φ(tn)
∆t

+
1

2
v · ∇φ(tn+1) +

1

2
v · ∇φ(tn) = 0 (5.16)

The Euler explicit scheme is widely used for its simplicity of implementation and its low cost

in computation time. However, for complex simulations requiring high precision, the explicit

Euler scheme is often insufficient and requires small ∆t for stability. Euler implicit scheme

and Cranck Nicholson scheme require solving a linear system and consequently require more

computational effort in each step, but they are more accurate, stable for complex simulations

and can be used for large time step. In our manuscript, we choose the Cranck Nicholson and

the Eulers implicit schemes (θ = 1
2 and θ = 1) to discretize the transport equation. These two

schemes will be compared in Section 5.2.4. After introducing the time discretization in the

weak formulation of the convection equation (Equation (5.12)), we get:

∫

Ωh

φh(tn+1)φ
∗
hdΩ+ θ∆t

∫

Ωh

v · ∇φh(tn+1)φ
∗
hdΩ

=

∫

Ωh

φh(tn)φ
∗
hdΩ− (1− θ)∆t

∫

Ωh

v · ∇φh(tn)φ∗h
(5.17)

with θ = 1
2 or θ = 1. The order of convergence of the implicit Euler scheme is in O(∆t) and

the order of convergence of the Cranck Nicholson scheme is in O(∆t2).
SUPG stabilization

It is known that Galerkin methods work well for elliptical differential equations. However,

when it is applied to other classes of differential equations, it is often found to yield "unstable"

solutions, i.e, solutions that exhibit spurious oscillations. One of the first studies to successfully
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apply a new finite element theory based on discretization for second order problems with

significant first derivates, was the use of the "Petrov-Galerkin" methods introduced by Christie

et al in 1976 in [I.Christie et al. 1976]. Since then, the Petrov-Galerkin methods have generally

come to be known as "stabilized" formulations because they prevent the spatial oscillations

and yield to stable solutions where the classical Galerkin method would behave badly. One of

the most popular methods is the "Streamline Upwind Petrov Galerkin" method. The principle

of the SUPG method is to add a diffusion term along the direction of the convection velocity

v. It consists in choosing the weighting functions of the weak form to be solved in a functional

space different from the one of the shape functions. Here we choose to take the weighting

function as [T.J.R.Hughes & A.N.Brooks 1979]:

∼
φh

∗
|K = {φ∗h|K + τkv · ∇φ∗h|K}

on each element K ∈ Th where τk is given by [Ville et al. 2011]:

τk =
1

2

hk
||vK||

with hk the mesh size and vK the average velocity on the element K. Then, the weak discretized

formulation of the transport equation stabilized with SUPG method can be written as:

∑

K

∫

K
φh(tn+1)φ

∗
hdv +

∑

K

θ∆t

∫

K
v · ∇φh(tn+1)φ

∗
h

︸ ︷︷ ︸

1

+
∑

K

∫

K
τkφh(tn+1)v · ∇φ∗hdv

︸ ︷︷ ︸

2

+
∑

K

θ∆t

∫

K
τk(v.∇φh(tn+1))(v.∇φ∗h)dv

︸ ︷︷ ︸

3

=
∑

K

∫

K
φh(tn)φ

∗
hdv −

∑

K

(1− θ)∆t
∫

K
v · ∇φh(tn)φ∗h

︸ ︷︷ ︸

1

+
∑

K

∫

Ωh

τkφh(tn)v · ∇φ∗hdv
︸ ︷︷ ︸

2

−
∑

K

(1− θ)∆t
∫

K
τk(v.∇φh(tn))(v.∇φ∗h)dv

︸ ︷︷ ︸

3

(5.18)

Three terms appear in the weak discretized formulation. Term 1 corresponds to the standard

discretized Galerkin form. Term 2 is a stabilization term which creates diffusion and term 3

ensures the consistency of the method.

Filtered level set function
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The convection of the level set function is realized over the whole computational domain Ω

which can be the cause of additional computational costs and numerical unstabilities [L.Ville

et al. 2011]. However, the information contained in the level set function values are useful

only in a narrow-band around the zero isosurface. It allow us to compute the normal and the

curvature of the interface and to know the distance from every point to the interface. For this

reason, it is not necessary to convect the level set over all the domain Ω. Then, we can cut the

level set function at a defined thickness E using for example a hyperbolic tangent filter, which

means that we have to modify the definition of the initial level set function. Then

φ0(x) = Etanh

(
d(x)

E

)

(5.19)

with |d(x)| = min
p∈Γ
||x − p||, the signed distance from a point x to the interface and E is

a numerical parameter related to the width of the interface. Using this function defined in

Equation (5.19), the gradient of φ(x, t) becomes:

∇φ =

(

1−
(

tanh

(
d

E

))2
)

∇d(x)

because
d tanh(x)

dx
= 1 − tan2h (x) , ∀x ∈ R. The usual reinitialization algorithm imposes

||∇φ|| = 1, while in this case ||∇φ|| = |1−(tanh( d
E ))2| since d is a distance function (||∇d|| = 1).

By setting tanh( d
E ) = φ

E , we have ||∇φ|| = |1 − ( φE )2|. To satisfy this property, for a given

level set function φ(x, tn) at time tn, the reinitialization equation given in (5.6) is transformed

into the following expression:

∂ϕ

∂τ
+ sign(φ)(||∇ϕ|| − |1− (

ϕ

E
)2|) = 0 ∀x ∈ Ω, τ > 0

ϕ(x, τ = 0) = φ(x, tn)
(5.20)

As we explain in Algorithm (1), we solve Equation (5.20) iteratively until reaching the steady

state. Equation (5.20) can be seen as a transport equation with an advection velocity equal

to sign(φ) ∇ϕ
||∇ϕ|| and an additional term sign(φ)|1 − ( ϕE )2|. It is important to highlight that

Equation (5.20) is non linear since the advection velocity and the additional term depend on ϕ.

But it is linearized by computing the velocity sign(φ) ∇ϕ
||∇ϕ|| from the previous time step. In our

work, for simplicity and robustness we choose to separate the advection and the reinitialization

steps while in the reference [L.Ville et al. 2011], authors propose to combine both advection

and reinitialization steps into one single advection-reinitialization equation.
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5.2.4 Numerical tests

A Comparison between Cranck Nicholson and implicit Euler schemes is conducted in this

test.

The level set method has been implemented in Zebulon 1 Implementation of this method,

reinitialization algorithm and comparison between the Euler implicit scheme and the Cranck

Nicholson schemes were validated on test cases.

One test is presented here, we validate the convection of the level set with a velocity field given

in Equation(5.21).

We consider a circle initially centered at O(0.25, 0.5) with a radius R of 0.15m.. The zero level

set function is defined by φ0 =
√

(X −XO)2 + (Y − YO)2 −R (see Figure 5.7).

vx = −2π(Y − YO)
vy = 2π(X −XO)

(5.21)

A series of tests were conducted for different time steps for both implicit Euler scheme and

Cranck Nicholson scheme. Values of mass loss relatively to the size of mesh and the time step,

are shown in Table 5.1. In addition, we present in this table the CPU time of each test. We

present the different positions of the circle at different time for Cranck-Nicholson scheme in

Figure 5.7. Figure 5.8 and 5.9 compare the deformation of the circle with different time steps

and meshes between Cranck-Nicholson and Euler implicit schemes. First, we deduce that in

both schemes, the accuracy of the method depends on the mesh size. Moreover, refining the

domain involves a smaller time step for a better result and a reduction of loss of mass. Second,

we find that Cranck-Nicholson scheme is much better than implicit Euler scheme because it

allows a better mass conservation.

Remark: Let us note that the matrix assembly time is higher in Cranck-Nicholson scheme

than in Euler implicit scheme.

1. This code is developed at École Nationale Supérieure des Mines de Paris, ONERA, Northwest Numerics
and Modeling society (USA) and École Nationale Supérieure des Mines de Saint-Etienne.
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Figure 5.7: A complete turn of a circle using Cranck-Nicholson scheme

a) b)

Figure 5.8: Deformation of the circle: black line represents the initial position of the
zero level set function, the red line represents the zero isovalue of the level set after one
complete rotation using Cranck-Nicholson scheme and blue line represents the isovalue of
the level set function after one complete rotation using implicit Euler scheme, (a) mesh:
50× 50, ∆t = 0.01s, (b) mesh:50× 50, ∆t = 0.005s
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a) b)

Figure 5.9: Deformation of the circle: black line represents the initial position of the
zero level set function, the red line represents the zero isovalue of the level set after one
complete rotation using Cranck-Nicholson scheme and blue line represents the isovalue of
the level set function after one complete rotation using implicit Euler scheme, (a) mesh:
100× 100, ∆t = 0.005s, (b) mesh: 200× 200, ∆t = 0.0008s.

Mesh grid Time step (s) CPU time (s) mass loss (%) CPU time (s) mass loss (%)

Cranck-Nicholson Euler implicit

50× 50 0.01 20 13.11 13.1 61.2
50× 50 0.005 77 1.52 25.6 30.2
50× 50 0.0025 152 0.8 50.9 14.3

100× 100 0.005 301 9.84 128.8 30.3
100× 100 0.0025 698 2.39 258.1 14.6
100× 100 0.001 1510 1.55 644.2 5.6
200× 200 0.001 5850 0.8 3928.8 5.6
200× 200 0.0008 7947 0.48 4701.8 4.46
200× 200 0.0005 12150 0.41 7576.2 2.77

Table 5.1: CPU times and conservation of the mass of fluid for different size of mesh and
time step in the simulation of the rotation of the circle, the conservation is the difference
between the final t = 1 and the initial surface of the circle.
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Conclusions

In our numerical model, we have two interfaces. First, the fluid-air interface Γfa which under-

goes large deformations, is convected by a transport equation. This equation is discretized and

stabilized with SUPG method. And another interface Γ, which separates Stokes and Darcy

domains, described by a level set function and moved with the mechanical velocity due to the

deformation of preforms. Since we use a Lagrangian updated formulation, this interface is

transported with the mesh motion.

5.3 Large deformations of preforms

The preforms are deformable under the mechanical pressure applied on by the vacuum bag

and the pressure of resin into pores. Eulerian and Lagrangian descriptions can be used to deal

with the deformation of preforms. But, the adequate is the Lagrangian description because

preforms are considered as a solid medium. There are many Lagrangian formulations to treat

the finite strains and finite displacements, updated Lagrangian formulation, Total Lagrangian

formulation. Before introducing the Lagrangian formulation that we use in this work, it is

necessary to introduce some concepts and definitions taken into consideration to present this

method. In continuum mechanics, the configuration is the geometry of a body at time t. A

material body is a compact number of material elements x called the material particles or

material points. A material point corresponds to a representative elementary volume, small

enough relatively to the studied domain which allows to assimilate the average velocity of

particles to their "real" velocity. Then, the representation of the relative movements of these

material points will be used to characterize the deformation and the displacements of the

medium. The reference configuration, corresponds to the geometry at time t = 0, without

any influence of constraints (Ω0). Under the influence of external loads, the body moves and

changes its configuration. The configuration of the body at the current time t is called the

present configuration (Ωt).

Lagrangian and Eulerian description

In continuum mechanics, there are two different approaches to describe the state and the

movement of a medium. The "Lagrangian" description and the "Eulerian" description. When

the reference configuration is chosen to be the initial configuration at t = 0, the referential

description is often called "the Lagrangian description", and the motion is described by the

function X(a, t) giving the position of a point "a" labelled at time t. The Eulerian description

is based on the velocity field, the independant variable is the present position x occupied by
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Figure 5.10: Lagrangian description of the movement of the domain Ω

the particles at the present time and the flow is described by the velocity at point x in the

current configuration (v(x, t)). "Eulerian" description is usually employed in fluid mechanics

while Lagrangian description is usually used in solid mechanics.

In our work, we will adopt the updated Lagrangian formulation based on a Lagrangian

description. A Lagrangain description formally consists in representing the movement of a

medium using an application ψ defined from the reference configuration denoted Ω0 to the

material configuration denoted Ωt which associates to every material point M0 in the reference

configuration of coordinate X, a point Mt of coordinate x in its material configuration (Figure

5.10). The application ψ is defined by:

ψ : Ω0 −→ Ωt

X −→ ψ(X, t) = x; ∀ t > 0
(5.22)

This definition allows us to deduce the displacement vector u of the material point and its

velocity.

u(X, t) = x−X = ψ(X, t)−X

v(X, t) =
∂u(X, t)

∂t
=

∂ψ(X, t)

∂t

(5.23)

According to the implicit function theorem, the mathematical condition that guaranties

that two material points will not be superposed after transformation and do not intersect

during the transformation is that the Jacobian determinant J of the Lagrangian gradient of ψ

should be strictly positive.

Let us note F = ∇Xψ, Fij = ψ = ∂xi

∂Xj
, J(X, t) = det(∇Xψ) > 0.
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These functions allow the definition of transport relations between two configurations re-

lated with the application ψ, the proofs of these formulations are detailed for instance [J.Bonet

& D.R.Wood 1997], [J.Coirier 2001].

Transport of length scale

Let dX be a length element in its initial configuration. After deformation, this element is

transformed into an element of length dx with

dx = F.dX (5.24)

Transport of surface element

A surface element dS oriented NdS in its initial configuration is transformed into a surface

element ds oriented nds after its deformation with:

nds = JF−T .NdS (5.25)

Transport of volume element

An element of volume dV in its initial configuration is transformed to an element of volume

dv after its deformation with:

dv = JdV (5.26)

Measures of deformations

The basic properties of the local behavior of deformation emerge from the possibility of decom-

posing a deformation into rotation (R) and stretch tensors (U or V). This decomposition is

called "polar decomposition of the deformation gradient", and is summarized in the following

theorem:

A non singular tensor F (det F 6= 0) permits the polar decomposition in two ways:

F = R.U = V.R

where the tensors R, U and V have the following properties:

– U and V are symmetric and positive defined.

– The tensor R is orthogonal R.RT = I, i.e R is a rotation tensor.

– U, V and R are uniquely determined.

Table 5.2 presents different deformations. E0, E1 are the tensor of deformations of Hencky

and Biot, E2 is the Green-Lagrange tensor. Deformation measurements defined on reference
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configuration are so-called "Lagrangian" and deformation measurements defined on the current

configuration are so-called "Eulerian".

Lagrangian configuration Eulerian configuration

Eα = 1
α [U

α − I] α 6= 0 eα = 1
α [I − V α] α 6= 0

E0 = lnU = 1
2 lnC e0 = lnV = 1

2 lnB
E1 = U − I e1 = I − V

E2 =
1
2 [U

2 − I] = 1
2 [C − I] e−2 =

1
2 [I − V −2] = 1

2 [I −B−1]

Table 5.2: Measures of deformations

C and B are respectively the right and left Cauchy-Green tensors defined by:

C = FT .F = U2

B = F.FT = V2

Measures of stress

To define the different types of stress measurements, we use the following definitions:

Let us note, in the reference configuration (Ω0), N = n0 the outward normal to a surface el-

ement dS and the force acting on this surface is df0. Now we will introduce three types of stress:

Cauchy stress:

The Cauchy stress, denoted there, measures the force acting on an element of area ds in the

deformed configuration. This tensor is symmetric and defined via: df = t.ds. t = σ.n is the

traction and n is the normal of the surface where this traction acts.

Piola-Kirchhoff stress I:

The first Piola-Kirchhoff stress tensor denoted by P, expresses the force df on the current

configuration via:

df = P.NdS

This tensor is unsymmetric and relates the force applied on the deformed configuration to an

oriented surface vector in the reference configuration (via NdS).

Piola-Kirchhoff stress II :

The second Piola-Kirchhoff stress, denoted by S expresses the force df0 on the reference con-

figuration

df0 = S.N dS
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.

S is symmetric which means S = ST . This property is essential, and the Piola-Kirchhoff stress

II tensor is widely used much more then Piola-Kirchhoff stress I.

There exist different useful relationships between stress tensors:

– Relation between Piola-Kirchhoff I (P) and Piola-Kirchhoff II (S):

P = F.S = J.σ.F−T

– Relation between Cauchy tensor σ and Piola-Kirchhoff tensor S:

σ =
1

J
F.S.FT

5.3.1 Updated Lagrangian formulation

After introducing all the necessary concepts of solid mechanics, we will describe the im-

plementation of the Lagrangian formulation of solid mechanics problem. When we neglect the

inertia effects, the momentum conservation equation is defined by:

divσ + fv = 0 inΩt (5.27)

where fv is the volume force vector and σ is the Cauchy stress tensor. Some boundary con-

ditions would be added to this equation to complete the problem. The boundary ∂Ωt is

decomposed into two different parts: ∂Ωt
D and ∂Ωt

N where Dirichlet and Neumann conditions

are imposed respectively. Non zero displacement is enforced on ∂Ωt
D and a stress vector is

imposed on ∂Ωt
N .

We will establish the weak formulation of Equation (5.27) on the deformed domain Ωt,

obtained by multiplying Equation (5.27) by vectorial test functions: w : Ωt −→ Rm. Then by

integrating by parts on Ωt, this formulation can be written as

∫

Ωt

σ : ∇xwdv =

∫

∂Ωt
N

t.wds +

∫

Ωt

fvwdv (5.28)

where w is a virtual vectorial velocity field kinematically admissible, i.e, w = 0 on ∂Ωt
D and
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t = σ.n is the stress vector imposed as a Neumann condition. First, the computation is

performed on the deformable geometry which is unknown. We will write this formulation on

the initial configuration. Then, using A : B = tr(A.BT ) and the transport equations from a

configuration to another developed in this section, the left hand side of Equation (5.28), the

inertial virtual power, becomes:

∫

Ωt

σ : ∇Xwdv =

∫

Ω0

σ : (∇Xw.F−1)JdV

=

∫

Ω0

tr[J.σ.F−T
∇

T
Xw]dV

=

∫

Ω0

P : ∇XwdV

(5.29)

with P is the first Piola-Kirchhoff tensor.

The right hand side tensor of Equation (5.28) is expressed using the transport equation of

the surface element and the relation between Cauchy-stress tensor and the first Piola-Kirchhoff

stress tensor P:

∫

∂Ωt

(σ.n).wds +

∫

Ωt

fv.wdv =

∫

∂Ω0

σ(F−T .N
J

Js
).wJsdS +

∫

Ω0

fv.wJdV

=

∫

∂Ω0

(P.N).wdS +
∫

Ω0 fv.wJdV
(5.30)

with P.N = t0 on ∂Ω0
N and fv0

= Jfv, Equations (5.29) and (5.30) provide:

∫

Ω0

P : ∇XwdV =

∫

∂Ω0

N

t0.wdS +

∫

Ω0

fv0
.wdV

We can use the Piola-Kirchhoff second tensor S using the relation between P and S (P =

F.S), then, the formulation is finally written as:

∫

Ω0

(F.S)∇XwdV =

∫

∂Ω0

N

t0.wdS +

∫

Ω0

fv0
.wdV (5.31)

Using the relation, (A.B) : C = B : (ATC) , Equation (5.31) can be written as:

∫

Ω0

S(u) : (Ft.∇Xw)dV =

∫

∂Ω0

N

t0.wdS +

∫

Ω0

fv0
.wdV (5.32)

Because the computations are performed on the initial configuration, the formulation is

called " Total Lagrangian", used in solid mechanics. However, because our problem is coupled
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Figure 5.11: Intermediate configuration Ωi

with fluid mechanics, we will use the "Updated Lagrangian" formulation which performs com-

putation on the last known geometry before the final deformed geometry. For that, we have

to introduce an intermediate geometry denoted Ωi which will correspond to an intermediate

computational domain in a non linear resolution scheme in Figure 5.11. For reasons of simpli-

fication, we consider three configurations initial geometry Ω0, intermediate geometry Ωi = Ω1

and the final geometry Ωt = Ω2.

Xi = (Xi
1, X

i
2, X

i
3) is the position vector on the intermediate configuration and ui−→j is the

displacement vector between the different configurations. The gradient transformation tensor

Fi−→j is written as Fi−→j =
∂(Xj)m
∂(Xi)n

, m is the mth component of Xj. Then, for passing from

Ω0 to Ω2, we proceed as following:

∫

Ω0

S(U) : (F T
0−→2.∇X0

w)dV0 =

∫

∂Ω0

N

t0.wdS0 +

∫

Ω0

fv0
.wdV0 (5.33)

As we started before, one wants to write the formulation on the intermediate configuration

because the large deformations do not allow to switch directly from the initial configuration (Ω0)

to the deformable configuration (Ω2). Then, Equation (5.33) on the intermediate configuration

becomes:

∫

Ω1

S(u) : (FT
0−→1.F

T
1−→2∇X1

wF0−→1)J
−1
0−→1dV1 =

∫

Γ1

N

(J)−1
0−→1t0.wdS1+

∫

Ω1

J−1
0−→1fv0

.wdV1

(5.34)
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By writing,
∼
S = J−1

0−→1F0−→1 SFT
0−→1, t1 = (J)−1

0−→1t0 and fv1
= J−1

0−→1fv0
, the Updated

formulation can be written as:

∫

Ω1

∼
S : (FT

1−→2∇X1
w)dV1 =

∫

∂Ω1

N

t1.wdS1 +

∫

Ω1

fv1
.wdV1 (5.35)

In Equation (5.35), the unknown is the displacement u1−→2

To solve the non linear mechanical problem, we use a Newton-Raphson algorithm based

on a first order Newton linearisation of the equation to be solved. Let us note R(u,w) the

residual of the Lagrangian updated formulation.

R(u,w) =

∫

Ω1

∼
S(u) : (FT

1−→2.∇X1
w)dV1 −

∫

∂Ω1

N

t1.wdS1 −
∫

Ω1

fv1
.wdV1 (5.36)

Starting from u0, we have to make a correction δu which makes the residual vanishing such

that:

R(u0 + δu,w) ≃ R(u0,w) +
∂R(u0,w)

∂u
.δu = 0

The correction is obtained by solving the following equation:

∂R(u0,w)

∂u
.δu = −R(u0,w) (5.37)

where ∂R(u0,w)
∂u is the tangent stiffness matrix. The first correction is not perfect numerically,

for that we have to proceed iteratively until the convergence is reached |R(un,w)| < ǫ.

5.3.2 Evolution of the porosity and permeability

If the porous medium undergoes deformations, its porosity changes, consequently the per-

meability changes which affects the flow. This is one of the main features of this unique

approach which permits to consider so well real infusion cases [Wang et al. 2010].

5.3.2.1 Computation of porosity

Evolution of the porosity is determined using the mass conservation equation. Let us

consider that the preforms are formed by fibers and pores, the fibers are incompressible but

the preforms are compressible. The mass conservation can be solved by a Lagrangian approach

based on the Jacobian transformation, or by a finite element resolution.

Mass conservation
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The mass conservation is enunciated as: the mass of the material domain Ω is constant during

the time
D

Dt
(ms(Ω)) = 0

We take an elementary material domain ̟ ⊂ Ω,then

D

Dt

(∫

̟
ρs(x, t)dv

)

= 0

.

Where ρs(x, t) is the density of preforms (solid part) at the point x and at the instant t.

D

Dt
(

∫

̟
ρsdv) =

∫

̟
(
Dρs
Dt

dv + ρs
D(dv)

Dt
) = 0 (5.38)

The derivate of the density (ρs) with respect to time, is given by the material derivate

density [J.Coirier 2001].

Dρs
Dt

=
∂ρs
∂t

+ vs.∇xρs (5.39)

and the derivate of the elementary volume is given by:

D(dv)

Dt
= divxvsdv (5.40)

Equations (5.39) and (5.40) are valid for all ̟, therefore, it is valid on Ω. Then, Equation

(5.38) becomes:
∂ρs
∂t

+ vs.∇xρs + ρsdivxvs = 0 (5.41)

Because of the use of the Updated Lagrangian method, the mesh changes. For this reason, we

have to take into consideration the velocity vm of the mesh. Consequently, Equation (5.41)

can be written as function of a relative velocity vs − vm.

∂ρs
∂t

+ (vs − vm)∇xρs + ρsdivxvs = 0 (5.42)

In our case, based on the Updated approach at each iteration, the velocity of the mesh is equal

to the velocity of the preforms (vm = vs). Consequently, we obtain

∂ρs
∂t

+ ρsdivxvs = 0 (5.43)
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The density of preforms is ρs =
mfibre+mpores

Vtotal
. The mass of pores is equal to zero, then,

ρs =
mfibre

Vtotal
=

mfibre

Vfibre

Vfibre
Vtotal

= ρf
Vfibre
Vtotal

= ρf (1 − ψ) where ψ is the porosity. ρf is the

density of fibers which is constant during time which means that
∂ρf
∂t

= 0. Hence, the mass

conservation of porosity writes:

∂ψ

∂t
− (1− ψ)divxvs = 0 (5.44)

Resolution using finite element

Equation (5.44) can be solved using a finite element method. Then, the weak variational

formulation is:

∫

Ω

∂ψ

∂t
ψ∗dv =

∫

Ω
[(1− ψ)divxvs]ψ

∗dv (5.45)

To solve Equation (5.45), we use an implicit Euler scheme for the discretization in time.

Then, we have: [0, T ] = ∪Nn=1[tn−1, tn] with ∆t = tn − tn−1

Therefore, the discretized formulation of Equation (5.45) can be written as:

∫

Ω

(ψ(tn)− ψ(tn−1))

∆t
ψ∗
hdv −

∫

Ω
[(1− ψ(tn))divxvs]ψ

∗
hdv = 0 (5.46)

An alternate approach to compute the evolution of porosity uses the Jacobian of transformation.

Resolution using the Jacobian of transformation

A Lagrangian version based on the Jacobian transformation can be used to describe the mass

conservation of the system [P.Celle 2006]. We write the relation between two instants t and

t+∆t such as:

J(X, t+∆t)ρs(X, t) = J(X, t)ρs(X, t) (5.47)

Using the relation between density and porosity expressed in Equation (5.48):

ρs(X, t) = (1− ψ)ρf (X, t) (5.48)

we obtain the evolution of porosity in function of the Jacobian such that:

J(X, t+∆t)(1− ψ(X, t+∆t)) = J(X, t)(1− ψ(X, t)) (5.49)

We prefer to use Equation (5.44) because its implementation in Zebulon is simpler. For
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that we use the finite element resolution.

Validation of the resolution of the porosity evolution using a compaction test

To validate the resolution of porosity evolution, we compact a preform of width L = 0.385m

and of height H = 0.056m. A displacement of 0.01m is imposed on the top of the domain

along y axis. Figure 5.12 shows the boundary conditions imposed in this test. The initial

porosity is equal to 60%. First, we solve the momentum conservation equation to compute

the displacement field u which is used in the mass balance equation to compute the velocity

vs =
u
∆t then to compute the porosity ψ.

Figure 5.12: Compaction test

The analytical solution of the porosity at the time t is determined from the porosity at

the initial time. Taking into consideration that the mass of fibers is constant during the time

mt
f = m0

f , we get V t
f ρ

t
f = V 0

f ρ
0
f where V t

f and V 0
f are the fiber volume fractions at the time t

and the initial time respectively, ρtf and ρ0f are the density at the time t and the initial time

respectively. But, the fiber volume fraction equal to V t
total(1−ψt) is constant during the time,

consequently we have:

Vf = V t
total(1− ψt) = V 0

total(1− ψ0)

we obtain a relation to compute the porosity at the time t in function of the initial time:

ψt = 1− V 0
total

V t
total

(1− ψ0)

where V 0
total and V t

total are the volume of preforms at the initial time and the instant t. Table

5.3 compares the numerical and analytical solutions obtained with this test. An excellent

correlation between numerical and analytical results ensures the robustness of the method used

159



5.3. Large deformations of preforms

to compute the evolution of the porosity. Figure 5.13 show the isovalue of the displacement

uy.

Results Analytical results Numerical results
Initial thickness 0.056m 0.056m

Final thickness 0.046m 0.046m

Initial porosity ψ0 60% 60%

Final porosity ψt 51.3% 51.3%

Volume fiber fraction Vf 48.7% 48.7%

Table 5.3: Comparison between analytical and numerical results

Figure 5.13: Isovalue of the displacement uy

5.3.2.2 Computation of permeability

The permeability is an essential parameter which characterizes the preforms. The vari-

ation of the porosity leads to a variation of permeability. For this reason, we have to pay

attention to the particular methods used to determine preform permeability as function of

porosity. Two approaches can be found in the literature: the first one is based on physical

empirical models, while the second one is based on experimental measurements. In this work,

we choose the Carman-Kozeny law which is the most popular empirical law found in literature

[J.Park & M.K.Kang 2003],[Dullien 1979]. This law, established for soils initially, expresses the

permeability k as a function of the volume fraction of solid phases, here the fibers as:

k =
d2f
16hc

(1− Vf )3
V 2
f
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where df is the fibers diameter, hc is the Kozeny constant and Vf is the volume fraction of

fibers. The Kozeny constant is taken equal to 10 in our cases.

5.3.3 Constitutive law of fibrous preforms

Preforms are constituted by fibers, their mechanical behavior is then anisotropic. We use the

continuum mechanics at macroscopic scale, therefore preforms are seen as homogeneous media

with an anisotropic response. We choose a planar isotropic behavior to model the behavior of

preforms. We assume that in the plane, the behavior of preforms is isotropic, elastic and may

be non linear while in transversal direction, the non linear behavior of preforms is related to

the volume fraction of fibers and is independant on the plane response. In literature, we have

different methods to establish the relation between the stress and the volume fraction of fibers.

These relations are empirical or based on experimental results, but are isotropic in essence. We

cite as examples, power laws, Gutowski’s law ...

– Power law [S.Toll & Manson 1994]

σ = a(Vf )
b

where a and b are constants determined experimentally and Vf is the volume fraction of

fibers.

– Gutowski’s law [T.G.Gutowski 1987]

σ = As

√
Vf

V0
− 1

(
√

Va

Vf
− 1)4

where Va is the maximum volume fraction of fibers, Vf is the volume fraction of fibers

during the compaction, V0 is the initial volume fraction of fibers (before compaction) and

As is a constant.

However, we did not use these relations established for appropriate needs because we prefer a

relationship between the stress and the deformations of preforms which is more exhaustive for

a mechanical approach. Some constitutive laws establish explicitly the relation between the

transverse stress σ in function of the deformation ε with:

σ(ε) = f(ε)
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Figure 5.14: Constitutive law of NC2 preforms in compaction [Celle et al. 2008]

where f is the constitutive law.

In this work, we will use an experimental stress-strain relation based on the experimental work

of P. Celle [Celle et al. 2008] at École Nationale Supérieure des Mines de Saint-Étienne on NC2

preforms which shows some evidence of the non linear elastic behavior in transverse direction.

This approach establishes, using experiment, the relation between stress and the deformation

of preforms for a given volume fraction of fibers. We will describe how to take the constitutive

law of NC2 preforms into consideration in our work.

Experimental curve of NC2 preforms

P.Celle [Celle et al. 2008] realized a transverse compaction on 100 layers of NC2 preforms

([0, 90]100) of basis weight per unit area 200g/m2. The initial thickness of NC2 preforms is

0.056m and the dimensions are 0.585×0.385m2. The stress-strain curve is presented in Figure

5.14. The first part of this curve shows large deformations because of the space which disap-

pears between the plies and the arrangement of the filaments relative to each other. The second

part of the curve corresponds to the phase of compaction of preforms: very low deformations

induce large stress. We need a 3D law which characterizes the behavior of preforms in their

plane.

The relation between the stress tensor σ(ε) and the tensor of deformations ε is given by

the relation:

σ = C : ε(u) (5.50)
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where C(ε) is the 4th order elasticity tensor that contains 81 coefficients in the most general

case, which become 9 when the material is orthotropic and 5 for planar isotropic behaviors.
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with:

δ = (1− 2νtpν
2
p − ν2p − νtpνp − νptνp)

where Ep is the stiffness modulus in the plane of preforms, Et is the stiffness transverse modulus,

νp is the longitudinal Poisson’s ratio, νtp = νpt
Et

Ep
is the transverse Poisson coefficient, Gp =

Ep

2(1+νp)
is the longitudinal shear modulus and Gt is the transverse shear modulus. Stiffness and

suppleness tensors are symmetrical positive defined due to the structure of the elastic energy.

Consequently, Poisson ratios have to satisfy:

νtp
Et

=
νpt
Ep

, Gp =
Ep

2(1 + νp)

Response of the preforms relatively to the transverse direction

As explained before, the behavior in the transverse direction is the behavior of NC2 preforms

which is elastic and non linear. The term C22 =
(1−νpνp)Et

δ is then given by the experimental

stress-strain relation by computing the derivative of the relation between stress and strain plot-

ted in Figure 5.14 (Ct
22 =

∂σ22

∂ǫ22
), this relation is interpolated using Lagrange polynomials. This

interpolation allows to take into consideration the non linear behavior which is predominant

in resin infusion process.

Response of the fluid distribution media

The fluid distribution medium is incompressible with respect to the preform deformability. For

this reason, an isotropic linear elastic law introduced in Equation (5.51) is used.
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(5.51)

where E is the Young’s modulus taken equal to 200 kPa to provide the stiffness of the fluid

distribution medium which is incompressible, and ν is the Poisson’s ratio taken equal to 0.4.

Remark: We use the Zebfront langage to include directly the relation σ = C : ε(u) in

Zebulon.

Wet preforms response: coupling solid mechanics with fluid mechanics

Due to the pressure of the resin impregnated into preforms, the behavior of wet preforms

is different from the behavior of dry preforms. In this work, we use the most popular model

to represent the effect of the resin pressure on the fibrous preforms behavior. This model

is the "Terzaghi’s" model [K.Terzaghi et al. 1967], [E.A.Kempner & H.T.Hahn 1998] which

generalizes a Voight’s approach of the diphasic medium and writes

σ(ε) = σeff (ε)− pd s IH

where σ is the stress into preforms, σeff is the effective stress computed in the absence of the

resin, s is the saturation taken equal to 1, here pd is the pressure of resin and I is the second

order identity tensor. Due to the use of the same mesh for wet and dry preforms ("monolithic"

approach), we introduce H the Heaviside function equal to 1 in the wet preforms and vanishing

elsewhere.

Validation of Terzaghi model

Terzaghi model was validated by Pacquaut [Pacquaut 2009]. This test is illustrated in Figure

5.15. The preform of width 2L with L = 4.10−2m and of height H = 2.10−2m is compacted

with a pressure equal to 104Pa applied on the top of the domain. A hydrostatic pressure

corresponding to the pressure of the resin inside the pores is also applied inside the preform.

This pressure is supposed to be linear and is expressed as:

p = a y + b
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Chapter 5. Interface capturing and large deformation of preforms

Figure 5.15: Compaction of a preform with free board

where p is the hydrostatic pressure of resin, a and b are coefficients equal to −5. 10−6 and 105

respectively. For this test, we choose a linear-elastic law for dry preforms. This simplification

allows to obtain an analytical solution of the displacement uy. This analytical solution is

obtained using Airy functions and expressed in Equation (5.52)

uy =
1 + ν

E
[(1− 2ν)(

a

2
y + b)y + (ν − 1)Gy] (5.52)

with G = aH + b + Pimp. E is the Young’s modulus equal to 266 kPa in this case and ν is

Poisson coefficient equal here to 0.3. The deformations are taken planar (εxz = εyz = εzz = 0).

In addition, one uses updated small deformations because Airy functions are only employed in

small deformations. Figure 5.16 shows a comparison between analytical and numerical solutions

of the nodes positions for x = 0 (symmetric plane). A good correlation between analytical and

numerical results is shown in Figure 5.16.

5.4 Conclusions

In this chapter, we presented the main methods used for describing the moving flow front

of an interface. We detailed the method that we use in our simulations which is the "level set

method". We convect the resin fluid front represented by level set function using the veloc-

ity of the coupled problem and we reinitialize it to conserve the property of signed distance.
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Figure 5.16: Comparison between analytical and numerical results of the node position
in the compaction test with free boards

In addition, we have shown its ability to conserve the mass of fluid especially if we used the

Cranck-Nicholson scheme. In the second part of this chapter, we presented the deformation

of preforms which is an essential phenomenon in LRI processes. For that, we detailed a La-

grangian updated formulation to compute the deformations of preforms, then we used the

mass conservation equation to compute the evolution of the porosity during the process and

we expressed the permeability as a function of this porosity using Carman-Kozeny formula-

tion. Then, we distinguished between the behavior of wet and dry preforms. The behavior of

dry preforms is elastic and non linear, while the behavior of the wet preforms was taken into

consideration with the Terzaghi model including the non linear response of the preforms.

The moving flow front of fluid and the deformation of preforms are coupled with Stokes-

Darcy problem to represent a complete model used in the simulation of LRI processes. In

the next chapter, Stokes-Darcy coupled problem, resin fluid front, solid mechanics problem

(deformation of preforms, Terzaghi model, Carman-Kozeny) are coupled and solved with the

numerical methods that I have presented so far.
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6.1. Introduction

6.1 Introduction

In this chapter, we will present the numerical simulations of LRI processes, taking into con-

sideration the resin flow and the deformation of preforms in severe regimes, with parameters

corresponding to the physical reality (permeabilities down to 10−15m2, low thickness of distri-

bution medium relatively to the thickness of porous medium, complex geometries). Some of

these simulations will be compared with the experimental results obtained at École Nationale

des Mines de Saint Étienne by P. Wang [P.Wang 2010]. Also, we will show the robustness of

our model which is valid for large time steps and coarse meshes, leading to low CPU time.

6.2 Coupling algorithms

To explain the coupling between the resin flow, from a purely fluid domain into the porous

domain, the evolution of the fluid front, and the deformation of preforms, we will present two

algorithms named "injection" and "infusion" algorithms. The injection algorithm takes

into consideration the coupling between the level set problem and the flow of the resin into the

preforms. It is used to simulate the injection of the liquid resin into the preforms. Besides,

the infusion algorithm is based on coupling the level set problem with the flow of the resin and

the deformation of the prefoms. It is used to simulate the resin flow into preforms undergoing

large deformations. In the next sections we will present the injection and infusion algorithms to

explain the strategy used in coupling the different problems developed in the previous chapters.

6.2.1 Injection algorithm

Injection algorithm proposes a coupling between the resin flow problem and the level

set problem. It corresponds to the simulation of the injection of resin into some preforms.

At each time step, we solve two problems: Stokes-Darcy coupled problem (Equation (6.1))

and (Equation(6.2)) and level set problem (Equation (6.3)). First, by solving the Stokes-Darcy

coupled problem, we get the velocity of the resin that we use in the level set problem to convect

the level set function. This algorithm is shown in Figure 6.1.
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Figure 6.1: Injection algorithm
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6.2. Coupling algorithms

We have to solve the two following problems:

Stokes-Darcy coupled problem

The resolution of Stokes equations is used to model the flow of resin into the purely fluid

domain:

−div(2µε̇(vs)) + ∇ps = 0 in Ωs

div vs = 0 in Ωs

(6.1)

The resolution of Darcy’s equations is used to model the flow of resin into the porous

medium:

µ
kvd + ∇pd = 0 in Ωd

div(vd) = 0 in Ωd

(6.2)

Furthermore we have the conditions on the Stokes-Darcy interface described in Chapter 2 as

well as the boundary conditions.

Resolution of the level set problem

The level set problem is convected using the following transport equation:

∂φ

∂t
+ v.∇φ = 0 (6.3)

where v is the velocity given, at each time step, from the Stokes-Darcy coupled problem.

6.2.2 Infusion algorithm

Compared to injection algorithms, infusion algorithm involves an additionnal problem to

be solved (a solid mechanics problem). Indeed, we solve the problem of compaction of preforms

obtained by applying a mechanical pressure on the distribution medium and the preforms. This

pressure is due to the presence of a vacuum inside the vacuum bag surrounding the stacking.

The problems that we have to solve are coupled, for example, through the geometry (resin fluid

front, preform geometry). In this algorithm, as in injection algorithms, we propose an algorithm

weakly coupled which means that for each time step, each problem is solved subsequently for

a once. After this computation, the mesh is updated and a new geometry is obtained. After

this step, at each time step, we have to solve four problems:

– The displacement field computed from Equation (6.4) allows us to compute a new porosity

using Equation (6.6), then obtaining new permeability using, for instance, the Carman-
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Kozeny relation ship (Equation(6.7)).

– The second step consists in solving the resin flow problem Equation(6.1) and Equation

(6.2), the velocity and pressure field are obtained in the whole domain.

– The third step consists in solving the transport equation of the level set function (Equa-

tion(6.3)) using the velocity obtained by solving the resin flow problem and the mesh

velocity (vm = ∆u
∆t ) is taken into consideration.

– The fourth step consists in solving the deformation of preforms; taking into consideration

the inflation of preforms due to the pressure of resin impregnated into preforms through

the Terzaghi’s model (6.9).

– At the end of each time step, the geometry is updated. The computation is performed

until the total filling of preforms is reached.

The infusion algorithm is presented in Figure 6.2. We will recall briefly the additional

problems related to the deformation of preforms that we use in infusion processes.

Compaction of preforms:

This problem is solved using an Updated Lagrangian formulation. The Updated Lagrangian

formulation uses the Terzaghi’s model to describe the response of the wet preforms, the dry

preforms have an elastic non linear response.

divσ = 0 (6.4)

σ(u) = σef (u) (6.5)

where σ is the cauchy stress given by an orthotropic non linear elastic law with the NC2

preforms behavior in transverse direction.

Computation of porosity and permeability

The porosity is the solution of the transport equation:

− ∂ψ

∂t
+ (1− ψ)divvs = 0 (6.6)

where vs is the velocity of the preforms, equal to the velocity of the mesh in our case. Using the

obtained value of porosity, we compute the new value of the isotropic permeability obtained

with the Carman-Kozeny relation (6.7):

K =
d2f

16hK

ψ3

(1− ψ)2 (6.7)
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6.2. Coupling algorithms

Figure 6.2: Infusion algorithm
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where df is the diameter of the fibers and hK is the Kozeny constant.

Deformation of preforms problem

An Updated Lagrangian formulation is used to compute the deformations of preforms. The

behavior of preforms is orthotropic non linear elastic given by NC2 preforms behavior in trans-

verse direction. The effect of resin in wet preforms in given by Terzaghi’s model. This problem

is solved by Equation (6.8).

divσ = 0 (6.8)

with

σ(u) = σeff (u)− pdIHf (6.9)

where pd is the pressure of the resin (after its infusion) in porous medium and Hf is equal to

1 if the resin is present into preforms.

6.3 Simulation of the transient flow

Let us note that in all the simulations of the transient flow, the constants c1, cu and cp

in the stabilization terms are taken as c1 = 1, cu = 2 and cp = 2. The term L0 is also taken

equal to L0 =
m
√

meas(Ωd) (m is the dimension) and meas(Ωd) is the surface of Ω in 2D cases

and the volume of Ω in 3D cases. Moreover, the thickness E in the filtered level set function

is E = 20hK where hK is the size of mesh. In this section, we will present different numerical

simulations of LRI processes based on the injection algorithm. These simulations are conducted

with real physical parameters of composite materials. Different hypotheses are validated in

these tests: Stokes-Darcy problem coupled with the level set, filling of a distribution medium

of very low thickness relatively to the thickness of preforms, the robustness of the model for

very low permeabilities (10−14m2), for complex geometries (in 2D and 3D cases), for coarse

meshes, and different ranges of time step ([0.1s, 100s]).

6.3.1 Injection of a plate with filled distribution medium

In this simulation, we suppose that the distribution medium is already filled with the resin.

The aim is to simulate the impregnation of the resin through a preform of low permeability

using Stokes-Darcy problem coupled with the level set problem.
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6.3. Simulation of the transient flow

6.3.1.1 Definition of the problem: geometry and boundary conditions

The first case corresponds to the simulation of the resin infusion into preforms of thickness

20mm and of width 385mm. The thickness of the fluid distribution medium is 1
10 of the porous

media thickness (2mm). In Figure 6.3, one can verify that commonly used distribution media

are of the order of a few mm, and consist in a polyester grid, supposed not to be deformable

under the mechanical state prevailing in infusion processes.

Figure 6.3: A distribution medium consisting in a polyester grid

Geometry and boundary conditions are shown in Figure 6.4. A pressure of 105Pa is applied

on the top of the domain and a zero pressure is imposed on the bottom. On the other sides of

the domain, a zero normal velocity is prescribed.

Figure 6.4: Geometry and boundary conditions of a plate with filled distribution medium
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The mesh is realized with gmsh and made up of 2500 nodes. For this simulation, we choose

a coarse mesh (Figure 6.5) and different time steps (∆t ∈ [1s, 100s]) which are relatively high

regarding the velocities expected. For this simulation, we have two level set functions: the

Figure 6.5: mesh made up by triangles and Stokes-Darcy interface in red (2500 nodes
and 5000 elements).

level set function used to separate Stokes and Darcy domains and the level set function used

to follow the resin flow front. Because the distribution medium is filled by resin, these two

level set functions coincide at the begining of the simulation. Taking into consideration that

we use a monolithic approach, the porous medium not impregnated with resin is filled with air

assumed to behave as an incompressible Newtonian fluid with very low viscosity µa compared

with the viscosity of the resin µf : µa << µf . To realize the transition between the properties

of the air and the properties of the fluid, we use a mixing law on the interface. For that, we

consider a particular thickness of the fluid-air interface (ǫ = 0.5hK , where hK is the size of

mesh) and we use the Heaviside function H(φf ) equal to one in Stokes domain (φf > 0), equal

to zero in Darcy’s domain (φf < 0) and equal to 1
2(1 +

φf

ǫ ) if −ǫ < φf < ǫ. This mixing law is

given by Equation (6.10).

µ = H(φf )µf + (1−H(φf ))µa

ρ = H(φf )µf + (1−H(φf ))ρa
(6.10)

This simulation is conducted for different values of permeability [10−9, 10−11]m2. The other

parameters of this simulation are presented in Table 6.1.

Injection pressure Resin viscosity air viscosity preform thickness
105Pa 0.03Pa.s 10−4Pa.s 0.02m

Table 6.1: Physical parameters of the numerical simulation
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6.3.1.2 Results of the simulation

Figure 6.6 shows the flow of the resin into preforms for k = 10−14m2 and ∆t = 100s. Air

is represented in blue and resin is represented in red. The distribution medium is filled with

resin at the begining of the simulation and the unidirectional flow is verified.

(a)

(b)

(c)

Figure 6.6: Results of a plate simulation with filled distribution medium. Air is shown
in blue and resin is shown in red, k = 10−14m2, ∆t = 100s.

One of the essential goals of the simulations of LRI processes is to predict the total time

required to fill the preforms. Many parameters influence the filling time, the injection pressure,

permeability of the porous medium, viscosity of the resin · · ·
In the presented case, the flow is unidirectional. For this reason, by using Darcy’s law in

porous media, an analytical solution is obtained to determine the position of the resin front as

function of time. This relation writes

y(t)2 =
2k∆p

µ
t (6.11)

where y(t) is the position of the fluid front, k is the permeability of the preform, ∆p is the

difference of pressure between the top and the bottom of the domain, µ is the resin viscosity

and t is time.

Computation of the position of the resin front

Figure 6.7 shows a comparison between the analytical and numerical position of the resin

front as function of time for ∆t = 100s and ∆t = 1s. This comparison is conducted for

k = 10−14m2.
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Figure 6.7: Position of the resin front in function of time

We deduce a good correlation between numerical and analytical results especially for ∆t =

1s.

To focus on the importance of the time step on this simulation, we show in Table 6.2,

the relative errors between the analytical and numerical values of the total filling time of

the preforms relatively to the time step. Let us note that the relative error is computed

as |ta−tn|
ta

× 100 where ta and tn are respectively the analytical and numerical times for the

complete filling of the preform. In this case, for a permeability k = 10−14m2, a resin viscosity

µ = 0.03Pa.s, a differential of pressure ∆p = 105Pa, and a thickness of preform equal to

0.02m, the anaytical time of filling the preform is 6000s.

It is good to notice that even if the time step is high (∆t = 100s for example), the relative

error is a very good compromise regarding interesting CPU time that we have, more than 100

times lower than for ∆t = 1s.

177



6.3. Simulation of the transient flow

∆t numerical filling time relative error [%] CPU time
1s 5990s 0.16% 10200s

10s 5970s 0.5% 1020s

30s 5930s 1.16% 340s

50s 5900s 1.66% 200s

100s 5800s 3.33% 100s

Table 6.2: Values of the relative errors of the filling time, and values of the CPU time of
the simulation with respect to the time step

Influence of the permeability on the filling time

To study the influence of the permeability on the filling time, we did many simulations with

different values of permeability [10−11, 10−14]m2. Figure 6.8 shows the change in the filling

time as function of the permeability (the time step considered is ∆t = 1s). Figure 6.8 shows

that the filling time is proportional to 1/k which is in accordance with Equation (6.11).

Figure 6.8: The filling time as a function of permeability in log-log scale with a slope
equal to 1

This first case shows the robustness of our model in many points:

– The results are valid for all the permeabilities, included very low permeability (k =

10−14m2)
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– The model is robust for all the time steps and for large mesh sizes (coarse meshes)

– The CPU times are relatively low due to the low number of elements and the high time

step

6.3.2 Injection of a plate with filling of the distribution medium

The aim of this simulation is to simulate the filling of the distribution medium for different

thicknesses and the impregnation of the resin into the preforms. In this case, we can not

compare the numerical results with an analytical solution, because the flow is not unidirectional,

which means that there is no simple analytical solution to this simulation.

6.3.2.1 Definition of the problem: geometry and boundary conditions

The domain of computation is a rectangle 0.033m× 0.292m with an injection inlet. Geom-

etry and boundary conditions are presented in Figure 6.9. A normal stress of 1bar is imposed

on the injection inlet and zero pressure is imposed on the bottom of the domain. On the other

sides of the domain, a zero normal velocity is imposed.

Figure 6.9: Geometry and boundary conditions

This simulation is carried out for different values of permeability k ∈ [10−9m2, 10−14m2]

and the other physical parameters are presented in Table 6.3.

Injection pressure Resin viscosity thickness of preform
105Pa 0.03Pa.s 0.03m

Table 6.3: Physical parameters of the numerical simulation

The mesh is realized with gmsh [Geuzaine & Remacle 2009] and is made up by 2300 nodes

which is relatively high (Figure 6.10).

179



6.3. Simulation of the transient flow

Figure 6.10: Zoom on the fluid medium and the porous medium mesh and Stokes-Darcy
interface in red

6.3.2.2 Results of the simulation

Figure 6.11(a) and 6.11(b) show the results of pressure and velocity for this simulation.

The pressure and velocity do not show oscillations for this low permeability ( 10−14m2) and

this low thickness of distribution medium.

Figure 6.12 shows the flow of the resin for a permeability k = 10−14m2. Red color represents

the resin and blue color represents the air. The total time of filling of the distribution media is

of order 150s and the time for filling the preforms is 13870s. The CPU time of this simulation

is 30minutes. First when filling the distribution medium the time step is ∆t = 1s, then the

time step is changed to ∆t = 10s.

We deduce that the distribution medium is totally filled first, and then the impregnation

of resin into preforms starts. This is due to the low permeability (10−14m2) of the preforms.

In the next paragraph, we will validate this hypothesis with two different permeabilities.
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(a)

(b)

Figure 6.11: (a) Pressure distribution, (b) velocity distribution for a permeability k =
10−14m2
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(a)

(b)

(c)

(d)

(e)

Figure 6.12: 2D simulation of resin injection with filling the distribution medium for k =
10−14m2, and a distribution medium thickness equal to 3mm. The resin is represented
in red and the air is represented in blue.
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Influence of the distribution medium thickness on the filling time of the pre-

forms

Figure 6.13 shows the filling of the distribution medium and of the preforms for a perme-

ability k = 10−14m2, for a thickness of distribution medium equal to 30mm and for a thickness

of preforms equal to 30mm.

(a)

(b)

(c)

(d)

(e)

Figure 6.13: 2D simulation of resin injection with filling the distribution medium for
k = 10−14m2, and a fluid medium thickness equal to 30mm. The resin is represented in
red and the air is represented in blue.
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When the thickness of the distribution medium is high (which does not correspond to the

real physical reality of LRI processes), the time for filling preforms is 12000s which is lower

then 13870s, the time of filling preforms when the thickness of distribution medium is 3mm.

Influence of the preform permeability

As we have mentionned before, when permeability is of order 10−14m2, the resin is impregnated

after the total filling of the distribution medium. Figure 6.14 shows a 2D simulation of resin

injection for a permeability equal to 10−8m2. We deduce that for a permeability of the order

(a)

(b)

(c)

Figure 6.14: 2D simulation of resin injection with filling the distribution medium for
k = 10−8m2, and a fluid medium thickness equal to 30mm. The resin is represented in
red and the air is represented in blue.

10−8m2, the resin begins its impregnation into preforms before the total filling of the preforms,

contrary to the low permeability cases. This has a great influence in turning the injection

strategy.
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6.3.2.3 3D extension

A similar 3D simulation is carried out. Geometry is the same as in 2D case, extruded

along the z axis. The thickness of distribution medium is 10mm and the thickness of preforms

is 30mm. The filling time of preforms is 3150s which corresponds to a logical physical time

corresponding to filling a preform with a permeability of 10−13m2. The time step used when

filling Darcy is ∆t = 10s. The mesh is made up by 10000 nodes and the CPU time is 120mn.

All the results and validated hypotheses for 2D cases are valid for this simulation. Results for

this simulation are presented in Figure 6.15 for pext = 105Pa, k = 10−13m2 µ = 1Pa.s.

In addition, the time step used is 1s during the filling of the distribution medium and 10s when

filling the preforms. We remark that in Figure 6.15, the air is imprisoned in the right side of

the piece, this is due to the little difference between the inlet and Darcy’s domain.

6.3.3 Complex piece

To validate the model used to simulate the LRI process, we will simulate a complex piece

with particular geometrical form. The aim of this simulation is to realize a flow in a complex

piece for very low permeabilities. The technical difficulty in this simulation, is the initialization

of the interface between Stokes and Darcy’s domains. The details of this initialization will be

presented in Appendix B.

6.3.3.1 2D case

The geometry and boundary conditions of this simulations are presented in figure 6.16. A

pressure of 105Pa is imposed on the inlet of injection. Zero pressure is imposed on the bottom

of the domain. On the other sides of the domain, zero normal velocity is imposed. The mesh

is realized with gmsh and the number of nodes is 3200 (Figure 6.17).

Numerical results

We will present the results of the simulation in 2D for two values of permeability (k = 10−7m2

and k = 10−14m2) to study the influence of the preform permeability on the resin flow.

Figure 6.18 shows the flow of the resin in a 2D case for a permeability k = 10−7m2. We

conclude that the resin flows into preforms before the total filling of the distribution medium.

This is due to the high permeability of preforms which allows an easy impregnation of resin. We

observe also a radial flow of the resin. The total filling time of this simulation is 0.0068s. This
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(a)

(b)

(c)

(d)

(e)

Figure 6.15: 3D simulation of resin injection with filling the distribution medium for
k = 10−13m2. The resin is represented in red and the air is represented in blue.

time is quick compared with the real cycle times of resin infusion process. It is a consequence

of the high permeability used in this case. The time step is ∆t = 0.002s and the CPU time is
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Figure 6.16: Geometry and boundary conditions of a 2D complex piece with A = 0.1m,
C = 0.1m, D = 0.04m and β = π

4

Figure 6.17: mesh of the 2D complex piece made up of 3213 nodes

70s. Figure 6.19 shows the flow of the resin in 2D case for a permeability k = 10−14m2. We

deduce that the resin fills the distribution medium first, and then the impregnation of preforms

begins. The filling time of this simulation is 3570s, the time step ∆t = 10s when we fill the

distribution medium and ∆t = 100s when we fill the preforms. The CPU time is 120s.

These simulations allow to verify the hypothesis of the prefilled layer for low permeabilities

(k < 10−9m2). We conclude on the robustness of our simulations, first because we dont have

any oscillations around the interface for both pressure (Figure 6.20(a)) and velocity (Figure

6.20(b)) for very low permeabilities, second because we use coarse meshes with high time step

which reduce a lot the CPU time of the simulation without affecting the results significantly.

We deduce also that for the low permeabilities (10−14m2) the filling time corresponds to the

cycle time of resin infusion process used in industry [P.Wang 2010].

187
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(a)

(b)

(c)

(d)

Figure 6.18: 2D simulation of resin injection with filling of the distribution medium for
k = 10−7m2. The resin is represented in red and the air is represented in blue.
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(a)

(b)

(c)

(d)

Figure 6.19: 2D simulation of resin injection with filling the distribution medium for
k = 10−14m2. The resin is represented in red and the air is represented in blue.
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(a)

(b)

Figure 6.20: (a) Pressure distribution and (b) velocity distribution for a 2D simulation
of a complex piece
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6.3.3.2 3D case

The 3D complex geometry is the same as in 2D case, extruded along the z axis. The mesh

of this 3D piece is realized by gmsh and is made up of 23 000 nodes (Figure 6.21).

Figure 6.21: 3D mesh of complex piece

As in 2D cases, the technical difficulty in this simulation is the initialization of the interface

which separates Stokes and Darcy because it has a particular form, this initialization will

be detailed in appendix B. The initial fluid front is simply initialized by a plane. Boundary

conditions are the same as in 2D case. Permeability is k = 10−13m2 and the filling time is

of 900s. As for all our simulations, our model shows also its robustness in this case, for all

the time steps and for all the permeabilities. Figure 6.22 shows the resin position during its

injection in the complex piece for a permeability equal to 10−13m2. In this case the time step

is 1s when filling Stokes’ domain and it increases to 10s when filling Darcy’s domain which

reduces the CPU time to 120 minutes even if we are in a 3D case and the mesh contains a

considerable number of elements.

On the top of the piece, the front of the resin disappear because we have a numerical diffusion

which make φf = +ε (very small positive value) instead of φf = 0.

We remark also that in the bottom of the piece, the flow is radial and we can have a filling

default (see Figure 6.23)

There is no oscillations of velocity around the interface (Figure 6.24(a)) and for pressure

(Figure 6.24(b)) despite the low permeability and the complex geometry of the piece.

191
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(a)

(b)

(c)

(d)

Figure 6.22: 3D simulation of resin injection with filling the distribution medium for
k = 10−13m2. The resin is represented in red and the air is represented in blue.

Figure 6.23: Zoom on the filling default located in the bottom of the complex piece where
the resin has a radial flow
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(a)

(b)

Figure 6.24: (a) velocity distribution, (b) pressure distribution for a 3D simulation of a
complex piece with a permeability k = 10−13m2

6.4 Simulation of the transient flows with the deformations of

preforms

In the infusion tests, the numerical constants of stabilization are taken as c1 = 1, cp =

2, cu = 2 and L0 = m
√

meas(Ωd). As for transient flow, the thickness E in the filtered

level set function is E = 20hK where hK is the size of mesh. Concerning the solid mechanis

problem, in distribution medium where we have an elastic linear behavior, the Young modulus

Ep is equal to 200 kpa and the Poisson coefficient ν is equal to 0.4. While the behavior of

preforms in transverse direction (the direction of deformations) is described by the elastic non

linear of NC2 preforms given by experiments.
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6.4.1 Infusion of plate

In these simulations, we will take into consideration the deformation of preforms. For

that we will validate the weak coupling between the solid mechanics and the fluid mechanics

problems. To validate the robustness of our approach and its application in real physical case,

we will do a comparison between our results and the experimental results obtained by P. Wang

[P.Wang 2010].

6.4.1.1 Definition of the problem: geometry and boundary conditions

Resin infusion simulation is carried out on a plate preform of thickness 0.01m and of width

0.385m. The geometry and boundary conditions are presented in Figure 6.25. In this case, we

have two types of boundary conditions: the boundary conditions corresponding to the solid

mechanics problem (Figure 6.25(a)) and the boundary conditions corresponding to the fluid

mechanics problem (Figure 6.25(b)).

(a)

(b)

Figure 6.25: Boundary conditions of a plate infusion with filled distribution medium for
the solid mechanics problem (a) and for the fluid mechanics problem (b)

– For the solid part, a pressure of 1bar, applied by the vacuum bag, is imposed on the top

of the domain. On the bottom of the domain, zero displacement is imposed because the

stacking of resin and preforms lies on a rigid mould. On the other sides of the domain,

zero displacement conditions are imposed.
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– For the fluid part, an injection pressure of 1bar is imposed on the top of the domain and

zero pressure is applied on the bottom of the domain to have a pressure gradient between

the top and the bottom of the domain and to allow to the air to be pulled out, air is

considered as a Newtonian icompressible fluid of very low viscosity relatively compared

the resin. To avoid the outflow of the resin on the boundaries, zero normal velocity is

imposed.

The mesh is realized with gmsh and is made up by 2, 400 nodes (Figure 6.26). An infusion

test of a plate with 24 and 48 plies of quasi-UD G1157 is carried out.

Figure 6.26: A zoom on the coarse mesh of this plate with the Stokes-Darcy interface in
black color

For the stacking of 24 UD G1157 plies, the thickness of the preforms is about 10mm and for

the stacking of 48 UD G1157 PLIES, the thickness of preforms is of about 20mm [P.Wang 2010].

The initial porosity is 61%, the diameter of the carbon fiber is 5 10−6meter and the constant of

Cozeny is then equal to 10 which corresponds to an initial permeability equal to 3 10−14m2. In

this case, we consider the resin RTM6, its viscosity is considered constant equal to 0.058Pa.s

which corresponds to the estimated value during the first 30 minutes of the process. The

parameters of these two simulations are summarized in Table 6.4. The time step is ∆t = 4s.

Resin viscosity Initial permeability Initial porosity thickness of preform
0.058Pa.s 3× 10−14m2 61% 10mm

Table 6.4: Physical parameters of the numerical simulation
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6.4.1.2 Numerical results and comparison with experimental results

Figure 6.27 shows the flow of the resin into the 24 plies stacking. The resin is represented

in red and the air is represented in blue. The distribution medium is already filled by resin.

Our aim in these two simulations is to compare the filling time of preforms, the change of

the porosity and in the thickness of preforms after compaction and after the infusion of resin,

with the experimental results realized by [P.Wang 2010]. We have two steps in the numerical

simulation.

– The first step corresponds to the preform compaction (Figure 6.27 (a) and Figure 6.27

(b)). The vacuum bag imposes an external pressure on the top of the domain, which

leads to a compaction of preforms.

– The second step corresponds to the infusion of the resin into preforms, Figure (6.27 c).

This step begins after the end of the compaction step.

(a)

(b)

(c)

Figure 6.27: A zoom on the compaction of the plate with filled distribution medium, (a):
before compaction, (b): after compaction, (c): during resin infusion

Table 6.6 shows the results of the infusion after compaction, the thickness of the preforms
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decreases from 10mm to 6.3mm numerically (Figure 6.28 (b)) and to 6.2mm experimentally.

The porosity decreases from 0.61 to 0.38 (Figure 6.29 (a)) numerically and from 0.61 to 0.39

experimentally. Table 6.7 shows that the inflation of preforms during the resin infusion is of

0.61mm (Figure 6.28(c) where the thickness of preforms increases from 6.3mm to 6.9 mm )

similarly to the experiments where the inflation is of 0.6mm. This inflation is present due to

the pressure applied by the resin into the pores during its infusion. Consequently, the porosity

increases from 0.38 to 0.43 (Figure 6.29 (b))numerically and from 0.39 to 0.44 experimentally.

As for the time required to fill the preforms only, experimental and numerical results perfectly

match.

Figure 6.30 shows the evolution of preforms thickness as a function of time during compaction

and during resin infusion.

These results for the 24 plies of UD G1157 show a very good correlation between the

numerical results of our model and the experiments which confirms the relevance of our model

to simulate LRI process in real and severe physical cases.
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Parameters Numerical experimental
Thickness of preforms 10 mm 10 mm

Porosity 0.61 0.61

Table 6.5: Initial conditions of experimental and numerical simulation of 24 plies infusion

Parameters Numerical experimental
Thickness of preforms 6.3 mm 6.2 mm

Porosity 0.38 0.39

Table 6.6: Comparison between numerical and experimental results obtained after the
compaction of 24 plies

Parameters Numerical experimental
Thickness of preforms 6.9 mm 6.8 mm
Inflation of preforms 0.6 mm 0.6 mm

Porosity 0.43 0.44
Filling time of preforms 500 s 500s

Table 6.7: Comparison between analytical and experimental results obtain after the
infusion of 24 plies

Simulations have also been done for a 48 plies case, according to the cases reported in

[P.Wang 2010]. Results also correlate well in this second case, they are reported in Appendix

C.
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(a)

(b)

(c)

Figure 6.28: Change of the preforms thickness after compaction (b) and after infusion
(c)
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Figure 6.29: Change in the porosity after preforms compaction (a) and after resin infusion
(b)

Figure 6.30: Evolution of preforms thickness after compaction and after resin infusion
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6.4.2 Infusion of plate with the filling of the distribution medium

In this simulation, we will take into consideration the filling of the distribution medium

during the infusion of preforms. The distribution medium taken into consideration is not

deformable (it stiffness is high). This simulation allows us to follow the complete LRI process

(Figure 6.31).

Figure 6.31: Infusion of a plate with LRI process

6.4.2.1 Definition of problem and boundary conditions

The domain of computation is a rectangle of dimensions 0.033 × 0.292mm2 with an inlet for

injection. The thickness of preforms is 30mm and the thickness of distribution medium is

1/10 of the preforms thickness, 3mm. The mesh is made up by 2300 nodes (Figure 6.32). Two

types of boundary conditions are used. The boundary conditions for the solid part (Figure

6.33 (a)) and the boundary conditions for the fluid part (Figure 6.33(b)). For the solid part, a

pressure of 105Pa is imposed on the top of the domain. A zero displacement is imposed on the

bottom of the domain. And on the other boundaries of the domain, a zero normal displacement

is imposed. For the fluid part, an injection pressure of 105Pa is imposed on the top of the

domain and a zero pressure is imposed on the bottom of the domain. On the other boundaries
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6.4. Simulation of the transient flows with the deformations of preforms

of the domain, zero normal velocity is imposed. The diameter of the fibers is 5 10−6m2, the

Cozeny’s constant is 10 and the initial porosity is 0.61 which corresponds to a permeability

equal to 3 10−14m2.

Figure 6.32: The mesh of the domain made up of 2300 nodes

(a)

(b)

Figure 6.33: Boundary conditions of the solid mechanics problem (a) and of the fluid
mechanics problem (b)
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6.4.2.2 Numerical results

Figure 6.34 shows the results of this simulation after compaction, after the filling of the

medium and after the total filling of preforms. This simulation corresponds to the real simu-

(a)

(b)

(c)

Figure 6.34: 2D simulation of preform infusion at the initial time, (a) after compaction,
(b) after a total filling of distribution medium and (c) after the total filling of preforms

lation of the LRI processes. The filling time of fluid medium is 120s and the filling time of

preforms is 3000s which corresponds to a real physical time of preform filling under compaction

of initial thickness 20mm. In addition, the time step used is 1s during compaction and during

the filling of the distribution medium and 10s when filling the preforms. For this high time

step and coarse mesh, the CPU time of this simulation is 20 minutes.

Defaults on the side of the piece are just due to the thickness of the level set φf of the fluid

front where we have a mixed law between fluid and air.

6.4.2.3 3D extension

We did the same simulation in 3D. Figure 6.35 shows the compaction of the preform and

the evolution of the resin flow front for this case corresponding to the 2D case extruded along

zaxis. The boundary conditions are the same as in 2D for the solid mechanics problem and

the fluid mechanics problem, except the boundary condition corresponding to the velocity on

the top of the domain for the fluid mechanics problem taken as v = 0 instead of v.n = 0. All

the remarks for the 2D case corresponds also to the 3D case. Our simulations ensure that the

model which couples the deformation of preforms and the resin flow front allows to characterize

the parameters of the final piece (thickness, fiber volume fraction). In addition, the time step

used is 1s during compaction and during the filling of the distribution medium and 10s when
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filling the preforms

(a)

(b)

(c)

(d)

(e)

Figure 6.35: 3D simulation of resin infusion process with filling distribution medium,
Stokes-Darcy interface is shown in green and the fluid flow front in red. (a): Initial state
(b): after compaction (c) −→ (e): evolution of resin flow front

Figure 6.36(a) shows the pressure during the compaction before the impregnation of resin
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into preforms (the pressure of the resin is zero). Figure 6.36(b) shows the pressure during the

resin infusion and confirms the absence of oscillations around the interface for a low physical

permeability equal to 3 10−14m2 corresponding to a diameter of fibers equal to 5 10−6 meter.

(a)

(b)

Figure 6.36: (a) pressure distribution during compaction (b) pressure distribution after
resin infusion
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6.5 Conclusions

In this chapter, transient flows without and with preforms deformations were validated with

different numerical simulations in 2D and 3D cases. In addition, our simulations corresponds

to the real physical reality of LRI processes as we shown in some illustrations. We take a

low thickness of distribution medium, low permeabilities, complex geometries and some results

were compared to experimental results realized by P.Wang [P.Wang 2010]. Consequently, with

our model, we are able to predict the real filling time of preforms, the initial and final thickness

of the stacking and the initial and final fiber volume fraction. Moreover, these simulations show

the efficiency of the level set method to describe the resin flow front and to separate Stokes-

Darcy domain, the efficiency of the ASGS method used for the Stokes-Darcy problem in severe

regime and the efficiency of the solid mechanics problem. Particulary, another advantage is the

high performance of the model for high time step and coarse meshes which implies a low CPU

time.

Finally, all the numerical simulations conducted here, show the robustness and the ability of

our approach to model resin infusion processes in a real industrial and physical context.
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Conclusions

Liquid Resin infusion processes, used for manufacturing composite materials, parts with

high quality, allow to investigate new designs for large dimensions pieces. However, despite

numerous advantages, the control of these processes is difficult, especially for the most critical

properties related to the final piece like its dimensions and its fibre volume fraction.

The aim of this work is to propose a numerical methodology to simulate these processes

in order to provide parameters such as the filling time, the final dimensions of the piece, the

volume fraction... In an isothermal framework, simulating LRI processes requires the coupling

between fluid mechanics and solid mechanics problems. The fluid mechanics problem describes

the flow of the resin into the distribution medium and then into the fibrous preforms assimilated

to a porous medium. Hence we have to deal with the coupling of Stokes and Darcy equations.

Furthermore, a specificity of this modelling is the order of the permeability which is very low

(10−14m2). The solid mechanics problem describes the finite deformations undergone by the

preforms. These deformations are due to both an external mechanical pressure applied during

the compaction stage and to the resin pressure.

This Stokes-Darcy coupled problem is considered here by using a monolithic approach

which consists in considering one single mesh to discretize both Stokes’ and Darcy’s problems.

Following this approach, the same pair of finite element is chosen to discretize velocity and

pressure in Stokes and Darcy domains. In this work, linear-linear pair has been investigated.

In order to fulfill the stability conditions of the Brezzi-Babũska theory, a Variational MultiScale

method has been used to stabilize the Stokes-Darcy discrete problem. This method is called

Algebraic SubGrid Scale method and involves stabilization terms for both velocity and pressure.

The Stokes-Darcy interface is represented by a level set function. Many cases of validation have

been performed, including manufactured solutions to study the convergence rates, comparisons

with analytical solutions and comparisons with another approach called decoupled method.

These cases have shown the efficiency of this stabilized finite element approach in severe regimes

(low permeabilities, complex geometries, small thickness of distribution medium). Particularly,

there is no significant oscillations of the velocity in the vicinity of the interface which was the

problem met in the previous work of G.Pacquaut conducted in our laboratory. An important

point which has to be outlined is that one single numerical parameter has significant importance
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on the stability of the method. This parameter L0 is related to the domain measure (surface

area or volume measures).

The solid mechanics problem is solved in the finite strains context, using an Updated La-

grangian approach where the dry preforms have a non linear orthotropic elastic behavior. The

transverse response of the preforms is given by experimental results on NC2 preforms. Fluid

and solid mechanics problems are subsequently solved incrementally with weak coupling algo-

rithms. The coupling is carried out, on one hand through the resin pressure which is involved in

the constitutive law of preforms by the Terzaghi’s model. On the other hand, the deformations

of preforms induce a change in porosity of the medium and in turn a change of permeability

which affects the resin flow. Finally, the flow front is captured by using a level set method.

This method is slightly modified compared with the literature. We have used a hyperbolic

tangent filter to truncate the level set function outside a neighbourhood of the interface. This

filtered function is then transported in classical way using SUPG method and reinitialized in

an appropriate way.

The numerical methodology developed in this work conducts to important results. First, the

results provided by our monolithic approach are successfully comparable with results obtained

by the decoupled approach performed with an industrial software (PAM-RTM). Furthermore,

we can expect time saving with our approach due to the monolithic Stokes-Darcy coupling (no

iterations have to be performed). Second, the oscillations of the velocity were a blocking point

in the previous work of G. Pacquaut, especially with real values of permeability. This prob-

lem has been removed by our approach. Furthermore in this previous work, the distribution

medium was deformable like the fibrous preforms. In our work we are able now to compact

a stacking of distribution medium and preforms without any significant deformation of the

distribution medium supposed not to be deformable under the mechanical state prevailing in

infusion processes. Moreover, the thickness of the distribution medium can be taken of the

order of a few millimetres as the real polyester grid used in LRI processes. Finally, all these

developments and improvements allowed us to present comparisons between simulations and

experiments in unidirectional flow with physical and process parameters typically used in LRI

processes. Filling time, final dimensions, fibre volume fractions ... have been predicted with

success. This represents an important step in simulating of LRI process and more generally of

composite materials manufacturing processes.

As outlook, we have direct and long-range improvements for the physical and numerical
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context of this work.

Concerning the physical context, we can take into consideration the thermo-physico chemical

of the resin. Because resin viscosity is a function of the temperature and the crosslinking of

resin. This will allow to compare the results with more exhaustive experimental results.

Concerning the numerical aspect, 3D more complex cases can be considered. A method to

perform theses cases is the adaptation of the mesh which allows us to improve the description

of variables (level set, velocity and pressure) in the vicinity of the flow front while keeping

coarse meshes away from the critical zones.

Despite the fact that our simulations were performed using a low CPU time for 2D and 3D cases

and show performance in complex and severe 3D flows, some improvements can be realized to

reduce more the CPU time and maintaining the robustness of the model. Until now, we use a

direct solver while the use of an iterative solver is possible. In Zebulon, the choice of iterative

solver is available to solve finite element problems. But, we were limited on the choice of direct

solver because iterative solvers diverge in our case. This technical point has to be improved.

In additional, parallel computation can be used to reduce the CPU time.

In the long term, the permeability in the LRI processes is orthotropic, for that we have

to extend our stabilization method to deal with this type of permeabilities. This work is in

progress in a current PHD realized in our school By M.Blaise.

Finally, we can reduce the modelling scale. The hydro-mechanical interactions with meso-

scopic and microscopic scales can describe more finely the physical reality. For example at the

mesoscopic scale, we will consider the flow into tows thanks to the developments presented

in this PHD work. And if we consider the microscopic scale, the flow around the fibers can

be described by Navier-Stokes equations for example. But in this case, the fluid front will

have to account for cappilarity issues involved in a 3 phases flow (air, resin, solid), including

geometrical (curvature) as well as physical (surface tension, static and dynamic contact angles)

characteristics. This outlook will be taken into consideration in an on-going PHD.
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Appendix A

Lax-Miligram Theorem

Lax-Miligram theorem

– H is a hlibert real or complex space with a product scalar denoted by < ., . > and an
associated norm ||. ||.

– a(., .) is a bilinear form:
– Continuous on H ×H:
∃c > 0, ∀(u, v) ∈ H ×H, |a(u, v)| 6 c||u|| ||v||

– Coercive on H (or H elliptic):
∃α > 0, ∀u ∈ H, a(u, u) > α||u||2

– L is a linear continuous form on H.

∃ a unique u ∈ H such that a(u, v) = L(v) verified for all v ∈ H
In addition, if the bilinear form a is symmetric, then u is the unique element of H which
minimize J : H −→ R defined by J(v) = 1

2a(v, v)− L(v), ∀v ∈ H. This means that:

it existsu ∈ H, J(u) = min
v∈H

J(v)

.
Lax-Miligram can be applied to another general problems:

By application of the Riesz theorem on the continuous linear forms, it exists a unique vec-
tor f ∈ H such that:

∀v ∈ H,L(v) =< f, v >

And by applying Riesz theorem on bilinear continuous forms, it exists a unique continuous
linear endomorphism A ∈ L(H) such that:

∀u, v ∈ H, a(u, v) =< Au, v >

Then, the result of the Lax-Miligram theorem writes:

∃ a unique u ∈ H, such that Au = f
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Appendix B

Initialization of the level set function

for 2D and 3D complex pieces

For the simulation of complex pieces, an additional difficulty is related to the initialization
of the level-set functions which represent the interfaces. In this appendix, we will present the
method used to initialize the level set functions for the 2D and 3D complex pieces.
First, to initialize this function, we will compute the minimum distance between every node
of the mesh and the three rectangles represented in Figure B.1. These rectangles are shown in
blue and correspond to the Stokes-Darcy interface.

Figure B.1: Representation of three rectangles

Let us define a rectangle defined by four vertices P0, P1, P2 and P3. If we take e0 = P1−P0

and e1 = P3−P0, the rectangle can be defined by R(s, t) = P0 + se0 + te1 where (s, t) ∈ [0, 1]2

as we show in Figure B.2.
Let us define M a node and R a rectangle (Figure B.3). The smallest distance between M

and the rectangle R corresponds to the distance which separate the node M and its orthogonal

213



Figure B.2: Definition of a rectangle R

projection M
′

on the plane defined by the equation a x+ b y + c z + d = 0:

d =
|a x+ b yc z + d|√

a2 + b2 + c2

Different cases are possible. If M
′

is inside the rectangle R, then M
′

is the nearest to M .
However, if M

′

is outside of the rectangle R, then the nearest point is a vertex of R or a point
on an edge of R.
We identify 9 areas (Figure B.4). If the projected point is in the area 0, then it is the nearest
point to M . Instead this, if this projected point is in the areas 2, 4, 6 or 8, then the nearest
point is respectively the point P1, P0, P3 or P2. If the projected point is in the areas 1, 3, 5,
7, then the nearest point is its projection on P1P2, P1P0, P0P3, P3P2.

After the computation of the smallest distance relatively to the three rectangles, we can
initialize the level set function which separate Stokes and Darcy.
Figure B.5 shows isovalues of the level set function in 2D, Figure B.6 shows isovalues of the
level set function in 3D.
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Figure B.3: Distance from a node M to a rectangle R

Figure B.4: Different possible areas
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Figure B.5: Isovalue of the level set function which represents Stokes-Darcy interface in
2D. The Stokes-Darcy interface is represented in red

Figure B.6: Isovalue of the level set function which represents Stokes-Darcy interface in
3D. The Stokes-Darcy interface is represented in red
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Appendix C

Infusion of 48 plies of NC2 preforms

Resin infusion simulation is carried out on a preform of thickness 0.02m and of width
0.385m. The thickness of the distribution medium is 2mm. The distribution medium does not
undergo deformations as the porous medium. It has a linear elastic behavior and its Young’s
modulus is 200 kPa. The 48 plies of preforms are deformable and follows the constitutive law
of NC2 preforms in transverse direction (given by experiments). The geometry and boundary
conditions are presented in Figure C.1. In this case, we have two types of boundary conditions:
the boundary conditions corresponding to the solid mechanics problem (Figure C.1(a)) and the
boundary conditions corresponding to the fluid mechanics problem (Figure C.1(b)).

(a)

(b)

Figure C.1: Boundary conditions of a plate infusion with filled distribution medium for
the solid mechanical problem (a) and for the fluid mechanical problem (b)

– For the solid part, a pressure of 1bar, applied by the vacuum bag, is imposed on the top
of the domain. On the bottom of the domain, zero displacement is imposed because the
stacking of resin and preforms lies on a rigid mould. On the other sides of the domain,
zero displacement conditions are imposed.

– For the fluid part, an injection pressure of 1bar is imposed on the top of the domain
and zero pressure is applied on the bottom of the domain to have a pressure gradient
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between the top and the bottom of the domain and to allow to the air to be pulled out,
air is considered as a Newtonian icompressible fluid of very low viscosity compared with
the resin. To avoid the outflow of the resin on the boundaries, zero normal velocity is
imposed.
The parameters of these two simulations are summarized in Table C.1. The time step is
∆t = 4s.

Resin viscosity Initial permeability Initial porosity thickness of preform
0.058Pa.s 3× 10−14m2 61% 20mm

Table C.1: Physical parameters of the numerical simulation

C.0.0.4 Numerical results and comparison with experimental results

Figure C.2 shows the flow of the resin into the 48 plies stacking. The resin is represented
in red and the air is represented in blue. The distribution medium is already filled by
resin.

(a)

(b)

(c)

Figure C.2: 2D simulation of NC2 preforms with 48 plies. The resin is shown in red and
the air is shown in blue

Table C.2 shows the results of the infusion after compaction, the thickness of the pre-
forms decreases from 20mm to 13mm numerically and to 12.7mm experimentally. The
porosity decreases from 0.61 to 0.4 numerically and from 0.61 to 0.39 experimentally.
After infusion, the porosity increases from 0.4 to 0.57 numerically and from 0.39 to 0.56

experimentally. The time of preforms filling is 1500s numerically while it is 1000s ex-
perimentally. We dont compare the inflation of preforms after resin infusion because it
was not measured by experiments. Table C.3 shows the numerical and some experimen-
tal results after resin infusin into preforms. We conclude a good correlation between
experimental and numerical results for 48 plies of preforms.
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Parameters Numerical experimental
Thickness of preforms 13 mm 12.7 mm

Porosity 0.4 0.39

Table C.2: Comparison between numerical and experimental results obtained after the
compaction of 48 plies of NC2 preforms

Parameters Numerical experimental
Thickness of preforms 14.2 mm ...
Inflation of preforms 1.2 mm ...

Porosity 0.57 0.56
Filling time of preforms 1500 s 1000s

Table C.3: Comparison between experimental and numerical results obtained after the
infusion of resin into 48 plies of NC2 preforms
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Résumé : Les procédés par infusion de résine consistant à infuser une résine liquide à
travers un empilement de préformes fibreuses sous l’action d’une pression extérieure ap-
pliquée à cet empilement. Un drainant peut être utilisé pour créer un lit de résine sur ou
sous cet empilement fibreux. Ces procédés sont utilisés pour fabriquer des pièces minces
utilisées dans l’aéronautique par exemple. Les caractéristiques physiques et mécaniques
des pièces obtenues sont difficiles à prévoir et à contrôler. La simulation numérique peut
donc aider à la maîtrise de ces procédés. Dans ce travail, un modèle numérique éléments
finis est proposé pour simuler les procédés par infusion de résine. L’écoulement de la
résine, considérée comme un fluide Newtonien incompressible, est décrit par les équa-
tions de Stokes dans le drainant (milieu très perméable), et par les équations de Darcy
dans les préformes fibreuses (milieu faiblement perméable). Ce couplage Stokes - Darcy
est réalisé par une approche monolithique, consistant à utiliser un seul maillage pour les
deux milieux. La formulation mixte en vitesse - pression, est alors discrétisée par des
éléments finis linéaire - linéaire, et stabilisée par une méthode multiéchelle dite "ASGS".
L’interface entre Stokes et Darcy et le front de la résine sont chacun représentés par
une fonction "Level-Set", et des conditions de couplage sont imposées sur l’interface qui
sépare les deux milieux. Au cours du procédé, les préformes subissent de grandes défor-
mations, que ce soit durant la phase de compaction, ou durant l’infusion de la résine. La
pression de la résine fait alors gonfler les préformes. Les déformations des préformes sont
traitées par une formulation Lagrangienne réactualisée établie en grandes déformations.
Les préformes sèches ont un comportement élastique non linéaire, donné dans le sens
transverse par l’expérience. L’effet de la résine sur les préformes humides est représenté
par le modèle de Terzaghi. Lorsque les préformes se déforment, leur porosité et donc
la perméabilité du milieu varient, affectant ainsi l’écoulement. La formule de Carman-
Kozeny est utilisée pour relier porosité et perméabilité. Après avoir validé le couplage
Stokes - Darcy par de nombreux cas tests et par la méthode des solutions manufacturées,
diverses simulations 2D et 3D de procédés par infusion de résine sont présentées, incluant
la déformation des préformes. Des comparaisons sont finalement faites avec succès entre
simulation numérique et résultats expérimentaux dans un cas de géométrie simple. Des
extensions à des cas tridimensionnels présentant des courbures et des variations d’inertie
sont proposées en guise de perspectives.



Abstract: Resin infusion-based processes are good candidates for manufacturing thin
composite materials parts such as those used in aeronautics for instance. These processes
consist in infusing a liquid resin into a stacking of fibrous preforms under the action of
a mechanical pressure field applied onto this stacking where a stiff- distribution medium
is also placed to create a resin feeding. Both physical and mechanical properties of the
final pieces are rather difficult to predict and control. Numerical simulation are perfectly
suited to master these processes. In the present work a numerical finite element modeling
framework is proposed to simulate infusion processes. The flow of the assumed newtonian
resin is described in the distribution medium, a highly porous medium, through Stokes’
equations and through Darcy’s equations in the fibrous preforms, very low permeability
media. This coupled Stokes-Darcy flow is modeled in a monolithic approach which con-
sists in using a single mesh for both media. The mixed velocity- pressure formulation
is then discretized by linear-linear finite elements, stabilized by a so-called ASGS multi-
scale approach. Both Stokes-Darcy interface and fluid front are represented individually
thanks to "Level-Set" functions, and some specific coupling conditions are prescribed on
the interface separating both fluid and porous media. During the process, orthotropic
preforms undergo finite strains, either during the compaction stage when resin is not yet
present, or during resin infusion. Resin pressure then tends to make the preforms swell.
Preforms deformations are represented through an updated Lagrangian formulation for
finite deformations. Dry preforms possess a non-linear elastic behaviour in their trans-
verse direction - across their thickness- given by existing experimental measurements.
The effect of the presence of resin in the wet preforms is accounted for using a Terzaghi’s
equivalent model. Also, when preforms deform their porosity will change, and so will
their permeability, modifying the resin flow. A Carman-Kozeny model is then used to
relate porosity and permeability. After the Stokes-Darcy coupling is validated both on
numerous tests cases and using the method of manufactured solutions, various 2D and
3D simulations of injection and infusion-based processes are analyzed.The latter includ-
ing preform deformations along with resin flow. Comparisons with existing experimental
measurements permit to validate the approach on a simple geometry. Last, some ex-
tensions to more complex 3D cases are proposed as outlooks, including curvatures and
thickness variations.
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