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Résumé de thèse

Dans les standards actuels tels que HSDPA ou LTE, des protocoles de retrans-
missions (ARQ : Automatic Repeat reQuest) sont utilisés conjointement au
codage de canal afin de palier aux erreurs dues à l’absence ou la mauvaise
connaissance sur le canal à la transmission. De tels protocoles sont appelés pro-
tocoles de retransmission hybrides (HARQ). On garantit ainsi la fiabilité du lien
physique pour les couches OSI supérieures (du moins un taux d’erreur paquet
faible). L’objet de cette thèse est de proposer des outils permettant l’analyse et
l’optimisation des systèmes de communication en présence de protocoles HARQ
avec une emphase particulière sur les systèmes cognitifs.

Dans la première partie, nous étudierons un système point-à-point dans le-
quel trois différents protocoles HARQ adaptatifs seront considérés. Nous consi-
dérerons principalement le régime asymptotique (i.e. codes optimaux gaussiens)
pour lequel nous étudierons la maximisation du débit moyen sous des contraintes
de puissance instantanée et de puissance moyenne. Nous montrerons que les Pro-
cessus de Décision Markoviens (MDP) sont des outils adaptés aux problèmes
d’optimisations considérés.

Dans la seconde partie, nous considérerons un contexte de radio cognitive. La
radio cognitive est une approche permettant d’augmenter l’efficacité spectrale
des réseaux sans fil. Pour ce faire, des utilisateurs non-licenciés (réseau secon-
daire) sont autorisés à communiquer dans les mêmes bandes de fréquences que
des utilisateurs licenciés (réseau primaire). Les utilisateurs secondaires doivent,
en revanche, limiter la quantité d’interférence générée sur les signaux primaires.
Nous étudierons, dans cette thèse, le cas où un utilisateur secondaire interfère
un utilisateur primaire qui emploie un protocole HARQ. Nous montrerons que
si l’état du protocole HARQ est connu du système secondaire, une allocation
conjointe de puissance et de rendement est possible, même sans connaissance
instantanée du canal à l’émetteur secondaire. Cette allocation permet de maxi-
miser le débit de l’utilisateur secondaire sous différentes contraintes. Nous consi-
dérerons en particulier des contraintes de puissance instantanée et de puissance
moyenne pour l’utilisateur secondaire et une contrainte de garantie en débit
pour l’utilisateur primaire. Nous montrerons, là encore, que les MDP sont des
outils adéquats afin de résoudre le problème d’optimisation proposé.
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Thesis Abstract

Automatic Repeat Request protocols (ARQ) are widely implemented in cur-
rent mobile wireless standards such as HSDPA and LTE. In general, ARQ pro-
tocols are combined with channel coding to overcome errors caused by the lack
of channel knowledge at the transmitter side. These protocols are called Hybrid
ARQ protocols (HARQ). HARQ protocols ensure a good reliability (at least
a small packet error rate) of the physical layer for the OSI upper layers. The
purpose of this thesis is to provide tools for the analysis and the optimization
of HARQ communication systems with an emphasis on cognitive systems.

In the first part of this work, we consider a point-to-point context. In this
context, we study three different types of adaptive HARQ protocols (HARQ
with no combining, with code combining, and with Chase combining). Under
hypotheses of asymptotically optimal Gaussian codes and Rayleigh block fading
channel, we address the maximization of the average throughput under peak and
average power constraints. In this part, we show that Markov Decision Processes
(MDP) provide a theoretical framework to this optimization problems.

In the second part, we consider the cognitive radio context. Cognitive Ra-
dio (CR) is an approach aiming to increase the spectral efficiency of wireless
networks. In a CR context, unlicensed users (also called secondary users) are
allowed to communicate within the same frequency bands and at the same time
as licensed users (also called primary users). Secondary users must however
limit the amount of interference generated on the primary users signals. In this
thesis, we consider a scenario in which the secondary user interferes a primary
user employing a HARQ protocol. When the secondary user knows the state of
the primary HARQ protocol, we show that a joint power and rate allocation can
be performed. This result holds even without instantaneous channel knowledge
at the transmitter side. The power and rate allocation we propose maximizes
the throughput of the secondary user under different constraints. In particular,
we take into account constraints on the secondary instantaneous and average
powers and a constraint on the primary throughput loss. We show again that
the MDPs offer a good theoretical framework to solve the proposed optimization
problem.
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General Introduction

The work presented in this PhD thesis has been done within the Infor-
mation, Communications, Imagerie (ICI) team of the Equipes Traitement de
l’Information et Systèmes (ETIS) laboratory in Cergy, France. This thesis has
been co-founded by the Centre National de la Recherche Scientifique (CNRS)
and the Direction Générale de l’Armement (DGA).

Problem statement

In the past decade, there has been a dramatic growth in the demand for new
wireless services such as video transmissions and high-speed data transmissions.
To meet the needs for these new services in terms of Quality of Service (QoS),
highly reliable communication systems have to be designed. In modern telecom-
munication standards such as High Speed Downlink Packet Access (HSDPA) or
Long Term Evolution (LTE) these QoS requirements are guaranteed by link
layer adaptation techniques. In these telecommunication standards, link layer
adaptation techniques are a combination of Adaptive Modulation and Coding
(AMC) and HARQ protocols. Although, when considered separately, these tech-
niques are now well understood; their joint optimal design is still a challenging
open issue.

AMC techniques exploit Channel Side Information at the Transmitter (CSIT)
to adapt the code and modulation to the channel condition. This adaptation is
in general performed to guarantee a certain level of Frame Error Rate (FER)
for upper-layers. The CSIT required to design an AMC is generally provided
through a Channel Quality Indicator (CQI). The CQI represents the data rate
supported by the channel using a quantized index representation (see e.g. [Sesia
et al., 2011]). Because of the channel versatility, some errors can still occur;
these errors are then handled with a HARQ protocol acting as an error control
protocol.

The first objective of this thesis is to provide a theoretical frame-
work for analysing and optimizing systems implementing an adaptive
HARQ protocol in several contexts of communication.

1
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On the other hand, the command-and-control regulation imposes each ser-
vice to be allocated in an exclusive band. The main consequence of this command-
and-control regulation is that almost all the frequency bands have already been
allocated. This makes the wireless spectrum a scarce resource. In parallel, a re-
port of the Federal Communications Commission (FCC)[FCC, 2002], has shown
although every bands has been allocated, the spectrum is underutilized. In this
context, the Cognitive Radio (CR) paradigm has been proposed in [Mitola III &
Maguire, 1999]. The CR paradigm consists in allowing Secondary Users (SUs)
to opportunistically access the bandwidth initially dedicated to Primary Users
(PUs) (or licensed users) to increase spectrum usage.

In this paradigm, the PUs are considered as the legitimate users of the
bandwidth; in consequence, the SUs have to control the degradation done to
the PUs performances.

Although PUs should have devices based on modern wireless communication
standards, only a few works consider that the PUs implement a HARQ protocol.
However, it has been shown in [Eswaran et al., 2007] that the feedback bits used
for the HARQ can be used by the SUs to evaluate the throughput-loss of the
HARQ protocol of the PUs .

A second objective of this thesis is to provide a theoretical frame-
work for optimizing the throughput of a secondary user who evaluates
the throughput-loss of the primary HARQ protocol using only the in-
formation fed back by the PU over its feedback channel.

Outline and contributions

This section presents the outline of this thesis as well as the main contributions.
This thesis is organized around four chapters that are briefly reviewed in the
sequel.

Chapter 1

In Chapter 1, we review the main features of HARQ based telecommunica-
tion systems, presenting the main protocols of retransmissions and their perfor-
mance analysis. In particular, we focus on the ACcumulated Mutual Informa-
tion (ACMI) introduced in [Cheng et al., 2003] to model the HARQ protocols.

After reviewing the state of the art, this chapter ends with a first contribution
for modelling an HARQ protocol:

• It is shown that HARQ protocols can be modelled efficiently using Markov
chains on general (not necessarily countable) state spaces. This model allows us
to link the dynamical behaviour of HARQ protocols with the Markov Decision
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Process (MDP) formalism. We conclude this chapter with the proposal of the
power allocation problem to maximize the throughput of HARQ protocols under
peak and average power constraints.

Chapter 2

In Chapter 2 we review existing literature about MDPs with a particular at-
tention on CMDPs. The theoretical framework of CMDPs is commonly used to
handle problems where decisions are taken sequentially to maximize a long-term
reward under long-term cost constraints. To cope with the applications such as
resource allocation for the Physical (PHY) layer of HARQ systems, we present
the CMDP framework in the general case of possibly uncountable but compact
state and action spaces. In this chapter, we provide sufficient conditions for the
existence of a solution to the CMDP problem.

Because we are interested in computing solutions for practical problems, we
also present how solutions of CMDPs can be approximated using finite linear
programs. In particular we provide conditions so that the solutions obtained
through finite linear programs converge to a continuous solution.

Generally, CMDPs assume that the controller (who takes actions) can ob-
serve the state of the system that is controlled. However, in our applications for
HARQ systems, the controller does not have this complete information. In con-
sequence, in this chapter, we also introduce (constrained) Partially Observable
Markov Decision Process (POMDP) and (constrained) Partial State Informa-
tion Markov Decision Process (PSI-MDP) frameworks. We finally present how
these partially observable problems can be solved theoretically and numerically.

• The main contribution of this chapter has been to provide a condition so
that the (constrained and with continuous state and action spaces) PSI-MDP
under long-term average criteria is solvable.

Chapter 3

In Chapter 3 we apply the results presented in Chapter 2 about CMDPs to the
power allocation problems considered at the end of Chapter 1. This chapter has
mainly two contributions:

• Our first contribution has been to verify that CMDPs constitute a suitable
framework for allocating resources in situations in which CQI is continuous and
conveys the whole state of the HARQ protocol. We propose simulation results
to show the accuracy of the proposed method.

• Our second contribution has been to address the same power allocations
problem considering 1-bit feedback. This problem has been addressed within
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the PSI-MDP framework. Again, we verify by simulations that the PSI-MDP
method is accurate.

Chapter 4

In Chapter 4, we address the problem of allocating the power of a SU while
mitigating the throughput-loss incurred to the PU. As proposed in [Eswaran
et al., 2007], this throughput-loss is evaluated only by listening the feedback
bits of the HARQ protocol of the PU. This contribution is twofold:

• We first derive an upper bound of the solution of the initial problem by
relaxing the constraint of the throughput-loss evaluation. In particular, we
assumed a "genie aided" problem assuming the complete knowledge of the PU
state (defined in Chapter 1) by the SU. To solve this problem, we have proposed
a modified version of the model presented in Chapter 1 that takes into account
interferences generated by the SU. Finally, this optimization problem is solved
using the CMDP framework.

• Then we derive a PSI-MDP framework for performing power allocation
when the state of the PU is partially known. This case only requires the PU to
be compliant with the SU and to broadcast its feedback bits.

In both situations, we have provided simulation results to evaluate the poli-
cies obtained numerically from the CMDP framework and the PSI-MDP frame-
work.
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1.1 Introduction

In modern communication standards such as High Speed Downlink Packet Ac-
cess (HSDPA) or Long Term Evolution (LTE), Hybrid Automatic Repeat re-
Quest (HARQ) protocols are used in conjunction with Adaptive Modulation
and Coding (AMC) to guarantee high reliability and high data rates for wire-
less communications.

In the early 2000s, ACcumulated Mutual Information (ACMI) (see in par-
ticular [Caire & Tuninetti, 2001], [Cheng et al., 2003] , [Sesia et al., 2004],
and references therein) has been proved to be an appropriate quantity for
theoretically analysing HARQ protocols. These models are usually derived
from an information theoretical perspective and assume asymptotically long
Gaussian codewords. Although this hypothesis might seem restrictive at first
glance, such codes has been proved to provide some general insights of what are
the key parameters for the communication systems. In particular, the ACMI
model has also been extended to coded modulations and Bit Interleaved Coded-
Modulations (BICMs) in [Cheng, 2006]. This ACMI model was also found to be
a good representation for allocation problems in [Li & Ryan, 2007], [Stiglmayr
et al., 2007; Stiglmayry et al., 2008] and [Pfletschinger & Navarro, 2010]. In ad-
dition to their optimality in the asymptotic regime, these codes have been shown
to provide good insights on modern codes such as Turbo codes (see Buckingham
& Valenti [2008]) or Low Density Parity Check codes (see [Marcille, 2013]). The
Gaussian codes framework (as in [Caire & Tuninetti, 2001]) has been chosen for
a unified treatment of the concepts that are discussed in this thesis.

This chapter is organised as follows. In Section 1.2 we described the single-
carrier and single-user framework that will be considered throughout this thesis
(with the exception of Chapter 4 that considers multi-user scenarios). In Section
1.2, we define in particular the block-fading channel, the considered channel
codes, different Channel Side Information (CSI) assumptions and the Automatic
Repeat reQuest (ARQ) protocols. In Section 1.3, we review the concept of a
HARQ protocol and we give the definitions of three HARQ protocols. In all cases
we present a throughput analysis based on the ACMI. The main contribution of
this chapter is given in Section 1.4. In Section 1.4, we model the HARQ protocol
by an original Markov chain. This Markov chain will be the cornerstone for the
results presented in Chapter 3 and Chapter 4.
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Transmitter (Tx)

Receiver (Rx)

Channel

√
Pn

Channel
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ynû′
n

ACK / NACK

Figure 1.1 – System model and block fading channel

1.2 System Model

We consider the single-user, single-carrier communication system depicted in
Figure 1.1. In this system, a transmitter (Tx) sends data to a receiver (Rx) over
a discrete-time wireless channel. We suppose a slotted communication system
where slots have duration T seconds. The slots are indexed by n ∈ N so that
slot n happens between time nT and (n + 1)T (see Figure 1.2).

time
Slot n − 1 Slot n Slot n + 1

(n − 1)T nT (n + 1)T (n + 2)T

Figure 1.2 – Time slot model.

Suppose that the data sent by Tx is composed of information messages
un, each conveying b information bits. Tx encodes un into a coded message
xn of length L = �BW T � symbols where BW is the bandwidth and T is the
duration of the slot. We suppose here that every possible coded message has
unit power. Before sending xn over the channel, Tx applies its power allocation
by multiplying xn by

√
Pn. We suppose that the power allocation is defined

as a sequence {Pn}n∈N
is known to Tx and Rx. The received signal at Rx is

denoted by yn. This signal is decoded into an information message denoted by
ûn.
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1.2.1 Channel model

For modelling a wireless communication, the channel is often modelled as a
block-fading channel (see [Tse & Viswanath, 2005] and references therein). In
this model, the channel is assumed to be constant for the whole duration of the
slot. The channel gains {Hn}n∈N

are a discrete time independent and identically
distributed (i.i.d.) stochastic process.

Let Xn be the coded message considered as a complex Gaussian random
vector of dimension L with i.i.d.components of zero mean and unit variance.
When Xn is sent over the block-fading channel with power pn, the received
signal Yn at Rx is given by

Yn =
√

PnHnXn + Zn, (1.1)

where the noise vector Zn is a length L complex Gaussian random vector with
i.i.d. components with zero mean and variance σ2

z .
In this thesis we will consider a Rayleigh block-fading model. This model

represents well situations where there is no line of sight between Rx and Tx. In
this case {Hn}n∈N

can be considered as a Gaussian process. In this case, the
phase of Hn is uniformly distributed in [0, 2π], the modulus of Hn is distributed
according to a Rayleigh distribution with parameter

√
ᾱ:

f|H|(x) =
2x

ᾱ
exp

(−x2

ᾱ

)
, x ≥ 0

and the fading power αn = |Hn|2 is exponentially distributed with mean ᾱ:

fα(x) =
1
ᾱ
exp

(−x

ᾱ

)
, x ≥ 0.

Other distributions such as the Nakagami-m distribution or Rice distribution
can be considered in the literature but are out the scope of this thesis.

1.2.2 Channel State Information

|h0|2

|h1|2 |h2|2
|h3|2 |h4|2

time0 T 2T 3T 4T 5T

Figure 1.3 – Block fading channel
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CSI is a cornerstone for communication systems since it defines the knowl-
edge of the communicating devices to operate. In the system presented in Figure
1.1, CSI is defined as the knowledge of Hn at time index n. We call Channel
Side Information at the Transmitter (CSIT) or Channel Side Information at the
Receiver (CSIR), the fact that Tx or Rx has CSI, respectively. In some refer-
ences (see for example [Tuninetti, 2011]), this CSI is called Causal CSI because
only the current Hn is known but not the future ones {Ht}t≥n+1.

In this thesis, Causal CSI and CSI are identical, however we use the term
Outdated Channel Side Information (OCSI) for the cases where some informa-
tion about {Ht}t≤n−1 is available but Hn is not. This term is used in particular
for resource allocation in the presence of HARQ protocols (see for example
[Szczecinski et al., 2011]).

In some situations, Hn is not known but its distribution is. This will be
referred to as Statistical Channel Side Information (SCSI). In the literature
(see for example [Goldsmith, 2005]), SCSI is sometimes referred to as Channel
Distribution Information.

1.2.3 Asymptotically optimal Channel Coding

In the model presented in Figure 1.1, errors introduced by the channel are
corrected using channel coding. In this section, we suppose that there is CSIR
but not CSIT.

Let us consider that every codeword x at the output of the channel coder
span NT slots and is a complex Gaussian random vector of dimension NT L with
i.i.d. components of zero mean and unit variance. Let P = (P0, P1, . . . PNT −1)
be the vector such that Pj is the power allocated for the jth slot. Suppose that
x is split into NT blocks of size L: x = (x0, x1, . . . xNT −1) . Each block is then
sent over the block fading channel.

For this channel, it has been shown in [Caire & Tuninetti, 2001] that, in the
asymptotic regime (L → ∞) the Frame Error Rate (FER) is given by

pf (NT ) = P

⎡
⎣NT −1∑

j=0
C

(
Pj

|Hj |2
σ2

z

)
< R

⎤
⎦ , (1.2)

where C(x) is the capacity of complex valued Additive White Gaussian Noise
(AWGN) channel C(x) = log2(1 + x), R is the equivalent information rate of
the first transmission given by R = b/L, b is the number of information bits
conveyed in the information messages u and σ2

z is the noise variance. This
probability is referred to as outage probability or information outage probability
(see [Knopp & Humblet, 2000], [Caire & Tuninetti, 2001], [Sesia et al., 2004],
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[Cheng, 2006] and references therein).

Remarks

• In [Cheng, 2006], the quantity∑NT −1
j=0 C

(
Pj

|Hj |2

σ2
z

)
is referred to as the ACMI.

Using the ACMI definition, the author has shown that an equation similar to
equation (1.2) holds for modulation constrained AWGN channel (the modula-
tion may change at every slot). In this case, we replace C by the capacity of
the corresponding constrained input AWGN channel for each slot. In the same
paper, this result is extended to BICM.

• In[Caire & Tuninetti, 2001], equation (1.2) is shown using a typical set
decoder. This decoder is suboptimal, (compared to the Maximum Likelihood
(ML) decoding rule) in terms of FER for finite length codes, however, it is
asymptotically optimal (see [Cover & Thomas, 2006]). The authors have also
pointed out two other advantages for HARQ protocols. The first one is that,
asymptotically (L → ∞), this decoder performs a perfect error detection. In
other words, asymptotically, there is a null probability of not detecting an error.
Note that this step is usually performed by adding Cyclic Redundancy Check
(CRC) bits to the information message when considering practical channel cod-
ing schemes and decoders.

The second advantage is that this decoder can handle puncturing. Suppose
that we only send the following blocks: x0, x1, . . . xm−1. At the decoder, Rx can
complete its received message by NT − m dummy signal blocks ξm, . . . ξNT −1

as long as they are generated independently from the received signal. After this
step, Rx uses ỹ =

(
y0, y1, . . . ym−1, ξm, . . . ξNT −1

)
to decode. This method is

similar to classical puncturing techniques; in this case, the FER becomes

pf (m) = P

⎡
⎣m−1∑

j=0
C

(
Pj

|Hj |2
σ2

z

)
< R

⎤
⎦ . (1.3)

From equation (1.2) we observe that, in a block-fading channels, it is impossible
to have a zero probability of error even though L → ∞. Outage events will
always happens due to deep fades. To ensure reliability of the communication,
ARQ based protocols are used.

1.2.4 Automatic Repeat reQuest

These protocols enable the end-to-end delivery of information packets by allow-
ing the same information packet to be sent multiple times. Because the fading
coefficients are i.i.d., by retransmitting the same packet multiple times, one can
expect to experience a good fade on one of the retransmissions. Consequently,
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for the ARQ protocol, a feedback channel is necessary to inform the transmitter
of decoding errors.

In its simplest implementation, the ARQ protocol only exploits error detec-
tion, no channel coding is required. Let un be the information message of b bits
that Tx has to send to Rx in slot n. Rx encodes un into a codeword of L sym-
bols xn with a channel code that is only used for error detection; Rx receives
the corresponding noisy version yn and checks the integrity of ûn (ûn = un)
using the error detection capability of the channel code. If no error is detected,
Rx sends an ACKnowledgement (ACK) bit to Tx using a feedback channel. At
the reception of this ACK bit, Tx starts the transmission of a new information
packet. On the other hand, if an error is detected, Rx sends a Negative AC-
Knowledgement (NACK) bit over the feedback channel. At the reception of this
NACK bit, Tx sends the same message (xn+1 = xn) over the channel at slot
n + 1. At Rx side, yn is discarded and only the new received message yn+1 is
decoded. If no error is detected, Rx sends the ACK bit to Tx. If an error is
detected, Rx sends the NACK bit to Tx. This protocol continues until no error
is detected at the receiver.

Performance evaluation of the ARQ protocol

By definition, the ARQ protocol makes the transmission of information packets
reliable since Rx will always end up decoding correctly (if an infinite number of
retransmissions is allowed). On the other hand, this reliability is earned at the
expense of delay. Indeed, in the definition of the ARQ protocol, it may happen
that the protocol retransmits a large number of times a packet before decoding
it correctly. The average time taken by the ARQ protocol to correctly transmit
a packet is called delay and is one figure of merit of the performance of ARQ
protocols.

A trade-off can be achieved between reliability and delay by imposing a
maximum number of retransmissions. This case is often referred to as truncated
ARQ in the literature. Let NT − 1 be this maximum number of retransmissions
(NT takes also into account the initial transmission). In this case, the overall
protocol may fail. This is called an outage event. The probability of such event
is commonly referred to as outage probability (see Caire & Tuninetti [2001]).

Definition 1.1. The outage probability that the ARQ protocol fails after NT −1
retransmissions is called the outage probability

To be completely fair, we have to re-define the delay to take into account the
finiteness of NT . Several definitions of delays may be found in the literature. In
this thesis we choose a definition of [Le Duc, 2010]:
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Definition 1.2. The delay is the mean time between the beginning and the
end of an ARQ protocol when a successful decoding occurs.

The third figure of merit usually presented in the literature to evaluate the
performance of ARQ protocols is the throughput. In this thesis, we will adopt
the definition of throughput given in [Lin & Costello, 2004]:

Definition 1.3. The throughput is "the ratio of the average number of infor-
mation digits successfully accepted by the receiver per unit of time to the total
number of digits that could be transmitted per unit of time".

Let bc(n) be defined as the total number of bits correctly decoded up to slot
n, the throughput is given by

η =
limn→∞

bc(n)
nT

L
T

= lim
n→∞

bc(n)
nL

in b/s/Hz. (1.4)

The computation of this throughput is classically done using the renewal and
reward theorem as proposed in [Zorzi & Rao, 1996]. Let E be the event defined
as: "Tx starts the transmission of a new information packet". A random reward
RE is attached to this recurrent event. This random variable is RE = b (the
number of bits contained in un) if the packet is successfully decoded by Rx and
RE = 0 otherwise. Relying on this event and this reward the renewal-reward
theorem states that (see [Ross, 2006])

η =
E [RE ]
E [DE ]

, (1.5)

where E [RE ] is the expected reward earned in the recurrent event and DE is the
random time between two successive occurrences of E . In the description of the
ARQ protocol, we have assumed that once Tx finishes transmitting a packet,
it starts the transmission of a new information packet. Under this assumption,
DE is also defined as the time between the start and the end of the transmission
of an information packet.

We now further develop the expression of the throughput given in equation
(1.5). We introduce On as the following event: "the decoding fails after n trans-
mission attempts". Let ps(n) and pf (n) be the probability of decoding success
in exactly n transmission attempts and the probability of decoding failure after
n transmission attempts. Because of the sequential aspect of the ARQ protocol,
these two probabilities ps(n) and pf (n) can be written using the event On as
follows:

pf (n) = P [O1, O2, . . . , On−1, On] (1.6)

ps(n) = P
[O1, O2, . . . , On−1, On

]
(1.7)
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On the other hand, one can note that RE = 0 if and only if the decoding
fails after NT attempts. The probability that RE = 0 is then pf (NT ), and
the probability that RE = b is then 1 − pf (NT ). Furthermore, because of
the slotted nature of the transmission, DE can only take the values jL where
j ∈ {1, . . . , NT }. By the definition of DE , one can remark that DE = jL with
j < NT happens only if the decoding is successful after j attempts, hence this
event has a probability ps(j). Finally DE = NT L if and only if there has been
a failure after NT − 1 attempts; the probability of this event is pf (NT − 1).
Finally, the throughput is expressed as follows

η =
b

L

1 − pf (NT )
NT −1∑

l=1
lps(l) + NT pf (NT − 1)

. (1.8)

This equation can be further simplified by introducing the information rate
equivalent to the first transmission R = b/L and remarking that

⎧⎨
⎩ps(n) = pf (n − 1) − pf (n), n > 0

pf (0) = 1
(1.9)

Introducing (1.9) in (1.8), we obtain

η = R
1 − pf (NT )

1 +
NT −1∑

l=1
pf (l)

. (1.10)

In this thesis, we will only consider the throughput as a main figure of merit
for the performance evaluation of HARQ protocols. However one can refer to
[Zorzi & Rao, 1996], [Caire & Tuninetti, 2001], [Sesia et al., 2004], [Le Duc,
2010], [Marcille, 2013], and references therein to have a more complete view and
analysis of other performance criteria. We now present some practical issues
that have not been considered in the previous analysis.

Practical issues

The description of the ARQ protocol as given above does not taken into account
possible imperfections encountered in practice. In practice, several additional
delays occur. These delays, depicted in Figure 1.4, are the following:

• τp: the one-way delay, which represents the delay incurred by the propa-
gation time between Tx and Rx,

• τd: the data processing delay, which represents the delay incurred by the
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Xn

nT (n + 1)T (n + 2)T (n + 3)T

Transmitter Side

Receiver Side

τp T τd τp

time

time

Figure 1.4 – Delays in the ARQ protocol.

time that takes Rx for demodulating, decoding, and detecting errors.

The protocol presented at the beginning of this section is called the Stop-and-
Wait protocol: when Tx has sent one block, it waits to receive the acknowl-
edgement bit to continue its transmission. This protocol is obviously inefficient.
This inefficiency can be observed by computing the effective throughput. Let τ

be the overhead time for the transmission of one block defined as τ = 2τp + τd.
From [Lin & Costello, 2004] we get

ηsw =
T

T + τ
η, (1.11)

where η is the throughput computed without taking into account delays. Note
that in the situation depicted in Figure 1.4, we have τ = 2T and T

T +2τp+τd
= 1

3
so the effective throughput is divided by three compared to the case τ = 0.

To overcome the impact of these delays, several protocols have been proposed
in the literature. In particular, in [Lin & Costello, 2004] the Go-Back-N protocol
and the Selective and Repeat protocol are described. The main result that
has been proved in the literature is the following: under an assumption of
infinite buffer at Rx, the throughput of the Selective and Repeat is equal to the
throughput of a Stop-and-Wait protocol with τ = 0 (see [Lin & Costello, 2004],
[Aoun, 2012], [Marcille, 2013] and references therein). In consequence, in this
thesis we will consider a Stop-and-Wait protocol with τ = 0.

Other imperfections can be considered in the ARQ protocol. In particular
one may consider that error may occur on the feedback channel. In this context,
cross layer optimization techniques have been proposed in [Marcille et al., 2011]
and [Marcille et al., 2012b]. One can of course think of mixing the imperfections.
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The Go-Back-N protocol under imperfect feedback has been studied in [Zorzi &
Rao, 1996].

Through this thesis, we will always suppose that Assumption 1.1 holds. In
consequence, every throughput that will be computed in this thesis has to be
understood as an upper bound on the possible throughput if imperfections were
taken into account.

Assumption 1.1.
(a) The feedback channel is instantaneous and error-free.
(b) The probability of an undetected error and the probability of detecting an
error while the decoding is successful are 0.
(c) Tx is backlogged: it always has an information packet to transmit in its
queue.

1.3 HARQ Protocols

The main advantage of the ARQ protocol is that it guarantees a high reliability
of the communication link. Indeed, when an infinite number of retransmissions is
allowed, there is a null outage probability. However, the ARQ protocol does not
benefit, neither from error correcting codes, nor from information contained in
the earlier transmissions (since it discards the outdated message before decoding
the new one) to decrease the probability of successfully decoding a packet.

In this Section, we will study three different ways of combining Forward
Error Correction (FEC) and ARQ. This combining approach is referred to as
HARQ, where the term "Hybrid" indicates that both FEC and ARQ are used.
The first type of HARQ protocol is the so-called Type-I HARQ protocol and is
analysed in Subsection 1.3.1. The second method to improve the throughput
is to use the information contained in the first retransmissions to decrease the
probability of error in the next retransmissions. These protocols are referred
to as Type-II HARQ protocols. There exist two main approaches for Type II-
HARQ protocols: the Type II-Chase Combining (CC)-HARQ protocol (denoted
CC-HARQ in the sequel) and the Type II-Incremental Redundancy (IR)-HARQ
protocol (denoted IR-HARQ in the sequel). The CC-HARQ protocol and the
IR-HARQ protocol are described in Section 1.3.2 and Section 1.3.3 respectively.

1.3.1 Type-I HARQ protocol

In order to improve the throughput of the ARQ protocol one can think of
using FEC to send coded packets instead of non-coded packets. It decreases
the outage probability and thus increases the throughput. This newly defined
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protocol is called the Type-I HARQ protocol. The Type-I HARQ protocol is
then equivalent to the truncated ARQ protocol except that the Type-I HARQ
protocol uses FEC to correct errors.

In this case, we consider that the codewords of Gaussian codebooks of Section
1.2.3 span one slot. Other schemes could be considered with the same qualitative
conclusions. Because the codeword is assumed to span only one slot, and because
the jth attempt is independent of every other attempt, the probability that the
jth attempt of decoding the information packet fails is given by

po(j) = P

[
log2

(
1 +

Pj |Hj |2
σ2

z

)
< R

]
, (1.12)

where Pj is the power used on slot j and R = b/L. Since all the retransmissions
are independent, the probability of failure after n attempts pf (n) (defined in
(1.6)) is given by

pf (n) =
n∏

j=1
P

[
log2

(
1 +

Pj |Hj |2
σ2

z

)
< R

]
. (1.13)

One can remark that what has been presented in Section 1.2.4 for the com-
putation of the throughput for the ARQ protocol can also be applied for the
Type-I HARQ protocol. The throughput of the Type-I HARQ protocol is finally
expressed using equation (1.10) as follows:

ηt1 = R

1 −
NT∏
j=1

P

[
log2

(
1 +

Pj |Hj |2
σ2

z

)
< R

]

1 +
NT −1∑
n=1

n∏
j=1

P

[
log2

(
1 +

Pj |Hj |2
σ2

z

)
< R

] . (1.14)

This expression simplifies if we consider a constant power allocation P1 =
P2 = · · · = PNT

= P as follows

ηt1 = R

1 − P

[
log2

(
1 +

P |H|2
σ2

z

)
< R

]NT

1 +
NT −1∑
n=1

P

[
log2

(
1 +

P |H|2
σ2

z

)
< R

]n , (1.15)

where time indexed in H has been dropped since the Hj are i.i.d.. After some
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calculations (see [Le Duc, 2010]) we obtain

ηt1 = R

(
1 − P

[
log2

(
1 +

P |H|2
N0

)
< R

])
. (1.16)

One can remark that the throughput of the Type-I HARQ protocol is equal
to the throughput of the same FEC code used without ARQ. However, the Type-
I HARQ protocol exploits the ARQ to improve the reliability of its transmission
compared to pure FEC. Indeed, the outage probability of the Type-I HARQ

protocol is P
[
log2

(
1 + P |H|2

σ2
z

)
< R

]NT

whereas it is P
[
log2

(
1 + P |H|2

σ2
z

)
< R

]
for a transmission using FEC only.

1.3.2 Type-II Chase Combining (CC) HARQ protocol

The major drawback of a Type-I HARQ protocol is that it does not benefit from
the different retransmissions. Indeed, all retransmissions are independent and
independently processed at Rx. This makes the Type-I HARQ protocol highly
inefficient. To improve the efficiency of Type-I HARQ protocol other protocols
have been proposed with more complex processing at Rx. We here consider one
of these protocols named the Type-II CC HARQ protocol (noted CC-HARQ for
the rest of this thesis).

Protocol definition

The main difference between Type-I HARQ and CC-HARQ protocols is the
processing done at Rx. From the point of view of Tx, nothing is changed. Tx
always sends the same codeword among all the retransmissions. For ease of
presentation, suppose that the transmission of the current packet has begun at
slot 0 and the current time is nT so that the n attempts to decode has been
done without a positive result.

Let {Y0, Y1, . . . , Yn−1} be the received signals for slots 0 to n−1. Whereas
the Type-I HARQ protocol only considers Yn−1 at the decoder, the CC-HARQ
considers the following combined signal

Rn =
n−1∑
j=0

gjYj , (1.17)

where gj are given complex coefficients. Assuming CSIR the optimal choice
(see [Brennan, 1959]) for the coefficients gj is called Maximum Ratio Combining
(MRC) and is given by:

gj =
H∗

j

σ2
z

, (1.18)
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where (·)∗ stands for the complex conjugation. Using equation (1.18) in (1.17)
and replacing yj by its expression given in equation (1.1), we obtain

Rn = X
n−1∑
j=0

√
Pj |Hj |2

σ2
z

+
n−1∑
j=0

H∗
j

σ2
z

Zj , (1.19)

At this point, the Signal to Noise Ratio (SNR) at Rx is denoted γn and is defined
as

γn =
n−1∑
j=0

|Hj |2Pj

σ2
z

. (1.20)

One can note here that the CC-HARQ protocol "accumulates" SNR; indeed, the
SNR given by equation (1.20) can be rewritten as the following recursion:

⎧⎪⎨
⎪⎩

γ0 = 0,

γn+1 = γn +
|Hn|2P

σ2
z

.
(1.21)

This accumulation result is classical in the literature, see for example [Cheng,
2006].

Performance Analysis

To compute the throughput of the CC-HARQ protocol, we will again use equa-
tion (1.10). Note that the throughput expression given in equation (1.10)
is dependent on the type of HARQ protocols only through the pf (n), n ∈
{1, . . . , NT }. We will then compute the throughput by computing these proba-
bilities of failure pf (n).

Again we present results based on the FEC scheme presented in Section
1.2.3. The only difference between the Type-I HARQ and the CC-HARQ pro-
tocol is that the CC-HARQ protocol considers Rn (the combined signal after n

attempts) instead of Yn (the last received signal) to decode. Let R = b/L be
the information rate corresponding to the initial transmission. The probability
of decoding failure after n transmission attempts pf (n) is computed as follows:

pf (n) = P

⎡
⎣log2

⎛
⎝1 +

n−1∑
j=0

Pj |Hj |2
σ2

z

⎞
⎠ < R

⎤
⎦

= P

⎡
⎣n−1∑

j=0

Pj |Hj |2
σ2

z

< 2R − 1

⎤
⎦ (1.22)

In the sequel we denote by Γ = 2R −1. Γ is referred to as the decoding threshold
for Rx. The throughput of the CC-HARQ protocol is again computed using the
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renewal and reward theorem. The expression of the throughput is then given
by equation (1.5):

ηcc = R
1 − pf (NT )

1 +
NT −1∑

l=1
pf (l)

, (1.23)

where R = b/L. In this case, the pf probabilities are given by equation (1.22).
In the case of constant power allocation, the expressions of the different pf (n)
are

pf (n) = P

⎡
⎣n−1∑

j=0

P |Hj |2
σ2

z

< Γ

⎤
⎦ . (1.24)

To evaluate this expression, one can remark that, because the |Hj |2 are i.i.d.
and exponentially distributed,

∑n−1
j=0 |Hj |2 is gamma-distributed: ∑n−1

j=0 |Hj |2 ∼
Gamma(n, 1/λ). A closed-form expression of pf (n) obtained thanks to the this
Gamma distribution can be obtained but is out of the scope this thesis.

1.3.3 Type-II Incremental Redundancy (IR) HARQ pro-
tocol

The IR-HARQ protocol is different from the Type-I HARQ and the CC-HARQ
protocols in the sense that Tx does not send the same packet over the channel.
We will now describe the IR-HARQ protocol.

In this section, Tx sends information packets u of b information bits. The IR-
HARQ protocol considers a FEC scheme of Section 1.2.3 where the codewords
spans NT slots. Similarly to the description done in Section 1.2.3, each codeword
x is divided into NT blocks of equal length:

x = (x0, x1, . . . xNT −1) . (1.25)

The main difference between the IR-HARQ protocol and the FEC scheme pro-
posed in 1.2.3 is as follows: the IR-HARQ protocol intends to decode after each
slot whereas the FEC scheme of Section 1.2.3 decodes only after the NT slots.

For ease of presentation, we suppose that the transmission of the current
packet begins at slot 0. Tx sends x0 over the channel. Rx receives the signal y0

and decodes. Using equation (1.3), the average probability of error is given by

pf (1) = P

[
log2

(
1 +

P0|H0|2
σ2

z

)
< R

]
. (1.26)

In case of successful decoding Rx sends an ACK bit to Tx who starts the trans-
mission of the next information packet. If the decoding fails, Rx sends a NACK
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bit to Tx who sends x1 over the channel. At the reception of x1, Rx builds
r1 = (y0, y1) and tries to decode r1. Using again equation (1.3), the average
probability of error is obtained as

pf (2) = P

⎡
⎣ 1∑

j=0
log2

(
1 +

Pj |Hj |2
σ2

z

)
< R

⎤
⎦ . (1.27)

More generally, the probability of failure after n attempts is given by

pf (n) = P

⎡
⎣n−1∑

j=0
log2

(
1 +

Pj |Hj |2
σ2

z

)
< R

⎤
⎦ . (1.28)

From this equation, one can observe that the IR-HARQ protocol accumulates
mutual information. In Cheng [2006],

in =
n−1∑
j=0

log2

(
1 +

|Hj |2P

σ2
z

)
(1.29)

is referred to as ACMI. The throughput of the IR-HARQ protocol is again given
by

ηir = R
1 − pf (NT )

1 +
NT −1∑

l=1
pf (l)

.

where R = b/L and pf (n) is given by (1.28). Note that in this case, the expres-
sion pf (n) cannot be further simplified for a constant power allocation.

In this section, we defined the Type-I HARQ protocol, the CC-HARQ pro-
tocol and the IR-HARQ protocol. In the three cases, we have shown that the
throughput can be expressed as

η = R
1 − pf (NT )

1 +
∑NT −1

l=1 pf (l)
,

where R = b/L, and the probabilities pf (n) are given by equation (1.13) for
the Type-I HARQ case, by equation (1.22) for the CC-HARQ protocol, and by
equation (1.28) for the IR-HARQ protocol.

1.4 A unified analysis based on Markov chains

In the precedent section, we have done the throughput analysis for the Type-I
HARQ protocol, the CC-HARQ protocol, and the IR-HARQ protocol. These
three analyses are based on the renewal and reward theorem as proposed in
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[Zorzi & Rao, 1996]. The main drawback of these analyses is that, except
in the Type-I HARQ case, we are not able to derive closed-form expressions
for the probabilities pf (n) for all n ∈ 1, . . . , NT (given by (1.22) and (1.28) ).
Some closed-form expressions exist (see e.g. [Chaitanya & Larsson, 2011, 2013]),
however they are often difficult to compute and to handle. In this thesis we
propose a different approach based on a controlled Markov chains with possibly
infinite and uncountable state space. Our approach is based on the following
observation:

the three HARQ protocols are finally driven by an accumulation of some
quantities (SNR, mutual information).

1.4.1 Controlled Markov Chain associated with the Type-
I HARQ protocol

Firstly, we focus our study on the Type-I HARQ protocol. Let Kn be a random
variable representing the number of attempts done by Tx to transmit its current
information packet. For each time nT , Kn can take one of the following NT +1
values:

• ′0′: Tx starts the transmission of a new information packet after a successful
decoding (ACK),

• ′1′: Tx has done 1 attempt and a NACK bit is received,

• ′2′: Tx has done 2 attempts and a NACK bit is received,

...

• ′N ′
T : Tx has done NT attempts and NACK is received, this state corresponds
to an outage event and, in consequence, to the start of the transmission
of a new information packet.

For the sake of completeness, suppose that the power allocation π = {Pn}n∈N

is a random process so that in each slot n, Tx sends xn with a random power
Pn. We are now interested in showing that the random process {Kn} verifies
the following Markov property

P [Kn+1 = kn+1|Pn = pn, Kn = kn, Pn−1 = pn−1, Kn−1 = kn−1, . . . ] =

P [Kn+1 = kn+1|Pn = pn, Kn = kn]
(1.30)
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Firstly, we introduce the Gain to Noise Ratio (GNR) which is defined simi-
larly in [Marcille et al., 2012a] as follows:

αn =
|Hn|2

σ2
z

. (1.31)

Let us now interpret the left-hand side of equation (1.30). For the sake of
simplicity, suppose first that NT > kn > 0. By definition, Kn = kn means that,
at the beginning of slot n, Tx had done kn attempts and that a retransmission
is required by Rx (a NACK bit is received). In this case, we have shown that Tx
sends the same codeword over the channel. Only two situations can occur: Rx
fails to decode its received signal or Rx succeeds in decoding its received signal.
We have seen in the preceding section, that the blocks sent over the channel are
independent of each other and that (conditionally on Pn = pn) the probability
of decoding failure by Rx is given in equation (1.12) and slightly modified to
introduce αn and to stress the dependence on pn as follows:

po(pn) = P [log2 (1 + pnαn) < R] . (1.32)

From this probability, we can prove that if the random variable Δ(αn, pn) =
log2 (1 + pnαn) is smaller than R, Rx fails in decoding the information packet.
Hence, Kn+1 will be: ’Tx has done kn+1 attempts and a NACK bit is received’.
The second possible scenario is Δ(αn, pn) ≥ R. In this case Rx succeeds in
decoding the information packet and Kn+1 will be ’Tx starts the transmission
of a new information packet after a successful decoding (ACK)’. More formally
it means that

P [Kn+1 = kn+1|Pn = pn, Kn = kn, Pn−1 = pn−1, Kn−1 = kn−1, . . . ] =⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P [Δ(αn, Pn) ≥ R|Pn = pn] if kn+1 = 0

P [Δ(αn, Pn) < R|Pn = pn] if kn+1 = kn + 1

0 otherwise.

(1.33)

It proves that when NT > kn > 0, equation (1.30) is verified. Similarly to the
proof of the case NT > kn > 0, we can easily derive the cases kn = 0 and
kn = NT . These proofs are omitted but Table 1.1 summarizes the possible
values for Kn+1 depending on kn (lines) and on the random variable Δ(αn, Pn)
(columns).

Finally, one can remark that equation (1.30) is similar to a Markov prop-
erty except that the probability of transition are dependent on {Pn}n∈N

. In
consequence, we can represent the transition graph of this Markov chain by a
graph similar to the one given in Figure 1.5. On this graph, circles represent
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the possible states for Kn and arrows represents the possible transitions given
in Table (1.30).

Δ (αn, pn) < DT Δ(αn, pn) ≥ DT

kn < NT − 1 kn + 1 0

kn = NT − 1 NT 0

kn = NT 1 0

Table 1.1 – Table of rules for the transitions from the state sn = kn to sn+1
when power Tx communicates at power pn.

1 2 30

po(pn)
po(pn) po(pn)

1 − po(pn)

1 − po(pn)

1 − po(pn)

1 − po(pn)

po(pn)

Figure 1.5 – State Diagram of the Markov chain {Kn}n∈N
for a Type-I HARQ

protocol with NT = 3.

Hitherto, we have proposed a controlled Markov chain that represents the
state evolution of the random process Kn that model the state of the Type-I
HARQ protocol. Let r(Kn) be the random variable defined as

r(Kn) =

⎧⎨
⎩b if Kn = 0

0 otherwise.
(1.34)

From the definition of Kn it is obvious that r(Kn) is the same as defining
RE . Indeed, the event E has been defined in Section 1.2.4 as the start of a
transmission of a new information packet and RE = b only after successful
decoding of Rx. Because of this equivalence, the throughput of the controlled
Type-I HARQ protocol is rewritten as follows

η(π) =
1
L

lim
n→∞

1
n

n−1∑
i=0

r(Kn),
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where π = {Pn}n∈N
is added to show the dependence of the throughput on π

(see Table 1.1 or Figure 1.5). We next show that a very similar analysis can be
done for the CC-HARQ and the IR-HARQ protocols.

1.4.2 The state of Type-II HARQ protocols

10 2 3

x x x x

sn

(1, x)(0, 0)

DT DT DTDT

f Δ
|P
(x

−
x

n
|p n

)

sn+1

(0, 0)

Figure 1.6 – Transition graph of a Type-II HARQ protocol.

In Section 1.3.2 we have shown that the main difference between Type-I
HARQ protocol and CC-HARQ protocol is that the CC-HARQ protocol accu-
mulates SNR. On the other hand, in Section 1.3.3, we have seen the IR-HARQ
protocol differs from the Type-I HARQ protocol by accumulating mutual infor-
mation. In the sequel we denote by Δ (αn, pn) the increment of the accumulated
quantity. For the CC-HARQ protocol we have:

Δ (αn, pn) = αnpn,

while for the IR-HARQ protocol we have:

Δ (αn, pn) = log2(1 + αnpn).

The model that is considered for analysing both Type-II HARQ protocols
is a simple extension of the model proposed in Section 1.4.1 for Type-I HARQ
protocols. This model is based on the random process {Sn}n∈N

such that, at
every time nT , Sn = (Kn, Xn). Kn has the same definition as in Section 1.4.1,
and Xn represents either the accumulated SNR or the ACMI. In the sequel Sn

will be referred to as the state of the HARQ protocol. Let DT be defined as
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a decoding threshold: Xn < DT indicates a decoding failure and Xn ≥ DT a
successful decoding. Because the transmission of a new packet begins after each
successful decoding, we must have Sn = (0, 0) after a successful decoding. In
consequence the state space S = {0, . . . , NT } × [0, DT ] is sufficient to represent
the HARQ protocol. One possible representation for this space S is given in
Figure 1.6. In this figure, each possible value for k ∈ {0, . . . , NT } is represented
by a state (circle). From each k we represent a vertical line that accounts for
the possible values for xn. For example, in Figure 1.6 the state sn corresponds
to a state of the form (1, xn). In the rest of this section, we will use Figure 1.6
as a transition graph to illustrate our saying.

We now show that for every B ⊂ S the following Markov property holds:

P [Sn+1 ∈ B|Pn = pn, Sn = sn, Pn−1 = pn−1, Sn−1 = sn−1, . . . ] =

P [Sn+1 ∈ B|Pn = pn, Sn = sn] .
(1.35)

by proceeding as in Section 1.4.1. Consider the state sn = (1, xn) of Fig-
ure 1.6. Only two situations can occur: either {xn +Δ(αn, pn) ≥ DT } or
{xn +Δ(αn, pn) < DT }. If {xn +Δ(αn, pn) ≥ DT }, Rx succeeds in decoding
the information packet. In this case Rx sends an ACK bit in the feedback chan-
nel and Tx starts a new transmission. Using the state definition, it means that
Sn+1 = (0, 0). This transition is represented as the green arrow from sn to (0, 0)
in Figure 1.6.

The second case {xn +Δ(αn, pn) < DT }, corresponds to a decoding failure.
In this case, a retransmission is requested by Rx. The state of the protocol at
time (n+1)T is: Sn+1 = (kn + 1, xn +Δ(αn, pn)) . This situation is represented
in Figure 1.6 by the red dashed arrow leaving sn. Because Δ (αn, Pn) |Pn = pn

is a continuous random variable, it has a probability density function (pdf)
denoted by fΔ|P (x|pn) that is represented in Figure 1.6. In Figure 1.6, we did
not represent a transition sn → (2, x′) since this transition has 0 probability.

This analysis can be easily generalized for every other couple (kn, xn). These
case are summarized in Table 1.2. In this table, we enumerate every possible
values for Sn+1 depending on sn = (kn, xn) and on the value of Δ (αn, pn).

To prove equation (1.35), it suffices to remark from Table 1.2 that sn+1 can
be written as a deterministic function G of sn, αn, and pn:

sn+1 = G(sn, αn, pn). (1.36)

We do not give a more formal expression of G since it will just be an enumeration
of the different cases shown in Table 1.2. However, equation (1.36) suffices to
prove the Markov property of equation (1.35) (see [Meyn & Tweedie, 2009]).
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xn +Δ(αn, pn) < DT xn +Δ(αn, pn) ≥ DT

kn < NT − 1 (kn+1, xn+Δ(αn, pn)) (0, 0)

kn = NT − 1 (NT , 0) (0, 0)

kn = NT (1,Δ(αn, pn)) (0, 0)

Table 1.2 – Possible values for the state of the Type-II HARQ protocol at time
(n + 1)T (Sn+1) depending on sn = (kn, xn) and on the value of Δ(αn, pn).

The transition probability

Q(B|sn, pn) = P [Sn+1 ∈ B|Sn = sn, Pn = pn] (1.37)

is omitted for the sake of clarity but is given in Appendix A.1 since it will be
used in Chapter 3.

For the same reason as in the Type-I HARQ case, the throughput of Type-II
HARQ protocols can be computed introducing the following function:

r(s) =

⎧⎨
⎩b if s = (0, 0)

0 otherwise.
(1.38)

Let π = {Pn}, the throughput initially defined by equation (1.5) is rewritten
using the function r(·) as follows:

η(π) =
1
L

lim
n→∞

1
n

n−1∑
i=0

r(Si), (1.39)

where L is the number of symbols sent in one slot, where r is defined in equa-
tion (1.38), and where π = {Pn}n∈N

is added to show the dependence of the
throughput on π (see Table 1.2).

1.5 Conclusion

In this section, we have reviewed the different HARQ protocols. In particular,
we have given the definitions of the Type-I HARQ protocol, the CC-HARQ
protocol, and the IR-HARQ protocol. In the asymptotic context of optimal
Gaussian codes, we have presented the classical analysis of the throughput of
these protocols in the block-fading channel case.

From this classical analysis, we have established controlled Markov models
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for the different HARQ protocols. Whereas the proposed model for the Type-I
HARQ protocol has been presented in [Levorato et al., 2009], the model for
Type-II HARQ model is an original contribution (to the best of the author’s
knowledge). The models proposed in [Tuninetti, 2011] and [Szczecinski et al.,
2011] are similar models to the one presented here for Type-II HARQ protocols
except that they do not integrate Kn which is useful for taking into account
outage events. On the other hand, these models allow us to highlight easily the
impact of a power allocation π = {Pn}n∈N

on the throughput of the HARQ
protocols. A more formal definition of π will be given in Chapter 2. Because
of this dependence, one can logically wonder if there exists π that maximizes
η(π) under peak and average power constraints. This problem can be stated as
follows:

sup
π={Pn}n∈N

η(π) (1.40)

lim
n→∞

1
n

n−1∑
i=0

Pn ≤ PA

Pn ≤ PM

In Chapter 2, we present the Constrained Markov Decision Process (CMDP)
framework which is a suitable theoretical framework for solving optimization
problems similar to the one given in equation (1.40). This optimization problem
is then solved in Chapter 3.
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The objective of this chapter is to provide an overview of technical results
related to Constrained Markov Decision Processes (CMDPs). These technical
results will be used in the next chapters to derive resource allocation for the
physical layer in different telecommunication contexts.

2.1 Introduction

System

St+1 = F (St, At, Wt)

t ← t + 1

Controller

At+1 = πt+1 (St+1, At, St, . . . )

Disturbance
Wt

Reward/Costs

Rt = r(St, At, Wt)

Ct = c(St, At, Wt)

At+1

St, At

St+1

Figure 2.1 – Markov Control Model

Markov Decision Processes (MDPs) naturally appear in contexts in which
decisions (or actions) are made sequentially by a controller at some discrete
times (called decision epochs).

The general framework of MDPs is depicted Figure 2.1. The controller
observes the state (St in Figure 2.1) of a system and influences this system
through its actions (At in Figure 2.1). The actions have two effects: they
generate some incomes and costs (r and c in Figure 2.1) and they change the
dynamical behaviour of the system (F in Figure 2.1). The first effect is a short-
term effect while the second one can have long-term consequences. The goal
of the controller is to find a sequence of actions (a policy, πt in Figure 2.1) for
maximizing some long-term reward. The CMDPs framework appears when the
controller possesses multiple objectives. For example the controller may want
to maximize its long-term reward under a long-term cost constraint.
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The MDP framework has been introduced by Richard Bellman in the 1950s
(see [Bellman, 1952], [Bellman, 1957]). First applications of MDPs have been
proposed early in their development. For example [Manne, 1960] uses MDPs to
solve inventory management problems. Nowadays MDPs and CMDPs have ap-
plications in numerous areas. In particular, applications exist in robotics where
MDPs has been used for autonomous navigation (see [Theocharous & Mahade-
van, 2002]). In finance MDPs can be used for portfolio and asset management
(see [Puterman, 1994] and [Bertsekas, 2001]). MDPs have also found important
applications in the area of communication networks. In this area, it is shown in
[Feinberg & Shwartz, 2002, Chapter 16] (and references therein) that MDPs are
appropriate for handling problems such as: call admission control, buffer man-
agement, packet admission control, flow control, congestion control, routing,
scheduling. A few MDPs have also been proposed for optimizing physical layer
performance for wireless networks. Among others, we can cite [Negi & Cioffi,
2002] [Karmokar et al., 2006], [Djonin & Krishnamurthy, 2007],[Tuninetti, 2011],
[Levorato et al., 2009, 2012], and [Michelusi et al., 2013b,a].

This chapter has one principal objective: introducing the CMDP framework
in a suitable context for Physical (PHY) layer resource allocation, in particular
for HARQ based systems. This objective comprises three sub-objectives.

• We present a general framework that allows us to manage theoretically
continuous values. Indeed, in resource allocation problems for the PHY layer,
we may have to cope with ACMI, SNR, power, rate and many other continuous
variables. This is the goal of Section 2.2.

• We present a general framework that allows us to manage, in practice,
these continuous values. Indeed, in the MDPs literature, general theories for
handling continuous spaces are often not suited for practical implementation.
This sub-objective is fulfilled by Section 2.4 and 2.5. In Section 2.4 we show that
the framework described in Section 2.2 can be viewed as an infinite dimensional
Linear Programming (LP). In Section 2.5 we provide finite LP approximations
for the infinite dimensional LP.

• We present a general framework that allows us to cope with partially
observable problems. This is required because in many situations some param-
eters of the system cannot be observed. This happens often in problems where
the system and the controller (in Figure 2.1) belong to two distinct systems: in
the context of Chapter 3 transmitter/receiver, and in the context of Chapter 4
primary user/secondary user. The introduction of partially observable problems
is the goal of Section 2.6.1.
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2.2 Introduction to the CMDP framework

2.2.1 Model formulation

A CMDP is defined by a tuple (S, A, U , W, Q, r, c). We will now give the de-
scription of each component of this model.

• S is the state space. The elements of S are denoted by s and are called
states. Throughout this thesis, we may need to consider finite as well as infinite
(possibly not countable) spaces S. So we consider a more general framework
including every case. In consequence, we consider that S is a Borel space. In
particular, we will often consider S as a subset of R or a finite set or a finite
product of these two first cases. When S is a finite or countable space it is
endowed with its discrete topology. When S is a subset of R it is endowed with
B(S), the Borel σ-algebra. B(S) is the σ-algebra engendered by the compact
subsets of S. When S is a finite product of these two kinds of spaces, S is
endowed with the product σ-algebra.

• A is a Borel space called the action space. Its elements are called actions.
For every state s ∈ S, the set of admissible actions is denoted by A(s). For
every s in S, A(s) is a measurable subset of A.

• U is the space of all admissible state-action pairs. U is the measurable
subset of S × A defined as U = {(s, a)|s ∈ S and a ∈ A(s)}. The elements of U
are referred to as admissible state-action pairs and are denoted by u.

• W is a Borel space called the disturbance space. For every decision epoch,
t ∈ N, the disturbance Wt is a random element whose distribution is given by
the stochastic kernel on W given S × A: pW (dw|s, a). This means that, on one
hand for every (s, a) ∈ S × A, pW (·|s, a) is a probability measure; on the other
hand for every B ∈ B(W), pW (B|·) is a measurable function on S × A. The
disturbance Wt is acting as a "noise" for the temporal evolution of St. This
temporal evolution is governed by the following recurrence equation

St+1 = g(St, At, Wt). (2.1)

• Q(B|u) is the transition law. It is formally defined as a stochastic kernel
on S given U . If the system is in state St = s and the controller takes action
At = a, the system moves from s to St+1 with distribution Q(·|s, a). Formally,
for every B ∈ B(S), Q(B|s, a) is defined as

Q(B|s, a) = P [St+1 ∈ B|St = s, At = a] . (2.2)
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Using equation (2.1), equation (2.2) is expressed as

Q(B|s, a) = P [g(St, At, Wt) ∈ B|St = s, At = a] . (2.3)

• r(s, a) is called the one-step reward. It is a function from S × A to R. For
every s ∈ S and a ∈ A, r(s, a) corresponds to the reward earned when the system
is in state s and the controller chooses action a. In some situation, it is possible
that the natural definition of the reward also depends on the disturbance. In
this case, we define the instantaneous reward as

r(s, a) =
∫

S

r′(s, a, w)pW (dw|s, a). (2.4)

The definition of r given by equation (2.4) was proposed in Bertsekas & Shreve
[1978] and will not change the results in the sequel.

• c is vector of nc one-step costs. c is a function from S × A to R
nc repre-

senting nc costs incurred if the controller chooses action a while the system is
in state s. As for r, if the natural definition of this cost vector c′ also depends
on the disturbance w, we introduce

c(s, a) =
∫

S

c′(s, a, w)pW (dw). (2.5)

This definition of c completes the description of the MDP. In the next sub-
section we present a formal description of policies.

2.2.2 Policies

The formal definition of a policy requires the formal concept of history, thus we
first defined this notion. In a second time, we will define the concept of policy
and describe various kinds of policies. Finally, we will end this subsection by
some additional remarks.

History

At every decision epoch t ∈ N, a history up to time t is the vector defined as

ht = (s0, a0, s1, a1, . . . , st−1, at−1, st) . (2.6)

The space of all possible histories up to time t is recursively defined as H0 = S
and Ht = Ht−1 × U .
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Policy

A policy is informally defined as a "sequence of rules" for making decisions
depending on an observed history. We will now present different kinds of policies
that are the general policies, the Markov policies, the randomized stationary
policies, and the deterministic stationary policies.

• Formally, a general policy π is defined as a sequence π = {πt}t∈N
where,

for every t ∈ N, πt(da|ht) is a stochastic kernel on A given Ht. At decision
epoch t ∈ N, the controller chooses an action within the set A ∈ B(U) with a
probability πt(A|ht). The set of all policies is denoted by Π.

• A policy π ∈ Π is said to be a Markov policy if and only if for all t ∈ N

it verifies πt(·|ht) = πt(·|st). The set of all Markov policies is denoted by ΠM .
For policies of ΠM , there is no need to store the whole history but only the last
state st.

• A policy π ∈ ΠM is a randomized stationary policy if for every t ∈ N,
πt(·|st) = π(·|st). The set of all randomized stationary policies is denoted by
ΠRS .

• A policy π ∈ ΠRS is a deterministic stationary policy if there exists a
function from S to A denoted by ζ, such that for every n ∈ N, π(·|sn) =
δζ(sn)(·). In the last expression, δ stands for the Dirac measure. The set of
all deterministic stationary policies is denoted by ΠDS . Obviously, we have the
inclusion: ΠDS ⊂ ΠRS ⊂ ΠM ⊂ Π.

Other categories of policies can be found in the literature, in particular
[Altman, 1999] also distinguishes between randomized Markov and deterministic
Markov policies.

Remarks

• The first remark concerns the probability space underlying the random pro-
cesses {St}t∈N

and {At}t∈N
when the policy π ∈ Π is used by the controller and

the initial distribution of S0 is ν0. This probability space is (Ω, F ,Pν0
π ) where

Ω = (S × A)∞ and F is the product σ-algebra. The Ionescu-Tulcea theorem
(see [Hernández-Lerma, 1989, p. 4]) states that there exists a unique probability
measure P

ν0
π on Ω such that

P
ν0
π [ds0, da0, ds1, da1, ds2, da2 . . . ] = ν0(ds0)π0(da0|s0)Q(ds1|s0, a0)

. . . π1(da1|s1, a0, s0)Q(ds2|s1, a1)π2(da2|s2, a1, s1, a0, s0) · · · (2.7)
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verifying that for all B ∈ B(S) and all C ∈ B(A)

P
ν0
π [H∞] = 1 (2.8)

P
ν0
π [s0 ∈ B] = ν0(B) (2.9)

P
ν0
π [at ∈ C|ht] = πt(C|ht) (2.10)

P
ν0
π [st+1 ∈ B|at, ht] = Q(B|st, at), (2.11)

where H∞ = U∞ is the set of all admissible histories. In the sequel, Eμ
π [·]

denotes the expectation associated with P
ν0
π [·].

• The second remark is an interesting property of the Markov policies. This
property is that every policy π ∈ ΠM induces a Markov Chain (MC) on S.
Indeed, let π ∈ ΠM be a Markov policy and ν0 an initial distribution, we have

P
ν0
π [St+1 ∈ B|ht] =

∫
A
P

ν0
π [St+1 ∈ B|ht, at]Pν0

π [dat|ht] (2.12)

=
∫

A
Q(B|st, at)πt(dat|st). (2.13)

The first equality comes from the law of total probability and the second one
comes from (2.10) and (2.11). The transition kernel of this MC on S is the
following

Qπ,t(·|s) =
∫

A
Q(·|s, a)πt(da|s). (2.14)

For every randomized stationary policy ϕ, this transition kernel is time-homogeneous
and will be denoted by

Qϕ(·|s) =
∫

A
Q(·|s, a)ϕ(da|s). (2.15)

2.2.3 Performance criteria

Hitherto, we have defined the CMDP model and different sets of policies. To
complete the definition of a CMDP we need to define the long term reward
and costs. In the sequel, ν0 is the initial distribution, π a policy and T a
positive real number called horizon. Various kinds of performance criteria are
encountered in the literature (see [Altman, 1999; Bertsekas & Shreve, 1978;
Hernández-Lerma, 1989; Hernández-Lerma & Lasserre, 1996, 1999]). We now
give the most common performance criteria.

We first present a finite-horizon performance criterion. Let rT be some
reward depending on the terminal state, the finite-horizon performance criterion
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is defined as

R(ν0, π) = E
ν0
π

[
T −1∑
t=0

r(St, At) + rT (ST )

]
, (2.16)

where E
ν0
π [·] is the expectation associated with the probability measure P

ν0
π [·]

defined in equation (2.7).
We now present two different infinite horizon performance criteria. The first

one is called the infinite-horizon discounted-cost performance criterion. It is
defined as follows

R(ν0, π) = lim
T →∞

E
ν0
π

[
T −1∑
t=0

αtr(St, At)

]
, (2.17)

where α ∈ [0, 1[ is called the discount factor.
We finally present a last performance criterion that will be the one consid-

ered in the sequel. This last criterion is called the infinite-horizon average-cost
performance criterion. This performance criterion is defined as:

R(ν0, π) = lim inf
T →∞

1
T
E

ν0
π

[
T −1∑
t=0

r(St, At)

]
. (2.18)

As pointed out in [Hernández-Lerma, 1989], the choice of considering ′ lim inf ′

and not ′ lim′ in equation (2.18) is motivated by the fact that the limit may not
exist. The choice of ′ lim inf ′ over ′ lim sup′ is on the other hand motivated by
the fact that we will consider the maximisation of R(ν0, π) and that ′ lim inf ′ is
somewhat similar to considering a worst-case scenario. Similarly, for long-term
costs, it will be preferable to use ′ lim sup′ to consider a worst-case scenario.
Consequently, the long-term cost is defined as:

C(ν0, π) = lim sup
T →∞

1
T
E

ν0
π

[
T −1∑
t=0

c(St, At)

]
. (2.19)

2.2.4 Constrained optimisation problem

Henceforth, the initial distribution ν0 is supposed to be known. The constrained
optimization problem associated with the CMDP is the following:

R	(ν0) = sup
π∈Π

R(ν0, π) (2.20)

s.t. C(ν0, π) ≤ V (2.21)

In view of future applications, we are interested in finding R	(ν0) as well as
finding an optimal policy π	 (if it exists). An optimal policy π	 ∈ Π is a policy
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verifying equations:

R(ν0, π	) = R	(ν0) (2.22)

C(ν0, π	) ≤ V. (2.23)

In the sequel, Θ represents the set of all admissible policies:

Θ = {π ∈ Π : C(ν0, π	) ≤ V} . (2.24)

The next sections of this chapter will be devoted to giving sufficient condi-
tions for the existence of an optimal policy π	 in Θ. In the sequel we will also
show that the optimization problem (2.20) is equivalent to an infinite dimen-
sional LP. We then show that finite approximations of this LP can be performed
to obtain "near-optimal" policies. Finally we will show that these finite approx-
imations are asymptotically optimal.

2.3 Existence of an optimal policy

The goal of this section is to provide sufficient conditions, that can be checked
in practical applications, for the existence of an optimal policy for equation
(2.20). Every result shown in this section has been shown in [Kurano et al.,
2000]; in consequence, this chapter is highly inspired by this article. In this
section, we first provide assumptions that will we be our theoretical framework,
not only for this section but also for the following sections. Based on these
assumptions and on [Hernández-Lerma, 1989], we first remind some general
properties about policies in ΠRS when the CMDP is ergodic. We then couple
these properties together with properties on the components of the CMDP to
prove that ΠRS is a dominating class of policies. We finally prove that an
optimal policy exists within ΠRS . This methodology, to prove the existence of
an optimal policy, has the same structure as in [Hernández-Lerma & Lasserre,
1996] and [Hernández-Lerma & Lasserre, 1999] for MDPs, [Altman, 1999] for
countable CMDPs, and [Kurano et al., 2000] and [Hernández-Lerma et al., 2003]
for Borel spaces CMDPs.

2.3.1 Assumptions on the CMDP model

As far as we know, it is impossible to prove the existence of a solution for the
problem (2.20) in the general case depicted in Section 2.2. On the other hand,
under mild assumptions we will show that the optimization problem (2.20) has
a solution. This subsection is devoted to the exposition of these assumptions.
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Assumption 2.1.
(a) S and U are compact.
(b) r is continuous on S × A and there exists rM ∈ R

+ such that for every
(s, a) ∈ S × A, |r(s, a)| ≤ rM .
(c) For every i ∈ [1, nc], ci is a continuous function on S × A and there exists
ci,M such that for every (s, a) ∈ S × A, |ci(s, a)| ≤ ci,M .
(d) For every bounded continuous function v on S, v̄(s, a) =

∫
S v(s′)Q(ds′|s, a)

is a bounded continuous function on S ×A. Following [Meyn & Tweedie, 2009],
we will say that Q verifies the weak Feller property, or simply Q is weak feller.
(e) For every policy ϕ ∈ ΠRS, the random process {St}n∈N

is a uniformly
ergodic Markov chain (see [Meyn & Tweedie, 2009]).

Assumptions 2.1(a) -2.1(d) are the same as Assumptions (ii)-(iii) of [Kurano
et al., 2000]. Assumption 2.1(e) is similar to the unichain assumption in the
literature of countable CMDPs (see e.g. [Altman, 1999, assumption (B1) p.
143]). Sufficient conditions for Assumption 2.1(e) are presented in [Hernández-
Lerma, 1989]. In particular, the two conditions presented hereafter are special
cases of the Doeblin’s condition (see [Meyn & Tweedie, 2009, p. 402]).

Condition 2.1 (Hernández-Lerma [1989]).
(a) There exist s0 ∈ S and ε ∈ R

+ such that Q({s0} |s, a) ≥ ε, with ε > 0.
(b) There exists a measure ν on S such that ν(S) > 0 and,

Q(B|s, a) ≥ ν(B), ∀(s, a) ∈ U and ∀B ∈ B(S). (2.25)

It can be shown (see Hernández-Lerma [1989]) that both Condition 2.1(a)
and Condition 2.1(b) are sufficient for Assumption 2.1(e).

2.3.2 Properties of randomized stationary policies

Assumption 2.1(e) (the uniform ergodicity assumption) implies that for every
ϕ ∈ ΠRS there exists a unique probability measure on S denoted by Q∞

ϕ , such
that

Q∞
ϕ (B) =

∫
S

Qϕ(B|s)Q∞
ϕ (ds). (2.26)

For every ϕ ∈ ΠRS the n step transition kernel recursively defined as
⎧⎨
⎩Q1

ϕ(B|s) = Qϕ(B|s)
Qn

ϕ(B|s) = ∫
S Qn−1

ϕ (B|s′)Q(ds′|s)
(2.27)
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converges to Q∞
ϕ (B) in the Total Variation norm (TV-norm) at a geometrical

rate: there exist ρ ∈ [0, 1[ such that

∣∣∣∣Q∞
ϕ − Qn

ϕ

∣∣∣∣
T V

≤ 2ρn. (2.28)

In the literature, ρ is called the ergodicity rate. For every signed measure μ,
the TV-norm is the norm defined as

||μ||T V = sup
B∈B(S)

μ(B) − inf
B∈B(S)

μ(B). (2.29)

For two probability measures μ1 and μ2, ||μ1 − μ1||T V is given by

||μ1 − μ2||T V = 2 sup
B∈B(S)

|μ1(B) − μ2(B)| . (2.30)

The last consequence of the uniform ergodicity condition is that the long-
term functions (R(ν0, ϕ) and C(ν0, ϕ)), are independent of ν0 and are expressed
using the Law of Large Numbers (LLN) by

R(ϕ) =
∫

S×A
r(s, a)ϕ(da|s)Q∞

ϕ (ds), (2.31)

C(ϕ) =
∫

S×A
c(s, a)ϕ(da|s)Q∞

ϕ (ds). (2.32)

2.3.3 Domination of randomized stationary policies

This section is devoted to showing that ΠRS is a dominating class of policies for
the optimization problem (2.20). This is the statement of the following lemma:

Lemma 2.1. Under Assumptions 2.1, ΠRS is a dominating class of policies.

Proof. This domination property is proved by showing that for every policy
π ∈ Π, there exists ϕ ∈ ΠRS such that

⎧⎨
⎩R(ϕ) ≥ R(ν0, π)

C(ϕ) ≤ C(ν0, π).
(2.33)

For every initial distribution ν0 and every policy π ∈ Π, an occupation measure
is defined as

μt(U) =
1
t

t−1∑
j=0

P
ν0
π [(sj , aj) ∈ U ] , ∀U ∈ B (S × A) . (2.34)

For every t ∈ N, μt is concentrated on U ; i.e. μt(Ū) = 0. Using this occupation
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measure, the long-term reward and cost functions are written as follows

R(ν0, π) = lim inf
t→∞

∫
rdμt (2.35)

C(ν0, π) = lim sup
t→∞

∫
cdμt (2.36)

We now use the occupation measures of equation (2.34) to build a random-
ized policy ϕ ∈ ΠRS that dominates π. The rest of the proof is the same as in
[Hernández-Lerma & Lasserre, 1996] and is omitted here.

A direct consequence of Lemma 2.1 is that the optimization problem (2.20)
can be constrained to the set of randomized stationary policies without loss of
optimality. In other words we have

R	 = sup
ϕ∈ΩRS

R(ϕ), (2.37)

where ΩRS = Ω ∩ ΠRS .
A second consequence of Lemma 2.1 is that R	 is independent of ν0. This is

due to the fact that for every ϕ ∈ ΠRS , R(ν0, ϕ) = R(ϕ) and C(ν0, ϕ) = C(ϕ).

2.3.4 Existence of a solution

We now conclude this section by showing that there exists a solution to the
optimization problem (2.20).

Theorem 2.1. Under Assumption 2.1 and if Ω is non-empty, there exists a
solution of the optimization problem (2.20) in ΠRS.

Proof. By Assumption, we suppose the Ω is non-empty. From Lemma 2.1, it
follows that ΩRS is also non-empty. Let {εt} be a sequence of positive real
numbers such that limt→∞ εt = 0. By equation (2.37), for every t ∈ N, there is
ϕt in ΩRS such that

R(ϕt) =
∫

rdmt ≥ R	 + εt, (2.38)

where for every t ∈ N, B ∈ B(S), and C ∈ B(S),

mt(B × C) =
∫

B

ϕt(C|s)Q∞
ϕt
(ds). (2.39)

By the same arguments of the proof of Lemma 2.1, we have that there exists a
converging subsequence {mt1} such that

R	 ≤ lim sup
t1

∫
rdmt1 ≤

∫
rdm	. (2.40)
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It remains to show that there exists ϕ	 ∈ ΩRS such that

m	(d(s, a)) = ϕ	(da|s)Q∞
ϕ�(ds). (2.41)

The rest of this proof is the same as proposed in [Hernández-Lerma & Lasserre,
1996] and is omitted here.

There are two important conclusions for this section. The first one is stated
in Lemma 2.1: under Assumption 2.1, the optimization problem given in equa-
tion 2.20 can be solved in ΠRS without loss of optimality. The second conclusion
of this section is given by Theorem 2.1: under Assumption 2.1 and if the set
of admissible policies is non-empty, there exists an optimal policy for the opti-
mization problem given in equation 2.20.

2.4 Infinite Linear Programming

In Section 2.3 we have shown that there exists an optimal policy ϕ	 ∈ ΠRS

for the optimization problem (2.20). In this section, we will show that under
Assumption 2.1, the optimization problem (2.37) is equivalent to an infinite
dimensional LP. As it is shown in [Hernández-Lerma & Lasserre, 1996] for un-
constrained MDPs, the main idea is to embed Ω into suitable vector spaces.

2.4.1 Dual pairs of vector spaces

In this subsection, we provide a complete description of the different vector
spaces that will be used through this section. However, we will not present a
general description of LP on general vector spaces. For more information about
LP on general spaces, one can refer to [Anderson & Nash, 1987] or [Hernández-
Lerma & Lasserre, 1996, Chapter 6]. This section uses the results of [Hernández-
Lerma & Lasserre, 1996, Chapter 6] for unconstrained MDPs and of [Hernández-
Lerma et al., 2003] for CMDPs.

To correctly define the concept of LP on general vector spaces, we will need
some definitions and notation. First, let F(U) be the vector space of bounded
measurable functions on U , i.e. the set of all measurable functions v on U such
that

sup
(s,a)∈U

v(s, a) < ∞. (2.42)

Let M(U) be the vector space of all bounded signed measures concentrated on
U , i.e. the set of measures m verifying

||m||T V < ∞, (2.43)

m(Uc) = 0, (2.44)
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where ||·||T V is the TV-norm defined by equation (2.29) and

Uc = {(s, a) ∈ S × A|(s, a) /∈ U} .

For every m ∈ M(U) and every v ∈ F(U), let

〈m, v〉 =
∫

vdm. (2.45)

It is shown in [Hernández-Lerma & Lasserre, 1996] that equation (2.45) defines
a bilinear form on M(U) × F(U) as long as we take the convention that every
function v ∈ F(U) is measurably extended to S ×A in such a way that for every
m ∈ M(U) ∫

Uc

vdm = 0.

Under these conditions (M(U), F(U)) is a dual pair. Under similar conditions,
the pair (M(S), F(S)) is also a dual pair. We now use these vector spaces to
define an equivalent LP for the optimization problem (2.37).

2.4.2 LP associated with CMDP

In this subsection, we prove that the optimization problem (2.37) is equivalent
to a LP on M(U). This approach to solve CMDP on Borel spaces is mainly
inspired from the following works: Altman [1999], Kurano et al. [2000], and
Hernández-Lerma et al. [2003]. The proof that the optimization problem (2.37)
is equivalent to a LP is divided in two parts. In the first part, we give a
characterization of the probability measures of M(U) that define policies in
ΠRS . In the second part we use this characterization to build a LP. We start
by proving the following result.

Lemma 2.2. Under Assumption 2.1, if m is a probability measure in M(U)
such that for all B ∈ B(S):

m(B × A) −
∫

S×A
Q(B|s, a)m(d(s, a)) = 0. (2.46)

then there is a policy ϕ ∈ ΠRS such that for all B ∈ B(S), Q∞
ϕ (B) = m(B ×A).

Proof. For every probability measure m in M(U), there exists a stochastic kernel
ϕ on A given S so that m is disintegrated as

m(B × C) =
∫

B

ϕ(C|s)m̂(ds), ∀B ∈ B(S), C ∈ B(A), (2.47)
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with m̂ = m(B × A)(see [Hernández-Lerma & Lasserre, 1996, Appendix D8]).
Since ϕ is a stochastic kernel on A given S, it can be viewed as a policy in ΠRS .
Using equation (2.47) in equation (2.46) gives that m̂ verifies

m̂(B) −
∫

S

∫
A

Q(B|s, a)ϕ(da|s)m̂(ds) = 0. (2.48)

Because of the uniqueness of the invariant probability measure of Qϕ, we have
m̂ = Q∞

ϕ .

We now show that the optimization problem (2.37) is equivalent to an infinite
dimensional programming. First, let L0 be the linear map from M(U) to M(S)
defined as follows:

L0m(B) = m(B × A) −
∫

S×A
Q(B|s, a)m(d(s, a)). (2.49)

In Section 2.3.3, we have shown that under Assumption 2.1, R(ϕ) = 〈m, r〉 and
C(ϕ) = 〈m, c〉 where m(d(s, a)) = ϕ(da|s)Q∞

ϕ (ds). The equivalence between
the optimization problem (2.37) and an infinite dimensional LP is stated in the
following theorem.

Theorem 2.2. The optimization problem (2.37) is then equivalent to:

R	 = sup
(m,α)

〈(m, α), (r, 0)〉 (2.50)

s.t. L0m = 0

〈m, 1〉 = 1

〈m, cj〉 + αj = Vj , ∀j ∈ {1 . . . nc}
(m, α) ∈ M+(U) × R

nc .

In equation (2.50), for every (m, x) ∈ M(U) × R
nc and (v, y) ∈ F(U) × R

nc

〈(m, x), (v, y)〉 = 〈m, v〉 +
nc∑

j=1
xjyj , (2.51)

where nc is the number of long-term cost constraints.

Proof. The reward function 〈(m, α), (r, 0)〉 is already linear. In consequence, to
show that equation (2.50) defines a LP, we have to verify that the linear map
L from M(U) × R

nc to M(S) × R × R
nc defined as

L(m, α) = (L0m, 〈m, 1〉 , 〈m, c1〉 + α1, . . . , 〈m, cnc
〉 + αnc

) (2.52)

is continuous. Let L	 be the adjoint map of L. For every triplet (u, β, λ) ∈
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F(S) × R × R
nc , L	 is defined as follows:

〈L(m, α), (u, β, λ)〉 = 〈(m, α), L	(u, β, λ)〉 . (2.53)

To show the continuity of the map L, it is sufficient to prove that L	 defines a
map from F(S)×R×R

nc to F(U)×R
nc . In our case, under Assumption (2.1),

this trivially holds. Indeed, one can easily verify that L	 is the map defined as:

L	(u, β, λ) =

⎛
⎝u(s) −

∫
S

u(s′)Q(ds′|s, a) + β +
nc∑

j=1
λjcj(s, a), λ

⎞
⎠ . (2.54)

We now use the map L	 to define the dual LP of (2.50). This dual LP is
expressed as:

β	 = inf
(λ,u,β)

β (2.55)

s.t. β + u(s) ≥ r(s, a) +
nC∑
j=1

λj (Vj − cj (s, a)) +
∫

S
u(y)Q(dy|s, a)

λ ≥ 0

(u, β, λ) ∈ F(S) × R × R
nc .

In this subsection, we have shown that the optimization problem (2.37) can
be viewed as a infinite dimensional LP. We have given this LP and its dual. In
the next subsection we will give some properties between the primal LP (2.50)
and its dual (2.56).

2.4.3 Properties of the dual LP

In this subsection, we derive some results given in [Kurano et al., 2000]. In
particular, we show that the dual LP is consistent. This means that there exists
(u, β, λ) ∈ F(S) × R × R

nc admissible for equation (2.56). We then prove that
β	 is equal to R	. To finish, we prove that there exists a triplet (u	, β	, λ	)
optimal for the programming (2.56).

We first prove that under Assumption 2.1, the dual LP (2.56) is consistent.
To prove this consistency we just note that, because of the boundedness of the
function r, (0, rM , 0) is admissible. Using classical results on LP (see [Anderson
& Nash, 1987]) we have that:

β	 ≥ R	. (2.56)

This property is called weak duality. We will now show that this weak duality
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property can be strengthened by showing that there is no duality gap.

Theorem 2.3. Under Assumptions 2.1, there is no duality gap: R	 = β	.

Proof. The proof of this theorem is based on a result given in [Anderson &
Nash, 1987]. This result is the following: proving the closeness of the set H

defined hereafter is equivalent to proving Theorem 2.3.

H =
{
(L(m, α), 〈(m, α), (r, 0)〉 + ι) , m ∈ M+(U), α ∈ R

nc
+ , ι ∈ R

+} (2.57)

The closeness of H is proven considering three sequences {mn}n∈N
,{αn}n∈N

,
{ιn}n∈N

such that as n → ∞:

mn(U) → a1 (2.58)

L0(mn) → m1 (2.59)

〈mn, r〉 + ιn → r1 (2.60)

〈mn, cj〉 + αj,n → vj , ∀j ∈ {1 . . . nc} (2.61)

and showing that there exists (m, α, ι) such that

m(U) = a1 (2.62)

L0(m) = m1 (2.63)

〈m, r〉 + ι = r1 (2.64)

〈m, cj〉 + αj = vj , ∀j ∈ {1 . . . nc} . (2.65)

This proof is identical to the one proposed in [Hernández-Lerma & Lasserre,
1996] and is omitted here.

We now prove that there exists a triplet (u	, β	, λ	) optimal for the pro-
gramming (2.56). This property is called strong duality.

Assumption 2.2 (Slater Condition).
There exists a policy ϕ0 ∈ ΠRS such that C(ϕ0) < V.

Theorem 2.4. Under Assumptions 2.1 and 2.2, the dual programming is solv-
able: there exists a triplet (β	, λ	, u	) optimal for the LP (2.56).

Proof. This proof is given in Appendix B.3.

As it is remarked in [Hernández-Lerma et al., 2003], the strong duality prop-
erty implies

Before concluding this section we given two propositions that will be useful
in Section 2.5
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Proposition 2.1. Under Assumption 2.1 and Assumption 2.2,

R	 = inf
λ≥0

sup
ϕ∈ΠRS

⎛
⎝R(ϕ) +

nc∑
j=1

λj (Vj − Cj(ϕ))

⎞
⎠ (2.66)

The proof of this proposition is given in the proof of Theorem 2.4 in Appendix
B.3. The second proposition is a bound on the value of λ	.

Proposition 2.2. Under Assumption 2.1 and Assumption 2.2,

λ	 ≤ rM − R(ϕ0)
supj∈[1,nc] Vj − Cj(ϕ0)

, (2.67)

where ϕ0 is the policy of Assumption 2.2.

Proof. This inequality is inspired by a similar inequality proposed in [Altman,
1999, equation (13.4)]. However, since our proof is slightly different, it is given as
follows. Let (β	, λ	, u	) be an optimal triplet for the dual LP. From Proposition
2.1 we obtain

sup
ϕ∈ΠRS

⎛
⎝R(ϕ) +

nc∑
j=1

λ	
j (Vj − Cj(ϕ))

⎞
⎠ ≤ R	 = rM (2.68)

where the second inequality comes from the boundedness of r(s, a). In particu-
lar, for the policy ϕ0 of Assumption 2.2 we have

R(ϕ0) +
nc∑

j=1
λ	

j (Vj − Cj(ϕ0)) ≤ rM . (2.69)

Because, we have C(ϕ0) < V and λ	 ≥ 0, we obtain that for every i ∈ [1, nc]

λ	
i ≤ 〈λ	, 1〉 ≤ rM − R(ϕ0)

minj∈[1,nc] Vj − Cj(ϕ0)
, (2.70)

where 1 = (1, 1, . . . , 1) is the vector composed by nc ones.

In this section we have proved that the nature of the optimization problem
(2.37) is a LP on the infinite dimensional space of bounded measures. We have
also shown that the dual of this LP is consistent, solvable, and that there is no
duality gap. On the other hand, this formulation does not provide an optimal
policy for the optimization problem (2.37). However, this formulation can be
used to propose approximations for the optimal policy. This is the object of the
next section.
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2.5 Discrete Approximations

It has been shown in [Chow, 1989] that a continuous (unconstrained) MDP
can be approximated by solving discrete (and finite) MDPs. Their method
first defines a finite partition of the state and action spaces. Afterwards, they
propose a finite MDP on the finite partition. This new MDP is discrete and
finite; consequently it can be solved numerically. Finally they prove that the
procedure converges to a solution of the continuous MDP when the grid becomes
finer. To prove this result, they propose a new MDP which has the same state
space as the original MDP and which is equivalent to the discrete one. This
method is schematically represented in Figure 2.2. We now show that this
procedure is still valid for CMDPs. This chapter has been inspired by the work
[Chow, 1989].

2.5.1 Discrete approximation of a CMDP

(
S̃h, Ãh, Ũh, Q̃h, r̃h, c̃h

)
What can be numerically solved

(S, Ãh, Ũh, Q̃h, r̃h, c̃h

)
Intermediary problem

(S, A, U , Q, r, c)

What we want to solve

h → 0

Continuous state spaceDiscrete state space

C
on
ti
nu
ou
s

ac
ti
on

sp
ac
e

D
is
cr
et
e

ac
ti
on

sp
ac
e

Figure 2.2 – Schematic representation of the discretization procedure proposed
in [Chow, 1989]. The initial CMDP is represented in red. The discrete version
of the CMDP is represented in green. In blue is a intermediary problem that
is equivalent to the discrete CMDP (green) but has the same state space as the
continuous problem (red).

Let (S, A, U , Q, r, c) be a CMDP defined similarly as in Section 2.2. In this
model, W is omitted since it only plays an indirect role for discretization results.
Indeed, the disturbances have been considered only for the definitions of Q, r

and c. In the rest of this section, we suppose that Assumption 2.1 holds as well
as Assumption 2.2, so that every result proved in the previous sections remain
valid. In particular, we assume that S and A are compact. To simplify the
exposition, we will assume that S = [0, 1]ns and A = [0, 1]na . This method
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remains valid for any CMDP with S and A compact subsets of Rns and R
na ,

respectively. This method can be also extended if S is a subset of a compact
set of Rns (see [Chow, 1989]).

Inspired by the work of [Chow, 1989], we define two CMDPs. The first one is
(S, Ãh, Ũh, Q̃h, r̃h, c̃h). This CMDP is built on the same state space as the initial
CMDP. The second CMDP is (S̃h, Ãh, Ũh, Q̃h, r̃h, c̃h), it is a discrete and finite
CMDP. This second CMDP is equivalent to (S, Ãh, Ũh, Q̃h, r̃h, c̃h) except that
it can be numerically solved using finite LP. These two CMDPs are described
as follows.

• Let nh > 1 be the number of sets constituting the partition of [0, 1]. Since
we consider a uniform grid, the grid size is defined as h = n−1

h . For this h, let
Ih be the partition of [0, 1] constituted by the sets of the form [jh, (j + 1)h[
and by the set [(nh − 1)h, 1]. By extension, the space S is then partitioned as
follows:

Sh = {I1 × I2 × . . . Ins
|Ij ∈ Ih} .

Sh is composed by a finite number of sets which are denoted as Si
h for i ∈

[0, nhns − 1]. For every set of Sh, we choose a representative. Let s̃i be the
representative of the set Si

h for every i ∈ [0, nhns − 1]. For every s ∈ S, Sh(s) is
the element of Sh to which s belongs. Similarly, for every s′ ∈ S we define s̃h(s′)
the representative of the set Sh(s′). S̃h denotes the set of all representatives.

• The action set A is discretized so that every ã ∈ Ãh can be written as a
vector of size na with all its coordinates multiple of h. For every s′ ∈ S, the set
Ãh(s′) is defined as follows:

Ãh(s′) =
{

ã ∈ Ãh| ||u − ũ||∞ ≤ h

2
for some u ∈ U (s̃h (s′))

}
. (2.71)

The set of all admissible state-action pairs is defined as

Ũh =
{
(s, ã)|s ∈ S and ã ∈ Ãh(s)

}
.

• In this section, we will suppose that Q has a density Q(s′|s, a) with respect
to the Lebesgue measure. The density Q̃h(s′|s, ã) is defined as follows

Q̃h(s′|s, ã) =
1
h

∫
Sh(s′)

Q(s′|s̃h(s), ã)ds′ (2.72)

• Finally, the reward and cost functions are defined as

r̃h(s, ã) = r(s̃h(s), ã) (2.73)

c̃h(s, ã) = c(s̃h(s), ã) (2.74)
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2.5.2 Assumptions

Obtaining results on the convergence of discrete states and action approxima-
tions requires assumptions that are stronger than Assumption 2.1. In this sec-
tion, Assumption 2.1 is then replaced by Assumption 2.3 defined as follows.

Assumption 2.3.
(a) The spaces S = [0, 1]ns and A = [0, 1]na , respectively.
(b) For all s, s′ ∈ S and a, a′ ∈ A, there exist rM and Kr such that r is a
bounded by rM and r is a Kr-Lipschitz function:⎧⎨

⎩|r(s, a)| ≤ rM

|r(s, a) − r(s′, a′)| ≤ Kr ||(s, a) − (s′, a′)||∞ .
(2.75)

(c) For all j ∈ {1, ..., nc}, for all s, s′ ∈ S and a, a′ ∈ A, there exist Mcj and
Kcj such that cj is a bounded by cM,j and cj is Kcj -Lipschitz function:⎧⎨

⎩|cj(s, a)| ≤ cj,M

|cj(s, a) − cj(s′, a′)| ≤ Kcj
||(s, a) − (s′, a′)||∞ .

(2.76)

(d) For all s, s′ ∈ S and a, a′ ∈ A, there exists KQ such that Q is KQ-Lipschitz
function in the total variation norm:

||Q(·|s, a) − Q(·|s′, a′)||T V ≤ KQ ||(s, a) − (s′, a′)||∞ . (2.77)

(e) For every policy ϕ ∈ ΠRS, the MC induced on S by ϕ is a uniformly ergodic.

We note by K the constant defined as

K = max
(

Mr, Kr,
{(

Mcj
, Kcj

)}
j∈nc

, KQ

)
. (2.78)

Henceforth, the functions r, cj , and Q are all K-Lipschitz and the functions r

and cj are bounded by K.

Assumption 2.4. For every s̃ ∈ S̃h and every ã ∈ Ãh Q̃h verifies:

∣∣∣∣Q(·|s̃, ã) − Q̃h(·|s̃, ã)
∣∣∣∣

T V
≤ K ′

qh (2.79)

In [Chow, 1989], it has been shown that if the density s′ �→ Q(s′|s, a) is
bounded by K and piecewise K-Lipshitz, then the quantized kernel defined by
(2.72) satisfies Assumption 2.4.
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2.5.3 Solving the discrete CMDP

Suppose that the (unconstrained) MDP (S, A, U , Q, r) verifies Assumption 2.1(e).
It this case, it is shown in [Chow, 1989] that the discrete MDP, (S̃h, Ãh, Ũh, r̃h)
inherits this ergodicity condition (Assumption 2.1(e)). Based on this result the
(S̃h, Ãh, Ũh, r̃h) has been shown to be solvable and its optimal value R	

h verifies:

|R	
h − R	| ≤ K ′h, (2.80)

where h is the grid size and K ′ is a constant depending on K and K ′
Q.

We now extend the result established by [Chow, 1989] for unconstrained
MDPs to the case of CMDPs. Consider first the discretized problem

(S̃h, Ãh, Ũh, Q̃h, r̃h, c̃h). (2.81)

For every l ∈ [0, NU − 1], we denote by s̃(ũl) and ã(ũl) the components of ũl on
S̃h and Ãh respectively; i.e. ũl = (s̃(ũl), ã(ũl)). Using this notation, we define
M as the matrix of size NS × NU which is composed by the following elements:

Mi,l =

⎧⎨
⎩1, if s̃(ũl) = s̃i

0, otherwise.

Let also L̃0,h be the matrix of size NS × NU given by

L̃0,h = M − Q̃h. (2.82)

Following [Altman, 1999], we have that solving the discrete CMDP is equivalent
to solving the following finite LP:

R̃	
h = sup

m∈RNU

RmT (2.83)

s.t. L̃0,hmT = 0

1mT = 1

CjmT ≤ Vj

m ≥ 0,

where the notation R, Cj and 1 stand for the vectors of size NU containing
respectively r(ũl), c(ũl), and 1 for every l ∈ [0, NU − 1]. Suppose now that
there exists a solution to the finite LP proposed in equation (4.27) and let m	

be a solution. From m	, we build a policy for the continuous state and action
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spaces CMDP by considering the following policy:

ϕ̃(da|s) =
∑

ã

m	(s̃j , ã)∑
s̃ m	(s̃, ã)

δã(da), ∀s ∈ Sj . (2.84)

To prove R̃	
h converges to R	 when h tends to 0.

Theorem 2.5. If the CMDP (S, A, U , Q, r, c) verifies Assumptions 2.2 and 2.3,
if the discrete CMDP (Sh, Ãh, Ũh, Q̃h, r̃h, c̃h) verifies Assumptions 2.2 and 2.4,
then there exists K ′′ > 0 such that

∣∣R̃	
h − R	

∣∣ ≤ K ′′h. (2.85)

Proof. This proof is given in Appendix B.4.

2.6 Partially Observable Markov Decision Pro-

cesses

System

Q

Observer
Qy

t ← t + 1

Controller

πt+1 (At+1|Yt+1, At, Yt, . . . )

Reward/Costs

Rt = r(St, At)

Ct = c(St, At)

At+1

St, At St+1

At

Yt+1

Figure 2.3 – Partially Observable Markov Control Model

In many real-life applications, the state of the system St may not be com-
pletely available to the controller. The controller may have access to St only
through an observation Yt. This situation is depicted in Figure 2.3. The Fig-
ure 2.3 is similar to 2.1 except that the state evolution is directly denoted by
the stochastic kernel Q. Similarly, in Figure 2.3, the observation is also given
by a stochastic kernel: Qy. Since the controller has only access to the process
{Yt}t∈N

its policy takes only into account Yt. The framework that encompasses
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this "partial observability" is called Partially Observable Markov Decision Pro-
cess (POMDP). In this thesis, we will focus on a particular type of POMDPs
where the state space S can be written as X × Y where X and Y respectively
represent the non-observable part and the completely observable part of S. In
[Arapostathis et al., 1993], this model is referred to as the partial state infor-
mation model. Consequently it will be denoted by Partial State Information
Markov Decision Process (PSI-MDP) in the sequel. Since PSI-MDPs are a spe-
cial case for POMDPs, every results shown (in particular in [Hernández-Lerma,
1989, Chapter 6]) remains valid.

The most common way for handling POMDP is to build an equivalent (com-
pletely observable) MDP(see [Bertsekas & Shreve, 1978, Chapter 10], [Hernández-
Lerma, 1989, Chapter 6], [Arapostathis et al., 1993, Section 7], and references
therein). The state space of this equivalent MDP is the set P(S) and is referred
to as the belief space(the set of all probability measures on S). In consequence,
solving POMDPs is theoretically the same as solving MDPs.

In this section, we will face three major difficulties that are the following.
• The practical applications considered in Chapter 3 and Chapter 4 consider
the long-term average criterion (to compute the throughput). As it is shown in
[Yu & Bertsekas, 2004], the long-term average case is more difficult to handle
than others. Indeed, even if in the general case we can provide equations to solve
to obtain an optimal policy, it is generally difficult to guarantee the existence of
a solution for these equations. In this chapter, we propose a sufficient condition,
based on our applications, for guaranteeing the existence of an optimal solution.
• The second difficulty is that the space P(S) is generally not suited for numer-
ical implementations. When the state space is finite with cardinality |S|, the
set P(S) is a continuous space of dimension |S|; in this case, many methods has
been proposed (see the survey given in [Aberdeen, 2003] and references there
in). In our case, S is continuous; this makes P(S) to be infinite dimensional and
most methods for finite S not appropriate. However, it has been observed in
[Roy et al., 2005] that we need not consider the whole space P(S). This is due
to the fact that the beliefs (the elements of P(S)) of interest for the application
lie in a space of much smaller dimension (this is referred to as "belief compres-
sion" in [Roy et al., 2005]). Based on that idea, a heuristic method for solving
continuous POMDP has been proposed in [Zhou et al., 2010]. Their method is
the following: i) project the beliefs on the exponential family of densities, this
leads to a MDP of much smaller dimension, ii) solve this low dimensional MDP
with classical tools.
• The last difficulty is that most applications proposed for POMDPs/PSI-MDPs
are unconstrained. Although there exist methods for handling Constrained-
POMDP(see [Isom et al., 2008], [Kim et al., 2011], and references therein), they
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are all given in the case of finite state space rarely adaptable to cases with con-
tinuous state spaces. In this section we extend the method proposed in [Zhou
et al., 2010] to constrained PSI-MDPs.

2.6.1 Partially Observable Model

When adapting the general definition of POMDPs for problems with constraints,
we get the following definition. A (constrained) POMDP is defined by a tuple
(S, Y, A, Q, Qy, r, c). For ease of presentation, we suppose that the initial state
s0 is known. Each component of the POMDP is defined as follows.
• S is a Borel space called the state space.
• Y is a Borel space called the observation space
• A is a Borel space called the action space. In this section we will suppose
that for every state s ∈ S, A(s) = A.
• Q is the transition kernel of equation (2.11):

Q(B|s, a) = P [St+1 ∈ B|St = s, At = a] .

• Qy is the observation kernel. The definition of Qy is the following:

Qy(B|s, a) = P [Yt ∈ B|St = s, At−1 = a] , ∀B ∈ B(Y).

• r is the instantaneous reward
• c is the instantaneous cost vector

The classical definition of POMDP only differs from this definition by not
having c.In this POMDP context, the controller bases the choices of its actions
with the observable history defined as:

ht = (s0, a0, y1, a1, y2, a2 . . . , yt−1, at−1, yt) . (2.86)

The different kinds of policies described in Section 2.2 remain the same except
that they are defined on the observable history instead of the complete history.
The long-term reward and cost functions (R(s0, π) and C(π, s0)) remain also
unchanged.

2.6.2 The Partial State Information model

The PSI-MDP model is a particular type of POMDP in which the state space
can be written as S = X × Y where X and Y represent the non-observable
and fully observable parts of the state space. For clarity of exposition, we
will suppose that the spaces S, X , Y, and A are [0, 1]nx , [0, 1]ny , [0, 1]ns , and
[0, 1]na , respectively. In addition to these definitions, we will suppose that the
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transition kernel Q possesses a density q with respect to the Lebesgue measure.
Consequently, Q has the following expression

Q(B|s, a) =
∫

B

q(x′, y′|s, a)dx′dy′. (2.87)

In the sequel we decompose q(x′, y′|x, y, a) as follows

q(x′, y′|x, y, a) = qX(x′|x, y, a, y′)qY (y′|x, y, a) (2.88)

Finally, a PSI-MDP model is defined by the tuple (X , Y, A, Q, r, c), where each
component (except X and Y defined above) is defined as in the definition of
POMDP. Because yt still represents the observation, policies for PSI-MDPs
models are still established on the observable history given in equation (2.86).
The set of all policies built on Ho is denoted by Πo. A general policy πo ∈ Πo is
defined as a sequence πo = {πo,t(dat|ht)}t∈N

, where ht ∈ Ho (see Section 2.2).

Equivalent CMDP model

We will now show that the PSI-MDP model (X , Y, A, Q, r, c) presented above
is equivalent to a CMDP model (Z, A, QZ , r′, c′) such that:

• the state space Z is P(X )× Y, where P(X ) is the space of all probability
measures on X and Y is the observable part of S,

• the action space is A,
• QZ is a stochastic kernel on Z given Z × A that will be defined later,
• r′(z, a) and c′(z, a) are the instantaneous reward and cost functions that
will be defined later.

At some decision epoch t ∈ N, let zt ∈ Z be defined as the couple (bx,t, yt),
where bx,t = f (xt|ht) is the a posteriori distribution of Xt given an observable
history Ht = ht and Yt is the fully observable part of St. We now give the
expression of the stochastic kernel QZ defined, for every B ∈ B(Z), as

QZ(B|zt−1, at−1) = P [Zt ∈ B|Zt−1 = zt−1, At−1 = at−1] . (2.89)

To build QZ , we will first describe the evolution of bx,t, and in a second time
we will study the evolution of yt. We will now show that the dynamical evolution
of bx,t can be described by means of the following deterministic relationship:

bx,t = Hb(zt−1, at−1, yt). (2.90)
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This relationship (as proved in Appendix B.5) has the following expression:

bx,t(xt) =
∫

X q (xt, yt|xt−1, yt−1, at−1) bx,t−1(xt−1)dxt−1∫
X
∫

X q (x′
t, yt|xt−1, yt−1, at−1) bx,t−1 (xt−1) dxt−1dx′

t

. (2.91)

To complete the definition of QZ we now build Q′
Y , a stochastic kernel on Y

given Z ×A. Q′
Y is the probability that Yt belongs to C given that Yt−1 = yt−1,

Xt−1 is distributed according to bx,t−1 and the controller chooses action At−1.
For all C ∈ B(Y), Q′

Y is defined as follows

Q′
Y (C|zt−1, at−1) = P [Yt ∈ C|Zt−1 = zt−1, At−1 = at−1] , (2.92)

=
∫

X

QY (C|xt−1, yt−1, at−1)bx,t−1(xt−1)dxt−1(2.93)

where QY is the marginal distribution of Q defined as

QY (C|xt−1, yt−1, at−1) =
∫

C

qY (yt|xt−1, yt−1, at−1) dyt. (2.94)

Consequently, the stochastic evolution of Zt can be described by a stochastic
kernel QZ on Z given Z × A. For every B ∈ B(P(X )) and C ∈ B(Y), QZ is
defined as follows:

QZ(B × C|zt−1, at−1) = P [Zt ∈ B × C|Zt−1 = zt−1, At−1 = at−1]

=
∫

C

P [Bx,t ∈ B|Zt−1 = zt−1, At−1 = at−1, Yt = yt]Q′
Y (dyt|zt−1, at−1)

=
∫

C

1 (Hb(zt−1, at−1, yt) ∈ B)Q′
Y (dyt|zt−1, at−1) (2.95)

To complete the definition of the equivalent CMDP, (Z, A, Qz, r′, c′), it re-
mains to define the one-step reward and cost functions r′ and c′. By analogy
to the literature (see [Bertsekas & Shreve, 1978] and [Hernández-Lerma, 1989])
we define these functions as⎧⎨

⎩r′(z, a) =
∫

X r(x, y, a)bx(dx)

c′(z, a) =
∫

X c(x, y, a)bx(dx),
(2.96)

where z = (bx, y).

In the end, we obtain the following CMDP: (Z, A, Qz, r′, c′). A history for
this CMDP model is referred to as an information vector and is defined as:

ιt = (x0, y0, a0, bx,1, y1, a1, . . . bx,t, yt) , (2.97)
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where we recall that x0 is part of the known initial state s0. The set of these
information vectors is denoted by Hι. A policy for this CMDP is referred to
as an information policy. The set of all information policies is denoted by Πι.
A general policy πι ∈ Πι is defined as a sequence πι = {πι,t(dat|ιt)}t∈N

(see
Section 2.2).

The proof of the equivalence of this CMDP and the initial PSI-MDP is the
same as the one presented in [Arapostathis et al., 1993] hence the complete proof
is omitted here. Their proof is done by observing that the beliefs bx,1 . . . bx,t of
every ιt can be obtained from a particular ht by using equation (2.91). This is
then used to prove that for every πι, there exists πo such that Es0

πι
[·] = E

s0
πo
[·].

This proves that for every πι, there exists πo such that R(πo, s0) = R(πι, s0)
and C(πo, s0) = C(πι, s0). Since showing that for every πo, there exists πι

such that R(πo, s0) = R(πι, s0) and C(πo, s0) = C(πι, s0), they have proved the
equivalence between the initial PSI-MDP and the CMDP (Z, A, Qz, r′, c′).

2.6.3 Existence of a solution of the CMDP

We now give sufficient conditions on the initial PSI-MDP so that the CMDP
(Z, A, Qz, r′, c′) is solvable. These conditions are principally designed so that
(Z, A, Qz, r′, c′) verifies Assumption 2.1.

Condition 2.2.
(a) X , Y and A are compact sets.
(b) r and c are bounded and continuous functions.
(c) Q is weak Feller (see Assumption 2.1(d)).
(d) Hb is a continuous function on Z × A × Y.
(e) i) There exists a measure νY such that νY (Y) > 0 and for all s ∈ S and all
a ∈ A, QY (C|s, a) ≥ νY (C).

ii) There exists a set C0 ∈ B(Y) with νY (C0) > 0 and a measure m0 ∈ P(X )
such that for every y ∈ C0, z ∈ Z and every a ∈ A, Hb(z, a, y) = m0.

Conditions 2.2(a)-2.2(d) are almost identical to Assumptions of [Hernández-
Lerma, 1989]; the only differences are that we impose the compactness of X
and Y which is not required in [Hernández-Lerma, 1989] and that we do not
impose QY to be weak Feller since in our case this is obtained automatically
by showing that Q is weak Feller. Conditions 2.2(a)-2.2(d) are meant to guar-
antee that the CMDP given by (Z, A, Qz, r′, c′) verifies Assumptions 2.1(a)-
2.1(d) (see [Hernández-Lerma, 1989]). In consequence, to prove that the CMDP
(Z, A, Qz, r′, c′) is solvable, it only remains to prove that it verifies Assumption
2.1(e). As proposed in the following therorem, Assumption 2.1(e) is a conse-
quence of Condition 2.2(e) (to the best of the author knowledge this condition
is specific to this thesis).
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Theorem 2.6. If Condition 2.2(e) is satisfied, then the CMDP (Z, A, Qz, r′, c′)
verifies Assumption 2.1(e).

Proof. The proof of this theorem is given in Appendix B.6.

We have finally shown that Condition 2.2 implies that the CMDP given by
(Z, A, Qz, r′, c′) verifies Assumption 2.1. Using Theorem 2.1, we have that if
there exists π ∈ Πo such that C(π, s0) ≤ V, the CMDP (Z, A, Qz, r′, c′) is
solvable.

To conclude this subsection, we will do the following remarks:

Remark 2.1. [Hernández-Lerma & Lasserre, 1996, Chapter 6]: If Y is count-
able, then Condition 2.2(c) implies Condition 2.2(d).

This remark will be of practical interest in Chapter 3 and 4. Indeed this
remark means that we will only need to prove that Q is weak Feller to prove
Condition 2.2(c) and Condition 2.2(d).

Remark 2.2. If there exists a state s0 = (x0, y0) and ε > 0 such that: for every
s ∈ S and every a ∈ A, Q({s0} |s, a) > ε and qX(dx′|x, y, a, y0) = δx0(dx′), then
Condition 2.2(e) is checked.

Proof. This proof is given in Appendix B.7. However, we can do two remarks:
i) Q({s0} |s, a) > ε is equivalent to saying that s0 is accessible from every other
states for any actions, and ii) QX(dx′|x, y, a, y0) = δx0(dx′) is equivalent to
saying that the state s0 ∈ S is completely observable. This provides a physical
interpretation of 2.2: if there is a completely observable recurrent state, then
Condition 2.2(e) is checked.

So far, we have given theoretical results concerning PSI-MDPs. In the next
subsection we give a heuristic way of solving PSI-MDPs.

2.6.4 Numerical solutions for Partial State Information
models

In this section, we do a brief presentation of the heuristic method presented in
[Zhou et al., 2010] to approximate continuous (unconstrained) POMDP. Since
PSI-MDP are a special case of POMDP, we will present this method from the
PSI-MDP point of view. We then prove that without any change, this method
can be applied to constrained PSI-MDPs.

The main idea behind the method presented in [Zhou et al., 2010] is that
the beliefs bx,t live in a finite dimensional subset of P(X ). Hence they decide to
approximate the continuous MDP, (Z, A, Qz, r′) by projecting the beliefs bx,t
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on a space of small dimension. This projected-MDP can then be solved by any
usual methods.

Their method is the following. Let Ψ be a set of parametrized pdfs, Ψ =
{f(·, θ), θ ∈ Θ0}, where Θ0 ⊂ R

nθ . They propose to project the beliefs using
the Kullback-Liebler divergence defined as follows

DKL(bx||f) =
∫

X
bx(x′) log

bx(x′)
f(x′)

dx′. (2.98)

For every bx ∈ P(X ), the projection of bx on Ψ is given by

ProjΨ(bx) = argmin
g∈Ψ

DKL(bx||g), (2.99)

or equivalently, considering the θ parameter

θ̂(bx) = arg min
θ∈Θ0

DKL(bx||f(·, θ)). (2.100)

From this projection, [Zhou et al., 2010] has proposed to solve the following
projected MDP (Z ′, A, Q′

z, r′′) where each component is defined as follows:

• Z ′ = Θ0 × Y,

• A is unchanged,

• Q′
z is defined, for every z′ = (θ′, y′) and every y ∈ Y as

Q′
Z(B × C|z′, a) =

∫
C

1 (Hθ(z′, a, y) ∈ B)Q′
Y (dy|z′, a) , (2.101)

where Hθ(z′, a, y) is the function from Θ0 × Y × A × Y to Θ0 defined as

Hθ(θ′, y′, a, y) = θ̂ (Hb (f (·, θ′) , y′, a, y)) , (2.102)

• r′′ is defined as follows: r′′(θ, y, a) = r′(f(·, θ), y, a)

This MDP has a continuous state space of dimension nθ + ny which is finite.
Furthermore, in [Zhou et al., 2010], they propose to take Ψ as a parametrized
set of policy from the exponential family of pdfs. In this case nθ is often small,
making the whole state of small dimension if Y has a small dimension. Finally,
this MDP is solved using any method.

In prevision of telecommunication applications, we need to be able to take
into account constraints. The method in [Zhou et al., 2010] can be extended to
constrained PSI-MDP by considering (Z ′, A, Q′

z, r′′, c′′), where c′′ is obtain by
the same transform as r′′. This time (Z ′, A, Q′

z, r′′, c′′) is a finite dimensional
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CMDP. In this thesis, we have applied the method of Section 2.5 to solve this
CMDP.

2.7 Conclusions

To conclude this chapter, we have done a review on the CMDPs framework. We
have in particular introduced the following notions as parts of the definition of
a CMDP:

• S is the state space,
• A is the action space,
• U is the space of all admissible state-action pairs,
• W is the disturbance space,
• Q(B|s, a) is the transition law,
• r(s, a) is the short-term reward function,
• c(s, a) is the vector of short-term cost function.

We have introduced the notion of policy and specified the following types of
policies:

• Π the general set of policies,
• ΠM the set of Markov policies,
• ΠRS the set of Randomized Stationary policies,
• ΠDS the set of Deterministic Stationary policies.

We have introduced two infinite-horizon average-cost performance criteria, R

and C defined as⎧⎨
⎩

R(ν0, π) = lim infT →∞ 1
T E

ν0
π

[∑T −1
t=0 r(St, At)

]
C(ν0, π) = lim supT →∞

1
T E

ν0
π

[∑T −1
t=0 c(St, At)

]
.

From these performance criteria we have introduced a constrained optimization
problem:

R	(ν0) = sup
π∈Π

R(ν0, π)

s.t. C(ν0, π) ≤ V.

We have shown that under Assumption 2.1, this optimization problem is solv-
able and that a solution can be found in ΠRS . We have then shown that,
under Assumption 2.1, solving the optimization problem in ΠRS is equivalent
to solving an infinite dimensional LP. Approximations of this LP are obtained
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by discretizing the state and action spaces and solving a finite LP. Based on the
infinite dimensional LP and on the relationship with its dual, we have provided
Assumption 2.3 that guarantees the convergence of the finite approximations
to the infinite solution. Finally, we have introduced the constrained POMDP
and constrained PSI-MDP models. For the PSI-MDP model, we have shown
that these problems can be reduced to CMDP with an infinite dimensional state
space. Based on this new CMDP, we finally have presented a heuristic method
to solve constrained PSI-MDPs. This method is inspired from the literature of
the unconstrained PSI-MDP.

The main contribution of this chapter has been to provide a new condition,
Condition 2.2, for ensuring that the CMDP corresponding to the PSI-MDP
model is solvable. This condition is verifiable in practice, for the applications
with a completely observable state accessible from every other states.

Perspectives and future works

Because many resource allocation for the PHY layer of telecommunications sys-
tems can be seen as a problem where decisions are made sequentially, MDPs
(in the wide sense) are an appropriate tool. On the other hand, when using the
MDP framework to resource allocation for the PHY layer of telecommunications
systems, we generally have to address difficult problems: in fact, in the end, we
have considered a setting with: a constrained + partially observable + Borel
state and action space + under average-cost MDP. In [Yu & Bertsekas, 2004],
the partially observable problem with finite state space and long-term average-
cost is told to be a difficult problem. In consequence, there are still challenging
research to do on MDPs, even after 60 years of abundant research.

In particular, we did not provide conditions so that the projected-CMDP
of Section 2.6.4 is solvable. To prove that the proposed approximation can
(actually) be solved will be part of future work. Our first idea for this work is
that the following condition should suffice:

Condition 2.3.
(a) The Condition 2.2 is verified for the PSI-MDP.
(b) For every function on X v which is bounded and continuous, the function
v̄ defined as

v̄(θ) =
∫

X
v(x)f(x, θ)dx, θ ∈ Θ0 (2.103)

is continuous on Θ0.

The second perspective of this work is the following: it is shown in [Chow,
1989] that the bounds on the approximations presented in Section 2.5 are loose
for h > 0 (even if they are good when h → 0). This means that we cannot
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use these bound to determine h that guarantees to be ε-close to the optimum.
For a lot of applications, this can be a real problem. Methods that provide
better approximations and/or better bounds exist in the literature, however
they are rarely suited for constrained problems. Finding approximations that
are implementable and that provide a good insight on how close we are for the
optimal solution is a challenging open problem.
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In this chapter, we show that the CMDP framework presented in Chapter
2 is an appropriate framework to solve power allocation problems for various
HARQ protocols.

3.1 Introduction

AMC has been widely adopted for link adaptation to improve the spectral effi-
ciency of modern communication systems. This technique dynamically adapts
the modulation (type and size) and coding (rate) parameters to the variations
of the channel. In modern wireless standards, AMC is assisted by the use of a
Channel Quality Indicator (CQI) feedback. The CQI feedback is a quantized
information on the quality of the channel and the parameters of the receiver
(including HARQ protocols for example). In CQI-based systems, the transmit-
ter (Tx) selects its modulation and coding schemes according to the CQI. In
our context, Figure 3.1 is a generalization of the model proposed in Chapter 1
taking into account explicitly the CQI.

65
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Figure 3.1 – CQI-based system model

Although the role of CQI is clearly defined, the choice of the quantity mapped
by the CQI is left open in standards such as LTE. It has been shown in the
literature that in case of varying channels, taking the mean SNR may not be
sufficient. Indeed, in systems where the codewords span multiple fading blocks
(such as HARQ systems), different sequences with the same average SNR may
lead to very different FER. To overcome this difficulty, other types of CQI
have been proposed. The most common indexes are Exponential Effective SNR
Mapping (EESM) and Mutual Information Effective SNR Mapping (MIESM)
(see [Wan et al., 2006] and references therein). The EESM has the advantage
of being simple to compute but seems to be less accurate than the MIESM. A
trade-off between complexity and accuracy has been proposed more recently in
[Stupia et al., 2009] and is referred to as κ-Effective SNR Mapping (κ-ESM). In
every cases (EESM, MIESMor κ-ESM) indexes are all "effective SNRs" and can
be interpreted as: the SNR of the equivalent AWGN channel which gives the
same FER. The main advantage of such types of CQI is that we only need to
know the performance of the coded modulations for the AWGN channel. In the
spirit of MIESM, other methods have been proposed based on ACMI that do not
require a mapping to an effective SNR. In particular, a mutual information based
bit-loading algorithm has been proposed in [Li & Ryan, 2007]. In [Cheng et al.,
2003], [Stiglmayr et al., 2007], and [Pfletschinger & Navarro, 2010], heuristic
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methods are proposed for choosing the modulation type and dimensioning the
length of incremental blocks for adaptive IR-HARQ protocols. In the same
context, a more formal optimization has been proposed for power allocation in
adaptive IR-HARQ protocols in [Tuninetti, 2011].

In this chapter, we consider the system depicted in Figure 3.1 except that
the CQI only conveys information about the state of the HARQ protocol at
time n, not about the current channel state. This means that throughout the
communication Tx has only OCSI and SCSI. In our case the CQI is a quantized
version of the state sn of the HARQ protocol in the feedback channel described
in Section 1.4.2. This context has already been proposed in [Szczecinski et al.,
2011] to propose a rate adaptive IR-HARQ protocol. Our work differs from
[Szczecinski et al., 2011] in the fact that we propose a power allocation.

The rest of this chapter is organized as follows. In Section 3.2 we will show
that the problem of allocating power to optimize the throughput of a HARQ
protocol under a constraint on the average power is a CMDP, in the case of
Type-I HARQ. We will show that this CMDP verifies the assumptions of Chap-
ter 2. These assumptions imply that we can approximate the solution of the
CMDP with finite linear programming. These assumptions also imply that ap-
proximations provided by the finite linear programming converge to the optimal
power allocation of the initial optimization problem. In Section 3.3, the same
analysis is performed for the IR-HARQ protocol, and the CC-HARQ protocol.

3.2 Power allocation for the Type-I HARQ

protocols

In this section, we propose to analyse, under the scope of CMDPs presented in
Chapter 2, the power allocation for the maximization of the throughput under
average power and peak power constraints.

3.2.1 CMDP model associated with the Power allocation
for the Type-I HARQ protocols

In this subsection, we first introduce the CMDPmodel associated with the power
allocation for the maximization of the throughput under average power and peak
power constraints. Secondly, we will show that the proposed CMDP verifies
Assumption 2.3. This assumption provides sufficient conditions for proving that
the discrete approximations converge to the solution obtained with continuous
action space (we will see that in this case S is already discrete).
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Definition of the CMDP
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Figure 3.2 – State Diagram of the Markov chain {Kn} for a Type-I HARQ
protocol with NT = 3.

We now define the components (S, A, U , W, Q, r, p̄) of the CMDP associated
with the Type-I HARQ protocol. The state space of the Type-I HARQ protocol
has been suggested in Section 1.4.1 and is the following S = {0, 1, . . . , NT }. We
have in particular shown that these NT +1 states have the following meanings:

• ′0′: Tx starts the transmission of a new information packet after a successful
decoding (ACK),

• ′1′: Tx has done 1 attempt and a NACK bit is received,

• ′2′: Tx has done 2 attempts and a NACK bit is received,

...

• ′N ′
T : Tx has done NT attempts and NACK is received, this state corresponds
to an outage event and, in consequence, to the start of the transmission
of a new information packet.

The action space A is defined as the set of available powers to Tx. In our
case we will consider A = [Pmin, Pmax]. The powers Pmin and Pmax constitute
two peak power constraints. Although Pmax is a classical peak power constraint,
Pmin is a much less classical constraint. In fact, we will see that this constraint
has only a theoretical range. We will assume Pmin > ε with ε ≥ 0. We will
further suppose that Tx can always use the whole set of powers. This implies
that A(s) = A for every s ∈ S and U = S × A.

In Section 1.4.1, we have shown that the state evolution is based on the
random GNR: α. Consequently we take W = R

+, the set of every possible
value for the GNR. For the Rayleigh block fading channel, the channel gain
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α has an exponential distribution with average ᾱ = E [α]. Also, based on the
value of α and a, we have given in Table 1.1 the rules of the evolution of the
state. These rules have lead to the transition law given in equation (1.33). This
transition law has the following expression:

Q(s′|s, a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − po(a) if s′ = 0

po(a) if s′ = s + 1, s < NT

po(a) if s′ = 1, s = NT ,

0 otherwise

(3.1)

where po(a) = P [log2 (1 + aα) < R]. For the Rayleigh block fading channel
po(a) can be computed analytically as

po(a) = 1 − exp
(

−2R − 1
ᾱa

)
. (3.2)

For every s ∈ S and every a ∈ A, we have given the short-term reward as the
reward associated with the computation of the (long-term) throughput. This
reward has the following expression:

r(s, a) =

⎧⎨
⎩b if s = 0

0 otherwise.
(3.3)

In equation (3.3) we wrote r(s, a) to be faithful to the definition of short-term
reward of Chapter 2. However, in our case, r only depends on s.

Similarly to what we have proposed for the short-term reward, we introduce
a short-term cost associated with the average power. This cost is simply defined
as follows:

p̄(s, a) = a. (3.4)

This short-term cost definition concludes the description of the component of
the CMDP: (S, A, U , W, Q, r, c). This CMDP definition also settles the history
and policy definitions (see Section 2.2).

Finally, the power allocation problem for maximizing the throughput under
peak power and average power constraints can be written under the CMDP
formalism as follows. Without loss of generality, we assume that the initial
state is s0 = 0. The throughput of the policy π when the initial state is s0 is
defined as follows

η(s0, π) = lim inf
T →∞

1
T
E

s0
π

[
T −1∑
t=0

r(St, At)

]
. (3.5)
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Similarly to the definition of the throughput, we introduce the average power
as

P̄ (s0, π) = lim inf
n→∞

1
n
E

s0
π

[
n−1∑
i=0

p̄(St, At)

]
.

Finally, the power allocation problem is written as

η	(s0) = sup
π∈Π

η(s0, π) (3.6)

s.t. P̄ (s0, π) ≤ PA,

where PA is the average power constraint. Note that in the optimization problem
given by equation (3.6), the peak power constraints does not appear explicitly.
These constraint are in fact contained in Π because of the definition of A.

Properties of the proposed CMDP model

We now analyse this CMDP model to prove that Assumption 2.3 is verified.
This assumption will, in turn, allow us to build a finite LP that solves the
power allocation problem.

Because of the finiteness of S, Assumption (2.3(a)) trivially holds. Since
the short-term reward and cost functions given by equations (3.3) and (3.4)
are respectively constant and linear in a, the Lipschitz continuity of these func-
tions trivially holds and Assumptions 2.3(b) and 2.3(c) are verified. In case
of Rayleigh fading channel, we show in Appendix C.1 that Assumption 2.3(d)
holds.

It finally remains to prove Assumption 2.3(e). We prove this Assumption by
showing that Condition 2.1(a) holds. The accessible state needed by Condition
2.1(a) is s0 = 0, indeed, for every s ∈ S we have

Q(s0|s, a) = 1 − po(a)

≥ 1 − po(Pmin)

= exp
(

−2R − 1
ᾱPmin

)
> 0,

where the last inequality holds because Pmin > 0.

3.2.2 The Finite Linear Programming

In the preceding subsection, we have shown that the CMDP corresponding to the
power allocation problem for Type-I HARQ protocol verifies Assumption 2.3.
This has mainly two consequences: i) since Assumption 2.3 implies Assumption
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2.1, Theorem (2.1) guarantees that the optimization problem given by (3.6) is
solvable at the condition that PA ≥ Pmin.The condition PA ≥ Pmin ensures
that the power allocation with a constant power of Pmin is admissible and then
that the set of admissible policies (Ω in Theorem (2.1)) is non-empty.

ii) Under Assumption 2.3, Theorems 2.1 and 2.2 imply that the optimization
problem given by equation (3.6) is equivalent to an infinite dimensional LP.

We now build the finite LP approximating the infinite LP of Theorem 2.2. To
do so, we introduce the following finite CMDP: (S̃h, Ãh, Ũh, Q̃h, r̃h ,̃̄ ph). As we
have already observed in the preceding section, for Type-I HARQ, S is already
discrete. We then only need to discretize the set A. The discretized action space
Ãh is defined, as proposed in Section 2.5, as

Ãh = {Pmin, Pmin + h, Pmin + 2h · · · , Pmin + (Na − 1)h = Pmax} ,

where Pmin and Pmax are the peak powers, Na is the number of actions consid-
ered in the discrete set, and h is defined as

h =
Pmax − Pmin

Na − 1
. (3.7)

Note that in our case, A is not [0, 1] but the discretization procedure is identical.
Moreover, since U = S × A, the set Ũh is in our case, the set S × Ãh. In this
case the number of elements contained in Ũh is NU = NT Na.

Since S is discrete, the discretization of the transition law is trivial: Q is
unchanged. To have a more compact notation, we introduce for every ã ∈ Ãh,
the notation Q̃ã; Q̃ã is the transition matrix, parametrized by ã, that is built
as follows:

Q̃ã(s, s′) = Q(s′|s, ã). (3.8)

Because S is already finite, the reward and cost functions are also unchanged:
r̃h = r and c̃h = c.

With these notations, the finite LP is finally given by:

η̃	 = sup
m∈RNU

RmT

s.t.
∑
s∈S

m(s, ã) − QãmT = 0, ∀ã ∈ Ãh

1mT = 1

P̄mT ≤ PA

m ≥ 0,

where R, P̄ and 1 are the vectors of size NU containing respectively r(ũ) for
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all ũ ∈ Ũh, p̄(ũ) for all ũ ∈ Ũh and only ones. Once the optimal m	 is found,
the corresponding policy consists in choosing randomly a power in Ãh with a
distribution:

ϕ(ã|s) = m	(s, ã)∑
s′ m	(s′, ã)

. (3.9)

3.2.3 Simulation results

The finite approximation method detailed in the preceding section has been
evaluated by simulation. We consider a HARQ protocol with a maximum num-
ber of transmission attempts NT = 5 and an initial rate R = 3 bpcu. In these
results, we consider without loss of generality, that the GNR α is exponentially
distributed with average ᾱ = 1. When a power allocation is performed, we
consider a set Ãh from Pmin = −10dBW to Pmax = 10dBW with Na = 128.
In Figure 3.3 we compare three results. These three results are all compared at
a given average SNR. Note that since in each slot an is independent of αn, the
average SNR can be computed as PAᾱ = PA.
• The first result is depicted in Figure 3.3 as the blue curve with triangle
marker. This curve corresponds to the result of the finite LP: η̃	 as a function
of PA.
• The second result is depicted in Figure 3.3 as the red curve with triangle
marker. This curve corresponds to the result of the simulation of the Type-I
HARQ protocol using the power allocation ϕ(ã|s) computed thanks to the finite
LP. These simulations has been realized by the Monte-Carlo method over 104

slots.
• The third result is depicted in Figure 3.3 as the violet curve with square
marker. This curve corresponds to the constant power allocation case. This
curve represents what is achieved in the classical Type-I HARQ systems. As
expected, we observe in Figure 3.3 that the power allocation obtained by means
of finite LP, outperforms the constant power allocation. Before drawing general
conclusions, we give the same three simulation results for R = 1 bpcu, every
other parameters remaining unchanged. With the result given in Figure 3.4, we
can remark that the power allocation obtained by the finite LP of the preceding
subsection is really efficient for low average SNR. To corroborate this conclusion,
we have performed the following simulation: within the same framework as the
two preceding simulations, we have computed the throughput for a range of R

going from 0.75 bpcu to 5 bpcu. For every average SNR value we only kept the
best throughput (among every initial rate R). These results are given in Figure
3.5 and confirm the intuition of the preceding simulation.

This new result leads us to the following conclusion: when dealing with
HARQ protocols, choosing the appropriate initial rate R gives in general better
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Figure 3.3 – Comparison of the throughput of constant power allocation and
variable power allocation as a function of Average SNR for a Type-I HARQ.
Simulations parameters: NT = 5, R = 3 bpcu, ᾱ = 1, Pmin = −10dBW ,
Pmax = 10dBW , and Na = 128.

results than allocating power. However, in most modern communication sys-
tems, the appropriate rate R may not be available among the different coded
modulations. In this case, a power allocation is useful to compensate the absence
of such coded modulation.

3.3 Power allocation for the throughput max-

imization of Type-II HARQ protocols

In this section, we propose to analyse the power allocation for the maximization
of the throughput under average power and peak power constraints for Type-II
HARQ based systems.
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Figure 3.4 – Comparison of the throughput of constant power allocation and
variable power allocation as a function of Average SNR for a Type-I HARQ.
Simulations parameters: NT = 5, R = 1 bpcu, ᾱ = 1, Pmin = −10dBW ,
Pmax = 10dBW , and Na = 128.

3.3.1 CMDP model associated with the Power allocation
for the Type-II HARQ protocols

Following the same reasoning as the one proposed for Type-I HARQ protocols in
the preceding section, we first define every component of the CMDP associated
with the power allocation problem for maximizing the throughput of the Type-
II HARQ protocols. This CMDP has the following form: (S, A, U , W, Q, r, p̄)
where each component is described in the sequel. In Section 1.4.2, we have
analysed the CC-HARQ protocol and the IR-HARQ under the same formalism.
In consequence, we will present every theoretical result of this section under the
same framework as in Section 1.4.2; we will specify our analysis only for the
simulation results.

Definition of the CMDP

In Section 1.4.2, we have shown that a HARQ protocol can be efficiently mod-
elled using a Markov chain on the space S = {0, . . . , NT } × [0, DT ] where NT is
the maximal number of decoding attempts and DT is the decoding threshold.
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Figure 3.5 – Comparison of the throughput of constant power allocation and
variable power allocation as a function of Average SNR for a Type-I HARQ.
Simulations parameters: NT = 5, ᾱ = 1, Pmin = −10dBW , Pmax = 10dBW ,
and Na = 128. The curves presented, are obtained by taking the maximum over
values of R going from 0.75 bpcu to 5 bpcu

The set S = {0, . . . , NT } × [0, DT ] is the state space of the CMDP. We can
already remark that S is compact, which verifies a part of Assumption 2.3(a).

Similarly to what we have presented in Section 3.2, the action space of the
CMDP is taken as the set of available power levels for Tx, this set is again
A = [Pmin, Pmax]. Again, we will suppose that Tx can use the whole set of
powers in each state so that U = S × A. In the sequel we again suppose that
Pmin ≥ ε with ε > 0 and that Pmin ≤ Pmax. Directly from the definitions of A
and U , we can remark that the spaces A and U are compact, which proves that
Assumption 2.3(a) is verified.

When the Type-II HARQ protocol is in state sn and when action an is
taken by Tx, we have seen in Section 1.4.2 that the state of the HARQ evolves
according to rules defined as in Table 1.2. This table is given again in Table 3.1
for ease of presentation. The only difference between Table 1.2 and Table 3.1 is
that in Table 3.1 we use the CMDP notation.

One can note that writing Table 3.1 is equivalent to writing that the random
variables Sn evolve according to the following deterministic equation: Sn+1 =
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xn +Δ(αn, an) < DT xn +Δ(αn, an) ≥ DT

kn < NT − 1 (kn+1, xn+Δ(αn, an)) (0, 0)

kn = NT − 1 (NT , 0) (0, 0)

kn = NT (1,Δ(αn, an)) (0, 0)

Table 3.1 – Table of rules for the transitions from the state sn = (kn, xn) to
sn+1 when power Tx takes action an.

F (Sn, An, αn). In consequence, the GNR αn plays again the role of disturbance.
The disturbance space W is then defined as the range of the GNR: [0, ∞). The
transition kernel Q is again defined in (A.3). The proof that Q verifies 2.3(d)
for the Rayleigh channel is given in Appendix C.2.

The short-term reward associated with the computation of the throughput
as well as the short-term cost associated with the computation of the average
power are still unchanged compared to the case of Type-I HARQ. The short-
term reward is defined as:

r(s) =

⎧⎨
⎩b if s = (0, 0)

0 otherwise.

The short-term cost is defined as:

p̄(s, a) = a. (3.10)

The reward and the cost functions are again trivially bounded and Lipschitz
continuous functions on U .

We now give the long term reward and cost and the associated optimization
problem. Without loss of generality, we assume that the initial state is s0 =
(0, 0). The throughput of the policy π when the initial state is s0 is defined as

η(s0, π) = lim inf
T →∞

1
T
E

s0
π

[
T −1∑
t=0

r(St, At)

]
. (3.11)

Similarly to the definition of the throughput, we introduce the average power
as

P̄ (s0, π) = lim inf
n→∞

1
n
E

s0
π

[
n−1∑
i=0

p̄(St, At)

]
.
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Finally, the power allocation problem is written as

η	(s0) = sup
π∈Π

η(s0, π) (3.12)

s.t. P̄ (s0, π) ≤ PA,

where PA is the average power constraint. Note that, here also, the peak power
constraint does not appear explicitly.

Properties of the proposed CMDP model

We now analyse this CMDP model to prove that Assumption 2.3 is verified.
This assumption will, in turn, allow us to build a finite LP that solves the
power allocation problem.

Along with the description of the CMDP problem associated with the Type-
II HARQ power allocation, we have shown that Assumption (2.3(a)), Assump-
tion 2.3(b), Assumption 2.3(c) holds. The verification of Assumption2.3(d) is
done in Appendix C.2.

It finally remains to verify Assumption 2.3(e). We again prove this Assump-
tion by showing that Condition 2.1(a) holds. The accessible state needed by
Condition 2.1(a) is s0 = (0, 0), indeed, for every s ∈ S we have

Q(s0|s, a) = P [x +Δ(aα) ≥ DT ] (3.13)

≥ P [x +Δ(Pminα) ≥ DT ]

≥ P [Δ (Pminα) ≥ DT ]

> 0,

where the second inequality holds because Δ is an increasing function of a, the
third inequality holds because x is positive and the last inequality holds because
Pmin > 0.

3.3.2 The finite linear programming

In the preceding subsection, we have shown that the CMDP corresponding to
the power allocation problem for Type-II HARQ protocol verifies Assumption
2.3. This again proves that the optimization problem given by (3.12) is solvable
at the condition that PA ≥ Pmin. Under Assumption 2.3, Theorems 2.1 and 2.2
imply that the optimization problem given by equation (3.12) is equivalent to
an infinite dimensional LP. We now build finite LP approximating the infinite
LP (see Theorem 2.2). To build the finite LP, we introduce the following finite
CMDP: (S̃, Ã, Ũ , Q̃, r̃, p̃). For this finite CMDP, we drop the index h since it
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is more convenient in practice to consider two different grids, one of size h for
S, the other of size � for A. Theorem 2.5 remains unchanged except that we
consider that h′ = min(h, �) → 0 instead of h → 0. We now describe each
component of (S̃, Ã, Ũ , Q̃, r̃, p̃).
• The partition of S, denoted as Sh, is built from the following partition of the
set [0, DT ]:

[0, DT ] =
NI −2⋃
j=0

[jh, (j + 1)h[ ∪ [(NI − 1)h, DT ] , (3.14)

where NI represents the number of sets in the partition of [0, DT ] and h =
DT /NI defines the length of each interval. Sh is composed by the sets Sk,j of
the form

Sk,j = {k} × [jh, (j + 1)h[ . (3.15)

The set S̃ is the set of every representatives of the sets Sk,j . We suppose in this
section that the elements of S̃ have the following form:

s̃k,j = (k, (j + ω)h), ω ∈ [0, 1[ . (3.16)

• The discretized action space Ã is defined, as proposed in Section 2.5, as

Ã = {Pmin, Pmin + �, Pmin + 2� · · · , Pmin + (Na − 1)� = Pmax} ,

where Pmin and Pmax are the peak powers, Na is the number of actions consid-
ered in the discrete set, and � is defined as

� =
Pmax − Pmin

Na − 1
. (3.17)

• For every s̃k′,j′ , s̃k,j , and ãl, the transition law is discretized as follows:

Q̃ (s̃k′,j′ |s̃k,j , ãl) = Q ({k′} × [j′h, (j′ + 1)h[ |s̃k,j , ãl) , (3.18)

where Q is given in Appendix A.1. In the sequel of this section, Q̃ is interpreted
as a collection of matrices parametrized by ã ∈ Ã. For all s̃, s̃′ ∈ S̃ and for all
ã ∈ Ã these matrices are expressed as follows

Q̃ã(s̃, s̃′) = Q̃(s̃′|s̃, ã). (3.19)
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With these notations, the finite LP is finally given by:

η̃	 = sup
m∈RNU

RmT

s.t.
∑
s̃∈S̃

m(s̃, ã) − QãmT = 0, ∀ã ∈ Ãh

1mT = 1

P̄mT ≤ PA

m ≥ 0,

where R, P̄ and 1 are the vectors of size NU containing respectively r(ũ) for
all ũ ∈ Ũ , p̄(ũ) for all ũ ∈ Ũ and only ones. Once the optimal m	 is found,
the corresponding policy consists in choosing randomly a power in Ã with a
distribution:

ϕ(ã|s) = m	(s̃k,j , ã)∑
s̃∈S̃

m	(s̃, ã)
, ∀s ∈ Sk,j . (3.20)

3.3.3 Numerical results

For the Type-II HARQ protocol, we also consider a HARQ protocol with a
maximum number of transmission attempts NT = 5 and an initial rate R =
7 bpcu. In these results, we consider without loss of generality, that the GNR
α is exponentially distributed with average ᾱ = 1. When a power allocation is
performed, we consider a partition of S = [0, R] into NI = 16 parts of equal
sizes, we consider a set Ã from Pmin = −10dBW to Pmax = 10dBW with
Na = 16. In Figure 3.6 we compare three results. These three results are all
compared at a given average SNR. Note that since on each slot an is independent
of αn, the average SNR can be computed as PAᾱ = PA.
• The first result is depicted in Figure 3.6 as the blue curve with triangle
marker. This curve corresponds to the result of the finite LP: η̃	 as a function
of PA.
• The second result is depicted in Figure 3.6 as the red curve with triangle
marker. This curve corresponds to the result of the simulation of the IR-HARQ
protocol using the power allocation ϕ(ã|s) computed thanks to the finite LP.
These simulations has been realized by the Monte-Carlo method over 104 slots.
• The third result is depicted in Figure 3.6 as the violet curve with square
marker. This curve corresponds to the IR-HARQ scheme with constant power
allocation.

For the CC-HARQ protocol, we have done the same experiment except that
R = 3bpcu. This result is given in Figure 3.7. For both the IR-HARQ and
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Figure 3.6 – Comparison of the throughput of constant power allocation and
variable power allocation as a function of Average SNR for an IR-HARQ pro-
tocol. Simulations parameters: NT = 5, R = 7 bpcu, ᾱ = 1, Pmin = −10dBW ,
Pmax = 10dBW , NI = 16, and Na = 64.

CC-HARQ cases, we can observe the same conclusion as the one for Type-I
HARQ protocol: the proposed power allocation works well for medium to low
SNR. In order to observe the impact of R, we present in Figures 3.8 and 3.9 the
result obtained by maximizing over initial rates from R = 0.1 bpcu and R = 10
bpcu.

From these simulation results, we draw the exact same conclusion as for the
Type-I HARQ: choosing the appropriate initial rate R gives in general better
results than allocating power.

3.3.4 The Partially Observable problem

In this subsection, we consider a system based on the Type-II HARQ protocol.
The only difference with the preceding section is that we now consider that
the CQI only conveys the classical 1-bit feedback: ACK/NACK. This model is
depicted in Figure 3.10 and is the one described in Chapter 1 except that we
consider that the ACK/NACK bits are also used for power allocation.

Let Sn = (Kn, In) ∈ S be the random variable representing the state of
the Type-II HARQ protocol at time nT . This state is defined in the preceding
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Figure 3.7 – Comparison of the throughput of constant power allocation and
variable power allocation as a function of Average SNR for a CC-HARQ proto-
col. Simulations parameters: NT = 5, R = 3 bpcu, ᾱ = 1, Pmin = −10dBW ,
Pmax = 10dBW , NI = 16, and Na = 128.

section. From the ACK/NACK bits, Tx can only infer Kn indeed, from the
definition of Kn given in Section 1.4.1, one can observe that it is sufficient to
"count" the NACK bits and to observe the ACK bits. On the other hand, the
random variable In is non-observable from Tx by using only the ACK/NACK
bits. Based only on this observation, we want to find the power allocation that
maximizes the throughput of the Type-II HARQ protocol under the peak and
average power constraints. This problem is the following:

η	(s0) = sup
π∈Πo

η(s0, π)

s.t. P̄ (s0, π) ≤ PA,

where Πo is only the observable history (the history containing only the present
and past values of Kn and the past values of An (the actions).

Since the corresponding completely observable problem has been shown to
be a CMDP (see preceding subsection), it is logical to consider this problem as
a PSI-MDP. This PSI-MDP is the following (X , Y, A, Q, r, c) where each com-
ponent is defined as follows:
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Figure 3.8 – Comparison of the throughput of constant power allocation and
variable power allocation as a function of Average SNR for an IR-HARQ
protocol. Simulations parameters: NT = 5, ᾱ = 1, Pmin = −10dBW ,
Pmax = 10dBW , NI = 16, and Na = 64. The curves presented, are obtained by
taking the maximum over values of R going from 0.5 bpcu to 10 bpcu

• X = [0, 1] is the non observable space. In our case, we define X as set of the
normalized (by DT ) values of In: Xn = In/DT ,
• Y = {0, 1, . . . , NT } is the observable space. In this case, Yn = Kn,
• A = [Pmin, Pmax] is the action space defined in the preceding subsection,
• Q is the transition law defined in the preceding subsection,
• r is the instantaneous reward for the throughput η defined in the preceding
subsection,
• p̄ is the instantaneous cost associated with average power P̄ defined in the
preceding subsection.

The observable history is defined as in Section 2.6.1,

ho,t = (s0, a0, y1, a1, y2, a2 . . . , yt−1, at−1, yt) .

The set of all the histories of size t is denoted by Ho,t. Note that every history
in Ho,t only considers the ACK/NACK through the yj , j ∈ [1, t].

Following the method presented in Section 2.6.2, we know that we can con-
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Figure 3.9 – Comparison of the throughput of constant power allocation and
variable power allocation as a function of Average SNR for an CC-HARQ
protocol. Simulations parameters: NT = 5, ᾱ = 1, Pmin = −10dBW ,
Pmax = 10dBW , NI = 16, and Na = 128. The curves presented, are obtained
by taking the maximum over values of R going from 0.1 bpcu to 5 bpcu

vert this PSI-MDP into a CMDP (Z, A, QZ , r′, p̄′) where each component is
defined as follows.
• Z = P(X ) × Y where P(X ) is the set of every probability measures on X
and Y = {0, 1, . . . , NT }.
• A is the action space and is unchanged compared to the above definition.
• QZ is the transition matrix for Zt, defined by equation (2.95).
• r′ is defined as ⎧⎨

⎩r′(z, a) =
∫

X r(x, y, a)b(dx)

p̄′(z, a) =
∫

X p̄(x, y, a)b(dx).
(3.21)

From the definitions of r and p̄, we get:

r′(z, a) =

⎧⎨
⎩b if y = 0

0 otherwise
(3.22)

and
p̄′(z, a) = p̄(s, a) = a. (3.23)
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Figure 3.10 – System model and block fading channel

We now prove that this CMDP is solvable. In fact, from the preceding
subsection, we have already proved Condition 2.2 except Condition 2.2(d) and
Condition 2.2(e). To check 2.2(d) we observe that Y is finite and we use Remark
2.1. To check Condition 2.2(e), we observe that the state (0, 0) corresponds to
observing ACK and in consequence is completely observable. Moreover, we have
shown in equation (3.13) that this state is accessible from every other state of
S. This allows us to use Remark 2.2, to verify that Condition 2.2(e) is checked.

So far, we have converted the initial PSI-MDP problem into a CMDP prob-
lem and we have proved that this new CMDP is solvable. To solve numerically
this PSI-MDP, we have used a method that is similar to the method presented
in Section 2.6.4. We have projected the beliefs (the elements of P(X )) on the
parametrized set of Beta(θ1, θ2) laws. The Beta laws belong to the exponential
set of densities. For every θ1 > 0, θ2 > 0, if X is a random variable with
distribution Beta(θ1, θ2), its pdf f(x; θ1, θ2) is defined as follows:

f(x; θ1, θ2) =
xθ1−1(1 − x)θ2−1∫ 1

0
xθ1−1(1 − x)θ2−1dx

, x ∈ [0, 1] . (3.24)

The choice for Beta laws is motivated by the two following facts: i) the set
X = [0, 1], ii) using the method of moments (see [Kay, 1993]) instead of the
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Kullback-Liebler divergence (used by [Zhou et al., 2010]), allows us to have a
compact parametrization of the Beta laws. Indeed, the method of moments is
based on the fact that we can compute the parameters (θ1, θ2) of a Beta distri-
bution from the mean m̄ and variance v̄ of X by the following transformation

⎧⎪⎪⎨
⎪⎪⎩

θ1 = m̄

(
m̄(1 − m̄)

v̄
− 1

)

θ2 = (1 − m̄)
(

m̄(1 − m̄)
v̄

− 1
)

.
(3.25)

Furthermore, if X has a distribution Beta(θ1, θ2), its mean m̄ and variance v̄

verify that:
(m̄, v̄) ∈ Θmv = [0, 1] × [0, 0.25] .

So instead of parametrizing the set of Beta laws by (θ1, θ2) as in Section 2.6.4,
we will use the same set with (m̄, v̄). We have finally solved the CMDP problem
(Θmv × Y, A, Q′

Z , r′, p̂′) using the method proposed in Section 2.5.
The result of this method is presented in Figure 3.11. These results has been

computed by discretizing Θmv with a uniform grid of 100 possible values for m̄,
100 possible values for v̄, and only Na = 16 possible powers for Tx. The results
computed by the projected-CMDP are also compared with simulation results
obtained by simulating the policy found by the method of Section 2.5 applied
to the projected-CMDP. Similar results for the case of the CC-HARQ protocol
are presented in Figure 3.12.

In both cases, we observe that the policies found by solving the projected-
CMDP perform well; these policies outperform the results obtained by the clas-
sical Type-II HARQ methods and are close to the performance obtained with
complete observability. The main advantage of these methods is that they re-
quire only 1-bit of feedback. This brings us to the following conclusion, for the
case where the initial rate R cannot be optimized, we can find power allocation
policies that perform close to the completely observable CMDP(that required
multiple bits CQI) without changing anything to the HARQ protocol.

3.4 Conclusion

In this section, we solved the problem, proposed in Chapter 1, of finding the
power allocation that maximizes the throughput of an HARQ protocol under
peak and average power constraints. We have studied this power allocation prob-
lem for the Type-I HARQ protocol, the IR-HARQ protocol, and the CC-HARQ
protocol. The approach proposed in this chapter consists in applying the CMDP
framework presented in Chapter 2 to the controlled Markov chain representa-
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Figure 3.11 – Comparison of the results presented in Figure 3.6 and the result
obtained by solving the projected-CMDP for solving the PSI-MDP in the IR-
HARQ case. The following simulations parameters has been considered: NT =
5, R = 7 bpcu, ᾱ = 1, Pmin = −10dB, Pmax = 10dB, Na = 16, and Θmv

discretized with a uniform grid of 100 values for m̄ and 100 values for v̄.

tion of the HARQ protocols proposed in Chapter 1. In any case, the policies
found thanks to the discretization procedure presented in Section 2.5 have been
compared with their simulations counterparts. From these simulations, we have
shown that when the initial rate R can be optimized, the gain of performing
power allocation is limited. This results tend to corroborate the affirmation
done in [Szczecinski et al., 2011].

For the two Type-II HARQ protocols, we have considered two different sit-
uations: i) the state of the HARQ protocol is perfectly known by Tx or ii) only
the number of attempts is known at Tx. The first case has been solved by apply-
ing the discretization procedure described in Section 2.5 for the corresponding
CMDP. The second case is proposed as a PSI-MDP of the case i). We have
provided simulation results showing that the degradation caused by the absence
of multiple bits feedback is low.

In [Szczecinski et al., 2011], an adaptive IR-HARQ protocol is proposed.
Their protocol adapts the size of the retransmissions according to some unquan-
tized feedback. In [Szczecinski et al., 2011], a constrained dynamic programming
approach is proposed to solve the adaptive IR-HARQ. In fact their method can
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Figure 3.12 – Comparison of the results presented in Figure 3.7 and the result
obtained by solving the projected-CMDP for solving the PSI-MDP in the CC-
HARQ case. The following simulations parameters has been considered: NT =
5, R = 3 bpcu, ᾱ = 1, Pmin = −10dB, Pmax = 10dB, Na = 16, and Θmv

discretized with a uniform grid of 100 values for m̄ and 100 values for v̄.

be viewed as a fractional programming between two finite horizon MDPs. With
this approach, we could compute their results with NT = 5. These results are
given in Figure 3.13 and are compared with the power allocation results pro-
posed in this chapter. The simulation results proposed in Figure 3.13 tend to
show that rate adaptation is better suited for improving the performance of the
IR-HARQ protocol. On the other hand to be really efficient, the adaptive IR-
HARQ proposed in [Szczecinski et al., 2011] requires a large variety of coders
and a theoretically unquantized feedback.
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Figure 3.13 – Comparison of the results presented in Figure 3.8 with the adap-
tive IR-HARQ protocol proposed in [Szczecinski et al., 2011]
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In this chapter, we show that the CMDP framework is appropriate for study-
ing the power allocation of a secondary user that exploits the HARQ rounds of
a primary user to manage its interference.

4.1 Introduction

Recently, the number of wireless services has dramatically increased generat-
ing a growth in the demand on radio spectrum. Additionally, because of the
command-and-control regulation, every service is allocated to a dedicated band-
width. In consequence, the radio spectrum has become a scarce resource. On
the other hand, It has been shown that the radio spectrum is underutilized (see
[FCC, 2002]). By allowing Secondary Users (SUs) to opportunistically access
the bandwidth dedicated to licensed users (also referred to as Primary Users

89
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(PUs)), cognitive radio has been shown to be a promising technique to im-
prove the efficiency of wireless networks (see e.g. [Mitola III & Maguire, 1999],
[Haykin, 2005], and references therein).

Historically, cognitive radio considered an Opportunistic Spectrum Access
(OSA) framework. In this framework, the SUs probe the PUs bandwidth to
detect white-spaces. The SUs use agile radios such as Software Defined Radio
(SDR) to dynamically move from a white-space to another white-space tar-
geting a zero-interference policy. This zero-interference constrain is relaxed in
the spectrum sharing framework (see [Etkin et al., 2007], [Jovicic & Viswanath,
2009] and references therein) where the SUs can interfere the PUs as long as
the degradation of the PUs performance remains within some Quality of Ser-
vice (QoS) constraints. Spectrum sharing has been the subject of extensive
research in recent years (see [Asghari & Aissa, 2010], [Bagayoko et al., 2010,
2011], [Etkin et al., 2007], [Jovicic & Viswanath, 2009], [Kang et al., 2009],
[Makki & Eriksson, 2012; Makki et al., 2012, 2013], [Masmoudi et al., 2012],
[Tajan et al., 2012],[Tannious & Nosratinia, 2010], [Zhang, 2008, 2010], and
references therein).

In this chapter we are interested in a spectrum sharing context where the SU
shares the channel with one PU implementing a HARQ protocol. This context
is motivated by the fact that from an information theoretical perspective, it has
been shown in [Eswaran et al., 2007] that, by listening to the PUs feedback bits,
the SU can infer the throughput-loss of the PU. Furthermore using this infor-
mation about the throughput-loss, the authors have shown that a non-negligible
throughput can be achieved by the SU. This result is important because it means
that, in order to be compliant with the SU, the PU only has to broadcast the
feedback bits of its HARQ protocol.

Within the proposed context, the case of a PU implementing a Type-I HARQ
protocol has been addressed in [Levorato et al., 2012]. In [Levorato et al.,
2012], a CMDP approach is used to derive an optimal ON/OFF allocation while
managing the throughput-loss of PU. In this chapter we propose to address the
Type-II HARQ problem.

This chapter is organised as follows. In Section 4.2 we present the channel
model, the protocol of the PU, the protocol of the SUand we finally propose an
optimization problem. In Section 4.3 we show that the optimization problem
proposed in Section 4.2 is equivalent to a CMDP, we prove the existence of a
solution for this CMDP. In Section 4.3, we assume that the SU has access to
the complete state of the PU HARQ protocol and uses this state to maximize
its own throughput while managing the QoS loss of the PU. In Section 4.4,
we propose to solve the problem in which the SU has only access to the PU
feedback.
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4.2 System model

In this section, we give more details on the system presented in Figure 4.1. We
present the HARQ protocol that the PU is using in order to retrieve erroneous
packets. We also present the power and rate allocation of the SU. The protocols
of the PU and the SU are studied in terms of throughput.

4.2.1 Channel Model

xn
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Figure 4.1 – The Gaussian interference channel at the nth slot.

Similarly to [Jovicic & Viswanath, 2009], we consider the network illustrated
in Figure 4.1. This network is composed of a PU (with transmitter Tx1 and
receiver Rx1) and a SU (with transmitter Tx2 and receiver Rx2). The PU and
the SU share a block-fading interference channel. In this context, the signals
y1,n and y2,n respectively received in slot n by Rx1 and Rx2 are expressed as

⎧⎨
⎩yn

1 = h11,nx1,n + h21,nx2,n + z1,n

yn
2 = h22,nx2,n + h12,nx1,n + z2,n,

(4.1)

where the slot is assumed to last L symbols (as in Chapter 1), zi,n ∈ C
L is a

random vector of size L representing additive white Gaussian noise. The noise
is a complex Gaussian random vector of size L. We consider, without loss of
generality, that the vectors zi,n have i.i.d. components of zero mean and unit
variance. The input signals x1,n and x2,n are of size L and are assumed to be
complex circular white Gaussian random vectors of zero mean and respective
transmit powers p1,n and p2,n.
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The random variables defined as

αij,n = |hij,n|2 (4.2)

are exponentially distributed with mean ᾱij . The instantaneous Signal to In-
terference plus Noise Ratio (SINR) at Rxi in slot n is denoted by βi,n and is
defined as:

β,n =
pi,nαii,n

1 + pj,nαji,n
. (4.3)

4.2.2 The PU model

In this chapter, we consider that the PU implements an IR-HARQ protocol, with
a maximum of NT,1 attempts, with a constant power p1, and with an initial rate
of r1 (see Section 1.3.3). Additionally to the classical assumptions on HARQ
protocols given by Assumption 1.1, we suppose that the PU is compliant for
the SU. In our situation, it means that the PU is aware of the possible presence
of the SU and sends its feedback bits over a common broadcast channel so
that the SU can hear it. On the other hand the PU does not manage the SU
and consequently is oblivious to the presence (or absence) of the SU. For the
sake of clarity, all assumptions that we have made about the PU are listed in
Assumption 4.1.

Assumption 4.1.
(a) the PU uses an IR-HARQ protocol,
(b) the parameters p1, r1 and NT,1 are constant over time,
(c) the feedback channel is instantaneous and error-free,
(d) Tx1 always has an information packet to transmit,
(e) the PU sends its feedback bits over a common broadcast channel.
(f) the PU is oblivious to the presence (or absence) of the SU, in particular
Rx1 processes the SU signal as noise.

As it has been presented in Section 1.4.2, the state of the IR-HARQ protocol
of the PU, at time nT , can be represented by two variables sn = (k1,n, i1,n).
The component k1,n can take one of the following NT,1 + 1 values

• 0: Tx1 starts the transmission of a new information packet after a successful
decoding (ACK),

• 1: Tx1 has done 1 attempt and a NACK bit is received,

• 2: Tx1 has done 2 attempts and a NACK bit is received,

...
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• NT,1: Tx1 has done NT,1 attempts and NACK is received. This state corre-
sponds to an outage event and, in consequence, to the start of the trans-
mission of a new information packet.

The state component i1,n represents the ACMI at Rx1. We only consider the
throughput η1 as main figure of merit for the performance of the PU. This
throughput will be denoted as η1 and is defined as

η1(π2) = lim inf
t→∞

1
t
Eπ2

[
t−1∑
n=0

R1(sn, p2,n)

]
, (4.4)

where R1(sn) is defined as follows

R1(sn) =

⎧⎨
⎩r1, if sn = (0, 0)

0, otherwise
(4.5)

and where π2 is a power allocation of the SU defined in its more general form
as a random process π2 = {p2,n}. π2 is written in equation (4.4) to stress
the dependence of η1 to the power allocation π2 of the SU. This dependence,
happens because of the Signal to Interference plus Noise Ratio (SINR), β2,n

given in equation (4.3).

4.2.3 The SU model

We now describe the model of the SU, starting by describing the CSI assump-
tions on the SU. We suppose that the SU has partial CSIR: in this case it means
that Rx2 knows h12,n and h22,n. We will also suppose SCSI at Tx2 and Rx2. In
the Rayleigh channel case that is of interest here, SCSI at Tx2 and Rx2 means
that both Tx2 and Rx2 know every αij . No CSIT is considered at Tx2. For the
rest of this chapter, we will make the following assumptions on the SUs system.

Assumptions 4.2.
(a) Rx2 processes the PU signal as noise.
(b) Tx2 has an information packet to transmit.
(c) Tx2 has no CSIT but has SCSI.
(d) Rx2 has partial CSIR and complete SCSI.
(e) Both Tx2 and Rx2 know the IR-HARQ protocol of the PU, in particular,
they know p1, r1 and NT,1.
(f) Both Tx2 and Rx2 can decode the instantaneous and error-free feedback of
the PU; they can both infer k1,n.

Assumption 4.2 implies that Rx2 does not use Successive Interference Can-
cellation (SIC) techniques. Assumption 4.2(b) is classically made and indicates
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that the queue of Tx2 is always non-empty so that it always has an informa-
tion packet to transmit. Assumption 4.2(c) and Assumption 4.2(d) have been
discussed at the beginning of this subsection. 4.2(e) often holds because pa-
rameters r1, p1 and NT,1 are given in standards. Assumption 4.2(f) indicates
that the SU can decode the feedback bits of the protocol of the PU. Assumption
4.2(f) is a direct consequence of Assumption 4.1(e).

4.2.4 Associated optimization problem

In this chapter, we assume that the SU potentially changes its transmission
parameters (power and rate) in each slot. Theoretically it means that at each
time nT , the SU chooses a power p2,n and a code-rate r2,n and uses these
parameters to transmit data in slot n. Because of the no CSIT assumption,
once p2,n has been chosen by Tx2, the appropriate choice for r2,n is given by
the following

r2,n = r2(p2,n) = max
r∈R+

rP [log2 (1 + p2,nβ2,n) ≥ r] . (4.6)

This choice for r2,n ensures to obtain the best instantaneous rate for a given
level of interference p2,n. In the end, it means that, at each slot, the SU only
adapts its power p2,n, choosing its rate by r2,n = r2(p2,n).

The performance of the SU is also evaluated considering the throughput.
The SU throughput is defined as

η2(π2) = lim inf
t→∞

1
t
Eπ2

[
t−1∑
n=0

r2(p2,n)

]
. (4.7)

In the same way, we also introduce here the SU average power as follows

P̄2(π2) = lim sup
t→∞

1
t
Eπ2

[
t−1∑
n=0

p2,n

]
. (4.8)

In this thesis, we address the problem of finding the allocation π2 that max-
imizes the throughput of the SU under peak power, average power and PU
throughput requirement constraints. This general problem formulation can be
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stated as follows:

η	
2 = sup

π2∈Π
η2 (π2) (4.9)

s.t. η1 (π2) ≥ η1T (4.10)

P̄2(π2) ≤ P2A (4.11)

∀n ∈ N, p2,n ≤ P2M , (4.12)

∀n ∈ N, p2,n ≥ 0 (4.13)

Equation (4.10) guarantees a minimal PUs throughput of η1T . Equation (4.11),
guarantees that the SU average power is below P2A. Equation (4.12) guarantees
that the SU peak power is below P2M . The last equation, given by equation
(4.13) guarantees that the SU peak power is positive.

4.3 The completely observable problem

In the preceding section, we have addressed the optimization problem (4.9)
under Assumptions 4.1 and 4.2. To simplify the resolution of this optimization
problem, we suppose in this section that, at every time nT , Tx2 and Rx2 have
access to i1,n, the ACMI at Rx1. This access can be done by any means.
In a realistic scenario, one can assume that a Rx1 sends i1,n over a broadcast
common control channel to be more compliant with the SU. In a more theoretical
scenario, one can assume that Tx2 and Rx2 are genie aided. In any case, since
we suppose that the SU has more information about the PU, the obtained results
will be an upper bound on the achievable results considering Assumptions 4.1
and 4.2. The last advantage of considering that Tx2 and Rx2 have access to
i1,n is that, using results of Section 1.4.2, the optimization problem (4.9) can be
viewed as a CMDP. An a posteriori consequence of considering this CMDP is
that the initial problem, considering Assumptions 4.1 and 4.2, can be thought
as a PSI-MDP, this will be the object of Section 4.4.

4.3.1 The CMDP formulation

Similarly to what has been proposed in Chapter 3, we address the optimization
problem given in equation (4.9) as a CMDP. The CMDP definition adapted to
this problem is the tuple (S, A, W, Q, R2, R1, P2, η1T , P2A) where each compo-
nent is described as follows.

• The state space: S = {0, 1, ..., NT,1} × [0, r1] is the set of all possible
states of the PU IR-HARQ protocol (see Section 1.4.2 for more details). By
construction this state is compact and then verifies Assumption 2.3(a).
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• The action space A = [0, P2M ] is the space of all available powers for Tx2.
We suppose that for every s ∈ S, A(s) = A so that U = S ×A. By construction
again A and U are compact which proves Assumption 2.3(a).

• In slot n, the gains α11,n, α12,n, α21,n and α22,n are unknown by Tx2

and are considered as disturbances (see Assumption 4.2(c)). In consequence, we
consider the following disturbance space: W = R

4
+.

• The system function g(·) is a deterministic function from S × A × W to
S taking into account the evolution of the system from state sn ∈ S in slot n

to state sn+1 ∈ S in slot n+ 1 when the action p2,n is performed and when the
disturbance is wn. g(·) is globally defined as

g(sn, p2,n, wn) = (k1,n+1, i1,n+1) = sn+1. (4.14)

Similarly to what has been done in Chapter 1, we present the function g in
a table representation given in Table 4.1. This tabular can be interpreted as
follows, if at time n, sn = (k1,n, i1,n) with 0 < k1,n < NT − 1, and if i1,n +
Δ(wn, p2,n) < DT , then sn+1 given by equation (4.14) will be (kn + 1, i1,n +
Δ(wn, p2,n)). We consider that the PU uses the channel code described in
Section 1.2.3 so that

Δ (wn, p2,n) = log2

(
1 +

p1α11,n

1 + p2,nα21,n

)
, (4.15)

where the αij,n are given by equation (4.2), p1 is the constant primary power
and note that we have assumed σz1 = σz2 = 1.

i1,n +Δ(wn, p2,n) < DT i1,n +Δ(wn, p2,n) ≥ DT

k1,n = 0 (1,Δ(wn, p2,n)) (0, 0)

0 < k1,n < NT − 1 (kn+1, i1,n+Δ(wn, p2,n)) (0, 0)

k1,n = NT − 1 (NT , 0) (0, 0)

k1,n = NT (1,Δ(wn, p2,n)) (0, 0)

Table 4.1 – State transition Table

• The evolution of the system is again statistically represented by the
transition law Q defined, for a given measurable subset B ⊂ S and a pair
(s, p2,n) ∈ S × A as follows:

Q(B|s, p2,n) = P
[
sn+1 = g(sn, p2,n, wn) ∈ B|sn = s, an = p2,n

]
. (4.16)
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The expression of Q(B|s, a) is provided in Appendix (D.1) and we show that
Q(B|s, a) verifies Assumption 2.3(d) in Appendix (D.2).

• In slot n, the definition of the primary instantaneous reward is given in
Section 4.2 by equation (4.5). We remark here that R1 is bounded and Lipschitz
continuous so that it verifies Assumption 2.3(c).

• Similarly Rn
2 can be written as function of (sn, p2,n) ∈ S × A as

R2(sn, p2,n) = r2(p2,n). (4.17)

The proof of Lipschitz continuity of R2 is given in Appendix D.3. Consequently,
R2 is bounded and Lipschitz continuous so that it verifies Assumption 2.3(b).

• The instantaneous cost associated with the average power constraint is the
following:

P2(sn, p2,n) = p2,n. (4.18)

We remark here that P2 is bounded and Lipschitz continuous so that it verifies
Assumption 2.3(c).

We now briefly review, in our context, the concept of policy defined in Section
2.2.2.

Policy

Applying the definition given in Section 2.2.2 to the present case, the history
up to time t is defined as follows,

ht = ((k1,0, i1,0) , p2,0, (k1,1, i1,1) , p2,1, . . . (k1,t, i1,t)) (4.19)

The two main sets of policies that are of interest in this chapter are the following:

Π: The general set of policies, every π2 ∈ Π is defined as a sequence of stochastic
kernels, π2 = {π2,t(dp2,t|ht)},

ΠRS: The set of randomized stationary policies, every π2 ∈ Π is defined as a
sequence of the form: π2 = {ϕ(dp2,t|k1,t, i1,t)}. In the sequel, we will not
distinguish between π2 and ϕ.

Finally, the long-term reward and cost functions are given by equations
(4.7), (4.4), and (4.8) (supposing without loss of generality that the initial state
is (0, 0)). In consequence, we have completely described the CMDP framework
associated with the optimization problem (4.9) when i1,n is assumed to be known
at Tx2 and Rx2. In the next subsection, we will show that we can discretize
the state and action spaces to get approximate solutions of this CMDP.
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4.3.2 Existence and computation of an optimal policy

In the preceding subsection, we have checked almost every assumptions of As-
sumption 2.3. The only one missing is Assumption 2.3(e). This assumption is
that every policy ϕ ∈ ΠRS induces a uniform ergodicity Markov chain on S. To
check Assumption 2.3(e), we will verify Condition 2.1(a): "There exists s0 ∈ S
and ε ∈ R

+ such that Q({s0} |s, a) ≥ 0, with ε > 0".

To check Condition 2.1(a), we remark that state s0 = (0, 0) is accessible from
every other state. s0 physically represents a successful decoding of Rx1. The
fact that s0 is accessible from every other state means that from every state s,
there is always a non-zero probability of a successful decoding at Rx1 (as long
as P2M is finite). From any state s = (k1, i1) ∈ S and an action p2 ∈ A, using
Table 3.1 (or equivalently the expression of Q given in D.3) we have

Q({s0} |k1, i1, p2) = P

[
i1 + log2(1 +

p1α11
1 + p2α21

) ≥ r1|i1, p2

]

≥ P

[
log2(1 +

p1α11
1 + P2M α21

) ≥ r1

]
> 0.

(4.20)

where the first line is obtained by applying the definition of a successful decod-
ing (see Section 1.2.3), and the second equation comes from the positiveness
of i1 and p2 and from the finiteness of P2M . This is sufficient to prove that
Assumption 2.3(e) holds.

We finally suppose that η1T < η1(ζ0) and P2A > 0 to guarantee that the
set of admissible policies is not-empty. The policy ζ0 is the policy such that
Tx2 always transmits with power p2 = 0. Using Theorem 2.1, it follows that
the optimization problem given in equation (4.9) is solvable: there exists an
optimal policy for equation (4.9) within the set ΠRS . It also proves that an
optimal policy can be found using an infinite dimensional programming.

In the next subsection, we propose a discrete CMDP, that can be solved
numerically and leads to an approximation of an optimal policy for the opti-
mization problem (4.9).

4.3.3 Evaluation of the performances of the optimal policy

Similarly to what we proposed in Section 3.3.2, we propose different grids for S
and A so we drop the indexes in the definition of the discrete CMDP. We now
describe the discretization procedure proposed in Section 2.5. In particular we
introduce the following finite CMDP:

(
S̃, Ã, Q̃, R̃2, R̃1, P̃2

)
.
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The proposed method is almost the same as the one for discretizing the CMDP
in Section 3.3.2.
• The set S̃ is built from the following partition of the set [0, r1]:

[0, r1] =
NI −2⋃
j=0

[jh, (j + 1)h[ ∪ [(NI − 1)h, r1] , (4.21)

where NI represents the number of sets in the partition of [0, r1] and h = r1/NI

defines the length of each interval. The set S̃ is composed of elements of the
following form:

s̃k,j = (k, (j + ω)h), (4.22)

where ω belongs to [0, 1[.
• The set of actions is discretized as Ã = {0, �P2M , . . . , �(NA − 1)P2M }, where
� = 1/NA and P2M is the SU peak power constraint.
• For every s̃k′,j′ , s̃k,j , and ãl, the transition law is discretized as follows:

Q̃ (s̃k′,j′ |s̃k,j , ãl) = Q ({k′} × [j′h, (j′ + 1)h[ |s̃k,j , ãl) . (4.23)

Q̃ can be interpreted as a matrix of NS lines and NS × NA columns.
• We finally define the reward functions on Ũ as follows

R̃2(ũk) = R2(ũk) (4.24)

R̃1(ũk) = R1(ũk) (4.25)

P̃2(ũk) = P̄2(ũk). (4.26)

We finally build a finite linear programming based on the method proposed
in Section 2.5. Let the notation R2, R1, P2 and 1 stand for the vectors of size
NU containing respectively R̃2(ũ), R̃1(ũ) , P̃2(ũ) and 1. Using these vectors, we
can write the following finite linear programming:

η̃2 = sup
m∈RNU

R2mT (4.27)

s.t.
∑
s̃∈S̃

m(s̃, ã) − QãmT = 0, ∀ã ∈ Ã

1mT = 1

R1mT ≥ η1T

P2mT ≤ P2A

m ≥ 0.
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From a solution m	 of the finite linear programming given in equation (4.27)
we compute a policy for the optimization problem given in equation (4.9) as
follows:

ϕ̃(da|s) =
∑

ã

m	(s̃j , ã)∑
s̃ m	(s̃, ã)

δã(da), ∀s ∈ Sj . (4.28)

For some pairs (η1T , P2A) and some discretization parameters (NS , NA, ω), m	

may not exist. This happens, in particular, if the linear programming (4.27) is
not consistent. In this case, we have considered ϕ̃ = ζ0. This choice is made
because ζ0 is admissible for the problem given in equation (4.9).

In the sequel, we will make the difference between η2 (ϕ̃) and η̃2 = R2m	T .
η2 (ϕ̃) corresponds to the SU throughput of the policy ϕ̃. The policy ϕ̃ is a
"continuous" policy built from m	, solution of the problem (4.27). In a similar
way we consider η̃1 = R1m	T and η1 (ϕ̃) for the throughput of the PU, and
P̃2 = P2m	T and P̄2 (ϕ̃) for the SU average power.

4.3.4 Influence of ω and NS

In this subsection, we present some simulation results that highlight the impact
of ω, NS , and NA. For all the results proposed in this section, we have considered
a PU using an IR-HARQ protocol with 3 retransmissions (so that NT,1 = 4),
r1 = 7.12 bits per channel use (bpcu), and a power of p1 = 10dBW . The
channel parameters are ᾱ11 = ᾱ22 = 1 and ᾱ12 = ᾱ21 = 0.5. The secondary
user has a peak power constraint P2M = 10dBW , an average power constraint
P2A = 5dBW .

The parameter ω defines the position of the representative s̃i within the
sets Si. Taking ω = 0 is equivalent to considering the PU worst case scenario.
Indeed, when the discretized system is in state s̃i, the true state s is in the set
Si = {ki} × [jih, (ji + 1)h[. Taking ω = 0 is equivalent to considering that the
state is in jih, which is the worst case scenario among every state of Si. On the
other hand, the case ω → 1− is equivalent to an optimistic guess on the real
state s. In Figure 4.2, we show curves of the SU throughput as a function of η1T

for ω equal to 0, 0.5, and 0.999. The results presented in Figure 4.2 correspond
either to the optimal value of the finite linear programming (dashed lines) or to
the simulation of the policy given by the linear programming.

Figure 4.2 highlights that the optimal SU throughput computed with ω = 0
underestimates the simulated SU throughput. On the other hand the optimal
SU throughput computed with ω close to 1 overestimates the simulated SU
throughput. In addition to these results, we provide the same curves for ω = 0.5
where theoretical and simulated throughputs are close to each other.

In addition to these results, we compare in Figure 4.3 the simulated through-
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Figure 4.2 – Comparison between throughput regions (η̃1, η̃2) obtained by solv-
ing (4.27) and the simulated throughput region (η1(ϕ̃), η2(ϕ̃)). The comparison
is done for ω ∈ {0, 0.5, 0.999} with NI = 16 and NA = 16. The simulated
throughput region is computed using a Monte-Carlo method on 106 slots.

put of the PU and the target PU throughput η1T . The results presented in
Figure 4.3 corroborate that the PU throughput is underestimated when ω = 0,
correctly estimated when ω = 0.5, and underestimated when ω → 1−.

We complete these two results by comparing the simulated values of the
average power of the SU to the constraint value of P2A = 5dBW . These com-
parisons are given in Figure 4.4 for ω = 0, ω = 0.5, and ω → 1−. As expected,
the results obtained when ω = 0.5 are close to the constraint. Surprisingly, we
observe that when ω = 0, the constraint is sometimes not respected. On the
other hand, when ω → 1− the simulated values of the average SU power remains
within the constraint.

We will now analyse the influence of the parameter NS . This parameter
represents the number of states in S̃. Considering NS → ∞ is equivalent to
considering h → 0 therefore high values of NS lead to better approximation of
η1, η2, and P̄2. The limiting case is discussed in Section 4.5. Figure 4.5 high-
lights that the solution of the infinite linear programming can be approximated
from below by increasing NS and taking ω = 0. On the contrary, Figure 4.6
indicates that the infinite linear programming can be approximated from above
by increasing NI and taking ω → 1−.
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Figure 4.3 – Simulated throughput of the PU versus η1T for ω ∈ {0, 0.5, 0.999}.
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Figure 4.6 – Throughput regions for different values of NI ∈ {4, 8, 16, 32, 64}
with NA = 16 and ω = 0.999. We give two other curves as references. The
first one is the simulated throughput region of (η1(ϕ̃), η2(ϕ̃)) where the ϕ̃ are
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4.4 The partially observable problem

In Section 4.3, we have shown that under Assumption 4.1, Assumption 4.2 and
assuming that i1,n is known to Tx2 and Rx2, the optimization problem given
in equation (4.9) is a CMDP that can be solved by discretizing the state and
action spaces. In this section, we propose to tackle the initial problem which is
given in equation(4.9) only under Assumption 4.1, Assumption 4.2.

The only difference between the framework of Section 4.3 and the one of this
section is that, in this section Tx2 and Rx2 do not know i1,n. On the other
hand, we still consider the PU to be compliant (cf. Assumption 4.1(e)). Hence,
by counting the PU ACK and NACK bits, Tx2 and Rx2 can easily track k1,n.
This framework is then equivalent to the PSI-MDP model presented in Section
2.6.1 where k1,n is the fully observable part of the PU IR-HARQ protocol and
i1,n is the hidden part of this system.

Let X and Y be defined as the respective sets: X = [0, r1] and Y =
{0, 1, . . . , NT,1}, the PSI-MDP considered in this section is given by the tuple
(X , Y, A, Q, R2, R1, P2), where A, Q, R2, R1, P2 are these of Section 4.3.

To solve this PSI-MDP, wee apply the method proposed in Section 2.6.1:
we first convert this PSI-MDP to the CMDP (Z, A, QZ , R′

2, R′
1, P ′

2) where each
component is defined as follows.
• Z = P(X ) × Y where P(X ) is the set of every probability measures on X
and Y = {0, 1, . . . , NT }.
• A is the action space and is unchanged compared to the above definition.
• QZ is the transition matrix for Zt, defined by equation (2.95).
• R′

2, P ′
2, and R′

1 are defined, for every z = (bi, y) ∈ Z and every a ∈ A, as
follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
R′

2(z, a) =
∫

X R2(x, y, a)bi(dx),

R1
′(z, a) =

∫
X R1(x, y, a)bi(dx)

P2
′(z, a) =

∫
X P2(x, y, a)bi(dx).

(4.29)

This CMDP is again projected on the Beta laws parametrized by their mean
and variance. We have finally solved the CMDP problem

(Θmv × Y, A, Q′
Z , R′

2, R′
1, P ′

2)

using the method proposed in Section 2.5.
In this subsection, we present some simulation results that highlight the PSI-

MDP performances. We have considered a PU using an IR-HARQ protocol with
2 retransmissions (so that NT,1 = 3), r1 = 7.12 bits per channel use (bpcu), and
a power of p1 = 10dBW . The channel parameters are ᾱ11 = ᾱ22 = 1 and ᾱ12 =
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ᾱ21 = 0.5. The secondary user has a peak power constraint P2M = 10dBW , an
average power constraint P2A = 5dBW . In Figure 4.7 we compare the results
of Section 4.3 with NI = 32 and ω = 0.5 with the results obtained thanks to
the PSI-MDP framework.
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Figure 4.7 – Throughput regions for the completely observable problem and the
partially observable problem, for NA .

In Figure 4.7 , we observe that the loss due to the absence of knowledge
of i1,n is small (less than 10% of throughput loss for the PU for a given SU
throughput). However, the achieved SU throughput is still substantial and is
performed by considering uniquely that the SU can hear the 1-bit feedback of
the PU IR-HARQ protocol. Finally one can note that although the pdf of the
ACMI has been projected on Beta laws, the simulated throughput is still very
close to the one obtained using the projection.

4.5 Conclusion and Perpectives

In this chapter we have proposed to address the SU power allocation under a
throughput-loss constraint for an IR-HARQ based PU. By assuming a compliant
PU that broadcasts its feedback bits, we have shown that a significant SU
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throughput can be achieved while mitigating the throughput loss of the PU. We
have proposed, in a first time, an upper bound on the SU achievable throughputs
by considering that the SU has complete access to the state of the PU. In this
case, we have shown that the SU power allocation reduces to a CMDP. This
is a direct consequence of the IR-HARQ model proposed in Chapter 1. From
this model, we have shown the existence of a solution and proposed a finite LP
to approximate this solution. This approximation was simulated. We have in
particular observed that in the case ω = 0.5 only a few number of discrete states
(NI = 16) are required to obtain an accurate estimation of the optimal policy.

In a second time, we have considered the same SU power allocation except
that the state of the PU is only accessible to the SU through the PU feedback
bits. Although this only information is sufficient for ARQ for the Type-I HARQ
protocol (see [Levorato et al., 2012]), it is not the case for the IR-HARQ protocol
considered in our context. In the case of the IR-HARQ protocol, the feedback
bits only provide a partial state information. In consequence, this problem has
been considered as a PSI-MDP. Using the method proposed in Section 2.6.4,
we have given approximations for the PSI-MDP solution. We have in particular
observed that a non-negligible throughput can be obtained for the SU.

On the structure of optimal allocation policies

For practical considerations, one can think of some other (simpler) kind of poli-
cies. For instance policies with constant power. This kind of policy arises when
the feedback of the PU cannot be heard by the SU. In this case, the SU does not
have any information on the instantaneous state of the PU IR-HARQ protocol.
Since the SU transmitter (Tx2) has only SCSI, it will look for the maximal
power (to maximize its own throughput) that guarantees the SU throughput
target (η1T ). Figures 4.8 and 4.9 highlight that constant power allocations are
the policies that maximize the SU throughput when η1T = 0 and that there is
a gain in using the PU feedback (this effect was pointed out in [Eswaran et al.,
2007]).

One can also consider policies where the only admissible powers are P2M or
0. These policies are called ON/OFF policies in our paper. These policies are
somewhat at the opposite from the policies with constant power. Indeed Figure
4.9 shows that, when P2M = P2A, ON/OFF strategies are close to optimal
strategies with A = [0, P2M ]. This result is surprising and we do not have any
proof of this optimality even if this fact has been observed in many different
contexts (PU, SU and channel setting).
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On the admissibility of ϕ̃

As we have seen in the simulation results, it may happen that ϕ̃ lies outside
the set Ω of admissible policies for the problem given by equation (4.9). This
can be problematic in an HARQ context where we want to guarantee the QoS
constraint for the PU. In this case, we propose to build a non-stationary policy
π̃ such that,

(P1): if ϕ̃ ∈ Ω, then η2(π̃) = η2(ϕ̃), η1(π̃) = η1(ϕ̃) and P̄2(π̃) = P̄2(ϕ̃),

(P2): if ϕ̃ /∈ Ω, then π̃ ∈ Ω.

To build π̃, we solve (4.27) with η′
1T = η1T + ε1 and P ′

2A = P2A − ε2. The
parameters ε1 > 0 and ε2 > 0 are chosen so that η′

1T < η10 and P ′
2A > 0. Tx2

tracks the following values
⎧⎨
⎩η1N = 1

N

∑t−1
n=0 Rn

1 ,

P̄2N = 1
N

∑t−1
n=0 pn

2 .

Let Φ be the subset of R2 defined as Φ =
{
(x, y) ∈ R

2 : x ≥ η1T and y ≤ P2A

}
.

The policy π̃ is built as follows: if (η1N , P̄2N ) ∈ Φ, Tx2 uses ϕ̃. In every other
cases, Tx2 uses ζ0. By assumption we have that (η10, 0) ∈ Φ. Using the results
of [Ross, 1989], we can easily prove that the properties (P1) and (P2) hold. This
method is heuristic and more evolved methods should be considered.

On Successive Interference Cancellation

In this chapter, the SU always considers the PU signal as noise. This means
that the SU does not need to know the PU codebook and a fortiori the PU
sent codeword. Although this is an advantage in terms of confidentiality (SU
does not decode the PU messages), methods such that Backward Interference
Cancellation (BIC) SIC can dramatically improve the performances of both sys-
tems. This was shown in [Michelusi et al., 2013a] in the Type-I HARQcontext.
BIC and SIC techniques are extended in [Michelusi et al., 2013b] by introducing
Chain Decoding (CD). These techniques have not yet been studied in a Type-II
HARQ context but we can show their limit performances.

The limit of the BIC/SIC/CD schemes is attained when there is no inter-
ference from the PU to the SU. This limit means that all the interference is
correctly removed for every block. This case corresponds to ᾱ12 = 0 in our
context. In consequence, the case ᾱ12 = 0 is an upper bound on what is possi-
ble using the interference cancellation techniques of [Michelusi et al., 2013a] or
[Michelusi et al., 2013b]. In Figure 4.10, this upper bound is compared to the
throughput region for ω = 0.5 of Figure 4.3. As it can be observed in Figure
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Figure 4.10 – Comparison of the throughput regions with or without interfer-
ence cancellation.

4.10 the potential gain of the techniques proposed in [Michelusi et al., 2013a]
and [Michelusi et al., 2013b] is substantial.
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Conclusion

In this thesis we have proposed a CMDP approach to solve the problem of al-
locating resources for HARQ-based systems. This approach has been suggested
because of the sequential evolution of a HARQ protocol. In this thesis, we have
applied this approach, not only for the optimization of various HARQ proto-
cols; but we have also considered this approach for problems involving HARQ
protocols (even if these are not to be optimized).

In Chapter 1, we have proposed an introduction on the different types of
HARQ protocols. In particular, we have presented the Type-I HARQ protocol,
the CC-HARQ protocol and the IR-HARQ protocol. The throughput analysis
of these three protocols has been proposed in the context of asymptotic Gaus-
sian codebooks. This asymptotic Gaussian codebooks context has allowed us
to derive controlled Markov models for representing the state evolution of these
protocols depending on a power allocation. We have in particular derived a
unified model to handle the CC-HARQ and the IR-HARQ protocols. Finally,
the last contribution of Chapter 1 is to define a power allocation problem for
optimizing the throughput of an HARQ protocol under peak and power con-
straints.

In Chapter 2, we have reviewed the existing literature about the general
framework on CMDPs. This review not only presents the theoretical framework
of CMDPs, but also the practical implementation aspects of CMDPs. In par-
ticular, we have given discretization procedures for dealing with approximating
CMDPs with continuous state and action spaces. Since in the telecommunica-
tion area, the encountered problems are not always fully observable, we have
presented a practical method for handling CMDP with partial state information
(PSI-MDP). The main contribution of Chapter 2 has been to provide a practi-
cal condition, Condition 2.2, for ensuring that the CMDP corresponding to the
PSI-MDP model is solvable.

In Chapter 3, we have analysed the throughput maximization under peak
and power constraints. We have in particular considered two possible scenarios:
i) the full state of the HARQ protocol is known by Tx before each slot, ii) this
state is only partially observable. In the first case, we have that CMDPs are
the appropriate tool for solving the allocation problems given in Chapter 1.
The second proposed power allocation has been formulated as a PSI-MDP. The
solution of this PSI-MDPhas shown that with only 1 bit of feedback, the power
allocation obtained with the PSI-MDP case has almost the same performance
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as the one obtained with full state information (case i).
Finally, in Chapter 4, we have shown that with only one bit of feedback,

we can evaluate and mitigate the throughput loss of the PU and obtain a non-
negligible throughput for the SU. To show this result, we have formulated a
completely observable problem in which the SU has access to the full state of
the HARQ protocol of the PU. This completely observable problem has allowed
us to upper-bound the achievable performance of the SU. From this completely
observable problem, we have derived a PSI-MDP to handle the case where the
SU can only listen to the feedback bits of the PU. In both cases, we have shown
that non-negligible throughputs can be achieved by the SU while managing their
impact on the performance of the IR-HARQ protocol of the PU.

To conclude this thesis, we want to point out that, due to their sequen-
tial nature, the HARQ protocols are in general more difficult to optimize than
other communication systems. In the block-fading channel, there is often no
exploitable closed-form expression for the throughput of the Type-II HARQ
protocols. The framework proposed by the CMDPs is known to be well suited
for sequential decision problems. In consequence, the framework of CMDPs is
well suited for the resource allocation for HARQ protocols. On the other hand,
there are still open problems left in this thesis, we now list some of them that
are of notable interest.

Perspectives

• In this thesis, SCSI is required at the transmitter to perform resource alloca-
tion such as power or rate allocation considering HARQ protocols. It should be
interesting to consider problems in which this SCSI is not available but can be
inferred or learned along with the power allocation. Some learning algorithms
exist and do not suppose any knowledge on the transition matrix (or kernel) for
the MDP model. It is the case for example of some versions of the Q-learning
algorithm. The major drawback of these techniques is that the constraints are
in general difficult to handle. Extending these techniques to CMDPs is an in-
teresting and challenging task.

• We have seen that the cornerstone of our approach is that the receiver ac-
cumulates some quantities: for example SNR or mutual information. Exploiting
these quantity, we have built Markov models that are then used in CMDPs. In
the context of resource allocation for BICM, the ACMI is often used to per-
form bit-loading and power allocation. It could be interesting to study if these
problems can be interpreted in the CMDP framework.

• In this thesis, we have considered single user scenarios. Extending the
proposed method to multiple users scenarios is a challenging task. However,
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stochastic games are a generalization of the CMDP framework for problems
with multiple players. In consequence, we expect that stochastic games are an
appropriate tool to generalize the results presented in this thesis to multi-user
environments.

• Every optimization problem presented in this thesis can be re-written as
follows:

max
π

Eπ

[∑T
i=1 Ri

]
Eπ

[∑T
i=1 Di

]

s.t.
Eπ

[∑T
i=1 Ci

]
Eπ

[∑T
i=1 Di

] ≤ C̄.

This kind of problem is called fractional programming. The fractional program-
ming approach for solving certain classes of CMDP has been proposed in [Neely,
2011]. Furthermore, we have already observed that this framework is appropri-
ate for the design of rate adaptive HARQ systems. Generalizing this approach
for optimization problems with continuous state space, should provide us new
insights and new algorithms for solving rate or power allocation for HARQ based
systems.
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Appendices of Chapter 1

A.1 Expression of Q(B|sn, pn)

Q(BS |sn, pn) = P [Sn+1 ∈ BS |Sn = sn, Pn = pn] (A.1)

=
∫

S
1B(sn+1)Q(dsn+1|sn, pn), (A.2)

where 1B(s) is the function that is equal to 1 if sn+1 ∈ B and 0 otherwise. In
our case, the transition kernel has the following expression:

Q(dsn+1|sn, pn) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If kn < NT − 1 :

P [xn +Δ(αn, Pn) ≥ DT |Pn = pn] δ(0,0)(dsn+1)

+fΔ|P (xn+1 − xn|pn)δkn+1(dkn+1)�(dxn+1)

If kn = NT − 1 :

P [xn +Δ(αn, Pn) ≥ DT |Pn = pn] δ(0,0)(dsn+1)

+P [xn +Δ(αn, Pn) < DT |Pn = pn] δ(NT ,0)(dsn+1)

If kn = NT :

P [xn +Δ(αn, Pn) ≥ DT |Pn = pn] δ(0,0)(dsn+1)

+fΔ|P (xn+1|pn)δ1(dkn+1)�(dxn+1)

(A.3)

Where, for Rayleigh channel and in the case of CC-HARQ protocol we have

P [x +Δ(αn, Pn) < DT |Pn = pn] = 1 − exp
[
−DT − x

ᾱpn

]
, (A.4)

and
fΔ|P (x|pn) =

1
ᾱpn

exp
[
− x

ᾱpn

]
, x ≥ 0. (A.5)
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For Rayleigh channel and in the case of IR-HARQ protocol we have

P [x +Δ(αn, Pn) < DT |Pn = pn] = 1 − exp
[
−2DT −x − 1

ᾱpn

]
, (A.6)

and after some calculations we obtain

fΔ|P (x|pn) =
2x exp

[
− x

ᾱpn

]
log(2)

ᾱpn
, x ≥ 0. (A.7)
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B.1 Stochastic Kernels

Definition B.1. [Bertsekas & Shreve, 1978, Chapter 7] Let X and Y be two
separable metrizable spaces. A stochastic kernel Q(dy|x) on Y given X is a
collection of probability measures on Y parametrized by x ∈ X .

Q is said to be weak Feller (or weakly continuous) if and only if for every
measurable bounded function v, the function

x �→
∫

Y
v(y)Q(dy|x) (B.1)

is bounded on X .
Q is said to be strong Feller (or strongly continuous) if and only if for every

measurable bounded function v, the function

x �→
∫

Y
v(y)Q(dy|x) (B.2)

is bounded and continuous on X .

B.2 Convergence of probability measures

Let X be a given Borel space. Let {mn} be a sequence of probability measures
on the same space X . Let m be probability measures on the same space X . In
this section we are interested in situations in which "mn → m" in some way see
[Hernández-Lerma & Lasserre, 1996]. We first introduce the weak convergence
concept.

Definition B.2. We say that mn converges weakly to m, if and only if for every
continuous and bounded function v ∈ C(X ):

lim
n→∞

∫
X

v(x)mn(dx) =
∫

X
v(x)m(dx). (B.3)
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The weak convergence is denoted as follows

mn
w.−→ m. (B.4)

The second mode of convergence is the set-wise convergence.

Definition B.3. The set-wise convergence is defined as follows: for every B ∈
B(X ),

mn(B) → m(B). (B.5)

The last way of defining a convergence notion for mn considers the TV-norm
defined for every signed measure μ on X as follows:

||μ||T V = sup
B∈B(S)

μ(B) − inf
B∈B(S)

μ(B). (B.6)

For two probability measures μ1 and μ2, ||μ1 − μ2||T V is given by

||μ1 − μ2||T V = 2 sup
B∈B(X )

|μ1(B) − μ2(B)| . (B.7)

We now introduce the convergence in TV-norm (sometimes referred to as the
strong convergence).

Definition B.4. We say that mn converges to m in the TV-norm if and only
if

||mn − m||T V −→
n→∞ 0. (B.8)

B.3 Proof of the strong duality

This proof is based on the following fact. For every λ, there exists a triplet
(λ, uλ, βλ) that is admissible for the dual problem (2.56). This result comes
from the fact the Assumption 2.1 is sufficient for Theorem 2.2 of [Hernández-
Lerma, 1989, Chapter 3.]. For a given λ ∈ R

nc , the function

(s, a) �→ r(s, a) +
nC∑
j=1

λj (Vj − cj (s, a))

is bounded and continuous. As a consequence, for every λ ∈ R
nc , this theorem

states that under Assumption 2.1, there exists βλ ∈ R and uλ ∈ C(S × A) such
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that

βλ + uλ(s) = max
a∈A(s)

r(s, a) +
nC∑
j=1

λj (Vj − cj (s, a)) +
∫

S
uλ(y)Q(dy|s, a). (B.9)

Another consequence of the same theorem is that for every initial distribution
ν0,

βλ = sup
π∈Π

R(ν0, π) +
nC∑
j=1

λj (Vj − Cj(ν0, π)) (B.10)

Furthermore, because of the measurable selection theorem, there exists ζλ ∈
ΠDS such that:

βλ + uλ(s) = r(s, ζλ(s)) +
nC∑
j=1

λj (Vj − cj (s, ζλ(s))) +
∫

S
uλ(y)Q(dy|s, ζλ(s)),

(B.11)
and

βλ = R(ζλ) +
nC∑
j=1

λj (Vj − Cj (ζλ)) . (B.12)

We show here that the function λ �→ βλ is a continuous coercive function.
This will be used to prove that this function attains its infimum. To do so, let
ε ∈ R

nc
+ , from equation (B.12) we obtain

|βλ+ε − βλ| ≤
∣∣∣∣∣∣

nC∑
j=1

εj (Vj − Cj (ζλ))

∣∣∣∣∣∣ (B.13)

≤ ||ε||∞
nc∑

j=1
|(Vj − Cj (ζλ))| (B.14)

≤ nc ||ε||∞ (||V||∞ + ||cM ||∞) , (B.15)

where cM is the vector (c1,M , c2,M , . . . , cnc,M ). From the boundedness of nc,
||V||∞, and ||cM ||∞, we obtain that βλ is Lipschitz continuous and so continu-
ous.

Under Assumption 2.2, there exists ϕ0 ∈ ΠRS such that C(ϕ0) < V. Using
this ϕ0 in (B.10) leads to

lim
||λ||∞→+∞

βλ = +∞. (B.16)

There exists λ	 such that
βλ� = inf

λ>0
βλ. (B.17)

We finally prove that βλ� = β	. Since the triplet (uλ� , βλ� , λ	) is admissible
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for the dual LP (2.56), we have β	 ≤ βλ� . Let (u, β, λ) be an admissible triplet
for the dual LP (2.56). We have that for all s ∈ S and all a ∈ A(s)

β + u(s) ≥ r(s, a) +
nC∑
j=1

λj (Vj − cj (s, a)) +
∫

S
u(y)Q(dy|s, a). (B.18)

For every ϕ ∈ ΠRS , integrating both sides by ϕ(da|s)Q∞
ϕ (ds) gives

β ≥ R(ϕ) +
nC∑
j=1

λj (Vj − Cj(ϕ)) . (B.19)

Since it is true for every ϕ ∈ ΠRS , it is also true for ζλ hence

β ≥ R(ζλ) +
nC∑
j=1

λj (Vj − Cj(ζλ)) = βλ. (B.20)

Taking now the infimum over all admissible triplet (u, β, λ) gives that β	 ≥ βλ� .

B.4 Proof of the convergence of discrete ap-

proximation

To use properties shown for the unconstrained case in the constrained case, we
will use Proposition 2.1 and Proposition 2.2. Proposition 2.1 shows that solving
the infinite dimensional linear programming (2.50) is equivalent to solving the
unconstrained MDP

(S, A, U , Q, r +
∑

λj(Vj − cj))

and taking the infimum over all values of λ. For every λ, let L(λ) be defined as

L(λ) = sup
ϕ∈ΠRS

⎛
⎝R(ϕ) +

nc∑
j=1

λj (Vj − Cj(ϕ))

⎞
⎠ . (B.21)

If Assumption 2.2 holds, Proposition 2.2 shows that there exists λM such that
λ	 ≤ λM . This result implies that

R	 = inf
0≤λ≤λM

L(λ). (B.22)

Consider now the discretized problem

(S, Ãh, Ũh, Q̃h, r̃h +
∑

λj(Vj − c̃j,h))
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and let L̃h be defined as

L̃h(λ) = sup
ϕ∈Π̃RS

⎛
⎝R̃h(ϕ) +

nc∑
j=1

λj

(
Vj − C̃j,h(ϕ)

)⎞⎠ . (B.23)

L̃h(λ) is related to the optimal value of the discretized CMDP (S, Ãh, Ũh, Q̃h, r̃h, c̃h)
by the following relationship:

R̃	
h = inf

λ≥0
L̃h(λ). (B.24)

Suppose that Assumption 2.2 holds for the CMDP (S, Ãh, Ũh, Q̃h, r̃h, c̃h). Propo-
sition 2.2 shows that there exists λ̃M such that λ̃

	 ≤ λ̃M . This result implies
that

R̃	
h = inf

0≤λ≤λ̃M

L̃h(λ). (B.25)

From equations (B.22) and (B.25) we have
⎧⎨
⎩R	 = inf0≤λ≤λ′

M
L(λ).

R̃	
h = inf0≤λ≤λ′

M
L(λ).

(B.26)

where λ′
M = max

(
λM , λ̃M

)
. Also we have that for every λ such that λ ≤ λ′

M

the function r+
∑

λj(Vj − cj) is K(1+ ncλ′
M )-Lipschitz continuous. Using the

result of [Chow, 1989] we have that there exist a constant K ′ such that for every
λ such that λ ≤ λ′

M

L(λ) − K ′h ≤ L̃h(λ) ≤ L(λ) + K ′h (B.27)

which, in turn implies

R	 − K ′h ≤ R̃	
h ≤ R	 + K ′h. (B.28)

B.5 Proof of equation (2.91)

Let X and Y be some random variables. For the sake of readability we use the
notation f(x, y) instead of fX,Y (x, y) and similarly f(x|y) instead of fX|Y (x|y).
We now prove equation (2.91).

bx,t(xt) is the a posteriori distribution of Xt given Ht = (Ht−1, At−1, Yt).
More formally, bx,t(xt) is defined as

bx,t(xt) = f (xt|ht−1, at−1, yt) . (B.29)
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By definition of the conditioning on yt, we have

bx,t(xt) =
f (xt, yt|ht−1, at−1)

f (yt|ht−1, at−1)
. (B.30)

By marginalizing over Xt−1 we rewrite f (xt, yt|ht−1, at−1) as follows:

f (xt, yt|ht−1, at−1) =
∫

X
f (xt, yt, xt−1|ht−1, at−1) dxt−1 (B.31)

=
∫

X
f (xt, yt|xt−1, ht−1, at−1) f(xt−1|ht−1, at−1)dxt−1

(B.32)

The same reasoning can be done to write f (yt|ht−1, at−1) as follows:

f (yt|ht−1, at−1) =
∫

X
f (yt|xt−1, ht−1, at−1) f (xt−1|ht−1, at−1) dxt−1 (B.33)

Since Xt−1 is non-observable and since At−1 depends on the observable history
Ht−1 only, At−1 and Xt−1 are independent. This implies that f (xt−1|ht−1, at−1) =
f (xt−1|ht−1). Using the definitions of bx,t−1 and q we have bx,t−1 = f (xt−1|ht−1)
and q (xt, yt|xt−1, yt−1, at−1) = f (xt, yt|xt−1, ht−1, at−1). Finally, bx,t is ob-
tained from bx,t−1, yt−1, at−1 and yt thanks to the following relationship:

bx,t(xt) =
∫

X q (xt, yt|xt−1, yt−1, at−1) bx,t−1(xt−1)dxt−1∫
X
∫

X q (x′
t, yt|yt−1, at−1, xt−1) bx,t−1 (xt−1) dxt−1dx′

t

. (B.34)

B.6 Proof of Theorem 2.6

To prove Theorem 2.6, we will show that Condition 2.2(e) implies that for every
z ∈ Z and every a ∈ A, QZ verifies that for every B ∈ B(P(X )) and every
C ∈ B(Y),

QZ(B × C|z, a) ≥ νY (C ∩ C0)δm0(B). (B.35)

This will prove that Condition 2.1(b) holds and in consequence that Assumption
2.1(e) holds.

We now show equation (B.35). From equation (2.95) and using C0 defined in
Condition 2.2(e)− i), we have that for every B ∈ B(P(X )) and every C ∈ B(Y):

QZ(B × C|zt−1, at−1) ≥ QZ(B × (C ∩ C0)|zt−1, at−1)

=
∫

C∩C0

1 (Hb(zt−1, at−1, yt) ∈ B)Q′
Y (dyt|zt−1, at−1)

Because C ∩ C0 ⊂ C0 and because of the Condition 2.2(e) − ii), we have that



B.7. Proof of Remark 2.2 125

for every y ∈ C ∩ C0, Hb(z, a, y) = m0 independently of z and a. Therefore, we
have

QZ(B × C|zt−1, at−1) ≥ δm0(B)
∫

C∩C0

Q′
Y (dyt|zt−1, at−1)

≥ δm0(B)νY (C ∩ C0), (B.36)

where the second inequality is obtained by using Condition 2.2(e) in equation
(2.93). This in turn implies that QZ verifies Assumption 2.1(e).

B.7 Proof of Remark 2.2

Let s0 ∈ S be a state such that for every s ∈ S and every a ∈ A, Q({s0} |s, a) > ε

and QX(dx′|x, y, a, y0) = δx0(dx′). From the definition of QZ we have

QZ(B × C|zt−1, at−1) ≥ QZ(B × (C ∩ {s0})|zt−1, at−1)

=
∫

C∩{y0}
1 (Hb(zt−1, at−1, yt) ∈ B)Q′

Y (dyt|zt−1, at−1)

= δy0(C)1 (Hb(zt−1, at−1, yt) ∈ B)Q′
Y ({y0} |zt−1, at−1)

Moreover using the disintegration of Q we have that

Q({s0} |s, a) = QX({x0} |s, a, y0)QY ({y0} |s, a),

using now the assumptions QX(dx′|x, y, a, y0) = δx0(dx′) and Q({s0} |s, a) > ε

proves that QY ({y0} |s, a) > ε which in turn proves that Q′
Y ({y0} |s, a) > ε.

This finally proves that

QZ(B × C|zt−1, at−1) ≥ εδy0(C)δm0(B),

where m0 = δx0 . To complete the proof note that δy0(Y) = 1.
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C.1 Lipschitz continuity of Q, the Type-I HARQ

case

In this appendix, we show that in the case of Rayleigh fading channel, Assump-
tion 2.3(d) holds.

For two probability measures μ1 and μ2 on S (which is a discrete space), it
is shown in [Hernández-Lerma, 1989] that

||μ1 − μ2||T V =
∑
k∈S

|μ1(k) − μ2(k)| . (C.1)

We now apply this result to μ1 = Q(·|s, a) and μ2 = Q(·|s′, a′) expressed thanks
to equations (3.1) and (3.2).

In the case s �= s′ we have

||Q(·|s, a) − Q(·|s′, a′)||T V ≤ 2 ≤ 2 ||(s, a) − (s′, a′)||∞ . (C.2)

The first inequality comes from triangular inequality and the second inequality
comes from the fact that if s �= s′, ||(s, a) − (s′, a′)||∞ ≥ 1.

In the case s �= s′ we have by direct calculations that

||Q(·|s, a) − Q(·|s′, a′)||T V = 2 |po(a) − po(a′)| (C.3)

By direct calculations on the expression of po in the case of Rayleigh fading (this
expression is given in equation (3.2)), one can easily show that this function is
K-Lipschitz continuous for some K. This proves that

||Q(·|s, a) − Q(·|s′, a′)||T V = 2K |(s, a) − (s′, a′)| . (C.4)

In consequence, Assumption 2.3(d) holds taking K ′ = max(2, 2K).
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C.2 Lipschitz continuity of Q, the Type-II HARQ

case

We focus here on the IR-HARQ case, but this proof is the same (with obvious
changes) for the case of CC-HARQ. Remark first that the definition of the total
variation norm given in (2.29) implies that ||p1 − p2||T V ≤ 2. This implies that
if u = ((k, i), a) and u′ = ((k′, i′), a′) with k �= k′, we have

||u − u′||∞ ≥ 1 ≥ 1
2

||Q(·|u) − Q(·|u′)||T V . (C.5)

We consider first the case k = k′. Using the definition of Q of equation (A.3)
and considering arbitrarily that i′ ≥ i, we bound ||Q(·|u) − Q(·|u′)||T V using
the triangle inequality as follows:

||Q(·|u) − Q(·|u′)||T V ≤ ∣∣FΔ|A(R − i′|a′) − FΔ|A(R − i|a)∣∣
+
∫ i′

i

fΔ|A(x − i|a)dx

+
∫ R

i′

∣∣fΔ|A(x − i|a) − fΔ|A(x − i′|a)∣∣ dx,

(C.6)

where FΔ|A and fΔ|A are defined in equations (A.6) and (A.7). Because we have
assumed that A = [PminPmax] with Pmin > ε for some ε > 0, it follows from
direct calculations from (A.6) and (A.7), that the function (x, a) �→ FΔ|A(x|a)
is K-Lipschitz for some K, the function (x, a) �→ fΔ|A(x, a) is bounded by some
constant K ′ and is K ′′-Lipschitz. From these observations it follows that

||Q(·|u) − Q(·|u′)||T V ≤ (K + K ′ + r1K ′′) ||u − u′||∞ .

To conclude the proof, it suffices to take K4 = max(2, K + K ′ + r1K ′′).
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D.1 Expression of Q(B|sn, pn)

Q(B|sn, pn) = P [Sn+1 ∈ B|Sn = sn, Pn = pn] (D.1)

=
∫

S
1B(sn+1)Q(dsn+1|sn, pn), (D.2)

where 1B(sn+1) is the function that is equal to 1 if sn+1 ∈ B and 0 otherwise.
In our case, the transition kernel has the following expression:

Q(dsn+1|sn, pn) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If kn < NT − 1 :

P [in +Δ(wn, p2,n) ≥ R|p2,n] δ(0,0)(dsn+1)

+fΔ|P (in+1 − in|p2,n)δkn+1(dkn+1)�(din+1)

If kn = NT − 1 :

P [in +Δ(wn, p2,n) ≥ R|p2,n] δ(0,0)(dsn+1)

+P [in +Δ(wn, p2,n) < DT |p2,n] δ(NT ,0)(dsn+1)

If kn = NT :

P [in +Δ(wn, p2,n) ≥ R|p2,n] δ(0,0)(dsn+1)

+fΔ|P (in+1|p2,n)δ1(dkn+1)�(din+1)

(D.3)

By definition, we have P [in +Δ(wn, p2,n) ≥ R|p2,n] = 1 − FΔ|P (R − in|p2,n),
where, for Rayleigh channels, we have that αij is exponentially distributed with
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mean ᾱij . After tedious computations we get, FΔ|P (δ|p2):

FΔ|P (x|p2) = P

[
log2

(
1 +

α11p1
1 + α21p2

)
≤ x|p2

]

=

⎧⎪⎪⎨
⎪⎪⎩

(
1 − exp

[
− 2x−1

p1ᾱ11

])
p1ᾱ11 + (2x − 1) p2ᾱ21

p1ᾱ11 + (2x − 1) p2ᾱ21
, if x ≥ 0

0, otherwise,

(D.4)

where the time indexes has been dropped. Let also fΔ|P (x|p2) be the corre-
sponding to pdf,

fΔ|P (x|p2) =
∂FΔ|P

∂x
(x, p2)

=

⎧⎪⎪⎨
⎪⎪⎩
2x exp

[
− 2x−1

p1ᾱ11

]
log(2) (p1ᾱ11 (1 + p2ᾱ21) + (2x − 1) p2ᾱ11)

(p1ᾱ11 + (2x − 1) p2ᾱ12)2
, if x ≥ 0

0, otherwise.

(D.5)

D.2 Proof of Lipschitz continuity Q(·|sn, pn)

The proof of this Lipschitz continuity property is exactly the same as the one
proposed in Appendix C.2 except that we consider the functions FΔ|P (x|p2) and
fΔ|P (x, p2) from equations (D.4) and (D.5).

D.3 Proof of Lipschitz continuity of r2

In this appendix we prove that the function defined as

r2,n = r2(p2,n) = max
r∈R+

rP [log2 (1 + p2,nβ2,n) ≥ r] . (D.6)

is Lipschitz continuous.
We first study the function defined as follows

v(r, p2) = rP [log2 (1 + p2β2) ≥ r] . (D.7)

After some tedious calculations, v(r, p2) can be expressed as follows:

v(r, p2) = r
p2ᾱ22 exp

[
− 2r−1

p2ᾱ22

]
p2ᾱ22 + (2r − 1) p1ᾱ12

. (D.8)
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By direct computation of the derivatives of v(r, p2), we show that this function
is bounded and Lipschitz continuous for some K. For every p2, p′

2 ∈ A, we have

|r2(p2) − r2(p′
2)| = |v(r̄(p2), p2) − v(r̄(p′

2), p′
2)| , (D.9)

where r̄ = argmaxr∈R+ rP [log2 (1 + p2β2) ≥ r]. We suppose, without loss of
generality that p2 ≥ p′

2, remarking that, from its definition, the function r2(p2)
is an increasing in p2, we get

r2(p2) − r2(p′
2) = v(r̄(p2), p2) − v(r̄(p′

2), p′
2),

≤ v(r̄(p′
2), p2) − v(r̄(p′

2), p′
2),

≤ K (p2 − p′
2) ,

(D.10)

where the second inequality comes from the fact that r2(p2) ≥ v(r̄(p′
2), p2) and

the third inequality comes from the fact that the function v(r, p) defined by
equation (D.7) is K-Lipschitz.
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Résumé

Dans les standards actuels tels que HSDPA ou LTE, des protocoles de retrans-
missions (ARQ : Automatic Repeat reQuest) sont utilisés conjointement au
codage de canal afin de palier aux erreurs dues à l’absence ou la mauvaise de
connaissance de canal à la transmission. On garantit ainsi la fiabilité du lien
physique pour les couches OSI supérieures (du moins un taux d’erreur paquet
faible). De tels protocoles sont appelés protocoles de retransmission hybrides
(HARQ). L’objectif de cette thèse est de proposer des outils permettant l’ana-
lyse et l’optimisation des systèmes de communication en présences de proto-
coles HARQ avec une emphase particulière sur les systèmes cognitifs. La radio
cognitive est une approche permettant à des utilisateurs non-licenciés de com-
muniquer dans les mêmes bandes de fréquences que des utilisateurs licenciés
afin d’augmenter l’efficacité spectrale des réseaux sans fil. Les utilisateurs se-
condaires doivent néanmoins limiter les interférences générées sur les signaux
des utilisateurs primaires. Dans ce contexte, nous étudierons les débits attei-
gnables par un utilisateur secondaire utilisant l’observation du protocole HARQ
de l’utilisateur primaire afin de contrôler son interférence.

Abstract

Automatic Repeat Request protocols (ARQ) are widely implemented in current
mobile wireless standards such as HSDPA and LTE. In general, ARQ protocols
are combined with channel coding to overcome errors caused by the lack of chan-
nel knowledge at the transmitter side. These protocols are called Hybrid ARQ
protocols (HARQ). HARQ protocols ensure a good reliability (at least a small
packet error rate) of the physical layer for the OSI upper layers. The purpose
of this thesis is to provide tools for the analysis and the optimization of HARQ
communication systems with an emphasis on cognitive systems. Cognitive Ra-
dio (CR) is an approach aiming to increase the spectral efficiency of wireless
networks. In a CR context, unlicensed users are allowed to communicate within
the same frequency bands and at the same time as licensed users. Secondary
users must however limit the amount of interference generated on the primary
users signals. In this thesis, we consider a scenario in which the secondary user
interferes a primary user employing a HARQ protocol. When the secondary user
knows the state of the primary HARQ protocol, we show that a joint power and
rate allocation can be performed to limit the interference.


