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Abstract – English

Single-pass free-electron lasers (FELs) are currently the most promising facilities for pro-

viding light pulses with high energies (µJ to mJ) at femtosecond time scales (1 f s = 10−15 s)

and with ultrashort wavelengths (nanometer resolution i.e., down to extreme-ultraviolet and X-

ray spectral regions). Extreme-ultraviolet FELs are still quite young so that many questions

remain open. Those addressed within this manuscript concern the so-called seeded configu-

ration, where an external coherent source (the “seed”) initiates the process. In particular, we

focus in this thesis on the transverse and longitudinal characteristics of the light, its coherence,

the properties of the temporal phase and the direct correlations between the seed and the FEL

emission.

With regard to FELs, high-order harmonics of femtosecond laser pulses generated in no-

ble gases (HHG technique) exhibit both competitive and complementary features. Competitive,

because the produced pulses have similar assets as the ones provided by an FEL. Complemen-

tary, because the generated harmonics can be used as a seed or, in combination with FEL light,

to perform multi-beam experiments. Even though less powerful pulses are produced by a HHG

source, its implementation requires a significantly smaller effort. The efficiency of harmonic

conversion, the tunability and spatial quality of the generated beam, and how these parameters

depend on the driving laser are the issues discussed within this manuscript.

The general will of the scientific community to perform novel experiments requires deep

studies and optimization of FEL and HHG sources. In particular, on the seeded FEL facility

FERMI@Elettra of Trieste, the induction of chirp in the radiation has led to remarkable results.

Among others, a method of generation of split pulses with different wavelengths has been con-

strued and developed. Such a possibility paves the way for the use of seeded FEL facilities

as stand-alone sources for two-colour pump-probe setups. More generally, the study of phe-

nomena involved in the FEL and HHG processes, together with the characterization of the light

properties, are intrinsically exciting matters that have direct connections with fundamental as-

pects of physics.





Abstract – Slovenian

Laser na proste elektrone (LPE, ang. free-electron laser – FEL) z enojnim prehodom je

trenutno najbolj obetaven vir femtosekundnih (1 f s = 10−15 s) svetlobnih pulzov z visoko en-

ergijo (µJ do mJ) in ultra kratko valovno dolžino (nanometrska ločljivost, t.j., vse do spektral-

nega območja ekstremne ultravijolične in rentgenske svetlobe). LPE-ji, ki delujejo na področju

ekstremne ultravijolične svetlobe, so razmeroma novi svetlobni viri, kar pomeni, da so glede nji-

hovega delovanja odprta še mnoga vprašanja. V pričujočem doktorskem delu smo se ukvarjali

predvsem z dvostopenjsko konfiguracijo, pri kateri LPE ojači zunanje (koherentno) elektromag-

netno valovanje (seed). Osredotočili smo se na transverzalne in longitudinalne lastnosti proizve-

dene svetlobe, koherenco, lastnosti časovne faze ter na direktne korelacije med zunanjim virom

(seed) in sevanjem LPE-ja.

Poleg LPE-jev so v vzponu tudi svetlobni viri, ki temeljijo na generaciji visokih harmonikov

(GVH, ang. high-order harmonic generation – HHG) v žlahtnih plinih. Ti svetlobni viri so zaradi

podobnih lastnosti pulzov konkurenčni LPE-jem, po drugi strani pa predstavljajo komplemen-

tarne izvore svetlobe, ker jih je mogoče uporabiti v dvostopenjski LPE konfiguraciji kot vir zunan-

jega elektromagnetnega valovanja (seed) ali v kombinaciji z LPE-jem v eksperimentih z dvema

ali več žarki. Kljub temu, da so ti svetlobni viri šibkejši v primerjavi z LPE-ji, je njihova izvedba

bistveno lažja. V dizertaciji obravnavamo izkoristek harmonične pretvorbe virov, ki temeljijo na

principu GVH, nastavljivost in prostorsko kakovost žarkov, ter odvisnost omenjenih parametrov

od gonilnega laserja.

Zaradi vse večje težnje po novih eksperimentih na vseh znanstvenih področjih sta ključna

zelo natančno poznavanje delovanja in optimizacija LPE-jev in virov, ki temeljijo na GVH. Med

bolj pomembne dosežke na LPE-ju FERMI@Elettra v Trstu spadajo možnost spreminjanja trenu-

tne frekvence proizvedene svetlobe (ang. chirp) na podlagi katere je bila razvita metoda za

generacijo razdeljenih pulzov z različnimi valovnimi dolžinami. S pomočjo te metode bo možno

dvostopenjske LPE-je uporabljati kot samostojne vire svetlobe za poskuse v t.i. načinu “pump-

probe”. V dizertaciji so predstavljene študije pojavov, ki so prisotni pri generaciji svetlobe v LPE-

jih ter virih, ki temeljijo na GVH. Ti pojavi so, skupaj z metodami karakterizacije proizvedene

svetlobe, tesno povezani s temeljnimi principi v fiziki.





Abstract – French

Les lasers à électrons libres (LELs) à simple passage représentent actuellement la possi-

bilité la plus prometteuse pour fournir des impulsions lumineuses de haute énergie (µJ à mJ) à

des échelles de durée femtoseconde (1 f s = 10−15 s) et des longueurs d’ondes ultra-courtes

(résolution nanométrique c.-à.-d. jusqu’aux domaines de l’extrême-ultraviolet et des rayons X).

Les LELs émettant dans l’extrême-ultraviolet sont une technologie encore jeune, si bien que

de nombreuses questions restent ouvertes. Celles posées au sein de ce manuscrit concer-

nent la configuration dite injectée, dans laquelle le processus est initié par une source externe

cohérente (le “seed"). Nous nous concentrons particulièrement dans cette thèse sur les carac-

téristiques transverses et longitudinales de la lumière, sa cohérence, les propriétés de la phase

temporelle et les liens directs entre le seed et l’émission LEL.

La technique de génération dans un gaz noble d’harmoniques d’ordres élevés d’un laser

femtoseconde (GHE) se montre à la fois complémentaire et en compétition avec les LELs. En

compétition car les impulsions produites ont des qualités similaires à celles obtenues avec un

LEL ; complémentaire car le rayonnement GHE peut être utilisé comme seed ou en combinai-

son avec la lumière LEL, par exemple pour effectuer des expériences mettant en jeu de multi-

ples faisceaux. Bien que la GHE fournisse des impulsions moins puissantes, l’implémentation

d’une telle source requiert un effort significativement moins important. Le taux de conver-

sion harmonique, l’accordabilité et la qualité spatiale du faisceau généré, et la manière dont

ces paramètres dépendent du laser générateur sont les problématiques traitées au sein de ce

manuscrit.

La volonté de la communauté scientifique d’effectuer des expériences novatrices demande

des études profondes et l’optimisation des sources de GHE et des LELs. En particulier, sur

la source LEL injectée FERMI@Elettra de Trieste, l’induction d’une dérive de fréquence dans

le rayonnement a conduite à des résultats marquants. Entre autres, une méthode de généra-

tion d’impulsions scindées avec différentes longueurs d’ondes a été analysée et développée.

Une telle possibilité ouvre la voie à l’utilisation des LELs injectés en tant que source autonome

pour des installations de type pompe-sonde à deux couleurs. Plus généralement, l’étude des

phénomènes mis en jeu dans les processus de GHE et du LEL, ainsi que la caractérisation

des propriétés de leur lumière, sont des sujets intrinsèquement excitants ayant des connexions

directes avec de nombreux aspects fondamentaux de la physique.
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Introduction

For the last two decades, marked by the Nobel Prize obtained in 1999 by Ahmed H. Zewail

for his work on femtochemistry [1], the study of ultrafast processes has been in continuous

development. The quest for short durations proceeded together with investigations on nanoscale

samples. To probe ultrafast phenomena and/or fine structures, the best tool is a coherent and

powerful photon beam, in other words, a laser.

For analysing the dynamics of a sample at an ultrafast time scale, pump-probe experiments

have demonstrated to be of great interest: time-resolved absorption [2, 3, 4, 5], coherent anti-

Stokes Raman scattering [6], probe-induced Raman scattering [7] and femtosecond transition-

state spectroscopy [8] are examples of applications of such a setup. Beside this, the generation

of multiple synchronized frequencies from femtosecond laser sources is a very important benefit,

as in the case of degenerate four-wave mixing [9, 10]. Such asset can be combined to the pump-

probe technique for the use in a two-colour pump-probe setup [11].

In order to reach sufficient resolution, needed for instance for coherent diffraction imaging

[12], laser light must be ultrafast (picosecond to attosecond pulse duration) and have a short

wavelength (down to X-ray). A large photon flux is also required, especially for the study of

nonlinear processes, requiring high peak intensities. Tuning the photon beam wavelength and

polarization, mastering its spectral and temporal structure, improving its stability and shaping it

spatially are also important assets.

However, generating light with all these characteristics is not trivial, and all the pre-cited

applications are therefore limited to photon energies of the order of some eV . The main reason

stems from the lack of conventional lasers below ≈ 150 nm. Free-Electron Lasers (FEL’s) [13,

14] and the technique of High-order Harmonic Generation (HHG) [15] in noble gases are the

two main present-day solutions for overcoming this limit. Nevertheless, they still do not meet the

expectations of the scientific community and many interesting issues concerning their underlying

physics remain open. The work that I have carried out in the framework of my PhD has aimed

at contributing to the investigations of such problems.

This manuscript hinges on five main chapters:

In Chapter I, I will present the main notions that will be essential all along the study. In

particular, the two kind of sources of interest here, namely FEL’s (especially the FERMI@Elettra

facility) and HHG, will be described. The purpose will not be to deeply explain their mecha-

nisms, rather their main characteristics and the physical processes of interest in the frame of

my thesis. It will be forwarded by the definition of some “fundamental" concepts of femtosecond

laser pulses.

Chapter II will focus on experiments characterizing the spatial quality of femtosecond light

sources. As a first step, it will concern the transverse characterizations carried out on the
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FERMI@Elettra source: spatial coherence, intensity spot and wavefront measurements. Af-

ter this, a section will be dedicated to a series of experiments held a CEA Saclay on the LUCA

source. The spatial quality of the latter, of the EUV photons and the optimization of the global

HHG process will be studied.

Two next chapters will then be dedicated to the chirp in seeded FEL’s. At the input of such a

machine, they correspond to two different things: the frequency-vs-time dependence of the seed

and the energy-vs-time dependence along the electron bunch. At the output, it corresponds to

the frequency-vs-time dependence of the emitted pulse. These different chirps, their respective

effects and their interplay will be studied in Chapter III.

As a consequence of these chirps, I will present in Chapter IV the effect of formation of

two-colour pulses that we emphasized on FERMI@Elettra. After preliminary description and

characterizations, a more comprehensive work will be presented. Thanks to this unique feature,

chirped seeded FEL’s can be utilized as stand-alone light sources for pump-probe experiments.

It evidences the wide possibilities of temporal studies that can be done on seeded FEL’s by

playing with the different chirps. In particular, I will demonstrate that the temporal shape of the

output pulses can be directly retrieved, without any additional setup or algorithm.

Finally, before concluding, Chapter V will continue on the topic of tunability introduced by

spectral studies carried out on seeded FEL’s. Different setups have been imagined for optimizing

this asset on HHG sources. Here I will present a simple solution relying on the tunability of the

driving field.

Before starting, I wish to stress that the activity on FERMI@Elettra has been quite intense

within the last half of my PhD. It would have been possible to present a lot of results in this thesis,

but I preferred to focus on the studies that I led, in order to provide an (hopefully) easy-to-read

and personal manuscript.
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I.1 Some notions of (femtosecond) laser physics

I.1.a Ultrashort pulse and bandwidth

Temporally, a continuous wave can be described by a sinusoidal function. In an ultrashort

wave (in this thesis, we will deal with durations of the order of the femtosecond, 1 f s = 10−15 s),

there will be only a few cycles of this sinusoid. For instance, at a wavelength of 800 nm cor-

responding to the limit visible/infrared, the duration of an optical cycle is 2.7 f s. If the duration
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of the light pulse is 27 f s, there will be only 10 cycles within this burst. But in fact, intrinsically

to this ultrashort duration, the pulse will not have only one single wavelength, but an addition

of wavelengths forming the bandwidth. Indeed, let us look at the Fourier decomposition of our

wave: f (t) = ∑an cos(nω −ϕn), where n is an integer, ω is the angular frequency, an and φn

are the amplitudes and phase at the frequency components nω . In Fig. I.1, we considered a

wave whose central frequency is an arbitrary value 8ω . In the case shown on the left panel,

there is a single frequency and the sum of this single component is thus a continuous wave. In

the middle panel, we considered that f (t) is made of fifteen frequencies in phase, ranging from

ω to 15ω (for simplicity, in the top graphs only three frequency components are represented):

the wave, corresponding to the sum of these different frequency components, is not continuous

any more but has a finite duration. We will thus call it a pulse. In the case where we take the

same spectral components with same weights but dephased (right panel), f (t) is lengthened.

Moreover, if we have an accurate look to the shape of f (t), we see that at the beginning the

period of the oscillations is longer than at the end. In other words, the instantaneous frequency

is not constant along the pulse: this phenomenon is called the chirp, and is a fundamental point

in this thesis. It is due to the fact that the different spectral components are not in phase.

one single frequency

 

 

8ω

continuous wave

 

 

f(t)

sum of frequencies in phase

 

 

8ω
4ω
12ω

ultrashort pulse

 

 

f(t)

sum of dephased frequencies

 

 

8ω
4ω
12ω

stretched pulse

 

 

f(t)

Figure I.1: Wave f(t) (bottom pictures) resulting from the addition of different spectral components (top pictures).

Left panel: one single spectral component; middle panel: sum of 15 spectral components, in phase; right panel:

sum of the same 15 spectral components, but dephased.
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I.1.b Electric field

Like any wave, an ultrashort laser pulse can be described by its electric field depending on

the spatio-temporal coordinates. As a first approach we will reduce to the temporal variations

only. The temporal electric field corresponds to the function f (t) that we considered above. One

generally writes it as follows:

E(t) = A(t)ei[ω0t+ϕ(t)], (I.1)

where A(t) is the envelope of the pulse and ϕ(t) is called the temporal phase of the pulse. In

fact, the entity ω0t +ϕ(t) represents the whole phase of the oscillations of the field. To E(t),

which is an imaginary entity, we should actually sum its complex conjugate in order to obtain

a real electric field, as f (t). But this is usually not done for facilitating the calculations. The

measured value is not the electric field but its intensity, which is given by I(t) = E(t) ·E(t)∗ =
|A(t)|2. The Fourier transform of the electric field in the temporal domain leads to its expression

in the spectral domain, that can be written:

Ẽ(ω) = Ã(ω)eiφ(ω). (I.2)

Similarly, we have the spectral envelope Ã(ω) and the spectral phase φ(ω). The spectral

intensity, called the spectrum, is given by Ĩ(ω) = Ẽ(ω) · Ẽ(ω)∗ = |Ã(ω)|2. One has to note that

generally we will use the wavelength λ = 2πc
ω (c being the speed of light) instead of the angular

frequency ω . Since dω
dλ

= −2πc
λ 2 , there will not be a linear transformation between both scales.

The consequence is that, for instance, a spectrum that has a Gaussian shape as a function

of the frequency is not Gaussian as a function of the wavelength (see Fig. I.2). However, the

approximation can be done, especially for sufficiently narrow spectra.

Figure I.2: Spectral intensity (full lines) and phase (dashed lines) as a function of the angular frequency (left) and

the wavelength (right). (taken from [16])

It is important to understand the meaning of the phases. The temporal phase is an infor-

mation of the frequency at a given time. The instantaneous central angular frequency of the

pulse at a time t, noted ωinst(t), is defined as the derivative of the whole temporal phase of the

oscillations, i.e.:

ωinst(t) = ω0 +
dϕ(t)

dt
. (I.3)
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Instead, the spectral phase is an information of the time corresponding to each spectral compo-

nent, which leads to the definition of the group delay i.e., the arrival time of a frequency:

tgroup(ω) =
dφ(ω)

dω
. (I.4)

I.1.c Phase effects

The spectral and temporal phases are generally expanded in Taylor series, so that we write

them as:

ϕ(t) = ϕ0 +ϕ1t +
1

2
ϕ2t2+

1

6
ϕ3t3+ ..., (I.5)

and:

φ(ω) = φ0 +φ1(ω −ω0)+
1

2
φ2(ω −ω0)

2 +
1

6
φ3(ω −ω0)

3 + ..., (I.6)

ω0 being the central angular frequency of the pulse.

The 0th order phases ϕ0 and φ0 are absolute phase terms that determine the position of

the electric field within the envelope. This is of interest when the pulse contains only few optical

cycles, as shown in Fig. I.3.

Figure I.3: Temporal electric field for different values of ϕ0. (taken from [16])

A shift τ in time, giving E(t −τ), is transposed in the spectrum to an additional linear phase

term e−i(ω−ω0)τ , via the Fourier transform. Similarly, a shift in frequency gives, via an inverse

Fourier transform, a linear phase term in the time domain. Hence, the consequences of the

linear phases ϕ1 and φ1 are a shift, respectively in frequency and in time (Fig. I.4).

A quadratic temporal phase ϕ2 corresponds to a linear variation of ωinst(t) i.e., a linear chirp.

It corresponds also to a quadratic spectral phase φ2, but with opposite sign (see Appendix A).

When smaller frequencies i.e., longer wavelengths arrive first, the pulse has a positive chirp or is

said up-chirped. Instead, when larger frequencies i.e., smaller wavelengths arrive first, the pulse
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Figure I.4: Left: temporal intensity (full line), temporal phase (dotted line) and instantaneous frequency νinst =
ωinst
2π (dotted line); right: Corresponding spectrum (full line), spectral phase (dotted line) and group delay (dotted

line). Top pictures: flat phases; middle pictures: ϕ1 = 0 and φ1 6= 0; bottom pictures: ϕ1 6= 0 and φ1 = 0. (taken

from [16])

has a negative chirp or is said down-chirped. The situation of an up-chirped pulse is shown in

Fig. I.5.

Finally, for higher-order phase terms, the situation is more complicated, as shown in Fig.

I.6 with a cubic spectral phase: the temporal profile exhibits distortions and the chirp becomes

quadratic. Generally, we try to boil down to a situation where phase terms are limited to the

second-order i.e., to a linear chirp. The φ2 value, corresponding to
d2φ(ω)

dω2 =
dtgroup

dω , is called the

group delay dispersion (GDD), which is an indication of the amount of linear chirp.

I.1.d Fourier-transform and diffraction limits

We previously underlined a fundamental characteristic of ultrashort pulses: they must have

a broadband spectrum. It is not possible to narrow indefinitely the spectrum and the temporal

profile together. This property is due to the fact that the spectral and time components are linked

by Fourier transform. We will thus define the time-bandwidth product, which can be retrieved
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Figure I.5: Top left: temporal electric field. Top right: intensity, temporal phase, and instantaneous frequency vs.

time. Bottom left: spectrum, spectral phase and group delay vs. frequency. Bottom right: spectrum, spectral phase

and group delay vs. wavelength. (taken from [16])

Figure I.6: Top left: temporal electric field. Top right: intensity, temporal phase, and instantaneous frequency vs.

time. Bottom left: spec- trum, spectral phase and group delay vs. frequency. Bottom right: spec- trum, spectral

phase and group delay vs. wavelength. (taken from [16])

mathematically (see, for instance, [17] for a general demonstration or Appendix A for a particular

case), as:

∆ω ·∆t > lim, (I.7)

where ∆ω and ∆t are the widths of the spectral and temporal distributions of the pulse and lim

is called the Fourier-transform limit whose value depends on how ∆ω and ∆t are defined. In a
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general case, if ∆ω and ∆t are the standard deviations of the spectral and temporal electric field

envelopes, lim = 1 and thus the minimum duration of the electric field envelope of the pulse is

directly the inverse of the width of the electric field in the frequency domain. However, usually

we deal with Gaussian pulses so that it is common to work with the full-width at half maximum

(FWHM) values of the intensity distributions, that we will note Ht and Hω . If we consider the

frequency ν = ω
2π , the time-bandwidth product becomes, for Gaussian temporal and spectral

profiles:

Hν ·Ht > 0.441, (I.8)

which is the commonly used form.

Up to now we concentrated ourselves only on the basic time properties of laser pulses.

However, similar properties are present in the spatial domain: like for the fact that the pulse

duration is limited for a given bandwidth, the minimum transverse spot size of the beam is

limited also. Let us write Heisenberg’s uncertainty principle as :

∆~x ·∆~p >
h̄

2
, (I.9)

where ∆~x is the uncertainty on the position of a particle, ∆~p is the uncertainty on its momentum

and h̄ refers to the Planck constant. For the photons that compose our laser light, the momentum

is h̄~k,~k being the wave vector with |~k|= 2π
λ . For small angles θ , we can write ∆~k ≃~k∆θ so that

|∆~p| ≃ h̄k∆θ . The uncertainty principle therefore reads:

∆x∆θ >
λ

4π
. (I.10)

Now, if we identify our laser beam source diameter as d = 2∆x and the divergence half angle

of the light as the uncertainty on the emission angle ∆θ , we obtain the size-divergence product

bounded by the so-called diffraction limit:

d ·θ >
λ

2π
. (I.11)

This relation is the spatial analogy of the time-bandwidth product. It tells us that it is not possible

to focus the laser beam without involving an increase of the divergence and, at a given spot size

and wavelength, the transverse quality of a laser beam will be characterized by its divergence

(lower divergence meaning better spatial quality).

I.1.e Coherence

The temporal and spatial quality of the light is often characterized by its coherence. Figure

I.7 represents the propagation of the wavefront of a beam, in the transverse x dimension. The

wavefronts are defined as the surfaces over which the temporal electric field of the wave reaches
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its maximum; hence, successive wavefronts are theoretically separated by the wavelength λ .

Over the width ∆x, the wavefront keeps the same characteristics along a distance of propagation

delimited by the dashed lines. We say that the wave is spatially (or transversally) coherent over

∆x (or for two positions taken within ∆x). Similarly, along ∆t the wavefront is unchanged within

the transverse boundaries of the dotted lines. Hence we say that the wave is temporally (or

longitudinally) coherent during ∆t.

Figure I.7: Wavefront propagations with areas of spatial coherence (∆x) and temporal coherence (∆t).

If an ultrashort pulse is chirped, the distance between each wavefront will vary along the

pulse, since the instantaneous frequency is not constant. A pulse that is far from the Fourier-

transform limit will thus present a lack of temporal coherence. Similarly, the spatial qualities of

the beam and its propensity to reach the diffraction limit are linked to the transverse quality of

its wavefront.

The overall coherence between two points in the space, located at the transverse positions

x1 and x2 measured at times separated by τ , is characterized by the mutual coherence function

representing the correlation of two points in space and time:

Γ(x1,x2,τ) =< E(x1, t)E
∗(x2, t + τ)> . (I.12)

The “<>" means the averaging over a given time, for instance the duration of the pulse whose

coherence is characterized. The Fourier transform of this function gives the so-called cross-

spectral density:

W (x1,x2,ω) =

∫ +∞

−∞
Γ(x1,x2,τ)e

−iωτ dτ, (I.13)

which characterizes the coherence of the light at a given frequency ω . We note that, for x1 =
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x2, Γ represents the autocorrelation of first order of the field (that can be used, for instance,

for measuring the duration of a pulse with known shape) and W is the power spectrum. The

normalization of these two functions leads, respectively, to the complex degree of coherence:

γ(x1,x2,τ) =
Γ(x1,x2,τ)

√

Γ(x1,x1,τ)Γ(x2,x2,τ)
, (I.14)

and the complex coherence factor:

µ(x1,x2,ω) =
W (x1,x2,ω)

√

W (x1,x1,ω)W (x2,x2,ω)
. (I.15)

γ represents (as Γ) the overall coherence and when |γ|= 1, there is full coherence between the

points x1 and x2 and no coherence when |γ|= 0; only partial coherence for intermediate values.

When τ = 0 (i.e., when the two points are taken at the same time), the complex degree of

coherence is equal to the complex coherence factor and the modulus of the latter characterizes

the spatial coherence.

For a further description of the coherence, see [18].

Now, the very basic notions that will be useful in this thesis have been presented. In the next

two sections, I will present the kind of facilities on which I relied for carrying out my work, namely

Free-Electron Lasers (FEL’s) and High-order Harmonic Generation (HHG) sources providing

both femtosecond pulses in the ultraviolet to X-ray spectral range i.e., from less than 400 nm

down to wavelengths of few nanometers.

I.2 Single-pass Free-Electron Lasers

In its most straightforward configuration, an FEL relies on the following scheme: a relativistic

electron beam wiggles through the periodic and static magnetic field provided by a magnetic

device called undulator (Fig. I.8). Due to this motion, the electrons lose kinetic energy. The

latter is transferred to emitted photons, whose wavelength depends on electrons and undulator

characteristics. Since this wavelength corresponds also to the resonant condition of an energy

transfer between electrons and photons, the emission becomes stimulated and is thus amplified

along the undulator. If no external wave originates the photons emission, this configuration is

thus called the self-amplification of spontaneous emission, or SASE. When the bunch enters

the undulator, each electron emits independently, so that the overall emission is incoherent.

The energy transfer between the photons and the wiggling electrons leads to a spatial density

modulation of the latter, called bunching. The micro-bunches thus emit in phase, providing a

coherent radiation.

However, due to the initial random distribution of the electrons, the first photons correspond
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Figure I.8: Basic layout of a SASE FEL.

to a noisy signal, whose amplification thus results in spikes in time and spectrum. Figure I.9

illustrates this situation in the spectral domain: when they enter the undulator, the electrons

start emitting around the wavelength λ of emission of the undulator. However, this signal is

very noisy and the SASE process corresponds to the amplification of this noise. Since, initially,

electrons emit photons at random positions along the bunch, such a spiky structure is also found

in the time domain. From one shot to the other, this random start intrinsically differs so that the

properties of the final radiation will not be identical, and strong fluctuations of the spectral and

temporal shapes are present. A correlated issue is the presence of shot-to-shot variations of

intensity if the signal is monochromatized.

Figure I.9: Typical SASE spectrum.

To overcome these drawbacks, it has been proposed [19] to initiate the FEL process by an

external coherent source (called the seed ), instead of the shot-noise emission of the electrons.

Consequently, the temporal (longitudinal) phase relation is preserved along the electron beam,

the temporal and spectral shapes being dictated by the seed. Moreover, the bunching of the

electrons presents significant components at the harmonics of the seed’s fundamental wave-

length. This is why a second undulator can be set so as to put the electrons in resonance at

a harmonic wavelength of the seed, and thus amplify this harmonic. This is the principle of the

coherent-harmonic generation scheme (CHG), whose typical layout is shown in Fig. I.10. In a
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first undulator, called modulator, the seed and the electrons overlap and electron energy modu-

lation is created. In a second undulator, called radiator, an harmonic wavelength of the seed is

amplified. Between the modulator and the radiator, a strong magnetic chicane called dispersive

section, where electrons do experience an energy-dependent path (like light in a pair of grat-

ings), allows transferring this energy modulation into spatial bunching at the desired harmonic

(as we will see below, the harmonic number is however limited). Practically, the peak power of

the seed should be higher than electrons shot noise at modulator’s entrance so as to drive an

efficient energy modulation.

Figure I.10: Basic layout of a CHG FEL.

As it can be seen in Fig. I.11, in ideal conditions (peculiar conditions will be studied in Chap-

ter IV) the spectrum of the CHG emission is a copy of the one of the seed. This is also true

in the temporal domain. Normally, a Gaussian pulse is injected so that the FEL emission is

Gaussian. In this configuration, seeded FEL’s are thus very attractive facilities for generating

extreme-ultraviolet radiation (noted EUV, defined here as wavelengths between 10 and 100 nm)

with nice spectro-temporal properties.

Figure I.11: Typical CHG spectrum.

After this short overview, we will know have a more detailed look to the FEL process.
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I.2.a Electron motion into an undulator

The first step to understand how is emitted the FEL radiation is to study the motion of the

electrons into an undulator. Here we will only consider the case of a planar undulator i.e., with

magnet blocks in phase. In this configuration, the magnetic field ~B provided by the undulator is

characterized by only a vertical component:

|~B|= By =−B0 sin(kU z). (I.16)

The magnetic field is static (no time dependence), periodic (length of one magnetic period LU ,

kU = 2π
LU

) and of magnitude B0 expressed in Tesla (T ). The Lorentz force undergone by the

electrons travelling at a velocity~v into the undulator is:

mγ
d~v

dt
=−e~v×~B, (I.17)

where e and m are respectively the elementary charge and the mass of the electrons; γ = 1√
1−β 2

with β = v
c

is the relativistic Lorentz factor, c being the speed of light. Here we do not take into

accounts terms such as the magnetic field of the earth (small with respect to undulator’s one)

and the radiated electric field of the electrons which, at the beginning of the undulator, has

a negligible effect on electrons’ motion. We wish to calculate the components of the velocity

along each coordinate. The expression of the Lorentz force leads to vy(t) = 0 if vy(0) = 0 (i.e.,

if the electrons are injected into the undulator along the forward direction). For the horizontal

component, we have:
dvx(t)

dt
=

e

mγ
Byvz(t) (I.18)

As a first step, we assume that the longitudinal component of the velocity is much larger than

the transverse i.e., vx ≪ vz, which is reasonable (the electrons go ahead faster than they wig-

gle). Therefore, vz ≃ v = βc = constant . We can thus integrate easily the previous equation

(replacing z by βct), which gives :

vx(t) =
Kc

γ
cos(kU βct), (I.19)

where K is the so-called undulator parameter defined by:

K =
eB0

mckU
≈ 0.934 ·B0[T ] ·LU [cm]. (I.20)

We can rewrite the expression of the Lorentz factor as 1
γ2 = 1−

(

v
c

)2
= 1− 1

c2 (v
2
x + v2

z ),
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which leads to a more accurate expression for the longitudinal velocity:

vz(t) =

√

c2
(

1− 1
γ2

)

+ vx(t)2

=

√

c2
(

1− 1
γ2

)

+ K2c2

γ2 cos2(kU βct)

= c
√

1− 1
γ2 (1+K2 cos2(kU βct)).

(I.21)

According to this, for a relativistic electron beam, we must have 1
γ2

(

1+K2 cos2(kU βct)
)

≪ 1 if

we want vz to be close to c. In this case, we can develop Eq. I.21 as a Taylor series at the first

order, which gives:

vz(t)≃ c

[

1− 1

2γ2

(

1+K2 cos2(kU βct)
)

]

. (I.22)

Over one undulator period, the average longitudinal speed is thus:

v̄z = c

[

1− 1

2γ2

(

1+
K2

2

)]

. (I.23)

As it can be seen, the electrons motion is quite easy to describe into the undulators, and

one will retrieve the coordinates x(t) and z(t) by simple integration of vx(t) and vz(t). Similar

simple calculations can be done for elliptical or helical undulators (i.e., where the magnet blocks

are dephased so that the horizontal component of the magnetic field is not null any more and

the motion of the electrons is not confined in a plane).

I.2.b Energy exchange

Now we inject into the undulator an external wave polarized horizontally:

|~E(z, t)|= Ex(z, t) = E0cos(kz−ωt) (I.24)

This wave represents the seed in the CHG configuration. For simplicity, we consider a contin-

uous wave and do not take into account the absolute phase term. Its wavelength will be noted

λ and k = 2π
λ

= ω
c

. The infinitesimal energy exchange between the wave and an electron of

velocity~v during a time dt will be:

d(γmc2) =~v ·~F ·dt, (I.25)

where ~F is the Coulomb force. From this equation, we see that other polarization components

of the seed do not exchange any energy with the electrons. We thus obtain, using Eqs. I.25,
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I.24 and I.19:

dγ
dt

= − e
mc2 vx(t)E(t)

= − eK
mγc

cos(kU z)E0 cos(kz−ωt)

= −eKE0

2mγc
[cos(kz+ kU z−ωt)+ cos(kz− kU z−ωt)]

= −eKE0

2mγc
[cos(θ)+ cos(θ −2kU z)],

(I.26)

with θ = (k+kU)z−ωt ≃ (k+kU )v̄zt−ωt. The energy conservation tells us that the light wave

gains energy if
dγ
dt

< 0. Ideally, a continuous energy transfer should be maintained. Concerning

the first cosine term in the last term of Eq. I.26, such a condition is fulfilled when:

dθ
dt

= 0

⇒ (k+ kU)v̄z − kc = 0

⇒ k− kU = kU 2γ2

1+K2

2

.

(I.27)

Since the undulator period is much larger than the radiation wavelength i.e., 1
λ
≪ 1

LU
, we get:

λ =
LU

2γ2

(

1+
K2

2

)

. (I.28)

This is the resonance equation for a sustained energy transfer allowing amplification of the light

of wavelength λ . Remarkably, this wavelength corresponds to the wavelength of spontaneous

emission of the electrons in the undulator in the z direction (this result can be easily derived,

see for instance [20]). Concerning the second cosine term in Eq. I.26, we remark that if Eq.

I.28 is fulfilled, this term will do two oscillations per undulator period, and thus cancels out in the

energy transfer.

Numerous codes [22, 23, 24, 25] simulate the behaviour of the FEL process starting from

the coupled equations of motion and energy exchange of electrons along the undulators. A

numerical result of the evolution of electron-beam distribution along an undulator, obtained with

[23], is shown in Fig. I.12. The electrons energy is characterized by its Lorentz γ factor and

shown as a function of its position characterized by its phase θ , within one “slice" of length λ

(equivalent to 2π) of the electron bunch. Such a representation of electrons’ dynamics refers

to the phase space of the electrons. After entering the undulator (Fig. I.12a), there will be a

modulation of energy of the electrons (Fig. I.12b): this is the direct effect of Eq. I.26. The

new γ values of the electrons lead to new velocities (see Eq. I.23) and thus new phases θ : the

electrons that have gained energy go faster and the electrons that have lost energy are slowered.

The process goes on so that the electrons “meet" at θ = 0: the energy modulation is transformed

into bunching (Fig. I.12c). The electron beam is thus formed of micro-structures spaced by a

wavelength λ (in Fig. I.12 only one slice of length λ is shown, but the density modulation is
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Figure I.12: Evolution of the electron-beam distribution in the phase space γ as a function of θ , along the ampli-

fication process. Initial distribution (a); energy modulation (b); spatial modulation (bunching (c); slight overbunching

(d); overbunching (e)(f). (taken from [21])

repeated all along the bunch) that emit in phase. Along the undulator, the electrons will provide

energy to the wave until the moment when they will have lost so much energy that they will

come out the resonance condition (see Eq. I.28). At this point, the amplification stops and

the saturation is reached. The energy exchange is then reversed:
dγ
dt

changes sign so that the

wave transfers energy to the electrons, which start to get overbunched (Fig. I.12d). Electrons

will then continue to rotate into the phase space until they go into a strong overbunching (Fig.

I.12e-f). The latter state is not a stationary one and the particles motion is pursued, so that the

energy exchange becomes again reversed after a while. However, ideally the undulator ends at

the saturation point. In the CHG configuration, the passage from energy modulation to spatial
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separation (i.e., from situation reported in Fig. I.12b to Fig. I.12c) is enhanced by the effect of

the dispersive section, which is discussed hereafter.

I.2.c Harmonic generation

The modulation process described above occurs in fact not only at the fundamental wave-

length λ , but also at its harmonics, as shown in [26]. This can be easily understood. Indeed, the

resonance condition corresponds to the fact that, all along the undulator, the electrons and the

wave remain in phase so that, after each undulator period, the wave must be shifted by a length

equal to the wavelength λ with respect to the electron bunch: this effect is called the slippage

of the electromagnetic wave with respect to the electron bunch. However, slippages of nλ are

also possible values leading to a resonance condition:

λn =
LU

2nγ2

(

1+
K2

2

)

. (I.29)

We now study the evolution of the electrons position in the CHG configuration (see Fig. I.10),

following the reasoning described in [27]. At the end of the modulator (z = zM), the phase of an

electron is described by:

θM = (k+ kM)zM −ωtM, (I.30)

where kM has the same meaning as kU , but specific to the modulator, and tM is the arrival time

at the end of the modulator. After the dispersive section i.e., at the entrance of the radiator

(z = zR), the phase of the same electron is given by:

θR = (kn + kR)zR −ωntR, (I.31)

where kR has the same meaning as kU , but specific to the radiator, tR is the arrival time at

the entrance of the radiator and kn = nk. The energy modulation in the modulator led to an

overall variaton of ∆γ for the considered electron. The dispersive section transforms this energy

separation into time separation:

∆t = tR − tM =
dt

dγ
∆γ. (I.32)

From the previous relations, we can rewrite the phase of the electrons at the entrance of the

radiator:

θR = n

(

θM +
dθ

dγ
∆γ +θ0

)

, (I.33)

where θ0 is an absolute phase term that it is not useful to develop. The term dθ
dγ represents the

strength of the dispersive section. It can be written as:

dθ

dγ
=

kR56

γ0
, (I.34)
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with γ0 corresponding to the mean energy of the electron beam. The parameter R56 (usually

given in µm) is the one that we will use for characterizing the strength of the dispersive section.

Knowing the initial energy distribution of the electron beam, it is thus possible to retrieve

the phase distribution at the entrance of the radiator. A Fourier analysis of this phase distribu-

tion, considering an initial Gaussian distribution of the energy with standard deviation σγ at the

entrance of the modulator, leads to the following entity [27]:

bn(θ ,γ,n) = |〈e−inθ 〉|= 2

∣

∣

∣

∣

Jn

(

n∆γ
dθ

dγ

)∣

∣

∣

∣

· e−
1
2

(

nσγ
dθ
dγ

)2

. (I.35)

This is called the bunching function and characterizes the quality of the bunching of an electron

according to its position along the bunch. One can thus expect the longitudinal profile of the FEL

emission to have a similar shape as the bunching function. The dependence on the Jn Bessel

functions tells us that the bunching can theoretically be maximized for a given harmonic number

n with an appropriate strength of the dispersive section R56 (see Eq. I.34). The exponential

dependence tells us that the harmonic number is limited for an efficient CHG FEL emission:

indeed, according to Eq. I.35, the higher the harmonic number, the lower the bunching quality.

This can also be seen from a Fourier decomposition of the bunching function. Going to higher

orders, amplitudes of Fourier components decrease so that very high harmonics cannot be

efficiently generated in a CHG configuration. Qualitatively, the harmonic limitation in standard

CHG configuration and the bunching maximization via optimization of R56 are true; quantitatively,

what we get from Eq. I.35 is valid for an initial Gaussian energy distribution of the energy and

under the assumption that, in the modulator, there is only energy modulation but no bunching,

the latter occurring only during its passage through the dispersive section. In the real world,

the bunching formation is not as well separated as this, and can start being formed prior to the

dispersive section, or still not well done when the bunch enters the radiator.

I.2.d FERMI@Elettra

The FEL facility on which the experiments reported in this manuscript have been carried

out is the FERMI@Elettra source [124]. The configuration that we used relies on the CHG

principle (see Fig. I.10). A sketch of the machine is represented in Fig. I.13. A linear accelerator

(linac) accelerates the electron beam up to an energy of 1−1.5 GeV (see [111] for more details

about the linac). The seed, of central wavelength ≈ 261 nm and Gaussian spectrum with an

energy of some tens of µJ per pulse in standard conditions, is produced by third harmonic

generation (THG) of a classical chirped-pulse amplified Ti:Sapphire femtosecond laser source.

More accurate descriptions of the seed and electron beam properties will be done in Chapter III.

The seed pulse and the electron bunch overlap in time and space in the modulator (32 periods

LM = 10 cm) tuned at the central wavelength λ of the seed. The electron bunch then passes
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Figure I.13: Basic layout of FERMI@Elettra.

through a dispersive section before entering the radiator area. The radiator is divided into six

successive sections (each of them being made of 44 periods LR = 5.5 cm), between which

the transverse properties of the electron beam are adjusted (no description of the transverse

electron beam dynamics is done here; the reader can refer, for instance, to [28]). The radiators

are tuned at a harmonic n, typically of the order of 10, so that EUV wavelengths are generated.

The phase of the magnet blocks of the radiators can be changed so as to modify the polarization

of the output light (from linear to circular). After the radiators, the electrons are dumped and not

used again, so that FERMI@Elettra is a single-pass FEL. The seed pulse is shorter than the

bunch (respective full-width at half maximum durations are ≈ 200 f s vs. ≈ 2 ps). The amplified

emission is thus shorter than the bunch. Therefore, on areas where the seed does not overlap

with the bunch, there is no amplification and only spontaneous emission is generated, which

remains at the level of noise and is negligible. The femtosecond duration of the seed ensures a

femtosecond duration of the FEL emission. The latter is analysed, after the undulator area, by

an on-line spectrometer relying on a grating placed at grazing incidence. The zero-th order of

diffraction (that we will call also the direct beam) is almost not deviated and is directly sent to the

experimental beamlines, while the first order of diffraction is used for measuring the spectrum

on a CCD [29, 30]. Several other optics or diagnostics are present and can be inserted, such

as CCD’s or photodiodes, on which we usually measure energies per pulse of some tens of µJ

for the FEL emission. The seed signal can eventually be filtered, but its intensity (power per unit

surface) is quite low at the end of the chain of radiators since its focus is located far upstream

(in the modulator) and the FEL beam, due to its lower wavelength, diverges less than the seed.

Currently, the machine works at a repetition rate of 10 Hz, which, in the future, will be raised to

50 Hz. The total length of the facility is of the order of 250 m: half of this distance represents the

linac, the other half is shared between the undulator area and the experimental hall (including

diagnostics of the FEL emission).
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As shown in Fig. I.14, the transverse shape of the FEL light in far-field is very satisfactory.

Furthermore, Fig. I.15 gives the evidence of very nice spectral stability and shape of the FEL

Figure I.14: FEL spot measured 52.4 m (a) and 72.5 m (b) downstream from the last radiator exit.

spectra. In Fig. I.15a, we see that the Gaussian shape of the seed spectrum is well reproduced

by the FEL emission, as expected, and Fig. I.15b shows that the variations of the FEL in terms

of intensity and spectral shape are quite low (500 successive single-shot measurements are

shown).

Figure I.15: (a) Measured FEL (dashed line) and seed laser (full line) spectrum. (b) Acquisition of 500 consecu-

tive FEL spectra.

In this thesis, I will remain in the framework of the so-called “low-gain" regime of the FEL.

The gain regime is characterized by the following factor [31, 32]:

g0 =
µ0e

mc2
· I

σxσyσz
·L2

U N3
U · K2F2

JJ

γ3
. (I.36)

µ0 = 4π ·10−7 V ·s
A·m is the permeability of the vacuum; I is the electron beam current; σx, σy and

σz the standard deviations of its distribution respectively in the horizontal, vertical and longitudi-



22 Chapter I. General background

nal directions; NU is the number of undulator periods. FJJ stands for the weighting of K due to the

oscillating term in vz(t) (see Eq. I.21). For a planar undulator, FJJ = J0

(

K2

4+2K2

)

− J1

(

K2

4+2K2

)

,

where J0 and J1 are respectively the Bessel functions of 0th and 1st order. For an helical un-

dulator, there is no oscillating term in the longitudinal motion of the electrons i.e., vz(t) = v̄z so

FJJ = 1. It is interesting to note that, for designing an X-ray FEL, one has to lower Lu and K

while increasing γ (see Eq. I.28)... which make g0 drop down. In order to built an high-gain

X-ray FEL, very long undulators and small electron bunches with high current are thus required.

Roughly, the conditions of the experiments that are reported in this thesis are: I < 300 A,

σx ≈ σy > 150 µm, σz > 300 µm, LU = LR = 5.5 cm, K < 10, NU = NR < 6×44 = 264 and

γ > 2000. It gives g0 < 1, which characterizes a low-gain regime, in which the FEL power is

almost not amplified. For g0 ≫ 1, the FEL operates in high-gain regime (and CHG is better

called HGHG, for high-gain harmonic generation): the amplification of the signal is exponential

until saturation is reached.

Moreover, even if this will not be treated here partly because results are still quite recent

and not optimized, FERMI@Elettra is also able to work in SASE mode when sufficient peak

currents are reached in the electron beam. This would make possible, in the future, to confront

phenomena related to SASE and seeding schemes on the single FERMI@Elettra facility.

Finally, one has to note that the configuration of FERMI@Elettra described here is only the

first step of the facility. Indeed, in order to overcome the aforementioned limitations of harmonic

number amplification due to energy spread growth, a second FEL line has been built: it relies on

a first CHG stage, whose emission at harmonic n1 of the seed is injected into a second stage,

tuned at the harmonic n2 of the emission of the first stage, so that the final emission is done at the

harmonic number n1 ×n2. This is made possible by the fact that the amplification in the second

stage occurs on a new portion of the bunch i.e., where electrons have not been modulated in

energy (neither in space) within the first stage. This is called the “fresh-bunch" technique [33].

We already obtained first successful results that allow providing powerful femtosecond pulses in

the soft X-ray spectral region [34].

I.3 High-order Harmonic Generation in rare gases

FEL’s are probably the kind of facilities that allow providing most powerful femtosecond

EUV/X-ray pulses, at the price of a huge installation requiring lots of controls and diagnos-

tics. Sources of high-order harmonic generation (HHG) in rare gases are the most common and

“affordable" alternatives. This section describes the main properties of HHG. The purpose is

not to provide here a comprehensive description; for that, the reader can for instance refer to

[35, 36] as a good overview giving also further literature.
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I.3.a Description

Thanks to the technique of chirped-pulse amplification, laser sources (especially Ti:Sapphire

ones) have been able to reach very high peak intensities (energy of more than some mJ into

femtosecond pulse durations, focused on spot diameters smaller than 100 µm). In 1988, teams

at Saclay and Chicago discovered in parallel the HHG effect. When focusing a laser at an

intensity of the order of 1014 W/cm2 into a rare gas medium, ultraviolet light is emitted by

interaction of the laser with the rare gas and a spectrum such as the one represented in Fig.

I.16 can be collected. It is made of a comb of odd harmonics of the input laser beam. The

Figure I.16: Typical spectrum obtained when focusing an intense laser beam in a rare gase medium.

spectrum can be divided in three parts: for harmonic orders ranging from 3 to 9, the harmonic

signal constantly decreases. Then, from the 9th order, there is a plateau of harmonics whose

signal is of the same order of magnitude, until a cut-off (located at the order 31 in our case, but

that can be different) after which the harmonic signal dramatically falls. Generally, the laser has

a central wavelength of the order of about 800 nm, so that its high-order harmonics are within

the EUV spectral region.

I.3.b Low-order harmonics

For the first orders, the explanation stems from the multi-photon absorption of the gas atoms:

n photons of energy hν (h being the Planck constant) of the laser (of frequency ν) kick an

electron of a gas atom to an upper energy level; when getting back to its stable state, the

electron loses energy emitting one single harmonic photon of energy nhν . The probability for

the photons of the input laser to combine and then for the kicked electron to get down to its

former energy level decreases as n increases, which explains why the signal drops down for

first harmonic numbers. More accurately, the polarization in the gas medium can be expanded

as P = ε0 ∑ χ(n)En
laser, where ε0 is the permittivity of the vacuum, χ(n) are the susceptibilities

of nth order of the gas medium and Elaser is the input laser field. The central symmetry of
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the gas medium makes that the even components of the polarization vanish, and only odd

components i.e., odd harmonics, can be present. Generation of low-order harmonics has been

initiated by Franken et al. in 1961 in a crystal [37], and in gas by New and Ward in 1967

[38], making possible the generation of a coherent light down to vacuum-ultraviolet wavelengths

(below 200 nm), where no conventional lasers exist. For these first orders, laser intensities of the

order of 1012 W/cm2 are already sufficient, which explains that low-order harmonic generation in

gases could already be observed before more powerful femtosecond laser were available. The

expression of the polarization P tells us that the overall properties of the low-order harmonic

emission are strongly linked to the ones of the driving laser. In particular, the temporal shape

and spectrum of the harmonics are very similar to those of the laser. The condition of phase-

matching between the generating and emitted waves, of respective wave vectors~k and~kn, is

simply~kn = n~k.

For higher orders however (from the 9th harmonic), this explanation of classical non-linear

optics is not valid any more. How to explain the presence of the plateau, which would mean

that the probability of multi-photon absorption is the same whatever n? And how to explain the

sudden cut-off of the harmonic signal?

I.3.c Three-step model, cut-off law and electrons trajectory

A semi-classic model has been developed [39] giving a practical explanation of the HHG

process. It is represented in Fig. I.17. At its fundamental state, the electron of a gas atom is

in a well of potential. The atom experiences the action of the laser field, which can be written

as |~Elaser|= E cos(ωt) if its pulse duration is much longer than one optical cycle. The potential

barrier is thus distorted so that the electron can pass through this barrier by tunnel ionization.

Whereas the energy levels of the electron were quantized before this first step, the electron is

now melt into a continuum of energy. Under the action of the Coulomb force due to the laser

field, the electron gains kinetic energy: this is the second step. Then, as a final step, it can

recombine radiatively to the fundamental state: for that, it has to free, in the form of a photon,

an energy equal to the kinetic energy it gained plus the ionization potential of the atom. The

polarization of the input laser must be linear, otherwise there is no recombination of the electron

and thus no harmonic emission. The process is repeated every half-period of the laser field

(for ωt ≃ 0 and ωt ≃ π). This gives rise to spectral interference which leads to an emission of

harmonic lines separated by 2ω . Moreover, the sign change in the emission from one half period

to the other involves that the generated harmonics are the odd ones. Since the recombination

of the electron has very low probability, the process has poor efficiency.

This description was in fact preceded by a study of the motion of the ejected electron that

allows finding the wavelength at cut-off [40]. According to the second Newton’s law, we get the
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Figure I.17: Steps of the semi-classical model for the HHG.

acceleration of the electron due to the Coulomb force F =−eElaser:

a(t) =−eE

m
cos(ωt), (I.37)

e being the elementary charge and m the mass of an electron. By integration, its velocity is

found to be:

v(t) =− eE

ωm
[sin(ωt)− sin(ωti)], (I.38)

where ti is the ionization time. The kinetic energy of the electron is thus:

Ek(t) =
e2E2

2ω2m2
[sin(ωt)− sin(ωti)]

2. (I.39)

At the recombination time tr, the energy of the emitted photon will therefore be h̄ωn =Ek(tr)+Ip.

This value finds a maximum, corresponding to the harmonic frequency at cut-off, for ωtr = 17◦

and ωti = 255◦. This maximum harmonic frequency is also proportional to the intensity of the

laser field and the square of the wavelength of the driving field. It is thus possible to extend the

harmonic plateau by increasing the driving wavelength; however, since the electrons thus spend

more time in the continuum, it is more probable that they will be “lost" and will not recombine,

leading to a decrease of the harmonic conversion efficiency, as will be confirmed in Chapter

V. The effect of increasing too much the intensity of the laser beam would be to suppress

completely the potential barrier and the electrons would gain too much energy to recollide, which

would also lead to a degradation of the HHG process.

By integration of Eq. I.38, one obtains the trajectory of an ejected electron as a function of

time. We will not detail it here as it is not of specific interest in the remainder of this manuscript,

but it shows that each harmonic can be generated through either a long or a short trajectory

of the electron [41]. An electron follows a long trajectory when the laser field is close to its

maximum: the electron is thus kicked out very far from the atom, which lessens the recollision

probability. The harmonic conversion efficiency is thus lower for long trajectories with respect to
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short ones. At the cut-off, short and long trajectories merge.

This semi-classical view of the microscopic response was then corroborated by quantum

calculations [46, 47, 48, 49]. In these models, the atomic dipole ion-electron is viewed as a

sum of amplitudes of probability corresponding to different quantum paths of the electron wave

packet, which are identified to trajectories described in the semi-classical model including the

ionization, the acceleration in the laser field and the recombination. Due to this proximity with

quantum calculations, the semi-classical view is a good model for understanding and giving

most qualitative properties of the harmonic emission.

Beyond the microscopic response of a single atom, the macroscopic construction of the

harmonics in the whole volume of interaction between the laser and the gas has to be studied.

Numerically, it is done by three-dimensional propagation codes; analytically, optimum phase-

matching conditions can be found: this is detailed in the next section.

I.3.d Phase-matching and characteristic lengths

The total EUV field is the result of the coherent superposition of the fields emitted at the

frequency ωn = nω by the atomic dipoles contained in the whole volume of interaction. In order

to obtain an optimum harmonic generation, these fields have to interfere constructively. This is

the matter of phase-matching between the laser and harmonic fields, which have to propagate

at the same velocity in the gas. The simplified phase-matching condition for the wave vectors~k

and~kn of respectively the laser and harmonic field can be written as:

~kn = n~k+ ~K, (I.40)

where ~K is proportional to the gradient of laser intensity and represents the phase of the atomic

dipole formed by the electron and its parent ion. Since the refractive index of the gas medium

is different for the fundamental laser wavelength and its harmonics,~kn and~k have a component

emanating from the dispersion, depending on the kind of gas that is used, its pressure, how

much it is ionized, etc. Moreover, both wave vectors depend also on their focusing or guiding

in the medium. To this extent, the more concerned by geometrical dependence is~k, since it is

more diverging. The distributions of the two vectors~k and ~K will determine the regions of space

where the phase-matching is made possible. They are represented in Fig. I.18 around the focal

point in the gas medium.

We can concentrate on four different cases, sketched in Fig. I.19:

• in (a), ~K is zero so that phase-matching is not achieved.

• in (b), ~K is present but points in the wrong direction so that there is again no phase-

matching.
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Figure I.18: Distribution of the vectors~k (a) and ~K (b) around focus. (taken from [42])

• in (c), ~K compensates, thanks to the variation of laser intensity, for the geometrical de-

phasing induced by the focusing of the laser beam. It thus allow a macroscopic construc-

tion of the harmonic field on-axis.

• in (d), phase-matching is achieved in some off-axis regions so that an annular harmonic

field is emitted.

Figure I.19: Geometrical representation of the phase-matching on-axis at focus (a), on-axis after focus (b),

on-axis before focus (c), off-axis after focus (d).

The conditions in Fig. I.19c and Fig. I.19d have been illustrated in [43], confirming that

an efficient, on-axis, EUV emission is usually obtained for a laser beam focused before the

gas medium. However, usually a perfect phase-matching cannot be achieved so that one will

define a coherence length corresponding to the distance before which the interference between

the microscopic emissions becomes destructive. It corresponds to the length on which the

harmonic field and the non-linear polarization of the laser field are dephased by π . This length,

defined by Lcoh = π
∆kn

, limits the efficient macroscopic construction of the harmonic emission.
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The interaction length i.e., the length of the gas medium noted Lmed , should therefore be smaller

than the coherence length. Moreover, another limiting factor of the harmonic generation is the

absorption of the harmonic emission by the gas itself. It is defined as the distance over which

the harmonic field is attenuated by a factor 1
e

i.e., Labs =
1

σndat
, where σn is the cross-section

of photo-absorption of the gas at the frequency nω and dat the atomic density. These lengths

allow giving an approximation of the number of generated photons Nn at the harmonic number

n [44]:

Nn ∝
4L2

abs

1+
(

2πLabs

Lcoh

)2

[

1+ e
− Lmed

Labs −2cos

(

π
Lmed

Lcoh

)

e
− Lmed

2Labs

]

. (I.41)

Figure I.20 plots the relative number of generated photons as a function of the length of the

gas medium, for different coherence lengths. We see that the number of emitted photons grows

until the radiation becomes absorbed by the gas, and that the harmonic efficiency is optimized

for a coherence length much larger than the absorption length. The optimization of harmonic

generation will therefore rely on the fine tuning of the length of the medium, the coherence

length (which depends mainly on the geometry chosen for phase-matching) and the absorption

length (which can be changed mainly via the gas pressure). From Fig. I.20, we conclude that,

for obtaining a number of photons at least equal to half the maximum accessible one, we must

have Lmed > 3Labs and Lcoh > 5Labs. When increasing the medium length does not provide

more harmonic photons, the generation becomes limited by absorption.

Figure I.20: Relative number of generated harmonic photons as a function of the length of the gas medium, for

different coherence lengths. (taken from [44])

Different configurations can be used for the harmonic generation. We can separate them

into three: short medium (< 1 cm), via a gas jet (eventually pulsed at the repetition rate of the

driving laser) or short cell; loose-focusing into a long gas cell; in a capillary (few centimeters)

filled with the rare gas. In the latter configuration, the waveguiding facilitates the phase-matching
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[45]. The loose-focusing configuration is achieved via a focusing lens of some meters of focal

length that provides a laser beam (almost) collimated over some centimeters. An important

volume can then be used for harmonic generation since the intensity and the phase of the laser

beam are only slowly varying transversally and longitudinally. The advantage is that it allows

producing µJ-level EUV photons, using an important energy of the driving laser (tens of mJ).

We remind that the laser beam intensity should not be too high, in particular in order to avoid

a consequent ionization of the gas atoms that would change the recombination process and

induce a stronger dispersion due to the free electrons. The drawback of such a configuration

is that a lot of space, to be put under vacuum, is required: some meters for focusing into the

gas cell, but also some meters after the gas cell for getting rid of the infrared beam. Indeed,

the latter has to be filtered for diagnostics and experiments. In tight-focusing, it rapidly diverges,

making things easier, whereas in loose-focusing, its intensity remains high over a long distance.

I.4 Summary

We introduced the fundamental notions that are needed for the work I report within this

manuscript. We saw the fundamental notion of Fourier-transform limit, which limits the duration

of a pulse for a given bandwidth. Similarly, the diffraction limit has been presented, such as the

notions of spatial and temporal coherence.

The experiments on which my study has relied have been performed on two kind of sources:

the FEL FERMI@Elettra and HHG sources. FERMI@Elettra works as follows: modulation of the

energy of the electron bunch in a first undulator, bunching in the dispersive section and coherent

emission at a chosen harmonic in the radiators. The energy modulation is induced by the seed

laser, the bunching controlled by the value of R56 and the efficiency of the emission depends,

among other parameters, on the peak current of the bunch (see Eq. I.36).

HHG is, in fact, comparable to seeded FEL’s: it is driven by an external laser and relies on

electrons motion and manipulation. The HHG is well-described by a semi-classical model which

gives a very good insight of the main properties of the EUV radiation and of the underlying

mechanisms of its emission. We also saw the importance of the macroscopic construction of

the harmonics.

In the next chapter, we will start with a study of the spatial properties of FERMI@Elettra

and of a drive source used for HHG. Spectro-temporal studies, which have many analogies with

spatial ones, will follow.
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II.1 Spatial properties of FERMI@Elettra

In a seeded FEL, the main mission of the seed is to imprint its spectro-temporal properties

on the electron bunch and thus, on the FEL emission. However, the impact of the seed is still

unclear on the spatial properties of the EUV light. Studying them therefore represents a novel

work, and observed effects can be traced back to the causes, which potentially allows to better

understand the FEL process in seeded mode. In the recent years, the spatial coherence of FEL

facilities has been extensively characterized. In most of the cases, the FEL was operated in the

so-called SASE mode [51, 52]. Spatial coherence measurements have thus been performed

at FERMI@Elettra for three purposes: characterizing the coherence properties as a function

of the different FEL regimes, confronting the results with SASE-based facilities and providing

information for experiments requiring a high degree of coherence, like diffraction imaging [53].

The experimental characterizations have also been compared to theoretical predictions that can

be done. In addition to the spatial coherence, the overall FEL spot quality and stability have

been measured. Preliminary wavefront measurements will also be presented in this section.

II.1.a Spatial coherence setup and principle

As a first step, it has been decided to carry out a campaign of measurements with the setup

of a Young’s experiment [77]. The experiment was performed on the direct beam i.e., without any

focusing optics on the beam path, so that the “real" coherence of the source is characterized. A

basic drawing of the setup is shown on Fig. II.1.

Figure II.1: Simplified layout of the Young slits experiment. The position of the source (FEL light), considered as

a point, is estimated to be at the center of the last radiator. The mask of the slits, where the FEL light is assumed

to be a plane wave, is thus at L′ = 65.2 m far from the source. The detector (a CCD made of 1004x1004 pixels of

18.8 µm side, looking at a fluorescent screen) is placed at L = 8.5 m downstream the slits. For a given couple of

slits, the slits have equal widths w and are separated by d.

Table II.1.a gives the characteristics of the different couples of slits that were used: for each

couple, the two slits have the same width w and are separated by a distance d in the x direction

(see Fig. II.1). The height (y directon) of each slit is approximatively 1 cm, which is almost the
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slits separation d[mm] slits width w[µm]
0.8 20

1 40

1.5 40

2 40

4 40

Table II.1: Characteristics of the different couples of slits.

full beam transverse size. All the slits are disposed on the same copper plate. The latter was

moved via a mechanical actuator, so as to change the couple of slits through which the light

goes.

The FEL light follows two different paths passing through each slit. For the path through

slit 1 (see Fig. II.1), without considering the contribution of the other path, a single diffraction

pattern is produced with intensity I1(M) at a point M(x,y) on the detector. Similarly, the beam

on the second path produces another single diffraction pattern of intensity I2(M). The joint con-

tribution of the two paths provides the interference between the two waves, at positions where

the diffraction patterns overlap. The vertical slits allow performing a one-dimension analysis in

the x (transverse horizontal) direction. Fig II.2 is a basic drawing of the obtained profile on the

detector, at a given vertical coordinate y: a typical interference profile (fringes) modulated by the

intensity of the diffraction patterns. For a slit, the profile of the diffraction pattern is a function

Figure II.2: Example of a profile obtained on the detection system. The waves coming from each slit interfere

“under" the envelope of the diffraction patterns of each slit.

sinc(x) =
sin(x)

x
, under the hypothesis of Fraunhofer (far-field) diffraction i.e., w2

Lλ ≪ 1, λ being

the wavelength of the FEL emission. λ = 32.5 nm in our experiment (8th harmonic of the seed).

Therefore w2

Lλ
= 1.4 ·10−3 for the first couple of slits and w2

Lλ
= 5.8 ·10−3 for the other ones. The

width of a diffraction pattern (defined as the distance between the zeros from each side of the

peak) is 2Lλ
w

. The distance between the peaks of the two diffraction patterns is equal to L+L′
L

d.

The width of the fringes of the interference profile is Lλ
d

.

Figure II.3 shows what is observed on the detection system without (a) and with (b) slits. For

the matter of data analysis, a profile I(x) is done (c) on a narrow slice. In the case shown here,

the diffraction patterns overlap very well, so that we can distinguish only one single envelope
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Figure II.3: Typical pattern observed on the CCD without slits inserted (a); pattern with slits separated by d =
1 mm, with a region of interest (b); integrated profile of the region of interest (c).

surrounding the interference profile. Along the latter, we can define the visibility of the fringes:

V (x) =
Imax(x)− Imin(x)

Imax(x)+ Imin(x)
, (II.1)

where Imin and Imax are respectively the local minimum and maximum around a position x. For

instance, in Fig. II.3c, we find an almost constant visibility V (x)≈ 0.84.

If the spectrum is narrow enough (Hν ≪ ν , where ν is the central frequency of FEL emission

and Hν its FWHM bandwidth) and the delay τ between the two beams is much shorter than the

coherence time τc, then V is constant over the interference profile and the coherence factor µ

(see Chapter 1) is equal to [18]:

|µ(M)|= I1(M)+ I2(M)

2
√

I1(M)I2(M)
V. (II.2)

In our case, ν = 9.2 · 1015 Hz, Hν = 2.9 · 1012 Hz, τc =
0.664

Hν
(for a Gaussian spectrum) i.e.,

τc = 230 f s and τ =
|(r1+r′1)−(r2+r′2)|

c
. In the conditions of the experiment, Fig. II.4 shows that,

whatever the point M considered on the CCD (left panel) or the misalignment of the setup, τ

remains below 20 f s i.e., significantly smaller than τc. Therefore, the conditions stated above

are fulfilled. In these conditions, we can thus also conclude that we won’t be able to see any

effect of temporal coherence over the interference pattern: this is the reason why V is (almost)

constant over the interference profile in our case. By changing the couple of slits, we will probe

different areas of the wavefront that arrives on the slits. The spatial coherence between two

vertical slices of the spot separated by a distance d is thus characterized, and the degree of

coherence is then analysed as a function of this separation.

A typical interference profile and its spatial Fourier transform are displayed in Fig. II.5.

Graphically, the Fourier transform gives one central peak plus two identical side ones and can

be written as a convolution of the Fourier transform of the diffraction envelope with the following

expression:

2δ ( fx)+S( fx)V ( fx)∗ [δ ( fx− f0)δ ( fx + f0)]. (II.3)
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Figure II.4: Delay τ between the two paths of the beam for the four couples of slits used in the experiment. In

the ideal case, the source, the slits and the center pixel of the CCD are centered and τ = 0 s. Left panel: τ as a

function of the pixel that is read on the CCD if the source, the slits and the central pixel of the CCD are centered;

right panel: τ measured on the central pixel of the CCD as a function of the misalignment of the slits. In both cases,

it remains significantly smaller than τc.

Figure II.5: Typical interference profile I(x) (left panel) and its normalized Fourier transform TF [I0(x)] = F( fx)
(right part), giving one central peak and two identical side ones. The visibility is given by twice the height of a side

peak, normalized by the height of the central one.

Here δ is the Dirac delta function and S is the spectral intensity at the spatial frequency fx

of the Fourier transform, corresponding to a wavelength λ = d
fxL

( f0 isthe spatial frequency

corresponding to the central wavelength). V is then given by the sum of integrals of the side

peaks over the integral of the central one. The fact that the spectral intensity appears in Eq. II.3

theoretically allows measuring the spectrum with a Young’s experiment [54]. This is however true

for an enough wide spectrum (Hν ∼ ν), whereas in our case the narrowness of the spectrum

does not provide enough resolution for such a retrieval. Besides, V is thus simply given by twice

the relative height of a side peak since the spectrum is almost a delta function as well.

This method has been chosen for performing the data analysis for two main reasons: it al-

lows exploiting easily a large sample of data and it directly averages the value of V over the

whole interference profile. However the direct measurement of visibility on the interference pro-

file has also often been used as a cross-check. For obtaining µ , one also needs to know I1(M)
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and I2(M), the intensities of each single diffraction pattern on a given position of the detector.

The latter measurement has not been done in our experiment. Thus, since
I1(M)+I2(M)

2
√

I1(M)I2(M)
< 1,

we assume that I1 = I2 and thereby we slightly underestimate the coherence factor. However,

we estimate the error to be of the order of 1−2 % only (it is worth noting that this factor is also

usually neglected in most of coherence measurements). So we consider that µ =V . Moreover,

for improving the signal-to-noise ratio, we usually integrated the results over some successive

shots. This averaging is an additional reason of undervaluation of the degree of coherence.

II.1.b Spot characterization

The degree of coherence is usually given as a function of the slits’ separation. We wish to

normalize the slits separation to the transverse size of the beam, in order to be able to compare

results obtained for different spot sizes. That is why, for the experiments reported here, a series

of FEL spots has been measured on the detection system without the slits inserted. A typical re-

sult is shown in Fig. II.6. As it can be seen, the pointing is very stable, such as the shape, which

Figure II.6: Series of 13 successive FEL spots observed on the CCD.

presents a small astigmatism. Only the intensity is slightly varying shot-to-shot, but there are

no “dead-shots". An analysis of these images has been done in order to characterize the trans-

verse size of the beam before carrying out the Young’s experiment. In the horizontal direction, we

found, over 13 successive shots, a radius σx(after slits)≈ 2.50±0.06 mm. In the vertical one,

on which we do not focus our attention in this work, we found σy(after slits) ≈ 3.01±0.06 mm.

In both directions, the profiles are Gaussian-like.

The horizontal profiles traced on Fig. II.8, corresponding to the same series of measure-

ments (see Fig. II.6), emphasize the stability of the transverse shape. Each profile has been

normalized to its maximum value, in order to get rid of shot-to-shot intensity fluctuations on the

graphical display. From this figure, we can say that the horizontal profile of the beam seems

sufficiently stable for the slits to probe the same portions of the FEL spot at every coherence

measurement.

In order to calculate the divergence of the beam, a similar characterization has been carried

out on a detection system placed 11.6 m before the slits. The transverse sizes of the beam

measured in the horizontal and vertical directions were, respectively, σx(before slits) ≈ 1.8±
0.04 mm and σy(before slits)≈ 1.9±0.04 mm. The shapes are still Gaussian-like and the spot
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Figure II.7: Evolution, in the vertical (dashed line) and horizontal (full line) directions, of the radius of the FEL

spot (standard deviations of the transverse intensity profiles).

Figure II.8: Horizontal profiles of the series of FEL spots measured on the detection system without the slits.

Each profile has been normalized to its maximum value.

still very stable, in terms of pointing and size. The divergence is given by:

θx,y = 2arctan

(

σx,y(after slits)−σx,y(before slits)

2l

)

∼ σx,y(after slits)−σx,y(before slits)

l
,

(II.4)

where l is the distance between the two detection systems (before and after the slits) i.e.,

l = 11.6+ L = 11.6+ 8.5 = 20.1 m. We thus obtain θx = 35 µrad in the horizontal direc-

tion and θy = 55 µrad in the horizontal one (the beam is thus astigmatic). This enables es-
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timating the size of the spot at slits’ positions: from the previous formula, we get σx,y(slits) =

σx,y(after slits)−Lθx,y, that will be simply noted σx,y. I chose σx,y(after slits) as the “reference"

spot size for calculating σx,y because it is larger than σx,y(before slits) and the uncertainty on

the measurement is therefore lower. We thus obtain: σx = 2.2 mm and σy = 2.5 mm.

II.1.c Spatial coherence results

In our measurements, we centered “by eye" the slits on the FEL spot, considering also

that a maximum value of V is obtained if the slits are centered and the FEL spot is symmetric

with respect to the vertical axis. Typical results are summarized by Fig. II.9, which gives the

visibility of the fringes (equivalent to the degree of coherence) as a function of the relative slits’

separation. We find that the visibility is above 0.8 for d
σx

< 0.5. It is important to note that, for

the couple of slits separated by d = 0.8 mm (corresponding to d
σx

= 0.36), the visibility of the

fringes is probably undervalued due to a low signal-to-noise ratio, which is caused by a smaller

slits’ width of 20 µm (whereas w = 40 µm for other couples of slits, through which more signal

is thus transmitted and collected on the CCD). Hence the spatial coherence at the center of the

FEL spot is possibly even higher. Indeed, in the limit of d
σx

= 0, the same parts of the wavefront

interfere so that the coherence factor should tend to 1 towards the central position of the FEL

spot.

Figure II.9: Results (visibility as a function of relative slits’ separation) obtained in standard conditions. Each point

corresponds to the average of 10 successive measurements with their standard deviation, one single measurement

being integrated over 10 shots. For the first point, V may be underestimated due to a low signal-to-noise ratio.

As a comparison, the results of V as a function of d
σx

found here for FERMI@Elettra are ap-

proximately twice better than the ones obtained on the SASE-based facility FLASH and reported

in [51] (dashed line in Fig. II.10). It is worth noting that in the latter experiment, the wavelength

was not the same (13.7 nm for experiments held at FLASH and 32.5 nm at FERMI@Elettra),
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even if still in the EUV spectral region. Also, the beam was smaller (σx ≈ 750 µm), but what

is important is that there were also no focusing optics on the beam path, and in any case the

relative separation d
σx

is taken into account. The comparison seems therefore justified, and is

at the advantadge of the seeded facility FERMI@Elettra. On the other hand, other femtosec-

ond extreme-ultraviolet sources such as high-order harmonics generated in a hollow fiber filled

with gas can exhibit much higher transverse coherence degrees, close to 1 over the whole spot

(dotted line in Fig. II.10) due to a nearly single-mode structure [55] (a modal filtering – see

Section II.2 – is done on the EUV signal propagating through the fiber). It is worth noting that a

Figure II.10: Results (visibility as a function of relative slits’ separation) obtained on FERMI@Elettra (losange

markers, full line), at FLASH [51] (square markers, dashed line) and on a HHG source [55] (triangle markers, dotted

line).

multi-mode field does not inevitably involve a lower coherence than the single-mode one: both

can theoretically exhibit stable intensity shape and wavefront, and in this case they are both

coherent. Nevertheless, this situation, which is already difficult to imagine for a single mode,

seems even more challenging for an electric field made of an addition of modes.

We then performed new series of coherence measurements for which we obtained slightly

lower visibility. We do not have definitive reason for that, even if a degraded quality of the

transverse electron beam properties is suspected. In any case, here the aim was not to obtain

the best spatial coherence as possible here, but to study the effect of saturation and over-

bunching on the spatial coherence. Figure II.11 shows that, when going into over-bunching, the

spatial coherence is degraded. As a first example, when the seed power is higher (dashed line),

the coherence at the center of the FEL spot gets lower. Indeed, in this situation, the saturation is

reached earlier in the radiators chain leading to over-bunching at the end of the radiators chain,

at least in the central portion of the spot – where the seed intensity is the highest. A second

example is, when keeping the seed at the same usual value but removing (detuning, in fact) two
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radiators (the first two, in order not to change the source point of the FEL light) of the chain,

the spatial coherence at the center of the spot does not decrease very much with respect to the

“normal case" (full line), but it does on the outer parts of the spot. As a matter of fact, the outer

parts of the bunch (the ones that received less seed intensity) are, in the presence of only four

radiators, far from saturation. This may explain why the light they emit is relatively less spatially

coherent. Indeed, obtaining saturation corresponds longitudinally to the emission of wavefronts

in phase and thus to a good temporal coherence. Transversally, there is thus the same effect.

However, the fall of V for d
σx

≈ 0.35 with a strong seed can be surprising: V should tend to unity

when close portions of the wavefront interfere.

Figure II.11: Results obtained for three different configurations: 4 radiators only (losange markers, dotted line),

6 radiators (square markers, full line), 6 radiators with strong seed (triangle markers, dashed line).

It has not been possible to analyse the measurements of visibility for slits separated by

d = 4 mm. Indeed, as shown in Fig. II.12, two problems occur:

1. The diffraction patterns (for d = 4 mm) do not overlap well. This makes the analysis more

difficult and the assumption I1 = I2 (probably) not valid anymore.

2. Moreover, the resolution of the CCD is too small in the current layout of our setup. To

probe a larger part of the FEL spot, L should be increased and/or w lowered, which would

have the drawback to decrease the signal collected on the detection system. This can

be solved by using a CCD placed directly on the beam path instead of using the current

detection system, where the CCD looks at a fluorescent crystal, which is significantly less

efficient in terms of signal collected by the CCD. Such a solution would also enable a

single-shot characterization.
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Figure II.12: Typical profile obtained for a slits separation d = 4 mm.

II.1.d Comparison with a Gauss-Schell Model beam

The aim of this section is to predict the spatial coherence of the FEL light at any longitudinal

position, on the basis of similar works that have been already carried out e.g., at FLASH [56]. Let

us recall the mutual coherence function, from which one can derive other coherence functions

(see Chapter I):

Γ(x1,x2,z0,τ) =< E(x1,z0, t)E
∗(x2,z0, t + τ)>, (II.5)

where z0 is the position at which the electric field is measured. The knowledge of the electric

field at one position gives the coherence not only at this position, but at any position along the

propagation axis. Indeed, by means of the paraxial propagation of the electric field, one can

obtain E(x,z, t) from E(x,z0, t), which leads to:

Γ(x1,x2,z,τ) =< E(x1,z, t)E
∗(x2,z, t + τ)> . (II.6)

The similar reasoning can be transposed to the Fourier transform of this function, that is the

cross-spectral density W (x1,x2,ω,z), whose normalized version is the coherence factor µ(x1,x2,ω,z)=
W (x1,x2,ω,z)√

W (x1,x1,ω,z)W (x2,x2,ω,z)
(see Chapter I). It is thus theoretically possible to know the degree of

coherence of the light at any position z.

For this purpose, we will first do a strong hypothesis on the nature of the FEL source. Indeed,

let us assume that our FEL source is a Gauss-Schell Model (GSM) one [57]. A GSM beam is

characterized by a Gaussian transverse profile all along the propagation. At the source position,

the intensity can be written as:

I(x,z = 0) = I0e
− 2x2

w2
0 , (II.7)

where w0 = 2σx(z = 0) is the waist size. A GSM beam is also characterized all along the

propagation by a Gaussian profile of the coherence factor, that depends only on the distance

between the considered points x1 and x2 (whose spatial coherence is probed). At source, it can
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thus be written as follows:

µ(x1,x2,ω,z = 0) = e
− (x1−x2)

2

2σ2
µo , (II.8)

σµo being the standard deviation of the distribution of the degree of coherence of the beam at

z = 0.

In the beginning of the 1980s, many studies have been done concerning the propagation of

the cross-spectral density [58]. For a GSM beam, it has been shown [59] that it can be written

as a sum of independent Hermite-Gauss modes Ψ j, weighted by a factor β j:

W (x1,x2,ω,z) = ∑
j>0

β jΨ j(x1,ω,z)Ψ∗
j(x2,ω,z). (II.9)

Ψ j are the same functions describing the TEM modes, and their expression is given, in one

dimension, by:

Ψ j(x,λ ,z) =

(

2

π

)1/4(
q0

2 jw0q(z) j!

)1/2(
q0q∗(z)
q∗0q(z)

) j/2

H j

(

x
√

2

w(z)

)

e
−i πx2

2λq(z) , (II.10)

where H j(x) are the Hermite polynomials of order j (see Appendix B), w(z) = w0

√

1+
(

z
Zr

)2

is the beam size with Zr =
πw0

λ

(

1

w2
0

+ 1

σ2
µo

)−1/2

the effective Rayleigh length [60] (by analogy

with a Gaussian beam) and q(z) = z+ iZr (q0 = q(0)). It is interesting to note that in the case

of a fully spatially coherent source (σµo → ∞), Zr becomes
πw2

0

λ
as in the case of a classical,

diffraction-limited, Gaussian beam, whereas it tends to 0 for an incoherent source (σµo → 0),

which corresponds to a completely diverging beam. The Rayleigh range (i.e., half the distance

over which the beam size w(z) remains smaller than
√

2w0 and considered as collimated) of a

GSM beam is thus bounded by:

0 6 Zr 6
πw2

0

λ
. (II.11)

The ratio
β j

β0
giving the proportion of the function Ψ j with respect to the function Ψ0 is given

by [61]:

β j

β0
=

(

1+
K2

2
+K

√

1+
K2

4

)− j

, (II.12)

where K =
σµo

σx
. The absolute proportion of each function is thus 1

∑ j β j

(

β j

β0

)

.

Now we have almost everything for retrieving the cross-spectral density W (see Eq. II.9)

at any position z. According to the previous equations, we need the waist size w0. Since, the

transverse size of the source point should approximately correspond to the transverse size of

the electron bunch, we can assume w0 ≈ 600 µm (in the machine configuration of the day of

the experiment).
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First of all, knowing w0 we get w(z) (see previously) and thus can calculate the intensity

profile at any position, that is given by I(x,z) = I0e
− 2x2

w(z)2 . The dashed curve in Fig. II.13 shows

this theoretical profile after L′+L = 73.7 m of propagation i.e., on the detection system used for

the Young’s experiment. In full line a typical measured profile without the slits inserted is drawn.

The agreement is very satisfactory.

Figure II.13: Comparison of the measured intensity profile on the detection system without slits (full line) and of

the one of a GSM beam at the same position (dashed line).

Then, for retrieving the theoretical degree of coherence, we need the standard deviation

of the distribution of the degree of coherence at source i.e., σµo. According to [56], the latter

parameter is given by:

σµo =
w0

√

(

2πw0θx

λ

)2

−1

, (II.13)

where θx is the divergence of the FEL light, measured in the previous section. In our case, we

get σµo = 152 µm.

It is now possible to compare the GSM model with the real FEL emission. At slits’ position,

the theoretical values of the coherence factor of a GSM beam fit very well with the results we

obtained experimentally (Fig. II.14). The agreement remains quite good when considering a

source size w0 down to 400 µm, so that the uncertainty on the value of w0 is not a big problem

in this case. The GSM model does not fit with the results obtained in Fig. II.10, but in the latter

the electron beam and FEL light properties (size, divergence) were also probably different. It

would be interesting to do a systematic study of the agreement between experimental results

and predictions for a GSM beam for different machine configurations.

Table II.2 gives the proportion of each Ψ j function participating to the cross-spectral density

function. We considered a total number of 10 functions: on this basis, the first five Hermite-

Gauss functions ( j from 0 to 4) include 93% of the total contribution.
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Figure II.14: Comparison between the degree of coherence characterized experimentally (losange markers, see

Fig. II.9) and theoretical prediction assuming that the FEL emission is a GSM beam.

function number j contribution 1
∑ j β j

(

β j

β0

)

0 40%

1 24%

2 15%

3 9%

4 5%

Table II.2: Contribution of the first five Hermite-Gauss functions to the cross-spectral density of the FEL light

considered as a GSM beam.

Since the Ψ j functions contribute independently to the cross-spectral density (see Eq. II.9),

a high number of functions leads to a decrease of the spatial coherence, whereas the presence

of a single function corresponds to a fully spatially coherent emission. This is shown in Fig.

II.15, where the coherence factor decreases towards the edges of the spot when the number of

Ψ j functions in the decomposition of W is not unity.

As a final remark, we can notice that the transverse intensity profile can also be retrieved

(instead of directly calculated by I(x,z) = I0e
− 2x2

w(z)2 ) through the properties of the coherence

functions: since W (x1,x2,ω,z) = FT−1[Γ(x1,x2,τ,z)] and the average intensity is < I(x,z)>=

Γ(x,x,0,z), we get that:

< I(x,z)>= ∑
j

β jFT−1
[

|Ψ j(x,λ ,z)|2
]

. (II.14)

In the case where W is described by a single function Ψ0, the intensity is thus a T EM0 mode

i.e., a Gaussian beam, that is fully coherent: we retrieve what we said previously.

The conclusion of this section is very simple: in the conditions of the measurements that we
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Figure II.15: Degree of coherence as a function of the relative slits’ separation for a GSM beam whose cross-

spectral density is described with only Ψ0 (dashed line), with 80% of Ψ0 and 20% of Ψ1 (full line) and the sum of

one third of Ψ0, one third of Ψ1 and one third of Ψ2 .

carried out for the Young’s experiment, we find that the GSM is a very good model of the FEL

emission in terms of the degree of spatial coherence µ (see Fig. II.14) and of the transverse

intensity profile (see Fig. II.13) in the horizontal direction. The knowledge of the FEL spot size

at the source point is the only parameter to know in order to retrieve the transverse properties

of the FEL along the propagation axis, assuming Eq. II.13 is reliable.

II.1.e Wavefront measurements

II.1.e.1 Description of the sensor

In order to complete the study of spatial characterization of our FEL light, we have per-

formed measurements using a Shack-Hartmann wavefront sensor placed approximately 80 m

after the last radiator exit. Such a device provides information about the spatial phase of the

FEL emission, allowing to better evaluate its aberrations than with only the intensity profiles, as

we already measured in Section II.1.b. We used a Haso 4386 from Imagine OpticTMcomposed

of a grid and an EUV camera located 21.1 cm behind the grid (Fig. II.16a). The harmonic beam

goes through the Hartmann grid, which is an array of holes of width 130 µm and step 381 µm,

producing an array of diffraction patterns on the EUV camera whose pixel size is 13 µm. The

positions of the individual spot centroids are measured (Fig. II.16c) and compared with refer-

ence positions (calibrated with perfect wavefront, Fig. II.16b). Local wavefront deviations at grid

position are thus inferred and allow reconstructing the whole wavefront. The intensity of the

measured diffraction peaks directly provide the transverse intensity distribution of the measured

beam at the grid position, at the sampling rate of the grid.

One has to take care that very strong aberrations cannot be detected if they induce more



46 Chapter II. Coherence and spatial quality

Figure II.16: Description of the Hartmann type wave front sensor. (a) The target beam goes through the Hart-

mann pattern grid, which is an array of holes, and projects onto the XUV camera behind. The XUV camera detects

the sampled intensity of the beam. (b) The wavefront sensor should be calibrated with a perfect beam before first

use. The positions of the beamlets on the camera will be registered as reference positions (blue points). (c) The

wave front is reconstructed from the measured local shift (red points) of each beamlet compared to the reference

positions. (courtesy of X. Ge)

than 2π-jumps in the wavefront profile. Moreover, completely incoherent light cannot be anal-

ysed since it corresponds to fluctuations of the wavefront. We should not face this problem since

we just evidenced that, at least spatially, the light from FERMI@Elettra exhibits good coherence

properties and the intrinsic effect of seeding should provide good temporal coherence to the

FEL emission.

II.1.e.2 Experimental results

Here we present results that have been taken for an FEL emission centered at 20 nm i.e.,

the 13th harmonic of the seed. In Fig. II.17, we can see the image of the array of diffracted

patterns collected on the CCD. The positions of the diffraction peaks is compared with the ones

of a plane wave in order to evaluate the local wavefront tilts at the different positions on the

grid and to reconstruct the whole wavefront. In the right image of Fig. II.17, we simulated the

expected diffraction pattern of a plane wave at 20 nm, which seems in good agreement with the

measured ones.

Figure II.18 shows the retrieval of the Haso software for the intensity spot (left image) and

the wavefront (right image). On the intensity spot, we can see a ring surrounding the central
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Figure II.17: Image collected on the camera of the wavefront sensor (left), zoom on a selection of pixels (center)

and simulation of the expected pattern (right).

lobe. At first sight, we could say that the FEL emission is composed of mainly two modes, a

nearly-Gaussian one and an annular one. In the wavefront (right image), we see that there are

very small distortions. They in fact appear, mainly as a phase jump, in the area corresponding

to the ring of intensity. The standard deviation of the overall wavefront surface is approximately

equal to λ
6

. When optimizing the FEL emission in order to get rid of the ring, we were able

to reach wavefront amplitudes of less than λ
7

. These are very good results, of the order of

magnitude of what was found in [62] on a HHG beamline at CEA Saclay (see Section II.2).

Our measurements, which are only preliminary, characterize a beam only twice far from the

diffraction limit (see Chapter I) according to the Marechal’s criterion [63] stating that a beam is

diffraction limited if its wavefront amplitude presents a standard deviation of λ
14

.

Figure II.18: Output of the Haso software: FEL spot normalized to the maximum intensity (left) and wavefront

given in units of the wavelength of FEL emission (right) i.e., λ = 20 nm.



48 Chapter II. Coherence and spatial quality

The presence of the surrounding ring in the FEL emission is well understood. It is related to

a mismatch of the undulator tuning. Indeed, the full resonant condition of the undulator is in fact

[20]:

λ =
LU

2γ2

(

1+
K2

2
+ γ2θ 2

)

, (II.15)

where θ is the emission angle. According to that, if K is not well tuned, the emission will be done

off-axis to respect the resonance condition. Hence, we have been able to generate completely

annular FEL radiation only by changing the undulator’s tuning.

After this study of the transverse properties of the FEL emission at FERMI@Elettra, I will

now present a work carried out at CEA Saclay where the effect of spatial quality of the driving

laser on the HHG properties is analysed.

II.2 HHG optimization through spatial improvement of driv-

ing laser

II.2.a Motivation and state of the art

The motivation of the present work was the general optimization of the generation of high-

order harmonics in loose-focusing geometry [65, 66] on the beamline of the chirped-pulse ampli-

fied (CPA, [64]) LUCA facility dedicated to experiments of coherent diffraction imaging [67, 68].

In HHG, homogeneous intensity distribution and low wavefront distortion of the driving laser are

crucial for the efficient and coherent macroscopic construction of the harmonic beam. This is

especially true in the loose-focusing geometry where the interaction occurs on a long distance

(some centimeters) compared to the wavelength of the fundamental beam (795 nm). This is

why, for optimizing the HHG, it has been decided to perform an optimization of the spatial qual-

ity of the driving laser provided by the LUCA source. Indeed, the importance and the effects

of the spatial quality of the driving beem, managed by different techniques, have already been

stressed in [69, 70, 71].

As it is often the case for a high-energy Ti:Sapphire laser facilities, the IR beam suffers from

bad spatial quality. Aberrations resulting from anisotropic thermal dissipation in the amplification

media [72], self-phase modulation during propagation of such intense pulses in the air or in

materials [73], intracavity beam distortions [74] and imperfections in optical components involve

a deterioration of both wavefront and transverse intensity profile. Hence, the laser beam is not

usually very close to a T EM00 mode. A common technique to recover a good spatial beam

quality is to focus the laser through a pinhole. This operates a spatial Fourier transform [76] of

the field in the plane of the pinhole where there is a one-to-one mapping between transverse

position and spatial frequencies, and allows for filtering the high spatial frequencies, blocked
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by the pinhole [77]. However, the beam keeps its low spatial frequencies distortions and a

significant amount of energy may be lost. Moreover, unless a specific conic pinhole is used [78],

any misalignment of the high-power laser beam can permanently damage the pinhole. Other or

complementary techniques include the use of a saturable absorber [79] or a deformable mirror

[80] and diffraction from Bragg gratings [81]. Moreover, active filtering can be achieved through

nonlinear processes like second harmonic generation via a nonlinear crystal [82] or a plasma

mirror [83] and cross-polarized wave generation (XPW) [84]. It should be noticed, however, that

these active filters are not useable with chirped pulses in CPA laser systems.

A scheme based on the propagation of an electromagnetic wave in a cylindrical dielectric

waveguide has been considered. In the community of ultrafast lasers, studies of propagation

into such kind of waveguides have been initiated by the post compression technique used to

generate sub-10 f s laser pulses, where a mJ-level femtosecond laser beam propagates over a

short distance in a capillary filled with gas [85]. The electromagnetic field of the laser beam can

be expressed as a linear superposition of the modes specific to this waveguide. By choosing

appropriate parameters, the beam couples preferentially into the LP01 (EH11) mode, whose

specifications will be detailed later on. The properties of this mode are very similar to the

T EM00 ones in free space. Other guided modes suffer from higher attenuation. Therefore, if

the capillary is sufficiently long and has a sufficiently small core diameter, a modal filtering is

made on the laser beam. Thus, a setup aimed at spatial quality improvement of a laser beam

can be designed by propagation in a carefully chosen waveguide. Modal filtering techniques

have already been used in domains other than ultrafast lasers such as, for instance, stellar

interferometry [86].

The efficiency of such a setup for HHG optimization has already been demonstrated in [87].

Here we test this technique in a slightly different configuration; in particular, the filtering stage

will be placed before compression of the IR pulse and harmonics will be generated in a long

interaction medium, instead of a short gas jet. Moreover, the originality of our work relies on

comprehensive theoretical, experimental and numerical studies of the quality of the IR beam

over its propagation along the system, which allows a better understanding of the HHG en-

hancement.

II.2.a.1 Description of the LUCA facility

Figure II.19 summarizes the principle of the LUCA laser chain on which has been carried

out the experiment. The Ti-Sapphire oscillator delivers nJ-level pulses with temporal Gaussian

profile of duration 30 f s FWHM, at a repetition rate of 76 MHz. Pulses are selected at a

repetion rate of 20 Hz and sent to an Offner stretcher [88], so that the pulses are lengthened

to a duration of about 200 ps. A regenerative amplifier allows the pulses to reach a mJ level.

To provide higher energies, two successive multipass amplifiers [89] are used and the pulse are

finally compressed, so that their final characteristics are a repetition rate of 20 Hz, an FWHM
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duration of 50 f s, a maximum energy of 50 mJ at a central wavelength of 795 nm. A sketch

Figure II.19: Description of the LUCA source. Only a fraction of the energy (8 mJ over 20 mJ effectively available)

is used after the first multipass amplifier, the other fraction being sent to another beamline. The stretcher and the

compressor have transmissions of the order of 30− 50 %.

Figure II.20: Drawing of the harmonic beamline. The arrow at the left bottom indicates the beam propagation

direction.

of the beamline is showed in Fig. II.20. The IR beam is focused by means of a lens of focal

length 5.65 m into a gas cell of length variable from 0 to 15 cm, usually set at a value of 8 cm
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corresponding to the optimum condition of generation. In the optics chamber, a mirror reflects

the EUV light and send it either to the users chamber, called the diffraction chamber, or to a

spectrometer (or other diagnostics) while most of the IR beam is transmitted and can be used

for control (principally, IR beam alignment in the gas cell). The entire setup is about 5 meters

long.

II.2.a.2 Description of the setup

The chosen cylindrical waveguide for the modal filtering setup built on the LUCA facility is a

straight hollow-core fiber in silica with a core radius a = 125 µm and a length L = 30 cm. The

Figure II.21: Beamline layout and modal filtering setup. The picosecond laser beam, of radius 3.5 mm, is focused

into the fiber, of core radius a = 125 µm and length L = 30 cm, by means of lens 1 ( f1 = 750 mm, for which a

maximum fiber transmission has been found). In order to adjust the coupling conditions, the fiber is mounted on

x− y translation stages and the lens on a z translation stage. A control loop has been implemented for correcting

the beam pointing at the fiber entrance. By means of a set of two lenses forming lens 2, the output beam is

collimated to a radius of 16 mm and sent to the compression stage, where pulses reach the femtosecond level. The

beam is then used for a HHG experiment, being loosely focused by lens 3 ( f3 = 5650 mm) into a gas cell filled with

argon. Mirrors and lens 4 ( f4 = 1250 mm, positioned at 1150 mm of the fiber output) enable to send the beam to

the wavefront sensor with a size adapted to its entrance pupil. Three irises are placed at the front focal plane of

lens 1, lens 2 and the back focal plane of lens 3.

overall setup implemented on the LUCA source is shown in Fig. II.21. The fiber has been put

under vacuum (at a pressure of the order of 10−3 mbar) and the whole modal filtering setup

placed before the compressor (see Fig. II.19) in order to reduce nonlinear effects due to the

propagation of such an intense beam in the air (indeed, even before compression, intensities of

the order of 1016 W/cm2 are reached when the beam is focused at the entrance of the fiber).

The latter choice is also motivated by the easier degradation of optical elements when the laser

is operated in a femtosecond (high-power) regime. Similarly, this will to avoid non-linear effects

into the core of the waveguide and its degradation leads us to choose a hollow-core fiber.

The central point of the study relies on the measurement of the spatial phase and transverse

intensity distribution of the laser by means of a Shack-Hartmann wavefront sensor (see principle

in Section II.1.e.1 – the main difference with the EUV sensor is that the grid of holes is replaced

by a grid of microlenses, that could not be used with EUV wavelengths). We used a Haso 64

from Imagine OpticTMwith a pupil of 1.5 cm and a discretization step of 186 µm. The complete

determination of the electric field in one plane provided by such an analyser allows calculating
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the electric field in any other plane by means of the theory of wave propagation in free space

in the paraxial approximation [90]. The propagation has been done by two (cross-checked)

methods: with “home-made" calculations and with the professional software FRESNEL R©. We

measured the wavefront and intensity distributions with the sensor at three different positions:

at the front focal planes of lenses 1, 3 and at the back focal plane of lens 4 (see Fig. II.21). In

every case, the tilt and curvature (quadratic phase term due to beam focusing) of the wavefront

were taken into account during data analysis. One has to note that the sensor has a threshold

at 1
e2 of the maximum fluence: below this value, no information is collected. This has an impact

on the accuracy of the simulation of the experimental results since information of the input beam

is lacking.

In addition, direct measurements of intensity patterns have been performed around the waist

of the focused beam, before and after the fiber. The collected data enabled the calculation of

the M2 factor [91]. The measurements were done using a beam analyser and the M2 calculated

following the standard technique that considers the measurements of the second moment widths

of the beam [92, 93]. The second moment width, corresponding to four times the standard

deviation σr of the transverse intensity distribution at a given position z along the propagation

axis, is the beam diameter definition used in the following. For a Gaussian beam, it matches the

parameter w (2w = 4σr, including 86.5% of the beam energy).

II.2.b Theory

II.2.b.1 Mode structure in the fiber

A clear description of the modes of a cylindrical dielectric waveguide is difficult to find in

the literature. This is why it is useful to present it before coming to experimental results. This

theoretical part will also allow to model the coupling and the propagation of the laser field into

the fiber and to give a first insight of the expected improvements of modal filtering on the laser

beam.

The general theory of the propagation of electromagnetic waves in a cylindrical waveguide

was developed a long time ago and general solutions can be found in Stratton [94]. In 1961,

Snitzer [95] studied the characteristics of cylindrical metallic waveguides and cylindrical dielec-

tric waveguides. In 1964, Marcatili [96] was the first to give the expressions of the modes of

a hollow dielectric cylinder when the core radius is much larger than the wavelength. In [97],

Degnan gave a more accurate definition of the hybrid modes and proposed to call LPnm modes

the set of linearly polarized eigenmodes. These modes are of interest for us since the LUCA

source is also linearly polarized.

Within the fiber core (r 6 a), the transverse characteristics of the LP modes can be written

as:

LPnm(r,θ) = AnmJn

(unmr

a

)

{

cos(nθ)
sin(nθ)

}

, (II.16)
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with n > 0 and m > 1. Jn is the Bessel function of the first kind and unm is the mth solution of

the equation Jn(r) = 0. For n > 1, the modes can be separated in two groups, according to the

dependence either on the sine or on the cosine, giving the direction of the nodal planes. They

will be respectively noted LPsin
nm and LPcos

nm . Anm are the energy normalization constants so that
∫ a

0

∫ 2π
0 |LPnm|2r dr dθ = 1 (the integration is done over the transverse fiber core area i.e., πa2).

It gives:

Anm =
1

aJn+1(unm)

√

κn

π
, (II.17)

with κn =

{

1 (n = 0)
2 (n 6= 0)

.

The family of LP modes is very similar to the Laguerre-Gauss modes in free space, as shown

on Fig. II.22. The LP01 mode is quite close to that of a Gaussian beam; this is the reason one

Figure II.22: Patterns of the first LPnm modes. The upperscript cos (respectively sin) stands for the cosine

(respectively sine) dependence in Eq. II.16.

normally tries to couple a maximum of the energy in this mode. Its behaviour in the near field

and the far field (free space) will be more accurately detailed later. The fraction of the electric

field injected at the fiber entrance, described by the transverse function Elaser(r,θ), that will

couple into a given mode is given by [98]

Pnm =
|ηnm|2

∫+∞
−∞

∫ 2π
0 ElaserE

∗
laserr dr dθ

. (II.18)
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The ηnm coefficients are equal to:

ηnm =

∫ a

0

∫ 2π

0
ElaserLPnmr dr dθ . (II.19)

Inside the fiber, every linearly polarized electromagnetic wave propagates as a linear com-

bination of the LPnm modes [99]. That is to say, for 0 6 r 6 a and 0 6 z 6 L, the total electric

field can thus be written as:

E f iber(r,θ ,z, t) = ∑
n

∑
m

ηnmLPnm(r,θ) · e−αnmz · ei(βnmz−ωt), (II.20)

where αnm are the attenuation coefficients of each mode and βnmz the phase that they acquire

along the propagation. These parameters are defined by:

αnm =

(

2πunm

λ

)2
1

a3

ε +1

2
√

ε −1
, (II.21)

and:

βnm =
2π

λ
− λ

4π

(unm

a

)2

. (II.22)

λ is the wavelength of the field propagating through the fiber and ε the dielectric permittivity

(we consider here real valued ε and ε+1

2
√

ε−1
, conditions which are always fulfilled for dielectric

waveguides). The mode with smaller attenuation (smaller αnm) is called the fundamental mode

of the waveguide.

In this section, we omitted the vector sign for a matter of simplicity: the LUCA source is

vertically polarized and we consider the LP modes matching this polarization. Moreover, outside

the fiber core, we assume that the energy of the modes is zero due to the absorption of the

cladding.

II.2.b.2 Mode coupling and propagation

We wish to favour the LP01 mode into our modal filtering setup. The first step is to couple as

much energy as possible into it at the fiber entrance. The fraction of energy of the input laser

field Elaser that is coupled into LP01 is given by P01 (see Eq. II.18). As a first approximation,

we will consider a Gaussian shape Elaser = e
− r2

w2
0 of the input laser field in order to have a first

insight of the beam size that is required for maximizing P01. Figure II.23 gives P01 as a function

of the w0 parameter of the input Gaussian profile. This curve tells us that a maximum coupling

into LP01 is found for a Gaussian beam size of w0 = 0.645a ≈ 81 µm, for which 98 % of the

input energy is coupled into LP01.

Table II.2.b.2 gives the attenuations of each mode calculated with Eq. II.21. It tells us that

LP01 is the fundamental mode of the chosen waveguide i.e., it is the less attenuated into the
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Figure II.23: Proportion of the energy of a Gaussian beam, focused at the fiber entrance, coupled into the LP01

mode as a function of its size w0, relative to the core radius a.

n

m
1 2 3

0 2.1 10.9 26.8

1 5.2 17.6 37.0

2 9.4 25.3 48.3

3 14.5 34.1 60.5

4 20.6 43.8 73.8

5 27.5 54.4 88.1

Table II.3: Attenuation in % of the LPnm modes after the 30 cm of propagation into the fiber.

fiber so that the proportion of LP01 is increased at the fiber output. From this data it is clear

that the good coupling into the mode of interest is very important: the proportion of LP01 that is

attenuated is very low (2.1 %); nevertheless, some other modes like LP02 or LP11 have also a

quite low attenuation. A possibility to favour even more LP01 would be to lengthen the fiber or

reduce its core radius (see Eq. II.21).

At the output of the fiber, the electric field propagates in free space and lens 2 (see Fig.

II.21) is used to collimate the beam. It is then important to know the behaviour of the beam,

and especially of LP01, both in the near and the far field. As was already discussed by Degnan

[97], a small modulation appears in the central part of the LP01 mode in the near field for planes

where r2

λ
is close to an integer value. This phenomenon is also encountered with a Gaussian

beam truncated by a circular aperture. The expression of the field in the back focal plane of a

lens 2 can be obtained analytically [100]:

LP
f ar f ield

01 (r) = 2u01a
√

π
J0

(

2πa
λ f2

r
)

u2
01 −

(

2πa
λ f2

r
)2

, (II.23)
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modes LP01 LP02 LP03 LP04 LP05 LP06 LP07

M2 1.12 3.08 4.93 6.76 8.58 9.08 38.6

Transmission through iris 2 99.2 % 59.1 % 6.49 % 2.96 % 1.73 % 1.15 % 0.82 %

Table II.4: First line: modes; second line: corresponding M2 factor; third line: according to the M2, proportion of

energy transmitted through iris 2 closed at a diameter
u01λ f2

πa
.

f2 being the focal length of lens 2 and the mode shape being still circularly symmetric (so that

there is no azimuthal dependence in the equation). Figure II.24 underlines the similarity between

the T EM00 and LP01 modes both in near (Fig. II.24a) and far field (Fig. II.24b). Calculations

have been done using Eq. II.16 and Eq. II.23. The truncature of the LP01 mode in the fiber (Fig.
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Figure II.24: Comparison of amplitude profiles of a Gaussian beam of parameter w0 = 0.645a (dashed curves)

and the LP01 mode (full line) in the fiber (a) and after 1 m of propagation in free space (b).

II.24a (full line)) is, in far field, responsible for rings surrounding the main lobe of the energy

distribution. These rings can be seen on the profile of LP01 in Fig. II.24b (full line). To suppress

this energy in the pedestal, an iris (iris 2 in Fig. II.21) of aperture diameter
u01λ f2

πa
, corresponding

to the first zero of the energy distribution of the LP01 mode in the back focal plane of lens 2 (see

Eq. II.23), is used. A very important point here is related to the fact that higher order modes

exhibit a higher divergence in the far field. This can be seen from the calculated values of the M2

factor for the LP0m given in Table II.2.b.2. To calculate the M2 of each mode, we propagated it

numerically and measured its divergence, whose ratio with the divergence of a Gaussian beam

with same size at focus gives the M2. In the last line of the table, we show that the use of iris

2 modifies the transmissions of the different modes. These results demonstrate that part of the

efficiency of the modal filtering is linked to the spatial filtering in the far field. It can be noted also

that, apart from the filtering of the other modes, the aperture size of the iris also improves the
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quality of the beam in the back focal plane of lens 3 (see Fig. II.21).

II.2.c Experimental results

II.2.c.1 Laser beam analyser measurements

Figure II.25 shows the beam analyser measurements at the waist of the beam. Before the

fiber, the beam is elliptic and “twisted” along the longitudinal axis (typical of a general astigmatic

beam), while after the fiber astigmatism and high spatial frequencies are mainly suppressed

(see the profiles in Fig. II.25b), so that the transverse beam profile is quasi-Gaussian. As

pointed out in the theoretical part, an optimization of the beam quality is obtained, additionally to

the propagation through the fiber, by using iris 2 with a diameter corresponding to the first zero

of the LP01 mode. These direct characterizations evidence an improvement of the spatial quality

of the beam in near-field (which is, in this case, the focus of a lens of short focal length). At the

entrance of the fiber, the beam is estimated to be 1.5 times larger than the one measured in Fig.

II.25a i.e., having a radius of 142.5 µm. This value, corresponding to a maximum transmission

into the fiber, and thus probably to a maximum coupling into LP01, is larger than the core radius.

On the other hand, we calculated (see Fig. II.23) for a Gaussian beam that the optimum radius

for a maximum coupling into LP01 is much smaller i.e., 81 µm. This shows that the beam cannot

be considered as Gaussian at the entrance of the fiber: even if in Fig. II.25a the intensity

distribution does not exhibit strong modulations, the phase is probably distorted, which has a

direct impact on the coupling.

Figure II.25: Spot of the IR beam at focus, measured by the beam analyser before (a) and after (b) modal filtering.

For (a), the measurement has been done at the focus of a lens of focal length 500 mm placed before lens 1. For

(b), the measurement has been done by imaging the output of the fiber by means of a 4f-system. The images

have been cropped at a background level for the M2 calculation, which can be seen on (a) with the non-negligible

amount of high spatial frequencies.

Figure II.26 shows the evolution of the diameter of the measured beam spots around the

waist and the one of a Gaussian beam with same width at focus. The ratio of their divergences
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wavefront amplitude before the fiber after the fiber

peak-to-valley [nm] 414.75±17.94 82.84±13.33

RMS [nm] 66.13±2.30 13.80±1.87

Table II.5: Measurements of the wavefront amplitude of the laser beam before and after modal filtering. Peak-

to-valley and RMS amplitudes of the wavefront are indicated with the standard deviation of the series of measure-

ments.

corresponds to the M2 of the beam. It is equal to 2.1 before the fiber and 1.4 after it. As

a comparison, the M2 of LP01 that has been previously calculated is 1.12. This difference

underlines the presence of residual high-order modes in the output beam. The calculated radius

of the laser beam at the output of the fiber, by means of the propagation laws of Gaussian beams

corrected by the M2 factor [90], is estimated to be 105 µm.

Figure II.26: Evolution of the beam diameter (geometrical mean of diameters measured in x and y directions)

along the propagation axis, in front of (left) and behind (right) the fiber. Crosses are experimental values and full-

line curves their interpolations. The dashed curve represents the diameters of a Gaussian beam of same size at

focus.

II.2.c.2 Laser characterization at fiber stage

I now present characterizations of both intensity and wavefront (equivalent to amplitude of

the electric field and spatial phase) of the beam, first through Shack-Hartmann sensor’s mea-

surements. In the front focal plane of lens 1, the beam intensity distribution has no cylindrical

symmetry and the wavefront is distorted (left side of Fig. II.27). The transverse intensity is

roughly super-Gaussian with three hot regions, corresponding also to peaks in the wavefront

profile. After filtering (right side of Fig. II.27), the wavefront exhibits a nearly flat profile. The

intensity distribution has a quasi-perfect cylindrical symmetry and a nearly Gaussian profile.

From Table II.5, it can be seen that the peak-to-valley and RMS (root-mean square) values

are divided by a factor of ≈ 5 after the propagation in the fiber, giving values of nearly λ
10

peak-

to-valley and λ
58

RMS.

From these measurements, we made a simulation of the modal filtering using the theory dis-

cussed previously: the wavefront and intensity measurements are used to calculate the electric
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Figure II.27: Shack-Hartmann measurements: intensity and wavefront at the front focal plane of lens 1 (left) and

the back focal plane of lens 2 (right).

field at the input of the fiber (Fig. II.28, left panel), by operating a spatial Fourier transform of

the measured field; the propagated field at the output of the fiber is then decomposed on the

fiber modes by means of Eq. II.18; each mode is then propagated through the fiber taking into

account its attenuation coefficient (see Eq. II.21) so that the field at its output (see Eq. II.20,

z = L) can be computed (Fig. II.28, center panel); finally, by operating a spatial Fourier trans-

form, we calculate the intensity and wavefront of the beam at the back focal plane of lens 2 (Fig.

II.28, right panel). The result is in quite good agreement with the measurements (Fig. II.27, right

panel). The cut of the Shack-Hartmann measurements taken as input for the simulations (Fig.

II.27, left panel) has non-negligible effects. In these high-spatial frequencies that are not taken

into account, information about the aberrations (e.g., astigmatism) and high-order modes (which

are more divergent, and thus more present in the high-spatial frequencies) is lost. Moreover,

according to the diffraction theory, this sharp cut is the source of rings in the intensity pattern of

the field propagated at the fiber entrance – which is not in agreement with what is experimentally

obtained. In order to avoid this issue, we have to smooth the Shack-Hartmann measurements.

The consequence is thus that, in comparison with what was observed with the direct measure-

ment of the beam analyser (see Fig. II.25a), the intensity shape at the fiber entrance given by

our simulations is “cleaner", even if the astigmatism is evident in the wavefront shape (Fig. II.28,

left panel). This involves an error on the calculation of the Pnm coefficients. In the propagation
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Figure II.28: Simulations of beam propagation. Left: fiber input (back focal plane of lens 1); center: fiber output;

right: back focal plane of lens 2. The wavefront is displayed only where the intensity is higher than 1
e2 of the

maximum intensity.

at the output of the fiber (Fig. II.28, center panel), the wavefront distortion is reduced with re-

spect to the one at the entrance (Fig. II.28, left panel) and, overall, is quasi-inexistant for the

propagation far-field (Fig. II.28, right panel).

Through those simulations of beam propagation, a M2 of 2 is calculated before the fiber,

to be compared with the 2.1 value deduced from measurement with the beam analyser. At

the output, the M2 value obtained is 1.3 which is again in good agreement with the 1.4 value

found in Fig. II.26. The slight differences of M2 values deduced from direct measurements

and simulations of beam propagation can again be explained by the cut of the outer part of the

beam done by the Shack-Hartmann sensor that leads to the undervaluation of the fraction of

high-order, more diverging, modes.

Results of the fraction of energy coupled in each mode at the fiber input i.e., the Pnm co-

efficients (Eq. II.18, Elaser being the field propagated at the fiber entrance and LPnm given in

Eq. II.16), and the fraction of each mode at the fiber output calculated according to each mode

attenuation along the fiber (Eq. II.21) are collected in Table II.6. The good coupling proportion

into LP01 and its low attenuation with respect to higher-order modes (see Table II.2.b.2) result in

an output beam mostly composed of this mode: a proportion of more than 90 % is found. From

these results, the theoretical transmission through the fiber is ≈ 83 %, while a maximum of 78 %

has been measured experimentally. The slight difference stems probably from the over-valuation

of Pnm for lowest-order modes due to the Shack-Hartmann cut, the uncertainty on the transverse

beam position, losses during beam propagation and thermal effects at the edges of the core of

the fiber. Indeed, as stated before, the injected beam is larger than the core of the fiber. This
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mode LP01 LP02 LPsin
31 LPcos

21 LPsin
11

Pnm [%] 88.64 3.96 2.03 1.46 0.97

output fraction [%] 91.40 3.72 1.83 1.39 0.95

Table II.6: Mode matching at the fiber input and fiber output. First line: five modes most efficiently coupled;

second line: coupling efficiency calculated from the electric field of the beam propagated at the fiber entrance with

simulations; third line: output proportion of each mode according to their coupling efficiencies and attenuation in

the fiber.

leads to an observable deterioration of the edges at fiber entrance without, however, any change

in the efficiency of the process (which evidences the robustness of the setup). Increasing the

input power emphasizes these thermal effects and the transverse beam instability, resulting in

a decrease of the energy transmission in the fiber. It is interesting to note that the five main

modes (those reported in Table II.2.b.2) on which the laser field is decomposed in the fiber have

their electric field symmetric with respect to the vertical axis, which is also the direction of polar-

ization of the laser and the – apparent – symmetry of the intensity and wavefront shapes of the

laser field before the fiber (Figs. II.27 and II.28, left panels). On the other hand, antisymmetric

modes couple very low (even negligible, according to the accuracy of the calculation) fractions

of energy. It could thus be interesting to study if the base of modes could be reduced according

to specific symmetry properties (this has not been done).

As a cross-check, instead of propagating the field from the position before the fiber, we per-

formed a numerical back-propagation of the field measured by the Shack-Hartmann sensor after

the fiber directly towards the fiber output. The results should be the same as the third line of

Table II.6. In fact, through this method we found a slightly higher proportion of LP01 (≈ 95 %)

and thus a slightly lower proportions of other modes, but the most present modes are still the

same five ones, in the same order.

Up to this point, the laser beam is still in the picosecond regime. After the fiber stage, it is

the injected into the compressor (see Fig. II.21) so as to reach femtosecond durations and then

be used for HHG. Let us study the properties of the IR beam after pulse compression.

II.2.c.3 Laser characterization after pulse compression

First of all, one has to note that SPIDER [101] characterizations, not reported here, have

been performed after the stage of pulse compression and showed that the spectro-temporal

characteristics of the filtered beam are not altered: the spectral shape is preserved and the

FWHM pulse duration remains smaller than 50 f s at moderate intensities. This is, of course, a

very important point for users’ applications.

But let us continue with spatial characterizations: the results of measurements carried out

with the Shack-Hartmann sensor after the stage of pulse compression are presented in Fig.

II.29. Imperfections of the optics (lenses, gratings of the compressor, mirrors which send the
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wavefront amplitude without the fiber with the fiber

peak-to-valley [nm] 681.00±45.19 288.00±49.68

RMS [nm] 146.75±9.71 54.40±11.08

Table II.7: Measurements of the wavefront amplitude of the laser beam without and with the fiber, after pulse

compression. Peak-to-valley and RMS mean amplitudes of the wavefront are indicated with the standard deviation

of the series of measurements.

beam to the sensor) cause intensity and phase modulation on the beam. Nevertheless, the

beam quality is far better with the modal filtering setup inserted before the pulse compression

stage than without it. Wavefront amplitudes are given in Table II.7: the RMS value is improved

from λ
5.5 to λ

14.5 with modal filtering.

Figure II.29: Shack-Hartmann measurements: intensity and wavefront without (left) and with (right) the fiber. In

both cases, the beam mean intensity is similar (≈ 15 TW/cm2).

The beam is then focused by lens 3. A spatial Fourier transform of the measurements of

the laser field reported in II.7 provides the field at the back focal plane, where a clear improve-

ment is found for the filtered beam (Fig. II.30). In the standard setup, the wavefront exhibits an

important deformation and the intensity profiles include a non-negligible amount of high spatial

frequencies. On the other hand, the filtered beam is Gaussian-like at its focus. Considering only

the part of the beam above 1
e2 of the maximum intensity, the RMS amplitude of the wavefront is

decreased by a factor ≈ 5 (from λ
9

to λ
48

). The significant improvement at this point of the beam-

line is very important: indeed, the beam focused by lens 3 will be the one used for experiments
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– HHG, in our case.

Figure II.30: Propagated electric field: intensity and wavefront at the back focal plane of lens 3, without (left) and

with (right) modal filtering. The wavefront is displayed only where the intensity is higher than 1
e2 of the maximum

intensity.

II.2.c.4 Effect of modal filtering on harmonic generation

The HHG, as an highly-nonlinear phenomenon, is a very interesting application for illustrat-

ing the efficiency of the filtering setup. Homogeneous intensity distribution and low wavefront

distortions of the driving laser are crucial for the efficient and coherent macroscopic construction

of the harmonic beam. This is especially true in the so-called loose-focusing geometry, where

the interaction occurs on a long distance (some centimeters), compared to the wavelength of

the fundamental beam (795 nm).

This is why it is interesting to look at the simulation results of IR beam propagation also

before and after the focus. Transverse IR spots are shown in Fig. II.31 before, at and after the

focus of lens 3, the coordinate z = 0 mm referring to the position of the focus. As a reminder, iris

3 is placed just before lens 3 that focuses the beam into the gas cell for harmonic generation.

It is clear that, especially before the focal point, the transverse intensity shape of the IR beam

without modal filtering is quite dirty. However, in both cases (filtered and non-filtered beam),

closing iris 3 allows improving the beam spatial quality. In our setup, the beginning of the gas

cell is located approximately at z = −100mm. Figure II.32 shows the intensity and wavefront
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.

Figure II.31: Intensity of the IR beam before (z = −100 mm), at (z = 0 mm) and after (z = 90 mm) the focus of

lens 3, for the non-filtered (a) and filtered (b) beam, according to numerical propagation of the laser field in free

space in the paraxial approximation. [Courtesy of D. Gauthier]

shapes at z = −100 mm and z = 0 mm when iris 3 is closed at a diameter of 22 mm. One

should note that the quadratic term of the phase (generated by focusing) has not been removed

for z = −100 mm, so that the wavefronts have a parabolic shape. The intensity distributions of

the beam are improved in both cases (filtered and unfiltered beam) with respect to Fig. II.31,

even if a higher proportion of high spatial frequencies is still present when there is no modal

filtering (Fig. II.32a). In this case also, the situation is greatly improved at focus but the intensity

distributions and the wavefront shapes evidence an astigmatism less present in Fig. II.32b.

Similarly to what was observed in [87], we noted a significant improvement of the spatial

quality of the generated EUV radiation (Fig. II.33). Indeed, even reducing the aperture size

of iris 3 on the unfiltered beam for improving the generation [102] is clearly not sufficient. In

addition, the stability and furthermore the harmonic conversion efficiency are enhanced: without

modal filtering, the use of 30 mJ of IR (measured after iris 3) allows obtaining 3.3 ·107 harmonic

photons per shot (measured on the CCD at 32 nm i.e., the 25th harmonic of the driving laser)

while 5.7 · 107 photons per shot are collected with only 8.5 mJ of the driving laser when using

the modal filtering stage. In other words, the harmonic conversion efficiency is ≈ 6 times better

with the filtered beam, making negligible the drawback of the loss of ≈ 30 % of IR energy within

the fiber stage. This is partly explained, in the non-filtered infrared beam (Fig. II.32a), by the

presence of a larger number of high spatial frequencies that do not have sufficient energy for

driving HHG, and thus that are not involved in the HHG process and represent a waste of IR

energy. Moreover, the stability of the intensity and overall of the wavefront of the filtered beam

is a great advantage for the macroscopic effects occurring all along the generating medium.
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.

Figure II.32: Simulations of intensity and wavefront of the IR beam at z = −100 mm and z = 0 mm for the

non-filtered (a) and filtered (b) beam with iris 3 closed at a diameter of 22 mm. In each quadrant, the left picture

corresponds to the intensity pattern and the right one to the wavefront. The wavefront is displayed only where the

intensity is higher than 1
e2 of the maximum intensity. [Courtesy of D. Gauthier]

Figure II.33: Far-field footprints of the twenty-fifth harmonic (32 nm) of the fundamental wavelength of LUCA,

measured without (left) and with modal filtering (right). In both cases, iris 3 is closed (respectively to a diameter

of 25 mm and 19.5 mm) so as to filter the outer part of the IR beam. Harmonics were generated in a gas cell

filled with argon at a backing pressure of ≈ 10 mbars. Patterns are measured on a CCD camera placed after a

monochromator.

The results presented correspond to optimal conditions of generation (aperture size of iris 3,

gas pressure, focus position with respect to the cell, IR energy) where a trade-off was found

between spatial quality and intensity of the harmonic signal.

Finally, qualitative HHG simulations have been confronted to experimental results. The code

developed by Thierry Auguste models the three-dimensional propagation in combination with the

strong field approximation [48, 49] of the microscopic response. In both filtered and non-filtered

IR beam cases, similar parameters as the ones of the experiments whose results are presented

in Fig. II.33 have been taken as input (gas pressure, IR energy, iris aperture size through which

we numerically propagated the laser field towards the gas cell, etc.). The simulations have not
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been performed over the all length of gas medium for a lack of computing time, but far-field

harmonic patterns shown in Fig. II.34 are in good agreement with those measured (Fig. II.33)

and the spatial quality of the harmonic beam seems correlated to the one of the driving IR

(whose patterns, taken as simulation inputs, are shown at the top of the figure): the direction of

“deformation" of the latter is the same for the harmonic beam. This HHG enhancement therefore

corroborates the efficiency of modal filtering.

Figure II.34: HHG simulations: far-field footprints of the twenty-fifth harmonic (32 nm) without (left) and with

modal filtering (right). The simulations have been done for a propagation length of 500 µm, starting 750 µm in front

of the IR focus. The footprints of the IR beam that have been used at the input of each simulation are shown on the

top-right of the EUV footprints, and correspond to the conditions described in the caption of Fig. II.33.

II.2.c.5 Spatial coherence of the EUV light

Finally, spatial coherence measurements of the harmonic signal have been carried out. Pin-

holes (instead of slits, but the principle remains the same as the one described in Section II.1)

were placed at the focal plane in the diffraction chamber (were the diffracting objects are placed

for the users experiments, see Fig. II.20) i.e., the coherence is measured on the image of the

EUV source. The focusing optics is a multilayer parabolic mirror that has a maximum reflection

around 32 nm in order to select the 25th harmonic of the IR source. The detection system is

the same used for the diffraction experiments i.e., a CCD of pixel size 13.5 µm. The pinholes

have a diameter of 610 nm and are separated by a distance of 5 µm, which is approximately the

whole transverse size of the EUV beam at this position. The pinholes thus probe two outer po-

sitions of the EUV spot. I present here measurements performed with the modal filtering stage

installed on the IR source. A typical profile obtained on the CCD is shown in Fig. II.35a. Unlike

on the FERMI@Elettra source, the harmonic bandwidth is quite large so that the visibility is not

constant over the interference profile. Another correlated consequence is that, in the Fourier
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Figure II.35: Interference profile obtained by the Young’s experiment carried out on the EUV beam generated

with filtered IR source (a) and Fourier transform of the profile. [Courtesy of D. Gauthier]

transform of the profile (Fig. II.35b), the side peaks do not have a negligible width. This allows

obtaining information on the spectral shape of the harmonic signal (see II.1): the width of a side

peak is equal to the sum of pinholes’ diameter and of the spectral width of the 25th harmonic,

which is thus found to be 0.64 nm FWHM i.e., similar to what is obtained when measured with

the spectrometer. The peaks have a pedestal which correspond to the presence in the spectrum

of a remaining part of lower-order harmonics (not well filtered by the multilayer parabolic mirror),

especially the 23rd one since it is spectrally very close to the 25th one. The obtained degree of

coherence (measured via the visibility of the interference profile or the ratio between the side

peaks’ area and the central peak’s area) is ≈ 0.8− 0.85, for measurements taken with one to

ten shot accumulations on the CCD.

Previous spatial coherence measurements performed without modal filtering on the IR beam

gave quite similar results, of the order of ≈ 0.75− 0.8. This very small difference is probably

explained by the fact that the modal filtering stage improves the stability of the IR beam (pointing

stability due to the fixed point that represents the output of the fiber, and general stability of the

transverse intensity and wavefront shapes), and such a stability is transmitted to the generated

harmonics. Since the transverse instability degrades the spatial coherence measurements due

to the averaging on different transverse positions, that can be the reason for slight better spatial

coherence results with the filtered IR beam. Hence, with such a small difference, we cannot

conclude on any advantage of the modal filtering from the point of view of harmonics’ spatial

coherence.
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II.3 Summary

In this chapter, I studied the spatial properties of the two femtosecond sources that are the

seeded FEL FERMI@Elettra and the LUCA facility.

In the latter case, an optimization of the EUV radiation (conversion efficiency, stability, trans-

verse shape) has been obtained by means of an improvement of the spatial quality and the

stability of the IR driving beam via the technique of modal filtering that we developed. Since the

HHG acts as a highly nonlinear filter, its enhancement evidences the qualities of modal filtering.

The astigmatism of the input beam is still partially present at the output of the fiber. In order to

cancel it more efficiently, the use of a longer fiber and/or with smaller core radius is envisaged,

which would make even more clear the superiority of modal filtering with respect to classical

spatial filtering [103]. However, an important proportion of the remaining high-order modes is

already filtered in far-field by means of an iris closed around the first lobe of the LP01 mode.

On FERMI@Elettra, the transverse properties of the EUV radiation have been directly char-

acterized. Mainly, the spatial coherence has been measured, providing satisfying results, and

the GSM beam has been found to be a good model for describing the transverse properties

of FERMI@Elettra’s light. Nevertheless, the work has to be continued, for instance with novel

complementary and/or more comprehensive methods [104, 105], or parallel ones, like wavefront

measurements. As a prospect, the consequences of the spatial quality of the seed laser and of

the electron beam on the FEL radiation have to be studied.
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With this chapter, I start presenting the spectro-temporal studies that I carried out on seeded

FEL’s, correlated to the presence of chirps (see Chapter I) at different levels of such a facility.

Hereafter, I will provide the description, origins and interplay of these chirps, with the particular

case of FERMI@Elettra on which I worked. The next chapter will focus on peculiar effects of

the presence of chirps in a seeded FEL, and analogies will be drawn with the spatial studies

previously discussed.

III.1 Chirp on the seed pulse

III.1.a Seed laser setup at FERMI@Elettra

The layout of the current laser setup for seeding the FERMI@Elettra FEL [106] is shown in

Fig. III.1.
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Figure III.1: Layout of the seed laser setup. The Micra R© Ti:Sapphire oscillator (top-left box) delivers pulses

centered at ∼ 780 nm of Fourier-transform limited duration 70 f s. It is sent to a Legend Elite R© regenerative

amplifier (bottom-left box), pumped by an Evolution 30 R© frequency-doubled Nd:YLF laser (middle-left box) centered

at 527 nm. The beam can then follow two paths: either the optical parametric amplifier (center-down part) way,

providing a wide tunability in the deep-ultraviolet (DUV, 200− 300 nm), or the frequency tripling scheme (middle

of the breadboard). The chosen path is sent down to the undulator hall, by means of a periscope (top-right of the

drawing) before which the pulses can travel through a UV compressor, relying on two transmission gratings, or be

sent to the UV-IR cross-correlator. The focusing optics that adapt the beam size in the modulator is placed just

prior to the periscope.

The setup relies on a commercial Ti:Sapphire chirped-pulse amplified system by Coher-

ent R©, delivering pulses at a repetition rate of 10 Hz of maximum energy 6.5 mJ. We used the

third harmonic of the fundamental laser emission (≈ 780
3

). For the experiments reported here,

the latter is generated in two steps. First, a non-linear crystal performs a frequency doubling so

that, after the crystal, the fundamental wavelength and its second harmonic are present. Both

components are mixed in a second crystal in order to create the third harmonic of the funda-

mental wavelength. This beam is sent by means of a periscope down to the undulators hall,

where steering optics is present on an “insertion breadboard" (Fig. III.2), for aligning the beam

in the modulator. The center of the modulator is located quite far from the last mirror (∼ 11 m),

which makes the alignment difficult. The focal point of the seed is approximately located at the

entrance of the modulator so that the overlap with the electron bunch is optimized at the be-

ginning of the interaction. The standard deviation of the transverse intensity profile at focus is

σr ≈ 300 µm, the standard deviation of the transverse charge distribution of the electron bunch

in the undulator area being usually in the range 150−300 µm (depending on the conditions of

the machine). On each side of the focal point, the seed can be considered as collimated (i.e.,
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Figure III.2: Insertion breadboard. On the left part, the beam arrives from the upper room through the periscope

(see Fig. III.1). The beam is then aligned by means of mirrors and sent directly to the undulators. The small fraction

of energy of the beam that is transmitted through mirrors STM2, M2 and M3 is collected by CCDs for getting the

beam footprints at different positions. In particular, CCD3 is placed after a long path (bottom part of the drawing)

that equates the distance to the beam waist in the modulator. The collected image thus mimics the laser beam

cross-section at the entrance of the undulator chain.

Parameter Value

center wavelength λ 261 nm

bandwidth FWHM Hλ 0.8−0.9 nm

duration FWHM Ht > 140 f s

energy per pulse 10−50 µJ

Table III.1: Main seed parameters for a standard FEL operation.

having a constant transverse size with parallel beams) on the Rayleigh range that is:

Zr =
4πσ 2

r

M2λ
≈ 3 m, (III.1)

M2 ≈ 1.5 being a factor characterizing the beam quality with respect to the one of a Gaussian

beam (for which M2 = 1); λ = 261 nm is the usual seeding wavelength. Zr is very close to

the modulator length that is 3.2 m, which should ensure a good overlap of the seed and the

electrons all along the modulator.

Both temporal and spectral intensity profiles of the seed can be considered as Gaussian.

The main seed characteristics in the standard regime of operation are summarized in Table

III.1.a. The energy per pulse of the seed does not usually exceed 50 µJ. It is however possible
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to go beyond this limit, but usually not above ≈ 150 µJ in order not to degrade the UV optics

that are on the beam path. Also, as we will see later on, increasing the energy per pulse affects

the spectro-temporal properties of the pulse. The attenuation is achieved by means of a system

composed of a half-wave plate followed by a polarizer, placed just after the generation of the

third harmonic.

Finally, the whole laser setup (seed laser, photo-injector laser) is synchronized by an all-

optical locking at a repetition rate of 10 Hz [107], for ensuring smallest jitter as possible between

the seed pulses and the electron bunch. This signal is linked to the more global clock system of

the machine, described in [108, 109, 110].

III.1.b Sources of chirp on the seed laser

Three main sources of chirp are present in the seed laser: one due the natural dispersion,

one to self-phase modulation and one generated in the compressor stage.

Natural dispersion The first unavoidable effect is the dispersion (see Introduction) that be-

comes non-negligible for a sufficiently broad spectrum, such as for the seed pulse used at

FERMI@Elettra. The beam travels in vacuum only after the insertion breadboard (Fig. III.2).

Before that, it travels through normally-dispersive media that are the air and transmission optics

(such as windows). A slight positive dispersion is thus induced leading to an up-chirping of the

pulse. We call it “natural dispersion" because it is not created intentionally: this is the state of the

seed pulse that we get “out of the box", after the generation of the third harmonic (≈ 261 nm).

As we will see, in some case it may be desirable to increase this dispersion before the seed

reaches the modulator. For this purpose, one can place additional materials on the beam path.

However, This generally induces an effect of self-phase modulation.

Self-phase modulation The optical Kerr effect [90] relies on the fact that the overall refractive

index of a medium is proportional to the intensity I of the laser beam:

n(I) = n+n2I, (III.2)

where n2 =
3

ε0n3 χ(3), with ε0 the permittivity of the vacuum and χ(3) the third-order susceptibility

of the material, is the non-linear refractive index (said non-linear because it represents a third-

order non-linearity, even if it is a linear coefficient of n(I)). For moderate laser intensities, n2

has a negligible effect and only the usual refractive index n is considered. However, if the order

of magnitude of I is sufficient to counterbalance the small value of n2, the overall refractive

index has to be taken into account and involves non-linear effects such as self-focusing [17] and

self-phase modulation. In the latter, the temporal phase of the pulse is shifted. Indeed, in the
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temporal domain, the electric field can be written as:

E(t) = A(t)eiΦ(t) = A(t)e−i(ω0t−k0z) = A(t)e
−i[ω0t− 2π

λ0
n(I)L]

, (III.3)

where A(t) is the electric field envelope and L is the distance of propagation in the considered

medium. The instantaneous frequency is:

ω(t) =
dΦ(t)

dt
= ω0 −

2π

λ0
n2L

dI

dt
. (III.4)

A frequency shift is thus induced along the pulse i.e., a chirp is created. For a gaussian pulse of

intensity profile I(t) = I0e
− t2

2σ2
t and standard deviation σt , the frequency shift becomes:

δω(t) =
2πLn2I0t

λ0σ 2
t

e
− t2

2σ2
t . (III.5)

For convenience, we shall express it in terms of wavelength. Since ω = 2πc
λ , we have dω

dλ =−2πc
λ 2

and therefore:

δλ (t) =−λ0Ln2I0t

cσ 2
t

e
− t2

2σ2
t . (III.6)

Around its center, the Gaussian profile can be considered as a parabola (see Fig. III.3 top):

e
− t2

2σ2
t ≈ 1− t2

2σ2
t

. Hence the shift of the central wavelength along the pulse becomes simply:

δλ (t) =−λ0Ln2I0

cσ 2
t

t, (III.7)

which is a linear function of t (providin the position along the pulse). As shown in Fig. III.3,

this is a good approximation only at the center of the pulse, for a duration of the order of σt .

At the edges of the pulse, the chirp cannot be considered any more as linear. In the calcula-

tions presented in Fig. III.3, we used a set of parameters matching a typical configuration of

FERMI@Elettra i.e., a seed with intensity of I ≈ 1 ·1014 W
cm2 propagating in 10 cm of fused silica,

for which n2 ∼ 10−16 cm2

W
and n ≈ 1.5. As shown in Fig. III.3 (bottom graph), an overall variation

of the central wavelength of more than 1 nm can be expected. For stressing the effect, I took a

strong seed energy of 100 µJ. The chirp created by the self-phase modulation leads to a spec-

tral broadening since the pulse duration is not changed. If we do the mistake to consider that

the chirp is linear (taking, all along the pulse, the linear approximation described here above),

we obtain a gaussian spectrum (dotted curve in the right panel of Fig. III.4), but whose shape

is far from the truth. Indeed, since the phase shift is not quadratic (i.e., the chirp is not linear),

the spectral shape will theoretically be distorted, not gaussian (full line in the right panel of Fig.

III.4).
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Figure III.3: Chirp along a seed pulse subject to self-phase modulation. Top figure: Gaussian temporal intensity

profile (full line) and parabolic approximation (dashed line). Bottom: calculated central wavelength shift for the

Gaussian intensity profile (full line) and for the parabolic intensity profile (dashed line). The parameters are: L =

10 cm; n2 = 1 ·10−16 cm2

W
; λ0 = 261 nm; σt = 80 f s; I0 =

E0

σt (4πσ2
r )

with E0 = 100 µJ and σr = 1 mm.
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Figure III.4: Comparison of the spectral shape of the seed at FERMI@Elettra in its standard condition (left) and

with the effect of self-phase modulation (right), with the set of parameters considered in Fig. III.3. In dotted line:

calculated spectrum considering a linear chirp on the whole temporal distribution; the full line in right panel takes

into account the chirp as described by Eq. III.6.

Compressor stage The compressor stage is similar to what can be found on a classical

chirped-pulse amplified laser chain [64]. A basic drawing is provided in Fig. III.5. The sys-

tem relies on two transmission gratings dispersing the light. The different wavelengths arrive at

normal incidence on a mirror which sends back the light through the system so that the wave-

lengths are spatially recombined. The angles and distances of the three optical components

are set so that a negative dispersion is induced: longer wavelengths do a longer path than

shorter ones. As a result, the initial positive dispersion is eventually compensated and the beam

is compressed to its minimal duration. Alternatively (in case of over-compensating negative

dispersion), a down-chirped pulse may be generated.
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Figure III.5: Scheme of the compressor stage of the seed pulses. When it enters, the pulse is up-chirped: longer

wavelengths (to the red) arrive first. Two transmission gratings are responsible for the dispersion of the light. Due

to their distance and angle, longer wavelengths (dotted line) travel a longer path than shorter ones (full line). A

UV-reflective mirror sends back the light and the output pulse is either compressed with respect to the incoming

one, or down-chirped if enough negative dispersion has been brought by the system.

Given the bandwidth value specified in Table III.1.a, the Fourier-transform limited duration of

the FERMI@Elettra seed laser is Ht =
4λ 2

0 ln2

2πcHλ
≈ 120 f s. However, in its standard operation it

is lengthened to ∼ 200 f s due to the aforementioned first two effects. The compressor stage

enables shortening the pulse down to ∼ 140 f s i.e., ∼ 1.2 times the Fourier-transform limit.

The fact that the compressor cannot totally counterbalance the pulse lengthening emphasizes

the presence of higher-order chirps, that partly come from self-phase modulation. Therefore,

in order to boil down to a situation where linear chirp is dominant, we will most of the time not

compensate the natural dispersion of the seed, or we will eventually induce a strong negative

dispersion via the compressor to get a dominant negative linear chirp. Moreover, in order to

avoid a too strong self-phase modulation, we will take care to maintain the seed energies below

the value at which a spectral distortion may take place i.e., as said previously, below ≈ 150 µJ.

In the approximation of a linear chirp and Gaussian spectral and temporal profiles, a simple

description of the electric field of the seed laser can thus be done, and is developed in the

following lines.

III.1.c Analytical description of linearly-chirped Gaussian laser pulse

In the temporal domain, the electric field of a linearly chirped laser pulse can be written as:

E(t) ∝ e−Γrt
2

e−i[ω0t+Γit
2]. (III.8)

The first exponential stands for the temporal envelope (Gaussian, here) and the second one for

the phase of the oscillations, including the rapidly-oscillating term at the center pulse frequency
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ω0 and a quadratic term ϕ(t) = Γit
2. The instantaneous frequency of the pulse is:

ω(t) =
d[ω0t +Γit

2]

dt
= ω0 +2Γit. (III.9)

We get indeed a linear dependence of the frequency on time of – constant – slope 2Γi: the

quadratic phase ϕ(t) induces a temporal linear dispersion of the pulse spectral component. A

positive Γi corresponds to an up-chirped pulse: shorter frequencies i.e., longer wavelengths,

arrive first while negative values of Γi stand for down-chirped pulses.

The Fourier transform of the temporal electric field gives its expression in the spectral do-

main:

Ẽ(ω) ∝ e
− Γr

4(Γ2
r+Γ2

i
)
(ω−ω0)

2

e
i

Γi

4(Γ2
r+Γ2

i
)
(ω−ω0)

2

. (III.10)

As for the case of the temporal electric field, we get a Gaussian envelope with a quadratic

phase, but with opposite sign, φ(ω) = − Γi

4(Γ2
r+Γ2

i )
(ω −ω0)

2. Here we define the parameter β

that characterizes the curvature of the spectral phase, and thus the amount of chirp:

β =
Γi

Γ2
r +Γ2

i

. (III.11)

β is equal to two times
d2φ(ω)

dω2 , which is the group delay dispersion (GDD, see Chapter I).

From Eqs. III.8 and III.10, we get that the temporal and spectral intensities are, respectively:

I(t) ∝ e−2Γrt
2

and Ĩ(ω) ∝ e
− Γr

2(Γ2
r+Γ2

i
)
(ω−ω0)

2

. (III.12)

These intensity profiles have Gaussian shapes, of standard deviations σt and σω respectively.

Hence, by identification into I(t) and (̃I)(ω), we get (see Appendix A):

Γr =
1

4σ 2
t

and Γi =± 1

4σ 2
t

√

4σ 2
t σ 2

ω −1. (III.13)

From the latter relation, we find back the Fourier-transform limit: σtσω =
√

1
4
+4Γ2

i σ 4
t >

1
2
. For

a non-chirped pulse (Γi = 0), σt =
1

2σω
: the duration is inversely proportional to the bandwidth.

For Gaussian pulses, we will often speak in terms of the FWHM values (noted Ht and Hω )

instead of the standard deviations ones. Γr, Γi and the relation of Fourier-transform limit can

then be easily rewritten in terms of the FWHM values.

A more comprehensive description of the above part can be found in Appendix A.

According to Eq. III.9, the difference between two frequencies, ω ′ and ω ′′, located (respec-

tively) at the times t ′ and t ′′ within the pulse, will be:

ω ′′−ω ′ = ∆ω = 2Γi(t
′′− t ′) = 2Γi∆t. (III.14)
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In terms of wavelength, it gives:

∆λ =
λ 2

0 Γi∆t

πc
, (III.15)

where λ0 is the mean frequency of the spectrum and c the speed of light. It is interesting to

calculate this value for ∆t = 6σt ; indeed, within 6σt , almost 100% of the pulse energy is present.

Therefore, |∆λ (6σt)| gives the overall difference of central wavelength within the linearly-chirped

seed pulse.
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Figure III.6: Parameters of the FERMI@Elettra seed laser as a function of β , for two different bandwidths, with

an up-chirped pulse. Top panel: Γi; middle panel: FWHM duration; bottom panel: overall difference of central

wavelength within the seed pulse. The latter entity has an opposite sign for a down-chirped pulse, Γi also.

Figure III.6 shows, in the case of an up-chirped pulse, the behavior of three important quan-

tities as a function of β . As the pulse length grows, the slope of the chirp Γi rapidly grows but

then decreases while the increase of the pulse duration becomes linear. Hence, the increase

of ∆λ (6σt) is more and more slow so that the overall difference of central wavelength within

the seed pulse is practically limited. In these graphs, we considered two different values of the

bandwidth of the seed that are the fact our two limiting cases: in its standard configuration, the

seed has an FWHM bandwidth of 0.8− 0.9 nm (see Table III.1.a). But as said previously, this

number can grow, due to self-phase modulation, if the energy of the seed is sufficiently high.

Until an FWHM bandwidth of 1.1 nm, the shape of the spectrum remains clean and Gaussian so
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that we have always kept it under this limit. It becomes distorted above 1.2−1.3 nm (for seed

energies > 150 µJ). Therefore, in our conditions, ∆λ (6σt)< 4 nm.

III.1.d Characterizaton of seed laser pulses

The fundamental quantities characterizing the FERMI@Elettra seed laser pulse are its spec-

tral width and duration. While measuring the spectrum is generally not an issue, the determi-

nation of pulse duration is not a trivial task. At FERMI@Elettra, such a measurement is carried

out by performing a cross-correlation between the fundamental IR pulse, of Gaussian temporal

shape and intensity IIR(t), extracted from the oscillator of the Ti:Sapphire laser chain, and the

seed pulse i.e., the third harmonic of the IR signal, of intensity Iseed(t). The two pulses overlap

in a non-linear crystal where occurs a sum frequency generation: the fourth harmonic is thus

created. The delay τ between the two pulses is controlled by a delay-line and the intensity of

the generated signal is:

IXCorr(τ) =
∫ +∞

−∞
IIR(t)Iseed(t − τ)dτ (III.16)

A typical cross-correlation trace that we collected is shown in Fig. III.7. The location of the

Figure III.7: Typical cross-correlation trace allowing to measure the seed pulse duration. Squares are experimen-

tal data and the line is a Gaussian fit. The FWHM duration is 170 f s, corresponding to a pulse FWHM duration of

about 150 f s. On the vertical axis is reported the intensity of the correlation signal, IXCorr(τ), while the horizontal

one shows the delay τ .

cross-correlation setup is shown in the right part of Fig. III.1. One has to note that a thickness

of 15 mm of fused silica has been inserted to take into account the material through which the

seed pulse propagates on the path to reach the undulator. From this measurement, we obtain

the FWHM duration of the seed pulse:

Htseed =
√

H2
tXCorr −H2

tIR (III.17)
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In Table III.1.d are reported different characterizations of the seed pulse, obtained for differ-

ent induced temporal chirps. In the standard configuration, the FWHM duration is about 200 f s

for energies per pulse larger than 50 µJ. Below this energy, the pulse duration may be under-

valued due to a lower signal. The bandwidth grows as a function of the energy per pulse, due to

self-phase modulation; as a consequence, the time-bandwidth product increases as well. In this

standard configuration, the pulses are up-chirped i.e., Γi > 0. This holds also for the two con-

figurations where additional pieces of a normally-dispersive material, calcium fluoride CaF2, are

placed on the beam path. In these two configurations, one observes an augmentation of both

the bandwidth and the duration: the first effect is again due to self-phase modulation, the second

one to the dispersion. Here the measurements corresponding to to a distorted spectrum are not

reported. We also tested four different configurations of the compressor, corresponding to a

different spacing between the gratings. We limited the energy per pulse in order not do degrade

the gratings. The measurements clearly show the grating efficiency: for every configuration,

the time-bandwidth product is maintained at an almost constant value, whatever the energy per

pulse. For the first position, we achieved pulses with a minimum duration of 140−150 f s i.e.,

∼ 1.2 times far from the Fourier-transform limit. This does not mean that the compressor sets

the quadratic phase to zero, but that the quadratic phase is set to a value that compensates the

higher-order phase terms. Here, the pulses are so close to the Fourier-transform limit that they

are at the borderline of the model of a linearly-chirped Gaussian pulse (high-order phase terms

can not be neglected any more in Eqs. III.8 and III.10). Hence, it is difficult to define e.g., Γi,

and furthermore to say what is the sign of the slight residual chirp. For the three other gratings

configurations, the sufficient anomalous dispersion that is provided by the compressor allows

defining again a dominant linear chirp, with Γi < 0.

One has to note that we measured the FWHM bandwidth implying a Gaussian spectrum in

terms of wavelength, which strictly speaking means that it is not Gaussian in terms of frequency

(whereas our analysis relies on a Gaussian spectrum in terms of frequency). However, the

spectrum is not enough wide to see a difference: dω
dλ is almost constant on the whole spectrum,

hence the error is very small.

The measurements are done before the seed is focused and sent to the undulators hall i.e.,

at a position where its transverse size, and thus its power density, is lower than what is really

experienced by the electrons. It means that the pulses may suffer from a self-phase modulation

that is not taken into account in our characterizations. Therefore, as a safety margin, in the

simulations presented later on, we considered a bandwidth ≈ 10% higher than measured.

The frequency chirp on the seed pulse is the one usually defined in the femtosecond laser

community. However, a second chirp is present in a seeded FEL: the energy chirp of the elec-

trons, which is defined as the dependence of their energy as a function of the longitudinal posi-

tion. Its description is provided in the next section.
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Energy [µJ] Hλ [nm] Ht [fs] TBP vs. FT limit

standard configuration 8 0.75 162 1.2

36 0.83 177 1.5

slight up-chirp 72 0.9 200 1.8

205 1.07 217 2.3

269 1.21 211 2.6

dispersive material 7 0.76 265 2.0

5 cm of CaF2 17 0.8 288 2.3

33 0.83 302 2.5

moderate up-chirp 66 0.99 345 3.4

92 0.99 380 3.8

132 1.14 409 4.7

159 1.21 451 5.4

dispersive material 7 0.8 396 3.2

10 cm of CaF2 16 0.83 423 3.5

30 0.96 453 4.3

strong up-chirp 62 0.99 525 5.2

87 1.14 602 6.8

127 1.21 646 7.8

compressor 5 0.76 141 1.1

position 1 12 0.8 148 1.2

23 0.83 149 1.2

set for 46 0.83 150 1.2

minimum duration 63 0.83 153 1.3

89 0.91 149 1.4

compressor 5 0.71 241 1.7

position 2 12 0.71 235 1.7

23 0.74 233 1.7

slight down-chirp 45 0.76 228 1.7

63 0.76 224 1.7

89 0.83 222 1.8

compressor 5 0.8 341 2.7

position 3 12 0.8 333 2.7

24 0.81 328 2.7

moderate down-chirp 48 0.84 320 2.7

67 0.85 327 2.8

96 0.86 326 2.8

compressor 5 0.8 436 3.5

position 4 12 0.83 438 3.6

24 0.88 437 3.8

strong down-chirp 48 0.88 427 3.7

67 0.87 429 3.7

96 0.88 436 3.8

Table III.2: Results of seed pulses characterizations. First column: different configurations; second column:

energy per pulse; third column: FWHM bandwidth; fourth column: FWHM duration; fifth column: ratio between time-

bandwidth product (TBP) and Fourier-transform (FT) limit. The central wavelength was always around 261.2 nm.
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III.2 Energy chirp of the electron beam

III.2.a Electron acceleration

Before describing the energy chirp that may affect the longitudinal electron beam distribution,

and discussing its provenance, it is necessary to give a simple remind of the process of electron

acceleration. The electron source [111] generates a bunch of charge ∼ 500 pC and duration

∼ 8 ps. In order to reach a sufficient energy that is required for the FEL to reach low wavelengths

(see Chapter 1, resonance equation of the FEL), the electron bunch is accelerated through

a linear accelerator (linac). It passes through successive sections within which is present a

sinusoidal electric field. Such sections are called radio-frequency (RF) cavities, characterized

by VRF , λRF and ϕRF that are respectively the amplitude of the field, its wavelength and its phase

with respect to the center of the bunch. The gain of energy of an electron located at the position

z (z = 0 being the center of the bunch) is thus given by [112]:

δE(z) = eVRF cos(ϕRF +
2π

λRF
z) (III.18)

where e ≈ 1.6 · 10−19 is the elementary charge. The total gain of energy of an electron along

the linac is thus equal to the sum of the δE acquired within each RF cavity. The particular value

ϕRF = 0◦ corresponds to the crest of the field. In a RF cavity, the electrons gain / lose different

energies according to their position with respect to the field i.e., they are dispersed in energy.

Thus, similarly to the notion of chirp in the community of ultrafast lasers, we define the chirp of

the electrons as the dependence of the mean energy of the particles from their position z along

the bunch (or, equivalently, the time t).

III.2.b Description of the electron-beam energy chirp

At FERMI@Elettra, the energy profile of the electron bunch is well described by a parabolic

function:

E(t) = E0 +χ1t +χ2t2. (III.19)

Here, E0 is the energy at the center of the parabola, χ1 the coefficient of the linear component

and χ2 the coefficient of the quadratic one.

The parabolic nature of the energy chirp at FERMI@Elettra is due to the sources which it

stems from (see [113]):

• The first is the direct consequence of the process of RF acceleration. When the electron

bunch is “on-crest" (centered on the peak of the sinusoid i.e., ϕRF = 0◦), the electrons

acquire a negative quadratic chirp due to the curvature of the accelerating field.
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• In order to reach higher peak currents (i.e., to increase the density of particles that emit

FEL radiation and thus enhance the power of the latter), the electron bunch is longitudi-

nally compressed. For this purpose, the electrons are set “off-crest" in some RF sections

i.e., de-phased with respect to the peak of the sinusoid by −45◦ < ϕRF < 0◦, so that they

acquire a linear chirp component ∆E
E0

. Chirped electrons are then sent through a magnetic

chicane where they follow energy-dependent trajectories (like in the dispersive section of

the undulator line) so as to shorten the bunch. The particles, of initial position z, are thus

moved to the position z+R56
∆E
E0

+ T566

(

∆E
E0

)2

, where R56 and T566 are the dispersion

coefficients. The presence of T566 is responsible for an additional negative curvature of

the electrons energy profile.

• A specific RF section, called X-band cavity, has been installed at FERMI@Elettra before

the dispersive section of the bunch compression stage. Its sinusoidal field, of higher fre-

quency and thus higher on-crest curvature than other classical RF sections, is de-phased

by ϕRF = 180◦ with respect to the other sections, so that the electron energy acquires a

strong positive quadratic component aiming at compensating the negative energy curva-

ture (see first two points).

For a simple view of the mind accounting for our study of the energy chirp, the FERMI@Elettra

linac can thus be reduced to a simplified structure (Fig. III.8): a first linac segment L0, a second

L1 in which is created the linear chirp component ∆E
E0

prior to bunch compression, the magnetic

chicane BC (for “bunch compression") of parameters R56 and T566 and the X-band cavity. The

final electron beam mean energy is given by:

E0 = Ei + e[V0 cos(ϕ0 +
2π

λs

z)+V1 cos(ϕ1 +
2π

λs

z)+Vx cos(ϕx +
2π

λx

z)], (III.20)

where the different variables are defined in the caption of Fig. III.8. The accurate structure of

the linac can be found in [111].

Finally, one has to note that the accelerated particles also generate fields, called wakefields.

The effect of the latter becomes important when the bunch is shortened. Longitudinal wakefields

[114] cause a negative linear energy chirp (possibly compensated by a slight dephasing of last

RF cavities) and a positive quadratic one (that competes with the other sources of quadratic

chirp described previously).

In the following lines, I describe the method and the results of measurements of the energy

chirp of the electrons.

III.2.c Characterization of the energy chirp

At FERMI@Elettra, the energy profile at the end of the linac is characterized by a so-called

high-energy radio-frequency deflector (HERFD) [115]. An RF section tilts the bunch in the ver-
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Figure III.8: Simple view of the linac structure at FERMI@Elettra, picture taken from [113]. The electron beam,

of initial energy Ei and duration σz0, is accelerated in a first RF cavity (L0) with field amplitude V0, phase ϕ0 and

wavelength λs. A second cavity (L1), with field amplitude V1, phase ϕ1 and wavelength λs is used to induce a

linear energy dispersion needed for bunch compression. The X-band cavity (X ), with field amplitude Vx, phase ϕx

and wavelength λx is used to pre-compensate the quadratic chirp component that will be induced by in the bunch

compression (BC) stage, after which the electron beam reaches its final characteristics, with mean energy E0 and

compressed duration σz.

tical direction, making the information about the beam time structure available along that axis.

Then, a bending magnet disperses the electrons in the horizontal plane, making the informa-

tion about the beam energy profile available along that direction. The beam longitudinal phase

space can thus be visualized on a fluorescent YAG crystal placed downstream the magnet. Typ-

ical results are reported respectively in the top and bottom pictures of Fig. III.9. For the first

configuration (top pictures), the interpolation with previous Eq. III.19 results in following param-

eters: E0 ≈ 1275 MeV , χ1 ≈ 8 MeV/ps and χ2 ≈ 0.3 MeV/ps2. Hence, the chirp is almost

linear only. For the second configuration (bottom pictures), following parameters are obtained:

E0 ≈ 1006 MeV , χ1 ≈ 1 MeV/ps and χ2 ≈ 7 MeV/ps2. This time, the chirp can be consid-

ered as almost quadratic only. In this second configuration, we see clearly, due to a stronger

compression than in the first configuration, the more important effect of longitudinal wakefields,

that generate a positive value of χ2. The right panels of Fig. III.9 display the current profiles,

whose shapes (roughly a ramp with negative slope) are explained by the longitudinal compres-

sion process of the bunch [116]. The current affects the homogeneity of the FEL process along

the bunch.

We have now characterized the frequency chirp of the seed and the energy chirp of the elec-

trons. Both have consequences on the properties of the FEL emission [117]. Before showing in
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Figure III.9: Longitudinal phase space measured at the end of the FERMI@Elettra linac for two different config-

urations of the machine. Left: image observed by a CCD on the YAG crystal; center: analysis of the left picture,

showing the energy profile; right: analysis of the left picture, showing the current profile. Larger values of time

correspond to a displacement from the tail to the head of the bunch.

the next chapter an experimental application, it is interesting to start with simulation results to

give a first insight of the chirp interplay in a seeded FEL.

III.3 Numerical study on the effects of seed and electron chirps

on the FEL emission

III.3.a Simulation parameters

In order to understand and characterize the effect of the different chirps on the FEL emission,

we have carried out an extensive campaign of simulations using the code Perseo [22]. Such a

code simulates the FEL process in the temporal (longitudinal) domain. The spectral properties

of the FEL emission are instead retrieved by a Fourier transform of the temporal electric field.

Transverse effects that might affect the FEL evolution are taken into account via correction fac-

tors [118]. The obtained results have been validated by the three-dimensional code GENESIS

[23], which is the “standard" of the FEL community.

The effect of chirps has been studied independently: linear frequency chirp on the seed

(by introducing a quadratic phase term in the temporal electric field of the pulse), linear and
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quadratic energy chirps of the electron. In [117], Lutman et al. provide an expression of the

temporal electric field of the FEL emission in the presence of these three chirps. Unfortunately,

this analytic work concern only the amplification of the fundamental of the seed pulse, whereas

here we focus on the usual state of FERMI@Elettra, that is devoted to amplify harmonics of the

seed pulse in order to generate short-wavelength radiation.

We will therefore rely only on simulations for giving a first idea of the effect of each chirp on

the output radiation. The simulation parameters that have been used are reported in Table III.3.

Note that the used seed intensity (25 GW/cm2) is the value above which the spectro-temporal

properties of the FEL emission become distorted.

Electron beam Energy 1.3 GeV

Relative energy spread 0.01%

Peak current 200 A

Emittance 2 mm.mrad

Seed Central wavelength 260.8 nm

FWHM bandwidth 0.81 nm

Peak intensity 25 GW/cm2

Undulators Harmonic number n 8

Dispersive section R56 20 µm

Table III.3: Parameters of simulations presented in this section.

In the simulation results presented hereafter, the spectral phase is quite difficult to unwrap

(suppress 2π phase jumps), partly due to the narrow spectrum and a too small resolution in

the frequency domain. Hence, the spectral phase won’t be displayed on the graphs of the FEL

emission. The spectral and temporal profiles have been fitted to a Gaussian and the temporal

phase to a parabola, separated into a quadratic and a linear phase term.

III.3.b Individual effects

Intrinsic chirp Here we consider the simplest (ideal) case i.e., when neither the seed pulse

nor the electron beam are chirped. This enables emphasizing the presence of a positive intrinsic

chirp that grows during the FEL process. The presence of this chirp has been pointed out by

Wu et al. [119]. It comes from the fact that the wiggling relativistic electron beam, representing

the FEL gain medium, is a dispersive medium, of group velocity [120]:

vg ≃
ωn

kn +
kw

2

=
c

1+ λn

2L

. (III.21)

λn is the center wavelength of the FEL emission (nth harmonic of the seed), kn =
2π
λn

and L is the

undulator period, kw = 2π
L

. If we assume that there is no bunching and thus no coherent emis-

sion in the modulator, vg accounts only for the emission in the radiators and L is the radiators
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period i.e., 5.5 cm. From the group velocity, we get the group velocity dispersion:

GVDn =
kw

2ω2
n

=
λ 2

n

4πLc2
, (III.22)

which is the group delay dispersion i.e., the second-order term of the spectral phase of the FEL

emission, per unit length of propagation. The non-zero value of the group-velocity dispersion

implies the presence of a frequency chirp in the FEL emission, even without chirps on the seed

and on the electrons.

Due to the intrinsic chirp, the FEL emission is not Fourier-transform limited. However, this

chirp is typically very small: for instance, in the simulation presented in Fig. III.10, the parabolic

interpolation of the temporal phase of the FEL pulse gives ϕFEL(t)≈ 5.3 ·10−5t2 −0.025t and

the FEL pulse remains <1.2 times far from the Fourier-transform limit.
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Figure III.10: Perseo output in the ideal case of no chirps, neither on seed nor on electron beam. Full lines

are simulation results and dotted lines their interpolations (Gaussian for the intensity profiles and parabolic for the

phase).

Linear frequency chirp (quadratic phase on the seed pulse) For typical values of the chirp

on the seed pulse, the intrinsic chirp becomes negligible and is dominated by the quadratic term

imprinted by the seed: the phase of the FEL pulse is also parabolic. For the situation reported

in Fig. III.11 accounting for a seed chirp parameter β = 10000 f s2, the parabolic interpolation

of the FEL phase gives ϕFEL(t) ≈ 3.2 · 10−4t2 − 0.15t: the quadratic and linear phase terms

are one order of magnitude larger than those obtained in the presence of the intrinsic chirp only.

The latter may therefore be neglected. The Γi parameter of the seed is equal to 4.5 ·10−5 f s−2.

If we multiply it by the harmonic order (n = 8), we find a value of 3.6 ·10−4 f s−2, which is very

close to the quadratic component 3.2 ·10−4 of the FEL phase. We thus have that, neglecting the

linear phase term which only corresponds to a wavelength shift, ϕFEL(t)≈ nΓit
2 This property,

generally verified in every simulation, is very important and will be discussed in the next Chapter.

The presence of a stronger quadratic phase term affects the time-bandwidth product of the
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FEL pulse: it is >2.2 times far from the Fourier-transform limit (for the reported simulation). In

other words, the fact that the seed pulse is usually up-chirped at FERMI@Elettra directly affects

the longitudinal quality of the FEL pulse. Moreover, as reported in [128], this effect is directly

proportional to the harmonic order i.e., the lower the amplified wavelength, the poorer is the

longitudinal quality of the FEL emission.
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Figure III.11: Perseo output with linear frequency chirp β = 10000 f s2. Full lines are simulation results and

dotted lines their interpolations (Gaussian for the intensity profiles and parabolic for the phase).

As shown in Fig. III.12, the duration of the FEL pulse increases as a function of the amount

of chirp, and follows the duration of the seed (their ratio is always approximately 2.5 i.e., close to

n1/3 ≈ 2.8 as predicted in [127]). At the same time, the bandwidth grows due to the resonance

along the electron bunch with the different central wavelengths of the seed (whereas, without

chirp on the seed, the resonance is always centered on λn whatever the longitudinal position).

But the latter effect is limited by the fact that, at some point, the seed becomes longer than the

electron bunch. Another limit, that is not reached in this case, is the one of the gain bandwidth

that is, in the low-gain regime in which we remain, ∆λ = λ
Nr

where Nr is the number of radiator

periods. Here ∆λ = 32.6·10−9

6×44
≈ 0.12 nm.

Figure III.13 shows the evolution of the quadratic and linear terms of the phase of the FEL

emission, as a function of the quadratic component of the phase of the seed pulse i.e., Γi. We

see that phase curvature of the seed pulse is proportional to the quadratic phase of the FEL

pulse. The linear phase term of the FEL pulse is also function of the quadratic seed phase.

Linear energy chirp on the electron beam In general, the phase of the FEL pulse repro-

duces the energy chirp of the electron beam. A linear energy chirp generates a linear compo-

nent of the phase in the emission, see Fig. III.14. Spectrally, this linear term in the temporal

phase results in a shift of the central wavelength of the FEL radiation. The temporal coherence

is not affected: for instance, in the presented simulation, the output pulse is only 1.14 times far

from the Fourier-transform limit.
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Figure III.12: In solid lines, FWHM duration (top panel) and bandwidth (bottom panel) of the FEL emission as a

function of the β parameter, without chirp on the electron beam. In the top panel, the dashed line corresponds to

the FWHM duration of the seed pulse.
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Figure III.13: Quadratic and linear terms of the parabolic interpolation of the temporal phase of the FEL emission

as a function of the Γi parameter of the linearly-chirped seed. No chirp on the the electron beam.
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Figure III.14: Perseo output with χ1 = 10 MeV/ps, χ2 = 0 MeV/ps2 and seed non-chirped. Full lines are

simulation results and dotted lines their interpolations (Gaussian for the intensity profiles and parabolic for the

phase).
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Figure III.15: Slope of the temporal phase of the FEL emission (top panel) and central wavelength of the FEL

emission (bottom panel; solid line: simulations, dashed line: theory), as a function of χ1, with χ2 = 0 MeV/ps2 and

seed non-chirped.

This effect is well-known and has been reported e.g., in [121], where the theoretical wave-

length shift that is predicted is ∆λ
λ

= R56 · 1
E
· dE

dz
. Figure III.15 reports the evolution of the slope

of the FEL phase, as a function of the linear energy chirp. We see that, here again, it is directly

proportional. On the bottom graph, we can see the central wavelength that is observed in sim-
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ulations and the one predicted through the previous formula: the effective shift is higher than

expected.

Quadratic energy chirp on the electron beam Figure III.16 shows the result of a simulation

where the seed is non-chirped but the electron beam presents a strong quadratic energy chirp.

In agreement with what what was observed previously, the FEL phase mimics the electrons

energy profile so that it is well fitted by a parabola. Since the pulse is not affected temporally, it

results in a spectral broadening (left panel).
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Figure III.16: Perseo output with χ2 = 50 MeV/ps2, χ1 = 0 MeV/ps and seed non-chirped. Full lines are

simulation results and dotted lines their interpolations (Gaussian for the intensity profiles and parabolic for the

phase).

Indeed, as shown in Fig. III.17, the duration is almost constant, whatever χ2 is. The chirp

brought by the electrons is added to the intrinsic chirp. The latter being positive, this explains

the asymmetry of the curve in the bottom panel.

If we look at the evolution of the temporal phase of the FEL pulse (Fig. III.18), we observe

the same behaviour as with the linear chirp on the seed. However, the effect of the latter is

much stronger, especially because experimentally it is difficult to reach χ2 > 10 MeV/ps2. Here

again, we see that the linear term of the FEL phase is proportional to the amount of quadratic

chirp on the electrons. This does not imply that the central wavelength of the emission will be

shifted: the phase is parabolic, not fully linear, as in the case where the energy chirp is linear.

Hence, the slope of the phase depends on the position along the FEL pulse: this is why there

is a spectral broadening instead of a wavelength shift (as it occurs for a linearly-chirped seed).

For χ2 = −5 MeV/ps2 and χ2 = −10 MeV/ps2, the quadratic energy chirp compensates the

presence of other phase terms in the FEL emission so that the latter comes close to 1.1 times

far from the Fourier-transform limit and it is not possible any more to interpolate the phase by a

parabola: higher-order terms become dominant at this boundary.
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Figure III.17: FWHM duration (top panel) and bandwidth (bottom panel) of the FEL emission as a function of the

χ2 parameter of the electrons energy, with χ1 = 0 MeV/ps and seed non-chirped.
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Figure III.18: Quadratic and linear terms of the parabolic interpolation of the temporal phase of the FEL emission

as a function of the χ2 parameter of the electrons energy, with χ1 = 0 MeV/ps and seed non-chirped.

III.3.c Interplay

The quadratic energy chirp of the electrons, the linear frequency chirp of the seed, and the

intrinsic chirp of the FEL process have similar effects. The “advantadge" of the first one is that
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it is not correlated to a pulse lengthening. Its drawback is that it is less easy to control than

the chirp of the seed. We will not focus on the linear chirp of the electrons, since its main and

well-known effect is a shift of the central wavelength of the FEL emission.
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Figure III.19: Evolution of the FWHM duration (top panel), the FWHM bandwidth (middle panel) and the time-

bandwidth product (bottom panel) of the FEL pulse, as a function of the quadratic energy chirp, for a down-chirped

seed pulse (β =−20000 f s2).

Let us consider a situation where the seed is down-chirped (e.g., β = −20000 f s2) and let

us try to compensate this chirp plus the intrinsic chirp by a proper quadratic energy chirp of

the electrons in order to lower the time-bandwidth product of the FEL emission. Figure III.19

shows that, as expected, the duration (top panel) is almost constant but that a proper value of

χ2 ≈ 50 MeV/ps2 is able to minimize the spectral width (middle panel). Therefore, starting from

a pulse that is 3.7 times far from the Fourier-transform limit for χ2 = 0 MeV/ps2, one reaches

a time-bandwidth product Ht ·Hν = 0.54 for χ2 = 50 MeV/ps2 i.e., a pulse 1.2 times far from

the Fourier-transform limit (for which Ht ·Hν = 0.441, assuming Gaussian temporal and spectral

pulses), see bottom panel of Fig. III.19.

I have tried to evaluate how the different chirps compensate each other i.e., how the quadratic

temporal phases that each of them induces in the FEL emission could be added. In fact, I found

a very simple law. If we neglect the linear terms in the parabolic interpolations of the phase so
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that the temporal phase is considered as quadratic only, it can be written as:

ϕFEL(χ2,β ) = ϕFEL(χ2,β = 0)+ϕFEL(χ2 = 0,β )−ϕFEL(χ2 = 0,β = 0). (III.23)

In other words, the temporal phase of the FEL emission can be decomposed in a sum of the

phases that are induced separately by each of the chirps. The first term of the sum is the phase

of the FEL emission in the presence of a quadratic energy chirp only and the second term

stands for the phase in the presence of the linear frequency chirp of the seed only. To them is

substracted the intrinsic chirp of the FEL process, when no other chirp is present.

Simulations have been carried out for retrieving each single term of the previous equation.

The values of the FEL phase obtained through the equation are compared to the “real" values

predicted by simulations in Fig. III.20, as a function of the electrons chirp χ2 and for two values

of the seed chirp β . The agreement is very satisfactory.
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Figure III.20: Evolution of the quadratic term of the temporal phase of the FEL emission (dashed line) compared

with the result of Eq. III.23 (solid line), as a function of χ2, for a down-chirped (left panel, β =−20000 f s2) and an

up-chirped (left panel, β = 20000 f s2) seed pulse. The results are taken from the outputs of Perseo simulations.

III.4 Summary

The emission of a seeded FEL can be frequency chirped. The sources of this chirp are

the following: the frequency chirp of the seed pulse, the energy chirp of the electrons and the

intrinsic phase that is induced within the FEL process. The final FEL phase can be equated to

the sum of these three individual contributions. Simple numerical results have been presented

in order to understand the effects of the different chirps on the FEL emission. The intrinsic FEL

chirp can be usually neglected. The quadratic electrons energy chirp and the linear frequency

chirp of the seed compete, and both induce a linear frequency chirp on the seed. However,

whereas both induce a spectral broadening, only the frequency chirp of the seed is responsi-

ble for a FEL pulse lengthening. In the usual conditions encountered at FERMI@Elettra, the
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contribution of the quadratic energy chirp of the electrons is relatively small with respect to the

consequences of the seed frequency chirp. In this case, the electrons energy chirp can also

be neglected, and the curvature of the FEL phase is thus directly proportional to the one of the

seed and to the harmonic order: ϕFEL(t) ≈ nϕseed(t) = nΓit
2. As I presented in the first part

of this chapter, the spectro-temporal characteristics of the seed and the energy profile of the

electron bunch are well known and can be easily measured and managed, allowing to develop

the spectro-temporal studies discussed in the next chapter.
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IV.1 Spectral double peak

IV.1.a First observation and understanding

During the period of commissioning of summer 2011, E. Allaria and S. Spampinati observed

for the first time the intringuing phenomenon displayed in Fig. IV.1 [122]. As the power of the

seed gets higher, the total bandwidth increases and the spectrum splits in two, leaving a hole in

the middle.

Ideally, the CHG emission can be seen, in the longitudinal (spectro-temporal) dimension, as

a copy of the seed [123, 124], see Fig. IV.2a. However, this statement (which, in the tempo-

ral domain, is mainly an assumption or teh prediction of simulations due to the lack of temporal
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Figure IV.1: First experimental evidence of the spectral separation between FEL peaks, as a function of seed

energy per pulse.

diagnostics in the vacuum-ultraviolet spectral range), is true only under certain limits. The expla-

nation of the above phenomenon is the following: when increasing the seed power, the electron-

beam modulation at the peak of the seed (the central position for a Gaussian) becomes too

strong. The bunching is deteriorated and thus the FEL emission falls. On the contrary, the edge

electrons experience a lower power level that well matches the bunching condition and, accord-

ingly, the FEL signal starts growing in these regions. This scenario is represented in Fig. IV.2b.

For a sufficiently high seed intensity, the FEL power at the central position almost vanishes and

two consecutive pulses appear. This process is described in [125]. This phenomenon becomes

particularly interesting if the seed is chirped i.e., if its frequency depends on the longitudinal

position. As shown in Fig. IV.2c, in this situation the split pulses have also different frequencies.

In other words, two independent pulses with two different frequencies are created. That is what

we observe in Fig. IV.1.

The basic explanation of spectral splitting is simple. Let us recall Eq. III.15.:

∆λ =
λ 2Γi∆t

πc
, (IV.1)

where λ is the central seed wavelength, Γi its chirp parameter (quadratic coefficient of the

temporal phase, see Chapter III), c the speed of light, ∆t the temporal distance between the

sub-pulses and ∆λ their spectral separation. According to this equation, two portions of the

electron bunch separated by a duration ∆t see two different seed wavelengths separated by
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Figure IV.2: Sketch of the seed-electrons interaction and resulting FEL (temporal and spectral) outputs for dif-

ferent seed configurations: no chirp and moderate seed intensity (a), no chirp and high seed intensity (b), chirped

seed with high intensity (c). In (a), the optimum seed-electrons interaction occurs around the center of the seed

pulse so that the FEL output mimics the shape of the seed. In (b), the FEL pulse temporally splits in two because

the seed power is too high in the middle of the pulse: a beating between the two sub-pulses involves a frequency

modulation but the spectrum remains centered on a single peak at the harmonic n of the constant seed frequency

ω0. In (c), the chirp of the seed combined with the temporal pulse splitting leads to the creation of two separated

spectral peaks corresponding to the harmonics of the frequencies ω ′
0 and ω ′′

0 at the respective position of each

sub-pulse.

∆λ , λ being the center seed wavelength. At each of these two positions will grow a sub-pulse

during the FEL process. If the radiators are tuned at the nth harmonic of the seed, and if the

effect of both intrinsic and electrons’ chirps are neglected (see Section III.3), the wavelengths of

the peaks are separated by:

∆λn =
∆λ

n
. (IV.2)

The knowledge of this separation and of the chirp parameters of the seed theoretically allows

retrieving the temporal distance between the two corresponding sub-pulses. Indeed, according

to Eqs. III.15 and IV.2:

∆t =
nπc

Γiλ 2
∆λn. (IV.3)

For a given harmonic number n and seed wavelength λ , the temporal distance between the two

sub-pulses is inversely proportional to the spectral separation ∆λn of their associated spectral

peaks. As discussed in [126], this formula is reliable if the seed frequency chirp is dominant with

respect to electrons energy chirp.
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IV.1.b Experiment

The main parameters of FERMI@Elettra relevant in the present work are listed in Table IV.1.

The seed pulse and electron beam parameters are similar to the one presented respectively in

Table III.1.d (standard configuration) and in Fig. III.9 (bottom panels).

Electron beam Mean energy 1005−1010 MeV

Peak current ≈ 300 A

Duration FWHM 1.5 ps

Linear chirp component χ1 1 MeV/ps

Quadratic chirp component χ2 7 MeV/ps2

Seed Central wavelength 261 nm

Temporal and spectral profiles Gaussian

Bandwidth FWHM 0.8−1.1 nm

Duration FWHM ≈ 200 f s

Energy 10−150 µJ

Modulator Period L 10 cm

Number of periods 32

Dispersive section R56 20−50 µm

Radiators Number 2

Harmonic order n 6

Period L 5.5 cm

Number of periods 44

Table IV.1: Parameters of FERMI@Elettra relevant for most of the experiments reported in this

paper. FWHM stands for the full-width at half maximum of the distribution. The R56 parameter

is the momentum compaction factor characterizing the strength of the dispersive section [27].

The undulators were set so as to generate circularly polarized radiation, whose energy reached

about 20 µJ per shot.

Figure IV.3 shows a typical measurement of the FEL spectrum as a function of the seed

power. By increasing the seed power, the portion of electrons getting over-modulated is length-

ened and therefore the distance between the two sub-pulses grows, which leads to a higher

separation of the spectral peaks. As shown by the insets, the spectra are very stable, allowing

shot-to-shot repeatability of the two-colour emission.

Pictures of a “fork" have also been obtained by increasing the value of R56 in the dispersive

section while keeping the seed intensity constant: indeed, it directly enhances the bunching.

Figure IV.4 shows this phenomenon for a moderate value of the energy per pulse of the seed

i.e., 72 µJ. At R56 ≈ 18 µm, the single peak emission arrives a its maximum. The spectrum then

begins splitting in two and at R56 ≈ 27 µm, a clear separation can be seen. When increasing

even more the strength of the dispersive section, a modulation appears between the two peaks

(for R56 ≈ 32 µm). For a stronger dispersive section, the intensity of this modulation becomes

negligible with respect to the side peaks. This new peak then undergoes the same splitting

process: two very small peaks can be seen in the central hole of the spectrum for R56 ≈ 38 µm,

between the two main peaks.
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Figure IV.3: Experimental characterization of the spectral separation between FEL peaks, as a function of the

seed energy per pulse. The insets show the spectrum of fifty consecutive shots, integrated at positions selected by

the arrows on the projected figure (higher part).

Figure IV.4: Experimental characterization of the spectral separation between FEL peaks, as a function of the

R56 parameter of the dispersive section, for a seed pulse energy of 72 µJ. Left: projected image of the spectra inte-

grated over 50 successive shots; middle: integrated spectral profiles for selected values of R56; right: corresponding

series of 50 single spectra.

If we compare the splitting as a function of R56 for a moderate seed intensity (Fig. IV.5(a))

and for a stronger one (Fig. IV.5(b)), we see, without surprise, that similar splitting requires

a lower value of R56 in the case of the stronger seed. On Fig. IV.5(b), one can distinguish

the modulation that appears between the two peaks, at R56 ≈ 30 µm, and then splits also in

two, behaving like the two main peaks. At the maximum strength of the dispersive section
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(R56 ≈ 45 µm), a new central modulation starts rising again.

(a) (b)

Figure IV.5: Spectral splitting as a function of R56 for an energy per pulse of the seed of 36 µJ (a) and 72 µJ (b).

Similarly to Fig. IV.5, Fig. IV.6 shows the spectral splitting, but as a function of the seed

energy, and for different fixed values of the R56. For R56 = 17.9 µm (Fig. IV.6(a)), no clear

splitting occurs, the FEL radiation is simply amplified to its maximal bandwidth, for seed energies

> 100 µJ. For higher values of R56 (Figs. IV.6(b), IV.6(c) and IV.6(d)), the splitting is made

possible thanks to a sufficiently strong dispersive section. Increasing the strength of the latter

makes the double peak appear for lower seed energies and widens the spectral separation

between the two peaks. In Fig. IV.6(c), the central modulation can be seen and in Fig. IV.6(d)

the latter splits also in two due to the high value of R56. In the latter case, the spectrum is thus

composed of two main peaks and, in between, two secondary peaks whose height is about 10%

of the height of the main peaks. Although these secondary peaks seem negligible, one should

take care of the following: if their intensity (which is the experimentally measured parameter) is,

for instance, Isecondary ≈ 0.1Imain (Imain being the intensity of the main peaks), it means than the

amplitude of their electric field is Esecondary =
√

Isecondary =
√

0.1Imain ≈ 0.32Emain i.e., about

one third of the electric field amplitude of the main peaks... which is much less negligible.

There are clearly two main differences between the patterns of Figs. IV.5 and IV.6:

1. In the second case, the spectral broadening is not symmetric so that the forks are also

asymmetric.

2. In the first case, just after the splitting begins, the signal of the two peaks decreases,

which does not seem to be true in the second case.

Concerning 1), a possible explanation may be due to the position of the seed pulse with

respect to the electron bunch. For these measurements, the seed pulse may not have been

placed at the center of the parabola of the energy profile of the electrons (see Fig. III.9, lower

panels), but slightly towards the head. In this case, the first sub-pulse (corresponding to longer
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(a) (b)

(c) (d)

Figure IV.6: Spectral splitting as a function of seed energy for R56 = 17.9 µm (a), R56 = 23.4 µm (b), R56 =
29.6 µm (c) and R56 = 36.6 µm (d).

wavelengths) undergoes a strong local linear energy chirp of the electrons, which results in

a shift towards longer wavelengths, while the second sub-pulse is closer to the center of the

parabola and less affected by electrons’ chirp. This might be the reason why, in Fig. IV.6, the

left part of the spectral patterns (or left branch of the forks, shorter wavelengths) do not behave

as the right parts (longer wavelengths).

For studying 2), let us look at the overall variation of energy emitted by the FEL as a function

of the parameter that drives the temporal splitting i.e., the strength of the dispersive section (Fig.

IV.7, for two different values of the seed energy) or the energy of the seed pulse (Fig. IV.8,

for three different values of R56). In both cases, there is a similar increase of the FEL power

until a turning point is reached corresponding to the value above which the FEL spectrum starts

splitting in two. After that, the behaviour is different: in the first case (Fig. IV.7 i.e., variation of

R56), the overall intensity of the FEL radiation slowly decreases, whereas it keeps on growing

slowly in the second case (Fig. IV.8 i.e., variation of seed energy). Thus, even if the dispersive

section and the intensity of the seed pulse have similar effects on the bunching, the strength
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of the first one is more likely to degrade the output signal. It could be the sign that the spatial

modulation (provided by the dispersive section) is more “sensitive" than the energy modulation

(initiated by the seed): R56 requires a finer tuning than the seed intensity.
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Figure IV.7: Overall intensity of the FEL radiation as a function of R56 for an energy per pulse of the seed of

72 µJ (left) and 36 µJ (right).
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Figure IV.8: Overall intensity of the FEL radiation as a function of the seed energy for different values of R56:

23.4 µm (left), 29.6 µm (middle) and 36.6 µm (right).

The relative height of the peaks can be adjusted by changing the resonance condition of the

FEL (see Chapter I), which can be done easily by changing the undulators’ gaps. It is shown

in Fig. IV.9. The spectrum represented by the dotted line in Fig. IV.9 corresponds to a central

tuning of the undulators. Instead, the data represented by the full line have been taken for a

slight negative detuning and, even if both peaks can be seen, the one at shorter wavelength is

significantly stronger. The dashed curve shows a situation where the detuning is positive, which

implies a stronger amplification of the peak at longer wavelengths, the other one being almost

suppressed.

Now that the spectral properties of the splitting have been well characterized, it is interesting

to use Eq. IV.3 in order to retrieve the temporal distance between the two temporal sub-pulses

corresponding to each of the two peaks. For instance, Fig. IV.10 shows this estimation for the

data reported in Fig. IV.5.

For the same value of R56 e.g., 40 µm, one obtains two different possible working points: if

the seed energy is 36 µJ (left panel of Fig. IV.10), we have ∆λ6 = 0.15 nm and ∆t = 225 f s while
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Figure IV.9: Double peak for different tuning conditions of the radiators. The radiators are tuned at the 8th har-

monic of the seed (32.6 nm). Here the seed energy per pulse is about 70 µJ and R56 = 60 µm. The configuration

of the rest of the machine was different than the one described in Table IV.1: the radiators were tuned at the 8th

harmonic of the seed (32.6 nm), R56 = 60 µm and the electron beam had following parameters: mean energy

1175 MeV , χ1 ≈ 0 MeV/ps, χ2 ≈ 10 MeV/ps2, FWHM duration 0.8 ps, peak current ≈ 600 A.
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Figure IV.10: Spectral separation of the two peaks (dashed line) and retrieval of the temporal distance between

the sub-pulses (full line) as a function of R56 for an energy per pulse of the seed of 36 µJ (left) for which Γi ≈
5.5 ·10−5 f s−2 and 72 µJ (right) for which Γi ≈ 5.9 ·10−5 f s−2.

∆λ6 = 0.25 nm and ∆t = 350 f s for a seed energy of 72 µJ (right panel of Fig. IV.10). Chang-

ing Γi (while keeping the same all other parameters), one can control the spectral separation

between the peaks, maintaining ∆t invariant. This is shown in Fig. IV.11. In the case in which

a piece of CaF2 is added in the seed’s path (spectrum in full line), the Γi is decreased by about

30% but, at the same time, the peaks separation is increased by about 30% (from 0.9 nm to

1.2 nm), with respect to the situation where the seed is in its “standard" configuration (spectrum

in dashed line) (see Table III.1.d). Hence, according to Eq. IV.3, the temporal distance between

the sub-pulses is the same is both cases (approximately 200 f s). It is worth noting that, for a

given configuration of the seed (standard, addition of dispersive material, compressor stage –

see Table III.1.d), Γi varies a function of the power delivered by the seed. However, unless the

difference of seed intensity is large, the values of Γi remain quite close and, experimentally, the
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Figure IV.11: Double peak for two different chirp values of the seed (b), corresponding to the standard positive

chirp (“chirp +", σλ ≈ 0.45 nm and σt ≈ 90 f s, with a seed energy of ≈ 70 µJ) and a stronger chirp (“chirp ++",

σλ ≈ 0.5 nm and σt ≈ 160 f s, with a seed energy of ≈ 75 µJ) induced by adding a piece of CaF2 of 5-cm thickness.

The radiators were tuned at the 8th harmonic of the seed (32.6 nm), R56 = 80 µm and the electron beam is similar

the one shown in the top half of Fig. III.9.

difference is small and thus at the level of the uncertainty. It it thus better to change configu-

ration, as was done for obtaining the results shown in Fig. IV.11, in order to get a significantly

different Γi.

A last interesting result is shown in Fig. IV.12, in which the FEL spectrum is studied as a

function of the position of the seed pulse with respect to the electron bunch, whose longitudinal

properties are shown in Fig. IV.13. At delay ≈ −0.8 ps, the seed arrives on the tail of the

Figure IV.12: FEL spectrum at the 6th harmonic of the seed (43.5 nm), as a function of the relative delay between

the seed pulse and the electron beam. At the zero value of the delay, the seed pulse is approximately centered on

the bunch of electrons. The dispersive section and seed energy were set, respectively, to 23 µm and 80 µJ.

bunch, so that the first peak appears (at larger wavelength, since the frequency chirp of the

seed, that is transmitted to the FEL emission, is positive). Then, as the value of the delay grows,

the whole seed is coupled to the bunch, and, for a delay ≈ −0.6 ps, also the second peak

(at shorter wavelength) appears. As we remarked in Section III.3, a linear energy chirp of the



IV.1. Spectral double peak 105

electron energy induces a spectral shift of the FEL emission. Hence, when they appear, both

peaks are detuned towards shorter wavelengths, because the seed experiences a strong local

negative slope of the electron beam chirp. By further increasing the delay (i.e., moving from

the tail to the head of the bunch), the peaks central wavelengths drift, due to the increase of the

local linear chirp of the electron energy distribution. However, the relative heights and respective

widths of the spectral peaks remain practically constant, so as their separation ∆λ6 ≈ 0.17 nm.

The wavelength drift goes on until the center of the parabola of the electrons energy profile is

reached, for a delay ≈ 0 ps. Soon after that, the lasing becomes less efficient and each peak

disappears one after the other, in the same order as they appeared. The reason why the lasing

does not remain efficient on the whole bunch is still an open question: possible reasons are the

lower charge on the second half of the electron bunch (see Fig. IV.13, right picture) and/or a

degradation of the transverse electron-beam properties. As will be detailed in the simulations

presented later on, in our conditions the curvature of the electrons energy profile is too small to

have a significant effect on the FEL bandwidth and thus, on the peaks’ separation. But in any

case, for a parabolic electrons’ energy profile, the quadratic component is constant all along the

bunch, which explains why ∆λ6 is also constant all along the bunch.
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Figure IV.13: Longitudinal phase space measured at the end of the FERMI@Elettra linac for the results shown

in Fig. IV.12. Left: image observed by a CCD on the YAG crystal; center: analysis of the left picture, showing the

energy profile; right: analysis of the left picture, showing the current profile. Larger values of time correspond to a

displacement from the tail to the head of the bunch.

IV.1.c Simulations

Fig. IV.14 compares a typical measurement of spectral splitting with what has been obtained

with Perseo simulations, using similar experimental parameters. As it can be seen, the exper-

imental pattern of spectra (Fig. IV.14(a)) is well reproduced by the simulations (Fig. IV.14(b)).

In the latter, the arm of the fork at larger wavelengths is favoured. Since the chirp of the seed,

and thus of the FEL emission, is positive, this corresponds to the first sub-pulse: the arm at

lower time values (Fig. IV.14(c))) has a higher signal. Obvisously, according to simulations, the

spectral and temporal patterns are very similar: this will be discussed in the Section IV.2.
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(a) experiment (b) simulations (c) simulations

Figure IV.14: Comparison of the experimental observation of the spectral splitting (a) with the spectral splitting

retrieved by simulations (b). The corresponding (simulated) temporal pattern is shown in (c).

As it has been shown experimentally (see Fig. IV.9), the relative height of the peaks, that is

different in the previous figure, can be easily controlled by changing the resonance conditions of

the undulators. This is demonstrated also by simulations carried out with the 3D code Genesis

(Fig. IV.15).

We now consider the conditions of the machine in which the results of double-peak produc-

tion have been obtained (see Section IV.1.b).

IV.1.c.1 Case 1: realistic electron beam

A typical series of simulations carried out with the Perseo code leads to the spectral and tem-

poral patterns shown in Fig. IV.16. The electron beam energy profile that has been considered

is similar to the one reported in the bottom panel of Fig. III.9. The following parameters have

been taken: χ1 = 1 Mev/ps, χ2 = 7 Mev/ps2, emittance 1 mm.mrad, relative energy spread

0.01%, peak current 300 A. The radius of the seed has been considered as constant along the

modulator (standard deviation of the transverse intensity distribution: 300 µm). The bandwidth

and the duration of the seed have been experimentally characterized; they grow linearly as a

function of the seed energy in the following ranges: σλ = 0.35−0.45 nm and σt = 70−90 f s.

If we consider the spectrum (left picture), the pattern is very similar to what has been obtained

experimentally e.g., in Figs. IV.4 and IV.3. The splitting occurs for seed energies higher than

60 µJ, corresponding to an intensity of 40 GW/cm2. At seed energies higher than 100 µJ,

corresponding to an intensity of 60 GW/cm2, the central modulation appears, both spectrally

(left picture) and temporally (right picture).

The evolution of the FEL power as a function of the input seed signal (Fig. IV.17) is similar

to what has been obtained experimentally. The FEL power first grows, reaching a peak before
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Figure IV.15: Control of the relative height of the spectral peaks by changing the tuning condition of the undu-

lators. Left: slight detuning towards shorter wavelengths (−0.1%); center: slight detuning towards longer wave-

lengths (+0.1%); right: strong detuning towards longer wavelengths (+0.2%).

the splitting and then the overall power of the split pulses remains constant, even if lower than

the overall power before splitting. In this respect, the result given by the simulation is slightly

different with respect to what was obtained experimentally in Fig. IV.8, where the FEL signal

was keeping on growing.

Let us look at the characteristics of the pulse before splitting (Fig. IV.18), which is well

fitted by a gaussian: without surprise, while the signal of the FEL grows, both the duration and

the bandwidth of the FEL emission increase, the evolution being exponential. In the temporal

domain, this is explained by the fact that, when increasing the seed power, a larger part of

the electron bunch receives the sufficient energy to get well bunched. Appropriate bunching
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Figure IV.16: Output of Perseo simulations in the spectral (left) and time (right) domains.
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Figure IV.17: Evolution of the overall intensity of the FEL radiation, as a function of the seed energy.

conditions occur for a longer portion of the seed, which means also that a larger bandwidth

is amplified since the seed is chirped: the “new" portions of the seed generating a sufficient

bunching correspond to “new" wavelengths that are amplified. Consequently, as it is shown in

the left panels of Fig. IV.18, the ratio FEL vs. seed duration and the ratio FEL vs. seed relative

bandwidth are almost equal.

At saturation, Stupakov [127] predicts that the duration of the FEL pulse is equal to the one

of the seed divided by n1/3. According to it, we should obtain here that HFEL
t ≈ 0.55Hseed

t . This

is true for a seed energy ∼ 30 µJ, but at ∼ 50 µJ, the FEL duration almost reaches the one of

the seed, since only the edges of the latter don’t have enough intensity to induce the bunching

of the electrons. However, as it is shown in Fig. IV.19, for a seed energy of ∼ 50 µJ, the

temporal profile of the FEL pulse becomes slightly distorted, which corresponds to saturation.

Hence, sufficently far from saturation, the Stupakov law is quite reliable, as it has been already

checked in the previous chapter, where the simulations were done in the limit of clean spectral

and temporal profiles, characterizing a situation of non-overbunching.
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Figure IV.18: Temporal and spectral properties of the FEL emission before the regime of pulse splitting as a

function the seed energy. Top left: FWHM duration of the FEL pulse. Bottom left: FWHM bandwidth of the FEL

pulse. Top right: ratio of the FWHM duration of the FEL pulse vs. the one of the seed pulse. Bottome right: ratio of

the relative bandwidth of the FEL pulse vs. the one of the seed pulse.
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Figure IV.19: Spectral (left) and temporal (right) profiles of the FEL emission for an energy per pulse of the seed

of 30 µJ (full line), 40 µJ (dashed line) and 50 µJ (dotted line).

From all this information about the bandwidth and the duration, it is possible to calculate the

time-bandwidth product of the FEL pulse before splitting (Fig. IV.20). Since both the duration and

bandwidth follow an exponential growth, the time-bandwidth product has the same behaviour as

a function of the energy of the seed pulse. The time-bandwidth product of the latter increases

also as a function of its energy since the spectrum is broadened at high intensities due to self-

phase modulation. But this is not the major cause of the high time-bandwidth product of the FEL

emission. Indeed, this cause is a minor one with respect to the fact that, as described before,

the higher the seed energy, the longer the FEL duration and the broader the FEL spectrum: not

only the FEL duration or the FEL bandwidth increase, but both! Moreover, as discussed in [128],
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the higher the harmonic number, the higher the impact on the FEL emission. In other words, the

time-bandwidth product is expected to be even more important at lower wavelengths.
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Figure IV.20: Time-bandwidth product of the FEL pulse before splitting (full line) and of the seed pulse (dashed

line), as a function of the seed energy per pulse.

Let us now study the double peak emission, which is correlated to seed energies higher than

80 µJ (for a clear separation). Both temporally and spectrally, the peaks are well fitted by gaus-

sians. Hence, the data analysis is made by taking advantage of these gaussian interpolations of

the peaks. This makes things easier, since one can define the FWHM bandwidth/duration, the

central wavelength of a peak, the temporal separation of the peaks, etc. Figure IV.21 shows the

temporal separation of the two peaks as a function of the seed energy. The full line corresponds

to the direct results of the simulations, while the dashed one to the estimation that can be made

by means of Eq. IV.3 from the knowledge of the spectral separation between the peaks (i.e., the

simulation results in the spectral domain). The agreement is good but not perfect. As it will be

discussed later, this can be partly attributed to the presence of the electrons’ chirp.

In Fig. IV.22, the spectral separation given by the simulations is associated to the temporal

distance between the sub-pulses. This curve of ∆λ vs. ∆t is a precious piece of information if

someone wishes, for instance, to perform pump-probe experiments with the two split pulses and

thus to know the time that separates them.

Fig. IV.23 shows the ratio between ∆t and the FWHM duration of the seed as a function of

the seed energy. This provides information on the positions at which occurs the lasing of each

peak. For a seed energy of 100 µJ, the lasing thus corresponds to positions where the electron

bunch experiences half of the maximum seed peak power. At these positions, the bunching is

optimum. The similar curve (right panel) is drawn for the ratio between the peaks separation

and the seed relative bandwidth, and the evolution mimics the previous curve, which is normal

since the chirp of the seed is linear.
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Figure IV.21: Evolution, as a function of the energy delivered by the seed, of the temporal distance between the

split pulses, retrieved in the simulations (full line) and estimated by Eq. IV.3 (dashed line).
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Figure IV.22: Correlation between the peak distance in the spectral and temporal domains, being function of the

seed energy (see Fig. IV.21).

Now, if we look at the time-bandwidth product of the single peaks (Fig. IV.24), we see a

very interesting thing: the time-bandwidth product decreases as a function of the strength of the

splitting. For high seed energies, both peaks come very close to the Fourier limit, characterized

by a time-bandwidth product of 0.441. In other words, starting from a relatively “poor" spectro-

temporal quality of the FEL pulse in the “normal regime" (before splitting, see Fig. IV.20), one

produces two sub-pulses that are almost Fourier-transform limited. This is due to the spectral

and temporal narrowness of the split pulses, which thus barely see the phase curvature.

Finally, let us look at how the phase “propagates" along the FEL process. First, the FEL

phase can be very well fitted by a parabola (ignoring values at low FEL signal, where the phase
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Figure IV.23: Left panel: evolution, as a function of the seed energy, of the ratio of the temporal distance between

the sub-pulses vs. the FWHM duration of the seed. Right panel: evolution, as a function of the seed energy, of the

ratio of the peaks spectral separation (relatively to the central wavelength of FEL emission) vs. the relative FWHM

bandwidth of the seed.
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Figure IV.24: Time-bandwidth product of each of the two sub-pulses as a function of the energy delivered by the

seed. The “blue peak" (dashed line) refers to the one at shorter wavelengths whereas the “red peak" refers to the

one at longer wavelengths.

is meaningless) i.e., no high-order phase distortions appear in the FEL phase. The map of the

temporal phase as a function of the seed energy is shown in the left panel of Fig. IV.25. In

the right panel of the same Figure, we represented a phase that has a curvature equal to the

harmonic order (n = 6) times the Γi parameter of the seed (Γi depends on the seed energy).

The agreement between the left and the right pictures is quite good, especially for values of the

seed energy corresponding to an unsplit FEL pulse (below ∼ 60 µJ). Therefore, nΓi is a good

approximation of the curvature of the temporal phase for relatively low values of the curvature
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Figure IV.25: Left panel: map of the temporal phase, represented in false colors, as a function of the energy of

the seed. Right panel: map of the quantity nΓit
2 (n = 6), represented in false colors, as a function of the energy of

the seed.

of the electrons energy profile. We usually found an error smaller to 10 % between the true

curvature of FEL phase and nΓi. Is this agreement improved when the electron bunch does not

present an initial chirp? Let us see the next case.

IV.1.c.2 Case 2: flat electrons’ energy profile

We saw in the previous chapter that the total phase of the FEL emission can be decomposed

according to different contributions of the seed and of the electron beam. Hence, it is interesting

to repeat the numerical study for a non-chirped electron beam. In this case, the chirp of the FEL

emission depends only on the one of the seed and on the intrinsic chirp.

Here I will not show all the curves of the study as in the previous case, since it would be

quite heavy. Indeed, as shown in Fig. IV.26, the splitting patterns are very similar to what is

obtained in the case of a real electron beam (see Fig. IV.16): the double-peak formation is not

affected by a slight inhomogeneity of the electron beam.

Let us focus only on the most interesting parameters. The first of them is the time-bandwidth

product of the FEL emission before splitting. Figure IV.27 shows that, as expected, it grows as

a function of the seed energy, but is lower than that a realistic electron beam (see Fig. IV.20),

since in the latter case the chirp of the electrons bring an additional curvature to the FEL phase.

Now, we consider the double-peak regime. The function ∆λ6 vs. ∆t (Fig. IV.28) is slightly

different from the one obtained in the realistic case (Fig. IV.22). Indeed, in the latter case, the

electrons quadratic chirp broadens the bandwidth so that the separation between the two peaks
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Figure IV.26: Output of Perseo simulations in the spectral (left) and time (right) domain for a flat electrons’ energy

profile.
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Figure IV.27: Time-bandwidth product of the FEL pulse before splitting (full line) and of the seed pulse (dashed

line) as a function of the seed energy per pulse for a flat electrons’ energy profile.

gets higher for a given temporal splitting (as will be discussed in Section IV.1.c.3). Controlling the

chirp of the electrons offers the possibility to obtain, for instance, different longitudinal distances

between the sub-pulses for a given spectral separation. This is a precious thing for potential

pump-probe applications.

Figure IV.29 shows that the theoretical estimation of ∆t is, in the case of an ideal electron

beam, very close to the one measured in the simulations. As a matter of fact, in this case the

relevance of Eq. IV.3 is not affected by the initial chirp of the electrons. The agreement is good

especially at the beginning of the splitting i.e., before the central modulation appears. As in Fig.

IV.21, there is still a discrepancy (even if less important) and the latter grows as the seed energy

gets higher. A possible explanation is the following. The theoretical expression of ∆t given in

Eq. IV.2 relies on the fact that the seed phase is directly transmitted to the FEL phase and

the other sources of chirp in the FEL emission are neglected. However, while increasing the
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Figure IV.28: Correlation between the separation of the two peaks in the spectral domain and of the temporal

distance of the two associated sub-pulses for a flat electrons’ energy profile.

seed energy, there is a modification of the evolution of the modulation (in energy then spatial) of

the electrons. The dispersion properties (see Eq. III.22) of the latter, that are the amplification

medium, can thus be changed. In other words, for sufficiently high seed energies, the intrinsic

chirp may be significantly modified and become non-negligible: this has a direct consequence

on the relevance of the calculation of ∆t.
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Figure IV.29: Evolution, as a function of the energy delivered by the seed, of the temporal distance between

the split pulses retrieved in the simulations for a flat electrons’ energy profile (full line) and estimated by Eq. IV.3

(dashed line).

The time-bandwidth product of the separate peaks is decreasing towards very low values.

Figure IV.30 shows that it even goes under the Fourier-transform limit for highest seed energies...

In fact, at this point the assumption of two separate peaks is not true any more. For high seed
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Figure IV.30: Time-bandwidth product of each of the two sub-pulses as a function of the energy delivered by the

seed, for a flat electrons’ energy profile. The “blue peak" (dashed line) refers to the one at shorter wavelengths

whereas the “red peak" refers to the one at longer wavelengths.

energies, the central modulation of the FEL emission becomes non-negligible and wide, so that

the electric field of the sub-pulses cannot be dissociated any more. This is shown in Fig. IV.31:

for a clean double peak (left panel, seed energy of 90 µJ), the peaks are clearly dissociated in

time, whereas the central modulation becomes non-negligible for a higher saturation level (right

panel, seed energy of 130 µJ). This is the limit of the model which considers two independent

peak/pulses. In any case, before this limit, the sub-pulses reach a very high level of temporal

coherence: their time-bandwidth product is around 0.5 i.e., only 1.1− 1.15 times far from the

Fourier-transform limit (this value is slightly higher for the case of the realistic electron beam due

to the higher curvature of the FEL phase induced by the non-zero χ2 coefficient).
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Figure IV.31: Temporal profile of the FEL emission given by simulations with a flat electrons’ energy profile, for

an energy per pulse of the seed of 90 µJ and of 130 µJ.

Finally, let us look at the behaviour of the temporal phase. As it has been said, since the
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electrons do not have any initial chirp, the FEL is not affected by this parameter. That is why,

as shown in Fig. IV.32, the phase curvature can be very well fitted by nΓi. For a seed energy

above 100 µJ, the agreement is worsened, as in the case of the realistic electron beam (see

Fig. IV.25). This situation corresponds to the presence of the central modulation in the spectral

and temporal domains of the FEL emission. Below 10 µJ of seed energy, there is no FEL signal,

hence the comparison is meaningless. We can thus say that, in the regimes of the FEL ranging

from a slight amplification to a clean double-peak formation, the temporal FEL phase is equal to

nΓit
2.

Figure IV.32: Left panel: map of the temporal phase, represented in false colors, as a function of the energy of

the seed for a flat electrons energy profile. Right panel: map of the quantity nΓit
2 (n = 6), represented in false

colors, as a function of the energy of the seed.

IV.1.c.3 Note on the effect of electrons’ quadratic energy chirp

Up to now, we only considered situations where the quadratic energy chirp of the electrons

is small or absent, which corresponds to experimental situations at FERMI@Elettra. Let us see

quickly what happens if this not the case. I carried out simulations with same parameters as

before, without linear energy chirp and varying the quadratic one. In Fig. IV.33, we see that the

value of χ2 has almost no effect on the temporal shape of the FEL emission but that the overall

bandwidth depends on it – without affecting the double peak formation – leading to a variation

of the peaks separation. As a matter of fact, the quadratic energy chirp of the electrons acts on

the spectrum in a similar way as the linear chirp of the seed, so that the electrons energy profile

may add to or compensate the quadratic phase of the seed: if the effects of the electrons energy

chirp and seed frequency chirp on the FEL phase can be of the same order of magnitude, this is
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a very important point. However, the peculiarity of the electrons chirp is that it does not affect the

temporal distance between the sub-pulses (the temporal shape of the FEL pulse being mainly

dictated by the seed pulse), which would make a good option for varying the peaks spectral

separation without affecting the temporal shape of the split pulses. On the other hand, spectral

broadening and temporal lengthening are always associated in the FEL emission.
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Figure IV.33: Comparison of the outputs of simulations carried out with the numerical code Perseo for different

values of the quadratic chirp of the electrons (left: spectrum; right: temporal intensity), for the following parameters:

seed bandiwdth σλ = 0.47 nm, duration σt = 93 f s, energy 70 µJ (with a standard deviation of the transverse

intensity distribution of 500 µm) and central wavelength 261.1 nm; R56 = 20 µm; undulators tuned at the 6th

harmonic of the seed (43.5 nm); electrons peak current 300 A, emittance 1 mm.mrad, relative energy spread

0.01% and linear chirp component χ1 = 0 Mev/ps2. Full line: χ2 =−10 Mev/ps2; dashed line: χ2 = 10 Mev/ps2;

dotted line: χ2 = 50 Mev/ps2 .

IV.2 Temporal shape determination

The work presented in this section is inspired by the need of retrieving experimentally the

temporal shape of the FEL emission. At femtosecond time scales, and moreover in the sub-UV

spectral region, obtaining the temporal information of light sources is a challenging task.

In the double peak production that has just been discussed, two close frequencies shifted in

time are created: this is exactly what is needed for performing one of the most famous temporal

diagnostics of femtosecond pulses, that is the SPIDER [101]. In the latter, the spectral phase is

retrieved through the interference pattern of the two pulses, if the delay and the spectral separa-

tion between them are known. From the spectral phase and the spectrum, the temporal shape

can be retrieved by a simple Fourier transform. We remind that an EUV SPIDER has already

been successfully tested at CEA Saclay on a HHG source [129]. In our case, there are two is-

sues: the two pulses that are involved must be identical and the wavelength shift between them

must be very close (∆λ ≪ Hλ ). Even if the first problem can probably be handled experimen-

tally, the second one would be more difficult to solve. Indeed, intrinsically, the two peaks have a

“large" spectral difference due to fact that they stem from a strong chirp of the seed. Ideally, the
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two single spectra should be almost completely superimposed so that a frequency modulation

could occur inside this envelope: without this interference pattern on which the SPIDER relies,

the spectral phase, and thus the temporal shape, cannot be retrieved. A solution would be to

decrease the chirp of the FEL emission by acting on the chirp of the seed and/or the one of

the electrons so as to bring closer the two peaks spectrally. However, the spectrum of each

single peak could not be measured individually: therefore, how to know experimentally that the

two peaks are identical, with similar width and height? Moreover, the number of periods of the

beating depends on the spectral width and on the temporal distance between the sub-pulses.

Experimentally, we tried to compensate the chirp of the seed by means of the compressor stage,

but no beating has been observed in the spectrum: we could only assume that the pulse splitting

was there, since the seed energy was strong enough to be in a regime of deep saturation and

that the spectrum was distorted. But a finer control on the phase of each sub-pulse would be

required, while here the phases of the two sub-pulses are strongly linked since they emanate

from the same sources, that are seed and electrons chirps. For all these reasons, performing a

SPIDER characterization of the FEL emission in the regime of double peak generation seems

very difficult... but not impossible, and would merit to be studied theoretically and/or numerically.

SPIDER has already been performed on an FEL, for instance in [130] on a FEL operating

at a wavelength of 266 nm. But, to our knowledge, nothing has been done in the EUV spectral

range, as a direct on-line and non-invasive diagnostic. A possibility is to seed the FEL with two

successive pulses slightly shifted in wavelength, as discussed in [131]. If the electron bunch

is homogeneous, it theoretically allows producing two EUV replicas, at wavelengths λn and

λn+δλn, with a time separation that is easily controllable through a delay line on the seed stage.

The double seeding has been successfully tested on FERMI@Elettra, as we demonstrated in

[132]. The two seed pulses were produced by two separate lines of generation of the 260−nm

wavelength at the seed laser stage. An appropriate tilting of the nonlinear crystals in which

occurs the third harmonic generation of the Ti:Sapphire source (whose spectrum is centered

at 780 nm) leads to a change of the phase-matching condition, thus enabling to slightly shift

the central wavelength of the third harmonic of the Ti:Sapphire laser source. The aim of the

experiment was to create two FEL frequencies that were significantly separated, hence it was

not possible to study what happens when the two spectra are superimposed – but this should

be done in the future. This experiment is a good possibility to perform EUV SPIDER on an FEL,

even if this diagnostic would be invasive, but would also allow studying the far-field interference,

and thus the preservation of temporal coherence along the bunch, of the two successive pulses.

In the previous study of double peak emission, we have remarked that the temporal and

spectral patterns are very similar. This is not so surprising, since each sub-pulse corresponds

to a spectral peak and therefore that the integrated signal of a given sub-pulse corresponds to

the integrated signal of single peak in the frequency domain. But how far are these shapes

similar, and why? The answer to this question has been found thanks to the contribution of
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David Gauthier, who joined the team at Sincrotrone Trieste from CEA Saclay at the end of my

thesis. His work allowed developing the study that is presented hereafter.

IV.2.a Spectro-temporal equivalence

According to what has been seen up to now, the CHG FEL emission at FERMI@Elettra can

be written as:

E(t) = a(t)einΓit
2

, (IV.4)

where a(t) is the envelope representing the temporal shape (gaussian, slightly distorted, split

in two sub-pulses, etc.) of the FEL emission. The nΓi parameter of the quadratic phase term

which is inherited from the chirp of the seed, the contribution of the electrons and the intrinsic

FEL chirp being neglected. For simplicity, we do not take into account the fast oscillations at the

central frequency of emission. The pulse spectrum is given by:

Ĩ(ω) = |FTω [a(t)e
inΓit

2

]|2, (IV.5)

where FTω [ f (t)] =
∫+∞
−∞ f (t)e−iωt dt is the direct Fourier transform of the function f (t), from the

temporal variable t to the frequency variable ω . One can make use of the same hypotheses

employed by Fraunhofer for describing the far-field diffraction in paraxial approximation. Using

the formalism of Fourier [76], we can write the previous relation as a convolution product:

Ĩ(ω) = |ã(ω)∗ e
−i ω2

4nΓi |2, (IV.6)

where ã represents the Fourier transform of the envelope i.e., FTω [a(t)] and e
−i ω2

4nΓi is the

Fourier transform of the quadratic phase term einΓit
2
. An analogy can be drawn between the

spectrum and the one-dimensional diffraction pattern originated from a “transversal field distri-

bution”. In the previous relation, the convolution with the exponential term plays a role similar

to the longitudinal space propagation of a diffracted wave. In paraxial approximation, the propa-

gation generates a linear dispersion of the spatial frequencies. In our case, this corresponds to

the linear frequency dispersion in the pulse, caused by the quadratic phase term nΓit
2 inherited

from the seed. After the development of the convolution product, the spectrum can be written

as an inverse Fourier transform FT−1 in the variable ω
2nΓi

:

Ĩ(ω) = |FT−1
ω

2nΓi

[ã(ω ′)e−i ω ′2
4nΓi ]|2, (IV.7)

Let us focus on the exponential term e
−i ω ′2

4nΓi . In far field diffraction, the Fraunhofer approximation

assumes that this phase term varies slowly in the Fourier integration domain where the square
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integral function ã(ω) is different from zero. This condition is equivalent to:

ST D[ã(ω)]2

4nΓi
∼ σ 2

ω

4nΓi
= N ≪ 1. (IV.8)

where STD[ã(ω)] represents the standard deviation of the electric field envelope in the fre-

quency domain. It is worth noting that the parameter N is analogous to the “Fresnel number” in

diffraction. When the condition IV.8 is fulfilled, one can reasonably approximate the exponential

term with unity. As a result, Fraunhofer diffraction pattern provides a direct representation of the

Fourier transform of the initial field distribution. In our case, since ã(ω) is the Fourier transform

of the complex envelope a(t), we finally get:

Ĩ(ω) = |a( ω

2nΓi
)|2. (IV.9)

We thus obtain the following noticeable result: under the condition IV.8, the spectrum of the

linearly chirped FEL pulse provides a direct representation of its temporal shape, through the

variable transformation t = ω
2nΓi

. It is also very important to stress that this result is applicable to

any linearly chirped optical pulse verifying condition IV.8 (replacing nΓi by the quadratic phase

coefficient – e.g., Γi for the seed laser).

A schematic representation of the proposed “far-field” approach is given in Fig. IV.34. In

the case of a non-chirped pulse (or with an arbitrary, non-quadratic, phase) the electric field

envelope in the frequency domain is different from the one in the temporal domain. In the case

of a linearly-chirped pulse, the electric field envelope in the frequency domain, ã(ω), is the same

as the one in the time domain (with the homotethic relation t = ω
2nΓi

).

IV.2.b Comparison with simulations

It it important to note that the result obtained hereabove is a very general one, even if here

we will restrict to its application to the CHG FEL emission at FERMI@Elettra. In Section IV.1, we

have shown that the inhomogeneity of the electron beam energy profile is sufficiently low, and

for a linearly-chirped seed of temporal phase Γit
2, the CHG emission is also linearly chirped

and its temporal phase is well approximated by nΓit
2, n being the harmonic order at which the

radiators are tuned. We will thus here consider Eq. IV.4 with nΓi = nΓi. Moreover, according to

Stupakov’s law [127], the duration of a slightly saturated FEL emission is equal to the one of the

seed times n
1
3 . We checked the validity of this result for n = 6. Hence, the spectral width of the

FEL emission is σ FEL
ω ∼ 1

n
−1
3 σ seed

t

. We can thus rewrite Eq. IV.8 only in terms of the seed laser

properties and the harmonic order:

(σ FEL
ω )2

4nΓi
∼ 1

4n
1
3 (σ seed

t )2Γi

= N ≪ 1. (IV.10)
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Figure IV.34: Principle of the spectrum-time equivalence. Top panel: case of a non-chirped pulse (or not linearly

chirped) with the temporal electric field envelope (left) and the spectral one (right). Bottom panel: case of a linearly

chirped pulse (quadratic phase in dashed line) with the temporal electric field envelope (left) and spectral one

(right), equivalent to the temporal one with the homothetic relation t = ω
2nΓi

.

This relation offers a mean to determine the seed parameters to be used in order to ensure the

validity of the proposed approach. In Eq. IV.10, the presence of n
1
3 is very important: it tells us

that the condition of spectrum-time equivalence is more easily accessible for higher values of n.

Indeed, as discussed in [128], the phase is more affected by the “incident" chirp of the seed at

higher harmonic orders, thus condition IV.8 is facilitated at lower wavelengths.

In order to check our results, PERSEO simulations have been carried out at the harmonic or-

der n= 8, with σ seed
t = 86.4 f s (i.e., an FWHM duration if about 200 f s) and Γi = 5.1 ·10−5 f s−2

(obtained for an FWHM bandwidth of 0.9 nm). This gives, according to Eq. IV.10, N = 0.16.

We can thus say that, in these conditions, we fulfill the condition of “far-field" approximation. As

it can be seen in the top left panel of Fig. IV.35, corresponding to a normal regime of opera-

tion of the FEL (single pulse, slight saturation), our prediction is fully confirmed: the spectral

(continuous) and temporal (dashed) profiles are very similar. In this figure, we represented the

phase decomposed in the part nΓit
2 inherited from the seed (dotted curve) and the remaining

phase distortions (dash-dot line): the former dominates the latter. While a flat electron energy

profile has been taken here, a curvature of 5 MeV/ps2 (which is an experimentally reasonable

value at FERMI@Elettra) has been considered for the result shown in the top right panel: the

agreement remains excellent. As it has already been mentioned, for such small inhomogeneity
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of the electrons energy profile, the effect on the FEL phase is negligible. In the bottom-left panel

of the same figure, we considered the regime of pulse splitting. Remarkably, the method we pro-

pose is able to reproduce the simulated profile also in this case. Indeed, as shown e.g., in Fig.

IV.32, the FEL phase can still be approximated by nΓit
2 in this situation. Finally, the bottom-right

panel shows the effect of the phase (and envelope) distortion induced by running the FEL in

over-saturation (single but distorteb pulse). In this case, the quadratic phase term (dotted line)

does not sufficiently dominate the other phase terms (dash-dot curve): this the reason why the

theoretical approach partially fails in reproducing the simulated temporal profile.

Figure IV.35: Comparison between the temporal (continuous line) and spectral (dashed line) profiles obtained

using the numerical code PERSEO: (top left) single pulse, slightly saturated regime with ideal electron beam;

(top right) single pulse, slightly saturated regime with quadratic electron-beam energy profile (energy curvature:

5 MeV/ps2); (bottom left) double-pulse regime; (bottom right) single pulse, over-saturated regime. In each panel,

the temporal scale (bottom axis) is obtained from the spectral one (top axis), using the homothetic transformation

given in Eq. IV.9. The phase is separated into the dotted curves representing the quadratic part nΓit
2 (with n = 8)

and the dot-dashed curves correspond to the other phase terms.

IV.2.c Predictions for experimental results

Finally, we tested our approach by comparing theoretical results with measurements per-

formed at FERMI@Elettra. The left panels of Fig. IV.36 display the temporal shape retrieved

from the measured FEL spectrum, using Eq. IV.9 (with nΓi = nΓi). For the considered case,

the FEL was operated at 32.5 nm (n = 8); the seed pulse had a measured FWHM duration of

200 f s and a phase curvature Γi = 5.1 · 10−5 f s−2 (i.e., the same seed as we considered in

the simulations hereabove, giving N = 0.16). The measured value of the electron-beam energy
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curvature was 5 MeV/ps2. In the top left panel, we retrieve a pulse with quasi-Gaussian shape

of 102 f s duration (FWHM) and in the bottom-left one we have the retrieval of the temporal

profile in the case of a double-peak spectrum. In order to corroborate our prediction, we do the

reconstruction of the spectrum from this temporal retrieval by means of the following relation:

Ĩrec(ω) = |FTω [
√

Ĩ(2nΓit)expinΓit
2

]|, (IV.11)

where Ĩ(2nΓit) is the measured spectrum evaluated at the homothetic coordinate ω = 2nΓit,

and we compare it with the initial measured spectrum. The reconstructions are shown in the

right panels of Fig. IV.36: the agreement is very satisfactory. The reconstructed spectrum

provides a quantitative information about the validity of the proposed “far-field” approach, also

in the situations in which a significant phase distortion and possible perturbations generated by

any other noise source are present

Figure IV.36: Top left panel: retrieved temporal shape (solid curve) from spectral measurement on

FERMI@Elettra in the single-pulse regime. Bottom left panel: retrieved temporal shape (solid curve) from spectral

measurement on FERMI@Elettra in the double-pulse regime. In both panels, the temporal scale (bottom axis) is

obtained from the spectral one (top axis), using the homothetic transformation given in Eq. IV.9 and the dotted lines

represent the quadratic phase term nΓit
2. Right panels show the comparison between the measured spectra (solid

line) and the reconstructed spectra (dotted line) from the left panels, calculated using Eq. IV.11.
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IV.3 Summary

In this chapter, I presented a way to generate two close but distinct spectral peaks, to which

are associated two femtosecond pulses separated by a few hundred of femtoseconds. The

technique relies on the effect of the chirp carried by the seed laser on an FEL operating in

deep saturation, which leads to the pulse splitting of the main FEL pulse into two sub-pulses.

We realized the experiment on the FERMI@Elettra facility, generating, in the extreme-ultraviolet

spectral region, two colours whose relative separation is ∆λ
λ

≈ 0.01%. The spectral separation

between the peaks can be managed by different parameters, that are the intensity of the seed,

the strength of the dispersive section (as we demonstrated in [133]), the chirp of the seed and

the chirp of the electrons.

An interesting point of this effect is that, starting from a single FEL pulse that is intrinsi-

cally relatively far from the Fourier-transform limit due to phase distortions of the seed and, in a

smaller extent, of the electron bunch, especially at low harmonic orders, one may end up with

two pulses very close to this limit i.e., exhibiting a spectro-temporal quality potentially apprecia-

ble for users’ applications.

I provided a reliable estimation of the temporal distance between the two sub-pulses as a

function of the chirp parameter of the seed Γi and the spectral separation between the peaks.

From this we can draw the function in Fig. IV.37, which is a precious piece of information for

the application to pump-probe experiments. It shows the different working points that would be

accessible by varying Γi at fixed seed intensity and strength of the dispersive section.

0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

1200

1400

∆λ
6
 [nm]

∆t
 [

fs
]

 

 

Γ
i
=3x10-5 fs-2

Γ
i
=5x10-5 fs-2

Γ
i
=7x10-5 fs-2

Figure IV.37: Estimation of the temporal distance between the two sub-pulses as a function of their measured

spectral separation for a CHG emission at the 6th harmonic of the seed for different values of Γi.

Finally, I presented a study whose conclusion is that the temporal shape of any optical pulse

with dominant linear chirp is identical to its spectrum, under the condition of Eq. IV.8. In our case,
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this noticeable result provides a direct non-invasive diagnostic for the temporal reconstruction of

seeded FEL, even in the regime of double pulse.
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In the previous chapter, a solution for the generation of two-colour femtosecond pulses with

controllable features has been presented. In some extent, one of its assets is the tunability

of the wavelength (i.e., by the fact that there is a splitting that creates two new colours but

also because these two wavelengths can be tuned, eventually independently). However, the

two wavelengths remain very close from one another. In [134], we demonstrated the easy

tunability of the FERMI@Elettra source: both coarse tunability, by changing the harmonic order

on which the FEL is tuned, and fine tunability, by slight modification of the undulators’ resonance

for instance. Moreover, the presence of an optical parametric amplifier [135] as a seed laser,

which can be used instead of the fixed-wavelength seed, is a huge advantadge. Hence, on

FERMI@Elettra a full tunability over the whole EUV range is reached, which is very important

for users’ experiments. On HHG sources, the tunability is less evident but there are possibilities.

A straightforward solution, that we study here, is to generate to rely on a widely tunable drive

source.

V.1 Principle

The generation of fully tunable high-order harmonics has been demonstrated in [136] for

harmonics around 150 nm. In this section, we extend this study to the whole ultraviolet spectral

range, reported in our work published in [137]. The novelty of the results we obtained stems from



128 Chapter V. High-order harmonics generated by a tunable drive source

Figure V.1: Layout of the experiment.

the unique qualities of the source that we used to drive HHG. This driving source is characterized

by a large wavelength tunability from 1100 to 1900 nm, a mJ-level pulse energy and short pulse

duration of the order of 20 fs. In these conditions the generation of few-femtosecond harmonic

radiation is ensured.

V.2 Experimental setup

The layout of the experiment is shown in Fig. V.1. The parametric source (Fig. V.2 [138]) is

based on a Ti:Sapphire laser facility providing intense short pulses (tens of mJ energy; 60 f s

duration), centered at a wavelength of 790 nm, with a repetition rate of 10 Hz. A fraction of the

beam is sent to a filament filled with krypton where self-phase modulation (see Section III.1.b)

occurs, so as the spectrum is broadened. A set of chirped mirrors then allows compressing

the pulse down to few femtosecond durations [85]. The output beam stems from difference

frequency generation (DFG) [90] of spectrally broadened pulses. The generated pulses are am-

plified in a two-stage optical parametric amplifier (OPA1 and OPA2), each stage being pumped

by a fraction of the Ti:Sapphire laser source spatially filtered by a modal filtering setup similar to

the one described in Section II.2, leading to the production of ≈ 20− f s pulses with an energy

up to 1.2 mJ, tunable from 1100 to 1900 nm. Tunability is achieved by rotating the crystals in

the OPAs, thereby changing the phase-matching conditions.

The generation of the high-order harmonics of the near-IR driving pulses is achieved by

focusing the laser beam with a lens of 15 cm focal length on a jet of krypton gas (see Fig.

V.1), which ensures a better harmonic conversion efficiency than lighter gases such as argon,

at the price of a lower cutoff frequency. The gas is injected into the interaction chamber by an

electromagnetic valve, mounted on a x−y−z translation stage, operating at the same repetition

rate as the laser. The jet has a diameter at nozzle of about 0.8 mm. An iris placed on the path

of the driving beam adjusts the intensity at the focus, estimated to be at most 2 · 1014 W/cm2.

By changing the gas backing pressure (typically 2−5 bars), the gas pressure in the interaction

region has been estimated to vary between 20 and 50 mbars. Such values, as well as the

synchronization with the laser pulse, have been chosen to maximize the harmonic yield. The

valve is placed downstream the laser beam waist until the position of maximum photon flux is

reached. After the generation point, the harmonics co-propagate with the residual driving laser
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Figure V.2: Driving laser source used for out HHG experiment: Ti:Sa, CPA Ti:sapphire laser; DFG, 200− µm-

thick BBO crystal; POL, thin-film polarizer; BS, beam splitter. (taken from [138])

through the instrument in use for the spectral analysis. The spectrum of the harmonic beam

is acquired by two different detection systems: a scanning monochromator in the DUV and a

spectrometer in the EUV, with suitable detectors. Detection systems in both DUV and EUV

regions have been calibrated so as to allow measurement of the harmonic absolute photon flux.

To cover the deep-ultraviolet (DUV) and EUV spectral regions two different spectrometers

have been used. Harmonic emission in the DUV was analyzed through a normal-incidence

Czerny-Turner scanning monochromator (McPherson model 218) equipped with a 2400−gr/mm

AlMgF2-coated grating. The monochromator selects a single harmonic or a spectral portion

thereof. The photon flux at the exit slit of the monochromator is detected by a photomultiplier

tube (Hamamatsu model R1414) with a tetraphenyl butadiene (TPB) phosphor photocathode to

enhance the detection efficiency. Owing to the limited spectral range accessible to the grating,

that has significant transmission for wavelengths above ≈ 130 nm, only the harmonics ranging

from the third to the eleventh order of the fundamental wavelength could be detected. The har-

monic spectra at high resolution were obtained by scanning the grating, with a 300− µm slit

aperture, giving a bandwidth of 0.4 nm.

The global response of the instrument (i.e., monochromator plus detector) has been ab-

solutely calibrated using the facilities available at CNR-IFN and described in details in [139],

in order to measure the DUV photon flux generated in the interaction region at the different

harmonics. This was performed by tuning the monochromator to one of the harmonics and

opening completely its slits. In such a way, the beam enters the monochromator without being

clipped at the entrance slit and is diffracted by the grating. The harmonic of interest then exits

the monochromator without being clipped at the output slit, and is detected by the photomulti-

plier. We verified that even with the slits completely open the different harmonics were clearly
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separated at the output.

The signal in the EUV was analyzed through a grazing-incidence flat-field spectrometer

equipped with a 1200-gr/mm gold-coated grating and tuned in the 80−35 nm spectral region.

The spectrum is acquired by a 40−mm-diameter microchannel plate intensifier with MgF2 pho-

tocathode and phosphor screen optically coupled with a low-noise CCD camera. Also in this

case, the global response of the instrument (i.e., grating and detector) has been absolutely cal-

ibrated, as described in detail in [140, 141]. Since the spectrometer works without an entrance

slit, having the harmonics generation point as its input source, all the generated EUV photons

enter the instrument and are diffracted onto the detector.

V.3 Results and discussions

V.3.a Deep-ultraviolet region

Figure V.3 shows the spectral characterization from four sets of measurements, correspond-

ing to four different wavelengths of the driving pulse: 1350, 1550, 1750, and 1900 nm. One can

see that, in our experimental conditions, the longer is the wavelength of the driving beam, the

narrower is the bandwidth of the fundamental pulse and the one of its harmonics. It is important

to stress that the stability of the beam provided by the parametric source ensures a very good

reproducibility of the measurements.

Below 150 nm, the efficiency of the DUV monochromator is dramatically low. Thereby, the

analysis of harmonic spectra has been done only down to 150 nm. Since the third harmonics

of the considered driving IR wavelengths are generally located in the visible, i.e., out of the

monochromator range, harmonic orders from fifth to ninth have been analyzed. As expected at

these relatively low orders, the signal quickly decreases with increasing harmonic order. Indeed,

the intensity of harmonics before the plateau region is related to the probability of multiphoton

ionization of the gas atoms [142]. Like the driving beam, harmonics have a large bandwidth (a

few tens of nanometers), intrinsic to an ultrashort pulse source.

The overlap of the harmonic spectra shows a full tunability of the source in the DUV spectral

region (Fig. V.4). The range between 400 and 350 nm corresponds to either the fifth harmonic

of a 1750–2000 nm fundamental beam or the third harmonic of a 1050–1200 nm fundamental

beam. These wavelengths are the boundaries of the accessible spectral range of the used

parametric source, so that in these regions the IR spectrum is less stable and moreover the

beam energy is lower than in the 1350–1550 nm “peak region”. Hence harmonics in the 400–

350 nm region are also less intense. The third harmonic of a 1050–1200 nm fundamental beam

can be generated with better conversion efficiency in the frame of classical nonlinear optics in

crystals [143].

Figure V.5 clearly shows that when the driving wavelength ranges from 1350 to 1900 nm,
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Figure V.3: IR spectra (left side) and corresponding harmonic spectra (right side) in the 400–150 nm spectral

region. H5, H7 and H9 stand respectively for the fifth, seventh and ninth harmonics of the driving IR beam.
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Figure V.4: Overlap of the harmonic spectra for four drive IR wavelengths (1350, 1550, 1750 and 1900 nm). The

harmonic spectrum resulting from the drive wavelength of 1900 nm has been vertically magnified (×5).
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Figure V.5: Tunability in the DUV. The lines represent the wavelength ranges that are covered by harmonic orders

from fifth to evelenth, generated by drive wavelengths ranging from 1350 nm to 1900 nm.

Table V.1: Absolute number of photons provided in the DUV spectral range for four different drive wavelengths.

Left column: central wavelength of the drive beam; center column: wavelengths corresponding to the peak signal

of the indicated harmonics; right column: measured photons/shot for each harmonic.

drive IR harmonic photons/shot

[nm] [nm (order)]

1160 414 (3rd) 2.0×108

248 (5th) 6.1×107

177 (7th) 3.6×107

1350 270 (5th) 4.2×107

196 (7th) 1.8×107

153 (9th) 1.3×107

1450 285 (5th) 6.1×107

204 (7th) 1.6×107

161 (9th) 8.2×106

1800 367 (5th) 1.3×107

262 (7th) 7.0×106

206 (9th) 3.4×106

as in these measurements, harmonic orders from fifth to eleventh completely cover the DUV

spectral region. Furthermore, the third harmonic, not shown in Fig. V.5, also allows tunability

in the visible region. Obviously this overlap and thereby the tunability in the ultraviolet range

improve at shorter wavelengths, where narrower IR tunability is thus sufficient.

The photon flux of the harmonics has been measured by fully opening the slits of the

monochromator in order to get all the signal on the photomultiplier. The results are summa-

rized in Table V.1. Around 107 photons per shot are generated in the DUV spectral region,

corresponding to a beam energy of the order of 10 pJ. One sees that the higher the driving

wavelength, the smaller the harmonic photon flux. Regarding the ninth harmonic of the driv-

ing laser for 1350, 1450 and 1800 nm drive wavelengths (λIR), the wavelength scaling of the

harmonic conversion efficiency is estimated to be about λ−6
IR . Even if the exact scaling at con-



V.3. Results and discussions 133

stant peak intensity cannot be provided here (as it would require a dedicated experiment), we

underline that such an estimate is in agreement with recent theoretical studies which show that

the harmonic efficiency in the plateau region scales as λ−6
IR , not as λ−3

IR as previously believed

[144]. Moreover, in [145], the conversion efficiency of further plateau harmonics (from 78 to

39 nm) has recently been measured to be proportional to λ−6±1.1
IR in krypton. Although increas-

ing the driving wavelength allows to extend the harmonic plateau [146], there is a penalty in

terms of harmonic efficiency. As already explained in Chapter I, the lowering of harmonic effi-

ciency at longer driving wavelength can be well understood in the frame of the semi-classical

model since it corresponds to a longer time spent by the electrons into the continuum before

recombination and thus, a higher probability to be lost and not to be involved in the harmonic

emission.

V.3.b Extreme-ultraviolet region

The same procedure has been followed for the measurements performed in the EUV region,

using the detection system described before. Harmonic spectra are reported in Fig. V.6 for

three different driving wavelengths (1350, 1450, 1550 nm) and their overlap in the 45–35 nm

spectral range is shown in Fig. V.7. Figure V.8 shows that by varying the driving wavelength

from 1350 nm to 1550 nm one attains the full tunability in the EUV, through relatively high-order

harmonics. An interesting point is that one specific ultraviolet wavelength can be obtained from

multiple drive wavelengths through different harmonic orders.

The shapes of DUV (Fig. V.3) and EUV (Fig. V.6) harmonics are noticeably different. In the

first case, the use of a scanning monochromator involves unsmooth spectra due to shot-to-shot

fluctuations of the IR energy and the harmonic generation process. Besides, the resolution of

the EUV detection system is about 1.6 times smaller than that in the DUV. One main point to

consider is that the generation of harmonics obeys to different mechanisms in these spectral re-

gions. In the perturbative framework, the spectrum of the nth harmonic field can be represented

as a nth-order autoconvolution of the spectrum of the fundamental field. Thus complex spec-

tral structures in the fundamental spectrum can be inherited by the low harmonics such as, in

Fig. V.3, the fifth harmonic of a 1350-nm central drive wavelength. This is not seen in higher har-

monics (Fig. V.6), since the generation mechanism is there attributed to the inteference among

EUV emissions corresponding to different electron quantum trajectories.

The absolute number of photons in the EUV is reported in Table V.2 for harmonic orders 21,

29 and 35 of 1350, 1450 and 1550 nm driving wavelengths. Such a photon flux corresponds to

an energy per harmonic per shot about two orders of magnitude smaller than in the DUV. The

different nature of the harmonic generation process and of phase matching conditions for low

and high harmonics can also explain the difference of photon flux between the DUV and EUV

spectral regions.
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Figure V.8: Tunability in the EUV. The lines represent the wavelength ranges that are covered by harmonic orders

from number nineteen to thirty-nine, generated by drive wavelengths ranging from 1350 nm to 1550 nm.

Table V.2: Absolute number of photons provided in the EUV spectral range for three different drive wavelengths.

Left column: central wavelength of the drive beam; center column: wavelengths of harmonic orders 21, 29 and 35;

right column: measured photons/shot for each harmonic.

drive IR harmonics photons/shot

[nm] [nm]

1350 63 1.3×104

46 5.8×103

38 2.8×103

1450 69 4.4×104

50 9.9×103

41 4.7×103

1550 75 1.4×104

54 3.1×103

45 6.5×102
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Different strategies can be pursued to overcome this low photon flux. As a first possibility,

one could design a more powerful parametric source [147]. A complementary strategy is the

improvement of the HHG process in terms of tunability and conversion efficiency. In this re-

spect, a promising technique that could be investigated is mixing the fundamental wavelength

of the parametric source with either its second harmonic or with a standard powerful Ti:Sa laser

source, as demonstrated in [148] or similarly in [149]. Moreover, as shown in [150], using the

simultaneous irradiation of an extreme-ultraviolet pulse, the dependence of the harmonic yield

from the wavelength of the driving beam can be significantly reduced.

V.4 Summary

The full tunability of a femtosecond photon beam produced through HHG driven by a para-

metric source has been demonstrated in the whole ultraviolet spectral range. This source opens

the way to novel scientific experiments. The main drawback comes from the relatively low

harmonic conversion efficiency, resulting from a drive wavelength longer than in classic HHG

setups. Increasing the harmonic photon flux would extend the range of possible scientific exper-

iments.
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Free-Electron Lasers and High-order Harmonic Generation sources compete together in the

attractive challenge that is to extend the possibilities of scientific applications towards the X-rays.

In this extent, we studied some of required qualities of such facilities.

In this manuscript, I first presented the good results of spatial coherence of the light provided

at FERMI@Elettra. A fundamental aspect to be understood is: how the seeding could improve

the transverse quality of the FEL emission? For answering to this question, it will be possible

to perform, on FERMI@Elettra, measurements of spatial coherence also in SASE mode, which

would enable doing a fair comparison on the same facility, at the same wavelength i.e., in the

same machine conditions. In addition to this, the propagation of the spatial phase should be

studied, via systematic wavefront measurements on the seed laser and on the FEL emission,

changing the properties of the seed. Furthermore, many questions remain open concerning

the effects of the transverse characteristics of the electron beam. Wavefront measurements

have already been done on SASE sources [151, 152], and can also be compared with results

obtained at FERMI@Elettra. However, the wavefront sensor is often use as a tool for optimizing

the beam focusing for experiments, and thus used after specific mirrors. In parallel, we studied

the optimization of the spatial quality of an infrared beam used for driving HHG. A noticeable

enhancement has been measured. Now, it would be of great interest to see if the properties

of coherence and wavefront quality are also transmitted via HHG, and how it could depend on

the generation configuration. For the moment, wavefront characterizations on FEL sources give

contradictory results [153, 154].

This spatial study has been followed by a work relying on the chirp properties in a seeded

FEL. A first application is the production of two separate pulses with different wavelengths, which

could be used as a self-standing source for two-colour pump-probe experiments, without requir-

ing an external laser. The production of two colours can be put in parallel with the Young’s

experiment that we implemented for coherence measurements: the two sub-pulses interfere

temporally, and the temporal quadratic phase of the FEL emission corresponds in the Young’s

experiment to the spatial dispersion that is induced during propagation. Both studies are there-

fore similar and the interference fringes that are observed in the Young’s experiment are the

analogy of the beating structure that is observed temporally with a two-colour spectrum. The

spectrum corresponds to the Fourier transform of the temporal intensity and the far-field diffrac-

tion pattern of coherence measurements is the spatial Fourier transform of the two point sources

that are the slits. As we mentioned in Chapter I, FERMI@Elettra is now made of a second stage

allowing to generate lower wavelengths. Preliminary results let think that the amplification, in

the second stage, of two FEL peaks produced in the first stage is successful. Beyond that,

the behaviour of the two-colour FEL in high-gain regime, and the transverse properties of the
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emission will have to be studied. Even if it is quite novel, the two-colour emission of an FEL is

not completely new. We can cite the case of [155, 156], which was however in the mid-infrared

region and where the two peaks were produced simultaneously, which resulted in a strong tem-

poral modulation due to the frequency beating. More recently, a potential soft X-rays two-colour

source has been discussed in [157], however without wavelength tunability and temporal control.

A second application of the presence of quadratic phase in the FEL emission is the direct

retrieval of the temporal shape of the pulses [158]. Here again, we can rely on a spatio-temporal

analogy: the Fraunhofer diffraction corresponds to the “far-field" approximation that we found in

the case of a linearly-chirped optical pulse, which allows to retrieve its temporal shape similarly

to the fact that we obtain a typical and easy-to-study diffraction pattern if we are in far-field

spatially. The quadratic term of the FEL phase induces a temporal dispersion of the pulse

spectral component. The instantaneous frequency at a given time is the result of the interference

of multiple spectral components. The number of spectral components contributing to it is large

for small temporal dispersion (i.e., small chirp) and decreases for increasing temporal dispersion

(i.e., large chirp). For sufficiently large chirps, one can approximately associate a single spectral

component to each temporal position in the pulse. When this happens, the temporal form of the

pulse becomes similar to its spectral shape.

A very interesting prospect concerning the presence of quadratic temporal phase in the FEL

radiation, and the possibility to manage it easily before the emission by means of the seed laser

chirp, is its chirped-pulse amplification [64]. This hot topic has been discussed for a long time

[159, 160, 161] but its implementation on FERMI@Elettra would be an important step for the

production of even more intense, but also of shorter and Fourier-transform limited pulses. No

specific stretcher would be required prior to the undulators since the chirp stems mainly from

the seed, but also from the electrons. The chirp of the latter and its quantification, and its

combination with the one of the seed, is also part of the upcoming spectro-temporal studies on

seeded FEL’s.

The tunability of the wavelength of the EUV radiation, an important asset for experiment,

is possible either in FEL’s or in HHG facilities. However, a lack of standard HHG sources is

the impossibility to generate radiation whose polarization is tunable. On the other hand, as

we demonstrated in [162], FEL’s are capable to provide elliptical to circular polarization without

any effort. The possibility to generate circularly polarized high-order harmonics is thus a big

challenge that will have to be taken up. Finally, especially in FEL sources where efforts have

been mostly focused on spatial and spectral studies, further temporal characterizations (intensity

shape, longitudinal coherence) are required.

As a final word, it is important to stress that FEL and HHG sources are not only two tools that

are in competition for providing the best EUV light. First, they are complementary since it has

been demonstrated in [163] that HHG can be used for injecting seeded FEL’s, allowing to reach

even shorter wavelength while providing high photon fluxes with coherent radiation. They can
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also be used together in pump-probe experiments. Beyond that, they are two great supports for

electromagnetism and atomic studies, be there experimental, numerical or theoretical, and for

the understanding of physical processes.
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APPENDIX A

Spectro-temporal properties of a

linearly-chirped Gaussian pulse

The electric field in the temporal domain can be written, in the longitudinal dimension, as

the product of its amplitude E0, a first exponential representing the Gaussian envelope and a

second one for the oscillations of the field:

E(t) = E0e−Γrt
2

e−iΦ(t) (A.1)

We consider a linearly-chirped pulse. If the slope of the frequency dependence is 2Γi, we can

write it as:

ω(t) = ω0 +2Γit (A.2)

The information about the oscillations is contained in Φ(t): the instantaneous frequency is given

by ω(t) =
dΦ(t)

dt
and thus, by integration, we get:

Φ(t) = ω0t +Γit
2+ϕ0 (A.3)

By order, we get the linear term corresponding to the “fast" oscillations at the mean frequency

ω0, the quadratic phase that is a slowly varing frequency and a constant phase. If we neglect

the latter, that has no effect on ω(t), the temporal electric field can be represented by:

E(t) = E0e−Γt2−iω0t (A.4)

with Γ = Γr + iΓi. The temporal intensity is given by:

I(t) = E(t) ·E∗(t)

=
(

E0e−Γt2−iω0t
)

·
(

E0e−Γ∗t2+iω0t
)

= E2
0 e−2Γrt2

(A.5)

Since the intensity profile is also Gaussian, we identify Γr =
1

4σ2
t

where σt is thus the standard

deviation of the temporal intensity profile (not of the electric field envelope). The positions at



152 Appendix A. Spectro-temporal properties of a linearly-chirped Gaussian pulse

which the intensity reaches the half of its maximum correspond to:

e−2Γrt2

=
1

2

−2Γrt
2 = ln(

1

2
) = ln(1)− ln(2) =−ln(2)

t =±
√

ln2

2Γr
(A.6)

Therefore, the full-width at half maximum of the temporal intensity profile is:

Ht = 2

√

ln2

2Γr
=

√

2ln2

Γr
= 2σt

√
2ln2 (A.7)

The electric field in the spectral domain is given by the Fourier transform of Eq. A.4:

Ẽ(ω) =
1√
2π

∫ +∞

−∞
E(t)eiωt dt

=
1√
2π

E0

∫ +∞

−∞
e−Γt2−iω0teiωt dt

=
1√
2π

E0

∫ +∞

−∞
e−[Γt2−i(ω−ω0)t] dt (A.8)

The trick to solve this integral is to do a “completion of the square" of the argument of the

exponential,
[

Γt2− i(ω −ω0)t
]

. This argument can be written in the form (at + b)2 − b2 =

a2t2 + 2abt. By identification, we get a =
√

Γ and b = − i(ω−ω0)

2
√

Γ
, and thus can rewrite the

integral:

Ẽ(ω) =
1√
2π

E0eb2
∫ +∞

−∞
e−(at+b)2

dt (A.9)

We operate a variable change: u = at +b and du
dt

= a. We now get:

Ẽ(ω) =
1

a
√

2π
E0eb2

∫ +∞

−∞
e−u2

du (A.10)

We get a well-known Gauss integral which is solved easily. First, the integral can be seen as a

square root:

∫ +∞

−∞
e−u2

du =

√

∫ +∞

−∞
e−x2

dx

∫ +∞

−∞
e−x2

dx =

√

∫ +∞

−∞
e−x2

dx

∫ +∞

−∞
e−y2

dy

=

√

∫ +∞

−∞

∫ +∞

−∞
e−(x2+y2) dxdy (A.11)
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We change the latter expression to polar coordinates:

∫ +∞

−∞
e−u2

du =

√

∫ 2π

0

∫ +∞

−∞
e−r2

r dr dθ =

√

2π
e−r2

−2

∣

∣

∣

∣

+∞

0

=
√

π (A.12)

Hence, we finally obtain:

Ẽ(ω) =
1√
2Γ

E0e−
(ω−ω0)

2

4Γ (A.13)

We can develop the above equation in order to separate the envelope and the phase terms. It

gives:

Ẽ(ω) =
1√
2Γ

E0e
− Γr

4|Γ|2 (ω−ω0)
2

e
i

Γi

4|Γ|2 (ω−ω0)
2

(A.14)

In the spectral domain, the electric field thus has also a Gaussian envelope: nothing surprising,

the Fourier transform of a Gaussian is a Gaussian. The spectrum is given by:

Ĩ(ω) = Ẽ(ω) · Ẽ∗(ω)

=

(

1√
2Γ

E0e
− Γr

4|Γ|2 (ω−ω0)
2

e
i

Γi

4|Γ|2 (ω−ω0)
2
)

·
(

1√
2Γ∗E0e

− Γr
4|Γ|2 (ω−ω0)

2

e
−i

Γi

4|Γ|2 (ω−ω0)
2
)

=
1

2
√

|Γ|
E2

0e
− Γr

2|Γ|2 (ω−ω0)
2

(A.15)

Considering σω as the standard deviation of this Gaussian intensity profile i.e., 1

2σ2
ω
= Γr

2(Γ2
r+Γ2

i )
,

we obtain Γi =± 1

4σ2
t

√

4σ 2
t σ 2

ω −1. And finally, the FWHM of the spectrum is:

Hω = 2

√

√

√

√2ln2Γr

[

1+

(

Γi

Γr

)2
]

= 2σω

√
2ln2 (A.16)

Let us look at the time-bandwidth product:

Ht ·Hω =

√

2ln2

Γr
·2

√

√

√

√2ln2Γr

[

1+

(

Γi

Γr

)2
]

= 4ln2

√

1+

(

Γi

Γr

)2

> 4ln2 (A.17)

If we consider the frequency ν = ω
2π , we have Ht ·Hν >

4ln2
2π ≈ 0.441, which is the well-known

value of the Fourier limit for a Gaussian pulse. For a given spectrum, the amount of chirp (here,

only linear, characterized by Γi) drives the lengthening of the pulse duration.

It is more common to work with wavelengths, so it is useful to rewrite the time-bandwidth
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product as a function of λ . Since ∆ν
ν = ∆λ

λ , we get that ∆ν = ν∆λ
λ = c∆λ

λ 2 and thus:

Ht ·Hλ >
4λ 2 ln2

2πc
(A.18)



APPENDIX B

Hermite polynomials

In Section II.1.d, the Hermite polynomials Hn(x) are used for describing the functions com-

posing the cross-spectral density of a Gauss-Schell Model beam. However, in the literature one

can find different definitions for the Hermite polynomials. The one that is used in this thesis is

the following:

H0(x) = 1

H1(x) = 2x

Hp(x) = 2xHp−1(x)+2(p−1)Hp−2(x),

(B.1)

with p > 2.
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