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Résumé

Résumeé

Dans les dernieres décennies, les études des bilans d'énergie a la surface, de
I’aménagement des bassins versants, des processus biophysiques et des catastrophes
naturelles ont attiré I’intérét des communautés scientifiques. Le succes de telles études exige
une importante base de données sur I'état de surface de la terre, de I’océan, de I’atmosphére et
méme des activités humaines. La télédétection permet les observations a long terme et a faible
colt et nous fournit un moyen prometteur pour obtenir ces données au niveau régional et
global. Avec les données de télédétection provenant soit de plates-formes aéroportées soit de
systemes spatiaux, les scientifiques ont proposé une variété d’algorithmes pour obtenir
différents types de parametres de surface de la terre et de son atmosphére et ces parametres
ont été utilisés dans de nombreux domaines pertinents.

La température de surface de la terre (LST) est I'un des paramétres les plus importants
intervenant dans les bilans énergétiques et hydrologiques de I’échelle locale a I’échelle
globale. La connaissance de la LST fournit des informations sur les variations temporelles et
spatiales de I'état d'équilibre de la surface et est d'une importance fondamentale dans de
nombreuses applications. Par conséquent, la LST est largement utilisée dans de nombreux
domaines, y compris I'évapotranspiration, le changement climatique, le cycle hydrologique, la
surveillance de la végétation, le climat urbain et les études environnementales, entre autres.
Elle et a été reconnue comme l'un des parameétres prioritaires du programme International
Geosphere and Biosphere Program (IGBP), lI'un des plus importants du Earth System Data
Records (ESDR) identifié par la NASA (http://Ist.jpl.nasa.gov/background) et un des produits
justificatifs pour les variables climatiques de I'ESA (http://tinyurl.com/globtemperature).

La détermination de la LST par télédétection thermique infrarouge TIR a attiré beaucoup
d'attention et son histoire remonte aux années 1970. Cependant, I'estimation directe de la LST
n'est pas une tache facile, et il faut tout d’abord déterminer I'émissivité et les effets
atmosphériques, car les radiances mesurées par les radiométres dépendent non seulement des
paramétres de surface (température et émissivité) mais également de [I’atmosphere.
L'émissivité, définie comme le rapport entre le rayonnement émis par les cibles naturelles au
rayonnement émis par un corps noir a la méme température, varie selon les types de surface
terrestre et structure, la longueur d'onde, la texture du sol, I'numidité et I’angle de vue. Le
couplage de I'émissivité avec la LST fait que la détermination de la LST est
mathématiquement insoluble: pour un capteur a N canaux infrarouges, on a N mesures pour N
+ 1 inconnues (N émissivités canal et 1 température). Pour résoudre ce probléme sous
déterminé, une contrainte supplémentaire est par conséquent nécessaire. En outre, le
rayonnement émis par la surface est tout d'abord contaminé par la radiance atmosphérique
réfléchie et est ensuite atténué par I'atmosphere sur le trajet de la surface vers le satellite. La
correction des effets atmosphériques nécessite une connaissance précise des profils verticaux
de vapeur d'eau atmosphérique et de température qui sont trés variables.

Fondées sur la théorie du transfert radiatif dans le TIR, diverses méthodes ont éte
développées pour obtenir la LST a partir des données de télédétection avec un moyen
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permettant de supprimer les effets de I'émissivité et de I’atmosphere. Par exemple peut étre
citée la méthode qui consiste a déterminer I’émissivité a partir d’une relation linéaire
empirique avec des données du domaine visible/proche-infrarouge ou encore la méthode
basée sur la classification. Les deux méthodes suivantes peuvent permettre d’obtenir la LST
depuis I'espace: la premiere est I'algorithme de canal unique qui utilise un seul canal TIR, tel
que celui du capteur Thematic Mapper du canal 6 (TM6); la deuxieme méthode est
I'algorithme de Split-Window qui supprime I'effet atmosphérique a l'aide de I'absorption
atmosphérique différentielle dans deux canaux adjacents centrés a 11 et 12 um et qui applique
ensuite une combinaison linéaire (ou non) des températures de brillance des deux canaux
adjacents. Car ils ne nécessitent pas d'informations précises sur les profils atmosphériques au
moment de l'acquisition, de nombreux algorithmes de Split-Window ont été développés et
modifiés pour extraire avec un certain succes les LST de plusieurs capteurs comme AVHRR,
MODIS et SEVIRI. En revanche, pour le cas de I'émissivité, plusieurs méthodes ont été
congues pour obtenir & la fois les LST et émissivités a partir de données multi canaux et/ou
multi temporelles. Par exemple citons la méthode des indices spectraux indépendants de la
température (TISI) : une paire d’image de jour et de nuit dans les domaines thermiques MIR
et TIR donne acces a I’émissivité dans ces deux canaux lesquelles permettent de calculer la
LST directement par inversion de la Loi de Planck ou l'algorithme de Split-Window
mentionné ci-dessus. De méme, la méthode deux températures (TTM) dissocie les deux
paramétres d'apres des observations de deux canaux TIR de jour et de nuit en supposant les
émissivités invariantes au cours de ces deux observations. En outre, si le nombre de canaux
MIR et de TIR est suffisant (au moins sept), l'algorithme physique de jour/nuit peut étre
combiné pour obtenir les LST et les émissivités ainsi que d'autres parametres. De plus, la LST
et les émissivités peuvent étre également obtenues a partir des données TIR multi canaux
corrigées de l'atmosphére en utilisant la relation entre les émissivités des différents canaux,
telle que la méthode de séparation de température/émissivité (TES) principalement congue
pour les cing canaux TIR de ASTER et récemment étendue aux trois canaux TIR de MODIS.
Avec l'apparition des capteurs hyperspectraux TIR (IASI, par exemple), des milliers de
canaux de bande passante étroite peuvent fournir suffisamment de résolution verticale pour
permettre I'extraction d'information atmosphérique et peuvent également fournir des
contraintes physiques supplémentaires pour séparer avec précision la LST de I'émissivité.

Un ensemble d’hypothéses soustend ces algorithmes : la surface est considérée comme
homogeéne et isotherme et la temperature de surface est indépendante du canal et de I’angle.
Cette hypothése est raisonnable, car elle permet de réduire le nombre d'inconnues. Cependant,
en pratique, la LST varie avec I'angle zénithal (VZA). Cette variation angulaire pour surfaces
tridimensionnelles résulte principalement de la variation angulaire de I'émissivité des pixels et
du poids relatif des différents composants (par exemple, végeétation et sol), qui ont des
températures différentes dans un pixel non isotherme. En effet, la différence de la LST
mesurée au nadir et hors-nadir peut étre supérieure a 5 K pour les sols nus et méme 10 K pour
les zones urbaines. Pour la plupart des satellites sur orbite polaire (MODIS, AVHRR) qui
analysent la terre dans le sens transversal a la trajectoire avec différents VZA variant de -65° a
+65°, les variations angulaires de la LST sont inévitables, rendant les LST des différents
pixels dans la méme image incomparables et causant des résultats erronés dans leur utilisation.
Cet effet angulaire se produit également avec les satellites géostationnaires comme SEVIRI
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MSG et entre les LST obtenues avec différents capteurs ou a des moments différents. Il est
donc crucial d'examiner cet effet sur la LST.

Une meéthode pour prendre en compte I'effet angulaire sur la LST consiste a simplement
attribuer la variation angulaire de la température apparente mesurée au comportement
directionnel de I'émissivité du pixel. Toutefois, comme il est difficile d'obtenir I'émissivité
directionnelle des surfaces naturelles a I'echelle du pixel, cette technique s’avere toujours
inutilisable. Une autre technique consiste a separer les températures des composants ou leur
rapport des données multi-angulaires TIR (ATSR et AATSR) et de calculer la température
effective dans une direction spécifique (par exemple au nadir) en pondérant les températures
des composants avec leurs fractions correspondantes. De cette facon, la fraction des différents
composants observés sous un angle spécifique peut étre calculée a I'aide du modele de la
fonction de distribution des réflectances bidirectionnelles (BRDF) mesurée dans le visible et
le proche infrarouge. Cette méthode peut étre une voie prometteuse, mais cependant
I'exigence d'observation multi-angulaire ne peut pas étre satisfaite pour la plupart des capteurs
TIR et la préecision est loin d'étre satisfaisante. Il n'y a donc encore a I’heure actuelle aucun
moyen pratique pour effectuer une normalisation angulaire des LST satellitaires en raison de
la complexité de cette question.

Basée sur I'état d'avancement de I'étude sur la détermination des LST et des émissivités,
cette these est axée sur l'anisotropie du rayonnement thermique a l'aide de méthodes
empiriques et physiques. Elle est divisée en sept chapitres.

Dans le chapitre 1 nous avons donné en introduction la motivation de ce travail de thése
apres une breve discussion sur I'état de I’art et la nécessité d'étudier I'anisotropie de I'émission
thermique de surface.

Le chapitre 2 présente les détails de I'état actuel sur la détermination des LST et des
émissivités depuis l'espace. Ce chapitre débute par la description de la radiance mesurée par
un capteur au sommet de I'atmosphere et des contributions de I'atmosphére en émission ainsi
que le rayonnement solaire réfléchi sur la base de I'équation de transfert radiatif thermique.
Ensuite, plusieurs définitions de I'émissivité pour des surfaces mixtes composées de plusieurs
constituants sont données : r-émissivité, e-émissivité et émissivité apparente. Cependant, cette
these utilisera exclusivement le concept de la r-émissivité car seul ce type d'émissivité est
accessible a partir des données satellitaires et I'émissivité est considérée comme la
caractéristique intrinséque de la surface et ne varie pas avec la température de la surface
comme c’est la cas pour le concept de I'émissivité apparente. De plus, plusieurs bases de
données d’émissivité dont la bibliotheque spectrale ASTER et la bibliothéque de I'Université
de Californie a Santa Barbara (UCSB) ont également été présentées dans ce chapitre ; la
variation spectrale de la végétation et des échantillons de sol est abordée.

Quant a l'effet atmospheérique sur le rayonnement thermique, nous donnons une bréve
description du modele de transfert radiatif atmosphériqgue communément utilisé MODTRAN
pour les capteurs de résolution modérée et le code de 4A/OP pour les capteurs hyper ou super
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spectraux. Nous présentons diverses ressources de données atmosphériques (p. ex. base de
données initiale thermodynamique (TIGR)), le sondeur vertical a bord (MODIS) ou les
prévisions météorologiques, comme le National Center for Environmental Prediction (NCEP)
et le European Center for Medium-Range Weather Forecasts (ECMWF).

Les méthodes de détermination de la LST depuis I'espace sont examinées en fonction du
statut de I'émissivité et des données atmosphériques. Avec une émissivité connue qui peut étre
calculée a partir soit de relations empiriques avec des données VNIR, soit de la méthode de la
classification ou de la combinaison de jour et nuit d’observations dans les canaux de MIR et
de TIR a laide de la méthode TISI, la méthode mono-canal et les algorithmes de
Split-Window sont décrits ainsi que leurs avantages et leurs inconvénients et les conditions
préalables a leurs applications.

L'algorithme Split-Window a été discuté en fonction des angles, de la colonne de vapeur
deau et des effets dus a I'émissivité. Si I’émissivité est inconnue mais les données
atmosphériques définies, les méthodes qui permettent d’extraire la LST et I’émissivité
simultanément sont décrites, y compris la méthode TES proposée pour ASTER, la méthode
corps gris congue pour plusieurs canaux TIR avec la méme émissivité pour au moins deux des
canaux, la méthode TTM développée pour les données TIR observées a deux moments
différents et I’algorithme physique jour/nuit (D/N) utilisé pour les sept canaux MODIS dans
le MIR et le TIR. La comparaison croisée entre les méthodes TTM et D/N est aussi présentée.
Pour les cas d'émissivité et de données atmosphériques non connues, les méthodes qui
donnent acces simultanément a la LST, I’émissivité et certains parametres atmosphériques
sont exposées également. Toutefois, peu de littérature existe a ce sujet et uniquement des
rapports ont été étudiés. Ce chapitre présente également les algorithmes qui permettent
d’extraire la LST (et I'émissivité) a partir de données TIR hyperspectrales et micro-ondes.

Enfin, nous avons examine les méthodes actuelles pour la modélisation et le paramétrage
du rayonnement thermique directionnel et de I’émissivité pour les milieux homogénes et
hétérogénes et pour le pixel satellitaire. Ces méthodes ont eté divisées en quatre catégories :
les modeles geométriques optiques (GO), les modeles de transfert radiatif (RT), les modeles
hybrides (GORT) et les méthodes de simulation numérique. De plus, les moyens d’obtenir la
température des composants provenant de données multi-angulaires ou de plusieurs données
TIR sont présentés. Cette partie est importante pour la these car elle a fourni I'inspiration
originale pour notre étude sur le rayonnement thermique et I'emissivité directionnelles en
utilisant les modéles a noyaux BRDF et les méthodes de fréquence d’intervalle.

Dans le chapitre 3, on extrait, pour la premiere fois, les émissivités directionnelles de
plusieurs couvertures naturelles a I'echelle du pixel a partir des produits d'émissivite MODIS
qui utilisent l'algorithme jour/nuit. D’aprés la littérature, de nombreuses études se sont
attaquees a ce théme mais concernent essentiellement des mesures au sol ou des simulations
mathématiques mais rarement des études au niveau du pixel par un manque de données.
L'algorithme jour/nuit qui permet de séparer la température et I’émissivite ainsi que certains
parametres atmosphériques (colonne de vapeur d'eau, température de l'air) en utilisant un
couple de données MODIS jour et nuit dans les canaux de MIR (CH20: 3,66 ~ 3,84 um,
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CH22 : 3,93 ~ 3,99 um, CH23: 4,02 ~ 4,08 um) et canaux TIR (CH29: 8,4 ~ 8,7 um, CH31:
10,78 ~ 11,28 um, CH32: 11,77 ~ 12,27 um, CH33: 13,19 ~ 14,49 um) a généré des produits
LST et d’émissivité globales a 5 ou 6 km sur plus de dix ans. Puisque I’angle zénithal de
MODIS peut aller jusqu'a 65°, le produit émissivité nous a fourni I'occasion d'examiner les
effets directionnels. En outre, MODIS fournis chaque année des produits de couverture de
surface (collection 4) a 1 km et la classification de I'lGBP (total de 17 types de couvert) a été
utilisée pour exploiter des informations de classification. Une méthode de diagnostic a
huit-connectivité a été appliquée pour assurer la correspondance spatiale de I'émissivité et des
produits de couverture de surface.

Des résultats statistiques sur 5 années d'émissivité et de produits couverture de surface sur
la majeure partie de I'Asie ont montré que I'émissivité de plusieurs couvertures naturelles
(prairies, terres labourables, forét d’arbres a feuilles caduques ou persistantes, forét mixte,
arbustes ouverts et zones arides) augmente dans les canaux MIR, mais diminue dans les
canaux TIR avec l'augmentation de lI'angle de zénithal et que I'émissivité directionnelle varie
de l'ordre de 0,01 ~ 0,02 du nadir a 65°. Cependant, cette variation peut étre ignorée pour les
angles zenithaux inférieurs a 45°. Le comportement de I'émissivité directionnelle a I'échelle
du pixel TIR est comparable a celui obtenu par des études antérieures a I'échelle de la canopée,
mais cela est difficile a verifier pour les canaux MIR car aucune littérature sur I’anisotropie de
I’émissivite n’existe dans ce domaine de longueur d’onde.

L'émissivité directionnelle obtenue a été appliquée a l'algorithme Split-Window pour
extraire la LST a la résolution de 1 km des données MODIS. En comparant cette LST avec les
produits MODIS LST originaux, il a été constaté que cette LST est généralement plus élevée
que celle d'origine et que la différence varie entre -1 K a 3 K. Les grands angles de vue
entrainent les différences les plus importantes. Enfin, dans ce chapitre nous avons également
examiné les effets d'échelle spatiale entre la LST a 1 km et 5 km. Les résultats montrent que
I’on peut ignorer ces effets dans notre étude probablement du fait qu'il n'y n'a presque aucun
effet d'échelle inclus dans l'algorithme Split-Window. En outre, deux lookup tables
d'émissivité directionnelle ont été créées pour une perspective a venir.

Le chapitre 4 vise a la paramétrisation physique de I'émissivité directionnelle et du
rayonnement thermique d’une canopée homogeéne. On utilise le modéle SAIL thermique
(diffusion par feuilles arbitrairement inclinées; ci-apres appelé TIR-SAIL) qui a été étendu du
VNIR a l'infrarouge thermique pour simuler I'émissivité directionnelle de la canopée. Il a été
utilisé avec deux grands types de méthodes pour effectuer le paramétrage de I'émissivité
directionnelle avec des caractéristiques géométriques et de surface connues: tout d'abord,
I'émissivité directionnelle est obtenue a partir du complémentaire a la réflectivité
hémisphérique bidirectionnelle conformément a la Loi de Kirchhoff. La réflectivité
hémisphérique directionnelle peut étre intégrée a partir du modéle BRDF dans le demi
hémisphere. Deux modeles BRDF ont été utilisés: le modele BRDF a noyaux (ci-apres appelé
K-BRDF) et le modéle BRDF semi-empirique (ci-aprés appelé S-BRDF). Les réflectivités
bidirectionnelle proviennent du modele SAILH, découlant du modéle SAIL mais incorporant
les effets de hotspot. Deuxiémement, I'émissivité directionnelle est estimée directement par
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une pondération des émissivités des composants et des fractions, observées dans une direction
d'observation particuliére. Les fractions sont toujours estimées a partir de la théorie de
fréquence d’intervalle et nous avons utiliseé deux des méthodes de Frangois et al, celles
élaborées en 1997 et 2002, ci-apres appelés FRA97 et FRAO02 respectivement.

Les résultats de la comparaison ont montré que les modeles K-BRDF et S-BRDF sont en
tres bon accord avec I'émissivité directionnelle du modéle SAIL-TIR pour les végetations
éparses a moyennement dense mais cet accord se degrade avec I’augmentation du LAI. Bien
que les deux modeéles aient une erreur relative plus elevée pour la canopée dense, cette erreur
peut étre ignorée, en particulier pour le modele K-BRDF. En général, les deux modeles BRDF
ont presque une différence minime pour I'émissivité directionnelle. Cependant, les résultats
ont montré le parametre k dans le S-BRDF qui devrait se situer entre 0 et 1 est supérieur a 1,
ce qui réduit la signification physique du modele S-BRDF. Par conséquent, le modele
S-BRDF n’est pas recommandgé, au moins pour la réflectivité bidirectionnelle et I’émissivité
directionnelle. De plus, dix échantillons de végétation et dix-sept échantillons de sol ont éte
choisis dans la bibliotheque des émissivités pour controler les relations entre les coefficients
du modéle a trois noyaux K-BRDF, et il a été constaté que ces coefficients sont linéaires et
reliés entre eux, surtout pour les LAI faibles. Ainsi si I'un des trois coefficients peut étre
obtenu, les deux autres seront par conséquent déterminés par des relations linéaires.
Cependant, cette relation linéaire disparait pour la canopée avec végétation dense (LAI = 4.0).
Les plages de valeurs des coefficients ont aussi été obtenus et seront utilisés comme
connaissance préalable dans le chapitre 5. Les résultats de la comparaison des FRA97 et des
FRAO2 avec le modéle de SAIL-TIR ont montré que I'émissivite directionnelle de FRA97
était plus proche du modele SAIL-TIR mais que I’effet de cavité tenant compte des diffusions
multiples doit étre mis a jour selon le modéle SAIL-TIR.

Dans ce chapitre, la température de brillance directionnelle (DBT) a été modélisée en
pondérant les composantes des températures (feuilles et sol ensoleillé et ombragé) et leurs
fractions estimées en utilisant un modéle paramétré de SAIL-TIR. Le nouvel effet de cavité
décrit plus haut a été utilisé pour simuler la contribution de diffusion multiple a la DBT. De
plus, le modéle K-BRDF a été modifié en remplacant la réflectivité bidirectionnelle par le
DBT du modele d'origine, lequel a été utilisé pour ajuster le DBT dans I'hémisphére supérieur.
Les résultats ont montré que le modéle K-BRDF peut trés bien représenter la DBT
hémisphérique avec une erreur inférieure a 0,5 K. Toutefois, étant donné que la méme cible
ne peut étre observée que dans un certain nombre de directions, il est nécessaire de trouver le
groupe local et méme global d’observations angulaires optimales qui permet au modele
K-BRDF d'avoir une erreur minimale. Deux méthodes différentes ont été appliquées : le
modeéle monopoint et le modele rangée linéaire. Le modéle monopoint propose certains
criteres pour le candidat du groupe observation angulaire optimale et finit par trouver que le
groupes (0°, 0°), (0°, 30°), (180°, 50°) est I’optimum local pour le modéle K-BRDF trois
angles. Basé sur ce résultat, nous avons étendu le modéle a trois rangées linéaires (nadir, plan
avant et plan arriéere) et discuté de l'influence de I’angle zénithal sur le résultat du modele
K-BRDF. Les résultats ont montré que I’angle zénithal dans le groupe nadir ne doit pas
dépasser 45° pour s’assurer d’une erreur inférieure a 1,0 K.
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Le chapitre 5 est consacré a la normalisation angulaire de I'émissivité et de la température
de surface de la Terre a partir d’images multi-angulaires MIR et TIR. Dans ce chapitre, on
propose une méthode TISI diurne (ci-aprés appelée D-TISI) pour extraire I'émissivité
directionnelle et la température effective en combinant le modéle K-BRDF et la méthode TISI.
Dans la méthode D-TISI, la surface ést considérée comme non isothermique et les TISIE des
canaux MIR et TIR sont supposés indépendants des angles. Par conséquent, I’extraction de
I'émissivité et de la température conduit alors a quatre inconnues : les coefficients de trois
noyaux et le TISIE. Si une cible est observée dans plus de quatre directions, ces inconnues
peuvent étre obtenues par les équations de transfert radiatif, et ensuite basée sur la Loi de
Kirchhoff, I'émissivité MIR est calculée comme 1- réflectivité directionnelle hémisphérique
qui a été estimée a partir de l'intégration du modele K-BRDF sur I'hémisphére. Enfin
I'émissivité TIR est par conséquent déduite de I'émissivité MIR et du TISIE. Deux groupes de
canaux MIR et TIR du capteur MODIS avec des bandes spectrales étroites et le systéeme
WIDAS (Wide-angle infrared Dual-mode line/area Array Scanner) avec une bande large ont
été utilisés pour étudier l'influence de la largeur de la bande sur I'exactitude de la restitution.
Le systeme WIDAS a été l'un des principaux capteurs aéroportés lors de la campagne de
terrain et a fourni sept observations angulaires avec des caméras MIR et de TIR. Quatre
groupes de combinaisons angulaires ont servi a trouver les combinaisons optimales angulaires
locales pour I’extraction de I'émissivité et de la température, et six cas de températures des
composants ont été appliqués pour illustration.

L analyse de sensibilité du modele montre que la nouvelle méthode permet d’obtenir une
émissivité directionnelle et une température avec une erreur inférieure a 0,015 et 2,0 K
respectivement si le bruit de la température mesurée et des données atmosphériques ne
dépassent pas 1,0 K et 10 %, respectivement. On a également constaté que I'erreur sur la
détermination de I'émissivité TIR diminue d'abord puis augmente avec les LAI croissants. Des
grands intervalles d’angle parmi les observations angulaires et un plus grand VZA par rapport
au nadir peuvent améliorer la précision de la restitution de I'émissivité et de la température,
parce gque ces conditions entrainent des variations significatives des composants des fractions
et de la température directionnelle sous différentes directions d'observation, et des canaux
étroits peuvent conduire a de meilleurs résultats que les larges. De plus, les résultats
analytiques de six groupes de températures des composants ont montré qu'au méme niveau de
difference de température du composant, le cas avec une température de brillance relative plus
faible peut conduire a un meilleur résultat pour I'émissivité dans le canal TIR ainsi que la
réflectivité bidirectionnelle et I'emissivité dans le canal MIR. Cependant, cela dépend toujours
des situations specifiques, y compris des conditions atmosphériques et des structures de la
canopée.

La méthode proposée de D-TISI a été appliquée sur les images multi-angulaire acquises
par le systéeme de WiDAS dans la campagne de terrain du printemps a I'été 2008 sur le versant
de la riviere de Heihe dans l'ouest de la Chine, pour extraire les TISIE, les émissivités
directionnelles MIR et TIR ainsi que la température dans la zone d'étude. Les résultats ont
montré que les TISIE sont distribués principalement dans la gamme de [0,95, 1,01]
comparables a d’autres résultats antérieurs et sont généralement plus forts pour les pixels avec
végétation que sur des sols nus et des batiments, car le composant de la végétation dans le
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pixel augmente la valeur du TISIE. Les émissivités MIR et TIR se situent principalement dans
les fenétres [0,88, 0,94] et [0.96, 0,98], respectivement. La différence d'émissivité MIR entre
des pixels avec et sans végétation est supérieure a celle dans le TIR. La température effective
directionnelle a été calculée a partir de I'inversion de I'équation de transfert radiatif dans le
canal TIR en utilisant I'émissivité directionnelle obtenue et les données atmosphériques
connues. Elle a été normalisée a une température nadir en utilisant le modéle K-BRDF
modifié. Il a été constaté que la température effective au nadir était généralement supérieure a
celle dans les directions hors-nadir, et leurs différences pour les pixels sans végétation sont
plus élevées que pour les pixels avec végétation. Il est donc nécessaire pour les pixels sans
végétation d’effectuer cette normalisation angulaire. En outre, la comparaison des produits
émissivité ASTER et I'émissivité TIR retrouvée illustre que cette derniére émissivité est
supérieure aux produit ASTER avec un RMSE de 0,012. Ceci est probablement di a la
variation spatio-temporelle et spectrale de I'émissivité.

Le chapitre 6 est axé la détermination des incertitudes dans la mesure terrain du TBD dans
le cas des rangées de culture et analyse I'impact de I'empreinte du capteur. La modélisation
DBT pour les rangées de culture a été plus difficile que pour la canopée homogéne en raison
de l'effet de rangée qui a causé la variation de la densité de volume du de feuillage (FAVD) et
de la longueur optique d'un endroit a l'autre. Une hypothese cruciale dans les modéles actuels
est que la rangée a une extension infinie. Par conséquent, les modeéles traitent les fractions des
composants a l'aide d'une structure de ligne entiere. Cette hypothése est raisonnable, mais
I'nypothese que la direction d'observation est un faisceau paralléle est rarement conforme a la
réalité car les différentes régions a I’intérieur de I'empreinte du champ de vue du capteur
(FOV) qui a permis de recueillir des données de terrain DBT ont des azimuts et zéniths
différents. Dans ce chapitre, on a mis au point un nouveau modéle de transfert radiatif
(FovMod) pour simuler la DBT du feuillage en rang en tenant compte de I'empreinte du
capteur dans les mesures au sol. Le FovMod tout d'abord divise I'empreinte circulaire ou
elliptique du capteur en petites cellules et ensuite estime des fractions des composants (p. ex.,
feuilles baignées de soleil et le sol, sol ombragé) dans chaque cellule basée sur la théorie de
probabilité d'écart. La DBT de la canopée est finalement obtenue en pondérant les
températures de brillance des composants et de leurs fractions en utilisant la fonction de
propagation gaussienne (PSF) de la réponse du capteur.

Nous avons également évalué dans ce chapitre la sensibilité et la cohérence du nouveau
modele avec les principaux parametres d'entrée : la largeur de la haie et I’environnement, la
valeur du LAI, la position centrale du champ de vue du capteur, la position solaire et les
températures de brillance des composants. Les principales constatations indiquent qu’une
faible empreinte au sol conduit la distribution du DBT & étre fortement dominée par la
direction de la rangée et la température du composant mais est peu influencéee par la position
solaire. Au contraire, une grande empreinte lisse I'effet de rangee et conduit la DBT a étre
distribuée comme une canopée uniforme et continue. Les parametres de LAI et la position
centrale du champ de vue du capteur change le mode de répartition de la DBT, surtout quand
la position centrale va du sol au haut de la haie. De plus, afin de réepondre a la question "quelle
est la taille optimale de I’empreinte pour acquérir des DBT representatives pour valider un
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modele paralléle avec la moindre erreur, nous avons introduit un index, appelé le nombre de
périodes (NP) indépendant des observations et de la hauteur de la canopée pour examiner
I'empreinte optimale qui peut se traduire par la plus petite différence de DBT entre le FovMod
et le modéle paralléle. Les résultats ont démontré que la différence DBT entre les deux
modeles atteint toujours son minimum lorsque NP est de I'ordre de 1,5 ~2.0 ce qui a suggéré
que si le diamétre de I'empreinte circulaire du capteur au nadir couvre 1,5 ~ 2,0 fois la largeur
totale d’une rangée, I’effet d'empreinte serait essentiellement éliminé et la DBT mesurée peut
théoriquement servir pour évaluer le modele paralléle.

Enfin, le modéle FovMod a été validé sur une canopee de mais. Dans les mesures terrain,
un systeme d'Observation Multi-Angle (MAOS) a été congu pour acquérir automatiquement
et rapidement les TBD de la canopée pour différents angles azimutal et zénithal. Une caméra
thermique a été utilisée en paralléle avec le MAQOS, et les températures de brillance des
composants ont éteé extraites manuellement de I'image de la caméra acquise simultanément
avec chaque mesure angulaire du MAOS. Les autres paramétres nécessaires au nouveau
modele, tels que le LAI, la largeur et la hauteur de la canopee ont également été mesurés. Les
résultats ont montré que la majeure partie des DBT simulées par le FovMod se situenta £ 1 K
de la mesure, avec un RMSE de 1,2 K, ce qui est inférieur de 0,5 K du modéle parallele
(RMSE = 1,7K). Les variations angulaires de la DBT dans quatre plans azimutaux (plan
principal et perpendiculaire solaire et plan principal et perpendiculaire de la rangée) ont été
également présentées pour démontrer la supériorité du modele FovMod. Dans ce chapitre,
nous avons également examiné I'extension du modele de la gamme thermique FovMod a la
gamme VNIR, l'inversion de la température des composants de ce modele et la validation
future sur des rangées de cultures d’un type différent.

Le chapitre 7 présente et discute les principales conclusions de cette thése ainsi que les
perspectives et les limites rencontrees.

Par exemple, concernant les limites, au chapitre 3, I'émissivité directionnelle a I'échelle du
pixel a partir des produits MODIS pourrait étre également causée ou influencée par une erreur
résiduelle dans les données atmosphériques ou les variations temporelles et spatiales de
I'émissivité elle-méme. Le nouveau facteur d'effet de cavité décrit dans le chapitre 4 ne peut
servir que pour les modeles SAIL et il peut entrainer des incertitudes a d'autres modéles de
transfert radiatif. Le paramétrage du DBT pour la canopée résulte du calcul effectué avec des
canaux VNIR, mais n’a pas pu étre validé en raison du manque de données terrain. En outre,
la méthode D-TISI dans le chapitre 5 a ignoré la variation temporelle de la température de
surface et a considéré la variation de la température comme entiérement causée par les
changements d'angles de vue, car il n’y a, a I’heure actuelle, aucune méthode opérationnelle
qui permette la normalisation des DBT multi-angulaire mesurées.

De maniere générale, les travaux de cette thése ont permis d’améliorer notre
comprehension de l'anisotropie du rayonnement thermique de surface et de perfectionner la
méthode de séparation de I'émissivité et de la température de surface a partir de données de
télédétection et ce, surtout pour les surfaces hétérogenes et non isothermiques. Les travaux
futurs sur cette question viseront a résoudre les probléemes, comme indiqueés ci-dessus.
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(1) La méthode de D-TISI proposée peut étre appliquée aux données des satellites
géostationnaires, qui mesurent au méme endroit et a une fréquence élevée et il est facile
d'obtenir des observations multi-angulaires sur la base des changements de positions solaires
tant que la correction atmosphérique est opérationnelle.

(2) La correction angulaire de la LST pourrait résulter de mesures de I'indice de végétation.
Puisque la température directionnelle est considérablement influencée par la fraction de la
veégétation (FVC), il est possible d'établir une relation entre la température directionnelle et la
FVC basée sur la methode du triangle FVC-température a partir de la distribution spatiale des
deux variables dans la zone d'étude et I’utilisation d’une relation pour normaliser la
température directionnelle dans la direction nadir.

(3) La correction angulaire de la LST peut étre liée aux températures des composants qui
peuvent étre obtenus a partir de mesures multi-angulaires ou a canaux multiples ou des
données hyperspectrales TIR.

(4) La correction angulaire de la LST peut étre effectuée en utilisant différents capteurs.
La combinaison des satellites en orbites polaires et géostationnaires peut étre une autre fagon
de corriger la LST s’ils observent le méme endroit dans des directions differentes en méme
temps ou en quasi-simultanéite.

Cette thése a été réalisée dans le cadre d’une co-tutelle entre la Beijing Normal University,
China, et I’Université de Strasbourg, France, et financée par le National Basic Research
Program of China (973 Program), le National High-Tech Research and Development of China
(863 Program), le Natural Science Foundation of China, la commission européenne (Call
FP7-ENV-2007-1 Grant no. 212921) part du projet CEOP-AEGIS et le China Scholarship
Council project.
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Chapter 1

Introduction

In the recent decades, the studies of land surface energy balance, watershed management,
biophysical process and disasters have attracted worldwide interests. The achievement of
those subjects requires a huge database about the status of land surface, ocean, atmosphere
and even the human activities. The advent of remote sensing technique, featured with rapid
revisit, long-term observation and low cost, provides us a promising way to obtain those data
at regional and global scales rather than the traditional point measurement. With the remotely
sensed data from airborne and spaceborne platforms, scientists have proposed different
algorithms to retrieve different types of parameters about the Earth’s surface and its
atmosphere cycle, and these parameters have been used in many relevant fields.

The land surface temperature (LST) is one of the most important parameters in the
physical processes of surface energy and water balance at local through global scales.
Knowledge of the LST provides information on the temporal and spatial variations of the
surface equilibrium state and is of fundamental importance in many applications. As such, the
LST is widely used in a variety of fields including evapotranspiration, climate change,
hydrological cycle, vegetation monitoring, urban climate and environmental studies, among
others (Mildrexler et al. 2011; Rodriguez-Galiano and Chica-Olmo 2012; Sims et al. 2008;
Tang et al. 2010; Van Leeuwen et al. 2011), and has been recognized as one of the
high-priority parameters of the International Geo-sphere and Biosphere Program (IGBP)
(Townshend et al. 1994), as one of the most important Earth System Data Records (ESDR’s)
identified by NASA (http://Ist.jpl.nasa.gov/background), and as one of the supporting
products for the ESA climate variables (http://tinyurl.com/globtemperature).

The retrieval of the LST from remotely sensed thermal infrared (TIR) data has attracted
much attention, and its history dates back to the 1970s (McMillin 1975). However, the direct
estimate of the LST is not an easy task and it has to deal with the emissivity and atmospheric
effects, because the radiances measured by the radiometers onboard satellites depend not only
on surface parameters (temperature and emissivity) but also on atmospheric effects (Li and
Becker 1993; Ottlé and Stoll 1993; Prata et al. 1995). The emissivity, defined as the ratio of
the radiance emitted by natural targets to the radiance emitted by a blackbody at the same
temperature, varies with land surface types and structure, wavelength, soil texture and
moisture and viewing angle (Becker 1987; Francois et al. 1997; Schmugge et al. 1998;
Sobrino et al. 2008). The coupling of the non-unity emissivity for most natural surface with
the LST causes the retrieval of the LST from space is mathematically underdetermined and
unsolvable: for a sensor with N infrared channels, N measurements have N + 1 unknown (N
channel emissivities and 1 temperature). To solve this underdetermined problem, some extra
constraints are consequently needed. As for the atmospheric effect, the surface-emitted
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radiance is firstly contaminated by the reflected atmospheric downward radiance, and then
attenuated by atmosphere on the path from the surface to the sensor onboard satellite.
Correcting for the atmospheric effect requires accurate knowledge of the vertical profiles of
atmospheric water vapor and temperature both of which are highly variable (Perry and Moran
1994).

Based on the radiative transfer theory in the TIR, a variety of methods have been
developed to retrieve LST from remotely sensed data with different way to remove the effect
of emissivity and atmosphere. For example, with known emissivity from the linear empirical
relationship with visible/near-infrared data or classification-based method (Snyder et al. 1998;
Sobrino et al. 2008; Zhou et al. 2003), two popular methods can used to retrieve LST from
space: one is the single-channel algorithm that was proposed to obtain LST with only one TIR
channel, such as the Thematic Mapper channel 6 (TM6) onboard Landsat and HJ-1B (Duan et
al. 2008; Jiménez-Munoz and Sobrino 2003; Qin et al. 2001); the other is the split-window
algorithm that removed the atmospheric effect using the differential atmospheric absorption in
the two adjacent channels centered at 11 pm and 12 pum, and finally applied the linear or
nonlinear combination of brightness temperatures of the TIR channels to get the LST. Because
it does not require accurate information about the atmospheric profiles at the time of the
acquisition, a variety of split-window algorithms have been developed and modified to
successfully retrieve LST from several sensors, such as AVHRR, MODIS, and SEVIRI
(Becker and Li 1995; Sobrino et al. 1993; Sun and Pinker 2007; Tang et al. 2008; Wan and
Dozier 1996). On the other hand, with the cases of unknown emissivity, several methods were
designed to retrieve both LST and emissivity from multiple-channel and/or multiple temporal
observations. For example, the Temperature-Independent Spectral Indices (TISI) method
firstly used a pair of day and night observations in middle and thermal infrared channels to
retrieve emissivity in both channels, and then used the retrieved emissivity to calculate LST
directly from the inversion of the Planck’s law or from the split-window algorithm
aforementioned (Becker and Li 1990; Goita and Royer 1997; Jiang et al. 2006; Nerry et al.
1998). Similarly, Two-Temperature Method (TTM) decouples the two parameters from two
TIR channel’s observations in day and night observations by assuming channel emissivities
were invariant during the two observations (Peres and DaCamara 2004a; Watson 1992).
Moreover, if the number of MIR and TIR channels is enough (no less than seven), the
physical day/night algorithm can be unitized to retrieve LST and emissivity along with some
other parameters from day and night observations (Wan and Li 1997). Besides, both LST and
emissivity can be also retrieved from atmospherically corrected multiple-channel TIR data by
using relationship between channel emissivities, such as the Temperature/emissivity
separation method (TES) primarily designed for ASTER five TIR channels and then extended
to MODIS three TIR channels (Gillespie et al. 1998; Gustafson et al. 2006; Hulley and Hook
2011; Sabol et al. 2009). With the appearance of hyperspectral TIR sensors (e.g. Infrared
Atmospheric Sounding Interferometer, 1ASI), the thousands of narrow bandwidth channels in
TIR can supply enough vertical resolution to allow extraction of atmospheric information and
can also provide more physical constraints to accurately separate the LST and emissivity
(Wang 2011).

An important assumption included in these current algorithms is that the surface is
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considered as homogeneous and isothermal, and the surface temperature is
channel-independent and angle-independent. This assumption is reasonable because it can
reduce the number of unknowns and make the LST retrievable. However, in practice, as
reported by some authors by (Chehbouni et al. 2001; Lagouarde and Irvine 2008; Lagouarde
et al. 1995; Li et al. 2004a), the LST varies with viewing angle, and its angular variation for
three-dimensional surfaces results primarily from the angular variation of the pixel emissivity
and the relative weights of different components (e.g., vegetation and background soil) with
different temperatures in a non-isothermal pixel. The difference in the LST measured in nadir
and off-nadir observations can be as large as 5 K for bare soils and even 10 K for urban areas.
For most polar-orbit satellites (e.g. MODIS, AVHRR) that scan the land surface in the
cross-track direction with different viewing zenith angles (VZA) varying from -65° to +65°,
angle-dependent variations in the retrieved LST are inevitable, making the LSTs of different
pixels in the same orbit incomparable and causing erroneous results in application. This
angular effect also occurs in the geostationary satellite such as Spinning Enhanced Visible and
Infrared Imager (SEVIRI) onboard MSG and among LSTs obtained from different sensors or
at different times. Therefore, it is very crucial to consider this effect in the retrieved LST.

One method of considering the angular effect on LSTs is to simply attribute the angular
variation of the measured effective temperature derived from area-weighted emitted radiances
to the directional behavior of the pixel emissivity, as proposed by (Li et al. 1999). However,
the directional emissivity defined in this manner is usually not measurable from space and the
assumption that there is no downward environmental thermal radiance may cause some
unexpected errors in the normalized result (Li et al. 2012; Norman and Becker 1995). Another
technique for this effect is to separate the components’ temperatures or their ratio from
multi-angular TIR data (Jia et al. 2003; Li et al. 2001; Liu et al. 2012; Menenti et al. 2001; Shi
2011; Zhan et al. 2011), and calculate the effective temperature in a specific direction (e.g., at
nadir) by weighting the components’ temperatures with their corresponding fractions. The
fractions of various components under a specific viewing angle can be calculated using the
bi-directional reflectance distribution function (BRDF) model in the visible and near infrared
spectral regions. This method might be a promising way, but the requirement of multi-angular
observation cannot be satisfied for most TIR sensors, and its accuracy is still far from
satisfactory. Therefore, there is still no any practical way to perform angular normalization of
satellite-derived LSTs due to the complexity of this issue.

From this point of view, the study of this thesis focuses on the retrieval of directional
emissivity from spaceborne and airborne data using empirical and physical methods, and its
applications on the angular correction of the LST. It also aims at the simultaneously retrieve
directional emissivity and temperature from multi-angular middle and thermal infrared data.
Besides, for the field angular measurement of surface temperature, this thesis also develops a
hybrid radiative transfer model to consider the sensor’s footprint effect on the measured
directional brightness temperature. Therefore, this thesis is organized into seven chapters:

Chapter 2 describes the fundamental radiometric theory, and reviews the current status of
retrieving LST and emissivity from remotely sensed data, and the issue of modeling of
directional thermal radiation for homogeneous and heterogeneous surface.
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Chapter 3 aims at the extraction of directional emissivity based on MODIS standard
emissivity product for several land cover types, and establishment of empirical expression of
directional emissivity at pixel scale. The directional emissivity is finally applied to the
split-window algorithm for retrieving LST with angular correction.

Chapter 4 presents the parameterizations of the directional emissivity and thermal
radiance and discussion about the application of the kernel-driven BRDF model in the angular
normalization of land surface temperature and its requirement of viewing angles.

Chapter 5 depicts the newly developed model for the retrieval of directional emissivity
and effective temperature from daytime multi-angular MIR and TIR images. Analysis of
model consistency to several key parameters is also presented. Finally, the new method is
applied to an aircraft dataset collected by airborne system in the field campaign, and validated
by using ASTER products.

Chapter 6 develops a new hybrid GORT model to simulate the directional brightness
temperature for row-structured canopy by considering the footprint effect of the sensor in the
ground measurement. Based on the new model named FovMod, this chapter provides the
optimum footprint for the validation of the previous relevant models.

Chapter 7 concludes the work of this thesis and gives out some discussions about the
future efforts on the topic of directional behavior of LST and emissivity.
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Chapter 2

Fundamental radiometric theory, and reviews of LST and
emissivity retrieval methods and modeling of directional

thermal radiation

This chapter firstly presents the basic theory of radiative transfer model, along with
defining the LST and emissivity for space pixel, and then reviews the current popular methods
of retrieving land surface temperature and emissivity. Finally, it describes the methods for
modeling of directional thermal radiation. Based on the analysis on of the drawbacks of the
current work, it introduces briefly the main objectives of this thesis.

2.1 Radiative transfer theory

According to the Planck’s law, all targets with absolute temperature larger than 0 K emits
radiance. The spectral radiance emitted from a blackbody is expressed as:

C,
Z[exp(C,/AT) 1]’

B,(T)= (2.1)

where, B,(T) is the spectral radiance (W.m?pum™.sr?) at temperature T (K) and wavelength 1
(um); Cy and C; are physical constants (C;=1.191x10® W.pm*m?2.sr', C,=1.439 x10* pm.K).
Because most natural targets are non-black bodies, the emissivity & , which is defined as the
ratio of the radiance of a target to that of a black body at the same temperature, must be taken
into account. According to the definition of emissivity, only the blackbody has an emissivity 1,
and the natural targets are usually non-unity, i.e. 0 < ¢; < 1. The spectral radiance of a
non-black body is given by the spectral emissivity multiplied by Planck’s law as shown in
Eq.(2.1).

The measured radiance by a sensor onboard the satellite or the aircraft is contributed by
both surface and atmosphere. For a cloud-free sky, several different sources of the radiance at
the Top Of Atmosphere (TOA) are presented in Fig.2-1 in details and the measured radiance
in an infrared channel i is given by:

Ii(evigov) = I:ei (QV’(DV) T (0\,,(0\,) + RatiT + Rsm‘ . (22)

The first term of the right-hand side of Eq.(2.2) is the measured surface-leaving radiance
after attenuation passing through the atmosphere (path @ in Fig.2-1), and the second and
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third terms are the contribution of upward atmospheric emission Ray and scattered solar
radiance Ry;; (paths @ and (). The surface-leaving radiance Ri(6y, ¢\) is written as:

Ri(0,.0,)=¢0,,9,)B,(T,) +[1-£,(0,.¢,)]- R, +[1—£(6,,0,)] Ry, 2.3)
+pi (05, 9,,6,,9,) E; cos(8,)z, (6;,9,) -
where, 6, and ¢, are the viewing zenith angle and azimuth angles, while 6, and ¢, are solar
zenith and azimuth angles. z; is the atmospheric transmittance. This first term of the
right-hand side of Eq.(2.3) is the surface thermal radiation (path @), while &(6,, @y) is the
surface emissivity in the viewing direction, and B(T;) is the surface emission calculated from
the Planck’s law at the temperature Ts. The second and third terms are the downward
atmospheric radiance and solar scattering radiance reflected by the surface at the viewing
direction (paths & and ®), respectively); the last part (path @) of Eq.(2.3) presents the solar
direct illumination reflected by the surface with the bi-directional reflectivity pi(6s, ¢s, &y, @v).
For the middle infrared channel (3~5um) in nighttime and the thermal infrared channel
(8~14um), the reflected solar radiance (the third and fourth terms in Eq.(2.3)) are negligible.

Sensor
Fo

TOA

Atmosphere

i R, i
L Exchange Layer

P, E; cos(6,)r,(6,)

a-z)R,, \ A-£)R,,

® ®
& T p,

l s

@ Land Surface

Fig.2-1. lllustration of radiative transfer equation in the infrared regions (Li et al. 2013a)

It is worth noting that all variables/parameters in Egs. (2.2) and (2.3), except for the
angles (6s, ¢s, 6, and ¢,), are channel-effective values. Most satellite sensors measure the
outgoing radiation within a finite spectral bandwidth. The channel-effective quantity X; of
interest is therefore a weighted average from spectral quantities x; and the channel’s filter
function f(4) in the range (41, 4,) , expressed as:

rz f.(2)x,dA
Xj="— (2.4)
[ f(2)a
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2.2 Definition of temperature and emissivity for land surface

As noted in (Prata et al. 1995), the definition of the surface temperature may depend
strongly on the type of application and the method of measurement. Because the surface
temperature T in Eq.(2.3) is defined using the radiance emitted by a surface, this temperature
is called the radiometric temperature (or the skin temperature) that corresponds to the
radiation emitted from depths less than the penetration depth of a given wavelength (Becker
and Li 1995; Norman and Becker 1995). The penetration depth is usually within a few
millimeters in the TIR region (Wan 1999) . This radiometric temperature physically differs
from other definition of temperatures, such as the thermodynamic temperature defined for a
medium in thermal equilibrium and measured by a thermometer. For homogeneous and
isothermal surfaces, the radiometric and thermodynamic temperatures are reported to be
equivalent. As the thermodynamic temperature is actually hard to measure in reality, even for
water bodies, the radiometric temperature is often the only practical measurement for the
homogeneous and isothermal surface. However, most surfaces are not in equilibrium and for
heterogeneous and non-isothermal surfaces, these two temperatures are different. Considering
that the spatial resolution of the current onboard systems varies approximately from 10 to 10
km?, there may be several surface types with different temperatures and emissivities within
one pixel, which complicates the physical understanding of the LST values retrieved from
space and the relation of the radiometric temperature at large scales to other temperatures
used in different applications. In that case, because of the coupling of the temperature and
emissivity, the definition of temperature depends on that of the emissivity.

There are currently several definitions of the emissivity, such as the r-emissivity (Becker
and Li 1995), the e-emissivity (Norman and Becker 1995) and the apparent emissivity (Li et al.
1999).

A. r-emissivity

For a pixel made up of N homogeneous components with known emissivity in given
spectral domain and viewing angles, the ensemble emissivity of a mixed pixel along the
viewing direction (6, and ¢,) can be expressed as:

&r (Qv'q)v) = Zakgk (@v,(DV) ' (25)

where a is the relative proportion of the kth components in the pixel, and the sum of all a is
unity. According to Eq.(2.5), Wan and Dozier (1996) further defined the band-average
emissivity by adding the channel’s filter function to Eq.(2.5) and applied it to retrieve LST
from MODIS TIR data. The r-emissivity is a characteristic of the surface, and independent on
the components’ temperatures. Furthermore, for most of the common terrestrial surfaces, this
emissivity is the complement to the hemispherical-directional reflectance p(6,, ¢,), following
the Kirchhoff’s law, by ensemble in the same spectral domain and view direction:

&0, 0) =1-p(0,0) =1~ [ [7" p(0,.0..0,.0,)sin0,sin0,d0.dp,.  (26)
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In the above equation, the last part describes the integration of bi-directional reflectance in
the upper hemisphere. One of the advantages of r-emissivity is its measurability from space
and its scale invariability. However, this type of definition makes the definition of LST
wavelength- and viewing-angle-dependent and also dependent on the distributions of surface
temperature and emissivity within a pixel.

B. e-emissivity

The emissivity is defined as the ratio of the radiance of an ensemble of natural surface to
the radiance of that ensemble with the same temperature distribution, and each component is
assumed a blackbody in the same spectral domain and viewing angle:

iakgk (Qv'(DV)B(Tk)
ge(ev'(DV) = *=L N ! (27)
2.aB(T)

where, B(Ty) is the radiance of kth component at its temperature Ty. From this definition, the
e-emissivity depends on the temperature distribution of the ensemble components and on the
characteristic of the components. Besides, Eq.(2.7) implies that the denominator is an
equivalent black body at a temperature T. However, this temperature varies with channels
because an equivalent black body at a given temperature, composed of black bodies at
different temperatures, does not exist.

C. Apparent emissivity

In order to keep the Planck’s law and BRDF-derived emissivity unchanged in the
heterogonous and non-isothermal pixels, Li et al.(1999) proposed the apparent emissivity,
defined by adding an apparent emissivity increment caused by the temperature difference of
non-isothermal surface into the r-emissivity to make the definition of LST independent of
viewing angle and wavelength:

N
gapp gv’(pv) =& (QV!CDV) +Ae = & (QV’CDV) + Kl (TO)Zakgk (QV’¢V)AT ' (28)
k=1

where, Ty is the reference temperature that is independent with the wavelength and viewing
angle, and ATy is the difference between this reference temperature and the kth component
temperature. K;(To) is a function of both wavelength and temperature, written as K;(To) =
B’(To)/B(To), in which B’(Ty) is the first derivation of the Planck’s law at the reference
temperature To. Although the LST derived from the apparent emissivity is invariant with
wavelength and viewing angle, the apparent emissivity itself varies with wavelength and
temperatures (To and Ty). If the reference temperature Ty is inaccurately determined, the
apparent emissivity may be consequently larger than unity. Besides, the reference and the
components’ temperatures cannot be obtained in practice.

These definitions are the same for homogeneous and isothermal surface, but because
natural surfaces observed from space are usually heterogeneous, the assumptions of
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homogeneity and thermal equilibrium are often violated in reality, especially in measurements
with low spatial resolution. Therefore, the differences between these definitions are evident in
many cases. Since the r-emissivity is invariant with the temperature and measurable from
bi-directional thermal reflectance at space and ground levels, it provides an access to estimate
the emissivity separately before LST retrieval by offline computer simulation or from
vegetation index. Therefore, the r-emissivity is often recommended for LST retrieval from
space and will be used in this thesis for illustration. However, one should note that the
ensemble emissivity presented in EQ.(2.5) is a not completely accurate since it ignores the
single and multiple scattering within a pixel, and the angular behavior of the emissivity
mainly due to the angular variation of the relative fractions ax rather than to the component
emissivity e which is almost independent on the viewing angle for most natural targets.

2.3 Atmospheric transmittance code and atmospheric data

The most popular transmittance codes, such as the series of MODTRAN (Berk et al. 2003)
and 4A/OP(Chaumat et al. 2009), have been widely used to perform atmospheric corrections
and/or to simulate satellite TIR data. MODTRAN (MODerate spectral resolution atmospheric
TRANsmittance and radiance code) was developed by Air Force Research Labs (AFRL) in
collaboration with Spectral Sciences, Inc(SSI). MODTRAN calculates atmospheric
transmittance and radiance for frequencies from 0 to 50,000 cm™* at moderate spectral
resolution, primarily 2 cm™ (20 cm ™ in the UV). The original development of MODTRAN
was driven by a need for higher spectral resolution and greater accuracy than that provided by
the LOWTRAN series of band model algorithms. Except for its molecular band model
parameterizations, MODTRAN adopts all the LOWTRAN 7 capabilities, including spherical
refractive geometry, solar and lunar source functions, and scattering (Rayleigh, Mie, single
and multiple), and default profiles (gases, aerosols, clouds, fogs, and rain)
(http://imk-msa.fzk.de/Software/Modtran/MODTRAN.htm).

The most recently released version of the code, MODTRAN 5, provides a spectral
resolution of 0.2 cm™ using its 0.1 cm™ band model algorithm. However, this thesis did not
have the access to get this latest version, and thus replaced it with MODTRAN 4, which
implemented a correlated-k algorithm for accurate calculation of multiple scattering, added
the azimuth dependent DISTORT option and upgraded the ground BRDF model and database.
All of these refinements made the calculation of MODTRAN 4 more accuracy than the
former versions. Therefore, it was widely used since its release in 2000 and modification in
2003.

4A/OP (Operational release for 4A radiative transfer model) is a fast and accurate
line-by-line radiative transfer model particularly efficient in the infrared region of the
spectrum. Compared with MODTRAN, 4A/OP uses a comprehensive database (GEISA) of
monochromatic optical thicknesses for up to 43 atmospheric molecular species and to
simulate transmittance and radiance at high spectral resolution (the nominal spectral
resolution is 5x10™ cm™ but it can be changed by users) in the spectral range of 600 ~ 3000
cm(about 3.3 um ~16.6 pm). Therefore, 4A/OP is more suitable for the calculation of (super)
hyperspectral TIR data, such as Infrared Atmospheric Sounding Interferometer (IASI)

9
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onboard METOP. More detains are included in (Chaumat et al. 2009).

The accuracy of the calculation of those codes depends on that of the code itself and input
atmospheric data. As reported by (Wang et al. 1996), the agreement of MODTRAN is usually
within a few percent root-mean-square error (RMSE) and seldom exceeds 5%. MODTRAN
provides six standard atmospheric profiles: tropical, mid-latitude summer, mid-latitude winter,
sub-arctic summer, sub-arctic winter and 1976 U.S standard. Each profile contains 36-layer
atmospheric data: altitude, air pressure, air temperature, water vapor density, and layer
concentration of ozone, carbon dioxide, carbon monoxide, methane, nitrous oxide, oxygen,
nitric oxide, sulphur dioxide, nitrogen dioxide, and ammonia. In addition to the six standard
atmospheres, MODTRAN also provides the New Model Atmosphere option to accept the
atmosphere defined by user from radiosoundings data (e.g. Thermodynamic Initial Guess
Retrieval (TIGR) database), onboard vertical sounder (e.g. MODIS) or meteorological
forecasting models, such as the National Centers for Environmental Prediction (NCEP) and
the European Centre for Medium-Range Weather Forecasts (ECMWEF). Some other
instrument, for example CE318 Sunphotometer, can also provide the column water vapor and
near surface air temperature for the MODTRAN.

Fig.2-2 presents the spectral atmospheric transmittance simulated by MODTRAN with
1976 U.S. atmosphere, which indicates that sensors onboard the satellite for the retrieval of
LST and emissivity must be built in the “atmosphere windows” of about 3 ~ 5 um (middle
infrared, MIR) and 8 ~ 14 um (thermal infrared, TIR), where the atmosphere is mostly
transparent for the surface radiance.
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Fig.2-2. Atmospheric transmittance in the range of 0 ~ 18 um under 1976 U.S. standard atmosphere profile

2.4 Emissivity spectra database

Emissivity of natural surface at ground can be measured on basis of the direct inversion of
spectral radiative transfer equation (i.e. EQ.(2.3)) or from the complementary to the
hemispheric-directional reflectivity (Salisbury and D'Aria 1992). Two popular emissivity
spectra databases that are currently used for the algorithm development are the ASTER
spectral library (Baldridge et al. 2009) and the University of California Santa Barbara library
(UCSB) (Snyder et al. 1998), respectively. The ASTER spectral library was released since
2008 and contains about 1330 emissivity spectra in the range of 3 ~ 14 pm for natural and

10
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man made materials, collected from three other spectral libraries: the Johns Hopkins
University (JHU) Spectral Library the Jet Propulsion Laboratory (JPL) Spectral Library, and
the United States Geological Survey (USGS - Reston) Spectral Library. The data in the UCSB
spectral library was measured by the Institute for Computational Earth System Science at the
University of California, Santa Barbara, which included 123 land surface emissivity spectra.
The surfaces in those databases mainly include vegetation, rock, sand, water, snow/ice, and
manmade materials. Fig.2-3 displays the spectral variation of several samples selected from
the libraries. It indicates that the spectral emissivity of water and green grass is almost flat in
the atmosphere windows 3 ~ 5 um and 8~14 um, while that of soils and dry grass varies
significant and has a larger value range. Therefore, an accurate estimate of soil emissivity
turns out to be more crucial than that of vegetation for accurately retrieving LST from
remotely sensed data. Besides, the channel emissivity of a sensor can be calculated from the
spectral value with the spectral response function using Eq.(2.4).
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Fig.2-3. Spectral emissivity of several samples including water, soil and leaf

2.5 Estimate of LST and emissivity from space

To date, many algorithms have been developed to retrieve LST from remotely sensed data
with different way of removing emissivity and atmospheric effect. Apart from the atmospheric
effect, the methods of retrieving LST and emissivities can be grouped to two categories:
stepwise retrieval method and simultaneous retrieval of both variables.

2.5.1 Stepwise retrieval method

In this case, LST and emissivity are retrieved step by step: the emissivity is firstly
determined, and then LST is retrieved with the determined emissivity as a prior. Two types of
methods estimating land surface emissivity (LSE) are respectively the semi-empirical
classification-based method and the empirical relationship between the normalized difference
vegetation index (NDVI), derived from the VNIR data. The combination of day and night
observations in MIR and TIR channels is also promising to obtain emissivity in advance.

There are two common methods that retrieve LST with known emissivity, which are the
single-channel method and the split-window method.
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(1) Classification-based emissivity retrieval method (CBEM).

This method generally uses the conventional land-cover classification information to
determine the emissivity of the pixel. The key points of this method are the emissivity
database and the land-cover products. For example, Snyder et al. (1998) developed an
emissivity database in MODIS TIR channels by using three kernel-driven BRDF models
based on the laboratory emissivity spectra and canopy structural parameters (Snyder and Wan
1998), driven from approximate descriptions of the cover type. In the model, the emissivity
was calculated from the hemispheric-directional reflectance based on the integration of BRDF
over an angle range from 0° to 65°, and the Kirchhoff’s law. Finally, emissivities for 14
distinct land covers in the IGBP (International Geosphere-Biosphere Programme) were
obtained and saved in a Look-up table (LUT). With this emissivity LUT, the emissivities of
MODIS 31 and 32 channels are determined directly from the IGBP classification product with
consideration of seasonal and dynamic states, and consequently applied in the generalised
split-window algorithm to retrieve LST. Similarly, the emissivity of a pixel mixed by several
land covers can be estimated using a linear mixing equation as Eq.(2.5).

Because of its operability, this method has already been applied to other satellite data,
such as the AATSR on ENVISAT, the METEOSAT Second Generation-1 (MSG) data  (Peres
and DaCamara 2005; Trigo et al. 2008) and Geostationary Operational Environmental
Satellite (GOES) data (Sun and Pinker 2003). However, the accuracy of this method highly
depends on the land cover. The seasonal variation of the vegetation cover and moisture will
cause some uncertainty to the emissivity and then degrade the accuracy of the retrieved LST.
Besides, since the emissivity is derived from LUT and land covers, a problem about the
spatial discontinuity is consequently raised.

(2) Empirical emissivity algorithm

This method is based on some empirical relationship between the vegetation index derived
from the VNIR data and the emissivity in the TIR channels. Griend and Owe (1993) first
found a very high correlation between the emissivity in the TIR channels covering 8 ~ 14 um
and the logarithmic NDVI. Subsequently, Valor and Caselles (1996) applied this method to
estimate the effective emissivity of a rough row-distributed system. Starting from the method
proposed in (Valor and Caselles 1996), Sobrino and Raissouni (2000) reduced the complexity
and formulated an operational NDVI threshold method to derive the emissivity from space,
with three linear functions corresponding to conditions in which a pixel is composed of full
vegetation, of full soil or of mixed soil/vegetation:

a, +b, 0. NDVI < NDVI,(bare soil)
g, =186, 1, +&,,A-1,)+de;, NDVI, <NDVI <NDVI, (mixed), (2.9)
g,, +dg, NDVI > NDVI, (full vege)

where, a; and b, are channel-dependent regression coefficients, prq is the reflectance of the
red channel, NDVI; and NDVI, are the NDVI corresponding to the bare soil and full
vegetation, respectively. ¢,; and &y, are the vegetation and soil emissivities, respectively. Both
of them can be measured in the field (Rubio et al. 1997; Rubio et al. 2003) or obtained from

12



Chapter 2. Fundamental theory and reviews

the emissivity database (Baldridge et al. 2009). f, is the fraction of vegetation that can be
derived either from the NDVI (Carlson and Ripley 1997; Valor and Caselles 1996) or from the
variable atmospherically resistant index (VARIlgreen) and spectral-mixture analysis (SMA)
techniques (Sobrino et al. 2008), de; means cavity effect of multiple scattering, and can take
values of 0.02 and higher from numerical simulation (Valor and Caselles 1996). NDVI; and
NDVI, can be estimated from the histogram for the entire scene (Dash et al. 2005; Sobrino et
al. 2008). For its simplicity, this method can be applied to any sensor that has red and
near-infrared channels to calculate NDVI, such as the AVHRR, MODIS, TM, SEVIRI, ATSR
and CHRIS (Sobrino et al. 2004b; Sobrino et al. 2003). Similar to the CBEM, this method
also causes spatially discontinuous emissivity values of regions transitioning from soil-type to
vegetation-type, because the emissivities in those regions are calculated from different
formulae, and its accuracy will be degraded by the errors included in the vegetation and soil
emissivity, and the fraction of vegetation as well as the NDVI thresholds used to distinguish
bare soil and full vegetation.

(3) Temperature-independent spectral indices (TISI) method.

Based on two assumptions that the Planck’s law can be approximated using a power
function for a MIR or TIR channel and the pixel emissivities have no significant change
during daytime and nighttime observations, Becker and Li (1990a), and Li and Becker (1990)
first proposed a TISI-based method to perform spectral analysis in the TIR region.
Subsequently, assuming that the TISI;; (i is the MIR channel and j is the TIR channel) in the
daytime without the contribution of solar illumination is the same as the TISI;; in the nighttime,
Li and Becker (1993) and Li et al. (2000) further developed a day/night TISI-based method to
first extract the bi-directional reflectivity in MIR channel i by eliminating the emitted
radiance during the day in this channel by comparing the TISI; in the daytime and the
nighttime. Once the bi-directional reflectivities in an MIR channel are retrieved, the
directional emissivity in that MIR channel can be estimated as the complementary to the
hemispheric-directional reflectivity  following the Kirchhoff’s law. The
hemispheric-directional reflectivity can be estimated from a bi-directional reflectivity data
series using either an angular form factor (Li et al. 2000), a semi-empirical phenomenological
model(Petitcolin et al. 2002a, b) or a kernel-driven bi-directional reflectivity model(Jacob et
al. 2004, Jiang and Li 2008a). Finally, based on the concept of the TISI, the emissivities in the
TIR channels can be obtained from the two-channel TISI (Jiang et al. 2006; Li et al. 2000).
Once the emissivities are known, the LST can be retrieved using single-channel method or
split-window method.

The TISI-based method allows us to obtain emissivity without any prior information about
the emissivity itself, as long as there is no occurrence of precipitation, snow or dew during the
two observations, and the radiance is atmospherically corrected. However, since the
TISI-based method needs the daytime and nighttime observation at the same target in a short
time, its application cannot be achieved to those sensors that have no ability to fill this
requirement. In order to deal with this problem, Goita and Royer (1997) extended the original
TISI method to make it available for the emissivity retrieval from two consecutive datasets
acquired at the same daytime, by introducing more simplifications on the TISI and the
characteristics of the bi-directional reflectivity. Besides, they also obtained the TISI using a
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linear regression model from the ratio of the atmospherically corrected radiances of the MIR
and TIR channels. However, their simplifications, especially the case of TISI = 1, will cause
some unexpected error to the retrieved emissivity and then the LST. Besides, the mismatch in
space and viewing angle between the two observations might reduce the retrieval accuracy of
emissivity.

(4) Single-channel LST retrieval method

With the emissivity calculated in advance, the single-channel method uses the radiance
measured by the satellite sensor in a single channel, chosen within an atmospheric window, to
retrieve LST from the inversion of the radiative transfer model given in Egs. (2.2) and (2.3)
by correcting the radiance for residual atmospheric attenuation and emission using
atmospheric transmittance/radiance code that requires input data on the atmospheric profiles.
The atmospheric profiles can be generally obtained either from ground-based atmospheric
radiosoundings, from satellite vertical sounders (e.g. MODIS, TOMS) or from meteorological
forecasting models (e.g. NCEP and ECMWF). In order to reduce the dependence on
atmospheric profiles, several single-channel algorithms have been proposed to estimate the
LST from satellite data by parameterizing the atmospheric data. Qin et al. (2001) proposed a
method to estimate the LST specifically from Landsat-5 TM data using only the near-surface
air temperature and water vapor content instead of atmospheric profiles using empirical linear
relationships between the atmospheric transmittance and the water vapor content and between
the mean atmospheric temperature and the near-surface air temperature. Jiménez-Mufioz and
Sobrino (2003) and Jiménez-Mufioz and Cristébal (2009) developed a generalized
single-channel algorithm for retrieving the LST from any TIR channel with a FWHM (full
width at half maximum) of about 1 um, provided that the emissivity and the total atmospheric
water vapor content are known. This generalized single-channel algorithm requires the
minimum input data and can be applied to different thermal sensors using the same equation
and coefficient.

(5) Split-window LST retrieval method

The basis of this method is that the atmospheric attenuation suffered by the surface
emitted radiance is proportional to the difference between the at-sensor radiances measured
simultaneously in two adjacent thermal infrared channels. This method was firstly proposed
by McMillin (1975) to estimate Sea Surface Temperature (SST) from satellite measurements,
and then was extended to retrieve LST from space. On the basis of the first Taylor series of
the radiative transfer equation, the LST is linearly related to the brightness temperatures of
two adjacent TIR channels in the 10 ~ 12.5 um regions, and a typical linear split-window
algorithm can be written as Eq.(2.10) with the emissivities of these two channels are known
(Atitar and Sobrino 2009; Becker and Li 1995; Becker and Li 1990b; Prata 1993; Sobrino et
al. 1994; Tang et al. 2008; Wan and Dozier 1996).

T =a, +aT +a,(T,—T), (2.10)

where, T; and Tjare the brightness temperatures of the two adjacent TIR channels, and a; (i=0,
1, and 2) are coefficients that depend primarily on the spectral response function of the two

14



Chapter 2. Fundamental theory and reviews

channels fi(1) and f;(1), the two channel emissivities & and g, the column water vapor (WV) in
the atmosphere, and the viewing zenith angle. They are generally pre-determined either by
fitting the simulated data with a set of atmospheres and surface parameters or empirically by
comparing the satellite data against in situ LST measurements. In the past decades, many
split-window algorithms, with linear or non-linear relationship with the brightness
temperatures of two or three TIR channels, have been developed to retrieve LST from
different sensors by additionally parameterizing the coefficients a; according to various
combinations of the emissivity, WV, and the VZA (Becker and Li 1995; Coll and Caselles
1997; Francois et al. 1997; Minnis and Khaiyer 2000; Pinheiro et al. 2004; Sobrino et al.
2004a; Sobrino and Romaguera 2004; Sun and Pinker 2003; Sun and Pinker 2007; Wan and
Dozier 1996). Because of its little requirement of atmospheric data, which is not accessible
for most sensors, and also because of its easy operation, the split-window algorithm has been
successfully applied to many sensors with two TIR channel, such as AVHRR, MODIS,
SEVIRI, FY-3(Hulley et al. 2011; Jiang and Li 2008b; Kerr et al. 1992; Sun and Pinker 2003;
Tang et al. 2008; Wan and Dozier 1996). Because the land surface shows more heterogonous
than the sea surface, the LST cannot be retrieved with accuracy as high as that of the SST.
However, validation results indicated that, with such an approach and considering our
knowledge of surface emissivity, accuracies of 1 to 2 K are generally attainable over land
surface (Wan 2008; Wan et al. 2002; Yu et al. 2008).

2.5.2 Methods of simultaneous retrievals of LST and emissivity

In the above stepwise retrieval method, if errors included in the emissivity is significant,
the consequently retrieved LST will be far away from the truth. Therefore, it is often needed
to retrieve both LST and emissivity simultaneously. This goal has been achieved from
multiple-channel (e.g. TES method and gray body method), and multiple-time TIR data (e.g.
Two-Temperature Method and physical day/night method).

(1) Temperature and Emissivity Separation method (TES)

The TES method was first developed by Gillespie et al. (1998) to decouple LST and
emissivity from five atmospherically corrected TIR channels’ radiance of the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER). It consists of three
mature modules: the normalization emissivity method (NEM) (Gillespie 1995), the spectral
ratio (SR), and the maximum-minimum apparent emissivity difference method (MMD)
(Matsunaga 1994). This method utilizes a relationship between the minimum emissivity emin
and the spectral contrast (MMD) to increase the number of equation and make the ill-posed
problem become solvable, as:

g, =0.994—0.687MMD*™ . (2.11)

Since the TES method used the spectral variation of emissivity to separate the LST and
emissivity, it can perform better for those natural surfaces with high spectral contrast
emissivities such as rocks and soils. Numerical simulation and some field validations have
demonstrated that the TES can recover LST and LSE consistently within + 1.5 K and £ 0.015
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when the atmospheric effects are accurately corrected (Gustafson et al. 2006; Sobrino et al.
2007; Yoriko et al. 2003). However, some reports have indicated that the TES method
exhibited significant errors in the LST and emissivity of surfaces with low spectral contrast
emissivity (e.g., water, snow, vegetation) and under hot and wet atmospheric conditions (Coll
et al. 2007; Gillespie et al. 2011; Gustafson et al. 2006; Jimenez-Munoz and Sobrino 2007,
Payan and Royer 2004). To deal with those problems, TES has been modified several times
(see Table 1 in (Sabol et al. 2009)) to accommodate low emissivity contrasts and errors in
measured data. For example, Sabol et al. (2009) replaced the power relationship of &mi, and
MMD in the original TES method with a linear expression, and applied the new relationship
available for all materials to alleviate low contrasts problem, and Gillespie et al. (2011) used a
water vapour scaling (WVS) approach proposed in (Tonooka 2001, 2005) to improve the
accuracy of this method by minimizing atmospheric correction errors. Besides, Hulley and
Hook (2011) recently refined the relationship between the minimum emissivity and spectral
contrast to make TES algorithm available for MODIS’s three TIR channels (29, 31 and 32).
However, because of its requirement of at least three TIR channels in the atmospheric window,
the TES method is not applicable for those sensors with only one or two channels.

(2) Gray Body Method

This method assumes the spectral emissivity for wavelengths larger than 10 pum is
relatively flat and the emissivity is almost wavelength-independent. If emissivities for two or
more channels can be considered to be the same, the number of the unknowns will be equal to
or less than that of the radiative transfer equations, and consequently, the LST and emissivity
will be determined from multiple-channel TIR data (Barducci and Pippi 1996). The advantage
of this method is that it does not require the detail information about the emissivity spectra
and only assumes that at least two channels have the same emissivity (no need to be the gray
body) in the wavelength interval of interest. This assumption is reasonable for dense
vegetation and water, but is difficult to be satisfied for those surface with high emissivity
spectral contrast in multiple channels, such as bare soil, sand and sparse vegetation. Besides,
since atmospheric correction on the radiance is needed, the accuracy of this method can be
degraded by the error in the input atmospheric data. However, this method shows more
promising for hyperspectral TIR data because two or more channels with the same emissivity
out of its hundreds of channels can be expected.

(3) Two-Temperature Method (TTM)

The TTM reduced the number of unknowns by assuming the emissivity is unchanged
during two observations. In this case, N TIR channel in two observations correspond to 2N
equations and N+2 unknowns (N channels’ emissivity and 2 temperatures). As a result, if a
sensor has N>2 TIR channels, both LST and emissivity can be retrieved from two
observations (Peres and DaCamara 20044, b, 2006; Watson 1992). The main advantage of the
TTM is that there is no assumption about the shape of the spectral emissivity, except that the
spectral is time-invariant. However, the high correlation of the radiative transfer equation
between adjacent TIR channels always causes the retrieval accuracy highly sensitive to the
error in atmospheric correction and the measured data, and also its accuracy can be degraded
by the mismatch of geometrical registration and pixel sizes in the different observation. As
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report by (Peres and DaCamara 2004b, 2006), the increase of the number of observations and
temperature difference among those observations, as well as a non-linear optimization
algorithm, can improve the retrieval accuracy of the TTM, but the improvement was still
limited by the constraint of the method itself.

(4) Physical Day/night method (D/N)

Inspired by the day/night TISI-based method and TTM method, Wan and Li (1997) further
developed a physics-based D/N method to simultaneously retrieve LST and emissivity from a
combined use of the day/night pairs of MIR and TIR data. This method assumes that the
emissivities do not significantly change from day to night and that the angular form factor has
very small variations (<2%) in the MIR wavelength of interest to reduce the number of
unknowns and make the retrieval more stable. To reduce the effect of the residual error of
atmospheric corrections on the retrieval, two variables, the air temperature at the surface level
(Ta) and the column water vapor (WV), are introduced to modify the initial atmospheric
profiles in the retrieval. With two measurements (day and night) in N channels, the numbers
of unknowns are N+7 (N channel emissivity, 2 LSTs, 2 T,, 2 WV, and 1 angular form factor
for the MIR channels). Thus, to make the equations deterministic, N must be equal to or
greater than seven. The D/N method was successfully applied on the MODIS MIR channels
(CH20:3.66~3.84 um, CH22: 3.93~3.99 um, CH23: 4.02~4.08 um) and TIR channels (CH29:
8.4~8.7 um, CH31: 10.78~11.28 um, CH32: 11.77~12.27 pm, CH33: 13.19~13.49um), to
generate global daily LST and emissivity products.

Compared with the TTM, the D/N improved the accuracy of LST and emissivity by using
the data in MIR channel to reduce the high correlations of the radiative transfer equations
among the TIR channels, and by refining the atmospheric data with the near-surface air
temperature T, and the column water vapor WV. Besides, considering the angular variation in
emissivity, the whole range of MODIS viewing zenith angles (55° was designed, but the
actual value is 65° due to the Earth’s curvature) was separated into subranges and selection is
done of a pair of clear-sky daytime and nighttime MODIS observations at viewing angles in
the same subranges whenever it is possible (Wan and Li 1997; Wan et al. 2004). Therefore, as
long as the surface emissivity does not change significantly, daytime and nighttime data
collected over several days rather than 12 hours are still appropriate. Moreover, in order to
improve the retrieval accuracy, the algorithm aggregated MODIS MIR and TIR channel data
from 1 km to 5 km or 6 km to reduce the drawback of mis-registration of day and night
observations, and combined the use of the two MODIS sensors onboard TERRA and AQUA
satellites. Note that because of the requirement of at least seven channels in MIR and TIR
wavelength, the D/N method have not been used by other sensor expect the MODIS until
now.

2.5.3 Methods of simultaneous retrievals of LST, emissivity and atmospheric data

Atmospheric correction is required for the above algorithm, but the atmospheric data are
usually unavailable synchronously with the TIR observation and errors in the atmospheric
data always influence the retrieval result significantly. Therefore, an ideal way is to

17



Chapter 2. Fundamental theory and reviews

simultaneously derive LST, emissivity and atmospheric data from space. Ma et al. made an
initial attempt by assuming that the emissivity is invariant within the MODIS MIR channels
and also invariant within the TIR channels (Ma et al. 2002; Ma et al. 2000), and Wang (2011)
further combined the use of principle component analysis and artificial neural technique to
obtained LST, emissivity and atmospheric profile from IASI hyperspectral TIR data. Their
result showed RMSEs of LST and temperature profiles in troposphere were about 1.6 K and
2.0 K, respectively; RMSE of WV was around 0.3 g/cm?. RMSE of emissivity was less than
0.01 in the spectral interval from 10 um to14 pm.

2.5.4 Methods for hyperspectral TIR data and microwave data

The above is a brief description of the main approaches to derive LST and emissivity from
several MIR and/or TIR channels. Compared with the multiple channels data, the
hyperspectral TIR data, with hundreds of channels, provide much more detailed spectral
information about the atmosphere and land surface. Therefore, it is promising to use the
spectral shape of the emissivity to separate LST and emissivity. For example, the iterative
spectrally smooth temperature emissivity separation method (ISSTES) achieves the retrieval
by minimizing the spectral smoothness iteratively in a range of temperature based on an
assumption that a typical emissivity spectrum is rather smooth compared with the spectral
features introduced by the atmosphere(Borel 1998; Ingram and Muse 2001). And, Wang et al.
(2011) assume that the emissivity spectrum can be divided into M segments and that the
emissivity in each segment varies linearly with the wavelength. As a result, the retrieval of
spectral emissivity and LST becomes the retrieval of the coefficients of each line. Besides,
some other algorithms, such as stepwise refining algorithm, correlation-based separation and
alpha-derived emissivity method, were also proposed to decouple LST and emissivity from
hyperspectral TIR data. Details can be found in the literatures (Cheng et al. 2010; Cheng et al.
2008; Kealy and Hook 1993).

Except for MIR and TIR data, the LST can be also retrieved from microwave data for all
weather conditions (Chen et al. 2011; Mao et al. 2007) because it can penetrate the cloud, in
which status the MIR and TIR data from the land surface was totally obscured. The
combination of the MIR and TIR data with the microwave data is often considered as a
promising way to generate long-term LST product. However, it is hampered by at least two
factor: firstly, the retrieved temperature from microwave data is different from that of the MIR
and TIR data because it actually corresponds to the emitted radiance of the profile from land
surface to the depth that the microwave penetrates into the soil and depends on the
wavelength, while the retrieved temperature from the MIR and TIR data result from the
surface radiance in a several microns depth. Secondly, the spatial resolution of microwave
data (tens of kilometers) is usually much coarser than that of the infrared data. Therefore,
there is no publication about the fusion of the two kinds of temperature data and this topic is
still under investigation.

18



Chapter 2. Fundamental theory and reviews

2.6 Modeling of directional radiance and emissivity

The anisotropy of the surface has been observed by many researchers either at top of
canopy or at TOA This anisotropy, mainly due to the 3D structure of the surface and
non-isothermal conditions existing between different components, will bring large error to the
computation of long-wave outgoing radiation if not being accounted for (Otterman et al. 1999;
Otterman et al. 1997). Commonly, the land surface is a mixture of two elements, namely, the
soil and the vegetation, which have completely different physical properties controlling their
energy balances. Modeling the directional brightness temperature (DBT) or radiance of
homogenous or heterogeneous canopies is a promising approach to enhance our
understanding of the angular feature, and this issue has prompted numerous thermal radiative
models that can generally be divided into four categories: geometrical optical (GO) models,
radiative transfer (RT) models, hybrid models (GORT), and computer/numerical simulation
methods. The GO models estimate the thermal radiance by combining the weights of thermal
radiance of several components, with their corresponding proportions projected in the viewing
direction. Because the vegetation is considered as an opaque medium, the GO model do not
simulate radiative transfer between different components. In contrast, the RT models simulate
directional radiance as a function of viewing direction, temperature distribution, and leaf
angle distribution within the canopy as well as the atmosphere. The canopy is always
statistically distributed into homogeneous horizontal layers, and the directional radiance is
calculated by summing the radiative contributions of all layers. In RT models, iterations are
occasionally performed to account for multiple scattering within the canopy. The hybrid
models are a combination of GO and RT models that simulate the DBT over complicated
heterogeneous land surfaces.

2.6.1 Modeling for homogeneous canopy at ground

A homogeneous canopy can be easily divided into several layers and its gap frequency is
related to the leaf area index, leaf angle distribution and viewing direction. Several RT models
and their parameterizations can be proposed to simulate the directional radiance and
emissivity of the homogeneous canopy. For example, Prévot (1985) addressed a
probability-based model (turbid-medium model) calculating canopy radiances as resulting
from radiative interactions between the soil and the surrounding vegetation, and interactions
between the leaves within the vegetation using the directional gap frequency concept. Based
on the way of estimating the upward and downward flux for each layers in the VNIR spectral
range, the scattering by arbitrarily inclined leaves (SAIL) model added an additional radiative
resource to the original model to extend its applications to simulate the directional thermal
radiance (Frangois 2002; Liu et al. 2003; Verhoef et al. 2007). In those modes, the directional
emissivity is calculated as the ratio of the simulated directional radiance to the radiance of a
black body with the assumption that all components have the same temperature.

Although the RT models can estimate the directional thermal radiance and emissivity
close to the reality for most cases, the use of iterative calculation usually make it
time-consuming. Since the contribution of the different components are involved in this
iteration calculation, there is no clear expression in mathematic about their radiances, so it is
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difficult to separate the components’ temperatures, which are assumed to bear more physical
meaning than the average temperature of the scene. As a result, the parameterization of those
RT models is thus needed. A general expression of the directional radiance of the canopy
mainly consisting of soil and vegetation is written as:
R(6,) =7,(0,)e,B(Ty) +w,(6,)e,B(T,) +R

+[1-¢,(6,)IR (2.12)

multi atl

where, to(6,) is interpreted as the upward directional canopy transmittance for the soil
emission, and wy(6,) is the fraction of the upward emission of the vegetation in the viewing
direction 6,; g and &, are the emissivity of soil and component, while & is the canopy’s
directional emissivity; B(Tg) and B(Ty) are respectively the black body radiances of the soil
and leaves at the temperature Ty and T,. The term Rmyi represents the multiple scattering
radiations among leaves, and between soil and leaves, and the last term is the reflected
atmospheric downward radiance Ra; by the canopy. As a result, the parameterization of the
RT models is to find approximate expressions for the terms 1,(6y), Wo(6\), Rmuii @and &, which
can be calculated easily, and causes no significant error to the final radiance. To date, several
methods have been designed with different considerations on the single or multiple scattering,
hotspot effect within the canopy (Chehbouni et al. 2001; Frangois 2002; Frangois et al. 1997,
Otterman et al. 1992; Otterman et al. 1997; Otterman et al. 1995; Shi 2011; Sobrino et al.
2005; Wang 2009).

The main idea of those parameterizations is to calculate 1,(6,), Wo(6,) and &:(6,) directly
from gap frequency. For example, Francgois et al. (1997) proposed an analytical way by using
the directional gap frequency and hemispheric-gap frequency related to LAI and viewing
angle, and introducing a parameter, named cavity effect factor, to address the multiple
scattering radiance caused by leaves, and the term Rpnuq in EQ.(2.12) was consequently
included in the wo(6y). As a result, only the first, second and last terms of Eq.(2.12) left. If &,
ev and Ry are known as a prior, Ty and T, are thus retrievable from observations in at least
two directions. For a mixed pixel from space, Shi (2011) added a vegetation area ratio to this
model to retrieve components’ temperatures from AATSR. Another way of the
parameterization started with the &, which was firstly estimated as the complementary to the
hemispheric directional reflectance of the canopy according the Kirchhoff’s law, and then
To(6,) and wy(6,) were calculated based on the gap frequency in viewing direction and the
formula &.(6,)= t0(6)+Wo(8y) (Francois 2002). The current results indicated that the emissivity
of bare soil, sand, clay, and water decreased with increasing viewing angle, but for dense
vegetated canopies the angular dependence is minimal.

Furthermore, if more components such as sunlit soil and shaded soil, sunlit leaves and
shaded leaves rather than only soil and leaves are considered in the canopy, the hotspot effect
occurring in the solar direction is another consideration in the parameterization. However,
because of its complexity, rare publications exist about this issue except in the work of (Wang
2009) who used an the clumping effect proposed in (Roujean 2000) to separate the fractions
of sunlit soil and shaded soil, and the work of (Smith and Ballard 2001) who performed
theoretical calculations of TIR hotspot over a homogeneous canopy using a 3D vegetation
model.
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Additionally, Guillevic et al. (2003) proposed a three-dimensional radiative transfer model
that was based on the Discrete Anisotropic Radiative Transfer (DART) model
(Gastellu-Etchegorry et al. 1996) to investigate the angular thermal radiance of a vegetated
canopy. Furthermore, Peng et al. (2011) used the kernel-driven BRDF model to fit the
atmospherically corrected directional surface-leaving brightness temperature, and their result
showed that the accuracy of fitted directional brightness temperatures was around 1 K and
that the coefficients were further a good indicator for monitoring soil moisture. However, as
their TIR data still contained the reflected downward atmospheric radiance, the angular effect
of the brightness temperature might be smoothed to some extent.

2.6.2 Modeling for heterogeneous canopy at ground

Compared with the homogenous canopy, the space between vegetation in incomplete
canopy is no longer distributed in a uniform way, which caused the optical length passing
through the vegetation layer at the same azimuth angle with different zenith angle or in the
same zenith angle with different azimuth angle is not equal. Therefore, the modeling of
directional radiance and emissivity for heterogeneous canopy is quite different from that for
homogenous one. Many authors devoted to the studies of this issue, especially for the
row-structured canopy because it is widely distributed and useful for estimating crop
productivity. Commonly, the main idea of this modeling was generally reported as:

R(@V):ZN:fi(QV)-B(BTi), or DBT {ZN“ fi(ev)~BTi4} : (2.13)

i=1

where, BT; and f; are the components’ brightness temperature and directional fractions,
respectively. N is the number of the involved components, always less than four types: sunlit
soil and shaded soil, sunlit leaves and shaded leaves. Jackson et al. (1979) firstly developed a
GO model for partially covered row crop canopies to separate components’ fractions from
viewing angle, plant height/width ratio, row spacing, row orientation, and Kimes et al.
validated and applied this model in the simulation of cotton DBT (Kimes 1981; Kimes et al.
1980). However, although Sobrino and Caselles (1990) accounted for the radiation of plant
wall, and Caselles and Sobrino (1992) considered the multiple scattering between plant rows,
the effect of gaps within the plant rows were ignored because the plant rows in their model
were assumed opaque. In order to solve this problem, Chen et al (2002) used the directional
gap frequency to refine the original model and introduced the Kuusk hotspot effect (Kuusk
1985) to account for it in the direction where viewing and solar beams are nearly overlapping.
Moreover, the model of Chen et al. (2002) was further modified by Yan et al. (2003) by using
the bi-directional gap frequency. Validation on wheat canopy indicated that their results were
closer to the field measurement. By additionally considering the stem and small leaves
between the soil plane and vegetation, Yu et al. (2004) considered that the vegetation parts
were exactly placed over the soil plane with a limit distance rather than directly on the soil
surface and then recalculated the components’ fractions and consequently the final DBT.
Based on the model of Yu et al. (2004), Du et al. (2007) took more into account the status of
the crop, and divided the wheat canopy in ear stage into three layers (ear, leaves, and soil)
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with five components (sunlit and shaded ear, sunlit and shaded soil, and leaves), whose
fractions were calculated by assuming the upper ear part of the wheat was like a cylinder.
Apart from the use of the gap frequency theory, Huang et al. (2010) also extended the RGM
model in VNIR to TIR range to simulate the hotspot of the row crop.

A common assumption in the above models is that the row canopy has an infinite
extension and the viewing beam is parallel everywhere. Therefore, the models can treat the
components’ fractions in only a whole row structure. However, in filed measurements, the
sensor’s footprint is limited to several or tens of degrees, and different regions within the
footprint data have different azimuth and zenith viewing angles rather than one unique angle.
As a result, the assumption that the viewing direction is a parallel beam is rarely consistent
with reality. Up to now, except for Colaizz et al. (2010), who modeled the footprint as
continuous ellipses on the row canopy and estimated the sunlit and shaded components within
the circular or elliptical footprint, and Chen et al. (2009), there have been no other studies that
have considered the footprint effect (i.e., the FOV effect) on a row canopy’s DBT, let alone
any discussion of the difference in DBT between a parallel-beam model and a FOV model
that accounts for variations in the viewing angle within the footprint. Therefore, a model that
considers the sensor’s footprint effect in the measurement of DBT on row crop canopies is
strongly needed.

For the incomplete vegetation with an irregular distribution, the case becomes more
complex and therefore there is a little publication about this issue. However, the Monte Carlo
technique used by Chen et al.(2004) and the above method DART model and BRDF model
might can be used to study the angular characteristics of radiance for those canopies.

2.6.3 Modeling for satellite pixel

Modeling the directional radiance at pixel scale is helpful to check the sensitivity of the
algorithm of retrieving components’ temperatures. In order to make the number of the
observations larger than that of the unknowns, the pixel is usually assumed to be composed
only with soil and vegetation, and the directional radiance after atmospheric correction is
consequently related to the components’ fractions and temperatures in a linear equation as
follows:

B(T)=f(6,)e,B(T,) +[1- f(6,)l,B(T,), (2.14)

where, f(,) is the fraction of vegetation cover of the pixel, calculated from NDVI or from a
linear equation of surface reflectances. The rest terms in Eq.(2.14) are defined above. Based
on Eq.(2.14), Jia et al. (2003) obtained components’ temperatures from ATSR’s nadir and
off-nadir observation, and Song and Zhao (2007) achieved this goal from MODIS
multiple-channel TIR data observed at one time and single angle by using the genetic
algorithm. Both methods required the components’ emissivities known in advance.

In order to investigate the anisotropy of the brightness temperature at a scale of several
kilometers, Pinheiro et al. (2004) reported a modified geometric projection (MGP) model, a
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highly parameterized model of scene TIR radiance applicable to both homogeneous and
discontinuous canopies. Based on geometric optics modeling, MGP assumes that the
directional TIR radiance over discontinuous canopies is due strictly to the different
proportions of scene endmembers (e.g., sunlit tree crowns, background shadows) visible to a
sensor at different sun-view geometries. The MGP model requires inputs on tree cover density
and detailed information about the tree vegetation such as average crown height and crown
width, as well as LAI to estimate the components’ fractions. The tree cover density at the
pixel scale was obtained from the MODIS Vegetation Continuous Fields product (Hansen et al.
2003) or from field measurement. The MGP model was used to simulate the DBT of AVHRR
and SEVIRI in the place of Africa (Pinheiro et al. 2004; Rasmussen et al. 2011; Rasmussen et
al. 2010), and result shows that the sun—target-sensor geometry plays a significant role in the
estimated DBT, with variations more than 3.0 K in some cases.

For the directional emissivity at pixel scale, Prata (1993) proposed a simple way to obtain
the directional emissivity as &(6,) = &(0) cos(6,/2), where 6, is the viewing angle and &(0) is
the nadir emissivity. Such an equation is simple but is not applicable for all land cover types
due to heterogeneity. Similar with the NDVI-based method stated above, the common
calculation of the directional emissivity is written as:

£(0) =&, F(0)+5, [1- f(O)]+4 <dg, > F(O)[L- F(O)], (2.14)

where, f(6) is the fraction of vegetation cover in the direction 8, which can be obtained from
NDVI. &, and ;4 are the vegetation and ground emissivity, respectively. At the pixel scale, &,
and &g are usually channel-dependent, estimated from the land cover type and off-line
emissivity database. <de;> is the maximum cavity term, accounting for the effect of radiance
internal scattering between the different components of a structured and rough surface.
<de;i> can be set as a constant (e.g. 0.015) or parameterized using other model, such as the
model proposed by Sobrino and Caselles (1990). More details about the application can be
found in the literatures (Caselles et al. 2012; Phinheiro et al. 2006).

2.7 Drawbacks of current methods and possible solutions

From the above discussions, we know that much grate progress has been made in the
retrieval of LST and emissivity from remotely sensed data, and in the modeling directional
thermal radiation. However, there are still some drawbacks that need to be refined in the
future. As for the issue on the modeling of directional thermal radiation and angular
corrections on the land surface temperature, the drawbacks and their possible solutions in this
thesis can be stated as follows:

(1) Lack of directional emissivity at pixel scales.

Many studies have investigated the directional emissivity from ground measurement or
mathematical modeling, and consequently obtained some valuable results. However, there is
still no publication about directional emissivity that was retrieved from satellite observations
at pixel scale with a moderate spatial resolution. As a result, no one knows the exact shape of
the angular anisotropy of the pixel emissivity. Fortunately, since those methods, such as
TISI-based method, physical D/N method and TTM aforementioned, can retrieve directional
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emissivity directly from space data with little assumption on the shape of the directional
emissivity, their retrieved directional emissivity products may provide us an opportunity to
investigate the angular feature of the pixel emissivity if the same target or land cover type are
observed under different directions in a short time and their corresponding directional
emissivities are recovered accurately. The idea motivates our studies on the angular effect
from the MODIS emissivity products, because MODIS sensor observes the land surface at
viewing zenith angle ranging from 0° to 65°, and its emissivity products contain angular
information of the natural surface’s thermal emission. The details about this issue will be
addressed in Chapter 3.

(2) Lack of multi-angular observations and the corresponding algorithms to make angular
normalization of the LST

The use of the multi-angular dataset is considered as the most promising way to achieve
the angular correction on temperature. However, due to the technical limitations, except ATSR
sensors that can provide dual-angular observations in the TIR range, there is rare report about
the multi-angular observations at spaceborne or airborne platform. As for the dual-angular
observations by ATSR sensors, they were mainly used to directly retrieve LST or separate
components’ temperatures given pixel’s emissivity or components’ emissivities. As a result,
no operational way exists for the angular normalization of LST from multi-angular
observations due to the complexity of this issue. From this point of view, this thesis will aim
at the case of non-isothermal pixels, and firstly propose a new model to simulate the thermal
radiations for such pixels, and then attempt to investigate a new algorithm by combining the
kernel-driven BRDF model and TISI method to retrieve temperature and emissivity
simultaneously based on the multi-angular dataset in MIR and TIR channels obtained by an
airborne system. In order to make the temperature with more physical meanings, this thesis
will also clarify the definition of the directional effective temperature for the non-isothermal
pixel. Finally, the directional effective temperature will be normalized from off-nadir to nadir
with modified BRDF model. This issue is one the most important parts of this thesis and will
be presented in Chapter 4 and 5.

(3) Lack of accessible way to evaluate the ground-measured temperature

The ground-measured temperature is considered as the true value to validate the retrieved
LST products from remotely sensed data or simulated thermal radiation from models.
However, the ground-measured data itself also includes error resulting from sensor’s radiative
calibration error, ambient radiation interruption, inaccurate angle controlling and so on. In
order to remove or reduce this error, the ground-measured data are often averaged in time and
space, or smoothen by using some filter functions. Such processing is reasonable for
homogenous surface, such as dense vegetation and water, but it may cause much uncertainty
for the heterogeneous surface or incomplete canopies, such as the row-structured canopy.
Therefore, a new way is required to evaluate the accuracy of the ground-measured
temperature. Based on the potential error in the directional brightness temperature caused by
the uncertainty of sensor’s footprint, this thesis will propose a new model to simulate the
directional thermal radiation for row canopies by additionally considering sensor’s footprint
impact. Since the new model concerns on the footprint size and the variation of viewing
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directions in the footprint, it can be used to access the uncertainty involved in the measured
data in theory and its results will show much closer to the reality than the current similar
models. Furthermore, the new model will also provide the optimum footprint for the ground
measurement of the validation of other similar models and the LST products from remotely
sensed data. This part of work will be addressed in Chapter 6.
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Chapter 3

Directional emissivity in MODIS products and its

application to split-window algorithm

Angular effect of emissivity is considered one of the two reasons that cause the angular
variation of the LST. However, the current land surface temperature (LST) products always
ignore this effect of emissivity due to the lack of directional emissivity knowledge at pixel
scale. Up to now, MODIS has observed the global surface for more than ten years, and its
emissivity product retrieved from physical day/night algorithm provides us an opportunity to
investigate the angular features of the natural surface’s emissivity at pixel scale. From this
point of view, this chapter emphasized on the statistical studies of 5-year MODIS emissivity
products over most part of East Asia to obtain empirical relationships among the directional
emissivity, land cover, and the seasonal variation. Consequently, two look-up tables (LUT) of
directional emissivity were created for typical land cover types and then applied to the
generalized split-window algorithm to modify MODIS LST. Results showed that the angular
effect of emissivity could introduce a significant bias of -1.0 K~3.0 K to 1km-resolution LST.
Finally, the spatial scale effects of emissivity were checked, and it was found that the
temperature differences caused by scale effects fell within +/-0.5 K for most pixels if 5-km
emissivity was used in 1km LST retrieval. Therefore, it is expected that widely use of the
LUTs will lead to improvement for LST retrieval.

3.1 Background

Land Surface Temperature (LST) is one of the key parameters in land surface processes,
and has been widely used in regional energy budget, climatic changes, and watershed
management and crop assessments (Mannstein. 1987; Su 2002). The development of satellite
and sensor technology in the recent decades has provided us an opportunity to retrieve LST
from remotely sensed data at regional and global scales. Numerous algorithms have be
reported to retrieve LST from space, such as the single-channel method (Jiménez-Munoz and
Cristobal 2009; Qin et al. 2001), the split-window algorithm (Becker and Li 1995; Sobrino et
al. 1994; Wan and Dozier 1996), the two-temperature method(Peres and DaCamara 2004a;
Watson 1992), the temperature and emissivity separation method (Gillespie et al. 1998), the
physical day/night algorithm (Wan and Li 1997) among others. Split-widow algorithm is the
most popular one and has been used for different sensors, such as AVHRR, MODIS, ATSR,
SEVIRI and FY-3(Coll and Caselles 1997; Sun and Pinker 2003; Sun and Pinker 2007; Tang
et al. 2008; Wan and Dozier 1996), because it removes the atmospheric effect from the
absorption difference between two adjacent TIR channels in the 10~12.5 um regions, and
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relates the LST directly to linear or non-linear expression of the two channels’ brightness
temperatures. However, most of split-window algorithms require the land surface emissivity
(LSE) of land surface known in advance, and thus the LSE plays a crucial role in the
inversion of LST and its error affects the accuracy of LST. An uncertainty on the emissivity of
0.01 can lead to an error on the LST of around 0.5 K (Sobrino et al. 2005).

As reported by some authors (Chehbouni et al. 2001; Lagouarde et al. 2010; Lagouarde et
al. 1995; Otterman et al. 1997), the LST varies with VZA, and some of them assumed this
angular variation of the LST for isothermal pixel was mainly caused by the angular effect of
LSE. Many authors made efforts to studying the angular effect of emissivity by using field
and laboratory measurements, and some of them even modeled the angular LSE on the
concept of radiative transfer model and/or geometrical-optic model(Chehbouni et al. 2001;
Chen et al. 2004; Frangois 2002; Francois et al. 1997; Otterman et al. 1992; Petitcolin et al.
2002b). Their results indicated that LSEs of bare soil, sand, clay and water decreased with
increasing viewing angle, but for dense vegetated canopies the angular dependence is minimal
(Sobrino et al. 2005). However, there is still rare investigation on the angular effect of the
pixel emissivity at pixel scale because of the complexity of the natural surface itself and the
difficulty in the measurement of the pixel’s directional emissivity. Although Prata (1993)
proposed a simple way to obtain the directional emissivity as ¢(6,) = ¢(0) cos(6./2), where 6,
is the viewing angle and ¢(0) is the nadir emissivity. Such an equation highly depends on the
land cover and cannot be applicable for all land cover types due to heterogeneity. As a result,
the LSEs used in the split-window algorithms were almost out of the consideration of the
angular effect, let alone the angular correction on the LST. The directional emissivity product
retrieved by the day/night algorithm (Wan and Li 1997) from the combination of daytime and
nighttime MODIS MIR and TIR observations is considered as a unique data source to study
the angular effect of the pixel emissivity because this product has a large range of viewing
zenith angle (0°~65°), a global coverage and a long duration of more than ten years.

3.2 Method of extracting directional emissivity
3.2.1 Physical Day/Night algorithm
Similar to Eq.(2.2), the channel radiance measured by a sensor at the TOA can be
approximated as (Wan and Li 1997):
R() =t ()¢ ()8 (T,) + Ry () + R} (1)
220,60 ) + LOE,M +LOR O]

T

(3.1)
+

where, &(i) is the channel directional emissivity, and £ is the anisotropic factor for middle
infrared channel, which is used to convert the bi-directional reflectivity pi(0s, ¢s, 6y, ¢y) to the
hemispheric-directional reflectivity and then linked to the directional emissivity on basis of
Kirchhoff’s law, as r = 1- &(i) = mpi(6s, ¢s, Oy, @)IB. Bi(Ts) is the channel radiance calculated
from the Planck’s law at temperature Ts. R'y (i) and RYy (i) are the upward and downward
atmospheric thermal radiation, respectively; Eq(i), Eq(i) and R'q(i) are the direct and diffuse
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downward and upward solar radiation. ty, t; and t are the atmospheric effective transmittance
for the scattering radiations from land surface to the TOA, while t; is the transmittance for the
reflected direct solar radiation. The above atmospheric parameters and solar beam can be
calculated from MODTRAN given atmospheric data.

In order to retrieve the unknowns (&(i), Ts and f) in EQ.(3.1), Wan and Li (1997) used a
pair of daytime and nighttime MODIS data in MIR channels (CH20: 3.66~3.84 um, CH22:
3.93~3.99 um, CH23: 4.02~4.08 um) and TIR channels (CH29: 8.4~8.7 um, CH3L:
10.78~11.28 um, CH32: 11.77~12.27 pm, CH33: 13.19~13.49um) by assuming that the
channel emissivities have no significant variation during the two observations and three MIR
channels have the same anisotropic factor  due to its small spectral variation (<2%). Besides,
another two atmospheric variables, near-surface air temperature T, and column water vapor
WV were added into the solution in order to increase the accuracy of the atmospheric
correction. Finally, 14 radiative transfer equations of Eq.(3.1) from day and night observation
in MODIS seven channels corresponds to total 14 unknowns, including 2 Ts, 2 T,, 2 WV, 1 S
and 7 ¢. Considering the angular variation in emissivity, this algorithm separated the whole
range of MODIS viewing zenith angles into several sub-ranges and tried to select a pair of
clear-sky daytime and nighttime MODIS observations at viewing angles in the same
sub-range whenever it is possible (Wan and Li 1997; Wan et al. 2004).

The atmospheric data was obtained from MODIS vertical sounders and a lookup-table
off-line created by MODTRAN simulation. The initial values of the unknown were given
separately by empirical linear relationships with 14 brightness temperatures as:

14
Xi= YWy +C, i = 12,14, (3.2)
j=1

where, X; is the vector of 14 unknowns, and y; is the brightness temperatures, and w;; is the
coefficients of y; for the x;. c; is the coefficients for the offset term. Both w;; and c; were
regressed from a huge dataset of land surface and atmosphere case. With the given initial
values, the final solution was obtained from XZ optimization algorithm by minimizing an
objective function like Eq.(3.3), where R; is channel radiance observation value and R(i) is the
calculated channel radiance from Eq.(3.1) using the retrieved variables, and ¢; is the
uncertainty in the observed radiance, related to the channels’ noise equivalent differential
temperature (NEAT).

7= Z{%{L,— L)Y (3.3)

j=1

3.2.2 MODIS LST&LSE products and land cover products

Two types of global MODIS LST&LSE products are released since 2000. One is
calculated from split-window algorithm (Wan and Dozier 1996) using MODIS 31 and 32
channels’ data, whose emissivities are estimated from emissivity look-up table and land cover
products; the other one is driven from the day/night algorithm aforementioned (Wan and Li
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1997), which is used in this thesis.

The current version of the LST product is collection 5, updated from the collection 4 by
dealing with several drawbacks (Wan 2008; Wang et al. 2007), such as pixels with
cloud-contaminated LST values and those with missing valid LST values in areas under
apparently clear-sky conditions. Three refinements of the total eight are interesting for us: 1)
the way of detecting clear-sky conditions by varying confidence of clear-sky can increase the
number of clear-sky pixels; 2) the number of sub-ranges of viewing angles in day/night
algorithm is incremented from 5 to 16; and 3) the grid size of retrieved LST&LSE is changed
to 6 kmx6 km instead of 5 kmx5 km. However, the results in this thesis were obtained using
the channel emissivity (channel 20-23, 29, 31, 32) of MODIS collection 4 LST&LSE
products (MOD11B1) from the day/night algorithm, covering most part of East Asia (Fig.3-1)
from the years 2000 to 2004. Although the first refinement has increased the number of valid
LST&LSE in our study region, the huge number of valid values of 5-years collection 4
products in our study region is enough to make our result representative of this region. In
terms of the second refinement, the accuracy of retrieved emissivity in collection 5 was
enhanced, but emissivity in collection 4 was also proved to be acceptable by validating LST
in clear-sky (Wan et al. 2004; Wan et al. 2002). Therefore, the application of collection 4
LST&LSE product is also reliable. Table 3-1 shows the specification of the MODIS
LST&LSE product.

Fig.3-1. Study region locates in East Asia from 19°59' N to 49°59" N of latitude and from 69°17'E to
155°59°E of longitude, including most part of China, Mongolia and Russia

Table 3-1. Some specification of MODIS LST&LSE and land cover products in V004

Variables LST/LSE product Land Cover Product

Product ID MOD11B1 MOD12Q1

Temporal Coverage V004  Mar. 5, 2000 — the present Jan. 1,2000 - Jan. 1, 2004
Product Frequency Daily Yearly

Image Dimensions 240 rows X 240 columns 1200 rows X 1200 columns
Spatial Resolution ~5km ~1.0km

Dataset Layers 17 16

Projection Sinusoidal Sinusoidal

File Format HDF-EOS HDF-EOS
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Another MODIS land product used in this thesis is the yearly land-cover products
MOD12Q1 with a spatial resolution of 1 km. There are five groups of land covers included in
this product, and the IGBP (International Geosphere-Biosphere Programme) scheme (Friedl et
al. 2002), which divides global surface to total 17 land covers as shown in Table 3-2, was
used in this thesis. Both products (MOD11B1 and MOD12Q1) distributed in 9 tiles covering
most of East Asia (Fig.3-1) from the years 2000 to 2004. This region covers various
landscapes including plateau, forest, irrigated crop, glacier, bare, desert and so on, and most
fraction of the study region was observed in large viewing angles, thus angular correction of
LST is strongly required.

Table 3-2. Land covers in the IGBP classification scheme

Class Land Cover Class Land Cover
0 Water 9 Savannas
1 Evergreen Needleleaf Forest 10 Grassland
2 Evergreen Broadleaf Forest 11 Permanent wetlands
3 Deciduous Needleleaf Forest 12 Cropland
4 Deciduous Broadleaf Forest 13 Urban and Built-up
5 Mixed Forests 14 Cropland/Natural vegetation mosaic
6 Closed Shrublands 15 Permanent Snow and Ice
7 Open Shrublands
16 Barren or Sparsely Vegetated)
8 Woody Savannas

3.2.3 Analysis methods

Fig.3-2 represents the flowchart of retrieval of MODIS directional emissivity in this thesis.
The method started with the spatial aggregation of land cover products from 1 km to 5 km.
Since both products have the same geographical system and projection, the spatial
aggregation was easily performed. The new 5-km grid was considered as “pure pixel or
quasi-pure pixel” if more than 23 1-km pixels among total 5x5 1-km pixels hold the same
cover type. Additionally, cluster analysis was performed with eight-connectivity diagnosis
method to remove isolated pixels, which requires that all surrounding pixels have the same
cover type with the central pixel. Fig.3-3 shows an example of cluster analysis on MODIS tile
H26V04 located on northeast corner of our study region (Fig.3-1). This shows that the 5x5
1-km pixels image is smoothed, and that only the pixels distributed over large areas remain.
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MODIS Yearly Land MODIS Daily
Cover Products LST&LSE Products
MODI12Q1( IGBP, 1km) MOD11B1(5km)
Spatial Aaggregation Quality Control
1km—5km examination
Constraint: No less
than 23 pixels of 25
1km*1km hold the
Good Data
same cover type A
Temporary Skm Land Constraint:
Cover «— |VZA_Day-

VZA_Night| <4

A

A

Temporary Skm LSE

Cluster analysis

Constraint: No less
than 100 valid angles
for a specific cover
type on daily tile

Constraint: cover
types should > —]
distribute in cluster

A A 4

Valid MODIS LSE
of 6 bands

Final 5km Land Cover

A 4
Directional
Emissivities under
131 viewing angles

Fig.3-2. Flowchart to retrieve directional emissivity of MODIS product

In addition to the Quality Control flags included in the products, more constraints were
used on the MODIS daily LST&LSE products to select the valid pixels. First, the difference
of viewing angles for a pixel between daytime and night time should be smaller than 4°, and
their average value was considered as the viewing angle of the pixel; second, the number of
valid viewing angles for a specific cover type should be larger than 100 on daily tiles. The
selected pixels from the MODIS LST&LSE products are then used to study the angular
effects of emissivity.

(@ ' (b)
[[] Grassland [ Cropland [[] Shrubland  [] Barren
Il Water [l Mixed Forests M Invaild

Fig.3-3. Comparison between the images before and after cluster analysis on MODIS land cover product in
Tile H26V04 of 2001
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3.3 Characteristics of MODIS emissivity
3.3.1 Angular variation of emissivity

With the selected valid samples from the above flowchart, the directional emissivities for
SiX cover types were obtained in our study region. They are Grassland, Cropland, Evergreen
Broadleaf Forest, Mixed Forest, Open Shrublands and Barren or Sparsely Vegetated
(hereinafter abbreviated as Barren). Because of space limitation, we only took Grassland,
Cropland and Barren as example to illustrate the angular effects of emissivity at S5km-scaled
grid in MODIS 6 channels. Fig.3-4(a), (c) and (e) show directional emissivities in MIR
channels, and (b), (d) and (f) present those in TIR channels. It can be found that: 1)
emissivities increased with viewing zenith angles in MIR channels but decreased in TIR
channels; 2) they varied slightly from 0° to 45° but significantly in the range larger than 45°;
3) the curves of directional emissivities in MIR and TIR channels (except channel 29 for
Barren) showed similar shapes. Table 3-3 gives some statistical information about directional
emissivities of channel 23 and 32 for the three cover types. It can be found that the maximum
differences in emissivities under all angles were about 0.01~0.02 in channel 23 (that means an
equivalent AT from 0.8K to 1.5 K at T = 300 K), and about 0.006 in channel 32 (that means
an equivalent AT about 0.5 K at T = 300 K). For other three cover types (Evergreen Broadleaf
Forest, Mixed Forest, and Open Shrublands), their directional emissivities presented similar
tendencies in MIR and TIR channels as Grassland and Cropland did.
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Fig.3-4. Directional emissivities in MODIS MIR and TIR channels. (a) (b), for Grassland in MIR and TIR
channels, (c) (d) for Cropland;(e)(f) for Barren. However, channel 29 emissivity for Barren varied
similarly with those in MIR channel shown in (e).

Table 3-3. Analysis of emissivities under different sub-ranges of viewing angles in channels 23 and 32

Channel No. Channel 23 Channel 32
Viewing angles +(0°~45°) +(45° ~65°) +(0°~45°) +(45° ~65°)
Mean 0.917 0.922 0.967 0.964
STDEV 0.002 0.003 0.001 0.001
Grassland | Max 0.921 0.927 0.969 0.968
Min 0.915 0.918 0.966 0.962
A(131)* 0.012 0.007
Mean 0.953 0.957 0.972 0.970
STDEV 0.001 0.002 0.001 0.001
Cropland | Max 0.955 0.960 0.973 0.972
Min 0.952 0.954 0.971 0.967
A(131) 0.008 0.006
Mean 0.883 0.889 0.969 0.967
STDEV 0.002 0.007 0.0004 0.001
Barren Max 0.888 0.901 0.970 0.960
Min 0.879 0.880 0.968 0.965
A(131) 0.022 0.010

* A (131) is the maximum difference in emissivities at all of the whole 131 viewing angles

Based on the above directional emissivities, we present the relationship between
emissivities and cosine values of viewing angles in channels 23 and 32 for Grassland and
Cropland in Fig.3-5(a) and (b). The curve of channel 23 in Fig.3-5(a) denotes a logarithmic
relationship while Fig.3-5(b) shows an exponential relationship. These relationships are
simple and easy in use. Eq.(3.4) expresses the regressed results of Cropland’s emissivity
versus cosine view angle. Relationships for other cover types can be obtained similarly.
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Fig.3-5. Directional emissivity versus the cosine of viewing angles for Cropland and Grassland in channels
23(a) and 32(b) of MODIS. The right y-axis is corresponding to the emissivity for Grassland.

3.3.2 Angular variation of emissivity in different seasons

As known, emissivity is also influenced by vegetation fraction. Vegetation fraction
changes cannot be ignored during the year. Seasonal averaged directional emissivities were
also got in this thesis. Fig.3-6 presents seasonal directional emissivities for Grassland,
Cropland and Barren in channel 23 and 32. In general, angular variations are similar for the
four seasons. For channel 23, emissivities in summer and autumn were smaller than those in
other two seasons. The minimum emissivity value was found in summer, and the emissivity in
summer was more sensitive to the change of viewing angle than that in other seasons. After
changing the number of daily valid angles from 100 to 85 for each land cover, we got the
seasonal averaged directional emissivities of the other four cover types (Water, Woody
Savannas, Urban and Built-up, Permanent Snow and Ice), and found the similar phenomena.
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Fig.3-6. Angular effects of emissivity in channels 23 and 32 in different seasons. (a), (c) and (e) are

emissivities in channel 23 for Grassland, Cropland and Barren, respectively; (b), (d) and (f) are in channel
32, respectively.

3.3.3 Lookup-table for directional emissivity

Based on the directional emissivity, two look-up tables (LUTs) were created. Both LUTs
depended upon cover type and viewing angle but with a slight difference that one of them
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relied on seasons (seasonal-dependent LUT). Their structures are described in Fig.3-7. It
should be noted that emissivities in both LUTs were not calculated using Eq.(3.4) but were
obtained directly from MODIS products at Skm-scale using the flowchart of Fig.3-2. Both
LUTs include directional emissivities of Grassland, Cropland, Evergreen Broadleaf Forest,
Mixed Forest, Open Shrublands and Barren or Sparsely Vegetated. The seasonal-dependent
LUT also includes directional emissivities of other four cover types: Water, Woody Savannas,
Urban and Built-up, Permanent Snow and Ice. Emissivities of the rest 7 cover types in the
IGBP scheme were also included in the seasonal-dependent LUT but set to constant values
according to Wan’s paper (Wan 2008).

Optional
Spring

Emissivities

TIRbands | Types

Autumn

r
MODIS MIR and IGBP Cover |!
H

I

Summer E 131 Directional(
Winter )

Fig.3-7. Structure of look-up tables for directional emissivity.

3.4 Applications to the split-window algorithm
3.4.1 Theory of the generated split-window algorithm

The generated split-window algorithm (Wan and Dozier 1996; Wan et al. 2004) used a
linear combination of two apparent temperatures and their corresponding channel-averaged
emissivities to estimate LST as follows:

T-CrA+ATE AL e 5

+(Bl+821_?g+ B, A8)T3LZT32

&
where, A;, B;(i=1, 2, 3) and C are coefficients regressed from numerical simulations with the
MODTRAN code; T3; and T3, are apparent brightness temperatures of channel 31 and 32 of
MODIS, respectively; &=0.5(ez1+e32) and Ae=e3; - &3, Where &3 and &3 are the
classification-based emissivity, estimated from land cover types in each MODIS pixel through
a LUT based on TIR BRDF and emissivity modeling (Snyder and Wan 1998; Snyder et al.
1998). Although a simple linear correction is made to the channel emissivities to account for
the angular effect in the emissivities when the viewing zenith angle is larger than 45° for
some land cover types, the refinement of directional emissivity was limited (~0.003) and their
emissivity accuracy may be degraded by the spatial scale effect from simulated data to pixel
scale and also by the error of identified land cover. Compared with the emissivity used in the
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current split-window algorithm shown in Table 3-3, the emissivity retrieved from the
day/night algorithm turn out to be a little smaller for some vegetated covers (see Fig.3-6),
perhaps because the mixed effect of the vegetated part and soil part in the real pixel reduce the
pixel value of directional emissivity.

Table 3-4. Channel emissivity used in MODIS split-window algorithm (Wan 2008)

Cover types £31 &32

Water 0.992  0.988
Evergreen needleleaf forest 0.987  0.989
Evergreen broadleaf forest 0981 0.984
Deciduous needleleaf forest 0.987 0.989
Deciduous broadleaf forest 0.981 0.984

Mixed forest 0.981 0.984
Closed shrublands 0.983 0.987
Open shrublands 0.972 0.976
Woody savannas 0.982  0.985
Savannas 0.983 0.987
Grasslands 0.983 0.987
Permanent wetlands 0.992 0.988
Croplands 0.983 0.987
Urban and built-up 0.970 0.976
Cropland and mosaics 0.983  0.987
Snow and ice 0.993 0.990
Bare soil and rocks 0.965 0.972

For the isothermal pixel, the angular variation of their emissivity is assumed to fully result
in the angular behavior of its temperature. In order to illustrate the angular effect of emissivity
on the retrieved LST, the directional emissivities of MODIS channel 31 and 32 included in the
new LUT was used in the split-window algorithm to get angular-independent LST, and
comparison was further made between the new LSTs with the LSTs using the original LUT
(Table 3-4).

3.4.2 Application and comparison

A total of twelve MODIS scenes (one per month in 2008) were chosen to calculate the
LST, most of them located in the middle and northwest part of China. The percentage
histograms of temperature differences between the modified LST with the new LUT and
MODIS 1km LST products (MOD11 L2, collection 4) are shown in Fig.3-8. They indicate
that the temperature differences ATs for most pixels fell in the range of -1.0 K to 3.0 K; the
modified LSTs are generally larger than the MODIS LST products in most of cases. The
peaks ATs of the histograms varied from 1.02 K to 2.26 K, and nine of the twelve scenes show
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that the temperature differences are larger than 1.5 K. Table 3-4 gives more information:
about 45% to 55% pixels had the temperature differences within peak AT £ 1.0 K, and 53% to

64% pixels had the temperature differences within peak AT £ 1.5 K.

Table 3-5. Temperature differences in 12 scenes

Percentages of pixels within the defined

Julian Day of 2008  Peak AT (K) temperature differences (%)
Peak AT£1.0 K Peak AT£1.5 K
001 1.02 46.4 57.9
050 1.04 50.9 62.5
068 1.33 53.8 63.7
104 1.93 54.6 64.3
126 1.90 50.7 60.5
167 2.26 45.4 55.7
199 1.57 45.0 56.2
229 1.86 45.6 56.8
259 1.75 41.5 53.2
286 1.69 49.1 59.3
312 1.59 51.7 62.7
334 1.20 50.8 62.3
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Fig.3-8. Percentage histograms of temperature difference AT between newly retrieved LST and MODIS
LST products of 12 scenes data in 2008, locating in the middle part of China. (to be continue)
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Fig. 3-8. (continue)

Furthermore, we divided the viewing zenith angles into seven sub-ranges with an interval
of 10° and presented the temperature RMSEs of the twelve scenes in Fig.3-9. This figure
shows that RMSEs in all viewing zenith angle sub-ranges are within 1.4~2.5 K and the
discrepancy between the maximum and minimum RMSE is about 0.6 K. However, RMSE
increases with the increase of viewing zenith angle. This is reasonable because the modified
LSTs tend to be larger at large viewing angles due to the lower emissivity values. From the
above results, a conclusion can be drawn that the inversion of LST with a high accuracy needs
to consider the angular effects of emissivity, especially for large viewing angles.
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3.4.3 Spatial scale effects of emissivity

It is worth notice that emissivities in LUTs were retrieved directly from 5 km grid which
was assumed to be homogeneous. However, above subsections retrieved LST at 1 km
resolution. Therefore, the spatial scale effects of emissivity that may influence the accuracy of
LST should be considered. In order to check the scale effects, we retrieved LST again at 5 km
resolution with the same method and data applied in previous subsection. The 5 km brightness
temperatures T3y and Ts, in Eq.(3.5) were averaged from 5x5 1-km pixels in MODIS L1B
products, and pure or quasi-pure pixels and mixed pixels were distinguished using the same
constraint shown in Fig.3-2. Then the 5-km LST was retrieved (denoted as LST_5km) and
compared with the 5-km LST (LST’_5km) directly averaged from 1-km modified LST
mentioned before. The temperature difference caused by the scale effects is expressed as
AT _5km =LST_5km - LST’_5km. The percentage histograms of AT_5km for pure and mixed
pixels are presented in Fig.3-10. Result shows that the percentage peaks of the temperature
differences is very close to 0.0 K, and the differences fall within +/-0.5K for most pixels.
Therefore, the spatial effect of 5-km directional emissivity applied on the split-window
algorithm at 1-km scale is very small and can be ignored, at least for the linear split-window
algorithm.

3.5 Conclusions and discussions

With statistical analysis of MODIS land cover products and LST&LSE products from the
physical day/night algorithm, angular effects of emissivity for several land covers were
presented in East Asia. The result shows that emissivity increases in MODIS MIR channels
but decreases in TIR channels with the increase of viewing angle. The angular effects makes
emissivity varies in a range of 0.01~0.02 in MIR channels and about 0.01 in TIR channels.
Based on directional emissivities, two LUTs at 5km were created. Both LUTs depended upon
cover type and viewing zenith angle but one of them additionally relied on seasons.
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Fig.3-10. Percentage histograms of A7 5km of 12 scenes data for pure and mixed pixels at 5 km

42



Chapter 3. Directional emissivity at pixel scale and its application

The seasonal LUT was applied on the split-window algorithm to retrieve LST at 1km
resolution. By comparing the retrieved LST with MODIS LST products, we found that the
new LSTs were generally larger than the MODIS LST products and the discrepancy ranged
from -1.0 K to +3.0 K. Large viewing angles will cause larger temperature differences than
smaller ones. Finally, we discussed the spatial scale effects between the LST retrieval results
at 1 km and 5 km, the corresponding result denoted that the spatial scale effects of emissivity
could be ignored from 1 km to 5 km in our study region.

The relationship between the vegetation fraction and the emissivity had been discussed in
details (Momeni and Saradjian 2007; Sobrino et al. 2001). However, the angular effect of
emissivity itself was seldom cared in the past. Seasonal directional emissivities were also
investigated in this study. After this framework, further researches may be done by
considering the fractional vegetation cover and angular effects together in the modeling of
emissivity. Besides, although the Day/Night algorithm applied near-surface air temperature
and column water vapor to refine the input atmospheric data and improved the accuracy of
atmospheric correction in theory, the directional emissivity obtained in this thesis may still be
impacted by the residual error of atmospheric radiation. Furthermore, the soil moisture
influences the emissivity, but we ignored this effect because we had no soil moisture data at
5km scale.

In addition, our study on emissivity only performed over most part of East Asia, and did
not obtain directional emissivity over all land cover types described in the IGBP scheme.
However, our work can be extended easily on more regions and land cover types. Currently,
the modified LST after correcting the angular dependence was only compared with the
original MODIS LST products. If ground-based reliable measurements over enough large
areas are available in the future, the temperature validation work will be expected. By our
field experiences, new data collection methods and effective equipment are needed to get
more reliable in-situ LSTSs.
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Chapter 4

Parameterization of directional emissivity and brightness
temperature, and the angular normalization of temperature

using kernel-driven BRDF model

This chapter firstly compares four parameterization models of the directional emissivity
based on the thermal radiative transfer model (TIR-SAIL model). Results show that the
kernel-driven BRDF (K-BRDF) model accurately represents the angular variation of the
canopy directional emissivity and that it has to refine the cavity effect factor related to the
multiple scattering in the canopy. Then, based on the new cavity effect factor and the
parameterization method of the SAILH model, we develop a new way to simulate the
directional brightness temperature (DBT) of the canopy assumed to consist of leaves, sunlit
and shaded soils. Finally, the availability of the K-BRDF model in the angular normalization
of the DBT is investigated in two different ways: the single-point pattern and the linear-array
pattern. The result of two patterns’ analyses respectively finds out the local optimum
three-angle combination of the K-BRDF model, and releases the requirement of the viewing
zenith angle (VZA) in the designed three arrays (nadir, forward and backward) detector
system. The findings of this chapter will be used in the next chapter.

4.1 Background

As stated in the previous chapter, the emissivity varied with viewing zenith angle (VZA)
at pixel scale, and the angular dependence was generally significant when the VZA exceeded
45°, Such angular dependence for three-dimensional surfaces mainly results primarily from
the angular variation of the relative weights of different components (e.g., vegetation and
background soil) with different emissivities in the pixel. The angular dependence has been
studied from field and laboratory measurements. Their results show that for bare soil surfaces
emissivity values decreased with increasing viewing angle, whereas the angular dependence
of dense vegetated canopies was minimal, in agreement with the usual assumption of
Lambertian behavior for vegetation. However angular characteristic of sparse and middle
dense vegetated canopies depends on the structure of the canopies themselves.

Up to now, different models have been developed to analyze the angular variation of
directional emissivity and radiance over vegetation canopies, using the soil and vegetation
emissivities as input data and based on the assumption of Lambertian behavior for these
components. In those models, three ways are often used to obtain the directional emissivity:
first, directional emissivity can be estimated as the weight of different components’ emissivity,
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whose fractions were calculated from the canopy structures and the viewing geometry using
the gap probability. For example, Francois (2002) addressed five of such models for the
parameterization on the model of Prévot (1985). Second, the directional emissivity is
calculated to be complementary to the hemispheric-directional reflectivity according to the
Kirchhoff’s law. The hemispheric-directional reflectivity can be estimated from a
bi-directional reflectivity dataset by using an angular form factor (Li et al., 2000), a
semi-empirical phenomenological model (Petitcolin et al., 2002a) or a kernel-driven BRDF
model (Jiang and Li 2008a). Third, the directional emissivity is directly estimated as the ratio
of directional thermal radiance to the blackbody radiance calculated with the Planck’s law,
with the assumption that all components in the scene have the same physical temperature (Liu
et al., 2003). Although Francois (2002) and Sobrino et al. (2005) have respectively compared
five parameterization models including radiative transfer (RT) and geometrical-optical (GO)
models, their parameterized model was only based on the result of the model Prévot (1985),
which was a probability-based model (turbid-medium model) computing the solution of the
radiative transfer by summing the relative contributions of a large number of vegetation layers
using the directional gap frequency concept. However, the model proposed by Prévot (1985)
has not been widely validated and does not contain consideration of hotspot effect. Moreover,
the coefficients from their parameterizations might not be consistent with other similar
models (such as the SAIL (Scattering by Arbitrarily Inclined Leaves) model) and should be
updated. The series of SAIL models have been used in this chapter because this model can
deal with a much wider spectral range than the model of Prévot (1985), working in the
visible/near-infrared to thermal infrared domains, and also because they have been widely
used and validated. Therefore, the SAIL models can obtain the canopy’s reflection and
emission information together, which is helpful for the retrieval of surface parameters from
both middle and thermal infrared channels. From this point of view, the objective of this
chapter is to parameterize the directional emissivity based on the simulation result of SAIL
model by using BRDF model and gap-frequency-based model, and refine their coefficients.
Furthermore, based on the parameterization and new coefficients, we present the directional
brightness temperature as the weights of three kinds of components and their multiple
scattering contributions, and then validate the performance of the BRDF model in the DBT.
Finally, we analyze the BRDF model in the angular normalization and discuss the angle
requirement of this model.

4.2 Models of directional emissivity
4.2.1 Thermal SAIL model

The SAIL model was first proposed by (Verhoef 1984) to simulate the radiation flux
interactions and bi-directional reflectivity of the canopy in the visible/near infrared (VNIR)
range, and then extended to the SAILH model by modifying the single scattering contribution
in the bi-directional reflectivity for the hotspot effect according to the theory of (Kussk 1985).
In order to apply this model in the thermal infrared domain, Liu et al.(2003) and Verhoef et al.
(2007) respectively provided additional facilities to support the calculation of internal thermal
radiation. Since Verhoef et al. (2007) classified the components to sunlit and shaded leaves,
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and sunlit and shaded soils and Liu et al. (2003) only related to leaves and soils, the result of
the former should be closer to the reality, especially for the representation of the hotspot.
However, there should be no difference between the two models if the temperatures of all
components are the same. In this way, the directional emissivity can be obtained as the ratio
of directional radiance to the blackbody radiance from the given emissivities of leaves and
soil background as well as the canopy structure. Because the model of (Verhoef et al. 2007) is
not free of access, the model of Liu et al. (2003) was used for illustrations and named the
TIR-SAIL model.

Similar with the primary version of SAIL, the TIR-SAIL is still based on analytical
solution of four linear equations:

dE, _KE,

dz

dd£:—0E++aE—sEs—r

dEZ , (4.1)
t=—oE, +oE_+S'E;+1

dz

ddE° =wE, +VE_+ uE, -k E, +T,
z

where, Eg, E., E+ and E, are respectively the direct solar irradiance on a horizontal plane, the
diffuse downward irradiance, the diffuse upward irradiance and the irradiance in the direction
of observation. z is the height counting from the top of the canopy. o is the attenuation
coefficients for the upward and downward diffuse flux, and o is the fraction of reflected
upward (or downward) diffuse radiation that is scattering downward (or upward). s and s’ are
respectively the fraction of the upward and downward scattering from the solar irradiance,
while ks and k, are respectively the attenuation coefficients in the solar and observation
direction. Actually, there is no solar irradiance Es in the TIR domain and only a small value in
the MIR domain. r represents the upward or downward thermal radiation of the canopy itself,
and r, is the thermal radiation in the observation direction. The two parameters can be
estimated as Eq.(4.2):

r=FAVD-¢,-B(T,),r, = FAVD-F, -¢, - B(T,). (4.2)

In Eq.(4.2), &, and T, are the leaves’ emissivity and the physical temperature and B(T) is
the blackbody radiance. FAVD is the foliage area volumetric density and F, is the ratio of the
projected leaves’ area to the total leaves’ area in the observation direction. The term FAVDe F,
equals to the term k, that is used in the primary SAIL model. The bottom layer of the canopy
is the soil emission and the reflected downward thermal radiance by the soil, written as:

E.(h)=[E_(h)+E.(h)]-p, +¢,-B(Ty), (4.3)

where, Ty is the soil temperature, and g5 and pq are the emissivity and reflectivity of the soil
(generally pg= 1- &4 for the opaque soil). More details about the TIR-SAIL can be found in
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(Liu et al. 2003).

Fig.4-1(a) shows the directional emissivity at different viewing zenith angles (VZA) with
vegetation and soil emissivity of 0.98 and 0.94 in the thermal wavelength, respectively. The
spherical LAD (leaf angle distribution) was assumed for the canopy. The results obtained
show a low angular variation for high vegetation cover canopy, which means almost a
Lambertian surface. However, for low vegetation cover canopy, emissivity increases with
increasing VZA due to the larger vegetation cover observed. The angular variation of
emissivity is within 0.01 between nadir and 70°, but as large as 0.02 between nadir and
horizontal observation. Note that for LAI < 1.5, the emissivity decreases at large angles (> 80°)
because the multiple scattering contribution of the canopy has been reduced in such large
angles. Fig.4-1(b) shows the result with vegetation and soil emissivity of 0.98 and 0.96.
Comparison of the two figures illustrates that a smaller difference of soil and vegetation
emissivity can reduce the angular variation of the canopy. However, such variation still exists
even if soil and vegetation have the same emissivity, because in this case, the scattering
contribution varies with viewing angles. Furthermore, the emissivity of all cases converged to
the point about 0.99 in the horizontal direction, in which only vegetation component is
observed. This point is called limit emissivity that will be addressed in the following part.
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Fig.4-1. Angular variation of canopy emissivity at different LAI cases, with soil and vegetation emissivity
of (a) 0.94 and 0.98, and (b) 0.96 and 0.98, respectively.

4.2.2 Parameterization models

As reported by some previous studies, the SAIL series model generally provides
acceptable simulation results and therefore is used in many relevant fields (Jacquemoud et al.
2009). However, this model is time-consuming because it has to interactively calculate the
upward and downward flux by dividing the canopy into several layers. Therefore, there is no
exact mathematical expression for the directional emissivity or temperature, which makes it
difficult to be used directly in the retrieval of some parameters from remote sensed data such
as the component temperatures. As a result, it is needed to approximate the SAIL model using
some variables that are easily obtainable from space.
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To date, two major types of methods have been developed for the parameterization of the
directional emissivity with known viewing geometrical and surface characteristics: First, the
directional emissivity is estimated directly as a weight of components emissivity and their
fractions in a particular viewing direction, and the additional term of multiple scattering. For
example, Sobrino and Caselles (1990) estimated the directional emissivity for row crops by
weighting the proportions of the hedgerow top, wall and soil and the corresponding scattering
of those components. On basis of their method, the NDV1 threshold method was subsequently
proposed to retrieval emissivity from remote sensed data. The vegetation-cover method (Valor
and Caselles 1996) used the fraction of vegetation cover to average the soil and vegetation
emissivity, and introduced a term de to consider the multiple scattering at pixel scale. Second,
the directional emissivity is obtained from the complementary to the hemispheric-directional
reflectivity according to the Kirchhoff’s law. For example, based on the geometrical model of
(Li and Strahler 1992) for a sparse canopy composed by soil and vegetation, Snyder and Wan
(1998) integrated the BRDF model over the hemisphere to obtain hemispheric-directional
reflectivity, and then generated emissivities for IGBP-scheme land cover classes. Li et al.
(2000) and Petitcolin et al. (2002a) respectively used an angular form factor and a
semi-empirical phenomenological model to obtain such emissivity from bi-directional
reflectivity. Francois et al. (1997) firstly developed an analytical parameterization using the
gap frequency function and cavity effect factor, and Frangois (2002) calculated the
hemispheric-directional reflectivity from gap frequency theory by accounting for the
scattering between soil and vegetation interface. This thesis will check the performance of
four models: the kernel-driven BRDF model (Jiang and Li 2008a), semi-empirical BRDF
model (Li et al. 2000), the analytical model (Francois et al. 1997) and the multiple-scattering
model (Francois 2002). The kernel-driven BRDF model will be used in next chapter to
retrieve directional emissivity from multi-angular observation data, and the updated cavity
effect factor in (Frangois et al. 1997) on basis of the TIR-SAIL model, will be applied in
simulation of directional thermal radiance. The other two models are used for comparisons
among those models.

A. The kernel-driven BRDF model: K-BRDF

The kernel-driven BRDF model (hereafter called as K-BRDF) was firstly proposed to fit
bi-directional reflectivity from several different viewing directions. This model usually
consists of three parts: the isotropic scattering, the volumetric scattering and the
geometric-optical scattering, written as:

p(ev ' 05 '(0) = kiso + fvol ’ kvoI (ev ' 05 ' (/7) + fgeo ’ kgeo (ev ! 93 ' (/7) ' (44)

where, fis, IS the isotropic scattering term, f,o is the coefficient of the volumetric kernel ko,
and fgeo is the coefficient of the geometric kernel kgeo. Such model is promising for the
directional correction of the reflectance in the visible spectral range because it links to the
viewing geometry of the solar-target-sensor using the kernels and relates to the components’
characteristics through the observed reflectances. This model may also provide us an
opportunity to achieve the angular normalization of temperature if the target’s temperatures or
brightness temperatures at least in three viewing directions are known.
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A suitable expression of ko was derived by Roujean et al. (1992), which was called the
Ross-Thick kernel for its assumption of a dense leaf canopy. It is a single-scattering solution
of the radiative transfer equation by (Ross 1981) for plane-parallel dense vegetation canopy
with uniform leaf angle distribution, a Lambertian background and equal leaf transmittance
and reflectance. It does not account for the hotspot effect.

(ml2-¢&)cosé +siné 7«
K, (6,,0,,0) = -—, 4.5
v (6. 0:,9) c0s 6, +Coso, 4 (4:)

where, & is the phase angle, related to the sun-target-observer position as:

& =cosf, coso, +sinb,sinf, cose . (4.6)

The Li-Sparse kernel derived by (Wanner et al. 1995) was reported to work well with the
observed data. This kernel is derived from the geometric-optical mutual shadowing BRDF
model (Li and Strahler 1992). The original form of this kernel is not reciprocal in the viewing
and solar directions, a property that is expected from homogeneous natural surface viewed at
coarser spatial resolution, but then was refined to be reciprocal by assuming the sunlit
component in the viewed scene simply varies as 1/cosés. As a result, the reciprocal model was
Li-SparseR kernel:

Kyeo (0,,6,9) = 0(6,,6;,p) —sect',—seco’

1 , 4.7)
+ E(1+ cos&')secd’, sech’,

with,

O= l(t —sintcost)(secd',+sech',)
T

h \/D2 +(tan @', tan @', sin )’
b seco',+seco’,

cost =

D= \/tanz 0’ +tan’'.—2tan 6’ tan @', cos @
cos&'=cosf', cosf' +sinO',sinO'  cos ¢
] -1 b ' -1 b
0',=tan"(—tang,),0'.=tan " (—tané,).
r r

where, O is the overlap area between the view and solar shadows. The term cost should be
constrained to the range [-1, 1], as values outsides of this range imply no overlap and should
be disregarded. The ratio h/b and b/r are the dimensionless crown relative height and shape
parameters, respectively, and should be preselected. In this thesis, h/b = 2 and b/r = 1, i.e. the
spherical crowns are separated from ground by half their diameter.

The integration of the BRDF model will generate the hemispheric-directional reflectivity
and the directional emissivity is calculated with the Kirchhoff’s law:
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2z pm/2 .
&0,0)=1=| [ p6,0.0,0,)sin(6,)cos(6,)do,dp,.  (4.8)

According to Eq.(4.4), the integration of the bi-directional reflectivity in the upward
hemisphere equals to the result of integrating the three kernels (kvol, Kgeo, and 1) in the same
angle range because the values of the kernels’ coefficients are fixed for all angles. Jiang and
Li (2008a) calculated the integration of the Ross-Thick volumetric kernel (lk.,,) and
Li-SparseR (Ikgeo) With solar zenith angle varying from 0° to 80° and azimuth angle from 0°
to 360° in a step 0.05°, and then related Ik, and Ikge, to the viewing zenith angle (6y) using an
exponent growth function and Gaussian function, respectively.

_ _ B1 _ 0\, — 0(: i
Ikvol (0\,) - AO + Aiexp(ev/tl) ! and Ifgeo (0\,) - BO + a)\/ﬂ_/Z exp{ 2( ® j }! (49)

where, A (= -0.0299), A; (= 0.01278), t; (= 21.43823), By (= -2.01124), B; (= -29.40855), w
(= 68.88171) and O (= 90.95449) are the regressed coefficients. The unit of t; and 6. is
degree and the other terms are unitless.

B. The semi-empirical BRDF model: S-BRDF

The semi-empirical BRDF model (hereafter called as S-BRDF) was first proposed by
( Minnaert 1941) and then modified by (Li et al. 2000) by adding the terms of the azimuth
angle to describe the bi-directional characteristics of the surface as:

p(6,,6,,0) = p,cos“" 0, cos* " 0,[1+b(L-k*)sin g, sing, cos ], (4.10)

where, po is the reflectivity with viewing and incident zenith angle at nadir observation. k is a
parameter between 0 and 1. For a Lambertian surface, k equals to 1. The term b(1-k?) term is
called anisotropy factor. This anisotropy factor is positive if backscattering is significant and
negative when forward-scattering is dominant. The integration of Eq.(4.10) like Eq.(4.8)
will conduct the directional emissivity from hemispheric directional reflectivity as:

2 K1
0)=1-——p,cos "0, . 4.11
g( v) k+1 0 v ( )

Although the directional emissivity in Eq.(4.11) is not related to the term b in Eq.(4.10), it
still needs at least three bi-directional reflectivity to solve the coefficients po, k and b.
C. The analytical parameterization model: FRA97

Based on the radiative transfer model of (Prévot 1985), Francois et al.(1997) developed
the following analytical parameterization model (hereafter called as FRA97) using the gap
frequency theory:

£(6,) =1-p =1-b(6,)M (L-&,) —a[Ll-b(6,)M](L-5,), (4.12)

where, &y and &y are the emissivity of soil and vegetation, respectively. b(9) is the directional
gap frequency and M is the hemispheric gap frequency of the canopy. For a canopy with
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spherical leaf angle distribution and random dispersion, they can be expressed as:
0.5 1 pn/2
b(0) =exp[-——LAI], and M :—J' b(0)dO =exp(-0.825LAI). (4.13)
cosé T -7/

The second term of the right side of Eq.(4.12) is the hemispheric-directional reflectivity of
the soil in the viewing direction, and the third term is the hemispheric-directional reflectivity
of the vegetation. «a is cavity effect factor that expresses the part of the incident beam which is
reflected by the leaves is absorbed by the canopy. Therefore, « is used for the multiple
scattering inside the canopy and its values in different viewing zenith angles were provided in
(Frangois 2002).

D. The multiple-scattering model in (Francgois 2002): FRA02

Similar with FRA97, the model proposed by (Frangois 2002) (hereafter called as FRA02)
estimated the directional emissivity based on hemispheric-directional reflectivity but paid
more attentions to the multiple scattering in the interface of soil and vegetation layers, written
as:

£(6,) =1~ p=1-[1-b(8,)10-5,)~M-b(@,)—&,)/1- (A&, )0, (—&,)]. (4.14)

The term o7 is the hemispherical shielding factor, linked to the hemispherical gap
frequency M in Eq.(4.13) as o; = 1-M. the other terms have been defined above. The second
term of the right-hand side is the reflectivity of vegetation in the viewing direction, and the
third term is the sum of the soil single-scattering reflectivity and the multiple-scattering
reflectivity in the interface of soil and vegetation layers. The term oy (1-¢,) stands for the
downward hemispheric albedo of the vegetation layer, and the denominator in Eq.(4.14) was
approximated from the infinite series: 1+(1-&,)ot (1-&,)+[(1-&,)ot (1-&0)]+[(1-&.) ot (1-&)]... for
the multiple scattering. Compared with the FRA97, FRA02 takes more cares in multiple
scattering behaviors occurring in the interface of the soil and vegetation layers, while FRA97
pays more attention to the inside vegetation-to-vegetation multiple scattering.

4.3 Parameterization result of directional emissivity
4.3.1 Comparison of the TIR-SAIL and BRDF models

The bi-directional reflectivity used in the K-BRDF and S-BRDF models to obtain their
respective coefficients is simulated by the SAILH model developed by (Verhoef 1989), which
is reported to simulate canopy’s bi-directional reflectivity of the canopy more accurately than
other series of this model because it adds the hotspot effect in the solar direction. With a fixed
viewing beam, the integration of the bi-directional reflectivity in the upper hemisphere
generates the directional-hemispheric reflectivity. Since the directional-hemispheric
reflectivity equals to the hemispheric-directional reflectivity on the basis of the reciprocity
theory in the BRDF field, the directional emissivity is finally calculated as one minus the
hemispheric-directional reflectivity according to the Kirchhoff’s law. However, we find out
that the directional emissivity (&) from the above integration differs from simulated result
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direct from the above TIR-SAIL model (e;), and that it is needed to correct the integrated
emissivity using a linear function for most cases (i.e, &i= a-¢ + b, a and b are coefficients, and
depend on LAI). This correction leads an error less than 0.002 to the integrated emissivity.

Based on the bi-directional reflectivity simulated by the SAILH model with soil and
vegetation emissivity of 0.94 and 0.98, the coefficients in the K-BRDF and S-BRDF models
are first analytical regressed, and then are used to calculate the directional emissivity
respectively using Egs. (4-8) and (4-11). As reported in the literatures (Snyder and Wan 1998;
Sobrino et al. 2005), the K-BRDF model presents much uncertainty for the large viewing
zenith angle. Therefore, only the bi-directional reflectivity with viewing zenith angle no larger
than 65° is used, but we illustrate the directional emissivity value up to 80° in Fig.4-2, which
displays the comparison of the directional emissivity from the TIR-SAIL model, the K-BRDF
and S-BRDF models with (a) LAI = 0.5, (b) LAI = 1.0, (c) LAI = 2.0 and (d) LAI = 4.0,
respectively. It shows that the three models have the similar tendency for LAI =0.5 and LAl
=1.0, and the difference of their directional emissivity is very small, even at the large viewing
zenith angle (i.e., beyond 65°). However, for LAl = 2.0 and 4.0, significant difference of their
directional emissivity occurred, especially at larger angles. For example, in Fig.4-2(c), the
emissivity increases with the VZA all the time in the two BRDF models but it decreases with
VZA in the TIR-SAIL model after 65°.
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Fig.4-2. Comparison of directional emissivity respectively from TIR-SAIL model, K-BRDF model and
S-BRDF model at (a) LAI = 0.5, (b) LAI = 1.0, (c) LAl = 2.0 and (d) LAI = 4.0.
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In Fig.4-2(d), the S-BRDF model almost has the different tendency with the TIR-SAIL
model, and their values differ from each other. On the contrary, the emissivity of the K-BRDF
model is close to that of the TIR-SAIL model, especially under small VZAs, but its angular
variation is much less than the TIR-SAIL model. Although the emissivity curve of the
K-BRDF model seems to be similar with that of the TIR-SAIL model, the curve actually first
increases with the VZA and decreases after 65°. Comparison of the coefficients of the
K-BRDF model among those different LAIs illustrates that the volumetric scattering
coefficient f,o for Fig.4-2(d) is negative and the others are all positive, which therefore makes
the emissivity of this model decreases in large VZAs.

From the above discussion and the result of Fig.4-2, we find out that both the K-BRDF
and S-BRDF model generally perform well in the presentation of the directional emissivity,
especially for sparse and middle dense vegetation canopy. Although they have a relative
higher error in the dense canopy, this error (less than 0.002) can be ignored, especially for the
K-BRDF model. Besides, the two BRDF models almost have small difference in the
directional emissivity except for the case of Fig.4-2(d). However, one should note that the
parameter k in the S-BRDF was required between 0 and 1, which will result in a series of
directional emissivity decreasing rather than increasing with the VZA in theory. On the
contrary, the result of Fig.4-2 is actually obtained with k larger than 1. Although the S-BRDF
model performs well in fitting mathematically the bi-directional reflectivity, the parameter k
larger than 1 reduces its physical meaning. Therefore, the S-BRDF model is not
recommended, at least for the bi-directional reflectivity and directional emissivity from the
SAIL series models.

Furthermore, we chose ten vegetation samples and seventeen soil samples from UCSB
Emissivity Library (Snyder and Wan 1998; Snyder et al. 1998), and calculated their channel
emissivity with the MIR spectral response function that will be stated in the next chapter. The
bi-directional reflectivity for each combination (total 170) of soil and vegetation was
simulated using the SAILH model and then was used to fit the three kernel coefficients of the
K-BRDF model. Fig.4-3 shows the relationship among those three coefficients for different
LAls, which indicates that there is a linear relationship between those kernel coefficients,
especially for small LAIs. If any one of the three coefficients can be obtained, the other two
will be consequently determined from this linear relationship. As a result, the number of
unknowns is reduced. However, this linear relationship almost disappears or is eliminated for
the dense vegetated canopy, such as the case LAI = 4.0 (see Fig.4-3(d)). The application of
such linear relationship might cause much uncertainty to the result in this case.

Besides, as seen from Fig.4-3, it is found that the value ranges of the coefficients fgeo, fuol
and fis, mainly distributed within [0.0, 0.9], [-0.3, 0] and [0, 0.3], respectively, and become
narrower with the increasing LAIs. This information is generally useful in the retrieval of
those coefficients from remotely sensed data and will be used as a prior knowledge in the
process of recovering emissivity from multi-angular data that will be presented in the next
chapter.
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Fig.4-3. Relationship between the three coefficients of the K-BRDF model at (a) LAI =0.5, (b) LAI =1.0,
(c) LA1=2.0, and (d) LAI = 4.0, respectively.

4.3.2 Comparison of the TIR-SAIL and gap-frequency-based models

Fig.4-4 displays the directional emissivity respectively from the TIR-SAIL model (black
square), FRA97 (red circles) and FRAO02 (blue downward-pointing triangles) at different LAIS.
It shows that the emissivity of both FRA97 and FRAO2 parameterization models is totally
smaller than that of the TIR-SAIL model. The reason for the difference between the
TIR-SAIL and FRA02 model might be explained as that the FRA02 parameterization model
only deals with the multiple scattering in the interface of soil and vegetation layers and
ignores the multiple scattering inside the vegetated layers. The TIR-SAIL model iteratively
calculates the upward and downward flux between two adjacent vegetated layers and only
accounts for single scattering between soil and the upper vegetation layers. On the other hand,
because the FRA97 model handles the contributions from the two scattering paths in the
TIR-SAIL model, its results are closer to the TIR-SAIL model than the FRA02 model, and
has a similar tendency with the TIR-SAIL model as shown in Fig.4-4.
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Fig.4-4. Comparison of directional emissivity respectively from the TIR-SAIL model, FRA97 model with
previous and new cavity effect factors, and FRAO02 models at (a) LAl = 0.5, (b) LAl = 1.0, (c) LAI = 2.0
and (d) LAI = 4.0.

However, the emissivity difference between the FRA97 and the TIR-SAIL model also
cannot be ignored, especially for some large VZAs. It needs to update the cavity effect factor
a, which is an indicator of the multiple scattering in the canopy and generally represents the
proportion of the radiation that penetrates into the canopy and is reflected out of the canopy.
Based on the radiative transfer model of (Prévot 1985), Francois et al. (1997) found that the
canopy directional emissivity at a specified VZA always reached a limit emissivity &;m which
only depended on the vegetation emissivity and VZA rather than on the background soil
emissivity. Fig.4-5(a) and (b) present the directional emissivity at VZA = 0° and 55° at
different LAIs simulated from the TIR-SAIL model. The vegetation emissivity is 0.98 and the
soil emissivity is 0.90, 0.92, 0.94 and 0.96, respectively. It releases that the canopy emissivity
for all soil cases reaches the same point, i.e., the limit emissivity &m, which is about 0.9944
and 0.9935 respectively for VZA = 0° and 55°, larger than the vegetation emissivity 0.98 due
to the multiple scattering. Furthermore, Fig.4-5(c) shows that the limit emissivity e&jim
increases with the vegetation emissivity. Francois et al. (1997) developed a method to
calculate the cavity effect factor « as (e, is the vegetation emissivity):

a=01-¢.,)/l-¢,). (4.15)
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0° and 55° with vegetation emissivity 0.98 but different soil emissivity, respectively. (c): the limit
emissivity at VZA = 0° with soil emissivity 0.94 but different vegetation emissivity. (d): the primary and

new cavity effect factors at different viewing zenith angles.

Based on the directional emissivity from the TIR-SAIL model and the FRA97
parameterization model, new cavity effect factor o for the TIR-SAIL model was calculated
and presented in Fig.4-5(d) along with those reported in (Francois et al. 1997). The cavity
effect factor actually slightly varies with vegetation emissivity but the variation is very small
and can be ignored. As seen from Fig.4-5(d), the new « is totally smaller than those of
(Francois et al. 1997), especially for the large VZAs, which indicates that multiple scattering
still contributes to the directional emissivity at VZA = 90° in the TIR-SAIL model, while this
scattering disappears in the model of (Prévot 1985). We use the new factor in Eq.(4.12) to
recalculate the directional emissivity and present the result in Fig.4-4 (green triangles,
denoted as FRA97 New). Compared with the result of the FRA97 model using previous
version of the factor, the directional emissivity of the FRA97 New is closer to the TIR-SAIL
model, especially for the large VZAs, because the difference of the new and previous « is
more significant in large VZAs than the smaller one, as shown in Fig.4-5(d).
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4.4 Parameterization of directional brightness temperature

Up to now, modeling the directional brightness temperature (DBT) of homogenous or
heterogeneous canopies has attracted many attentions. For example, except for the
aforementioned TIR-SAIL models, Kimes (1983) simulated the DBT of the row canopy by
treating the row structure as a rectangular cross section for the first time and calculated the
fractions of different components from the row structure. Inspired by this concept, several
similar models have been developed by considering the bi-directional gap, hotspot effect or
crop growth stages (Chen et al. 2002; Du et al. 2007; Huang et al. 2010; Yan et al. 2003; Yu et
al. 2004). Pinheiro et al. (2006) developed a Modified Geometric Projection (MGP) model by
highly parameterizing the geometric-optics (GO) model to first separate the components’
fractions with given canopy structure and observation variables and then weighted those
fractions with components’ brightness temperatures to generate the DBT for homogeneous or
discontinues canopies. The MGP was further used to investigate the angular variation of
surface temperature for the sensors AVHRR and SEVIRI (Phinheiro et al. 2006; Rasmussen et
al. 2011; Rasmussen et al. 2010). The MGP can present the hotspot of the LST at pixel scale,
but it ignores the contribution of multiple scattering in the canopy, which reduces the DBT in
theory. Besides, it is difficult to provide the input data about the tree density and width and
height, which hampers its wide application.

As stated above, this thesis used the TIR-SAIL to simulate the directional emissivity. To
unify the directional emissivity, the way of simulating DBT should also come from the SAIL
series model. However, since the TIR-SAIL model developed by (Liu et al. 2003) only
concerns on two components (soil and vegetation), its DBT was only dependent on the VZA
but independent on viewing azimuth angle (VAA). Therefore, the TIR-SAIL model of (Liu et
al. 2003) was unable to character the hotspot. Although the 4-component SAIL model
proposed by (Verhoef et al. 2007) separated the components to four parts: sunlit and shaded
leaves, and sunlit and shaded soil, we have no access to get the code of this model. To the end,
the parameterization model of the SAILH model by (Li et al. 2010), who presented the
primary SAILH model by weighting four components’ (sunlit and shaded leaves, and sunlit
and shaded soil) reflectivity and their fractions estimated from given canopy structures, was
employed to parameterize the DBT for the homogenous canopy, written as:

L:ifi-gi-Bi(Ti)+L

i=1

(4.16)

multi

Lo = 0 Liear A= 84) + (1-a)[1-b(@)A-0)]-[1-b(O)]A-¢,) - L (4.17)

multi leaf !

where, L is the directional thermal radiance (the inversion of L according to the Planck’s law
will produce the DBT). fjis the fractions of different components and can be estimated from
the parameterization model of (Li et al. 2010), provided the solar and viewing directions,
canopy structure and model parameters. T; and &; are the temperature and emissivity of the
components. Only three components (leaves and sunlit and shaded soils) are concerned in this
thesis, because the temperature difference between sunlit and shaded leaves is very small
compared to the temperature difference between the sunlit and shaded soils. Ly IS the
multi-scattering between soil and leaves, and between leaves inside the canopy. The first part
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of the right-hand side of Eq.(4.17) is the reflected leaves’ radiation by the soil, and the second
part is the multi-scattering inner the canopy. The terms in this equation have been defined
above. The cavity effect factor used the updated one based on the TIR-SAIL model. Table 4-1
lists the main input variables of the simulation DBT including the solar zenith and azimuth
angles, LAI of the canopy, the temperature of leaf (Tiear), sunlit soil (Tsun soir) @and shaded soil
(Tsha_soit), and the emissivity of vegetation (ey) and soil (gg). Note that the simulated DBT is
assumed to be atmospherically corrected.

Table 4-1. The main input parameters for the DBT simulation

SAA SZA LAl Tieat Tsun_soil Tshd_soil &y &g
120° 30° 0.5:0550 305K 320K 315K 0.985 0.95

Besides, we also used the kernel-driven BRDF model to fit the hemispheric DBT by
replacing the bi-directional reflectivity in the left-hand side of Eq.(4.4) with the DBT, as
reported by (Peng et al. 2011). Since we aim at the non-isothermal pixel and the components’
fractions vary with solar and viewing azimuth angles, the DBT is consequently depends on
the azimuth angles.

DBT (6,,6,,0) =K', + Ko (60,05, 0) + ' Koo (6,, 6, 0) . (4.18)

The Ross-Thick and Li-SparseR kernels are used as the volumetric and geometrical
scattering kernels in Eq.(4.18). Based on the input variables shown in Table 4-1 for the DBT
simulation using Eq.(4.16) and the SAILH parameterization model (Li et al. 2010), Fig.4-6
displays the simulated DBT distribution (the first column) and the fitted DBT from the
K-BRDF model (the second column) and their temperature difference (the third column) at (a)
LAI =0.5, (b) LAl = 1.0 and (c) LAI = 2.0. The maximum zenith angle is constrained to 60°
because the K-BRDF model was reported to obtain unacceptable result for larger zenith angle
(Snyder and Wan 1998; Sobrino et al. 2005).

As seen from Fig.4-6, the angular variation of the DBT is up to about 3.0 K for the
simulation conditions (Table 4-1). However, this angular variation relies on the components’
temperature difference and canopy structure: larger temperature difference generally leads to
larger angular variation. The K-BRDF model fits well the distribution of DBT, only leading to
error lower than 0.3 K. The hotspot effect in the solar direction is significant and but it is also
found that the maximum temperature difference occurs around this direction and the DBT
from the K-BRDF model is generally larger than that from the simulation result in the
directions around the solar beam. The increase of LAI totally decreases the DBT because the
fraction of leaves increases and the leaves’ temperature is lower than that of soils.
Furthermore, the LALI also influences the temperature difference caused by regression process
of the K-BRDF model. Fig.4-7 shows the RMSE (root-mean-square-error) and the maximum
temperature difference with LAIs. It indicates that the RMSE is smaller than 0.1 K and the
maximum temperature is smaller than 0.3 K, and both of them reach their global maximum at
about LAl = 2.
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Furthermore, we also checked the K-BRDF model in different solar positions,
components’ temperatures and emissivities, and canopy structures, and the results further
confirmed the availability of the K-BRDF model in the presentation of the DBT distribution.
Therefore, according to the above discussions and results, a conclusion can be drawn that
Eq.(4.16) can represent the hemispheric distribution of the DBT very well and the K-BRDF
model can fit the DBT distribution robustly, without leading significant error if no noise is
included in the data. Note that, because the components’ emissivity is considered as
angle-independent and consequently the DBT of bare surface is isotropic, we only discuss at
the level of canopy rather than the case of bare surface.

The above result is obtained by using the K-BRDF model for all viewing zenith and
azimuth angles. However, it is almost impossible to observe the same target under so many
directions in reality. On the contrary, only several angular observations are usually conducted.
Consequently, a problem is raised: how many observations and under what viewing angles are
needed for the K-BRDF model to fit the DBT accurately? In order to find out the optimum
observation groups, this thesis used two different ways in the following discussions:
single-point pattern and linear-array pattern.

4.4.1 Single-point pattern for the optimum angular combination

According to Eq.(4.18), at least three angular observations are needed to complete the
K-BRDF model. More observations can make the fitted coefficients more reliable in theory
but the error in those observations could cause more uncertainty to the fitted result. Therefore,
we start with only three viewing angles. The objective of this work is to find out the local
optimum viewing angle combination that can cause the smallest error from the K-BRDF
model, and also to provide some suggestion for the future development of the multi-angle
airborne or space-borne TIR sensors. Therefore, for the achievable purpose in the mechanical
design of the sensors, we herein assume that all observations are made with the azimuths in
the same plane, i.e. their azimuths equal zo ¢ or ¢ + 7.

Taking ¢ = 0 for example, the three observations’ zenith angles vary in the azimuth plane
(0O~x), at a step of 10° with the maximum 60° in the zenith direction. Observations are
forbidden to have the same value of zenith and azimuth angles. As a result, there are 126
groups of the three angles. To find out the optimum group, we use firstly Eq.(4.16) to simulate
the hemispheric DBT under different cases of solar positions (SAA from 0° to 330° with a
step 30°, SZA=10°, 30° and 50°), LAIs (0.5~5.5 with a step 0.5) and the components’
temperatures and emissivities in Table 4-1, resulting in a total of 396 cases. Consequently, the
three coefficients of Eq.(4.18) are obtained from the DBT of three angles, and this process is
controlled additionally by an optimization algorithm. Table 4-2 shows the frequency of the
RMSE in [0.0, 0.5] K, [0.5, 1.0] K and the number of the occurrences of the maximum and
minimum RMSEs, respectively. The cases without nadir viewing direction is not displayed
here because they do not have better results and also because of the limited space.

Some criteria are proposed to filter out the final optimum angle combinations:

(1) Most of the RMSE of the K-BRDF model should fall in the range of 0.0~0.5 K;;
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(2) The maximum difference seldom occurs in the angle combinations;

(3) Most of the minimum difference should be obtained in the combinations;

(4) Observation in very large zenith angle is not recommended, and the interval of the
adjacent zenith angles should be as large as possible.

According to the above four criteria and the results shown in Table 4-2, it is found that
large viewing zenith angles could make the fitted error smaller, and several angle
combinations can be considered as the candidate for the optimum groups: @ [(0°, 0°), (0°,
30°), (180°,50°)]; @ [(0° 0°), (0°, 40°), (180° 50°)]and @ [(0°, 0°), (0°, 40°), (180°,
60°)]. Although the combination [(0°, 0°), (0°, 50°), (180° 60°)] has the maximum
occurrences for the minimum error, the occurrences (five times) in the maximum error and
large viewing zenith angles make this group unavailable.

Among the three candidates, group 3 cannot be recommended because of its large
viewing zenith angle in the direction (180°, 60°), whose pixel sizes is as large as four times of
the pixel size at nadir observation if the sensor’s IFOV/(instantaneous field of view) keeps the
same in every direction. Compared with group @), group @ works slightly better. However,
the final decision cannot be made without any sensitivity analysis to the errors involved in
observed data.
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Table 4-2. The frequency of the root-mean-square error (RMSE) in different three angle combinations

=t gt @ oM gd g RMSE RMSE _
Max* Min#
VAA VZA VAA VZA VAA VZA [0.0~05]K [0.5~1.0]K
0 0 0 10 180 10 195 44 122 0
0 0 0 10 180 20 241 43 49 1
0 0 0 10 180 30 299 40 16 2
0 0 0 10 180 40 316 33 15 0
0 0 0 10 180 50 337 7 1 12
0 0 0 10 180 60 323 4 5 11
0 0 0 20 180 10 243 42 45 1
0 0 0 20 180 20 295 18 11
0 0 0 20 180 30 315 34 14 4
0 0 0 20 180 40 337 20 2 3
0 0 0 20 180 50 359 3 1 15
0 0 0 20 180 60 354 7 19 11
0 0 0 30 180 10 299 39 17 2
0 0 0 30 180 20 316 34 14
0 0 0 30 180 30 351 16 0 7
0 0 0 30 180 40 361 3 0 6
0 0 0 30 180 50 360 0 0 14
0 0 0 30 180 60 373 0 2 9
0 0 0 40 180 10 316 35 16 0
0 0 0 40 180 20 337 20 2 3
0 0 0 40 180 30 361 2 0 6
0 0 0 40 180 40 364 1 0 3
0 0 0 40 180 50 373 0 0 26
0 0 0 40 180 60 373 0 1 47
0 0 0 50 180 10 336 8 1 14
0 0 0 50 180 20 359 4 1 16
0 0 0 50 180 30 360 0 0 14
0 0 0 50 180 40 373 0 0 26
0 0 0 50 180 50 353 2 2 14
0 0 0 50 180 60 365 8 5 69
0 0 0 60 180 10 322 5 4 10
0 0 0 60 180 20 354 8 22 12
0 0 0 60 180 30 373 0 1 10
0 0 0 60 180 40 373 0 1 47
0 0 0 60 180 50 365 8 69
0 0 0 60 180 60 349 0 21 0

*Max stands for the frequency of maximum temperature difference, while #Min stands for the
frequency of minimum temperature difference.

In order to investigate the sensitivity of the different angle groups to the DBT errors, some
artificial noises within [-0.5, 0.5] K and [-1.0, 1.0] K in a uniform distribution were
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respectively added to the simulated DBT of Eq.(4.16). The three coefficients of the K-BRDF
model were recalculated and then used to obtain the hemispheric DBT. The output of the
K-BRDF model was constrained by the optimization algorithm as that the DBT must reach
the maximum value in the solar direction.

Fig.4-8 shows the RMSE histograms of the temperature difference caused by the
three-angle K-BRDF model using the angles groups (D~@ by responding to the DBT noise
of [-0.5, 0.5] K and [-1.0, 1.0] K, respectively. It illustrated that group (3 obtained the
smallest errors for two noise conditions, followed by group @ and . The RMSE
percentages of the three angle groups W~® in the range of 0.0~1.0 K are about 92.4%,
96.6% and 96.3% for the noise condition [-0.5, 0.5] K, 80.1%, 88.5% and 91.1% for the noise
condition [-1.0, 1.0] K. Those results indicates that the three groups have the ability to obtain
an error of temperature better than 1.0 K for most cases if the noise involved in the observed
DBT data is no more than 1.0K. However, it is obvious that group @ and @ are less
sensitive to the noise in the observed data. As stated above, group 3 cannot be used as the
optimum viewing angle combination because of the large viewing zenith angle and the
occurrence of maximum errors. As a result, group @ should be the optimum one in theory.
However, as the pixel size increases with the increasing VZA, the ratios of pixel area at VZA
= 30°, 40° and 50° to that of nadir are 1.32, 1.70 and 2.40, respectively. It’s necessary to need
a pixel with a middle area to connect the observations from nadir to large VZAs, especially
for heterogeneous surfaces. In this case, the zenith angle in group @ leads a more continues
series of pixel sizes (1, 1.3 and 2.4 times of nadir pixel size). Besides, the angle intervals in
the slant direction of group @ (i.e., 20°) is larger than that of group @ (i.e., 10°), which
makes group (D less sensitive to the error included in the observation angle itself in theory.
Therefore, we prefer to the angle combination of group (U, and take this group as the local
optimum angle combination for the DBT regression using three-angle K-BRDF model.
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Fig.4-8. RMSE histogram of the three-angle kernel-driven model for DBT noise within (a) [-0.5, 0.5] K
and (b) [-1.0, 1.0] K.
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4.4.2 Linear-array pattern

For most sensors onboard the polar-orbit satellite, it scans the surface in the crossing-track
direction by rotating the mirror toward the target or using the array detectors to monitor the
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earth under different relative zenith angles to the nadir direction or by taking photos under
central projection manner. In this study, we take the way of the array detectors for example
and suppose that a sensor is equipped with three arrays of detectors to observe the earth at
nadir, forward and backward directions and that all detectors have the same spectral and
radiative characteristics. Based on the result from the above section 4.4.1, we use the
combination of group @ [(0°, 0°), (0°, 30°), (180°, 50°)] as the optimum one to investigate
the case of the array observations. Fig.4-9 shows the array detectors (or pixels) for the nadir,
forward and backward directions. Each array has 27 pixels from left to right with an interval
of 5° in the range of £65° at the Nadir array. If assume the satellite flies in the north-south
direction and ignore the influence of the rotation of the earth itself, the azimuth angle of the
left part of the Nadir array is 90° and that of the right part is 270°. The viewing zenith and
azimuth angles (VZA and VAA) in the backward and forward arrays can be calculated as:

6, =arctan(tan 6, /tan6,,), ¢, = arctan(\/tanzek +tan20ilo), (4.19)

where, 6 is the viewing zenith angle of the ith pixel in the backward or forward arrays. 6o
is the viewing zenith angle of the ith pixel in the Nadir array. 6 is the zenith angle of the
backward or forward arrays relative to the nadir, i.e. 6 = 30° or 50°. ¢;y is the relative angle
between the azimuths of the ith pixel in the nadir and off-nadir directions. The absolute
azimuth angle will be finally determined by ¢; and the position of the ith pixel in the Nadir
array.

Pixel series number
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Fig.4-9. The illustration of three linear-arrays. The “pixel series number” was the number of each pixel
corresponding with Fig.4-10; the pixels marked with “PA”, “PB” and “PC” were used for analysis.

Based on Eq.(4.19), the azimuth and zenith angles for each pixel in the three linear-arrays
of Fig.4-9 are consequently calculated and displayed in Fig.4-10. As seen from Fig.4-10, the
differences of VZA and VAA of the same pixels in the three arrays are significant in the
middle part of those arrays, but decrease with the pixels getting close to the edges of the
arrays. Since the angle difference will influence the temperature difference between different
viewing directions, a small difference in viewing angles might cause large errors into the
K-BRDF model, which will be illustrated in following discussion.
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Fig.4-10. (a) Viewing zenith angles (VZA) and (b) azimuth angles (VAA) of the three arrays. The pixel

series number can be found in Fig.4-9.

In order to check the availability of the K-BRDF model on the array observation pattern
and analyze the influence of the three angles in different places of the arrays, we firstly
simulated some hemispheric DBT with varying LAIs and solar positions, and then added
some uniform-distributed noise in [-0.5, 0.5] K to the simulated data and finally compared the
fitted DBT from the K-BRDF model with the truth DBT from the simulations. The following
parts will discuss the influence of SZA, SAA and LAI on the DBT residual caused by the
K-BRDF model in the total hemisphere and on the DBT difference at nadir observation that is
usually considered as the reference direction for the angular correction of temperature.

4.4.2.1 The influence of solar position

Since the VZA and VAA of each pixel in the arrays are fixed, the solar position impacts
the fractions of sunlit soil, shadow soil and leaves as well as the components’ temperatures in
each pixel. To analyze the sensitivity of the K-BRDF model to the solar position, we simulate
the hemispheric DBT by changing SAA from 0° to 330° with a step of 30°, with SZA equal
10°, 30° and 50° for each SAA. Atotal of 5 LAIs (0.5, 1.0, 2.0, 3.0 and 4.0) are used for each
solar position. Artificial noise is added to the simulated DBT. All pixels in Nadir, backward or
forward array include the same noise, respectively, but different arrays have different noises.

A. The influence of SZA on the K-BRDF model

Fig.4-11 shows the RMSE histograms for the temperature difference resulted from the
K-BRDF model at different SZAs. Fig.4-11(a) shows the RMSE for all pixels, which
indicated that the percentage of RMSE within [0,1.0] K for SZA=10° is larger than the other
two SZAs. A small SZA can lead to a low uncertainty for the estimated DBT and presents less
sensitivity to the noise. Fig.4-11(b), (c) and (d) show RMSE histograms of three pixels
marked with PC, PB and PA in Fig.4-9, which corresponds to VZA = 0°, 45° and 60° in the
Nadir array, respectively. It is found that the case of the pixel PC has the most robust ability to
deal with the noise (Fig.4-11(b)). The pixels (e.g. PA) closed to the edge of the array have
more errors in the estimated DBT because as shown in Fig.4-10, the difference of their VZA
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and VAA in the three arrays are very small, which causes a small variation of the components’
fractions between three viewing angles, and consequently leads to a small temperature
difference in the observed DBT data. To the end, the K-BRDF model turned out to be highly
sensitive to the noise included in the DBT. Therefore, a better result from the K-BRDF model
requires a significant difference between the viewing angles.
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Fig.4-11. RMSE histograms of DBT difference for different pixels and SZAs

Based on the results of Fig.4-11, the cumulative percentage of RMSE ranging in [0.0, 1.0]
K has been calculated for each pixel and SZA, and shown in Fig.4-12. The VZA of the X-axis
is the zenith angle of the pixel in the Nadir array. Fig.4-12 indicates that such cumulative
percentage generally decreases with the increase of VZA, especially in the range of VZA
larger than 45°. For SZA = 10° and 30°, their cumulative percentages are about 95% at VZA
smaller than 45°, and even near 100% at nadir direction. On the contrary, such percentage for
SZA = 50° is about 85%, much lower than the other two SZAs. Therefore, as seen from the
Fig.4-12, an angular observation with the maximum VZA less than 45° at Nadir array and a
relative small SZA is necessary to make sure that the cumulative percentage of the
temperature error in the range of 0.0~1.0 K caused by the K-BRDF model is no less than
85%.
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Fig.4-12. The cumulative percentages of RMSE in [0.0, 1.0] K for different pixels in Nadir array and SZA.

B. The influence of SZA on DBT difference at nadir observation

Once the three kernel coefficients of the K-BRDF model are determined, the DBT in any
other direction can be estimated in theory. Nadir direction is taken as the reference direction
in this thesis, and the DBT is normalized from other direction to the nadir observation.
Fig.4-13(a) displays the histograms of the temperature difference between the normalized
DBT at nadir from the K-BRDF model and the truth nadir value in the simulation. It releases
that most of the difference ranges in [-1.0, 1.0] K with a bias about 0.2 K. Similar results are
obtained for the three SZAs although the case of SZA = 30° performed a little better than the
other two SZAs. The occurrence of the sawtooth in the curves of the graphs in Fig.4-13(a)
might be caused by a lack of enough simulations. Fig.4-13(b) shows the cumulative
percentage of DBT difference in [-1.0, 1.0] K for different pixels and SZAs. Similar to the
Fig.4-12, the percentages decrease with the increasing of VZA and almost are distributed in
symmetry with respect to the central pixel. For those pixels with small VZAs, the K-BRDF
model works well at all of the three SZAs, but its accuracy is degraded for the pixels near the
edges of linear arrays. These results are similar to those of the previous section, which further
indicate that the requirement of an angular observation with middle SZA, and VZA at Nadir
array less than 45° is necessary for an acceptable result.
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Fig.4-13. (a) The histograms of DBT difference at nadir, and (b) the cumulative percentages of DBT
difference in [-1.0, 1.0] K for different viewing angles and SZAs
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C. The influence of SAA on the K-BRDF model

Similar to Fig.4-11, Fig.4-14 shows the RMSE histograms for the temperature difference
resulted from the K-BRDF model at different SAAs. It is also found the result of the pixel (e.g.
Fig.4-14(d)) near the edges of the array showing more uncertainty than the other pixels. It is
difficult to decide which SAA is the best for all pixels but as seen from Fig.4-14(a), the error
of the K-BRDF model is generally smaller at the solar position closer to the viewing azimuth
(0°~180°). The case of SAA = 90° generally provides the worst result perhaps because this
solar position results in the smallest variation in components’ fractions and temperatures.
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Fig.4-14. RMSE histograms of DBT difference for different pixels and SAAs
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Fig.4-15 displays the angular variation of the cumulative percentages of temperature
RMSE within [0.0, 1.0] K. The percentages are not symmetric with respect to the central pixel
for SAA = 30°, 60° and 90° as those in Fig.4-12. For example, the percentages in the
right-hand side of SAA = 30° is larger than those in the left-hand side, while the right-hand
side of SAA = 60° is generally smaller than those in the left-hand side. The curve of SAA =
90° varies significantly with the VZA. However, the cases of SAA = 0°, 120°, 150° and 180°
are almost symmetric with the central pixel’s location. These different patterns for different
SAAs are caused by the difference of the viewing angles in the backward and forward arrays.
According to the VAAs for each pixels of the three arrays shown in Fig.4-10(b) and the results
of Fig.4-14, a cautious conclusion can be drawn that the larger the difference between the
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solar azimuth and the azimuth angles of array Forward50° is, the better the result of the
K-BRDF model will be.
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Fig.4-15. The cumulative percentages of RMSE in [0.0, 1.0] K for different pixels in Nadir array and SAA.

D. The influence of SAA on DBT difference at nadir observation

Fig.4-16(a) shows the histograms of the temperature difference between the normalized
DBT at nadir from the K-BRDF model and the truth nadir value in the simulation. It
illustrates that there is almost no difference among those SAA. Fig.4-16(b) is the
corresponding cumulative percentages with DBT difference in [-1.0, 1.0] K. The results of the
SAA = 30° 60° 90° and 120° turned out to be better in one side than the other, perhaps
because of the different viewing zenith angles in the backward and forward arrays. As seen
from both Fig.4-15 and Fig.4-16, the requirement on the error of no less than 85% pixels falls
in the error range [0.0, 1.0] K, needs the maximum VZA in Nadir array smaller than 45° for
most SAAs but still depends on the SAA.
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Fig.4-16. (a) The histograms of DBT difference at nadir for different SAAs, and (b) the cumulative
percentages of nadir DBT difference in [-1.0, 1.0] K for different viewing angles and SAAs.

4.4.2.2 The influence of LAI

LAI impacts the gap frequency of the canopy and consequently influences the fractions of
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leaves and soils. As the leaves usually has a lower temperature than the soil, large LAIs lead
to smaller temperature for the canopy. Using the same methods than above, we have checked
the influence of the LAI on the result of the K-BRDF model with LAI equal 0.5, 1.0, 2.0, 3.0
and 4.0. The other simulation conditions keep the same with the above discussion.

A. The influence of LAl on the K-BRDF model

Fig.4-17 shows the RMSE histograms for different LAls when there are noises of [-0.5,
0.5] K included in the DBT data, which indicates that the K-BRDF model is not very sensitive
to the noise for the case of larger LAIs, especially with LAI larger than 2.0. However, the
K-BRDF model causes a relative larger error to LAI = 1.0 than to LAI =0.5, possibly because
the changes from soil-dominated canopy (small LAI) to vegetation-dominated canopy (large
LAI) degrade the accuracy of the regression process in the K-BRDF model.
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Fig.4-17. RMSE histograms of DBT difference for different pixels and LAIs

Fig.4-18 is the variation of cumulative percentages of the temperature RMSE within [0.0,
1.0] K for the VZAs in the Nadir array and different LAIs. Similar to the influence of the solar
position, the pixels closer to the edges of the arrays has smaller cumulative percentages and
larger uncertainties, while the pixels in the range of [-45°, 45°] obtain more reliable results
from the K-BRDF model. As stated previously, the VZAs smaller than 45° are required to
obtain reliable fitted DBT from the K-BRDF model.
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B. The influence of LAl on DBT difference at nadir observation

Fig.4-19(a) shows the histograms of the temperature difference between normalized DBTs
at nadir from the K-BRDF model and the truth nadir value in the simulation at different SAAs.
It illustrates, except for the case of LAl = 4 which obviously presents largest percentage in the
[-1.0, 1.0] K, that no significant difference between the histogram of the other LAIs can be
observed. Fig.4-19(b) is the variation of cumulative percentages of the nadir DBT difference
in [-1.0, 1.0] K with the viewing angles in the Nadir array and different LAIs. This figure
shows that there are no difference in the cumulative percentage for all LAIs in the range of
small VZAs (i.e. -20° ~20°), but larger LAIs can generally generate higher percentages in
large viewing zenith angles. Therefore, the K-BRDF model is more reliable for dense
vegetated canopy than for relative sparse canopy. The case of LAI =1.0 has the smallest
percentages perhaps because of the mixed effect described above. Similarly, an acceptable
cumulative percentages (>85%) for all LAIs requires the viewing zenith angle to be less than
45°,
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Fig.4-19. (a) The histograms of DBT difference at nadir for different LAIs, and (b) the cumulative
percentages of DBT difference in [-1.0, 1.0] K for different viewing angles and LAIs.

From the above discussion about the three linear-array pattern, we find that the VZA in
Nadir array has to be smaller than 45° in order to enable most of the temperature error from
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the K-BRDF model no more than 1.0 K, and that the middle SZA and partly and dense
vegetated surface can improve the accuracy of the model.

4.5 Conclusions and discussions

This chapter firstly compares four parameterization models for the directional emissivity
of canopy based on the result of the TIR-SAIL model developed by (Liu et al. 2003). The four
models are respectively the kernel-driven BRDF model (K-BRDF) with Ross-Thick
volumetric kernel and Li-SparseR geometric-optic kernel, the semi-empirical BRDF model
S-BRDF (Li et al. 2000), the analytical parameterization model FRA97 (Francois et al. 1997)
and the multiple scattering model FRAO2 (Francois 2002). Results show that both K-BRDF
and S-BRDF model can accurately represent the angular variation of the canopy directional
emissivity for low and middle LAIs. However, for dense vegetated canopy, such as LAI = 4.0,
the S-BRDF model almost has an opposite tendency pattern for the directional emissivity to
the result of the TIR-SAIL model, and the emissivity difference between the two model is as
large as 0.007 for larger VZAs. On the contrary, the K-BRDF model presents a relative higher
accuracy because it holds a similar angular pattern of the directional emissivity to the
TIR-SAIL model with emissivity difference less than 0.002. Besides, we find out that the
factor k of the S-BRDF is always larger than 1.0, an outlier of its physical value between 0
and 1.0. As a result, comparison between the K-BRDF model and the S-BRDF model
indicates that the former performs a litter better than the latter in the parameterization of the
directional emissivity. Therefore, the K-BRDF model will be used in the further analysis of
the angular normalization of the land surface temperature. Besides, linear relationships
between the three kernel coefficients of K-BRDF model are found from the simulation data
composed with ten vegetation and seventeen soil samples chosen from emissivity database.
Moreover, results also show that the FRA02 model has large error in the parameterization of
directional emissivity simulated from the TIR-SAIL model perhaps because the FRA02
ignores the multiple scattering between the vegetation layers inside the canopy. Besides, the
cavity effect factor developed by (Francois et al. 1997) based on the (Prévot 1985) in the
FRA97 model is found to be no longer suitable for the TIR-SAIL model, so it has been
refined according to the TIR-SAIL model, and the new value consequently increases the
accuracy of the FRA97 model, especially at large VZAs.

Using the refined cavity effect factor and the parameterization method of the SAILH
model (Li et al. 2010), we have developed a new way to simulate the directional brightness
temperature (DBT) of the canopy which is assumed to be composed with leaves, sunlit and
shaded soils. The hemispheric DBT simulated from the new method can obviously present the
hotspot effect of the DBT. Based on the simulated DBT, analysis results show that the
K-BRDF model, refined by replacing the bi-directional reflectivity in the primary model with
the DBT, performs well in the regression of the hemispheric DBT, leading to an error lower
than 0.3 K. If the three kernel coefficients of the K-BRDF model are known, the DBT in any
other direction is obtainable in theory. Therefore, the K-BRDF model gives us an opportunity
to make angular normalization of the DBT. To check the availability of this model in the
angular normalization and find out the optimum angle combination for this model, two
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different ways are used for investigation: single-point pattern and linear-array pattern. The
single-point pattern finally selects the angle combination [(0°, 0°), (0°, 30°), (180°, 50°)] from
many three-angle groups as the optimum angle combination because the K-BRDF model
using the DBT under this angle combination give out a robust result and because the pixel
resolution of this angle combination keeps a finer continuity from fine to coarse scales.
Furthermore, we extend this optimum angle combination to the three linear-array pattern
(Nadir, Forward 50° and backward 30°, respectively), which are assumed to be onboard of
polar-orbit satellite and use to observe the earth’s surface in multiple angles as the satellite
moves forward. Investigations of the consistency of the K-BRDF model to the solar position
and LAIs show that a middle SZA, and a SAA along satellite track direction, and a relative
higher LAI is more appropriate to enable a reliable fitted DBT from the K-BRDF model.
However, the results depend on the pixel location in the arrays as the closer to the edges of the
arrays, the worse the result will be. Because the VZA and VAA differences of the pixels in the
position of different arrays gradually become smaller as the pixel moves from the centre
position to the edge of arrays. As a result, it reduces the angular variation of the DBT
observed by the edge pixels in different arrays and consequently caused the K-BRDF model
more sensitive to the noise in the observed DBT data. Finally, based on the analysis of the
temperature RMSE and the temperature difference of the nadir DBT, we find out that the VZA
in the Nadir array cannot be larger than 45° to enable the temperature RMSE within [0.0, 1.0]
K and the temperature difference of the nadir DBT within [-1.0, 1.0] K for most cases (85%).
These results may provide some suggestion to design the multi-angular observation system
onboard the satellite.

However, in this thesis we only use the SAIL series models including TIR-SAIL and
SAILH models to simulate the directional emissivity and brightness temperature, so the new
cavity effect factor may not be suitable to other radiative transfer models. The DBT simulated
from the proposed new method is not yet validated with field data because of a lack of field
data on homogenous canopy. Furthermore it is only used to provide the DBT data resource for
the illustration of the K-BRDF model in the angular correction of the land surface temperature
and for the algorithm development of the retrieval of directional emissivity and DBT from the
multi-angular observations in Chapter 5. Future work should concern on field validation.
Besides, in this thesis, we only discuss the case of three angular observations and force their
azimuths to be in the same plane. Therefore, the angle combination [(0°, 0°), (0°, 30°), (180°,
50°)] is only a local optimum for the development of three linear-array detector system. To
answer the question “how many observations under what viewing angles are needed for the
kernel-driven BRDF model to fit the DBT accurately?” still requires more work.
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Chapter 5

Angular normalization of land surface temperature and
emissivity from multi-angular middle and thermal infrared

iImages

Based on the result of previous chapter, this chapter proposes a daytime TISI
(temperature-independent spectral indices) method to retrieve directional emissivity and
effective temperature from daytime multi-angular observed images in both middle and
thermal infrared (MIR and TIR) channels by combining the kernel-driven BRDF
(bi-directional reflectance distribution function) model and the TISI method. Four groups of
angular combinations and two groups of MIR and TIR channels with narrow and broad
bandwidth were used to investigate the influence of the angular observations and the
bandwidth on the retrieval accuracy. Model sensitivity analysis indicated that the new method
can obtain directional emissivity and temperature with an error less than 0.015 and 1.5 K if
the noise included in the measured directional brightness temperature and atmospheric data
was no more than 1.0 K and 10%, respectively. The analysis also indicated that (1) large-angle
intervals among the angular observations and a larger viewing zenith angle (VZA) with
respect to nadir direction can improve the retrieval accuracy of emissivity and temperature
because those angle conditions can result in significant difference for component fractions
and directional brightness temperatures under different viewing directions, and (2) narrow
channels can produce better results than broad channels. The new method was finally applied
to a multi-angular MIR and TIR dataset acquired by an airborne system, and a modified
kernel-driven BRDF model was used for angular normalization to the surface temperature for
the first time. The difference of the retrieved emissivity and ASTER emissivity was found to
be approximately 0.012 in the study area.

5.1 Background

Land surface temperature (LST) is strongly required for many applications, including
agrometeorology, climate and environmental studies. Thermal infrared images from aircraft
and spaceborne satellites provide a unique opportunity to map this parameter at regional and
even global scales. However, the determination of LST from remotely sensed data needs to
solve two types of problems. The first is atmospheric correction, which aims to remove the
contribution of atmospheric emission and scattering to the target radiation in the path from the
surface to the sensor. The other involves accounting for the emissivity effect on the LST to
allow the retrieval of LST from the radiance measured at the surface. Many methods have
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been proposed to retrieve LST from remotely sensed data depending on different
specifications of thermal infrared sensors and the atmospheric and emissivity data situations,
reviews of those methods can be found in Chapter 2. For operational purposes, those methods
often take the observed pixel as a homogeneous and isothermal target, and this assumption is
reasonable for pure or quasi-pure pixels, such as bare soil, sand, snow and dense vegetated
surface. However, for mixed pixels including two or more components at different
temperatures and emissivities, the pixel temperature actually presents spectral and angular
variations. As a result, the above assumption will be incorrect, and at least, the retrieved LST
only presents the effective temperature at its corresponding viewing direction and cannot be
directly taken as the temperature at nadir or under other directions in theory.

The angular behavior of LST has been investigated in many previous studies (Chehbouni
et al. 2001; Coret et al. 2004; Lagouarde et al. 2004; Lagouarde et al. 1995; Li et al. 2004b;
Minnis and Khaiyer 2000; Rasmussen et al. 2011), and this angular variation results primarily
from the angular variation of the pixel emissivity for three-dimensional surfaces and the
relative weights of more than one component (e.g., vegetation and background soil) with
different temperatures included in the scene. Some ground measurements have indicated that
the LST difference at nadir and off-nadir observations can be as large as 5 K for bare soils and
even 10 K for urban areas. For satellite images, the pixels also face a similar situation because
the pixels in the same image are usually observed with significantly different viewing angles.
For example, Moderate Resolution Imaging Spectroradiometer (MODIS) scans the land
surface in the cross-track direction with viewing zenith angle (VZA) varying from -65° to
+65°, and thus, angle-dependent variations in the retrieved LST are inevitable, which make
the LSTs of different pixels in the same image incomparable and eventually lead to large
errors. Similar cases can be observed in other satellite sensors, such as Advanced Very High
Resolution Radiometer (AVHRR), Spinning Enhanced Visible and InfraRed Imager (SEVIRI),
and so on. Therefore, it is crucial to make angular corrections to the LST.

Until recently, there have been two types of methods for solving this angular LST problem.
One method focused on the modeling of directional emissivity, and the other method is aimed
at the retrieval of pixel components’ temperatures. The former simply attributes the angular
variation of the measured effective temperature to the directional behavior of the pixel
emissivity. If the directional emissivity at the viewing direction is known, LST can be
retrieved by taking the inverse of the radiative transfer model, and the result is consequently
assumed to be angle independent. However, because this method ignores the angular variation
caused by the component temperatures, and it is always difficult to determine the directional
emissivity at the pixel scale, the results of this method are far from satisfactory. In contrast,
the retrieval of component temperatures is more promising for achieving LST angular
correction because once the components’ temperatures are obtained from multi-angle
observations (Jia et al. 2003; Li et al. 2001; Menenti et al. 2001), vegetation indices (Liu et al.
2012) or spatial patterns (Zhan et al. 2011), the thermal radiance at any direction can be
theoretically calculated by weighting the component temperatures with their corresponding
fractions. However, this method always requires the component emissivities and their
fractions to be known in advance, but those parameters are seldom easily obtained in practice.
As a result, there has been no practical way until now to perform LST angular correction due
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to the complexity of this issue.

Multi-angular observation on the same targets is considered the most promising way to
solve this problem. However, there are still rare reports about LST angular correction or
simultaneous retrieval of directional emissivity and temperature from multi-angular TIR
images because no more than two angular observations were designed for satellite sensors
(e.g., the ATSR/AATSR, Advanced Along Track Scanning Radiometer), and the number of
the observation was less than that of the unknowns. On the other hand, more angular
observations can be obtained easier from airborne sensors than from spaceborne sensors, such
as the WiDAS system (Liu et al. 2012) in the WATER campaign (Li et al. 2009). From the
view of this point, the objective of this chapter is to develop a new method for simultaneously
retrieving directional emissivity and temperature from the multi-angular observation of
middle and thermal infrared (MIR and TIR) data using the TISI method and the kernel-driven
BRDF model, and to achieve angular correction on the temperature using modified BRDF
model. It is organized as follows: Section 5.2 will present some basic theory on retrieval of
emissivity and temperature data from multi-angular observations in both MIR and TIR
channels; Section 5.3 will discuss the model sensitivity analysis with respect to some input
parameters and errors; Section 5.4 will be devoted to the application of the new method to an
aircraft dataset consisting of MIR and TIR images at several viewing angles, which were
obtained in the WATER campaign (Li et al. 2009), and the cross validation of the results; and
finally, some discussion and conclusions will be presented in the last section of this chapter.

5.2 Algorithm for retrieving angular temperature and emissivity
5.2.1 Radiative transfer equation

For a cloud-free sky, the radiance measured by an infrared channel onboard a satellite or

an aircraft can be approximated as Eq.(5.1) (Li et al. 2013a).
I (QS’QV’(D) = R(QS,QV,(D) -T(QS,QV,(D) + RaT + R5|T ' (51)
The first term of the right-hand side of Eq.(5.1) is the measured surface-leaving radiance
after attenuation passing through the atmosphere, and the second and third terms are the

contribution of upward atmospheric emission R and scattered solar radiance Ry,
respectively. The surface-leaving radiance R(0s, 6y, ¢) is written as the following:

R(QS’QV'Q)) = E(QV,(/)V)B[T (95,9\/,(0)] + [1_‘9(9v’(0v)] ' (Ra¢ + Rsm)

,  (5.2)
+p(0510v’§0) : Esun

where, 6, and 0 are the viewing zenith angle (VZA) and solar zenith angle (SZA), whereas ¢,
is the relative azimuth angle between the viewing azimuth angle ¢, (VAA) and solar zenith
angles ¢s (SAA). 7 is the atmospheric transmittance. This first term of the right-hand side of
Eq.(5.2) is the surface thermal radiation, whereas (6, ¢,) is the surface emissivity in the
viewing direction. Because the emissivity is assumed to be VAA-independent in this thesis as
reported by (Chehbouni et al. 2001; Francois 2002; Francois et al. 1997), the term &(6,, ¢\ )
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will be replaced with £(6,) in the following discussion. B[T(6s, 6y, ¢)] is the surface thermal
emission calculated using the Planck’s law at the effective temperature T(6s, 6y, @), which will
be defined from directional emissivity in the next section and varies with the viewing
geometry for the non-isothermal pixel rather than an angle-independent value as indicated in
some previous studies. The second term is the downward atmospheric radiance R, and solar
scattering radiance Rg, reflected by the surface at the viewing direction. The last part of
Eq.(5.2) presents the solar direct illumination reflected by the surface with the bi-directional
reflectivity p(6s, 6., ¢). For the middle infrared channel at nighttime and the thermal infrared
channel, no reflected solar radiance (Ry; and Egn in Eqg.(5.2)) contributes to the
surface-leaving radiance. Note that, Egs. (5.1) and (5.2) are similar to Egs. (2.2) and (2.3),
respectively. However, the variables included in Egs. (5.1) and (5.2) are related to the viewing
and solar azimuth angles because the two equations concern on the non-isothermal pixel,
while Egs. (2.2) and (2.3) conduct the isothermal pixel.

5.2.2 Daytime TISI method

The TISI method was initially developed to separate temperature and emissivity from
daytime and nighttime MIR and TIR images, and the method has been successfully applied to
retrieve bi-directional reflectivity in the MIR channel and emissivity from the AVHRR,
MODIS and SEVIRI onboard MSG (Dash et al. 2005; Goita and Royer 1997; Jiang et al.
2006; Li et al. 2013b; Li et al. 2000; Nerry et al. 1998; Petitcolin et al. 2002a; Petitcolin and
Vermote 2002). According to the TISI method, the Planck’s law can be approximated using a
power function for the MIR or TIR channel:

L=¢-m-T", (5.3)

where, the coefficients m and n are channel-dependent. Furthermore, the surface-leaving
radiance can be consequently expressed as R = e.m.T".C, with C accounting for the reflected
downward atmospheric radiations. A two-channel emissivity ratio, TISIE;;, between one MIR
channel (denoted as i) without solar illumination and one TIR channel (denoted as j) was
defined by (Li and Becker 1993; Li et al. 2000) to improve the retrieval of emissivity and
consequently LST as follows:

g _ R .m?ij ,C?ij _ R

n|] nij . . nij
g' R’ m C R

TISIE; = ‘M -C;, with n;=n;/n;. (5.4)

ji

Introducing Eq.(5.4) into Eq.(5.2) obtains the expression to calculate the bi-directional
reflectivity as follows:

1 "
pi(6;,0,,0) :E_[Ri —TISIE; -R}” - M -Cy]. (5.9)

sun

The final solution of Eq.(5.5) requires the value of TISIE;; which is assumed to be the
same at daytime and nighttime if there is no occurrence of rain, snow or dew, and the
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nighttime TISIE;; can calculated directly using Eq.(5.4) from the nighttime observations in
both the MIR and TIR channels. However, because the TISI method requires daytime and
nighttime observation of the same target in a short time frame, its application cannot be
achieved for the sensors that only provide daytime observations. To solve this problem, Goita
and Royer (1997) extended the original TISI method to retrieve emissivity from two
consecutive datasets acquired at the same time during daytime by simplifying the TISIE and
the characteristics of the bi-directional reflectivity. However, their simplifications, especially
the case of TISIE = 1, will introduce some unexpected error into the retrieved emissivity and,
consequently, the LST.

Inspired by the results of (Jiang and Li 2008a), a new daytime TISI method is proposed
that uses the TISI method and the kernel-driven BRDF model to simultaneously retrieve
emissivity and temperature from a sufficient number of angular observations. First, the
bi-directional reflectivity in the MIR channel can be expressed as Eq.(5.6) on the basis of the
kernel-driven BRDF model:

Pi (95 1 QV!(:D) = fiso + fvol : kvol (05 ) 9v1<0) + fgeo ’ kgeo (95 1 0v!(p) , (56)

where, fis, Is the isotropic scattering term, fyo is the coefficient of the volumetric kernel kyor,
and fgeo is the coefficient of the geometric kernel Kgeo. The Ross-Thick volumetric kernel and
the Li-SparseR geometric kernel are used in this thesis (Jiang and Li 2008a). If the
bi-directional reflectivity p is known for at least three viewing directions, the three kernel
coefficients (fiso, fuor and fgeo) can be regressed using the least squares method. In contrast, if
the three kernel coefficients are known in advance, the bi-directional reflectivity p in arbitrary
direction can be estimated from Eq.(5.6). Therefore, the retrieval of p will be equivalent to the
retrieval of those kernel coefficients. Moreover, combining Egs. (5.4) and (5.6) into to Eq.(5.2)
will produce a new formula:

Ri(es,ev,(p)zﬂsmu-R;‘”(e 6,,0)-M; -C; +(fi, + fo K

sty

+f -k )-E

vol geo geo

(5.7)

vol sun *

In Eq.(5.7), the terms R; and R; are the measured radiance in the MIR and TIR channels,
respectively; the solar illumination Eg,, can be estimated from atmospheric data (Nerry et al.
1998); M;; and n;; are channel-dependent and can be fitted using laboratory-simulated data; the
index Cj; is complicated because it relies on both surface and atmospheric conditions and can
be approximated as Cjj = [1 — Rai/Bi(Tmax)] / [1 — Rai/Ri] (Jiang et al. 2006), with Tmay is the
maximum the brightness temperature in the TIR channel under different viewing angles. The
rest of the terms of Eq.(5.7) are the unknown variables, including the three coefficients of the
BRDF model and the TISIE. Although the emissivities of both MIR and TIR channels (i.e., &
and &) vary with the viewing angle, the angular variation of TISIE is not significant and is
less than 0.01 for most cases. Therefore, it is reasonable to use only one average TISIE in
Eq.(5.7) to reduce the number of unknowns. As a result, there are only four unknowns that
remain (TISIE, fiso, fvor and fgeo) in Eq.(5.7). If the same target is observed at more than four
directions, those unknown X can be retrieved from the linear equation group such as Y = AX,
where A is the coefficient matrix composed by the terms in Eq.(5.7) and Y denotes R;.
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Once the three coefficients of the BRDF model are obtained, the directional emissivity in
the MIR channel can be estimated as one minus the hemisphere-directional emissivity on the
basis of Kirchhoff’s law (Jiang and Li 2008a; Lucht and Roujean 2000; Roujean et al. 1992;
Wanner et al. 1995).

&(0)=1-["["* p(0,.6,.p)sin(0,) cos(6,)dodo. (5.8)

According to Eq.(5.6), the integration of the reflectivity in the upward hemisphere is equal
to the result of integrating the three kernels (kvol, Kgeo, @and 1) in the same angle range because
the values of the kernel coefficients are fixed for all angles. Jiang and Li (2008a) calculated
the integration of the Ross-Thick volumetric kernel (lky) and Li-SparseR geometric kernel
(Ikgeo) With SZA varying from 0° to 80° and SAA varying from 0° to 360° with a step 0.05°
and then related Ik, and Ikgo to the VZA (6,) using an exponent growth function and a
Gaussian function, respectively. Finally, based on the concept of the two-channel TISIE
defined in Eq.(5.4), the emissivity in the TIR channels can be obtained from the TISIE and the
emissivity in the MIR channel (Jiang et al. 2006; Li et al. 2000).

_ gi (Qv) 1/nij
q(@)—($ﬁﬁgg] . (5.9)

The advantage of the above daytime TISI method (hereafter called the D-TISI method) is
that it eliminates the requirement of daytime and nighttime measurements in the original TISI
method by using at least four angular daytime observations in both MIR and TIR channels,
and it requires only one atmospheric correction for all angular observations rather than two
times, respectively, for the daytime and nighttime observations. However, because the
temperature difference between those angular observations is not as large as that of the
daytime and nighttime observations, the relatively high correlations in the radiative transfer
equations like Eq.(5.7) may make the model sensitive to data error. Therefore, an optimization
algorithm is needed to avoid outliers.

It is worth noting that all variables/parameters in the above equations, except for the
angles, are channel-effective values. The channel-effective quantities of interest are calculated
as a weighted value from monochromatic values using the spectral response function f(1): (Li
et al. 2013a):

" ()X, dA
< XA 6.10

Jff(lﬂi

where, 4; and 7, are the lower and upper response wavelength of the ith channel, respectively,
and X stands for B(T), R, L, Ra;, Rat, Ray, & 7, Or p. Egs. (5.1) and (5.2) are actually
approximations of the theoretical radiative transfer equation in which monochromatic
quantities are replaced with channel-effective values, and those approximations are only
reliable for a narrow channel.
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5.3 Model analysis
5.3.1 Channel specifications

We were concerned with the MIR and TIR channels from two sensors: the airborne
WIDAS (Wide-angle infrared Dual-mode line/area Array Scanner) system (Fang et al. 2009;
Liu et al. 2012) used in the WATER field campaign (Li et al. 2009), and the MODIS
channels 20 and 31. The MIR and TIR images of WiDAS will be used in the next section for
the validation of the D-TISI method. However, as shown in Fig.5-1, the bandwidths of the
WIDAS’s two channels are up to 4 um and 11 um, respectively, which are rare in current
airborne or spaceborne sensors and will reduce the accuracy of the approximations of the
radiative transfer function from the monochromatic value to the channel-effective value as
stated in Eq.(5.8), in addition to degrading the accuracy of the approximation of the exponent
expression of the channel radiance using EQ.(5.3). In contrast, the bandwidths of the
MODIS’s MIR and TIR channels are relatively narrower, and such narrow bandwidths are
usually observed for several sensors. Therefore, although this thesis will not use the MODIS
data to validate the D-TISI method due to the lack of the multi-angular observation images,
the following analysis will discuss the retrieved result from the MODIS’s two channels in
detail rather than the WIDAS, to make the findings of this thesis more representative and
reliable. We also provide the general results for the WiDAS system.
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——MODIS TIR
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Fig.5-1. Spectral response functions of the MIR and TIR channels for the WiDAS system and the MODIS
sensor, respectively.

Table 5-1 shows the coefficients m and n in Eq.(5.3) for the channels of MODIS and
WIDAS. Two temperature ranges, 270 K to 300 K and 300 K to 330 K, were used for the
power approximation with a higher accuracy. The m and n can be determined with the
measured TIR brightness temperature.
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Table 5-1. Parameters m, n, and error (rms and max) for the MIR and TIR channels of MODIS and WiDAS

270 K~ 300 K 300K ~ 340 K

Sensor&
Ln(m) n AL AL Ln(m) n AL AL

Channel
(rms)  (max) (rms)  (max)
MODIS MIR -76.68 13.32 0.002 0.006 -68.43 11.87 0.009 0.032
TIR -2418 464 0.014 0.036 -21.46 416 0.029 0.078
WIDAS MIR  -60.57 10.67 0.003 0.011 -54.74  9.65 0.014 0.047

i

TIR -26.01 495 0012 0.032 -23.49 451  0.027 0.073

5.3.2 Simulation conditions

Many surface and atmospheric conditions have to be designed to simulate the
bi-directional reflectivity in the MIR, directional emissivity and measured radiance of the
MIR and TIR channels. Because the D-TISI method addresses the atmospherically corrected
radiance, only the surface-leaving radiance is used. We considered the middle-latitude
summer atmospheric models included in the MODTRAN 4.0 radiative transfer code. The
rural aerosol model was assumed with a visibility of 10, 15, 20, 25, 30, 40 and 50 km, and the
column water vapor was set with 0.25 WVax, 0.5 WV ax and 0.75 WV nax, Where WVnay is the
maximum water content in the atmospheric model.

The SAILH model (Verhoef 1989) was used to simulate the bi-directional reflectivity in
the MIR channel and the directional emissivities in both the MIR and TIR channels. The
SAILH model was inherited from the SAIL (scattering by arbitrarily inclined leaves) model
(Verhoef 1984), which incorporated the foliage hotspot effect according to the theory of
Kuusk (1985), and the results of the SAILH model should be closer to reality than the original
model. The input variables of the SAILH model include the canopy parameters (e.g., leaf area
index, hotspot factor) and component properties (e.g., reflectivity and transmittance). The
SAILH model outputs the bi-directional reflectivity at any designed viewing geometry.
Furthermore, the hemisphere-directional reflectivity of the canopy is integrated from the
bi-directional reflectivity in the hemisphere, and the directional emissivity is estimated as the
complement of the hemisphere-directional reflectivity based on Kirchhoff’s law. Although
this thesis concerns non-isothermal surfaces, the emissivity is assumed to be independent of
the temperature distribution of the surface (Li et al. 1999). As a result, Kirchhoff’s law is still
suitable at least for the above calculation of the directional emissivity over the non-isothermal
surface. Note that, in the Chapter 4, we simulated the directional emissivity from the
TIR-SAIL model (Liu et al. 2003) or from the complement of hemispheric-directional
reflectivity integrated from the SAILH model, and found that a slight difference existed
between the two ways. Details can be found in section 4.3.1. Since we parameterized the
directional emissivity simulated from the TIR-SAIL model, for context coherence reasons,
this chapter should use the TIR-SAIL model to simulate directional emissivity of the canopy.
However, in order to uniform the bi-directional reflectivity and directional emissivity in MIR
channel as well as in TIR channel, and also to remove the error in the simulated dataset for the
model analysis, we only used the SAILH model in this chapter.
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Table 5-2. The channel emissivity for the MODIS and WiDAS system, chosen from UCSB emissivity
database

MODIS MODIS WIiDAS WiDAS
MIR TIR MIR TIR
Vegetation Samples
0.9566  0.9626  0.9572  0.9572 Leaf of Maple
0.9384 0.9535 0.9096 0.9664 Dry Grass (Averaged over 9 Sets)
0.9392 0.9540 0.9103 0.9669 Dry Grass3 (Averaged over 9 Sets)
0.9691 0.9601 0.9677 0.9617 Fresh leaf of Eucalyptus tree
0.9724 0.9714 0.9714 0.9742 Laurel leaf
0.9586  0.9563 0.9577 0.9525 Leaf Magnolia
0.9642 0.9617 0.9638 0.9621 Leaf of Evergreen Pear
0.9856 0.9908 0.9860 0.9914 Leaf of Green Spruce from Canada
0.9841 0.9807 0.9844  0.9809 Leaf of Pine(New)
0.9781 0.9792 0.9786 0.9787 Leaf of Pine(Old)
Soil Samples
0.9248 0.9681 0.9369 0.9618 Salty Soil (Averaged over 19 Sets)
0.8392 0.9581 0.9242 0.9012 Sand Sample 2 from Orchard
0.8467 0.9719 0.8694 0.9571 No0.88p2535S from Nebraska Soil Lab
0.6816  0.9590 0.7503 0.9531 N0.88p3715S from Nebraska Soil Lab
0.8252 0.9789 0.8597 0.9656 N0.88p4643S from Nebraska Soil Lab
0.6066  0.9477 0.6869 0.9380 N0.90p3101S from Nebraska Soil Lab
0.6918 0.9712 0.7519 0.9532 N0.90P4172S from Nebraska Soil Lab
0.7793 0.9746 0.8347 0.9586 N0.90P4255S from Nebraska Soil Lab
0.8501 0.9760 0.8885 0.9656 Soil Sample 1 from Concord, MA
0.7858 0.9828 0.8408 0.9535 Soil Sample 10 from Oklahoma
0.7842 0.9767 0.8431 0.9497 Soil Sample 13 from Oklahoma
0.8712 0.9744 0.8938 0.9631 Soil Sample 3 from Concord, MA
0.8493 0.9673 0.9077 0.9568 Soil Sample 4 from Death Valley, CA
0.8548 0.9758 0.9047 0.9512 Soil Sample 5 from Oklahoma
0.8346 0.9679 0.8700 0.9438 Soil Sample 7 - Hard Pan
0.7569 0.9661 0.8602 0.9301 Soil Sample 7 from Death Valley, CA
0.8418 0.9725 0.8905 0.9449 Soil Sample 9 - Hard Pan, Ground

Sample Name

We chose 10 vegetation and 17 soil samples from the UCSB spectral emissivity databases
and obtained their channel emissivity for the MIR and TIR channels using Eq.(5.10), which
resulted in a total of 170 combinations of vegetation and soil samples. Table 5-2 shows the
channel emissivity of the MODIS and WiIDAS. Because the wavelength range (3~14 um) of
the sample emissivities did not cover all the response wavelengths of the WiDAS’s two
channels, the spectral emissivity out of the 3~14 um was not used in the integration procedure
from monochromatic emissivity to the channel emissivity. Note that sample emissivities were
assumed to be angle-independent. Furthermore, those samples’ reflectivity input to the SAILH
model was calculated as the complement of the channel emissivity listed in Table 5-2, and the
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transmittance of the samples equaled zero. A spherical canopy was assumed in the SAILH
model, and the LAI varied from 0.5 to 5 with a step of 0.5.

As shown in Fig.5-2, the simulated TISIE in the MODIS channels mainly distributes in
the range [0.95, 1.1], whereas some TISIE values are smaller than 0.9 because of the low
emissivity of some soil samples in the MIR channel and the small LAIs. According to the
results obtained by Jiang et al. (2006), the pixel TISIE were mostly larger than 0.96 for
several different combinations of the MIR and TIR channels. Therefore, we only consider the
case of TISIE larger than 0.92, which covers approximately 92% of the total samples.
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Fig.5-2. Histogram of TISIE in the MODIS simulated dataset

The non-isothermal canopy was assumed to consist of three components: leaves, sunlit
soil and shaded soils. Six groups of those three component temperatures were used, as shown
in Table 5-3. T-groups 1 and 2 represent low component temperatures with small and large
differences, respectively. T-groups 3 and 4 represent middle temperatures with small and large
differences, respectively. Finally, T-groups 5 and 6 represent high temperatures, and their
temperature differences are generally larger than the other groups because this case may occur
in sparse canopies and/or in summer.

Table 5-3. Different groups of components’ temperatures used for simulations

T-group No. Tieaf (K) Tsun_soil (K) Tshd_soil (K)

1 270 280 273
2 270 285 275
3 290 300 293
4 290 305 295
5 310 325 315
6 310 330 320

84



Chapter 5. Angular normalization from multi-angular middle and thermal infrared images

5.3.3 Canopy directional radiance and directional effective temperature

Based on the simulation conditions as stated above, the bi-directional reflectivity and
emissivity were simulated with the SAILH model, and the downward atmospheric radiance
and solar radiance in Eq.(5.2) were determined from MODTRAN 4.0. The canopy directional
effective radiance in Eq.(5.2) (i.e., Le(6s, Oy, @)= €(6,) B[T(6s, 6\, ¢)]) was further simulated as
follows:

3
Le (es'evlgo) = z fk (es'evlgo) : Lk + I—mul'ri ' (511)

k=1

Lot = 0 ¢ Lear 1= 8¢) + 1= a)[1-b(0,)1 -0 )]-[1-b(6,)]A-¢,)-L (5.12)

leaf *

The first term of Eq.(5.11) is the weighted radiance by the component fraction fy,
calculated from a parameterization model of the SAILH model by (Li et al., 2011) at the
viewing geometry (6s, 6y, @) and the component emitted radiance Ly calculated from the
emissivity (see Table 5-1) and temperature (see Table 5-2) using Planck’s law. The second
term of Eq.(5.11) is the radiance scattering between the leaves and soil (first part of the
right-hand side of EQ.(5.12)) and between leaves (second part of the right-hand side of
Eq.(5.12)) in the canopy. b(0) is the directional gap of the canopy, and oy is the hemispheric
leave fraction, both of them can be determined by using canopy LAI and viewing angles. «
denotes the cavity effect accounting for the multiple scattering inside the canopy. More details
about the calculation of b(6), o and « can be found in Chapter 4. On the basis of the L¢(6s, 6.,
@) simulated from Eq.(5.11), we defined the directional brightness temperature (DBT) and the
directional effective temperature (T,) for the non-isothermal canopy as Eq.(5.13). B[] is the
inversion of Planck’s law. Note that the consideration of the non-isothermal canopy causes Te
to vary with channels, which does not satisfy the requirement of the D-TISI method that the
temperature must be the same in the MIR and TIR channels. To satisfy the requirement, the T,
of the MIR channel was forced to equal that of the TIR channel in our simulated dataset.
However, the DBTs were channel-dependent.

DBT (6,,6,,¢) = B[R(6..6,.9)]*, and T.(6.,6,.9) = B{%] . (5.13)

5.3.4 Multi-angular combinations

As stated above, at least four angular observations are required to solve the four
unknowns. A previous study indicated that a large difference among VZAs can reduce the
correlations between radiative transfer equations and can obtain more accurate results in the
retrieval of emissivity and temperature (Francois et al. 1997). To illustrate the influence of the
different angular observations on the retrieval accuracy, we used four groups of angular
observations (Table 5-4): (1) five angles: nadir, forward and backward 10° and 30°; (2) five
angles: nadir, forward and backward 30° and 50°; (3) five angles: nadir, forward and
backward 20° and 40°; and (4) seven angles: nadir, forward and backward 10°, 20° and 40°,
respectively. The forth group is the designed angular combination of the WiDAS system. In
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addition, we assumed that the backward direction has an azimuth angle 180°, and the forward
direction has an azimuth angle 0°.

Table 5-4. Different angle combinations

Case No. Angle combination (VAA, VZA) description
1 (0°, 0°); (0°, 10°), (0°, 30°) and (180° five angles: nadir, forward and
10°), (180°, 30°) backward 10° and 30°
5 (0°, 0°); (0°, 30°), (0°, 50°) and (180°, 30°), five angles: nadir, forward and
(180°, 50°) backward 30° and 50°
3 (0°, 0°); (0°, 20°), (0°, 40°) and (180°, 20°), five angles: nadir, forward and
(180°, 40°) backward 20° and 40°
4 (0°, 0°); (0°, 10°), (0°, 20°), (0°, 40°); and seven angles: nadir, forward and
(180°, 0°), (180°, 20°), (180°, 40°) backward 10°, 20° and 40°

5.3.5 Initial values of the four unknowns

The initial value of the TISIE can be obtained using a similar relationship between the
TISIE and the ratio of the MIR and TIR surface-leaving radiance, as proposed by (Goita and
Royer 1997). With the known atmospheric downward radiance from atmospheric data, we
first used & = 0.98 (j denotes the TIR channel) to retrieve the T, in the TIR channel and
applied T, in the radiative transfer equation (i.e., Eq.(5.2)) to calculate the bi-directional
reflectivity with an approximation p(6s, 6y, @) = 1 - &(6,), and then we estimated the three
coefficients (fiso, fvor and fgeo) from the BRDF model shown in Eq.(5.6). These initial values
were consequently input into an optimization algorithm to obtain the final solution of the four
unknowns.

5.3.6 Model analysis

Because the observed data always included some noise from the instrument noise,
atmospheric correction and angle-controlling error, the retrieval accuracy may be
consequently degraded. To evaluate the model’s consistency with the LAI, angular
combination, as well as temperature and TISIE themselves, some artificial noise was
introduced into those data. The noise included in the atmospheric data ranged from [-10%,
10%] of the data itself, and the noise introduced in the DBT of the MIR and TIR channels was
within [-0.5, 0.5] K and % [0.5, 1.0] K. The two types of DBT noise were used to investigate
the reliability of the above four angular combinations. All noise was provided with a uniform
distribution. Note that the results shown from Fig.5-3 to Fig.5-7 came from the MIR and TIR
channels of the MODIS sensor, whereas the results of Fig.5-8 are for the WiDAS system.

A. Influence of LAI

The root-mean-square error (RMSE) of the retrieved TIR emissivity is displayed in
Fig.5-3 for the equivalent temperature noise within [-0.5, 0.5] K, included in simulated DBT,
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and in Fig.5-4 for the noise within £ [0.5, 1.0] K. As observed in the two figures, the RMSE
initially decreases and then increases with the increasing LAIs. As for the sparse (e.g., LAl =
0.5) or dense (e.g., LAl > 4) vegetated surfaces, their angular variations of the component
fractions and DBT were not remarkable, and consequently, the solution of Eq.(5-7) was
sensitive to the noise included in the MIR and TIR brightness temperatures and atmospheric
data. In contrast, for the partly vegetated surface (e.g., LAl =1.5, 2.0), the variation of the
component fractions and DBT caused by the different viewing angle becomes relatively more
significant, whereas the retrieval process is less influenced by the noise in the input data.
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Fig.5-3. RMSE of TIR emissivity at different angular observations and LAIls, with DBT noise of the MIR
and TIR channels within [-0.5, 0.5] K included in the DBT of both MIR and TIR channels.

B. Influence of angular combinations

As stated above, four groups of angular observations were used to determine the “best”
combination for the retrieval of the bi-directional reflectance and emissivity. The retrieval
RMSE for most cases in Fig.5-3 is smaller than 0.01, and all of them are less than 0.015,
whereas for most cases in Fig.5-4, the RMSEs are less than 0.015. A greater noise included in
the DBT produced larger error in the retrieved emissivity. A comparison between the results
from different cases of the angular combinations indicates that case (2) performs better than
the others, especially for the DBT noise within [-0.5, 0.5] K, most likely because case (2) had
the largest off-nadir observation (i.e., VZA = 50° ) and the largest angle interval (i.e., AVZA =

87



Chapter 5. Angular normalization from multi-angular middle and thermal infrared images

30° or 20°) (see Table 5-4), which corresponded to the largest difference in the component
fractions and DBT between the different viewing angles and consequently reduced the
correlation of the radiative transfer equations, resulting in more reliable retrieval result. On
the other hand, the smallest off-nadir observation (i.e., VZA = 50°) and angle interval (i.e.,
AVZA = 10° or 20°) in case (1) enhanced the correlations of their radiative transfer equations,
leading to the lowest retrieval accuracy. Comparing the results of case (3) and (4), case (3)
performed slightly better than case (4), especially for T-groups 1 and 2. This better
performance might be because although case (4) has more angular observations (seven) than
case (3), the correlations of the radiative transfer equations were increased by the smaller
angle interval in case (4), and the error included in the additional angular observation can also
degrade the retrieval accuracy. Therefore, more observations will not always obtain more
accurate results unless the angle interval is large enough.
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Fig.5-4. Similar to Fig.5-3, but with DBT noise within + [0.5, 1.0] K.

From the above discussion and the results shown in Fig.5-3 and Fig.5-4, we determined
that case (2) is the best angular combination among the four examined angle cases, and these
results are similar to a previous study (Francois et al. 1997). However, these results do not
mean that case (2) involves the best angular combinations for the retrieval, as it is actually
difficult to determine the best combination from numerous combinations with different
viewing angles in the upper hemisphere. Although a large viewing angle can improve the
retrieval accuracy, it is not recommended to use a viewing angle larger than 55° because the
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pixel size of such viewing angle is approximately 4 times the size of the nadir observation,
and the different pixels size may result in the presentation of different components and/or
their temperatures, especially for heterogeneous surfaces.

C. Influence of components’ temperatures

The correlation between the radiative transfer equations of different viewing angles is
related to the temperature discrepancy of the components in the scene. Large temperature
discrepancies can reduce this correlation, whereas small temperature discrepancies can lead to
a higher correlation. As shown in Table 5-3, T-groups 1 and 2 had a similar level of different
component temperatures, but the temperature discrepancy for T-group 2 was larger than
T-group 1. Therefore, as the correlation of the angular observation is less significant in
T-group 2, the retrieval error of T-group 2 is smaller than T-group 1, as shown in Fig.5-3 and
Fig.5-4. A similar case was found for T-groups 3 and 4 and 5 and 6. However, this difference
of the retrieval errors between T-groups 1 and 2, 3 and 4, and 5 and 6 was so limited that it
almost disappeared in some results, as observed in Fig.5-3, perhaps because the relatively
smaller temperature difference in T-groups 1, 3 and 5 is large enough to reduce the influence
of the temperature difference and also because of the influence of noise included in the
measured data.

Fig.5-4 also shows that the retrieval errors of T-groups 1 and 2 were almost smaller than
those of the other T-groups with higher DBT, especially for the angle cases (2) and (3). These
results indicate that the increase of DBT could not enable a better retrieval result because at
the same level of the component temperatures’ difference, the increase of component
temperatures inversely reduced the angular variation of the DBT between the angular
observations. Fig.5-5 presents the histograms of the difference AT’ = AT;-ATy of temperature
discrepancies between the nadir and off-nadir 50° observations, where AT1=Tpagir - Tsoe IN
T-group 1 and ATx=Tpagir - Tsoe (X = 3 and 5) in T-groups 3 and 5. It was observed that the
temperature discrepancy between the nadir and off-nadir 50° in T-group 1 was larger than that
of T-groups 3 and 5, especially for the MIR channel. As for the T-group 1 and 3 (see filled
squares in Fig.5-5(a) and (b)), the temperature discrepancy AT;was notably larger than AT;
for both the MIR and TIR channels, and all of the AT’ values in the TIR channel ranged from
0.0 K to 0.2 K, whereas most of the AT’ values in the MIR channel were more than 1.0 K.
Consequently, this variation in the temperature discrepancy of nadir and off-nadir directions,
from a lower temperature to a higher temperature but with similar difference of component
temperatures, caused a corresponding higher correlation in radiative transfer equations and
finally led the retrieval process from T-group 3 to be more sensitive to the noise than that
from T-group 1. As for T-groups 1 and 5 (see unfilled squares in Fig.5-5(a) and (b)), the AT’
between AT; and ATs of the MIR channel was notable and generally larger than the AT’
between ATjand ATs. However, as seen from Fig.5-5(b), most of the AT; were smaller than
ATs, which means that the temperature discrepancy between the nadir and off-nadir 50° was
enlarged in the TIR channel from T-group 1 to T-group 5. As a result, this variation might
cause T-group 5 to obtain a more accurate result than T-group 3 in theory. However, because
temperature discrepancies in the MIR channel were remarkably reduced, the retrieval
accuracies from T-group 5 were generally lower than that from T-group 1, and even lower
than that from T-group 3 in some cases. Similar reasons can be used to explain the variation
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between T-groups 2 and 4. T-group 6 had a better result because it had a larger component
temperature discrepancy than the other groups. From the above discussions, a cautious
conclusion can be drawn that at the same level of component temperature differences, the case
with a relatively lower brightness temperature will lead to better results for the retrieval
emissivity in the TIR channel, as well as for the bi-directional reflectivity and emissivity in
the MIR channel. However, the results still depend on the specific situation, including the
atmospheric conditions and canopy structures.
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Fig.5-5. Histograms for the difference of the temperature discrepancy between nadir and off-nadir 50°.

D. Influence of TISIE

Fig.5-6 presents the RMSE for the retrieved TIR emissivity, which varies with the TISIE
for two noise conditions. Only angle case (2) was used for illustration. These data show that
the RMSEs for TISIE within [0.92, 1.06] were smaller than 0.015, which is the accuracy
required for some sensors (Gillespie et al. 1998). According to the histogram in Fig.5-2, this
part of the TISIE covers approximately 91% of all samples and approximately 98% of the
samples with a TISIE larger than 0.92. Moreover, this range of TISIE also covers the values
of most natural surfaces as reported by (Jiang et al. 2006) on satellite data. However, for those
larger TISIEs (i.e., > 1.05) resulting from dense vegetated surfaces or sparse surfaces whose
MIR emissivity is relatively larger and TIR emissivity is relatively smaller, the retrieval
accuracy might be degraded by the small angular variation of the component fractions and
DBT as described above.
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Fig.5-6. Influence of TISIE on the retrieval accuracy by using angle case (2)

Fig.5-7(a) displays the histograms of the residual error for the retrieved bi-directional
reflectivity in the MIR channel and emissivity in the TIR channel with DBT noise within [-1.0,
1.0] K. These results show that the bias of reflectivity was close to 0 but that of the TIR
emissivity was larger than O and nearly 0.004, which indicates that the retrieved TIR
emissivity was generally larger than the true value and that the accuracy of the retrieved
reflectivity was higher than that of the TIR emissivity. This result is reasonable because, from
Eq.(5.7) and the kernel-driven BRDF model in Eq.(5.6), the accuracy of the bi-directional
reflectivity is only influenced by the three coefficients driven from Eq.(5.7), whereas that of
the TIR emissivity is not only dependent on the three coefficients and TISIE but also relies on
the parameter Cj; described in Eq.(5.4). The error in the estimated Cjj can degrade the
accuracy of the TISIE solution, and the errors in TISIE and the MIR emissivity calculated
from the BRDF model using the retrieved three coefficients can be further enlarged by the
exponent conversion of Eq.(5.9).

Fig.5-7(b) and (c) are the histograms of the residual error for the directional effective
temperature (T.) (see Eq.(5.13)) calculated from the inversion of the radiative transfer
equation using the retrieved TIR emissivity with true DBT and downward atmospheric
radiance, and with noised DBT and downward atmospheric radiance, respectively. Therefore,
Fig.5-7(b) can be considered as the temperature residual error only caused by the error of the
TIR emissivity, whereas Fig.5-7(c) can be considered as the residual error caused by the error
of the TIR emissivity as well as the noise included in the DBT itself and the atmospheric
radiance. As observed in Fig.5-7(b), the temperature residual error mainly (96%) fell into a
range of [-1.0, 1.0] K, and the maximum percentage of the histogram was close to 0. To
investigate the results of Fig.5-7(c), Fig.5-7(d) presents the theoretical temperature error
caused by emissivity error (£0.02 at true ¢ = 0.98) under different temperatures and downward
atmospheric radiances and indicates that the temperature error increased with temperature
itself but decreased with the downward atmospheric radiance. It is possible for an emissivity
error of 0.02 to lead to a temperature error within [-1.0, 1.0] K, especially for low
temperatures and/or large downward atmospheric radiance. Therefore, the results shown in
Fig.5-5(b) are reasonable. Compared with Fig.5-7(b), the actual range of the temperature
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residual error in Fig.5-7(c) was relatively larger, and the residual error within [-0.8, 0.5] K is
at a similar percent because of the influence of the noise included in the DBT and the
atmospheric radiance. However, Fig.5-7 still demonstrates that the bi-directional reflectivity
and emissivity can be retrieved within an error lower than 0.015, and the DBT can be
obtained with an error within 1.5 K for most cases from multi-angular observations using the
angle combination of case (2).
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Fig.5-7. (2) The histograms of the retrieval error for the bi-directional reflectivity in MIR channel and
emissivity in TIR channel at DBT noise within [-1.0, 1.0] K; (b) Histogram of the residual error of
directional effective temperature (T.) calculated from the retrieved TIR emissivity, and the directional
radiance and atmospheric data without noise; (c) Histogram of the residual error of T, calculated from the
retrieved TIR emissivity, and the directional radiance and atmospheric data with noise. (d) The theoretical
temperature error caused by emissivity error (£0.02 at true ¢ = 0.98) under different temperatures and
downward atmospheric radiances (unit: W/m?/sr/um).

The above model analysis concerned on the MIR and TIR channels of the MODIS sensor
because this sensor has narrower bandwidth than the WIDAS system and is more
representative of most current sensors. However, it is necessary to illustrate the result for the
WIDAS system because its MIR and TIR data will be used to validate the D-TISI method.
Fig.5-8(a) displays the variation of the RMSE of the TIR emissivity, retrieved from the DBT
at noise within [-1.0, 1.0] K and downward atmospheric radiance at noise within [-10%, 10%],
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with the canopy LAIs and component temperature combinations. The angle case (4) was used
because this angle case was designed for the WIiDAS system. Compared with Fig.5-3(d) and
Fig.5-4(d), the RMSE for the WiDAS system is similar to that of the MODIS, except for the
RMSE (up to 0.035) in the lower LAIs of T-group 1 and T-group 2.
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Fig.5-8. (a) RMSE of TIR emissivity at different LAls and components’ temperatures for the WiDAS
system. (b) Histograms of the retrieval error for bi-directional reflectivity in MIR channel and emissivity in
TIR channel of the WiDAS system. (c) Histogram of the residual error of directional effective temperature
(Te) calculated from the retrieved TIR emissivity, and the directional radiance and atmospheric data without
noise; (d) Histogram of the residual error of T, calculated from the retrieved TIR emissivity, and the
directional radiance and atmospheric data with noise. Angle case (4) was used for illustration.

Fig.5-8(b) is the corresponding histogram of the residual error of the MIR bi-directional
reflectivity and TIR emissivity for the WiDAS system, which indicates that their residual
error was distributed widely from -0.06 to 0.06 and that there was a bias of approximately
-0.004 and 0.004 for the reflectivity and emissivity, respectively. A comparison between
Fig.5-7(a) and Fig.5-8(b) highlights that the retrieval accuracy of the WiDAS system was
generally lower than that of the MODIS, most likely due to its broader bandwidths in both the
MIR and TIR channels. According to the simulated DBT of the MODIS and WiDAS system
using Egs. (5.11) and (5.12), we observed that the broader bandwidth degraded the retrieved
accuracy of the reflectivity and emissivity in two different ways: one, because some response
wavelengths of the MIR channel were out of the atmospheric-window of 3 to 5 um as shown
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in Fig.5-1, the transmittance of the solar irradiance from space to the surface was reduced and
consequently decreased the solar contribution in the MIR channel. As a result, the correlation
of the radiative transfer equations between the MIR and TIR channels of the WiDAS system
was higher than that of the MODIS at the same atmospheric conditions. Two, the angular
variation of the DBT in both the MIR and TIR channels of the WiDAS system was weakened,
which caused the retrieved result to be more sensitive to the noise included in the used DBT
data. However, as seen from Fig.5-8(b), approximately 80% and 88% of the residual error was
respectively within [-0.015, 0.015] and [-0.02, 0.02], which indicates that most of the
retrieved error of the MIR reflectivity and TIR emissivity for the WiDAS system was smaller
than 0.02 in theory. Fig.5-8(c) and (d) show the histograms of the residual error for the
directional effective temperature (Te) calculated from the inversion of the radiative transfer
equation using the retrieved TIR emissivity with true DBT and downward atmospheric
radiance, and with noised DBT and downward atmospheric radiance, respectively. The results
were very similar to the results observed with MODIS, as shown in Fig.5-7(b) and (c).

5.4 Applications to airborne images

An airborne multi-angular images dataset was acquired by the WiDAS system, which was
one of the major airborne sensors used in the WATER synthetic field campaign conducted in
the spring to summer of 2008 on the Heihe River watershed in west China (Li et al. 2009).
The WIDAS system acquired images using four CCD cameras in visible/near-infrared (VNIR)
channels and two thermal cameras in the MIR and TIR channels (Fang et al. 2009; Liu et al.
2012). Table 5-5 lists the specification of those cameras. The VNIR image will be used for
results analysis.

Table 5-5. Specification of the WiDAS system

CCD camera MIR camera TIR camera

Spectral band 550nm, 650nm,700nm and  Mainly 3~5 pm Mainly 8~12 pm
750nm(with band width 40nm)

Pixels 1392 %1040 320%240

Total view angle 60° 80°

IFOV 0.8 prad 4.24 prad

Nadir resolution 1.2m@ 1.5km 79m@ 1.5 km

View zenith Five angels between forward Seven angles between forward 40° and
30° and backward 30° backward 40°

5.4.1 Acquirement of multi-angular images

The WIDAS system was designed to observe the surface in the MIR and TIR channels at a
total of seven zenith angles: nadir, backward and forward 10°, 20° and 40°(see angle case (4)
in Table 5-4).The cameras of the WiDAS system acquired the surface sequential images with
a high frequency during the flight (Liu et al. 2012), and the overlap between two sequential
images was more than 80% for the VNIR channels and more than 85% in the MIR and TIR
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channels, which meant that the same ground point can be almost simultaneously observed in
several sequential images. After geometric corrections, a multi-angular dataset was obtained
from the collections of the same ground point in the sequential WiDAS images.

However, because the time interval between two sequential images was very short (<4 s),
the variations of VZA and even VAA were consequently very small, causing the two
sequential observations to contain no more angular information about the surface than only
one observation did, and the error in the additional observations might influence the final
solution of the retrieval. Therefore, we should only use those observations whose VZAs were
equal or close to the designed angles. However, because the multi-angular images were
obtained from sequential observations at the manner of the central projection, which reduced
the angular differences between sequential observations for those pixels far from the central
line in the cross-track direction, only the pixels on the central line of the camera along the
flight track can be observed with the designed angles. Moreover, for the edge pixels in the
cross-track direction, their VZAs were almost the same in all sequential images, and only
their VAAs changed. To improve the accuracy of the emissivity and temperature retrieval
from those pixels, we had to select a group of angular observations with the maximum VZA
or VAA difference from the sequential images with a constraint that the VZA interval between
any two angular observations with a similar VAA or the VAA interval between any two
observations with a similar VZA must be beyond a threshold value, such as 6° for VZA and
15° for VAA. Therefore, the emissivity and temperature for different pixels were actually
retrieved with different combinations of VAA and VZA, rather than the designed combination.

5.4.2 Calibration and atmospheric correction
The recorded temperatures of the MIR and TIR channels were calibrated to blackbody
brightness temperatures using a polynomial approximation as expressed in Eq.(5.14):

BBT =B, +B, T, +B, T

obs !

(5.14)

where, By, By and B, are coefficients, regressed from their measurement on a blackbody
(Series No. Mikron 340) in the temperature range from 273.16 K to 358.16 K with an interval
of 5 K. The value of those coefficients is shown in Table 5-6 (Fang et al. 2009).

Table 5-6. The coefficients from observed temperature of the MIR and TIR channels to blackbody
brightness temperature

Bo B1 B
MIR 2.87597x10? -0.58336 0.00202
TIR 86.19557 0.62729 2.54228x10™

Radiosounding data were also collected simultaneously to remove atmospheric effects for
the VINR images and to simulate the upward and downward atmospheric radiance and solar
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radiation for both MIR and TIR channels. After atmospheric correction, only surface-leaving
radiances (i.e., Rj in Eq.(5.2)) were included in the MIR and TIR data.

5.4.3 Directional emissivity and effective temperature
5.4.3.1 Multi-angular image dataset

The WIDAS image used in this thesis was located in the ZY-YK-HZZ flight zone, which
is a typical oasis agricultural area. The main land covers included maize, wheat and vegetable.
The WIDAS system acquired data over this area on June 1st, June 29th, and July 7th, 2008.
Only the data from July 7th, 2008, were applied because of its clear sky and high quality.
Fig.5-9 displays several sequential images of the DBT in the TIR channel and the
corresponding VNIR false color image for this area, and those images were acquired at
approximately UTC 3:58 (Beijing Time: 11:58, duration < 30 s) on July 7th, 2008. The solar
zenith and azimuth angles at that time were approximately 125.7° and 24.4°, respectively.
Because the aircraft flew from north-east to south-west at a height of approximately 1.5 km
above the surface, the spatial resolutions of the MIR/TIR and the VNIR images were
approximately 7.9 m and 1.25 m, respectively. The red pixels of the VNIR image represented
the vegetated pixels, and the rest were the non-vegetated pixels, such as bare soil, buildings
and man-made road. Four sites composed of 4x4 pixels were chosen for further analysis, and
their detailed information can be found in Table 5-7.

Table 5-7. The specification of four sites, and their retrieved BRDF coefficients and TISIE

No. Land cover Lon/Lat fyeo fuol fiso TISIE
Site A Maize 100.411E, 38.857N 0.075 -0.041 0.137 0.978
Site B Orchard 100.402E, 38.844N 0.052 -0.036 0.134 0.971
SiteC  Wheat 100.398E, 38.859N 0.057 -0.038 0.135 0.974
Site D bare soil 100.398E, 38.847N 0.054 0.027 0.150 0.961

From the TIR images in Fig.5-9, the difference of pixels’ DBTs was up to 46 K. Fig.5-10
(filled circles) shows the DBT after atmospheric correction for four sites shown in the VNIR
image of Fig.5-8. The changes of VZA (and/or VAA) lead to a temperature variation of
approximately 1.0 K, 3.1 K, 2.7 K and 4.4 K for Site A, Site B, Site C, and Site D,
respectively. Although the DBT difference of Site A was much smaller than that of other sites,
these angular temperature differences were still used for separating emissivity and
temperature. Furthermore, the data presented in Fig.5-10 also indicated that the higher DBTs
were observed at smaller VZAs, whereas the lower DBTs were obtained at larger VZAs
because, for the vegetated canopy, the fractions of soil with higher temperature was generally
larger in small VZAs than those in large VZAs. In addition, as reported by some previous
studies (Li et al. 2013b; Sobrino and Cuenca 1999), the bare soil emissivity decreased with
the increasing VZA, which most likely caused the soil’s brightness temperature to decrease
with the increasing VZA. However, one should note that because all sites except for Site D
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were not located near the central line of the flight track, their minimum VZA was not equal to
0° as shown in Fig.5-10.

(a) Backward 40° (b) Backward 20° (c) Backward 10°

(d) Nadir (e) Forward 10° (f) Forward 20°
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(9) Forward 40° (h) CCD image
Fig.5-9. Multi-angular TIR images and VNIR image over study area
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Fig.5-10. The angular variation of the measured directional brightness temperature (DBT, filled circles)
after atmospheric correction and the effective temperature (Te, unfilled circles) defined in Eq.(5.12) for four
sites. The positive and negative VZAs correspond to nearly opposite VAAS.

5.4.3.2. Retrieval of emissivity and temperature

Fig.5-11 presents the retrieved TISIE and nadir emissivity of the MIR and TIR channels
and their histograms. Compared with the area shown in Fig.5-9, the area of Fig.5-11 is smaller
because some of the pixels that could not meet the requirement of the angle interval between
different VZA and VAA, especially for those pixels near the edge in the cross-track direction,
were removed during the retrieval process. As observed in Fig.5-11(a), the TISIE mainly
distributed in the range of [0.95, 1.01], similar to the results of (Jiang et al. 2006). According
to the VNIR image in Fig.5-9, the TISIE values of vegetated pixels were generally higher than
those of bare soil and buildings because the vegetation component in the pixel increased the
TISIE values (Li and Becker 1990).
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Fig.5-11. Retrieved TISIE and nadir emissivities of the MIR and TIR channels

Similar to the TISIE, both the MIR and TIR emissivities of vegetated pixels were higher
than those of non-vegetated pixels, as shown in Fig.5-11(b) and (c). However, the emissivity
of the MIR channel was generally lower than that of the TIR channel, especially for the
non-vegetated pixels, and the MIR emissivity difference between the vegetated and
non-vegetated pixels was larger than that of the TIR emissivity. These results might be due to
the fact that most soils and man-made materials present a strong spectral emissivity variation
in the range of 3 to 6 um, and the minimum emissivity in this spectral range can be as low as
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0.7. Meanwhile, the emissivity of most vegetation in this spectral range was almost flat. In
contrast, the spectral emissivity for most land covers is almost flat in the TIR range (e.g., 8 to
14 um), and their values are usually larger than 0.95. The histogram of Fig.5-11(b) reveals
that the retrieved MIR emissivity mainly ranged from 0.88 to 0.94. Compared with the
findings of Chapter 3, where the angular emissivities for several types of land covers from
MODIS emissivity products were obtained, this emissivity range had the same levels for grass
and barren land and only slightly smaller (approximately 0.005) than the latter for cropland.
The TIR emissivity shown in the histogram of Fig.5-11(c) is mainly distributed in the range of
[0.96, 0.98], which is narrower than the range of the MIR emissivity due to two factors: first,
as stated above, both soil and vegetation emissivities in the TIR range were very high, and
their differences in such ranges were smaller than that in the MIR range; second, Eqg.(5.9)
might reduce the range of the TIR emissivity, especially for those pixels with a TISIE larger
than 1.0.

The angular variations of the TIR emissivity for the above four sites are presented in
Fig.5-12. The solid lines are the emissivity of VZAs within [0°, 90°] that was estimated using
the retrieved three coefficients of the BRDF model and TISIE, whereas the squares are the
emissivity for those VZAs under which the sites were observed. These results indicate that the
directional emissivity for the three vegetated samples increased with VZA, and the emissivity
difference between nadir and horizontal (i.e., VZA = 90°) observations was approximately
0.008 in theory. However, this difference turned out to be as small as 0.004 between nadir and
VZA = 60° and can almost be ignored for the VZAs varying from nadir to VZA = 40°. The
angular variation of the emissivity of bare soil (Site D) was quite different from that of those
vegetated samples. First, the emissivity increased with the increasing VZA and then decreased
at the larger VZAs. Comparisons of the three BRDF coefficients in Table 5-7 indicate that the
positive coefficient f,o produced a different angular pattern for soil emissivity. If the barren
pixels were assumed to be isotropic, there would be no difference among the emissivity and
brightness temperatures observed at different VZAs, and the BRDF coefficients fyeo and fyol
should be zero. However, because the DBT of Site D varied significantly with the viewing
angle (see Fig.5-10(d)), perhaps due to the roughness and the multiple shadowing effect of
itself, the D-TISI method proposed in this thesis finally produced an optimal solution for the
three BRDF coefficients and TISIE, which had the minimum residual error of the radiative
transfer equation, without considering the types of land cover. Generally, the angular variation
of the barren soil can be ignored because the emissivity difference was as small as 0.002. One
should note that not all vegetated pixels have the similar angular patterns as shown in
Fig.5-12(a)~(c), and not all non-vegetated pixels have similar angular pattern as Fig.5-12(d).

Using the directional emissivity shown in Fig.5-12 and the DBT shown in Fig.5-10 (see
filled circles), the directional effective temperatures (T.) defined by Eq.(5.13) were
consequently determined by removing the downward atmospheric radiance from the
surface-leaving thermal radiance (see Eq.(5.2), where Ry, and Egn equal O for the TIR
channel), and presented in Fig.5-10 (see unfilled circles). T, was generally larger than DBT
after removing the reflected downward atmospheric radiance and non-unity effect of the
emissivity mainly because the blackbody emission of the surface was larger than that of the
atmospheric profile. The average differences between T, and DBT were approximately 1.1 K,
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16 K, 1.2 K, and 1.8 K for the four sites, respectively, and Site D (bare soil) had the
maximum temperature difference because it had the smallest emissivity, which caused the
largest value of the reflected downward atmospheric radiance.
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Fig.5-12. Directional TIR emissivities for several cover types. The solid line presents the emissivity in all
VZAs calculated from Eq.(5.9) using the retrieved BRDF coefficients and TISIE, while the squares are the
emissivity for those VZAs under which the sites were observed.

5.4.3.3. Angular normalization of temperature

As shown in Fig.5-10, the surface directional effective temperature (T¢) varied with the
VZAs and even with the VAAs because the viewing geometry of sun-target-sensor determined
the fractions of different components with different temperatures in the pixel. As a result, this
angular effect made the temperature of different pixels in the same image incomparable
because they were observed at different directions, which can produce erroneous results.
Therefore, it was very crucial to normalize the retrieved effective temperature at various
VZAs to a reference VZA (e.g., at nadir).

Unfortunately, no existing study on the angular normalization of temperature has been
previously reported. According to the findings in the literature (Peng et al. 2011), we modified
the kernel-driven BRDF model addressed in EQ.(5.6) by replacing the bi-directional
reflectivity with the directional effective temperature T, as follows:
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Te (95 ’ 9\,, (D) = f 'iso+ f 'vol 'kvol (95 , 0v’q0) + f 'geo'kgeo (03 1 ev 1 (D) : (515)

The terms in Eq.(5.15) have similar meanings to the discussions in previous sections. To
fit the three coefficients f’iso, f’vor and f’geo, at least three T values are required. As stated
previously, four or more angular observations are needed to solve the four unknowns included
in Eq.(5.7), and the retrieval process finally generates a T, for each direction, whose number
is equal to that of the observations and larger than three. Therefore, the three coefficients in
Eq.(5.15) can be fitted in theory as long as the four unknowns in Eq.(5.7) are mathematically
solvable. From this point of view, we first used the retrieved directional emissivity in the TIR
channel to calculate T, of different directions and then fit the three coefficients f’is, f’vo and
f*4e0 and finally extracted the nadir Te-nadir from Eq.(5.15). Fig.5-13(a) shows the Te-nadir of
the study area.
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Fig.5-13. (a) the nadir effective temperature from BRDF model (T.-nadir); (b) the RMSE of the BRDF
model for the directional effective temperature; (c) the difference between the nadir effective temperature
and the minimum effective temperature of observations. The color scalar was restricted to 6 K and those
pixels with a larger value were forced to 6 K for illustration; (d) the histogram of (c).

In addition, to investigate the performance of the BRDF model, the temperature RMSE of
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this model was also obtained using Eq.(5.16) and displayed in Fig.5-13(b):

RMSE = \/ZN:rre(k) ~T,(kK)]? /N,N >4, (5.16)

where, N is the number of angular observations on the same target, and T¢(k) is the kth
directional effective temperature retrieved from the kth observation (see Eq.(5.13)), whereas
Te(k)’ is the fitted kth directional effective temperature from the BRDF model (see Eq.(5.15)).

As seen from Fig.5-13(b), it is determined that the BRDF model produces an error smaller
than 1.0 K for most pixels, especially the vegetated pixels. In contrast, this model produced
significant error (even larger than 3 K) for some non-vegetated pixels, especially for those
non-vegetated pixels near the edge of the image, perhaps because the angle intervals of
different observations over those pixels were relatively smaller than the others, which caused
the BRDF model to be more sensitive to the error included in the input T, and viewing angles.
However, the BRDF model performed generally well for most pixels in the angular
normalization of their directional effective temperature.

Fig.5-13(c) presents the temperature difference between the nadir effective temperature
Te-nadir and the minimum value of the effective temperature under different viewing
directions, and Fig.5-13(d) is the corresponding histogram of Fig.5-13(c) at a step of 0.2 K.
To make the data in Fig.5-13(c) more distinguishable, the color scalar of the figure was
restricted to 6 K, and those pixels with a larger value were forced to 6 K for illustration
purposes. Both Fig.5-13(c) and (d) indicate that Te-nadir was larger than the minimum
temperatures for most pixels (approximately 98%), and their differences mainly fell into the
range of [0.0, 5.0] K. Because the temperature difference for most vegetated pixels was in the
range of [0.5, 2.0] K, the angular normalization of temperature appeared unnecessary for
those pixels if the accuracy of the retrieved temperature is not required to be better than that
range. The temperature difference of the non-vegetated pixels was generally larger than that
of the vegetated pixels and even exceeded 6.0 K for some cases. Although the BRDF model
might cause remarkable temperature error for the non-vegetated pixels as stated above, the
results for some pixels (e.g., the barren pixels near Site D in Fig.5-9, with which the BRDF
model displayed high accuracy, still illustrated that its angular normalization was strongly
required for their temperatures because the temperature difference of those pixels was up to
several Kelvin and far from the maximum tolerance of the temperature retrieval accuracy.

5.4.3.4. Cross comparison with ASTER emissivity

Unfortunately, there was no ground-measured emissivity and temperature data available
for the validation of the above results. Cross-comparison with satellite data (such as ASTER)
was consequently conducted. ASTER generates surface emissivity products in five TIR
channels that are retrieved using the TES algorithm (Gillespie et al. 1998). Because of its
relatively finer resolution (approximately 90 m), the ASTER emissivity data provide us an
opportunity to make cross-comparisons with the WiDAS TIR emissivity data. To remove the
influence of the spectral differences between the ASTER and WIiDAS TIR channels, we
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established an empirical relationship for the emissivities of the five ASTER channels with that
of the WiDAS channels using the method described in (Ogawa and Schmugge 2004), which
can be expressed as the following:

£=0.129-¢ -0.010-¢,+0.193-¢,+0.628-¢, + 0.060 - & , (5.17)
where, g (k = 1, 2...5) is the kth channel’s ASTER emissivity. The ASTER sensor observed
the study area on June 29, 2008. However, there were only 65 clear-sky pixels that had valid
emissivity due to the occurrence of clouds. Fig.5-14 (a) shows the comparison of the average
WIDAS TIR emissivity aggregated from 7.9 m to 90 m and the calculated ASTER emissivity
g from Eq.(5.17). The comparison indicates that the WiDAS emissivity was, in total, higher
than the transferred ASTER emissivity ¢ , with an RMSE of approximately 0.012. In addition,
the WIDAS emissivity and that of ASTER channel 5 (10.8 to 11.8 um) were relatively closer
to each other, as shown in Fig.5-14(b), but still with an RMSE of approximately 0.007. The
difference between the ASTER and WIDAS emissivities might be caused by the intrinsic
difference of their algorithms, the temporal variation of the emissivity itself from June 29 to
July 7, 2008, as well as the spatial scale effect of the two products. However, as reported by
some previous studies, the TES algorithm suffers from spectral emissivity contrast with dense
vegetation surfaces (Yoriko et al. 2003) and consequently introduces more uncertainty into the
retrieved emissivity of those surfaces. According to the results of (Wang and Liang 2009),
who found that the ASTER emissivity was 0.01 to 0.02 smaller than the MODIS emissivity
retrieved using the day/night algorithm (Wan and Li 1997), and the results reported in
Fig.5-14(a), the WIiDAS TIR emissivity might be closer to the MODIS emissivity. However, it
is almost impossible to perform cross-comparison with the MODIS data because of the
coarser resolution (approximately 6 km in Collection 5).
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Fig.5-14. Comparison with ASTER emissivity. (a) Transferred ASTER emissivity from Eq.(5.17); (b) the
emissivity of ASTER channel 5.

5.5 Conclusions and discussions

This chapter proposed a daytime TISI method (D-TISI) to retrieve directional emissivity
and effective temperature from daytime multi-angular observed images in both MIR and TIR
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channels by combining the kernel-driven BRDF model and the TISI method. In contrast to
most previous studies, the non-isothermal surface/canopy was a concern. For model analysis,
the canopy’s bi-directional reflectivity and emissivity in the MIR and TIR channels were
simulated using the SAILH model, and the canopy’s directional brightness temperature and
radiance were simulated as the weight average of component temperatures and their fractions
calculated from a parameterization of the SAILH model by (Li et al. 2010). Two groups of
MIR and TIR channels were used for illustration, and they were respectively from the MODIS
that had narrow bandwidths, which are more representative of current most sensors, and the
airborne WIiDAS system that, in contrast, had much boarder bandwidths and whose data were
used for validating the D-TISI method. Four groups of angular combinations were designed to
investigate the influence of the angular observations on the retrieval accuracy. Generally, large
angle intervals among the angular observations and a larger VZA with respect to nadir
direction can improve the retrieval accuracy of emissivity and temperature because those
angle conditions result in significant variation of component fractions and the DBT under
different viewing direction. The influences of canopy LAI, component temperatures and
TISIE on the retrieval accuracy were also discussed. The results generally indicated that for
DBT noise within [-1.0, 1.0] K and atmospheric data noise within [-10%, 10%], the D-TISI
method can obtain emissivity and temperature with an accuracy within 0.015 and 1.5 K for
the MODIS channels and within 0.02 and 1.5 K for the WiDAS channels, respectively.

We applied the D-TISI method to retrieve directional emissivity and effective temperature
from the multi-angular MIR and TIR images acquired by the airborne WiDAS system at the
Heihe River watershed. The results indicated that the vegetated pixels had larger TISIE values
and emissivity than the non-vegetated pixels. The retrieved angular variation of the directional
emissivity for the vegetated sites from nadir to the horizontal direction was approximately
0.01, larger than that of the bare soil site. Comparison with the ASTER emissivity product at
the study area showed that the difference of the retrieved nadir emissivity and the ASTER
emissivity was approximately 0.012. Furthermore, we used the kernel-driven BRDF model by
replacing the bi-directional reflectivity in the original model with the retrieved directional
effective temperature (T¢) to normalize T, from the off-nadir direction to the nadir. The results
indicate that the temperature difference between the normalized nadir effective temperature
(Te-nadir) and the minimum T, of the observing directions was 0.5~2.0 K for most vegetated
pixels and always several Kelvin for most non-vegetated pixels. Therefore, it is necessary to
perform angular normalization on land surface temperature measurements for higher accuracy.
However, the retrieved nadir and off-nadir effective temperatures were not validated in this
thesis due to the lack of field data.

Note that the land surface temperature also displays temporal variation, except for angular
variation, due to the fluctuations of the local meteorological and solar conditions, and this
temporal variation is sometimes more significant than the angular variation. However, this
thesis ignored this temporal variation and considered the temperature variation fully caused
by the changes of viewing angles because, up to now, there has been no operational method
developed to allow time normalization of measured DBT data from multi-angular
observations and also because the time interval between the two sequential images examined
in this thesis was very short (< 4 s). However, we should keep in mind that the lack of

105



Chapter 5. Angular normalization from multi-angular middle and thermal infrared images

consideration of the temporal variation must have degraded the retrieval accuracy. In addition,
different VZAs corresponded to ground pixels with different areas, which might cause the
pixels observed on the same place to include different components, especially for the
heterogeneous surfaces. This problem, along with the mis-registration between different
images, might have led to more uncertainty in the retrieval results. Moreover, although we
discussed the influence of the angular combination on the retrieval accuracy only from 4
groups of angles (see Table 5-4) and chose angle case (2) as the local optimum combination
among those groups, the conclusions based on those angle cases are limited and additional
investigation is required in the future to determine the global optimum combination in the
upper hemisphere.

In addition, the results of the model analysis in Section 5.3.6 were only suitable for the
pixels in the central line of the images along the flight track because the angular combination
for those pixels far from this central line in the central projection image or linear-array
detecting system was actually different from the designed angular combination and their angle
intervals were consequently significantly reduced. As a result, the retrieval accuracy gradually
decreased, in theory, for the pixels moving from the central line to the edge. A sensor with the
conical scanning method, such as the AMSR-E (Advanced Microwave Scanning Radiometer
for EQS, http://aqua.nasa.gov/about/instrument_amsr.php), is expected in the future to ensure
that all pixels have the same angular combinations.
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Chapter 6

Impact of sensor footprint on the measurement of the
directional brightness temperature of the row crop

canopies

This chapter focuses on the modeling of directional brightness temperature for row
canopy by considering the ground-based sensor’s footprint. A sensor’s footprint determines
the target that is observed by the sensor, and influences the angular features of the target’s
directional brightness temperature (DBT) at the field site. This thesis describes a new
radiative transfer model (FovMod) to simulate the DBT of the row crop canopy by
considering the sensor’s footprint in the ground measurements. The FovMod firstly divides
the sensor’s circular or elliptical footprint into a few small cells, and then estimates the
components’ fractions (e.g., leaves, sunlit soil and shaded soil) in each cell based on the gap
probability theory. The canopy’s DBT is finally obtained by weighting the components’
brightness temperatures and their fractions using a Gaussian point spreading function (PSF) of
the sensor’s response. Simulation results indicate that a small footprint causes the distribution
of the DBT to be strongly dominated by the row direction and a single component’s
temperature but little influenced by the solar position. On the contrary, a large footprint
smoothes the row-space effect and causes the DBT to distribute as a uniform, continuous
canopy. Comparison with a previous parallel model shows that if the diameter of the sensor’s
circular footprint extends to 1.5~2.0 times as large as the total width of the row crop canopy,
the footprint effect is minimized, and the ground measured DBT can, theoretically, be used to
evaluate the parallel model with negligible error. Finally, validations with a maize canopy
demonstrated that the new model performed more accurately than the parallel model to
simulate the DBT. Moreover, the FovMod also provides an opportunity to assess the
measurement uncertainty caused by some unexpected changes in the sensor’s footprint.

6.1 Background

The angular variation in the LST has been measured at ground and satellite levels and has
attracted much attention in recent decades (Kimes and Kirchener 1983; Lagouarde et al. 2004;
Otterman et al. 1995; Sobrino and Caselles 1990). Previous studies indicate that the angular
variation in LST depends strongly on the distribution of the components’ temperatures and
emissivities, the geometric structure of the target surface, and the geometry of the locations of
the sun, target, and sensor(Jackson et al. 1979; Kimes et al. 1980; Otterman et al. 1999). To
investigate the angular effect of LST and to extend the benefits of remotely sensed data in the
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calculation of LST, many algorithms have been proposed to make angular corrections to LST
or to extract the components’ temperatures from multi-angular or multi-channel remotely
sensed data (Francois et al. 1997; Kimes 1983; Li et al. 2001; Liu et al. 2012; Menenti et al.
2001; Otterman et al. 1992; Prata 1993; Song and Zhao 2007; Xu et al. 2001; Zhan et al.
2011).

Modeling the directional brightness temperature (DBT) of homogenous or heterogeneous
canopies is a promising approach to enhance our understanding of the angular feature, and
this issue has prompted numerous thermal radiative models that can generally be divided into
four categories: geometrical optical (GO) models, radiative transfer (RT) models, hybrid
models (GORT), and computer/numerical simulation methods. A GO model estimates the
thermal radiance by combining the weights of the proportions and thermal radiance from
several components. Several studies (Kimes 1983; Kimes and Kirchener 1983; Kimes et al.
1981) have geometrically calculated the optical path length of radiation passing through row
crops by treating the row structure as a rectangular cross section for the first time and using
the gap probability to calculate the components’ fractions from those optical lengths. Inspired
by this concept, several similar models have been developed by considering the bi-directional
gap, hotspot effect or crop growth stages (Chen et al. 2002; Du et al. 2007; Huang et al. 2010;
Yan et al. 2001; Yan et al. 2003; Yu et al. 2004). In addition to these three types of models,
Guillevic et al.(2003) proposed a three-dimensional radiative transfer model that was based
on the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al.
1996) to investigate the angular thermal radiance of a vegetated canopy, and Chen et al. (2004)
used a Monte Carlo technique to study the angular characteristics of emitted radiance from
heterogeneous and nonisothermal surfaces.

DBT modeling of the row canopy, which mainly means the row crop canopy (such as
maize and wheat) in this thesis, is generally more difficult than that of the homogeneous
canopy because of the row-space effect which causes the varying foliage area volume density
(FAVD) and optical length from place to place. A crucial assumption in the current models is
that the row canopy has an infinite extension; therefore, the models treat the components’
fractions using a whole row structure. This assumption is reasonable, but the assumption that
the viewing direction is a parallel beam is rarely consistent with reality because different
regions within the footprint of the sensor’s FOV (field of view) that is used to collect field
DBT data have different azimuth and zenith viewing angles rather than one unique angle.
Except for Colaizz et al. (2010), who modeled row structure as continuous ellipses and
estimated the sunlit and shaded components within the circular or elliptical footprint, there
have been no other studies that have considered the footprint effect (i.e., the FOV effect) on a
row canopy’s DBT until now, let alone any discussion of the DBT difference between a
parallel-beam model and a FOV model that accounts for variations in the viewing angle
within the footprint. Consequently, the question is raised: how large the sensor’s footprint
should be in order to collect representative DBTs from a row canopy during the field
validation of a parallel model with the lowest error? Thus, the objective of this thesis is to
develop a new GORT hybrid model that accounts for a sensor’s footprint effect in the DBT of
a row canopy and to identify the threshold footprint under which the footprint effect can be
ignored and the field measured DBT data can be used to evaluate a parallel model without
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causing significant error. The modeling results from this chapter are also expected to provide
an operational method for assessing the uncertainty in field measurements that is caused by
variations of the sensor’s footprint.

6.2 Modeling directional brightness temperature

Most DBT models focus on the anisotropy of thermal radiance and are dependent on the
components’ temperatures and fractions within the footprint. The footprint of a row canopy
generally consists of four types of components: sunlit soil and shaded soil, sunlit leaves and
shaded leaves. Because stems occupy a small percentage of the footprint, this component can
be ignored without causing significant differences. Several authors have reported that the
temperature difference between sunlit and shaded leaves is very small compared to the
temperature difference between the sunlit and shaded soils (Rasmussen et al. 2011; Yu et al.
2004); the leaves are often assumed to have a unique temperature in the canopy.

The canopy’s DBT is often measured by rotating a goniometer around the target of interest
in the upper hemisphere. As illustrated in Fig.6-1 (a), the footprint observed by a sensor with
a FOV (6;) onboard the goniometer is a circle or an ellipse on the top and bottom of the
canopy (TOC and BOC). The points Aand A', and B and B' are the left and right intersections
of the FOV with the BOC and TOC, respectively; C and C' are the centers of the ellipse on the
BOC and TOC; and D and D' are the intersections of the central line of the sensor’s FOV with
the BOC and TOC. In the nadir direction, C and D (or C' and D") are the same locations. If we
assume that the width of the vegetated hedgerow and soil (w. and ws), canopy height (h), and
the current observation height (H) in the viewing direction 6, are measurable and known as a
prior, the semi-major axes of the ellipses on the BOC and TOC can be calculated using
Eq.(6.1):

a; =0.5H -[tan(6, + 0.56,) — tan(6, — 0.56, )],
a; =0.5(H —h)-[tan(6, +0.56, ) —tan(6, — 0.56, )] . (6.1)

Similarly, the corresponding semi-minor axes on the BOC and TOC are described by
Eq.(6.2):

by =/(H - tan(9, —0.50,) +2,)’ + H” -an(0.50, ),

b, = \/[(H —h)-tan(@, -0.50, ) +a, ]* +(H —h)* -tan(0.56, ) . (6.2)
Furthermore, the lengths of C'O' and D'O’ are calculated, respectively, with Eq.(6.3):
lco: =(H —h)-tan(6, +0.56,) —a;, and I, =(H —h)-tan(6,) . (6.3)

However, because of the canopy’s three dimensional structure as shown in Fig.6-1, the
surface of the target can be regarded as being located on the TOC or BOC. If the surface of
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the target is on the TOC, the length of SD' is fixed, and the point D' is unchanged on the TOC,
but the point D changes with both the viewing zenith angle (VZA) and the viewing azimuth
angle (VAA). However, if the surface of the target is on the BOC, the length of SD is fixed,
and the location of point D is unchanged on the BOC, but point D' on the TOC varies with the
viewing angles. For clarity, this thesis only uses the former case for illustrations. Another key
parameter is the central position X;, which is defined as the distance from the edge of a
hedgerow to the central point of the sensor’s FOV (i.e., the foot point of the FOV’s center) on
the TOC when the goniometer observes at the nadir, as shown in Fig.6-1(b). This parameter is
used to determine whether a point of the footprint is above the vegetated hedgerow or above
the soil, which will be discussed in the next section. X, is positive when this point is above the
hedgerow; otherwise, X. is negative when this point is above the soil. Because the angular
observations are made around the sensor’s central point on the TOC, the x. is always the
same.

(b)

TOC

/

W, [ w,

BOC

Fig.6-1. (a): the geometry of the sensor and the row canopy. w, and w; are the width of the hedgerow and
the background soil; h is the height of the canopy. The current observation height H is equal to the length of
SO. TOC and BOC relate to the top and the bottom of canopy. & is the sensor’s FOV angle, and 6, is the
viewing zenith angle of the goniometer while 6 is the solar zenith angle. C' and C are the center of the
ellipse footprint on the TOC and BOC, respectively; D' and D are the central positions of the sensor’s
footprint on the TOC and BOC, respectively.

(b): the definition of the relatively central position x. of the sensor’s footprint at nadir observation.

The parallel model often obtains the components’ fractions in a row structure by using the
geometry of the sun, target, and sensor as well as gap probability theory, with known optical
lengths through the canopy in both the solar and viewing directions. This approach is possible
because it treats the VZA and VAA as unique values everywhere. However, in reality, the
FOV of a sensor during ground measurements causes different locations within the footprint
to have different VZAs and VAAs. As a result, the method for calculating the components’
fractions in the parallel model should be no longer theoretically effective, and a new model is
therefore needed to account for the footprint effect on the row canopy. Inspired by the
structure of the DART model (Gastellu-Etchegorry et al. 1996; Guillevic et al. 2003), we
followed five steps to develop our new model:

STEP 1: Similar to previous studies (Kimes et al. 1981; Yan et al. 2003; Yu et al. 2004),
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the row canopy is assumed to be rectangular. The elliptical footprint on the TOC (see
Fig.6-1(a)) is first divided into several small cells with an area of ASy (see Fig.6-2), and the
location of the ith cell (x;, y;) in the X-Y coordinate system, which is created by the major and
minor axes of the ellipse, is then calculated. Using this location, the actual VZA and VAA (6.
and ¢,; ) of the cell is obtained from the geometry that links the current cell to the sensor
(point S) and its footprint on the TOC (point O'):

0, =arctan[d,/(H —h)] and ¢, =¢, —arctan(k;), (6.4)

where, d; is the distance from the ith cell to the point O'; ¢, is the azimuth viewing angle of
the goniometer, which is equal to the angle of the vector O'A' going from the north in a
clockwise direction; k; is the slope of the line from the point O' to the center of the ith cell. If
the slope k; does not exist, ¢,; is equal to ¢, = 90°. Because the area of each cell is small
enough, it is reasonable to use only one value for the VZA and VAA for the entire cell.

Selar
direction \ "\

Solar .\
direction \ ‘
. \/ S\ /
_/Sensor Ets
View p 4

Solar S\ direction /7
: . N\ 7
direction \ "\
\ \

Fig.6-2. Segmentation of sensor’s footprint. Four cases resulting from the combination of the path lengths
in the viewing and directions (I, and Is). (a) I, = 0 and I = O: only sunlit soil; (b) I, = 0 and I > 0: sunlit soil
and shaded soils; (c) I, > 0 and I = 0: the leaves and the sunlit soil; (d) I, > 0 and Is > 0: leaves, sunlit and
shaded soils.

STEP 2: With known VZA and VAA (6,; and ¢,;) of the ith cell ASt, the corresponding
cell ASg on the BOC can be determined by projecting ASt in the viewing direction. Once the
location of ASgis determined, its corresponding cell AS'r on the TOC in the solar direction is
then defined using the same method that is used in the direction from ASt to ASg. Because the
viewing beams of ASt come from a point (i.e., the sensor), the area of ASg is somewhat larger
than that of ASt, equal to AS'y. In this case, the path lengths through the vegetated hedgerow
of both the viewing and solar beams (I, and Is) are expressed by Eq.(6.5):

I, =n-L,+Al and n=int[l,/(l, +1,)], (6.5)
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where, lg = h/cos(0) is the total slant length from the TOC to the BOC when the zenith angle is
o (i.e., 8 =6,; for the viewing beam and 4 =6; for the solar beam); I, and |, are the slant lengths
when the viewing or solar beam passes through a whole hedgerow and soil row, respectively,
and are defined by Eq.(6.6):

l, =w_/|sin(Ap)|/sin(8) and 1, =w,/|sin(Ae)|/sin(8). (6.6)

The first step of the formulas in Eq.(6.6) is to convert the widths of the hedgerow and soil
to the projected widths in the direction of VAA or SAA, and the second step is to calculate the
slant length. The azimuth difference Ag is calculated as Ap = ¢ - ¢, where ¢, is the row
azimuth angle and ¢ represents the viewing azimuth ¢,; of the ith cell or the solar azimuth ¢s.
However, if ¢ is equal to ¢, |, and I, are infinite. In this case, Egs. (6.5) and (6.6) are not used,
and Ixis equal to lyif the cell ASt (or AS'y) is directly above the surface of the hedgerow (e.g.,
the point B' in Fig.6-1), or equal to zero if ASt (AS'y) is directly above the background soil
(e.g., the points A', C' and D' in Fig.6-1). In addition, the term Al in Eq.(6.5) represents the
remainder of the length |, after several crossings of (I, + I,). However, Al is not always equal
to the result I,— n-(Iy + 1) because this result may still contain the slant length above the soil.

A general way to calculate the position (x;i) of the ith cell ASt relative to the vegetated
hedgerow (i.e., above the hedgerow or the soil) is provided in Eq.(6.7):

Xi = dri - J '(Wc +Ws)1 J = int[dri/(wc +Ws)] ) and dri = driO SIn(A¢|) + X (67)

where, dyio is the distance from the ith cell to the sensor’s central point on the TOC (i.e., Point
D' in Fig.6-1(a)), the product of dijo and sin(Ag;) projects this distance in the crossing row
direction, and Agj; is the relative azimuth angle between the row direction and the line from
the cell to Point D'. The other terms were previously defined.

STEP 3: The combination of |, and Is results in four cases, as illustrated in Fig.6-2(a)-(d):

Case (a): Iy = 0 and Is = 0. In Case (a), the sunlit soil is viewed directly by the sensor.
Neither the solar beam nor the viewing beam is obscured by the canopy. However, if the
viewing zenith angle or solar zenith angle (6,; or &) is large enough, the soil will be obscured
by the canopy, and this case will decline or disappear.

Case (b): I, =0and Is > 0. Case (b) illustrates the condition where the solar beam is partly
obscured by the canopy but the viewing beam continues freely. In this case, two components
may be observed: sunlit soil and shaded soil. The fraction of sunlit soil is equal to the gap
probability of the canopy in the solar direction Ps, and the fraction of shaded soil is then equal
to 1 - Ps.

Case (c): I, >0 and Is = 0. In Case (c), the sunlit soil can be viewed through the canopy,
and two components are observed: the leaves and the sunlit soil. The fraction of sunlit soil is
equal to the gap probability of the canopy in the viewing direction P,, and the fraction of the
leaves is then equal to 1 — P,.

Case (d): I, > 0 and Is > 0. The canopy obscures both the solar and viewing beams. All
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three components are included in this case: leaves, sunlit and shaded soils. The fraction of the
leaves is equal to 1- P,, the fraction of sunlit soil can be estimated from the bi-directional gap
probability as PsPyHt (Yu et al. 2004), and the fraction of shaded soil is, finally, P,(1-PsP,Ht).
Ht is the corresponding bi-directional function.

The directional gap probability throughout the canopy layer depends on the canopy
structure, the leaf area index (LAI), the leaf angle distribution (LAD) and the viewing angle.
It can be expressed as Eq.(6.8) for a homogeneous canopy (Myneni et al. 1989; Nilson 1971):

G(6)

P(0) = exp[—l(@)ﬁ

-LAI, (6.8)
where, the ratio G(6)/cosé represents the directional extinction coefficient for a canopy with a
random leaf dispersion, and G(0) is the fraction of leaves projected in the direction 6. A(0) is
the directional leaf dispersion parameter, which equals 1 if the leaves are randomly distributed
but is less than 1 for clumped canopies (Chehbouni et al. 2001; Nouvellon et al. 2000). For a
discontinuous canopy, the gap probability can be expanded from Eq.(6.8) as a function of the
path length (Li and Strahler 1988):

P(6) = exp[-7(6) -1, - FAVD], (6.9)

where, l¢is the effective path length that passes through the canopy, while the length passing
through the adjacent space among rows is ignored. FAVD is the foliage area volume density in
a unit of m™, and 7(6) =A(0)-G(0) is defined as the attenuation coefficient. According to
Eq.(6.9), the gap probability in the viewing and solar directions for the four cases (a — d) can
be expressed by Eq.(6.10):

P, =exp[-7-l,- FAVD] and P, =exp[-7-I,-FAVD]. (6.10)

To calculate the fractions of sunlit and shaded soil in case (d), the bi-directional gap
probabilities in the solar and viewing directions are considered. An exponential model for
homogeneous canopies, developed by Kuusk (1985), can be applied to estimate the fraction of
sunlit soil P (Du et al. 2007; Yu et al. 2004):

P = PP Ht = exp[—r(l, +1, - = EXp(_Im 1) 1) Favo). (6.11)
m .

sV

In Eqg.(6.11), Ht is the bi-directional function, and m = 1/s, where s is the characteristic
linear dimension of the foliage. As stated above, |, and |5 are the path lengths through the
canopy in the viewing and solar directions, respectively. Iy, is the path length difference
between the solar and viewing beams and is defined by Eq.(6.12):

I, =T, —1, |= 12 +12 =21 | cos & , (6.12)

sV

where, ¢ is the scattering angle, which can be calculated from the zenith and azimuth angles
of the solar and viewing directions of the ith cell:
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cos& =cosf, cosh,; +sinb,sin6,, cos(p,, — @) . (6.13)

The rest of the terms in Egs. (6.12) and (6.13) have the same meanings as those used in
previous equations.

STEP 4: Using equations from Eq.(6.10) to Eq.(6.13), the components’ fractions for each
cell can be derived. However, the average fractions for the entire footprint of the ellipse are
not the mathematical average of those fractions for all of the cells because of the Point
Spreading Function (PSF) effect of the sensor’s response to input energy. This effect can be
simply understood as the contribution of each cell to the total energy is different, and the
closer the cell is to the center of the sensor’s FOV, the greater its weight will be. Because it is
difficult to measure the sensor’s PSF, we used a two-dimensional Gaussian function to
determine the relative weight of the ith cell (Huang et al. 2002):

W(I) _ ﬁexp[_ (Xi — XO) 2;§y| — yo) ] ’ (614)

where, (X; Vi) is the location of the ith cell within the footprint on the TOC, while (o, Yo) is the
location of the central point of the sensor’s FOV on the TOC, i.e., point D' in Fig.6-1. The
term o is the standard deviation of x and y, and is assumed to be the same for both x and y. As
a result, the components’ fractions for the whole FOV are weighted according to Eq.(6.15):

PRAORTORSHOMDMAORTO
Fx(eviqav): = N == N
ZW(i)-AST (i) Zw(i)

, (6.15)

where, Fy represents the fractions of leaves (Fiear), sunlit soil (Fsun soir) and shaded soil (Fshd_soit)
within the footprint; (i) is the component fraction of the ith cell; and N is the number of cells
in the footprint. Because the area of each cell is the same, Eq.(6.15) is not sensitive to the
term ASr.

STEP 5: Finally, the directional brightness temperature (DBT) from the footprint of the
sensor’s FOV is related to the components’ fractions and corresponding temperatures by the
following linear expression (Du et al. 2007; Yu et al. 2004):

L(DBT) = F
+R

: L(BTIeaf ) +F

sun _soil

+ (1—80)Ra¢

-L(BT n_soit) t Fs soil L BTS s0i
( sun_ ) hd _soil ( hd |)’ (6.16)

multi

where, L(DBT) is the thermal radiance from Planck’s law, and the inversion of Planck’s law to
the term L(DBT) in Eq.(6.16) will return the DBT. BTieat, BTsun_soit and BTsha soil are the
brightness temperatures of the leaves, sunlit soil and shaded soil, respectively, which are
defined by the inversion of Planck’s law, L'l[ng(TX)], where Ty and & are a single
component’s temperature and emissivity, respectively; Rnui iS the single and multiple
scattering radiance within the canopy and between the soil and leaves (Francgois et al. 1997;
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Verhoef et al. 2007). For the row canopy, the term is complex because of the discontinuous
structure. Because the reflectivity of leaves and soil in the thermal spectral range is very low,
excluding this scattering will not cause significant error in the DBT. The last term is the
reflected atmospheric downward radiance; R, is the atmospheric downward radiance and & is
the canopy directional emissivity. Because atmospheric radiance is related to atmospheric
emission, there is much uncertainty in the DBT. Therefore, this study does not consider the
reflected atmospheric radiance in the following discussion and only considers the angular
variation of DBT, which is mainly dependent on the components’ fractions and brightness
temperatures.

6.3 Model analysis

As indicated above, the new model treats the sensor’s footprint on the TOC as a circle at
the nadir or as an ellipse in the slant direction and then divides the footprint into several
smaller cells and calculates the actual VZA, VAA, and path lengths for each cell in both the
viewing and solar directions. Based on these parameters, the fractions of leaves, sunlit soil
and shaded soil are obtained from gap probability theory. The total energy in the footprint is
calculated as the sum of the radiation from all of the cells, which is weighted by a
Gaussian-distributing PSF. Therefore, the input parameters for the new model include three
categories:

(1) Canopy structure parameters: the width of the hedgerow (w.) and soil (ws); the height of
the canopy (h); LAI or FAVD; the dimension of the foliage elements (s = 0.2 m, as
reported in (Yu et al. 2004)); and the row direction (¢r).

(2) Observational geometric parameters: the solar zenith and azimuth angles (6sand ¢s); the
zenith and azimuth angles of the goniometer (6, and ¢,); the observation height Hy from
the sensor to the ground at the nadir, and the slant observation height H = Hocos(4,); the
angle of the sensor’s FOV (&); and the central point (x;) of the sensor’s FOV on the
TOC.

(3) Brightness temperatures of leaves, sunlit soil and shaded soil: BTiear, BTsun soit and
BTshd_soil .

Table 6-1 lists the general input parameters that are used for the model analysis. The row
direction is assumed to be south/north, ¢, = 0. Three FOV angles are considered to investigate
the effect of the FOV on the DBT of the row canopy: small (6°), medium (16°) and large
(28°).

Table 6-1. The input parameters used for model analysis

93 Ps FOV We Ws h HO @r Xc LA BTleaf BTsun_soil BTshd_soil
) O ) (m (m) (m) (m) () (m) (K) (K) (K)
30 270 6,16,28 03 03 03 30 0 015 10 305 320 315
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6.3.1 Components’ fractions and angular variation in DBT

Fig.6-3 depicts the fractional distribution of several variables: (a) leaves, (b) sunlit soil, (c)
shaded soil and (d) DBT for three FOV angles: 6° (FOV6) in column 1, 16° (FOV16) in
column 2, and 28° (FOV28) in column 3. Column 4 lists the angular variations in those
fractions and the DBT in the solar principle plane (SPP). The SAA and SZA are 270° and 30°,
respectively, which indicate that the solar beam is perpendicular to the row direction. For
simplicity, the VZA is assumed to be negative in the solar backscattering direction. As a result,
the SPP in Fig.6-3 runs from west to east, ranging from VZA = -60° to VZA = 60° by a step of
10°.

The distribution of the leaves fraction (Fear) IS presented in Fig.6-3(a), which illustrates
that different distributional patterns are caused by these FOVs. Fig.6-3(a-4) indicates that Feys
reaches its local maximum at the nadir in the case of FOV®6, decreases until about VZA = 45°,
and finally increases with increasing VZA. However, the fractions of both FOV16 and
FOV28 always increase with increasing VZA. Although the footprint for large VZAs is larger
than that for small VZAs, the path length I, of the viewing beam for large VZAs of the SPP
may be reduced for two reasons in the case of FOV6. First, the row-space effect does not
account for the path length through the space of two the adjacent vegetated hedgerow. The
footprint of FOV6 encompasses a small area of the TOC at the nadir observation, but the
majority the footprint intersects the leaves, and the path length I, from the TOC to the BOC
generally passes through the hedgerow, infrequently intersecting the adjacent soil space due to
the small VZAs of all cells. Since the major axis (approximately 0.28 m at the nadir) of the
elliptical footprint of FOV6 is less than the total width (w. + ws) of one whole period of the
row canopy, the probability that the footprint includes predominantly vegetation with minimal
background or predominantly background with minimal vegetation, actually increases.
Therefore, the leaves fraction Fess decreases while the soil fraction increases with VZAs
varying from the nadir to the slant direction. Similar results can be also found in Fig.6-3(b-1)
that illustrates the fractional distribution of sunlit soil for FOV6. However, this row-space
effect diminishes or disappears when the VZA exceeds the row threshold angle (e.g., 45°,
arctan (h/ws)), as indicated in Fig.6-3(a-4). A longer path length is then consistent with large
VZAs. The second reason is the previously mentioned PSF effect, in which the cells around
the FOV’s central point contribute more to the observed DBT than the other cells. As a result,
the observed DBT is largely dependent on those cells near the center of the FOV, and their
path lengths further rely upon their locations within the hedgerow. From Fig.6-3(a-4), it is
apparent that FOV16 and FOV28 have very similar angular variations of Fiey in the SPP.
However, comparison between Fig.6-3(a-2) and (a-3) reveals that the directional Fiear Of
FOV16 and FOV28 are still different, especially in the profile of the row direction. In addition,
Fig.6-3 (a-3) also shows that the Fe5s of FOV28 is almost independently on the azimuth, and
its isolines resemble a series of concentric circles. This result indicates that the FOV28 is
large enough to smooth the row-space effect of the row canopy because its footprint contains
approximately one to three periods of the row structures. This smoothing causes the final
directional components’ fractions (Fig.6-3(b-3) and (c-3)) and the final DBT (see Fig.6-3(d-3))
to distribute as a uniform, continuous canopy. Moreover, because the new model does not
separate the sunlit and shaded leaves, the distribution of Fiy is independent on the solar
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position, and only determined by the canopy and viewing geometric parameters. As a result,
there is no a local maximum Fe4s in the hotspot where the solar and viewing beams are in the
same direction.
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Fig.6-3. Fraction distribution of several variables: (a) leaves, (b) sunlit soil, (c) shaded soil and (d) DBT for
difference FOV angles: 6° in column 1, 16° in column 2, and 28° in column 3. Column 4 shows the angular
variations of those fractions and DBT in the principle plane. (SAA = 270°, SZA = 30°, row direction = 0°)

Fig.6-3(b) displays the fractional distribution of the sunlit soil (Fsun_soi) for the three FOVs
and their comparison in the SPP. The hotspot is obvious for FOV16 and FOV28, while two
such spots exist in the FOV®6, falling on the forward and backward scattering sides of the SPP.
As depicted in Fig.6-3(b-1), the row-space effect is significant in the case of FOV®6, especially
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in the VZA range from 20° to 50° in the SPP. Meanwhile, the angular variations of the Fsyn soil
for cases FOV16 and FOV28 in the SPP are quite similar, with a difference less than 0.03.
However, the Fsun soil OF the two cases has an obvious discrepancy in the row direction, and
this difference has a maximum value 0.1 at VZA = 60°. However, since FOV28 smoothes the
row-space effect, the result of FOV16 may be much closer to reality than FOV28. As for the
distribution of the shaded soil (Fsng soit) presented in Fig.6-3(c), there is a “cold spot” in the
solar direction for FOV16 and FOV28, corresponding to the hotspot of the Fsy, soii. Compared
to the Fsun soil, the Fsng soit patterns of FOV16 and FOV28 are more similar, even in the row
direction. As expected, the Fshq soit OF FOV6 is still different from the other two cases.

Fig.6-3(d) represents the DBT distribution for the three FOVs, which were calculated
from the components’ fractions and their brightness temperatures at BTiear = 305 K, BTsun_soil
= 320 K and BTsng_soit = 315 K (see Table 6-2). Because the Fiear is beyond the control of the
solar position and its distribution is almost symmetric along the row direction, the angular
behaviors of DBT are predominantly determined by the distribution of sunlit soil that has the
largest brightness temperature. Consequently, similar to the distribution of the Fgyn_sil, two
hotspots appear in the forward and backward SPP of the DBT distribution of FOV6, while
only one such hotspot falls within the solar beam direction for FOV16 and FOV28. However,
from Fig.6-3(d-4), it is apparent that the DBT of VZA = -10° is larger than that of VZA = -30°,
perhaps because the leaf temperature is lower than that of shaded soil, and the increased
temperature due to the increase of the leaves and sunlit soil fractions is smaller than the
decreased temperature due to the decrease of the shaded soil fraction when VZA changes
from -10° to -30°. The same reasons can be used to explain the DBT’s fluctuation in the range
of VZAs from the nadir to forward 20°.

Table 6-2 lists some comparison of the components’ fractions and the DBT among the
three FOVs. It indicates that the results of FOV16 and FOV28 are generally similar, but
different from those of FOV®6: the root mean square errors (RMSE) of the leaves, sunlit and
shaded soils fractions between FOV6 and the other two FOVs are respectively 0.13, 0.14 and
0.06, which causes their temperature difference up to 1.9 K, and even results in an larger
difference at the nadir observation (e.g., approximately 2.5 K). Furthermore, the nadir DBT of
FOVG is lower than that of both FOV16 and FOV28 because the footprint of FOV6 mainly
contains the leaf component at the nadir, while the soil covers a relatively larger percent in the
footprint of the two other FOVs.

Table 6-2. Difference of components’ fractions and DBT caused by different FOVs

Cases RMSE DBT difference (K)

Fieat  Fsunsoil  Fshasot  DBT (K) @Hotspot @Nadir
FOV6 - FOV16 0.13 0.14 0.06 1.9 -1.1 -2.5
FOV6 - FOV28 0.13 0.14 0.06 1.9 -1.0 -2.6
FOV16 - FOV28 0.02 0.02 0.01 0.3 0.1 -0.2
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From the discussion above, we learn that different sensors’ FOVs can result in
significantly different patterns in the directional distribution of the component fractions and
DBT. A small FOV, such as FOV6, whose footprint is less than one period of the row canopy,
can cause DBT to be predominantly contributed by one component and row direction, while a
large FOV, such as FOV28, whose footprint is more than two periods of the row canopy, can
smooth the row-space effect and cause the DBT’s angular variation of the row canopy to
perform as a uniform, continuous canopy. Therefore, a question is raised: what FOV (or
footprint) can be used to obtain a representative DBT for the row canopy? To answer this
question, the next sections will analyze the model’s sensitivity to some key parameters and
compare the new model with the parallel model developed by Yu et al.(2004).

6.3.2 Model sensitivity to key parameters

This section will evaluate the new model’s sensitivity and consistency with several key
input parameters: the widths of the hedgerow and the background, LAI, the central location of
the sensor’s FOV, the solar position and the components’ brightness temperatures.

A. Effect of the ratio of the hedgerow width to the background soil width r. The
hedgerow width determines the gap distributions within the canopy. For a narrow hedgerow,
gaps are largely concentrated along the hedgerows; otherwise, gaps may be generally within
the hedgerows for a wide hedgerow. We fix the total width of a whole row period (i.e., wc+ws
= 0.6 m) and evaluate the influence of the ratio r = w; /(wc+ws) on the DBT. Different rs
correspond to crop’s different growth stages, and r = 1.0 means that the row canopy is fully
vegetated and becomes a uniform, continuous canopy. In order to investigate the influence of
r on DBT, we changes r from 0.1 to 1.0 at a step of 0.1 and keep the other input parameters
the same as those in Table 6-1. Fig.6-4(a), (b) and (c) display the directional distribution of
DBT at r = 0.2 and r = 0.8 for the three FOVs, as well as the DBT variation in SPP and the
cross principal plane (CPP). As shown in those figures, the DBTs for the case of r = 0.2 are
significantly higher than those of r = 0.8 because a small r indicates that more soil is
contained in the footprint. As seen from the DBT profiles in column 3 of Fig.6-4, the range of
the DBT for the case r = 0.8 in both SPP and CPP is larger than that of r = 0.2, which shows
that the fractional variations in soil have a greater influence on the DBT of a dense canopy
than that of a sparse canopy. In addition, the distribution of DBTs generally depends on the
FOV at a small r (e.g., 0.2) but gradually exceeds the control of the FOV with increasing r,
especially when r remains high. For the FOV6, an increasing r diminishes the hotspot in the
forward direction of the SPP and only retains the normal hotspot in the solar direction. For the
FOV16, a hot stripe appears in the row direction at r = 0.2 but gradually changes to a pattern
similar to the FOV28. For the FOV28, although some slight changes can be found in the SPP,
the distribution pattern of the DBT is nearly unchanged because of its huge footprint.
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Fig.6-4. Directional distribution of DBT for FOV6, FOV16 and FOV28 at r (=w./(w,+ws)) = 0.2 (column 1)
and 0.8 (column 2), and their corresponding angular variation of DBT (column 3) in solar principle plane
(SPP) and cross-principle plane (CPP).

Fig.6-5 presents the comparison of the components’ fractions and the DBT from different
FOVs by taking the values of FOV28 at each r as the reference. It indicates that the
differences of the components’ fractions (leaves and sunlit soil) and DBT between FOV16
and FOV28 are generally less than 0.03 and 0.3 K, respectively, while the difference between
FOV6 and FOV28 is significant: the RMSE of the components’ fractions first increases
rapidly, then reaches its maximum (0.13 for leaves and 0.14 for sunlit soil) near r = 0.4 and
decreases to less than 0.03. Similarly, the DBT RMSE reaches its maximum (approximately 2
K) around r = 0.4, and most of r results in a RMSE larger than 1 K. In theory, the distribution
of the DBT should be independent on FOV for a fully vegetated footprint (e.g., r =1.0), but
there are still some DBT discrepancies between FOVs, as shown in Fig.6-5. This result might
be caused by the non-linear PSF of the different FOVs. If PSF is assumed to be 1 for each cell,
their difference will be removed. Based on these results, we know that the DBT of a narrow-
hedgerow canopy (a small r) depends on the FOV and has one or two small hotspot peaks for
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different FOVs, while the DBT of a broad-hedgerow canopy (a large r) becomes independent
on the FOV and has a sharper hotspot compared to a proper ratio r. A similar result was also
described by (Yu et al. 2004).
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Fig.6-5. RMSE for the difference of components’ fractions (a) and DBT (b) between FOV6, FOV16 and
FOV28 with r varying from 0.1 to 1.0.

B. Effect of LAI. As reported in other papers (Chehbouni et al. 2001; Du et al. 2007; Yu et
al. 2004), LAI is the key parameter that influences the gap probability in the canopy. Fig.6-6
displays the directional distribution of the DBT for the three FOVs with LAI = 0.5 and 5.0,
corresponding to sparse and dense leaves in the hedgerow. The other input parameters are the
same as those listed in Table 6-1. It shows that a lower LAI results in an obvious hotspot and
hot region around the solar direction. The DBT in this region is similar to the soils’
temperatures (BTsun_soil = 320 K and BTsng_soit = 315 K) because it is mainly determined by the
soil components. However, in the case of a larger LAI, the dense hedgerow is almost opaque
and consequently decreases the gap probability of sunlit soil. This condition causes the
hotspot to nearly disappear in FOV16 and FOV28, and their hot regions are finally distributed
in the row direction rather than the solar direction, but closer to the side of the solar position.
Nevertheless, a different result is obtained for FOV6 that the increase of LAI in the hedgerow
sharpens the hot stripe in the solar direction but reduces the hot stripe in forward directions, as
shown in Fig.6-6(a-1). On the contrary, a cold stripe rather than the hot stripe appears in the
row direction for LAI =5.0 (see Fig.6-6(a-2)) because the small footprint of FOV6 is mainly
covered by leaves, causing the DBT to be determined by the leaves’ brightness temperature.
Therefore, for a smaller LAI, the DBT is largely dependent on the soil components and has
minimal variation over large viewing zeniths, especially for large FOVs. On the other hand, a
larger LAI can cause the DBT to be dominated by the hedgerow structure and leaves’
brightness temperatures, and result in a lower average DBT, a small hotspot and a hot stripe in
the row direction.
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Fig.6-6. Influence of LAI on the DBT distribution for FOV6 (a), FOV16 (b) and FOV28 (c). Left column:
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C. Effect of the central position of the sensor’s footprint x.. The X that is defined in
Fig.6-1(b) plays a key role in the DBT distribution because it is used to determine each cell’s
relative position above the hedgerow or the soil within the sensor’s footprint, as described by
Eq.(6.7). We illustrate the influence of x. by varying its value from -ws (i.e., -0.3 m) to w, (0.3
m) with an interval of 0.03 m. The other parameters remain unchanged from Table 6-1.
Generally, if x. is closer to the center position above the soil (the hedgerow) the DBT will be
higher (lower). Fig.6-7 displays the DBT distribution at x; = -0.15 m, meaning that X, is in the
middle part above the soil, and x; = 0.0 m, meaning that x; is on the common boundary
between the hedgerow and the soil rows. Only FOV6 and FOV16 are presented in Fig.6-7
because the DBT for FOV28 rarely varies with the x. positions. The RMSE of FOV28 DBT
difference caused by different values of x; is less than 0.2 K, and the corresponding maximum
difference is less than 0.8 K. Compared to the DBT in Fig.6-3(d), whose X.is 0.15 m, the
FOV16 has a small variation in DBT (< 0.4 K) caused by the variation of x; moving from the
hedgerow to the soil but it is found that this variation of x. changes the DBT distribution from
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a VAA-dependent pattern to an almost VAA-independent pattern. However, as for FOV6, the
DBT distribution changes significantly, as expected. The variation of x. from the hedgerow to
the soil causes the two hotspots in Fig.6-3(d-1) to get closer to each other, and finally
produces a hot region along the row direction, as shown in Fig.6-7(a-1) at X, = -0.15 m. In this
case, the component observed in the directions around the nadir is predominantly covered by
the soil due to the small footprint of FOV6, and the DBT is, therefore, dominated by soil.

(a-3)

365 08
(b-3)

(b) FOV16
Fig.6-7. Influence of the central position x. on the DBT distribution. (a) FOV®6; (b) FOV16. Column 1 is
the case of x, = -0.15 m (above the middle of soil) and column 2 is the case of x.= 0.0 m (above the
common boundary of hedgerow and soil). Column 3 is the comparison between DBT at x.= 0.15 m and
those of other x., with LAI varying from 1.0 to 5.0.

Fig.6-7 also highlights the DBT difference between x. = 0.15 m and other x. varying from
-0.3 to 0.3, with LAI varying from 1.0 to 5.0. Results indicate that FOV6 has a higher RMSE
than FOV16 due to the limitation of its footprint, and the DBT difference is generally
significant when x. falls above the soil and reached the local maximum at x. = -0.15. Besides,
the DBT difference is also influenced by the LAI and increases with the increasing LA,
especially for the cases x. < 0. Although a larger LAI is related to a larger leaves fraction
within the footprint and consequently reduces the DBT, the DBT difference is actually
enlarged with the increasing LAI, because the decreased DBT caused by increasing the LAI is
larger than the decreased DBT caused by the variation of x. with respect to the case of x; =
0.15 m (i.e., the reference case, in the middle range above the hedgerow). Fortunately, the
influence of LAI on the DBT difference nearly disappears when LAI exceeds 4 for a dense
canopy. Therefore, the x; has a little influence on the DBT with a large FOV, but affects the
DBT distribution with a small FOV. Since the shift of x. can change the pattern of the DBT
distribution for the small FOV, an accurate input of this parameter is highly required for
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accurately simulating the DBT.
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Fig.6-8. Influence of solar position (marked with a star) on the DBT for (a) FOV6 and (b) FOV16. Left to
right presents the solar position at 120°/10° (SAA/SZA), 120°/30°, 120°/45° and 120°/60°, respectively.

D. Effect of solar position. The solar position (SZA and SAA) determines the fractions of
sunlit and shaded soils and the components’ brightness temperatures. However, it has no
effect on the leaves fraction because the leaves are not separated into sunlit and shaded
components, and their fractions are only dominated by the canopy parameters and the viewing
direction. Fig.6-8 displays the influence of the solar position on the DBT by changing the
SAA and SZA from Table 6-1 to 120°/10° (SAA/SZA), 120°/30°, 120°/45° and 120°/60°,
respectively. It shows that the increase of the SZA in the same azimuth plane reduces the
value of the DBT because the longer path length through the leaves in the solar direction
results in a larger shaded soil fraction. The position of the hotspot for FOV16 is almost
consistent with the solar position (marked with a star) at both SZA = 10° and 30°, but the hot
stripe became wider, and the hot peak is consequently reduced. However, the hotspot becomes
far from the solar position at both SZA = 45° and 60°, and their hot stripes distribute around
the nadir direction, perhaps because all solar beam is obscured by the leaves (i.e., Is> 0 for
each cell in Fig.6-2) at a SZA equal or beyond the threshold angle (=arctan (h/ws), i.e., 45°) of
the row canopy, and the soil fractions with higher brightness temperature in the solar direction
are consequently reduced and even less than those in the directions around the nadir. FOV28
has a pattern similar to that of FOV16 and is not presented here. On the contrary, both
Fig.6-8(a) and Fig.6-3(d-1) indicate that the solar position does not change the position of the
two hot stripes and has little impact on the DBT of FOV6. The DBT difference between the
four simulations of FOV6 in Fig.6-8(a) has a RMSE of less than 0.3 K and a maximum of
approximately 1.1 K. In fact, the DBT distribution of such a small FOV is largely determined
by the row structure because its footprint is too small to collect representative DBT data.
Similar results are obtained even if the solar beam follows along the row direction.
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E. Effect of components’ brightness temperatures. If all of the components have a unique
brightness temperature, the DBT will be independent of the geometry of the sun, target, and
sensor. However, this condition seldom occurs in sunny days. Because the DBT is a weighted
average of its components’ fractions and brightness temperatures, and those fractions are
calculated from the canopy and viewing geometrical parameters, the components’
temperatures predominantly determine the value of the DBT, with little impact on the pattern
of the DBT distribution. Taking Fig.6-3(d-4) for example, the hot peak is not sharp enough in
FOV28, and the DBT in the hotspot is a little lower than that of the other VZAs in the SPP,
such as VZA = -10° and -20°. The leaf temperature is lower than the shaded soil, and the
increased temperature due to the increase in the leaves and sunlit soil fractions is smaller than
the decreased temperature due to the decrease in the shaded soil fraction when VZA changes
from -10° to -30°. If we reduce the brightness temperature of the shaded soil in Table 6-1 to
310 K, the hotspot in Fig.6-3(d-3) will be sharper and, consequently, the DBT of VZA = -10°
and -20° in the SPP will be lower than that of the hotspot.

6.3.3 Comparison with the parallel model

Because a parallel model always assumes that the row canopy is large enough and
distributed in period, it is therefore reasonable to model the directional components’ fractions
and DBT within only one row period. However, as indicated above, the FOV influences the
DBT distribution in the row canopy; a small FOV (e.g., 6°) of the sensor causes the DBT
distribution to be dominated by the row direction and infrequently by the solar position, while
a large FOV (e.g., 28°) smoothes the row-space effect and causes the DBT to distribute as a
uniform, continuous canopy. As a result, the field validation of the parallel models becomes
puzzling: which FOV should be used for the DBT measurement in the row canopy? Although
many field studies have been conducted for validation (Chen et al. 2002; Menenti et al. 2001,
Yu et al. 2004), there has been no discussion about their validity until now. Thus, the next
section is devoted to identifying a proper FOV (or footprint) for the validation of the parallel
model through a comparison with our new model (hereafter called FovMod).

We simulate the components’ fractions and DBT using the model proposed by Yu et al.
(2004) (hereafter called YuMod), with the same canopy parameters (i.e., H=0.3, L = 0.6, a=
0.3 in YuMod) as those in Table 6-1 but without the height of the hedgerow’s bottom edge
(i.e., h = 0 in YuMod), and using the FovMod at different FOVs, LAIs and other input
parameters from Table 6-1. Fig.6-9 displays the comparison of the two models. The RMSEs
of the DBT difference at different FOVs and LAls (see Fig.6-9(a)) indicate that the RMSEs
first decrease rapidly, and reach their local minimums at approximately FOV = 18°, and
finally, increase slowly with increasing FOV. The DBT difference between the two models is
slightly sensitive to the LAI value, and the influence of the LAI also depends on the FOV; the
RMSE increases with increasing LAI at a FOV smaller than 18° but decreases slowly with
increasing LAI at a FOV larger than 18°. A larger LAI generally reduces both models’ DBT,
but the YuMod’s DBT is reduced more than that of the FovMod when FOV is small because
the FovMod’s footprint includes fewer fractions of leaves in many cases. Fig.6-9(b) displays
the variations in the maximum absolute DBT difference. The curves in this figure have similar
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patterns to those in Fig.6-9(a), and the minimum difference is less than 1 K at FOV = 18°.
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Fig.6-9. Comparison between the FovMod and YuMod. (a) and (b) are respectively DBT RMSE and
maximum difference between the FovMod and the YuMod for different FOVs. The top of the horizontal
axis is the number of period (NP) corresponding with the FOVs.

As seen in Fig.6-9, the FOV effect reaches its minimum at FOV = 18°, and the simulated
DBT of the two models is closest in this case. However, this result does not imply that an
FOV = 18° is the optimum FOV for all cases because this optimum FOV further depends on
many other parameters: the width of the hedgerow and the soil, the height of the canopy, LA,
the observation height, etc. The simulation results suggest that the optimum FOV is almost
independent of the solar position, so we ignore the influence of the solar position. To identify
a quasi-universal optimum FOV that can reduce or eliminate the FOV effect for most cases,
we introduce an index called the number of period (NP), which is defined as the ratio of the
footprint’s diameter d, at the nadir observation to the total width of one row period of the
canopy:

NP =d_/(w, +w,), with d_=2(H,—h)-tan(0.5-9,). (6.17)

All of the terms in Eq.(6.17) are defined in Fig.6-1. The top horizontal axis in Fig.6-9
describes the NP that corresponds to the FOV displayed on the bottom axis. The optimum NP
(ONP) is, theoretically, equal to the NP that results in the minimum DBT difference between
YuMod and FovMod. Once the ONP is discovered, the corresponding sensor’s FOV (6) and
footprint can be computed from the inversion of Eq.(6.17), using a known Hy and h from a
field study.

Simulations are made by varying NP, r (defined in Section 6.3.2), the height-width ratio
rw (=h / (We+wsg)), and LA, as listed in Table 6-3. The other input data are the same as those
in Table 6-1. Fig.6-10 displays the variations between the two models’ DBT differences using
a series of combined NP and r, where ry,, equals 0.25, 0.50 and 0.75. LAl is 2.0 in all of these
figures. As indicated by this figure, a larger ry, can result in a bigger DBT RMSE when r is
small (such as 0.1), but this effect gradually disappears with increasing r. Although the RMSE
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is influenced by different r and ry,, it nearly reaches the local minimum (< 0.3 K) when NP
ranges from 1.5 to 2.0 and has a larger DBT difference outside of this range, especially when
NP is less than 1.5. By examining the influence of different LAIs, we found that the NP was
also in the range of 1.5 ~ 2.0 when their DBT difference reached its local minimum. Therefore,
the ONP should be within this range. Considering the slight variation of the ONP due to the
influence of different r, r,,and even LAI values, we recommend taking the middle value of
this range as the ONP. This value is 1.8, which suggests that if the nadir footprint of the sensor
covers 1.8 times the width of one whole row structure, the DBT collected by a ground sensor
on a row canopy can be regarded as the brightness temperature observed in a unique view
direction. In this case, the FOV effect is essentially removed, and the measured DBT from the
field study can be used to validate a parallel model with the smallest error. However, we do
not recommend using a sensor whose footprint covers significantly more area than 1.8 times
the row width because a larger FOV will cause the DBT distribution to resemble a uniform,
continuous canopy, as discussed above.

Table 6-3. Simulation conditions for model comparison

Variables Description Values
NP number of period 1.0 ~ 2.0 witha step 0.1
ratio of the hedgerow width to the 0.1~ 1.0 witha step 0.1
row width, we /(wc+ws)

r

Mhw height-width-ratio, h /(Wc+Wws) 0.25,0.5,0.75, 1.0
LAI leaf area index 0.5, 1.0 ~5.0 with a step 1.0
(a) rm=0.25 (b) =050 (c) rw=0.75

T s
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Fig.6-10. Combined influence on DBT difference between the two models from different NP (the number
of period) and r with ry,, equal (a) 0.25, (b) 0.5 and (c) 0.75, respectively. ryy, = h/(we + ws).

Note that the ONP that is recommended above was determined from only one group of
components’ brightness temperatures that are listed in Table 6-1. In fact, the DBT difference
between the two models displayed in Fig.6-9 will vary with the components’ brightness
temperatures. However, because the DBT difference is caused by the different components’
fractions in the two models, the variations of the components’ brightness temperatures can
only change the value of the DBT difference but will seldom influence the value of NP that
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has the local minimum difference. Therefore, the ONP of 1.8, described above, is theoretically
still available for other combinations of components’ brightness temperatures.

6.4 Validation

A field study was conducted on a row structured maize canopy on June 22, 2012 at
Wu-xingcun (100°24° E, 38°48’ N), ZhangYe City in Gansu province, China. A Multi-Angle
Observation System (MAQOS) was designed to automatically collect the DBT of the canopy at
different azimuth and zenith angles (Yan et al. 2012), shown in Fig.6-11. The MAOS was
driven by a two-dimensional automatic goniometer to take more than 13 zenith measurements
in approximately six minutes at arbitrary azimuth planes, with an angle accuracy of better
than 2°. One infrared thermometer (CS-LT series, manufactured by Optris Inc, Germany, with
a spectral range of 8~14 um, a temperature resolution of 0.1 K, and a FOV = 28°) was used to
collect DBT on four important azimuth planes: the solar principal plane (SPP), the cross
principal plane (CPP), the row azimuth plane (RAP), and the cross-row azimuth plane (CAP).
Zenith measurements were made every 10° from -60° to 60°, and additional measurements
were prescribed in the direction of the hotspot. The solar position was dynamically calculated
from the local time and geographic data. Because the MAQOS was supported by a tripod and
the height of the tripod was adjustable rather than fixed, the tripod was set to have the same
height with the maize canopy’s average height in order to make the sensor’s central point stay
on the TOC all the time.

2 Muli-Angle and Source Observation System Controller I (o]

Fig.6-11. MAQS in operation for a field campaign (left) and its controlling system (right)

A thermal camera was used at a similar place near the MAOS, and the components’
brightness temperatures can be manually extracted from the camera image, which was
simultaneously collected with each angular measurement of the MAQOS. This camera had a
FOV of 24°x18°, corresponding to an image of 320 x240 pixels and a temperature resolution
of 0.08 K at 300 K. Both the thermometers and the camera were calibrated using a BODACH
BOD series blackbody after the field measurements. The canopy and observation parameters
were measured and the row direction was approximately 90°. Table 6-4 lists several input
parameters for the model simulations, and. According to Eq.(6.17), the NP at the nadir of this
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observation was about 1.3.

Table 6-4. Some input parameters of model simulations for the maize canopy

FOV. w. ws h Ho o X
) m m m m () (m)
28 06 03 087 22 9 -0.15 3.35

LAI

Because of the storage limitation of the thermal camera and the cloud effect, only six
cloud-free azimuth planes’ DBT were successfully collected simultaneously with the thermal
images on that day: 2 in SPP, 2 in CPP, 1 in RAP and 1 in CAP. Fig.6-12 (a) shows the DBT
distribution, which was interpolated from the four-plane measurements from 12:07 to 12:24
when the average SAA and SZA were equal to 128.8° and 22.0°, respectively. The solar
position was marked by a star. Unfortunately, the expected hotspot was not observed, but a
hot stripe did appear in the CAP. This result may be caused by the high temporal variation in
the components’ brightness temperatures due to the solar illumination and local
meteorological conditions. In this case, a time normalization should be applied to the DBT
dataset using the four nadir measurements of each plane, as reported by Du et al. (Du et al.
2007). However, we did not apply such correction because of the strong fluctuation in the
measured nadir DBT, which first decreased and then increased along the sequence of these
planes, and also because the components’ temperatures were extracted from simultaneous
thermal images for each DBT.

Fig.6-12(b) and (c) are the simulated DBT distributions from FovMod and YuMod,
respectively. They illustrate that the FovMod’s DBT distribution pattern was closer to the
measurements than the YuMod, especially in the CAP. The details of their differences in those
azimuth planes will be described in Fig.6-13. Fig.6-12(d) displays the scatter of the measured
DBT against the DBT simulated by the two models. It suggests that most of the FovMod’s
DBTs fell within £1.0 K of the measurement, with a RMSE 1.2 K, which was 0.5 K lower
than the YuMod (RMSE = 1.7K).

Fig.6-13 compares the measured and simulated DBT from the FovMod and YuMod in
four planes, corresponding to Fig.6-12(a). The simulated DBT from both models in the SPP
(128.8°/308.8°) and CPP (38.8°/218.8°) were very close to each other, as shown in Fig.6-13(a)
and (b), and had angular variations that were similar to the measurement. For VZA < 0 in the
SPP, the FovMod’s DBTs fit the measurements with higher accuracy than the YuMod as the
FovMod’s results had a similar curve as the real data, especially for the VZAs from the nadir
to the solar direction, while the YuMod resulted in a much smoother pattern. The measured
DBTs in the middle VZAs (20°~50°) of the CPP were generally larger than the simulated
values, but a relatively small DBT difference was still obtained by the FovMod.
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Fig.6-12. DBT distribution (a) from field measurement, (b) from FovMod simulation and (c) from YuMod
simulation. The row direction was about 90° and the solar position was marked with a star. (d) Scattering of
the measured DBT against the DBT simulated by FovMod and YuMod, respectively.

In the RAP (90°/270°) and CAP (0°/180°), the FovMod was generally superior to the
YuMod. First, the DBT RMSEs in the FovMod were approximately 1.2 K and 1.4 K for the
two planes, which was much lower than those of the YuMod (2.0 K for RAP and 2.1 K for
CAP). Second, the angular variation in the FovMod was substantially similar in shape to the
measurements, while the shape of the YuMod’s angular variation was significantly different,
especially in the curve of the CAP (Fig.6-13(d)). Fig.6-13(c) also indicates that the YuMod
had a lower DBT than both the FovMod and the measured values because the central point of
the thermometer’s footprint fell above the background soil (x; = -0.15 m in Table 6-4) and,
consequently, the soil fraction in the footprint increased, resulting in relatively larger DBTs.
However, since the YuMod simulated DBT from a whole period with regardless of the
sensor’s position, the components’ fractions were generally dominated by the canopy structure
itself and the viewing angle. Furthermore, as illustrated in Fig.6-13(d), the YuMod’s DBTSs in
the CAP were generally larger than those of FovMod and the measurements. After examining
the components’ fractions respectively from FovMod and YuMod, we found that the RMSE of
their leaves fraction difference ranged up to 0.14, and a larger VZA caused a larger difference.
Besides, we noted that the measured DBTs had a “strange” change in the larger VZA of each
plane (i.e., VZA = -60° in the SPP, 60° in the CPP and RAP, and 40° in the CAP), perhaps
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because the canopy did not extend infinitely, and bare soil outside of the field site covered a
section of the footprint.
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Fig.6-13. Comparison of the simulated DBT and measurement. (a) solar principle plane (SPP); (b) cross
solar principle plane (CPP); (c) row azimuth plane (RAP); (d) cross-row azimuth plane (CAP). (Solar
position: SAA = 128.8°, SZA = 22.0°)

The above comparison demonstrates that if the DBTs measured by the current
thermometer are used to validate the YuMod, a reliable result cannot be obtained, especially in
the RAP and CAP. On the other hand, the footprint effect of the thermometer for the row
canopy was significant in our validation; the FovMod can simulate the DBT closer to reality
than the YuMod for the row maize canopy because the FovMod concerns on the footprint of
the thermometer and its central position. However, the DBT difference between the measured
data and the FovMod should not be ignored. For example, the DBT in the SPP reached the
local maximum at VZA = 0° of the measurements but at VZA = 10° for the FovMod. Similar
cases occurred in the CPP. These differences might come from the error that was included in
the input parameters of the FovMod, the components’ temperatures from the thermal image as
well as the calibration accuracy of the thermometer and the thermal camera.
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6.5 Discussions
6.5.1 Model application and future studies

Field measurements always suffer from the unexpected changes in the footprint and,
consequently, produce some strange results, but there is no practical way to eliminate them.
Because the FovMod focuses on the footprint effect of the ground sensor and the calculation
of the DBT is close to reality, it therefore provides an opportunity to evaluate the uncertainty
of the field measurements of the row canopy. Additionally, this model can be extended to the
visible and near infrared (VNIR) ranges by replacing the components’ temperatures with the
components’ reflectance, but additional work is needed to investigate the transmittance and
multiple scattering effects in the canopy because these two issues are larger in the VNIR than
inthe TIR.

The inversion of the components’ temperatures (e.g., leaves, sunlit soil and shaded soil) is
possible using the new model if the canopy and observation parameters are known as a prior
to calculate the component fractions in at least three viewing directions. However, because
some of the parameters that are needed in the current model can be only obtained at ground
level, such as x., the inversion is currently available only for ground measurements. Future
work can focus on the parameterization or simplification of the model to extend its
applications.

6.5.2 Field validation in the future

This thesis validated the developed model on a maize canopy for the first time. Although
the FovMod performed better than another parallel model, the footprint effect was actually
reduced largely by the nearly dense canopy because the LAI was up to 3.35 at the time of the
observations. In addition, the dataset for the validation was not huge enough for several
reasons (i.e., the device’s storage limitation and cloudy sky). Therefore, additional validations
must be made in the future on different crop canopies, such as maize and wheat. An ideal
dataset should be composed of different canopy structures, observation geometries, footprints
and components’ temperatures. A time-series measurement of the row canopy under different
growth stages is promising and is planned as part of our future validation work.

6.6 Conclusions

This chapter proposes a new model (FovMod) to describe the directional brightness
temperature (DBT) for a row canopy (mainly for the row crop canopy) by considering the
footprint effect of the sensor’s FOV at ground measurement. The new FovMod divides the
sensor’s footprint into numerous small cells, calculates the components’ fractions (e.g., leaves,
sunlit soil and shaded soil) in each cell using the theory of gap probability, and then averages
those fractions with a Gaussian PSF for the sensor’s response. The canopy’s DBT is finally
obtained from the components’ fractions and their corresponding brightness temperatures. We
evaluate the FovMod’s sensitivity and consistency with several key input parameters: the
widths of the hedgerow and the background, LAI, the central position of the sensor’s footprint,
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the solar position and components’ brightness temperatures. Simulation results indicate that a
small footprint of the sensor causes the DBT fraction to be dominated by the row direction
and a single component’s temperature but seldom by the solar position, while a large footprint
smoothes the row-space effect, causing the DBT to be distributed as a uniform, continuous
canopy. Taking the parallel model developed by Yu et al.(Yu et al. 2004) for example, we
introduce an index, called the number of period (NP) that is independent of the observations
and canopy height to investigate the optimum footprint that can result in the smallest DBT
difference between the FovMod and the parallel model. The results demonstrate that the DBT
difference between the two models always reaches its minimum when NP is in the range of
[1.5, 2.0], which suggests that if the diameter of a sensor’s circular footprint at the nadir
covers 1.5~2.0 times the total width of a row canopy, the sensor’s footprint effect will be
essentially eliminated, and the sensor measured DBT can theoretically be used to evaluate the
parallel model. Finally, a validation was performed using a maize canopy, with the observing
NP equal to approximately 1.3. Simultaneously measured DBTSs indicated that the FovMod
performed better than the YuMod. Therefore, we recommend the FovMod to simulate the
DBT of a row canopy when the NP falls outside of the range of 1.5~2.0.
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Chapter 7

Summary and prospective

The main work of this thesis includes: (1) finding the directional emissivity of natural
surface at pixel scales and presenting the angular effect of the emissivity on land surface
temperature (LST); (2) parameterizing the directional emissivity using the BRDF models and
gap-frequency-based models, and validating the kernel-driven BRDF (K-BRDF) model in the
angular normalization of surface temperature and investigating its requirement of the viewing
angles; (3) retrieving directional emissivity and effective temperature for non-isothermal
surface from daytime multi-angular middle and thermal infrared (MIR and TIR) data, and
performing normalization on effective temperature from off-nadir to nadir; (4) investigating
the footprint effect in the measurement of directional brightness temperature for the row
canopy and providing the optimum footprint for the ground measurement and a new method
to access the uncertainty in the field data. These contributions will enhance our understanding
of the anisotropy of the surface thermal radiation and improve the accuracy of separating
emissivity and temperature from remotely sensed data for land surface, especially for the
heterogeneous surface. However, some problems are still required more work in the future.

7.1 The major finding and discussions
7.1.1 Angular effect of emissivity at pixel scale and its impact on LST

Directional emissivity for several natural land covers were extracted at pixel scale from
MODIS emissivity products, driven from the day/night algorithm, and MODIS land cover
products. Result showed that emissivity increased in MIR channels but decreased in TIR
channels with the increase of viewing angle, and the angular variation was in a range of
0.01~0.02 in MIR channels and about 0.01 in TIR channels, but this variation can be almost
ignored at viewing zenith angle (VZA) smaller than 45°. The directional emissivity was
applied to the split-window algorithm to retrieve LST at 1km resolution from MODIS two
adjacent TIR channels’ brightness temperatures. By comparing the retrieved LST with the
original MODIS LST products, it was found that the new LSTs were generally larger than the
original one and their temperature discrepancy ranged from -1.0 to +3.0 K. Large viewing
angles caused bigger temperature differences than smaller ones. Finally, this thesis also
discussed the spatial scale effects between the retrieved LST at 1 km and 5 km, and its results
denoted that the spatial scale effects of emissivity could be ignored from 5 km to 1 km in our
study region probably because there was no scale effect included in the linear split-window
algorithm. Besides, two look-up tables of the directional emissivity were created for further
use in the future and other colleagues.

However, one should note that the directional emissivity at pixel scale from space might
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be partly caused or influenced by other two factors except for the viewing angle: one was
residual error of the atmospheric correction although the day/night algorithm adjusted the
column water vapor and near-surface air temperature; the other was the temporal and spatial
variation of the emissivity itself because the directional emissivities of land covers were
obtained from the statistical results of five years MODIS products in a large study area (most
part of China, Mongolia and Russia). Besides, the result of the directional emissivity had to
ignore the influence of soil moisture because we did not have such data at 5 km scale.

7.1.2 Parameterization of the directional emissivity and brightness temperature

Based on the directional emissivity simulated from the thermal SAIL model (TIR-SAIL)
and the bi-directional reflectivity simulated from the SAILH model, we compared four
parameterization models (2 BRDF models and 2 gap-frequency-based models) in the
parameterization of the directional emissivity. Results showed that the kernel-driven BRDF
(K-BRDF) model accurately presented the angular variation of the canopy directional
emissivity, and it had to refine the cavity effect factor, which related to the multiple scattering
of the canopy, in the analytical model proposed by (Frangois et al, 1997). On basis of the new
cavity effect factor and the parameterization way of the SAILH model that can estimate the
components’ fractions in viewing direction (Li et al, 2010), a new method was proposed to
simulate the directional brightness temperature (DBT) of the canopy as the weight of several
components’ fractions (leaves, sunlit and shaded soils) and their temperatures as well as the
multiple scattering contribution among those components. Furthermore, this thesis also
investigated the application of the K-BRDF model in the angular normalization of the DBT.
Results presented the local optimum three-angle combination of the K-BRDF model, and
released the requirement of the VZA in the designed three arrays (nadir, forward and
backward) detector system. Those findings perhaps provided some suggestions for the future
design of the multi-angular thermal infrared sensor.

However, the new cavity effect factor in this thesis only be used for the SAIL series
models and it may causes uncertainty if this factor is used for other radiative transfer models.
The new method of simulating the DBT for the canopy was inherited from the calculation
manners in the VNIR channels, but it was not validated due to the lack of the field data.
Besides, since this thesis only discussed the case of three angular observation and found out
the local optimum one for the K-BRDF model in the angular normalization of the temperature,
more work was still needed to solve the question “what is the global angular combinations for
the kernel-driven BRDF model to fit the DBT accurately?”. Besides, those findings mainly
concerns on the case of homogeneous canopy, so it may be not suitable for the barren or
heterogeneous surface.

7.1.3 Angular moralization of emissivity and temperature using multi-angular images

In order to use the TISI (temperature-independent spectral indices) method with only
daytime observed data, we combined the K-BRDF model and the TISI method to retrieve
directional emissivity and effective temperature for non-isothermal surface from daytime
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multi-angular observed images in both middle and thermal infrared (MIR and TIR) channels.
In the new daytime TISI method (called D-TISI), it has to retrieve only four unknowns: three
kernel coefficients for the BRDF model, and TISIE. The MIR emissivity was obtained as the
complementary to the hemispheric-directional reflectivity integrated from the BRDF model
with the three kernel coefficients, and the TIR emissivity was further calculated from the MIR
emissivity and TISIE. Finally, the directional effective temperature was recovered from the
inversion of the radiative transfer equation in the TIR channels. Model analysis on the
influence of the angular observations and the bandwidth on the retrieval accuracy showed that
(1) large angle intervals among the angular observations and a larger viewing zenith angle
(VZA) with respect to nadir direction can improve the retrieval accuracy of emissivity and
temperature, and (2) narrow channels lead to a better result than the broad ones. Generally, the
D-TISI method can obtain emissivity and temperature with an error less than 0.015 and 1.5 K
if the noise included in the measured directional brightness temperature and atmospheric data
was no more than 1.0 K and 10%, respectively. At last, the new method was applied to a
multi-angular MIR and TIR dataset acquired by an airborne system, and a modified
kernel-driven BRDF model was used to make angular normalization on the surface
temperature for the first time. Results showed that it was necessary to make angular
normalization on surface temperature for a higher accuracy.

However, we did not validate the retrieved nadir and off-nadir effective temperatures due
to the lack of field data, and also ignored the temporal variation of surface temperature and
considered the temperature variation fully caused by the changes of viewing angles because
up to now there has no operational method that can be used to make time normalization of the
measured DBT data from multi-angular observation. As for the multi-angular observations,
pixels under different VZA had different areas, which might cause the pixels observed over
the same place in different directions included different components, especially for the
heterogeneous surface. This problem, along with the mis-registration between different
images, might lead more uncertainty to the retrieval result. Furthermore, although this thesis
discussed the influence of the angular combination on the retrieval accuracy from 4 groups
angles (see Table 5-4), and recommended the optimum combination among those groups, our
conclusion was very limited and more investigation is expected in the future to find the global
optimum combination in the upper hemisphere.

7.1.4 Impact of sensor footprint in the measurement of the DBT for the row canopy at
ground

A sensor’s footprint determines the target that is observed by the sensor and influences the
angular features of the target’s DBT at the field site. Accuracy measurement of surface’s DBT
at field campaign and its reasonable quality assessment is crucial for the validation of the
model and the result retrieved from space. From this point of view, this thesis proposed a new
model (FovMod) to describe the angular DBT for a row canopy by considering the footprint
effect of the sensor’s FOV at ground measurement. The FovMod firstly divided the sensor’s
circular or elliptical footprint into a few small cells, and then estimated the components’
fractions (e.g., leaves, sunlit soil and shaded soil) in each cell based on the gap probability
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theory. The canopy’s DBT was finally obtained by weighting the components’ brightness
temperatures and their fractions using a Gaussian point spreading function (PSF) of the
sensor’s response. Simulation results indicated that a small footprint caused the distribution of
the DBT to be strongly dominated by the row direction and a single component’s temperature
but little influenced by the solar position. On the contrary, a large footprint smoothed the
row-space effect and caused the DBT to distribute as a uniform, continuous canopy.
Comparison with a previous parallel model showed that if the diameter of the sensor’s
circular footprint extended to 1.5~2.0 times as large as the total width of the row canopy, the
footprint effect was minimized, and the ground measured DBT can, theoretically, be used to
evaluate the parallel model with negligible error. Finally, validations with a maize canopy
demonstrated that the new model performed more accurately than the parallel model to
simulate the DBT.

Actually, the FovMod provides an opportunity to assess the uncertainty in field
measurements that is caused by unexpected changes in the sensor’s footprint. However,
because some of the parameters needed in this model can be only obtained at ground level,
the inversion of the components’ temperatures is currently available only for ground
measurements. Therefore, the parameterization or simplification of the model is expected in
the future in order to extend its applications. Besides, because the FovMod ignores the single
and multiple scattering in the canopy, its expansion to VNIR channels needs more
investigation because the single and multiple scattering contributions in these channels are
much stronger than in the TIR channel. Moreover, more validations over different types of the
row canopy were required to check the performance of the FovMod.

7.2 Prospective

The proposed D-TISI method can be also applied to the geostationary satellite data, which
measures the same place at a high time frequency and it is easy to obtain multi-angular
observations on the basis of the changes of solar positions as long as the atmospheric
correction is operational. Additionally, it is also available for the polar-orbiting satellite sensor,
such as MODIS and AVHRR, if the sensor can observe the same pixel in a short period and
the emissivity of the pixel is assumed to keep unchanged. Besides, the result from the D-TISI
method should be validated using field data or using the products from other sensors.

This thesis achieved this angular correction in two ways: using directional emissivity in
the split-window algorithm and using the modified kernel-driven BRDF model in the
multi-angular MIR and TIR data. However, the two methods are unavailable for the sensor
that has neither directional emissivity nor enough multi-angular observations. Consequently,
new ways are therefore still needed. Since directional effective temperature is significantly
influenced by the fraction of the vegetation (FVC), it is possible to establish a relationship
between the directional temperature and FVC based on the temperature-FVC triangle space
method from the spatial distribution of the two variables in the study area, and use the
relationship to normalize the directional temperature to that of the nadir direction. For the
case that only one channel (e.g. TIR) is observed at different viewing angles, the temperature
at nadir can be analytically related to those of the viewing angles based on the measured data
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or simulation data from thermal radiative transfer model. Besides, the combination of the
polar-orbiting and geostationary satellites may be another way for angular correction on LST
if they observe the same place at different directions simultaneously or quasi-simultaneously,
but more attentions must be paid on the geo-registration and crossing radiative calibration
between the two kinds of sensors. Besides, hyperspectral TIR data may be helpful in the
angular correction to the LST because its hundreds of narrow channels’ data hold much more
information about the land surface than the multi-channel data.

In addition, more validation of the FovMod on different canopies, such as maize and
wheat, should be conducted in the future. An ideal dataset can be composed of different
canopy structures, observation geometries, footprints and components’ temperatures. A
time-series measurement of the row canopy under different growth stages is promising and is
planned as part of our future validation work. Moreover, the comparison with other models
may improve the accuracy of the FovMod.
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Appendix: Acronyms

4A/OP Operational release for 4A radiative transfer model
AATSR Advanced Along Track Scanning Radiometer
AMSR-E Advanced Microwave Scanning Radiometer for EOS

ASTER Advanced Spaceborne Thermal Emission and Reflection
Radiometer

AVHRR Advanced Very High Resolution Radiometer

BOC Bottom Of Canopy

BRDF Bi-directional Reflectance Distribution Function

CAP Cross-row Azimuth Plane

CBEM Classification-Based Emissivity Retrieval Method

CPP Cross solar Principal Plane

D/N Day/Night algorithm

DART Discrete Anisotropic Radiative Transfer model

DBT Directional Brightness Temperature

D-TISI Daytime TISI method

ECMWF European Centre for Medium-Range Weather Forecasts

ESDR Earth System Data Records

FAVD Foliage Area VVolumetric Density

FOV Field Of View

FWHM Full Width at Half Maximum

FY FengYun sensor

GO Geometrical Optical model

GOES Geostationary Operational Environmental Satellite

HDF Hierarchical Data Format

IASI Infrared Atmospheric Sounding Interferometer

IGBP International Geo-sphere and Biosphere Program

ISSTES Iterative  Spectrally Smooth  Temperature  Emissivity

Separation Method
K-BRDF Kernel-driven BRDF model

LAD Leaf Angle Distribution
LAI Leaf Area Index

LSE Land Surface Emissivity
LST Land Surface Temperature
LUT Look-Up table
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MAOS a Multi-Angle Observation System
MIR Middle Infrared
MODIS Moderate Resolution Imaging Spectroradiometer

MODTRAN MODerate spectral resolution atmospheric TRANsmittance
and radiance code

MGP Modified Geometric Projection model

MSG Meteosat Second Generation

NASA National Aeronautics and Space Administration
NCEP National Centers for Environmental Prediction
NDVI Normalized Difference Vegetation Index

NP Number of the Period of the row canopy

PSF Point Spreading Function

RAP Row Azimuth Plane

RMSE Root Mean Square Error

RT Radiative Transfer model

SAA Solar Azimuth Angle

SAIL Scattering by Arbitrarily Inclined Leaves
SEVIRI Spinning Enhanced Visible and InfraRed Imager
SPP Solar Principal Plane

SST Sea Surface Temperature

SZA Solar Zenith Angle

TES Temperature and Emissivity Separation

TIGR Thermodynamic Initial Guess Retrieval

TIR Thermal Infrared

TIR-SAIL  Thermal SAIL model

TISI Temperature-Independent Spectral Indices

™ Thematic Mapper

TOA Top of Atmosphere

TOC Top Of Canopy

TT™ Two-Temperature Method

UCSB University of California Santa Barbara library
VAA Viewing Azimuth Angle

VNIR Visible/Near infrared

VZA Viewing Zenith Angle

WATER Watershed Allied Telemetry Experimental Research campaign
WIDAS Wide-angle infrared Dual-mode line/area Array Scanner
WAV Water Vapor
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