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Summary

We develop generic methods for the efficient semiautomatic multiobject segmentation
of high-resolution 3D medical images. We formulate segmentation as a Bayesian label-
ing problem defined in terms of a prior distribution, image-derived evidence and user
constraints and solve it by minimizing an energy with multilabel Graph Cut algorithms
which produce provably good approximate solutions and in some cases global optima.
The most widely used prior in Graph Cut segmentation is the Potts model. It im-
plies the presence of a single boundary in the image, which is untrue in multiobject
segmentation. We investigate extensions of this model to account for multiple bound-
aries in multiobject segmentation which allow the minimization of resulting energies
by Graph Cut algorithms. Our main contribution is a structural prior model, called the
vicinity prior, which captures the spatial configuration of objects. It is formulated as
shortest-path pairwise constraints on a graph model of interobject adjacency relations.
Graph Cut algorithms use grid graphs which become complex on large input mak-
ing optimization impractical. We reduce memory budget and optimization runtime by
clustering image voxels prior to segmentation by an adaptive centroidal Voronoi tessel-
lation which strikes a good balance between the conflicting goals of cluster compactness
and object boundary adherence and help to place segmentation boundaries precisely.
We formulate segmentation according to the graph of clusters such that its energy is
independent of clustering resolution. This constitutes our second contribution.
Qualitative and quantitative evaluation and comparison with the Potts model on
synthetic, simulated and real medical images confirm that the vicinity prior model
achieves significant improvements in the correct segmentation of distinct objects hav-
ing identical intensities, the accurate placement of structure boundaries and the robust-
ness of segmentation with respect to clustering resolution. Comparative evaluation of
our clustering method with competing ones confirms its benefits in terms of runtime
and quality of produced partitions. Compared to voxel segmentation, the clustering
step improves both overall runtime and memory footprint of the segmentation process
up to an order of magnitude virtually without compromising the segmentation quality.
Structural prior models can be derived from other relationships as well, such as
distance, area of common surface and spatial directionality. Graph models describ-
ing such relations are fairly easy to define at an arbitrary level of detail from simple
specifications of relationships on pairs of objects, and can be generated from existing
anatomical models in medical applications. Furthermore, relations can be learned from
training data or several variants of a model thus capturing its variabilities.
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Présentation des travaux

La pratique clinique et la recherche médicale génerent aujourd’hui un grand nombre
d’images 3D de haute résolution, spécifiques aux patients, rendant difficile les taches
d’acces a ces données, de transfert, d’analyse et de visualisation, particulierement dans
les environnements informatiques distribués qui témoignent d’une utilisation des ter-
minaux mobiles pour la visualisation interactive des données anatomiques.

Traditionnellement adaptées a un seul organe ou une pathologie particuliere, les
méthodes de traitement d’images récentes ont rendu possible I’analyse et la segmen-
tation simultanées de plusieurs structures anatomiques. Par ailleurs, les technolo-
gies de traitement et de visualisation a distance, pour les grands volumes de données,
ont mari et ouvert la porte a la navigation sémantique de l’anatomie du corps en-
tier. Ainsi, la création de modeles anatomiques et physiologiques «patient-spécifiques»
devient crédible.

La segmentation d’objets (d’organes) dans les images est une condition préalable
a leur analyse, manipulation et visualisation efficaces. Dans les applications médi-
cales elle est ’épine dorsale de nombreuses procédures cliniques allant du diagnos-
tic aux soins post-opératoires. Elle est également essentielle a d’autres domaines de la
médecine impliquant I’étude et la représentation de I'anatomie. Cependant, I’analyse et
la segmentation automatiques des images médicales est difficile pour plusieurs raisons.
Différents artefacts, liés a la modalité d’imagerie et aux conditions d’acquisition, dé-
gradent la qualité des images et réduisent leur contenu informationnel. En outre,
de nombreuses structures distinctes manifestent des niveaux d’intensité (niveau de
gris dans 'image) identiques et se fondent dans les tissus voisins. Ces problemes,
couplés avec la variabilité des tissus a travers les populations de patients, rendent ir-
réalisable la conception d’algorithmes de segmentation d’usage générique. Alors que
certaines taches élémentaires, dans des conditions bien définies, sont déléguées aux
ordinateurs pour un traitement automatique, les experts médicaux ont fréquemment
recours a des méthodes de segmentation essentiellement manuelles dans la construc-
tion des modeles 3D «patient-spécifiques» qui demandent des investissements majeurs
de temps et d’effort.

Afin d’alléger le fardeau de la délimitation manuelle et comme une alternative
aux méthodes automatiques, souvent irréalistes, les méthodes de segmentation semi-
automatiques cherchent un équilibre entre les méthodes manuelles et automatiques.
Elles exploitent les facultés d’un opérateur humain a reconnaitre des objets de facon
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plus fiable qu’un ordinateur, et les capacités d’un ordinateur a les délimiter de facon
plus efficace qu’'un opérateur humain. De nombreuses méthodes reposant sur dif-
férents paradigmes d’interaction ont été congues pour permettre a un utilisateur d’ini-
tialiser, de piloter un processus de segmentation et d’affiner son résultat avec une in-
teraction nécessitant un effort raisonnable. L'intervention de 'utilisateur fournit aussi
des indices, pour obtenir des informations a priori, qu’un algorithme de segmentation
peut ensuite exploiter, tels que les statistiques d’intensité, 'emplacement et la disposi-
tion spatiale des objets ciblés.

Nous développons une méthode générique pour la segmentation multi-objet semi-
automatique efficace d’images médicales 3D de haute résolution qui pourrait étre facile-
ment adaptée a un probléme particulier par une simple reformulation du modele d’a
priori que nous proposons et une appropriation de l'algorithme aux besoins de I'appli-
cation en termes de temps d’exécution et de capacité de stockage par une simplification
adaptative de I'image a segmenter.

Un nombre d’approches de segmentation multi-objets variationnelles et combina-
toires ont eu succes dans la derniére décennie. Notre approche se base sur les méthodes
de coupure de graphe qui s’inscrivent dans le dernier groupe. Ces méthodes sont con-
nues pour leurs formulations probabilistes discretes flexibles qui se généralisent na-
turellement aux problemes multi-objet et pour leurs mécanismes d’optimisation numé-
riquement stables qui, pour des fonctionnelles d’énergie a minimiser sous-modulaires,
produisent des solutions locales de bonne qualité, a une distance connue de I'optimum
global, et, dans certains cas, la solution correspondant a 'optimum global. Nous for-
mulons la segmentation comme un probleme d’étiquetage bayésien, défini en termes
de distribution a priori, décrit par un champ aléatoire de Markov, de vraisemblance
dérivée de 'image et des contraintes d’utilisateur. Nous le résolvons en minimisant une
énergie a 'aide des algorithmes d’optimisation multi-étiquette par coupure de graphe.

De nombreuses formes d’a priori sur l'emplacement, la forme et la disposition spa-
tiale des objets ont été introduites dans les approches de segmentation par coupure de
graphe pour différentes applications afin d’assurer la cohérence spatiale de I’étiquetage
par rapport a un modéle de référence. Le modele d’a priori le plus souvent utilisé est
celui de Potts dont le mécanisme de pénalisation a deux niveaux implique la présence
d’une seule frontiere dans I'image; une hypothese fausse en segmentation multi-objet.
Nous étudions des extensions de ce modele qui tiennent compte des multiples fron-
tieres figurant en segmentation multi-objet et qui, en outre, permettent la minimisation
des énergies résultantes a 1’aide des algorithmes d’optimisation par coupure de graphe.
Notre contribution principale est un a priori de structure, appelé «modele de proxi-
mité». Sous-modulaire par définition, il introduit plusieurs niveaux de pénalisation et
représente la configuration spatiale des objets en segmentation multi-objet. Il est for-
mulé a partir des contraintes de paires du plus court chemin définies sur un modele de
graphe décrivant les relations d’adjacence entre les objets.

Les algorithmes d’optimisation par coupure de graphe utilisent des structures de
données sous forme de grille qui deviennent complexes sur des grands volumes d’ima-
ges 3D rendant l'optimisation impraticable. Nous observons que I'image en pleine réso-
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lution est souvent redondante et réduisons I’empreinte mémoire et le temps d’exécution
de l'algorithme en partitionnant l'image avant de la segmenter par une tesselation de
Voronoi barycentrique adaptative. Les partitions de I'image ainsi créées établissent un
bon équilibre entre les objectifs concurrents de la compacité des régions et du respect
des frontiéeres des objets, permettant en outre de controler le compromis, et contribuent
a la mise en place fine des frontieres de la segmentation ultérieure. Nous formulons la
segmentation par coupure de graphe selon le graphe des régions de Voronofi tel que son
énergie est indépendante de la résolution des partitions. Ceci constitue notre deuxieme
contribution.

Des évaluations qualitatives et quantitatives, sur des images médicales synthétiques,
simulées et réelles de tailles et de contenus différents, confirment les avantages de
notre modele d’a priori de proximité sur celui de Potts en segmentation multi-objet
par coupure de graphe comptant jusqu’a quelques dizaines d’objets. Les améliorations
apportées par notre modele sont significatives, en particulier dans la segmentation cor-
recte des objets distincts ayant des intensités similaires, dans le positionnement précis
des frontiéres des structures ainsi que dans la robustesse de segmentation par rapport
a la résolution de la partition.

L'évaluation comparative de notre méthode de partition avec ses concurrentes con-
firme ses avantages en termes de temps d’exécution et de qualité des partitions pro-
duites. Par comparaison avec I'approche de segmentation appliquée directement sur
les voxels des images, I’étape de partition améliore a la fois le temps d’exécution global
et 'empreinte mémoire du processus de segmentation jusqu’a un ordre de grandeur
sans compromettre la qualité de la segmentation en pratique.

Les travaux futurs portent sur des objectifs a court et a long terme. Des vari-
antes parallélisées de l'algorithme d’optimisation sous-jacent peuvent directement étre
utilisées afin d’accélérer encore le processus de segmentation défini sur des partitions
d’images. I'implantation expérimentale mise en ceuvre afin de développer et valider
la méthode peut étre élaborée dans une application interactive intégrant le geste de
I'utilisateur et l'algorithme de segmentation en temps réel. A plus long terme, de
nouveaux modeles d’a priori de structure peuvent étre définis a partir d’autres rela-
tions, notamment la distance, 'aire de la frontiere commune et l'orientation spatiale.
Les modeles de graphe décrivant ces relations sont faciles a définir a un niveau arbi-
traire de détail a partir de simples spécifications des relations sur des paires d’objets.
De maniere plus intéressante, ces graphes peuvent étre générés automatiquement, soit
a partir des modeles anatomiques existants pour les applications médicales, ou par des
méthodes d’apprentissage en déduisant les relations sous-jacentes a partir des données
étiquetées ainsi représentant ses variabilités possibles.
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Chapter 1

Introduction

1.1 From Vesalius to Visible Human

EDICINE owes much of its developments to advances in anatomy throughout
bRy the history of modern science. Although the study of anatomy begins at least
il as early as 1600 BC in ancient Egypt, the treatise of Vesalius [Ves43] was the
&= first published work on anatomy to overthrow Galenic and Arabian medical
doctrines which prevailed until the Renaissance. Prioritizing dissection, Vesalius es-
tablished a scientific method introducing what is today called an anatomical view of
the body which sees the human internal essentially as a corporeal structure filled with
organs arranged in a three-dimensional space. Vesalius would not have been able to
accomplish his seminal work without the advances in art during the Renaissance and
the technical developments of printing press at the same time. The latter technology
in particular allowed him to produce highly detailed illustrations of human anatomy
accurately depicting his findings. In the 19th century, the finalization and the system-
atization of descriptive human anatomy developed during the previous centuries, along
with growing contributions from new sources of knowledge such as histology and de-
velopmental biology, culminated in Gray’s Anatomy [Gras8], an influential anatomical
atlas which continues to be revised and republished to the present day in print and
digital media [Stao8]. It is considered one of the most comprehensive and detailed
references on the subject of human anatomy.

With the revolution of medical sciences in the 20th century, anatomical research
has taken advantage of technological developments and expanding knowledge in new
disciplines, such as endocrinology, evolutionary and molecular biology, to achieve a
thorougher understanding of the human body’s organs and structures. Importantly,
medical imaging devices, such as magnetic resonance imaging (MRI) and computed
tomography (CT) scanners, have enabled researchers to inspect the anatomy of liv-
ing as well as of dead organisms after being limited to dissection studies on cadavers
for centuries. Advances in medical imaging technologies simultaneously with the de-
velopment of computing platforms and computer graphics technologies together with
standardization efforts, such as DICOM [Pia11], moved many medical disciplines to
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1.1. From Vesalius to Visible Human 1. Introduction

(a) (b)

Figure 1.1: Anatomical representation between the past and the present. (a) A dissectional drawing of
internal organs and genitals from [Ves43], (b) a 3D dissectional view of the Voxel-Man inner organs virtual
model [PHP*o1] constructed from the Visible Human male image dataset [SASWg6].

the digital realm, while anatomical research and education increasingly relied on dig-
ital photography and three-dimensional computer-generated representations. A major
milestone at the turn of the century, perhaps of equal significance to Vesalius’ contribu-
tion for its time, was the release of the Visible Human dataset by the U.S. National Li-
brary of Medicine [SASWg6], which is an open-access digital image library of the adult
male and female anatomy comprising high-resolution cryosectional color photographs
of unprecedented detail, as well as the corresponding MR and CT images for the same
subjects. This dataset has formed the basis of many biomedical and engineering appli-
cations and medical education platforms® which have all exploited computer and visu-
alization technologies for the examination of anatomy in its natural three-dimensional
setting. In particular, three-dimensional representations reconstructed from images
in the Visible Human dataset have made it possible to view human anatomy from
perspectives unavailable in dissections and thus have helped to identify and correct
several inaccuracies in two-dimensional illustrations of conventional anatomical at-
lases [VIMog4]. Today, as the macroscopic aspects of human anatomy have been largely
cataloged, the research focus is on the development, the evolution, and the function of
anatomical features, particularly on microscopic scales.

'For recent bibliography, refer to the Visible Human project web site [U.S12]
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1. Introduction 1.2. From the archetype to the subject-specific

1.2 From the archetype to the subject-specific

The importance of anatomical understanding in modern medical practice cannot be
stressed enough. A thorough working knowledge of gross anatomy, and sometimes
of microscopic anatomy as well, is required for most medical workers; physicians,
dentists, physiotherapists, nurses, paramedics, radiographers and especially surgeons,
not only to support diagnosis but also in preventive care, therapy and particularly
in preoperative planning, surgical intervention and postoperative care. Such clinical
procedures usually involve an imaging step by the appropriate modality, depending
on the tissue or structure type, which often constitutes the only means to discover
a disease and proceed with diagnosis, particularly in the case of cancerous tumors.
Obviously the accuracy of diagnosis and the effectiveness of surgical intervention
depend crucially on the quality of the acquired image, the sufficiency of its coverage of
the pathology and, more importantly, the relevance and the precision of information
that a practitioner can extract from the image. Although, in general, a trained practi-
tioner is considered of superior image analysis and pathology identification abilities,
relegating some limited tasks to computers is of great practical interest; for example,
the location and the isolation of a tumour from affected structures in the image for
measurement and the outlining of moving structures for tracking purposes are rou-
tinely performed tasks on present-day imaging devices. Such tasks are carried out by
“learned" software programs entailing, in almost all cases, structure recognition and
delineation mechanisms, that is, image segmentation algorithms.

In addition to their critical importance in clinical practice, medical imaging tech-
nologies are exploited by other disciplines of medical science as well, notably in the
study of anatomy and physiology. In many applications in these fields, medical images
of different modalities are frequently analyzed for structure segmentation in preparing
anatomical and physiological models for the diverse purposes of research, medical ed-
ucation and visualization. A noteworthy example is the creation of anthropomorphic
phantoms for applications in health physics and nuclear medicine, such as whole-body
and individual-organ radiation dosimetry for radiation protection and radiotherapy.
Computational procedures of such studies usually involve Monte Carlo simulations to
track radiation interactions and energy deposition in the body. Needless to say, the
accuracy of such simulations largely depend on the precision and the realism of under-
lying anatomical representations. The construction of whole-body anatomical models
from real images naturally entails a nontrivial task of identification and segmentation
of, for the applications just mentioned, at least several tens of structures from a series
of whole-body images, in some cases originating from different modalities to account
for different anatomical structures. Unsurprisingly, the Visible Human image dataset
has formed the basis of several such digital phantoms, notably the voxel-based VIP-
Man [XCBoo] and Voxel-Man [PHP*01] phantoms and the NURBS-based Cardiac-Torso
(NCAT) phantom [Sego1]. All of these phantoms were constructed from the cryosec-
tional color photographs in the dataset by trained anatomists mostly by a painstaking
process of manual contouring and image volume editing complemented by elemen-
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1.3. Why is it difficult to segment medical images? 1. Introduction

tary computer-assisted techniques such as thresholding and color-space classification.
However, unlike the dataset from which they were created, none of these phantoms are
available to the scientific community on an open-access basis.

While in the past cadavers were the definitive source of anatomical information, it
seems ironic today that with the availability of open-access digital anatomical datasets,
such as the Visible Human image library, and the effective means to process and visual-
ize them, that is, powerful computing platforms and computer graphics technologies,
open-access three-dimensional anatomical atlases and models are lacking. The sheer
volume and anatomical coverage of image data to process, coupled with difficulties
associated with the analysis and the segmentation of such images by automatic unat-
tended methods prompts researchers and engineers to resort to manual methods in the
construction of three-dimensional whole-body models which require significant invest-
ments in time and labor making it often infeasible to give away its outcome.

Clinical practice today, especially whole-body CT and MRI scanning, often gener-
ates large numbers of high-resolution images, which makes tasks of efficient data ac-
cess, transfer, analysis and visualization challenging, especially in today’s distributed
computing environments which have seen growing use of handheld terminals for in-
teractive data access and visualization of anatomy. With increasing availability and so-
phistication of industrial-grade medical imaging technologies, unprecedented amounts
of patient-specific anatomical data is now at the disposal of medical practitioners.
Traditionally single-object or pathology oriented, recent image processing methods,
discussed later in this chapter, have made the simultaneous analysis and segmentation
of multiple anatomical structures increasingly possible. Moreover, remote processing
and visualization technologies for large datasets, such as [JJAM11], have matured and
opened the door for a number of popular applications, notably the semantic navigation
of full-body human anatomy [BCK*11]. Thus, the creation of patient-specific anatom-
ical models, at least systemic or disease-specific, is becoming of great interest.

1.3 Why is it difficult to segment medical images?

Despite more than 4o years of progress, image segmentation remains one of the major
challenges and among most active research topics in image processing and computer
vision [FP11]. As we have seen, segmentation of objects in images is a prerequisite
to their effective analysis, manipulation and visualization. In medical applications in
particular, segmentation of anatomical structures in medical images is the back-bone of
many clinical procedures from diagnosis to surgical planning and intervention, and is
crucial to other fields of medical science involving the study and the representation of
human anatomy. The segmentation of high-resolution medical images for the purpose
of creating application-specific reduced representations of targeted structures, such
as surface and volume meshes, is also interesting from the viewpoint of efficient data
storage, dissemination and three-dimensional visualization.
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(@) (b)

Figure 1.2: Commonly encountered artifacts in CT and MR images. (a) (left) Partial volume effect on the
clavicle and (right) motion artifacts on lung and esophagus boundaries in a thoracic-abdominal CT scan.
(b) Intensity inhomogeneity field affecting muscular and adipose tissues in an MR image of the shoulder.
Image courtesy of David Sarrut of Léon Berard cancer research center and Jean-Baptiste Pialat of Edouard
Herriot hospital, Lyon, France.

CT and MR images have intrinsic characteristics that render its analysis and seg-
mentation, especially in automatic unattended mode, particularly challenging [BSJB11].
In theory, they are regarded as piecewise-constant intensity maps over a number of tis-
sue classes. In practice, however, the piecewise-constance property is degraded consid-
erably by a number of factors. Even with significant technological advances, current
image acquisition systems often yield low signal-to-noise ratio data, consequently pro-
duced images are commonly degraded by various noise sources. The limited resolution
of imaging systems often results in the dual effects of partial volume and spillover lead-
ing to structure volume under- and overestimation respectively. These, in addition to
other image artifacts due, for example, to patient motion or limited acquisition time,
reduce the prominence of intensity edges in images creating diffuse or poorly defined
ones which make it difficult to identify true structure boundaries. MR images may, in
addition, suffer from spatial distortion of structure intensity due to magnetic field inho-
mogeneity and gradient field nonlinearity. Good contrast between tissue class intensi-
ties, which greatly facilitates segmentation, is usually achieved by using contrast agents
depending on the imaging modality, in the lack of which contrast enhancement post-
processing methods are resorted to, which often give less satisfactory results. However,
regardless of the imaging modality and related artifacts, many anatomically and func-
tionally distinct structures, especially those corresponding to soft tissues, have simi-
lar intensity levels in images and, furthermore, blend into surrounding tissues which
have intensities close to their own. It is impossible for an automatic process to iden-
tify and segment such structures on the basis of intensity information only, hence most
advanced segmentation methods exploit some form of prior information on structure
location, spatial extent or interrelations to achieve greater robustness and precision.
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(a) (b) ()

Figure 1.3: Three commonly encountered user constraints applied to the semiautomatic segmentation of
femoral head and hip bones. (a) Object-boundary constraints with part of the boundary traced by the al-
gorithm, (b) object-region constraints for object (blue) and background (red), (c) image-region constraints.

1.4 The choice of a segmentation approach

Segmentation, as the reader can tell, consists of the two closely-interrelated tasks of
structure recognition and delineation. Recognition involves identifying the location
of the targeted object and distinguishing it from others that are present in the image,
and delineation involves designating its precise spatial extent. According to the degree
of automation in these two tasks, existing segmentation methods cover a wide spec-
trum of approaches from completely manual tracing or painting of object boundaries
or regions to fully automatic recognition and delineation of objects. Automatic meth-
ods have had considerable success in many well-defined application contexts, usually
coinciding with fixed image acquisition protocols and little variation in object pose,
shape and location in the image. Due to the availability of image datasets acquired in
such conditions by routine clinical or laboratory procedures, most automatic segmenta-
tion approaches rely on image and object features learned from presegmented datasets.
This makes them prone to be bound to the characteristics of training sets and therefore
to have difficulty in accounting for previously unencountered but possible large varia-
tions in object pose, location and shape, typically arising in pathological cases, and the
photometric features of images acquired by different protocols in different conditions.

Semiautomatic segmentation methods are usually resorted to in order to lighten the
burden of manual delineation and as an alternative to fully-automatic methods when
the latter are inapplicable, for example due to the singularity of the studied case or the
lack of training sets. Semiautomatic methods achieve a balance between manual and
automatic methods exploiting the synergy between a trained expert’s superior object
recognition abilities and a computer’s faster delineation capacities. Many methods re-
lying on different interaction paradigms have been devised to allow a user to initialize,
steer a segmentation process and refine its result with a reasonable amount of input.
User interaction and feedback provide clues on what he intends to segment which can
be exploited by a segmentation algorithm in a number of ways, such as to constrain
segmentation boundary placement or the assignment of a pixel to some object, and to
collect intensity statistics of objects and derive prior information on their interrelations.
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User interaction is usually carried out through a traditional human-computer in-
terface using a pointing device to mark certain image pixels in order to indicate an
object or a boundary type. Often called “seeds", such pixel markings are consequently
interpreted by the segmentation algorithm as delineation guides or pixel assignment
constraints. Commonly encountered user-specified constraints fall in three categories:
object boundary, object region and image region constraints. A popular object-boundary
constraint formulation for semiautomatic segmentation was introduced in 2D by [MBg8,
FUS*98] and generalized to surface constraints in 3D by [FUoo]. In these approaches,
the user roughly traces the boundary of each object indicating a number of seed points
through which each segmentation boundary should pass. The segmentation algorithm
is tightly coupled with user gesture and finds the best boundary as the minimum-cost
path between the current and the last specified seed points on the image graph ac-
cording to some image gradient-based local cost. If a computed path deviates from
the desired one, due to a weak intensity edge for example, the user specifies addi-
tional seeds. The intricacy of this method is obvious; the user is required to place seeds
accurately on the object boundary. By contrast, approaches relying on object-region
constraints require that the user places seeds anywhere inside targeted objects. It is the
segmentation algorithm’s duty to ensure that marked pixels are part of corresponding
objects in the result. Assuming that objects consist of fairly homogeneous regions, such
constraints are quite robust to placement precision and, compared to object-boundary
seeds, their specification requires much less time and effort and can be carried out in
3D in a straightforward fashion by placing seeds in 2D slices of the image volume corre-
sponding to a chosen cross-sectional view. The interpretation and the use of such seeds
often depends on the algorithm. For example, [VKo5] define seeds as the starting point
of their cellular automata-based region growing algorithm. In [GFLo4], given a number
of user-specified seeds with label types corresponding to targeted objects, the algorithm
uses an analytic method to determine, for every pixel in the image, the probability that
a random walker starting its walk at that pixel first reaches a seed of a given label type.
The pixel is then assigned the label with the greatest probability. Combinatorial Graph
Cut methods [BFo6], which describe a segmentation in terms of optimal regional and
boundary properties of objects, interpret object-region seeds as hard constraints for
pixels that should be part of the corresponding object in the result, also using them to
derive intensity statistics of objects in addition to allowing the user to edit and refine
an initial segmentation efficiently by corrective seeds. Image region-based constraints
entail interaction methods that are even less stringent than object-region based ones
and often do not involve the marking of any particular pixel belonging to some object.
For example, [RKBo4] only require that the user draws a bounding box around the tar-
geted object in the image separating it from the background. The algorithm then refines
background and foreground statistics iteratively as it converges to the optimal separat-
ing boundary. Figure 1.3 illustrates the three discussed interaction paradigms. Recent
gesture-based multitouch interfaces offer new user interaction possibilities the use of
which in simultaneous semiautomatic segmentation and visualization of anatomical
data is undoubtedly an interesting research venue in its own right.
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A number of successful variational and combinatorial segmentation methods have
matured in the last decade, notably level-set based active contour [OFo3] and maximum-
flow based Graph Cut [BVo6] methods. While the first group of approaches formulate
segmentation as a continuous optimization of contour or surface functionals and the
latter as a discrete optimization of cost functions on the image graph, both groups of
methods rely on implicit nonparametric representations of object boundaries.
Level-set methods define the implicit representation of a contour or a surface as the
zero-level set of a higher dimensional function and describe its evolution towards the
desired object boundary by a partial differential equation. The contour movement is
driven by external image-based and internal contour-based speed functions, which,
respectively evolve the contour towards image features, such as intensity edges, and
smooth its boundary. In Graph Cut segmentation, targeted objects are represented by
labels and a discrete labeling cost function of variables corresponding to image pixels
is formulated in terms of label likelihood and spatial regularization criteria. The cost
function is then represented by a flow network the minimum cut of which, calculated
by a maximum flow algorithm, finds the optimal segmentation boundary. As research
in both fields has progressed, state-of-art Level-set and Graph Cut segmentation meth-
ods have come to incorporate different object appearance, boundary and shape based
cues and prior information [CRDo7] (see Sections 2.2.1, 2.2.2 and 3.2 for corresponding
Graph Cut literature) as well as topological constraints [HXPo3, BVo6], while Level-set
methods too were shown to lend themselves to user-steered segmentation [YPH"06].

Simultaneous multiobject segmentation approaches are superior to those formu-
lated as a sequence mono-object segmentations because they allow joint specifications
of object properties and interrelations and entail simultaneous optimization with re-
spect to these criteria. As such, they raise questions neither on the best segmentation
sequence to follow nor on how to avoid the propagation of errors on individual seg-
mentations [FAB12]. Multiobject generalizations of the basic Level-set method usually
present problem or application-dependent tradeoffs in either representing every object
independently with its own internal and external speeds and relying on soft coupling
terms to avoid overlaps and gaps at the expense of high memory requirements as the
number of objects increases, or using so-called multiphase representations with a num-
ber of level-sets inferior to the number of objects which reduce storage requirements
and ensure the absence of overlaps and gaps at the expense of reduced flexibility in
the specification of internal and external speeds which often arise in practice [BPB13].
By contrast, the basic Graph Cut segmentation method can be generalized to multiob-
ject settings without modifying the form of the cost function and without represen-
tation overhead, although the complexity of the underlying graph structure is directly
proportional to image size. In this case, the multilabel optimization of the cost function
is expressed as a tightly coupled sequence of maximum-flow optimizations [BVZo1].

Although the continuous level-set representation and the associated evolution strate-
gies have a number of attractive properties, such as subpixel accuracy and natural han-
dling of topological changes, the solution of underlying partial differential equations
has to be addressed carefully in order to ensure numerical stability which often limits
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contour evolution speeds making Level-set methods rather slow in practice, especially
in multiobject formulations [TT11]. By comparison, maximum flow algorithms un-
derlying Graph Cut methods are deterministic polynomial-time algorithms which are
numerically stable. For a particular class of cost functions covering a wide range of like-
lihood and prior formulations frequently arising in segmentation applications [KZo4],
Graph Cut methods produce provably good approximate solutions in multiobject and
global optima in mono-object segmentation. The relative ease and the efficiency of
multiobject formulation along with the speed and attractive numerical properties of
associated optimization algorithms thus justify our choice to rely on Graph Cut meth-
ods as the foundation for our semiautomatic multiobject segmentation approach.

1.5 The mission statement and the structure of dissertation

As we have seen, inherent limitations of quality and information content in medical
images, their dependence of acquisition protocols and conditions coupled with tissue
variability across patient populations make designing automatic general-purpose seg-
mentation algorithms difficult, if not impossible. Therefore, our aim is to develop a
general Graph Cut-based semiautomatic multiobject segmentation method, principally
for medical images, that can be adapted to a particular application with minimal effort
according to any or all of the following criteria and tradeoffs that exist between them:
the number of objects to segment, the required anatomical level of detail, interrela-
tions between objects to be respected, the accuracy of object and boundary retrieval,
available computing resources of runtime and memory budget. The projected use is
in routine applications involving low-resolution 2D to high-resolution 3D images on
moderate to fairly hard multiobject segmentation tasks of up to few dozens of objects
at a time. With the goal of minimizing user involvement and thus making the method
viable in practical situations, we choose object-region style user interaction limited to
initialization, allowing postsegmentation refinement if necessary. With a trained ex-
pert in mind at the human-computer interface, user input will also be relied upon as
the principal source of information to collect intensity statistics of targeted objects as
well as to constrain the assignment of user-marked pixels to some object.

Among segmentation criteria to adapt to a given application context, we address,
in particular, the introduction of a fairly general graph-based prior model capturing
spatial relationships between objects that, on one hand, is easy to specify for different
relationships such as structure adjacency and distance, and on the other hand allows
efficient optimization of resulting cost functions with multilabel Graph Cut algorithms.
Targeting multiobject segmentation applications on high-resolution 3D images, we also
address runtime and memory efficiency of Graph Cut segmentation with an image-
adaptive clustering method paying particular attention to the robustness of segmenta-
tion and the invariance of its theoretical properties to the reduced data representation.
The following list opens a window on the work’s landscape summarizing its major con-
tributions on a high level.
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Chapter 2: Theoretical background, presents and discusses the theoretical founda-
tions of our work, in particular the theory of Bayesian labeling and Markov ran-
dom field modeling in image segmentation, concepts of flow networks, maximum
flow techniques and Graph Cut algorithms in binary and multilabel optimization.

Chapter 3: A structural prior model for Graph Cut segmentation, investigates ex-
tensions of one of the most widely used prior models in Graph Cut segmentation,
the Potts model, to account for multiple boundary interactions in multiobject seg-
mentation allowing to minimize resulting multilabel cost functions by Graph Cut
algorithms. Our main contribution is a structural prior model, called the vicinity
prior, which captures the spatial configuration of objects. It is defined as shortest-
path constraints on a graph model of interobject adjacency relations [KVDP13].

Chapter 4: Reducing Graph Cut complexity, addresses runtime and storage effi-
ciency of Graph Cut segmentation on high-resolution input and proposes to im-
prove them both by clustering image voxels prior to segmentation by an image-
adaptive centroidal Voronoi tessellation and reformulating Graph Cut segmenta-
tion according to the graph of clusters such that it is independent of the clustering
resolution [KVDP11]. The chapter also gives the results of a comparative evalu-
ation of the clustering method with competing ones confirming its benefits in
terms of runtime and quality of produced image partitions.

Chapter 5: Evaluations and applications, presents and discusses results of qualita-
tive and quantitative evaluations of the proposed segmentation approach of mul-
tiobject Graph Cut segmentation on synthetic, simulated and real medical images
confirming its advantages over its Potts prior-based counterpart, also showing
that, compared to the application of segmentation on voxels, the clustering step
improves both overall runtime and memory footprint of the segmentation process
up to an order of magnitude without compromising the segmentation quality.

Chapter 6: Conclusions and perspectives, concludes the work outlining its major
results and contributions and discusses future venues of research.

1.6 Remarks on notation

A few remarks on general conventions we follow in spelling and notation are in order.
We capitalize proper nouns when they refer to a particular method, an algorithm or a
problem, designating them with small letters otherwise, for example, when speaking of
the Maximum flow problem and maximum flow algorithms. In some contexts, we use
the terms voxel and pixel interchangeably when such use does not affect the precision
and the clarity of presentation. To simplify asymptotic notation of algorithm complex-
ity, instead of O(|N]), we write O(N), where N is some set the cardinality of which is
proportional to the problem size. As it is customary in many treatments of discrete
mathematics, we use braces to denote an unordered pair of indices or mathematical
objects i,] as {i, j} using parentheses for ordered pairs (i, j).
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Chapter 2

Theoretical background

2.1 Introduction

—==3 N this chapter, we present and discuss the theoretical foundations of our
@? work for a fuller understanding and appreciation of our contributions. The

: “4( presentation of methods and underlying theories is concise yet includes suf-
x=2d| ficient detail to enable unfamiliar readers to follow subsequent chapters
without having to consult external references.

In Section 2.2 we present the theory of Bayesian labeling and Markov random field
modeling in image segmentation discussing underlying probability distributions and
how energies describing these models can be solved. Section 2.3 presents the theory
of flow networks and discusses the algorithms that solve the Maximum flow prob-
lem. Maximum flow techniques constitute the foundation of our energy optimization
method of choice, Graph Cut algorithms, which are discussed in Section 2.4.

Throughout the presentation of methods, related literature is discussed in the ap-
propriate context with state-of-art closely related to our contributions relegated to later
chapters. The choice of a method over another for our problem is discussed and argued.

2.2 Image segmentation as Bayesian labeling

We shall formulate segmentation as a labeling problem, defined as the assignment of a
label from a set of m labels L ={I,,...,1,,}, representing objects to be segmented, to each
of the variables in a set of n variables, corresponding to image primitives indexed by
S. In this chapter as well as in the following one, we shall assume that these primitives
correspond to image voxels. Later in Chapter 4 we shall redefine them to correspond
to clusters of image voxels. Assume that each variable i € S is associated with a node in
an undirected graph on image voxels G = (S, &), where pairs of adjacent image voxels
define the set of edges & = [{i,j} |i,je S}. Consequently, the neighborhood of a node i

is defined as \; = {] |jeS, i, j}e E}. Note that i ¢ N; because there is no edge from a
node to itself. Although it can be arbitrarily complex, we assume that only immediate
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neighbors of a node i constitute its neighborhood N;. Thus, the neighborhood of a
variable is defined according to the directions parallel to the planes of a 3D image to
get a 6-connected (4-connected in 2D) system. When voxels on diagonals are also taken
into account, the neighborhood becomes a 26-connected (8-connected in 2D) system.

An assignment of labels to all variables is called a configuration, and is denoted by
¢ € L, where £ = L" is the space of all possible configurations. The assignment of a
label to a single variable i € S is denoted by ¢;. The space of admissible configurations,
which corresponds to possible segmentations, can be identical to £ or, if user-specified
constraints are taken into account, to a subset of L.

A label configuration ¢ € £ can also be expressed in probabilistic terms.
Let X = {X,,...,X,} be a set of random variables on § taking its values in L. A con-
figuration ¢ can be defined as the joint event X, =¢,,...,X, =¢,, abbreviated as X = (.
Defining a joint probability distribution Pr(X = ¢) in the space of configurations £,
however, is rather difficult. Markov random field (MRF) theory [Liog] is usually re-
sorted to in order to define such joint probability distributions from interactions be-
tween neighboring variables which can be specified conveniently and meaningfully.

Given a joint probability distribution Pr(X), we recall that the set of random vari-
ables X is an MRF with respect to the graph G if it satisfies the following condition:

PI'(XI':&'|X]'Z€j,j€S,jil.):Pr(Xi:€i|Xj:€]',j€./\/i), (2.1)

This is called the Markov local property. It states that the probability of a label assign-
ment to a variable is conditionally dependent on assignments to its neighbors only; in
other words, the state of a variable depends only upon the state of its neighbors.

It still is not a trivial task to specify the set of conditional probabilities for an ar-
bitrary joint probability distribution to satisfy the Markov local property (2.1). Fortu-
nately, the Hammersley-Clifford theorem [Bes74] provides a solution. According to this
theorem, a positive joint probability distribution of label configurations Pr(X) > o sat-
isfies the Markov local property with respect to G if and only if it is a Gibbs distribution
with respect to G, that is, if it can be factorized over the cliques® of G.

A Gibbs distribution of configurations ¢ with respect to the graph G is given by:

Pr(f)=2""xe 1V (2.2)
where Z is a normalizing constant, t is a hyperparameter called the temperature and

U(¢) is an energy function specified as a sum of functions of label configurations, called
clique potentials, defined on up to an arbitrary order of graph cliques C=C, UC, U ...:

UO)=) Vi) =) Vill)+ ) Valliyly)+-... (2.3)
ceC {ileC {i,jl€C,

Thus, the joint probability distribution Pr(X = ¢) can be conveniently defined by spec-
ifying appropriate clique potentials that encode prior domain knowledge about plau-
sible configurations through local interactions between labels assigned to neighboring
sites. Hence, Pr(X) is called a prior probability distribution.

'A clique in an undirected graph is a subset of vertices, each pair of which is connected by an edge.
The order of a clique is the number of its vertices.
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Since we concern ourselves with finding the “best” segmentation with respect to
some user-provided evidence, we are interested in the probability distribution of con-
figurations Pr(X = ¢ | O) conditional on some, usually image-derived, observation O.
This is called a posterior probability distribution. The observation constitutes a com-
bination of spatially distinct records at each variable, for example, observed image in-
tensity values. Evidence from observation is defined as the probability distribution
Pr(O| X =¢) and is called a likelihood distribution. Assuming that observations are lo-
cal and spatially independent, it is reasonable to define likelihood probabilities at each
variable Pr(O; | X; = ¢;) to be conditionally independent. Thus:

Pr(O|X:€):]_[Pr(OI-|Xz-:€,-). (2.4)
ieS

Note that the posterior distribution Pr(X = ¢ | O) gives the probability of all pos-
sible configurations. The “best" configuration with respect to user-provided evidence
can be considered the one with the highest probability given the observation, which

corresponds to the highest mode of the posterior probability distribution:
" =argmaxPr(X =¢10). (2.5)

tel
¢ is called the maximum a posteriori probability (MAP) solution.

Recall that the posterior probability can be stated, according to the Bayes rule, in
terms of prior, likelihood and observation probabilities as:

Pr(X=¢|0)=Pr(O| X =¢)Pr(X =¢)/Pr(O).

Since Pr(O) does not depend on ¢ and therefore does not affect the MAP solution, the
posterior probability is proportional to the joint likelihood and prior probabilities:

Pr(X=¢]0)xPr(O| X =€)Pr(X =¢). (2.6)

Substituting the right-hand side of (2.6) from (2.2) and (2.4), taking the logarithm of
both sides, ignoring the constant term Inz™" and multiplying both sides by —t we get:

—tInPr(X =£]0) tZ—lnPr(OilXi :f,-)+ZVC(€). (2.7)
ieS ceC

Given likelihood and posterior probabilities, the negative logarithm of the posterior
can be regarded as an energy function of label configurations, thus we write (2.7) as:

E(¢) = tZ—lnPr(O,- |X; =)+ zvc(f). (2.8)

ieS ceC

Recall that the negative logarithm is a monotonically decreasing function. This
means that the negative logarithm of the posterior —InPr(X | O) achieves its mini-
mum at the maximum posterior probability. Thus, the MAP solution can be equiva-
lently found by:

" =argminE(0). (2.9)
tel
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Clearly, the maximum posterior probability configuration (2.5) is identical to the min-
imum posterior energy configuration (2.9).
Retaining only second-order clique potentials from the prior energy sum, we rewrite

(2.8) as follows:
1
E(f):tZD,-(fz-)+EZZ\/I-,J-(f,-,€-). (2.10)
ieS i€S jeN;

This is the actual energy function we minimize to obtain the best segmentation with re-
spect to user-supplied evidence and constraints, and some problem domain-dependent
prior. Note that since either (i, ) or (j,7) is in the set of second-order binary cliques C,,
either V; ;(¢;,¢;) or V; ;(¢;,¢;) should be in the prior energy sum (2.3). We consider that
Vi i(€i,¢;) = V;i(£;,¢;), and in order to use the double-sum notation over variables and
their neighborhoods in (2.10), we multiply the double-sum by 3.

2.2.1 Likelihood-based data cost and user constraints

The unary energy term? D;(¢;) in (2.10), which is also called a data term reflecting the
fact that it is often derived from observed data, measures the cost of assigning a label
to the variable 7 € § so that unlikely label assignments incur higher penalties. This
property stems from its definition as a negative log-likelihood function (2.8), since the
higher a likelihood probability is, the lower its negative logarithm would be.

In many MAP-MRF formulations, the observation is taken to be the spatially distinct
records of image intensity values at each variable, thus the likelihood probability for a
variable i € S given the label assignment ¢; becomes Pr(O; = [; | X; = ¢;).

A variety of approaches are followed to estimate such conditional probability distri-
butions. For example, they can be represented as: object-specific intensity histograms
[BFo6], kernel density estimates [LPPS12], Gaussian distributions [GTC11] and Gaus-
sian mixture models (GMM) with hard [RKBo4] and soft membership probabilities
[ZBSo1]. The latter approach sometimes follows an iterative Expectation-Maximization
style two-step estimation [DLR77] whereby, given an initial estimate of GMM param-
eters, the MAP solution is used in the expectation step to calculate membership prob-
abilities, then GMM parameters are calculated in the maximization step in a standard
tashion and the process is repeated until some convergence criterion is met. Such iter-
ative schemes need to be carefully designed in order to ensure numerical stability and
algorithm convergence [RRBCK11]. In more recent conditional random field (CRF)
image segmentation approaches [GRC*08, FVSog, LLB*11], observations often take
the form of feature vectors over a set of different image features of intensity, texture
and shape statistics [Lowo4]. For each label class, feature vectors are constructed from
ground-truth data and fed to classifiers, the output score of which, normalized as nec-
essary, is used to estimate likelihood probabilities.

2Likelihood-based unary terms in (2.10) should not be confused with prior-based unary energy formu-
lations frequently encountered in the MAP-MREF literature which stem from the first-order clique poten-
tials of the prior energy sum (2.3). In the context of segmentation, such terms are derived, for example,
from a probabilistic atlas of tissue location [STAGo6], a shape similarity measure [VMo8] or a distance
transform of a shape template [KRBTo8].
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2. Theoretical background 2.2. Image segmentation as Bayesian labeling

In all results reported in our work, conditional probability distributions of intensity
Pr(I'| L =1) for every label are estimated as Gauss-smoothed and normalized intensity
histograms from user-supplied “seeds", described in Section 1.4, for every structure to
be segmented. We could have employed a more elaborate approach, such as kernel
density estimation [Par62], to estimate likelihood densities. However such schemes
require a choice of parameters, a good setting of which often entails a separate selection
mechanism with no guarantees of yielding substantially better estimates in practice.
We therefore have opted for a straightforward nonparametric approach.

Unary terms of the energy (2.10) can also encode user constraints on acceptable
configurations. Recall that user-supplied seed labels indicate image voxels which are
known to be part of some object. In addition to their use in deriving likelihood densi-
ties, in similar spirit to [BFo6], we take advantage of such seeds in reducing the solution
space of the labeling problem by prohibitively increasing the cost of invalid configu-
rations. In order to ensure the attribution of the respective label type to seed-marked
voxels, the data term should create a maximum bias for the seed’s label and, at the same
time, incur the maximum penalty for the attribution of all other labels. Denoting the
set of all seeds by H = {hf. |i €S, €L}, we define the data term as follows:

o, Ik e Hk=¢ (2.11a)
Di(6;)=1{ oo, Ink e 1k =¢; (2.11b)
~InPr(I,|¢;), PFeH Vkel (2.11¢)

where hif is a seed of label type k € L attributed to voxel i € § and I, is the gray-level
of voxel v. Note that (2.11) is a continuous function where (2.11a) and (2.11b) corre-
spond to negative log-likelihood values at maximum and zero probability respectively.
In practice, we represent the infinite cost in (2.11b) by a large constant several orders
of magnitude (109-10"?) greater than the value of (2.11¢) corresponding to the small-
est estimated likelihood probability, so that for practical settings of temperature t > o,
(2.11a) and (2.11b) amount to imposing hard constraints for acceptable configurations.
By comparison, in order to ensure the invariance of user constraints with respect to
temperature settings, [BFo6] avoid multiplying (2.11b) by ¢ in (2.10) and define a con-
stant K representing its cost such that prior terms do not accidentally impose a labeling
decision on corresponding variables. This, however, does not rule out the possibility
of (2.11¢) taking a value greater than K for a sufficiently small likelihood probability.
In our formulation, as t greatly decreases, temperature-attenuated terms (2.11b) ap-
proach the order of magnitude of prior terms until the sum of data terms in (2.10) van-
ishes at t = 0, even though such a temperature setting is hardly interesting in practice.

In subsequent refinements of an initial segmentation, we allow the user to introduce
additional “corrective” seeds to constrain the label preference of incorrectly segmented
image regions. In order not to disrupt initial appearance statistics, we do not take such
seeds into account for likelihood estimation.
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2.2. Image segmentation as Bayesian labeling 2. Theoretical background

2.2.2 Prior models for segmentation

Recall that the binary terms V; ;(¢;,¢;) in (2.10) encode prior information on pairwise
interactions between labels assigned to pairs of neighboring sites. They encourage the
spatial consistency of labeling with respect to a problem-dependent reference model,
hence they are sometimes called spatial regularization terms.

Many classes of pairwise interaction models have been proposed in the MRF mod-
eling literature for different image processing and computer vision problems [Liog].
For image segmentation, the pairwise interaction has to encourage piecewise-constant
labeling, which is the partitioning of the image into several regions where voxels within
individual regions are identically labeled. Furthermore, it has to be discontinuity pre-
serving, meaning that, on one hand, it should attribute identical labels only to image
regions which do not contain intensity edges, and, on the other hand, it should not
excessively penalize sharp label transitions. Convex functions, which have a number
of advantageous properties for mathematical optimization [BVoy4], unfortunately are
not discontinuity-preserving because they do not have a bound on the largest possi-
ble penalty and potentially overpenalize large label differences. Optimizing an energy
function with a convex pairwise potential would therefore lead to oversmoothing at ob-
ject boundaries where abrupt transitions occur [BVZo1], hence the use of convex priors
in segmentation is limited to special contexts, such as the oversegmentation algorithm
in [IGg8b]. Smooth convex priors however are desirable in some vision problems such
as image restoration [BKo4] where labels correspond to image gray-levels and stereo
matching [IGg8a] where labels represent disparities.

The earliest discontinuity-preserving piecewise-constant prior model is the Ising
model in binary labeling where |L| = 2, usually L = {o,1}. It has first been introduced
in statistical mechanics as a model of ferromagnetism and later used in image process-
ing and computer vision by analogy between images and statistical mechanics systems
(GG84]. Given a pair of variables i,j € S where j € V;, the Ising model is defined as:

‘/j’j(fi,tﬁj)zl—é(gi,fj) (2.12)

where 0 is the Kronecker delta function. The identically-defined generalization of the
Ising model for multilabeling problems where |L| > 2 is called the Potts model. We
can readily see that both the basic model and its generalization incur a single level of
penalization corresponding to the attribution of different labels to pairs of neighboring
variables and incur no penalty for the identical labeling of such pairs. This penalization
scheme, in fact, stems from the very nature of binary labeling where only a single type
of boundary exists; the one between image regions labeled by either label.

Although the Potts prior is the most widely used spatial regularization model in
MAP-MRF formulations of image segmentation and continues to enjoy popularity in re-
cent CRF-based approaches [FVSog, SWRCog], many problem-specific pairwise mod-
els can be encountered in the literature, especially in the context of multiobject seg-
mentation. For example, an ad-hoc extension of the Potts prior model to two penaliza-
tion levels with respect to a label class cooccurrence model can be found in [CCB*o5].
A shape template’s distance transform has been used by [FZos5] to bias the placement
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of segmentation boundary near the shape’s contour. Spatial configuration prior is also
quite common in the context of multiobject segmentation, where inter-object geometric
and spatial relationships are often defined as pairwise relations. Such use has appeared
in the context of part-based object detection [WSo6] and scene layout estimation and
segmentation where spatial relationships are either predefined on a limited number of
classes [LVS10] or learned from annotated training data [LLB*11].

In Chapter 3 we propose and investigate a principled approach to extend the ba-
sic discontinuity-preserving piecewise-constant prior as defined by the Potts model to
account for multiple types of boundaries in multiobject segmentation, incurring multi-
ple levels of penalization, furthermore allowing the application of a particular energy
minimization algorithm which converges rapidly to a provably good local minimum.

2.2.3 Solving posterior energies

Having addressed common prior models and likelihood estimation approaches for
MAP-MRF image segmentation, we now turn our attention to the minimization of the
energy function (2.10). In the following, we shall discuss several widely used energy
minimization methods without delving into the details of algorithms. Our method of
choice is presented in detail in subsequent sections of the current chapter.

Since many early vision problems are naturally expressed as pixel-labeling prob-
lems in terms of a likelihood probability and a prior distribution, energy functions of
the form (2.10) frequently arise in practice. However, the minimization of such, often
nonconvex, energies in high-dimensional spaces is not a trivial task. In fact, [BVZo1]
show that the global minimization of (2.10) is NP-hard when |L| > 2 even with the
simple discontinuity-preserving Potts prior model, since it reduces to the multiway
cut problem which is known to be NP-complete [DJP*g92]. This unfortunately implies
that many similar energy formulations are intractable. Therefore, research has focused
on efficient approximation algorithms which produce provably good local solutions.
Having a bound on the local minimum is important, because when it is arbitrarily far
from the global minimum, it would be difficult to determine the cause of the algo-
rithm’s unsatisfactory results, which could be due either to a bad energy formulation
or a poorly performing minimizer.

Early energy minimization algorithms use an elementary search space exploration
strategy where only a single pixel can change its label at a time. This is sometimes
called a standard move. Starting with an initial estimate of the labeling, for each pixel,
the algorithm chooses the label that gives the largest energy decrease either in a deter-
ministic greedy fashion, like the Iterative Conditional Modes (ICM) algorithm [Bes86],
or according to probabilistic metaheuristics, like the Simulated Annealing (SA) algo-
rithm [KGV83], which both repeat the selection process for all pixels until convergence
to a local minimum is achieved. The SA algorithm in particular has enjoyed popularity
because of its implementation ease and ability to optimize an arbitrary energy. Theo-
retically, it would eventually find the global minimum if run for an infinite amount of
time. In practice however, minimizing an arbitrary energy in finite time requires an
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exponential cooling schedule to ensure convergence to a good local minimum [Catg2],
which means that the algorithm can be rather slow to terminate.

ICM and SA remained in mainstream use in vision until late 1990’s when energy
minimization approaches had a renaissance with the introduction of flow networks
techniques from combinatorial optimization for the exact global minimization of some
widely used classes of energy functions in early vision. In particular, maximum flow
algorithms of low-order polynomial time were used to find the global minimum in
binary image restoration with the Potts prior [GPS89] and in stereo matching where
|L| > 2 with linearly ordered labels and an absolute difference prior [IGg8a] which was
later extended to handle arbitrary convex priors [Isho3]. The binary exact optimiza-
tion scheme in particular proved to be rather interesting in early vision and opened
the door to a multitude of applications like interactive image and video segmentation,
stereo, multiview reconstruction and texture synthesis (refer to the comprehensive list
of references in [BFo6]). Subsequently, [BVZo1] generalized the maximum flow-based
binary optimization scheme to |L| > 2 for arbitrary labels and metric pairwise priors. In
contrast to ICM and SA, their approximate labeling algorithm employed a search space
exploration strategy, called an expansion move, whereby an arbitrarily large number of
voxels can switch to a given label a simultaneously. The Expansion Moves algorithm, as
we will refer to it henceforward, finds a local minimum such that no expansion move,
for any label a, yields a labeling with lower energy. The local minimality criterion
with respect to expansion moves is so strong that there are many fewer such minima
in high-dimensional spaces compared to standard moves. [BVZo1] prove that any la-
beling locally optimal with respect to these moves is, in fact, within a known factor of
the global minimum. Usually, maximum flow-based energy minimization approaches
in vision are collectively referred to as Graph Cut methods.

More recently, the revival of older belief propagation methods [Pea88] has led to
the development of the Sequential Max-Product Tree-Reweighted Message Passing al-
gorithm (TRW-S) [Kolo6]. It is often seen as a rival to the Expansion Moves and the
Loopy Belief Propagation algorithms (LBP) [WFo1] the latter of which has strong lo-
cal minimality properties analogous to those of the former. [MYWos] has shown that
TRW-S is capable of finding the global minimum for certain instances of the stereo
problem. This algorithm can be applied to arbitrary energies on arbitrary label sets,
although, like LBP, sometimes it might oscillate and fail to converge.

In order to understand the tradeoffs between different energy minimization meth-
ods, [SZS*08] have devised a set of benchmarks on common vision problems and used
them to compare the solution quality and runtime of ICM, LBP, Graph Cut and TRW-S
algorithms. They conclude that while the latter three come very close to the global
minimum on different multilabeling problems, the Expansion Moves variant of Graph
Cut algorithms consistently outperforms others on nonconvex energies in terms of both
speed and quality of obtained solutions. [BVZo1] had earlier benchmarked SA and Ex-
pansion Moves algorithms and made similar conclusions. The comparative study of
[SZS*08] also echoes the findings of [MYWos5] in that better minimization methods are
unlikely to produce significantly more accurate labelings, since the global minimum,
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when known, is no more accurate than the ground-truth labeling, the energy of which
is furthermore frequently higher than that of the former. This suggests, as pointed out
by [MYWos], that often the problem is not in the optimization algorithm but in the
energy formulation. Therefore, research should focus on finding better energy models.

Due to its optimality and runtime performance, we use Graph Cut algorithms for
segmentation energy minimization. Closely following the method of [BFo6], we use a
maximum flow-based binary optimization scheme in mono-object segmentation where
|L| = 2 and apply the Expansion Moves algorithm of [BVZo1] for multiobject segmen-
tation with |L| > 2. In the remaining of this section, we shall give the necessary and
sufficient conditions for the applicability of these methods to minimize the energy
(2.10). Theoretical foundations and algorithmic details of maximum flow and Graph
Cut methods are presented in Sections 2.3 and 2.4 respectively. Readers who are famil-
iar with flow networks and Graph Cut methods can skip to Chapter 3 directly.

While the maximum flow-based binary energy minimization method is capable of
finding the exact MAP solution [GPS89], the Expansion Moves algorithm produces a
locally-optimal labeling ¢ within a known factor of the global minimum ¢*, that is:

E(0) <2cE(f"), c¢=2xmax Vii(a,b)/minV; i(a,b), Vi,jeS, YabelL (2.13)

For example, ¢ = 2 for the Potts model. As mentioned previously, in the original work
of [BVZo1], the Expansion Moves algorithm was shown to be applicable to energies of
metric pairwise priors. [KZo4] subsequently characterized the classes of energy func-
tions that can be minimized via Graph Cut algorithms and relaxed the metricity re-
quirement. In particular, they showed that the Expansion Moves algorithm can be
applied to minimize (2.10) with |L| > 2 if and only if the pairwise term is submodular,
that is, if the following condition holds Vi,j € S, Va,b,c € L:

Vi (@) + Vi j(b,c) < Vi j{a,c) + Vi j(b,a) (2.14)
For L = {o, 1}, the submodularity condition reduces to:
Vijlo,0)+ Vi i(1,1) < Vi (0, 1) + V; i(1,0). (2.15)

Submodular set functions and their properties and applications in combinatorial
optimization are known to mathematicians for a long time [BKRg6]. Importantly, opti-
mization problems of functions having such properties are polynomial-time solvable.
In fact, submodularity can be regarded as a property of discrete functions analogous
to the convexity property of continuous functions [Muro3]. However, polynomial algo-
rithms for minimizing arbitrary real-valued submodular functions have high complex-
ity. For example, the algorithm proposed by [Orlog] runs in O(n5y +n°) time where y is
the time to evaluate the submodular function. Therefore, Graph Cut-minimizable func-
tions can be regarded as a subclass of submodular functions which can be minimized
with much faster algorithms. The optimization of submodular functions remains an
active research field.
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2.3 Flow networks

Flow networks are tools from combinatorial optimization used to solve problems that
can be modeled as a steady-rate material flow through a directed capacitated network
from a source node, where the material is produced, to a sink node where it is con-
sumed. For example, we can think of liquid flows through pipes, and also electrical
current and information through electrical and communication networks. Directed
edges in such a network represent conduits each having a capacity indicating the max-
imum rate at which material can flow through it. Network nodes, other than the source
and the sink, are conduit junctions through which material flows without collecting.

An important result in flow networks theory, due to [FF62], is the duality of Max-
imum flow and Minimum cut problems. The maximum flow is the greatest rate at
which material can be sent from the source to the sink without violating any capacity
constraints. A cut of the flow network is a partition of its nodes into two disjoint sets
such that the source is in one set and the sink is in the other. The minimum cut has
the minimum capacity among all cuts, measured as the sum of the capacities of edges
going from the source set to the sink set. Importantly, the minimum cut capacity is
equal to the maximum flow value which can be computed by efficient algorithms as we
shall see in this section. Let us first define flow networks and their properties formally.

A flow network is a directed weighted graph G = (V,E) with no self-loops where
we distinguish two special nodes, called terminals, the source s and the sink t, some-
times also called the target. Each node in V lies on a path from the source to the sink,
therefore the graph G is connected and |E| > |V|— 1. In the special case of grid graphs
with 4-connected and 6-connected neighborhood systems in 2D and 3D, |E| > 2|V| and
|E| > 3|V|, respectively. A flow network G is equipped with a positive capacity function
of edges; c: E +— R so that each edge (u,v) € E has a positive capacity ¢(u,v) > o. Note
that c(u,v) = o when $(u,v) € E.

Given a flow network G = (V,E) and a capacity function ¢, a flow f in G, is a real-
valued function f: V x V - R satisfying the following properties.

Capacity constraint: Yu,veV, f(u,v) <c(u,v) (2.16a)

Skew symmetry: Vu,veV, f(u,v)=—f(v,u) (2.16b)

Flow conservation: VYu,veV —{s,t}, Zf(u,v) =0 (2.16¢)
veV

Obviously f(u,v) = o when (u,v) ¢ E. The value of flow in the network G is given by:

fl=) flsv) (2.17)

veV

In the Maximum flow problem, given a flow network G we wish to find a flow of max-
imum value given by (2.17) respecting capacity constraints (2.16a) and the flow con-
servation property (2.16¢). The skew symmetry property is merely a notational conve-
nience indicating the direction of positive flow. Figure 2.1a illustrates a flow network
having a valid flow.
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Figure 2.1: Illustration of concepts of flow networks after [CLRSog]. (a) A flow network with |f| = 19
indicating the flow and the capacity of each edge, negative flows are not shown, (b) the residual network
induced by the previous flow with an augmenting path of capacity cy(p) = 4 highlighted, (c) the flow
network after augmentation through the highlighted path producing the indicated minimum cut with
capacity ¢(S,T) = 23.

Two general methods exist for solving the Maximum flow problem;
the Ford-Fulkerson method, sometimes also called the Augmented-paths method, and
the Push-relabel method. Several algorithms of different running times implementing
either approach have been proposed in the literature. In the following two sections, we
outline each method providing more detail on the first since we use an algorithm that
falls in this category. It is worth mentioning that the Maximum flow and Minimum
cut problems can also be stated as two primal-dual linear programs [Lawo1]. However,
such a formulation can be impractical for the large number of variables associated with
vision and image processing applications.

2.3.1 The Ford-Fulkerson method

The Ford-Fulkerson method is characterized by three principal ideas upon which algo-
rithms that implement it depend. They are furthermore essential to the Max-flow Min-
cut theorem which ensures the correctness and the termination of such algorithms.
In the following, we present these concepts before outlining the general strategy of
finding a maximum flow by the Ford-Fulkerson method.

Residual networks. Starting from |f| = o, the Ford-Fulkerson method iteratively in-
creases the value of flow until no more flow can be sent from the source to the sink due
to capacity constraints. The method maintains a residual network G¢ whose topology
is identical to that of G but the capacities of its edges represent the residual capacities
of corresponding edges in G. The residual capacity of an edge (4,v) in G is the amount
of additional flow we can push from u to v before exceeding c(u,v). It is given by:

cr(u,v) =clu,v) = f(u,v). (2.18)

The residual network Gy provides a roadmap for increasing flow in the original net-
work with a simple rationale. Consider, for example, the edge (s, v,) in Figure 2.1a with
c(s,v;) =16 and f(s,v,) = 11. We can increase flow on (s,v,) by cf(s,v,) = 5 before ex-
ceeding the capacity constraint on the edge. Consider the negative flow f(v,,v,) = —1.
In this case, the residual capacity cf(v,,v,) = 11 is greater than the capacity c(v,,7,),
meaning that we may cancel the flow f(v,,v,) = 1 by pushing a flow of 1 from v, to
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v,, and subsequently push a flow of 10 before violating the capacity constraint c¢(v,,v,).
Note that c¢(u,v) = cf(v,u) = o when neither edge is in G, therefore an edge (u,v) ap-
pears in Gy if at least one of (u,v) and (v, u) are in G. Formally then, given a flow net-
work G =(V,E) and a flow f, the residual network of G induced by f is Gy =(V,Ef)
where Ef = {(u,v) € VXV [ cr(u,v) > o} and |E¢| < 2|E|. To illustrate, the complete
residual graph of the flow network in Figure 2.1a is given in Figure 2.1b.

Augmenting paths. Given a flow network G = (V,E) and a flow f, an augmenting
path p is a simple path3 from the source to the sink in the residual network Gy. We
can increase the flow on an edge (u,v) of an augmenting path by up to c¢(u,v) without
violating the capacity constraint on whichever of (u,v) or (v, u) is in the flow network G.
The maximum amount by which we can increase the flow through the path p is called
the residual capacity of p and is given by c(p) = min{cs(u,v) | (u,v) € p}. Highlighted
edges in Figure 2.1b indicate an augmenting path with a residual capacity of cf(p) = 4.

Cuts of flow networks. The last concept we introduce before presenting the Max-flow
Min-cut theorem and outlining the Ford-Fulkerson general procedure, is that of cuts of
flow networks. As mentioned in the beginning of this section, a cut of a flow network
G =(V,E), denoted as (S, T), is a partition of its set of nodes V into two disjoint sets S
and T =V - S such that s € S and t € T. The capacity of a cut is given by:

C(S,T):ZZc(u,v). (2.19)

ueSveT

Obviously, the minimum cut of the network is the cut that has the minimum capacity
among all cuts of the network. Figure 2.1¢c shows the minimum cut of the earlier flow
network example having a capacity of ¢(S,T) = 23.

Theorem 2.3.1 (Max-flow Min-cut theorem). Given a flow f in a flow network G =(V,E),
the following conditions are equivalent:

* fisa maximum flow in G.
* There are no augmenting paths in the residual network Gy.
o |fl=¢(S,T) where (S, T) is the minimum cut of G.

We refer the reader to [CLRSog] for the proof. Intuitively, the Max-flow Min-cut
theorem states that the value of the flow in a network is bounded from above by the
capacity of its minimum cut, and provides the termination condition for maximum
flow algorithms following the Ford-Fulkerson method; the algorithm terminates and
the flow is maximum if and only if its residual network contains no augmenting paths.

With all concepts in place, the general Ford-Fulkerson method of finding a maxi-
mum flow boils down to a simple procedure. Starting with f(u,v) =0V (u,v) € E giving
an initial flow of |f| = o, at each iteration, we find an augmenting path p in the resid-
ual network Gy induced by the current flow f in G, and for each edge (u,v) in p we

3A simple path in a directed graph is one the nodes of which are distinct.
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increase the flow f(u,v) in G by c¢(p) and set the flow on the reverse edge f(v,u) to
the negative of the increased flow —f(u,v). After each iteration, the value of flow in G
equals |f|+cf(p). When no augmenting paths exist in Gy, this flow is a maximum flow.
Figure 2.1 illustrates the last steps of the method’s application. Given the network in
Figure 2.1a with the flow |f| = 19, the path p = (s,v,,v5,t) with cf(p) = 4 is found in the
residual network Gy given in Figure 2.1b and the flow in G is updated along the edges
of p giving a new flow of |f| = 23 in Figure 2.1¢, which is the maximum flow.

In practice, the Maximum flow problem arises with integer capacities. If capacities
are rational numbers, they can be converted to integers with an appropriate scaling
transformation. With irrational capacities however, the Ford-Fulkerson method might
iterate infinitely, finding augmenting paths of increasingly lower capacity. Worse, the
infinite sequence of augmentations may not even converge to the maximum flow value.
[Zwigs] illustrates the smallest network on which this problem occurs. Therefore, irra-
tional capacities have to be approximated by rational numbers or integers.

Implementations of the Ford-Fulkerson method address two questions; how aug-
menting paths are found, and in what order such paths are processed. Denoting the
maximum flow by f*, a straightforward implementation executes |f*| iterations at most,
assuming that the flow increases by one unit at each iteration. If augmenting paths in
the residual network are found using either a breadth-first or a depth-first search with
a complexity of O(V +E¢) = O(Ey) with no regard to path length, the total running time
of the method would be O(|f*|Ef). The Edmonds-Karp algorithm [EK72] improves the
bound on the number of iterations to O(VEy). Attributing unit weight to each edge
in the residual network, in each iteration the algorithm choses the augmenting path
corresponding to the shortest path from the source to the sink found by breath-first
search. Therefore the algorithm runs in O(VE]%) time. An algorithm due to [AO89]

uses a scaling technique and runs in O(EJ% log, C) time where C = maxyy,)ee{c(u, v)}.

Starting with K = 211°¢:CJ and while K > 1, the algorithm finds augmenting paths of
capacity at least K at each iteration halving K at the end of it.

In an attempt to improve the empirical performance of the Ford-Fulkerson method
in vision applications involving grid graphs, [BKo4] observe that building search trees
to find augmenting paths in every iteration, which is a O(Ey) operation, is prohibitively
expensive especially in 3D where usually |E| > 3|V|. They propose reusing such trees.
Their algorithm maintains two search trees rooted at the source and the sink respec-
tively. In each iteration, each tree is grown through nonzero residual capacity edges
acquiring new children from graph nodes until a leaf node from a tree comes in con-
tact with a leaf node from the other tree resulting in an augmenting path. Flow is
pushed through this path in the familiar manner, which breaks search trees into forests.
Next, tree structures are restored by assigning nodes that have been disconnected by
augmentation to new parents via nonzero capacity edges. If no parent can be found,
disconnected nodes are made free nodes. The algorithm terminates when search trees
cannot grow due to their leaves being separated by zero residual capacity edges. At this
point, the flow is maximum and the nodes of either tree fall in the source and the sink
set respectively.
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Figure 2.2: Number of flow network edges to number of nodes ratio for cluster graphs of 3 images, cal-
culated at 19 increasing resolutions with 100% corresponding to the voxel grid graph. Note that edges
connecting nodes to flow network terminals are not taken into account as their number is always 2|V|.

The obvious drawback of the algorithm proposed by [BKo4] is that augmenting
paths found are not necessarily the shortest. As reported, the processing order of nodes
at tree growth and restoration stages significantly impacts the algorithm’s empirical
runtime. Authors proceed in a First-In-First-Out (FIFO) fashion which ensures that the
first path found is the shortest, with no guarantees on subsequently found paths since
search trees may change unpredictably during the restoration stage. In order to make
augmenting paths as short as possible, distance-to-root information is stored in each
node so that disconnected nodes can be assigned to parents closer to a root. Although
no asymptotic bound is given, the algorithm has supralinear empirical time in vision
problems involving 2D and 3D grid graphs and outperforms the Edmonds-Karp algo-
rithm and two algorithms among the best performing Push-relabel variants, namely
those with queued and highest node selection rules discussed in the next section.

We use the algorithm of [BKo4] in our maximum flow-based image segmentation
applications. As we shall see in Chapter 4, in order to reduce the redundancy of voxel
data and improve runtime performance, we formulate our segmentation method in
terms of clusters of voxels. As shown in Figure 2.2, the neighborhood connectivity of
such irregular cluster graphs is higher than that of image grid graphs. For example,
we can see that with a clustered 3D image where the number of clusters equals 5% of
the number of voxels, the number of neighbor edges of the cluster graph are as high as
six times the number of voxels. This means that any algorithm that finds augmenting
paths with breadth-first search would perform worse than the algorithm of [BKo4].
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2.3.2 The Push-relabel method

For the completeness of the presentation of maximum flow approaches, we outline
the general Push-relabel method in this section pointing at common implementations.
The Push-relabel method differs from the Ford-Fulkerson method in two primary ways.
Firstly, the Ford-Fulkerson method examines the entire residual network in search for
augmenting paths, and each such path gives rise to an additional stream of flow from
the source to the sink until no more flow can be pushed. The Push-relabel method
works in a localized fashion, examining a single node at a time and its neighbors in the
residual network, thus the method readily admits parallel implementations. Secondly,
while the Ford-Fulkerson method maintains the flow conservation property (2.16¢)
throughout its execution, the Push-relabel method allows each node u € V —{s,t} to
have a positive flow excess given by:

e(u) = Zf(v,u)Zo. (2.20)

veV

In order to determine how flow is pushed from an overflowing node to its neighbors,
the method maintains a height attribute for each node. Although flow from a lower
node to a higher neighbor can be positive, flow can be pushed only from a higher node
to a lower neighbor. In the beginning, the height of the source and the sink are set to |V
and o respectively, and those of all other nodes start at o and increase as the algorithm
progresses. The algorithm first sends the largest possible flow from the source towards
the sink, equal to the capacity of the cut (s, V —{s}), which collects in intermediate
nodes. In order to rid an overflowing node of excess flow, the algorithm increases its
height to one unit above the height of the lowest of its neighbors with which it shares
a nonzero capacity residual edge. This operation is called relabeling, after which the
node can push excess flow to at least one of its neighbors. All flow that can reach
the sink eventually arrives there and in order to make flow in the network a valid
flow, undeliverable flows are drained back to the source by continuing to relabel nodes
above the fixed height |V| of the source. When all excess flow is drained, the flow in the
network is a maximum flow.

The basic Push-relabel method, due to [Gol87], thus boils down to an initialization
followed by a sequence of push and relabel operations, whichever is applicable, exe-
cuted in no particular order. It has an asymptotic bound of O(V?E), which is better
than that of the Edmonds-Karp algorithm mentioned above. [GT88] propose two im-
provements on this bound; O(V3) by maintaining overflowing nodes in a FIFO queue
and always selecting the front node for discharging, that is applying push and relabel
operations successively until the said node has no positive excess, and adding newly
overflowing nodes to the rear of the queue, and O(V Elog,(V?/E)) by using an efficient
dynamic tree data structure to reduce per push-operation time. [CGg7] address prac-
tical aspects of implementing the Push-relabel method underlining the importance of
using heuristics. They conclude that the best Push-relabel algorithm is one that repeat-
edly discharges the highest overflowing node. It has an asymptotic bound of O(V>VE).
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It is worth mentioning as we conclude this section that the asymptotically fastest de-
terministic sequential algorithm for the Maximum flow problem of which we are aware
is due to [GR98] which is not a Push-relabel algorithm. It uses the concept of blocking
flows and associates shorter lengths with higher-capacity edges in order for shortest
s —t paths to have high capacity and the algorithm to perform fewer iterations. The
algorithm runs in O(mi1r1(V2/3,El/2)E1og2(V2/E)log2 C) time where C is the maximum
edge capacity. Its performance on flow networks arising in vision is unknown to us.

2.4 Graph Cut methods

Having discussed the Maximum flow problem and algorithms to solve it, we return our
attention to minimizing the energy (2.10) with Graph Cut algorithms. In Section 2.2.3
we outlined the general properties of this family of energy minimization algorithms
mentioning that they apply to energy functions of the form (2.10) with submodular
pairwise energy terms (2.14), and that in practice they outperform popular energy min-
imization algorithms, in terms of both runtime and quality of produced minima, on
high-dimensional nonconvex energies frequently encountered in vision. In this section
we examine the algorithmic details and the properties of Graph Cut algorithms.

Maximum flow methods lie at the heart of Graph Cut algorithms. In fact, every such
algorithm entails a method of representing the energy (2.10) as a flow network so that
a cut on the network and its capacity correspond to a label configuration and its energy
respectively, furthermore ensuring that the minimum cut of the network minimizes the
energy among all possible cuts.

Graph Cut methods give two interpretations to cuts of flow networks: 1) a geo-
metrical interpretation, typically arising in binary problems, which views such cuts as
optimal separating hypersurfaces in an N-D manifold embedding the graph equipped
with a cut metric approximating any continuous Riemannian metric [BKo3, KBos], and
2) as a classifier, finding the optimal attribution of two or more label classes to a set of
variables [GPS89, BVZo1, Isho3]. In both cases, maximum flow algorithms constitute
the numerical optimization tool of energies describing such hypersurfaces and classes.

Maximum flow methods, as we have seen in Section 2.3, are inherently binary tech-
niques; they produce an optimal bipartition of the nodes of a flow network in terms of
the capacity of the cut separating the two sets. In the following section, we shall show
that binary problems in vision like mono-object segmentation, binary image restoration
etc. can be most naturally and directly formulated and efficiently solved by maximum
flow algorithms. Importantly, for energies of binary variables, the MAP solution (2.9),
that is the global minimum of the energy (2.10), can be obtained via Graph Cut methods
in polynomial time matching that of the underlying maximum flow algorithm. More-
over, multilabel energies, discussed in Section 2.4.2, can be minimized with Graph Cut
methods by transforming the multilabling problem to a sequence of binary subprob-
lems each formulated as a Maximum flow problem on an appropriate network.
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Figure 2.3: A flow network representing the energy (2.10) with binary variables x; € {0, 1}. The configura-
tion induced by the blue cut is x; = x; = 1 and that of the red cutis x; =0, xj =1

2.4.1  Graph Cut in binary optimization

In this section, we discuss one of the most straightforward Graph Cut applications of
mono-object segmentation showing how the minimization of the energy (2.10) with
binary variables can be formulated as a Maximum flow problem. The original formu-
lation is due to [GPS89] in the context of binary image restoration. Their approach
remained relatively unknown to the vision community until it was reintroduced and
popularized by [BJo1] in mono-object interactive segmentation. Our discussion in this
section closely follows the method presented in the latter work.

Let us begin by defining the flow network. As before, let G = (V,E) be a directed
connected graph with a positive capacity function of edges. Let S be the set of integers
indexing the variables of the energy (2.10) and the corresponding image primitives
which are considered to be image voxels in this discussion. The set of nodes of the
graph Gis V =S U{s,t} where s and t are the source and the sink terminals of the flow
network respectively. The set of edges E consists of two types of edges; those connect-
ing nodes in S to either terminal, called t-links (for terminal links), and those connect-
ing pairs of nodes in S, called n-links (for neighbor links). The latter are dictated by
the neighborhood system of the energy (2.10). The set of edges is therefore given by
E = [Uies{(s,i),(i,t)}, Ui,jeS{(i’j) |jeNi}}. An illustration of the graph G is given in
Figure 2.3 for a one-dimensional image.

Let us formulate mono-object segmentation according to the Bayesian labeling
framework presented earlier in Section 2.2. For this binary problem, the set of labels
is L = {o,1}. We assume that “0" represents the background and “1" the sought object.
We take the observation to be image intensity values at each variable, and assume that
likelihood densities are defined for both labels. Disregarding user constraints, data
terms of the energy (2.10) are given by (2.11¢). For pairwise energy terms, the Potts
prior model (2.12) suffices to ensure the spatial consistency of this instance of binary
labeling. Note that data terms are positive by definition and that if a variable i € S
prefers a label, say the object label “1", then D;(1) < D;(o).

The one-to-one correspondence between cuts of the graph G and binary configu-
rations of variables in & is fairly obvious. A cut of G, which partitions its nodes into
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the source S and the sink T sets respectively, can be interpreted as a binary configu-
ration ¢ which assigns labels {o, 1} to variables in S corresponding to nodes such that
¢;=oifieSand ¢; =11if i € T. Clearly, any cut (S,T) on G corresponds to a config-
uration ¢. There remains to show that the capacities of the edges of G can be chosen
so that the capacity of a cut is equal to the energy of the configuration induced by it.
Given a cut (S, T), we denote the set of edges separating the source and the sink sets by
EST ={(u,v) | u € S,v e T}. Consider the graph in Figure 2.3. Cuts on G can include
t-links and n-links, however for each node, exactly one t-link is in E©©T). Thus, if i € S,
(i,t) e E&T) and ifi € T, (s,i) € E(ST). Choosing c(s, i) = tD;(1) and c(i, t) = tD;(0), every
node 7 € § contributes the data penalty associated with the chosen label to the t-link
part of the cut capacity. Note that an n-link (,) is in E(>T) ifand onlyif i€ Sand j€ T,
thus by setting c(i, j) = 1, every n-link (7, ) € E accounts for the Potts prior penalty in
the cut capacity. The capacity of a cut on the network G thus defined is given by:

(S, T) = tZDi(&)Jr Z 1 (2.21)

ieS (i,j)eE
ieS,jeT
which is clearly equal to the energy of the configuration ¢ induced by the cut (S, T) as

defined by (2.10) with the condition ¢; # ¢; for pairwise terms. The minimum cut of G
therefore yields the MAP configuration ¢* and its capacity is equal to the energy E(¢£%).

2.4.1.1  General-purpose constructions for binary energies

The graph construction we outlined in Section 2.4.1 assumes that unary energy terms
are positive and that pairwise terms follow the Potts model. The natural question that
arises consequently is: could we construct such graphs representing arbitrary energies?
The seminal work [KZo4] answers this question giving a necessary graph representabil-
ity condition for functions that can be written as a sum of terms of arbitrary order. Im-
portantly, it shows that this condition is sufficient for functions which can be written
as a sum of up to tertiary terms. In our work, we formulate mono and multiobject seg-
mentation with binary and multilabel energies written as a sum of up to binary terms,
therefore, in the following we shall present the main result of [KZo4] for such energies.

Theorem 2.4.1 (Graph Representability). Let F be a function of n binary variables indexed
by S written as:

F(xl,...,xn) = ZP{(X{) + Z Fi’j(xi,xj), (2.22)
(

ieS i,j)eN
where N C S xS is a neighborhood system containing ordered pairs (i,]) for which i < j.
F is graph representable if and only if each term F; ; satisfies the following inequality:

Fi,j(ol O) +Fi,j(1ll) < P[’j(oyl) +Ff,j(1fo)' (2'23)

Note that (2.23) is the submodularity condition (2.15) we mentioned earlier in Sec-
tion 2.2.3. To make the distinction between functions of sets and functions of binary
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Figure 2.4: Graph representations due to [KZo4] for (a) unary and (b) pairwise terms of the function (2.22).

Fo = Fij(o,0) | Fijlo,1) _|A[B] _ A+ o 0 L Lo D-C o|B+C-A-D
b Fij(1,0) | Fii(1,1 C|D C-A|C-A o|D-C

i o o

Table 2.1: Factorization of a pairwise function of binary variables into a constant, two unary functions and
a pairwise function respectively.

variables, [KZog4] call it the regularity condition, hence binary functions satisfying
(2.23) are called regular functions. In our discussion, we use the more widely used
terminology of submodularity and submodular functions.

In the following, we shall outline the constructive proof of theorem 2.4.1 showing
that submodularity is a sufficient condition for graph representability by describing the
graph that represents an arbitrary submodular function of the form (2.22). We refer the
reader to [KZo4] for the proof of the reverse direction as well as for graph constructions
representing submodular functions written as a sum of up to tertiary terms. Another
important theoretical result reported in this work is that the minimization of nonsub-
modular functions of the form (2.22) is an NP-hard problem.

Given a cut (S,T) on the graph we defined earlier in Section 2.4.1, which represents
a binary energy function with positive data and Potts prior terms, the energy of the
configuration ¢ induced by the cut is exactly equal to the latter’s capacity E(¢) =¢(S, T).
Observing that the configuration which minimizes the binary function (2.22) does not
change if we add a constant to it, for the constructive proof of the theorem 2.4.1 we
shall relax the last equality requiring that F(x,,...,x,) = ¢(S,T)+ K, where K is some
constant. Obviously, F is exactly represented by a graph if K = o.

Let F be a submodular binary function of the form (2.22) and G =(V, E) a flow net-
work. We shall construct a subgraph representing each term of F separately and merge
all subgraphs into G afterwards. This is justified by the additivity theorem outlined
in [KZo4] which states that the sum of two graph-representable functions is graph-
representable. Thus, we can illustrate the construction on the minimal example of a
pair of variables indexed by 7, j. As before, the set of nodes of the graph Gis V = {s,1,1, j}
where each nonterminal node encodes a binary variable. For each term in F, we shall
add one or more edges to E so that edge capacities are positive as required.
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Consider first the unary terms of F. As illustrated in Figure 2.4a, the subgraph
corresponding to a single variable i contains the nodes {s,t,i}. If F;(0o) < F;(1), we
add the edge (s,7) to the subgraph with capacity c(s,i) = F;(1) — F;(0), otherwise we
add the edge (i,t) with capacity c¢(i,t) = F;(0o) — F;(1). We can see that the constructed
subgraph represents the function F; in both cases so that F;(x;) = ¢(S,T) + K with
K = F;(0) in the former and K = F;(1) in the latter case.

Consider now the pairwise terms of F. The subgraph corresponding to a pair of
variables i, naturally contains the nodes {s,t,7,j}. It is convenient to represent such
a term in tabular form according to the four combinations of its variables’ values as
in Table 2.1. As shown, we rewrite the pairwise term in four terms and consider each
for edge addition separately. The first term A is a constant, therefore no edges need to
be added for it. The second and third terms are unary functions which depend on x;
and x; respectively, therefore we can use the previous construction for unary terms to
represent these terms. To represent the fourth term, we add the edge (i, j) with capacity
c(i,j) =B+ C—-A-D. Note that B+ C—A—-D > o since F is submodular. Figure 2.4b
illustrates the construction corresponding to the case A—C > o and D—-C > o. Note that
in this case F; ;(x;,x;) = ¢(S,T) + F; j(1,0).

As mentioned previously, we obtain the graph G that represents the function F by
merging separately constructed subgraphs for unary and pairwise terms and adding
edge capacities together. For referencing purposes, Table 2.2 summarizes graph con-
structions for submodular binary functions written as a sum of up to binary terms.

2.4.2 Generalized Graph Cut for multilabel energies

Many interesting vision tasks can be formulated as labeling problems with |L| > 2 and
solved by multilabel optimization of energies of the form (2.10). To mention few in-
stances, the set of labels L can represent disparities in stereo matching, motion vectors
in motion estimation, intensity levels in grayscale image restoration and object identi-
fiers in multiobject segmentation.

We have reported in Section 2.2.3 that minimizing nonconvex multilabel energies
of the form (2.10) is NP-hard, even with the simple discontinuity-preserving Potts prior
model. We are aware of only two Graph Cut methods for exact multilabel minimiza-
tion of the energy (2.10): [IGg8a] for stereo matching with an absolute difference prior
and [Isho3] which generalizes the first method to handle arbitrary convex priors. Both
of these methods require that labels are linearly ordered integers L = {1,...,k} with
k = |L|, which limits their applicability to few problems. Unsurprisingly, therefore, for
many interesting instances of multilabel minimization, researchers resort to approx-
imate labeling algorithms which produce provably good local solutions. One Graph
Cut method in particular, called the Expansion Moves algorithm [BVZo1], produces
local minima within a known factor of the global minimum. Its practical advantages
have been demonstrated in a range of vision problems on which it was shown to out-
perform popular multilabel minimization algorithms in terms of runtime and quality
of obtained minima [SZS*08]. In our work, we use the Expansion Moves algorithm to
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term \% condition c K

i
Fi(1)-Fi(0)>o0 i o Ei(o)
Fi(x;) {s, 1,1} ci,t)=o
. C(S,i):o 4
Fi(o)=F;(1)>o0 Cit) = Fi(o)— Fi(1) Fi(1)
i) = F1j(1,0)= Fy1(0,0)
Fij(1,0)=Fjj(0,0)>0 c(s,i)=Fi; ij
Fjj'(lrl)—F;](l,O)m c(s,j) = Fij(1,1) = Fj j(1,0) F;j(o0,0)
] 7] c(i,t)=c(j,t)=o
5,7)=F; i(1,1) = Fj i(1,0)
F '(O;O)—F" (1,0)>o C(b ]) i, i
FZ]~(1,1)—F;](1,O)>O c(i, t) = Fj j(0,0) = Fj j(1,0) Fj i(1,0)
S s ) = c(j,1) =0
Fij(xi,xj)  {sti,] i) = F: (1,0) - F;
ij(xi,xj)  As,t,1, j} F; j(1,0)=F; j(0,0) >0 C(b"i)—llzl-’]-(l’O) 1;1.,].(0,0 Fi (00 + Fyj(1,1)
Fij(1,0)=Fjj(1,1) >0 c(jt)= .1,](1,0.)— i,j(1,1) “Ej(1,0)
, , C(S;]):C(l;f)zo ,
.’t) =F: '(0,0)—F' .(1’0)
F;, (0,0)=F; i(1,0)>0 C(Z. i,] ij
F;]<1'0)—FZ]‘(1,1)>0 c(j,t) = Fi j(1,0)=Fjj(1,1) Fij(1,1)
’ ’ e(s,) = c(s,j) = 0

Fi’j(l,o) +F,-,j(o,1)
—Fjj(o,0)-Fjj(1,1) 20

Table 2.2: Summary of graph constructions due to [KZo4] for submodular binary functions of the form
(2.22). For every term, the subgraph definition corresponding to indicated positivity conditions is given
along with the constant K so that F(x) = ¢(S,T) + K. The graph representing F is obtained by merging
subgraphs for unary and pairwise terms and adding edge capacities and constants K together respectively.

minimize multilabel segmentation energies, therefore in the following we shall discuss
its properties and present its algorithmic details.

The Expansion Moves algorithm takes its name from its search space exploration
strategy, the expansion move, whereby an arbitrarily large number of variables can
switch to a label a simultaneously. The algorithm finds a local minimum such that
no expansion move, for any label «, yields a labeling with lower energy. This strong
local minimality criterion is actually what bounds solutions found by the algorithm.
By contrast, traditional energy minimization algorithms, like the Iterative Conditional
Modes (ICM) algorithm [Bes86] and the Simulated Annealing (SA) algorithm [KGV83],
use a much simpler search space exploration strategy, called the standard move, where
only a single variable can change its label at a time. In the following, we formally define
expansion and standard moves and compare their local minimality criteria.

A configuration ¢ can alternatively be seen as a partition of the set of variables,
indexed by S, on which the energy (2.10) is defined. It is given by P = {P, | [ € L},
where P = {i € § | ¢; = 1} is the subset of variables that are assigned the label / in the
configuration ¢. Given a label a € L, a move from an initial configuration ¢, mirrored by
the partition P, to a new configuration ¢’ attainable from ¢, mirrored by the partition
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(a) (b) (c)

» o«

Figure 2.5: A labeling instance with L = {“black”,“gray”,“white”}. (a) The initial configuration, (b) a
standard move on the white label, (c) an expansion move on the white label.

P’ is called an a-expansion if P, C P; and P/ C P, for any label [ # a. In other words, an
a-expansion allows any number of variables to change their labels to a growing the set
P, in the partition P. Figure 2.5c¢ illustrates an expansion move on the white label from
the initial configuration given in Figure 2.5a. A move from an initial configuration ¢,
mirrored by the partition 7, to a new configuration ¢ attainable from ¢, mirrored by the
partition 7’, is called a standard move if 4_,/ € L such that ||PI’| - |PZ|| = 1. Figure 2.5b
illustrates a standard move on the white label from the initial configuration.

Given a configuration ¢, denote the set of possible standard or expansion moves
from ¢ by M. We say that £ is a local minimum of the energy E with respect to My if:

V¢ € My, E(0) < E(0)). (2.24)

It is easy to see that for standard moves |[M/| is linear in the number of variables,
which makes it easy to find a local minimum with respect to these moves. However, the
local minimality condition (2.24) when standard moves are allowed is a very weak one,
because when at a local minimum with respect to these moves, one cannot find a con-
figuration with lower energy by changing the label of a single variable. This explains
the low quality results frequently generated by untuned ICM and SA algorithms and
their sensitivity to initialization especially in minimizing high-dimensional nonconvex
energies which have many such local minima. By contrast, when expansion moves are
allowed, |[M/| is exponentially large since if the move involves m variables of a total of
n, the number of expansion moves is n”. This makes the condition (2.24) so demand-
ing and the number of such local minima so few that [BVZo1] are able to prove that
any configuration locally minimal with respect to expansion moves is within a known
factor of the global minimum. The strong local minimality property also makes expan-
sion moves less sensible to the initial labeling. [BVZo1] show that E(¢) < 2cE(¢*) where
¢ = 2 x max Vi,j(a,b)/min Vi,j(a,b), Vi,j €S,a,b el and ¢ is the global minimum of E.
Note that the algorithm has the best bound on local minima for the Potts model ¢ = 2.

Given a configuration ¢, there are, as we have seen, an exponential number of ex-
pansion moves from ¢, therefore a direct search for the optimal expansion move is
infeasible. This is where binary Graph Cut techniques discussed in Section 2.4.1 come
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into play. [BVZo1] show that computing the optimal expansion on a label can be speci-
fied as a binary optimization problem, in effect, transforming the multilabling problem
to a sequence of binary subproblems each formulated as a Maximum flow problem on
an appropriate graph. In the following, using the results of [KZo4] we show how to
formulate an expansion move as a binary labeling problem and find the optimal move,
that is the move that gives the largest decrease in energy, by computing a minimum
cut. We also derive the multilabel submodularity condition mentioned earlier (2.14)
that must be met by the pairwise terms of the energy (2.10) so that the method applies.

Consider some initial configuration ¢ and a label we wish to expand on a € L. Recall
that after an expansion move on a, a variable i € § either keeps its current label ¢;, or
switches to a and that variables that are already labeled a naturally keep their label.
We can define such a label attribution as a function of binary variables

f,‘, X;i =0
filxi) = _ (2.25)
a, X;j=1
and write the multilabel energy function (2.10) as follows:
E(¥yen) =) Difilxa)+ ) Vis(filxi) fi(x): (2.26)

= i,jeS, jeN;

As before, a graph with two terminal nodes can be constructed to represent the
energy (2.26) with the following conventions. Given a cut (S,T), if i € S, then x; = o,
therefore f;(o) = ¢; and the label keeps its current label, otherwise if i € T, then x; = 1,
therefore f;(1) = a and the label switches to a. The graph can then be constructed by
the method of [KZo4] presented in Section 2.4.1.1 and summarized in Table 2.2.

The original work which proposed the Expansion Moves algorithm [BVZo1] relied
on a graph construction requiring metric pairwise terms, that is Va, 8, € L:

V(a,ﬁ)20©a :ﬁl
V(a,B)=V(p,a)=o, (2.27)
V(B y) < V(B a)+Via,y)
In particular, symmetry is assumed by [BVZo1] only to simplify graph constructions.
[KZo4] subsequently showed that metricity is an accidental property of elaborate graph

constructions the original method employed. They conclude that the energy function
(2.26) is graph representable if and only if each pairwise term satisfies the inequality:

Vi,j(fi0), fj(0) + Vi j(fi(1), f(1)) < Vi (fi(0), (1)) + Vi j(fi (1), fi(0)) (2.28)

that is
ViilBy)+Vijla,0) < Vi i(B,a)+V;i(a,y) (2.29)

where f = (; and y = {;. Setting V; ;j(a,a) = o, we obtain the triangle inequality, as
required by [BVZo1].
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2.4. Graph Cut methods 2. Theoretical background

Algorithm 2.4.1: Expansion Moves energy minimization

input :set of labels L, energy function of label configurations E(¢) on a set of
variables indexed by S, maximum cycles maxCycles
output: label configuration ¢

// Initialize configuration
1 iy < RanpoMm ([ € L)
> foreachie S

3| G i
// Perform energy minimization

4 cycles<—o

5 repeat

6 success «— false

7 foreach o € L

8 ¢ = argminE(¢), V¢ € My
9 if E(0) < E(¢)
10 l — [A

11 L success < true
12 cycles < cycles +1

13 until success = false or cycles = maxCycles

Having formulated individual expansion moves as binary subproblems, we now
return our attention to the Expansion Moves algorithm. Its listing is given in Al-
gorithm 2.4.1. We shall call the execution of lines 5-13 a cycle and an execution of
lines 7—11 an iteration. Starting from a constant labeling by an arbitrarily chosen label
(lines 1-3), the algorithm cycles through labels in a fixed or a random order. In each
iteration, the optimal expansion on a label is computed with the method outlined in
the above (line 8), and if the energy of the resulting configuration is strictly inferior
(line 9), the current configuration is updated (line 10). A cycle is successful if a strictly
better configuration is found in one of its iterations. The algorithm stops after the first
unsuccessful cycle or if the required maximum number of cycles are executed.

The Expansion Moves algorithm 2.4.1 is guaranteed to terminate since every itera-
tion retains the configuration that decreases the value of the energy. [BVZo1] mention
that for an energy formulation which is independent of the number of variables, the al-
gorithm performs O(V) cycles, where V is the set of variables. Therefore, the running
time of the algorithm is O(VL). However, the authors report that in practice the algo-
rithm stops after a few cycles. This observation is confirmed by our experimental setup
as well. A precise description of the algorithm’s total running time requires taking into
account the running time of the minimum cut computation (line 8) for which a maxi-
mum flow algorithm is applied. For example, using a straightforward implementation
of the Push-relabel method with the FIFO selection rule [GT88] which runs in O(V?3)
time, the total running time of the Expansion Moves algorithm becomes O(V+4L).
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2. Theoretical background 2.5. Conclusions

2.5 Conclusions

In this chapter, we have laid the theoretical foundation of our approach that we shall
elaborate in subsequent chapters formulating image segmentation as a Bayesian label-
ing problem which is solved by minimizing a posterior probability energy, described in
terms of likelihood and Gibbs distribution energies, to obtain the optimal segmentation
with respect to user-provided evidence, constraints and a problem-specific prior.

We have addressed energy minimization methods discussing Graph Gut algorithms
in exact binary and approximate multilabel optimization as well as the underlying
maximum flow techniques. We choose the Expansion Moves algorithm for minimizing
multilabel segmentation energies which finds a local solution within a known factor of
the global minimum. Having a bound on local minima helps us to explain whether an
inadequate solution is due to a bad energy definition or a poorly performing minimizer.

Even though good local minima correspond to good quality solutions, the quality
of a labeling result in segmentation is usually assessed with respect to a ground-truth
labeling. As reported, the global minimum, when known, is not more accurate than
the ground-truth, and the energy of the ground-truth is frequently higher than that of
the global minimum, therefore the focus is not on the optimization of energies, but on
finding more expressive energy models. This is the objective of the following chapter.
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Chapter 3

A structural prior model
for Graph Cut segmentation

3.1 Introduction

gl 0osT successful segmentation methods usually incorporate some image or
domain-specific prior information. Medical image segmentation methods in
b particular should ideally be able to incorporate a wide range of anatomical
and physiological prior information to ensure the consistency of the result
with respect to anatomical properties and variabilities thereof. From the standpoint of
Graph Cut optimization of energies of label configurations, prior information can be
regarded as a set of constraints on labels defined by a reference model. In Section 2.2,
we have encountered unary and pairwise constraints stemming from the energy poten-
tials of a prior distribution expressed as a Markov random field (MRF) of label con-
figurations with respect to the image graph. Such prior information is combined with
data-derived likelihood and user constraints in an energy minimization framework to
infer the optimal segmentation according to these criteria.

As mentioned in Section 2.2.2, in image segmentation, pairwise prior interaction
potentials have to encourage a piecewise-constant discontinuity-preserving labeling.
The most widely used such prior, called the Potts model (2.12), presumes the presence
of a single type of boundary in the image. With the assumption of equal violation of
piecewise constance, it penalizes attributions of pairs of unequal labels to neighboring
variables equally while incurring no penalty for the identical labeling of such pairs.
This assumption obviously does not hold in multiobject segmentation where multiple
boundaries exist between the objects.

In this chapter, we investigate extensions of the Potts prior model to account for
multiple boundaries in multiobject segmentation which incur multiple levels of penal-
ization and furthermore allow the minimization of resulting energies by the Expan-
sion Moves Graph Cut algorithm discussed in Section 2.4.2. We first consider a simple
structure adjacency prior by adding a second level of penalization to the Potts model
[JKD*12]. Due to the submodularity requirement, Expansion Moves optimization can
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3.2. Prior information in Graph Cut segmentation 3. A structural prior model

be applied only to a restricted form of this prior where the penalty of nonadjacency is at
most twice that of adjacency. We outline a submodular extension of this prior for simple
linear label layout models to penalization ratios greater than two by the introduction
of auxiliary labels into the model. The main contribution of this chapter, motivated
by a special case of the aforementioned submodular extension of the adjacency prior,
is presented last. The vicinity prior, as we term it, is an intrinsically submodular prior
model which incurs multiple levels of penalization, |L| at most, and captures the spatial
configuration of structures in multiobject segmentation. It is defined as shortest-path
pairwise constraints on a graph model of interobject adjacency relations [KVDP13].

The following section reviews relevant literature and suggests a taxonomy of prior
introduction approaches in Graph Cut segmentation.

3.2 Prior information in Graph Cut segmentation

Many forms of prior information have been introduced in Graph Cut segmentation for
different applications. We broadly classify the most relevant of such approaches in
three categories according to the nature of introduced prior.

a) Location prior, formulated as spatially-varying prior probability maps of individ-
ual structure locations in the image space. Such prior information is usually encoded by
the unary constraints of the prior energy (2.3) to indicate the label preference of indi-
vidual variables [STAGo6, KRBTo08, LPPS12] and sometimes via its pairwise constraints
to favor the placement of the segmentation boundary near the object’s contour [FZos].
In simplest cases, probabilistic maps of location are defined as a distance transform
of a shape template [FZos, KRBTo8]. In medical applications, probabilistic atlases of
tissue location are usually constructed by averaging label estimates for each pixel over
a ground-truth dataset registered to some anatomical space [STAGo6, LPPS12]. Natu-
rally, such probabilistic maps have to be learned in advance and registered to an image
before it is segmented. Registration cannot trivially handle topological and geometrical
changes, due to pathologies for example, and is often computationally intensive.

b) Shape prior, where explicit or implicit shape constraints are used to match the
segmented object with predefined or learned shapes. [VMo8] define an affine-invariant
shape similarity measure and introduce it in a sequential multiobject Graph Cut seg-
mentation framework. [MRTo7] first learn a statistical shape model from a training
set via kernel principal component analysis, then use the projection of an initial seg-
mentation in the learned shape space as the shape prior for subsequent segmentations
in an iterative process. In their Graph Cut framework for the optimization of hyper-
surface functionals, [KBos] show how to set unary constraints to favor cuts that max-
imize the flux of distance transform gradients for a shape’s contour or its medial axis.
Shape-prior segmentation approaches entail shape location initialization and align-
ment mechanisms, and often require model learning.

c) Spatial configuration prior, the use of which usually arises in the context of multi-
object segmentation, where usually pairwise relations define interobject geometric and
spatial relationships of the type “object a is above object b and next to object ¢". The
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3. A structural prior model 3.3. An adjacency prior

use of such prior information has appeared in the context of part-based object detec-
tion [WSo6] and scene layout estimation and segmentation where spatial relationships
are either predefined on a limited number of classes [LVS10] or learned from annotated
training data [WSo6, LLBT11]. [DBog] segment multiple or compound objects encoun-
tered in relative positions of containment and exclusion, also introducing graph-edge
constraints on preferred distances between the boundaries of regions. Some useful con-
figurations however cannot be represented by definitions therein, such as the inclusion
of an adjacent pair of objects in a third.

There are a number of spatial configuration prior formulations closely related to our
work which have appeared outside Graph Cut segmentation literature. In a theoreti-
cal framework similar to ours, although following a different numerical optimization
scheme, [SSLSTo1, CCB*og5] use a simple three-level piecewise-constant prior model
for tissue classification in brain MR images. According to a brain tissue model, it en-
courages the identical classification of pairs of neighboring pixels, allowing different
class adjacency patterns which are consistent with the model while penalizing adja-
cencies which are not allowed to occur. [GRC*08] proposes a relative location prior
represented by probabilistic maps of interclass offset preferences for pairs of classes.
Such probabilistic maps are learned in advance from training data and are used to de-
fine a local relative location feature which is introduced into the segmentation energy
via unary constraints. In [SBZ*og], pairwise geometric relationships are defined by an
anatomical network on easily detectable body landmarks and used in the organ detec-
tion phase of a sequential segmentation framework for thoracic and abdominal organs
in whole-body CT scans. [OYH"12] addresses the same problem as [SBZ*og] with an
automatic two-stage method whereby once relatively stable organs are identified and
segmented, organ interrelations are used to proceed with the segmentation of variable
organs by fitting previously learned statistical organ atlases and shape models. Organ
interrelations are defined according to canonical correlation analysis and represented
by a directed graph. Intuitively, these relations represent the degree of influence of an
organ’s surface upon another. A generic, graph-based scene model representing spa-
tial information explicitly is also employed by [FAB12] in the problem of segmenting
multiple subcortical structures in brain MR images. Fuzzy representations of distance,
adjacency and spatial directionality relations are introduced to account for model im-
precisions and variabilities. The segmentation algorithm, however, is sequential and
requires error detection and segmentation order rearrangement strategies.

3.3 An adjacency prior

Let us first consider the image in Figure 3.1a. It shows our synthetic phantom featuring
10 structures of different size, topology and adjacency patterns, labeled 1 to 10 as indi-
cated. More details can be found in Section 5.3 where we present evaluation results on
a dataset generated from the phantom by introducing variable Gaussian noise. In the
remaining of this chapter, we shall use this phantom as a reference model to illustrate
concepts as we develop definitions of prior models.
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3.3. An adjacency prior 3. A structural prior model

Figure 3.1: (a) Our Synthetic phantom and (b) the graph model of adjacency relations on its structures.

In all our formulations, we shall rely on pairwise constraints, expressed by pairwise
energy terms V; ;(¢;,¢;) in (2.10), to encode prior information on pairwise interactions
between labels assigned to pairs of neighboring variables encouraging the spatial con-
sistency of labeling with respect to a problem-specific reference model. Assuming a
piecewise-constant prior model, the simplest manifestation of such consistency is that
the spatial layout of image regions labeled differently should reflect the local spatial
constraints defined by the prior model. In particular, given a pair of labels for which
no close-range spatial interaction is described by the model, no pair of image regions

labeled with this pair of labels should appear next to each other in the labeled image.

In a segmentation task of an image generated from the phantom in Figure 3.1a, the
use of the Potts prior model incurs equal penalty for all but pairs of identical labels. For
example, given the adjacent and the nonadjacent pairs {9, 4} and {9, 8} respectively, the
Potts model implies that attributions of the corresponding pairs of nonidentical labels
to pairs of neighboring variables violate the spatial consistency of labeling equally,
since Vi,j €S, V; i(9,8) = V; i(9,4) = 1.

In similar spirit to [SSLS*o1, CCB*o5], we extend the Potts prior by an additional
constraint level to penalize label assignments which violate layout consistency with
respect to structure adjacency relations as described by the reference model. Such a
formulation is able to distinguish pairings of labels corresponding to adjacent and non-
adjacent structures in the model and penalizes them differently while preserving the
piecewise constance property of the prior since V(a,a) = o, Ya € L. For the example just
illustrated, the effect would be Vi,j €S, Vi i(9,8) > V; i(9,4).

Let R be the set of symmetric binary relations on pairs of distinct labels,
R ={rlarb,a,bel,a=b}. Such binary relations can represent many types of relation-
ships between pairs of objects, such as adjacency, distance, area of common surface,
etc. At present, we let relations r € R represent structure adjacency. A structure a is
considered to be adjacent to another b, denoted as arb, if they share a boundary (in 3D,
a surface). We define the adjacency prior as follows:
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3. A structural prior model 3.3. An adjacency prior

o ti={ (3.12)
Vi,j(gi;fj)Z Vsoftr dreR,birt; (3.1b)
Vhard ﬂfER,&rfj (3.1¢)

where Y5, and ypgrq correspond to adjacency and nonadjacency penalties respectively
and Yparg > Vsoft- 1deally, ¥pgarq — 00, however, some energy terms would then violate
the submodularity condition (2.14), namely those falling on the left-hand side of the
inequality. One possible remedy to this problem is the “truncation” of nonsubmodular
terms [RKKBog, WS06, DBog|, which is the modification of energy terms on either side
of an unsatisfied submodularity condition so that the inequality holds. As pointed out
by [RKKBos], the Expansion Moves algorithm with truncated energy terms is a valid
energy minimization technique for arbitrary functions and is guaranteed to converge.
However, individual algorithm steps are no longer guaranteed to find the optimal la-
beling with respect to expansion moves and the final labeling does not necessarily have
the strong local minimality property. They point out that the technique gives reason-
able results as long as the number of nonsubmodular terms remains small. Another
solution is using an efficient arbitrary energy minimization algorithm, like the TRW-S
algorithm [Kolo6], which however does not have a bound on local minima.

The adjacency prior as defined by (3.1) is submodular when yp4,4 < 2507, With
the largest penalization ratio at equality. Clearly, this prior formulation is essentially
limited to definitions where the penalty of nonadjacency is at most twice as much as
the penalty of adjacency so that the prior is submodular and the energy (2.10) can
be minimized via the Expansion Moves algorithm. In other words, it is impossible to
penalize nonadjacencies by some large constant without penalizing adjacencies half
as severely. In the following section, we outline a submodular extension of this prior
for simple linear label layout models to penalization ratios greater than two by the
introduction of auxiliary labels into the model.

3.3.1 Arbitrary penalization submodular formulations

Consider the simple three-label model illustrated in Figure 3.2a with the label set
L ={l,m,r}. The adjacency prior for this model is defined according to (3.1) as follows:
Yael, V(a,a)=o,
V(Lr)=V(L1) = Yharar (3-2)
V(l,m)=V(m,I)=V(mr)=V(r,m) =y
Let us suppose that yj,.4 > 2 yso ;- Consider the set of inequalities of the submodularity
condition for all permutations of labels in L. Because of symmetric pairwise definitions
in (3.2), there are three such inequalities where each pair of distinct labels in {I,m,r}

falls on the left-hand side of an inequality exactly once. The inequality which does not
hold for yjara > 2 Y5051, is the following:

V(im,m)+ V(Lr)<V(mr)+ V(l,m). (3.3)
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moyp=2ys  om
(a) (b) (c) (d)

Figure 3.2: (a) 3-label structure adjacency model, (b) geometrical representation of the adjacency prior
defined on the model, (c) the model after shadowing the label m, (d) geometrical representation of the
extended adjacency prior on the new model. Note that trapezoid side lengths are set for illustration
clarity and do not precisely correspond to indicated quantities.

To satisfy (3.3), we can either increase one of V(m,r) or V(I,m), or decrease V(m, m), as
pointed out by [RKKBos], or use an arbitrary energy minimizer, for example [Kolo6].

Without modifying the prior definition, in particular the ratio yyaa/Vsort, we write
the violated inequality (3.3) as two inequalities that can be satisfied on the set of la-
bels LU m’. We call m’ the shadow label of m representing the same image structure.
Consider the graphical representation of the triangle inequality in Figure 3.2b, where
triangle vertices correspond to labels /,m and r and lengths of its sides to prior penal-
ties such that Ya,b € L, ab = V(a,b). Note that the illustration in 3.2b corresponds to
Vhard <2 Vsoft and that the geometrical representation for yy4,4 = 2 Y55+ corresponds to
collinear points. In the following, we shall denote yj,.4 and yy,¢; shortly as y;, and ys.

Our intuition is pulling the vertices | and m of the triangle Alrm apart so that the
side I7 is longer, in particular Ir > [m +7m . As illustrated in Figure 3.2d, this splits the
vertex m and results in two triangles, Alrm and Alrm’, according to which we rewrite
the violated inequality (3.3) as follows using line-segment notation:

Im+mr (3.4a)
"+ m (3-4b)

Ir
Ir

I/\

I/\

where Ir =y}, and Im = m’r = y, and y, > 2 y,. We shall derive bounds on unknowns
mr, Im’ and mm’.

From (3.4a), mr > Ir—Im, that is, 77 > v —vs. Also from Alrm, mr < Ir+1m, that is,
mr < yp+ys. Thus:

Yh= Vs ST Ypt Y. (3-5)
Similarly, from (3.4b) and Alrm’ we find:

Yh—Vs <Im’' < yp+ v (3.6)

We now consider mm’. From Almm’ we have, mm’ <Im+1Im’, mm’ < Yo+ yp—Vs = Vi
assuming lower bound on Im’. We also have mm’ > Im’ —Im, that is, mm’ > y}, — 2y,
under the same assumption. Hence:

Yh—2ys <mm’ <y (3-7)
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Figure 3.3: (a) 4-label structure adjacency model, (b) the model after shadowing the label m and (c) after
shadowing the label /, (d) geometrical representation of the extended adjacency prior on the new model.
Note that line segment lengths are set for illustration clarity and do not precisely correspond to indicated
quantities. Segments /r” and 7% are drawn curved for the same purpose.

Since m and m’ represent the same structure, the upper bound y, equal to Im which is
the highest penalty in the model, is too severe. Therefore, we shall assume lower bound
on mm’. This completes the construction of the extended adjacency prior that accounts
for arbitrary ratios yy.a/ysof: for the simple three-structure model in Figure 3.2a. Its
definition is summarized in Figure 3.2d. Note that for a ratio of two, Yjura = 2 yso s, the
extended definition gives the original (3.1). In particular, vertices m and m’ coincide
and mm’ = o, and the diagonals of the trapezoid Irm’m in Figure 3.2d coincide with the
sides Im and rm of the triangle Alrm in Figure 3.2b with Im’ = 7m = Vsoft-

Now we shall consider a more elaborate four-structure model, illustrated in Fig-
ure 3.3a, defined on L = {/,m,r,x} by the addition of a label x adjacent to r to the pre-
vious three-label model in Figure 3.2a. The adjacency prior definition for this model
follows (3.2), with the following addition:

V(r,x)=V(x,r)= Vsoftr

Yae{l,m}, V(a,x)=V(x,a) = Vyara- (3:8)

Once again, we assume that yj,,4 > 2 Y55+ Let us consider the triple {/,m, r} first. Shad-
owing the label m gives the five-label construction shown in Figure 3.3b. The definition
of the extended adjacency prior for the set {I/,m,m’, r} follows the derivation discussed
above which is shown in Figure 3.2d. Furthermore, triples involving labels {I,m, r, x}
satisfy submodularity inequalities. However, the condition does not hold for the triple
m’rx, as expected. As before, we shadow the label r producing the six-label model illus-
trated in Figure 3.3c. The geometrical representation of the extended adjacency prior
for this model is given in Figure 3.3d. Definitions of trapezoids Irm’m and xm’rr’, each
corresponding to an extended adjacency prior on a three-structure model, are identical
to that in Figure 3.2d. There remains to derive bounds on W, xXm, Ix and mr’.
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3.3. An adjacency prior 3. A structural prior model

From alrr’ we have, [1’ <
same triangle, we also have Ir’

r+r1/, thatis, Ir’ SYntyn—2Ys=2yp—2ys From the
>1r—rr’, thatis, Ir’ > yj, =y, + 2 s = 2 ¥5. Therefore:

2753p327h_275- (3-9)

Similarly, from Axmm’ we find that:

2y XML 2y, -2, (3.10)

Upper bounds of (3.9) and (3.10) can also be obtained from Alr’m” and Axrm respec-
tively. Let us derive bounds on [x and mr’. From alxr’ we have, Ix < It +r'x "x, that is,
IX <29 —2Ys+ s = 2 ¥ — ¥, assuming upper bound on Ir/. We also have, [x > I/ —7'x,
which is, [x > 2y, =2 ¥s — s = 2, — 3 7. Hence:

27/h_37/ssas27/h_7/w (3.11)

From amrr’ we have, mi mr’ <mr +rr/, rr/, which is, mr’ < v — v+ vy —2¥s =2V, — 3V, We
also have, mr’ > mr —rr/, that is, mr’ >y}, — v, — y, + 2 5 = 5. Hence:

ys<mr’ <2y,=37, (3.12)

which completes the construction of the extended adjacency prior accounting for arbi-
trary ratios yuaa/Vsort for the four-structure linear model in Figure 3.3a. Figure 3.3d
summarizes the definition.

In order to understand the practical merit of extended versus basic adjacency prior
models, we conduct an experiment of brain tissue segmentation on a single simu-
lated 3D MR image from the second-generation BrainWeb simulated MRI dataset. The
dataset is described in Section 5.4.2. To test the four-label extended adjacency prior
defined above, we formulate Graph Cut segmentation on the label set L = {“BKG”,
“CSF”,“GM”,“WM”} representing background, cerebrospinal fluid, gray and white
matters respectively. The background comprises all nonbrain tissues in addition to air.
The spatial layout of structures in L largely corresponds to that of the four-label model
illustrated in Figure 3.3a. We estimate likelihood distributions for the last three labels
from user-supplied “seeds" as described in Section 2.2.1, using distributions identical
to those of the original label for shadow labels and a uniform distribution for the back-
ground label. We measure the quality of segmentation with the overall Dice similarly
metric (DSM) (5.2) which indicates the agreement between the segmentation and the
ground-truth as a mean weighted measure of individual-label DSM measures.

Figure 3.4 gives results of qualitative and quantitative evaluation using Potts, basic
adjacency prior and its extension for three ratios V.,4/Vsof €qual to 2, 3 and 5. Pre-
sented cross-sections and DSM figures suggest that there are no real advantages of us-
ing the extended adjacency prior compared to the basic adjacency prior on this instance
of segmentation described by the four-label model. Furthermore, segmentation quality
deteriorates with increasing gap between the two penalty levels and false positives of
the label class “CSF” begin to appear, which however obey adjacency constraints.
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(e) DSM = 0.9467 (f) DSM = 0.9368

Figure 3.4: Qualitative and quantitative comparison of best brain tissue segmentations, as measured by
overall DSM, in a second-generation BrainWeb simulated MR image. Sagittal cross-sections show seg-
mentations using 5 different prior formulations: (a) Potts, (b) adjacency prior (3.1) with ypgrg = 2501+
and arbitrarily-penalization submodular adjacency prior for the 4-structure model with (c) y, = 2ys,
(e) ¥n =3ys and (f) ¥, = 5)5. (d) Shows the ground-truth. Color legend; black: background, red: cere-
brospinal fluid, green: gray matter, blue: white matter.

It is interesting to note that for y44,4/Vsor+ = 2, the extended adjacency prior gives
a definition that accounts for relative structure distance for the linearly ordered four-

label model:
V(l,m)=V(m,r)=V(r,x)= Vsoft

V(l,r)= V(m,x):2}/50ff, (3.13)
V(l,x)=3 Vsoft
Given the complexity of extended adjacency prior constructions, we seek a simpler

specification of the idea of stepwise penalization which would furthermore be easier to
define for more complex nonlinear models, counting several tens of labels.

3.4 A shortest-path formulation: the vicinity prior

The adjacency prior discussed in Section 3.3 ensures the spatial consistency of label-
ing by penalizing pairings of labels corresponding to adjacent and nonadjacent pairs
of structures differently (3.1). The formulation however makes the assumption that
pairings corresponding to nonadjacent structures are equally unfit, independently of
the mutual distance between structures. Higher penalization for farther away pairs
of structures while maintaining the submodularity property of the prior is desired.
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We have observed that a special case of the extended adjacency prior, corresponding to
Vhard = 2 Vsoft, accounts for relative structure distance for the simple linearly ordered
four-label model 3.3a incurring multiple levels of penalization (3.13). In this section,
we present a different formulation of the idea of variable penalization according to
stepwise relative distance which can be furthermore specified easily for much more
complex nonlinear models defined on an arbitrary number of labels.

Consider the phantom in Figure 3.1a again, and observe the layout of structures
“9”,“4”, “6” and “8”. Notice how the structure labeled “9” is nested in the structure
“4” which, in turn, is adjacent to the structure “6”. Due to this adjacency pattern,
it makes sense to encourage the assignment of the pair of labels {9,4} while penaliz-
ing the attribution of the pair {9,6} to neighboring variables in a segmentation task of
an image generated from the phantom. Hence, Vi,j € S, Vi,j(9,6) > \/1-,]-(9,4). Further-
more, since the structure “8” is farther still, V; j(9,8) > V; i(9,6) > V; i(9, 4) should hold.
By comparison, the adjacency prior penalizes nonadjacent pairs {9, 6} and {9, 8} equally
implying that they are equally unfit.

Recall that R is the set of symmetric binary relations on pairs of distinct labels rep-
resenting adjacency relations of corresponding structures. Assume furthermore that
each relation r € R has a corresponding characteristic function £ which gives a quanti-
tative measure for the relationship r represents, : Lx L\ {(a,a)} — R™.

The set of relations R can be equivalently represented by a weighted undirected
graph A = (L, W) without self-loops’ on labels L, where the set of edges is given by
W ={{a,b}|dre R, arb, a=b}. Edge weights are defined by w({a,b}) =1 (a,b), such that
w({a, b)) =co, Are R, arb.

Define a path of length® k from a vertex I, to another /; in A by a sequence
7= (lo,1;,...,Ix). We say that the vertex [} is reachable from the vertex I, via the path 7
and denote it as I, ~> I;. Define the weight of a path w(m) as the sum of the weights of
its constituent edges w(m) = Zf‘;; w({l;,l;11}). The shortest-path weight from a vertex a
to another b is defined by:
min w(7), V1, a5 b (3.14a)

@(a,b) = )
00, otherwise (3.14b)

where (3.14b) corresponds to the case where there is no path 7 through which the
vertex b can be reached from the vertex a. Note that the shortest path from a to b is
defined as any path 7 with weight w(rr) = ®(a,b) and that the shortest-path weight
from a vertex to itself is @(a,a) = o.

Given the graph A, we define the pairwise prior term in (2.10) as:

Vii(6,6)=a(ab), €=at=b. (3.15)

There are several algorithms to calculate shortest-path weights the choice of which
depends on the underlying graph and the application [CLRSog]. For weighted graphs
with positive edge weights, shortest paths from a given vertex to all others can be found

A self-loop is an edge from a vertex to itself.
2The length of a path is equal to the number of edges on it.
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via Dijkstra’s algorithm with a running time of O(L?). If the graph is sparse and every
vertex can be reached from the starting vertex, the running time becomes O(WlogL)
when the algorithm’s priority queue is implemented with a binary heap. For graphs in
which each edge has unit weight, shortest paths from a given vertex to all others can be
found via the breadth-first search (BFS) algorithm with a running time of O(L + W).

In our formulation, relations r € R represent structure adjacency. For two such
structures a and b, the adjacency relation’s characteristic function is given by:

¢ (a,b) 1, dreR,arb (3.16a)
f(a,b) =
? 0o, otherwise. (3.16b)

This results in a connected undirected graph A with unit-weight edges between adja-
cent vertices, where the degree of each vertex | € L is equal to the number of structures
adjacent to the structure associated with it. Shortest paths from a vertex to all others,
conveniently calculated by an application of BFS to the graph A, define the vicinity
of the associated structure with respect to all others, which is introduced in the en-
ergy function of segmentation (2.10) via pairwise terms (3.15). Clearly, the graph A
constitutes a prior model of explicit spatial configuration of objects. To illustrate, the
graph prior model of our synthetic phantom in Figure 3.1ais given in Figure 3.1b. Note
that the graph A is not limited to unit-weight edges. It can encode any quantity that
accumulates linearly along a path that we would want to minimize.

The vicinity prior as defined by (3.15) is intrinsically submodular. Therefore, the
Expansion Moves algorithm can by applied to minimize segmentation energies using
this prior without resorting to model truncation, unlike [RKKBosg, WSo06, DBog]. The
following theorem establishes the submodularity property of the vicinity prior.

Theorem 3.4.1 (Submodularity of vicinity prior). Given the undirected weighted graph
A =(L, W) and the prior definition V; ;(a,b) = @(a,b), the inequality V; i(a,a) + V; ;(b,c) <
Vijla,c)+V;(ba) holds Vi, j €S forany a,b,c € L.

Proof. By definition, V; j(a,a) = @(a,a) = o. Substituting (3.15) in (2.14), we try to prove
®(b,c) < @(b,a)+(a,c), Va,b,cel. (3.17)

First assume that the graph A = (L, W) is connected, that is Ya,b € L, dm,a b
Let 7, be the shortest path with weight w(m,,) = @(b,a), similarly, let 7, be the
shortest path with weight w(r,.) = @(a,c). The shortest path 7. either passes by
a, that is, 7y, = (b,...,4,...,¢), in which case its weight is w(my,.) = w(my,) + w(rtye),
hence @(b,c) = @(b,a) + @(a,c), or it passes by a vertex g € L not on 7, through
a different path 7y, = (b,...,q,...,¢) with weight w(my4c) < w(rty,) + w(m,,), therefore
@(b,c)<o(b,a)+o(a,c).

If the graph A is unconnected, infinite shortest-path weight might appear on the
right-hand side of (3.17) when either or both b and ¢ are unreachable from a, and the
inequality holds. However, infinite shortest-path weight cannot appear only on the

left-hand side of (3.17), because if b "% g and a ~% ¢ then Ay = (b,...,4a,...,¢) hence

b R ¢ with w(ty,,) = w(my,) + w(r,.) thus completing the proof. O
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3.5 Discussion and conclusions

In this chapter, we have investigated discontinuity-preserving piecewise-constant sub-
modular prior formulations for multiobject segmentation which, unlike the Potts prior
model, incur multiple levels of penalization accounting for multiple types of bound-
aries. Starting from the Potts model, we have devised a simple structure adjacency prior
by introducing a second level of penalization for nonadjacent structures. The submod-
ularity requirement restricts this model to definitions where the penalty of nonadja-
cency is at most twice that of adjacency. We have outlined submodular extensions of
this prior for linear spatial layout models to penalization ratios greater than two by
the introduction of auxiliary labels into the model. A special case of the extended for-
mulation gives rise to a variable penalization scheme accounting for relative structure
distance on the linear spatial layout models. We proposed a graph-based formulation of
this scheme which can be specified easily for complex nonlinear models defined on an
arbitrary number of labels. The vicinity prior, as we name it, is defined as shortest-path
pairwise constraints on a graph model of interobject adjacency relations. It is intrinsi-
cally submodular and incurs || levels of penalization at most, furthermore capturing
the spatial configuration of structures in multiobject segmentation. In Chapter 5, we
give the results of quantitative and qualitative evaluation of Potts, adjacency and vicin-
ity prior-based segmentation on synthetic, simulated and real medical images.

While theoretically interesting, we did not observe any practical advantages of the
extended compared to the basic adjacency prior model in the problem of brain tissue
segmentation. One explanation is that the Expansion Moves algorithm has a worse
bound on local minima (2.13) for the extended model compared to that of the basic
model, in addition to the labeling problem being defined in a higher-dimensional space
in this case. At any rate, further empirical evidence is necessary to reach a conclusion
on the practical merit of the extended adjacency prior model.

Compared to shape prior-based approaches, structural prior models capturing the
spatial configuration of objects are quite robust to shape deformations since relative po-
sitions of objects remain largely stable. Graph models describing such priors are fairly
easy to define at an arbitrary level of detail from simple specifications of spatial rela-
tionships on pairs of objects, and can be generated from existing anatomical models for
medical applications in particular. Interobject adjacency patterns can be learned from
training data or several model variants thus capturing model variabilities in which
case continuous graph-edge weighs may be used, for example, to represent degrees of
adjacency. Pairwise spatial configuration prior formulations learned from data are fre-
quently nonsubmodular, therefore authors resort to model truncation to apply Graph
Cut minimization [WSo6] or use arbitrary-energy minimizers [GRC*08, LLB*11] thus
sacrificing the accuracy of the model in the former and the quality of local minima in
the latter case. Compared to such learning-based approaches, the vicinity prior formu-
lation has the advantage that of all pairings on L x L only those corresponding to struc-
tures that exhibit adjacency in the dataset need to be explicitly specified or learned; on
the remaining pairs, the prior is defined as shortest-path lengths on the prior graph.
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Chapter 4

Reducing Graph Cut complexity

4.1 Introduction

E have seen in Section 2.4 that Graph Cut algorithms usually employ rect-
| angular grid graphs as their data structure. In segmentation applications on
high-resolution 3D medical images where several tens of millions of voxels
are common, such graphs have to be defined on a number of nodes equal
to the number of image voxels and, when 6-connected voxel neighborhoods are used,
a number of edges at least thrice the number of nodes for neighborhood links plus
twice the number of nodes for terminal links. With data structure size touching on
the limit or exceeding the storage capacity of computer memory along with supralin-
ear time complexity of best performing maximum flow algorithms [BKo4], numerical
optimization becomes impractical.

Several approaches have been proposed to address the complexity of Graph Cut and
other graph-based image segmentation approaches on high-resolution input. They can
be broadly classified into two categories; algorithm parallelization and image simplifi-
cation. Parallel versions of some maximum flow algorithms of the Push-relabel variant
discussed in Section 2.3.2 have been devised for shared-memory multiprocessor archi-
tectures [DBo8] and graphics processing units (GPU) [VNo8]. While these methods
attain good speedups, they offer no solutions for the memory footprint problem since
they operate on the entire image domain. Image simplification approaches address this
problem directly observing that the full-resolution pixel representation is often redun-
dant because objects usually comprise many similar pixels that could be grouped. In
[LSGXos], Graph Cut segmentation is first applied to a low-resolution version of the
image and the solution is propagated to the full resolution where Graph Cut segmen-
tation is applied in a narrow band surrounding the projected foreground-background
boundary. In order to accelerate feedback in their interactive Graph Cut segmentation
scheme, [LSTSo4] exploit the fact that Graph Cut algorithms lend themselves equally
well to irregular nongrid graphs and oversegment the image into small regions via the
Watershed algorithm [VSg1]. Graph Cut segmentation is then formulated according to
the watershed regions graph. Starting from a grid partition, [CA10] cluster image pixels

\e)

=)
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4.2. Related work 4. Reducing Graph Cut complexity

by an iterative k-means algorithm augmented by color similarity and shape compact-
ness constraints. The image is then represented by a cluster graph which is partitioned
via the Normalized Cuts approach [SMoo] based on color information only yielding a
coarse oversegmentation of the image. Recent conditional random field (CRF) image
segmentation approaches such as [GRC*08, FVSog, LLB*11] rely on image clustering
not only to reduce memory footprint and accelerate runtime, but also to collect image
features from clusters and their neighborhood.

In order to reduce memory footprint and accelerate Graph Cut optimization, we
cluster image voxels prior to segmentation by an intensity and gradient-adaptive cen-
troidal Voronoi tessellation (CVT). Image partitions produced by this clustering method
strike a good balance between the conflicting criteria of cluster compactness and struc-
ture boundary adherence furthermore allowing to control the tradeoff between them
and helping towards the fine-grained placement of segmentation boundaries. We for-
mulate Graph Cut segmentation according to the graph of CVT clusters so that the re-
sulting labeling energy, defined after (2.10), is independent of the clustering resolution
[KVDP11]. Compared to a direct application of segmentation on voxels, the clustering
step improves overall runtime and memory footprint of the segmentation process up
to an order of magnitude virtually without compromising the segmentation quality.

4.2 Related work

Several image tessellation algorithms have been developed by vision and pattern anal-
ysis communities for image classification and segmentation applications. Of special in-
terest is a class of image partition algorithms which produce a dense oversegmentation
of compact segments of relatively uniform size and shape which adapt to local intensity
edges in the image. These are often called superpixels, a term introduced by [RMo3]
who proposed a Normalized Cuts-based algorithm that recursively bipartitions an im-
age minimizing a cut cost function. Superpixels algorithms with better runtime per-
formance and comparable oversegmentation quality have been introduced since, such
as the TurboPixels algorithm of [LSK*o9] and the Graph Cut superpixels algorithm
of [VBM1o]. The oversegmentation produced by these algorithms achieves a better
balance between the conflicting goals of cluster compactness and structure boundary
adherence than some well-known image partition algorithms which produce segments
of highly variable shape and size, like Watershed [VSg1] and Mean-shift [CMo2] algo-
rithms and the oversegmentation algorithm of [FHo4]. Unsurprisingly, a large segment
of irregular shape is more likely to span more than one object, especially in the absence
of boundary cues in the image due to insufficient contrast or the presence of shadows.
A compact, regular shape, on the other hand, is less likely to cross object boundaries
unless they are too wiggly. Moreover, if such a segment does encompass more than one
object, the overall error rate can be controlled if its size is not allowed to grow arbi-
trarily. Cluster compactness, however, comes at the expense of boundary adherence,
therefore it is desirable to be able to control the tradeoff between the two criteria by an
appropriate parameterization of the algorithm. Later in this chapter, we shall compare
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4. Reducing Graph Cut complexity 4.3. Image clustering by CVT

the CVT clustering algorithm we employ with the aforementioned TurboPixels and
Graph Cut superpixels algorithms, therefore we review them here before presenting
our clustering method in the following section.

The TurboPixels algorithm [LSK*og] is a geometric flow algorithm cast in a banded
level-set curve evolution that iteratively dilates an initial set of uniformly distributed
contour seeds, each corresponding to one superpixel. Superpixel compactness is max-
imized by a term in the curve evolution equation which produces constant motion
in the outward normal direction in image regions of uniform intensity maximizing
the rate of area growth while maintaining the minimum possible isoperimetric ratio.
The smoothness of superpixel boundaries and their alignment with local image edges
are ensured, respectively, by curvature and gradient-based curve attraction terms in
curve evolution equation velocity coefficients. To prevent expanding seeds from over-
lapping, background skeletonization is used to stop boundary evolution when two dis-
tinct dilating seeds are about to collide. We note that upon termination, the algorithm
produces more superpixels than the initial number of seeds, since any remaining unas-
signed large connected regions are treated as superpixels.

Similar to our image segmentation theoretical framework presented in Section 2.2,
[VBM1o] formulate superpixel partition as a pixel labeling problem and optimize with
the multilabel Expansion Moves Graph Cut algorithm [BVZo1]. The image is initially
covered with overlapping square patches of the maximum allowed superpixel size, each
corresponding to a label, and the optimal “stitching" of these patches is sought, in other
words, the optimal assignment of each pixel to only one such patch. In order to align
patch boundaries with intensity edges, the stitching cost at image intensity edges is
made cheaper by using a weighted Potts pairwise model, which, for the assignment of
pairs of neighboring pixels to different patches, incurs a penalty inversely proportional
to their intensity difference. The explicit energy formulation allows for different unary
constraints to be specified in order to encourage different properties of superpixels.
A formulation which was experimentally found to perform best specifies an absolute
intensity difference-based unary term that encourages intensity homogeneity inside
superpixels at the expense of slightly less regular superpixel sizes and shapes. We note
that, instead of the number of superpixels, the maximum superpixel size is considered
to be a more natural parameter for the algorithm which could be chosen by the user
as appropriate for an application. The number of patches is deduced subsequently by
spreading square patches on the image at certain intervals.

4.3 Image clustering by centroidal Voronoi tessellation

Given a grayscale image 7 and n sites ¢; € 7 such that 1 <7 <n, a Voronoi tessellation
partitions the image 7 into n disjoint clusters C; associated with each site c;, where
every cluster C; consists of the set of all voxels in the image which, according to a
distance measure d, are closer to the associated site than to all other sites:

Ci={veZlld(v,c)<d(vc)1<j<nj=i} (4.1)

Unless otherwise mentioned, d is usually the Euclidean distance.
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4.3. Image clustering by CVT 4. Reducing Graph Cut complexity

A Centroidal Voronoi Tessellation (CVT) [DFGgg] has the additional property that
each site ¢; corresponds to the mass centroid of the associated cluster and is defined by:

Y pv)v
_ veC;
=Y o) (4-2)

VECI'

where p(v) is a density function defined by (4.5). Moreover, a CVT minimizes the

following energy function:
n

Fie=) | ) _p@llv=cill*|. (43)

i=1 \veC;

We extend the cluster geometry compactness property expressed by (4.3) by adding
an intensity-space norm as well:

n

Eic)=) | ) p@)(llv-cill+all, - LiP) (4.4)

i=1 \veC;

where I, is the gray-level of the voxel v, I; is the gray-level of the cluster C; defined as
the mean intensity of its voxels, and a is a positive scalar allowing to control the inten-
sity adaptivity of the CVT partition. Intuitively, minimizing (4.4) now corresponds to
maximizing cluster compactness in terms of both geometry and gray-level.

In (4.2) and (4.4), we define p(v) as a linear function of intensity-gradient magni-
tude at voxel v:

p(v) =m|VIL|+b. (4.5)
As we shall see later in Section 4.3.2, the density weighting scheme encourages the
alignment of CVT clusters with local intensity edges in the image and the formation
of relatively small clusters nearby, thus allowing fine-grained placement of subsequent
Graph Cut segmentation boundaries.

In order to understand the properties of CVT image clustering, in Figure 4.1 we
give 2D illustrations of its output for different parameterizations on a 2D binary im-
age of a solid circle shown in Figure 4.1a. Obviously, the intensity gradient magni-
tude |VI,| is zero everywhere in this image except on the circumference of the circle.
We show 4 different CVT clusterings of the circle image, along with the dual graph of
the CVT for each case overlaid on the cluster map, which corresponds to the Delau-
nay triangulation of the tessellation’s centroids. Each case in Figure 4.1 corresponds
to a different setting of parameters a in (4.4), and m and b in (4.5). In Figure 4.1b,
we have a = o, m = o and b = 1, therefore the clustering corresponds to a uniform
geometric partition according to (4.1) with a constant density where cluster centroids
coincide with the barycenters of hexagonal clusters. Figure 4.1c shows an intensity-
adaptive clustering of the image according to (4.4) with @ =5, m =0 and b = 1. Here
clusters have similar sizes and furthermore adapt to the domain of the circle since with
a > o both geometry and intensity space similarities are considered. Figure 4.1d shows
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(c) (d) (e)

Figure 4.1: A binary image of a solid circle (a) and 4 different CVT clusterings corresponding to different
parameter settings. (b) Uniform geometric clustering with no regard to intensity or gradient, (c) intensity-
adaptive clustering with constant density, (d) gradient-adaptive clustering, and (e) intensity and gradient-
adaptive clustering. For each clustering, the dual graph of the CVT is overlaid on the cluster map.

a gradient-adaptive clustering where @« = o, m = 5 and b = 1. With variable density,
cluster sizes are noticeably different, with smaller clusters located near intensity edges,
i.e. the circumference of the circle, and larger ones in constant-intensity areas of the
image. Notice how clusters run over the circumference without regard for intensity
since a = o. Figure 4.1e shows an intensity and gradient-adaptive clustering of the im-
age which produces the desired tessellation; clusters align with the circumference with
smaller clusters forming on either side of it while image areas of constant-intensity are
coarsely partitioned. Note that when variable density is involved, centroids no longer
coincide with barycenters of polygonal clusters.

A number of algorithms exist to construct a CVT minimizing (4.4), including Lloyd’s
relaxation method for k-means clustering [Llo82]. We use a variant of the clustering
algorithm first proposed by [VCo4] which approximates a CVT in a computationally-
efficient manner involving only local queries on voxels located on boundaries of pairs
of clusters. The original algorithm was applied in the context of the uniform coarsen-
ing of triangle meshes, and was later extended to discrete image volumes by [DVS*og].
Results of quantitative analysis and qualitative comparison, reported in Section 4.3.2,
with the TurboPixels and the Graph Cut superpixels algorithms on the Berkeley seg-
mentation dataset [MFTMo1] confirm that the CVT clustering algorithm is substan-
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S Gt ¢ L Gl 21 ¢
u u i u
(a) (b) (c)

Figure 4.2: The three voxel assignment possibilities to a pair of clusters, in gray and blue, during energy
minimization. (a) Initial configuration, (b) C; grows; C; <~ u,v , and (c) C;j grows; C; < u,v.

tially faster than the other two algorithms while generating tessellations of comparable
quality to theirs. Runtime evaluations on medical images, given in Section 5.6, show
that the total runtime of CVT clustering and Graph Cut segmentation is 2—10 times
better than voxel segmentation alone with no compromises in segmentation quality for
most practical purposes. The following section outlines the clustering algorithm.

4.3.1 The clustering algorithm

Here we outline the CVT clustering algorithm of [VCo4] which we use to partition an
image before proceeding with Graph Cut segmentation. Algorithm 4.3.1 gives its listing.
The algorithm starts by randomly selecting n voxels and assigning each to one of
the n projected clusters C; (lines 1—2). It assigns all of the remaining voxels to a special
null cluster representing the fact that these voxels do not yet belong to any cluster (lines
3—4). The algorithm then proceeds to minimize the energy (4.4) iteratively, examining
all pairs of adjacent clusters and updating voxel membership in clusters according to
boundary tests for local minimum-energy configurations (lines 7—-26). If one of the
clusters is the null cluster (lines 10-15), the algorithm assigns all of the voxels in its
boundary set, denoted by dC, which are neighbors with voxels in the nonnull cluster to
the latter without performing any energy calculations, thus growing the nonnull clus-
ter. If both clusters are nonnull, the algorithm checks whichever of the three possible
voxel assignments, illustrated in Figure 4.2, gives the largest decrease in energy and
updates the current clustering configuration accordingly. Note that boundary tests rely
on voxel neighborhood systems as defined in Section 2.2 for voxels in the boundary sets
of clusters. The algorithm’s main loop terminates either when no clusters are modified
during its last iteration or when the maximum number of iterations are executed.

We note, without giving details, that [VCo4] formulates the energy (4.4) so that it
depends only on the assignment of voxels to clusters, therefore cluster energy compu-
tations on line 21 do not involve any explicit calculation of cluster centroids. More-
over, in order to ensure implementation efficiency, cluster energy terms are stored in
computer memory and updated incrementally as the configuration changes so that the
energy computation for a cluster is a constant-time operation. Hence, the asymptotic
time complexity of the clustering algorithm is that of its inner loop: O(Ane), where
A = maxy; ics|dC; N JC}| is the greatest cluster common-boundary length, and e is the
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4.3. Image clustering by CVT

Algorithm 4.3.1: Image clustering via CVT approximation

O 0 N [« NS, |

10
11

12

13
14
15
16
17
18

19
20

21

22

23
24

25
26

input :image Z, number of clusters n, maximum iterations maxIterations

output: image partition C = {C,,...,C,} indexed by &

// Calculate initial clustering
fori—1ton
L C; « Ranpom (v € T)

foreachv eI |AC,veC;
L Cnull —v

// Perform energy minimization

S’ =S U{null}

iterations <o

repeat

modifications < o

foreach {i,j} € §'x S’ | [0C;NJCi| =0

if i =null
foreach u € dC; |Jv € IC;,v e N,
L C] — U

else if j = null

foreach u € dC; [dv € IC;, v € N,
L C,—u

else

foreach {u,v} € dC; xIC;[ve N,
confiniy «—{C; — u,C; < v}
conf; «—{C; < u,v}

confj «—{Cj < u,v}

UprpATECVT (0 fr00)

iterations <« iterations + 1

if ENerGY(conf;) < ENERGY(CONf;,i;) OF
ENERGY(conf;) < ENERGY(CON finjt)

modifications «— modifications+ 1

confyey, «— MINENERGY (Conﬁ-, conf]-)

until modifications = o or iterations = maxIterations

ratio of the number of edges to the number of vertices in the dual graph of the CVT giv-
ing a mean estimate of the number of neighbors to consider per cluster during bound-
ary tests. The convergence of the Algorithm 4.3.1 is guaranteed since the energy is

positive and each modification decreases its value.

55

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0058/these.pdf
© [R. Kéchichian], [2013], INSA de Lyon, tous droits réservés



4.3. Image clustering by CVT 4. Reducing Graph Cut complexity

(a) Recall = 0.590 (b) Recall = 0.641 (c) Recall =0.518 (d) Recall = 0.591
Seg. err. = 1.528 Seg. err. = 1.256 Seg. err. =2.014 Seg. err. = 2.759

Figure 4.3: Qualitative and quantitative comparison of 3o00-cluster tessellations of a Berkeley dataset
grayscale image via the CVT clustering algorithm with (a) m = 1 and (b) m = o, (c) the TurboPixels and,
(d) the Graph Cut superpixels algorithms.

4.3.2 Evaluating the clustering algorithm

In this section, we present the results of quantitative evaluation and qualitative vali-
dation of the CVT clustering algorithm comparing its performance with those of the
TurboPixels algorithm [LSK*og] and the Graph Cut supepixels algorithm [VBM1o].
We shall first define the two performance metrics used in quantitative analysis;
undersegmentation error and boundary recall. Given a CVT-clustering of an image
C ={C,,...,C,} indexed by S and a ground-truth partition of it 7 = {g,,..., gk}, the un-
dersegmentation error for segment g; is defined as the total amount of surface bleeding
induced by clusters which overlap the segment g;, normalized by the segment’s area:

) 1| -lgl

f:C;ﬂgji(D

segerr (C,7) = (4.6)
j 1g;l

It is obvious that the above fraction equals zero when all clusters overlapping the seg-

ment g; fall inside it, that is, no cluster crosses the segment’s boundary. When measur-

ing the undersegmentation error of an algorithm for a given clustering, we average the

above fraction over all segments of the corresponding ground-truth partition and give

the mean error.

Boundary recall is defined straightforwardly as the fraction of ground-truth bound-
ary pixels which fall within a given small distance from at least one cluster boundary.
Since we seek high precision in segmentation boundary placement for medical appli-
cations, we use a distance of one pixel.

In order to stay in line with quantitative results reported in [LSK*og] and [VBM1o0],
we also use the Berkeley segmentation database [MFTMo1] for quantitative evaluation.
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Figure 4.4: Quantitative evaluation of CVT clustering, TurboPixels and Graph Cut superpixels algorithms
on 8o grayscale images from the Berkeley segmentation dataset.

This dataset comprises 300 generic photos of size 321 x 481 or 481 x 321 pixels which
have been presented to human subjects both in color and grayscale modes for manual
segmentation. For evaluation purposes, we select 8o of the 100 grayscale images from
the test subset, and choose one ground-truth segmentation for each such image so that
it does not contain small segments of few pixels. Such small ground-truth segments
can create large outliers and disrupt mean undersegmentation error measurements.

Quantitative evaluations are performed with respect to increasing number of clus-
ters in the range [100, 1000]. In all evaluations, the temperature hyperparameter of the
Graph Cut superpixels algorithm is set to 50, a default recommended by the author’s
implementation, and two iterations of the algorithm are applied. The maximum num-
ber of iterations for the CVT clustering algorithm is set to 1000. In practice, however,
the algorithm terminates much earlier. The intensity-norm weighting coefficient a in
(4.3) is set to one, and the algorithm’s performance is evaluated with respect to two def-
initions of the density function (4.5); m = 1, yielding a gradient and intensity adaptive
clustering, and m = o, yielding an intensity adaptive clustering.

Results of quantitative evaluation for TurboPixels, Graph Cut superpixels and the
CVT clustering algorithms are presented in Figure 4.4. We first give scatter plots of
boundary recall and undersegmentation error measures along with execution time for
all 8o images in the dataset in Figures 4.4a—4.4c, then we give mean performance mea-
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Figure 4.5: Quantitative evaluation of the CVT clustering algorithm on 8o grayscale images from the
Berkeley segmentation dataset with respect to gradient-based and constant density functions.

sures, averaged over all images for a given clustering resolution in Figures 4.4d—4.4f.
From these graphs, we can readily see that the CVT clustering algorithm outperforms
the other two in terms of execution time by a wide margin and that its boundary recall
is mostly higher than those of the other algorithms. Its mean undersegmentation error
is comparable to that of the TurboPixels algorithm and is better than that of the Graph
Cut superpixels algorithm with lower clustering resolutions.

We can see in Figures 4.4a—4.4c that both TurboPixels and Graph Cut superpixels
algorithms produce a variable number of output clusters. As previously mentioned, the
TurboPixels algorithm assigns remaining connected regions to new superpixels upon
termination and the Graph Cut superpixels algorithm deduces the number of super-
pixels from the specified maximum superpixel size, although, in theory, the number of
superpixels could be specified directly as the number of labels to optimize. Mean per-
formance figures for these algorithms in Figures 4.4d—4.4f are therefore reported with
respect to the average number of output clusters for each input resolution. Note that
the CVT clustering algorithm produces the exact number of clusters specified, which is
important in applications where the required cluster budget has to be respected.

We present the results of quantitative evaluation of the CVT clustering algorithm
with respect to different density function definitions separately in Figure 4.5. Here we
can see that the average performance of the gradient-based CVT clustering is slightly
lower, more significantly in terms of mean boundary recall, it also takes longer to ex-
ecute. These results are not surprising, as the dataset on which evaluations are per-
formed features highly textured images with nonuniform illumination and substantial
presence of shadows. The gradient-based density function, while decreasing the size of
clusters, increases their density in textured areas of the image. This reduces the cluster
budget for other image areas, which, in the presence of shadows or with insufficient
contrast, provide poor gradient information for precise cluster placement. This point
is illustrated in Figure 4.6b. In Figure 4.6¢c we see that with a constant density func-
tion, the density of clusters across the image and their relative size are more uniform.
Furthermore, clusters adapt to small local patches of homogeneous intensity better, es-
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(a) (b) Recall = 0.458 (c) Recall = 0.576
Seg. err. = 3.273 Seg. err. = 3.159

Figure 4.6: Qualitative and quantitative evaluation of the CVT clustering algorithm on a textured im-
age from the Berkeley segmentation dataset with respect to (b) gradient-based and (c) constant density
functions. Ground-truth segmentation boundary is given in (a).

(a) (b) Recall = 0.571 (c) Recall = 0.541
Seg. err. = 3.055 Seg. err. = 3.680

Figure 4.7: Qualitative and quantitative evaluation of the CVT clustering algorithm on a nontextured
image from the Berkeley segmentation dataset with respect to (b) gradient-based and (c) constant density
functions. Ground-truth segmentation boundary is given in (a).

pecially near the tail and the right side of the alligator’s trunk, thus retrieving a larger
fraction of the object’s boundaries compared to the gradient-based density CVT in 4.6b.
Measures provided below each image confirm our observations quantitatively.

The gradient-based density function is however useful in retrieving shape detail
with nontextured images of fairly uniform illumination. Importantly, most medical CT
and MR images have such properties. This is illustrated in Figure 4.7b, where, despite
the small cluster budget, 300, the CVT clustering with gradient-based density function
has retrieved more boundaries of the pot’s ornaments than the constant-density CVT
given in Figure 4.7c. Once again, measures provided underneath each image confirm
our observations quantitatively.

A side-by-side qualitative comparison of partitions by the three clustering algo-
rithms for a Berkeley database photo of a human subject is given in Figure 4.3.
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4.4. Segmentation energy redefined 4. Reducing Graph Cut complexity

4.4 Segmentation energy redefined

In Section 2.2, we formulated segmentation as a labeling problem, defined as the as-
signment of a label from a set of m labels L = {/,,...,1,,} representing objects to be
segmented to each of the variables in a set of n variables corresponding to image vox-
els. Henceforward, we shall assume that these variables correspond to the clusters of
a CVT-clustered image C = {C,,...,C,} indexed by S. We shall assume furthermore
that each variable i € § is associated with the corresponding node in the dual graph
of the CVT, G, illustrated in Figure 4.1, which we define in the following. Denote the
boundary (surface, in 3D) of a cluster C; by dC;, and the length (area) of the common
boundary (surface) of a pair of clusters i,j € S by [dC; N JC;|. Therefore, for a pair of
adjacent clusters [dC; N 8Cj| # 0. Define the dual graph of the CVT, G= (S,g), as an
undirected graph on cluster centroids where pairs of adjacent clusters define the set
of edges € = {{i,j} |1,j €S, 10C;NIC;| = o}. Consequently, the neighborhood of a node
i €S is defined as \V; :{j|j€S,3{i,j}eg}Wherei%/\z-.

Now the prior probability distribution of label configurations can be expressed as
an MRF of label configurations with respect to the graph G, and if image-derived likeli-
hood densities can be defined for each label / € L, then the MAP configuration yielding
the best segmentation with respect to user-supplied evidence and constraints can be
found by minimizing the energy function (2.10) with the obvious replacement of the
voxel neighborhood system A; by the cluster neighborhood system A;. We reproduce
the energy function of segmentation here for convenience.

E@O=t) Dil)+) Y Vijllaty). (4.7)

ieS €S jeN;

Recall that the unary term D;(¢;) in (4.7), also called the data term, is a negative log-
likelihood function derived from observed data and measures the cost of assigning a
label to the variable i € S, and that pairwise terms Vi,j(&,fj) encode prior information
on pairwise interactions between labels assigned to pairs of neighboring sites.

In the following sections we redefine unary and pairwise energy terms of (4.7)
to suit the Bayesian labeling of CVT-clustered images. Importantly, this redefinition
maintains the clustering-resolution independence of segmentation energy, which we

establish formally in Section 4.4.3.

4.4.1 Likelihood-based data cost redefined

Recall that the likelihood probability for a variable i € & given the label assignment
¢; is given by the conditional probability Pr(O; = I; | X; = ¢;), where the observation
O constitutes the spatially distinct records of image intensity levels at each variable.
The conditional probability distribution of intensity Pr(I | L =) for every label [ € L is
estimated as Gauss-smoothed and normalized intensity histograms from user-supplied
“seeds", as described in Section 2.2.1. The definition of the term D;(¢;) is slightly differ-
ent however. To facilitate the understanding of different cases, we define it as follows:
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4. Reducing Graph Cut complexity 4.4. Segmentation energy redefined

o} Ank e Cik =¢; (4.8a)

S Ik e Cp k= ¢; (4.8b)

o ~in[ [Pr,16),  BFecvkel (4.8¢)
'{/EC,‘

where h* represents a seed of label type k € L attributed to a voxel v € C; and I, is
the gray-level of voxel v. (4.8a) (respectively (4.8b)) corresponds to the negative log-
likelihood value at maximum (zero) probability and indicates no cost (infinite cost) for
assigning the label k € L (any label but k) to a variable i when there is at least one voxel
in the associated cluster C; marked by a seed of label type k. Recall that conditions
(4.8a) and (4.8b) amount, in practice, to imposing hard constraints on configurations
in the space £, and thus encourage plausible segmentations. (4.8c) accounts for all
other variables for which there is no seed to impose a labeling decision. This is the case
for the vast majority of variables, since the user is expected to introduce only a small
number of seeds with respect to the number of image voxels.

Note that in (4.8¢) the likelihood probability for a variable i € §, which corre-
sponds to a cluster C;, is defined on intensity observations at image voxels v € C; as
Pr(O; =1; | X; = ¢;) = nvec{Pr(IvWi) under the assumption of probabilistic indepen-
dence of such observations. An alternative specification of likelihood probability
Pr(O; = I; | X; = ¢;) = Pr(;|¢;) defined on intensity observations at clusters, the inten-
sities of which could be calculated as the mean intensity of its voxels, would not take
intensity variance within clusters into account and furthermore the resulting energy
would not maintain resolution independence.

4.4.2 Prior redefined

We weight the pairwise prior term V; ;(¢;,¢;) in (4.7) by the length (area, in 3D) of the
common boundary (surface) of adjacent clusters [dC; N 8C]-| so that the sum of pairwise
terms in the energy of some configuration E(¢) for any pair of labels would be equal
to the length (area) of the common boundary (surface) between the corresponding pair
of objects multiplied by a constant, equal to the length of the shortest path between
corresponding nodes in the prior graph of adjacency relations as defined in Section 3.4.

The definition of the pairwise prior thus becomes:
Vi,j(@fj)z|<9Ciﬂacj|@(a,b), Ci=al;=b. (4.9)

Note that clusters sharing longer boundaries (larger surfaces, in 3D) would prefer sim-
ilar labels, or label assignments incurring smaller penalties.

In addition to its theoretical soundness, as shown in the following section, results
of quantitative evaluation presented in Section 5.3 establish the practical advantage
of this weighting scheme compared to the empirical inverse-distance prior weighting
method frequently encountered in MRF-based segmentation literature, for example in
[BFo6] and [CCB*o5].
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4.4. Segmentation energy redefined 4. Reducing Graph Cut complexity

4.4.3 Energy invariance

We have mentioned previously that the definitions of data and prior terms of (4.7)
given in Sections 4.4.1 and 4.4.2 respectively maintain the clustering-resolution inde-
pendence of segmentation energy. This means that the energy of identical label con-
figurations on CVT clusterings of different resolution is invariant. In particular, given
CVT clusterings of different resolution, the energies of segmentations corresponding to
identical MAP solutions ¢* are identical.

The following theorem establishes the energy invariance property with respect to
data energy formulations disregarding hard constraints as defined by (4.8a) and (4.8b).
In the presence of hard constraints, energy invariance no longer holds. The corollary
of the energy invariance theorem shows that when hard constraints are considered, the
energy of a MAP solution ¢* on a higher resolution CVT clustering is greater than the
energy of an identical MAP solution obtained on a clustering of lower resolution.

Theorem 4.4.1 (Energy Invariance). LetC = {C,,...,C,,} indexed by S and C' ={C,, ..., C,}
indexed by S’ be two CV'T clusterings of the image T with m <n, and let T = {M,,..., My}
and T’ = {M{,...,M(Ll} be two segmentations on C and C’ respectively resulting from min-
imizing (4.7) in some labeling space L (= L™ and L" respectively) with respect to label
likelihood-based data and pairwise prior terms defined by (4.8c) and (4.9) respectively.
If T =T’, then E(¢*) = E'(¢"), where ¢* = argmin,, E(().

Figure 4.8: Identical binary segmentations on two CVT clusterings of different resolution.

Proof. We give the proof for |L| = 2, since the generalization to |L| > 2 is straightforward.
As illustrated in Figure 4.8, let T = {M,M} and T’ = {M’,M’}. Let S); index clusters
C; € M and Sy; index clusters C; € M. Define S}, and Sy for T’ similarly.

Let us write the sums of unary energies of ¢* for T and T as follows:

E(C)=t) Dilt)=t) Di€)+t ) Di(t) (4.100)

ieS ieSy i€Sy
E((C)=t) Dilt)=t ) Di(f;)+t ) Dy(ti). (4.10b)
ieS’ ieS],, i€Sy

We shall show that the respective sums on the right hand side of (4.10a) and (4.10b) are
equivalent.
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4. Reducing Graph Cut complexity 4.4. Segmentation energy redefined

If T=T’, then
M=M

therefore
IM| = |M’].

Expanding both sides on voxels

) ) =) )

ieSy veC; i€S,,, veC;

and summing over the negative log-likelihood for every v € C;, we get

Z Z—lnPr(IV 1) = Z Z—lnPr(IV 14;).

ieSy veC; i€S,,, veC;

Rewriting the sum of logarithms on both sides as the logarithm of the product we get

Z—ln]_[Pr(Iv | ¢;) = Z —ln]_[Pr(Iv | 4)

i€eSy veC; €S, veC;

which, by definition (4.8c), gives

) Dilt)= ) Dilty).

Z.ESA\/I [GS"/VI'

Similarly, we can show that

Y Dite)= ) Dil).

i€Sy €Sy,

Hence
E, (") = E{(€). (4.11)

Now we show that the sums of pairwise energies of ¢* for T and T’ are equiva-
lent. As illustrated in Figure 4.8, denote the boundary between the pair of segments
in T and T’ by F and F’ respectively, and let us define the corresponding sets of
cluster pairs falling on either side of each boundary as B = {(i,j) | C; € M, C; € M}
and B’ = {(1,]) | C; e M/, C] S M/}.

If T =T/, then

F=F

therefore
|F| = |F’|

which can also be expressed as the length of the common boundary between the pair
of segments in either segmentation

|OM N IM| = oM’ N oM.
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4.4. Segmentation energy redefined 4. Reducing Graph Cut complexity

Expanding both sides on common boundaries between pairs of clusters on either side
of each segmentation boundary, we get

i,jeB i,jeB’

Let [ € L denote the label of segments M and M’ and l_e_ L that of segments M and M’.
Multiplying both sides by a constant k = V; ;((; =1,¢; =1)/2

1
=Y 19CiNaCIVi(6n6) = = ) 19CNaCiIV; (6. 6y)

i,jeB ljeB’

and expanding both sums on cluster neighborhood, we get

_ZDac NIC;IVi (6, 6;) Z Z|ac NACiIV; (€3, C).

165\4 ]eN lesw/ ]E/\/
JE€Sm j€St)
Hence
E, (") = E(€). (4.12)
From (4.11) and (4.12) we get E(¢*) = E’(¢*), thus completing the proof. O]

Corollary 4.4.1. Given two CVT clusterings C and C’ of the image I indexed by S and S’,
and two identical segmentations on them T and T’ resulting from minimizing (4.7) in some
labeling space with respect to hard constraints and label likelihood-based data expressed by
(4.8) and pairwise prior defined by (4.9). If |C| <|C’|, then E(¢*) < E’(¢*).

Proof. Denote the energy of the optimal labeling ¢* with respect to label likelihood-
based data (4.8c) and pairwise prior(4.9) by E(¢*). Let Sy index the set of variables
subject to hard constraints Sy ={i € S | dhy € C;, k € L}. The energy of ¢* with respect to
label likelihood and hard constraints-based data (4.8) and pairwise prior(4.9) is

E()=E(€)-) —tin| [Pr(1,16) (4.13)

because Vi € Sy, D;(¢;) = o. Obviously, E.(¢*) < E(¢7).
Let |C| = m and |C’| = n. If m < n, then the average cluster size of C is greater than

that of C’ . ;
) ICl> ) ICi
ieS ieS’
Therefore, for Sy and Sj;
Y Icl> ) il
ieSy ieSy
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Expanding both sides on voxels

) ) >) )

ieSy veC; ieS; veC;

and summing over the negative log-likelihood for every v € C;, we get

Z Z—lnPr(IU 1¢;) > Z Z—lnPr(IV 1¢).

ieSyveC; ZESI/_I veC;

Rewriting the sum of logarithms on both sides as the logarithm of the product we get

Z ~In ]_[ Pr(I, | 6;) > z—ln ]_[ Pr(I, | ;).

ieSy veC; ieSy, veC;

From the Energy Invariance theorem we have E(¢*) = E’(¢*). Multiplying both sides of
the above inequality by —t and adding E(£*) to both sides we get

E() - Z ~tIn ]_[ Pr(I, | £;) < E(¢*) - Z ~tn ]_[ Pr(L, | £;)

ieSy veC; ieSy; veC;

hence E.(¢*) < E[(¢*), thus completing the proof. O

4.5 Conclusions

In this chapter, we have addressed the complexity of Graph Cut image segmentation
on high-resolution input, in particular on 3D medical images often comprising several
millions of voxels. We presented an image simplification approach to partition such
an image prior to segmentation by an efficient intensity and gradient-adaptive cen-
troidal Voronoi tessellation (CVT) method. It allows to control the tradeoff between
the conflicting criteria of cluster compactness and structure boundary adherence, and
furthermore produces dense partitions of relatively small clusters near intensity edges
helping towards the fine-grained placement of subsequent segmentation boundaries.

We have redefined the Bayesian labeling problem and the Graph Cut minimization
of its energy according to the graph of CVT clusters. As we have established formally,
our redefinition maintains the clustering-resolution independence of the segmentation
energy, which means that identical image segmentations on CVT partitions of different
resolution have identical energies.

Comparative evaluation results of our CVT image clustering method with closely-
related TurboPixels and Graph Cut superpixels algorithms on the Berkeley segmen-
tation dataset confirmed the advantages of our method in terms of both runtime and
quality of produced partitions. In the next chapter, quantitative and qualitative eval-
uation of our CVT-clustered segmentation approach on synthetic, simulated and real
medical images confirm that, compared to a direct voxel segmentation approach, the
clustering step improves the total runtime and memory footprint of the segmentation
process up to an order of magnitude without compromising the segmentation quality
for most practical purposes.
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Chapter 5

Evaluations and applications

5.1 Introduction

== HIs chapter summarizes the results of quantitative analysis and qualitative
e validation of the vicinity prior-based Graph Cut segmentation approach pro-

| posed in Section 3.4 on synthetic, simulated and real medical CT and MR
images. In all evaluations, comparisons are drawn with the standard Potts
prior-based segmentation and in some cases also with the adjacency prior-based ap-
proach introduced in Section 3.3. Let us first outline the conditions under which eval-
uations presented in this chapter are performed.

For comparison purposes with clustered image segmentation as formulated in Sec-
tion 4.4, we perform some of the evaluations on image pixels (voxels). We apply the
basic framework of Bayesian labeling outlined earlier in Section 2.2 by letting vari-
ables i € S correspond to image pixels (voxels) v € 7 and defining an 8-connected (6-
connected) neighbourhood N; for each variable (respectively in 3D).

In performance measurements with respect to varying number of clusters, we use
19 clustering resolutions, reported in different figures and tables in this chapter as
percentages of the number of image voxels. In all evaluations, we set the coefficients
m and b of the clustering density function (4.5) to m = b = 1, although we have seen
in Section 4.3.2 that in some cases, especially with images having high noise levels,
careful setting of these parameters can improve the clustering aspect and yield higher
boundary recall and lower undersegmentation error.

We minimize the energy (4.7) using the aforementioned three prior models with the
Expansion Moves algorithm discussed in Section 2.4.2. In all evaluations, we set the
algorithm’s maximum number of cycles to 40. In practice, however, the algorithm con-
verges to a local minimum rapidly in 3—5 cycles. We note that all our software imple-
mentations use the multilabel energy optimization library developed by the Computer
Vision Research Group at the University of Western Ontario [BVZo1, KZoy4, BKo4].

Before presenting the results in detail, we shall define performance metrics used in
quantitative analysis in the following section.
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5.2 Performance measures

We measure the quality of segmentation with respect to ground-truth via the widely-
used Dice similarity metric (DSM) [Dicg5]. Denote the set of voxels labeled with [ € L
in the segmented image Z and the ground-truth 7 by S; and T; respectively, the DSM
for label class I € L is defined as:

2SN T

ds]m(I,T)_ S+ (5.1)
It is obvious that the DSM measures the overlap between the segmentation and the
ground-truth. It takes its values in [0, 1] where 1 indicates a perfect match and o no
match at all. In addition to the DSM metric for individual label classes, we employ an
“overall” segmentation quality metric calculated from mean weighted DSM measures
for all labels in L:

iz 7 - Deg S5 T

The two other classification performance metrics we use in quantitative analysis
are sensitivity and specificity, defined respectively as the true-positive and the true-
negative rates for individual label classes [Fawo6]:

1S; N Tl
sens(Z,7) = , .
] (Z,7) T (5-3)
(Y 1senT)=Isin i
spec(Z,7T) = : (5.4)
I IZ] - 1Ty

Similarly to (5.2), overall sensitivity and specificity metrics are defined from mean
weighted sensitivity and specificity measures for all labels in L.

In order to justify the significance of observed improvements brought by the vicin-
ity prior on the aforementioned performance measures, we complement comparison re-
sults on medical case studies with statistical testing according to Welch'’s t test [Welg7],
which is an adaptation of Student’s t-test intended for use with samples having possibly
unequal variances. For two such samples, the test statistic

Hi1— Ha

2 2
af Lo
nl n2

t= (5-5)

approximately follows Student’s t-distribution with degrees of freedom

(2+5)
1’11 l”l2 ( 6)

o o 5

(1) T n2(n,—1)

df =

where y;, 07 and n; are respectively the it sample mean, variance and size. Given t and
df, we calculate a p-value using the t-distribution in a standard fashion and perform
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() (b) (c)

Figure 5.1: (a) Our synthetic phantom with structures numbered. (b) A coronal cross-section of a CT
image showing corresponding structures. (c) The Shepp-Logan phantom.

a one-tailed test of the null hypothesis Hy, : pposts = Hoicinity, where pposts and pyjcinity
are the sample means of some performance measure calculated on two sets of images
segmented with Potts and vicinity priors respectively. Rather than reporting p-values,
we highlight vicinity prior performance measures indicating significant improvements
according to two significance levels @ = 0.05 and o.01.

In order to understand how reliable the segmentation algorithm is with a given
prior at attaining a given overall DSM value d, we evaluate a reliability function of
DSM over the interval [0, 1] on a set of segmented images I. Define the subset of images
attaining an overall DSM level superior to d as I; ={Z € [|dsm;(Z,7)>d}, and let D
be a random variable on [o, 1]. The reliability at DSM value d is given by:

rel(d) = Pr(D > d) = % (5.7)

We evaluate the precision of segmentation boundary placement with an error metric
measuring the Euclidean distance of each point on the surface of a segmented structure
from the surface of the corresponding ground-truth structure. Let Mé and MIT be the
triangle meshes representing isosurfaces of structure volumes labeled by I € L in the
segmented image 7 and the ground-truth 7. We obtain such meshes by applying the
Marching Cubes algorithm to labeled volumes [LC87]. The error at x € Mjg is given by:

err(x) =inf{d(x,p)| Vv € MIT} (5.8)

Later in this chapter, we give the cumulative histogram of errors calculated for all
points on the surface of a given structure. The histogram representation gives a clear
indication of the percentage of segmented surface lying within a given distance from
the true surface, and consequently allows us to understand how precise the segmenta-
tion is in retrieving true structure boundaries.
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5.3 Synthetic phantom and dataset

In this subsection, we present the results of quantitative and qualitative evaluation of
segmentation on a dataset generated from a synthetic phantom we have created for
the very purpose inspired by the Shepp-Logan phantom [SL74] which has been used
in tomographic reconstruction. We have already encountered this phantom in Chap-
ter 3. For convenience, its structure is reproduced in Figure 5.1a. Due to the small
number of structures, their simplistic spatial arrangement and intersection patterns,
the Shepp-Logan phantom, illustrated in Figure 5.1¢, is not well-suited for evaluating
a segmentation approach using prior information on spatial relationships of structures.
The layout of the 10 structures our phantom features mimics the spatial configuration
of some thoracic and abdominal organs in a coronal cross-section of a CT scan. This
can be seen in Figure 5.1b. Roughly speaking, identically-colored phantom structures
4 and 5 correspond to lungs, right and left, g and 10 to pulmonary arteries in each
lung, 6 and 7 to the liver and the spleen and 8 to the cavity of the digestive tract, which
has zero intensity in areas filled by air." Visceral fat, 3, fills the space between these
structures and the whole is covered by a thin envelope of skin, 2, and is placed against
a background of air, 1, which is distinct from the digestive tract cavity, although both
have identical intensities. The intensity levels of the 10 structures are set from mean
intensity values of corresponding structures in a CT image for which ground-truth es-
timates for these structures are available.

Let us outline the conditions under which evaluations discussed in this section are
performed. Graph Cut segmentation with Potts, adjacency and vicinity priors is ap-
plied to the pixels as well as to clusterings of 512 X 512 images generated from the
synthetic phantom by the introduction of additive zero-mean Gaussian noise of vari-
able standard deviation o sweeping the range [0, 0.2] with a step of 0.01. For each noise
level, we generate 40 images clamping intensity values to [0, 1]. Of ranges swept by the
temperature parameter t of the energy (2.10), we report results in the representative
window [o, 1] sampled at 0.05. The reason behind the choice is that in preliminary ex-
periments, where we probed o.005-sampled temperature ranges with an upper bound
much higher than 1, we did not find any subranges where Potts prior segmentation,
as measured by mean overall DSM, outperformed the best result of vicinity prior seg-
mentation over all subranges. Moreover, segmentation quality with both priors usually
deteriorated with temperature settings t > 1. The set of “seeds” used to estimate likeli-
hood densities as well as to impose hard constraints on segmentation in all evaluations
on the synthetic dataset is given in Figure 5.2. The number of seed-marked pixels for
each label is in the range [32,160] and roughly proportional to the size of the corre-
sponding structure, otherwise hard constraints of equal image support for all labels
would create uneven bias of segmentation ease for smaller structures, like g and 10.

In the remaining of this section as well as in Figures 5.2, 5.3, 5.5, 5.4, 5.6 and 5.7
any references to DSM are actually for overall DSM measures as defined by (5.2).

!The digestive tract cavity is not visible in the same plane as the other structures in the coronal cross-
section in Figure 5.1b, however it is visible in the sagittal cross-section of the same image in Figure 5.16¢
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Figure 5.2: Qualitative inspection and comparison of Potts and vicinity prior pixel segmentations on
the synthetic phantom dataset. (top row) The phantom along with “seeds” used in all evaluations on
the dataset and three images generated from the phantom with additive zero-mean Gaussian noise of
0 =0.05, 0.10 and o.20. Columns left and right give best Potts and vicinity prior segmentations at a fixed

temperature and over all temperature settings on all images generated at a given noise level. Refer to color
code in Figure 3.1b.
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1% clustering map

0 = 0.00 0 = 0.05 0 =0.10 0 =0.20
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DSM = 0.9889 DSM = 0.9945 DSM = 0.9921 DSM = 0.9945
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0.20
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DSM = 0.8389 DSM = 0.8810 DSM = 0.8764 DSM = 0.8910

Figure 5.3: Qualitative inspection and comparison of Potts and vicinity prior 10%-clustered image seg-
mentations on the synthetic phantom dataset. For illustration purposes, top row gives cluster maps of
1%-clustered images generated from the phantom with additive zero-mean Gaussian noise of o = 0.00,
0.05, 0.10 and o.20. Columns left and right below give best Potts and vicinity prior 10%-clustered image
segmentations at a fixed temperature and over all temperature settings on all images generated at a given
noise level. Refer to color code in Figure 3.1b.

72

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0058/these.pdf
© [R. Kéchichian], [2013], INSA de Lyon, tous droits réservés



5. Evaluations and applications

5.3. Synthetic phantom and dataset

Mean DSM Noise standard deviation

Mean DSM

0.70

0.65

0.70

Mean DSM map for
clustered segmentation with Potts prior

Mean DSM map for

clustered segmentation with vicinity prior

° pEEEEEEEE R RRRRR 1

o 1
8
6 0.95 0.95
0.14
0.95 0.95
2
o.10 0.85 085
0.08
0.06 0.85 0.85
0.04
0.75 0.75
0.02
o 0.70 0.70
= AMOTFTINONORAO INO N0 00000 HANATFTINONORO INONO 00000
r-v*NNrﬁ“l‘lﬁ\Oﬁog -—4~NN(“ATI’Y~O002
Number of clusters as % of voxel count Number of clusters as % of voxel count
(a) (b)
Segmentation with all priors Segmentation with all priors
at t = 0.4 and 1% clustering at t = 0.4 and 5% clustering
3 = M =
9D 0.90 %)
a a
S o8s N =
3 .. 3
= o080 =
Vicinity °75 Vicinity
adjacency 070 H adjacency
Potts - Potts
T T T T T 065 T T T T T
0 0.020.040.060.080.100.120.140.16 0.18 0.2 0 0.020.040.060.080.100.120.14 0.16 0.18 0.2
Noise standard deviation Noise standard deviation
(d) (e)
Segmentation with all priors Segmentation with all priors
at best t and 1% clustering at best t and 5% clustering
1
095 3
\ = R =
: TG 4 09 2
g ods g
< 51
= o080 =
Vicinity °75 Vicinity
adjacency 070 H adjacency
Potts N Potts
T T T T T 065 T T T T T

0.65

Reliability

0 0.020.040.060.080.100.120.140.16 0.18 0.2

Noise standard deviation
(8)

Reliability of segmentation
with all priors at 1% clustering

1
0.9
0.8
0.7
0.6
05
0.4
0.3
0.2 H

\
i

vicinity =———
adjacency
Potts

B

0.1 [

o
0 0.10.20.30.40.50.60.70.80.9 1

DSM

()

Reliability

0 0.020.040.060.080.100.120.140.16 0.18 0.2

Noise standard deviation

(h)

Reliability of segmentation
with all priors at 5% clustering

1
0.9
0.8
07
0.6

- A
]

0.3

vicinity
adjacency
Potts

—

0.2 M

0.1 M

o
0 0.10.20.30.40.50.60.70.80.9 1

DSM

(k)

Mean DSM map for

clustered segmentation with adjacency prior

0.70

0.65

Reliability

T T T T T T 1T T !

()

Segmentation with all priors
at t = 0.4 and 10% clustering

SN\

vicinity

L adjacenc;

Potts
i

0 0.020.040.060.080.100.120.140.16 0.18 0.2

Noise standard deviation
(f)

Segmentation with all priors
at best t and 10% clustering

\

vicinity

L adjacenc;

Potts
i

0 0.020.040.060.080.100.120.140.16 0.18 0.2

Noise standard deviation
(i)

Reliability of segmentation
with all priors at 10% clustering

1
0.9
0.8
0.7

0.6

o A
'-...\

03
0.2 M

vicinity
adjacency -
Potts -

B

0.1 [

o
0 0.10.20.30.40.50.60.70.80.9 1

DSM

M

Figure 5.4: Quantitative evaluation and comparison of Potts, adjacency and vicinity prior-based clustered
image segmentation on the synthetic phantom dataset.

73

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0058/these.pdf
© [R. Kéchichian], [2013], INSA de Lyon, tous droits réservés



5.3. Synthetic phantom and dataset 5. Evaluations and applications

Mean DSM map for seg. with Potts prior Mean DSM map for seg. with vicinity prior Mean DSM map for seg. with adjacency prior
0.20 0.20 0.20 1
£ o018 0.18 0.18 0.9
‘:é 0.16 0.16 0.16 0.8
-
% 0.14 0.14 0.14 0.7
- 0.12 0.12 0.12 0.6
=
5  ou1o o.10 o.10 0.5
=]
= 0.08 0.08 0.08 0.4
o 006 0.06 0.06 03
2
:2 0.04 0.04 0.04 0.2
0.02 0.02 0.02 0.1
o o = o = o
0.005 0.05 0 0.1 0.20.30.40.50.60.70.80.9 1 0.005 0.05 0 0.10.20.30.40.50607080.9 1 0 0.10.20.30.4050.60.7080.9 1
Temperature Temperature Temperature
(a) (b) (c)
Segmentation with all priors at t = 0.4 Segmentation with all priors at best t Reliability of seg. with all priors
T ——
vicinity vicinity N ‘
1r N adjacency M o adjacency =====-- M T
i D Potts weereees Potts eerreen 09 N
0.5 [+ N 0.95 [~ AN 08 2
= : = RO \ E o
a "n a o SENRN Z
S o8 S o8 2\ s °6
g . S o ) =
3 3 RV AN T 05 i
= o080 = o080 Ret VAR 0 : \\
- 03 1S
075 75 0 vicinity 3
0.70 e 0.70 i : adjacency ====--=
0.1 H PQtts +=oeeee
065 065 o L L L L L L L
0 0.020.040.060.08 0.1 0.120.140.160.18 0.2 0 0.020.040.060.08 0.1 0.120.140.160.18 0.2 0 0.10.20.30.40.50.60.70.80.9 1
Noise standard deviation Noise standard deviation DsSM
(d) (e) (f)

Figure 5.5: Quantitative evaluation and comparison of Potts, adjacency and vicinity prior-based pixel
segmentation on the synthetic phantom dataset.

Figures 5.2 and 5.3 give a qualitative comparison of Potts and vicinity prior-based
Graph Cut segmentation applied to pixels and 10%-clustered images at 3 noise levels.
Comparisons are drawn between best segmentations obtained with either prior on all
images generated at a given noise level for a fixed temperature t = 0.4 and over all
temperature settings. The vicinity prior was defined according to the graph model of
structure adjacency given in Figure 3.1b on page 40. Improvements and consistency in
segmentation results brought by the vicinity prior, which are furthermore confirmed by
DSM measures, are clear on both pixel and cluster segmentations. We can see that the
pair of structures 1 and 8 having identical intensity levels and the pair 7 and 6 having
close intensity levels, with the latter structure having a rather close level to structure 2,
are always segmented correctly as distinct structures when the vicinity prior approach
is able to retrieve them. The approach also shows better ability to retrieve thinner
structures 9, 10 and the envelope 2 in particular.

In Figures 5.4a—5.4¢ and Figures 5.5a—5.5¢, we give mean DSM maps for segmenta-
tion with Potts, adjacency and vicinity priors applied to clusters and pixels respectively.
In the latter group, we calculate mean DSM values for segmentations corresponding to
a particular temperature setting on all images generated for a given noise level. In the
former group, such mean DSM values corresponding to a particular clustering reso-
lution are calculated at temperature settings producing the best segmentation on all
images generated for a given noise level. Compared to the Potts prior approach, im-
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Figure 5.6: Quantitative evaluation and comparison of the robustness of Potts, adjacency and vicinity
prior-based image segmentation to clustering resolution on the synthetic phantom dataset.
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Figure 5.7: Quantitative evaluation and comparison of pairwise prior energy weighting schemes in vicinity
prior segmentation for 3 clustering resolutions.

provements brought on mean DSM by the vicinity prior are remarkable, particularly
for noise levels up o = o.1. Note that the adjacency prior segmentation displays overall
performance patterns similar to its vicinity prior counterpart albeit being less robust
to temperature settings and more sensitive to noise levels higher than o = 0.10 as it can
be observed in Figures 5.4c and 5.5¢ respectively.

Note that the low mean DSM values corresponding to low temperature settings in
Figures 5.5a, 5.5b and 5.5c are due to high regularization by the prior since data terms
do not contribute as much at low temperatures. In particular, the minimum energy
configuration corresponding to the setting t = o is a constant labeling, since V(a,a4) = o
for any a. Recall that the vicinity prior incurs higher regularization than the Potts
prior since its highest penalty in this case study is four times greater than its Potts
counterpart. To observe the difference between the two priors on a finer scale, we give
a magnified view of DSM maps on the low temperature range [0.005,0.05].

In order to understand the effect of additive Gaussian noise parameter o alone, we
give mean DSM comparisons of Potts, adjacency and vicinity prior segmentations on
pixels and 3 clustering resolutions with respect to increasing noise levels at a fixed
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temperature t = 0.4 (Figures 5.4d—5.4f, 5.5d) and at the temperature setting yielding
the best segmentation for all images generated at a given noise level (Figures 5.4g-5.4i,
5.5e). As for reliability curves, they are given in Figure 5.5f for pixel segmentation,
and Figures 5.4j—5.41 for segmentation corresponding to the 3 clustering resolutions.
Quantitative measures in both groups of evaluations confirm that the vicinity prior
segmentation approach outperforms the Potts prior segmentation, and the adjacency
prior approach to a lesser extent.

We also evaluate the robustness of Potts, adjacency and vicinity prior segmentations
to clustering resolution. Results of this evaluation for 3 noise levels are presented in
Figures 5.6a—5.6¢c. We can readily see that with vicinity and adjacency priors, segmen-
tation is quite robust to clustering resolution, even at a noise level as high as 0 = 0.20,
although it attains lower mean DSM values with the latter prior. This means that sim-
ilar segmentation results can be obtained using lower clustering resolutions thus im-
proving both runtime and memory footprint. For this evaluation, we calculate mean
DSM measures for segmentations corresponding to the best temperature setting on all
images generated at given noise level.

Lastly, in Figure 5.7 we present the results of evaluating different weighting schemes
of pairwise prior terms in the segmentation energy (4.7) for 3 clustering resolutions.
Let C; and C; be a pair of adjacent clusters sharing a common boundary (a surface in
3D), and denote their centroids by ¢; and c; respectively. We compare the following
four weighting schemes. 1) Cluster common-boundary length weighting (4.9) where
the pairwise prior is weighted by [0C; N dCj|. As shown by the Energy Invariance the-
orem 4.4.1, this weighting scheme along with the likelihood definition (4.8) maintain
the clustering-resolution independence of segmentation energy. 2) Inverse centroid-
distance weighting frequently encountered in MRF-based segmentation literature, for
example in [BFo6] and [CCB"o5], where the pairwise term is weighted by 1/d(c;, ¢;).
3) Both weighting schemes applied together. 4) No weighting. As it can be seen from
graphs in Figure 5.7, the common-boundary length weighting scheme is a clear winner
independently of the clustering resolution thus confirming the theoretical result.

5.4 Simulated MRI: BrainWeb

In this section we summarize results of quantitative and qualitative validation of Graph
Cut segmentation with Potts and vicinity priors on simulated MRI images. We first
give quantitative evaluation results on the original BrainWeb simulated MRI dataset
[CZK*98] and compare them to 3 tissue-class voxel segmentation results reported by
[GTC11] who use an iterative variant of the Expansion Moves algorithm with the Potts
prior model. Then we present a segmentation case study for a head image from the
second generation BrainWeb simulated MRI dataset [AECo6].

76

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0058/these.pdf
© [R. Kéchichian], [2013], INSA de Lyon, tous droits réservés



5. Evaluations and applications 5.4. Simulated MRI: BrainWeb

W Air Gray matter Fat Skin [ ] Glial matter
M Cerebrospinal fluid Il White matter [ll Muscle Il skull [l Connective tissue

Figure 5.8: A sagittal cross-section of the head and brain phantom of the original BrainWeb simulated
MRI dataset showing artifacts and anatomical inconsistencies.

5.4.1 Original BrainWeb simulated MRI dataset

As mentioned, we perform a comprehensive quantitative evaluation on the original
BrainWeb simulated MRI dataset [CZK*98]. In the creation of this dataset, a semi-
realistic anatomical head and brain phantom was used by an MRI simulator of T1-, T2-
and PD-weighted modalities to generate images according to MR acquisition physics
with 6 noise levels (0%, 1%, 3%, 5%, 7% and 9%) and 3 intensity inhomogeneity levels
(0%, 20% and 40%). For evaluation purposes, we use 18 images from the T1-weighted
modality covering the entire noise and inhomogeneity ranges. Image volumes are of
size 217 % 181 x 217 voxels with isotropic 1 mm voxel size. The phantom itself used to
generate images comprises 10 structure and tissue classes.

It should be noted that the phantom exhibits certain anatomical inconsistencies
and structural artifacts. As shown in Figure 5.8, some structures corresponding to tis-
sue classes “muscle” and “skin” are located inside the skull within the volume of tissue
class “cerebrospinal fluid” and next to “gray matter” tissue. We therefore define our
graph-based anatomical model of structure adjacency, given in Figure 5.10a, as a com-
promise between phantom imprecisions and true anatomical properties. We note that
we use g out of the 10 tissue classes the phantom features, as we merge the tissue class
“glial matter” into the class “gray matter” without affecting anatomical consistency.

In Tables 5.1a, 5.1b and 5.1¢c, we give means and standard deviations for overall
and individual-class DSM, sensitivity and specificity measures calculated on voxel and
cluster segmentations corresponding to best temperature settings for all images in the
dataset. We define the vicinity prior according to the graph model presented in Fig-
ure 5.10a. Reported clustered image segmentation results correspond to a clustering
resolution of 10%. Vicinity prior performance measures indicating statistically signifi-
cant improvements at levels @ = 0.05 and o.01 are highlighted with blue and red respec-
tively. It is easy to observe in these tables that Graph Cut segmentation attains better
average performance levels with the vicinity prior on the original BrainWeb database.
Moreover, it performs better on clusters, compared to its performance on image voxels.
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Figure 5.9: Quantitative comparison of brain tissue segmentation with [GTC11] on the original BrainWeb
simulated MRI dataset.

We compare our results on the original BrainWeb simulated MRI dataset with those
reported by Gorthi et al. in [GTC11] which is the only recent work we are aware of that
evaluates the Expansion Moves algorithm for brain tissue classification using the Potts
prior model. There are, however, some differences between their approach and ours.
Firstly, they use Gaussian likelihood distributions the parameters of which are learned
during an iterative application of the algorithm. Secondly, and more importantly, us-
ing the phantom as a volume mask they retain only brain structures i.e. cerebrospinal
fluid, gray and white matters and discard other head tissues [Gor12]. Thus they formu-
late segmentation as a multilabeling problem with 3 labels plus 1 for the background.
This not only reduces computational complexity, but also makes the segmentation task
easier since other head structures, some of which have intensity levels similar to those
of brain structures such as muscle and gray matter tissues, are eliminated beforehand.
The aforementioned 3 brain structures, on the other hand, exhibit good contrast in im-
ages in general, and have reasonably distinct mean intensity values which further fa-
cilitate the segmentation task. In our evaluation, we use the same subset of the original
BrainWeb dataset as [GTC11] corresponding to the 12 T1-weighted images generated
with inhomogeneity levels 20% and 40% and all noise levels. In Figure 5.9, we com-
pare means and standard deviations for DSM, sensitivity and specificity measures for
the 3 brain structures from full-image vicinity prior segmentations with corresponding
measures in [GTC11]. Unsurprisingly, results we report are not superior. Specialized
approaches are expected to, and indeed should, produce better results. Therefore, the
present comparison should be viewed as an indication of how close a generic approach
can come to a specialized one on this problem instance. Nevertheless, a practical ad-
vantage of our approach is that no manual tissue removal is required to segment the
brain volume.
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5.4. Simulated MRI: BrainWeb

DSM

voxels clusters 10%
Structures Potts vicinity Potts vicinity
Air 0.98+0.01 0.98+0.01 0.98+0.01 0.99+0.00
Cerebrospinal fluid o0.25+0.16 0.65+0.06 0.29+0.11 0.67+0.05
Gray matter 0.79+0.09 0.82+0.08 0.80+0.08 0.85+0.06
White matter 0.86+0.08 0.88+0.07 0.87+0.07 0.89*0.06
Fat 0.89+0.05 0.84+0.08 0.87+0.04 0.85+0.06
Muscle 0.73+0.06 0.74+0.12 0.73%+0.07 0.79+0.09
Skin 0.70+0.07 0.75+0.09 0.69+0.07 0.75*0.07
Skull 0.76£0.07 0.79+0.05 0.76+£0.05 0.80+0.04
Connective tissue 0.71+0.14 0.69+0.21 0.73+£0.12 0.75%0.15
Overall 0.81+0.03 0.85+0.04 0.82+0.03 0.87+0.04

()
Sensitivity

voxels clusters 10%
Structures Potts vicinity Potts vicinity
Air 0.97+0.02 0.97+0.01 0.98+0.01 0.98+0.00
Cerebrospinal fluid 0.28+0.29 0.72+0.11  0.24+0.21 0.72+0.09
Gray matter 0.79+0.13 0.90+0.06 0.81+0.12 0.91+0.03
White matter 0.84+0.10 0.93+0.04 0.87+0.08 0.91+0.05
Fat 0.87+0.05 0.78+0.13 0.86+0.05 0.81+0.09
Muscle 0.85+0.04 0.76+0.18 0.84+0.05 0.81+0.13
Skin 0.85+0.08 0.79+0.16 0.82+0.07 0.84+0.03
Skull 0.90+0.05 0.91+0.05 0.87+0.07 0.88+0.07
Connective tissue 0.74+0.13 0.63+0.26 0.74+0.12 0.71+0.20
Overall 0.82+0.03 0.85+0.04 0.83+£0.03 0.87+0.03

(b)
Specificity

voxels clusters 10%
Structures Potts Vicinity Potts Vicinity
Air 0.73+0.05 0.79+0.08 0.74+0.05 0.80*0.07
Cerebrospinal fluid 0.86+0.04 0.87+0.04 0.87+0.04 0.88+0.04
Gray matter 0.84+0.03 0.86+0.04 0.84+0.02 0.87+0.03
White matter 0.82+0.03 0.85+0.04 0.83+0.03 0.87+0.03
Fat 0.82+0.03 0.86+0.04 0.83+0.03 0.87+0.03
Muscle 0.82+0.03 0.87+0.03 0.83+0.03 0.88+0.03
Skin 0.83+0.04 0.87+0.03 0.84+0.03 0.89+0.03
Skull 0.82+0.03 0.85+0.04 0.83+0.03 0.87+0.03
Connective tissue 0.83+0.03 0.87+0.03 0.84+0.03 0.88+0.03
Overall 0.79+0.04 0.83+0.05 0.80+0.04 0.84+0.05

()

Table 5.1: Means and standard deviations of overall and individual-class DSM, sensitivity and specificity
measures for voxel and 10%-clustered image segmentations of the original BrainWeb dataset with Potts
and vicinity priors. Significant improvements at & = 0.05 and o0.01 are given in blue and red respectively.
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5.4. Simulated MRI: BrainWeb 5. Evaluations and applications

(a)

Figure 5.10: Graph-based anatomical models of structure adjacency relations for (a) the original and (b)
the second generation BrainWeb simulated MR dataset phantoms. Structures corresponding to graph
vertices; AIR: background, CNT: connective tissue, CSF: cerebrospinal fluid, FAT: fat, GM: gray matter,
MRW: bone marrow, MSC: muscle, SKL: skull, SKN: skin, VSL: vessels and WM: white matter.

5.4.2 Second-generation BrainWeb simulated MR image

In this section, we present a segmentation case study of a single image from the second
generation BrainWeb simulated MRI dataset [AECo06]. This dataset features 20 simu-
lated T1-weighted head MR images generated by an MRI simulator at a fixed noise level
of 3% according to subject-specific phantoms. These phantoms are superior to that of
the original BrainWeb dataset in terms of anatomical precision and consistency. They
comprise 12 tissue classes of which we use 10 merging tissue classes “dura mater” and
“around fat” respectively into classes “cerebrospinal fluid” and “muscle” without af-
fecting anatomical consistency. The image we choose for evaluation purposes is that of
subject no. 4. Its volume is of size 217x181 x217 voxels with isotropic 1 mm voxel size.
We apply Potts and vicinity prior-based Graph Cut segmentation to a 10% clustering
and to the voxels of the image at a temperature setting of t = o0.5. The motivation be-
hind keeping the temperature at a “factory default” value of 0.5 in the present as well as
in other single-image case studies in the following sections comes from observing that
in Figures 5.5a and 5.5b Graph Cut segmentation with both priors, and especially with
vicinity prior, is reasonably robust to temperature settings in the range [0.1,0.7] for low
to moderate noise levels [0,0.07]. Seeds, illustrated in Figure 5.12b, are introduced by a
user in the sagittal view of a graphical interface by marking about 300 pixels for every
structure via brush strokes of size 5 x 5 pixels at most distributed evenly in the volume.
The vicinity prior is defined according to the graph model given in Figure 5.10b.
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Figure 5.11: Surface error measurements for (a) Potts and (b) vicinity prior segmentation applied to the
10%-clustered second generation BrainWeb simulated MR image, and (c) vicinity prior segmentation ap-
plied to the voxels of the image.

Tables 5.2a and 5.2b give overall as well as individual-class DSM, sensitivity and
specificity measures for cluster and voxel segmentations with either prior. In these ta-
bles, vicinity prior mean performance measures indicating statistically significant im-
provements at the level @ = 0.01 are highlighted. Qualitative validation and compari-
son of cluster and voxel segmentations is given in Figures 5.12 and 5.13 respectively on
the 3 principal cross-sections of ground-truth, Potts prior and vicinity prior-segmented
images. Disagreements between ground-truth and Potts prior segmentations are encir-
cled. Figure 5.14 gives 3D views of simplified surface meshes generated from differ-
ent brain and head tissue volumes of the vicinity prior-segmented image via the mesh
simplification method outlined in [VCo4]. Runtime and memory footprint figures are
reported in Table 5.3.

Lastly, we give the surface error measurements of the aforementioned Potts and
vicinity prior-based voxel and clustered image segmentations in Figure 5.11 for the
3 brain tissues. Cumulative error histograms presented in these graphs indicate the
fraction of segmented surface lying within a given distance from the true surface. For
example, we can see in Figure 5.14b that the vicinity prior-based segmentation applied
to the 10% clustered image retrieves more than 95% of brain surfaces with an error
of 1 mm, whereas with Potts prior, as shown in Figure 5.14a, the error for the same
percentage is well above 15 mm. Moreover, we notice that surface error measurements
of vicinity prior segmentation applied to image voxels, given in Figure 5.14c¢, are very
close to the aforementioned measurements of clustered image segmentation with the
same prior.

These evaluations confirm that the vicinity prior outperforms the Potts prior in
Graph Cut segmentation on the simulated head MR image, and that with 10-fold re-
duction in image size, we are capable of producing a high-quality result which, for most
practical purposes, is virtually identical to that obtained on the full-resolution image
with two-fold improvements on runtime and more than three-fold savings of memory.
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(a) (b) ()

(d) (e) ()

() (h) (i)

() (k) M
2 [l cerebrospinal fluid [ Gray matter [ White matter ~ Fat [ Muscle [ skin [ skutt [ Vessels [ Marrow

Figure 5.12: Qualitative comparison of Potts and vicinity prior segmentations of the 10%-clustered second
generation BrainWeb simulated MR image. Axial (left column), sagittal (middle column) and coronal
(right column) cross-sections correspond to (a)—(c) simulated MR, (d)—(f) ground-truth, (g)—(i) Potts prior
and (j)—(1) vicinity prior segmented images. Ellipses on (g)—(i) indicate erroneous segmentations with Potts
prior. Figure (b) shows seeds introduced by the user in the corresponding sagittal cross-section.
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(d) (e) (f)

Figure 5.13: Qualitative comparison of Potts and vicinity prior segmentations applied to the voxels of the
second generation BrainWeb simulated MR image. Refer to 5.12d-5.12f for ground-truth images. Axial
(left column), sagittal (middle column) and coronal (right column) cross-sections correspond to (a)—(c)
Potts prior and (d)—(f) vicinity prior segmented images. Ellipses indicate erroneous segmentations. Note
the similarity between these results and those of segmentation applied to the 10%-clustered image given
in 5.12.

(a) (b)

Figure 5.14: 3D views of surface meshes for brain tissues, skin, muscle and skull generated from the
10%-clustered second generation BrainWeb simulated MR image vicinity prior segmentation.
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DSM Sensitivity Specificity
Structures Potts  vicinity = Potts  vicinity = Potts  vicinity
Air 0.991 0.992 0.985 0.987 0.820 0.875
Cerebrospinal fluid 0.756 0.854 0.669 0.816  0.909 0.933
Gray matter 0.896 0.926  0.884 0.938 0.896 0.924
White matter 0.908 0.937 0.866 0.923 0.897 0.926
Fat 0.638 0.639 0.477 0.473  0.901 0.933
Muscle 0.595 0.740 0.782 0.864 0.899 0.928
Skin 0.845 0.906  0.850 0.886  0.901 0.932
Skull 0.806 0.817 0.790 0.792  0.899 0.932
Vessels 0.205 0.445 0.221 0.520 0.897 0.927
Marrow 0.704 0.750 0.874 0.881 0.895 0.927
mean 0.734 0.801 0.740 0.808 0.891 0.924
Overall 0.898 0.927 0.895 0.926  0.863 0.904
()
DSM Sensitivity Specificity
Structures Potts  vicinity = Potts  vicinity = Potts  vicinity
Air 0.986 0.985 0.973 0.978 0.829 0.884
Cerebrospinal fluid 0.758 0.867 0.658 0.833 0.909 0.932
Gray matter 0.910 0.940  0.902 0.945 0.893 0.924
White matter 0.929 0.956 0.889 0.942 0.895 0.925
Fat 0.634 0.630 0.467 0.462  0.901 0.934
Muscle 0.614 0.758 0.788 0.909  0.899 0.927
Skin 0.841 0.911 0.850 0.866 0.901 0.936
Skull 0.772 0.778  0.805 0.809 0.898 0.932
Vessels 0.064 0.484 o0.057 0.612 0.898 0.928
Marrow 0.707 0.766  0.908 0.917 0.894 0.927
mean 0.722 0.807 o0.730 0.827 0.892 0.925
Overall 0.898 0.928  0.895 0.927 0.867 0.909
(b)

Table 5.2: Overall and individual-class performance measures for (a) 10%-clustered and (b) voxel segmen-
tations of the new BrainWeb simulated MR image with Potts and vicinity priors. Significant improvements
at @ = 0.01 are given in red.

Image + size (voxels) ~ Segmentation Prior Clust. (m) Constr. (m) Optim. (m) Mem. (Mb)

voxels Potts . 0.23 9.30 3127.67

BrainWeb subject no. 4 vicinity 0.25 12.46 3053.13
217 X181 X217 o Potts 0.21 5.53 870.85
clusters 10% vicinity 319 0.18 2.83 876.55

Table 5.3: Performance figures for Potts and vicinity prior segmentation applied to the voxels and a 10%
clustering of the second generation BrainWeb simulated MR image presented in Figures 5.13 and 5.12
respectively. Last four columns indicate execution time in minutes for the clustering algorithm, graph
construction, Expansion Moves optimization and the program memory footprint in megabytes. Figures
are recorded on a desktop computer powered by a quad-core processor running at 2.84 GHz with 6 GB of
RAM.
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5.5 Real CT images

5.5.1 Thoracic-abdominal CT image

In this subsection, we present a segmentation case study of in vivo acquired thoracic-
abdominal 3D CT scan realized during the arterial phase in inhaled position. The im-
age comes from the 3D-IRCADb dataset [IRC12] and is accompanied by ground-truth
estimates of 21 anatomical structures, which are basically manual segmentations per-
formed by clinical experts. Of these 21 estimates, we use 16 in our evaluations for the
following two reasons. 1) Some of these estimates do not correspond to any particular
structure but to many, for example the “skin" tissue class (refer to Figures 5.16d-5.16f)
which comprises skin, fat, muscle and visceral fat among other tissues. 2) Some esti-
mates are partial, for example those of intestines for which ground-truth is available
only for the colon part. We think that these 16 structures of different size, shape and
topology are sufficient for evaluation purposes.

The image volume we use is of size 480x370x167 voxels with 0.961x0.961x1.8 mm
voxel size. We segment all visible structures in this image, including those for which
no ground-truth estimate is available, applying Graph Cut segmentation with Potts
and vicinity priors to 5% and 10% clusterings of the image at a temperature setting of
t = o.5. Seeds, illustrated in Figure 5.16a, are introduced by a user in the axial view of
a graphical interface by marking few dozens of pixels from any visible target structure
in approximately every tenth volume slice. The vicinity prior is defined according to
the graph model of 34 structures illustrated in Figure 5.15.

Tables 5.5a and 5.5b give overall as well as individual-class DSM, sensitivity and
specificity measures for both clustered segmentations with either prior. In these tables,
vicinity prior mean performance measures indicating statistically significant improve-
ments at levels @ = 0.05 and o.01 are highlighted with blue and red respectively. Run-
time and memory footprint figures for segmentations on both clustering resolutions are
reported in Table 5.4. Qualitative validation and comparison is given in Figure 5.16 on
the 3 principal cross-sections of ground-truth, vicinity prior and Potts prior-segmented
images for the clustering resolution of 5%. Disagreements between ground-truth and
Potts prior segmentations are encircled. Notice in particular how right and left lungs
are correctly segmented as distinct organs with vicinity prior. Note that, for the rea-
sons mentioned above, ground-truth estimates can be relied on for qualitative inspec-
tion only for structures listed in Table 5.5. Figure 5.17 gives 3D views of simplified
surface meshes generated via the mesh simplification method of [VCo4] from different
structure volumes of the vicinity prior-segmented 5%-clustered image.

Lastly, in Figure 5.18 we give the surface error measurements of the aforementioned
Potts and vicinity prior-based 5% and 10% clustered image segmentations for 13 struc-
tures, excluding adrenal glands and the hyperplastic lesion since they are too small
for their surface error measurements to be interesting. Cumulative error histograms
of structures for each segmentation are broken into 3 graphs to improve readability.
Presented graphs indicate the fraction of segmented surface lying within a given dis-
tance from the true surface. We can see that for reasonably low error levels of o—1 cm,
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vicinity prior segmentation retrieves a considerably larger fraction of structure surfaces
than its Potts prior counterpart suffering much lower maximum error. Also take note of
the similarity between error measurements of vicinity prior segmentations applied to
the 5%-clustered and the 10%-clustered image. Nevertheless, vicinity prior segmenta-
tion produces some noticeable outliers, namely for the volumes of left lung, heart and
spleen. In fact, the CT scanner table in the image is erroneously segmented as part of
the body. Such outliers constitute a small percentage of the labeled volume, and can be
corrected via “corrective” seeds, as mentioned in Section 2.2.1, or by a separate mod-
eling of the scanner table with its own set of labels and pairwise relations with other
structures in the image. Note that surface error measures alone do not constitute an in-
dicator of segmentation quality. Consider, for example, the case of erroneous segmen-
tation of lungs with the Potts prior in Figure 5.16h, where both lungs are segmented as
the left lung. Corresponding error graphs in Figure 5.18a indicate lower surface error
for the right lung whereas its DSM entry in Table 5.5a indicates little agreement with
the corresponding ground-truth estimate. The higher surface error for the left lung in
Figure 5.18a is due to most of the right lung volume being segmented as left lung, and
consequently its surface having larger per-point minimum distance (5.8) with respect
to the left lung ground-truth surface.

Like many Graph Cut approaches, our generic method is prone to shrinking bias
affecting thin elongated structures. Take note of fragmentary abdominal and hepatic
arteries and portal veins in Figure 5.17b. This is due to the sum of pairwise costs along
the boundary of a vessel being higher than the cost of a shortcut across it when likeli-
hood terms do not incur a strong preference for the vessel’s class. A number of solu-
tions have been proposed for this problem in Graph Cut segmentation. [KBos] segment
vessels using surface functionals combining image-gradient flux and image-based Rie-
mannian area, [VKRo8] improve a result with user-supplied connectivity constraints
indicating object regions which need to be connected, [PWL11] propose a Hessian-
based “vesselness” likelihood for segmenting hepatic arteries and portal veins in CT.

We conclude this section recalling that quantitative and qualitative evaluation con-
firm the significant improvements brought by the vicinity prior to this instance of mul-
tiobject segmentation even when it is applied to a coarsely clustered image, and that
doubling the clustering resolution does not improve the quality but comes at the cost
of doubling the runtime and increasing memory footprint by one and a half times.

Image + size (voxels)  Segmentation Prior Clust. (m) Constr. (m) Optim. (m) Mem. (Mb)

Potts 1.65 26.45 2379.13

0,
3D-IRCADDb CT clusters 5% vicinity 1901 1.77 33.39 2357.96
480x370x167 clusters 10% .I)Qtt.s 12.70 2.08 67.56 3883.37
vicinity 2.07 106.68 3731.72

Table 5.4: Performance figures for Potts and vicinity prior segmentation applied to the 5% and 10%-
clustered 3D-IRCADD thoracic-abdominal CT image. Last four columns indicate execution time in min-
utes for the clustering algorithm, graph construction, Expansion Moves optimization and the program
memory footprint in megabytes. Figures are recorded on a desktop computer powered by a quad-core
processor running at 2.84 GHz with 6 GB of RAM.
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Figure 5.15: Graph-based anatomical model of structure adjacency relations for the 3D-IRCADb thoracic-
abdominal CT image. Structures corresponding to graph vertices: 1. air 3. bone 4. heart 5. lung (R) 6.
lung (L) 7. liver 8. spleen 9. gallbladder 10. pancreas 13. kidney (R) 14. kidney (L) 15. adrenal gland (R)
16. adrenal gland (L) 18. hyperplasia 19. aorta 20. vena cava 21. portal vein 22. skin 23. fat 24. visceral
fat 25. muscle 26. marrow 27. renal pyramids (R) 28. renal pyramids (L) 29. digestive tract tissue 30.
digestive tract cavity 31. pulmonary arteries (R) 32. pulmonary arteries (L) 33. bronchi (R) 34. bronchi
(L) 35. intervertebral discs 36. hepatic arteries 37. hepatic vena cava 38. hepatic portal veins.
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() (k) M

Figure 5.16: Qualitative comparison of Potts and vicinity prior segmentations of the 5%-clustered 3D-
IRCADD thoracic-abdominal CT image. Axial (left column), coronal (middle column) and sagittal (right
column) cross-sections correspond to (a)—(c) CT, (d)-(f) ground-truth, (g)—(i) Potts prior and (j)—(1) vicinity
prior segmented images. Refer to the color code in Figure 5.15 or the color legend in Figure 5.17. Ellipses
on (g)-(i) indicate erroneous segmentations with Potts prior. Notice how right and left lungs were correctly
segmented as distinct organs with vicinity prior. Figure (a) shows seeds introduced by the user in the
corresponding axial cross-section.
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(a)
(b)
(©)
Air [] Bone Heart Lung (R) Lung (L) Pancreas
Skin Marrow Aorta Pulmonary arteries (R) Pulmonary arteries (L) Kindey (R)
Fat Intervertebral discs Vena cava Bronchi (R) Bronchi (L) Kidney (L)
Muscle Liver Portal vein Adrenal gland (R) Digest. tract tissue Renal pyramids (R)
Visceral fat Gallbladder Spleen Adrenal gland (L) Digest. tract cavity Renal pyramids (L)

Figure 5.17: 3D views of surface meshes for selected structures generated from the 5%-clustered 3D-
IRCADBD thoracic-abdominal CT image vicinity prior segmentation.
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Figure 5.18: Surface error measurements for (a) Potts and (b) vicinity prior segmentation applied to the
5%-clustered 3D-IRCADD thoracic-abdominal CT image, and (c) vicinity prior segmentation applied to
the 10%-clustered image. For each segmentation, structures are distributed over 3 graphs to improve
readability.
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DSM Sensitivity Specificity
Structures Potts  vicinity = Potts  vicinity = Potts  vicinity
Bone 0.735 0.857 0.581 0.750  0.768 0.964
Heart 0.918 0.988 0.930 0.978 0.725 0.932
Lung (R) 0.096 0.976  0.050 0.953 0.886 0.932
Lung (L) 0.646 0.980 0.930 0.961  0.709 0.931
Liver 0.990 0.989 0.993 0.990 0.635 0.912
Spleen 0.965 0.982  0.958 0.965 0.732 0.934
Gallbladder 0.902 0.923  0.931 0.932  0.743 0.936
Pancreas 0.895 0.959 0.860 0.940  0.742 0.936
Kidney (R) 0.907 0.967 0.831 0.938 0.742 0.936
Kidney (L) 0.880 0.968 0.786 0.939 0.742 0.935

Adrenal gland (R) 0.765 0.743  0.626 0.595  0.743 0.936
Adrenal gland (L)  0.706 0.708  0.546 0.546  0.744 0.936

Hyperplasia 0.645 0.646  0.486 0.486  0.744 0.937
Aorta 0.513 0.950 0.869 0.908  0.741 0.936
Vena Cava 0.894 0.923 0.862 0.894 0.742 0.937
Portal vein 0.537 0.801 0.700 0.708  0.744 0.938
mean 0.750 0.898  0.746 0.750  0.743 0.936
Overall 0.721 0.962  0.743 0.936 0.730 0.931
(a)
DSM Sensitivity Specificity
Structures Potts  vicinity = Potts  vicinity = Potts  vicinity
Bone 0.726 0.859 0.571 0.753  0.755 0.963
Heart 0.891 0.988 0.891 0.978 o0.715 0.931
Lung (R) 0.051 0.974 0.026 0.949 0.876 0.932
Lung (L) 0.637 0.977 0.921 0.955 0.695 0.931
Liver 0.991 0.989  0.994 0.992 0.616 0.910
Spleen 0.964 0.984 0.960 0.970 0.718 0.933
Gallbladder 0.941 0.942 0.961 0.961 0.730 0.935
Pancreas 0.904 0.960 0.853 0.937 0.729 0.935
Kidney (R) 0.870 0.971 0.772 0.946 0.729 0.935
Kidney (L) 0.787 0.972  0.722 0.946 0.730 0.935

Adrenal gland (R) 0.733 0.746  0.583 0.597 0.730 0.935
Adrenal gland (L) 0.634 0.642  0.473 0.473 0.731 0.936

Hyperplasia 0.674 0.677 0.516 0.516 0.731 0.936
Aorta 0.480 0.937 0.845 0.884 0.728 0.936
Vena Cava 0.891 0.918 0.858 0.887 0.728 0.936
Portal vein 0.463 0.794 0.712 0.709  0.730 0.938
mean 0.727 0.896 0.729 0.841 0.729 0.935
Overall 0.706 0.962  0.730 0.935 0.716 0.930

(b)
Table 5.5: Overall and individual-class performance measures for (a) 5%-clustered and (b) 10%-clustered

segmentations of 3D-IRCADb thoracic-abdominal CT image with Potts and vicinity priors. Significant
improvements at @ = 0.05 and o.01 are given in blue and red respectively.
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(a) (b)

Figure 5.19: Images from the Visible Human female dataset. (a) a cryosectional photo at the heart level
and (b) the corresponding CT slice.

5.5.2 Visible Human female CT

In this section, we present a case study of complete skeleton segmentation in a high-
resolution CT image reconstructed from the Visible Human female dataset. Due to
good contrast, CT is frequently the imaging modality of choice for bone structures.

The Visible Human dataset is the result of an initiative by the U.S. National Library
of Medicine (NLM) to create a detailed digital image library of the normal adult male
and female anatomy [SASWg6]. The dataset comprises radiographs, axial and coronal
MR and axial CT images and high-resolution cryosectional photographs all acquired on
donated bodies of two deceased male and female individuals, considered representative
of an evaluated population. All images in both male and female datasets are provided
in the convenient PNG format as 24-bit RGB, for cryosections, and as 16-bit grayscale,
for radiological images. A representative view is given in Figure 5.19.

Since its creation, the Visible Human dataset has generated significant interest in
medical, image processing and computer vision research communities, in particular
for the creation of anthropomorphic phantoms for applications in health physics and
nuclear medicine, such as whole-body and individual-organ radiation dosimetry for
radiation protection, radiotherapy and medical imaging. Computational procedures
of such studies usually involve Monte Carlo simulations to track radiation interactions
and energy deposition in the body. The accuracy of such simulations largely depend
on the precision and the realism of the anatomical representation, especially for inter-
nal organs. Among digital phantoms created from the Visible Human male dataset,
we mention the NURBS-based cardiac-torso (NCAT) phantom [Sego1] and voxel-based
VIP-Man [XCBoo] and Voxel-Man [PHP*o1] phantoms. Me mention that all of these
phantoms were created from cryosectional photographs mostly by manual contouring
and volume editing complemented by color-space classification and thresholding.
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(a) (b) ()

Figure 5.20: (a) An axial cross-section of femoral head and hip bones from the Visible Human male dataset,
bones segmented (b) with and (c) without contrast function weighted Potts prior.

We choose to segment only the complete skeleton from Visible Human female CT
dataset scanned from the fresh cadaver for two reasons. 1) We have not attempted to
segment any other structures because of the lack of ground-truth estimates to validate
any results on soft tissue and internal organs, as the aforementioned phantoms were
created from the Visible Human male dataset. The skeleton, on the other hand, es-
pecially a 3D surface representation of it, is relatively easy to validate by qualitative
inspection. 2) Slices from the Visible Human male CT dataset have variable thickness
and are missing 4 slices from just superior to the knees to superior to the ankles as well
as an one from the abdominal area. The Visible Human female CT dataset, which comes
in 1784 slices, is complete and has uniform 1 mm thickness throughout. Pixel size is
variable though, ranging from 0.488281 mm in the head and neck area to 0.9375 mm
in the torso. We reconstruct a 512 x 512 x 1784 3D volume from 2D slices by rescaling
and padding images and setting voxel size to 0.9375 X% 0.9375 x 1 mm. Given computer
memory resources at our disposal, segmentation applied to the voxels of this image
is an impossible task, therefore, we would also like to demonstrate the possibility of
accomplishing it by clustering the image first.

Naturally, we formulate skeleton segmentation as a binary Bayesian labeling prob-
lem and obtain the best segmentation with respect to user-supplied evidence and con-
straints by minimizing the energy (4.7). The set of labels is L = {o, 1}, where “1" rep-
resents the sought object, that is, all bone structures, and “o" the background, which
corresponds to everything else in the image. For pairwise energy terms, the Potts prior
suffices to ensure the spatial consistency of this instance of binary labeling. We weight
pairwise terms, in addition to the cluster common boundary length mentioned in Sec-
tion 4.4.2, by a smooth contrast function the value of which is inversely proportional
to the mean intensity difference between neighbouring clusters. It is defined as:

fli=1;) = e_%(%) (5.9)

where [; and [; are the intensities of clusters i,j € S calculated from mean intensities
of their voxels respectively and ¢ can be estimated as the sample standard deviation
from the image so that the higher it is, the more the segmentation result is spatially
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regularized and its boundaries are smooth. Its effect is demonstrated in Figure 5.20.
The data terms of the segmentation energy (4.7) follow the definition in (4.8) on the
set of labels L = {o,1}. Thus, the segmentation is cast as a binary optimization prob-
lem which can be solved exactly, as shown in Section 2.4.1, by a single application of a
maximum flow algorithm to find the minimum cut of a directed weighted graph rep-
resenting the energy (4.7). In this case, the graph corresponds to the CVT dual graph
on image clusters G = (S U {s, t}, £) with the addition of two terminal nodes. We follow
the graph construction method presented in Section 2.4.1. For completeness, the edge
weights of this construction are summarized in Table 5.6. To obtain the minimum cut
of the graph thus defined, we use the maximum flow algorithm proposed by [BKo4],
which we discussed in Section 2.3.1. Even though its authors do not give an asymptotic
bound on the running time, the algorithm has been empirically shown to outperform
standard Push-relabel algorithms, generally regarded as the fastest by the combinato-
rial optimization community, on vision tasks formulated as labeling problems.

Two views of surface meshes generated via the mesh simplification method of [VCo4]
from a skeleton segmentation of the 10%-clustered reconstructed 3D CT volume are
given in Figure 5.21. Runtime and memory footprint measures are given in Table 5.7.
Due to insufficient memory resources, we are unable to run our segmentation program
on image voxels to draw comparisons with the clustered variant.

edge weight
_L(If'lj )2 5 }
(i,7) |0C;ndCjle *\ 7 {i,jyeév{jije&
o Hhkeci,k:"l”
(S,i) 0 HthCf,k:”O”
—tIn[Tyec, Pr(Ly | £ =1") Bk e CVkel
o Ik e Cik=“0"
(llt) o0 Hl’lkecl‘,k:’(l)'

—flnl_[vec,. Pr(I, | ¢; =“0") ﬂhk eC;,Vkel

Table 5.6: Definitions of maximum flow graph edge weights for Visible Human female CT skeleton seg-
mentation.

Image + size (voxels) Segmentation Clust. (m) Constr. (m) Optim. (m) Mem. (Mb)

VH CT female voxels — N/A N/A N/A
512X 512 X 1784 clusters 10% 157.93 9.03 21.34 50277.43

Table 5.7: Performance figures for Potts prior segmentation applied to 10%-clustered reconstructed CT
image of the Visible Human female dataset presented in Figure 5.21. Last four columns indicate execution
time in minutes for the clustering algorithm, graph construction, Maximum flow optimization and the
program memory footprint in megabytes. Figures are recorded on a dedicated cluster computer powered
by a 64-core processor running at 2.127 GHz with 128 GB of RAM. Due to insufficient memory resources
we are unable to apply segmentation to the voxels of the image.
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() (b)

Figure 5.21: Lateral ventral and dorsal 3D views of surface mesh generated from Potts prior skeleton
segmentation of a 10%-clustered reconstructed CT image from the Visible Human female dataset.
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5.6 Runtime evaluations

We conclude this chapter with evaluations of image clustering, graph construction
and Expansion Moves numerical optimization runtimes giving also total runtimes and
global program memory footprint figures in terms of the maximum resident size of the
process. The clustering step would obviously be less interesting should the average
time to cluster an image and segment it subsequently be longer than applying seg-
mentation to the image’s voxels directly, regardless of the higher memory footprint. In
Figures 5.22, 5.23 and 5.24 respectively, we give evaluation results for three images of
increasing size; a 512 x 512 pixel 2D image from the synthetic phantom dataset (Sec-
tion 5.3), the 217 x 181 x 217 voxel simulated MR image from the second generation
BrainWeb dataset (Section 5.4.2) and the 480 x 370 x 167 voxel thoracic-abdominal CT
image from the 3D-IRCADD dataset (Section 5.5.1). For Expansion Moves optimization
step, the temperature hyperparameter was set to t = 0.5 for all executions.

We can see from the bar graphs in Figures 5.22, 5.23 and 5.24 that the clustering
runtime is inversely proportional to the clustering resolution, as previously encoun-
tered in Section 4.3.2. To see how this follows from the asymptotic bound on the clus-
tering algorithm runtime we gave in Section 4.3.1, recall that the connectivity of the
dual graph of the CVT is inversely proportional to the clustering resolution, as shown
in Figure 2.2, and that higher cluster densities yield shorter mean cluster common-
boundary length. Graph Cut data structure construction and optimization runtime
and program memory footprint figures are, unsurprisingly, directly proportional to
the clustering resolution. We note that graph construction on relatively high clustering
resolutions (30%-—) takes as long as or longer than graph construction for voxel seg-
mentation because of the longer calculation time involved in evaluating segmentation
energy data terms for image clusters from its constituent voxels (4.8).

Total runtime bar graphs in Figures 5.22, 5.23 and 5.24 confirm that the clustering
step does indeed accelerate the entire segmentation process compared to an applica-
tion on the image’s voxels directly. Thus, for practical clustering resolutions in the
range [5%-10%], two to ten-fold improvements in total runtime can be observed, with
better speedups on higher-resolution images naturally. On such images, up to ten-fold
memory savings can be achieved.
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Figure 5.22: Performance evaluation for segmentation program total and individual step runtimes mea-
sured on a 512 x 512 pixel image from the synthetic phantom dataset generated at o = o.10. Figures are
recorded on a desktop computer powered by a quad-core processor running at 2.84 GHz with 6 GB of
RAM.
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Figure 5.23: Performance evaluation for segmentation program total and individual step runtimes mea-
sured on the 217x 181 x217 voxel second generation BrainWeb simulated MR image. Figures are recorded
on a dedicated cluster computer powered by a 24-core processor running at 2 GHz with 47 GB of RAM.
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Figure 5.24: Performance evaluation for segmentation program total and individual step runtimes mea-
sured on the 480 x 370 x 167 voxel 3D-IRCADb thoracic-abdominal CT image. Figures are recorded on a
dedicated cluster computer powered by a 16-core processor running at 2.659 GHz with 47 GB of RAM.
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5.7 Discussion and conclusions

Qualitative and quantitative evaluation on synthetic, simulated and real medical im-
ages in this chapter confirmed the advantages of our vicinity prior model over the
standard Potts model for Graph Cut multiobject segmentation counting up to a few
dozen of objects. Improvements brought by our model were remarkable particularly
in the correct segmentation of distinct objects having identical intensities, the accurate
placement of structure boundaries and the robustness of segmentation with respect to
clustering resolution. These results are also important from a theoretical perspective.
Recall that the Expansion Moves algorithm’s bound on local minima is equal to twice
the ratio of the largest nonzero pairwise potential to the smallest (2.13). Even though
the Potts model yields the best bound, equal to 2, it was outperformed by the vicinity
prior in all evaluations, which has a worse bound in all cases. For example, the vicinity
prior defined after the graph model in Figure 5.15 gives a bound of 12.

All graph models of adjacency that were used to derive vicinity priors were defined
manually on per-dataset basis according to visible anatomy in the image and the chosen
level of detail. As suggested in Section 3.5, such graph models could also be learned
from training data or several model variants. Increasing the detail of a model simply
amounts to representing new structures, in particular those on finer scales, by intro-
ducing new labels and associated graph vertices, and properly defining their neigh-
bourhood with respect to other vertices. In this way, it would have been possible, for
example, to represent right and left ventricles in brain MRI segmentation case studies.

Evaluations of runtime and memory footprint confirmed that the clustering step
is a worthwhile undertaking, particularly for higher-resolution 3D images. Compared
to the voxel-based approach, it accelerates the total segmentation process and reduces
memory overhead remarkably. The robustness of vicinity prior segmentation with re-
spect to clustering resolution means that in general there are no advantages of applying
segmentation on image voxels or fine-grained partitions, especially that in this case the
labeling space has a higher dimension and potentially many more local minima that
are hard to escape. In practice, the clustering resolution can be set according to a pre-
defined budget based on the storage and processing capacities of computing platforms.
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Chapter 6

Perspectives of future work

6.1 Mission restatement

N this work, we have developed a general Graph Cut-based semiautomatic
P2 multlob]ect image segmentation method principally for use in routine med-
ical applications ranging from moderately difficult tasks involving few ob-
==d| jects in 2D images to fairly complex near whole-body 3D image segmentation
of few dozens of objects for the creation of subject-specific models. We have shown that
the flexible formulation of the method allows its straightforward adaption to a given
application context, which does not necessarily have to be medical. In particular, spa-
tial relationships between objects in a given problem instance can be accounted for by
a simple redefinition of the general graph-based vicinity prior model we propose, and
the segmentation algorithm can be tailored to the runtime requirements of the appli-
cation and the online storage capacities of the computing platform by an efficient and
a controllable clustering of the input image, which can be carried out in offline mode
prior to presenting the image to the user for initializing the segmentation algorithm.
In order to save the reader the tedium of reiterating contributions and closely re-
lated conclusions already addressed in respective sections of chapters where they were
presented and discussed, the current chapter shall point at venues of future research
discussing ideas which have not been touched upon. Given the method described in
this volume and our experimental setup, future research directions encompass near
and long-term objectives.

6.2 Near-term objectives

Such objectives include alternative energy definitions and algorithm implementations
which do not require addressing the theoretical properties of the segmentation method.

Combination of energy models. Due to the flexibility of the energy-based theoretical
framework of Graph Cut segmentation, different likelihood and prior energy models
can be combined. In particular, the vicinity prior can replace the Potts model in some
segmentation methods we discussed while presenting related work, such as [VMo8,
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GTC11] which, respectively, use a shape similarity measure for prior and Gaussian
intensity distributions for likelihood-based data energies. In our work, we have used
intensity histograms in such data energies since our focus was on the prior formulation.
Nevertheless, it is interesting to investigate the influence of more expressive intensity
distribution models, such as Gaussian mixtures, even though they would require an
appropriate learning support.

Algorithm optimization. The clustered-image Graph Cut segmentation process can
be further accelerated by using a parallel implementation of a maximum flow algo-
rithm, typically of the Push-relabel variant [BSos], which would take advantage of
symmetric multiprocessor architectures of modern computers. The parallelization of
the clustering algorithm is more involved however. We have experimented with a rudi-
mentary parallelization of the algorithm on image subvolumes, but the lack of congru-
ence between clusters at the boundaries of adjacent subvolumes created blocky parti-
tion artifacts which were too degrading of the subsequent segmentation quality for the
resulting speedup to be worthwhile.

Interactive segmentation. All results reported in this work relied on an implemen-
tation that executes in batch mode; user-provided seeds are collected, passed to the
segmentation program which performs clustering and Graph Cut optimization writ-
ing the segmentation result onto a disk to be read and displayed by a visualization
front-end. If the segmentation result does not satisfy the user, he supplies corrective
seeds and the program is rerun. This basic mechanism is sufficient for developing
and evaluating methods, but not for an interactive segmentation application integrat-
ing the user gesture and the segmentation algorithm. Maximum flow algorithms of
the Augmenting-paths variant allow a minimum cut to be recomputed efficiently after
modifying relatively few edge capacities [KTos]. This property can be taken advantage
of in designing an interactive application which allows efficient editing of a current
segmentation with the addition or the removal of seeds for correction and refinement
purposes. Naturally, parallel maximum flow algorithms would help attain interactive
execution rates in such applications.

6.3 Long-term objectives

Such objectives require further research and investigations which entail redesigning al-
gorithms, extending prior models and revisiting the method’s theoretical foundations.

Learning prior models. As mentioned previously, adjacency graphs used to derive the
vicinity prior were defined manually, which is acceptable for the purposes of method
evaluation. In practical applications however, automatic definition of graph models is
interesting. For example, such models can be readily generated from existing anatom-
ical phantoms by structure common-surface analysis. In general, automatic definition
relies on a learning support of adjacency patterns from presegmented training data,
possibly also capturing model variabilities and relation uncertainty, especially with
partial data. While graph models of continuous edge weight can represent “degrees" of
adjacency, care should be taken for the prior ultimately defined from learned relations
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to satisfy submodularity in order for Graph Cut optimization to apply. Priors defined
as shortest-path constraints, such as the vicinity prior, do respect this condition, how-
ever there remains to be seen whether the formulation is meaningful for variable or
different types of relations.

Introducing other relations. It is no doubt interesting to define graph models repre-
senting object relationships other than adjacency, such as distance and spatial direc-
tionality relationships of the type “object a is on the left of object b". Distance relation-
ships in particular would require a more precise description of the locations and the
surfaces of sought objects, therefore we think that prior formulations taking account
of object distance would require a learning support as well. Spatial directionality re-
lations rely on orientation information and would call for directed graph structures.
The shortest-path formulation on a directed graph however produces asymmetric pair-
wise constraints which would require revisiting some of the fundamental properties of
the underlying theory of Bayesian labeling, in particular, to express the prior distribu-
tion according to a directed Markov model [Lauo1].

Are vicinity prior-based energies tractable? It is known that the shortest-path length
between two vertices defines a natural distance metric on graphs bringing notions of
convex functions and convex sets to graphs [BCo8]. Therefore, it is alluring to see
whether tools of convex analysis could be applied to energies defined on shortest-path
constraints for designing optimizers having better runtime, capable of finding better
solutions than the Expansion Moves algorithm.
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Structural Priors for Multiobject Semiautomatic Segmentation of Three-dimensional Medical
Images via Clustering and Graph Cut Algorithms

Abstract: We develop a generic Graph Cut-based semiautomatic multiobject image segmen-
tation method principally for use in routine medical applications ranging from tasks involv-
ing few objects in 2D images to fairly complex near whole-body 3D image segmentation. The
flexible formulation of the method allows its straightforward adaption to a given application.
In particular, the graph-based vicinity prior model we propose, defined as shortest-path pairwise
constraints on the object adjacency graph, can be easily reformulated to account for the spatial
relationships between objects in a given problem instance. The segmentation algorithm can be
tailored to the runtime requirements of the application and the online storage capacities of the
computing platform by an efficient and controllable Voronoi tessellation clustering of the input
image which achieves a good balance between cluster compactness and boundary adherence cri-
teria. Qualitative and quantitative comprehensive evaluation and comparison with the standard
Potts model confirm that the vicinity prior model brings significant improvements in the correct
segmentation of distinct objects of identical intensity, the accurate placement of object boundaries
and the robustness of segmentation with respect to clustering resolution. Comparative evalua-
tion of the clustering method with competing ones confirms its benefits in terms of runtime and
quality of produced partitions. Importantly, compared to voxel segmentation, the clustering step
improves both overall runtime and memory footprint of the segmentation process up to an order
of magnitude virtually without compromising the segmentation quality.

Keywords: image segmentation, image clustering, Markov model, spatial prior, Graph Cut

A Priori de Structure pour la Segmentation Multi-objet d’Images Médicales 3D par Partition
d’Images et Coupure de Graphes

Résumé: Nous développons une méthode générique semi-automatique multi-objet de segmen-
tation d’image par coupure de graphe visant les usages médicaux de routine, allant des taches
impliquant quelques objets dans des images 2D, a quelques dizaines dans celles 3D quasi corps
entier. La formulation souple de la méthode permet son adaptation simple a une application
donnée. En particulier, le modele d’a priori de proximité que nous proposons, défini a partir des
contraintes de paires du plus court chemin sur le graphe d’adjacence des objets, peut facilement
étre adapté pour tenir compte des relations spatiales entre les objets ciblés dans un probleme
donné. L'algorithme de segmentation peut étre adapté aux besoins de I'application en termes de
temps d’exécution et de capacité de stockage a I'aide d’une partition de I'image a segmenter par
une tesselation de Voronoi efficace et controlable, établissant un bon équilibre entre la compacité
des régions et le respect des frontieres des objets. Des évaluations et comparaisons qualitatives
et quantitatives avec le modele de Potts standard confirment que notre modele d’a priori apporte
des améliorations significatives dans la segmentation d’objets distincts d’intensités similaires,
dans le positionnement précis des frontieres des objets ainsi que dans la robustesse de segmenta-
tion par rapport a la résolution de partition. L’évaluation comparative de la méthode de partition
avec ses concurrentes confirme ses avantages en termes de temps d’exécution et de qualité des
partitions produites. Par comparaison avec I'approche appliquée directement sur les voxels de
I'image, I’étape de partition améliore a la fois le temps d’exécution global et 'empreinte mémoire
du processus de segmentation jusqu’a un ordre de grandeur, sans compromettre la qualité de la
segmentation en pratique.
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