D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Physical Review Letters, vol.48, issue.22, p.1559, 1982.
DOI : 10.1103/PhysRevLett.48.1559

M. Levin and X. Wen, Detecting Topological Order in a Ground State Wave Function, Physical Review Letters, vol.96, issue.11, p.110405, 2006.
DOI : 10.1103/PhysRevLett.96.110405

A. Kitaev and J. Preskill, Topological Entanglement Entropy, Physical Review Letters, vol.96, issue.11, p.110404, 2006.
DOI : 10.1103/PhysRevLett.96.110404

P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, Journal of Statistical Mechanics: Theory and Experiment, vol.2004, issue.06, p.6002, 2004.
DOI : 10.1088/1742-5468/2004/06/P06002

L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Reviews of Modern Physics, vol.80, issue.2, p.517, 2008.
DOI : 10.1103/RevModPhys.80.517

M. Srednicki, Entropy and area, Physical Review Letters, vol.71, issue.5, p.666, 1993.
DOI : 10.1103/PhysRevLett.71.666

M. Haque, O. Zozulya, and K. Schoutens, Entanglement Entropy in Fermionic Laughlin States, Entanglement entropy in fermionic Laughlin states, p.60401, 2007.
DOI : 10.1103/PhysRevLett.98.060401

A. M. Lauchli, E. J. Bergholtz, and M. Haque, Entanglement scaling of fractional quantum Hall states through geometric deformations, New Journal of Physics, vol.12, issue.7, p.75004, 2010.
DOI : 10.1088/1367-2630/12/7/075004

H. Li and F. D. Haldane, Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States, Physical Review Letters, vol.101, issue.1, p.10504, 2008.
DOI : 10.1103/PhysRevLett.101.010504

N. Regnault, B. A. Bernevig, and F. D. Haldane, Topological Entanglement and Clustering of Jain Hierarchy States, Physical Review Letters, vol.103, issue.1, p.16801, 2009.
DOI : 10.1103/PhysRevLett.103.016801

URL : https://hal.archives-ouvertes.fr/hal-00522237

O. S. Zozulya, M. Haque, and N. Regnault, Entanglement signatures of quantum Hall phase transitions, Physical Review B, vol.79, issue.4, p.45409, 2009.
DOI : 10.1103/PhysRevB.79.045409

URL : https://hal.archives-ouvertes.fr/hal-00433215

A. M. Läuchli, E. J. Bergholtz, J. Suorsa, and M. Haque, Disentangling Entanglement Spectra of Fractional Quantum Hall States on Torus Geometries, Physical Review Letters, vol.104, issue.15, p.156404, 2010.
DOI : 10.1103/PhysRevLett.104.156404

R. Thomale, A. Sterdyniak, N. Regnault, and B. A. Bernevig, Entanglement Gap and a New Principle of Adiabatic Continuity, Physical Review Letters, vol.104, issue.18, p.180502, 2010.
DOI : 10.1103/PhysRevLett.104.180502

URL : https://hal.archives-ouvertes.fr/hal-00522211

R. Thomale, B. Estienne, N. Regnault, and B. A. Bernevig, Decomposition of fractional quantum Hall model states: Product rule symmetries and approximations, Physical Review B, vol.84, issue.4, p.45127, 2011.
DOI : 10.1103/PhysRevB.84.045127

M. Hermanns, A. Chandran, N. Regnault, and B. A. Bernevig, fractional quantum Hall states, Physical Review B, vol.84, issue.12, p.121309, 2011.
DOI : 10.1103/PhysRevB.84.121309

A. Chandran, M. Hermanns, N. Regnault, and B. A. Bernevig, Bulk-edge correspondence in entanglement spectra, Physical Review B, vol.84, issue.20, p.205136, 2011.
DOI : 10.1103/PhysRevB.84.205136

URL : https://hal.archives-ouvertes.fr/hal-00648638

E. Ardonne and N. Regnault, Structure of spinful quantum Hall states: A squeezing perspective, Physical Review B, vol.84, issue.20, p.205134, 2011.
DOI : 10.1103/PhysRevB.84.205134

URL : https://hal.archives-ouvertes.fr/hal-00648645

]. A. Sterdyniak, B. A. Bernevig, N. Regnault, and F. D. Haldane, The hierarchical structure in the orbital entanglement spectrum of fractional quantum Hall systems, New Journal of Physics, vol.13, issue.10, p.105001, 2011.
DOI : 10.1088/1367-2630/13/10/105001

Z. Liu, E. J. Bergholtz, H. Fan, and A. M. Läuchli, Edge-mode combinations in the entanglement spectra of non-Abelian fractional quantum Hall states on the torus, Physical Review B, vol.85, issue.4, p.45119, 2012.
DOI : 10.1103/PhysRevB.85.045119

A. Sterdyniak, A. Chandran, N. Regnault, B. A. Bernevig, and P. Bonderson, Real-space entanglement spectrum of quantum Hall states, Physical Review B, vol.85, issue.12, p.125308, 2012.
DOI : 10.1103/PhysRevB.85.125308

URL : https://hal.archives-ouvertes.fr/hal-00761574

J. Dubail, N. Read, and E. H. Rezayi, Real-space entanglement spectrum of quantum Hall systems, Physical Review B, vol.85, issue.11, p.115321, 2012.
DOI : 10.1103/PhysRevB.85.115321

I. D. Rodriguez, S. H. Simon, and J. K. Slingerland, Evaluation of Ranks of Real Space and Particle Entanglement Spectra for Large Systems, Physical Review Letters, vol.108, issue.25, p.256806, 2012.
DOI : 10.1103/PhysRevLett.108.256806

V. Alba, M. Haque, and A. M. Läuchli, Boundary-Locality and Perturbative Structure of Entanglement Spectra in Gapped Systems, Physical Review Letters, vol.108, issue.22, p.227201, 2012.
DOI : 10.1103/PhysRevLett.108.227201

P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Physical Review A, vol.78, issue.3, p.32329, 2008.
DOI : 10.1103/PhysRevA.78.032329

F. Pollmann and J. E. Moore, Entanglement spectra of critical and near-critical systems in one dimension, New Journal of Physics, vol.12, issue.2, p.25006, 2010.
DOI : 10.1088/1367-2630/12/2/025006

F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Entanglement spectrum of a topological phase in one dimension, Physical Review B, vol.81, issue.6, p.64439, 2010.
DOI : 10.1103/PhysRevB.81.064439

R. Thomale, D. P. Arovas, and B. A. Bernevig, Nonlocal Order in Gapless Systems: Entanglement Spectrum in Spin Chains, Physical Review Letters, vol.105, issue.11, p.116805, 2010.
DOI : 10.1103/PhysRevLett.105.116805

A. M. Läuchli and J. Schliemann, Entanglement spectra of coupled s = 1

H. Yao and X. Qi, Entanglement Entropy and Entanglement Spectrum of the Kitaev Model, Physical Review Letters, vol.105, issue.8, p.80501, 2010.
DOI : 10.1103/PhysRevLett.105.080501

J. I. Cirac, D. Poilblanc, N. Schuch, and F. Verstraete, Entanglement spectrum and boundary theories with projected entangled-pair states, Physical Review B, vol.83, issue.24, p.245134, 2011.
DOI : 10.1103/PhysRevB.83.245134

URL : https://hal.archives-ouvertes.fr/hal-00578027

I. Peschel and M. Chung, On the relation between entanglement and subsystem Hamiltonians, EPL (Europhysics Letters), vol.96, issue.5, p.50006, 2011.
DOI : 10.1209/0295-5075/96/50006

C. Huang and F. Lin, Topological order and degenerate singular value spectrum in two-dimensional dimerized quantum Heisenberg model, Physical Review B, vol.84, issue.12, p.125110, 2011.
DOI : 10.1103/PhysRevB.84.125110

J. Lou, S. Tanaka, H. Katsura, and N. Kawashima, Entanglement spectra of the two-dimensional Affleck-Kennedy-Lieb-Tasaki model: Correspondence between the valence-bond-solid state and conformal field theory, Physical Review B, vol.84, issue.24, p.245128, 2011.
DOI : 10.1103/PhysRevB.84.245128

J. Schliemann and A. M. Lauchli, Entanglement spectra of Heisenberg ladders of higher spin, Journal of Statistical Mechanics: Theory and Experiment, vol.2012, issue.11, p.11021, 2012.
DOI : 10.1088/1742-5468/2012/11/P11021

L. Fidkowski, Entanglement Spectrum of Topological Insulators and Superconductors, Physical Review Letters, vol.104, issue.13, p.130502, 2010.
DOI : 10.1103/PhysRevLett.104.130502

E. Prodan, T. L. Hughes, and B. A. Bernevig, Entanglement Spectrum of a Disordered Topological Chern Insulator, Physical Review Letters, vol.105, issue.11, p.115501, 2010.
DOI : 10.1103/PhysRevLett.105.115501

A. M. Turner, Y. Zhang, and A. Vishwanath, Entanglement and inversion symmetry in topological insulators, Physical Review B, vol.82, issue.24, p.241102, 2010.
DOI : 10.1103/PhysRevB.82.241102

Z. Liu, H. Guo, V. Vedral, and H. Fan, Entanglement spectrum: Identification of the transition from vortex-liquid to vortex-lattice state in a weakly interacting rotating Bose-Einstein condensate, Physical Review A, vol.83, issue.1, p.13620, 2011.
DOI : 10.1103/PhysRevA.83.013620

J. Dubail and N. Read, Entanglement Spectra of Complex Paired Superfluids, Physical Review Letters, vol.107, issue.15, p.157001, 2011.
DOI : 10.1103/PhysRevLett.107.157001

R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Physical Review Letters, vol.50, issue.18, p.1395, 1983.
DOI : 10.1103/PhysRevLett.50.1395

I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets, Physical Review Letters, vol.59, issue.7, p.799, 1987.
DOI : 10.1103/PhysRevLett.59.799

I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Valence bond ground states in isotropic quantum antiferromagnets, Communications in Mathematical Physics, vol.17, issue.3, p.477, 1988.
DOI : 10.1007/BF01218021

F. D. Haldane, Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis N??el State, Physical Review Letters, vol.50, issue.15, p.1153, 1983.
DOI : 10.1103/PhysRevLett.50.1153

S. R. White, Density matrix formulation for quantum renormalization groups, Physical Review Letters, vol.69, issue.19, p.2863, 1992.
DOI : 10.1103/PhysRevLett.69.2863

M. Fannes, B. Nachtergaele, and R. Werner, Finitely correlated states on quantum spin chains, Communications in mathematical physics, p.443, 1992.

F. Verstraete, J. I. Cirac, J. I. Latorre, E. Rico, and M. M. Wolf, Renormalization-Group Transformations on Quantum States, Physical Review Letters, vol.94, issue.14, p.140601, 2005.
DOI : 10.1103/PhysRevLett.94.140601

URL : http://arxiv.org/abs/quant-ph/0410227

J. I. Cirac and G. Sierra, Infinite matrix product states, conformal field theory, and the Haldane-Shastry model, Physical Review B, vol.81, issue.10, p.104431, 2010.
DOI : 10.1103/PhysRevB.81.104431

A. E. Nielsen, J. I. Cirac, and G. Sierra, Quantum spin hamiltonians for the su (2) k wzw model, Journal of Statistical Mechanics: Theory and Experiment, p.11014, 2011.

E. H. Rezayi and F. D. Haldane, Laughlin state on stretched and squeezed cylinders and edge excitations in the quantum Hall effect, Physical Review B, vol.50, issue.23, p.17199, 1994.
DOI : 10.1103/PhysRevB.50.17199

F. D. Haldane and E. H. Rezayi, Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect, Physical Review B, vol.31, issue.4, p.2529, 1985.
DOI : 10.1103/PhysRevB.31.2529

F. D. Haldane, Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States, Physical Review Letters, vol.51, issue.7, p.605, 1983.
DOI : 10.1103/PhysRevLett.51.605

G. Moore and N. Read, Nonabelions in the fractional quantum hall effect, Nuclear Physics B, vol.360, issue.2-3, p.362, 1991.
DOI : 10.1016/0550-3213(91)90407-O

B. A. Bernevig and N. Regnault, Anatomy of Abelian and Non-Abelian Fractional Quantum Hall States, Physical Review Letters, vol.103, issue.20, p.206801, 2009.
DOI : 10.1103/PhysRevLett.103.206801

URL : https://hal.archives-ouvertes.fr/hal-00522234

Z. Papi´cpapi´c, B. A. Bernevig, and N. Regnault, Topological Entanglement in Abelian and Non-Abelian Excitation Eigenstates, Physical Review Letters, vol.106, issue.5, p.56801, 2011.
DOI : 10.1103/PhysRevLett.106.056801

M. P. Zaletel and R. S. Mong, Exact matrix product states for quantum Hall wave functions, Physical Review B, vol.86, issue.24, p.245305, 2012.
DOI : 10.1103/PhysRevB.86.245305

URL : http://arxiv.org/abs/1208.4862

B. Estienne, Z. Papi´cpapi´c, N. Regnault, and B. A. Bernevig, Matrix product states for trial quantum Hall states, Matrix product states for trial quantum Hall states, p.161112, 2013.
DOI : 10.1103/PhysRevB.87.161112

URL : https://hal.archives-ouvertes.fr/hal-00967686

O. S. Zozulya, M. Haque, K. Schoutens, and E. H. Rezayi, Bipartite entanglement entropy in fractional quantum Hall states, Bipartite entanglement entropy in fractional quantum Hall states, p.125310, 2007.
DOI : 10.1103/PhysRevB.76.125310

A. Sterdyniak, N. Regnault, and B. A. Bernevig, Extracting Excitations from Model State Entanglement, Physical Review Letters, vol.106, issue.10, p.100405, 2011.
DOI : 10.1103/PhysRevLett.106.100405

URL : https://hal.archives-ouvertes.fr/hal-00648621

C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Physical Review Letters, vol.95, issue.22, p.226801, 2005.
DOI : 10.1103/PhysRevLett.95.226801

B. A. Bernevig, T. L. Hughes, and S. Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science, vol.314, issue.5806, pp.314-1757, 2006.
DOI : 10.1126/science.1133734

L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Physical Review B, vol.76, issue.4, p.45302, 2007.
DOI : 10.1103/PhysRevB.76.045302

URL : http://arxiv.org/abs/cond-mat/0611341

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor et al., A topological Dirac insulator in a quantum spin Hall phase, Nature, vol.70, issue.7190, p.970, 2008.
DOI : 10.1038/nature06843

F. D. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly", Physical Review Letters, vol.61, issue.18, p.2015, 1988.
DOI : 10.1103/PhysRevLett.61.2015

D. J. Thouless, M. Kohmoto, and M. P. , Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters, vol.49, issue.6, p.405, 1982.
DOI : 10.1103/PhysRevLett.49.405

E. Tang, J. Mei, and X. Wen, High-Temperature Fractional Quantum Hall States, High-temperature fractional quantum Hall states, p.236802, 2011.
DOI : 10.1103/PhysRevLett.106.236802

URL : http://arxiv.org/abs/1012.2930

D. N. Sheng, Z. Gu, K. Sun, and L. Sheng, Fractional quantum Hall effect in the absence of Landau levels, Fractional quantum HAll effect in the absence of Landau levels, p.389, 2011.
DOI : 10.1103/PhysRevLett.103.046811

T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional Quantum Hall States at Zero Magnetic Field, Physical Review Letters, vol.106, issue.23, p.236804, 2011.
DOI : 10.1103/PhysRevLett.106.236804

URL : http://arxiv.org/abs/1012.4723

S. A. Parameswaran, R. Roy, and S. L. Sondhi, algebra, Physical Review B, vol.85, issue.24, p.241308, 2012.
DOI : 10.1103/PhysRevB.85.241308

M. O. Goerbig, From fractional Chern insulators to a fractional quantum spin hall effect, The European Physical Journal B, vol.96, issue.1, p.15, 2012.
DOI : 10.1140/epjb/e2011-20857-6

B. A. Bernevig and N. Regnault, Emergent many-body translational symmetries of Abelian and non-Abelian fractionally filled topological insulators, Physical Review B, vol.85, issue.7, p.75128, 2012.
DOI : 10.1103/PhysRevB.85.075128

URL : https://hal.archives-ouvertes.fr/hal-00703410

Y. Wu, B. A. Bernevig, and N. Regnault, Zoology of fractional Chern insulators, Physical Review B, vol.85, issue.7, p.75116, 2012.
DOI : 10.1103/PhysRevB.85.075116

URL : https://hal.archives-ouvertes.fr/hal-00703413

X. Qi, Generic Wave-Function Description of Fractional Quantum Anomalous Hall States and Fractional Topological Insulators, Physical Review Letters, vol.107, issue.12, p.126803, 2011.
DOI : 10.1103/PhysRevLett.107.126803

Y. Wu, N. Regnault, and B. A. Bernevig, Gauge-fixed Wannier wave functions for fractional topological insulators, Physical Review B, vol.86, issue.8, p.85129, 2012.
DOI : 10.1103/PhysRevB.86.085129

URL : https://hal.archives-ouvertes.fr/hal-00761509

B. A. Bernevig and N. Regnault, Thin-Torus Limit of Fractional Topological Insulators, ArXiv e-prints, pp.1204-5682, 2012.

Y. Wang, H. Yao, C. Gong, and D. N. Sheng, Fractional quantum Hall effect in topological flat bands with Chern number two, Physical Review B, vol.86, issue.20, p.201101, 2012.
DOI : 10.1103/PhysRevB.86.201101

S. Yang, Z. Gu, K. Sun, and S. Sarma, Topological flat band models with arbitrary Chern numbers, Physical Review B, vol.86, issue.24, p.241112, 2012.
DOI : 10.1103/PhysRevB.86.241112

Z. Liu, E. J. Bergholtz, H. Fan, and A. M. Läuchli, Fractional Chern Insulators in Topological Flat Bands with Higher Chern Number, Physical Review Letters, vol.109, issue.18, p.186805, 2012.
DOI : 10.1103/PhysRevLett.109.186805

A. Sterdyniak, C. Repellin, B. A. Bernevig, and N. Regnault, Series of Abelian and Non-Abelian States in C¿1 Fractional Chern Insulators, pp.1207-6385, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00967682

Y. Wu, N. Regnault, and B. A. Bernevig, Bloch Model Wave Functions and Pseudopotentials for All Fractional Chern Insulators, Physical Review Letters, vol.110, issue.10, p.106802, 2013.
DOI : 10.1103/PhysRevLett.110.106802

URL : https://hal.archives-ouvertes.fr/hal-00967683