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administrative qu’elles m’ont apporté tout au long de ces trois années et pour leur grande

gentillesse.
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1

INTRODUCTION

Research on activity recognition is receiving an increasing attention from the scientific com-

munity today. It is one of the most challenging problem in computer vision and artificial intel-

ligence research. The main goal of the current activity recognition research consists in recog-

nizing and understanding accurate short-term action and long-term complex activities. The ad-

vances in low-level processing in video data such as motion detection, object classification and

tracking have enabled to focus on higher level analysis of activity recognition [Vu et al., 2003a],

[Ryoo and Aggarwal, 2009], [Brendel et al., 2011] and [Kwak et al., 2011]. Recent work focus

in the management of the uncertainty to deal with the robustness required by the recent appli-

cations [Tran and Davis, 2008], [Ryoo and Aggarwal, 2010], [Lavee et al., 2010a]. There are

several interesting application areas for activity recognition systems, mostly video surveillance

and health care monitoring. Automatic surveillance systems in public places like airports and

subways stations require detection of abnormal and suspicious activities. Health care monitor-

ing consists in monitoring the activities of a person or elderly through cameras to automatically

detect early symptoms of certain diseases. It is well known that even subtle changes in the

behavior of the elderly can give important signs of progression of certain diseases. Disturbed

sleeping patterns could be caused, for example, by heart failure and chronic disease. Changes

in gait, on the other hand, can be associated with early signs of neurological abnormalities

linked to several types of dementias. These examples highlight the importance of continuous

observation of behavioral changes in the elderly in order to detect health deterioration before

it becomes critical. Thus a system permitting to analyse the elderly behaviors and looking for

changes in their activities is more than needed. Of course, for such a system to be effective,

the activity recognition task must provide very accurate results. In fact, if activities are wrongly

recognized, the monitoring system may draw erroneous conclusions about the actual adherence

3
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of the patient to the practitioners prescriptions, as well as provide error-prone statistics about

the health status of the patient.

The following sections describe the motivations, the objectives of this thesis, the context of

the study, my hypotheses, my contributions and the thesis layout.

1.1 Motivations

This work was greatly motivated by research done in understanding human activity. Over

the last several years much effort has been put into developing frameworks for activity recog-

nition and employing them in a variety of domains to monitor activities.

One central issue here is the issue of robustness. Robustness is defined as the degree to

which a system or a component can function correctly in the presence of invalid inputs or

stressful environment conditions. Most systems that have been built to recognize activities

have been limited in the variety of activities they recognize and/or in the management of the

uncertainty of the recognition. In this work, we propose an approach for video activity recogni-

tion that addresses these issues by combining semantic modelling together with a probabilistic

reasoning to cope with the errors of low-level (primitive events level) detectors and to handle

the uncertainty of the high level event recognition to support demands from health care do-

mains. Our approach aims to provide several services for Alzheimer disease patients in order to

help them to retain their independence and to live safely.

1.2 Objectives

The main objective of this thesis is to propose a new activity recognition method able to

manage the errors of low level detectors and the uncertainty of high level event recognition

to detect interesting activities for health care monitoring. We focus on semantic video event

representation and recognition of daily living activities to build an automatic video monitoring

system able to help clinician to detect early symptoms of Alzheimer disease.

1.3 Context of the study

Health care technologies for elderly with dementias is a popular area of research. Alzheimer

Disease (AD) and related disorders represents a major challenge for health care systems with

aging populations. AD is associated with neurodegenerative changes that compromise cognitive

and functional abilities and may result in behavioral and neuropsychiatric symptoms (NPS).

Many efforts are currently undertaken to investigate AD pathology and develop appropriate

treatment strategies. These strategies focus on preserving cognitive and functional abilities and
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maintaining quality of life in the AD sufferer. Rating scales are essential tools for the diagnosis of

AD, the assessment and careful monitoring of symptoms, as well as the evaluation of treatment

effects. However these standard rating scales do not fully capture the complexity of a disease.

In fact, AD includes deterioration in cognitive, behavioral and functional domains that do not

always progress in parallel and may change idiosyncratically according to the individuality of

a given patient [Romdhane et al., 2011]. For this reason, Automatic monitoring of Activities of

Daily Living such as eating, using the telephone and managing medications has been a popular

focus in gerontechnology.

Detection of these activities would enable systems to monitor and recognize changes in pat-

terns of behavior that might be indicators of developing physical or mental medical conditions.

Similarly, it could help to determine the level of independence of elderly. If it is possible to de-

velop systems that recognize such activities, the medical experts may be able to automatically

detect changes in patterns of behavior of people that indicate declines in health. This is a chal-

lenging domain for multiple reasons. Firstly, for clinicians it is important to establish the exact

type of indicators that are clinically relevant and can provide information that can be used in

daily practice. Secondly, in the computer vision domain, the challenge is to adapt the techni-

cal constraints with the needs of the clinician. For patients and caregivers, participating in an

active way and giving an opinion on the feasibility and tolerability of the study is important.

The main impetus of this study comes from the societal objective of assisting and keep-

ing elderly people in their familiar home surroundings, or to enable them to ‘age in place’.

More specifically, the overall aim is to develop an automatic activity recognition approach for

behavioural assessment and preventative care in early and moderate stage AD.

This PhD work has been conducted in the Stars team at INRIA Sophia Antipolis in France.

Stars is a multi-disciplinary team at the frontier of computer vision, artificial intelligence and

software engineering. Stars work focuses on two main application areas: safety/security and

health care. This work takes place in this context and aims at recognizing human activities

for health care applications. In this study, we collaborate with clinicians from Nice hospital to

determine scenarios to recognize Alzheimer activities that are most important to monitor.

1.4 Thesis Hypothesis

This thesis assume the following hypothesis:

¥ Available Detected and Tracked Objects: In this work, we assume that tracked objects

are available. We also assume that the tracking algorithm provides a measurement (i.e.

trajectory probability) which is used during the event recognition process.

¥ Fixed Video Camera: In this work, we assume the use of fixed video cameras. The video
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cameras are fixed on a wall and without pan, tilt or zoom and without any restriction on

the camera orientation. We assume availability of calibration to compute the transforma-

tion of the 2D image referential point to a 3D scene referential point.

¥ Scene Context: In this work, we assume the use of scene context. Scene context con-

tains both geometric and semantic description of the specific zones, walls and equipments

located in the observed scene.

¥ Event models: We assume the use of a set of event models needed to detect the activities

of interest.

1.5 Thesis Contributions

The main contributions of this work are the following:

¥ The first main contribution consists in a new activity recognition approach com-

bining semantic event representation and probabilistic event inference to cope with

uncertainty. We use a generic framework for representing the semantics related to events

(e.g. events models and objects, contextual information). Then, we define a two-layer

semantic-based method (primitive event layer and composite event layer) to perform

probabilistic recognition considering the uncertainty of the low-level analysis. The un-

certainty is managed by combining the probabilistic output of both layers. Although our

approach is demonstrated in the video health care monitoring domain, it is not restricted

to a specific domain or implementation.

¥ The second contribution consists in a new dynamic linear model for temporal at-

tributes filtering. We propose a dynamic linear model for computing and updating the

attributes of the mobile objects to deal with low-level errors. We compute the confidence

of the current attribute value based on the temporal history of its previous values.

¥ The third contribution consist in new event modeling specification. we improve the

event description language developed in Stars team [Vu et al., 2003a] and introduce a

new probabilistic description based approach to gain in flexibility for event modeling

by adding the notion of utility. Utility expresses the importance of sub-events to the

recognition of the whole event.

¥ The fourth main contribution consist in a knowledge base for health care monitor-

ing. An ontology for health care monitoring was proposed, in this ontology, we presented

several concepts useful for health care monitoring domain. Clinical scenario composed of
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a set of activity models for Alzheimer monitoring have been elaborated with the help of

clinicians. The overall aim of the clinical scenario was to enable the participants to under-

take a set of daily tasks that could realistically be achieved in the setting of an observation

room. the defined activity models have been evaluated on a set of videos collected from

hospital. Several criteria was elaborated in close collaboration with clinicians to obtain

a quantifiable assessment of instrumental activities of daily living (IADLs) of Alzheimer

people compared to healthy older people.

1.6 Thesis Layout

This thesis is organized as follows:

1. In chapter 1, we introduce the motivation, the objective and the context of the study.

2. In chapter 2, we first discuss related work in the area of activity recognition and then

we describe the different technologies for monitoring human activities for the health care

domain.

3. In chapter 3, we present an overview of the proposed activity recognition approach. We

give a general architecture of the proposed approach. We describe the inputs, the outputs

and the major sources of knowledge of our approach. We define the activity recognition

problem as a key component of automatic health care monitoring.

4. In chapter 4, we present the proposed video event ontology for representing the knowl-

edge about activities of interest for experts from different domains.

5. In chapter 5, we present the proposed approach for the recognition of primitive events

and temporal composite events. This is a novel approach combining logic and probabilis-

tic reasoning for event detection.

6. In chapter 6, we evaluate the proposed approach and we test the proposed activity mod-

els in a set of scenarios performed in a realistic experimental site in Nice hospital.

We present the obtained results of the performance of the vision algorithm and the medi-

cal results.
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7. Finally, in chapter 7, we conclude this work, by summarizing the contributions of this

thesis, and by presenting short-term and long-term perspectives.



2

STATE OF THE ART

One of the most challenging issue in computer vision research is the activity recognition

problem for several reasons including noise and uncertainty of low-level output and the ambi-

guity for translating the semantic (high level) definition of events into a formalism for repre-

sentation and recognition of events. The main issues of activity recognition are:

¥ The first issue is to proper represent and model the activities of interest, according to the

objectives of real world applications.

¥ The second issue is to proper choose the appropriate event inference formalism for the

detection of high level events.

¥ The third issue for an accurate detection of meaningful events is to deal with the low-level

data processing noise.

In this chapter, we first introduce related work on the approaches for activity representation

and recognition. We will discuss the approaches which manage the uncertainty of recognition.

Second, we discuss previous work on activity recognition frameworks applied to the health care

domain.

9
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2.1 Activity Recognition Approaches

Automatic activity recognition is a very important and active area of research. Research on

human activity recognition has emerged as an application domain of computer vision research.

Technological advancements have enabled the development of systems able to monitor people

behavior and provide information that is filtered and processed in order to infer people activi-

ties. Activity recognition approaches can be divided into two main approaches: (i) Probabilistic

approaches and (ii) Description-based approaches. The two kind of approaches are described

below in this section. We discuss also the approaches which combine logic and probabilistic

reasoning.

2.1.1 Probabilistic Approaches

There is a vast amount of literature in the area of computer vision, where the aim is to rec-

ognize different types of human activities using probabilistic approaches. Probabilistic methods

are designed to search event that most likely fit a model of behavior. These approaches include

Neural Networks, Bayesian Networks and Hidden Markov Models. The main characteristic of

these techniques is to model explicitly the uncertainty. Neural Networks and Bayesian Networks

are well adapted to model the uncertainty in the recognition of events depending on the visual

features at a given time. However, Hidden Markov Models deal with sequential events.

2.1.1.1 Neural Networks

The Basic artificial neuron is a model inspired by the biological neuron in the brain. We

briefly introduce how biological neuron works in the following way [Wells, 2001]:

‘Biological neuron receives inputs along the ”dendrites” and add’s them up. The neuron shall

then produce an output if the sum is greater than the ”threshold value”. The dendrites are connected

to the output’s of other neurons via special junctions known as ”synapses”’.

Thus the basic artificial neuron model performs a weighted sum on its inputs and compares

the resulting value to its internal threshold level. If the the threshold is exceeded, the neuron is

activated (fig.2.1). A Neural Network consists of an interconnected group of artificial neurons

(fig.2.2). Each input is sent to every neuron in the hidden layer and then each hidden layer’s

neuron’s output is connected to every neuron in the next layer. There can be any number of

hidden layers within a Neural Network. Neural Network is an adaptive system that changes its

structure during a learning phase. Commonly Neural Networks are adjusted, or trained, so that

a particular input leads to a specific target output. Such a situation is shown in fig.2.3

Neural Network techniques have been one of the first approach to be used for activity recog-

nition [Howell and Buxton, 2001], [Chen and Zhang, 2006], [Chen and Zhang, 2007]. Howell
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Figure 2.1: Representation of the biological (left) and artificial neuron (right): each input into the

artificial neuron has its own weight associated with it, illustrated by the red circle. The neuron (blue

circle) sums all the input values multiplied by them weight and compares to a threshold [Wells, 2001].

Figure 2.2: Representation of a Neural Network.

and Buxton [Howell and Buxton, 2001] have used Neural Network approaches for human be-

haviour recognition. More precisely, Howel and Buxton used a time-delay variant of the Radial

Basis Function (RBF) network to recognize simple pointing and waving hand gestures in im-

age sequences. However, they do not deal with complex behavior involving a large number of

physical objects and complex temporal constraints.

In [Chen and Zhang, 2006], [Chen and Zhang, 2007] the authors have used Neural Net-

works to recognize events from traffic surveillance videos using the trajectory and the interac-

tion of the observed object (i.e. vehicles) (fig.2.4). A series of vectors is used to represent the
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Figure 2.3: The Neural Network is adjusted, based on a comparison of the output and the target, until

the network output matches the target.

Figure 2.4: Architecture of the approach proposed in [Chen and Zhang, 2006] to detect accidents in

traffic surveillance videos.

trajectory model of a vehicle at each point i (equation 2.1), vi is the velocity, vdiffi and θi are

respectively the difference of velocity and the difference of angle of two consecutive points.

α = [α1, ..., αn]; αi = [vi, vdiffi, θi] (2.1)

The trajectory model of two vehicles that appear together is represented as follow ( 2.2),

where v1diffi and v2diffi are the velocity changes of the two vehicles at the sampling point i,

cati is the distance between the two vehicles.

α = [α1, ..., αn]; αi = [v1diffi, v2diffi, cati] (2.2)

The authors extended the Neural Network model for temporal processing to integrate the

trajectory, they use a temporal window of size m, to predict the value of a vector xi based on
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the m preceding observed data (2.3).

xi = f(xi−m, ..., xi−1) (2.3)

The problem becomes a classification task, mapping a temporal sequence onto a class label

ck ∈ C, C is the set of all class labels (2.4).

fc : (xi−m, ..., xi−1) −→ ck ∈ C (2.4)

The Neural Network approach tries to recognise activities taking advantage of learning

techniques which can adapt the recognition algorithm to uncertain environments. However,

Neural Network is mostly applied to the recognition of atomic events. It is not efficient to cope

with complex activities involving a large number of physical objects and complex temporal

constraints because it leads to a combinatorial explosion of possible activities corresponding to

all combinations of physical objects detected in the scene.

2.1.1.2 Bayesian Networks

Another popular approach for activity recognition is the use of Bayesian networks. Bayesian

networks (BNs) are well adapted to cope with the problem of uncertain environments. The

main advantage of Bayesian networks is that they are capable of modeling the uncertainty of

the recognition by using probabilities based on the Bayes’ theorem of probability theory

P(A|B) =
P(B|A).P(A)

P(B)
(2.5)

Where,

¥ P(B|A) is the conditional probability of an event B, given the event A. It is also called the

likelihood.

¥ P(A) is the prior probability (or ‘unconditional’ or ‘marginal’ probability) of A. It is ”prior”

in the sense that it does not take into account any information about B.

¥ P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

¥ P(A|B) is the conditional probability of A, given B. It is also called the posterior probability

because it is derived from or depends upon the specified value of B.

A Bayesian network consists of a directed acyclic graph in which nodes represent random

variables which may be discrete or continuous (i.e. parametric distribution), and arcs represent

the causal relationships (i.e. conditional dependencies or links) between variables. For a link
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between two variables, A → B , the overall joint distribution is specified by the product of the

prior probability P(A) and the conditional probability P(B|A). The dependencies are specified

a priori and used to create the network structure. The distributions P(A) and P(B|A) must be

specified beforehand to form the network from domain knowledge.

Bayesian networks are mainly used for calculating conditional probabilities of variables

related to each other by relations of cause and effect. This computation is called inference.

A particular type of inference is the updating of probabilities that occurs following a set of

observations. However, depending on the network structure, these calculations are more or

less complex. While the general inference problem in BNs is NP-hard, efficient algorithms for

inference exist under certain BN structure assumptions.

A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes’ theorem

with strong (naive) independence assumptions. In naive Bayes classifier each data instance

X is assigned to one of m classes C1, C2, ..., Cm which it has the highest posterior probability

conditioned on X (i.e. the class which is most probable given the prior probabilities of the

classes and the data X [Squire, 2004]. That is to say, X is assigned to class Ci if and only if:

P(Ci|X) > P(Cj|X) for all j such that 1 ≤ j ≤ m. (2.6)

P(Ci|X) =
P(X|Ci)P(Ci)

P(X)
(2.7)

Naive Bayes classifier have been often used to recognize elementary actions at the numerical

level [Nevatia et al., 2004] with only one physical object. Buxton and Gong [Buxton and Gong, 1995]

proposed an interpretation of the scene based on Bayesian networks characterizing the positions

and interactions between objects observed in a traffic surveillance zone.

Hongeng et al. [Hongeng and Nevatia, 2001], [Nevatia et al., 2004] have used Bayesian

networks and multi-agent architecture in the recognition of complex events (fig. 2.5). These

events are represented in four hierarchical layers:

- The first layer corresponds to the detection and monitoring of observed objects (or agents).

- The second corresponds to the updating of properties associated with agents (distance be-

tween objects, changing speeds and directions of observed objects ...)

- The third defines the simple events (approaching another object, to slowdown,...)

- The latter defines the scenarios, using the simple events to model these scenarios, using logical

rules of sequences and durations.

However only the simple events were recognized by BNs, the temporal aspect was considered

by HMMs.

BNs have been successfully applied to person interaction [Park and Aggarwal, 2004] such as

‘shake hands’, parking lot surveillance [Nevatia et al., 2004], traffic monitoring [Kumar et al., 2005]
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Figure 2.5: Representation of the complex event ‘converse’ as described in [Nevatia et al., 2004].

and detection of left luggage [Lv et al., 2006]. However, BNs are not adapted to model tem-

poral compositions of events like sequential events. In fact, a major limitation of Bayesian

networks is their poor representation of temporal dynamics. Time is not straightforward mod-

eled in Bayesian Network formalism, temporal representation in Bayesian networks is often

done using a static representation, where time points or time slices are represented as static

processes. Dynamic Bayesian Networks (DBNs, BNs for dynamic processes) have been used to

represent temporal sequencing of BNs [Town, 2006]. Dynamic Bayesian Networks have been

used successfully to recognize short temporal actions [Reddy et al., 2003], but the recognition

process depends on time segmentation: when the frame-rate or the activity duration changes,

the DBN has to be re-trained. DBNs pose specific computational challenges. In fact, DBNs are

able to model temporal relationships between variables, they do this by breaking up time into

relevant discrete time-steps (or time slice), and placing a structurally similar copy of the net-

work within each time-step. A causal relationship between nodes in time-step k and nodes in

time-step k + 1 are then inserted (fig. 2.6). For complex networks (i.e. network with a large

number of nodes, 20 or more nodes) this would not be feasible as it makes the network gets very

large, very quickly and increases in complexity very quickly, in turn it makes greatly increasing

the amount of computational power required to run it ([Nicholson and Korb, 2006]).

Other DBNs have been studied to recognize more complicated composite events with sampling-

based inference algorithms [Laxton et al., 2007]. However, DBNs are still insufficient to de-

scribe various events because their scenarios are bounded by their conditional dependency
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Figure 2.6: Example of a DBN as described in [Nicholson and Korb, 2006]. Each variable in a DBN is

associated with a time slice t and denoted Xt. Intra-slice arcs: Xt
i− > Xt

j . Inter-slice (temporal) arcs:

Xt
i− > Xt+1

i and Xt
i− > Xt+1

j .

structures: to represent all the conditional dependencies in time-series data, the network

can become excessively complex. Also, the inference algorithms for DBNs involve heuris-

tics such as beam search [Shi et al., 2004], [Shi et al., 2006] or greedy pruning of candidates

[Laxton et al., 2007] to explore the large search space: inferring the most likely observed se-

quence of events by computing the probability of future events at time t given the past obser-

vation at time t − i. The span time t − (t − i) is typically large ([Darwiche, 2000]).

The main advantage of Bayesian Networks is that they are well adapted to model the un-

certainty of the recognition by using probabilities. However, the main drawback is that they are

not adapted to model temporal relations because time needs to be explicitly indicated.

One among the most popular approach able to model the uncertainty and recognize activ-

ities with temporal relations and in particular sequential events is the Hidden Markov Models

described in the section below.

2.1.1.3 Hidden Markov Models

Hidden Markov Models (HMMs) have been used to model uncertainty of the observed en-

vironment and in particular, the uncertainty of temporal relations of events. HMMs and their

extensions have been most widely used among probabilistic approach for activity recognition,

motivated primarily by their successful use in speech recognition.

The formal definition of a HMM model λ is specified by the tuple (Q, O, A, B, π) as follows

([Blunsom, 2004]):
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Figure 2.7: A HMM model λ is specified by the tuple (Q,O,A,B, π) where, Q = {S1, S2} is the set of

possible states, O is the set of observation symbols, A is the state transition probability matrix (aij =

P(qt+1 = j|qt = i)), B is the observation probability distribution (bj(k) = P(ot = k|qt = j)) and π is the

initial state distribution.

λ = (Q, O, A, B, Π) (2.8)

Q is defined to be a fixed state sequence of length T, and corresponding observations O:

Q = q1, q2, ..., qT (2.9)

O = o1, o2, ..., oT (2.10)

S is the state alphabet set, and V is the observation alphabet set:

S = (s1, s2, ..., sN) (2.11)

V = (v1, v2, ..., vN) (2.12)

A is a transition array, storing the probability of state j following state i . Note the state

transition probabilities are independent of time:

A = [aij];aij = P(qt = sj|qt−1 = si) (2.13)

B is the observation array, storing the probability of observation k being produced from the

state i, independent of t:

B = [bi(k)];bi(k) = P(ot = vk|qt = si) (2.14)

Π is the initial probability array:
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Π = [Πi];Πi = P(q1 = si) (2.15)

Two assumptions are made by the model. The first, called the Markov assumption, states

that the current state is only dependent on the previous state, this represents the memory of

the model:

P(qt|qt−1, qt−2, ..., q1) = P(qt|qt−1) (2.16)

The independence assumption states that the output observation at time t is only dependent

on the current state, it is independent of previous observations and states:

P(ot|ot−1, ..., o1, qt, ..., q1) = P(ot|qt) (2.17)

Given a HMM λ and a sequence of observations O, the probability of the observations O for

a specific state sequence Q of length T is:

P(O|Q, λ) =

t=1∏

T

P(ot|qt, λ) = bq1
(o1) × bq2

(o2)... × bqT
(oT) (2.18)

and the probability of the state sequence is:

P(Q|λ) = Πq1
× aq1q2

× aq2q3
× ... × aqT −1qT

(2.19)

Thus we can calculate the probability of the observations given the model as:

P(O|λ) =
∑

Q

P(O|Q, λ).P(Q|λ) =
∑

q1...qT

Πq1
× bq1

(o1) × aq1q2
...aqT −1qT

× bqT
(oT) (2.20)

HMMs is among the most popular probabilistic approach for activity recognition[Oliver et al., 2002],

[Duong et al., 2005]. HMMs have been widely used for the recognition of activities based on

trajectories [Cuntoor et al., 2005] and motion [Achard et al., 2008].

Layered HMMs [Oliver et al., 2002] have been proposed to model events such as interac-

tion between multiple mobile objects. In [Rosario et al., 2000] the authors have constructed a

variant of the basic HMM, the coupled HMM (CHMM), to model human-human interactions.

More specifically, they have coupled the hidden states of two different HMMs by specifying

their dependencies. As a result, their system was able to recognize complex interactions be-

tween two persons, such as the concatenation of two persons meeting and walking together.

However, they deal only with sequential events. Several studies used HMM for sport activity

recognition. In [Chiang et al., 2007] the authors have studied baseball in order to determine

the successful strikes. Their approach is to extract key frames from the baseball video. They
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Figure 2.8: DBN representation of S-HSMM for two time slices [Duong et al., 2005].

have used an estimate of the global movement, size and position of the objects calculated from

key images. The created Hidden Markov Model seeks to recognize events. However, they

can only recognize four types of event (e.g. Base hit, Ground outs, Air outs, Strikeout) which

are simple and domain specific. In [Duong et al., 2005] the authors introduce the switching

Hidden Semi-Markov Model (S-HSMM) to deal with time duration modeling. Activities are

modeled in the S-HSMM in two ways: the bottom layer represents atomic activities and their

duration using HSMMs; the top layer represents a sequence of high-level activities where each

high-level activity is made of a sequence of atomic activities. This extension attempts to in-

troduce more semantic in the formalism at the cost of tractability: the extension complicates

the structure of the graph model (i.e. additional relations between nodes are inserted) which

can quickly leads computation in difficulties especially for graph with large number of nodes

and time slices (fig.2.8). Figure 2.8 shows a DBN representation of the S-HSMM for two time

slices. At each time slice t, a set of variables Vt = {zt, t, xt, et, mt, yt} is maintained. At the

top level, zt is the current top-level state acting as a switching variable; t is a boolean-valued

variable set to 1 when the zt-initiated semi-Markov sequence ends at the current time slice. At

the bottom level, xt is the current child state in the zt-initiated semi-Markov sequence; et is

a boolean-valued variable set to 1 when xt reaches the end of its duration. mt represents the

current phase of xt . yt is the observed alphabet.

The advantage of HMMs compared to Neural Network and Bayesian Network is the ability

to recognize sequence of events. However, they are limited in recognising sequence of events

which involves several mobile objects because the probability of being in a state for a mobile

object has to be combined with the probability of being in another state for all other mobile

objects. These combination leads the recognition process to a combinatorial explosion.
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2.1.2 Description-based Approaches

Description-based approaches have also been largely used to recognize activities for few

decades. A description-based approach recognizes activities with spatio-temporal structures.

The main trend consists in designing symbolic network whose nodes correspond to boolean

recognition of simpler events. Nodes represent a high-level activity describing the temporal,

spatial, and logical relationships of simpler activities (i.e. sub-events). That is, description-

based approaches model an activity as an occurrence of its sub-events that satisfy certain re-

lations. Therefore, the recognition of the activity is performed by searching the sub-events

satisfying the relations specified in its representation. All description-based approaches are

inherently hierarchical (since they use sub-events to represent activities), and they are able

to handle activities with concurrent structures. In description-based approaches, a time in-

terval is usually associated with an occurring sub-event to specify necessary temporal relation-

ships among sub-events. Allen’s temporal predicates [Allen, 1983], [Allen and Ferguson, 1994]

have been widely adopted for these approaches to specify relationships between time intervals

[Pinhanez and Bobick, 1998], [Siskind, 2001], [Nevatia et al., 2003]. 13 basic predicates that

Allen has defined for instance: before, meet, during, starts, overlaps and finishes. Note that the

predicates before and meets describe sequential relationships while the other predicates are

used to specify concurrent relationships (Figure. 2.9).

The first description-based approaches have been developed in the 70s and include plan

recognition and event calculus. However, these approaches have not been applied to scene un-

derstanding. Other approaches include grammars that have been proposed to parse simple ac-

tions recognized by vision modules [Ivanov et al., 2005]. Logic and Prolog programming have

also been used to recognize activities defined as predicates [Davis and Shet, 2005]. Chronicle

recognition [Dousson and Ghallab, 1993] and Constraint resolution [Thonnat and Rota, 1999],

[Rota and Thonnat, 2000] have also been used. Constraint Satisfaction Problem (CSP) has

been applied to model activities as constraint networks [Reddy et al., 2009].

2.1.2.1 Constraint-based approaches

Early work in constraint recognition introduces the notion of chronicles, undirected con-

straint graphs describing the temporal constraints of atomic sub-events [Ghallab, 1996]. Tech-

niques which are based on constraint resolution are among the most sophisticated event recog-

nition techniques to date. Rota and Thonnat [Rota and Thonnat, 2000] represented an activity

(i.e. scenario) by a set of positive (+) and/or negative (-) variables corresponding (at each

instant t) to the detection of individuals, equipment, instantaneous recognised events. A pos-

itive variable (xi : +) corresponds to an expected object/event, whereas, a negative variable

(xi : −) corresponds to an object/event that is not allowed to occur during the recognition of a
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Figure 2.9: Allen’s Temporal relations.

given activity. These variables are linked by a set of conditions (cj) corresponding to temporal

constraints and/or non-temporal constraints. Each constraint is a boolean predicate involving

these variables. A constraint is called negative constraint if it involves at least one negative vari-

able, otherwise, it is called a positive constraint. Figure 2.10 show an example of ‘a person is

far from an equipment’ scenario represented by Rota and Thonnat [Rota and Thonnat, 2000].

The authors define the recognition problem as a boolean problem:

P0(M, A, F) (2.21)

where F is a set of facts, A is an ordered subset {f1, ...fk} of F and M is an event model.

A fact is a structured object defined by seven sets of attributes: name, type, date, geometry,

velocity, properties and reference (see fig.2.10 and fig.2.11).

A = {f1, ...fk} is a solution of P0 if and only if:

∃xk+1 ∈ F, ...,∃xn ∈ F cj(f1, ...fk) = true ∀j ∈ {1, ...p} (2.22)

A scenario is recognized if all its positive constraints are satisfied and its negative constraints

are not satisfied.

The authors in [Dechter et al., 1991] have presented the activity recognition as a temporal

constraint satisfaction problem. Their framework involves a set of variables X = {X1, ...Xn} and
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Figure 2.10: An example of ‘a person is far from an equipment’ scenario represented by Rota and

Thonnat [Rota and Thonnat, 2000].

Figure 2.11: Hierarchy of facts[Rota and Thonnat, 2000].

a set of constraints. Each variables presents a time point and each constraint is presented as a

set of intervals:

{I1, ..., In} = [a1, b1], ..., [an, bn] (2.23)

A unary constraint on a variable Xi restricts the value of Xi to a set of intervall; namely, it

respresents the disjunction:

(a1 ≤ Xi ≤ b1) ∨ ... ∨ (an ≤ Xi ≤ bn) (2.24)

A binary constraint on two variables Xi and Xj respresents the permissive value of the

distance Xj − Xi ; it represent the disjunction:

(a1 ≤ Xj − Xi ≤ b1) ∨ ... ∨ (an ≤ Xj − Xi ≤ bn) (2.25)

A network of binary constraints consists on a set of variables, X1, ..., Xn and a set of unary and

binary constraints. It is represented by a ‘temporal constraint graph’, where nodes respresent
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variables and edges correspond to constraints. The edges are labelled by sets of intervalls. A

tuple X = (x1, ...xn) is called a solution if the assignment {X1 = x1, ...Xn = xn} satisfies all the

constraints. A value ν is a feasible value for variable Xi if there is a solution in which Xi = ν.

Figure 2.12 is an ilustration of a constraint satisfaction graph.

Figure 2.12: A constraint satisfaction problem model and the corresponding

graph[Dechter et al., 1991]. This graph involves five variables: x0, the starting time of the prob-

lem, the choosen value is 7:00 am; x1, x2:are respectively the time when John left home and arrived

at work and x3, x4 are respectively the time when Fred left home and arrived at work. There are five

constraints involving to the five variables corresponding to the time duration that each person has to

take for going to work.

Chleq and Thonnat [Chleq and Thonnat, 1996] have represented a scenario as a set of inde-

pendant positive/negative instantaneous events. The events composing a scenario are relating

by temporal constraints. The algorithm recognize incrementally pre-defined scenarios repre-

senting human behaviors in the observed scene. For each scenario, a graph is built: the vertices

respresent the time point variables and the edges correspond to the temporal relations.

In [Vu et al., 2002], [Vu et al., 2003a], the authors first propose a language to describe sce-

nario models and second a temporal constraint resolution approach to recognize in real-time

scenario occurrences. They represent a scenario model with the list of the actors involved in

the scenario and a set of constraints on these actors. An actor can be a person detected as

a mobile object by the recognition process or a static object of the observed environment. A

person is represented by his/her characteristics: his/her position in the observed environment,
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width, velocity, etc. A static object of the environment is defined as a priori knowledge and can

be either a zone of interest (a 2D polygonal as the entrance zone) or a piece of equipment (a

3D object as a desk) (fig.2.13, fig.2.14).

Figure 2.13: Five types of entities are classified into ‘scenario’ and ‘scene-object’ in [Vu et al., 2002].

Figure 2.14: An example of the model close to: a person is close to an equipment[Vu et al., 2002].

The event recognition process consists in mapping the set of constraints to a temporal con-

straints Network and determining whether the video sequence satisfies these constraints (Fig-

ures. 2.15, 2.16). The first step of the event recognition process is to compute which event (i.e.

scenarios) can be recognized at the current time. They call ‘trigger’ such a scenario which can

be recognized. Once they have recognized a scenario they add to the list of triggers all the more

complex scenarios which are ended with the given recognized scenario. For example, once they

have recognized the scenario ‘close − to’, it is possible that the scenario ‘moves − close − to’

would be recognized. To recognize a given scenario the algorithm selects an actor for each

actor variable and check whether the selected actors satisfy the constraints defined within the

scenario model.

The algorithms proposed in the literature to solve the recognition problem are generally

computationally intractable (NP-hard). To overcome this problem, Vu et al. [Vu et al., 2003a],

[Vu et al., 2003b] have proposed a scenario model pre-compilation step and achieve a speed

up of the algorithm that allows it to be used in real time surveillance applications. This step

consists in decomposing the event model into a set of simple event models containing at most

two sub-events. However, their approach of recognition is deterministic.
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Figure 2.15: Four step of ‘Bank attack’ scenario [Vu et al., 2004]: (1) at time t1, the employee is at his

position behind the counter, (2) at time t2, the robber enters by the entrance and the employee is still

at his position, (3) at time t3, the robber moves to the front of the counter and the emplyee is still at his

position and (4), at time t4, both of them arrive to the safe door.

Figure 2.16: Hierarchical model of the ‘Bank attack’[Vu et al., 2004]. This scenario is composed of five

parts: a set of physical object corresponding to the employee and the robber, a set of temporal variable

(components), an empty set of forbidden scenarios, a set of constraints (‘before’, ‘during’ and ‘finish’

[Allen, 1983]) and an alert.

The advantage of constraint-based approaches is that knowledge can be formulated as an

ontology for a particular activity domain and easily reused for different application domains

[Thonnat and Rota, 1999]. They allow the description of events in a natural language, declar-

ative and easily to be defined and modified by human experts. One drawback is that the event

modeling step often needs a strong effort to describe all the events of interest. One solution

to solve this problem is to re-use existent ontology and also use learning technics to learn au-

tomatically event models. Another limitation is that these approaches do not cope with the

uncertainty of recognition.
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Figure 2.17: An example of a Petri Net [Haas, 2002].

2.1.2.2 Petri Nets

Petri Nets can be graphically represented by a bipartite graph (figure. 2.17) which includes

two types of nodes: the places P, which are drawn as circles and the transitions T, which are

drawn as bars. Places can contain tokens that are drawn as black dots within places. The

state of a Petri-Net is called marking, and is defined by the number of tokens in each place. A

transition node is enabled if all input place nodes to that transition have tokens. The possible

relationships between temporal intervals (sequential and non-sequential relationships), defined

by Allen, are used to describe the relationships between sub-events within the same event.

Petri nets specify the temporal ordering of sub-events in terms of a graph representa-

tion. Several researchers have utilized Petri nets to represent and recognize human activities

[Lavee et al., 2007], [Perse et al., 2010]. Zaidi [Zaidi, 1999] has showed that Petri nets are

able to fully represent temporal relationships described by Allen’s temporal predicates. Ghanem

et al. [Ghanem et al., 2004] have taken advantage of Petri nets to represent and recognize in-

teractions between humans and vehicles. The authors in [Perse et al., 2010] have developed

a method for automatic trajectory-based analysis of multi-agent activities in the sport domain.

These researches however, do not take into account the uncertainty inherent in both low level

observations and semantic definitions of events.

The advantage of Petri Nets is their capacity to express sequencing and parallel events occur-

ring. A disadvantage of Petri Nets is their deterministic nature, this formalism relies on perfect

input data which is unrealistic for real world applications. Recent work aiming at extending

this formalism with a convenient probabilistic mechanism to handle the uncertainties will be

discussed in section (2.1.4)

2.1.3 Discussion: Description-based approaches vs. Probabilistic approaches

Description-based approaches are suitable for recognizing high-level activities which can be

hierarchically described using simpler sub-events. They can more easily incorporate human
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knowledge into the systems and require less training data as pointed out by many researchers

[Oliver et al., 2002], [Nevatia et al., 2003], [Ryoo and Aggarwal, 2006].

While Description-based approaches allow complex event modeling with complex spatio-

temporal constraints, the formalism of the event model is largely deterministic and convenient

mechanism to handle uncertainty (both observation and interpretation) is generally unavail-

able.

Probabilistic approaches provide a probabilistic framework for reliable recognition with

noisy inputs. However, they have difficulties representing and recognizing activities with con-

currently organized sub-events especially for HMMs which were mostly used to recognize se-

quential events. But, Petri Nets are well suited for modeling the concurrent composition of

events. Description-based approaches are able to represent and recognize human activities with

complex temporal constraints. Not only sequentially occurring, but also concurrent organized

sub-events using concurrent Allen’s temporal predicates. The major drawback of description-

based approaches are their inability to compensate for the failures of low-level components

(e.g. detection failure).

The probabilistic approaches have the advantage of modeling the uncertainty. They accu-

rately learn event models from training data achieving a high precision within a domain and

allowing an intrinsic handling of low level analysis uncertainty. However, most of these meth-

ods mainly focus on a specific human activity and their descriptions are not declarative and it

is relatively difficult to modify them or add a priori knowledge. The a priori probability needs

to be learned and this learning stage is often tiresome due to the construction of the learning

set. Additionally, the amount of training data increases with the number of states and observa-

tion. For instance, Dynamic Bayesian Networks (DBN) have been used successfully to recognize

short temporal actions [Reddy et al., 2003], but the recognition process depends on time seg-

mentation: when the frame-rate or the activity duration changes, the DBN has to be re-trained.

The advantage of the HMMs compared to NNs and Bayesian classifier is the ability to recognize

sequences of events, however, they are restricted to simple and sequential temporal patterns.

Additionally, they are limited when the recognition involves several mobile objects. The prob-

ability of being in a state for a mobile object has to be combined with the probability of being

in another state for all other mobile objects. This combination leads to combinatorial explo-

sion in the recognition process. Consider the problem of modeling the movement of several

objects in a sequence of images. There are M objects, each of which can occupy K positions

and orientations in the image, there are KM possible states of the system underlying an image.

A HMM would require KM distinct states to model this system. This representation is not only

inefficient but difficult to interpret. A summary of the advantages of each approach is provided

in the table 2.1:
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Approaches Advantages and Drawbacks References

Probabilistic Approaches

NNs + uncertainty handling

- difficulties to cope with temporal relations

[Howell and Buxton, 2001],

[Chen and Zhang, 2007]

BNs + uncertainty handling

- difficulties to process temporal relations

[Nevatia et al., 2004]

HMMs + uncertainty handling

+ can process sequences of events

- tedious learning phase

- can not cope with complex temporal relations

[Cuntoor et al., 2005],

[Achard et al., 2008]

Description-based Approaches

Constraint-

based app

+ Complex event recognition

- difficulties to handle the uncertainty

[Ghallab, 1996],

[Vu et al., 2003a],

[Rota and Thonnat, 2000]

Standard

PNs

+ conccurant temporal relationships

- deterministic recognition

- can not process forbidden events

- combinatorial explosion in case of multi-

physical objects problem

[Ghanem et al., 2004],

[Lavee et al., 2007]

Table 2.1: Advantages and drawbacks of probabilistic and description-based approaches.

2.1.4 Combination of Description-based Approaches and Probabilistic Approaches

The approaches combining logic and probabilistic reasoning have been designed to over-

come the limitations of the previous approaches. The logic-probabilistic combination is an

interesting field of research in the recent years as a consequence of the above-mentioned lim-

itations ([Ryoo and Aggarwal, 2010], [SanMiguel and Martinez, 2012]). However, it has not

been fully explored and many efforts are still needed to provide a complete framework for fully

handling the uncertainty of recognition. Ryoo and Aggarwal [Ryoo and Aggarwal, 2006] have

first proposed a deterministic description-based approach using a context free grammar (CFG)

as a syntax of their representation language to represent composite actions and interactions.

Furthermore, Ryoo and Aggarwal [Ryoo and Aggarwal, 2007] , [Ryoo and Aggarwal, 2009],

[Ryoo and Aggarwal, 2010] have proposed a probabilistic extension of their recognition frame-

work to deal with uncertainty (fig.2.18). In order to compensate for the complete failure of the

atomic-level components, they have taken advantage of the concept of the hallucinated time

intervals inserted in the place of missing gestures with an extremely low probability, similar to

the one used in [Minnen et al., 2003]. ‘Hallucinations’ are time intervals which are inserted
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Figure 2.18: Figure illustrating the overall framework of the system proposed

in[Ryoo and Aggarwal, 2009].

regardless the gesture recognition results. However, to calculate the probability of a high level

activity, the authors have used the dependency information between the activity and its sub-

events. The hierarchy tree (fig.2.19) illustrates the dependencies among the activities. They

compute the probability of an occurring activity R in one time interval [s, e], given the sequence

of images, P(R[s,e]|IT) , IT represents the images from frame 1 to frame T .
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Figure 2.19: Example of recognition process tree of the interaction ‘shake-hands’

[Ryoo and Aggarwal, 2009].

P(R[s,e] |IT) = P({R}|sub({R})) × P(sub({R})|sub(sub({R})))

× ... × P(subd({R})|IT)

=

d−1∏

i=0

P(subi({R})|subi+1({R})) × P(subd({R})|IT)

=

d−1∏

i=0

P(subi({R})|subi+1({R})) × P(a1, ..., an|IT)

(2.26)

Where, sub({R}) is the union of sub-events of the activity R, a1, ..., an are leaf nodes (i.e.

atomic action) of the tree and d the depth of the tree.

The first limitation lies in the concept of the hallucinated time intervals, this can lead to

high rate of false positive recognition, first in the atomic events level and thus false position

recognition of more complex events. The seconde limitation of the work relies in the method

adopted to compute the probability of an activity which can results to a very low probability

value especially if the sub-events of the activity include gestures detected with low probability

value (e.g. ‘hallucinated’ gestures). Finally, another limitation of the work as noticed by the au-

thor ([Ryoo and Aggarwal, 2009]) is the time complexity to find optimum recognition solution:

it is an NP-hard problem.

Tran and Davis [Tran and Davis, 2008] have combined logic and probabilistic methods to

recognize events (fig. 2.20). The authors have represented the knowledge as first-order logic

production rules and have successfully applied the probabilistic graphical model, Markov logic

networks (MLNs) to probabilistically infer events in a parking lot. Markov logic networks

(MLNs) are one type of the unrolled graphical models developed to combine logical and prob-

abilistic reasoning. In MLNs, every logic formula Fi is associated a real-valued weight. Each

instantiation of Fi is given the same weight. An undirected network called a Markov Network

is constructed such that:
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Figure 2.20: Overview of the system proposed in[Tran and Davis, 2008].

- Each of its nodes corresponds to a ground atom (i.e. atomic event),

- If a subset of ground atoms x{i} are related to each other by a formula Fi, then a clique Ci is

added to the network. Ci is associated with a weight ωi and a feature fi defined as follow:

fi(x{i}) = 1, if Fi(x{i}) is true

= 0, otherwise.
(2.27)

This network models the joint distribution of the set of all ground atoms. It provides a

mean for performing probabilistic inference, the probability of an event given some evidences

(observations) is then computed. The probability that a ground atom Xi is equal to xi given its

Markov blanket (neighbours) Bi is [Tran and Davis, 2008]:

p(Xi = xi) =

exp(
∑

fj∈Fi
ωjfj(Xi = xi, Bi = bi)

exp(
∑

fj∈Fi
ωjfj(Xi = 0, Bi = bi) +

∑
fi∈Fi

ωjfj(Xi = 1, Bi = bi))

(2.28)

Where Fi is the set of all cliques that contain Xi and fj is computed as in equation (2.27).

However, even though the above-mentioned approach attempts to integrate logical-based

inference into a probabilistic framework, it is limited in recognizing complex high level activities

because Markov logic networks (MLNs) make an inference using binary predicates without

inferring the occurring time of the activity being recognized. MLNs provides the same weight

to all the instantiations of a formula (or event model) which it is not realistic for real world

applications as the probability of an event instantiation can change from an observation to

another. Markov logic network relies on the assumption that an identical sub-event occurs only

once during interactions, limiting itself from being applied to dynamically interacting actors

(dynamic interaction can contain two or more instantiation of the same sub-event). Working
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with Markov logic typically makes three assumptions about the logical representation: different

constants refer to different objects (unique names), the only objects in the domain are those

representable using the constant and function symbols (domain closure), and the value of each

function is always a known constant (known functions). These assumptions ensure that the

number of possible worlds is finite and that the Markov logic network will give a well-defined

probability distribution.

The probabilistic extensions of Petri Nets have been proposed for uncertain state ordering

[Albanese et al., 2008] and duration [Lavee et al., 2010b]. However, they do not consider the

uncertainty of the low level analysis. In [Lavee et al., 2010a] authors propose a probabilistic

mechanism for recognizing activities modeled as Petri Nets. More formally, an activity Petri Net

is a tuple:

< P, T, C, events, δ, S, F > (2.29)

Where,

- P is the set of places,

- T is the set of transitions,

- C is the set of connecting arcs,

- events is the set of events that are relevant to the activity.

- δ : T → events is a labeling function mapping transitions to an event label.

- S ⊂ P is the place node representing the ‘start’ of the activity and

- F ⊂ P is the set of place nodes representing the recognition of the activity.

By the mean of Petri Net, the authors calculate the transition and observation probability for

each state a ∈ A (A is the set of all reachable states from the initial state). The normalized

transition probability is computed as follow:

P(xt = x
′

|xt−1 = a) =
P̂(xt = x

′

|xt−1 = a)
∑

x"∈A P̂(xt = x"|xt−1 = a)
(2.30)

¥ The non-normalized probability of staying in the same place P̂(xt = a|xt−1 = a) = 1,

¥ P̂(xt = b|xt−1 = a) = (α)τ, where τ is the minimum distance between a ∈ A and b ∈ A;

α ∈ [0, 1] is a parameter.

¥ Transition to some c ∈ A that is not reachable from a is given some small non-zero

probability ǫ, P̂(xt = c|xt−1 = a) = ǫ.

The observation probability is computed in the same way:
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Figure 2.21: Activity Petri Net Describing ‘Bank Attack’[Lavee et al., 2010a]. P = {P1, ..., P8}, T =

T1, ..., T9, C, is the set of connecting arcs depicted in the figure, events = {‘Visitor Appears’, ‘Teller

Appears’, ‘Teller in Safe’,‘Visitor in Safe’, ‘Visitor Disappears’} , δ(T2) = ‘Visitor Appears’ , δ(T3) = ‘Teller

Appears’, δ(T4)= ‘Teller in Safe’, δ(T5)= ‘Visitor in Safe’, δ(T6)= ‘Visitor in Safe’, δ(T7)= ‘Teller in Safe’,

δ(T8)= ‘Visitor Disappears’, δ(T9)= Teller Disappears’, S = {P1} and F = {P10}.

P(yt = q|xt = a) =
P̂(yt = q|xt = a)

∑
q

′
∈Y P̂(yt = q

′

|xt = a)
(2.31)

¥ P̂(yt = q|xt = a) = 1, if there is an enabled transition in making a with an event label q.

¥ P̂(yt = q|xt = a) = ǫ, otherwise.

The propagation of uncertainty is processed as follow: at each discrete time slice, there is a

set of hypotheses on the state of activity which is called particles. The sum over the weight of

all particles in a particular state is the confidence that they are currently in this state.

The main limitation of this work lies in the way that the authors propose to integrate the

probability in the Petri Net: the authors have not described how they have calculated the

different parameters of the algorithm. For example, to calculate the transition probability

P̂(xt = b|xt−1 = a) = (α)τ, the authors have not specified how the minimum distance τ is

calculated and they have not detailed their choice of α, which value can deeply changes the

final value of the probability. Another limitation is the non-modular aspect of the Petri Network,

which makes difficult any modification of the structure of network.

In [Brendel et al., 2011] the authors have presented a probabilistic event logic (PEL) which

uses weighted event-logic formulas to represent probabilistic constraints among events. The

knowledge base is representing a set of weighted event-logic formulas:

Σ = {(φ1, w1), ...(φn, wn)} (2.32)
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where wi is a non-negative numeric weight associated with formulas φn. Σ assign a score

S to any interpretation (X, Y). An interpretation is denoted by (X, Y), where X is the set of

observable event occurrences, and Y is the set of hidden event occurrences.

S((X, Y), Σ) =
∑

i

wi. |SAT((X, Y), φi)| (2.33)

Where |SAT((X, Y), φ)| is the number of intervals in (X, Y) satisfied by φ. The posterior proba-

bility of the hidden part of interpretations is :

Pr(Y|X, Σ) ∝ exp(S((X, Y), Σ)) (2.34)

However, they authors have considered only the recognition of primitive events of basketball

game and they have not proposed any approach to deal with low-level uncertainty.

Kwak et al. [Kwak et al., 2011] have adopted constraint flows to summarize the combina-

tion of the primitive events composing a complex event to infer the recognition. The constraint

flow is traced to search for the feasible interpretation. They propose the use of an objective

function to calculate the optimum interpretation by combining two measures:

(i) the ‘observation agreement’ formulated by the posterior probability of an interpretation

P(x(v1:t)|O1:t), v1:t and x(v1:t) are respectively a tracing result up to the tth time step and a

feasible interpretation. Ot is observation at time step t.

P(x(v1:t)|O1:t) ∝ P(Ot|x(vt)) × P(x(vt)|x(v1:t−1)) × P(x(v1:t−1)|O1:t−1) (2.35)

Based on the assumption that the primitive events occurs independently of the others, the

conditional observation probability in equation (2.35) have been calculated as the following:

P(Ot|x(vt)) =

n∏

i=1

P(Oi
t|x(vt)) =

n∏

i=1

P(Oi
t|x(vi

t)) (2.36)

where n is the number of primitives of the scenario. The state transition probability P(x(vt)|x(v1:t−1))

is assumed to be uniform and equal to 2−n.

(ii) and the ‘degree of blankness’ B(v1:t) measure cohesion among time intervals: if no prim-

itive event is recognized while the composite event is in progress then the time step is defined

as blank. A blank time interval is a set of blank time steps arranged consecutively. the ‘degree of

blankness’ is considered as a factor of penalty during the computation of the probability.

B(v1:t) =

t∏

j=1

exp(−βIb(vj)) (2.37)

Ib(vj) = 1, if vj is blank,

= 0, otherwise.
(2.38)
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The limitation of this work during the probability calculation step is, first, the authors have

only considered during the computation of P(x(v1:t)|O1:t) the probability of sub-events occur-

rences, they do not consider the probability of verification of the constraints (e.g. spatial and

temporal constraints). They also have not described the calculation of the parameter β called

‘the penalty weight for idle time steps’ in equation (2.37). Finally, they authors have not ex-

plained why they have assumed a uniform value for the transition probability P(x(vt)|x(v1:t−1)),

the value 2−n risks to be very low, when n is high, which can affect the finale value of the prob-

ability P(x(v1:t)|O1:t). Another limitation of this work is that the authors have not considered

the low level uncertainty, they have a noisy primitive event detection as they have already

mentioned in their work. Finally, the complexity of the recognition algorithm is not described.

Combining logic and probabilistic reasoning is an interesting field of research. The main

trend is to integrate a probability reasoning in description-based approaches or to add more

logic in probabilistic approaches. The authors in [Tran and Davis, 2008] have attempted to

integrate logical-based inference into a probabilistic graphical model, Markov logic networks

(MLNs) to probabilistically infer events in a parking lot. In [Ryoo and Aggarwal, 2010], the

authors have proposed a probabilistic extension of their description-based recognition frame-

work to deal with uncertainty. The approach we propose is described in chapter 5, fits into this

category of approaches that take advantages of the probabilistic methods as well as the repre-

sentation of event semantics. A summary of the advantages and drawbacks of each approach is

provided in the table 2.2.
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Reference Advantages Drawbacks

[Ryoo and Aggarwal, 2009] + High level uncertainty handling.

+ Low level uncertainty handling.

+ High level activity recognition.

- High complexity to find optimum

recognition solution.

- High rate of false positive due to the

concept of hallucinated time intervals.

- Probability computation value can be

very low.

[Tran and Davis, 2008] + Recognition uncertainty handling.

+ Event modeling uncertainty han-

dling.

- Limitation from being applied to dy-

namic interactions.

- Limitated when recognizing high level

activity .

[Albanese et al., 2008] + Handle the uncertainty of high level

activities.

+ Complex activity detection.

- Complexity of the algorithm not de-

scribed.

- No handling of low-level processing

uncertainties.

[Lavee et al., 2010a] + Handle the uncertainty of high level

activities.

+ Complex activity detection.

- Probability integration not well de-

fined

- Non modular Network structure

[Brendel et al., 2011] + Event modelling uncertainty.

+ Event recognition uncertainty.

- No handling of low-level processing.

- Limited to primitive event recogni-

tion.

[Kwak et al., 2011] + Probabilistic recognition

+ Complex activity recognition.

- Recognition algorithm complexity not

described

- Parameter of the probability calcula-

tion not well described

Table 2.2: Advantages and drawbacks of the approaches combining probability and logic.
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2.2 Health care Monitoring

Healthcare technology for the elderly is a popular area of research. According to the Eu-

ropean Union commission’s projection, the number of elderly will increase three-fold between

2008 and 2060 [Cardinaux et al., 2011]. In France, the proportion of people aged 75 and over

in the population (approximately 7% in 2000) should reach nearly 10 % in 2020. In future

years, the difference between the needs of the dependent elderly and the number of places

available in hospitals and in specialized centers will become even more important than it is cur-

rently. Recently, a number of researchers have developed solutions based on video cameras and

computer vision systems with promising results. However, for the domain to reach maturity,

several challenges need to be faced, including the development of systems that are robust in

the real-world and are accepted by users, carers and society.

2.2.1 Automatic monitoring for health care

Over the last several years much effort has been put into developing and employing a

variety of sensors to monitor activities in the health care domain. These sensors include

camera networks for people tracking [Sidenbladh and Black, 2001], cameras and microphones

for activity recognition [Clarkson et al., 1998], and embedded sensors for activity detection

[Wang et al., 2007], [Zouba et al., 2009], [Biswas et al., 2010b].

The change in the manner of doing the activities of daily living is a good indicator of de-

clining health, thus patient monitoring is receiving a big interest from medical experts. Video

technology can be used in this context to recognise users’ activities. Nait-Charif and McKenna

[Nait-Charif and McKenna, 2004] have introduced a method to recognize activity by tracking

the user’s position using an overhead camera. They tracked a person using an ellipse and they

infer the ’unusual inactivity‘ of a person when the targeted person is detected as inactive out-

side a normal zone of inactivity like sofa. Diet is also an important factor affecting health. Kim

et al. [Kim et al., 2010] have proposed a design concept of an image-based dietary assessment

tool implemented in a mobile phone. Food images are recorded using a built-in camera on a

mobile phone and sent to a server where the portion size of the meal is estimated (fig.2.22).

This information is subsequently used to keep personal dietary records as a means of monitor-

ing energy and nutrient intakes. However many issues are not addressed in this work and the

images recording step is very constrained as many recommendations are done to the users:

- full image acquisition: foods should be captured large enough and around the center area in

the image so that they can easily be recognized during analysis.

- Highlight and shadow condition: Highlights and shadows hinder the automatic analysis by

making the recognition of food areas difficult.

- Spatial consistency: When several foods exist in the images, keeping them at the same po-
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Figure 2.22: Overview of an image-based dietary assessment system in a server-client architecture

[Kim et al., 2010].

sition helps the analysis part to automatically recognize foods in different images of the same

eating occasion.

Second, users are very involved in the process of recognition as they are engaged to confirm

and adjust the food tags in case that the analysis results contain errors.

Currently fall detection is a well researched topic and sensor based solutions are available

and commercialized. The majority of such solutions are based on accelerometers, but one of

the drawbacks of these systems is that users always need to wear the sensor. The system will

not work if the user forgets to wear the device. Alternative solutions are suggested, such as

passive fall detection which uses floor vibration sensors (fig.2.23), sound [Alwan et al., 2006]

or video based monitoring [Foroughi et al., 2008]. In [Foroughi et al., 2008], the authors uses

Neural Network for motion classification but still they recognize short actions (e.g. sit down)

and they do not deal with complex behaviors involving temporal relation.

In [Biswas et al., 2010a] the authors discuss an approach toward building a system for as-

sisting people with dementia in their home. They use the concept of micro-context which

is information about objects and activities in a smart space, the information are generated

through sensors (e.g. RFID, accelerometers) in the ambient environment. In further work

[Biswasa et al., 2011], the authors present a design of a prototype to deploy a sensor network

for obtaining micro-context information. The sensors incorporated in the network are: pressure

sensors, RF Tags, Reed switches, acoustic, motion and inertial sensors. For activity recognition,
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Figure 2.23: Schematic Representation of the Working Principle of the Floor Vibration Based Fall Detec-

tor [Alwan et al., 2006].

the authors adopt Dynamic Bayesian Networks to infer high level activities.

In [Tolstikov et al., 2008] the authors have worked on activity recognition and assistance

of activities of daily living (ADLs) of elderly. The approach relies on multi-modal information

fusion and primitive activity recognition at the low level. They have choosen the model of the

Dynamic Bayesian Network (DBN) for the detection of activities. However, they only have been

dealing with primitive activities which are very short in duration and they have not addressed

high level activity recognition.

The information related to activity, physiological data and diet detected by the systems

described above can be subsequently fed back to users to promote health behaviour changes or

sent to carers. These technologies can be part of a mechanism to support self-management of

people suffering from chronic problems such as cognitive deficiency.

Many health care applications are typically based on solutions employing sensors either

embedded in the environment or body worn. The most widely used sensors for health care

applications are reported in Table 2.3, along with their domains of application. To reach the

level of analysis required for health care applications (e.g recognising activity), a large network

of embedded sensors is generally required, therefore systems are usually costly to maintain, are

relatively obtrusive (e.g. sensors set up on every cupboard door) and are highly sensitive to

the performance of the sensors. Another approach is to use body worn sensors, however, it is

recognised that user compliance with wearable systems is poor.

Recently a number of researchers and companies have been looking at developing solutions

based on video cameras and computer vision approaches. A monitoring system based on video

cameras has potential advantages. In principle a single camera in a room could pick up most of

the activities performed in the room and, consequently, could replace a large number of sensors.

Remarkably, the last five years have shown a large interest in video based solutions. One
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Sensor Applications domains Embedded/Body worn

Motion detector Fall detection, Activity monitoring, Security Embedded

Door open Activity monitoring, Security Embedded

Electrical appliance Activity monitoring, Safety Embedded

Microphone Fall detection Embedded

Accelerometer Fall detection, Activity monitoring Body worn

RFID Activity monitoring Body worn/Embedded

Temperature Safety Embedded

Smoke sensor Safety Embedded

Camera Fall detection, Activity monitoring, Security, Health care Embedded

Table 2.3: Commonly used sensors and their domains of application.

of the major reasons for this gain of interest is the cost of video cameras. The price of video

cameras has drastically lowered within the last decade and good quality video cameras are

now available at very low cost. Another important factor in favour of video technology is the

maturity of computer vision based technologies. Latest research in computer vision, motivated

by needs in domains such as security and surveillance, provides new means of interpreting rich

information provided by video cameras.

2.2.2 Discussion and challenges

Many advances have been done for automatic monitoring for the health care domain. How-

ever some issues are still to be addressed fully such as dealing with occlusions in environments

filled with furniture and various objects. Hardware solutions to this problem include the use

of a overhead camera. Alternatively, the solution proposed in [Chen et al., 2007] makes use of

multi-views of the scene by combining features from multiple cameras covering the same area.

Another challenge to be addressed is the handling of uncertainty of the recognition of activ-

ities.

Another challenge to be addressed is the multi-occupancy of the accommodation. While

most health care applications are targeted for people living alone, they are still likely to receive

visitors, therefore algorithms for identity recognition (e.g. face recognition) and tracking of

multiple persons should be included in health care systems.

2.2.3 Acceptability and Privacy

Little evaluation research exists on user acceptance of automatic monitoring systems. There

are only few studies that investigate elderly perception of these technologies or other home-
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based technological applications. One of these studies that addresses this concept has been

conducted by Vincent et al. [Vincent et al., 2002] who have examined the application of en-

vironmental control systems in the homes of users and nurses and concluded that the use

of remote control by people with moderate cognitive impairments was difficult, while verbal

reminders were greatly appreciated. Demiris et al. [Demiris et al., 2001] have investigated

elderly perception of monitoring technology and found that the respondents have an overall

positive attitude toward the use of these technologies. The findings from this study indicate

that privacy can be a barrier for elderly to adopt these technologies; however their perception

of their need for the technology may override their own privacy concerns.

Marquis-Faulkes et al. [Marquis-Faulkes et al., 2005] have presented a qualitative user re-

quirement study for the use of video technology for activity monitoring. Four focus groups were

conducted with a total of 37 participants. Three groups were composed of elderly with different

levels of dependence and the last group comprised sheltered housing wardens. One outcome

of the study was that the participants were generally satisfied to have a video based monitoring

device provided that the video footage was analysed only by computer and that no one would

actually watch them. The participants in the user group with the highest level of independence

expressed concerns about carers having access to too much information about their activities

but were in favour of a system that would alert carers in case of fall or detection of abnormal

activity.

Turgeon Londei et al. [Londei et al., 2009] have explored the receptivity and requirements

of elderly regarding the introduction of an intelligent video monitoring system in Canada. Inter-

views were conducted with 25 elderly with a history of falls. Both qualitative and quantitative

data was reported and analysed. The perception towards video monitoring was generally good

with 96% of the participants at least partially favorable to intelligent video monitoring system

and 88% accepted the sending of an image to a designated carer.

2.3 Conclusions

Automatic activity recognition is a very important and active area of research. In this chap-

ter, we have discussed many approaches for event detection which are mainly divided in two

categories probabilistic approaches and deterministic description-based approaches. The main

advantage of the probabilistic approaches is the convenient mechanism of probability reason-

ing which allow handling the uncertainties for more accurate recognition. But these approaches

are limited when addressing high level activity detection. In the other hand, description-based

approaches are suitable for recognizing high level activities which can be hierarchically de-

scribed using sub-event with sequential and/or concurrent temporal relations. However, these

approaches suffer from a lack of a convenient mechanism to deal with noisy data.
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In this work, our goal is to take advantage of the two approaches for event recognition:

building an approach which recognize complex activities and which is able to deal with the

uncertainties of recognition. Mainly we aim at :

¥ explicit representation of the event models.

¥ handling low level uncertainty for an accurate detection of primitive events.

¥ handling high level uncertainty by adopting an appropriate high event inference formal-

ism to probabilistically detect the interesting activities.

¥ apply the proposed approach in health care monitoring to detect daily living activities of

elderly suffering of dementia and help clinicians to detect early symptoms of illness.



3

ACTIVITY RECOGNITION FRAMEWORK:

OVERVIEW

3.1 Introduction

Activity recognition is an active research domain. The goal of human activity recognition

is to provide accurate information about the behavior of tracked objects observed in a scene.

As seen in chapter 2, the activity recognition problem has been treated with probabilistic ap-

proaches [Oliver et al., 2002],[Nevatia et al., 2004], [Chen and Zhang, 2007] and description-

based approaches [Vu et al., 2003a], [Ghanem et al., 2004], [Ryoo and Aggarwal, 2010]. Our

goal is to propose a framework that takes the advantages of each approach for a more reliable

recognition. The objectives are presented in section 3.2, the terminology is presented in section

3.3. Section 3.4 presents the application domains. Thesis hypotheses are presented in section

3.5. An overview of the proposed cognitive vision approach for activity recognition is described

in section 3.6 and finally, the conclusion is presented in section 3.7.

43
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3.2 Objectives

The goal of this work is to propose an approach for activity recognition which is able to

manage the uncertainty of the recognition and to handle noisy data. Uncertainty exists in

many steps during the activity recognition process and can lead to the mis-detection of the

activities of interest or can lead to errors in the activity detection decision thus an approach

to characterize the uncertainty and provide the appropriate methodology and the conceptual

basis to deal with it is more than needed. The proposed approach takes the advantages of

a description-based approach to model and recognize complex events with complex temporal

relationships and takes the advantages of probabilistic approaches to handle the uncertainty of

the low-level data and propagate the probabilistic reasoning at the high level of recognition.

For an application point of view, the proposed work have been mainly applied on health care

applications to monitor elderly and people with dementia especially with Alzheimer disease.

In order to validate the generality of the proposed approach, it has been also tested on other

public and real world video data sets.

3.3 Terminology

In the context of this thesis and before going into details, several concepts must be appro-

priately defined.

¥ Uncertainty: There is neither a commonly shared terminology nor agreement on a generic

typology of uncertainties in the litterature, as uncertainty can be interpreted differently

depending on the discipline and context where it is applied. Typical definitions of uncer-

tainty found in the literature include:

- In statistics, the estimated amount or percentage by which an observed or calculated

value may differ from the true value.

- Incomplete information about a particular subject [Ascough et al., 2008]

- Lack of confidence in knowledge related to a specific question [Sigel et al., 2010]

- Any deviation from the unachievable ideal of completely deterministic knowledge of the rel-

evant system [Walker et al., 2003]

- Definitions of uncertainty vary from any departure from the unachievable ideal of complete

determinism, to the degree of confidence a person has about the specific outcome of an event

or action [Warmink et al., 2010]

- A situation of inadequate information which can be of three sorts: inexactness, unreliability

and border with ignorance [Funtowicz and Ravetz, 1990].

For activity recognition, uncertainty can be mainly classified in three types :
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(1) Observation uncertainty results for instance from a wrong estimation of object loca-

tion in the video due to occlusion and poor imaging conditions, uncertainty due to lack

of knowledge. In the litterature, it is also called statistical uncertainty which is any un-

certainty which can be characterized in probabilities [Warmink et al., 2010]. The most

obvious example of statistical uncertainty is the measurement uncertainty associated to

all data. Measurement uncertainty stems from the fact that measurement can practically

never precisely represent the ‘true’ value of that which is being measured. Measurement

uncertainty arises from measurement errors (e.g. type of instrument used, quality of cali-

bration, data reading/logging, etc.), type of data recorded and length of record, the type

of data processing and the method of data representation.

(2) Semantic or logic uncertainty uncertainty is introduced through the specification or

the modelling of reality. It exists in the interpretation of event occurrences due to the

fuzziness inherent in semantic concepts used to specify event models such as ‘close to’ or

‘inside zone’, the definition of the context (e.g. the borders of the zones).

(3) Decision rule uncertainty arises whenever there is ambiguity in the decision. It im-

plies that there is a range of possible outcomes, but the mechanisms leading to these

outcomes do not enable the definition of the probability of any particular outcome.

¥ Reliability can be defined as the confidence or degree of trust we have on a measurement.

In this general sense, reliability measures can be interpreted, modeled and calculated

depending on the attributes we want to measure or the detector that we want to evaluate.

The detector can be a sensor (e.g. camera) or a video processing task (e.g. classifier,

tracker, event detector).

¥ Likelihood is the probability or chance that something happens. In statistics, a likelihood

function (often simply called the likelihood) is a function of the parameters of a statis-

tical model, defined as follows: The likelihood of a hypothesis (H) after conducting an

experiment or gathering data (D) is the probability of the data given the hypothesis, i.e.

L(H|D) = P(D|H).

¥ Video sequence: temporal sequence of images which are generated by a video camera.

¥ Scene: the physical space where a real world event occurs and which can be observed by

one or several video cameras. A scene without any physical object of interest is called an

empty scene.

¥ Physical object: a real world object in the scene. There are two types of physical objects:

mobile object and contextual object.
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¥ Contextual object: a physical object attached to the scene. The contextual object is usu-

ally static and whenever in motion, its motion can be foreseen using a priori information.

For instance, it can be in motion such as a door, an elevator, a fountain, a tree or displace-

able (by a human being) such as a chair, a luggage.

¥ Ground truth data: data given by a human operator and which describe real world ex-

pected results (e.g. physical objects, events) at the output of a video understanding algo-

rithm. These data are supposed to be unique and corresponding to end user requirements

even if in many cases, this information may contain errors (annotation bias).

3.4 Application Domains

The proposed approach is mainly applied and evaluated on health care applications. For

the sake of generality, the proposed approach is also tested on other public real-world datasets.

¥ GERHOME: The GERHOME1 project consists in monitoring elderly observed in an exper-

imental laboratory during 4 hours. The objective of GERHOME project is to develop, try

out and certify technical solutions supporting the assistance services for enhancing inde-

pendence of the elderly at home, by using intelligent technologies for house automation

to ensure autonomy, comfort of life, security, monitoring and assistance to place of resi-

dence. The video dataset is available on

www-sop.inria.fr/members/Francois.Bremond/topicsText/gerhome Project.html.

¥ SWEET-HOME: SWEET-HOME2 is a ANR TECSAN French project on long-term monitor-

ing of elderly people at Hospital with Nice City Hospital, MICA Center in Hanoi, Vietnam,

SMILE Lab at National Cheng Kung University, Taiwan and National Cheng Kung Univer-

sity Hospital. SWEET-HOME project aims at building an innovative framework for mod-

elling activities of daily living (ADLs) at home. These activities can help assessing elderly

disease (e.g. Alzheimer, depression, apathy) evolution or detecting precursors such as un-

balanced walking, speed, walked distance, psychomotor slowness, frequent sighing and

frowning, social withdrawal with a result of increasing indoor hours. The SWEET-HOME

project focuses on two aspects related to Alzheimer disease: (1) to assess the initiative

ability of patient and whether the patient is involved in goal directed behaviours (2) to

assess walking disorders and potential risk of falls. In this focus, the goal is to collect

and combine multi-sensor (audio-video) information to detect activities and assess be-

havioural trends to provide user services at different levels. In this project experimental

rooms are used in Nice-Cimiez Hospital for monitoring Alzheimer patients.

1http ://gerhome.cstb.fr/en/home
2http://www-sop.inria.fr/pulsar/projects/Sweet-Home/SweetHomeProject.html
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The proposed approach was also tested on other public real-world datasets:

¥ ETISEO: The ETISEO3 project seeks to work out a new structure contributing to an in-

crease in the evaluation of video scene understanding ; with the active participation of

industrialists and many research laboratories, such as French, European and International

partners. ETISEO project focuses on the treatment and interpretation of videos involving

pedestrians and/or vehicles, indoors or outdoors, obtained from fixed cameras.

3.5 Thesis Hypotheses

This thesis assume the following hypotheses:

¥ Available Detected and Tracked Objects: In this work, we assume that tracked objects

are available. We also assume that the tracking algorithm provides a measurement (i.e.

trajectory probability) which is used during the event recognition process.

¥ Fixed Video Camera: In this work, we assume the use of fixed video cameras. The video

cameras are fixed on a wall and without pan, tilt or zoom and without any restriction on

the camera orientation. We assume availability of calibration to compute the transforma-

tion of the 2D image referential point to a 3D scene referential point.

¥ Scene Context: In this work, we assume the use of scene context. Scene context con-

tains both geometric and semantic description of the specific zones, walls and equipments

located in the observed scene.

¥ Event models: We assume the use of a set of event models needed to detect the activities

of interest.

3.6 Architecture of the Proposed Activity Recognition Approach

Considerable researches have been devoted towards activity recognition [Fouhey et al., 2012],

[Ryoo and Aggarwal, 2010], [Delaitre et al., 2012]. The design of generic and robust video un-

derstanding techniques is still an open problem. Providing robust information and recognizing

complex activities from noisy videos can be a very complex problem, as several issues of differ-

ent nature can complicate this task. For instance, these issues can be associated to the quality of

the analysed video (e.g. bad contrast, illumination changes), the complexity of the scene (e.g.

3http ://www-sop.inria.fr/orion/ETISEO/.
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Figure 3.1: Overview of the Activity Recognition Framework.

cluttered scene, numerous mobile objects moving in the scene), or the interactions of the mo-

bile objects with the scene and with other mobile objects (e.g. static and dynamic occlusion),

among many other issues.

All these factors can induce to errors a video understanding approach due to the ambiguity

of the visual evidence. Therefore, in order to achieve a robust video understanding process,

it is necessary to handle the uncertainty and imprecision of low-level data and of the high

semantic concepts. For coping with this problem, a new activity understanding framework for

video event recognition is proposed. The proposed approach combine logic and probabilistic

reasoning to handle the uncertainty of event recognition.

The proposed approach is a component of a video understanding framework (fig.3.1) which

is the successor of the framework described in [Avanzi et al., 2005]. This framework is com-

posed of:

¥ Video Analysis: detects, tracks mobile objects as they move in the scene (see section

3.6.1).

¥ Event Recognition: recognizes a set of predefined activities (see section 3.6.2).
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3.6.1 Video Analysis

The activity recognition framework follows a bottom-up process to obtain high-level tem-

poral information, starting from low-level image data. The first task of this framework is the

segmentation task which is applied to each coming image to detect motion in the scene, obtain-

ing a set of moving regions (called blobs) represented as the bounding boxes enclosing them.

The algorithm segments moving pixels in the video into a binary image by subtracting the cur-

rent image with the reference image. The reference image is updated along the time to take

into account changes in the scene (e.g. light, object displacement, shadows). A Calibration task

is used to compute the transformation of a 2D image referential point to a 3D scene referential

point (fig.6.2). The calibration tool allows to obtain the calibration matrix which is used to

compute the 3D position of mobile objects. The 3D position of the mobile object is computed

from the detected blob and the calibration matrix associated with the video camera by consid-

ering that the bottom of the 3D mobile object is on floor level. When the blob representing

the person is not completly visible (i.e. occluded by a specified contextual object), the person

is supposed to be just behind the object. A blob merging task consists in assembling small 2D

blobs to improve the classification task. The classification task uses the obtained 2D blobs, the

calibration matrix of the camera and predefined 3D models of human to classify the mobile

blobs. It adds a class label to each moving blob (e.g. person, vehicle). A set of 3D features such

as 3D position, width and height are computed for each blob. A unique identifier is associated

to each new classified blob by using the frame to frame tracker. A long term tracker allow to

maintain this identifier throughout the whole video.

3.6.2 Activity Recognition Approach

In this thesis, the proposed event recognition approach is based on the constraint-based

approach described in [Vu et al., 2003a]. This approach allows to detect in real-time which

event is happening from the video stream of observed mobile objects (e.g. persons, vehicle)

tracked by a vision module at each instant.

A major drawback of this algorithm is the deterministic aspect of event recognition which

can lead to miss-detection of activities of interest for real-world videos. The event description

formalism used in this approach has shown it success to describe high level activities but a

major drawback is that this formalism does not handle the imperfect low-levels.

Handling the uncertainty of recognition is an important aspect of the recognition. Thus,

in this thesis, we propose the management of uncertainty for video activity recognition. Fig-

ure 3.3 summarizes the main contributions proposed in this thesis for a reliable video activity

recognition: (i) At the level of event modeling, we propose a set of event models for health

care monitoring (see section 4.6, chapter 4) and we also propose an approach to address the
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Figure 3.2: 3D geometrical information.

noise arising from low-level video analysis (see section 4.5, chapter 4). (ii) At the level of 3D

information modeling , we have defined a new 3D model of the scene and 3D models of the

mobile objects present in the observed scene, these 3D models are used during the event recog-

nition process. (iii) At the level of Event recognition process, we first propose to formalize the

probabilistic recognition of events by the mean of Bayesian probability theory, the Bayesian

framework provides a strong tool to reason under uncertainty (see sections, 5.3 and 5.5). We

second propose a probabilistic verification of the constraints (see section 5.6, chapter 5). Third,

we present the proposed strategies to take into account the uncertainty inherent at the low-level

observation.

3.6.2.1 Event Description Approach

We propose a generic event representation formalism that is capable to represent all types

of events used for the automatic video recognition and that is able to manage the uncertainty

of recognition at the event modeling level. This formalism contains the Event description Lan-
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Figure 3.3: The proposed Contributions for Activity Recognition framework.

guage described in [Vu et al., 2003a] which is declarative and intuitive (in natural terms), so

that the experts of the application domain can easily define and modify it. The main limitation

of this language is the lack of mechanism to handle the uncertainty of recognition. For this, we

proposed 2 extensions, mainly, we propose the notion of utility to deal with missed observations

and we propose a specific relation in the representation of the event to manage the tracking

identifier maintenance. More details are given in sections 4.5.1 and 4.5.2, chapter 4.

3.6.2.2 Event Description Language

The event description language uses a declarative representation of events. An ontology

is defined [Vu et al., 2003a]. In this ontology, the physical objects (e.g. person, vehicle) are

organized hierarchically (e.g. a car is defined as a sub-type of vehicle). We extend this ontology

to be able to recognize all the event models for our activity monitoring (i.e. health care activity

monitoring). Four types of event are defined [Vu et al., 2003a]: primitive state, composite

state, primitive event and composite event (definitions and more details are available in chapter

4).

To model an event E, we need the set of physical objects (e.g. person, table) involved in the
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Figure 3.4: Event model structure.

event, the set of sub-events composing E and the set of the constraints on these physical objects

and sub-events. A model of an event E is defined (figure. 3.4 and 3.5) based on :

Figure 3.5: Description of the primitive state model ‘Inside-zone’.

¥ Physical objects: is a non-empty set of non-temporal variables called physical object

variables. The value of these variables correspond to real physical objects detected by

the vision module. These objects are defined thanks to their attributes such as the type of

object (i.e. person, table).

¥ Components: is a set of temporal variables which value correspond to the sub-events

composing the event E.

¥ Forbidden Components: the set of variables corresponding to all event instances that are

not allowed to be recognized during the recognition of the event E.
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Figure 3.6: Illustration event recognition process: Scene context, alarms and 3D visualisation of the

tracked persons and recognized events.

¥ Constraints: set of constraints between the physical objects and/or the components in-

cluding symbolic, logical, spatial and temporal constraints.

¥ Alarm: The alarm information describes the importance of the scenario model in terms

of emergency. Three values are possible, from less urgent to more urgent: NOTURGENT,

URGENT, VERYURGENT. The alarm level can be used to filter the recognized events, for

displaying only important events to the user.

3.6.2.3 Event Recognition Algorithm

The proposed video event recognition approach takes as input video streams and a priori

knowledge. A priori knowledge consists of 3D geometrical information (i.e. camera calibration,

empty scene) and pre-defined event models. The proposed approach gives as outputs, a set of

XML files, alarms and also a 3D visualisation of the tracked persons and recognized events

(figure. 3.6) .

For the recognition, the algorithm distinguishes two types of events: primitive state and

composite event. The primitive states do not contain any sub-event (e.g. person close to a
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machine). The composite events are composed of at least two sub-event.

The first step of the event recognition process is to recognize all the possible primitive states

(most of these primitive states are based on vision primitives) by instantiating all the models

with the detected objects (e.g. instantiating the event model Person-inside-Zone (taking as

input one person and one zone) for all the detected mobile objects and for all the zones of the

context). The second step consists in recognizing complex events according to the event model

tree and the simple events previously recognized (figure 3.7). The final step checks whether the

recognized event at time t has been already recognized previously to update the event end-time

or create a new event instance.

In this thesis, we propose a formal probabilistic approach to reason under uncertainty for

the recognition of primitive states and composite events. Probability is often considered as the

best-known and most widely used formalism for quantitatively characterizing uncertainty. We

propose to compute the conditional probability that an event B occur given the knowledge that

an event A has already occurred. This probability is written P(B|A). An important method for

calculating conditional probabilities is given by Bayes’s theorem. Bayesian probability theory is

one of the major theoretical and practical framework for reasoning and decision making under

uncertainty, using probability.

3.6.2.4 Probabilistic Primitive State Recognition

In this thesis, we propose to compute the conditional probability of the recognition of the

event instance e belonging to an event model Ω given that the mobile physical objects in the

model Ω have been observed and given that the constraints in the model Ω are satisfied by the

observation O. More details are given in section 5.3.2, chapter 5.

3.6.2.5 Probabilistic Complex Event Recognition

The probabilistic recognition of complex event is defined as a hierarchical Bayesian infer-

ence. The objective is to recognize the complex event e given an observation O. What we want

to calculate here is :

‘The probability to recognize a complex event instance e belonging to an event model Ω given

that the components (sub-events) defined through the model Ω are observed and the con-

straints in the model Ω are satisfied by the observation’. More details are given in section 5.5,

chapter 5.

3.6.2.6 Probabilistic Constraint Verification

In this work, we consider the spatial constraints related to the mobile object speed, position

and closeness to a given contextual objects (e.g. person near TV), the constraints related to
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Figure 3.7: Event Recognition Process.

the posture (e.g. person is sitting) and we use the Allen[Allen, 1983] temporal constraints. We

also use quantitative temporal relation (i.e. duration).

¥ Spatial constraints: A main problem for spatial constraints is the imprecision and uncer-

tainty in the detection of the location of mobile objects due to low level detection errors

(e.g. reflections, shadows or occlusions). Thus the verification of the constraint may fail.

A solution to cope with this problem is to propose a probabilistic verification of the con-

straint. In the process of spatial constraint verification, we take into account:

(i) the geometrical uncertainty which is related to the verification of the constraint (e.g.

verifying the spatial constraint ‘person-inside-zone’ consists in the geometrical computa-

tion whether a point representing the person position is inside a polygon representing

the zone). The first step consists in computing the distance of the person to the contex-

tual objects (i.e. zone), the second step is to find a probability distribution function (PDF)

that maximizes the value of probability when the person is inside the zone (fig.3.8). More

details are given in section 5.6.1.1, chapter 5.
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Figure 3.8: The probability computation of the spatial constraint ‘inside zone’ is distance-based. The

probability decreases when the distance of the mobile object (e.g. person) to the zone z is big.

(ii) the uncertainty of the attribute values: due to noisy data and low-level algorithm errors.

This type of uncertainty handling is described in chapter 5 by proposing a new dynamic

model for the re-estimation of the attribute values to deal with noisy data..

¥ Temporal constraints: to improve the temporal constraint verification process, we add

(i) the notion of ‘tolerance’ to compare between the temporal intervals. We propose also

(ii) to compute the probability that a constraint is verified. Table 3.1 illustrates six of

the thirteen Allen temporal predicates. We take the temporal constraint ‘A before B’ as

Predicat Description

before(a, b) aend < bstart

meets(a, b) aend = bstart

overlaps(a, b) astart < bstart < aend

starts(a, b) astart = bstart and aend < bend

during(a, b) astart > bstart and aend < bend

finishes(a, b) astart > bstart and aend = bend

Table 3.1: Examples of Temporal Allen Predicates.

an example to illustrate how we propose to improve constraint verification. More details
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about the other temporal constraints (e.g. meet, overlap) are given in chapter 5, section

5.6. For the verification of the temporal constraint ‘A before B’ we need to find a time

interval [astart , aend] where the event A starts and ends and an event B ([bstart , bend])

starts after A that verify: aend < bstart.

To compute the probability of this temporal constraint, we have defined a function F :

([astart, aend] × [bstart, bend]) → [0, 1] that maximizes the probability value when the

difference ∆t between the two time instants aend and bstart is big. More details are

given in section 5.6.3, chapter 5.

3.6.3 Dealing with low-level processing Noise

One of the major challenges to deal with, is the management of noise from low-level pro-

cessing . This noise, is one of the first source of uncertainty in the event recognition process. In

this section, we present the proposed strategies to take into account the uncertainty inherent in

low level observations.

3.6.3.1 Visual Reliability

One of the first notion in the litterature to qualify uncertainty is the notion of reliability.

In this thesis, we define the notion of ‘visual reliability’. The visual reliability is intended to

quantify how much the object can be seen from the camera point of view. The objective is to

find a measure that gives a minimal value when the object is not visible, and a maximal value

when the object is totally visible. We define the visual reliability for 2D and 3D attributes.

3.6.3.2 Dynamic Model for temporal attribute filtering

Observations in real world video sequences can be corrupted by noise, thus our goal is to

estimate more accurately an attribute value given its observed value. We propose a dynamic

linear model for reliability computing and updating the attributes value a and confidence based

on a temporal history of the previous values (see chapter 5 for more details). We think that

tacking into account an history of the previous values and not just the previous one help us to

a better estimation. This process which follows the same strategy than a kalman filter works in

two steps:

- The first step (1) consists in computing the expected value aexp of an attribute a at the current

instant tc given the estimated value of a and its velocity at the previous time tp.

- The second step (2) is to compute the estimated value aest of the attribute based on the previous

one.
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Figure 3.9: An utility coefficient is associated to each sub-event of the event model. The primitive state

‘close-to’ is associated with an utility equal to 1, that is mean that this primitive state is highly required to

recognize the composite state ‘Person-interacts-with-chair’. The primitive state ‘inside-zone’is associated

with an utility equal to 0.8.

- The final value ā of the attribute is the mean between the expected and the estimated values

of the attribute weighted by the expected and estimated reliability values

3.6.3.3 Missed Observation

Occlusion and poor imaging conditions (e.g. dark, shadowed areas of the scene) are com-

mon conditions that prevent us from observing the occurrence of some events. When we miss

the recognition of one of the sub-events the whole event is missed. To prevent from this, we

propose a notion of utility in the definition of the event model by associating a coefficient to

each sub-event (fig. 3.9). Utility which is defined by a human expert expresses the importance

or priority of sub-events for the recognition of the whole event. Its range is in the interval ]0,1],

higher is the utility value higher is the importance of the sub-event in the recognition of the

whole event. The value 1 means that the sub-event is required for the recognition.

3.6.3.4 Dealing with the Tracking Identifier

One of the low-level errors which deeply affects the performance of the recognition is the

changes of the tracking identifier. Identity maintenance is a primary source of uncertainty for

activity recognition, it affects in particular the recognition of long-term events.

¥ At the Event Modeling step:

Identity maintenance is necessary when there exist multiple identities that actually refer

to the same mobile object. It is caused by lack of visual information (appearance, shape,

etc.) to compute the correspondence between objects. Our approach to solve this issue at
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Figure 3.10: Illustration of the definition of the ‘equal’ relation. The relation equal(p1, p2) verify

whether the identifiers of the two objects p1 and p2 refer to the same object.

the level of event modeling is to use specific relation in the representation of the event.

More precisely, the identification whether two objects A and B refer to the same object is

represented by the relation equal(A, B) (see section 4.5.2, chapter 4).

The evaluation of this relation is done using appearance matching (e.g. 3D height, 3D

width, etc.). Different identifying contextual cues about identities can be discussed. These

cues are based on the individual belongings, closed place activity, knowledge and appear-

ance as pointed in [Tran and Davis, 2008].

¥ At the Event Recognition step

The recognition of an event over time needs maintaining the same identifier for each mo-

bile object when recognizing its sub-events, otherwise it will be considered as a different

object. To deal with this tracking error at the event detection level, we propose the use of

the recognition history of an event e, {e1, ..., et−2, et−1}: the recognized events over time

are stored in a buffer and for each time t, and for each detected event e, we propose to

look at the change of its physical object identifier. If the identifier of a physical object

changes suddenly and/or for a short period of time, we do not consider the new identifier

and we maintain the last identifier of the physical object.

3.7 Conclusion

We have presented in this chapter an overview of the proposed approach to recognize hu-

man activities. Our approach consists in combining logic and probabilistic approaches for event

recognition. We have presented the different approaches proposed to manage the uncertainty

of recognition during the event modeling step and the event detection step. We have also
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presented the approaches proposed to manage the uncertainty of low-level data. In the next

chapters, the proposed approach for activity recognition is described in details: chapter 4 de-

scribes the proposed activity modeling and chapter 5 describes the approach proposed for the

probabilistic event recognition. Evaluation is detailed in chapter 6.
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EVENT MODELING APPROACH

4.1 Introduction

Event modeling is an important step of event recognition process. The aim consists in mod-

eling all the knowledge needed by the activity recognition algorithm to detect the activities of

interest occurring in the scene. In this work, we propose to use and extend the event description

language described in [Vu et al., 2003b] to be able to define all the event models of interest.

We propose also to deal with imperfect low-levels during the event modeling.

In this chapter, we introduce first in sections 4.2 and 4.3 the video event ontology proposed

in this thesis, and the hierarchical generic event model in section 4.4. We present the used 3D

information in section 4.5. In section 4.6, we discuss the proposed approach for the verifica-

tion of the constraints used in the event modeling. In section 4.7, we present the uncertainty

representation in the event models and in section 4.8, we present the proposed event models

elaborated for health care applications and finally we conclude the chapter in section 4.9.

4.2 Video Event Ontology

An ontology is the set of all the concepts and relations between the concepts shared by a

community in a given domain. An ontology is useful for video interpretation. First, it enables

the expert to clearly understand the term used for event modeling. Moreover, the ontology is

useful for the system evaluation. It enables to understand exactly the type of events recognized

by the system.

61
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In this thesis we propose an ontology for health care monitoring based on the work pro-

posed in [Vu et al., 2003a], [Zouba et al., 2009]. This ontology contains a set of physical ob-

jects (mobile objects and contextual objects) and a set of states and events which are interesting

to recognize. We describe below the different concepts of this ontology. First, we present the

general concepts as described in [Vu et al., 2003a], [Zouba et al., 2009] and then we detail the

proposed extensions.

4.2.1 Concepts for Describing Physical objects

The physical object concept is a fundamental concept of the proposed ontology. Physical

objects are all the real world objects observed by the camera sensors. The physical objects are

characterized by their attributes which are essential for the recognition. We distinguish two

types of physical objects corresponding to their nature and shape.

¥ Mobile object : is a physical object which is moving in the scene (e.g. person, group of

person, animals, vehicle,...).

¥ Contextual object : is a physical object which is static or fixed in the scene (e.g. chair,

table, tree,...).

4.2.2 Concepts for Describing Activities

The following concepts are defined in the event ontology described in [Vu et al., 2003a].

Four types of events have been designed. The first distinction lies on the temporal aspect of

events : we distinguish states and events. A state is a spatio-temporal property characterizing

one or several mobile objects at time t or a stable situation over a time interval. An event is

one or several state transitions at two successive time points or in a time interval. The second

distinction lies on the complexity aspect : a state/event can be primitive or composite.

¥ A state describes a stable situation in time characterizing one or several physical objects.

¥ An event is an activity containing at least a change of state value between two consecutive

times (e.g. a person enters a zone of interest (kitchen): he/she is outside the zone and

then inside).

¥ A primitive state (e.g. a person is located inside a zone) corresponds to a spatio/temporal

property directly computed by the vision component.

¥ A composite state is a combination of primitive states.

¥ A primitive event corresponds to a change of primitive state value.

¥ A composite event is a combination of primitive/composite states/events.
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4.2.3 Relation between Concepts

Many relations between all these concepts can be defined. The relations between the con-

cepts for activities (i.e. states and events) and the physical objects express how the events are

inferred from the physical objects and their attributes. The spatial relation includes the distance

and geometrical relations. The temporal relations include Allen’s interval algebra [Allen, 1983]

and time duration. The logical relations includes ‘and’, ‘or’, conditional (‘if ... then ...’).

4.3 Ontology for Health Care Monitoring

Aging disorders represent a major challenge for health care systems. Many efforts are cur-

rently undertaken to investigate on psycho-behavioural disorders. In this thesis, we propose

to investigate on the discorders of aging people with dementia especially with the Alzheimer’s

disease. To do that, we first need to define an ontology for health care monitoring. This on-

tology elaborated for health care monitoring contains a set of physical objects (mobile objects

and contextual objects) and a set of states and events. The ontology is designed to allow its re-

utilization and to take into account future extensions without a need to revise existing concepts

and definitions. We elaborate also in collaboration with clinician a number of criteria which

will be computed by the proposed system that allow to detect early symptoms of Alzheimer’s

disease. In the next sections, we first define the vocabulary used for health care monitoring,

then we present the different components of the ontology.

4.3.1 Health Care vocabulary

In this section, we present the definition of the vocabulary used for health care monitoring.

These definitions are used during the thesis.

¥ Activities of daily living (ADLs) generally refer to basic activities of personal self-care.

It consist of bathing, dressing, going to the toilet, transferring, continence, and feeding.

¥ Instrumental ADLs (IADLs) are associated with more complex tasks, they are the ac-

tivities often performed by a person who is living independently in a community setting

during the course of a normal day, such as using the telephone, shopping, food prepara-

tion, housekeeping, laundry, mode of transportation, responsibility for own medication,

and ability to handle finances.

¥ Alzheimer people (AD): are people with Alzheimer’s disease which is a progressive dis-

ease that destroys memory and other important mental functions. It causes a group of

brain disorders that results in the loss of intellectual and social skills. These changes are

severe enough to interfere with day-to-day life.
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¥ Mild Cognitive Impairment (MCI) is an intermediate stage between the expected cog-

nitive decline of normal aging and the more serious decline of dementia. It can involve

problems with memory, language, thinking and judgment that are greater than normal

age-related changes. MCI is often a precursor to AD and other forms of dementia. Per-

sons with MCI commonly have mild problems performing complex tasks. Nevertheless,

they generally maintain their independence with minimal assistance.

¥ Normal Control (NC): healthy person, aging normally which may forget things as well

but they will typically remember them later.

¥ Behavioral and psychological symptoms of dementia (BPSD) are frequently associ-

ated with cognitive deficits during the progression of Alzheimer disease (AD) and other

dementia. BPSD assessment is usually based on a structured interview, using subjective

input from either the caregiver and/or the patient.

¥ Mini Mental State Examination (MMSE) score is the most commonly used test for

complaints of memory problems. It is used by clinicians such as neuropsychologist to

help diagnose dementia and to help assess its progression and severity. The MMSE is a

series of questions and tests, each of which scores points if answered correctly. If every

answer is correct, a maximum score of 30 points is possible. The MMSE tests a number

of different mental abilities, including a person’s memory, attention and language.

¥ Neuropsychiatric Inventory (NPI) a test of assessing neuropsychiatric symptoms and

psychopathology of patients with Alzheimer’s disease and other neurodegenerative disor-

ders. The NPI originally examined 10 sub-domains of behavioral functioning: delusions,

hallucinations, agitation/aggression, dysphoria, anxiety, euphoria, apathy, disinhibition,

irritability/lability, and aberrant motor activity. A screening question is asked about each

sub-domain. If the responses to these questions indicate that the patient has problems

with a particular sub-domain of behavior, the caregiver is only then asked all the ques-

tions about that domain, rating the frequency of the symptoms on a 4-point scale, their

severity on a 3-point scale, and the distress the symptom causes them on a 5-point scale

[Cummings, 1997].

¥ Behavioural disorders include the following: delirious ideas, hallucinations, refusal

to cooperate, agitation, aggression, abnormal motor behaviour, disinhibition, shouting,

wake-sleep cycle disorders.

¥ Apathy is one of the most common psychological problems associated with dementia. Just

over half of all people with Alzheimer’s are emotionally blunted and lack motivation and

initiative. As the disease worsens, apathy often grows worse. Apathy is usually assessed in

clinical practice and research with the Neuropsychiatric Inventory (NPI) apathy domain.
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4.3.2 Physical Objects for Health Care Monitoring

We have used a set of physical objects defined in the ontology for monitoring elderly activ-

ities at home proposed in [Zouba et al., 2009]. We have extended this ontology for Alzheimer

people monitoring. A set of physical objects (fig. 4.1) and a set of state and event models

(see section 4.6) have been proposed to monitor older people and in particular Alzheimer at

hospital.

Figure 4.1 shows the physical object representation which is organized in a hierarchical

way from more general to more specific. The general physical object can be re-used for any

monitoring domain. More specific physical object can be re-used for health care monitoring in

particular Alzheimer people monitoring.

Figure 4.1: A graphical representation of physical objects organized in a hierarchical way. This hierarchy

is built from more general to more specific: contextual object and mobile object are sub-type of physical

object. In the same philosophy, equipment, zone and wall are sub-classes of contextual object.

4.3.3 Health Care Activities

The activity modeling has been done in close collaboration with clinicians. A strong effort

have been done in this step of modeling the activities of interest for the purpose to meet the

clinician requirements for patient monitoring. For medical needs, we have defined two clinical

scenarios to be executed by the participants. The overall aim of the clinical scenarios was to

enable the participants to undertake a set of daily tasks that could realistically be achieved in
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the setting of an observation room and at the same time provide objective information about

dementia symptoms. The clinical scenarios are intended to assess older people performance

in IADLs (Instrumental Activities of Daily Living) and in gait analysis tests (e.g., performing

a balance test). The first clinical scenario (S1) is elaborated to be executed by Alzheimer

disease AD participants and to be compared with normal control participants (i.e. healthy

older people). The second clinical scenario (S2) is elaborated to be executed by MCI ( Mild

Cognitive Impairment) participants and compared with normal control people. The activities

in scenario (S1) are less complex than for scenario (S2) as the participants recruited for scenario

(S1) are at an advanced stage of the illness and have more problems in memory and have more

difficulties to perform goal-directed activities.

Both scenarios were divided in three parts covering basic to more complex activities: (1)

Directed activities, (2) Semi-directed activities and (3) Undirected (‘free’) activities. Scenarios

(S1) and (S2) have difference at the level of semi-directed activities and they keep the same

content for directed activities and free activities.

¥ Directed activities (10 minutes duration): The aim of this part of the assessment is to

identify characteristics of gait and walk parameters in activities with limited implication

of cognitive capacities (table. 4.1). This part was based on short physical performance

and required the examiner, who remained in the room, to verbally direct the participant

to undertake various daily tasks. The examiner also scored the performance.

Balance testing

The examiner asks the participant to perform several physical exercises:

- Stand feet together side by side .

- Semi tandem stand, stand with the side of the heel of one foot touching the big toe of the

other foot

- Tandem stand, with the heel of one foot in front of and touching the toes of the other foot

Up and Go Exercise

Patient is asked to Walk through the room, from the opposite side of the video camera for 4

meters and then go back to the starting point.

Transfer Exercise: Repeated chair stands testing

The examiner asks the participant to make a first chair stand, from sit to stand position

without using his/ her arms. The examiner will then ask the participant to do the same action

5 times in a row.

Table 4.1: The clinical scenario: Description of directed activities.

¥ Semi-directed activities (20 minutes duration). The aim here is to determine the extent
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to which the participant could undertake a list of daily activities in a given order, after

having been given a set of instructions. Table 4.2 shows the semi-directed activities for

the first clinical scenario (S1). For the clinical scenario (S2), participants were assessed

in their ability to carry out a list of ten activities in a logical order respecting temporal

execution constraints within a time frame of 15 minutes (see table. 4.3).

Prior to leaving the room, the examiner described each of the activities and the location

and use of various objects needed to undertake the task. The examiner left the room

only after it was clear that the participant understood the task. The participant was

able to keep the instructions and refer to them at any point during the assessment. The

participant was also told that the examiner would be available for questions on the other

side of the door and that he/she could leave the room at any point should he/she choose

to do so. During the clinical scenario, an examiner located outside of the room monitored

the safety of the participants.

- Walk to the reading table and read something for 2 mn

- Walk to the coffee corner where the kettle is and make warm some water.

- Walk to the phone and compose this number: xxxxxx.

- Take the watering can and water the plant.

- Walk to the television and turn it on with the remote control.

- Walk to the reading table, take the playing cards and classify them by color (reds with reds,

blacks with blacks).

- Take the green ‘ABCD’ folder on the desk with the A, B, C, D sheets in it.

- Match the A, B, C, D sheets from the folder to one‘s dispersed all over the room; A with A,

etc...

- Put the ‘ABCD’ folder back on the desk.

- Get out of the room.

Table 4.2: The clinical scenario: Description of semi-directed activities of the first scenario (S1).

¥ Undirected (‘free’) activities (30 minutes duration): The aim here was to assess how the

participant spontaneously initiated activities and organized their time. Several items were

at the participant‘s disposal, including magazines, newspapers, a book of photos, drinks

(coffee, tea, fruit juice), plants, dominos, playing cards, TV and a telephone. During this

period the participant was informed that the telephone might ring 30 minutes after the

examiner had left the room and that the participant would be required to answer it. This

was the only instruction given to the participant. They were otherwise free to do as they
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- Read the newspaper

- Walk to the coffee corner where the kettle is and make warm some water.

- Water the plant.

- Answer the phone.

- Call the taxi.

- Prepare today’s medication.

- Make the check for the Electricity Company.

- Leave the room when you have finished all activities

- Watch the TV.

- Prepare a hot tea.

- Write a shopping list for lunch.

1. watch the TV before the phone call.

2. water the plant just before leaving the room.

3. call a taxi, which will arrive in 10 minutes and ask the driver to drive you to the market.

Table 4.3: The clinical scenario: Description of semi-directed activities of the second scenario (S2).

pleased for the duration of the time. The participant was also told that the examiner

would be available for questions on the other side of the door and that they could leave

the room at any point should they choose to do so.

Tables ( 4.4, 4.5 and 4.6) summarize the set of daily living activities proposed for health

care monitoring.

4.3.4 Visual Health Care Criterias

Patients with Alzheimer disease show cognitive decline commonly associated with psycho-

behavioural disorders like depression, apathy and motor behaviour disturbances. One of the

key clinical features of Alzheimer‘s disease (AD) is impairment in daily functioning. Patients

with mild cognitive impairment (MCI) also commonly have mild problems performing complex

tasks. However current evaluations of psycho-behavioural disorders are based on interviews

and battery of neuropsychological tests with the presence of a clinician. These evaluations

show limits of subjectivity (e.g., subjective interpretation of clinician at a date t).

The overall aim of this study is to demonstrate that it is possible using the proposed video

monitoring system to improve the evaluations of psycho-behavioural disorders and obtain a

quantifiable assessment of instrumental activities of daily living (IADLs) in Alzheimer people

(AD) and in MCI (mild cognitive impairment).
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Proposed Activities Description

Entering Room A person is entering the room.

Inside-zone A person is inside a zone.

Change-zone A person is changing his location from a place (i.e zone) to another.

Close-to A person is close to a contextual object (e.g. person close TV).

Interact-with-Equipment A person is close to an equipment, into the zone of use of this equipment.

Begin Balance Exercise A person entering the room and moving to the zone use of Balance exercise with a standing posture.

Balance Exercise Step I A person standing with feet stuck side by side.

Balance Exercise Step II A person standing with staggered and stuck feet.

Balance Exercise Step III A person standing with stuck feet, one foot before the other.

Up and go A person walk through the room for 4 meters and then go back to the starting point.

Walking A person is doing a displacement with a certain speed.

Reading A person sitting close to reading table for a specific period of time.

Prepare collation A person at coffee corner close to kettle preparing a collation.

Catching drugs in drug box A person is catching prescription/ drugs in the drug box.

Selecting drugs A person is selecting drugs.

Putting drugs into pillular A person is putting drugs into pillular.

Writing shopping list A person is writing a list for the shopping.

Paying Electricity bill A person is paying electricity bill.

Using phone A person taking the phone dialing number or answering a call.

Interacting with library Standing close to the library and watching or reading books.

Playing card Consists in assembling the black color card together and the red one together.

Matching Sheets Matching sheets with letters to their corresponding sheets placed in specific places in the room.

Watering Plant A person is close to a plant pot and watering the plant using a watering can.

Watching TV A person standing or sitting at TV front view and looking to TV.

Table 4.4: List of activities of interest for Alzheimer people monitoring.
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Proposed Activities Description

Standing A person with standing posture.

Standing with Arms Up A person is standing with arms up for at least 2 seconds.

Standing Up from chair A person is changing from sitting in a chair to posture standing.

Sitting A person with sitting posture.

Sitting in a chair A person is sitting in a chair.

Bending A person with bending posture.

Slumping A person is slumping on armchair for at least 3 seconds

Change from stand to sit A person is changing posture from standing to sitting.

Change From sit to stand A person is changing posture from sitting to standing.

Turning A person is standing and turning at a different direction.

Repeated chair stands A person makes a first chair stand, from sit to stand position and do the same action 5 times in a row.

Table 4.5: List of posture models activities of interest for Alzheimer people monitoring.
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Proposed Activities Description

Preparing a Meal Staying in the kitchen and being close to equipment

Taking a Meal Person already preparing a meal and going to eat in the living room and sitting at the chair for at least 10 minutes

Watching TV Person sitting or standing in the direct view and watching TV.

Using Phone Taking phone and dialing numbers and then hanging up the phone.

Reading book/magazine Using taking book/magazine and flipping throw the pages.

Relaxing Staying at the armchair without engaging any other activities.

Falling down Transition of postures from standing to bending to sitting and lying on the floor.

Entering house Opening door from outside and entering the house.

Leaving the house Opening door from inside and disappearing.

Table 4.6: List of activities of interest for monitoring elderly at home.
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In this study, we work in close collaboration with clinician to propose a number of criteria

which could be observed by camera sensors and be computed by the proposed system to allow

detection of early symptoms of Alzheimer’s disease in AD and MCI (mild cognitive impairment)

compared with normal control group (NC).

¥ Activity execution time : It consists of the time that participant take to carry out goal-

oriented activity. It corresponds to the time interval during which the activity is detected

by our system.

¥ Total execution time : It corresponds to the percentage of time participant carried out

goal-oriented behaviors. It was computed as follows:

REff =
total time spent by participant in performing listed activities

total time spent in the room of experimentation
(4.1)

where, REff ∈ R[0,1].

¥ Up and Go criteria: For Up and Go exercise, participants start from the sitting position.

At the start signal given by the clinician, participants stand up, walk on 3 meters, make

a U-turn in the center of the room, go-back on 3 meters, make a U-turn, and sit on the

chair (fig.4.2). We compute 4 criteria which correspond to 4 execution durations:

(1) D1 as the duration for walking on 3 meters from the standing position to the time

when participant reach the zone where they undertake the U-turn. To compute this crite-

ria by our system, we model the event model ‘entering z2’ and the event model ‘entering

z3’. The start time point of the duration D1 corresponds to the time point where the event

model ‘entering z2’ is detected by the system and the end time point of D1 corresponds

to the time point where the event model ‘entering z3’ is detected.

D1 = [enteringz2, enteringz3] (4.2)

(2) D2 as the duration for making the U-turn. To compute this criteria, we model the

primitive state ‘inside zone U-turn’, the duration D2 corresponds to the time interval

during which the primitive state is detected by the proposed video event recognition

system.

(3) D3 as the duration for going back on 3 meters from the zone U-turn to the zone where

there is the chair. To compute this criteria, we model the event models ‘leaving z3’ and
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‘leaving z2’, the start time point of the duration D3 corresponds to the time point where

the event model ‘leaving z3’ is detected and the end time point of D3 corresponds to the

time point where the event model ‘leaving z2’ is detected.

(4) D4 as the duration of the exercise (from the sitting position at the start point to the

last position transfer at the end of exercise).

Figure 4.3, shows the zones of interest for this exercise and the criteria definitions.

Figure 4.2: Illustration of the Up and Go exercise.

Figure 4.3: Up and Go criteria: Reality GT corresponds to the definition of criteria done in close collab-

oration with clinician. Event model (video) corresponds to the proposed method to compute them.
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¥ Walking Speed: the speed of the walk of participant when doing the up and go exercise

described in clinical scenario. It was computed in two ways:

Figure 4.4: Definition of walking Exercise.

– For the first method M1: We define the composite event e1 : ‘is making displacement

inside Exercise Walking zone’. ∆te1
= maxk(∆te1(k)), k refers to an e1 occurrence

during go exercise (respectively go-back exercise). Then we define the distance de1

using the 3D coordinates of tracked person at the time points associated with the

beginning and end of event e1(i) selected.

VM1,i =
de1

(i)

∆te1(i)

(4.3)

Where i refers to one walking exercise (i=1, 2, with 1 and 2 refer to the go and

go-back exercise respectively).

– For the second method M2: we define a zone called ‘walking exercise zone’ which is

bounded by two lines defining the start and the end points for the walking exercise

(fig. 4.4). We model the primitive state e2 : ‘Inside Walking exercise zone’. The time

interval ∆te2
is the time when e2 occurred (i.e. the person is tracked and recognized

as inside this zone). The distance de2
is the constant length of ‘Walking exercise

zone’ (3m < de2
< 4m, specific to each participant).

VM2,j =
de2

(j)

∆te2
(j)

(4.4)

Where j refers to one walking exercise (j=1, 2, with 1 and 2 refer to the go and

go-back exercise respectively).

To evaluate the results obtained by our system and compare them with the ground truth,

we define a method to compute the ground truth walking speed VGT.
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– For the ground truth method MGT: the starting time point for the time interval ∆tGT

corresponds to the time point when participant cross the start line, and entering the

zone of walking and the ending time point of ∆tGT corresponds to the time point

when participant cross the end line marked on the ground (fig.4.4). The distance

dGT is the constant length of ‘walking exercise zone’ (3m < de2
< 4m, specific to

each participant).

VGT,k =
dGT(k)

∆tGT(k)
(4.5)

Where k refers to one walking exercise (k=1, 2, with 1 and 2 refer to the go and

go-back exercise respectively).

¥ Transfer position criteria: participants have to execute consecutively several transfers of

position from sitting to standing position (5 transfer positions, see fig. 4.5).

Figure 4.5: Transfer Exercise.

We calculate the duration of this exercise from the first position transfer to the last position

transfer executed using two primitive states related to the posture, ‘Person is standing’ and

‘Person is sitting’. We compute the number of transfer position ntransfer (from sitting to

standing position, and, from standing to sitting position) based on the historic of postures

detected for the tracked participant. We model the event etransfer : ‘Transfer position

exercise’, which consists of a participant executing consecutively five transfers of position,

we define the average transfer duration parameter defined as the ratio of the execution

duration ∆tetransfer
by the number of position transfer recognised by the system:

µ =
∆tetransfer

ntransfer

(4.6)

¥ Number of activities omitted: The total number of activities that participants have for-

gotten or omitted to perform during the execution of the clinical scenario.
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¥ Total number of repetitions: The total number of times where a participant repeat the

same activity.

¥ Order error: when the participant make an error of the order of execution of the activities

of the scenario.

¥ Total number of attempts before completing a given activity.

¥ Stride length it consists on calculating the length of stride of participant when doing

the walking exercise. This criteria is defined in collaboration with clinician but not yet

evaluated. Video camera sensor shows its limitation for the computation of this criteria.

We think that this criteria could be accurately observed by type of sensors.

4.4 Hierarchical Generic Model of Event

The modeling of the activities has been done based on the event model language proposed

in [Vu et al., 2003a]. Our objective is to have a generic event model that is capable to represent

all types of events used for automatic video recognition. We have extended this event model

with probabilistic notions to manage imperfect low-levels (see section 4.5). To model an event

E, a set of physical objects (e.g. person, table) involved in the event E, a set of sub-events

composing E and a set of the constraints on these physical objects and sub-events is needed.

The model Ω of an event E (fig.4.6) is defined based on :

¥ Physical objects: is a non-empty set of non-temporal variables called physical object

variables. The values of these variables correspond to real physical objects detected by

the vision module (i.e. person, table). These objects are defined thanks to their attributes

such as the type of object.

¥ Components: is a set of temporal variables which values correspond to the sub-events

composing the event model.

¥ Forbidden Components: the set of variables corresponding to all event instances that

are not allowed to be recognized during the recognition of the event.

¥ Constraints:set of constraints between the physical objects and/or the components in-

cluding symbolic, logical, spatial and temporal constraints

¥ Alarm: the alarm information describes the Name of the detected activity and its impor-

tance of urgency. For importance of urgency, three values are possible, from less urgent

to more urgent: NOTURGENT, URGENT, VERYURGENT. The alarm level can be used to

filter recognized events, for displaying only important events to the user.
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Figure 4.6: Description of the Event model.

Figure 4.7 represents the model of the primitive state ‘inside-zone’. This event model is com-

posed of 2 physical objects (i.e. person, zone) and a spatial constraint ‘p in z’ (i.e. person is

inside a zone z).

PrimitiveState (Inside-zone,

PhysicalObjects ((p: Person), (z: Zone))

Constraints (p in z)

Alarm (Atext (‘Person is inside zone’)

AType (‘NOTURGENT’)))

Figure 4.7: Description of the primitive state model ‘Inside-zone’.

4.5 Uncertainty Representation

In this section, we detail how we propose to handle the uncertainty of the knowledge at the

level of event modeling for a more reliable event recognition.

4.5.1 Missed Observation

Occlusion and poor imaging conditions (e.g. dark, shadowed areas of the scene) are com-

mon conditions that prevent us from observing the occurrence of some events. When we miss

the recognition of one of the sub-events the whole event is missed. To deal with this problem

and be able to recognize an event even if one of its sub-events are not detected or detected
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with a low probability, we propose a notion of ‘utility’ in the definition of the event model by

associating a coefficient to each sub-event.

Utility which is defined by a human expert expresses the importance or priority of sub-events

for the recognition of the whole event. Its range is in the interval ]0,1], higher is the utility

value higher is the importance of the sub-event in the recognition of the whole event. The value

1 means that the sub-event is required for the recognition.

Figure 4.8 illustrates the use of the notion of utility in the event model ‘Person-interacts-

with-chair’. In this model, we choose an utility value equal to µc1 for the primitive state

‘close-to’. The primitive state ‘inside-zone’ is associated with an utility equal to µc2. For the

detection of the primitive event ‘change-zone’ (fig.4.9), the two sub-events are required with

an utility equal respectively to µc1 and µc2 to recognize the event.

The utility values could be attributed either based on the domain expertise: knowing the

recognition performance of the algorithm, we could attribute higher value of utility for the

events which are highly recognised by the system and low utility value for the events which

present a low recognition rate. The utility values could be also learned from a large and rep-

resentative training data set. The training phase consists in evaluating the recognition of the

activity on the training data when varying the utility values for each sub-events. The utility

values which correspond to the highest rate of the recognition of the activity are then selected.

CompositeState (Person-interacts-with-chair,

PhysicalObjects ((p: Person), (eq: equipment), (z: zone))

Components ((c1: PrimitiveState close-to (p, eq) [µc1 ])

(c2:PrimitiveState inside-zone (p, z) [µc2 ]))

Constraints ((eq→ Name = chair)

(z→Name = chair zone)

(c2 Duration ≥ d1)

(c1 meet c2))

Alarm (Atext (‘Person is interacting with chair’)

AType (‘NOTURGENT’)))

Figure 4.8: A utility coefficient is associated to each sub-event of the event model. The primitive state

‘close-to’ is associated with an utility equal to µc1, it means that this primitive state is highly required to

recognize the composite state ‘Person-interacts-with-chair’. The primitive state ‘inside-zone’ is associated

with an utility equal to µc2.

Figure 4.10 shows the composite event model ‘PersonStandingUp-FromChair’, this video

event involves two physical objects (a person p and an equipment, a chair), two temporal

constraint, Duration and after and one logical constraint, the chair name. The utility coefficient
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PrimitiveEvent(Change-zone,

PhysicalObjects ((p: Person), (z1: Zone), (z2: Zone))

Components ((c1: PrimitiveState Inside-zone (p, z1) [µc1])

(c2: PrimitiveState Inside-zone (p, z2)[µc2]))

Constraints (c1 before c2)

Alarm (Atext (‘zone changing’)

AType (‘NOTURGENT’)))

Figure 4.9: Utility coefficient is associated to each sub-event of the event model ‘change-zone’.

associated to the primitive state ‘PersonSlumping’ is choosen lower (i.e. 0.2) than the utility

coefficient for the primitive state ‘PersonStanding’ and the primitive state ‘PersonSitting’ (i.e.

0.6). We make the choice to consider that the detection the primitive state ‘PersonSlumping’ is

not mandatory for the recognition of the event ‘PersonStandingUp-FromChair’. This choice can

be explained by the fact that the posture algorithm is more performant to detect the primitive

state ‘PersonStanding’ and ‘PersonSitting’ than the primitive state ‘PersonSlumping’.

PrimitiveEvent (PersonStandingUp-FromChair,

PhysicalObjects ((p: Person), (eq: equipment))

Components ((c1: PrimitiveState stay-at (p, eq) [0.6])

(c2: PrimitiveState PersonSlumping (p) [0.2])

(c3: PrimitiveState PersonSitting (p) [0.6])

(c4: PrimitiveState PersonStanding (p) [0.6])

Constraints ((eq→ Name = chair)

(c3 → Duration ≥ d1)

(c4 after c3)

Alarm (Atext (‘Person is standing up from the chair’)

AType (‘NOTURGENT’)))

Figure 4.10: Utility coefficient associated to each sub-event of the event model ‘PersonStandingUp-

FromChair’.

4.5.2 Identity Maintenance

Identity maintenance is necessary when there exists multiple identities that actually refer to

the same mobile object. It is caused by lack of visual information (appearance, shape, etc.) to

make unique identity connections across observation gaps. Identity maintenance is a primary
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Figure 4.11: In the first figure, the event e is detected: Person moves from the zone z1 to the zone z2. In

the second figure, there is no detection of the event e: the tracking identifier ID of the person has been

changed from ID to ID ′.

source of uncertainty for activity recognition. It affects more precisely the recognition of long-

term events. The recognition of an event over time needs the maintaining of the same identifier

for each mobile object when recognizing its sub-events. If the tracking identifier of a mobile

object changes, it will not be considered as the same object (fig.4.11).

Our approach to solve this issue in the level of event modeling is to propose the use of

specific relation ‘equal’ in the representation of the event. More precisely, the identification
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whether the identifier of two objects A and B refer to the same object is represented by the

relation A equal B.

In this thesis, the evaluation of this relation is done using (i) appearance matching (e.g. 3D

height, 3D width, 3D length, etc). We take also into account (ii) the closeness parameter, the

object A is close to object B and are in the same place of activity or interacting with the same

contextual equipment. This logic relation is very useful in the case where the vision algorithm

(i.e. tracking algorithm) does not work well and does not consider the appearance attributes

or fail to match and maintain the tracking identifier of the detected mobile object. Figure 4.12

shows an example of the use of the relation ‘equal’, other examples are available in section 4.6

PrimitiveEvent (PersonisStandingUp,

PhysicalObjects ((p1: Person), (p2: Person))

Components ((c1: PrimitiveState PersonSitting (p1)

(c2: PrimitiveState PersonStanding (p2))

Constraints(( p1 equal p2),

(c1 before c2))

Alarm (Atext (‘Person is standing up’)

AType (‘NOTURGENT’)))

Figure 4.12: Illustration of the definition of the ‘equal’ relation. The relation equal(p1, p2) verify

whether the identifiers of the two objects p1 and p2 refer to the same object.

4.6 Knowledge Base for Health Care Monitoring

In this thesis, we have modeled video event models for health care monitoring in particular

Alzheimer monitoring at hospital. We have modeled 117 event models:

• 26 primitive states related to the location of the person in each zone (e.g. inside the exercise

zone), location versus equipment in the observed scene (e.g. close to table, far from

chair) and posture event models (e.g. person is sitting).

• 7 composite states related person interacting with contextual objects (i.e.equipment, zones,

walls).

• 33 primitive events related to the moving from a place to another place (e.g. moving from

entrance to coffee corner), the change of posture (e.g. change from posture sitting to

standing).
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• 51 composite events which combine primitive/composite states and primitive/composite

events.

The proposed event models are organized from general to more specific or domain-dependent

event models. Primitive states and primitive events are not domain-dependent and are consid-

ered as extendable basis. Composite event models in our knowledge base belongs to health

care monitoring domain which is our domain of interest and can be shared by the specialists

of the domain. The modeled activities are organized in an hierarchical way as shown in figure

4.13

Figure 4.13: An hierarchical organization of activity model.

This section shows several examples of event models in our knowledge base.

¥ Figure 4.14 shows the model of a primitive state called ’Inside-Coffee Corner‘ expressing

the status of a person being inside a zone which name is ‘Coffee Corner’. This video

event involves two physical objects (a person p and a zone z), one spatial constraint and

one logical constraint. The spatial constraint allows to verify whether the person p is

geometrically inside the zone z and the logical constraint allows to verify the name of the

zone z (i.e. zoneUseCoffeeCorner).

¥ Figure 4.15 shows the primitive event model ‘ChangePosture-StandingToBending’, this

video event involves one physical object (a person, p) and one temporal constraint. The

utility coefficient associated to the primitive state ‘PersonBending’ is choosen lower than

the utility coefficient for the primitive state ‘PersonStanding’. That is explained by the fact
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PrimitiveState (Inside-CoffeeCorner,

PhysicalObjects ((p: Person), (z: Zone))

Constraints ((p in z)

(z→ Name = CoffeeCorner zone))

Alarm (Atext (‘Person is in the coffee corner’)

AType (‘NOTURGENT’)))

Figure 4.14: Person inside Coffee Corner event model.

that the posture algorithm is more performant to detect the primitive state ‘PersonStand-

ing’ than ‘PersonBending’. In the case where the tracking algorithm looses the tracking

identifier of the person p, we propose to use the equal relation to deal with this tracking

error (fig.4.16).

PrimitiveEvent (ChangePosture-StandingToBending,

PhysicalObjects ((p: Person))

Components ( (c1: PrimitiveState PersonStanding (p) [0.6])

(c2: PrimitiveState PersonBending (p) [0.4])

Constraints ((c1 before c2))

Alarm(Atext (‘Person changes from posture standing to bending’)

AType (‘NOTURGENT’)))

Figure 4.15: The event model based-posture ‘ChangePosture-StandingToBending’

.

PrimitiveEvent (ChangePosture-StandingToBending-withEqualRelation,

PhysicalObjects ((p1: Person),(p2: Person))

Components ( (c1: PrimitiveState PersonStanding (p) [0.6])

(c2: PrimitiveState PersonBending (p) [0.4])

Constraints ( (p1 equal p2)

(c1 before c2))

Alarm(Atext (‘Person changes from posture standing to bending’)

AType (‘NOTURGENT’)))

Figure 4.16: The event model based-posture ‘ChangePosture-StandingToBending’ with the utility coef-

ficient associated to the components(i.e. sub-events) and with the equal relation in the constraints.
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¥ the event model ‘moves-away-from-person’ describes the fact that a person moves away

from another person. This event model illustrated in figure 4.17 is composed of 2 physical

objects, 2 components (i.e. primitive states), and it includes 3 temporal constraints (i.e.

‘Duration’, ‘before’ and ‘meet’).

PrimitiveEvent (moves-away-from-person,

PhysicalObjects ((p1: Person), (p2: Person))

Components ((c1: PrimitiveState close-to-person(p1, p2))

(c2: PrimitiveState far-from-person (p1, p2)))

Constraints ((c1 meet c2)

(c1 Duration ≥ d1)

(c1 before ≥ c2)

Alarm (Atext (‘a person is moving away from another person.’)

AType (‘NOTURGENT’)))

Figure 4.17: The event model ‘moves-away-from-person’.

¥ Figure 4.18 shows the event model of the composite state ‘Person-intetacts-with-TV’.

The event model contains two logical constraints, the equipment name and the zone

name and it contains two temporal constraints ‘meet’ and ‘Duration’.

CompositeState (Person-interacts-with-TV,

PhysicalObjects ((p: Person), (eq: equipment))

Components ((c1: PrimitiveState close-to (p, eq))

(c2: PrimitiveState inside-zone (p, z)))

Constraints ((eq → Name = TV)

(z→Name = TVzone )

(c2 Duration ≥ d1)

(c1 meet c2))

Alarm (Atext (‘Person is interacting with TV’)

AType (‘NOTURGENT’)))

Figure 4.18: Event model of the composite state ‘Person-interacts-with-TV’.

¥ ‘Start-WalkingTest’: the event model (fig.4.19) of the composite event ‘Start-WalkingTest’

is composite of 3 physical objects, 2 components, 2 temporal constraints and 2 logical

constraints. It describes that a patient is starting doing the walking activity defined in the

clinical scenario.
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CompositeEvent (Start-WalkingTest,

PhysicalObjects ((p: Person), (z1 : Zone), (z2: Zone))

Components ((c1: PrimitiveState Person-standing(p))

(c2: PrimitiveEvent change-zone (p, z1, z2)))

Constraints ((c1 meet c2)

(c1 Duration ≥ d1)

(z1→ Name = Chair zone)

(z2→Name = walking exercise zone))

Alarm (Atext (‘Patient starts the walking test’)

AType (‘NOTURGENT’)))

Figure 4.19: Description of the event model ‘Start-WalkingTest’.

¥ Begin Balance Exercise: the event model ‘Begin Balance Exercise’ is composed of five

physical objects, four components and 5 constraints, 2 temporal constraints and 3 logical

constraints and 1 alarm (fig. 4.20 and fig. 4.21). This event model describes the be-

ginning of the physical exercise ‘balance testing’ described in the clinical scenario: in this

exercise, first, the nurse and the patient together enter the hospital’s room dedicated for

the medical experimentation, then the patient goes to a specific zone called the ‘balance

exercise zone’ place marked by a red line and stop near a chair placed there. Then, the

nurse walks to the end of the room at a zone named ‘stop zone’ and she/he stop there to

begin to indicate to the patient the different physical activities to perform (figure 4.20).

¥ Up and Go: the event model ‘Up-Go’ corresponds to a medical exercise for testing the

ability of the patient to perform physical activities. The model is composed of five steps:

(1) the patient is standing at the chair of exercise for a predefined period of time,(2)

he/she walks up to a stop zone marked by a red line, (3) goes back to the chair, (4)

he/she sits at the chair and (5) gets up. This event model is composed of 4 physical

objects, 6 components, 3 temporal constraints, 3 logical constraints and 1 alarm (fig.

4.22, and fig.4.23).

¥ MatchingSheetsActivity. This model (fig.4.24, 4.25 and 4.26) is one of the most complex

event models in the proposed event models base. In this activity, the patient is asked to

take a folder containing 4 sheets in which ones a alphabetical letter is written (i.e. A, B,

C, D letters) and then the patient has to match each of these sheets to the ones which has

the same letter written on it and which are distributed in different places in the room.
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CompositeEvent (BeginBalanceExercise,

PhysicalObjects ((p1: Person), (p2: Person), (z1: zone) , (z2: zone) , (z3: zone))

Components ((c1: PrimitiveState at-Entrance (p1, z1))

(c2: PrimitiveState at-Entrance (p2, z1)

(c3: PrimitiveEvent change-zone (p1, z1, z2))

(c4: PrimitiveEvent change-zone (p2, z1, z3))

Constraints ((c1 meet c2)

(c3 meet c4)

(z1→Name = Entrance)

(z2→ Name = Balance exercise zone)

(z3→ Name = Stop zone))

Alarm (Atext (‘Patient begin the Balance exercise ’)

AType (‘NOTURGENT’)))

Figure 4.20: Example of the activity begin balance exercise model: the nurse and the patient entering

together the room and then walk to different places.

Before the beginning of this exercise, the nurse has already indicated to the patient the

different places where these sheets are placed in the room to facilitate to the patient the

matching the corresponding letters. This event model is composed of 4 physical objects

and 4 components and 2 temporal constraints.
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Figure 4.21: Illustration of the activity ‘Begin Balance Exercise’: the nurse and the patient together

enter the hospital’s room, then the patient goes to a specific zone called the ‘balance exercise zone’ place

marked by a red line and stop near a chair placed there. Then, the nurse walks to the end of the room

at a zone named ‘stop zone’.
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Figure 4.22: Illustration of the event Up-Go. (a) the patient is standing close the chair of exercise for a

predefined period of time, (b) he/she walks up to a stop zone marked by a red line, (c, d) goes back to

the chair, (e) he/she sits at the chair and (e) gets up.
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CompositeEvent (Up-Go,

PhysicalObjects ((p1: Person), (eq: Equipment) (z1: Zone), (z2: Zone))

Components ((c1: (CompositeState interacts-with-chair (p1, eq, z1) [1])

(c2: (PrimitiveState Person-walking (p1) [0.2])

(c3: PrimitiveState inside-zone (p1, z2) [1])

(c4: PrimitiveState inside-zone (p1, z1) [1])

(c5: PrimitiveEvent change-posture-stand-to-sit (p1) [0.5])

(c6: PrimitiveEvent change-posture-sit-to-stand (p1) [0.5]))

Constraints((c1 before c2; c3 before c4; c5 before c6)

(z1→Name = chair zone)

(z2→Name = Stop zone)

(eq→Name = chair))

Alarm (Atext (‘Patient is doing Up-Go exercise’)

AType (‘NOTURGENT’)))

Figure 4.23: The Event model: ‘Up-Go’ illustrates a medical exercise for testing the ability of the patient

to perform several activities. The model is composed of five steps: (1) the patient is standing at the chair

of exercise for a predefined period of time,(2) he/she walks up to a stop zone marked by a red line, (3)

goes back to the chair, (4) he/she sits at the chair and (5) gets up.

CompositeEvent (MatchingSheetsActivity,

PhysicalObjects ((p: Person), (z1:Zone), (z2:Zone), (z3:Zone))

Components ((c1: CompositeEvent change-zones-coffee-Lib-TV (p, z1, z2, z3)

(c2: PrimitiveEvent moveFrom-TV-coffeeCorner (p, z3, z1)))

Constraints (c1 before c2)

Alarm (Level: NOTURGENT))

Figure 4.24: event model ‘MatchingSheetsActivity’.

CompositeEvent (change-zones-coffee-Lib-TV,

PhysicalObjects ((p:Person), (z1:Zone), (z2:Zone), (z3:Zone))

Components ((c1: PrimitiveEvent moveFrom-coffeeCorner-Library (p, z1, z2))

(c2: PrimitiveEvent moveFrom-Library-TV (p, z2, z3)))

Constraints (c1 before c2)

Alarm (Level: NOTURGENT))

Figure 4.25: sub-event model of the event model ‘MatchingSheetsActivity’.
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PrimitiveEvent (moveFrom-coffeeCorner-Library,

PhysicalObjects((p: Person), (z1: Zone), (z2: Zone))

Components ((c1: PrimitiveState Inside-zone (p, z1))

(c2: PrimitiveState Inside-zone (p, z2)))

Constraints ((c1 before c2)

(z1→Name = coffee Corner zone)

(z2→Name = Library zone)))

Figure 4.26: sub-event model of the event model ‘MatchingSheetsActivity’.
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4.7 Conclusions

In this chapter, we have presented the proposed approach for event modeling based on the

work of [Vu et al., 2003a],[Zouba et al., 2009]. Our objective is to have a generic event model

that is capable to represent all types of activities used for automatic video event recognition. We

have extended this event model with the notions of utility and identity maintenance to manage

imperfect low-levels.

An ontology for health care monitoring was proposed, In this ontology, we presented several

concepts useful for health care monitoring domain. Our goal is to improve the evaluations of

behavioural disorders of Alzheimer people. Two clinical scenarios were elaborated. The overall

aim of the clinical scenarios is to enable the participants to undertake a set of daily activities

that could realistically be achieved in the setting of an observation room and at the same time

provide objective information about dementia symptoms.

A knowledge base for health care monitoring was proposed, in this knowledge base, we de-

fine 117 activities of interest for Alzheimer people monitoring at hospital. Several criteria was

elaborated in close collaboration with clinicians to obtain a quantifiable assessment of instru-

mental activities of daily living (IADLs) in Alzheimer people (AD) and in MCI (mild cognitive

impairment) compared to healthy older people. We build this knowledge base in the ambition

to be used as reference for other research in health care monitoring and in other countries.

In the next chapter, we present the proposed approach for automatic video activity recogni-

tion.
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5

PROBABILISTIC ACTIVITY RECOGNITION

5.1 Introduction

Considerable researches have been devoted towards activity recognition [Vu et al., 2003a],

[Rota and Thonnat, 2000], [Ryoo and Aggarwal, 2010], [Delaitre et al., 2012].

The automatic recognition of activities is a real challenge for cognitive vision research be-

cause it addresses the issue of handling the uncertainty of recognition. In real world scenes,

there are several causes which affect the quality of the recognition of activities, among them

we can cite:

¥ The change in brightness and shadows: change direction of the sun, clouds, adding light-

ing, reflections and flashes directly affect the appearance of objects and their shadows.

These changes may be localized or may affect the whole observed scene.

¥ Poor lighting e.g. lighting in sub-ways is almost universally poor.

¥ Vibration of the camera: in surveillance applications, these vibrations can be generated

by wind or by moving vehicles or other sources.

¥ Noise acquisition and sensor: like any electronic device, the sensor noise and system

acquisition is a major issue. It can be very variable depending on conditions of acquisition

or the type of sensor.

¥ The occlusion: a moving object may be fully or partially hidden by another object or static

elements of the scene.

93
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Figure 5.1: Event Recognition Process.

¥ The similarity: objects with similar appearance may cause confusion in the identities of

objects.

Thus a mechanism to deal with noisy data and to handle the uncertainty of the recognition

is more that needed. Designing a system that is able to overcome this issue is an interest-

ing field of research in the recent years [Tran and Davis, 2008], [Ryoo and Aggarwal, 2009],

[SanMiguel and Martinez, 2012].

In this chapter, we detail the proposed approach for activity recognition. The proposed

activity recognition process uses as input the tracked mobile objects, a priori knowledge of the

scene and predefined event models (fig. 5.1). The algorithm operates in 2 stages: (i) at each

incoming frame, it computes all possible primitive states related to all mobile objects present

in the scene, and (ii) it computes all possible events (i.e. primitive events, and then composite
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states and events) that may end with the previously recognized primitive states.

We describe how we manage the uncertainty at the level of (i) the recognition of primitive

states and at the level of (ii) the recognition of composed events (i.e primitive events, composite

states, composite events).

5.2 First Stage of Activity Recognition

In this section, we describe the first stage in the algorithm of activity recognition, the recog-

nition of primitive state. We also describe how we propose to handle the uncertainty of recogni-

tion. The primitive states do not contain any sub-event (e.g. person close to a machine). It can

be calculated directly from geometrical/ physical attributes of physical objects (i.e. 3D position

in the scene of the person, the speed, etc.). It can also be directly recognized by low-level al-

gorithms (i.e. posture recognition algorithm). A time interval is associated with the recognized

primitive state.

The algorithm (see algorithm 1) to recognize a primitive state e of event model Ω consists

in a loop of two operations:

1. selection of a set of physical objects then,

2. verification of the corresponding constraints until all combinations of physical objects have

been tested.

A solution for primitive state model Ω is a set of physical objects involved in the event and

that are satisfying all the list of the constraints in the event model Ω.

In the proposed algorithm, the constraints are probabilistically verified based on Gaussian

probability detailed in section 5.6. The Bayesian probability that the primitive state is recog-

nized given that the mobile physical objects in the model Ω have been observed and given that

the constraints in the model Ω are satisfied is then computed (see section 5.3 for more details).

Once a set of physical objects satisfies all constraints and the Bayesian probability is over

a defined threshold, we consider that the event (i.e. primitive state) is recognized and we

generate an event instance p of the event model with the recognition time interval T . The event

instance is then stored in the list of recognized events.
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begin
Data:

Ω : event model.

ListConstraints : List of the event constraints.

ListPO : List of physical objects in the event model Ω.

Result: Find a solution for the event model Ω.

if (Probabilistic Constraint Verification (ListPO , ListConstraints ) ) then

if BayesianRecognition (ListPO , ListConstraints ) then
Create a primitive state instance e.

Store e to the list of recognized primitive states.

end

end

end

Algorithm 1: Probabilistic Solution for primitive state model. In the function Probabilistic

Constraint Verification, the algorithm verifies probabilistically if the constraints in the event

model Ω are satisfied. In function BayesianRecognition, the algorithm computes the Bayesian

probability of the primitive state.

5.3 Probabilistic Primitive state Recognition

In this section, we present the probabilistic approach proposed to recognize primitive states.

The event instance associated to the event model Ω is recognized from the observations O

(e.g. video sequences). The observations are inherently uncertain, hence a formal probabilistic

approach is needed to reason under uncertainty. In fact, probability is often considered as the

best-known and most widely used formalism for quantitatively characterizing uncertainty. We

propose to compute the conditional probability that an event B occur given the knowledge that

an event A has already occurred. This probability is written P(B|A). An important method for

calculating conditional probabilities is given by Bayes’s theorem. Bayesian probability theory is

one of the major theoretical and practical framework for reasoning and decision making under

uncertainty, using probability. Bayesian interpretation considers the probability of an event

as the degree of belief that a person has that an event occurs, given the relevant information

known to that person.

What we want to compute here is :

‘The probability that an event instance e belongs to an event model Ω given that the mobile

physical objects in the model Ω have been observed and given that the constraints in the

model Ω are satisfied by the observation O’.
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In mathematical words, the proposed way of calculating this is:

P(e ∈ Ω|O) = P(e ∈ Ω|ζ(Ω, O), VΩ = poO
e ) (5.1)

¥ e ∈ Ω, e is an instance of the event model Ω.

¥ ζ(Ω, O), the constraints in event model Ω are satisfied by observation O.

¥ VΩ = poO
e , the tracked physical objects in the observation O correspond to the physical

object variables in the model Ω.

¥ Observation O is one observation of the event instance e.

¥ P(e ∈ Ω|ζ(Ω, O), VΩ = poO
e ) corresponds to the conditional probability.

5.3.1 Bayesian Probability Theory

Bayes rule involves the manipulation of conditional probabilities. Let’s remember that the

joint probability of two events, A and B, can be expressed as

P(A, B) = P(A|B) × P(B)

= P(B|A) × P(A)
(5.2)

In Bayesian probability theory [Olshausen, 2004], one of these events is the hypothesis, H,

and the other is data, D, and we wish to estimate the relative truth of the hypothesis given the

data. According to Bayes rule, we do this via the relation:

P(H|D) =
P(D|H) × P(H)

P(D)
(5.3)

Specifically Bayes’s theorem states that the posterior probability of a hypothesis is equal to

the product of (a) the prior probability of the hypothesis and (b) the conditional probability of

the data (evidence) given the hypothesis, divided by (c) the probability of the data.

¥ The term P(D|H) assesses the probability of the observed data arising from the hypothesis.

Usually this is known by the experimenter, as it expresses one’s knowledge of how one

expects the data to look given that the hypothesis is true.

¥ The term P(H) is called the prior, as it reflects one’s prior knowledge before the data are

considered. To evaluate the probability of a hypothesis, the Bayesian probabilist specifies

some prior probability, which is then updated in the light of new, relevant data.
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¥ The term P(D) is obtained by integrating (or summing) P(D|H).P(H) over all H, and

usually plays the role of an ignorable normalizing constant.

¥ Finally, the term P(H|D) is known as the posterior, and as its name suggests, reflects the

probability of the hypothesis after consideration of the data.

Bayes theorem depends upon an ingenious turnabout[Paulos, 2011]: If you want to assess

the strength of your hypothesis given the evidence, you must also assess the strength of the

evidence given your hypothesis. In the face of uncertainty, a person with a Bayesian thinking

asks three questions:

- How confident am I in the truth of my initial belief?

- On the assumption that my original belief is true, how confident am I that the new data

(evidence) is accurate?

- And whether or not my original belief is true, how confident am I that the new data (evidence)

is accurate?

Let’s us now discuss the mathematical development of the probabilities of equation ( 5.1).

It can be useful to bear in mind the more general equations for calculating the joint probability

P(A, B, C) and the conditional probability P(A|B, C). Given that: P(A, B) = P(A|B).P(B), we

know from basic probability theory that we can factor the joint probability as a product of

conditional probability :

P(A, B, C) = P(A|B, C) × P(B, C) (5.4)

P(A, B, C) = P(B|A, C) × P(A, C) (5.5)

From equations ( 5.4) and ( 5.5):

P(A|B, C) =
P(B|A, C) × P(A, C)

P(B, C)
(5.6)

since P(A, C) = P(C|A)×P(A) and the Bayesian denominator P(B, C) is P(B, C) = P(B, C|A)P(A)+

P(B, C|not(A))P(not(A)), these terms can be replaced in the previous equation as following

(equation 5.7), not(A) is denoted as ⌉a:

P(A|B, C) =
P(B|A, C) × P(A, C)

P(B, C)
=

P(B|A, C) × P(C|A) × P(A)

P(B, C|A)P(A) + P(B, C|⌉A)P(⌉A)
(5.7)

To complete the mathematical development of P(A|B, C), It can be noted that B, C are

conditionally independent given A. Which means that:

P(B|A, C) = P(B|A) (5.8)
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In that case, we can simplify ( 5.7) using ( 5.8):

P(A|B, C) =
P(B|A) × P(C|A) × P(A)

P(B, C/A)P(A) + P(B, C/⌉A)P(⌉A)
(5.9)

5.3.2 Probability of Recognizing an primitive state

Now that the mathematical development of P(A|B, C) is complete, we can focus on equation

( 5.1) to compute the probability of the recognition of primitive states. A, B and C are the

following:

¥ A: e ∈ Ω, e is an instance of event model Ω.

¥ B: ζ(Ω, O), the constraints of event model Ω are satisfied by observation O.

¥ C: VΩ = poO
e , the tracked physical objects in the observation O match the physical object

variables in the model Ω.

The equation ( 5.1) can be calculated as shown in ( 5.9):

P(e ∈ Ω|ζ(Ω, O), VΩ = poO
e ) =

P(ζ(Ω, O)|e ∈ Ω) × P(VΩ = poO
e |e ∈ Ω) × P(e ∈ Ω)

P(ζ(Ω, O), VΩ = poO
e |e)P(e) + P(ζ(Ω, O), VΩ = poO

e |⌉e)P(⌉e)
(5.10)

In the next section, we detail the computation of the probabilities for primitive states. To

better explain the proposed equations, an example will be used.

5.3.2.1 Probability Computation

In this section, we specify how to compute each term of the equations (5.10). We attempt

here to estimate the probability distributions from the available training data. The estimation

of probability distributions, is a very large and complex domain. We describe here the most

widely used method in the framework of Bayesian networks, the maximum likelihood estima-

tion method. In the case where all variables are observed, the simplest method and the most

widely used statistical estimation is to estimate the probability of an event by the frequency

of occurrence of the event in the database. This approach, called maximum likelihood (ML)

[Leray, 2006]:

P̂(Xi = xk|Yj = ye) = θ̂ML
i,j,k,e =

Ni,j,K,e (Xi = xk, Yj = ye)∑
k Ni,j,K,e

(5.11)

Where Ni,j,K is the number of events in the database for which the variable Xi is in state xk

and his parents Yj are in the configuration ye.
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¥ The first probability to learn is P(e ∈ Ω):

P(e ∈ Ω) is the prior probability that a certain scenario model Ω is detected. We can

assume that all scenarios in a certain universe are equally probable, so as not to favor

any scenario because it happens more often. By scenario models in the same universe,

we mean a set of scenarios which are mutually exclusive (if any of them is happening

the others can not occur) and include all possible situations so that in any observation

one of them must be happening. For example, the universe of the scenario models that

describe a person posture is: (PersonStanding,PersonSitting and PersonBending). The uni-

verse of scenario models that describe a person position in a certain area is: (Person-

InsideZoneTV, PersonInsideZoneEntrance, PersonInsideZoneUseReadingTable, PersonInside-

ZoneExerciseWalking, PersonInsideZoneUseCoffeeCorner, PersonInsideZoneUseChair, Person-

InsideZoneUsePhone, PersonInsideZonePharmacy, PersonInsideZoneOfficeDesk, PersonInside-

ZoneWaterPlant, PersonInsideZoneEntrancePath, PersonInNoMarkedZone).

P(e ∈ Ω) =
1

Nbr.ScenarioΩUniverse
(5.12)

This prior probability has to be learned from a training set of video sequences which has

to be large and representative (e.g. the same illumination conditions, etc.).

¥ The second probability to be computed is P(ζ(Ω, O)|e ∈ Ω):

P(ζ(Ω, O)|e ∈ Ω) is the probability that the constraints of the event model are verified

given that the event e is true (i.e. has been annotated as an instance of the event model

Ω). This probability quantifies how likely it is that a constraint of event model Ω should

be verified when an instance of Ω is taking place. In this section we explain how we

compute this probability, we present the first formalization 5.13 and we detail based on

other information, how we modify it to get the final equation 5.14. The first formulation

of this probability is as following:

P(ζ(Ω, O)|e ∈ Ω) =

n∏

i=1

♯(ζ(Ω, O)i ∧ e ∈ Ω)

♯(e ∈ Ω)
(5.13)

where n is the total number of constraints that are being considered. ♯(a) is the number

of frames where a is verified. The term ♯(ζ(Ω, O)i ∧ e ∈ Ω) implies that only frames

where event e has been identified (i.e. annotated) as an instance of Ω are considered,

and for each constraint of event model Ω, the number of frames where it is satisfied

are counted. ♯(e ∈ Ω) is the total number of frames where the event e is annotated.

Conditional independence among the constraints is assumed. Thus, the probability of

all the constraints that are being considered is calculated as the multiplication of the

probabilities of each of the constraints.
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It is important that the frames where the scenario is said to be identified should be an-

notated (manually or automatically). Since we want to assess how much the verification

of the constraint affects the event’s detection, the cases where the event is present but

the constraint is not verified must be identified. It is necessary to determine the event

instances that are in the ground truth GT but are not detected, and assess what is causing

this failure in detection.

The physical objects that intervene in the constraint should be added in the equation. Oth-

erwise, a failure in detecting the physical objects that intervene in the constraint might

result in low probabilities for that constraint, when the problem is in fact due to a failure

of physical object detection. In other words, the equation as it is penalizes both following

cases:

- The physical object is detected but the constraint is not verified,

- The physical object is not detected resulting that the constraint is not verified.

To take into account the intervention of the physical objects in the calculation of this prob-

ability, the final equation (5.14) to compute the probability P(ζ(Ω, O)|e ∈ Ω) becomes:

P(ζ(Ω, O)|e ∈ Ω) =

n∏

i=1

♯(ζ(Ω, O)i ∧ e ∈ Ω)

♯(e ∈ Ω ∧ V
ζi

Ω ∈ poO
e )

(5.14)

Where Vζi are the physical object variables that intervene in the constraint ζi.

The term ♯(e ∈ Ω ∧ V
ζi

Ω ∈ poO
e ) indicates that we only consider the frames of the ground

truth where the event e is annotated and the physical objects are correctly tracked. We do not

take into account the frames of the ground truth where the physical object are not correctly

tracked.

¥ The third probability to be computed is P(VΩ = poO
e |e ∈ Ω):

P(VΩ = poO
e |e ∈ Ω) is the probability that the physical object variables in the event

model Ω have been detected given that e is an event instance of the event model Ω. As

in the previous factor, conditional independence among the physical objects is assumed

and the probabilities obtained for each physical object are multiplied. This probability

quantifies the likelihood of detecting a physical object when an event that involves it is

actually happening. This probability is computed on-line and provided from the tracking

algorithm as described in [Chau, 2012]. The algorithm in [Chau, 2012] computes the

reliability of the trajectory of each mobile object pot detected at instant t. For each object

detected at instant t, the algorithm considers all its matched objects pot−n (i.e. objects

with temporarily established links) in previous frames that do not have yet official links
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(i.e. trajectories) to any objects detected at the following frames. For such an object pair

(pot, pot−n), the algorithm defines a global score GS(pot, pot−n) as follows:

GS(pot, pot−n) =

∑
k wkGSk(pot, pot−n)

∑
k wk

(5.15)

where wk is the weight of descriptor k, the descriptors are 2D, 3D positions, 2D shape

ratio, 2D area, color histogram, histogram of oriented gradient (HOG), color covariance

and dominant color. GSk(pot, pot−n) is the global score for descriptor k between pot and

pot−n, defined in function of link score and long-term score for descriptor k as follow :

GSk(pot, pot−n) = (1 − β). DSk(pot, pot−n) + β. LT(pot, χt−n) (5.16)

where β is the weight of long-term score, DSk(pot, pot−n) is the similarity score for

descriptor k between the two objects pot and pot−n; LT(pot, χt−n) is their long-term

scores (for more detail see [Chau, 2012], sections 6.1.1.1, 6.1.2.2 and 6.1.2.3).

However in the case where the tracking algorithm does not provide this probability value,

an alternative way to compute this probability is provided in the following equation:

P(VΩ = poO
e |e ∈ Ω) =

m∏

k=1

♯(Vk
Ω ∈ poO

e ∧ e ∈ Ω)

♯(e ∈ Ω)
(5.17)

Where m is the number of physical objects that intervene in constraint of Ω. ♯(Vk
Ω ∈

poO
e ∧e ∈ Ω) denotes the number of frames where the physical object is correctly tracked

in the total frames where e is annotated. The training set is composed of the frames

where the event e is annotated. ♯(e ∈ Ω) is the total number of frames where the event e

is annotated.

¥ P(ζ(Ω, O), VΩ = poO
e ) is the Bayesian probability denominator. This probability is ob-

tained by an integration (summation) over all the hypotheses. In this case, the first

hypothesis is that a certain event instance e of event model Ω is detected, the other

hypothesis is that an event instance ⌉e of event model Ω
′

is detected. This probability is

computed based on the following equation (5.18):

P(ζ(Ω, O), VΩ = poO
e ) = P(ζ(Ω, O), VΩ = poO

e |e ∈ Ω) × P(e ∈ Ω)+

P(ζ(Ω, O), VΩ = poO
e | e ∈⌉Ω) × P(e ∈⌉Ω)

=
(♯(ζ(Ω, O), VΩ = poO

e ) ∧ e ∈ Ω)

♯(e ∈ Ω)
× P(e ∈ Ω)+

(♯(ζ(Ω, O), VΩ = poO
e ) ∧ e ∈⌉Ω)

♯(e ∈⌉Ω)
× P(e ∈⌉Ω)

(5.18)
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♯(ζ(Ω, O), VΩ = poO
e )∧e ∈ Ω) corresponds to the number of frames where the constraint

is verified and the physical object is detected, we consider the frames where the event e is

annotated. P(e ∈ Ω) is the prior probability that the event e of event model Ω is detected.

This probability is computed based on the equation 5.12.

(♯(ζ(Ω, O), VΩ = poO
e ) ∧ e ∈⌉Ω) corresponds to the number of frames where the con-

straint is verified and the physical object is detected. We consider the frames where the

other events of the same universe than e are annotated. The computation of this proba-

bility is detailed in the next section.

5.3.2.2 Probability Computation of an Example

We detail the probability computation of the primitive state ‘PersonSitting’ (fig.5.2) to better

explain the presented equations above.

PrimitiveState (PersonSitting,

PhysicalObjects ((p: Person))

Constraints (p→ posture= Sit)

Alarm (Atext (‘A person is sitting’)

AType (‘NOTURGENT’)))

Figure 5.2: The event model of the primitive state ‘a person is sitting’.

¥ P(PersonSitting) is the prior probability that the event model PersonSitting is detected.

The universe of the scenario models that describes a person posture is: (PersonStand-

ing,PersonSitting and PersonBending). Thus the prior probability P(PersonSitting) is

computed as follow:

P(PersonSitting) =
1

Nbr.ScenarioPersonSittingUniverse
=

1

3
(5.19)

¥ P(‘Person → Posture = Sit ′|PersonSitting) is the probability that constraint ‘Person →

Posture = Sit ′ in the event model is verified given that the event PersonSitting is true

(has been annotated). It is computed based on the following equation:

P(‘Person → Posture = Sit ′|PersonSitting) =

♯((‘Person → Posture = Sit ′) ∧ PersonSitting)

♯(PersonSitting ∧ poO
e = Person)

=
3242

4228

(5.20)
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♯(‘Person → Posture = Sit ′ ∧ PersonSitting) is the number of frames where the con-

straint ‘Person → Posture = Sit ′ is verified. We consider only the frames where the

primitive state PersonSitting is annotated. ♯(PersonSitting ∧ poO
e = Person) is the

number of frames where the primitive state PersonSitting is annotated and the physical

object (poO
e = Person) is correctly tracked. In this probability learning step, 4 videos

sequences are considered for the learning. A total of 4228 frames annotated with the

primitive state PersonSitting are used. A total of 3242 frames correspond to situation

where the constraint ‘Person → Posture = Sit ′ is verified. It gives us the probability of

0.76 to have the constraint ‘Person → Posture = Sit ′ verified given that the primitive

state PersonSitting is detected.

¥ P(poO
e = Person|PersonSitting) is the probability that the physical object ‘Person’ has

been detected given an instance of the event model PersonSitting. It is computed based

on the following equation:

P(poO
e = Person|PersonSitting) =

♯(poO
e = Person ∧ PersonSitting)

♯(PersonSitting)
=

21268

21534

(5.21)

♯(poO
e = Person ∧ PersonSitting) is the number of frames where the physical object

‘Person’ has been correctly tracked. We consider the frames where the primitive state

PersonSitting is annotated. ♯(PersonSitting) is the number of frames where the primi-

tive state PersonSitting is annotated. We use 18 video sequences for this learning step, a

total of 21534 frames were annotated with the primitive state PersonSitting. The phys-

ical object ‘Person’ has been correctly tracked for a total number of 21268 frames of the

21534 learning frames. It gives us the probability of 0.98 that the physical object ‘Person’

is correctly detected given that the event model PersonSitting is annotated.

¥ P(‘Person → Posture = Sit ′, poO
e = Person) is the Bayesian probability denominator. It

is computed based on the following equation (5.22):

P(‘Person → Posture = Sit ′, poO
e = Person) =

P(‘Person → Posture = Sit ′, poO
e = Person|PersonSitting) × P(PersonSitting)+

P(‘Person → Posture = Sit ′, poO
e = Person|⌉PersonSitting) × P(⌉PersonSitting)

=
3242

4228
× 1

3
+

6175

23217
× 2

3
= 0.43

(5.22)
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P(‘Person → Posture = Sit ′, poO
e = Person|PersonSitting) corresponds to the number

of frames where the constraint is verified and the physical object is detected. We consider

the frames where the primitive state PersonSitting is annotated. P(PersonSitting) is the

prior probability of the primitive state PersonSitting which is equal to 1
3
. P(‘Person →

Posture = Sit ′, poO
e = Person|⌉PersonSitting) corresponds to the number of frames

where the constraint is verified and the physical object is detected. We consider the frames

in the learning set where the other primitive states of type posture (e.g. PersonStanding,

PersonBending ) than PersonSitting are annotated. For the calculation of this probabil-

ity, we use a learning set of 27445 frames: 4228 where the primitive state PersonSitting

is annotated and 23217 frames annotated with other primitive states. The constraint

and the physical object are correctly detected during 3242 of the 4228 frames where the

primitive state PersonSitting is annotated.

Finally, the probability P(PersonSitting|‘Person → Posture = Sit ′, poO
e = Person) is

computed as following:

P(PersonSitting|‘Person → Posture = Sit ′, poO
e = Person) =

0.76 × 0.98 × 1
3

0.43
= 0.58

(5.23)

The probability that the primitive state PersonSitting is detected given that its physical

objects in the model ΩPersonSitting have been observed and given that the constraints in the

model ΩPersonSitting are satisfied is equal to 0.58.

5.4 Second Stage of Activity Recognition

The second stage of the activity recognition algorithm is the recognition of composite events.

The recognition of composite events requires two steps: first, the algorithm recognizes all the

sub-events composing the composite event and second, the system has to check whether the

time intervals of the detected sub-events satisfy the relationships in the event model as de-

scribed in [Vu et al., 2004].

The recognition of a given event is triggered only if its last sub-event (called event terminai-

son) is recognized which avoids an exponential computation. Thus the algorithm runs in real

time since only the events which their terminaison is recognized are processed. All the com-

posite events are decomposed into states and events composed at the most of two components.

Then the recognition of composite states and events is performed similarly to the recognition

of primitive states. To recognize the predefined event models at each instant, we do first a

selection of a set of event triggers that indicate which events can be recognized. These trig-
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Figure 5.3: (a) an example of merging two event instances p1 and p2 of the same type into the same

event instance. (b) two event instances e3 and e4 that can not be merged.

gers correspond to a primitive state or to a composite event that terminates with a component

recognized at the previous or current instant.

For each of these event triggers, solutions are found by looking for component instances

already recognized in the past to complete the recognition of event.

A solution of an event model Ω is a set of physical objects that are involved in the event and

the list of corresponding component instances satisfying all the constraints of the event model

Ω.

To prevent from event fragmentation, we consider that if at the previous instant, an event

instance p’ of the same type (same model, same physical objects) was recognized on a time

interval [t0,t1] with |t1 − t| < δ, the two event instances p1 and p2 are merged into an instance

that is recognized on the time interval |t0 − t| (fig. 5.3).

5.4.1 Event Recognition Algorithm

We define a trigger as an event which can be potentially recognized. There are two kinds of

triggers : the primitive state trigger (type 1), and the composite events trigger (type 2). A list

LT of triggers is initialized with all triggers of type 1 (i.e. primitive states).

In the case of primitive state model Ω, a solution of Ω is a set of physical objects involved

in the event and that are satisfying all the list of the constraints in the event model Ω. In the

case of composite event model Ω
′

, a solution of Ω is a set of physical objects that are involved

in the event and the list of corresponding component instances satisfying all the constraints of

the event model Ω
′

.

Once an event e is recognized, the algorithm try to extend it with a previously recognized

event e ′. If the event e is extensible, the algorithm adds then all the triggers of type 2 that ter-

minate with e to the list of trigger and creates an event instance stored on the list of recognized

events (see algorithm 2).
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begin
Initialization

create a list of triggers LT including the triggers Te for the primitive

state models (type 1) and the triggers Tc for the composite event

models (type 2)

for each solution e of LT do

if e is not extensible then
Create an event instance e

Store e to the list of recognized events

add all triggers of type 2 that terminates with e to the list of

trigger LT

end

if e is extensible with e ′ recognized at previous time t then

Merge e with e ′

Create a composite event instance ec

Store ec to the list of recognized events

add all triggers of type 2 that terminates with e to the list of

trigger LT

end

end

end

Algorithm 2: Event recognition algorithm

5.5 Probabilistic Composite Event Recognition

The probabilistic recognition of complex event estimation problem is defined as a hierarchi-

cal Bayesian inference. The objective is to recognize the complex event e given an observation

O. That is, what we want to calculate here is :

‘The probability that a complex event instance e belongs to an event model Ω given that the

components (sub-events) in the model Ω are observed and the constraints in the model Ω

are satisfied by the observation’.

In mathematical words, the proposed way of calculating this is:

P(e ∈ Ω, SE(Ω, O), ζ(Ω, O)) = P(e ∈ Ω|SE(Ω, O), ζ(Ω, O)) × P(SE(Ω, O), ζ(Ω, O)) (5.24)

¥ e ∈ Ω, e is an instance of event model Ω.
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¥ ζ(Ω, O), the constraints in event model Ω are satisfied by observation O.

¥ SE(Ω, O), the components (sub-events) of the model Ω are observed.

¥ The first factor P(e ∈ Ω|SE(Ω, O), ζ(Ω, O)) corresponds to the Bayesian probability.

as demonstrated in section 5.3.2, the probability P(e ∈ Ω|SE(Ω, O), ζ(Ω, O)) is computed

as follow:

P(e ∈ Ω|SE(Ω, O), ζ(Ω, O)) =
P(SE(Ω, O)|e ∈ Ω) × P(ζ(Ω, O)|e ∈ Ω) × P(e ∈ Ω)

P(SE(Ω, O), ζ(Ω, O))
(5.25)

5.5.1 Probabilistic Event Recognition Algorithm

To recognize an event model Ω, the algorithm tries to instantiate the components of Ω (sub-

events) with event instances previously recognized. A combination of sub-events instances is a

solution if it satisfies all the constraints of Ω.

In the proposed probabilistic event recognition algorithm (see algorithm 3 and algorithm

4), we propose (i) to probabilistically verify the constraint used in the event models and (ii)

to compute the Bayesian probability of the event. The Bayesian probability computation is

detailed in section 5.5.2. The probabilistic verification of constraints is detailed in section 5.6.

5.5.2 Probability Computation

In this section, it shall be specified how to compute each term of the equations ( 5.25)

¥ the first probability to be estimated is P(e ∈ Ω):

P(e ∈ Ω) is the prior probability that a certain scenario model Ω is detected. We can

assume that all scenarios in a certain universe are equally probable, so as not to favor any

scenario just because it happens more often. By scenario models in the same universe,

we mean a set of scenarios which are mutually exclusive (if any of them is happening the

others can not happen) (5.26).

P(e ∈ Ω) =
1

Nbr.ScenarioΩUniverse
(5.26)

¥ The second probability to be estimated is P(ζ(Ω, O)|e ∈ Ω):

P(ζ(Ω, O)|e ∈ Ω) is the probability that constraints of the event model are verified given

that the event e is true (i.e. has been identified as an instance of the event model Ω).

This probability quantifies how likely it is that a constraint of event model Ω should be

verified when an instance of Ω is taking place. It is computed in the same way that in the

case of primitive states:



5.5 Probabilistic Composite Event Recognition 109

begin
Data:

Ω : event model.

ListConstraints : List of the event constraints.

ListComponents : List of components (i.e. sub-events) of the event model Ω with

previously recognized instances.

Result: Find a probabilistic solution for the event model Ω.

if (Probabilistic Constraint Verification (ListComponents , ListConstraints ) )

then

if BayesianRecognition (ListComponents , ListConstraints ) then
Create(e) // a probabilistic solution for the event model Ω

end

end

end

Algorithm 3: Probabilistic Solution for composite event model. In the function Probabilistic

Constraint Verification, the algorithm verifies probabilistically if the constraints in the event

model Ω are satisfied. In function BayesianRecognition, the algorithm computes the Bayesian

probability of the event.

P(ζ(Ω, O)|e ∈ Ω) =

n∏

i=1

♯(ζ(Ω, O)i ∧ e ∈ Ω)

♯(e ∈ Ω ∧ V
ζi

Ω ∈ poO
e )

(5.27)

where ♯(a) is the number of frames where a is verified and i is the total number of

constraints that are being considered. Only frames where event e have been identified as

an instance of Ω are considered, and for each constraint in event model Ω, the number of

frames where it is satisfied are counted. Conditional independence among the constraints

is assumed (even if they are not actually independent, it would simplify the calculations).

Thus, the probability of all the constraints that are being considered is calculated as the

multiplication of the probabilities of each of the constraints.

It is important that the frames where the scenario is said to have been identified should

be annotated (manually or automatically). Since we want to assess how much the verifi-

cation of the constraint affects the event’s detection, the cases where the event is present

but the constraint is not verified must be identified. It is necessary to determine the event

instances that are in the GT but are not detected, and assess what is causing this failure

in detection.

The physical objects that intervene in the constraint are added in the equation. Otherwise,
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begin
Initialization

create a list of triggers LT including the triggers Te for the primitive

state models (type 1) and the triggers Tc for the composite event

models (type 2)

for each Probabilistic solution e of LT do

if e is not extensible then
Create an event instance e

Store e to the list of recognized events

add all triggers of type 2 that terminates with e to the list of

trigger LT

end

if e is extensible with e ′ recognized at previous time t then

Merge e with e ′

Create a composite event instance ec

Store ec to the list of recognized events

add all triggers of type 2 that terminates with e to the list of

trigger LT

end

end

end

Algorithm 4: Probabilistic Event recognition algorithm: once we compute the probabilistic

Solution for composite event model detailed in algorithm 3, we try to recognize probabilisti-

cally the event.
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a failure in detection of physical object that intervene in the constraint might result in low

probabilities for that constraint, when the problem is in fact due to a failure of physical

object detection.

¥ P(SE(Ω, O)|e ∈ Ω) is the probability that the sub-event variables in the event model

Ω have been detected given that e is an event instance of the event model Ω. As in

the previous factor, independence among the sub-events is assumed and the probabilities

obtained for each sub-event are multiplied. This probability quantifies the likelihood of

detecting a sub-event when an event that involves it is actually happening. It is computed

based on the following equation:

P(SE(Ω, O)|e ∈ Ω) =

m∏

k=1

♯(SEk(Ω, O) ∧ e ∈ Ω)

♯(e ∈ Ω)
(5.28)

Where m is the number of sub-events of the event e. The sub-events of an event e can be

primitive states or composite events.

¥ P(ζ(Ω, O), SE(Ω, O)) the Bayes denominator is computed based on the following equa-

tion in the same way that described in section 5.3.2.1:

P(ζ(Ω, O), SE(Ω, O)) = P(ζ(Ω, O), SE(Ω, O)|e ∈ Ω) × P(e ∈ Ω)+

P(ζ(Ω, O), SE(Ω, O)|e ∈⌉Ω) × P(e ∈⌉Ω)

=
(♯(ζ(Ω, O), SE(Ω, O)) ∧ e ∈ Ω)

♯(e ∈ Ω)
× P(e ∈ Ω)+

(♯(ζ(Ω, O), SE(Ω, O)) ∧ e ∈⌉Ω)

♯(e ∈⌉Ω)
× P(e ∈⌉Ω)

(5.29)

5.5.3 Discussion

The proposed approach for probabilistic recognition of activities is based on Bayesian prob-

ability theory which provides a consistent framework for reasoning and decision making under

uncertainty, using probability. The computed Bayesian probability corresponds to the degree of

belief that an event occurs based on statistics about its constraints and its components. Based on

the value of this probability, we make the decision that an event is recognized or not. The main

problem is that based only on Bayesian probability computation, the algorithm will not take into

account the uncertainty of the on-line sensors measurements. The sensors measurements can

deeply affect the verification of the activity constraints (i.e. spatial and temporal constraints)

which can lead to the failure of the detection of this activity. To deal with this problem and

to enhance the recognition performance of the algorithm, we propose an approach for on-line
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probabilistic constraints verification. In the following, we detail the proposed approach to study

the uncertainty of the verification of the spatial and temporal constraints of activities.

5.6 Probabilistic Constraints Verification

Addressing the noise arising from low-level video analysis has inspired the proposed ap-

proach for probabilistic constraints verification. In this section we detail how we probabilisti-

cally verify the constraint used in the event models. We detail the verification of the spatial

constraint, the posture constraint and the temporal constraints.

5.6.1 Probabilistic Spatial Constraint Verification

Typically in video interpretation, objects are identified and then tracked, such that a unique

identifier can be associated with the different positions of the object at different times. However,

the position/shape of the object may changes, either because it actually changes (e.g. a person

moving, a person changing its posture), or because, in the image plane, an object appears to

get larger as it moves closer to the camera, or because of the visual noise which results in

the object detection/tracking processes assigning a different shape/position to the object in

different frames.

It is this final problem which is of particular concern to us, since the changes are not ‘real

changes’ but rather artefacts of vision algorithms. Often the size/position of the object changes

rapidly from frame to frame. Such problem may cause undesirable changes of spatial relation

and affects the activity recognition process.

In the process of spatial constraint detection, we take into account (i) the geometrical uncer-

tainty which is related to the verification of the constraint (e.g. verifying the spatial constraint

inside-zone consists in the geometrical computation if a point representing the person is inside

a polygon representing the zone). This type of uncertainty handling depends on the type of the

constraints as described in the sections 5.6.1.1 and 5.6.1.2. and (ii) the uncertainty of the

attribute values due to noisy data and low-level algorithm errors. This type of uncertainty han-

dling is described in the section 5.7.2 by proposing a new dynamic model for the re-estimation

of the attribute value to deal with noisy data.

5.6.1.1 Inside-zone

In this section we study the relationship that can have a mobile object with the contextual

object zone, the spatial relation inside-zone and we propose a probabilistic approach for the

verification of this spatial relation. This approach can be generalized and extended for other

spatial relationship between mobile objects and zones. The spatial relation inside-zone requires



5.6 Probabilistic Constraints Verification 113

Figure 5.4: The computation of the distance of a person P to a zone.

two physical objects, a mobile object (e.g. person p) and a contextual object of type zone z.

This relation (p in z) verifies wether the mobile object (e.g. person) is inside a zone z.

A main problem in the verification of this constraint is: (1) the imprecision and uncertainty

in the detection of the relative location of a mobile object to the zone due to low level detection

errors (e.g. reflections, shadows or occlusions). Thus, the verification of the constraint can fail.

Another issue consists in (2) the value of position attribute itself (e.g. wrong value estimation,

value change rapidly from frame to frame). A solution to cope with the first problem (1) is

to propose a probabilistic distance-based analysis for the verification of the constraint. It is a

two-step approach:

¥ The first step consists in computing the distance between the 3D position of the tracked

mobile object (i.e. person) and the zone of interest. The person is represented by the

position of its feet corresponding to the middle of the bounding box bottom segment. The

zones of interest are represented as polygon. In the following we note (xp, yp, zp) the

3D position of the mobile object and ‘dist ′ its distance to the zone. We have defined a

method called border method, to compute this distance between the 3D position of the

mobile objects with respect to the border of the zone of interest.

The border method consists in computing the distance of the person P from each of the

zone borders. As shown in figure 5.4, this step consists in calculating whether the orthog-

onal projection (noted H) of P on segment [AB] belongs to the same segment. If H ∈ [AB]

then the distance of the person to the zone is ||PH||, it is the minimal one. Otherwise, we

calculate the distance of P to the two extremities of the segment [AB] and the minimal

distance of P to [AB] is the Min (d1,d2); with d1= ||AP|| and d2 = ||PB||.

¥ For the second step, we have to choose the exact shape of the distribution, which depends

on the exact situation we want to model. The goal is to find a function that describes the

likelihood that a person is inside a zone given the distance of the person to this zone. In
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Figure 5.5: Gaussian probability distributions, with mean 0 and different standard deviations σ. The

parameter µ determines the location of the distribution while σ determines the width of the bell curve.

The standard deviation σ shows how much variation or ”dispersion” exists from the average. A low

standard deviation indicates that the data points tend to be very close to the mean; high standard

deviation indicates that the data points are spread out over a large range of values.

probability theory, it is to find a probability distribution function (PDF) that maximizes

the value of probability when the distance ‘dist ′ is small (i.e. person inside the zone/

person near the zone) and a minimum value when the distance ‘dist ′ is big (i.e. person

far from the zone).

There are different probability models proposed in the literature, and the appropriate

model depends on the distribution of the outcome of interest. A very common distribution

that is often used in probability theory is the Gaussian distribution (fig.5.5), it needs only

two parameters to represent the normal distribution denoted by N (µ, σ): the mean µ of

the distribution and the standard deviation σ (Eq. 5.30).

The normal (Gaussian) probability model applies when the distribution of the outcome

conforms reasonably well to a normal or Gaussian distribution, which resembles a bell

shaped curve. Note, normal probability model can be used even if the distribution of the

continuous outcome is not perfectly symmetrical; it just has to be reasonably close to a

normal or Gaussian distribution [Sullivan and LaMorte, 2013].

N (µ, σ2) =
1√
2πσ

exp(−
(dist − µ)2

2σ2
) (5.30)

In this context, the outcomes represent the value of the distance of the person to the zone of

interest. Figures 5.6, 5.7 and 5.8 are graphical representations showing a visual impression of
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Figure 5.6: Histogramme of the distance distribution; distance(person, reading zone).

Figure 5.7: Histogramme of the distance distribution; distance(person, coffee corner zone).

the distribution of data. These histograms show the underlying frequency distribution (shape)

of the distance values shown as rectangles, erected over discrete intervals, with an area equal

to the frequency of the observations in the interval. The height of a rectangle is equal to the

frequency density of the interval. These histograms show the proportion of cases that fall into

each of several categories. The categories are usually specified as consecutive, non-overlapping

intervals of a variable in our context the distance variable. These figures show and let us

discover that the distribution of these distances fit into a normal distribution.

In figure 5.6, we take a video sequence where the ground truth indicates that a person is

inside a zone called ‘reading zone’, we compute and store at each frame the distance of the

person to this zone. We plot the histogram that is used for estimating the probability density

function of the variable distance. In the same manner we plot the histogram of the distance of

a person to the zone called ‘coffee corner zone’ and the zone called ‘TV zone’.

Once, we decide for the density distribution function, we have to learn the parameters of
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Figure 5.8: Histogramme of the distance distribution; distance(person, TV zone).

this function, i.e. the Gaussian parameters (µ, σ). That is, having a sample (x1, ..., xn) from a

normal N (µ, σ2) population we would like to learn the approximate values of parameters. This

calculation is based on equations:

µ̂ = x̄ =
1

n

n∑

i=1

xi, σ̂2 =
1

n

n∑

i=1

(xi − x̄)2 (5.31)

n is the sample size

In our context, to learn the Gaussian parameters, we divide the video database: two-third

for learning database and one third for testing. For the learning dataset which is selected to

be representative to the whole video database, we calculate and store the distances disti of a

tracked person to each contextual zone (dist1, ..., distn)z1
, ..., (dist1, ..., distk)zi

, etc. Having

these samples, we calculate the Gaussian parameters based on the following equations:

µ̂ = ¯dist =
1

n

n∑

i=1

disti, σ̂2 =
1

n

n∑

i=1

(disti − ¯dist)2 (5.32)

n is the sample size. More details of the step of Gaussian parameters learning are presented in

section 6.7.1.2, chapter 6.

5.6.1.2 Close to

In this section, we study the relationship that can have a mobile object (i.e. person) with

the contextual object equipment (e.g. chair, TV), the spatial relationclose-to. The probabilistic

verification of the constraint Close to is defined in the same way than the spatial relationinside-

zone. The proposed approach can be generalized and extended for other spatial relationship

between mobile objects and equipment. As described above, to verify the spatial constraint, we

compute the distance dist of the person to the objects (i.e. person, equipment), we choose the
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Figure 5.9: Computation of the distance od a person to the equipement.

Gaussian function N (µ, σ) that gives a maximal value of probability (i.e. 1) when the distance

is small and a minimun value (i.e. 0) when the distance is big.

¥ The first step consists in computing the euclidean distance of the person to the contextual

object (i.e. equipment) (fig. 5.9). The tracked person is represented by the position of its

feet corresponding to the middle of the bounding box bottom segment. The equipment

of interest is represented as 2D polygon. The distance of the person to the equipement is

calculated in the same manner than for the spatial relation inside-zone (see section 5.6.1.1

).

¥ For the second step, we have to choose the distribution function that describes the likeli-

hood that a person close to the equipment of interest given the distance of the person to

this equipment. In probability theory, it is to find a probability distribution function (PDF)

that maximizes the value of probability when the distance ‘dist ′ is small (i.e. person near

the equipment) and a minimum value when the distance ‘dist ′ is big (i.e. person far from

the equipment). As described in section 5.6.1.1, we use the Gaussian distribution func-

tion. For each equipment, we calculate and store the distances disti of a tracked person to

each contextual equipment (dist1, ..., distn)equipment1
, ..., (dist1, ..., distk)equipmenti

etc. For the learning step, we divide the video database: two-third for learning and one

third for testing. The learning of the Gaussian parameters (µ, σ) is based on equation

5.31.
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5.6.1.3 Discussion

We discussed the approach that we propose for a probabilistic verification of spatial con-

straints based on the Gaussian probability. We study the relationship that can have a mobile

object with the contextual object zone, the spatial relation inside-zone and compute the Gaus-

sian probability of this constraints which allows us to decide if this constraint is satisfied or not.

This approach can be generalized and extended for other spatial relationship between mobile

objects and zones.

We also study the relationship that can have a mobile object (i.e. person) with the contextual

object equipment (e.g. chair, TV), the spatial relation close-to. The probabilistic verification of

the constraint Close to is defined in the same way than the spatial relation inside-zone. The

proposed approach can be generalized and extended for other spatial relationship between

mobile objects and equipment. In the following, we discuss the posture and temporal relations

and we detail the way that we propose to deal with uncertainty.

5.6.2 Posture

We have selected a set of specific postures which are representative of typical applications in

video understanding. These postures are classified in a hierarchical way. We have four general

posture categories and eight detailed posture sub-categories:

- Standing postures: standing with one arm up, standing with arms along the body and T-shape

posture,

- Sitting postures: sitting on a chair and sitting on the floor,

- Bending posture,

- Lying postures: lying with spread legs and lying with curled-up legs.

The human posture recognition algorithm [Boulay et al., 2007] determines the posture of

the detected person using the detected silhouette and its 3D position. The 3D human model

silhouettes are obtained by projecting the corresponding 3D human model on the image plane

using the 3D position of the person and a virtual camera which has the same characteristics

(position, orientation and field of view) as the real camera. A dedicated 3D engine (virtual

3D scene generator) can animate and display a 3D human model. It also extracts the gener-

ated model silhouette. Finally, 3D human model silhouettes are compared with the detected

silhouette to recognise the posture of the detected person.

The management of uncertainty of this constraint is given from the posture recognition al-

gorithm based on a computed score of the most likely postures (see algorithm 5). The temporal

coherence of posture is exploited to compute the posture recognition score: the identifier of

the recognized person is used to retrieve the previous detected postures in a temporal window.
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Figure 5.10: Hierarchical representation of the postures of interest [Boulay et al., 2007].

Figure 5.11: Detected posture is compared with the previous detected postures to verify the temporal

coherency.

These postures are then used to compute the filtered posture (i.e. the main posture) by search-

ing the most probable posture which corresponds to the most frequent posture for a certain

period of time (fig. 5.11 ).

This smoothing algorithm reduces the misdetection and allows activity recognition algo-

rithm to benefit from reliable filtered postures, more details are available in [Boulay et al., 2007],

section 5.4.
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begin
Data:

postureList ← NULL the list which contains the quantity of occurrence of the postures

for i = -windowSize to windowSize do
postureList[detectedPOsture[t + i]] += weightList[i]

end

return indexOfTheMaximum (postureList) return the posture which occurs the most

frequently as the filtered posture at time t

end

Algorithm 5: Determination of the most probable posture in a temporal window of 2 ∗
windowSize+1. The weight list weightList determines how probable the ith posture occurs

in the window of 2 ∗ windowSize + 1.

5.6.3 Probabilistic Temporal constraint verification

We adopt the Allen’s temporal predicates [Allen, 1983] which have been widely adopted for

the description-based approaches to specify relationships between time intervals. The proposed

approach can be generalized for all Allen temporal relations. In this section, we will discuss the

temporal relation that have been implemented.

Allen Relation. Allen introduced a calculus for representing the temporal relations of

events delimited by time intervals. In particular, he defined 13 qualitative relations between

intervals summarized in figure 5.12. For example, if X is a time interval with boundaries

X = [10sec, 12sec] and Y is a time interval with boundaries Y = [2sec, 40sec], the only rela-

tion hold is: ‘X during Y’.

However, using temporal relations under real world applications, we often need to deal

with uncertain information. The qualitative nature of Allen‘s relations may not fit very well to

temporal segments that result from automated analysis, it may not be robust enough to small

temporal perturbations. This can lead to failure of temporal constraint verification.

Lack of Robustness. Automated analysis results are inherently uncertain due to the limited

accuracy of the vision algorithms. One source of uncertainty is the inaccuracy of time segment

boundaries. It is important that small differences in segmenting interval boundaries should

not results in significant difference in their inferred relations. This can happen with Allen’s

relations, for two reasons. First, several relations (e.g. meet) requires equality of time points,

something which can only hold approximately in real-world time intervals. Second, negligible

changes to one of the end-points, with respect to the size of the time interval may result in a

different qualitative relation as pointed in [Mouhoub and Liu, 2008], [Sergios et al., 2010].

To illustrate more clearly that, let us examine the case of two intervals of approximately the
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Figure 5.12: Allen’s qualitative relations between two time intervals X = [Xb, Xe] and Y = [Yb, Ye].

Figure 5.13: Allen’s reations lack of robustness.

same size. Let a referred time interval X = [Xb, Xe] and let Y = [Xb + ǫ1, Xe + ǫ2], ǫ1 and ǫ2

are time durations that can be chosen to be arbitrary small. By definition, interval Y is almost

equal to X but not necessarily exactly equal. In fact, as depicted in figure 5.13, several of Allen

relations may hold between X and Y, depending on ǫ1 and ǫ2. Consequently the information

that a particular relation holds between two intervals looses its significance, since most other

could characterize approximately the same situation.

Inadequacy. Another issue with Allen’s relations is their inadequacy in discriminating be-

tween very different situations occurring between intervals. In particular, there are cases where

a different relation would result from the constraint verification due to the fact that end-point of

an interval is slightly perturbed. This failure can be explained by the lack of quantitative infor-

mation taken into account when verifying the constraint as pointed by [Petridis and Psomas, 2012].

Figure 5.14 depicts this failure in the case of three quite different situations, all being qualified

as Overlaps.

Addressing the uncertainty issue, we propose a probabilistic extension of Allen algebra by
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Figure 5.14: Example of Allen relation inadequacy.

providing a formal way for assigning uncertainty value to Allen’s relations. This approach

is motivated mostly by the need to impose soft temporal constraints to compensate for the

inherent uncertainty from vision algorithms and improve the robustness and applicability of

Allen’s relations.

5.6.3.1 The relations During and During-i

In this section, we study the uncertainty of the temporal relations ‘During’ and ‘During-i’

and we detail how we propose to compute the probability of these relations. Let’s see how

the ‘During’ relation is defined and see how we extend it and attach a probability measure. ‘X

During Y’ holds if X is entirely into Y. As shown in figure 5.12, even if a small part of X is not

into Y, then this relation will not hold.

In the case the relation holds, we may say that the probability that ‘X is during Y’ equals 1.

However, we may also relax the definition so that when a part of X not in Y is very small, then

the relation almost holds.

In this work, The computation of the probability of the temporal relations ‘during’ and

‘during-i’ (see equations 5.33 and 5.34) depends of (i) the size of the two temporal intervals

X and Y: i.e. (1) the first interval is smaller than the second, P(X < Y), (2) the same size

for the two intervals, P(X ∼ Y), (3) the first interval is larger than the second P(X > Y). The

probability computation depends also of (ii) the the position of an interval with respect to the

other interval in the temporal axis, P(X ≍ Y). We note that the probabilities relative to the size

of intervals are independent of the probability relative to the intervals position.

P(X during Y) = P(X < Y).P(X ≍ Y) (5.33)

and

P(X during − i Y) = P(X > Y).P(X ≍ Y) (5.34)

In the following, we detail the computation of these probabilities (i.e. P(X < Y), P(X ∼ Y),

P(X > Y) and P(X ≍ Y)). In the purpose to compute each of these probabilities, we propose to

define two interval relations.

¥ Relation for relative position: the intersection relation. The intersection relation de-

noted by ≍ define the intersection interval that can have two temporal intervals. In case
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Figure 5.15: Illustration of the intersection relation between two temporal intervals.

this relation holds, we say that the probability of X intersects with Y is equal to 1 (fig.

5.15). Otherwise, we relax the definition of this relation:

Let a point t chosen randomly in X, what is the probability that t is also in Y? In other

words, we measure the probability P(X intersects with Y) by considering P(t ∈ Y|t ∈
X). In order to define a symmetric relation, instead of chosen t from X in all cases, we

will be choosing t randomly from the smallest interval, and thus define P(X ≍ Y) as:

P(X ≍ Y)
def
=

{
P(t ∈ Y|t ∈ X) |X| ≤ |Y|

P(t ∈ X|t ∈ Y) |X| > |Y|
(5.35)

Where |.| denote the size of the interval, |X| = Xe − Xb. Based on the assumption that

there is no reason to choose one time point over another, equation 5.35 becomes:

P(X ≍ Y)
def
=

{
|X∩Y|

|X|
|X| ≤ |Y|

|X∩Y|

|Y|
|X| > |Y|

(5.36)

When the ratio value equals 1, it means that the smallest interval is entirely into the larger

interval. Small probability value indicates that some part of the smallest interval is not

into the larger one. The value 0 means that no part of the interval is within the other.

¥ Relation for relative size. We discuss now the second relation for interval, namely the

relation between the size of intervals. Three cases can be enumerated:

- both intervals have the same size,

- the first is smaller than the second,

- the first is larger that the second.

If we assume that the boundaries of intervals are uncertain, the estimation of the size of

intervals is done with some uncertainty.
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Considering uncertainty, we may compute the probability that (1) an interval X have the

same size than Y, P(X ∼ Y); (2) X is smaller than Y, P(X < Y) and (3) X is greater than Y,

P(X > Y).

In this work, we propose the computation of these probabilities based on the cumulative

probability. In the following we define some useful basis for cumulative probability and

then we define the way that we propose for the computation of the temporal relation

probability.

Cumulative distribution function

In probability theory and statistics, the cumulative distribution function, usually denoted

by Φ, describes the probability that a real-valued random variable V with a given prob-

ability distribution f will be found at value less or equal to v, in case of a continuous

distributions, it gives the area under the probability distribution function [Zhang, 2008]

(fig.5.16).

Φ(v) = P(V ≤ v) =

∫v

∞
f(t)dt (5.37)

We consider v̂ the mean value of a random variable V, following normal distribution.

V ∼ N (v̂, σ) (5.38)

The probability that V is smaller or larger a value v is defined using the cumulative prob-

ability of V:

P(V < v) = Φ(v|v̂, σ) (5.39)

P(V > v) = 1 − Φ(v|v̂, σ) (5.40)

Where v̂ and σ are the parameters of the normal distribution.

To compute P(X ∼ Y), let n be a parameter, n ∈ R+, we define the probability of being

equal to some value v as:

P(V ∼ v) = P(V < v + n) − P(V < v − n) (5.41)

The values v + n and v − n may be seen as defining a neighborhood around v.

Now, once we have defined the cumulative probability, we describe in the following the

relation between the size of intervals. Let us consider the ratio,



5.6 Probabilistic Constraints Verification 125

Figure 5.16: The cumulative distribution function Φ describes the probability that a real-value random

variable V with a given probability distribution f will be found at value less or equal to v. it gives the

area under the probability distribution function f.

v̂ =
|X| − |Y|

|X| + |Y|
(5.42)

This ratio takes value from [−1,+1], if the value of this ratio is positive, it means that

the interval X has greater size than the interval Y. If the value of this ratio is negative,

it means that the interval X has smaller size than the interval Y and if the value of the

ratio is null, the interval X has the same size than the interval Y. The upper value limit

corresponds to the case where the interval X has infinitely greater size value than Y, the

lower value limit corresponds to the case where the interval X has infinitely smaller size

value than Y. Thus when evaluating the value of this ratio, we can know the relation

between the size of the two intervals X and Y.

Considering uncertainty in the boundaries of intervals, the value of this ratio v̂ is uncertain

and corresponds more to a region than a single point.

To evaluate the uncertainty of measurement of this ratio, we model this quantity (i.e.

ratio value) by a normal distribution ( V ∼ N (v̂, σ)), the best estimated value of the ratio

is the center of two limits v− and v+ as described in figure 5.17 [Taylor and Kuyatt, 1994],

[Nist, 2000].

Based on all the above definitions and equations 5.39, 5.40 and 5.41, we compute the

probability P(X < Y) as the cumulative probability of V taking negative values. P(X >

Y) is the cumulative probability of V taking positive value and P(X ∼ Y) is the cu-

mulative probability of V taking close to zero values. Figure 5.18 illustrates all these

definitions.
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Figure 5.17: In figure (a): To evaluate the uncertainty of measurement of the ratio v̂, we model this

ratio by a normal distribution V ∼ N (v̂, σ) and estimate lower and upper limits v− and v+ such that the

best estimated value of this ratio is (v+ + v−)/2 (i.e. the center of the limits). Figure (b) illustrates the

repartition of values in a normal distribution: about 68% of values drawn from a normal distribution are

within one standard deviation σ away from the mean; about 95% of the values lie within two standard

deviations; and about 99.7% are within three standard deviations.

Figure 5.18: Probability definition as areas of N (ŝ, σ), delimited by −n.σ and n.σ.

More formally, the above probabilities are expressed as follow:

P(X < Y) = Φ(−n.σ|ŝ, σ) (5.43)

P(X ∼ Y) = Φ(n.σ|ŝ, σ) − Φ(−n.σ|ŝ, σ) (5.44)

P(X > Y) = 1 − Φ(n.σ|ŝ, σ) (5.45)

To compute the cumulative distribution function Φ, we use usually the complemantary

error function erfc (eq. 5.46)
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erfc(x) =
2√
π

∫∞

x

e−t2

dt (5.46)

based on the equation 5.46, the probability equations are reduced to:

P(X < Y) =
1

2
erfc

(

n +
ŝ

σ

)

(5.47)

P(X ∼ Y) = 1 −
1

2

(

erfc
(

n −
ŝ

σ

)

+ erfc
(

n +
ŝ

σ

)

)

(5.48)

P(X > Y) =
1

2
erfc

(

n −
ŝ

σ

)

(5.49)

One can easily verify that P(X < Y) + P(X ∼ Y) + P(X > Y) = 1, i.e. they form a complete

probability base.

Dependence on the parameters σ and n: These parameters allow us to model our un-

certainty towards the measurement and our tolerance for considering that two intervals

are equisized. Namely, σ quantifies the uncertainty regarding the relative size measure-

ment: small value of σ, (e.g.σ ≪ 0.1), should be used when there is a high confidence

regarding the measurement, whereas, large value of σ should be used when there is a

low confidence regarding the measurement. The parameter n regulates our tolerance in

favor of the equisized relation. In this work, the calculation of these values were done

experimentally: in our experimentation, we vary the value of σ and n and compare the

results that we obtain (in term of the recognition rate of our algorithm) and finally we

opted for σ and n that present the highest recognition rate. Figure 5.19 illustrates how

the probability distribution of P(X < Y), P(X ∼ Y) and P(X > Y) are affected when varying

the parameters σ and n.

5.6.3.2 The Before and After relations

We discuss here how we extend and attach a probability measure to the relation ‘before’ and

‘after’. Let Y = [Yb, Ye], the left complement of the interval Y is denoted by Y− i.e. the intervals

that covers the entire time axis until Yb:

Y− = (−∞, Yb)

Similarily, the right complement of the interval Y is denoted by Y+ i.e. the intervals that

covers the entire time starting from Ye:

Y+ = (Ye, +∞)
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Figure 5.19: Graph of the probability distribution of P(X < Y) (in blue), P(X ∼ Y) (in green) and

P(X > Y) (in red) in function of the σ and n parameters: The first figure (a), illustrates the variation

of the probability distribution with parameters σ = 0.1, n = 1. The second figure (b), the variation

of the probability distribution with parameters σ = 0.1, n = 2. The third figure (c), the variation of

the probability distribution with parameters σ = 0.2, n = 1 and the last figure (d), the variation of the

probability distribution with parameters σ = 0.2, n = 2.

What we want to calculate here is the probability that ‘X is before Y’, this probability is

defined as the probability of a chosen random point t in X that lies before Y, i.e. in Y−. More

formally:
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∀|X| ≤ |Y| P(‘X before Y ′)
def
= P(t ∈ Y−|t ∈ X)

=
|X ∩ Y−|

|X|

(5.50)

In the same manner, the probability that ‘X is after Y’ is defined as:

∀|X| ≤ |Y| P(‘X after Y ′)
def
= P(t ∈ Y+|t ∈ X)

=
|X ∩ Y+|

|X|

(5.51)

Note that when we have |X| > |Y|, the same definitions hold but with the argument inverted.

Namely:

∀|X| > |Y| P(‘X before Y ′)
def
= P(t ∈ X+|t ∈ Y)

=
|Y ∩ X+|

|Y|

(5.52)

∀|X| > |Y| P(‘X after Y ′)
def
= P(t ∈ X−|t ∈ Y)

=
|Y ∩ X−|

|Y|

(5.53)

5.6.3.3 The relation Overlaps and Overlaps-i

Let’s now discuss about the relations ‘Overlaps’ and ‘Overlaps-i’. The relations ‘Overlaps’

holds if Xb < Yb < Xe < Ye as shown in figure 5.12. Similarly to the probability computation

of the ‘during’ and ‘durig-i’, we compute the probability of ‘Overlaps’ and ‘Overlaps-i’ as follow:

P(‘X overlaps Y ′) =

{
P(X ∼ Y)P(X ≍ Y) P(X after Y) = 0

0 P(X after Y) > 0
(5.54)

P(‘X overlaps − i Y ′) =

{
P(X ∼ Y)P(X ≍ Y) P(XafterY) > 0

0 P(X after Y) = 0
(5.55)

We notice that, (i) the probability of overlaps (respectively overlaps-i) are correlated to

the probability of before (respectively after) and (ii) the overlaps and overlaps-i can not be

simultaneously non-zero. Thus we conclude the following relations:

P(X after Y) = 0

lim
(X∼Y)→1

P(X overlaps Y) = P(X ≍ Y)

lim
(X∼Y)→1

P(X overlaps − i Y) = 0

(5.56)
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and

P(X after Y) > 0

lim
(X∼Y)→1

P(X overlaps Y) = 0

lim
(X∼Y)→1

P(X overlaps − i Y) = P(X ≍ Y)

(5.57)

5.6.3.4 The relation Meet and Meet-i

In this section, we define how we compute the probability of the ‘meet’ and ‘meet-i’. The

computation of the probability of the temporal relations ‘meet’ and ‘meet-i’ (see equations 5.70

and 5.71) depends of (i) the size of the two temporal intervals X and Y and (ii) the the position

of an interval with respect to the other interval in the temporal axis. We note that the probabil-

ities relative to the size of intervals are independent of the probability relative to the intervals

position. We propose first the following notions and definitions:

Definition 1. (Relative position). The relative position of intervals X and Y is defined as the

function p : R4 → [−1, 1],

p(X, Y) =

{
|Xc−Yc |

l(X,Y)
if l(X, Y) > 0

0 otherwise
(5.58)

Where,

Xc is the center of interval X, defined as following:

Xc =
Xb + Xe

2
(5.59)

Yc is the center of interval Y, defined as following:

Yc =
Yb + Ye

2
(5.60)

l(X, Y) is the total span of intervals defined as :

l(X, Y) = max{Xe, Ye} − min{Xb, Yb} (5.61)

The nominator of the relative position function is a signed index of how far from each other the

centers of the intervals are. On the other hand, the denominator acts as a normaliser so that

the relative position is always within [−1, 1].

Definition 2. (Relative size). The relative size of intervals X and Y is defined as the function

s : R4 → [−1, 1],

s(X, Y) =

{
|Xm−Ym |

d(X,Y)
if d(X, Y) > 0

0 otherwise
(5.62)
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where

the interval length is defined as following:

Xm = Xb − Xe (5.63)

d(X, Y) is the total size of intervals, defined as:

d(X, Y) = Xm + Ym (5.64)

The nominator of the relative size function is a signed index of how the size of intervals

differ from each other. On the other hand, the denominator acts as a normaliser so that the

relative size is always within [-1, 1].

Let’s now examine the case of ‘meet’ and ‘meet-i’. For ‘meet’ case, we know that the interval

Y begins exactly the moment that interval X ends, which implies that: Xe = Yb and Ye > Xb .

This means that:

p =

Xb+Xe

2
− Yb+Ye

2

l(X, Y)
=

Xb − Ye

2.l(X, Y)
= −

Ye − Xb

2.l(X, Y)
= −

1

2
(5.65)

Similarly, ‘meet-i’ corresponds to p = 1/2.

As described in section 5.6.3.1, we define the probability of being smaller of larger to some

value v using the cumulative probability of a random variable V as:

P(V) < v)
def
= Φ(v|v̂, σ) (5.66)

P(V) > v)
def
= 1 − Φ(v|v̂, σ) (5.67)

we let n be a parameter, n ∈ R+, and define the probability of being equal to some value v,

as:

P(V) ∼ v)
def
= P(V < v + n) − P(V < v − n) (5.68)

The values v + n and v − n may be seen as defining a neighbourhood around v . Moreover for

two value v1 and v2, the probability of being between these two values is defined as:

P(v1 < V < v2)
def
= P(V < v2) − P(V < v1) (5.69)

Based on the above definitions, and given that for the ‘meet’ relation, p = −1/2 and for

‘meet-i’, p = 1/2, the following definitions are straightforward:

P(X meet Y)
def
= P(p ∼ −

1

2
).P(s ∈ (−1, 1)) (5.70)

P(X meet − i Y)
def
= P(p ∼

1

2
).P(s ∈ (−1, 1)) (5.71)
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5.6.3.5 Examples

To illustrate how the proposed approach improves the robustness and expressiveness of the

temporal relations between intervals, we present the application of these interval relations in

some examples. Figure 5.20 illustrates cases of different temporal relations (e.g. overlaps,

during). Probabilities are calculated using the proposed approach and obtained for several

relation in each case. The most probable relation is highlighting in each case. In all these cases,

the most probable relation coincides with the true one (i.e. coincides with the ground truth).

However, these probabilistic extension provides a more expressiveness to the temporal relation,

for example, in case (2), the ‘overlap’ relation has a greater value than the ‘overlap-i’ in case

(5). This is because in case (2) the intervals overlap more than for the case (5). Furthermore,

by applying the probabilistic extension, the relation becomes more robust with respect to the

boundaries uncertainties. For instance, in case (1), when we apply Allen definitions, the relation

between X and Y would be overlaps, however, this hide the fact that X is almost before Y and

the fact that they overlaps is may be due to noisy boundaries measurement. By applying the

Allen extension, the ‘before’ relation is more probable than ‘overlaps’.
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Figure 5.20: Expressiveness and robustness of probabilistic Allen temporal relations. The letter b is for

the relation ‘before’, a, for ‘after’, o, for ‘overlaps’, oi for ‘overlaps-i’, d, for ‘during’ and di, for ‘during-i’,

for σ = 0.1, and n = 1.0.

5.7 Low-level attribute Noise Processing

In video interpretation objects are tracked and associated with different positions at differ-

ent times. However, the position of the object may change rapidly from frame to frame, because

of visual noise which results in the object tracking processes assigning a different position to

the object in different frames. These changes are not ‘real changes’ but rather artefacts of vision

algorithms. Such problem affects considerably the activity recognition process.

In this section, we detail the proposed methods to take into account this kind of uncer-

tainty inherent in low level observations by proposing a dynamic model for temporal attributes

filtering.

5.7.1 Visual reliability Estimation of Attributes

The visual reliability for a dimension d ∈ {width(w), length(l), height(h)} is intended to

quantify the visual evidence for the dimension by analysing how much the object can be seen
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from the camera point of view. The objective is to find a measure that gives a minimal value

(e.g. 0) when the object is not visible, and a maximal value (e.g. 1) when the object is totally

visible.

The visual reliability RDa estimation of the object attribute a changes according to its type.

The attributes considered belong to the set A = {X, Y, W, H, xp, yp, zp, w, l, h, β}.

- (X, Y) is the 2D position of the object,

- (W, H) are the 2D blob width and height in image plane coordinates,

- (xp, yp, zp) is the 3D position of the object,

- (w, l, h) correspond to the 3D width, lenght and height.

For 2D attributes W, H, X and Y a reliability measure inversily proportional to the distance

to the camera dcam is calculated, accounting to the fact that the segmentation errors increase

when the objects are farther the camera (5.72).

RDa =
1

dcam

(5.72)

The reliability measures of the 3D attributes w, l and h are obtained with the equation (5.73).

It represents the maximal magnitude of projection of a 3D attribute onto the image plane in

proportion with the magnitude of each 2D blob limiting segment.

The concept of visibility is not necessary for describing the reliability of the 3D position

(xp, yp, zp) and orientation β, because these attributes depend on w and l. The proposed

reliability is calculated as the mean between the reliability of w and l.

RDa = min(
dYa

H
+

dXa

W
, 1) (5.73)

dXa and dYa represent the lenght in pixels of the projection of the dimension a on the X

and Y reference axes of the image plane, respectively.

5.7.2 The Proposed Dynamic Model for temporal attributes filtering

As we work with real video sequences, observations can be corrupted by noise. This noise

which results in the object detection/tracking softwares assigning a different attribute values

(e.g. position, shape) to the object in different frames. These attribute values changes are not

‘real changes’ but rather artefacts of the software system. Often the size/position of the object

will change rapidly from frame to frame. Thus our job is to make the best estimation of an

attribute value given its previous observed value. The aim is to use a smothing technique to

smooth and reduce this rapidly changes of attribute value.

We propose a dynamic linear model for reliabily computing and updating the attributes

value on a temporal history of the previous values stored in a short-term history buffer. We
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think that tacking into account an history of the previous values and not just the previous one

help us to a better estimation. The proposed process of the temporal filtering of attributes

works in two steps:

- First step (1) consists in computing the expected value aexp of an attribute a at the current

instant tc given the estimated value of a and its velocity at the previous time tp.

- Second step (2) is to compute the estimated value aest of the attribute at the current instant

tc based on the previous value.

- The final value ā of the attribute is the mean between the expected and the estimated values

of the attribute weighted by the expected and estimated reliability values (Raexp, Raest) (5.74).

ā(tc) =
aexp(tc).Raexp(tc) + aest(tc).Raest(tc)

Raexp(tc) + Raest(tc)
(5.74)

¥ aexp(tc) is the expected value of an attribute a at the current instant tc. The expected

value aexp of an attribute a at the current instant tc is computed based on the value of a

at previous time tp and its velocity at previous time tp(Eq.5.75).

aexp(tc) = ā(tp) + Va(tc)(tc − tp); (5.75)

Va corresponds to the estimated velocity value of the attribute a described in the equation

(5.76)

Va(tc) =
Vac .Rv + e−λ(tc−tp).Va(tp)SVa

(tp)

SVa
(tc)

; (5.76)

SVa
(tc) = Rv + e−λ(tc−tp).SVa

(tp) (5.77)

- Vac corresponds to the instantaneous velocity of the attribute a at time instants tc−1 and

tc,

- Rv is the instantaneous reliability of the velocity computed as the mean between the

visual reliability of a at time instants tc−1 and tc.

- Va(tp) is the estimated velocity at the previous time tp.

- SVa
is the temporal reliability of velocity.

- The value e−λ(tc−tp) corresponds to the cooling function of the previously observed

attribute values. It can be interpreted as a forgetting factor for reinforcing the newer

information.

¥ Raexp and Raest are respectively the reliability measure of the expected and estimated

value of the attribute.
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¥ Raexp(tc) is the expected reliability of an attribute a at the current instant tc. It is de-

termined as the mean of Rv and the global reliability of the attribute Ra at the previous

time tp (5.78). The global reliability Ra is the mean between the expected and estimated

reliability.

Raexp(tc) = Mean(Rv, Ra)tp =
Rv(tp) + Ra(tp)

2
(5.78)

¥ aest(tc) is the estimated value of an attribute a at the current instant tc. It is computed

based on the equation (5.79):

aest(tc) =
ac.RDac + e−λ(tc−tp).aest(tp).Sa(tp)

Sa(tc)
(5.79)

Sa(tc) = RDac + e−λ(tc−tp).Sa(tp) (5.80)

Where ac is the value of the attribute given by vision algorithm and RDac is the visual

reliability of this attribute a extracted from visual evidence at time tc.

¥ Raest(tc) is the estimated reliability of an attribute a at the current instant tc. Raest

is calculated as the mean between the coherency reliability RCa(5.84) and the visual

reliability RDa (5.83).

Raest(tc) = Mean(RCa, RDa)tc =
RCa(tc) + RDa(tc)

2
(5.81)

RCa(tc) = 1.0 − min(1.0,
σa(tc)

amax − amin

) (5.82)

σa corresponds to the standard deviation of the attribute a. The value amax and amin corre-

spond to a pre-defined minimal and maximal value for a.

RDa(tc) =
Sa(tc)

sumCooling(tc)
(5.83)

With

sumCooling(tc) = sumCooling(tp) + e−λ(tc−tp) (5.84)

The visual reliability RDa represents the mean between the reliability measures of RDai

i ∈ Historya.



5.8 Conclusion 137

5.8 Conclusion

In this chapter, we have shown how we propose to handle the recognition uncertainty in the

high level of event recognition process: first, in the step of primitive states detection and second

in the step of composite event recognition. we show how the Bayesian probability allows us

to reason under uncertainty and to compute the probability that an event occurs given the

observation.

Addressing the noise arising from low-level video analysis, we propose a probabilistic spatial

constraint verification approach based on Gaussian probability model applied on distance distri-

butions. We propose also temporal constraint verification approach applied on Allen temporal

constraints.

A dynamic linear model for attributes values estimation is proposed to deal with the noise

which result from the object detection/tracking algorithms assigning wrong attribute values to

the object in different frames. The goal is to make the best estimation of an attribute value

given its previous observed value using smoothing technique.

In the next chapter, we evaluate the proposed approach using a set of real world videos

from health care applications.
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6

EVALUATION AND RESULTS OF THE

PROPOSED APPROACH

6.1 Introduction

In order to evaluate the proposed activity recognition approach, several experiments have

been performed. The main objectives of these experiments are to validate the different phases

of the activity recognition approach, to highlight interesting characteristics, and to evaluate the

potential of the framework for real world applications.

In this chapter, we first introduce in sections 6.2 the automatic video monitoring goals,

and in section 6.3, the details concerning the implementation. We describe the evaluation

process in section 6.4. In section 6.5, we present the experimental video datasets used for

evaluation. In section 6.6, we detail the step of activity annotation. In section 6.7, we present

the evaluation results for video activity recognition and the medical results for health care

monitoring in section 6.8, and finally we conclude the chapter in section 6.9.

6.2 Automatic Video Monitoring Goals

In this work, we are interested of an accurate recognition of both simple and complex video

activities. For simple activities, we interested to:

¥ Determine whether one or several individuals are present in the environment.

¥ Determine the location of each person (e.g. person close TV).

139
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¥ Recognize body postures such as standing, bending, sitting.

For complex activities, we interested to:

¥ Recognize how a person interacts with the environment (e.g. use kettle, sit on a chair).

¥ Recognize activities of daily living (ADLs) such as eating, dressing, manage medication

for monitoring people with dementia and in particular Alzheimer people.

6.3 Implementation

The proposed algorithms in this thesis are implemented in SUP1 (i.e. Scene Understanding

Platform) developed by STARS team. SUP platform is written in C++ language. It provides

algorithms for video interpretation systems (e.g. image acquisition, image segmentation, object

tracking). All experiments presented in this chapter have been performed in a machine of

Intel(R) Xeon(R) CPU E5430 @ 2.66GHz (4 cores) and of 4GB RAM. In the following, we

detail the video analysis algorithms used during our experimentation.

6.3.1 Video Analysis Algorithms

Video analysis aims at segmenting, detecting and tracking people moving in the scene. To

achieve this task, we have used a set of vision algorithms coming from the video interpretation

platform SUP (Figure. 6.1).

The first task is the segmentation task which is applied to each coming image to detect

motion in the scene, obtaining a set of moving regions represented as the bounding boxes en-

closing them (called blobs). The algorithm segments moving pixels in the video into a binary

image by subtracting the current image with the reference image. The reference image is up-

dated along the time to take into account changes in the scene (e.g. light, object displacement,

shadows).

A Calibration task is used to compute the transformation of a 2D image referential point

to a 3D scene referential point (fig.6.2). The keeneo2 calibration tool allows to obtain the

calibration matrix which is used to compute the 3D position of mobile objects.

The 3D position of the mobile object is computed from the detected blob and the calibration

matrix associated with the video camera by considering that the bottom of the 3D mobile object

is on floor level. When the blob representing the person is not completly visible (i.e. occluded

by a specified contextual object), the person is supposed to be just behind the object.

1https://team.inria.fr/stars/software/ platform
2http://www.genetec.com/Publications/technicalnotes/Pages/keeneo-analytics-en.aspx
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Figure 6.1: Visions Algorithms of SUP platform.

A blob merging task consists in assembling small 2D blobs to improve the classification task.

The classification task uses the obtained 2D blobs, the calibration matrix of the camera and

predefined 3D models to classify the mobile blobs. It adds a class label to each moving blob

(e.g. person, vehicle). A set of 3D features such as 3D position, width and height are computed

for each blob. A unique identifier is associated to each new classified blob by using the frame to

frame tracker. A long term tracker allow to maintain this identifier throughout the whole video.

6.3.1.1 Background Substraction Algorithm

The algorithm first constructs a background representation for each pixel as described in

[NGHIEM, 2010]. Then to detect foreground pixels in the current frame, the algorithm com-

pares the current frame with the background representation of the algorithm. The pixels in the

current frame which are different from the background representation are classified as fore-

ground pixels. The background representation is updated regularly after each incoming frame.

When the scene conditions change, the background subtraction algorithm has to adapt itself to

the new conditions. However, working only at the pixel level, it is difficult for the background

subtraction algorithm to fulfill this work. In this algorithm, a controller for the background sub-

traction algorithm is used to help the background subtraction algorithm to adapt to the current

scene conditions. To do this, the controller uses the feedback from the classification task and

the information about the background subtraction algorithm and the scene. With the controller

for the background subtraction algorithm, the object detection framework works as follows:

- The framework takes as input a video sequence from a single and fixed camera. From this
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Figure 6.2: 3D geometrical information (empty scene, calibration matrix) computed from the Keeneo

calibration tool.

video sequence, for each frame, the background subtraction algorithm produces a list of poten-

tial foreground pixels.

- The algorithm to remove shadow and highlight receives this list and it removes from the list

the pixels corresponding to shadow or highlight. The results are sent to the blob construction

task and the controller.

- The blob construction task constructs the blobs from the foreground pixels, then sends the

blobs to the blob classification task.

- The blob classification task classifies these blobs and sends the list of blobs together with their

types to the higher tasks and to the controller.
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6.3.1.2 Tracking Algorithm

The tracking algorithm tracks mobile objects based on their trajectory properties as de-

scribed in [Chau, 2012]. The used tracker includes two stages : tracking and global tracking.

The tracking stage follows the steps of a Kalman filter including estimation, measurement and

correction. First for each tracked object, its state including position and 2D bounding box is

estimated by a Kalman filter. Second, in the measurement step, this tracked object searches

for the best matching object based on four descriptors : 2D position, 2D area, 2D shape ratio

and color histogram. Third, the best matching object and its estimated state are combined to

update the position and 2D bounding box sizes of the tracked object. However, the mobile ob-

ject trajectories are usually fragmented because of occlusions and misdetections. Therefore, the

global tracking stage aims at fusing the fragmented trajectories belonging to the same mobile

object and removing the noisy trajectories. The advantages of this algorithm [Chau, 2012] over

the existing state of the art ones are : (1) no prior knowledge information is required (e.g. no

calibration and no contextual models are needed), (2) the tracker can be effective in differ-

ent scene conditions : single/several mobile objects, weak/strong illumination, indoor/outdoor

scenes, (3) a global tracking stage is defined to improve the object tracking performance.

6.3.1.3 Posture Recognition

We have used the posture recognition algorithm proposed in [Boulay et al., 2006] in order

to recognize in real-time a set of human postures from any position of the camera and for any

orientation of the person.

The goal of the human posture recognition approach is to provide accurate information

about the people observed in the scene. Human posture recognition is a difficult and challeng-

ing problem due to the huge quantity of possible cases. The number of postures depends on the

degree of freedom of the human body. Moreover the morphology of the person influences the

appearance of the same posture. Finally, clothes can give different types of appearance for the

same posture. The posture recognition task combines the 2D techniques and 3D posture models

to generate silhouettes. The generated silhouettes are then compared with the silhouettes of

the detected objects moving in the scene based on 2D techniques to determine the posture. The

algorithm takes as input the contextual base to generate a virtual camera (using camera calibra-

tion information) and uses the information given by the detection task to generate silhouettes

(Figure. 6.3 ).
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Figure 6.3: Posture Recognition Approach [Boulay et al., 2006].

6.4 Evaluation Process

In this section we describe the different evaluations of the proposed activity recognition ap-

proach. For the algorithm evaluation, we use the evaluation tool ViSEvAl3 described in section

6.4.2. Figure 6.4 illustrates the evaluation process. The proposed activity recognition algorithm

takes as input (1) the event model, the (2) 3D geometric information and (3) the tracked ob-

jects. The output is the set of recognized events. To evaluate the recognition performance of the

proposed algorithm, we compare the recognized events with the events annotated by human

expert (i.e. ground truth). The metrics used for the evaluation are described in section 6.4.1.

6.4.1 Evaluation Metrics

To evaluate the performance of the proposed approach, we have used different metrics

according to the nature of the experiment. For the recognition of events, the adopted metrics

are:

¥ True Positive (TP): An event Ei is correctly detected according to the ground truth.

¥ False Positive (FP): An event Ei is wrongly detected according to the ground truth.

¥ False Negative (FN): An event Ei present in the ground truth is not detected.

3https://team.inria.fr/stars/2012/02/02/viseval-software/
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Figure 6.4: The Evaluation Process: The proposed activity recognition algorithm takes as input (1)

the event model, the (2) 3D geometric information and (3) the tracked objects from video processing

algorithms. The output is the set of recognized events. To evaluate the recognition performance of the

proposed algorithm, we compare the recognized events with the events annotated by human expert (i.e.

ground truth). The comparison is done using evaluation metrics described in section 6.4.1.

¥ Precision (P): The precision metric can be seen as a measure of exactness or fidelity. The

precision corresponds to the number of events correctly detected divided by the total

number of detected events. This metric is formally defined as:

P =
TP

TP + FP
(6.1)

¥ Sensitivity (S): A sensitivity corresponds to the number of events correctly detected di-

vided by the total number of occurred events. A sensitivity of 100% means the recognition

of the all occurring events. This metric is formally defined as:

S =
TP

TP + FN
(6.2)

¥ Recall (R): is the same metric than the sensitivity. The recall metric corresponds to the

number of events correctly detected divided by the total number of occurred events. This

metric is formally defined as:

R =
TP

TP + FN
(6.3)
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6.4.2 Evaluation platform: VisEval

The evaluation of video processing algorithm results is an important step in video analysis

research. For the evaluation of the proposed approach, we use the evaluation tool ViSEvAl.

ViSEvAl4 is a software developped in STARS team and dedicated to the evaluation and vi-

sualization of video processing algorithm outputs. It respects three important properties:(i)

visualize the algorithm results, (ii) visualize the metrics and evaluation results and (iii) possi-

bility to add new evaluation metrics. The GUI is composed of several parts (fig. 6.5 ). This

tool has 5 windows, the first window depicted by (3), displays the current image and infor-

mation about the detected and ground-truth objects/events (e.g. bounding-boxes, identifier,

type,...), the second window depicted by (5), displays a 3D view of the scene (3D avatars for

the detected and ground-truth objects, events, context, ...), the third window depicted by (7),

displays the temporal information about the detected and ground truth objects, and about the

recognized and ground-truth events. The fourth window depicted by (8), the description part

gives detailed information about the objects and the events and the last window, depicted by

(9), displays the evaluation results of the frame metrics.

4https://team.inria.fr/stars/2012/02/02/viseval-software/
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Figure 6.5: ViSEvAl Evaluation Tool: (1) the menu, (2) tool bar, (3) real video, (4) real video slider,

(5) 3D visualization, (6) scale slider, (7)display of the detected objects and events, (8) object and event

description and (9) evaluation metrics.

6.5 Experimental Dataset Presentation

The proposed approach is mainly applied and evaluated on health care applications. For

the sake of generality, the proposed approach is also tested on other public real-world datasets.

6.5.1 GERHOME Dataset

The GERHOME5 project consists in monitoring older people observed in an experimental

laboratory (fig.6.6). Fourteen volunteers (i.e. 6 women and 8 men aged from 60 years to 85

years) were recruited for the experiments. The volunteers have been observed, each one during

4 hours. Atotal of 56 video sequences have been acquired by 4 video cameras (about ten frames

per second)(fig.6.7), each video sequence contains about 144 000 frames. The collected data

includes the 56 video streams, and also sensors data provided by the 24 environmental sensors

5http ://gerhome.cstb.fr/en/home
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Figure 6.6: Internal views of the Gerhome laboratory.

Figure 6.7: Views from the installed video cameras in the Gerhome laboratory.

(fig.6.8) . The access of the video dataset is public and available on a web site6.

6www-sop.inria.fr/members/Francois.Bremond/topicsText/gerhome Project.html
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Figure 6.8: Architecture of Gerhome laboratory, sensors positions.

6.5.2 SWEETHOME Dataset

SWEET-HOME7 is a project on long-term monitoring of elderly people at Hospital with Nice

Hospital research memory center. The experimentation was performed in a room of Nice Re-

search Memory Center (fig. 6.9). This room was equipped with everyday household appliances

for use in activities of daily living ADLs (fig. 6.10), e.g. an armchair, a table, a coffee cor-

ner, a TV. Experimental data was recorded using a 2D video camera (AXIS, Model P1346, 8

fps (frames per second), and an ambient audio microphone (Tonsion, Model TM6, Software

Audacity, WAV file format, 16bit PCM/16kHz). A motion sensor (i.e., MotionPod) was fixed

on the chest of the participant to quantify their movements. Two protocols of experimentation

were conducted and for each protocol, a clinical activity scenario was elaborated. A total of 64

participants (22 NC (i.e. normal control), 30 MCI (i.e. mild cognitive impairment), 12 AD (i.e.

Alzheimer)) aged more than 65 years were recruited by Nice Research Memory Center.

6.5.3 ETISEO Dataset

ETISEO8 project focuses on the treatment and interpretation of videos involving pedestrians

and/or vehicles, indoors or outdoors, obtained from fixed cameras. This project seeks to work

out a new structure contributing to an increase in the evaluation of video scene understanding

7http://www-sop.inria.fr/pulsar/projects/Sweet-Home/SweetHomeProject.html
8http ://www-sop.inria.fr/orion/ETISEO/.
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Figure 6.9: Internal views of the SWEETHOME experimentation room.

with the active participation of industrialists and many research laboratories, such as French,

European and International partners. The ETISEO videos are provided by the ETISEO project.

We use the Etiseo building entrance dataset which is a publicly available database of real world

videos (fig. 6.11).
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Figure 6.10: Architecture of SWEETHOME experimentation room, video sensors positions.
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Figure 6.11: Examples of Etiseo dataset.
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6.6 Annotation

For SWEETHOME videos, we work in close collaboration with clinicians to annotate the

videos. The annotation has been done using VIPER-GT tool9 which is developped by Maryland

university and is a standard for video surveillance community. It enables the visualization and

the markup of visual data ground truth for evaluating how closely sets of result data approx-

imate that truth. To avoid inter- and intra-rater variability due to subjective interpretation of

performed activities, we define with the help of clinicians the beginning and the end of each

activity using specific criteria. Figure 6.12 illustrates an example of the observable criteria used

to annotate video sequences. For example, to annotate the activity ‘read the newspaper’, we

define exactly the beginning of this activity (i.e. taking for the first time the newspaper) and

we define the end of this activity (i.e. putting on the table the last newspaper taken). This strict

definition of the beginning and ending of activity allows us to limit variability of annotation

between the human expert who annotate. We annotate the video sequences of 48 patients,

a total of 144 ground truth files were generated. Figure 6.13 shows an example of a ground

truth file. For Gerhome videos, we have used the ground truth of 5 observed older persons

among the experimental data and the ground truth of 20 video sequences of one human actor

[Zouba, 2010], the total duration is 20 hours. For Etiseo videos, annotation file for each video

sequence is provided by the project.

9http://viper-toolkit.sourceforge.net/products/gt/



154 Chapter 6: Evaluation and Results of the Proposed Approach

Figure 6.12: Example of the observable criterias used to annotate SWEETHOME video sequences. For

example, to annotate the activity ‘read the newspaper’, we define exactly the beginning of this activity

(i.e. taking for the first time the newspaper) and we define the end of this activity (i.e. putting on the

table the last newspaper taken). This strict definition of the beginning and ending of activity allows us

to limit variability of annotation between the human expert who annotate.
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Figure 6.13: Example of a ground truth file: the annotated activities with the associated key frames.



156 Chapter 6: Evaluation and Results of the Proposed Approach

6.7 Performed experiments

To evaluate the proposed activity monitoring framework we have tested a set of human

activities on the SweetHome, Gerhome and Etiseo datasets.

6.7.1 Learning Step

In an off-line learning step, we have used 24 video sequences representative to the whole

SweetHome video dataset. The length of each video sequence is about 12± 5 min. The training

dataset is composed of a total of 305 min (146400 frames).

6.7.1.1 Bayesian Probabilities Learning

We estimate from training data the Bayesian probabilities (see tab.6.1) using the maxi-

mum likelihood estimation method based on the formulas detailed in chapter 5 ((5.12), (5.13),

(5.17) and (5.18), chapter 5).

Probability Semantic

P(e ∈ Ω) - Prior probability that a certain scenario model Ω is detected.

P(ζ(Ω, O)|e ∈ Ω) - Probability that the constraints of the event model are verified given

that the event e is true.

P(VΩ = poO
e |e ∈ Ω) - Probability that the physical objects variables in the event model Ω

have been detected given that e is an event instance of the event model Ω.

P(SE(Ω, O)|e ∈ Ω) - Probability that the sub-event variables in the event model Ω

have been detected given that e is an event instance of the event model Ω.

P(ζ(Ω, O), VΩ = poO
e ) - Bayesian probability denominator for elementary events.

P(ζ(Ω, O), SE(Ω, O)) Bayesian probability denominator for composite events.

Table 6.1: Bayesian probabilities.

Table 6.2 illustrates some learned Bayesian probabilities. For instance, to compute the

conditional probability of the primitive state ‘person inside coffee corner’ we have to learn the

Bayesian probabilities:

¥ The prior probability P(person inside coffee corner), is the prior probability that the event

model ‘person inside coffee corner’ could be detected. The universe of scenario models

that describe a person position in a certain zone is: (PersonInsideZoneTV, personInside-

CoffeeCorner, PersonInsideZoneReading, PersonInsideEntrance, PersonInsideZoneLibrary.

P(person inside coffee corner ′) =
1

Nbr.ScenarioΩUniverse
=

1

5
(6.4)
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Annotated Events P(e ∈ Ω) P(ζ(Ω, O)|e ∈ Ω) P(VΩ = poO
e |e ∈ Ω) P(ζ(Ω, O), VΩ = poO

e )

Person inside coffee corner 0.2 0.858 0.997 0.493

Person inside reading zones 0.2 0.92 0.96 0.342

Person close TV 0.25 0.702 1.00 0.403

Person standing 0.25 0.76 0.75 0.5

Annotated Events P(e ∈ Ω) P(ζ(Ω, O)|e ∈ Ω) P(SE(Ω, O)|e ∈ Ω) P(ζ(Ω, O), SE(Ω, O))

change zone 0.2 0.81 0.75 0.5

interacts with TV 0.33 0.78 0.27 0.5

Table 6.2: Examples of Learned Bayesian probabilities.

¥ P(person in coffee corner zone | person inside coffee corner) is the probability that the

spatial constraints (person in coffee corner zone) in the event model is verified given that

the event ‘person inside coffee corner’ is true (has been annotated). It is computed based

on the following equation:

P(person in coffee corner zone|person inside coffee corner) =

♯((person in coffee corner zone) ∧ person inside coffee corner)

♯(person inside coffee corner ∧ po = Person)

=
4837

5633
= 0.858

(6.5)

♯((person in coffee corner zone) ∧ person inside coffee corner) is the number of

frames where the constraint (person in coffee corner zone) is verified. We consider

only the frames where the primitive state ‘person inside coffee corner’ is annotated.

♯(person inside coffee corner ∧ po = Person) is the number of frames where the

primitive state is annotated and the physical object (po = Person) is correctly tracked.

We note that to complete the computation of the probability of this constraint, we need

also the on-line probability of the constraint which is calculate as described in section

5.6.1.1, chapter 5.

¥ The probability of the physical object P(po = Person | person inside coffee corner) is the

probability that the physical object ‘Person’ have been detected given an instance of the

event model ‘person inside coffee corner’. It is computed based on the following equation:

P(po = Person| person inside coffee corner) =

♯(po = Person ∧ person inside coffee corner)

♯(person inside coffee corner)
=

4876

4888
= 0.997

(6.6)
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♯(po = Person∧person inside coffee corner) is the number of frames where the phys-

ical object ‘Person’ have been correctly tracked. We consider the frames where the prim-

itive state ‘person inside coffee corner’ is annotated. ♯(person inside coffee corner) is

the number of frames where the primitive state ‘person inside coffee corner’ is annotated.

¥ The Bayesian denominator P(person in coffee corner zone, po = Person) is computed

based on the following equation (6.7):

P(person in coffee corner zone , po = Person) =

P(person in coffee corner zone , po = Person|person inside coffee corner)×
P(person inside coffee corner)+

P(person in coffee corner zone , po = Person|⌉person inside coffee corner)×
P(⌉person inside coffee corner)

=
4837

9477
× 1

5
+

4640

9477
× 4

5
= 0.493

(6.7)

P(person in coffee corner zone , po = Person|person inside coffee corner) cor-

responds to the number of frames where the constraint is verified and the physical object

is detected, we consider the frames where the primitive state person inside coffee corner

is annotated. P(person inside coffee corner) is the prior probability of the primitive

state person inside coffee corner which is equal to 1
5
.

P(person in coffee corner zone , po = Person|⌉person inside coffee corner) cor-

responds to the number of frames where the constraint is verified and the physical object

is detected, we consider the frames in the learning set where other primitive states of type

location in certain zone than person inside coffee corner are annotated.

6.7.1.2 Gaussian parameter Learning

We learn also the Gaussian parameters (µ, σ) used in the process of calculating the spatial

constraint probability. To do that, we calculate and store the distances di of a tracked person to

each contextual zone (d1, ..., dn)z1
, (d1, ..., dm)z2

, ..., (d1, ..., dk)zi
, z1, ...zi are the zones defined

in the scene context. (see section 5.6.1.1, chapter 5). Having these samples, we calculate the

Gaussian parameters based on the formula (5.31, chapter 5). The finale parameter value is

the mean of these computed one. In our experiment, we use the values (µ = 0 and σ = 0.2)

because they allow us in one hand, to have a high percentage of true positive detection and in

the other hand to have low false positive detections. Figure 6.14 shows the percentage of true
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Figure 6.14: Percentage of true positive TP (green) and false positive FP (red) detections with respect

to the probability values when using the Gaussian parameters (µ = 0 and σ = 0.2).

positive and false positive detections of the spatial constraint ‘inside-zone’ of the reading zone

with respect to the probability values when using the Gaussian values µ = 0 and σ = 0.2. The

percentage of TP detections has progressively increased as the value of probability becomes

higher.

Figure 6.15 shows the value of probability at each frame of the spatial constraint ‘inside-

zone’ compared with the ground truth (GT). This graphic shows that when the probability of

GT is equal to zero (i.e. the spatial constraint is annotated as not detected), the value of the

probability computed by the proposed system is either zero or a lower value of 0.4.

6.7.1.3 Detection Threshold Learning

We learn the threshold value for event detection. For that, We have tested the recognition

performance of the proposed system by varying the decision threshold value.

Figyre 6.16 shows the recognition performance (precision and recall) of the primitive states

when varying the decision threshold value. The primitive states are sometimes wrongly recog-

nized due to video noise and vision errors. However, by fixing for all experiments the threshold

of detection of primitive states to 0.75 we manage to successfully decrease the false detection

of primitive states by avoiding miss detections of primitive states.

6.7.2 Experimental results

We have evaluated the event recognition accuracy of our algorithm on SweetHome real

world health care application (fig.6.17) and have compared our results with the approaches

proposed in [Vu et al., 2003a] and [Zouba, 2010].

Video recordings of 37 patients are used to assess the proposed framework performance.
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Figure 6.15: Probability value variation at each frame of the spatial constraint inside zone reading

(figure(2)), compared with the ground truth GT (figure(1)) (µ = 0 and σ = 0.2).

Figure 6.16: The performance of primitive states detection is measured depending on the threshold

defining the level of likelihood to decide that an event is recognized. With the threshold equal to 0.75,

the performance of our system is 0.96 for precision and 0.93 for recall.

These patients are part of a clinical trial for Alzheimer study and they are asked to perform a

set of activities. The length of each video sequence is about 12(±5) min, 8 fps.

Table. 6.3 shows that we manage to successfully recognize primitive state (e.g. ‘Close

phone’: 85.7%, ‘Person inside coffee corner’: 98%) with a low false detection rate. By avoiding
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Events GT % R FP FN

Person sitting 21 76.2 6 5

Close phone 14 85.7 0 2

Person inside coffee corner 51 98 3 1

Person inside reading zone 28 100 5 0

Person inside zone library 19 95 2 1

Person inside zone TV 14 100 2 0

change-zone from coffeeCorner to reading zone 17 100 0 0

change-zone from reading zone to coffeeCorner 15 100 2 0

change-zone from coffeeCorner to library zone 11 90 2 1

change-zone from library zone to coffeeCorner 10 100 0 0

Person reading 14 92 2 1

MatchingSheetsActivity 31 58 1 13

Table 6.3: Recognition Results of the proposed algorithm using Bayesian probability with temporal

filtering: the recognition rate (% R), the false positive (FP) and the false negative (FN). 37 patients,

12(±5) min, 8 fps.

miss detections of primitive states, the proposed system recognizes the complex events with

a recognition rate about 58% for the MatchingSheetsActivity’ event and 100% for the event

‘change-zone reading zone to coffeeCorner’.

Figure 6.18 shows the value of probability of the composite state ‘Person interacts with

reading table’ compared to the ground truth. This graph shows that the probability computed

by the proposed algorithm is concordant with the GT probability: when the composite state

is annotated (i.e. the ground truth probability is equal to 1), the probability computed by the

system has a high value and when the ground truth probability is equal to 0, the probability

computed by the system has a low value.

The comparison of the performance of the proposed algorithm with/without probabilistic

constraint verification algorithm (table 6.4) shows that the complex event ‘Up-Go’ in the case

of the algorithm with probabilistic constraints (92.59 %) is higher than the recognition rate of

the deterministic algorithm (59.25%). This can be explained by the fact that the deterministic

algorithm fails to recognize the primitive state ‘Person-inside-Stop-zone’ because the person

was not correctly detected, the bounding box representing the person is not well detected ( see

fig.6.19). This error causes a wrong person coordinates and affects deeply the process of the

spatial constraint verification based on people and zone coordinates. However, the probabilistic

algorithm manages to recognize this primitive state and as a consequence the complex event.

The comparison with [Vu et al., 2003a](table 6.5 and table6.6) shows that the proposed
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Figure 6.17: Activity detection evaluated on Health care videos. The top left image illustrates the

recognition of the primitive state ‘close-Phone’, the right bottom image illustrates the recognition of the

primitive state ‘inside-zone-coffeeCorner’ and the primitive event ‘change-zone-reading-to-coffeeCorner’.

algorithm recognizes activities with a higher rate of precision and sensitivity than the algorithm

[Vu et al., 2003a]. Table 6.6) shows that the recognition rate of the complex event ‘Matching-

SheetsActivity’ in the case of the proposed algorithm (58%) is higher than the deterministic

algorithm [Vu et al., 2003a] (38%). This can be explained by the fact that the deterministic

algorithm fails to recognize some primitive states mainly due to multiple occlusions and blob

segmentation errors. However, the proposed algorithm manages to recognize the primitive

state and as a consequence the complex event. Table 6.5 shows that the proposed algorithm

recognizes the primitive event ‘Using phone’ with a precision of 100% and a sensitivity of 93.3%

whereas the algorithm [Vu et al., 2003a], recognizes this event with a precision of 85.50% and

a sensitivity of 72.83%.
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Events ♯videos ♯actor % R FP FN

Deterministic constraints algo

Up-Go 27 1 59.25 3 11

Begin-Guided-test 9 2 88.9 1 1

Interacts-with-chair 10 1 100 0 0

Probabilistic constraints algo

Up-Go 27 1 92.59 5 2

Begin-Guided-test 9 2 100 1 0

Interacts-with-chair 10 1 100 0 0

Table 6.4: Comparison of algorithm performance with/without probabilistic reasoning: recognition rate

(% R), the false positive (FP) and the false negative (FN) of our algorithm with probabilistic reasoning

(probabilistic) and without probabilistic reasoning (deterministic).

Events Precision (P) Sensitivity (S)

[Vu et al., 2003a]

Using Phone 85.50% 72.83%

watching TV 71.42% 80.0%

Using reading table 58.62% 92.72%

In zone coffee Corner 69.44% 90.36%

Proposed Bayesian Approach with temporal filtering

Using Phone 100% 92.3%

watching TV 87.5% 100%

Using reading table 84.8% 100%

In zone coffee Corner 94.3% 98%

Table 6.5: Comparison of recognition results (sensitivity (S) and precision (P)) of the proposed algo-

rithm with the state of the art algorithm[Vu et al., 2003a].

Algorithm GT % R FP FN

[Vu et al., 2003a]

MatchingSheetsActivity 31 38 0 19

Proposed algorithm

MatchingSheetsActivity 31 58 1 13

Table 6.6: Comparison of recognition rate (% R), the false positive (FP) and the false negative (FN)

of the proposed algorithm with the state of the art algorithm [Vu et al., 2003a]. The ground truth GT

correspond to 31 videos sequences (12(±5) min, 8 fps)
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Figure 6.18: Figure shows probability values of the composite state ‘Person interacts with reading table’

computed by the system (blue graph) and the ground truth probabilities(green graph) (i.e. 1 when

the primitive state is detected (annotated) and 0 when it is not annotated as recognized).This graph

shows that the probability computed by the proposed algorithm is concordant with the GT probability:

when the composite state is annotated (i.e. the ground truth probability is equal to 1), the probability

computed by the system has a high value and when the ground truth probability is equal to 0, the

probability computed by the system has a low value.

Figure 6.19: Figure (a) shows for a person an example of a well detected bounding box, in figures (b),

(c) and (d), the person is not well detected.

6.7.2.1 GERHOME experiments

Table 6.7 shows the results of the proposed algorithm for Gerhome database. This table

summarizes the ground truth (GT), the recognition rate (%R), the false positive (FP) and the
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Events GT % R FP FN

Close Armchair 9 88 1 1

Sitting at armchair 4 100 3 0

Move from kitchen to livingRoom 4 100 3 0

Move from livingRoom to kitchen 6 100 2 0

Table 6.7: Recognition Results of the proposed algorithm on Gerhome dataset: the recognition rate (%

R), the false positive (FP) and the false negative (FN). The ground truth GT corresponds to 4 videos

sequences, with a total of 9452 frames, 8 fps.

Events ♯videos TP FP FN

Deterministic algo

Stay-at-kitchen 15 13 1 2

prepare-meal 8 6 1 2

Probabilistic algo

Stay-at-kitchen 15 14 1 1

prepare-meal 8 7 3 1

Table 6.8: Comparison of algorithm performance with/without probabilistic reasoning: recognition rate

(% R), the false positive (FP) and the false negative (FN) of our algorithm with probabilistic reasoning

(probabilistic) and without probabilistic reasoning (deterministic).

false negative (FN) of 4 videos sequences, with a total of 9452 frames, 8 fps.

Table 6.8 shows the comparison of our algorithm performance with/without probabilistic

reasoning. The comparison shows that our approach with probabilistic mechanism shows better

performance than without probabilistic reasoning.

Table 6.9 shows a comparison of the performance of the proposed algorithm with the state

of the art algorithm[Zouba, 2010], the comparison shows that we manage to outperform the

results of the state of the art algorithm. For the primitive state ‘In livingRoom’ we have almost

the same precision rate (93.3% vs. 93% ) but our algorithm has better results in term of

sensitivity rate (93% vs. 88%). False negative detection were clearly reduced by the use of the

proposed probabilistic spatial constraint verification algorithm. In fact, the spatial constraint of

this primitive state

For the primitive state ‘In Kitchen’, we have better results for both precision (87.2% vs.

86%) and sensitivity (97.1% vs. 91%) for camera video sensor. The authors [Zouba, 2010]

obtain better results for precision (i.e. 89%) when using environmental sensor to detect the

primitive state ‘In Kitchen’ but to the detriment of sensitivity (i.e. 55% ).
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Events Precision (P) Sensitivity (S)

[Zouba, 2010] using camera video

In livingRoom 93% 88%

In Kitchen 86% 91%

[Zouba, 2010] using environmental sensor

In Kitchen 89% 55%

Proposed algorithm using camera video

In livingRoom 93.3% 93%

In Kitchen 87.2% 97.1%

Table 6.9: Comparison of recognition results (sensitivity (S) and precision (P)) of the proposed algo-

rithm with the state of the art algorithm[Zouba, 2010].

Events Accuracy (Ac) Recall (Re)

inside zone corridor 75% 100%

close stairs 67% 67%

enter zone 85% 100%

change zone 100% 100%

overall 81.75% 91.75%

Table 6.10: Recognition Results of the proposed algorithm on Etiseo dataset: the accuracy, Ac =

TP/(TP+FP+FN) and the recall, Re = TP/(TP+FP).

6.7.2.2 Etiseo experiments

We carry experiment on Etiseo dataset which is a publicly available video database com-

posed of real world videos which include multiple camera views (figure 6.20). We have

selected this database because it was used previously in several work [Lavee et al., 2010a],

[Albanese et al., 2008], [Vu et al., 2003a], which allows us to compare our work with state of

the art methods. We use the Building Entrance videos composed of 4 video sequences of about

924-1027 frames (30-41 seconds in length). We define 5 activities of interest and each video

sequence contains one or more of these activities. Table 6.10 describes the results obtained

for Etiseo videos. The algorithm recognizes the primitive state ‘inside zone corridor’ with an

accuracy of 75% and a recall of 100% for the event enters zone, the accuracy is 85% and the

recall 85%.

We compare the recognition performance of our approach with the results of the partners

who participate in the Etiseo project. We note that the partner results are kept anonymous

as the goal of the project was to provide a platform where every one can evaluate and com-
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Figure 6.20: Etiseo dataset.

Approach Accuracy (Ac) Recall (Re)

Our approach 81.75% 91.75%

Probabilistic Petri Net [Lavee et al., 2010a] 89% 87%

Table 6.11: Comparison of recognition results (the accuracy, Ac = TP/(TP+FP+FN) and the recall, Re

= TP/(TP+FP)) of the proposed algorithm with the state of the art algorithm[Lavee et al., 2010a].

pare anonymously his work on video understanding. We also note that not all partners have

given results for each video understanding task (detection, tracking, activity recognition). We

compare also our performance with the probabilistic approach based on probabilistic Petri Net

[Lavee et al., 2010a]. Table 6.11 shows the comparison of the overall results with the proba-

bilistic Petri Net [Lavee et al., 2010a]. We have better results for recall (91.75% vs. 87%), for

accuracy, the results are (81.75% vs. 89%).
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Figure 6.21: The performance of the detection of the primitive state ‘inside-zone’ evaluated on Etiseo

dataset, compared with 4 partners (2006).

Figures 6.21 and 6.22 show the comparison of the detection performance of the primitive

state ‘inside-zone’ and the primitive event ‘enters-zone’ evaluated on Etiseo public database.

We use the Building Entrance video composed of 924 frames and about 30 seconds in length.

We compare our results with results of 4 partners of Etiseo project which are anonymous. The

comparison show that we have better results in term of precision and sensitivity.

6.7.2.3 Discussion

We have evaluated the proposed activity recognition approach on SweetHome, Gerhome

and Etiseo real world videos. The results show that the proposed algorithm manages to recog-

nize primitive states and complex events with a high recognition rate. First, the probabilistic

constraint verification algorithm allows us to avoid miss-detections (i.e. false negatives) of

primitive states which allows us to improve in one hand the recognition rate of primitive state

and in other hand improve the recognition rate of composite events. Second, Bayesian proba-

bility allows us know how probable is the detection of each event, event which are uncertain

are detected with low probability and event with a high certainty are detected with a a high

probability value. The re-estimation of low level attributes based on temporal filtering allows

us to have more robust values and thus improve the detection of events. The comparison of the
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Figure 6.22: The performance of the detection of the primitive event ‘enter zone’ evaluated on Etiseo

dataset, compared with 4 partners (2006).

performance of the proposed algorithm with/without probabilistic constraint verification algo-

rithm shows that the recognition rate of complex events for the algorithm with probabilistic

constraint verification is higher that the recognition rate of the algorithm without probabilistic

constraint verification algorithm.

We have compared our results with state of the art approaches [Zouba, 2010], [Vu et al., 2003a],

[Lavee et al., 2010a]. The comparison shows that the proposed algorithm outperform in term

of precision and sensitivity the algorithms described in [Zouba, 2010], [Vu et al., 2003a] for

Gerhome and SweetHome Videos. We compare our results on Etiseo videos with the algorithm

described in [Lavee et al., 2010a]. The comparison shows that the two algorithms have very

close performance which is a good performance on Etiseo database: we have better results for

recall (91.75% vs. 87%), for accuracy, the results are (81.75% vs. 89%). But the main limi-

tation of the work described in [Lavee et al., 2010a] lies in the way that the authors propose

to integrate the probability in the deterministic Petri Net: the authors have not described how

they have calculated the different parameters of the algorithm. For example, to calculate the

transition probability, the authors use this equation: P̂(xt = b|xt−1 = a) = (α)τ. The authors

have not specified how the minimum distance τ is calculated and they have not detailed their

choice of α, which value can deeply change the final value of the probability (for more details,

see section 2.1.4, chapter 2 ). Another limitation which is more specific to the formalism of Petri

Net, is the non-modular aspect of the Petri Network, which makes difficult any modification of
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the structure of network. In the following, we detail the several results obtained for health care

monitoring and in particular Alzheimer monitoring at hospital.

6.8 Health Care Monitoring

Alzheimer Disease (AD) and related disorders represent a major challenge for health care

systems with aging populations. Alzheimer Disease is associated with neurodegenerative changes

that compromise cognitive and functional abilities and may result in behavioral and NeuroPsy-

chiatric Symptoms (NPS). Many efforts are currently undertaken to investigate Alzheimer dis-

ease pathology and develop appropriate treatment strategies. These strategies focus on pre-

serving cognitive and functional abilities along with reducing NPS and maintaining quality of

life in the Alzheimer disease sufferer.

Rating scales are essential tools for the diagnosis of Alzheimer disease, the assessment and

careful monitoring of symptoms, as well as the evaluation of treatment effects.

However these standard rating scales do not fully capture the complexity of the disease. In

fact, Alzheimer disease includes deterioration in cognitive, behavioral and functional domains

that do not always progress in parallel and may change idiosyncratically according to the indi-

viduality of a given patient. The current evaluations of psycho-behavioural disorders are based

on interviews and battery of neuropsychological tests with the presence of a clinician. These

evaluations show limits of subjectivity (e.g., subjective interpretation of clinician at a date t).

For these reasons, we propose to overcome these limitations by capturing more fully the

functional, as well as behavioral and cognitive disturbances associated with Alzheimer disease.

The overall aim of this study is to demonstrate that it is possible using the proposed video

monitoring system to improve the evaluations of psycho-behavioural disorders and obtain a

quantifiable assessment of instrumental activities of daily living in Alzheimer and in mild cog-

nitive impairment (MCI).

6.8.1 Health Care Monitoring Goals

In this section we detail the main goals for health care monitoring.

¥ Assess the initiative ability of the patient and whether the patient is involved in goal

directed behaviors

¥ Assess walking disorders and potential risk of falls.

¥ Differentiate of early stage Alzheimer with patients with mild to moderate stage of the

disease.
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¥ Assess the impact of behavioral disturbances and apathy in particular on the completion

of the proposed activities of daily living.

¥ Assess the participant acceptability to introduce a follow-up video monitoring system

within their own house

6.8.2 Assessment Feasibility Study: 3 clinical cases

The first aim of this study was to demonstrate the feasibility of the proposed new assessment

method from both the patient and the technical points of view. We demonstrate here using 3

clinical cases the feasibility results of the proposed automatic video monitoring system aiming

to assess subjects involved in a clinical scenario.

6.8.2.1 Experimental Protocol

This part is based on the (1) short physical performance (i.e. directed activities, see sec-

tion 4.3.3, chapter 4) and requires the examiner, who remains in the room, to verbally direct

the participant to undertake various daily tasks. (2) Semi-directed activities (see section 4.3.3,

chapter 4). The aim here is to determine the extent to which the participant could undertake

a list of daily activities in a given order, after having been given a set of instructions and (3)

Undirected (‘free activities) (see section 4.3.3, chapter 4). Prior to leaving the room, the exam-

iner describes each of the activities and the location and the use of various objects needed to

undertake the task.

6.8.2.2 Participants

Two AD patients and one normal control participant (NC) are included in the study. Quan-

titative clinical characteristics of the participants are shown in figure 6.23. Brief case histories

are outlined here below:

¥ Participant 1: Mr M. was a 77-year-old retired engineer. He was diagnosed with AD

seven years ago. He has a major depressive disorder associated with AD. At the time of the

assessment, he had some depressive symptoms but was not apathetic. He was no longer

independent and his wife assisted him with most ADLs. He demonstrated difficulties in

memory and executive function especially in attention, inhibitory control, planning and

mental flexibility. MMSE score was 21. As already described in section 4.3.1, chapter 4,

the MMSE is a series of questions, each of which scores points if answered correctly. If

every answer is correct, a maximum score is 30 points.
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Figure 6.23: Clinical characteristics of the 3 subjects participating in the experiment. MADRS: Mont-

gomery Asberg depression Scale; GDS: Geriatric Depression Scale; AI: Apathy Inventory; NPI: Neuropsy-

chiatric Inventory.

¥ Participant 2: Mrs B was a 76-year-old woman. She was diagnosed with AD 7 years

ago. On neuropsychological testing, her profile was similar to Mr M., but with additional

deficits in episodic memory and executive function. MMSE score was 20. She was gen-

erally independent with ADLs, but required some assistance for more complex tasks. She

had clinically significant apathy.

¥ Participant 3: Mr D was a, 77-year-old man, with no significant medical history and not

on any medication. He was cognitively intact on testing and fully independent in ADLs.

6.8.2.3 Judgment Criteria

To assess patients, we compute several criteria. For the directed activities part, these crite-

ria are: (1) the speed of execution of each activity (seconds), which corresponds to the time

spent undertaking each activity; (2) the speed of displacement of the participant (cm/seconds)

computed on the basis of the 3D coordinates of the person over time, and (3) the step stride

length (centimetres).
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For the semi-directed activities part, these criteria are: (1) speed of execution(seconds), (2)

number of tasks done in the correct order, which corresponds to the correct order of recognized

activities in the video monitoring system, (3) number of errors in the order of the tasks under-

taken by the participant , and (4) task omissions, referring to any task that the participant was

unable or forgot to undertake.

For the free activities part these indicators are: (1) Number of occurrences of an activity, (2)

time spent in each activity chosen by the participant, and (3) proportion of free activity time

not recognized by the video monitoring system.

6.8.2.4 Results

The first result of the study is to demonstrate the feasibility of this new assessment method

from both the patient and the technical points of view. During the first step, the control partic-

ipant performed all these activities faster than the two AD participants. During the second step

of the clinical scenario (i.e. Semi-directed activities), the two AD participants were not able to

follow the correct order of the tasks and even omitted some of them. Finally during the last

step of the scenario devoted to free activities the control participant chose one of the proposed

activities (reading) and undertook this activity for almost the entire duration. In contrast, the

two AD participants had more difficulties choosing one of the suggested activities and were not

able to undertake any one activity in a sustained manner.

¥ Automatic video monitoring results

The results show that we could differentiate between the three participants using the proposed

video monitoring system. Table 6.12 shows that, for the first step of the clinical scenario (i.e.

directed activities), Participant 1 (AD) took the longest time (134 seconds) to perform the bal-

ance and sitting-to-standing (39 seconds) tasks. Participant 1 walked also slower (18.18cm/s)

compared to Participant 2 (54.5cm/s) and Participant 3 (100cm/s). There were also important

differences among the three participants in the gait parameter of step length.

Total duration of the semi-directed activities also differs significantly among the three par-

ticipants: 4:21 minutes for the control participant, 15:54 minutes for Participant 1 and 12:44

for Participant 2. The speed of execution and data regarding the tasks undertaken is outlined

in table 6.13. For each activity defined in the semi-guided part of the clinical scenario, the

table describes the time spent by each patient to execute the activity. The table describes also

the omission, error of order done by each patient when executing the activities. Briefly, this

revealed that the control participant was able to undertake the semi-directed activities in the

correct order, in contrast to the two AD participants who made several errors and had omissions.

Finally, the activities detected for each participant during the undirected or ‘free’ part are

presented in table 6.14. The total duration of this part was 30 minutes. However, whereas
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Criteria computed by system P1- AD P2- AD P3- NC

Time execution of balance exercise (s) 134 52 62

Time execution of walking exercise (s) 33 34 26

Time execution of sit-to-stand exercise (s) 39 11 8

Speed of walk (cm/s) 18.18 54.5 100

Criteria computed by GT

Step-length 40.8 46.1 88.9

Table 6.12: directed activities step video monitoring results: the speed execution (seconds) of each part

of the directed activities (balance, walk, sit-to-stand), the speed of displacement (cm/s) and the step

length (cm) of the participants P1, P2 and P3.

the video monitoring system captured 25 minutes of the control participant in only one activity

(reading), only 11 minutes and 13 minutes of activity were captured for Participants 1 and 2

respectively doing goal directed activities.

¥ Discussion

Alzheimer disease combines symptoms belonging to different domains, including cognition,

behaviour and daily functioning. These domains are usually assessed separately with specific

scales or interviews involving the clinician, the patient and the caregiver. In general, these eval-

uations provide an overview of the patient’s ability and, ideally, offer a correct understanding of

the level of severity of the disease. In contrast, the objective of the current study was to assess

patients in situations closer to real life by using a new assessment approach. In other words,

patients are invited to spend some time and to undertake daily activities in a room equipped

with the proposed automatic video activity monitoring system.

The first result of the study is to demonstrate the feasibility of this new assessment method

from both the patient and the technical points of view. It is interesting to note that follow-

ing a full explanation of the automatic video monitoring system, none of the AD patients nor

caregivers refused to participate. The assessment is also interesting from the caregiver’s point

of view in that they are able to observe the AD participant’s behaviour by means of a monitor

located outside the study room. This is meaningful from a qualitative perspective in under-

standing the AD patients behavioural disturbances.

The scenario is composed of three distinct steps. The first step is devoted to directed motor

activities such as standing and sitting. The control participant has performed all these activities

faster than the two AD participants. Results also indicated that the motor parameters obtained

allow the two AD participants to be differentiated. Participant 2 was faster than Participant 1

during the walking task and for the balance task. These parameters are interesting to observe
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Participant 1 (AD) Right Order Error of Order Omission Speed

1. read something for 2mn (×) 2:20

2. make warm some water (×) 0:28

3. compose phone number (×) -

4. water plant (×) -

5. turn TV on (×) 0:31

6. classify playing cards by color (×) 1:06

7. take ‘ABCD’ folder (×) -

8. Match the A, B, C, D sheets (×) -

9. Put the ‘ABCD’ folder back (×) -

Participant 2 (AD) Right Order Error of Order Omission Speed

1. read something for 2mn (×) 2:18

2. make warm some water (×) 1:16

3. compose phone number (×) 1:04

4. water plant (×) -

5. turn TV on (×) -

6. classify playing cards by color (×) 0:57

7. take ‘ABCD’ folder (×)

8. Match the A, B, C, D sheets (×) 3:36

9. Put the ‘ABCD’ folder back (×) -

Participant 3 (NC) Right Order Error of Order Omission Speed

1. read something for 2mn (×) 1:46

2. make warm some water (×) 0:15

3. compose phone number (×) -

4. water plant (×) 0:05

5. turn TV on (×) 0:25

6. classify playing cards by color (×) 0:55

7. take ‘ABCD’ folder (×) 0.02

8. MAtch the A, B, C, D sheets (×) 0.19

9. Put the ‘ABCD’ folder back (×) -

Table 6.13: semi directed activities video monitoring results. Activities done by each participant in the

correct order, the activities done but not in the right order (error of order), the activities that participants

have not done or forget to do (omission) and the speed of execution of the activity (minutes: seconds).
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Activity Participant 1- AD Participant 2- AD Participant 3- NC

reading - 1mn(1) 24mn(2)

making tea/coffee - 12mn(3) -

watching TV 10mn(4) - -

looking at library 1mn(2) - 1(2)

Table 6.14: Activities recognized by the video monitoring system during the free activities part. For each

activity: time spent for the activity (in minutes) and the number of different occurrences of this activity.

considering that recent studies show that ambulatory velocity decreases with the severity of the

disease [Nordin et al., 2006], [Ries, 2009].

The second step of the scenario iss composed of semi-directed cognitive activities. Here the

speed of processing also differed among participants. Furthermore, AD participants were not

able to follow the correct order of the tasks and even omitted some of them. These types of

disturbances have previously been demonstrated using multitasking [Esposito et al., 2010] in

AD. Indeed, multitasking is characteristic of complex situations with few external constraints,

and requires a number of executive competencies, such as selecting, organizing, and executing

various tasks and impact on daily functioning.

The last step of the scenario is devoted to free activities and the data collected are partic-

ularly interesting from a qualitative point of view. The control participant chooses one of the

proposed activities (reading) and undertakes this activity for almost the entire duration. In

contrast, the two AD participants had more difficulties choosing one of the suggested activities

and were not able to undertake any one activity in a sustained manner for the entire duration

(30 minutes) of the step.

Hence, these results demonstrate that assessments using video monitoring system are not

only feasible and well-tolerated, but can also provide useful information concerning motor,

cognitive and behavioural dimensions of a disease such as AD.

There are, however, a main limitation to this first study. This was a pilot study and it is

therefore impossible to clearly demonstrate that the technology can differentiate significantly

between AD participants and controls on the basis of only three clinical cases. In next section,

we conduct experimentation with higher number of patients.

6.8.3 Assessing Motor Behavioral disorders in Alzheimer Disease: 28 clinical

cases

In this work, we study the ability of the proposed automatic video activity monitoring system

to detect activity changes between older people subjects with and without dementia during a
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clinical experimentation. A total of 28 volunteers participate to the experimentation, composed

of 11 healthy elderly subjects (healthy control group, G1) and 17 AD patients (AD group, G2).

Table 6.15: Demographic and characteristics of volunteers.

Characteristics Control Group (G1) AD patients (G2)

Sample size (N) 11 17

Age, years (Mean SD) 74.8 (±6.67) 77 (±7.43)

Sex Ratio (F/M) 6/5 (12/5)

6.8.3.1 Judgment Criteria

For this work, we focus on the automatic detection of motor disturbances. For that, we

analyse different sub-activities composing three main guided physical activities (see section

4.3.3, chapter 4). For walking exercise, we compute the walking speed, the transfer position

criteria and the up and go criteria. These criteria are defined in chapter 4, section 4.3.4.

6.8.3.2 Performance system evaluation

For each video record, events modeled were annotated by the same expert in blind test.

Then execution duration of activities and gait parameters associated with event of interest

were performed. To compute the walking speed by GT method VGT , we use as start time the

instant when participant cross the start line, and, as end time the instant when they cross the

end line or make a halt in front of the end line. Reference value used as walked distance is the

same for all participants, such as dreferencevalueGT = 4m. Mean of speed parameters is used to

compare performance between estimations provided by the proposed automatic video system

and the ones provided by GT (i.e., position and event annotations).

To compare the ability of the proposed system to detect differences between patients profiles

compared to GT, statistics analysis are conducted with SPSS10 release 19.0 software using the

non parametric Mann-Withney test and their associated p-value determined from Monte-Carlo

simulation in order to have more meaningfull conclusion given the small sample size of the two

groups.

6.8.3.3 Results

The proposed study [Joumier et al., 2011] shows that we could differentiate the two pro-

files of participants based on motor activity parameters, computed from the proposed automatic

video activity recognition system. Differences in motor disturbances between the two profiles

10http://www-01.ibm.com/support/docview.wss?uid=swg2402867
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of participants are concordant between the one identified by the ground truth GT and the one

identified by the proposed automatic video system. We have similar results in terms of statistics

differences detected from automatic video system and ground truth results performed: walking

speed, the duration to execute one position transfer during the transfer position exercise (µ),

and D3 (i.e., parameter related to the up and go exercise). Tables 6.16 shows the parameters

results for the Control Group (G1) and the AD patients group (G2). Differences in the estima-

tion of walking speed are (i) higher with M2 method than with M1 method (see chapter 4,

section 4.3.4). These differences can be explained as follows: (i) in most cases, the participant

l walks a distance inferior to the landmark distance when the event ‘Inside Walking exercise

zone’ is recognized. Thus, the walking speed computed with M2 method is overestimated

compared with the one computed by M1 method, (ii) some AD patients stop before the end

line and are detected inside the zone Exercise Walking (compared to other participants who

cross the end line), that’s why the walking speed of these participants is underestimated (see

[Joumier et al., 2011]).
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Mean, ±sd G1 G2 p-value, [CI(95%)] (&)

1. Walking Exercise

Walking Speed(cm/s)

1st Exercise (go)

- video, VM1,1 95.8, (21.7) 74.9, (22.3) 0.014, [0.012, 0.016](*)

- video, VM2,1 100.1, (23.7) 75.7, (24.5) 0.013, [0.011, 0.015](*)

- GT, VGT,1 85.5, (22.3) 66.3, 21.4[] 0.034, [0.030, 0.037](*)

2nd Exercise (go)

- video, VM1,2 109.9, (30.7) 88.6, (23.7) 0.089, [0.083, 0.094]

- video, VM2,2 113.9, (36.4) 85.8 (25.9) 0.021, [0.018, 0.024](*)

- GT, VGT,2 94.1 (23.0) 74.4, (19.2) 0.012, [0.010, 0.014](*)

Mean on the exercise

- video, mean(VM1,1 ,VM2,1) 102.9 (24.7) 81.7, (20.5) 0.013, [0.011, 0.015](*)

- video, mean(VM1,2 ,VM2,2) 107.0, (28.5) 80.7, (21.5) 0.003, [0.002, 0.004](*)

- GT, mean(VGT,1 , VGT,2) 89.8, (21.2) 70.4, (18.1) 0.005, [0.004, 0.006](*)

2. Transfer Position Exercise

Execution Duration ∆ t

- video 13.60, (5.70) 17.43, (6.85) 0.170, [0.162, 0.177]

- GT 15.72, (6.20) 19.96, (7.31) 0.141, [0.135, 0.148]

Transfer parameter µ

- video 1.26, (0.57) 1.71, (0.61) 0.019, [0.016, 0.021](*)

- GT 1.46, (0.61) 1.95, (0.66) 0.012, [0.010, 0.014](*)

3. Up and Go Exercise

Execution Duration(s)

(D1) For walking 4m (go)

- video 2.31, (0.96) 2.81, (1.22) 0.058, [0.054, 0.063]

- GT 2.67, (1.16) 3.37, (1.43) 0.051, [0.046, 0.055]

(D2) For doing U-turn

- video 2.31, (1.13) 3.77, (2.65) 0.099, [0.093, 0.104]

- GT 1.68, (0.65) 2.56, (1.79) 0.053, [0.049, 0.057]

(D3) For walking 4m (back)

- video 2.38, (0.81) 3.01, (1.27) 0.020, [0.017, 0.023](*)

- GT 2.95, (0.84) 4.19, (1.90) 0.002, [0.001, 0.003](*)

(D4) between posture changes

- video 10.13, (3.95) 12.52, (5.83) 0.13, [0.123, 0.137]

- GT 10.19, (3.85) 12.64, (5.97) 0.071, [0.066, 0.076]

Table 6.16: Parameter estimation for healthy older participants and AD patients. (&) Non parametric

Mann-Withney test is used to compare the results between both groups G1 vs G2. Bilateral p-value

associated with the Mann-Whitney test and its 95% confidence interval [CI (95%) are estimated using

Monte-Carlo simulation based on a sample size of 10, 000. (*) Inter group comparisons: differences

between healthy older participants and AD patients, using a significance level of .05(p − value < .05).
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Figure 6.24 shows the comparison of the speed performance of Alzheimer people (AD) and

healthy older people compared to the ground truth GT. Figure 6.25 shows the accuracy of our

Figure 6.24: Comparison with healthy older people (group, G1) and AD people (group, G2) for walking

exercise: the walking speed computed with methods M1 during the walking exercise (the Go exercise

V(M1,GoEx) and the Go back exercise V(M1,BackEx)), and M2. The walking speed is computed

with methods M2 during the walking exercise (the Go exercise V(M2,GoEx) and the Go back exercise

V(M2,BackEx)). The two methods are compared with the ground truth GT method.

approaches for walking speed computation. Figure 6.26 shows the comparison between healthy

Figure 6.25: Performance evaluation of walking speed.

older people (group, G1) and AD people (group, G2) performance for the transfer exercise and

figure 6.27 shows the accuracy of our approach for calculating the duration of the transfer

exercise.

Figure 6.28 shows the comparison between healthy older people (group, G1) and AD people
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Figure 6.26: Comparison between healthy older people (group, G1) and AD people (group, G2) perfor-

mance for transfer exercise: the transfer parameters (i.e the duration that takes each group to perform

the exercise, and the Comparative measurement = Dtot/numberofposition) are compared with the

ground truth GT parameters. the results shows that we could differentiate between the two groups, the

group G1 is faster than G2 for transfer exercise.

Figure 6.27: Performance evaluation of transfer exercise duration.

(group, G2) performance for up and go exercise. Figure 6.29 shows the performance of the

evaluation of the duration parameters of up and go exercise.

6.8.4 Alzheimer disease patient activity assessment: 44 clinical cases

In this work, we assess older people performance on Instrumental Activities of Daily Living

(IADL) and motor tests in a clinical protocol developed and executed in the Memory Center
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Figure 6.28: Comparison between healthy older people (group, G1) and AD people (group, G2) per-

formance for up and go exercise: G1 is faster than G2 to do successively different actions during this

exercise (transfering, walking, making U-turn).

Figure 6.29: Performance evaluation of up and go exercise duration parameters.

of the Nice Hospital. In this clinical protocol, a total of 44 volunteers participate, composed

of 21 healthy elderly subjects and 23 AD patients (see tables 6.17 and 6.18). The proposed

monitoring system detected the full set of activities of the first part of the clinical protocol (e.g.,

balance test, repeated sequence of sitting-standing positions) with a detection rate of 96.9% to

100% (true positive rate).
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Table 6.17: characteristics of participants on part 1 of the clinical scenario.

Characteristics Healthy Control AD patients

Sample size (N) 21 23

Age, years (Mean SD) 73.4 (±6.09) 76.7 (±7.84)

Female, N(%) 12 (50%) 16(68.75%)

MMSE(mean ± SD) 28.1± 0.98 21.35±3.97

Table 6.18: characteristics of participants on part 2 of the clinical scenario.

Characteristics Healthy Control AD patients

Sample size (N) 10 16

Age, years (Mean SD) 73.9 (±6.24) 76.7 (±7.56)

Female, N(%) 5 (50%) 11(68.8%)

MMSE(mean ± SD) 28.1± 1.85 20.7±3.70s

6.8.4.1 Statistical Analysis

Results are presented in terms of mean (± standard deviation) for continuous variables. For

categorical variables, results are presented in terms of frequency for each modality. Intergroup

comparisons for continuous variables used the parametric Student’s t-test or the non-parametric

Mann-Whitney test (p < 0.05) if one of the assumptions of the Student’s t-test is not satisfied.

Intergroup comparisons for categorical variables (2 modalities) used the Fisher’s exact test

(p < 0.05). All calculations were performed using SPSS software (version 19.0).

6.8.4.2 Results for part 1 of the clinical scenario

In this section, we present the results obtained from the first part (i.e. directed activities) of

the clinical scenario. These results are compared with the ground truth GT results obtained by

annotation.

Table 6.19 shows the results of the participants performing the activities of the first part

(i.e. directed activities) of the clinical scenario. The parameters were calculated using the

human expert annotation about the activities in the video sequences. The results shows that

AD participants needed more time to complete the different physical activities due to a lower

displacement speed.
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Table 6.19: Performance of participants on part 1 of the clinical scenario.

Parameter NC AD p-value

Walking Exercise

walking speed (Go) (m/s) 0.88±0.25 0.69±0.20 0.009 (**)

walking speed (Go back) (m/s) 1.02 (±0.21) 0.77 (±0.18) <0.001 (**)

Transfer position Exercise

duration (s) 14.90± 5.75 19.7±6.79 0.012 (*)

duration/number of transfers 1.50± 0.58 1.9±0.63 0.006 (**)

Up and Go Exercise

duration (s) 10.30± 4.12 14.6±6.16 0.002 (**)

Table 6.20 shows the same activities parameters than table 6.19, but with activity param-

eters calculated using the activities detected by the video activity monitoring system (36/44

video sequences, where HC=16 and AD=20). Although the absolute values of the parameters

calculated using our system results are different from the parameters values obtained from hu-

man annotations, the statistically significant differences between healthy participants and AD

patients group were preserved.

Table 6.20: Performance of participants on part 1 of the clinical scenario.

Parameter NC AD p-value

Walking Exercise

walking speed (Go) (m/s) 1.06±0.23 0.79±0.23 0.001 (**)

walking speed (Go back) (m/s) 1.20 (± 0.31) 0.89 (± 0.23) <0.002 (**)

Transfer position Exercise

duration (s) 12.8± 5.40 17.7±6.31 0.006 (**)

duration/number of transfers 1.3± 0.53 1.7±0.56 0.002 (**)

Up and Go Exercise

duration (s) 8.8± 3.80 12.1±5.64 0.007 (*)

6.8.4.3 Results for part 2 of the clinical scenario

Tables 6.21 and 6.22 present participants performance in part 2 (i.e. semi-directed activi-

ties) of the clinical scenario. Table 6.21 shows global results according to activity parameters:

duration (seconds) spent inside the room to perform the part 2 of the clinical scenario and

organizational errors in activity ordering. Activity ordering errors are presented as the number

of participants who at least once omitted, repeated, or changed the expected temporal order of

activities.
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Activity NC AD p-value

Total time spent in the room (s) 454±160.4 715±352 0.060

Number of participnats presenting errors about:

activity omission (n, %) 1(3.2%) 2(12.5%) 0.508

activity repetition (n, %) 0(0%) 6(37.5%) 0.053

activity order (n, %) 0(0%) 4(25%) 0.106 (**)

at least one error at activities organization (n, %) 0(0%) 8(50%) 0.008 (**)

Table 6.21: Global performance for semi-directed activities. P-values for continuous variables were

computed using Wilcoxon test; p-values for categorical variables (2 modalities) were computed using

Fisher’s exact test; (*) Statistical significance at p < 0.05; (**) Statistical significance at p < 0.01.

Table 6.22 shows the participants’ performance for each activity in terms of speed (seconds),

omission, and repetition parameters. The speed term was used instead of activity time duration

to imply that lower values of this attribute highlight the ability of a participant at performing

the activity faster. AD participants spent more time performing activities that involve sorting

or classifying objects (classify card, up an go), and they had difficulty to manage the time of

reading activity compared to NC participants.

Tables 6.23 and 6.24 present examples of an AD patient and a normal control (NC) par-

ticipant performance in semi-directed activities. In this example the AD participant forgot to

perform 3 activities, and performed 2 activities in the wrong order. Comparatively, NC partici-

pant performed the activities in the correct order, only omitting one.

Activity Right Order Order Error Omission Duration

reading for 2mn OK 2:20

warming water OK 0:28

making call X

watering plant X

watching TV X 00:31

classifying card by color X 01:06

Up and Go OK X

Table 6.23: AD Participant’s performance on semi-directed activities of the clinical scenario.



186 Chapter 6: Evaluation and Results of the Proposed Approach

Activity Right Order Order Error Omission Duration

reading for 2mn OK 1:45

warming water OK 0:16

making call X

watering plant OK 00:05

watching TV OK 00:25

classifying card by color OK 00:55

Up and Go OK 00:19

Table 6.24: Nornal control (NC) Participant’s performance on semi-directed activities of the clinical

scenario.

6.8.4.4 Results Comparison

In this section, we compared the results obtained by the proposed video activity moni-

toring framework with the results obtained by a Taiwanese team who collaborate with our

team in SWEETHOME project. The Taiwanese experiments took place in indoor and outdoor

environments. For the indoor experiments a room equipped with household appliances was

used and experimental data was recorded using eight ambient 2D video cameras (AXIS, Model

215PTZ,30 fps). For outdoor experiments a tri-axial accelerometer mounted on the shoes of

the participants was used to analyze their gait parameters.

A stride detection algorithm was developed by the Taiwan team for the automatically ac-

quisition of gait information using a triaxial accelerometer embedded in a wearable device. It

acquires data about the participant locomotion (e.g., walking time, stride length, stride fre-

quency). It was tested with 33 participants (healthy=17, AD=16), on a 40-meter walking

test.

Taiwanese participants aged more than 50 years were recruited by the Department of Neu-

rology at National Cheng Kung University Hospital. The Inclusion criterion of the AD group

was a MMSE score value above 16. (see tab. 6.25)

Table 6.25: characteristics of Taiwanese participants on.

Characteristics Healthy Control AD patients

Sample size (N) 45 36

Age, years (Mean SD) 64.51(±8.33) 70.25(±9.25)

Female, N(%) 24 (53.3%) 21 (58.3%)

MMSE(mean ± SD) 27.60± 2.04 23.44±3.32

Table 6.26 shows the results of Taiwanese participants performing part 1. Activity param-
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Figure 6.30: Mean duration of Taiwanese participants in the up and Go test

[Crispim-Junior et al., 2012].

eters were calculated based on the annotations of Human expert. Activity parameters of Tai-

wanese participants agree with our experimental results in the sense that AD participants took

more time to perform the selected activities, probably due to their lower speed of displacement

when compared to NC participants.

Table 6.26: Taiwanese participants’ performance for part 1 of the clinical scenario

[Crispim-Junior et al., 2012].

Parameter NC AD p-value

Walking Exercise

walking speed (Go) (m/s) 0.38± 0.08 0.32 ±0.74 0.001 (**)

walking speed (Go back) (m/s) 0.41 (± 0.07) 0.34(± 0.08) <0.001 (**)

Transfer position Exercise

duration (s) 14.5 ± 3.33 20.0 ±9.41 0.001 (**)

duration/number of transfers 1.4 ± 0.33 2.00 ±0.94 0.001 (**)

Up and Go Exercise

duration (s) 10.2 ± 2.42 13.4 ±3.34 0.001 (*)

Figures 6.30 and 6.31 show the mean speed of participants in the up and Go test for AD and

healthy participants at the Taiwanese and our experimental sites, respectively. In both sites, AD

patients presented a significantly lower speed compared with healthy controls in the up and Go

test (p < 0.01).
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Figure 6.31: Mean duration of participants in Nice hospital France in the up and Go test.

Table 6.27: Taiwanese Results: Mean and standard deviation of patients speed in activities of part 2

[Crispim-Junior et al., 2012].

Activity reading for 2mn warming water making call

AD 129.8±57.8 41.4±21.0 39.7±22.5

NC 121.1± 49.2 23.8 ±12.1 21.7±6.9

Activity watering plant watching TV classifying card

AD 52.3±28.7 36.4±24.4 98.8 ±35.5

NC 25.3± 10.4 23.0 ±11.7 69.5±21.0

Tables 6.27 and 6.28 show the mean and standard deviation of the speed of participants’

activities and their number of errors at performing the activities proposed in the given order

(number of activities skipped or performed in an temporal order different from the expected),

respectively. Statistical differences were found in the comparison between AD and NC groups

(p < 0.01, **;p < 0.05, *). For instance water the plant activity show a significant differences

between AD and NC for both activity parameters analyzed (speed and frequency).

6.8.4.5 Results Discussion

Certain similarities are seen between Taiwanese and our results, although a direct com-

parison of the results of both sites is not possible due to differences in participant population

inclusion criteria. Alzheimer’s patients can be characterized by several criteria. AD participants

presented a lower balance and a shorter gait length frequency. Similar findings were also found

by Gillain et al. [Gillain et al., 2009] who pointed out lower gait speed and lower stride length
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of AD patients when compared to normal controls, in single and in dual tasks (gait speed, stride

length, stride cycle frequency, and stride regularity).

Alzheimer’s patients have also omitted activities and changed their temporal order indicat-

ing a decline in IADLs performance (semi-directed, part 02 of clinical scenario). Statistically

significant differences among AD and NC participants in activity like ‘watering the plant’ could

be an indicator of AD participants difficulty at performing unusual activities.

The proposed automatic monitoring system provided activity values similar to the ones

calculated from events annotated by a human assessor. Although their absolute values differ,

they follow the same tendency, and the statistical differences found among AD and NC groups

are preserved. These findings highlight the use of the proposed approach as a support platform

for clinicians to objectively measure AD patients performance in IADLs and gait analysis. Among

the advantages of the proposed system are the stability of its results over time (as it does not

suffer from emotional state conditions or biases like stress and fatigue), and its quantitative

measurement of patient performance.
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Activity NC AD p-value

reading for 2mn

Speed (s) 138±79.6 88±215.2 0.001(**)

omitted, n(%) 0(0%) 0(0%) X

repeated, n(%) 0(0%) 2(12.5%) 0.508

warming water

Speed (s) 4±3.8 8±13.4 0.660

omitted, n(%) 0(0%) 0(0%) X

repeated, n(%) 0(0%) 2(12.5%) 0.508

making call

Speed (s) 25±12.3 28±20.3 0.979

omitted, n(%) 0(0%) 0(0%) X

repeated, n(%) 0(0%) 2(12.5%) 0.508

watering plant

Speed (s) 9±4.4 11±7.2 0.856

omitted, n(%) 0(0%) 0(0%) X

repeated, n(%) 0(0%) 3(18.75%) 0.262

watching TV

Speed (s) 32±24.3 57±57.9 0.165

omitted, n(%) 0(0%) 0(0%) X

repeated, n(%) 0(0%) 2(12.5%) 0.508

classifying card by color

Speed (s) 78±30.9 143±176 0.216

omitted, n(%) 0(0%) 1(6.25%) 1.00

repeated, n(%) 0(0%) 3(18.75%) 0.262

Up and Go

Speed (s) 49±21.3 80±48.5 0.129

omitted, n(%) 0(0%) 1(6.25%) 1.00

repeated, n(%) 0(0%) 0(0%) X

Table 6.22: Participants performance for each activity of the semi-directed part of the clinical scenario.

P-values for continuous variables were computed using Wilcoxon test; p-values for categorical variables

(2 modalities) were computed using Fisher’s exact test; (*) Statistical significance at p < 0.05; (**)

Statistical significance at p < 0.01.
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Table 6.28: Taiwanese Results: Mean and standard deviation of participants number of errors in the

order of activities for part 02 [Crispim-Junior et al., 2012].

Activity reading for 2mn warming water making call

AD 0.20±0.41 0.08±0.28 0.08±0.28

NC 0.26± 0.44 0.03 ±0.18 0±0

Activity watering plant watching TV classifying card

AD 0.23±0.43 0.26±0.45 0.19 ±0.40

NC 0.03± 0.18 0.03 ±0.18 0.03±0.18
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6.9 Conclusion

In this chapter, we have presented the several evaluations done in computer vision domain,

in term of activity recognition and uncertainty handling and we present the evaluation in health

care monitoring domain. We demonstrate that the proposed approach allows to recognize reli-

ably with a low false alarm rate a set of activities of interest. In health care domain, the obtained

results highlight the advantages of the use of the proposed approach as a support platform for

clinicians to objectively measure AD patients performance in IADLs and gait analysis.

In the next chapter, we conclude our work and we propose and discuss future work to

improve the proposed activity recognition framework.



7

CONCLUSIONS AND FUTURE WORK

In this thesis we have proposed a new approach for monitoring human activities. This ap-

proach includes an algorithm for real-time recognition of primitive and composite activities

that have occurred in the scene observed by video cameras. The proposed approach is based on

combining constraint-based approach and a probabilistic approach to recognize human activi-

ties. The proposed approach takes as input the data provided by video sensors and uses three

major sources of knowledge: the 3D model of the scene, the 3D model of mobile objects (e.g.

person), and the models of activities. An overview of the contributions of this work is described

in section 7.1. Then a discussion is made to show the limitations of the proposed approach in

section 7.2. Finally, future works are proposed in section 7.3 to improve the proposed approach.

7.1 Overview of the contributions

The main contributions of this work are the following:

¥ A new video activity recognition approach combining semantic event modeling and

probabilistic event inference to cope with uncertainty (chapters 4 and 5). The pro-

posed algorithm performs probabilistic event detection based on conditional probabilities

and relies on probabilistic constraint verification. Considering uncertainty is crucial in

order to maintain a robust recognition performance for real-world videos.

¥ Knowledge base for health care monitoring (chapter 4). We have worked in close col-

laboration with clinicians to define an ontology and a knowledge base composed of a total

of 117 event models for Alzheimer monitoring at hospital. The defined ontology contains

several concepts useful for health care. We have also defined a number of criteria which

193
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could be observed by camera sensors to allow detection of early symptoms of Alzheimer’s

disease.

¥ Assessing Behavioral disorders in Alzheimer Disease: in chapter 6, we have studied

the ability of the proposed automatic video activity monitoring system to detect activity

changes between older people subjects with and without dementia. This study shows

that we could differentiate the two profiles of participants (Alzheimer and normal control

patients) based on daily living activities and gait parameters. These findings highlight

the use of the proposed approach as a support platform for clinicians to objectively mea-

sure Alzheimer patients performance in daily living activities and gait analysis. Among

the advantages of the proposed system are the stability of its results over time and its

quantitative measurement of patient performance.

7.2 Limitations

The proposed activity recognition approach shows the ability to help experts to represent

easily interesting events and the capacity of reliably recognize daily living activities.

However, the approach has some limitations and can be extended in a number of new

studies and new research directions. These limitations are mainly divided on three main parts:

At the level of event modeling, the proposed event description method is formal. Events

are described in a natural language which is intuitive. Nevertheless, event modeling is time

consuming and an error prone process. Automatic event learning can improve the recognition

performance (see sections 7.3.1.4 and 7.3.1.5).

At the level of event recognition, The proposed event recognition algorithm shows its suc-

cess to recognize complex activities. However, many improvement can be explored for the

management of uncertainty (see sections and 7.3.2.1 and 7.3.2.2). Detection of more complex

situations could be improved (see sections 7.3.1.1, 7.3.1.2, 7.3.2.4 and 7.3.2.5). Actually, there

is no cooperation and feed back between event recognition process and vision algorithms. Feed

backs could improve the performance of the recognition (see section 7.3.1.6).

At the level of health care, the proposed approach shows its ability to help clinicians to ob-

jectively measure Alzheimer patients performance. However, the approach shows its limitation

in term of finer activities detection. For instance, the detection of the change of the walk style

of one patient over time could be of interest for clinicians to detect the change of patient’s

behaviour. Investigation on automatic detection of finer activities change is a new research

direction (see sections 7.3.2.4, 7.3.2.5).

In the following, we describe propositions for future work.
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7.3 Future Work

The purpose of this section is to analyze the future work, as extensions to the proposed

approach and as possible solutions to its limitations. In this section we present firstly the

proposed short-term perspectives, after that we present the proposed long-term perspectives.

7.3.1 Short-Term Perspectives

In short term, the activity monitoring approach can be extended in several ways:

7.3.1.1 Testing with other sensors

The proposed approach was tested mainly on 2D videos. One short term work consists on

testing the performance of the algorithm using RGB-D approach for instance by using Kinect1.

7.3.1.2 Multi-sensors Event Detection

The proposed approach for uncertainty handling was mainly applied on camera sensors.

Future work consists in handling uncertainty of other sensors and combining them for a more

rich multi-sensor event detection.

7.3.1.3 Group Activity Recognition

The proposed approach was evaluated mainly with one person or two at most (i.e. patient

and nurse). We propose the extension of our work for group detection like the work described

in [Zaidenberg et al., 2012]. Future work consists in evaluating the integration of uncertainty

management in the performance of group activity detection.

7.3.1.4 Learning utility values

In this work, the utility values during the event modeling process were defined according

to the user interest. Further analysis on different utility values can be performed in order to

establish the best values for each event model. A learning phase of these values could be of

interest for a more reliable event detection.

7.3.1.5 Learning Temporal Event Models and Uncertainty handling

The modeling of behaviors can be expressed by experts by the mean of the presented event

description language and a dedicated ontology. Nevertheless, event modeling is time consum-

1http://www.microsoft.com/en-us/kinectforwindows/
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ing and an error prone process. Thus, it will be interesting to learn automatically normal

behaviors of every day data, because normal behaviors are frequent and can be extracted from

everyday activities. Of course, in the process of event learning we could handle uncertainty. A

potential future direction of our work might be to investigate learning techniques to deal with

the uncertainty of recognition at the level of event modeling.

7.3.1.6 Cooperation and feed back between event recognition process and vision algo-

rithms

In the current video recognition framework, there is no dynamic cooperation between the

algorithms, the event detection algorithm takes simply the output of vision algorithms without

sending feed backs. It will be interesting for event recognition algorithm based on the probabil-

ity of the detected activities to send feedback to vision algorithms to perform certain vision tasks

for instance to track again people in a time interval. This could improve the performance of the

recognition. A future research work consists in studying the criteria to establish cooperation

and feed backs between vision modules and event recognition.

7.3.2 Long-Term Perspectives

In long term, the activity monitoring approach can be extended in several ways:

7.3.2.1 Low level Uncertainty Management

The calculation of probability measures to assess the reliability of the low level algorithms

can be an interesting extension of the approach. These measures could be associated to the

detected moving regions in order to account for the quality of low level and its robustness

faced to low level noise (e.g. illumination changes, contrast between the moving objects and

the background of the scene, shadows, among other noise aspects).

7.3.2.2 Uncertainty Management Techniques Comparison

In this work, we have presented a number of techniques for the management of uncertainty

during the different levels of the event recognition process, among many other state of the

art techniques. Further analysis and comparison with other state of the art techniques is of

interest. Evaluating the most appropriate techniques for the context of health care monitoring

could enrich the proposed Alzheimer monitoring platform.
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7.3.2.3 Context Learning

In this work, the scene context was manually annotated. Learning the scene context could

be of interest to gain in flexibility in context definition like the work described in [Pusiol, 2012].

Future work can focus on exploring (i) different context learning techniques like detecting

the most frequented areas based on person presence and (ii) the impact of different learned

contexts of the recognition performance.

7.3.2.4 Study interaction

Currently the interactions between physical objects are studied based on the position/closeness

of physical objects to each other. This definition is coarse and a study of finer interactions could

enrich our event recognition framework and could be of interest for health care monitoring.

Further analysis on the results from the low level algorithm which gives actually a coarse de-

scription of the object is needed. In order to evolve in the interpretation of more complex

interactions, more detailed and class-specific object models could be utilised. Future work can

point to the utilisation of more specific object representations as articulated models, object

contour, or appearance models, among others.

7.3.2.5 Finer activities detection

The detection of the change of the walk style of a patient over time or the detection of way

how patient perform balance exercise could be of interest for clinicians to detect the change of

patient’s behaviour. Detecting the way a person is moving his/her hand, legs and each part of

his body could help us to detect for instance walk style. Learning techniques could be also used

to learn some behaviors specific to Alzheimer disease patients.

7.3.2.6 Activity Monitoring in other Environment

In the current work, the proposed activity recognition approach was evaluated mainly on

health care applications. The next step requires to test this approach on other environment for

instance metro surveillance, parking lot, etc.
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A

PRÉSENTATION DES TRAVAUX DE THÈSE

EN FRANCAIS

La recherche sur la reconnaissance de l’activité reçoit une attention croissante de la com-

munauté scientifique aujourd’hui. Il est l’un des problèmes les plus difficiles en vision par ordi-

nateur et de la recherche en intelligence artificielle. L’objectif principal de la recherche actuelle

de reconnaissance de l’activité consiste à reconnaitre des activités complexes temporelles de

court terme et de long terme. Les progrès dans le traitement des données vidéos bas niveau

telles que la détection de mouvements, classification et suivi d’objets ont permis de mettre

l’accent sur l’analyse de la reconnaissance de l’activité de niveau supérieur [Vu et al., 2003a],

[Ryoo and Aggarwal, 2009], [Brendel et al., 2011], [Kwak et al., 2011]. Les travaux actuels

s’intérèssent à la gestion de l’incertitude pour faire face à la demande de robustesse requise par

les applications récentes [Tran and Davis, 2008], [Ryoo and Aggarwal, 2010], [Lavee et al., 2010a].

Il ya plusieurs domaines d’application intéressants pour les systèmes de reconnaissance d’activités,

principalement la vidéo-surveillance et le domaine de la santé. Les systèmes de surveillance

automatiques dans les lieux publics comme les aéroports et stations de métro nècessitent la

détection des activités anormales et suspectes. La surveillance dans le domaine de santé con-

siste à surveiller les activités d’une personne ou des personnes âgées grâce à des caméras et

de détecter automatiquement les premiers symptômes de certaines maladies. Il est bien connu
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que même les changements subtils dans le comportement de la personne âgée peut donner des

signes importants de la progression de certaines maladies. Les perturbations du sommeil qui

pourraient être causés, par exemple, par une insuffisance cardiaque et les maladies chroniques.

Les changements dans la démarche, d’autre part, peut être associée à des signes précoces de

troubles neurologiques liés á plusieurs types de démences. Ces exemples mettent en évidence

l’importance de l’observation en continu des changements de comportement chez les personnes

âgées afin de détecter la détérioration de la santé avant qu’elle ne devienne critique. Ainsi,

un système permettant d’analyser le changement des comportements des personnes âgées dans

leurs activités est plus que nécessaire. Bien sûr, pour qu’un tel système soit efficace, la tâche

de reconnaissance de l’activité doit fournir des résultats très précis. En effet, si les activités

sont mal reconnus, le système de surveillance peut tirer des conclusions erronées sur l’adhésion

réelle du patient pour les prescriptions du praticiens, ainsi que fournir des statistiques sujettes

à l’erreur sur l’état de santé du patient.

Les sections suivantes décrivent les motivations, les objectifs de cette thèse, le contexte de

l’étude, mes hypothèses, mes contributions et la description des chapitres de la thèse.

A.1 Motivations

Ce travail a été grandement motivé par les études réalisées dans la compréhension de

l’activité humaine. Au cours des dernières années, beaucoup d’efforts ont été mis dans le

développement de systèmes pour la reconnaissance de l’activité et les employant dans une

variété de domaines de surveillance.

Une question centrale est la question de la robustesse. La robustesse est définie comme la

mesure dans laquelle un système ou un composant peut fonctionner correctement en présence

d’entrées invalides ou des conditions d’environnement stressantes. La plupart des systèmes de

reconnâıssance d’activités qui ont été construits ont été limitées dans la variété des activités

qu’ils reconnaissent et / ou dans la gestion de l’incertitude de la reconnaissance.

Dans ce travail, nous proposons une approche pour la reconnaissance d’activité vidéo qui
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aborde ces questions en combinant la modélisation sémantique avec un raisonnement proba-

biliste pour faire face (i) aux erreurs des détecteurs de bas niveau (au niveau d’événements

primitif) et (ii) de gérer l’incertitude de la reconnaissance des événements haut niveau pour

soutenir les demandes du domaine de santé. Notre approche vise à fournir plusieurs ser-

vices pour les patients atteints de la maladie d’Alzheimer afin de les aider à conserver leur

indépendance et de vivre en toute sécurité.

A.2 Objectifs

Le principal objectif de cette thèse est de proposer une nouvelle méthode de reconnais-

sance d’activité en mesure de gérer les erreurs de détecteurs de bas niveau et l’incertitude de

reconnaissance d’événements de haut niveau pour détecter des activités intéressantes dans le

domaine de la surveillance de la santé. Nous nous concentrons sur la représentation sémantique

des événements vidéos et sur la reconnaissance des activités de la vie quotidienne pour con-

struire un système automatique de surveillance vidéo capable d’aider les cliniciens à détecter

les premiers symptômes de la maladie d’Alzheimer.

A.3 Contexte de l’étude

La recherche dans le domaine de la surveillance des personnes âgées atteintes de démence

est un axe de recherche très populaire de nos jours. La maladie d’Alzheimer (AD) et les troubles

connexes représente un défi majeur pour les systèmes de soins de santé avec le vieillissement

des populations. La maladie d’Alzheimer est associé à des changements neuro-dégénératifs qui

compromettent les capacités cognitives et fonctionnelles et peut entrainer des symptômes com-

portementaux et neuro-psychiatriques. Beaucoup d’efforts sont actuellement déployés pour

analyser la pathologie d’Alzheimer et développer des stratégies de traitement appropriées.

Ces stratégies mettent l’accent sur la préservation des capacités cognitives et fonctionnelles

et le maintien de la qualité de vie chez le malade. Les échelles mèdicales d’évaluation sont

des outils essentiels pour la diagnostic de la maladie d’Alzheimer, l’évaluation et le suivi at-
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tentif des symptômes, ainsi que l’évaluation des effets du traitement. Toutefois, ces échelles

d’évaluation standard ne rendent pas pleinement compte de la complexité d’une maladie. En

effet, la maladie d’Alzheimer comprend les détériorations cognitive, comportementale et fonc-

tionnelle qui ne progrèssent pas en parallèle et peut changer selon l’individualité d’un patient

donné [Romdhane et al., 2011]. Pour cette raison, le suivi automatique des activités de la vie

quotidienne comme préparer à manger, utilier le téléphone et la gestion des médicaments a été

un centre d’intêret en gérontechnologie.

La détection de ces activités permettrait aux systèmes de suivi et de reconnâıtre les change-

ments dans les habitudes de comportementd qui pourraient être indicateurs de développer des

problèmes de santé physique ou mentale. De même, il pourrait aider à déterminer le niveau

d’indépendance des personnes âgées. S’il est possible de développer des systèmes qui reconnais-

sent ces activités automatiquement, les experts médicaux peuvent être en mesure de détecter

les changements dans les habitudes de comportement des personnes qui indiquent un déclin de

la santé. C’est un domaine difficile pour de multiples raisons. Tout d’abord, pour les cliniciens,

il est important d’établir le type exact d’indicateurs qui sont cliniquement pertinente et peut

fournir des informations qui peuvent être utilisés dans la pratique quotidienne. Deuxièmement,

dans le domaine de la vision par ordinateur, le défi est d’adapter les contraintes techniques et

les besoins du clinicien. Pour les patients et les soignants, participer d’une manière active et en

donnant un avis sur la faisabilité et la tolérance de l’étude est important.

Le principal moteur de cette étude provient de l’objectif sociétal d’assister et de maintenir

les personnes âgées dans leur milieu familial, ou pour leur permettre de ‘vieillir sur place’. Plus

précisément, l’objectif global est de développer une approche de reconnaissance automatique

des activités pour une évaluation comportementale et pour adapter les soins préventifs au début

ou à un stade modérée de la maladie d’Alzheimer.

Ce travail de thèse a été menée dans l’équipe STARS à l’INRIA Sophia Antipolis, en France.

Stars est une équipe pluri-disciplinaire à la frontière de la vision par ordinateur, l’intelligence ar-

tificielle et le génie logiciel. Les travaux de STARS se concentrent sur deux domaines d’application

principaux: la sécurité / sûreté et la surveillance dans le domaine de la santé. Ce travail se situe
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dans ce contexte et vise à reconnâıtre les activités humaines pour les applications de la santé.

Dans cette étude, nous collaborons avec des cliniciens de l’hôpital de Nice pour déterminer

les scénarios d’activités à reconnâıtre qui sont les plus importants à surveiller pour la maladie

d’Alzheimer.

A.4 Contributions

Les principales contributions de ce travail sont les suivants:

¥ La première contribution principale consiste en une nouvelle approche de recon-

naissance des activités combinant représentation sémantique de l’événement et inférence

probabiliste pour gérer l’incertitude. (chapitre 5) Nous avons utilisé un cadre générique

pour représenter la sémantique liées à des événements (par exemple, des modèles d’événements,

des informations contextuelles). Ensuite, nous avons combiné une méthode sémantique

pour modéliser des activités avec un raisonnement probabiliste basé sur deux couches

(une première couche des événements primitifs et une couche des événements compos-

ites) pour effectuer une reconnaissance probabiliste compte tenu de l’incertitude des anal-

yses de bas niveau. L’incertitude est gérée en combinant la sortie probabiliste des deux

couches. Bien que notre approche est démontrée dans le domaine de la surveillance vidéo

de la santé, elle n’est pas limité à un domaine ou une application spécifique.

¥ Base de connaissances pour la surveillance des personnes âgées. (chapitre 4) Nous

avons travaillé en étroite collaboration avec les cliniciens pour définir une ontologie et

une base de connaissances composée d’un total de 117 modèles d’événements pour la

surveillance des patients atteints de la maladie d’Alzheimer à l’hôpital. L’ontologie définie

contient plusieurs concepts utiles pour le domaine de la surveillance médicale. Nous

avons également défini un certain nombre de critères visuels qui pourraient être observées

par les capteurs de caméra pour permettre la détection des premiers symptômes de la

maladie d’Alzheimer.
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¥ Evaluation des troubles du comportement dans la maladie d’Alzheimer: dans le

chapitre 6, nous avons étudié la capacité du système de surveillance automatique des

activités vidéos proposé afin de détecter des changements d’activité entre les personnes

âgées avec et sans démence. Cette étude montre que nous puissions différencier les deux

profils des participants (Alzheimer et les patients témoins normaux) basé sur les activités

de la vie quotidienne et les paramétres de la marche. Ces résultats mettent en évidence

l’utilisation de l’approche proposée comme une plate-forme de soutien pour les cliniciens

permettant de mesurer objectivement les performances des patients Alzheimer dans les

activités de la vie quotidienne et l’analyse de la démarche. Parmi les avantages du systéme

proposé sont la stabilité de ses résultats au fil du temps et sa mesure quantitative de la

performance des patients.

¥ Une Nouvelle base de données vidéos. Cette nouvelle base contenant des séquences

vidéos qui ont été enregistrés à l’hôpital de Nice. Ces enregistrements consistent en des

personnes âgées saines et des personnes âgées atteintes de la maladie d’Alzheimer en

train d’effectuer des activités de la vie quotidienne (manger, lire, regarder la télé). La

base de données contient plus de 375 séquences vidéos de 125 participants et un total de

plus de 125 heures d’enregistrements.

A.5 Plan de travail

Cette thèse est organisé comme suit:

1. chapitre1 , nous avons introduit la motivation, l’objectif et le contexte de l’étude.

2. chapitre 2 , nous examinons d’abord les travaux connexes dans le domaine de la recon-

naissance d’activité et puis nous décrivons les différentes technologies pour surveiller les

activités humaines dans le domaine de santé.

3. chapitre 3 , avons présenté un aperçu de la démarche de reconnaissance d’activité pro-

posée. Nous donnons une architecture générale de l’approche proposée. Nous décrivons



A.5 Plan de travail 207

les entrées, les sorties et les principales sources de connaissance de notre approche.

Nous définissons le problème de la reconnaissance d’activité comme un élément clé de

la surveillance automatique dans le domaine de la santé.

4. chapitre 4 , nous avons présenté l’ontologie et la base de connaissances proposées qui

contient un total de 117 modèles d’activités. Nous avons travaillé en étroite collabora-

tion avec les cliniciens pour définir une ontologie et une base de connaissances pour la

surveillance à l’hôpital de patients atteints de la maladie d’Alzheimer. La définition de

cette ontologie nous permet de représenter les connaissances sur les activités d’intérêt.

Nous avons également défini un certain nombre de critères médicaux qui peuvent être

observés par les caméras pour permettre la détection des premiers symptômes de la mal-

adie d’Alzheimer.

5. chapitre 5 , nous avons présenté l’approche proposée pour la reconnaissance des événements

primitifs et des événements temporels composites. Il s’agit d’une nouvelle approche com-

binant la représentation sémantique et le raisonnement probabiliste pour la détection

d’événements. Nous avons adopté la théorie des probabilités de Bayes pour calculer la

probabilité conditionelle de la reconnaissance des activités. Nous avons adopté égalemet

un raisonnement probabiliste pour résoudre et vérifier les constraintes spatiales et tem-

porelles des modèles d’évènements. Nous avons également abordé la gestion de bruits

des détecteurs bas niveau.

6. chapitre 6 , nous évaluons l’approche proposée et nous avons testé les modèles d’activités

proposées dans les scénarios médicales avec des vidéos réalisés dans un site expérimental

situé à l’hôpital de Nice. Nous présentons les résultats obtenus de la performance de notre

algorithme ainsi que les résultats médicaux.

7. Enfin, dans chapitre 7, nous concluons ce travail, en résumant les contributions de cette

thèse, et en présentant des perspectives à court terme et à long terme.
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Rouen. 99



214

[Londei et al., 2009] Londei, S. T., Rousseau, J., Ducharme, F., St-Arnaud, A., Meunier, J.,

Saint-Arnaud, J. and Giroux, F. (2009). An intelligent videomonitoring system for fall de-

tection at home: perceptions of elderly people. In Journal of Telemed Telecare vol. 15, pp.

383–390,. 41

[Lv et al., 2006] Lv, F., Song, X., Wu, V., Kumar, B. and Nevatia, R. (2006). Left luggage detec-

tion using bayesian inference. In Proc. of IEEE Int. Workshop on Performance Evaluation of

Tracking and Surveillance pp. 83–90,. 15

[Marquis-Faulkes et al., 2005] Marquis-Faulkes, F., McKenna, S. J., Newell, A. F. and Gregor,

P. (2005). Gathering the requirements for a fall monitor using drama and video with older

people. In Journal Technology and Disability vol. 17, pp. 227–236,. 41

[Minnen et al., 2003] Minnen, D., Essa, I. and Starner, T. (2003). Expectation grammars:

Leveraging high-level expectations for activity recognition. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) pp. 626–632,. 28

[Mouhoub and Liu, 2008] Mouhoub, M. and Liu, J. (2008). Managing Uncertain Temporal

Relations using a Probabilistic Interval Algebra. In Systems, Man and Cybernetics, 2008.

SMC 2008. IEEE International Conference on pp. 3399–3404,. 120

[Nait-Charif and McKenna, 2004] Nait-Charif, H. and McKenna, S. J. (2004). Activity sum-

marisation and fall detection in a supportive home environment. In IEEE International Con-

ference on Pattern Recognition (ICPR) vol. 4, pp. 323–326,. 37

[Nevatia et al., 2004] Nevatia, R., Hongeng, S. and Bremond, F. (2004). Video-based event

recognition : activity representation and probabilistic recognition methods. In Computer

Vision and Image Understanding vol. 2, pp. 129–162,. xi, 14, 15, 28, 43

[Nevatia et al., 2003] Nevatia, R., Zhao, T. and Hongeng, S. (2003). Hierarchical language-

based representation of events in video streams. In In IEEE Workshop on Event Mining. 20,

27

[NGHIEM, 2010] NGHIEM, A.-T. (2010). Adaptive algorithms for background estimation to

detect moving objects in videos. In PhD thesis. 141

[Nicholson and Korb, 2006] Nicholson, A. E. and Korb, K. B. (2006). Bayesian AI Tutorial. In

Faculty of Information Technology Monash University Clayton AUSTRALIA. xi, 15, 16

[Nist, 2000] Nist (2000). Uncertainty of Measurement Results. In

http://physics.nist.gov/cuu/Uncertainty/index.html. 125



BIBLIOGRAPHY 215

[Nordin et al., 2006] Nordin, E., Rosendahl, E. and Lundin-Olsson, L. (2006). Timed ”Up and

Go” test: reliability in older people dependent in activities of daily living-focus on cognitive

state. In PhysTher pp. 646–655,. 176

[Oliver et al., 2002] Oliver, N., Horvitz, E. and Garg (2002). Layered representations for hu-

man activity recognition. In IEEE International Conference on Multimodal Interfaces (ICMI)

pp. 3–8,. 18, 27, 43

[Olshausen, 2004] Olshausen, B. A. (2004). Bayesian probability theory. 97

[Park and Aggarwal, 2004] Park, S. and Aggarwal, J. (2004). A Hierarchical Bayesian Net-

work for Event Recognition of Human Actions and Interactions. In pecial issue on Video

Surveillance vol. 2, pp. 164–179,. 14

[Paulos, 2011] Paulos, J. A. (2011). The Mathematics of Changing Your Mind. In The New

york times. 98

[Perse et al., 2010] Perse, M., Kristan, M., Pers, J., Music, G., Vuckovic, G. and Kovacic, S.

(2010). Analysis of multi-agent activity using petri nets. In Pattern Recognition pp. 1491–

1501,. 26

[Petridis and Psomas, 2012] Petridis, S. and Psomas, C. (2012). Allen’s Hourglass: Probabilis-

tic Treatment of Interval Relations. In 24th IEEE International Conference on Tools with

Artificial Intelligence, ICTAI 12 pp. 87–94,. 121

[Pinhanez and Bobick, 1998] Pinhanez, C. S. and Bobick, A. F. (1998). Human action detection

using PNF propagation of temporal constraints. In IEEE Conference on Computer Vision and

Pattern Recognition(CVPR). 20

[Pusiol, 2012] Pusiol, G. (2012). Discovery of human activities in video. In PhD manuscrit.

197

[Reddy et al., 2003] Reddy, S., Gal, Y. and Shieber, S. (2003). Recognition of group activities

using dynamic probabilistic networks. In The 9th International Conference on Computer

Vision. 15, 27

[Reddy et al., 2009] Reddy, S., Gal, Y. and Shieber, S. (2009). Recognition of Usersâ Activities
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RESUMÉ

Cette thèse aborde le problème de la reconnaissance d’ activités. Elle est fortement motivée par la
recherche dans le domaine de la reconnaissance des activités vidéo appliquée au domaine de la surveil-
lance de personnes agées. Dans ce travail, nous proposons deux contributions principales. La première
contribution consiste en une approche pour la reconnaissance d’activitResumé vidéo avec gestion de
l’incertitude pour une détection précise d’événements. La deuxième contribution consiste à définir une
ontologie et une base de connaissances pour la surveillance dans le domaine de la santé et en parti-
culier la surveillance à l’hôpital de patients atteints de la maladie d’Alzheimer. L’approche de recon-
naissance d’activité proposée combine une modélisation sémantique avec un raisonnement probabiliste
pour faire face aux erreurs des détecteurs de bas niveau et pour gérer l’incertitude de la reconnaissance
d’activité. La reconnaissance probabiliste des activités est basée sur la théorie des probabilités bayésienne
qui fournit un cadre cohérent pour traiter les connaissances incertaines. L’approche proposée pour la
vérification probabiliste des contraintes spatiale et temporelle des activités est basée sur le modèle de
probabilité gaussienne. Nous avons travaillé en étroite collaboration avec les cliniciens pour définir une
ontologie et une base de connaissances pour la surveillance à l’hôpital de patients atteints de la maladie
d’Alzheimer. L’ontologie définie contient plusieurs concepts utiles dans le domaine de la santé. Nous
avons également défini un certain nombre de critères qui peuvent être observés par les caméras pour per-
mettre la détection des premiers symptômes de la maladie d’Alzheimer. Nous avons validé l’algorithme
proposé sur des vidéos réelles. Les résultats expérimentaux montrent que l’algorithme de reconnaissance
d’activité proposé a réussi à reconnâıtre les activités avec un taux élevé de reconnaissance. Les résultats
obtenus pour la surveillance de patients atteints de la maladie d’Alzheimer mettent en évidence les avan-
tages de l’utilisation de l’approche proposée comme une plate-forme de soutien pour les cliniciens pour
mesurer objectivement les performances des patients et obtenir une évaluation quantifiable des activités
de la vie quotidienne.

Mots-clés: reconnaissance d’événement vidéo, modélisation d’événements, incertitude, probabilité
bayésienne, densité de probabilité gaussienne, probabilité cumulative, surveillance des personnes âgées,
activités de la vie quotidienne, maladie d’Alzheimer.

ABSTRACT

This work deals with the problem of human activity recognition. It is greatly motivated by research
in video activity understanding applied to the domain of health care monitoring. Research on activity
recognition is receiving an increasing attention from the scientific community today. It is one of the
most challenging problem in computer vision and artificial intelligence domains. The main goal of the
current activity recognition research consists in recognizing and understanding short-term action and
long-term complex activities. In this work, we propose two main contributions. The first contribution
consists of an approach for video activity recognition that addresses the uncertainty management issues
for accurate event detection. The second contribution consists in defining an ontology and a knowledge
base for health care monitoring and in particular Alzheimer monitoring at hospital. The proposed activ-
ity recognition approach combines semantic modelling together with a probabilistic reasoning to cope
with the errors of low-level detectors and to handle activity recognition uncertainty. The probabilistic
recognition of activities is based on Bayesian probability theory which provides a consistent framework
for dealing with uncertain knowledge. The proposed probabilistic constraint verification approach based
on Gaussian probability model enforces the accuracy of the activity recognition algorithm. We work in
close collaboration with clinicians to define an ontology and a knowledge base for Alzheimer monitoring
at hospital. The defined ontology contains several concepts useful for health care. We also define a
number of criteria which could be observed by camera sensors to allow detection of early symptoms of
Alzheimer’s disease. We validate the proposed algorithm on real-world videos. The experimental results
show that the proposed activity recognition algorithm can successfully recognize activities with a high
recognition rate. The obtained results for health care monitoring highlight the advantages of the use of
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the proposed approach as a support platform for clinicians to objectively measure patient performance
and obtain a quantifiable assessment of instrumental activities of daily living and gait analysis.

Keywords: video event recognition, event modeling, uncertainty, Bayesian probability, Gaussian
probability density, cumulative probability, health care monitoring, activities of daily living, Alzheimer
disease.


