-1, we can find that the high perform microprocessors normally consume more energy meanwhile have higher fault rate. Therefore, we prefer to implement the FD & FR Core with lower energy consumption, simpler functionality but higher reliability microcontroller, such as NanoRisc.

HSDTVI Interface

4.4.1.

List of Figures

Figure 1-1 Overview of WSN applications [START_REF] Yick | Wireless sensor network survey[END_REF] Table 3- Wireless Sensor Network (WSN) has attracted more and more attentions from both scientific community and governments around the world in recent years. It is considered as a key technology of the 21 st century and as the foundation of Pervasive computing, Mobile computing, Wearable computing (Body Area Network 'BAN' etc.) and Internet of Things (IoT). WSN is composed of a set of WSN nodes (Wireless Sensor Network nodes) equipped with different types of sensors and linked with each other by wireless access medium. These WSN nodes can collaborate to perform distributed sensing tasks. The advances in Very Large Scale Integration (VLSI) chip designs, wireless network and Micro-Electro-Mechanical Systems (MEMS) enable the development of smarter, smaller, cheaper and low energy consumption WSN nodes powered by battery.

The WSN nodes use battery as power supply source; connect each other through wireless medium and form a network through self-organization methods (RPL). Therefore, WSN can work without preinstalled wire or existent infrastructure. This key feature enable WSN to be easily and cheaply deployed in areas of interest, which normally very difficult or impossible to access such as inaccessible terrains, moving people and animal, disaster places, and so on. The WSN can serve as an interface to the real world and fulfill the gap between real world and information systems. The smart tiny nodes can sense the environment through different type of sensors; gather information such as temperature, humility, distance, speed, pressure, light, pollution, etc.; make local decisions based on the related information; transfer user interested information to the center server; interact remotely with user through wireless link. Some of them even have the capability to act on the environment through actuators such as electro-valve, alarm speaker etc. These special WSN nodes make a special type of WSN: Wireless Sensor and Actuator Network (WSAN). In this dissertation, WSAN will be considered as a subset of WSN without specific distinction.

The wide varieties of user interest to real world make wide range of WSN applications. J. Yick classifies them into two categories: monitoring and tracking in [START_REF] Yick | Wireless sensor network survey[END_REF]. (see Figure 1-1). Monitoring applications include indoor/outdoor environmental monitoring, health and wellness monitoring, power monitoring, inventory location monitoring, factory and process automation, and seismic and structural monitoring. Tracking applications include tracking objects, animals, humans, and vehicles [START_REF] Yick | Wireless sensor network survey[END_REF].

Figure 1-1 Overview of WSN applications [START_REF] Yick | Wireless sensor network survey[END_REF] Nowadays there are many WSN nodes such as BTnodes, l'ESB/2 nodes, SmartTags, EYES node, TinyNode, Mote, Mica2, Tmote Sky, Atlas and Imote [START_REF] Akyildiz | Wireless sensor networks: a survey[END_REF][START_REF] Baronti | Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards[END_REF][START_REF] Basaran | Research Integration: Platform Survey: Critical evaluation of platforms commonly used in embedded wisents research IST-004400[END_REF][START_REF] Yick | Wireless sensor network survey[END_REF] implemented to fulfill the huge amount of applications. Note that, all these WSN nodes are quite similar in term of functionality. They are based on 8 or 16-bit RISC microcontroller, such as Atmel AVR (Atmel-Corporation, 2012b), MSP430 (Texas-Instruments, 2012) etc., equipped with a unique Bluetooth or ZigBee wireless access medium having 200m LOS 'Line Of Sight' range [START_REF] Basaran | Research Integration: Platform Survey: Critical evaluation of platforms commonly used in embedded wisents research IST-004400[END_REF], and enable to implement a simple wireless sensor application. These WSN nodes have been designed with highly resource constraint, so the fault tolerant is not highly considered during the design process.

Notice that in real world applications, WSN nodes will be deployed in open harsh environment. They may suffer different faults such as physical damage, environmental hazards, interference etc. Therefore based on these faulty sensor nodes, researchers have developed many techniques to increase the reliability of the whole network. Redundant use of WSN nodes, reorganization of sensor network, and overlapped sensing regions are few of the techniques employed to increase the fault tolerance or reliability of the network [START_REF] Gao | Online Distributed Fault Detection of Sensor Measurements[END_REF][START_REF] Hsieh | A fault-tolerant scheme for an autonomous local wireless sensor network[END_REF][START_REF] Khan | Application of fuzzy inference systems to detection of faults in wireless sensor networks[END_REF]M.-H. Lee & Choi, 2008;[START_REF] Nakayama | Fault-resilient sensing in wireless sensor networks[END_REF]. This dissertation focuses on developing a reliable WSN from the early stage. We want to develop a more reliable WSN node comparing with the existing one. To achieve this goal, we will introduce a new design process to develop and implement WSN node. The reliability of Very Large Scale Integration (VLSI) is highly improved during recent decades. One of the most important reasons for the success of VLSI technique is that the whole industry makes Design for Testability (DFT) as their industry standard. DFT makes it possible to assure the detection of all faults in a circuit, reduce the cost and time associated with test development, and reduce the execution time of performing test on fabricated chips. As we expect our WSN node to be more reliable, and DFT exactly meets this requirement. Therefore, our motivation is applied the DFT concept to our WSN design process in order to improve its reliability.

Our Multicore Solutions

Figure 1-3 presents the block diagram of a multicore DFT solution for WSN. To transplant the DFT concept to a new WSN node, first we put the center microcontroller, application core, of tradition sensor node as Design under Verification (DUV) module. Then, we add another core to run the Test Bench (TB) module. We name this core as Fault Detect and Fault Recover Core (FD & FR Core). We use separate core to test and validate the application core in order to avoid the intra-system interference.

Application Core

Source Check

Reference Model When faults show up in the application core, which is running the user application software, the FD & FR Core can detect and identify the faults, similarly as TB module do in module/chip validation process, then help the faulty node recover from these faults. The multicore WSN node can tolerate these faults automatically. Because the test and validation process in multicore WSN node is carried out in real-time, so we name this method as Design for Multicore Run Time Testability (DMRTT). Moreover, the application core in DUV module may have a redundancy for further improving reliability as shown in Figure 1 It is known to all that the energy constrain of WSN node is very high. Normal microcontroller is too big in form factor and high in power consumption to be the FD & FR Core. Therefore, we introduce Nano Controller (NC) to be the FD & FR Core. NC is a very small and ultra-low power consumption controller. Because it is very small, so it will not notably affect the cost and complexity of WSN node. Moreover, it is an ultra-low power consumption controller, which consumes only one percent energy of normal microcontroller, so it can help WSN node to be more energy efficient when the application core is switched off. DMRTT and NC together form our multicore architecture, which can greatly improve the reliability and energy efficiency of WSN node without significant increase in cost and complexity.

FD&FR Core

Contributions

The contributions of this dissertation are in the area of fault tolerance, specifically in the field of system design and hardware platform design of fault tolerance WSN. Overall, the main contributions of this dissertation are:

 We first present a novel modular multicore architecture that meets the strict dependability and energy efficiency requirements of wireless sensor networks. The multicore architecture can highly improve the reliability of WSN without sacrificing simplicity.

 Then, we present a design process (High Reliability Design Process dedicated to Resource Constraint Embedded System: HRDP) based on multicore architecture to ease the development of dependable WSN. The HRDP can easily adjust to apply in any resource constrained embedded system to improve the reliability.

 Finally, we demonstrate the flexibility of our multicore architecture on several hardware platforms, E² MWSN, iLive, SIS, iLiveEdge, EPER, RPiER, etc. These hardware platforms already form some WSN in different long-term, battery operated real-world applications. They can meet the application requirements very well.

Dissertation Structure

This dissertation has seven chapters. The remainder of the dissertation is organized as follows:

Chapter 2, General Purpose Dependable System, presents a survey of dependable system. It tries to provide the necessary background for a general understanding of the issue discussed in later chapters.

Chapter 3, Dependable Wireless Sensor Networks, provides a general overview of the dependable WSN. By considering the needs of applications, this chapter describes the shortcomings of traditional wireless architectures and current approaches motivates design choices made later in this dissertation.

Chapter 4, Multicore WSN Node Architecture, presents the overall framework, multicore architecture, to address the dependability of WSN. The designing goal of our multicore architecture is trying our best to improve the reliability of WSN without significant increasing cost and complexity.

Chapter 5, High Reliability Design Process dedicated to Resource Constraint Embedded System, discusses the design process (High Reliability Design Process dedicated to Resource Constraint Embedded System: HRDP) that developers may carry out to make full use of multicore architecture. The HRDP and multicore architecture are both technologies independent, they both can easily adjust to any resource constrained embedded system to improve the reliability.

In Chapter 6, Implementation of Multicore Wireless Sensor Node, we present several hardware platforms, E² MWSN, iLive, SIS, iLiveEdge, EPER, RPiER, etc., and several realworld applications based on these platforms. These hardware platforms will demonstrate the flexibility of our multicore architecture. Additionally the applications will validate the realworld performances of our architecture.

Chapter 7 summarizes the thesis and concludes with a prediction of future technological trends.

Chapter 2. General Purpose Dependable System

The dependability of computer system has been a challenge ever since computers first appeared in the middle of the 20 th century. In those days, computers were built by using unreliable components such as vacuum tubes, relays, and so on. They were expensive, and used mainly by government and big corporations.

Nowadays, computers are built from more reliable components, such as semiconductor components, and other components from more advanced technology. With the ever-increasing circuit density, computers are more reliable and no longer expensive commodities thanks to fault detections and corrections techniques [START_REF] Blundell | Computer Hardware[END_REF]. They becoming an every-day commodity, deeply embedded in practically every aspect of our lives, from visible desktops, laptops, smart phones etc., to invisible vital components of cars, home appliances, medical equipment, aircraft, industrial plants, and power generation and distribution systems.

As we are increasingly dependent on services provided by computer systems and our vulnerability to computer failures is also growing. We would like these systems to be dependable: they should still deliver an acceptable level of service in spite of faults. Notice that how to design a low cost robust embedded system is still a challenge.

In this chapter, we will present a survey of the techniques dedicated to dependable system. These techniques will be the fundamentals of our target fault tolerant wireless senor network.

Introduction

Dependability is defined in (A. [START_REF] Avizienis | Basic concepts and taxonomy of dependable and secure computing. Dependable and Secure Computing[END_REF] as the ability to deliver service that can justifiably be trusted. It also encompasses mechanisms designed to increase and maintain the dependability of a system. Dependability covers the availability performance and its influencing factors: reliability performance, maintainability performance and maintenance support performance (including management of obsolescence). The International Electrotechnical Commission (IEC), via its Technical Committee TC 56 develops and maintains international standards in the field of dependability [START_REF] Iec | Dependability, Reliability, Maintainability, Maintenance support[END_REF].

Before giving more details on different technical methods for improving dependability, we firstly discuss overview of dependability concepts. [START_REF] Avizienis | Fundamental Concepts of Dependability: Research Report[END_REF], it can be broken down into three elements:

Attributes -A way to assess the dependability of a system; Threats -An understanding of the things that can affect the dependability of a system; Means -Ways to increase a system's dependability; Dependability is a generic concept that is led by three groups of fundamental concepts: its attributes, the threats to its attainment and the means to reach the desired dependability goals.

Dependability Attributes

The dependability attributes represent different aspects of the service delivery. They are used to express and analyze the quality of the service delivered or expected from the system. Based on the needs of the user(s), several kinds of attributes can be found, but they are almost compositions or specializations of the following basic ones:  Availability (A(t)): The probability that a system is operating correctly and is available to perform its functions at the instant of time t.

 Reliability (R(t)): The conditional probability that a system has functioned correctly throughout an interval of time, [t 0 , t], given that the system was performing correctly at time t 0 .

 Safety (S(t)): The probability that a system will either perform its functions correctly or will discontinue its functions in a well-defined, safe manner.

 Confidentiality: absence of unauthorized disclosure of information  Integrity: absence of improper system state alterations  Maintainability (M(t)): The probability that an inoperable system will be restored to an operational state within the time t.

Dependability Threats

The threats to dependability are faults, errors and failures. They are the circumstances at the origin of an incorrect service delivery. Their effects deteriorate the level of satisfaction of the dependability attributes.

 Fault: A physical defect, imperfection, or flaw that occurs in hardware or software; A fault is the adjudged or hypothesized cause of an error. A fault is active when it produces an error, otherwise it is dormant  Error: The occurrence of an incorrect value in some unit of information within a system; An error is that part of the system state that may cause a subsequent failure  Failure: a deviation in the expected performance of a system; A failure occurs when an error reaches the service interface and alters the service, i.e., system cannot provide correct system function.

Dependability Means

The development of a dependable computing system calls for the combined utilization of a set of four techniques:  Fault prevention: A technique that an attempts to prevent the occurrence of faults; It is more related to general engineering processes and is handled by quality control techniques employed during design and development of systems.

 Fault tolerance: The ability to continue the correct performance of functions in the present of faults; It is carried out via the implementation of error detection and system recovery mechanisms.

 Fault removal: A technique that deals with how to reduce the number or severity of faults; It can be carried out both during the development phase, and during the use phase of a system. In development phase, it consists of verification, diagnosis and correction. In use phase, it consists in a corrective or a preventive maintenance.

 Fault forecasting: A technique that deals with how to estimate the present number, the future incidence, and the likely consequences of faults. It is conducted by carrying out an evaluation of the system behavior with respect to fault occurrence or activation.

In order to improve the dependability, the combinations of those techniques are strongly recommended. In this dissertation, the architecture of our WSN node is directly support fault tolerance; we will use fault removal in the development phase to help verify each components and whole system; fault prevention is handled thought out all the design process.

Dependability Evaluation Techniques

As Peter Drucker once said: "If you can't measure it, you can't manage it." [START_REF] Brown | Managing behavior on the job[END_REF] If we cannot estimate the dependability of present and the future candidate design, we cannot make good decisions. Therefore, we need use dependability evaluation techniques in design process to help to estimate the dependability of design, and then improve it. A failure rate  is the expected number of failures per unit time. For example, if a processor fails, on average, once every 1000 hours, then it has a failure rate  failures/hour. [START_REF] Dovich | Reliability Statistics[END_REF] [START_REF] Iec | Dependability, Reliability, Maintainability, Maintenance support[END_REF] The failure of a system is

1 N i i     (2.1) While i  is the failure rate of sub system.
From failure rate , we can have Reliability (R(t)):

() t R t e    (2.2)
The common used unit of failure rate is FIT (Failures in Time Failure Rate in Parts per Billion Hours). One FIT equals one failure per billion (10 9) hours (once in about 114,155 years). The FIT is especially good for the failure rate of individual components, since their failure rates are often very low. [START_REF] Dubrova | Fault-Tolerant Design[END_REF] As shown in Figure 2-2, hardware failures rate can typically characterize by a bathtub curve. The chance of a hardware failure is high during the initial life of the module (Phase I). The failure rate during the rated useful life (Phase II) of the product is low. Once the end of the life (Phase III) is reached, failure rate of modules increases again.

Software failures rate, however, does not show the same characteristics similar as hardware. A possible curve is shown in Figure 2-3 if we projected software failures rate on the same axes (Reliability Analysis Center, 1996). There are two major differences between hardware and software curves. One difference is that in the last phase (Phase III), software does not have an increasing failure rate as hardware does. In this phase, software is approaching obsolescence; there is no motivation for any upgrades or changes to the software. Therefore, the failure rate will not change. The second difference is that in the useful-life phase (Phase II), software will experience a drastic increase in failure rate each time an upgrade is made. The failure rate levels off gradually, partly because of the defects found and fixed after the upgrades.

2.2.1.2.

Mean time to failure Another important and frequently used measure of interest is mean time to failure defined as follows. The mean time to failure (MTTF) of a system is the expected time of the occurrence of the first system failure [START_REF] Dubrova | Fault-Tolerant Design[END_REF].

() MTTF R t dt    (2.3) 0 0 11 [] tt MTTF e dt e            (2.4) 2.2.1.3.
Mean time to repair

The mean time to repair (MTTR) of a system is the average time required to repair the system. MTTR is commonly specified in terms of the repair rate μ, which is the expected number of repairs per unit time [START_REF] Dubrova | Fault-Tolerant Design[END_REF]:

1 MTTR   (2.5)
From the definition of MTTF and MTTR, we can have Availability:

100% MTTF MTTF Availability MTTR   (2.6) 2.2.1.4.

Mean time between failures

The mean time between failures (MTBF) of a system is the average time between failures of the system. The MTBF should be used as part of a model that assumes the failed system will be repaired immediately (zero elapsed time) as opposed to mean time to failure (MTTF), which measures average time between failures of non-repairable systems only. However, in practice, MTBF is commonly used for both types of systems, repairable and non-repairable (Reliability Information Analysis Center, 2005;Zzyzx Peripherals, 2001).

MTBF is a measure of how reliable a hardware product or component is. It describes the flat, bottom of the bathtub curve of failure rate. MTBF is equal to the inverse of failure rate.

1 MTBF   (2.7)
Note that many products with very low failure rates during "normal life" will wear out in a few years, so that the Lifetime may be much less than MTBF. The Figure 2-4 shows the relationship between MTBF and Lifetime. Unlike the hours from the MTBF calculations, lifetime indicates the operating hours expected under normal operating conditions. The lifetime is the period of time between starting to use the device and the beginning of the wear-out phase. This period of time is determined by the life expectancy of the components used in the assembly of the unit. As with any design, the weakest component with the shortest life expectancy determines what the life of the whole product will be. For example in power supplies, the electrolytic capacitors have the shortest lifetime expectancy.

So the lifetime is determined by the weakest component, so the redundancy cannot help to improve the lifetime. Meanwhile the MTBF can be highly affected by the architecture (redundancy e.g.). In case of Dual Modular Redundant (DMR) system with same component, each component has MTBF1000 hours, the MTBF of the DMR system is 1,000,000 hours. While in case of Triple Modular Redundant (TMR) system with same each component has MTBF1000 hours, the MTBF of the TMR system will increase to 1,000,000,000 hours.

Mean time between critical failures

The mean time between critical failures (MTBCF) of a system is the average time between critical failures of the system. MTBCF is a subset of MTBF because it only counts those failures that result in a mission abort or mission failure. The reliability analyst needs to be able to distinguish between those failures that are critical to the mission versus those that are not (failures that are not critical to the mission will still need to be fixed and counted as part of the MTBF calculation)(Reliability Information Analysis Center, 2005).

Summary

In this dissertation, we mainly use MTBF and MTBCF to evaluation the dependability of different WSN architecture. Therefore, we focus on the core and necessary external components, the rest components such as PCB board, connectors, sensors, batteries, RF antenna, etc. are not taken into account.

Dependability model types

There are mainly two common dependability models: reliability block diagrams and Markov processes. Reliability block diagrams belong to a class of combinatorial models, which assume that the failures of the individual components are mutually independent. Markov processes belong to a class of stochastic processes, which take the dependencies between the component failures into account, making the analysis of more complex scenarios possible.

Combinatorial reliability models include reliability block diagrams, fault trees, success trees and reliability graphs. First, reliability block diagrams assume that the system components are limited to the operational and failed states and that the system configuration does not change during the mission. Hence, they cannot model standby components, repair, as well as complex fault detection and recovery mechanisms. Second, the failures of the individual components are assumed to be independent. Therefore, the case when the sequence of component failures affects system reliability cannot be adequately represented (Reliability Analysis Center, 1996).

Contrary to combinatorial models, Markov processes take into account the interactions of component failures making the analysis of complex scenarios possible.

The WSN node is only a tiny design, so in this dissertation, we chose reliability block diagrams as the dependability models of our design.

Dependability computation methods

The computation methods of dependability are based on the model of dependability. Therefore, in this dissertation, we mainly discuss the computation methods based on Reliability block diagrams. Reliability block diagrams can be used to compute system reliability as well as system availability.

Reliability computation

To compute the reliability of a system represented by a reliability block diagram, we need first to break the system down into its serial and parallel parts. Next, the reliabilities of these parts are computed. Finally, the overall solution is composed from the reliabilities of the parts.

Given a system consisting of n components with () i Rt being the reliability of the i th component. If the n components are serial parts, the reliability of the overall system is given by [START_REF] Dubrova | Fault-Tolerant Design[END_REF] () ()

n serial i i R t R t  (2.8)
Else, if the n components are parallel parts, the reliability of the overall system is given by [START_REF] Dubrova | Fault-Tolerant Design[END_REF]

() 1 (1 ()) n parallel i i R t R t     (2.9)
For example, if a serial system with 100 components is to be built, and each of the components has a reliability 0.+ 999, the overall system reliability is 0.905.

In case of parallel system having 5 components, each component has a reliability 0.96, the reliability of the system is 0.999999.

Availability computation

If we assume that the failure and repair times are independent, then we can use reliability block diagrams to compute the system availability. This situation occurs when the system has enough spare resources to repair all the failed components simultaneously. Given a system consisting of n components with A i (t) being the availability of the i th component, the availability if the overall system is given by [START_REF] Dubrova | Fault-Tolerant Design[END_REF] () ()

n serial i i A t A t  (2.10) () 1 (1 ()) n parallel i i A t A t     (2.11)

Fault Tolerance and Redundancy

As be mentioned before, in order to improve the dependability, the combinations of different dependable means should be used in the development of WSN nodes. Beyond fault removal in the development phase and fault prevention in all the design process, the ability of fault tolerance of whole design should be most important feature. It is practically impossible to foresee all the factors and run the system in a perfect environment. So the system is requested to continue the correct performance of functions in the present of faults, support fault-tolerance. Therefore, in this part, we will intro various redundancy approaches to achieve fault-tolerance.

Redundancy is the provision of functional capabilities that would be unnecessary in a fault-free environment. There are mainly two kinds of redundancy: space and time. Space redundancy provides additional components, functions, or data items that are unnecessary for a fault-free operation. Space redundancy is further classified into hardware, software and information redundancy, depending on the type of redundant resources added to the system. In time redundancy, the computation or data transmission is repeated and the result is compared to a stored copy of the previous result [START_REF] Dubrova | Fault-Tolerant Design[END_REF].

2.3.1.

Space Redundancy 2.3.1.1.

Hardware Redundancy

Hardware redundancy is achieved by providing two or more physical instances of a hardware component. For example, a system can include redundant processors, memories, buses or power supplies. Hardware redundancy is often the only available method for improving the dependability of a system, when other techniques, such as better components, design simplification, manufacturing quality control, software debugging, have been exhausted or shown to be more costly than redundancy.

There are three basic forms of hardware redundancy: passive, active and hybrid [START_REF] Dubrova | Fault-Tolerant Design[END_REF].

Passive redundancy achieves fault tolerance by masking the faults that occur without requiring any action on the part of the system or an operator.

Active redundancy requires a fault to be detected before it can be tolerated. After the detection of the fault, the actions of location, containment and recovery are performed to remove the faulty component from the system.

Hybrid redundancy combines passive and active approaches. It can mask the fault like in passive redundancy and reconfigure to recovery like in active redundancy. It is more reliable but more expensive than previous methods.

Software Redundancy

Reliability in software domain is still an open issue; it is not as well understood as faulttolerance in hardware domain. There are controversial opinions on whether reliability can be used to evaluate software. Software failures are mostly due to the activation of design faults by specific input sequences. This makes the reliability of a software module dependent on the environment that generates input to the module over the time.

Many current techniques for software fault tolerance are trying to follow the same schemes of hardware redundancy. They can be divided into two groups, single-version techniques and multi-version techniques [START_REF] Dubrova | Fault-Tolerant Design[END_REF].

Single version techniques aim to improve fault-tolerant capabilities of a single software module. It consists of fault detection, containment and recovery mechanisms. The recovery processes use the concept of retrying the same operation in expectation that the problem is resolved after the second try.

Multi-version techniques employ redundant software modules, developed following design diversity rules. The software N-version programming closely resembles hardware Nmodular redundancy.

Information Redundancy

Information redundancy techniques add extra information to date to tolerate faults. They can be divided into two types: error detecting codes and error correcting codes (Wikipedia, 2013).

Error detection is the detection of errors caused by noise or other impairments during transmission from the transmitter to the receiver. Error detecting code is most commonly realized using a suitable hash function (or checksum algorithm). A hash function adds a fixedlength tag to a message, which enables receivers to verify the delivered message by recomputing the tag and comparing it with the one provided.

Error correction is the detection of errors and reconstruction of the original, error-free data. An error-correcting code (ECC) or forward error correction (FEC) code is a system of adding redundant data, or parity data, to a message, such that it can be recovered by a receiver even when a number of errors (up to the capability of the code being used) were introduced, either during the process of transmission, or on storage.

Time Redundancy

Space redundancy techniques discussed so far impact physical entities like cost, weight, size, power consumption, etc. In some applications, extra time is of less importance than extra hardware, and then time redundancy will be a better solution. Time redundancy is achieved by repeating the computation or data transmission and comparing the result to a stored copy of the previous result. If the repetition is done twice, and if the fault, which has occurred, is transient, then the stored copy will differ from the re-computed result, so the fault will be detected. If the repetition is done three or more times a fault can be corrected. Permanent faults can also be detected by repeating computation several times using different coding schemes.

Apart from detection and correction of faults, time redundancy is useful for distinguishing between transient and permanent faults. If the fault disappears after the recomputation, it is assumed to be transient. In this case, the hardware module is still usable and it would be a waste of resources to switch it off the operation. Otherwise, if the fault is permanent, the system of course should switch off or go to a safety state to avoid affect the rest parts of other system.

MTBF Values Evaluation

The MTBF value of COST component (microcontroller e.g.) is calculated from failure rate , which normally provided by manufacturer. The manufacturer (Atmel (Atmel-Corporation, 2012c) e.g.) provides the FIT data of component under optimal conditions and only related to hardware. According to Blue Max Technology, "Stressing a component beyond normal usage conditions may reduce the actual MTBF to a point below the 'predicted MTBF'. Generally, reliability decreases as temperature increases, so components that are operated in warm environments with poor air flow will tend to have a lower MTBF than those operated in cool environments with good air flow." According to Military & Aerospace Technology, "For every 10ºC you increase temperatures on electronics, your MTBF will be cut in half, so the hotter the electronics get, the lower the MTBF." The temperature and the humility are not only part of the parameters, which will affect the reliability of our design. The reliability of system will also be affected by other parameters such as interference, metastability, high-energy particles, software bug, misuse of the hardware and SRAM transition fault [START_REF] Autran | Soft-Error Rate of Advanced SRAM Memories: Modeling and Monte Carlo Simulation[END_REF]. That is why the real experience of error free period is always much shorter than the theoretical MTBF provided by the manufacturer.

For example, the MTBF of a standard PC is 30,000 hours or 3.4 years (Minicom Advanced Systems Ltd., 2013). The MTBF estimates for the Intel® Server System is about 50,000 hours (Intel Corporation, 2013a). The Figure 23456shows the MTBF Estimates of sub and total system of Intel® Server System R1208RPMSHOR. From the Figure 23456, we can find that the most robust sub system of Intel® Server System R1208RPMSHOR is Front Panel board. Its MTBF is 8,272,282 hours, 944 years. The server board S1200V3RPM's MTBF is 371,523 hours, 42 years. As mentioned in Figure 234, the MTBF/MTBCF is related to the failure rate (bottom of the bathtub curve) of the system, not the product lifetime. Therefore, we cannot say that Front Panel board can work for 944 years or server board S1200V3RPM can work for 42 years. Of course, from our own experience, we can easy to find out that server (with high MTBF) is normally more reliable than the PC (with low MTBF) and demands less reboot requirements. The MTBF trend is concurrent with our user experience.

Warranty firm Square Trade has released a research paper analyzing the failure rate for 30,000 laptops comparing brands and hardware categories in 2009 [START_REF] Squaretrade | Who makes the most reliable laptops? Retrieved 2013[END_REF]. The headline news of the report is that over three years, one out of three laptops will fail, and that Asus and Toshiba laptops have the lowest failure rates, while Acer, Gateway, and HP have higher than average failure rates. Additionally, two-thirds of those problems are hardware malfunctions, while the final third are classified as accidental damage. The Figure 2 From the Figure 2-7 and the Figure 2-8, we can know that the raw MTBF is concurrent with the malfunction rates of design in product life. However, everyone has the experience to reboot PC from time to time to fix some unknown problems. Those unknown problems make the one-time useable period of PC much short than the raw MTBF. The laptops normally work indoor with user-friendly interface for user to detect the running status and manually reboot to recovery from fault. This manually fault detection and recovery mechanical enable PC resume to work until it suffer malfunction.

Meanwhile, the WSN node is working in the outdoor environment, so even its raw MTBF is relative high, and the node will not suffer malfunction in short period, but without recovery mechanical, the one-time usable period will much shorter than the raw MTBF. In our experiments, the unicore WSN network will lose 20% of its nodes in only two-week time. Therefore, we proposed to use multicore architecture to enable to implement a WSN node, which supports fault auto detection and auto recovery. By using this new multicore WSN architecture, we want to improve greatly the usable period of WSN node. Furthermore, in some of multicore WSN instances, by adopted space redundancy, we will improve both the one-time usable period and the raw MTBF of WSN node at the same time.

RAS of Computer System

Reliability, availability, and serviceability (RAS) was originally introduced by IBM as a term to describe the robustness of their mainframe computers (International Business Machines Corporation, 1970). Different operational states of a IBM server based on RAS concepts are illustrated by the Figure 2-9 (IBM Corp, 2012). This combination of hardware and software self-recovery techniques are part of advanced RAS features that increase the availability of services that must be 24x7. For years, RAS already became a standard engineering term in computer system, especially in computer system of mission-critical applications such as database, enterprise resource planning (ERP), customer resource management (CRM), and business intelligence (BI) applications. These applications require being available 24x7 on a wide area or global basis. A failure affecting a single core business application can easily cost hundreds of thousands to millions of dollars per hour. In order to improve RAS, many approaches are adopted in different aspect of computer system. The IBM RAS server architecture is illustrated by the The RAS architecture is symmetric space (processor, system bus, memory, devices and storage) and time redundancy (system recovery). The RAS concept used to implement very expensive IBM and HP servers are not energy efficient. Due to the resource constraint, these approaches cannot directly use in WSN nodes. Thus, RAS concept cannot be applied to implement energy efficient multicore, modular WSN node.

Summary

In this chapter, we discussed the dependability concepts, dependability evaluation techniques, dependability terms, dependability model types, dependability computation methods, various redundancy approaches to achieve fault-tolerance, etc. Notice that, how to quantify the dependability of a real world system (HW and SW) is still an open question? The MTBF provided by the VLSI chip manufacturer is a quality indicator but it does not reflect the real world system MTBF.

In fact, a fault is a defect in hardware or software component. A manifestation of a fault, resulting in deviation from accuracy and faults may cause errors. A failure is a nonperformance of expected action and errors may cause failures.

There are three types of fault: permanent, intermittent and transient. Intermittent faults occur because of unstable or marginal hardware due to environmental changes (loose connections, aging components, critical timing, interconnect coupling, resistive or capacitive variations and noise in the system). Transient faults occur because of high energy particles, temperature, humidity, pressure, voltage, power supply, vibrations, fluctuations, electromagnetic interference, ground loops, cosmic rays, alpha particles, cross talk, and electrostatic discharge. The error causes by non-permanent fault is a Soft Error 'SE'. Permanent faults reflect irreversible physical changes. The improvement of semiconductor design and manufacturing techniques has significantly decreased the rate of occurrence of permanent faults (A. C. S. [START_REF] Beck | Adaptable Embedded Systems[END_REF].

Intermittent and transient faults are expected to represent the main source of errors experiences by VLSI circuits. Failure avoidance, based on design technologies and process technologies would not fully control intermittent and transient faults.

Fault tolerant solutions, presently employed in custom design systems will become widely used in off-the-shelf ICs [START_REF] Stojčev | The Limits of Semiconductor Technology and Oncoming Challenges in Computer Microarchitectures and Architectures[END_REF]. For the WSN outdoor application (harsh environment), there are many soft errors. Consequently for the wide spread use of outdoor WSN robustness is a main key feature.

In order to improve the dependability of our system, the following parts of this dissertation will mainly detail on fault tolerance architecture based on active redundancy, fault removal and fault prevention is the design process.

Chapter 3. Dependability of Wireless Sensor Networks Unlike general-purpose computing systems, WSN nodes are not easily accessible for inspection and maintenance. At the same time, the nodes have far more stringent uptime requirements than general-purpose systems; 24/7/365 uptime is usually necessary. Moreover, WSN node has high resource constraint (limited power supply, memory and CPU) and some WSN nodes are working in mission critical applications. Therefore, these real world requirements demand a great deal of research in fault tolerance and dependable wireless sensor network. The following sections will discuss different WSN nodes, WSN application, dependability threats and current approaches. The shortages of current approaches motivate the need of multicore architecture presented in this dissertation.

Wireless Sensor Networks

Introduction

Wireless Sensor Network 'WSN' is an active research field, which explores many technological challenges, while the WSN node design is one of the most challenging areas. The main constraints of WSN are resource and energy consumption. Consequently, the traditional embedded hardware and software solutions cannot be applied to WSN. For example, the Intel Itanium (9100 series features clock speed of up to 1.66 GHz and 667 MHz Front Side Bus (Intel Corporation, 2008)) consumes 104W. However, the energy content of a pair of alkaline AA 1.5V 2000mAh batteries is only 21.6kJ (2 * 1.5 * 2000 * 10 -3 * 3600 = 2.16 *10 4 J). The power consumption of the WSN node is application dependent. It is relied on the sensor type, sample frequency, duty-cycling system, sleeping period, wireless access media, and so on. However, in order to achieve 5-years lifetime with a pair of alkaline batteries, the average power consumption must less than 137µW (2.16 *10 4 /3600/24/365/5 = 1.37*10 -4 W). Furthermore, if takes into account discharge curve of the battery voltage, the average power consumption should be even less. Thus, a WSN node should fulfill a task as a PC but consume 1 million times less energy.

A wireless sensor network is composed of a set of WSN nodes deployed in a field of interest to monitor specific phenomena. The WSN nodes can be equipped with a variety of sensors, such as air temperature sensor, air humility sensor, light sensor, soil temperature sensor and soil moisture sensor. These WSN nodes sense specific environment phenomena, perform simple signal processing, and then send data to a central server through sink node.

WSNs can be used for a wide variety of applications dealing with monitoring (precision agriculture, environment data collection, etc.), control (disturbed sensing and controlling), and surveillance (smart care, battle-fields surveillance, etc.).

The following part will briefly introduce currently existed WSN nodes and WSN Applications.

WSN Nodes

Recent advances in Very Large Scale Integration (VLSI) chip designs, wireless network and Micro-Electro-Mechanical Systems (MEMS) have led to the development of low-cost, low-power, and small size WSN nodes. Different institutes or companies have developed various kinds of WSN nodes. An exhaustive survey on WSN hardware has been done by Tatiana Bokareva [START_REF] Bokareva | Mini Hardware Survey[END_REF]. The information on various sensors, WSN nodes, processor, radio chipsets, sensor network operating system, protocols is available at Sensor Network Museum (TIK WSN Research Group, 2013). Here we briefly introduce two types of WSN nodes: Scalar WSN nodes and Multimedia WSN nodes.

Scalar WSN Nodes

The common available Scalar WSN nodes include:

 MICAz

The processor board of MICAz is MPR2400, which is based on Atmel ATmega128L. The MICAz (MPR2400) IEEE 802.15.4 radio (ZigBee compliant) offers both high speed (250 kbps) and hardware network security (AES-128). Direct sequence spread spectrum radio provides resistance to RF interference and data security.

 MICA2

The processor and radio board used in MICA2 is MPR400, which is based on Atmel ATmega128L. The radio uses 868/916 MHz frequency band and supports data rate of 38.4kbps. A variety of sensors and data acquisition boards for the MICA2 mote is available which can be connected to the standard 51 pins expansion connector. Apart from its basic function as WSN node, it can also function as a base station when interfaced with MIB 510/MIB 520. The MIB510/MIB520 provides a serial/USB interface for both programming and data communications. Theoretically, it supports 150 meter of outdoor range for line of sight communication (1/4 wave dipole antenna). 3-1 provides the detail features of these common available scalar WSN nodes. From Table 3-1 we can find that those scalar WSN nodes have similar structure. They all belong to single core node, which has only one microcontroller with small memory and small computation resource. From the SRAM and Flash size and the clock speed of microcontroller, we can understand more about the real meaning of high resource constrain.

Chapter 3. Dependability of Wireless Sensor Networks

2 × AA 2 × AA 2 × AA 2 × AA 2 × AA External power 2.7 V-3.3 V 2.7 V-3.3 V 2.7 V-3.3 V 2.7 V-3.3 V 2.7 V-3.3 V Power Consumption Active (mW) 24 (3 V) 24 (3 V) 10 (3 V) 24 (3 V) 24 (3

3.1.2.2.

Wireless Multimedia Sensor Network 'WMSN' Node

In fact, the requirements of diverse environmental data collection applications (precision agriculture e.g.) become more complex. The scalar WSN cannot fulfill all the application requirements such as insect and plant disease detections. Thanks to the advanced of low cost CCD camera, a scalar WSN node may be equipped with a camera to implement low cost WMSN node. Due to the richness of the data generated by images and the advance image processing techniques, insect and plant disease detections may be achieved. Nowadays different academic and commercial WMSN nodes are available: MeshEye, WiCa, MicrelEye, Cyclops, CITRIC, Stargate, CMUcam3, IMote2, eCAM, FireFly Mosaic. These WMSN nodes can be classified into two types: Low performance WMSN node and Medium performance WMSN node.

Low performance WMSN node

Low performance WMSN nodes, such as MeshEye, WiCa, MicrelEye, Cyclops, CMUcam3, eCAM and FireFly Mosaic, are all based on low performance microprocessor (CPU clock frequency < 100 MHz), low bandwidth wireless access medium and simple operating system. Table 3-2 provides key features of all the low performance WMSN nodes mentioned before. From Table 3-2 we can find that most of these low performance WMSN nodes are also based on one single microcontroller. Even WiCa has two cores, it still lack the mutual real time checking and validation between cores.

Medium performance WMSN node

Medium performance WMSN nodes, such as CITRIC, Stargate and IMote2, have more powerful microprocessor. Their CPU clock frequency can be higher than 400 MHz. They have enough memory resource to run an embedded Linux operating system. Table 3-3 provides key features of medium performance WMSN nodes. Note that most of the current WMSN is based on low bandwidth wireless access medium (IEEE802.15.4), except the MEMSIC Stargate system may be equipped with multiple wireless communication transceivers. The MEMSIC Stargate boards can have an operational IEEE802.11 card along with an interfaced MICAz mote that follows the IEEE802.15.4 standard.

The number of channels, power restrictions, and channel structure are different in IEEE802.11 and IEEE802.15.4. User must choose which of the several available transceiver designs and communication protocol standards may be used to optimize the energy saving and the quality of the resulting communication.

From Table 3-3 we can find that all the media performance WMSN nodes are still based on one microcontroller. No other core in those nodes can help to make mutual real time checking and validation between cores.

WSN Applications

WSN is an emergent and multidisciplinary science, which is very active and competitive research field. WSNs have unlimited potential applications (air, underground and underwater): environmental data collection, smart home, smart care etc. WSN is considered as a key technology of the 21 st century and as the foundation of Pervasive computing, Mobile computing, Wearable computing (Body Area Network 'BAN' etc.) and Internet of Things 'IoT'. In fact, in spite of its short research history, WSN will change the service modes in the fields of remote surveillance, control and assistance, and thus bring huge impacts on the economic and social benefits. Here, we discuss some several particular kinds of applications.

Precision Agriculture

As projected in a report by United Nations, the population of the world will increase to above 9 billion in the middle of the century, and will instead keep growing and may hit 10.1 billion by the year 2100 (United Nations, 2013). Due to the increased demand of food, people are trying to put extra efforts and special techniques to increase the food production by preserving environment. Precision agriculture, which is a farming management concept based on observing and responding to intra-field variations, is one of such efforts.

Precision agriculture is about whole farm management with the goal of optimizing returns on inputs while preserving resources. Precision agriculture aims to optimize field-level management with regard to:  Crop science: by matching farming practices more closely to crop needs (e.g. fertilizer inputs);

 Environmental protection: by reducing environmental risks and footprint of farming (e.g. limiting leaching of nitrogen);

 Economics: by boosting competitiveness through more efficient practices (e.g. improved management of fertilizer usage and other inputs).

Precision agriculture also provides farmers with a wealth of information to:

 build up a record of their farm;

 improve decision-making; Above requirements entail parallel and distributed application and processing. In addition, wireless sensors and actuators are required to collect the requisite information and to react on different situations. Decision support imposes the requirement to have processed information rather than raw sensor data.

To cope-up with such requirements, wireless sensors, actuators and their networks present themselves as a strong candidate for development of system for context acquisition, presenting acquired data to remote decision support systems and thus providing a controlled environment based on decision [START_REF] Baggio | Wireless sensor networks in precision agriculture[END_REF][START_REF] Kaemarungsi | Development and Deployment of ZigBee Wireless Sensor Networks for Precision Agriculture in Sugarcane Field[END_REF][START_REF] Keshtgari | [END_REF][START_REF] Medrano | Wireless sensors for agricultural applications[END_REF][START_REF] Sutar | Irrigation and Fertilizer control for Precision Agriculture using WSN: Energy Efficient Approach[END_REF].

Smart Parking

Parking is a universal problem in most metropolitan areas that already suffers from heavy traffic congestion and air quality degradation. Limited parking space and the lack of information on parking availability make the parking search time unreasonably long. This undesirable parking search traffic leads to additional congestion, air pollution and driver frustration. Increasing parking space is discouraged by the limited land space and its high cost in urban area. Therefore, Parking Guidance and Information System (PGIS) is introduced to minimize the parking search traffic [START_REF] Teodorović | Intelligent parking systems[END_REF]).

In the PGIS, low-cost WSN nodes can be deployed into each parking slot to detect the state of the parking slot. Beyond the free parking state, the WSN node can also collect other information such as air pollution, environmental noise, etc. All the data will send to center server through Edge Router. The real-time free parking slot maps can ease the citizens parking their cars. The environmental information can great help to build a smart parking place with better air condition. Furthermore, all the data can be stored for further study.

Smart Irrigation

The key resources for plant growing are water, soil, air, sunlight and temperature. In many planting scenarios, water is indispensably controllable resource and it has a very important impact on eco-environment. A suitable irrigation schedule improves plant growing and minimizes resource consumption, while an over-irrigation induces the over-fertilizer and over-pesticide that result in polluting groundwater. However, an existing problem for many farmers (especially for those in third world) is a lack of correct knowledge and tools to practice the suitable irrigation schedule. Thus, a new irrigation technology needs to be developed, and it needs to be reliable, adaptable, low-price and easy-to-used. Moreover, water is an increasingly scarce resource because of climatic, polluted and politicized reasons. To have a better irrigation technology that maximizes watering efficiency will be increasingly important for many countries to achieve both environmental and economic sustainability.

Smart Care

The medical device in smart care can be divided into two types: wearable and implanted. Wearable devices are used on the body surface of a human or just at close proximity of the user. The implantable medical devices are those that are inserted inside human body. There are many applications for different type of smart care, e.g. body position measurement and location of the person, overall monitoring of elderly people and ill patients in hospitals and at homes.

The wireless medical devices can provide real-time, long-term, remote monitoring for elderly people and ill patients. Due to the small smart and wearable device, they can provide similar safeguard as existing medical practices and technology with minimum distribution. Therefore, WSN architecture for smart care can greatly help to improve the everyday life quality of elderly people and ill patients.

Industrial Control

Traditionally, applications in industrial environments are based on wired communication solutions. However, recently, the industry has shown interest in moving part of the communication infrastructure from a wired to a wireless environment, in order to reduce costs related with installation, maintenance and scalability of the applications. In this context, WSN actually represent the best candidate to be adopted as the communication solution for the last mile connection in process monitoring and control applications in industrial environments. Among many advantages, the absence of a wired infrastructure enables WSN to extract information in a simpler way than traditional monitoring and instrumentation techniques [START_REF] Desai | Wireless Sensor Networks: Technology Roadmap[END_REF][START_REF] Peng | Reliable Application of Wireless Sensor Networks in Industrial Process Control[END_REF]. (IETF, 2012) and HTTP, the interoperability of WSN nodes over internet is solved. The 6LoWPAN/IPv6 allows native connectivity between WSN and Internet, enabling smart objects to participate to the Internet of Things (IoT). The evolution of IoT -the next huge opportunity -which will both attempt to connect these existing systems and then augment that by connecting more things, thanks to wireless sensor networks (WSN) and other technologies.

The Web of Things (WoT) is a vision inspired from the Internet of Things where everyday devices and objects, i.e. objects that contain an embedded device or computer, are connected by fully integrating them to the Web. Unlike in the many systems that exist for the Internet of Things, the Web of Things is about re-using the Web standards to connect the quickly expanding eco-system of embedded devices built into everyday smart objects. Wellaccepted and understood standards and blueprints (such as URI, HTTP, REST, Atom, etc.) are used to access the functionality of the smart objects. These ensure the loose-coupling of services provided by the smart objects, furthermore they offer a uniform interface to access and build on the functionality of smart objects.

Summary

In this section, we discussed several kinds of WSN applications in different field. WSNs have unlimited potential (huge applications: air, underground and underwater). WSNs will be the next IT revolution. However, one of the main obstacles on the way of WSN spreading is dependable. The next part will discuss some dependable challenges in designing of WSN.

Major Dependable Challenges

Here we discuss several challenges we will meet in the process of designing a robust WSN.

Application Requirement

Many WSN applications, such as smart care, industrial control, smart irrigation etc., have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Moreover, WSN nodes need to work in harsh environments twenty-four hours per day, seven days per week. Therefore, these real world requirements demand a great deal of requirement on dependability.

Dependability Threats

These are many threats can affect the dependability of real world WSN application. These threats can be divided into two main classes:

 transient faults implicate that the sensor recovers its normal behavior when e.g., the system is reset or the fault stimulus ceases,  permanent faults inflect defects that have a permanently effect.

Here we introduce several threats to the dependability of the overall real world system.  Direct sunlight that swamps the sensor infrared signal  High-energy particle that corrupts the memory (SRAM) of WSN node  Software bugs, memory leaks, memory corruptions and pointer-initiated memory violation



Resource Constraint

The WSN nodes forming a network suffer from the limitations of several resources, such as storage, CPU, bandwidth, communication, sensing, and battery power (or energy). In particular, energy is the most crucial resource as it determines the lifetime of the sensors and hence the lifetime of the entire network. Energy poses a serious problem for designers, because in the real world deployment, it is very difficult some application may impossible to access the sensors and recharge or renew their batteries. Furthermore, when the energy of the sensors decreases to a certain threshold, they become unreliable (or faulty). They may not be able to function properly. Consequently, the behavior of those faulty sensors will have a major impact on the network performance. Thus, network protocols and algorithms designed to be run by the sensors should be as energy efficient as possible to extend their lifetime and hence prolong the network lifetime while guaranteeing good performance overall.

Current Dependable Approaches

Current Approaches

Current dependable approaches for WSN are based on faulty sensor nodes. Due to the resource constraint, traditional dependable approaches such as processor instruction error detection [START_REF] Lipetz | Self Checking in Current Floating-Point Units[END_REF], processor instruction retry [START_REF] Spainhower | IBM S/390 parallel enterprise server G5 fault tolerance: a historical perspective[END_REF][START_REF] Bostian | Intel® Instruction Replay Technology Detects and Corrects Errors[END_REF], ECC protection memory [START_REF] Dell | A white paper on the benefits of chipkill-correct ECC for PC server main memory[END_REF] Therefore, currently dependable approaches mainly focus on improving the reliability of the whole network. Their goals are trying to carry on the overall task of the network even some WSN nodes are in fault status. These fault tolerant techniques are based on the spatial redundancy [START_REF] Gao | Online Distributed Fault Detection of Sensor Measurements[END_REF][START_REF] Hsieh | A fault-tolerant scheme for an autonomous local wireless sensor network[END_REF] or spatial and time redundancy [START_REF] Khan | Application of fuzzy inference systems to detection of faults in wireless sensor networks[END_REF] M.-H. [START_REF] Lee | Fault detection of wireless sensor networks[END_REF] of WSN network. They are implemented on MAC Layer (W. L. [START_REF] Lee | FlexiMAC: A flexible TDMA-based MAC protocol for fault-tolerant and energy-efficient wireless sensor networks[END_REF], transport layer [START_REF] Jones | Transport protocols for wireless sensor networks: State-of-the-art and future directions[END_REF][START_REF] Sankarasubramaniam | ESRT: event-tosink reliable transport in wireless sensor networks[END_REF], routing protocol [START_REF] Akkaya | A survey on routing protocols for wireless sensor networks[END_REF][START_REF] Al-Karaki | Routing techniques in wireless sensor networks: a survey[END_REF]) and middleware [START_REF] Yan | Design and Implementation of Testing Platform for Middleware of Wireless Sensor Networks Advances in Wireless Sensor Networks[END_REF].

In all those approaches, the WSN nodes are still based on only one core, and they are not reliable. This dissertation focuses on developing a more reliable WSN node by introducing multicore architecture to improve the reliability of every single node. Through this mechanical, the reliability of whole network is also involuntary improved.

TMS570 Safety MCU

The TMS570 devices are the industry's first Cortex™ ARM® R4 and Cortex™ ARM M3 based MCUs, targeting safety critical and driver assistance automotive applications. TI offers TMS570 with a patent pending implementation of the lock-step Cortex ARM R4 cores on a single device as well as dual core offerings of Cortex ARM R4 plus Cortex ARM M3 on a single device. The TMS570 multi-core devices offer performance, safety and rich peripheral MCU integration such as timers, ADC, CAN, and FlexRay™ (Texas Instruments Incorporated., 2013).

The Hercules™ TMS570 Safety MCU family enables customers to easily develop safetycritical products for transportation applications.

Developed to meet the requirements of ISO 26262 ASIL D and IEC 61508 SIL 3 safety standards and qualified to the AEC-Q100 automotive specification this ARM® Cortex™-R4 based family offers several options of performance, memory and connectivity. Dual core lockstep CPU architecture, hardware BIST, MPU, ECC and on-chip clock and voltage monitoring are some of the key functional safety features available to meet the needs of automotive, railway and aerospace applications. However, the TMS570 is design for safety critical application, but the power consumption is not optimal enough. Therefore, the TMS570 is not the best microcontroller for WSN node.

Observations of Real World WSN Deployments

As far as we know, the single core WSN node in real world deployments is not reliable. About 10% to 20% of nodes fail to join the network in first week. We met this type of problem in our Hydrasol project and Single Core Module (SCM) deployment. Our collaboration partner in Irstea also informed us similar result on the deployment of Libellium WSN node. The WSN deployment on Great Duck Island by UC Berkeley also suffered about 50% node failure within 4 days [START_REF] Polastre | Analysis of wireless sensor networks for habitat monitoring[END_REF]. The SensLAB project (SensLAB team, 2013) also suffered this type of fault in SensLAB testbed. [START_REF] Kaemarungsi | Development and Deployment of ZigBee Wireless Sensor Networks for Precision Agriculture in Sugarcane Field[END_REF] mention the same problem when they deploy WSN node in sugarcane field in Thailand.

The failure of WSN real world deployment may due to many reasons. Somehow, the high-speed ultra-low power CMOS technology adapted in WSN nodes also increased the failure rate. When WSN implemented by lower power supply voltage, the power consumption can be lower, but meanwhile, the MTTF of chip also decease [START_REF] Maheshwari | Trading off transient fault tolerance and power consumption in deep submicron (DSM) VLSI circuits. Very Large Scale Integration[END_REF]. The lifetime of chip decreases by a factor of 2.2 for every 10°C increase in operating temperature [START_REF] Zhang | Modeling of NBTI-induced PMOS degradation under arbitrary dynamic temperature variation[END_REF]. The failure rate of chip significantly increases when the technology node size decreased [START_REF] Borkar | Designing reliable systems from unreliable components: the challenges of transistor variability and degradation[END_REF]. [START_REF] Nightingale | Cycles, cells and platters: an empirical analysisof hardware failures on a million consumer PCs[END_REF] shows the crash probability will increase by a factor of 100 after a machine has crashed once. In addition, the probability continues to increase with subsequent crashes.

Besides, at least in our Hydrasol project and SCM deployment, the watchdog is already active. However, the observed results show that the watchdog did not make those lost nodes rejoins the network. Therefore, we concluded that the single core node is not reliable and the watchdog is not efficient to recovery from this type of fault. The causes of the WSN (LiveNode and SCM) soft errors are unknown. My work will focus on the development of an integrated multicore platform (WSN node, Hardware support, fault injection testbed) which enables to implement energy efficient and robust multicore modular WSN node and to ease the debug, test and validation. Moreover we hope that this integrated platform will enable to understand precisely and accurately the reason of the soft errors and to recover from failure.

Summary

In this chapter, we discussed the different WSN nodes, WSN application, dependability threats and current approaches. Current approaches adopt symmetric space and time redundancies, which are not appropriate for high-energy constraint and resource context aware concept. In this dissertation, we will investigate dissymmetric multicore WSN node architecture, which will meet both energy consumption constraint and resource context-aware concept to improve the robustness and the lifetime of WSN node.

Chapter 4. Multicore WSN Node Architecture This chapter gives an overview of multicore WSN architecture and specifies some interesting technical details.

To implement a long lifetime WSN node powered by standard battery, currently an ultralow power single core (8, 16 or 32-bit) is used. However this implementation solved partially energy consumption problem but it still not meet WSN node robustness requirement. My work focused on the research and development of a new WSN node architecture aiming to increase at the same time the WSN node lifetime, modularity and robustness. If we can achieve these objectives the new WSN node will meet the requirements of high constraint indoor (smart care e.g.) and outdoor (precision agriculture e.g.) applications.

Therefore, in order to fulfill the requirements, we will present a new energy efficient multicore WSN architecture, which can highly improve the reliability and safety without sacrificing simplicity. The rest part of this chapter will provide more detail on this new architecture.

Introduction

As we mentioned in Table 3-1, Table 3-2 andTable 3-3 before, there are many WSN/WMSN nodes, such as MICAz, MICA2, Imote2, TelosB, IRIS and Cricket are available in the shelf. These WSN nodes are quite similar in term of functionality. They are based on one microcontroller equipped with a unique wireless access medium having 200m LOS range. Among these platforms, the most common WSN research software and hardware platform are TinyOS [START_REF]TinyOS, an open source, BSD-licensed operating system designed for lowpower wireless devices[END_REF][START_REF] Levis | [END_REF] From Figure 4-1 we can find easily that if the microcontroller or radio transceiver suffers some faults, nothing else can help to recover. Moreover, the outdoor environment is very complex and some sensors need constant voltage power supply.

These existing WSN nodes are not designed to fit the requirements of outdoor applications. They are not robust, configurable and flexible to meet the requirements of high reliability. Therefore, we present a new first fault tolerant and configurable WSN node architecture based on multicore with very low energy consumption. The new multicore architecture provides high performance, more flexibility, while maintaining a small form factor. It allows user to develop software to utilize the features of the multicore architecture to improve the reliability of users' application.

Functional Safety Mechanism

Functional Safety is the part of the overall safety of a system or piece of equipment that depends on the system or equipment operating correctly in response to its inputs, including the safe management of likely operator errors, hardware failures and environmental changes.

In IEC 61508, Functional Safety's definition is: Safety is the freedom from unacceptable risk of physical injury or of damage to the health of people, either directly or indirectly as a result of damage to property or to the environment. Functional Safety is part of the overall safety that depends on a system or equipment operating correctly in response to its inputs.

In ISO 26262, Functional Safety's definition is: Absence of unacceptable risk due to hazards caused by mal-functional behavior of electrical and/or electronic systems Multicore Architecture can greatly help to achieve functional safety through the active FD & FR Core. When the FD & FR Core detects fault, it can control the Safe Gate to ensure the safety of whole system.

The FD & FR Core is independently running aside APP Core, so the detection and recovery or isolate process will never be interfered by the application. The separation can also increase the reliability of detection and recovery or fault part isolation process.

Fault-tolerant Mechanism

For outdoor and reliable applications such as environmental data collection and smart care, the robustness is a key constraint for large-scale WSN deployment. In multicore WSN node, it is possible to implement Standby sparing (space redundancy) for fault tolerant approaches.

Standby sparing is a scheme for active hardware redundancy as shown in Figure 4-3. Only one of n modules is operational and provides the system's output. The remaining n-0 1 modules serve as spares.

A spare is a redundant component, which is not needed for the normal system operation. A switch is a device that monitors the active module and switches operation to a spare if an error is reported by fault-detection unit FD. [START_REF] Dubrova | Fault-Tolerant Design[END_REF] It is very easy to find that multicore architecture is a two modules standby sparing system. Therefore, the multicore WSN node can continually provide service even one modules is in the present of faults. Only until both modules meet fault, the system will stop operation. This enables to implement robust WSN for critical applications.

4.2.4.

Resource-aware Mechanism

In this section, we will show that multicore architecture is energy efficient. In general, a WSN node will have the following components or layers: Since the boundary between middleware and communication & administration protocols is not clearly defined, we may thus consider that a wireless sensor has only four main components: application software, communication protocol, real-time operating system and hardware.


The energy consumption (lifetime) is the key constraint of WSN. Thus to minimize energy consumption, it has obviously to optimize the resource consuming of each component of a WSN node, but this approach is still not efficient enough to meet the requirement of WSN application lifetime. Consequently, the cross layering approach is generally adopted. To have a one-year lifetime, a WSN node equipped with a cell battery must consume less than 100µW. In fact, the wireless communication is the energy consuming behavior, in some case, which may consume 75% of total energy of an application. The wireless communication energy consuming may be estimated approximately by (4.1):

) (* *) (r b h s t n m e      (4.1)
where s m : message size; All these previous approaches are necessary to increase WSN lifetime. However, from our point of view, it is essential to investigate context-aware particularly resource-aware issue to minimize energy consumption. Thus it seems important to implement a multicore WSN node, which having different computation capacities to be able to fully explore the resourceaware approach. With a single core WSN node, it is not energy efficient because the node system will run with the same frequency for any kind of tasks (time or not time constraint). Therefore, as the unicore WSN node system, it is too powerful for a simple task application, but not powerful enough for the complex one. Comparing with multicore system, the unicore WSN node system has further execution time and higher energy consumption. Moreover, on one hand, with more powerful CPU the message may be compressed to minimize its size. On the other hand, more powerful computation resource (CPU and memory) enable to implement environment estimator to decrease the sample frequency (minimize communication traffics).

The task computation energy may be quantified by (4.2):

t a i i i * *    (4.2)
Chapter 4. Multicore WSN Node Architecture where t : execution duration, i a : is a set of instructions, i task constant which depends on the size and the complexity of task and i  is the necessary power to execute one instruction i.

For a unicore node the energy consumption of an application is:

  1 N i i A     (4.3)
where

A is an application having N tasks. In case of multicore node the energy consumption of an application is:

  1 11 KL MP ii ii A         (4.4)
where KL   

N K L

   is the task number of the application, P is the core number and

1 1 K i i    is the energy consumption of core 1having K tasks.
Thus in case of multicore sensor node, a task may be allocated to a core by taking into account its energy consumption (allocation with energy efficient as objective function). If one of the single core wireless task may be executed by another core consuming less energy than the single core one, thus:

    M AA   (4.5)
For the multicore node, it needs to implement an efficient power management mechanism, which enables to switch off the unused cores. In the following chapter, the detail of the implementation will be presented.

Dissymmetrical Multicore Structure

In fact general-purpose fault tolerant system, such as high performance computer or critical control system like fly-by-wire systems in aircraft, space and time redundancy are based on symmetric cores because these systems do not have high resource constraint. However, the space and time symmetric fault tolerant system concept is not appropriate for implementing WSN node where energy consumption is one of the most important features. Therefore, reducing power consumption and cost are increasingly across all segments of product. Users want improved robustness, battery life, size, and cost for WSN nodes.

The robustness requires the fault detection, test and validation based on multicore. The traditional symmetrical multicore structure may improve the robustness, but the total cost and power consumption will significantly increase and beyond the acceptance range.

To meet these requirements, dissymmetrical multicore structure will be an essential element that must to be adopted. In dissymmetrical multicore structure, comparing with Main App Core, the FD & FR Core will be a smaller, lower cost, lower performance core that consume much less power. Though dissymmetrical multicore structure will bring a little bit software design complexity, it can help to improve the multicore architecture in all four of these vectors: robustness, power, cost and size.

In this dissertation, we will evaluate different type of cores and build dissymmetrical multicore structure based on these cores.

Different Type of Cores

There many technical decisions need to consider when we implement multicore architecture. One of the main tasks is the choices of different cores. Here we briefly introduce some microcontrollers used in our design.

IGLOO nano FPGAs

IGLOO® nano FPGAs is a low-power FPGA from Actel (acquired by Microsemi). IGLOO® nano low-power FPGAs offer groundbreaking possibilities in power, size, leadtimes, operating temperature, and cost. Available in logic densities from 10,000 to 250,000 gates, the 1.2 V to 1.5 V IGLOO nano devices have been designed for high-volume applications where power and size are key decision criteria. Priced competitively in the market, IGLOO nano devices are perfect ASIC or ASSP replacements, yet retain the historical FPGA advantages of flexibility and quick time-to-market in low-power and small footprint profiles [START_REF] Microsemi | Microsemi's Retrieved Nov[END_REF] We mainly use the IGLOO nano FPGAs as the configurable network connector for the devices on board. With the configurable IGLOO, the circuit can change the connections between cores; adjust work states of all cores without making any wired change. The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogram ability, and an abundance of advanced features. The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low-power mode that consumes nano power while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode. The Low Power Active capability (static idle) allows for ultra-low-power consumption while the IGLOO device is completely functional in the system. This allows the IGLOO device to control system power management based on external inputs (e.g., scanning for Passive Infrared Motion Detector output stimulus) while consuming minimal power.

4-bit NanoRisc

The NanoRisc is an ultra-low power 4-bit microcontroller coming in a small 8-pin SO package and working up to 0.4 Million Instructions Per Second (MIPS). It consumes only 5.8 µA in active mode and 3.3 µA in standby mode. On the contrary, ATMEGA1281 needs 500 µA in active mode and 130 µA in standby mode (Atmel-Corporation, 2012b). Base on the ultra-low power feature of NanoRisc, it can greatly help to improve the lifetime of WSN node when node works in Sleep &Wakeup mode. Moreover, it requires no external component, so it is very easy to integrate to a multicore WSN node design. The NanoRisc contains the equivalent of 8 kB of Flash memory and a RC oscillator with configurable running frequency from 32 to 800 kHz. It also has an integrated 4-bit ADC, a power-on reset, watchdog timer, 10-bit up/down counter, PWM and several clock functions. It has a sleep counter reset allowing automatic wake-up from sleep mode. It is designed for use in battery-operated and field-powered applications requiring an extended lifetime. A high integration level makes it an ideal choice for cost sensitive applications.

8-bit ATMEGA1281

The ATMEGA1281 is running at 8 MHz and delivering about eight Million Instructions Per Second (MIPS) (Atmel-Corporation, 2012b). This 8-bit microcontroller has 128-Kbyte flash program memory, 8-Kbyte static RAM, internal 8-channel 10-bit analog-to-digital converter, 3 hardware timers, 48 general-purpose I/O lines, 1 external Universal Asynchronous Receiver Transmitter (UART) and one SPI port.

8-bit RISC core microcontroller AVRRF

The AVRRF is an IEEE 802.15.4 compliant single chip combines an industry-leading AVR microcontroller and best-in-class 2.4GHz RF transceiver (Atmel-Corporation, 2012a). It runs at 16 MHz and delivers optimal performance 16 Million Instructions Per Second (MIPS). This 8-bit microcontroller has 128-Kbyte flash program memory, 16-Kbyte static RAM. Comparing with ATMEGA1281, AVRRF is two times faster and has two times bigger SRAM. These new features enable AVRRF to build a higher performance WSN node.

32-bit RISC core microcontroller AT91SAM7Sx

The AT91SAM7Sx running at 48 MHz delivers about forty-three Million Instructions Per Second (MIPS) (Atmel-Corporation, 2011). The AT91SAM7Sx 32-bit RISC microcontroller has the following on chip devices: 512-Kbyte of flash program memory, 64-Kbyte of static RAM, 8-channel 10-bit analog-to-digital converter, three hardware timers, thirty-two generalpurpose I/O lines, one USB 2.0 full speed (12 Mbps) device port, two external Universal Synchronous/Asynchronous Receiver Transmitter (USART), one I² C interface and one master/slave Serial Peripheral Interface (SPI) port.

Raspberry Pi Board

The Raspberry Pi Board is a credit-card-sized single-board computer developed in the UK by the Raspberry Pi Foundation with the intention of promoting the teaching of basic computer science in schools (Raspberry Pi Foundation, 2013). The Raspberry Pi board has a powerful SoC integrating three cores: Low Power ARM1176JZ-F Applications Processor, Dual Core VideoCore IV® Multimedia Co-Processor Graphics Processing Unit(GPU) and Image Sensor Pipeline (ISP). The Raspberry Pi Board runs standard Linux operating system. The Raspberry Pi Board supports different types of camera, USB and Camera Serial Interface (CSI), and WiFi module.

The Figure 4-4 shows the block diagram of the Raspberry Pi Board. The ARM Cortex™-M3 processor is the industry-leading 32-bit processor for highly deterministic real-time applications, specifically developed to enable partners to develop highperformance low-cost platforms for a broad range of devices including microcontrollers, automotive body systems, industrial control systems and wireless networking and sensors. The processor delivers outstanding computational performance and exceptional system response to events while meeting the challenges of low dynamic and static power constraints. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area (ARM Ltd., 2013).

The ARM Cortex™-M3 based microcontroller becomes more and more popular in wireless networking field. Even though we did not use it in this dissertation, I think we will use it in next design.

Summary

The Table 4-1 provides the key features of different cores used in this dissertation. The multicore architecture is highly based on the fault detection of Main App Core and Auxiliary Core. In order to enable the efficient fault detection, we implement a specific Interface: Hardware Support Debug Test and Validation Interface (HSDTVI).

1.2 V-1.5V@Core 1.2V-3.3@IO 2.3-5.5 V 1.8 V-5.5 V 1.8V-3.6 V 1.8V@
The HSDTVI Interface provides a new method to meet the basic requirements of debugging, testing and validating the hardware and software of Main App Core and Auxiliary Core. Unlike modern high performance microprocessors, which have powerful resource and debug tools; resource constrain microcontroller has limited resource; the debugging methods on microcontroller are relative simple. Historically, the following methods of debugging a microcontroller application are following:  Printf: using a debug serial port to output string to help developer gathers the inside information. It is easy to use. However, printf through RS232 serial port is very slow, maximum speed is only 115.2kbps. The overhead, such as code, time and stack consumption of printf is heavy. Normally printf cannot use in IRQ handler. Therefore, printf is not appropriate for the real-time operating development.

 JTAG: using a JTAG emulator to examine and modify registers and memory and provide step-by-step execution. Need programmer to manually interact, very slow owing to interact. Due to the JTAG emulator, it will be very difficult to use in real world environment. Moreover, the JTAG is an efficient tool to debug sequential program but not adapt to debug concurrent program.

So current debug method needs to be improved to ease the development of Robust WSN application. New features are expected:  The PowerEn pin is the power control pin of the HSDTVI Slave. If the HSDTVI Master detected fault in the HSDTVI Slave, this pin can be used to power off and power on the HSDTVI Slave.

 The WR pin is used to speed up the checkpoint send speed. It is the latch clock of DataBus.

 The UART and JTAG is optional pin in the HSDTVI, reserved for the compatibility with traditional debug methods.

Different Scenario of the HSDTVI Implementation

The HSDTVI is a configurable interface. It can be mainly divided into two types of usages: Debug Mode and Real-time Fault Detect Mode (mutual debug and fault detection).

Debug Mode

The Figure 4-7 shows the HSDTVI interface used for Debug Mode Scenario. In this mode, the HSDTVI Slave is an 8-bit AVR/AVRRF microcontroller with IEEE802.15.4 wireless access media; the HSDTVI Master is a powerful microprocessor, which is much more powerful than the HSDTVI Slave. Therefore, the HSDTVI Slave can send checkpoints frequently, and the HSDTVI Master is powerful enough to record the checkpoints and store them for further analysis.

Raspberry Pi

Board AVR The HSDTVI Slave is Design under Test (DUT). The HSDTVI Master is a testbed. DUT will continually send checkpoints to testbed. Those checkpoints will reflect the running state of DUT. Testbed then records checkpoints in real-time. Each record of checkpoints for a period will form a profile for this given period. Through analysis of these profiles, DUT's state can be decoded. Therefore, these profiles can greatly help to detect and locate the bug in DUT.

[0] PE0  GEN0 GPIO17 Databus[1] PE1  GEN1 GPIO18 Databus[2] PE2  GEN2 GPIO27 Databus[3] PE3  GEN3 GPIO22 Databus[4] PE4  GEN4 GPIO23 Databus[5] PE5  GEN5 GPIO24 Databus[6] PE6  GEN6 GPIO25 Databus[7] PE7  GCLK GPIO4 WR PG2  CE1 GPIO7 nPEN To PSU  CE0 GPIO8 UART TXD1 RXD1  RXD0 TXD0 UART
Because the DataBus is an 8-bit parallel GPIO Port, so the HSDTVI Interface can send an 8-bit checkpoint status with only three instructions. The ultra-low overhead eases the placement of checkpoints, so they can put in IRQ handler without affecting the performance of system.

In order to make full use of the HSDTVI interface, the software on iLive needs embedded checkpoints into important running stage, such as starting/stopping sensing sensor, starting/stopping transferring RF data, receiving a RF packet, receiving an external event, etc. Then iLive can send these checkpoints to Raspberry Pi Boards through the HSDTVI in realtime. Due to the light overhead of the HSDTVI operation, these checkpoints can be put in anywhere in the program (system or application), even in IRQ handler.

These detailed and precise checkpoints log will form a profile of iLive related to a specific period. Based on the profile, the run path and state of iLive can be easily decoded. With necessary tool for analyzing and comparing profile, the HSDTVI can help user to build a useful automated debug test and validate environment.

The software on Raspberry Pi Board can catch and store the checkpoints from iLive. Beyond the checkpoint, the timestamp of checkpoint is also very important. Thanks to the 1MHz hardware system timer in Raspberry Pi, the timestamp can be accurate to one micro second period.

The CPU of Raspberry Pi Board is a 700 MHz ARM1176JZF-S core (Broadcom.com, 2013), comparing with 8 MHz 8-bit AVR microcontroller in iLive, the Raspberry Pi Board is over hundreds times more performance than iLive. The computation resource is enough for the tracing and logging checkpoints from iLive.

Real-time Fault Detection Mode

Figure 4-10 shows the HSDTVI interface used for real-time fault detection mode scenario. In this scenario, the HSDTVI Slave is an 8-bit AVR/AVRRF microcontroller with IEEE802.15.4 wireless access media; the HSDTVI Master is only a low power NanoRisc, whose power consumption is much lower than HSDTVI Slave, only 1 percent of AVR. This low power consumption NanoRisc can greatly help to improve not only the reliability, but also the lifetime. Due to different node types, the node functions differently. Therefore, the HSDTVI communication protocol also needs to change a little bit to meet the different requirements. Here we mainly discuss two main different node types: Coordinator and End-device.

AVRRF NanoRisc

In fact as coordinator, the AVR is always wakeup, so the AVR will use PmReq as heart beat signal. AVR will send one PmReq pulse every circle. NanoRisc will reset or power on/off AVR when the PmReq pulse has not occurred in time or the PmReq pulse is too longer.

Summary

In this chapter, we discussed multicore WSN node architecture and the special HSDTVI interface in the new architecture. The multicore WSN node architecture enables the development and implementation of new dependable and energy efficiency wireless sensor network.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded System

Introduction

The efficient and robust realization of the non-conventional multicore wireless sensor network is a challenging algorithmic and technological task. The multicore architecture is more complex than the single core architecture. Key features including high resource constraints, high reliability requirements, various sensor types, dynamical wireless environments, and huge numbers of WSN nodes in different autonomous group force us to change every aspects of our design process.

Based on many years of real world project experiences, we propose a new design process HRDP (High Reliability Design Process dedicated to High Resource Constraint Embedded System) to guide our development. In HRDP, we will implement an integrated multicore platform (WSN node, Hardware support, fault injection testbed) supporting run time testing and validation. Furthermore, we will use fault injection technique to help to discovery the reason of soft errors. Through the discovery and understood those soft errors and recovery from failure, HRDP can greatly help to improve the overall system. We hope the new integrated HRDP can allow both to simplify the testing and validation (hardware and software) and to improve the reliability of WSN node. The rest part of this chapter will detail the content of new design process.

Traditional Design Process Models

Many design process models have been developed in order to achieve different required objectives. We briefly discuss some frequently employed models, e.g. Waterfall Model, V Model, Incremental Model, Spiral Model Model-Driven Engineering, RAD Model and Agile Model.

Waterfall Model

The Waterfall Model was the first design process model to be introduced. It is also referred to as a linear-sequential life cycle model. The Waterfall Model is the most rigid one, suggesting to move to a phase only when its preceding phase is completed and perfected. Phases of development in the waterfall model are kept completely separated, and there is no room for iteration or overlap [START_REF] Benington | Production of Large Computer Programs[END_REF]. Figure 5-1 shows the diagram of the Waterfall Model. Waterfall Model is very simple and easy to understand and use. However, it is only capable to model simple, clear, well known and fix requirements project. Due to the rigid oneway rules, it will have high amounts of risk and uncertainty in the late stage. Therefore, Waterfall Model is not a good model for complex and long projects (A. C. S. [START_REF] Beck | Adaptable Embedded Systems[END_REF].

V Model

The V Model has the same strict serial structure as the waterfall model, but it suggests that, before going to a more detailed design level, one should already test all the system features and properties that can be tested at the current level of design abstraction [START_REF] Brummond | Clarus: Concept of Operations[END_REF]. V Model is simple and easy to use. The test activities happen before implementation, so the defects can be found in the early stage. This can greatly help to avoid the downward flow of defects. It is still very rigid and least flexible. The system is developed during the implementation phase, so no early simulation or prototypes of the system are produced. Therefore, V Model is only good for small projects, which requirements need to be easily understood [START_REF] Nowka | Circuits Design for Low Power[END_REF].

Incremental Model

The Incremental Model divides the whole requirement into various builds. Each build passes through the requirements, design, implementation and testing phases. Each subsequent release of the build adds function to the previous release. The process continues until the complete system is achieved. Multiple development cycles make the Incremental Model a multi-waterfall process [START_REF] Larman | Iterative and incremental developments. a brief history[END_REF][START_REF] Pressman | Software Engineering: A Practitioner's Approach[END_REF]. Figure 5-3 shows the diagram of the Incremental Model. Incremental Model can generate prototype quickly and early. It brings more flexible and lower initial delivery cost. In addition, the increments can greatly help to manage the risk. However, the Incremental Model requires a clear and complete definition of whole system before it can be broken down and build incremental. Moreover, the total cost is higher due to the multi increments [START_REF] Nowka | Circuits Design for Low Power[END_REF].

Spiral Model

The Spiral Model is similar to the incremental model, with more emphases placed on risk analysis. The Spiral is visualized as a design process passing through some number of iterations, with the four-quadrant diagram representative of the following activities:

 Formulate plans to: identify software targets, implement the program, clarify the project development restrictions  Risk analysis: an analytical assessment of selected programs, to consider how to identify and eliminate risk  Implementation of the project: the implementation of software development and verification

The spiral model has four phases: Planning, Risk Analysis, Engineering and Evaluation. A software project repeatedly passes through these phases in iterations (called Spirals in this model) [START_REF] Boehm | A Spiral Model of Software Development and Enhancement[END_REF]. Figure 5-4 shows the diagram of the Spiral Model. The Spiral Model pays more attention on the risk analysis. It has strong approval and documentation control and early produced software to help to avoid risk. It is good for large and mission-critical projects. However, it can be a costly model, and requires highly specific expertise on risk analysis. It does not work well for smaller projects [START_REF] Nowka | Circuits Design for Low Power[END_REF].

RAD Model

Rapid Application Development (RAD) model is a type of incremental model. In RAD model, the components or functions are developed in parallel as if they were mini projects. The developments are time boxed, delivered and then assembled into a working prototype. RAD model uses modeling concepts to capture information about business, data, and processes. This can quickly give the customer something to see and use and to provide feedback regarding the delivery and their requirements [START_REF] Martin | Rapid application development[END_REF]. Figure 5-5 shows the diagram of the RAD Model. The RAD Model can reduce the development time, increase reusability of components, provide quick initial reviews, encourages customer feedback, and integrate from very beginning solves a lot of integration issues. However, RAD requires highly skilled developers/designers and the cost of modeling and automated code generation is very high [START_REF] Nowka | Circuits Design for Low Power[END_REF].

Agile Model

Agile development model is also a type of Incremental model. Software is developed in incremental and rapid cycles. This results in small incremental releases with each release is built on previous functionality. Each release is thoroughly tested to ensure software quality is maintained. It is used for time critical applications. Extreme Programming (XP) is currently one of the most well-known agile development life cycle model (K. [START_REF] Beck | Manifesto for Agile Software Development Manifesto for Agile Software Development[END_REF]Prolinx Services, 2013).

High Reliability Design Process Based on Multicore

Architecture

The design process can be viewed as a sequence of steps that transforms a set of specifications described informally into a detailed specification that can be used for manufacturing. All the intermediate steps are characterized by a transformation from a more abstract description to a more detailed one.

In this part, we propose a new design process named as High Reliability Design Process dedicated to High Resource Constraint Embedded System (HRDP) based on multicore architecture. It tries to ease the development of multicore WSN node and improve the productivity and system quality.

General Overview

The HRDP is a design process for a multicore WSN node. Therefore, it is assumed that the top architecture of the node should be multicore architecture. It is also assumed that the HSDTVI interface will be implemented. The following part will detail the HRDP in design phase, including architecture design, early validation and test.

Model-Driven Engineering

Model-driven engineering (MDE) is a software development methodology which focuses on creating and exploiting domain models (that is, abstract representations of the knowledge and activities that govern a particular application domain), rather than on the computing (or algorithmic) concepts [START_REF] Frankel | Model driven architecture : applying MDA to enterprise computing[END_REF][START_REF] Haan | Roles in Model Driven Engineering[END_REF].

The MDE approach is meant to increase productivity by maximizing compatibility between systems (via reuse of standardized models), simplifying the process of design (via models of recurring design patterns in the application domain), and promoting communication between individuals and teams working on the system (via a standardization of the terminology and the best practices used in the application domain).

A modeling paradigm for MDE is considered effective if its models make sense from the point of view of a user that is familiar with the domain, and if they can serve as a basis for implementing systems. The models are developed through extensive communication among product managers, designers, developers and users of the application domain. As the models approach completion, they enable the development of software and systems.

Some of the better known MDE initiatives are:

 the Object Management Group (OMG) initiative model-driven architecture (MDA), which is a registered trademark of OMG.

 the Eclipse ecosystem of programming and modeling tools (Eclipse Modeling Framework). The HRDP is a specific MDE dedicated to multicore architecture. The HRDP follows the MDE concept, which is an improved V-Model by supporting the test phases at each design level by software models that simulate the system before real implementations exist already.

5.3.3.

Model of Multicore WSN Architecture 5. 3.3.1. Top Level Architecture Top Level Architecture provides one or more diagrams depicting an overview of the target solution architecture with supporting narrative text. Ensure that the diagram(s) depict the major components of the solution and the relationships between the components, input and output data flows, major processes, functions, and system tasks. Identify major Commercial-Off-the-Shelf (COTS), infrastructure, and platform technology components.

Modules List

The Table 5-1 provides the modules list in the Figure 5-8. The following part will detail these three types of early validation.

Validate by Designer

The simplest way to validate the requirement is directly checked and validated by the design team. This method requires highly skilled developers/designers. Only senior designers are capable of taking the kind of decisions required during the development process.

Therefore, the method is only good for redesign projects, which requirement has only slightly modification.

Validate based on MDE

With suitable MDE Tool, such as AADL [START_REF] Feiler | Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis & Design Language[END_REF], UML [START_REF] Lavagno | UML for Real: Design of Embedded Real-Time Systems[END_REF], SysML (Holt, Perry, Engineering, & Technology, 2008), etc.. Notice that our early architecture can directly run in Model-Driven Development Environment (MDDE).

Even though this method requires studying and learning MDE and MDDE, the formal verification and automatic synthesis of implementations with MDE can greatly help to guarantee robust and safety of our design.

The biggest shortage of MDE is that the cost of development tool. The free tool may lack many mature models, while the commercial tool's price is still expensive.

Validate based on Virtual Processor Emulator

In this method, virtual processor emulator such as Cooja [START_REF] Osterlind | Cross-Level Sensor Network Simulation with COOJA[END_REF], QEMU [START_REF] Bellard | QEMU, a fast and portable dynamic translator[END_REF], can be adopted to provide a virtual platform for simulating the software.

The virtual processor emulator can run the software directly, so the validate process only requires necessary adding new virtual hardware driver or modification on exist virtual hardware driver for new requirements. This method can formally verify the design without extra cost on MDE tool, such as buying, studying or learning. Besides, most of the source code can directly reuse in later design stage.

Figure 5-10 shows a block diagram for the early validation based on virtual processor emulator. My colleague, de VAULX Christophe, in our SMIR team focuses on this direction. whole develop process following the Design-For-Testability Way. When the HSDTVI Master real-time using these rules to detect the state of HSDTVI Slave, the method is working like DMRTT.

Fault Injection

As we mentioned before, in real world deployment, 10%-20% of single core WSN nodes left the network in the first week with unknown reason. With the mutual real time checking and validation between cores based on multi cores and HSDTVI, the multicore WSN node can automatically recover from this type fault. However, we still do not understand the real cause of the fault. That why we propose to use fault injection method into HRDP to discover the reason of the fault, understand more about the fault and late help to improve the overall system.  WiFi module supported.

 Support SD Card for Large data Storage.

The Table 5-5 provides the hardware fault injection with contact supported by Fault Injection Board. The Table 5-6 provides the hardware fault injection without contact supported by Test Equipment, EMI Burst-Generator and Californium-252 Source, and Pre-validated WSN node. Of course, developer can also inject any software fault through the JTAG debugger. Therefore, through the testbed in Figure 5-11, developer can injection any kind of fault, hardware or software, to speed up the debug test and validate process. And the testbed will also ease the development of the multicore software for it can greatly help to discover unknown fault.

Summary

Adopting the HRDP methodology allows systems architects, software engineers, and hardware designers to achieve the following objectives:  The HRDP can provide an early prototype for the validation of requirement  The HRDP enables higher abstract layer designing and verification  With suitable tool support, the HRDP enables auto translation from design to production implementation  The models in the HRDP increase the reusability of engineering resource  The models also can improve the flexibility of deployment (and redeployment) of engineering resources  The HRDP help to Detect and localize bug more Quickly and more Accurately  The fault injection testbed can help to discover unknown fault and late improve the overall system

All this benefit can help to improve productivity and system quality.

Chapter 6. Implementation of Multicore WSN Node

We develop several hardware platforms to validate multicore WSN architecture, which is technology and application independent. We name these platforms as E² MWSN, iLive, SIS, iLiveEdge, EPER, RPiER, etc. These hardware platforms are instances of multicore WSN architecture with varying degrees of hardware complexity. We will analyze each specific implementation in the following sections.

E² MWSN: High Reliability and High Performance

Multicore WSN Node 6.1.1.

General Overview

The E² MWSN is a complex instance of a multicore WSN architecture. The objective of the E² MWSN is to implement a configurable and energy efficient multicore WSN node for outdoor/indoor applications. Thanks to the configurability of multicore, the E² MWSN is able to adapt to diverse applications domains, from simple data collecting application to complex real-time control application.

Figure 6-1 shows the block diagram of E² MWSN. E² MWSN is built on three cores architecture. The Main App Core in E² MWSN is a low power 8-bit RISC ATMEGA1281. The Auxiliary Core in E² MWSN is a low power ARM7TDMI 32-bit RISC AT91SAM7Sx. We choose an ultra-low power FPGA IGLOO to be the FD & FR Core. The Auxiliary Core AT91SAM7Sx is more powerful than the Main App Core. So if the WSN application has complex computational processes such as signal processing, data compressing, encryption, decryption etc., AT91SAM7Sx can be activated to handle these computation when necessary. The FD & FR Core IGLOO is the control center of the E² MWSN. It controls power supply sources for all the cores and devices. The FD & FR Core also run as a monitor of Main App Core. If it detected faults in the Main App Core, it will isolate the faulty Main App Core and active the Auxiliary Core to substitute the Main App Core. Through the switching of core, the E² MWSN can provide seamless services even in the presence of faults. The most powerful Core in the E² MWSNis the AT91SAM7Sx running at 48 MHz and delivering about forty-three Million Instructions Per Second (MIPS) (Atmel-Corporation, 2011). This 32-bit RISC has: 512-Kbyte flash program memory, 64-Kbyte static RAM, internal 8-channel 10-bit analog-to-digital converter, three hardware timers, thirty-two general-purpose I/O lines, one USB 2.0 full speed (12 Mbps) device port, two external Universal Synchronous/Asynchronous Receiver Transmitter (USART), one I² C interface and one master/slave Serial Peripheral Interface (SPI) port.

Main App Core

The ATMEGA1281 is running at 8 MHz and delivering about eight MIPS (Atmel-Corporation, 2012b). This 8-bit microcontroller has 128-Kbyte flash program memory, 8-Kbyte static RAM, internal 8-channel 10-bit analog-to-digital converter, 3 hardware timers, 48 general-purpose I/O lines, 1 external Universal Asynchronous Receiver Transmitter (UART), and one SPI port.

The IGLOO mainly works as the configurable network connector for the devices on board. With the configurable IGLOO, the circuit can change the connections between cores; adjust work states of all cores without making any wired change. The IGLOO may be configured to implement specific processing (image or signal processing e.g.) when need. The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogram ability, and an abundance of advanced features (Actel-Corporation, 2009). The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low-power mode that consumes nano Power while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode. The Low Power Active capability (static idle) allows for ultra-low-power consumption while the IGLOO device is completely functional in the system. This allows the IGLOO device to control system power management based on external inputs (e.g., scanning for Passive Infrared Motion Detector output stimulus) while consuming minimal power. The circuit can controls independently the power supply of each core, so the E² MWSN can work in several modes as presented in Table 6-1. Here we mainly compare single AT91SAM7Sx mode (ATMEGA1281 is closed), single ATMEGA1281 mode (AT91SAM7Sx is closed), and AT91SAM7Sx plus ATMEGA1281 mode.

To evaluate the power consumption of the E² MWSN on different operation modes, the total running current of the E² MWSN is measured as Figure 6-4. A DC power supply ELC AL936 provided a +3.0V output as emulator of two AA Batteries. A Metrix MX53 in mA gear position measured the current of the E² MWSN when the node handles various tasks including sensing, signal processing, data storage, and wireless communication on the three modes mentioned previously. The results are recorded in the Table 6-2, Table 6-3, andTable 6-4 as follow. **Sleep time is determined by sample frequency. In this dissertation the sample frequency is 3 minutes per sample, which is the same as the TelosB one (J. [START_REF] Polastre | Analysis of wireless sensor networks for habitat monitoring[END_REF].

The total power consumption of each mode can be calculated by (4.3) and (4.4), we can get:

  91 7
176604

AT SAM Sx AJ   , (6
M AT SAM Sx ATMEGA AT SAM Sx ATMEGA A A A     
, being accordance with the estimation in (4.5).

Since the E² MWSN mulitcore mode is more energy efficient, it can achieve longer lifetimes than other mode. With a pair of AA Lithium/Iron Disulfide (Li/FeS 2) 3000mAh batteries and the sampling period is 3 minutes, the lifetime of the E² MWSN mulitcore mode is 1270 days. For comparison, the lifetime of single AT91SAM7Sx mode is 382 days, single ATMEGA1281 mode is 825 days, and the TelosB is 945 days. 6.1.4.2. Reliability The Mean Time between Failure (MTBF) and Mean Time between Critical Failure (MTBCF) is calculated to evaluate the reliability of the E² MWSN. The methods used to analyze the MTBF/MTBCF are MIL-HDBK-217 (US, 1997) and FIDES 2009 (DGA, September 2010). MIL-HDBK-217 is considered to be the most common used reliability prediction method, but it has not been revised since 1995 (issue F notice 2). Compare with MIL-HDBK-217, FIDES is a newer reliability assessment method. The FIDES can take into consideration new technologies, so the FIDES is more accurate with the new components, such as Commercial off-the-shelf (COTS) components. Therefore, if manufacturer provides the FIT data of component, we will use it first. Otherwise, if the component is COTS such as microcontroller, we will use FIDES method. Finally, the rest parts will be analyzed by MIL-HDBK-217 method.

Here, each core and related external components such as power supply unit, oscillator, decoupling capacitor etc. are combined together to calculate. The Failures in Time Failure Rate in Parts per Billion Hours (FIT) of each core are listed as following: -Corporation, 2012c;[START_REF] Kemet | KEMET FIT Calculator Software[END_REF][START_REF] Linear | Reliability Data[END_REF]Microsemi-Corporation, 2011;[START_REF] Onsemi | Oracle White Paper-Best Practices for Data Reliability with Oracle VM Server for SPARC[END_REF].

Because single ATMEGA1281 mode and single AT91SAM7Sx mode do not have redundancy, so the MTBF and MTBCF of these two modes are the same. However, in AT91SAM7Sx plus ATMEGA1281mode, AT91SAM7Sx and ATMEGA1281 is parallel backup of each other. So the MTBCF will much bigger than MTBF in this mode. The MTBF/MTBCF of three work modes is listed as following:

General Overview

ILive is a simple and cheap instance of multicore WSN architecture. The objective of iLive is to implement a low cost and high reliable multicore WSN node for environment data collection and precision agriculture applications. It is a dissymmetric two cores architecture. The Auxiliary Core is removed. The Main App Core in iLive is a low power 8-bit RISC ATMEGA1281. The FD & FR Core in iLive is an ultra-low power 4-bit RISC NanoRisc. The FD & FR Core runs as a monitor of ATMEGA1281. If it detected faults in the ATMEGA1281, it can generate reset signal for ATMEGA1281 or directly power off ATMEGA1281 when necessary to fix most of faults. Moreover, the NanoRisc consumes only one percent of energy of Main App Core, so it can great help iLive to archive longer lifetime when iLive work in Sleep &Wakeup mode. 6.2.2. Hardware Architecture

The Figure 6-6 presents the hardware architecture of iLive. In order to ease the development of environment data collection and precision agriculture application, iLive has two types of soil moisture probes: watermark sensor and decagon sensor. The ATMEGA1281 core in iLive is the same one in the E² MWSN, which has 128-Kbyte of flash program memory, 8-Kbyte of static RAM and running at 8MHz. The NanoRisc is an ultra-low power 4-bit microcontroller coming in a small 8-pin SO package and working up to 0.4 MIPS. It consumes only 5.8 µA in active mode and 3.3 µA in standby mode. On the contrary, ATMEGA1281 need 500 µA in active mode and 130 µA in standby mode (Atmel-Corporation, 2012b). Base on the ultra-low power feature of NanoRisc, it can greatly help to improve the lifetime of iLive when iLive work in Sleep &Wakeup mode. Moreover, it requires no external component, so it is very easy to be integrated in iLive. The NanoRisc contains the equivalent of 8 kB of Flash memory and a RC oscillator, which is configurable to oscillate from 32 to 800 kHz. It also has an integrated 4-bit ADC, a power-on reset, watchdog timer, 10-bit up/down counter, PWM and several clock functions. It has a sleep counter reset allowing automatic wake-up from sleep mode. It is designed for use in battery-operated and field-powered applications requiring an extended lifetime. A high integration level makes it an ideal choice for cost sensitive applications. The End-Device iLive node has three running modes: Deep sleep mode, Sleep mode and Active mode. In Active mode, the AVR RISC of iLive will gather the sensor data and transfer data to coordinator through IEEE802.15.4 wireless access media. In Sleep mode, the AVR RISC will power off sensors and RF components, and remain in sleep mode to decrease the power consumption. In deep sleep mode, the AVR RISC will also be powered off to further decrease the total power consumption of iLive. Thess features enable iLive achieve a very long battery lifetime. To evaluate the power consumption of the iLive, the total running current of iLive is measured as shown by in the Figure 6 The current of the iLive is also measured when the WSN node handles sensing, signal processing, data storage, and wireless communication task independently. The results are recorded in the Table 6-8 as follow. In this dissertation the sample frequency is 3 minutes per sample, which is the same as the TelosB one(J. [START_REF] Polastre | Analysis of wireless sensor networks for habitat monitoring[END_REF].

The total power consumption of iLive can be calculated by (4.3), we can get:

  60900 iLive AJ   , (6.4)
The result is slightly bigger than   91 7 1281 (6.3). With a pair of AA Lithium/Iron Disulfide (Li/FeS 2) 3000mAh batteries and the sampling frequency is once every 3 minutes, the lifetime of iLive is 1108 days, only 12.76% less than the E² MWSN. However, iLive is much cheaper than the E² MWSN, so this result is acceptable.

M AT SAM Sx ATMEGA A   in

Reliability

The FIT of NanoRisc is calculated based on datasheet of NanoRisc andFIDES 2009 (ALD, 2012;[START_REF] Dga | Reliability Methodology for Electronic Systems FIDES guide 2009 Edition A[END_REF]. The FIT of ATMEGA1281 and NanoRisc combine with related external components are listed as follow: -Corporation, 2012c;[START_REF] Kemet | KEMET FIT Calculator Software[END_REF][START_REF] Linear | Reliability Data[END_REF].

From Table 6-9, we can get MTBF of iLive is 1.64E+07 hours or 1866 years. Because iLive does not have redundancy core, so the MTBF and MTBCF of iLive are the same value.

Even the MTBCF of iLive is smaller than the E² MWSN, it still big enough to fulfill the requirement of most applications.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node board. It is also not the product lifetime of WSN node.

6.3.2.

Hardware Architecture

The Figure 6-11 presents the hardware architecture of the SIS. The SIS supports all previous sensors related to soil such as watermark sensors, decagon sensors and soil temperature sensor. It also supports an external UART port as iLive. Furthermore, it supports an additional buzzer output and a SPDT work mode switch. The buzzer output can generate a sound to inform user when something wrong with system such as battery voltage is too low, water pipe has no water, soil sensor is damage etc. SPDT work mode switch will be used to decide the running mode among Automatic mode, Manual mode, and OFF mode. The most important part in the SIS is the electro-valve driver part. Because the miss control of electro-valve may cause waste of water and sometime flood (safety), so the safety of electro-valve driver is very important. To achieve high safety, the SIS adds a safe gate between normal valve driver and Main App Core AVR/AVRRF. The FD & FR Core NanoRisc will supervise the control process of electro-valve. If any fault is detected during the control process, NanoRisc will force the electro-valve back to close status. This method can greatly improve the safety of the SIS and avoid flood when fault appears. The Figure 6-12 shows the photo of the SIS board. The soil moisture condition may affect the work process of the SIS. When soil moisture is in proper level, after sensing the soil moisture, the SIS will return to sleep without control the electro-valve. While if soil moisture is dry enough (under fixed threshold), SIS will turn on the electro-valve for a while to irrigate the garden. Therefore, the power consumption of the SIS is measured separately based on the normal and dry soil moisture. The results are recorded in the Table 6-10 and the Table 6-11as follow. In this dissertation the sample frequency is 3 minutes per sample, which is the same as the TelosB one(J. [START_REF] Polastre | Analysis of wireless sensor networks for habitat monitoring[END_REF].

The total power consumption of the SIS can be calculated by (4. Therefore, if garden need irrigation twice a day, normally the irrigation frequency should be lower than this, the overall power consumption of SIS will be:

      __ 2 3 1440 2 3 1440 14 18 40 193 4 SIS SIS Dry SIS Normal A A A J             . (6.7)
With a Zinc-Manganese Dioxide (Zn/MnO 2) Alkaline 9V 500mAh battery and the sampling frequency is once every 3 minutes, the lifetime of SIS sensor node will be 283 days. However, with the same battery, if the sample frequency is lower, the lifetime of SIS will be longer. If the sample frequency is 10 minutes per sample, the lifetime of SIS will be increase to 577 days, which can exceed the 1-year lifetime requirement.

Reliability

The FIT of AVRRF and NanoRisc combine with related external components are listed as follow: -Corporation, 2012c;[START_REF] Kemet | KEMET FIT Calculator Software[END_REF][START_REF] Linear | Reliability Data[END_REF].

From Table 6-12, we can get MTBF of SIS is 1.54E+07 hours or 1762 years, big enough to fulfill the requirement of greenhouse applications.

Besides, AVRRF and NanoRisc is parallel backup of each other in electro-valve control. Therefore, the MTBCF of core components in SIS for electro-valve control is 1.48E+15 hours, 1.69E+11 years, which make the SIS especially safe.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node board. It is also not the product lifetime of WSN node.

General Overview

The iLiveEdge is a variation of original multicore WSN architecture. The objective of the iLiveEdge is to implement a low cost and high reliable multi-support multicore WSN edge router for all WSN applications. The iLiveEdge has three cores, the Main App Core in the iLiveEdge is an AVRRF for local WSN access, the Auxiliary Core in the iLiveEdge is an AT91SAM7Sx for Internet access, and the FD & FR Core is a NanoRisc. In the iLiveEdge, AVRRF and AT91SAM7Sx are both always active; they collaborate to work as the bridge of local WSN and global Internet server. The Figure 6-14 shows the block diagram of the iLiveEdge. The power consumption is not the key parameter of the iLiveEdge. For the Local WSN part in the iLiveEdge is coordinator, normally this part cannot sleep. In order to provide continuous services, the iLiveEdge requires continuous power supply such as AC-DC on electricity grid or big rechargeable battery with renewable power generators.

Internet App Core

Reliability

The FIT of each core in the iLiveEdge combine with related external components are listed as follow: Because the iLiveEdge does not have redundancy core, so the MTBF and MTBCF of the iLiveEdge are the same. From the Table 6-13, we can get the MTBF of the iLiveEdge is 8.08E+06 hours or 923 years, big enough to fulfill the requirement of most applications.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node board. It is also not the product lifetime of WSN node. 6.5. EPER: Highest Performance High Reliability and Multi-Support Multicore WSN Edge Router 6.5.1.

General Overview

The Extend PandaBoad Edge Router EPER is also a variation of original multicore architecture. It is an upgrade edge router for high performance application. The Internet core of the iLiveEdge is a 32-bit RISC ARM7 AT91SAM7Sx, which runs at 48 MHz and only has 512-Kbyte of flash program memory and 64-Kbyte static RAM. This core is not powerful enough; the storage is also not big enough. For some applications such as smart stick, inter vehicle communication, the edge router is expected to handle multimedia data stream in realtime. Therefore, we develop a new powerful edge router based on the PandaBoard, which has a Dual-core 1.2 GHz ARM A9 chip with 1GB RAM. The For the same reason, the power consumption is not the key parameter of the EPER. In order to provide continuous services, the EPER also need have continuous power supply such as AC-DC on electricity grid, big rechargeable battery with renewable power generators, etc.

Reliability

The FIT of each core in EPER combine with related external components are listed as following: For the same reason, the power consumption is not the key parameter of the RPiER. In order to provide continuous services, the RPiER also requires continuous power supply such as AC-DC on electricity grid or big rechargeable battery with renewable power generators. 6.6.4.2. Reliability The FIT of each core in the RPiER combine with related external components are listed as following: -Corporation, 2012c;[START_REF] Kemet | KEMET FIT Calculator Software[END_REF][START_REF] Linear | Reliability Data[END_REF].

Because the RPiER does not have redundancy core, so the MTBF and MTBCF of the RPiER are the same. From Table 6-15, we can get the MTBF of the RPiER is 3.18E+06 hours or 363 years, big enough to fulfill the requirement of most applications.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node board. It is also not the product lifetime of WSN node.

Related Projects

Based on the previous WSN nodes, SMIR team has carried out several real world IoT and WoT projects. The Table 6-16 provides a list of these projects. We will discuss each project in following parts.

Precision Agriculture

There mainly two types of Precision Agriculture platform in our group: scalar WSN platform and multimedia WSN platform. 6.7.1.1. Scalar WSN platform: iLive As mentioned before, the iLive board is a scalar WSN node dedicated to environment data collection and precision agriculture. The iLive directly supports many environmental sensors: 4 Watermark soil moisture sensors, 3 Decagon soil moisture sensors, 1 air temperature sensor, 1 soil temperature sensor, 1 air humidity sensor and 1 light sensor. It has an ultra low power nano-controller and an 8-bit RISC AVR microprocessor. The iLive node is a standard WSN node having embedded IEEE802.15.4 transceiver on board. A set of the iLive nodes can work together and build a scalar WSN. The iLive has a RS232/USB slave port which may be used to connect to a PC or a Raspberry Pi Board. The iLive has an extension connector having I² C, SPI, ADC and GPIO interfaces which can be used to add specific sensors or devices when necessary.

You also can visit our long-term the iLive online demo on http://edss.isima.fr/. The demo has been continuously operating for more than one year. The login username and password are both "demo".

Following are some photos related to the iLive platform. You can visit the demo for the MiLive platform on http://edss.isima.fr/demoforall/. The login username and password are also both "demo".

Following are some photos related to the MiLive platform.

Smart Irrigation System

The SIS (Smart Irrigation System) is a new irrigation technology based on remotely configurable wireless embedded system. It is a total solution including from the low-cost reliable sensor board to the user-friendly user interface.

It provides with a cooperative and automotive irrigating mechanism that helps lessknowledge planters growing plants and save water resource. It is provided with the reliable multi-support hardware components.

With the hardware supports, the SIS can be customized to adapt to different network scenarios such as small gardens, greenhouses, football fields and large farms.

Currently, the integration interface of the SIS is still in the development stage, but a simple demo is available on http://edss.isima.fr/sites/smir/sis. You can try to control remotely the watering devices through Internet.

Following are some photos related to the SIS platform.

Smart Environment Explorer Stick

The Smart Environment Explorer Stick (SEES) is project to develop an enhanced smart white cane, which assists the Visually Impaired Person or People (VIP)'s navigation. The active multi-sensor context-aware concept is adopted to be implemented in the SEES to help the VIP to move safely and easily in any places in the world (indoor or outdoor).

The Figure 6-30 shows the architecture of SEE-stick. The SEE-stick will use multicore WSN architecture, which has two cores.

One core is the Raspberry Pi board, which will work as CPU (central processing unit) to handle the complex tasks. The other core is an 8-bit RISC microprocessor AVRRF, which will handle some scalar sensors. The two cores connect each other through a Hardware Support Debug Test and Validate Interface (HSDTVI).

Through HSDTVI, the Raspberry Pi board and AVRRF can mutually check their running status in real-time. When any critical fault occurred in one of two cores, the other core can detect it, and handle it with appropriate actions, which can help SEE-stick to recover from fault or generate alarm to inform VIP to stay in safe state. The SEE-stick will run in a real word, unpredictable, physical environment, which makes faults inevitable. In order to provide more reliable outputs (mobility cues), even in the presence of faults, we have to improve dependable of our SEE-stick in every part. We expect that the checking and recovering mechanism on multicore and multi-support wireless can greatly help to build a robust SEE-stick.

Intelligent Transportation System

Currently, the SEE-stick is still in development stage, but there is a remote monitoring demo available on http://edss.isima.fr/sites/smir/sees. You can see the last navigation of SEEstick by this demo.

Following are some photos related to the SEE-Stick. We develop, test and validate several WSN nodes based on multicore architecture. The Table 6-17 provides the key features of all multicore WSN nodes mentioned before. The Table 6-18 provides the reliability of all multicore WSN nodes mentioned before. From the Table 6-18 we can find that the reliability of multicore WSN node is very good, the MTBF/MTBCF of nodes can up to 5000 years. Even for complex edge router, the MTBF/MTBCF of ER is also above 200 years, big enough for most of the applications.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node board. It is also not the product lifetime of WSN node. In this dissertation, we have presented a multicore architecture for the design of fault tolerance wireless sensor networks. By introducing NanoRisc, HSDTVI, and standby sparing fault tolerant mechanism, multicore architecture can highly improve the reliability of WSN without significantly increasing cost and complexity. Multicore architecture is capable of addressing the dependability and lifetime requirements of wireless sensor networks. The developed hardware platforms and the real-world applications have already validated the effectively of our multicore WSN architecture.

We also developed a design process (High Reliability Design Process dedicated to High Resource Constraint Embedded System: HRDP) based on multicore architecture to ease the development of high reliable embedded product. By applying HRDP in our real-world projects, we show that HRDP can help us in every design stage: architecture design, early validation, debugging and testing.

To validate the flexibility of our multicore architecture, we developed several hardware platforms, such as E² MWSN, iLive, SIS, iLiveEdge, EPER and RPiER. These hardware platforms are instances of multicore architecture with varying degrees of hardware complexity. We show that the multicore architecture not only improves WSN node lifetime and robustness but also enables to meet diverse application domains by exploring context-aware approach (resource-aware) and local and distributed collaborative processing. These platforms have proven themselves both in theory and through deployment in long-term, battery operated realworld applications.

WSN is an emergent and multidisciplinary science, which is a very active and competitive research field, and is considered as a key technology of the 21 st century . In spite of its unlimited potential applications, currently it still works in non-mission critical application. The main obstacle of applying WSN in mission critical applications, such as smart care and real-time industrial process control is that those applications demand extremely high levels of reliability and safety. The multicore architecture presented in the dissertation is ready to meet the demands of real-world mission critical applications. We hope that multicore architecture will contribute significantly to the progress of IoT and WoT evolution. Next Generation Multicore SoC for WSN node

In order to meet different requirements of different applications, we implemented many hardware boards, such as E² MWSN, iLive, SIS, iLiveEdge, EPER and RPiER. These COST solutions increase the complexity of both implementation and maintenance. The cost and size of COST solution are also not optimal and flexible, which enable to implement easily black box concept. Therefore, for the next generation WSN node, we suggest to implement WSN node based on multicore SoC chip. This section will discuss the black box concept and some technical schemes related to Multicore SoC chip, which is particularly optimized for WSN platform.

Black box concept

As we mentioned before, in current COST solution, we need to implement many boards for different projects, even these implementations adopt similar multicore architectures. We want to simplify the new design of WSN based on SoC chip. Therefore, we propose to implement black box concept in the SoC chip.

The black box concept means that the SoC chip will be highly configurable. It will be very flexible that it can be used in different application with only one chip. The user just needs download different configuration firmwares, the chip will change the running mode to meet the application requirements.

The IoT applications are unlimited, so it is very important to ease the development of a new project. Following black box concept, we can easily meet multi-project requirements to decrease the Time to Market (TTM), lower the total cost, reuse the technical resource, minimize the development cost for the new project, and ease the stock management.

Besides, if one application core is suffering from permanent fault, it is possible to reconfigure the SoC to fix some permanent faults remotely. This can also greatly ease the maintenance.

The Figure 7-1 shows the architecture of next generation multicore SoC for WSN nodes. It's similar as the COST multicore WSN architecture presented in the Figure 4-2. The different between the Figure 7-1 and the Figure 4-2 is that in the SoC the key components will have redundancy to enable the fault tolerant. These redundant cores will be active by the configuration. If they are not active, the redundant cores will be totally power off, to lower the total energy consumption.

Chosen of Core

The cores in the Figure 7-1 have several choices: Uniform NanoRisc Array, Different cell (4-bit, 8-bit, 16-bit, 32-bit), or FSMOS Modules.

Uniform NanoRisc Array

In this method, the core processor of SoC is consisting by an array of NanoRisc. This method eases the implementation of SoC, but increases the complexity of the configuration. The software will also need to divide into pieces in order to run as distributed parts. The minimum power control cell is a NanoRisc, so the power efficiency will be very high. The architecture of this method is shown in the Figure 7- In this method, the core processor of the SoC is consisting by several different RISC cores (4-bit, 8-bit, 16-bit and 32-bit). This method eases the implementation and the configuration of SoC. The software can reuse current COST version. However, the power control cell can be up to a 32-bit RISC, so the power efficiency will be not very high. The architecture of this method is shown in the Figure 7 FSMOS Modules In this method, the core processor of SoC is consisting by an array of special FSMOS modules (Page 124). This method can optimize both the hardware and software of WSN node. In this case, the hardware design will closely combine with the software design. Therefore, this technique will achieve the best power efficiency. The architecture of this method is shown in the Figure 7-4.

In order to achieve MP2P, P2MP and P2P communication mode, the Intra-Chip Multicore Interconnection Networks needs to be redesigned. The design should consider all the aspect such as speed, memory requirement, energy consuming, connection cost, and robustness.  FSMOS Directly supports Multicore Architecture, provide all the basic multicore system service, such as inter-core communication, multicore power management, and remote process communication.

 FSMOS directly supports IEEE802.15.4, eases the development of WSN application.

 The main source code of FSMOS is C Language, and these codes should directly support cross compiler and can run on different platforms such as AVR, ARM7, ARM11 and PC (WIN and Ubuntu).

 Based on FSMOS, an application can be ported through different platforms without modification.

FSMOS High-level Architecture

The high-level architecture of FSMOS is presented on the Figure 7-6. The FSMOS is separated into a number of logical modules each provides a set of APIs accessible for the user.  System services provide common functions for all layers, which are necessary for normal stack operation. System services include basic types and definitions, software timers, default configuration parameters, encryption module access, etc.

 Application services include modules that are not required by the stack, but are common for most applications, such as Over-The-Air upgrade (OTA), etc.

 Middleware Abstraction Layer provides higher abstraction interface for application development, like node configuration, etc.

 Hardware Driver provides basic hardware dependent platform dependent functionality, like hardware timer, sleep control, GPIO access for the radio interface.

The driver included at least AVR, ARM7, ARM11 and PC platform.

Remote Modules Based on Remote Processor Call

Debug, test and validate WSN application is still a difficult job. The JTAG tool can help to locate the internal information of WSN node. However, the JTAG tool is a little bit expensive and requires more time for learning how to use it. The tool can only debug one WSN node. If considering the distributed information in a set of WSN nodes, this task will be an even more difficult problem.

There are many methods which have been developed to ease the implementation of WSN application, such as Java Virtual Machine (JVM) [START_REF] Xing | Java Virtual Machine Based Infrastructure for Decent Wireless Sensor Network Development Environment[END_REF], Middleware [START_REF] Xing | Efficient middleware for user-friendly wireless sensor network integrated development environment[END_REF][START_REF] Xing | Efficient and portable reprogramming method for high resourceconstraint wireless sensor nodes[END_REF], etc. but those methods still focus on one single-core node, and real-time debug issue remains uncovered. Here we introduce a FSMOS based debugging method to archive real-time user-friendly debugging experience.

FSMOS is a cross platform design, so it can run on different platform such as AVR, ARM7, ARM11, PC (WIN and Ubuntu), etc. The PC did not have same hardware as WSN mode, in order to enable FSMOS and application over FSMOS running on PC can access real hardware, FSMOS have special modules, remote module, to support hardware accessment.

The Figure 7-7 shows the block diagram of a FSMOS running on PC with remote module. The remote module can provide the same service as real module. The only different between remote module and real module is that remote module can't directly handle the request. So it will forward all the request to a real node in another place, then the request will be handled by that real node. The response will then tranfer back to the remote module in the reverse direction. Then up layer can get the response from remote module simlar as from real module. The request and response transfer and remote execution are all based on Remote Processor Call (RPC) mechanisms in FSMOS.

we will implement a Finite State Machine OS (FSMOS), which enables to implement more user-friendly collaborative processing and fault tolerant applications.

In order to ease the implementation of user's application without sacrificing efficiency, we will design and implement an Efficient Context Aware Middleware (ECAM). The middleware can bridge the gap between multiple applications running at application level and FSMOS at system level. In order to archive effective resource utilization, the context aware middleware will provide the entire necessary application interface to control the power states of every core and every component in WSN node. To meet the requirements of differ situation, the context aware middleware will support both knowledge base for static situation and rule-based engine for dynamically changing situation. Furthermore, the context aware middleware supports remote update their rules and knowledge base, which makes applications even more flexible.

Thanks to 6LoWPAN (Y. [START_REF] Chen | 6LoWPAN Stacks: A Survey[END_REF][START_REF] Montenegro | Transmission of IPv6 Packets over IEEE[END_REF], RPL (IETF, 2012) and HTTP, the interoperability of WSN nodes over internet is solved. Therefore, we will follow the IETF standard and work on IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) and Constrained Application Protocol (CoAP) (IETF, 2013) in order to provide our WSN nodes with web service functionalities and to integrate WSNs with the Web seamlessly. We will develop a 6LowPAN-based WSN integrating CoAP, which allows user access WSN data directly from a Web browser. The hardware platform, FSMOS, ECAM, 6LoWPAN and CoAP all together will form the entire solution for dependable WSN services.

We can imagine the applications based on wireless sensor network in the near future. Wireless sensors and control points will present in everywhere and form a lot of WSN. All devices in home or in factory connect to IoT through these invisible wireless sensor networks. These devices all have an IPv6 IP address that user can directly access to them and get any services in anytime from anywhere. There is no cumbersome wiring between these devices any more. The smart devices will interact with the physical world and influence every aspect of our lives.

Nowadays, imagining a world without the Internet is nearly impossible. Do WSNs will have more impacts than Internet for everyday living in the near future? That is an open question.

 Figure1-1 Overview of WSN applications[START_REF] Yick | Wireless sensor network survey[END_REF] ... Figure 1-2 Block diagram of DFT system.. Figure 1-3 Block diagram of Multicore WSN node ... Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova, 2013) ... Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova, 2013) ...Figure 2-4 MTBF versus Lifetime ...Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a) ... Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009) .. Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009) Figure 2-9 IBM server system RAS operations (IBM Corp, 2012) ... Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)Figure 3-1 Circuit Board of MICAz ...Figure 3-2 Circuit Board of MICA2 .. Figure 3-3 Circuit Board of Telos B ... Figure 3-4 Circuit Board of IRIS ... Figure 3-5 Circuit Board of Cricket ... Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013) ... Figure 4-1 Block diagram of TelosB .. Figure 4-2 Block diagram of Multicore Architecture ... Figure 4-3 Standby sparing system (Dubrova, 2013) .. Figure 4-4 Block diagram of the Raspberry Pi Board .. Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) Figure 4-6 The HSDTVI Architecture.. Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario .. Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario ... Figure 4-9 The HSDTVI Debug Trace and Validate Process ... Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario Figure 4-11 Timing diagram of AVR and NanoRisc Communication ... Figure 5-1 Block diagram of Waterfall Model ...Figure 5-2 The V-model of the Systems Engineering Process ... Figure 5-3 The Incremental Model of Development.. Figure 5-4 The Spiral model of the Systems Engineering Process .. Figure 5-5 The Rapid Application Development (RAD) Model .. Figure 5-6 The Agile Development Model .. Figure 5-7 Overview of Model Driven Engineering .. Figure 5-8 Example Multicore WSN Architecture Diagram.. Figure 5-9 Early Validation Based on AADL ..

Figure 2 - 1

 21 Figure1-1 Overview of WSN applications[START_REF] Yick | Wireless sensor network survey[END_REF] ... Figure 1-2 Block diagram of DFT system.. Figure 1-3 Block diagram of Multicore WSN node ... Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova, 2013) ... Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova, 2013) ...Figure 2-4 MTBF versus Lifetime ...Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a) ... Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009) .. Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009) Figure 2-9 IBM server system RAS operations (IBM Corp, 2012) ... Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)Figure 3-1 Circuit Board of MICAz ...Figure 3-2 Circuit Board of MICA2 .. Figure 3-3 Circuit Board of Telos B ... Figure 3-4 Circuit Board of IRIS ... Figure 3-5 Circuit Board of Cricket ... Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013) ... Figure 4-1 Block diagram of TelosB .. Figure 4-2 Block diagram of Multicore Architecture ... Figure 4-3 Standby sparing system (Dubrova, 2013) .. Figure 4-4 Block diagram of the Raspberry Pi Board .. Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) Figure 4-6 The HSDTVI Architecture.. Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario .. Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario ... Figure 4-9 The HSDTVI Debug Trace and Validate Process ... Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario Figure 4-11 Timing diagram of AVR and NanoRisc Communication ... Figure 5-1 Block diagram of Waterfall Model ...Figure 5-2 The V-model of the Systems Engineering Process ... Figure 5-3 The Incremental Model of Development.. Figure 5-4 The Spiral model of the Systems Engineering Process .. Figure 5-5 The Rapid Application Development (RAD) Model .. Figure 5-6 The Agile Development Model .. Figure 5-7 Overview of Model Driven Engineering .. Figure 5-8 Example Multicore WSN Architecture Diagram.. Figure 5-9 Early Validation Based on AADL ..

Figure 2 - 2

 22 Figure1-1 Overview of WSN applications[START_REF] Yick | Wireless sensor network survey[END_REF] ... Figure 1-2 Block diagram of DFT system.. Figure 1-3 Block diagram of Multicore WSN node ... Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova, 2013) ... Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova, 2013) ...Figure 2-4 MTBF versus Lifetime ...Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a) ... Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009) .. Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009) Figure 2-9 IBM server system RAS operations (IBM Corp, 2012) ... Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)Figure 3-1 Circuit Board of MICAz ...Figure 3-2 Circuit Board of MICA2 .. Figure 3-3 Circuit Board of Telos B ... Figure 3-4 Circuit Board of IRIS ... Figure 3-5 Circuit Board of Cricket ... Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013) ... Figure 4-1 Block diagram of TelosB .. Figure 4-2 Block diagram of Multicore Architecture ... Figure 4-3 Standby sparing system (Dubrova, 2013) .. Figure 4-4 Block diagram of the Raspberry Pi Board .. Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) Figure 4-6 The HSDTVI Architecture.. Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario .. Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario ... Figure 4-9 The HSDTVI Debug Trace and Validate Process ... Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario Figure 4-11 Timing diagram of AVR and NanoRisc Communication ... Figure 5-1 Block diagram of Waterfall Model ...Figure 5-2 The V-model of the Systems Engineering Process ... Figure 5-3 The Incremental Model of Development.. Figure 5-4 The Spiral model of the Systems Engineering Process .. Figure 5-5 The Rapid Application Development (RAD) Model .. Figure 5-6 The Agile Development Model .. Figure 5-7 Overview of Model Driven Engineering .. Figure 5-8 Example Multicore WSN Architecture Diagram.. Figure 5-9 Early Validation Based on AADL ..

Figure 3 -

 3 Figure1-1 Overview of WSN applications[START_REF] Yick | Wireless sensor network survey[END_REF] ... Figure 1-2 Block diagram of DFT system.. Figure 1-3 Block diagram of Multicore WSN node ... Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova, 2013) ... Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova, 2013) ...Figure 2-4 MTBF versus Lifetime ...Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a) ... Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009) .. Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009) Figure 2-9 IBM server system RAS operations (IBM Corp, 2012) ... Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)Figure 3-1 Circuit Board of MICAz ...Figure 3-2 Circuit Board of MICA2 .. Figure 3-3 Circuit Board of Telos B ... Figure 3-4 Circuit Board of IRIS ... Figure 3-5 Circuit Board of Cricket ... Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013) ... Figure 4-1 Block diagram of TelosB .. Figure 4-2 Block diagram of Multicore Architecture ... Figure 4-3 Standby sparing system (Dubrova, 2013) .. Figure 4-4 Block diagram of the Raspberry Pi Board .. Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) Figure 4-6 The HSDTVI Architecture.. Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario .. Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario ... Figure 4-9 The HSDTVI Debug Trace and Validate Process ... Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario Figure 4-11 Timing diagram of AVR and NanoRisc Communication ... Figure 5-1 Block diagram of Waterfall Model ...Figure 5-2 The V-model of the Systems Engineering Process ... Figure 5-3 The Incremental Model of Development.. Figure 5-4 The Spiral model of the Systems Engineering Process .. Figure 5-5 The Rapid Application Development (RAD) Model .. Figure 5-6 The Agile Development Model .. Figure 5-7 Overview of Model Driven Engineering .. Figure 5-8 Example Multicore WSN Architecture Diagram.. Figure 5-9 Early Validation Based on AADL ..

Figure 3 - 2

 32 Figure1-1 Overview of WSN applications[START_REF] Yick | Wireless sensor network survey[END_REF] ... Figure 1-2 Block diagram of DFT system.. Figure 1-3 Block diagram of Multicore WSN node ... Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova, 2013) ... Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova, 2013) ...Figure 2-4 MTBF versus Lifetime ...Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a) ... Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009) .. Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009) Figure 2-9 IBM server system RAS operations (IBM Corp, 2012) ... Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)Figure 3-1 Circuit Board of MICAz ...Figure 3-2 Circuit Board of MICA2 .. Figure 3-3 Circuit Board of Telos B ... Figure 3-4 Circuit Board of IRIS ... Figure 3-5 Circuit Board of Cricket ... Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013) ... Figure 4-1 Block diagram of TelosB .. Figure 4-2 Block diagram of Multicore Architecture ... Figure 4-3 Standby sparing system (Dubrova, 2013) .. Figure 4-4 Block diagram of the Raspberry Pi Board .. Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) Figure 4-6 The HSDTVI Architecture.. Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario .. Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario ... Figure 4-9 The HSDTVI Debug Trace and Validate Process ... Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario Figure 4-11 Timing diagram of AVR and NanoRisc Communication ... Figure 5-1 Block diagram of Waterfall Model ...Figure 5-2 The V-model of the Systems Engineering Process ... Figure 5-3 The Incremental Model of Development.. Figure 5-4 The Spiral model of the Systems Engineering Process .. Figure 5-5 The Rapid Application Development (RAD) Model .. Figure 5-6 The Agile Development Model .. Figure 5-7 Overview of Model Driven Engineering .. Figure 5-8 Example Multicore WSN Architecture Diagram.. Figure 5-9 Early Validation Based on AADL ..

Figure 3 - 3

 33 Figure1-1 Overview of WSN applications[START_REF] Yick | Wireless sensor network survey[END_REF] ... Figure 1-2 Block diagram of DFT system.. Figure 1-3 Block diagram of Multicore WSN node ... Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova, 2013) ... Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova, 2013) ...Figure 2-4 MTBF versus Lifetime ...Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a) ... Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009) .. Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009) Figure 2-9 IBM server system RAS operations (IBM Corp, 2012) ... Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)Figure 3-1 Circuit Board of MICAz ...Figure 3-2 Circuit Board of MICA2 .. Figure 3-3 Circuit Board of Telos B ... Figure 3-4 Circuit Board of IRIS ... Figure 3-5 Circuit Board of Cricket ... Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013) ... Figure 4-1 Block diagram of TelosB .. Figure 4-2 Block diagram of Multicore Architecture ... Figure 4-3 Standby sparing system (Dubrova, 2013) .. Figure 4-4 Block diagram of the Raspberry Pi Board .. Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) Figure 4-6 The HSDTVI Architecture.. Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario .. Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario ... Figure 4-9 The HSDTVI Debug Trace and Validate Process ... Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario Figure 4-11 Timing diagram of AVR and NanoRisc Communication ... Figure 5-1 Block diagram of Waterfall Model ...Figure 5-2 The V-model of the Systems Engineering Process ... Figure 5-3 The Incremental Model of Development.. Figure 5-4 The Spiral model of the Systems Engineering Process .. Figure 5-5 The Rapid Application Development (RAD) Model .. Figure 5-6 The Agile Development Model .. Figure 5-7 Overview of Model Driven Engineering .. Figure 5-8 Example Multicore WSN Architecture Diagram.. Figure 5-9 Early Validation Based on AADL ..

Figure 3 -

 3 Figure1-1 Overview of WSN applications[START_REF] Yick | Wireless sensor network survey[END_REF] ... Figure 1-2 Block diagram of DFT system.. Figure 1-3 Block diagram of Multicore WSN node ... Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova, 2013) ... Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova, 2013) ...Figure 2-4 MTBF versus Lifetime ...Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a) ... Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009) .. Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009) Figure 2-9 IBM server system RAS operations (IBM Corp, 2012) ... Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)Figure 3-1 Circuit Board of MICAz ...Figure 3-2 Circuit Board of MICA2 .. Figure 3-3 Circuit Board of Telos B ... Figure 3-4 Circuit Board of IRIS ... Figure 3-5 Circuit Board of Cricket ... Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013) ... Figure 4-1 Block diagram of TelosB .. Figure 4-2 Block diagram of Multicore Architecture ... Figure 4-3 Standby sparing system (Dubrova, 2013) .. Figure 4-4 Block diagram of the Raspberry Pi Board .. Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) Figure 4-6 The HSDTVI Architecture.. Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario .. Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario ... Figure 4-9 The HSDTVI Debug Trace and Validate Process ... Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario Figure 4-11 Timing diagram of AVR and NanoRisc Communication ... Figure 5-1 Block diagram of Waterfall Model ...Figure 5-2 The V-model of the Systems Engineering Process ... Figure 5-3 The Incremental Model of Development.. Figure 5-4 The Spiral model of the Systems Engineering Process .. Figure 5-5 The Rapid Application Development (RAD) Model .. Figure 5-6 The Agile Development Model .. Figure 5-7 Overview of Model Driven Engineering .. Figure 5-8 Example Multicore WSN Architecture Diagram.. Figure 5-9 Early Validation Based on AADL ..

Figure 3 -

 3 Figure1-1 Overview of WSN applications[START_REF] Yick | Wireless sensor network survey[END_REF] ... Figure 1-2 Block diagram of DFT system.. Figure 1-3 Block diagram of Multicore WSN node ... Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova, 2013) ... Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova, 2013) ...Figure 2-4 MTBF versus Lifetime ...Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a) ... Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009) .. Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009) Figure 2-9 IBM server system RAS operations (IBM Corp, 2012) ... Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)Figure 3-1 Circuit Board of MICAz ...Figure 3-2 Circuit Board of MICA2 .. Figure 3-3 Circuit Board of Telos B ... Figure 3-4 Circuit Board of IRIS ... Figure 3-5 Circuit Board of Cricket ... Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013) ... Figure 4-1 Block diagram of TelosB .. Figure 4-2 Block diagram of Multicore Architecture ... Figure 4-3 Standby sparing system (Dubrova, 2013) .. Figure 4-4 Block diagram of the Raspberry Pi Board .. Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) Figure 4-6 The HSDTVI Architecture.. Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario .. Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario ... Figure 4-9 The HSDTVI Debug Trace and Validate Process ... Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario Figure 4-11 Timing diagram of AVR and NanoRisc Communication ... Figure 5-1 Block diagram of Waterfall Model ...Figure 5-2 The V-model of the Systems Engineering Process ... Figure 5-3 The Incremental Model of Development.. Figure 5-4 The Spiral model of the Systems Engineering Process .. Figure 5-5 The Rapid Application Development (RAD) Model .. Figure 5-6 The Agile Development Model .. Figure 5-7 Overview of Model Driven Engineering .. Figure 5-8 Example Multicore WSN Architecture Diagram.. Figure 5-9 Early Validation Based on AADL ..

Figure 5 -

 5 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 6 - 3

 63 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 6 -

 6 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 6 - 6

 66 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 6 -

 6 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 6 -

 6 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 6 -

 6 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 7 - 1

 71 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 7 - 2

 72 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 7 - 3

 73 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 7 -

 7 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 7 -

 7 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 7 - 6

 76 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

Figure 7 - 7

 77 Figure 5-10 Early Validation Based on Virtual Processor Emulator .. Figure 5-11 Block diagram of the Fault Injection TestBed .. Figure 5-12 Circuit Board of the Fault Injection TestBed .. Figure 6-1 Block diagram of the E² MWSN ... Figure 6-2 Hardware Architecture of E² MWSN .. Figure 6-3 Circuit Board of the E² MWSN ... Figure 6-4 Measure Schematics of the E² MWSN .. Figure 6-5 Block diagram of iLive ...Figure 6-6 Hardware Architecture of the iLive .. Figure 6-7 Circuit Board of iLive ..Figure 6-8 Timing Diagram of iLive .. Figure 6-9 Measure Schematics of the iLive ... Figure 6-10 Block diagram of the SIS ... Figure 6-11 Hardware Architecture of the SIS ... Figure 6-12 Circuit Board of the SIS ... Figure 6-13 Measure Schematics of the SIS .. Figure 6-14 Block diagram of the iLiveEdge ... Figure 6-15 Hardware Architecture of the iLiveEdge .. Figure 6-16 CircuitBoard of the iLiveEdge ... Figure 6-17 Block diagram of the EPER ... Figure 6-18 Hardware Architecture of the EPER ...Figure 6-19 Circuit Board of the EPER ... Figure 6-20 Block diagram of the RPiER ..Figure 6-21 Hardware Architecture of the RPiER ... Figure 6-22 CircuitBoard of RPiER ... Figure 6-23 Outdoor Experiment in ISIMA Garden .. Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) Figure 6-25 Heterogeneous Architecture of the MiLive .. Figure 6-26 Circuit Board of the MiLive ... Figure 6-27 Demo Web page of the MiLive platform .. Figure 6-28 Demo Web page of the SIS Platform .. Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... Figure 6-30 Block diagram of the SEE-stick ... Figure 6-31 SEE-Stick Prototype ... Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ...Figure 7-1 Architecture of Next Generation Multicore SoC ..Figure 7-2 Uniform NanoRisc based on the Multicore SoC ..Figure 7-3 Different Common Risc based on the Multicore SoC ..Figure 7-4 FSMOS Modules based the Multicore SoC ...Figure 7-5 Intra-Chip Multicore Interconnection Networks ..Figure 7-6 Cross Platform of the FSMOS Software Architecture ...Figure 7-7 FSMOS running on a PC with the Remote Module ...

 1 Comparison of common available scalar WSN Nodes .. Table 3-2 Key Features of Low performance WMSN nodes ... Table 3-3 Key Features of Medium performance WMSN nodes ... Table 4-1 Key features of Different Core ...Table 4-2 the HSDVTI Pin connections between AVR and Raspberry Pi Board Table 4-3 The HSDVTI Pin connections between NanoRisc and AVR ... Table 4-4 Pseudo Code for Heart Beat Checking of Coordinator .. Table 4-5 Pseudo Code for Error Handle of the coordinator ... Table 4-6 Pseudo Code for Heart Beat Checking of End-device ... Table 4-7 Pseudo Code for Error Handle of End-device.. Table 5-1 Example Module List ... Table 5-2 Example High-level Interface of cAVR Module .. Table 5-3 Example High-level Interface of cEvDrv Module ... Table 5-4 Sample Functional Specification of cEvDrv Module .. Table 5-5 Fault Injection modes with contact .. Table 5-6 Fault Injection modes without contact ... Table 6-1 Operation modes of the E² MWSN ... Table 6-2 Task Resource Required of the E² MWSN on single AT91SAM7Sx mode Table 6-3 Task Resource Required of the E² MWSN on single ATMEGA1281mode Table 6-4 Task Resource Required on AT91SAM7Sx plus ATMEGA1281 mode Table6-5 FIT of Each Core in the E² MWSN* ... Table 6-6 MTBF/MTBCF of Each E² MWSN Operation Mode .. Table 6-7 Default Timing Parameters of iLive ... Table 6-8 Task Resource Required of iLive ... Table 6-9 FIT of each core in the iLive* .. Table 6-10 Task Resource Required of the SIS on Dry Soil * ... Table 6-11 Task Resource Required of the SIS on Normal Soil .. Table 6-12 FIT of Each core in the SIS* .. Table 6-13 FIT of Each core in the iLiveEdge* ... Table 6-14 FIT of Each core in EPER* .. Table 6-15 FIT of Each core in RPiER* ..

FigureFigure 1 - 2

 12 Figure 1-2 shows the block diagram of a simple DFT system.

Figure 1 - 3

 13 Figure 1-3 Block diagram of Multicore WSN node

 Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core

Figure 2 - 1

 21 Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) Figure 2-1 shows a systematic exposition of the concepts of dependability (Algirdas[START_REF] Avizienis | Fundamental Concepts of Dependability: Research Report[END_REF], it can be broken down into three elements:

Figure 2 -

 2 Figure 2-2 and Figure2-3 provide a typical evolution of failure rate over a lifetime of a hardware system and a software system[START_REF] Dubrova | Fault-Tolerant Design[END_REF].

Figure 2 - 2 Figure 2 - 3

 2223 Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system[START_REF] Dubrova | Fault-Tolerant Design[END_REF]

 0

Figure 2 -

 2 Figure 2-4 MTBF versus Lifetime

Figure 2 -

 2 5 show an example of serial and parallel two-component system.

Figure 2 - 5

 25 Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel

Figure 2 -

 2 Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a)

 -7 and the Figure 2-8 show the results in this report.

Figure 2 - 7

 27 Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009)

Figure 2 -

 2 Figure 2-9 IBM server system RAS operations (IBM Corp, 2012)

Figure 2 -

 2 10. Moreover similar RAS system, non-stop servers, is also developed by HP (Hewlett-Packard Development Company, 2012).

Figure 2 -

 2 Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)

 The 51-pin expansion connector supports Analog Inputs, Digital I/O, I² C, SPI and UART interfaces. It provides 75-100 meter of outdoor range line of sight communication (1/2 wave dipole antenna).

Figure 3 -

 3 Figure 3-1 Circuit Board of MICAz

Figure 3 - 2

 32 Figure 3-2 Circuit Board of MICA2

Figure 3 - 3

 33 Figure 3-3 Circuit Board of Telos B

Figure 3 -

 3 Figure 3-4 Circuit Board of IRIS

Figure 3 -

 3 Figure 3-5 Circuit Board of CricketTable 3-1 provides the detail features of these common available scalar WSN nodes.



 foster greater traceability  enhance marketing of farm products  improve lease arrangements and relationship with landlords  enhance the inherent quality of farm products (e.g. protein level in bread-flour wheat) WSN nodes are used for collecting information about physical and environmental attributes whereas actuators are employed to react on the feedback to have control over the situations. Agriculture domain poses several requirements that are following:  Collection of weather, crop and soil information  Monitoring of distributed land  Multiple crops on single piece of land  Different fertilizer and water requirement to different pieces of uneven land  Diverse requirements of crops for different weather and soil conditions  Proactive solutions rather than reactive solutions.

 Degradation of the battery  Different temperature responses in the processor and radio oscillator, which causes numerous network failures  Water infiltrations, which introduce degradations within the hardware  Physical damage  Communication faults (e.g., interference, multi-path fading, noises)

 , memory sparing (Hewlett-Packard Development Company, 2010), redundant I/O (Intel Corporation, 2013b; Oracle, 2010), I/O partitions (IBM, 2011) and RAID disk storage (P. M. Chen, Lee, Gibson, Katz, & Patterson, 1994) cannot be directly applied in WSN field.

Figure 3 - 6

 36 Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013)

 and Tmote Sky or TelosB (J.[START_REF] Polastre | The mote revolution: Low power wireless sensor network devices[END_REF][START_REF] Polastre | Telos: enabling ultra-low power wireless research[END_REF], developed by UC Berkeley's teams. Figure 4-1 shows the diagram of TelosB. TelosB has a Texas Instruments MSP430 microcontroller and a Chipcon AS (acquired by TI) IEEE 802.15.4compliant radio. The power consumption of TelosB is almost one-tenth of previous mote platforms while providing greater performance and throughput. It eliminates programming and support boards, while enabling experimentation with WSNs in lab, testbed, and deployment settings.

Figure 4 - 1

 41 Figure 4-1 Block diagram of TelosB

Figure 4 - 3

 43 Figure 4-3 Standby sparing system[START_REF] Dubrova | Fault-Tolerant Design[END_REF]

 receiving message (duration r t). For example, from (4.1) different approaches may be applied to minimize energy consuming in different layers for the single core wireless node:  Routing protocol: shortest (optimal) path to minimize the hop number,  data fusion or data aggregation to minimize the message size,  Operation mode: entering sleep &wakeup state to minimize the listen time. Notice that with the current wireless access medium (e.g. IEEE802.15.4) the listening or receiving message consumes more energy than sending message.

 (Actel-Corporation, 2009).They Features of IGLOO® nanoFPGAs are:  Ultra-low power in Flash*Freeze mode, as low as 2 µW  Variety of small footprint packages as small as 3x3 mm  Zero lead time on selected devices  Known good die supported  Enhanced commercial temperature  Reprogrammable flash technology  1.2 V to 1.5 V single voltage operation  Enhanced I/O features  Clock conditioning circuits (CCCs) and PLLs  Embedded SRAM and nonvolatile memory (NVM)  In-system programming (ISP) and security.Chapter 4. Multicore WSN Node Architecture

Figure

 Figure 4-4 Block diagram of the Raspberry Pi Board

Figure 4 - 5

 45 Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) 4.3.8. ARM Cortex TM -M3 Based Microcontroller



 Easy to use  Can debug IRQ handler and concurrent program  Light overhead (no side effect)  High speed  Can help to localize the dysfunction of an application  Ease fail detection and recovery Therefore, we present the HSDTVI to provide another way to debug trace and validate the microcontroller running state. the block diagram of the HSDTVI Interface. The HSDTVI is a communication & control bus between two devices: HSDTVI Slave and HSDTVI Master.  The HSDTVI Master receives the checkpoints from the HSDTVI Slave through the HSDTVI Interface, analyzes and monitors the state of the HSDTVI Slave. If the HSDTVI Master detects fault in the HSDTVI Slave, it can reset, reboot, or power off the HSDTVI Slave. All the receiving, checking and reacting are running in real-time.  DataBus is a set of GPIO between HSDTVI Slave and HSDTVI Master. If the HSDTVI Slave and HSDTVI Master have enough GPIO resource, this port can use as much GPIOs as possible to get maximum debug information. If the GPIO resource is limited, this port also can decrease to only one pin.  The Reset pin is the Reset pin of the HSDTVI Slave. If the HSDTVI Master detected fault in DUT, this pin can be used to reset the HSDTVI Slave.

 Figure 4-6 The HSDTVI Architecture

Figure 4 - 7

 47 Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario

Figure 4 -

 4 Figure4-8 shows the Circuit Board of the HSDTVI used for Debug Mode Scenario. This HSDTVI are connected between 8-bit AVR RISC in iLive[Page 86] and 32-bit ARM11 SoC in Raspberry Pi.

 Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario

Figure 4 -

 4 Figure 4-11 Timing diagram of AVR and NanoRisc Communication

Figure 5 - 1

 51 Figure 5-1 Block diagram of Waterfall Model

 Figure 5-2 shows the diagram of the V Model.

Figure 5 - 2

 52 Figure 5-2 The V-model of the Systems Engineering Process

Figure 5 - 3

 53 Figure 5-3 The Incremental Model of Development

Figure 5 - 4

 54 Figure 5-4 The Spiral model of the Systems Engineering Process

Figure 5 - 5

 55 Figure 5-5 The Rapid Application Development (RAD) Model

 Figure 5-6 shows the diagram of the Agile Model.

Figure 5 - 6

 56 Figure 5-6 The Agile Development Model Agile development model can provide rapid, continuous delivery of useful software for customer. In Agile development model, people and interactions are emphasized rather than process and tools. Customers, developers and testers constantly interact with each other. Agile development model can accept late changes in requirements. Continuous attention helps to create technical excellence and good design. However, Agile development model lack of emphasis on necessary designing and documentation. Only senior programmers are capable of taking the kind of decisions required during the development process[START_REF] Nowka | Circuits Design for Low Power[END_REF].

 Normally a project has four important Product Life Cycle (PLC) phases:  Conception Phase: Collect product requirements  Design Phase: Architecture design, implementation of hardware, software and mechanical design, as well as test  Realization Phase: Manufacture  Service Phase: Installation, Operation & Maintain WSN

Figure 5 -

 5 Figure 5-7 shows the diagram of the MDE.

Figure 5 - 7

 57 Figure 5-7 Overview of Model Driven Engineering

Figure 5 -

 5 Figure 5-8 below is an example of top-level multicore WSN architecture diagram.

Figure 5 -

 5 Figure 5-9 shows a block diagram for the early validation based on AADL. My colleague, ZHOU Peng, in our SMIR team focuses on this direction.

Figure

 Figure 5-9 Early Validation Based on AADL

Figure 5 -

 5 Figure 5-11 shows a block diagram for the fault injection testbed. Testbed mainly consist four parts: Design Under Test (DUT), Fault Injection Board, PC and peripheral equipment.  The DUT is the WSN node under test.  The Fault Injection Board is a specification board for fault injection to WSN node based on Raspberry Pi board.  The PC controls the test and records/displays the results.  The peripheral equipment includes off-the-shelf peripheral equipment Atmel AVR JTAG MK-II and SuperPro USB Programmer to program the microcontroller on DUT, EMI Burst-Generator and EMI-Probe, Californium-252 Source for Heavy-Ion Radiation. The pre-validated WSN node is special peripheral equipment, which running IEEE802.15.4 stack. Therefore, the DUT can test its RF link with this node without expensive RF Wave Generator and Analyzer.

Figure 5 -

 5 Figure 5-11 Block diagram of the Fault Injection TestBed The Figure 5-12 shows the circuit board of the Fault Injection TestBed.

Figure 6 -Figure 6 - 2

 662 Figure 6-1 Block diagram of the E² MWSN

Figure 6 -

 6 Figure 6-3 shows the implemented board of the E² MWSN.

 Figure 6-3 Circuit Board of the E² MWSN

Figure 6 - 4

 64 Figure 6-4 Measure Schematics of the E² MWSN

Figure 6 -

 6 Figure 6-5 Block diagram of iLive

Figure 6 -

 6 Figure 6-7shows the implemented board of iLive.

Figure 6 -

 6 shows the timing diagram of iLive. Every time iLive be connected with power supply source, it will continuously power on AVR for ON Init T . During this period, the iLive will switch only between Active mode (remain for Active T) and Sleep mode (remain for Sleep T).Therefore, user can use JTAG or USB-to-Serial Convert cable to upgrade the firmware or middleware of iLive without meeting power fail problem.

 Figure 6-9 Measure Schematics of the iLive

Figure 6 -

 6 Figure 6-10 Block diagram of the SIS SIS has two versions: standard version and low price version, the Standard version SIS has IEEE802.15.4 ZigBee wireless access medium, can join WSN to form a bigger and more powerful irrigation system. The low price version removes the IEEE802.15.4 ZigBee wireless access medium in order to archive a lower price. The main different between these two version is the Main App Core. The Standard version uses the same AVRRF as in iLive, and low price version only uses a low cost 8-bit AVR microcontroller.

Figure 6 -

 6 Figure 6-11 Hardware Architecture of the SIS

Figure 6 Figure 6 -

 66 Figure 6-12 Circuit Board of the SIS

6 -Figure 6 -

 66 Figure 6-14 Block diagram of the iLiveEdge

Figure 6

 6 Figure 6-16 CircuitBoard of the iLiveEdge

Figure 6 6 -Figure 6 -

 666 Figure 6-17 Block diagram of the EPER

Figure 6

 6 Figure 6-19 Circuit Board of the EPER

Figure 6 -

 6 Figure 6-21 Hardware Architecture of the RPiER The Figure 6-22 shows the photo of the RPiER board.

Figure 6 

 6 Figure 6-22 CircuitBoard of RPiER

Figure 6 -

 6 Figure 6-23 Outdoor Experiment in ISIMA Garden

Figure 6 -

 6 Figure 6-25 Heterogeneous Architecture of the MiLive

 Figure 6-26 Circuit Board of the MiLive

Figure 6 -

 6 Figure 6-28 Demo Web page of the SIS Platform

Figure 6 -

 6 Figure 6-29 Real World Long Term Online Demo of the SIS Platform

HSDTVIFigure 6 -

 6 Figure 6-30 Block diagram of the SEE-stick Besides, the SEE-stick supports many wireless access media, such as WiFi, 3G, and IEEE 802.15.4 etc. The IEEE 802.15.4 RF part, supported by AVRRF core, will provide the SEEstick to access local ITS 'Intelligent Transportation System', which can greatly help the SEEstick to provide more accurate and reliable mobility cues.

Figure 6 -

 6 Figure 6-31 SEE-Stick Prototype

Figure 7 - 2

 72 Figure 7-2 Uniform NanoRisc based on the Multicore SoC

Figure 7 - 3

 73 Figure 7-3 Different Common Risc based on the Multicore SoC 7.2.1.2.3.FSMOS Modules In this method, the core processor of SoC is consisting by an array of special FSMOS modules (Page 124). This method can optimize both the hardware and software of WSN node. In this case, the hardware design will closely combine with the software design. Therefore, this technique will achieve the best power efficiency. The architecture of this method is shown in the Figure7-4.

Figure 7 -

 7 Figure 7-5 Intra-Chip Multicore Interconnection Networks The Figure 7-5 proposed an Intra-Chip interconnection network with two ranks: Network for Cores (connects all the core modules) and Network for Devices (connects cores with all devices). Besides, the Off-Chip communication of Multicore SoC should also support common interface such as I² C, SPI, and UART.

Figure 7 - 6 

 76 Figure 7-6 Cross Platform of the FSMOS Software Architecture  Hardware Abstraction Layer (HAL) provides basic hardware dependent platform independent functionality, like hardware timer, sleep control, GPIO access for the radio interface  Radio physical layer (PHY) provides functions for radio transceiver access. Some of them are accessible only by the network layer (request to send data, data indication); some of them can be used from the application (channel selection, random number generation, energy detection, etc.)  Network layer (NWK) provides network stack functionality, like Frame Transmission, Frame Reception, and Acknowledgement, Routing, Security, etc.

Table 6 -

 6 16 Related Ongoing IWoT Real World Projects in SMIR@LIMOS

Table 6 -

 6 17 Key Features of Different Multicore WSN Nodes ...

Table 6 -

 6 18 Reliability of Different Multicore WSN Nodes ... Table 7-1 Different Core Architecture of Multicore SoC ...

	xiii

Table 3 -

 3 1 Comparison of common available scalar WSN Nodes

	Feature	MICAz	MICA2	TelosB	IRIS	Cricket
	Microcontroller	Atmel	Atmel	TI MSP430	Atmel	Atmel
		ATmega128L	ATmega128L		ATmega1281	ATmega128L
	Bus Width	8	8	16	8	8
	Clock Speed	7.373	7.373	6.717	7.373	4
	(MHz)					
	SRAM	4 K	4 K	10 K	8 K	4 K
	SDRAM					
	EEPROM	4 K	4 K	16 K	4 K	4 K
	Flash	128 K	128 K	48 K	128 K	128 K
	Serial Flash	512 K	512 K	1024 K	512 K	512 K
	Size (mm)	58 × 32 × 7	58 × 32 × 7	65 × 31 × 6	58 × 32 × 7	58 × 32 × 7
	Battery					

Table 3 -

 3 2 Key Features of Low performance WMSN nodes

	Platform	Processor	RAM	Flash	Radio
	Cyclops	8-bit ATmega128L MCU + CPLD	64 KB	512 KB	IEEE 802.15.4
	FireFly Mosaic	60MHz 32-bit LPC2106ARM7TDMI MCU	64 KB	128 KB	IEEE 802.15.4
	eCam	OV 528 serial-bridge controller JPEG compression only	4 KB (Eco)	-	RF 2.4 GHz 1Mbps
		55 MHz 32-bit			
	MeshEye	ARM7TDMI based on ATMEL	64 KB	256 KB	IEEE 802.15.4
		AT91SAM7S			
	WiCa	84 MHz Xetal SIMD Processor + 8051 ATMEL MCU	1.79 MB +128KB DPRAM	64 KB	IEEE 802.15.4
	MicrelEye	8-bit ATMEL FPSLIC (includes 40k Gate FPGA)	36 KB + 1 MB external SRAM	-	Bluetooth
	CMUcam3	60 MHz 32-bit ARM7TDMI based on NXP LPC2106	64 KB	128 KB	-

Table 3 -

 3 3 Key Features of Medium performance WMSN nodes

	Platform	Processor	RAM	Flash	Radio
	Imote2	416 MHz 32-bit PXA271 XScale processor	256 KB SRAM + 32MB SDRAM	32 MB	IEEE 802.15.4
	Stargate	400 MHz 32-bit PXA255 XScale CPU	64 MB	32 MB	IEEE 802.11 and IEEE 802.15.4
	CITRIC	624 MHz 32-bit Intel XScale PXA270 CPU	64 MB	16 MB	IEEE 802.15.4

 4-2 presents the block diagram of multicore architecture. There are three types of cores in the node. The Main App Core is a normal application core as same as in single core WSN node. The Auxiliary Core is optional core; the function of this core is depended on specific application. The FD & FR Core is the key component in the multicore architecture. It coordinates all components in the nodes, runs as a monitor of Main App Core, detects faults in the Main App Core. It will isolate the faulty Main App Core and active the Auxiliary Core to substitute the Main App Core if necessary. Through the switching of core, multicore WSN node can provide seamless services even in the presence of faults. Block diagram of Multicore Architecture The Input Switch and Safe Gate are controlled by the FD & FR Core. So FD & FR Core can isolate the fault Core from Sensor Input and Control Output. This can greatly help to achieve a functional safety system.

				Main App Core				
				Sensor	Control				
				Input	Output				
					HSDTVI				
	Sensor	I	O Switch Input O	C	FD & FR Core	C	I Safe Gate I	O	Control
					HSDTVI				
				Sensor	Control				
				Input	Output				
					Auxiliary Core				
				Figure 4-2					
	4.2. Multicore WSN Node Architecture				
	4.2.1.		Generalized Multicore Architecture				

Figure

Table 4 -

 4 1 Key features of Different Core

	Feature	IGLOO	NanoRisc	ATMEGA1281	AVRRF	AT91SAM7x	Raspberry	PandaBoard
							Pi Board	ES
	Bus Width		4	8	8	32	32	32
	Clock Speed	Up to 250MHz	32kHz-	8MHz	16MHz	Up to 55MHz	700MHz	1.2GHz
	(MHz)		800kHz					
	SRAM/SDRAM	36*1024bit	80*4bit	8 KB	16KB	64 KB	512MB	1GB
	Flash/SD	1Kbit	8KB	128 KB	128KB	512 KB	Up to 32GB	Up to 32GB
	VCC							

Table 4 -

 4 2 provides the detail pins of the HSDVTI between AVR and Raspberry Pi Board.

	Table 4-2 the HSDVTI Pin connections between AVR and Raspberry Pi Board
	HSDTVI Pin	AVR/ AVRRF	Direction	RASP
	Databus			

Table 4 -

 4

	Pin Name	Direction	Pin Description	Related Functions On AVRRF On NanoRisc
	PmReq	AVRRFNanoRisc	AVRRF informs	SetPmReqOn	PmReqIsOn
			NanoRisc that it has	SetPmReqOff	PmReqIsOff
			finished its job		
			(request to power		
			down, for end-device		
			node), High voltage		
			is active		
	PmReply AVRRFNanoRisc	NanoRisc provide ACK	PmRespIsOn	SetPmReplyOn
			to AVRRF, High	PmRespIsOff	SetPmReplyOff
			voltage is active		
	AVRRst	AVRRFNanoRisc	NanoRisc use it to	N/A	SendAVRRst
			reset AVRRF, longer		
			than 300ns low		
			voltage pulse can		
			reset AVRRF		
	AVREn	NanoRiscPSU	NanoRisc use this pin	N/A	SetAVREnOn
			to control the power		SetAVREnOff
			supply of AVRRF, High		
			is active the Power		
			Source for AVRRF		

3 details related Pin between NanoRisc and AVRRF used for real-time fault detection mode.

Table 4-3 The HSDVTI Pin connections between NanoRisc and AVR

Table 4

 4 Easy to use, can debug interrupt handler and concurrent programs: The checkpoint related codes can be placed at anywhere in the program including in interrupt handler  Can help to localize the dysfunction of an application (real-time fault checking) Real world debug trace & verify: the HSDTVI Master can be deployed in real world environment embedded into the HSDTVI Slave. In this case, it helps user to locate bugs show up only in physical environment  Provide the key technology as Auto-Tester: the HSDTVI Master can run suitable software to check real-time state of the HSDTVI Slave. The software can act according to the result of fault detection on the HSDTVI Slave. Therefore, the HSDTVI Master can help developer to check the program automatically, easy for regression tests or long time monitor for transient error  Force design-for-test way: Request developers to provide the profile of check points, the check rules in profile will be used by the HSDTVI Master. This potentially help to ensure the whole develop process following the design-for-test way

	-4 and Table 4-5 show the pseudo code for this heartbeat checking process in
	the coordinator.			
	Table 4-4 Pseudo Code for Heart Beat Checking of Coordinator
	AVR	Direction	NanoRisc	Comment
	//Active PmReq		//Wait PmReqIsOn	Step A
	SetPmReqOn();		While(PmReqIsOff()	
			&& !Timeout());	
	//Wait PmReplyIsOn		//Active PmReply	Step B
	While(PmReplyIsOff()		If(PmReqIsOn())	
	&& !Timeout());		SetPmReplyOn();	
			Else	
			goto Err;	
	//Deactive PmReq		//Wait PmReqIsOff	Step C
	If(PmReplyIsOn)		While(PmReqIsOn()	

 Detect failure more quickly and more accurately: Checkpoint can be put in anyplace in the program, and it also can be designed with the inside logic of SW, these extra information in checkpoints can help to detect HW/SW failure more quickly and accurately  Fault injection support: Fault injections are necessary to test, validate and evaluate the reliability of a system to short the test and validation time. The HSDTVI interface can help to gather the results of fault injection.

 Support mutual debug, test, fault detection and fault recovery. The HSDTVI is a bidirectional communication bus. So it can help to implement mutual real-time debug, test, fault detection and fault recovery.

Table 5 -

 5 1 Example Module List

	Module Name		Module Description
	cAVR		AVR Micro-controller of SIS	
	cSCM		SCM in SIS, support wireless access to SIS, also connects cAVR with
			the HSDTVI, can support debug trace and validate software in cAVR.
	cEvDrv		Driver of Electrovalve	
	cEvMonRisc		Electrovalve Monitor 4-bit RISC	
	cSisMod		Work Mode Switch of SIS	
	cPSU		Power Supply Unit of SIS	
	cSensor		Soil Temperature and Soil Moisture Sensor
	cLed		1 Green Led and 1 Red Led	
	cBuzzer		1 Buzzer	
	5.3.3.3.	Module Interface Specification	
	Module Interface specification identifies all interfaces between high-level modules and
	other modules or systems. Following are examples of module interface table for two different
	modules.				
	5.3.3.3.1.	Interface of Module with Software inside	
			Table 5-2 Example High-level Interface of cAVR Module
	Pin Name		Direction	Pin Description	Related Functions Function Name Comment
	SisMod0		Input	From Work Mode	SisMode0IsOn	Low
				Switch, Low mean SIS	SisMode0IsOff	voltage is
				is on Auto work mode		active
	SisMod1		Input	From Work Mode	SisMode1IsOn	Low
				Switch, Low mean SIS	SisMode1IsOff	voltage is
				is on Manual work		active
				mode	
	AVRRst		Input	Low For Hardware	N/A
				Reset AVR	
	AVREvCtlPlus		Output	To EV Driver, Low	SetAVREvCtlPlusOn	Low
				Request Electrovalve	SetAVREvCtlPlusOff	voltage is
				Open		active
	AVREvCtlMinus	Output	To EV Driver, Low	SetAVREvCtlMinusOn	Low
				Request Electrovalve	SetAVREvCtlMinusOff	voltage is
				Close		active
	EvCur		Input	Analogy Input from EV	ReadEvCurData
				Driver, Indicate the	
				current of EV	
	EvCtlReq		Output	To cEvMonRisc, Low	SetEvCtlReqOn	Low
				Request Electrovalve	SetEvCtlReqOff	voltage is
				start work		active

 The pre-validated WSN node is special peripheral equipment, which running IEEE802.15.4 stack. Therefore, the DUT can test its RF link with this node without expensive RF Wave Generator and Analyzer.

		SuperPro USB Programmer	JTAG for NanoRisc
						Burst-Generator
	USB	Atmel AVR JTAG MK-II	JTAG for AVRRF	RF Test Enclosure	EMI-Probe
		Pre-Validated IEEE802.15.4			DUT (WSN node)	Heavy-Ion Radiation	Californium-252
	USB	WSN node		
	USB			Pwr	HSDTVI	ADC	DIO
		Power Supply	Power Supply Fault Injection		Analogy Fault Injection	Digital Fault Injection
		Fault Inject		Analogy Source
			Board			Emulator	Digital Fault Injection Ctrl
			Eth Controller	Raspberry Pi
			WiFi	Board

Table 5 -

 5 5 Fault Injection modes with contact

	Signal Type	Fault Injection Method	Period	Parameters Duration Voltage	Freq
		Under shoot	Adj	Adj	Adj
		Over shoot	Adj	Adj	Adj
	Power Supply	Stuck-at GND Stuck-at Voltage	Adj Adj	Adj Adj	Adj
		Open	Adj	Adj	
		Noisy	Adj	Adj	Adj	Adj
		Stuck-at GND	Adj	Adj	
	Analogy Signal	Stuck-at Voltage Open	Adj Adj	Adj Adj	Adj
		Noisy	Adj	Adj	
		Stuck-at GND	Adj	Adj	
		Stuck-at VDD	Adj	Adj	
	Digital Signal	Stuck-at H Stuck-at L	Adj Adj	Adj Adj	
		Open	Adj	Adj	
		Flip	Adj	Adj	

Table 5 -

 5 6 Fault Injection modes without contact

	Signal Type	Fault Injection Method	Parameters Period Duration Voltage Freq Fluence
	Electro Magnetic Interference	Burst (Transients) ESD Surges PQT (Voltage Dips)	Adj Adj Adj Adj	Adj Adj Adj Adj	Adj Adj Adj Adj	Adj
	Radiation	Heavy-Ion Radiation	Adj	Adj		Adj
	RF	RF Interference	Adj	Adj		Adj

Table 6 -1 Operation modes of the E² MWSN Operation Modes Status of each Core

 6

	AT91SAM7Sx ATMEGA1281	IGLOO

Table 6 -

 6 2 Task Resource Required of the E² MWSN on single AT91SAM7Sx mode

	Task	Resource Required Current Time Used	Energy Consumption(µJ)
	Sensing	22.1mA	896ms	59405
	Signal Processing	19.7mA	5.0ms	295
	Data Storage	20.9mA	6.0ms	376
	Wireless Communication*	21.8mA	140ms	9156
	Sleep	0.2mA	178953ms**	107372
	Total			

Table 6 -

 6 3 Task Resource Required of the E² MWSN on single ATMEGA1281mode

	Task	Resource Required Current Time Used	Energy Consumption(µJ)
	Sensing	15.9mA	900ms	42795
	Signal Processing	9.9mA	268ms	7919
	Data Storage	16.3mA	10.1ms	494
	Wireless Communication	21.8mA	140ms	9156
	Sleep	40µA	178682ms**	21442
	Total			81806

Table 6 -

 6 4 Task Resource Required on AT91SAM7Sx plus ATMEGA1281 mode

	Task	Resource Required Current Time Used	Energy Consumption(µJ)
	Sensing	15.9mA	900ms	42795
	Signal Processing	19.7mA	5.0ms	295
	Data Storage	20.9mA	6.0ms	376
	Wireless Communication	21.8mA	140ms	9156
	Sleep	1µA	178949ms**	537
	Total			53159

*ATMEGA1281 is used for wireless access.

Table 6 -

 6 5 FIT of Each Core in the E² MWSN*

	Core	FIT
	ATMEGA1281	48.07
	AT91SAM7Sx	58.93
	IGLOO	22.39
	*The raw MTBF or FIT data is taken from manufacturers (Atmel

Table 6 -

 6 6 MTBF/MTBCF of Each E² MWSN Operation Mode

		Overall MTBF/MTBCF
	Operation Mode		
		MTBF	MTBCF
	single ATMEGA1281	1.42E+07	1.42E+07
	single AT91SAM7Sx	1.23E+07	1.23E+07
	AT91SAM7Sx plus ATMEGA1281	7.73E+06	4.47E+07
	From		

Table 6 -

 6 6, we can know that the AT91SAM7Sx plus ATMEGA1281 mode is the highest reliable mode among these three works modes. The MTBCF of this mode is 4.47E+07 hour, over 5000 years.As mentioned in Figure2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node board. It is also not the product lifetime of WSN node.

	6.2. iLive: High Reliability and Low cost Multicore WSN
	Node
	6.2.1.

 It can directly support four Watermark sensors and three Decagon sensors without adapter board. It integrates on board one air temperature sensor, one air humidity sensor and one light sensor based on I² C bus. It has a UART port, which can directly support USB-to-Serial converter cable to connect with a PC.

		Watermark Soil		JTAG	JTAG for AVR	iLive
		Moisture Sensor	WmSoil	
	Sensors	Decagon Soil Probe		ATMEGA 1281 LED	LED[0..1]	V BAT
		Moisture Sensor	DeSoil	BatV	Voltage
		Probe				PSU
					PowerCtl
		On Board I² C Sensor	I² C Bridge	I² C		AVREn
					HSDTVI	HSDTVI	NanoRisc
	USB	USB_Serial		UART	
		Figure 6-6 Hardware Architecture of the iLive

Table 6 -

 6 7 provides the default timing parameters of iLive.

Table 6 -

 6 7 Default Timing Parameters of iLive

		Parameter Name	Value	Modification	Comment
	T	ON	15 min	Fixed
	Init		
	T	OFF	1 Hour	Fixed
	Deepsleep		
	T	ON	1 min	Fixed
	Normal		
	T		5 sec	Define by Middleware
	Sleep		
	T		3 sec	Related to the Sensor type and count
	Active		

Table 6 -

 6 8 Task Resource Required of iLive

	Task	Resource Required Current Time Used	Energy Consumption(µJ)
	Sensing	15.9mA	900ms	42795
	Signal Processing	9.9mA	268ms	7919
	Data Storage	16.3mA	10.1ms	494
	Wireless Communication	21.8mA	140ms	9156
	Sleep	1µA	178682ms*	536
	Total			60900

*Sleep time is determined by sample frequency.

Table 6 -

 6 9 FIT of each core in the iLive*

	Core	FIT
	ATMEGA1281	48.07
	NanoRisc	13.09
	*The raw MTBF or FIT data is taken from manufacturers (Atmel

Table 6 -

 6 10 Task Resource Required of the SIS on Dry Soil *

	Task	Resource Required Current Time Used	Energy Consumption(µJ)
	Sensing	6.3mA	900ms	51030
	Signal Processing	4.6mA	268ms	11095
	Data Storage	7.6mA	10.1ms	691
	Wireless Communication 15.5mA	140ms	19530
	Turn On Electro-valve	650mA	100ms	585000
	Turn Off Electro-valve	650mA	100ms	

Table 6 -

 6 11 Task Resource Required of the SIS on Normal Soil

	Task	Resource Required Current Time Used	Energy Consumption(µJ)
	Sensing	6.3mA	900ms	51030
	Signal Processing	4.6mA	268ms	11095
	Data Storage	7.6mA	10.1ms	691
	Wireless Communication 15.5mA	140ms	19530
	Sleep	20µA	178682ms*	32163
		Total		114509

*Sleep time is determined by sample frequency.

Table 6 -

 6 12 FIT of Each core in the SIS*

	Core	FIT
	AVRRF	51.70
	NanoRisc	13.09
	*The raw MTBF or FIT data is taken from manufacturers (Atmel

Table 6 -

 6 13 FIT of Each core in the iLiveEdge*

	Core	FIT
	AVRRF	51.70
	NanoRisc	13.09
	AT91SAM7Sx	58.93
	*The raw MTBF or FIT data is taken from manufacturers (Atmel-Corporation, 2012c; Kemet, 2012; Linear, 2009).

Table 6 -

 6 14 FIT of Each core in EPER* Because the EPER does not have redundancy core, so the MTBF and MTBCF of EPER are the same. From Table6-14, we can get MTBF of EPER is 2.06E+06 hours or 235 years, big enough to fulfill the requirement of most applications. through IEEE802.15.4 wireless access medium. The Internet App Core Raspberry Pi board supports different methods such as Ethernet, WiFi, GPRS and 3G for Internet access. The AVRRF and the Raspberry Pi board will exchange data through an UART. The FD & FR Core NanoRisc will run as a monitor for both the AVRRF and the Raspberry Pi board in order to improve the reliability of the RPiER.

	Core	FIT
	AVRRF	51.70
	NanoRisc	13.09
	PandaBoard	420.24
	*The raw MTBF or FIT data is taken from manufacturers (Atmel-Corporation, 2012c; Kemet, 2012; Linear, 2009).

Table 6 -

 6 15 FIT of Each core in RPiER*

	Core	FIT
	AVRRF	51.70
	NanoRisc	13.09
	Raspberry Pi	249.94
	*The raw MTBF or FIT data is taken from manufacturers (Atmel

Table 6 -

 6 16 Related Ongoing IWoT Real World Projects in SMIR@LIMOS

	Index	Project Field	Project Name	Project Type	Comment
	1	Precision Agriculture	iLive, MiLive	Scientific Cooperation Project	
	2	Green House	Smart Irrigation System	Innovative Project	
	3	Smart Care	Smart Environment Explorer Stick	Innovative Project	

 6.7.1.2. Multimedia WSN platform: MiLiveThe MiLive is a multicore multimedia WSN node. It is built around 2 boards (size= 76mm*40mm): scalar WSN node (iLive) and Wireless Multimedia node based on credit card format Raspberry Pi (MWiFi). Figure 6-25 shows the heterogeneous architecture of the MiLive.

	iLive	On Board I2C Extend Port	I2C	I2C	WmSoil	WaterMarker Soil Probe Moisture Sensor
		Sensor		Bridge		
		V EXT	V BAT		AVRRF DeSoil	Decagon Soil Moisture Sensor
							Probe
	AVREn					
	ARMEn	PSU		VDD	SoilTemp	Soil Temperature Sensor
	NanoRisc					JTAG for
							AVRRF
		Com Bus				
					Uart
			VDD			
						WiFi
		MWiFi	Raspberry Pi	
						Camera

Table 6 -

 6 17 Key Features of Different Multicore WSN Nodes

	Index Feature Name	E²MWSN	iLive	Multicore WSN Nodes SIS iLiveEdge EPER	RPiER
	1	IEEE802.15.4	★	★	★	★	★	★
	2	Air Temperature	★	★	★	★	★	★
	3	Air Humidity	★	★	★	★	★	★
	4	Light Sensor	★	★	★	★	★	★
	5	UART	★	★	★	★	★	★
	6	Decagon Soil Moisture	★	★	★			
	7	Watermark Soil Moisture		★	★			
	8	Soil Temperature		★	★			

Table 6 -

 6 18 Reliability of Different Multicore WSN Nodes

	Index	Multicore WSN Nodes	FIT of Cores AppCore AuxCore FD&FRCore	MTBF (Hours)	MTBF (Years)	MTBCF (Hours)	MTBCF (Years)
		E²MWSN	48.07	58.93	22.39	7.73E+06	882	4.47E+07 5099
		iLive	48.07		13.09	1.64E+07	1866 1.64E+07 1866
		SIS	51.70		13.09	1.54E+07	1762 1.54E+07 1762
		iLiveEdge	51.70	58.93	13.09	8.08E+06	923	8.08E+06	923
		EPER	51.70	420.24	13.09	2.06E+06	235	2.06E+06	235
		RPiER	51.70	249.94	13.09	3.18E+06	363	3.18E+06

AVR

Step D On End-device, sleep and wakeup mode is adopted. In fact to minize energy consuming most of the time, the AVR of the End-device is powered off. AVR will be powered on only when needed. This sleep and wakeup mechanical can greatly improve the lifetime of WSN end-device node. In order to inform its work status to NanoRisc, AVR will send one PmReq pulse after it finished sensing and sending job. If NanoRisc receives PmReq, it will power off AVR gracefully. Otherwise, it may directly power off AVR without confirmation from AVR.

Summary

The HSDTVI Interface provides a new basic method to debug, test and validate the microcontroller running state in real-time. The main features of the HSDTVI Interface include:  Light overhead: A checkpoint needs only three instructions. Sending 8-bit checkpoint need less than 1µs using AVR while with the same function using UART (38400bps) needs 260µs

Functional Specification of Each Module

Functional Specification identifies the functionality of all high-level modules. For complex module, the functional specification can use C/C++ language or other high-level language to describe.

Following Table 5-4 is an example of a simple module functional specification. Every design, hardware and software, should be tested. Kent Beck said, "Code that isn't tested doesn't work -this seems to be the safe assumption." However, not all designs are easy to test. More often than not, the effort invested into testing a specific area is in inverse proportion to evaluate how it can be tested easily. Put simply, the easier parts of the system to test, get tested a lot more than those that are harder to test. Testing is a major activity in any development lifecycle -a large part of a project budget is spent on it. If we want to use effectively it, user friendly testing environment should be addressed from the early stages of system design.

While in multicore WSN architecture, the HSDTVI interface provides a hardware supported to ease the testability not only in debug period, but also in real-world run time period.

The Design for Multicore Run Time Testability (DMRTT) related to several parts:  Can help to Detect and localize bug more Quickly and more Accurately  Support Real-Time Fault Detection, help to improve the reliability of the system  Force Design-For-Testability Way: The fault detection code in test bench of each module is requested to run in the HSDTVI master. This potentially help to ensure the

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded System

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node board. It is also not the product lifetime of WSN node. 6.6. RPiER: Higher Performance High Reliability and Multi-Support Multicore WSN Edge Router 6.6.1.

General Overview

The Raspberry Pi Based Edge Router is also a variation of original multicore architecture. It is a low cost edge router version comparing with the EPER one. The Internet core of the RPiER is based on the Raspbery Pi Board, which has a 32-bit 700 MHz ARM1176JZF-S core (ARM11 family) and 512MB of DRAM. This core is powerful enough to handle most of our applications. The Figure 6-20 shows the block diagram of the RPiER. The Intra-Chip Multicore Interconnection Networks is the key issue of Multicore SoC. To enable the run-time fault detection and fault recovery, the network has to support HSDTVI. To ease the connection between the different cores, the network should also directly support Multi Point to Point (MP2P) communication, Point to Multi Point (P2MP) communication and Point-to-Point (P2P) communication.

Internet App Core

mode, which means they can run independent and detect event while SoC core node is in sleep mode.

We also need to add special multi HSDTVI devices to enable the run-time fault detection and fault recovery. 7.2.1.5.

Constant voltage core and non-constant voltage core

The power supply requirements of different core and different devices are also different. In order to make full use of the high input range of non-constant voltage core that can directly connect to battery, The Multicore SoC should support both constant voltage power input and non-constant power input.

The constant voltage core or modules such as ADC can use the constant power input, while the non-constant voltage core can directly use the battery voltage to go a step further to decrease the power consumption.

Summary

The Multicore SoC is specially optimized for WSN sensor node; it can make full use of the advance of multicore architecture. Through black box concept, it can support different requirements with one chip, decrease the Time to Market (TTM), lower the total cost, reuse the technical resource, minimize the development cost for the new project, and ease the stock management. By using SoC approach, we can further decrease the size of the WSN nodes. Higher integration of SoC need less extra components, so it can help to develop lower unit price, smaller form factor and higher reliability WSN node.

Finite State Machine OS: FSMOS

Current existing OS such as Contiki and TinyOS are designed for unicore system. They are not optimized for multicore architecture. Thus, those OS cannot make full use of the advance of multicore architecture. The application needs to handle the inter-communication between different cores from scratch; this will increase complexity and will duplicate work for every application.

In order to ease the implementation and avoid duplicate work, we will develop a native real-time operating system integrated with all the basic functionality related to every aspect of multicore architecture, such as basic hardware driver, standard communication stack, resource management, inter-core communication, power management, and remote process communication. This OS is based on Finite State Machine, so it has been named as Finite State Machine OS (FSMOS). It will be released with user-friendly tools for debugging, test and validation. The section will discuss the concept and some key features of FSMOS. Running the FSMOS on a PC can provide many advantages, such as user-friendly IDE, more resource for complex application prototype, more resource for tracing and debugging, etc. And remote modules enable program running on a PC directly access WSN hardware, such as sending and receiving PHY layer packet, controlling GPIO, reading Sensor, etc. Furthermore, gathering distributed information from a set of FSMOS running on a PC is also much easier than directly from WSN nodes.

Summary

The FSMOS is optimized for multicore architecture. It can make full use of the advance of multicore architecture. With cross platform and Remote Module, the debugging, testing and validation of WSN application based on FSMOS will be much easier. This also will greatly help to improve the reliability of whole system.

Perspective

While we have done much work, more work left. In order to provide the entire solution for dependable WSN services, we still have much ongoing work. We think that the existing operating systems such as TinyOS and Contiki are not adapted to multicore WSN node. Thus,

RESUME

Développement d'un capteur multicoeur sans fil à énergie efficient, robuste et modulaire

Le ré seau de capteurs sans fil est une technologie clé du 21è me siè cle car ses applications sont nombreuses et diverses. Cependant le ré seau de capteurs sans fil est un systè me à trè s forte contrainte de ressources. En consé quence, les techniques utilisé es pour le dé veloppement des systèmes embarqués classiques ne peuvent être appliquées. Aujourd'hui les capteurs sans fil ont é té ré alisé s en utilisant une architecture monoprocesseur. Cette approche ne permet pas de ré aliser un capteur sans fil robuste et à é nergie efficiente pour les applications telles que agriculture de pré cision (en exté rieur) et té lé mé decine. Les travaux mené s dans le cadre de cette thè se ont pour but de dé velopper une nouvelle approche pour la réalisation d'un capteur sans fil en utilisant une architecture multicoeur pour permettre à la fois d'augmenter sa robustesse et sa durée de vie (minimiser sa consommation é nergé tique).

Mots-clé s-

ABSTRACT

Development of an Energy Efficient, Robust and Modular Multicore Wireless Sensor Network

The wireless sensor network is a key technology in the 21 st century because it has multitude applications and it becomes the new way of interaction between physical environment and computer system. Moreover, the wireless sensor network is a high resource constraint system. Consequently, the techniques used for the development of traditional embedded systems cannot be directly applied. Today wireless sensor nodes were implemented by using only one single processor architecture. This approach does not achieve a robust and efficient energy wireless sensor network for applications such as precision agriculture (outdoor) and telemedicine.

The aim of this thesis is to develop a new approach for the realization of a wireless sensor network node using multicore architecture to enable to increase both its robustness and lifetime (reduce energy consumption). Wireless Sensor Node; Context-aware; Fault Tolerance; Fail-Safe; Distributed Systems; Embedded System; Internet of Things; Web of Things.

Index Terms-Multicore