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Intro Context

Motivations

Focus
1 Power save protocols

Reduce energy consumption
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Intro Context

Problem 1: Power save protocols

Energy consumption problem (Statement)

1 Study case: 3/4G cellular networks (LTE, WiMAX)

2 Issue: Continous connectivity =⇒ Increase energy costs on TRX

3 Challenges:

Discontinuous TRX protocols by 3GGP

Realistic web traffic (non-Poisson)

Both mobiles (UEs) and Node B (eNB)
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Intro Context

Problem 1: Power save protocols

Energy consumption problem (models)

1 Performance metrics: Gains (UE & eNB), Delay, Power Ratio, Download time

2 Outcomes:

Optimal configuration of Discontinuous TRX protocols

Impact of inputs on the metrics of interest

Lessons: Up to 90% TRX costs, #UEs< 350, small web page,

& small # embedded objects

3 S. Alouf, V. Mancuso, N. C. F., “Analysis of power saving and its impact on web traffic in cellular

networks with continuous connectivity”, Pervasive and Mobile Computing, 8(5):646-661, Oct. 2012
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Intro In-network caching

Problem 2:“On-demand” cache networks

Benefits
1 Reduce network traffic

2 Improve Users QoE

(a) Without caching (b) In-network caching
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Intro In-network caching

Problem 2: “On-demand” cache networks

Examples
Domain Name System

(worldwide, everyone uses it)

CDNs and VoD Systems

(Akamai, Google, Youtube, Orange)

Content-Centric Network

(CCN, Xerox Parc, Jacobson et al.)
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Intro In-network caching

Problem 2: “On-demand” cache networks

Issues
1 Design large scale cache networks

2 Models for performance evaluation cache nets

3 Optimization and control of “on-demand” caches (QoS, DiffServ)
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Intro In-network caching

Problem 2: “On-demand” cache networks

Challenges & limitations of existing models
1 Classical policies (LRU, FIFO, RND, etc.) not flexible enough

2 No exact results even for Tandem of 2 caches
3 Only approximations, limited by

Traffic models, IRM or Poisson processes

Topology and Routing, Tree-centric

Heterogeneity, Same policy everywhere

Accuracy and Complexity of performance models
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Single Cache architecture

Time-To-Live (TTL)-based policy

How does it work?
◮ On cache miss: add content, assign timer T to it

◮ On cache hit: two possibilities
◮ Re-initialize timer T
◮ Use remaining value of T

◮ Remove content (only) when timer T expired
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◮ Re-initialize timer T
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Single Cache architecture

Time-To-Live (TTL)-based policy

How does it work?
◮ On cache miss: add content, assign timer T to it

◮ On cache hit: two possibilities
◮ Re-initialize timer T
◮ Use remaining value of T

◮ Remove content (only) when timer T expired

LRU RND FIFO TTL

Space finite finite finite Infinite

Time unknown unknown unknown Limited

Control no way no way no way yes, timers (rvs)
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Single Cache architecture

Time-To-Live (TTL)-based policy

How does it work?
◮ On cache miss: add content, assign timer T to it

◮ On cache hit: two possibilities
◮ Re-initialize timer T
◮ Use remaining value of T

◮ Remove content (only) when timer T expired

TTL-based models are also interesting...
◮ extend easily to networks

◮ use to accurately describe LRU, RND, FIFO policies
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Single Cache architecture

Model

Assumptions

1. Cache size is INFINITE and ONLY TTLs are used

2. Delays are negligible

Server

MissesExo. Requests

Retrieval

1

Cache

TTL

TTL

Cache Server

1

Figure: TTL decoupling effect =⇒ Focus on SINGLE CONTENT!
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Single Cache architecture

Hit and Occupancy probs

◮ File requests form a stationary point process, {N (t), t ≥ 0}

hit miss
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Single Cache architecture

Hit and Occupancy probs

◮ File requests form a stationary point process, {N (t), t ≥ 0}

hit miss
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hit miss
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data in cache data in cache

Q = T2sojourn time Q = T1

X1 XZ XZ+1

m0 m1

inter-miss time Y

(d) Case r = 0, Non-renew TTL

Theorem (Stationary case)

HP = r P
0 (X1 < T1) + r̄

„

1 −
“

1 + E
0 [N (T1)]

”−1
«

(1)

OP =
“

E
0[X1]

−1 × (1 − HP)
”

× E
0[Q], “Mean-Value Formula” (2)

Q is the total sojourn time given by:

Q =

(

T1 if r = 0

T1 × 1{X1 > T1} + (X1 + Q̃) × 1{X1 < T1} if r = 1.
(3)
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Single Cache architecture

Miss process

◮ Arrivals occur at jumps of a DTMC {ξi , i ≥ 0} on S = {1, 2, . . . , J},

◮ Requests form a stationary Markov Renewal Process (MRP),
[F(t)]j,k := P(Xi < t, ξi+1 = j | ξi = k), T (t) = P(T1 < t)
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Single Cache architecture

Miss process

◮ Arrivals occur at jumps of a DTMC {ξi , i ≥ 0} on S = {1, 2, . . . , J},

◮ Requests form a stationary Markov Renewal Process (MRP),
[F(t)]j,k := P(Xi < t, ξi+1 = j | ξi = k), T (t) = P(T1 < t)

Proposition (Kernel of the miss process)

Miss process is a MRP, with kernel

G(0)(t) = F(t) −

∫ t

0

dR(x)(I − F(t − x)) (4)

G(1)(t) = F(t) − L(t) +

∫ t

0

dL(x)G(1)(t − x) (5)

[L(t)]j,k :=

Z t

0
(1 − T (x))dFj,k (x), [R(t)]j,k :=

Z t

0
(1 − T (x))dMj,k(x)
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Single Cache architecture

Miss process

◮ S = {1} =⇒ Renewal process, F (t) = P(X1 < t), M(t) = E[N (t)]

Corollary (CDF of the inter-miss times)

Miss process is a renewal process, and P(Y < t)

G (0)(t) = F (t) −

∫ t

0

(1 − T (x))dM(x)(1 − F (t − x))

G (1)(t) = F (t) −

∫ t

0

(1 − T (x))dF (x) +

∫ t

0

(1 − T (x))dF (x)G (1)(t − x)

Hint, S = {1}.
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0

(1 − T (x))dM(x)(1 − F (t − x))

G (1)(t) = F (t) −

∫ t

0

(1 − T (x))dF (x) +

∫ t

0

(1 − T (x))dF (x)G (1)(t − x)

Hint, S = {1}.

Y =

(

X1 + · · · + XN (T1)+1 if r = 0

X1 1(X1 > T1) + (X1 + Ỹ ) 1(X1 < T1) if r = 1.
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Single Practical concerns

How to set up a TTL-based model?

Proposition (Optimal TTL distribution)

If F (t) is concave then Deterministic TTL performs the best.
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How to set up a TTL-based model?

Proposition (Optimal TTL distribution)

If F (t) is concave then Deterministic TTL performs the best.

Hint.
◮ Consider T and D s.t. E[T ] = D

◮ show D ≤cx T (Jensen’s Inequality)

◮ Express HP = E[f (T )] and OP = E[g(T )], f concave, g cvx
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Single Practical concerns

How to set up a TTL-based model?

Proposition (Optimal TTL distribution)

If F (t) is concave then Deterministic TTL performs the best.

Hint.
◮ Consider T and D s.t. E[T ] = D

◮ show D ≤cx T (Jensen’s Inequality)

◮ Express HP = E[f (T )] and OP = E[g(T )], f concave, g cvx

Remark (Conjecture... from experiments)

Otherwise, TTL distr. with strictly positive c2
v (e.g. hypo/exp/hyper).
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Single Practical concerns

Validation with real data: traces from Inria DNS cache

◮ TTL-non-renewing cache, 6-th most popular content, TTL T = 2h

◮ Match higher order and joint moments using Markov Arrival Process

◮ Use analytic CDF F (t) as input of TTL model
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Validation with real data: traces from Inria DNS cache

◮ TTL-non-renewing cache, 6-th most popular content, TTL T = 2h

◮ Match higher order and joint moments using Markov Arrival Process

◮ Use analytic CDF F (t) as input of TTL model

◮ Inter-requests are correlated & good approximation of G(t)
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Single Practical concerns

Validation with real data: traces from Inria DNS cache

◮ TTL-non-renewing cache, 6-th most popular content, TTL T = 2h

◮ Match higher order and joint moments using Markov Arrival Process

◮ Use analytic CDF F (t) as input of TTL model

◮ Inter-requests are correlated & good approximation of G(t)
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(j) CDF inter-miss times

◮ Performance metrics: accurate predictions

Metric Trace Model Rel. err. (%)

miss rate 0.00013876 0.00013749 0.920
hit prob. 0.99943 0.99941 0.002
occupancy 0.99914 0.98995 0.920
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Single Practical concerns

Accounting for constraints: Practical (Pra)-TTL

Pra-TTL: Deployment of TTL model
◮ Cache miss: add content and assign TTL

◮ Timer expiration: keep it in cache

◮ Buffer full: drop content that expired (or will expire sooner)

How to calculate TTLs? ...subject to constraints
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Single Practical concerns

Accounting for constraints: Practical (Pra)-TTL

Pra-TTL: Deployment of TTL model
◮ Cache miss: add content and assign TTL

◮ Timer expiration: keep it in cache

◮ Buffer full: drop content that expired (or will expire sooner)

How to calculate TTLs? ...subject to constraints

◮ Energy / Holding costs:
P

f (1 − HP,f )ct,f + OP,f ch,f ≤ δ

◮ Refresh rate: MR,f ≥ η, (e.g. DNS cache)

◮ Capacity:
P

f OP,f = B, (e.g. Web cache)
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Single Practical concerns

TTL model prediction versus Pra-TTL simulation results

◮ Linear network of 5 Exp. TTL-based caches

◮ Constraint: Cache size B = 20

◮ Experiment: Poisson (λ1 = 2), Zipf(α = 1.2), Catalog size N = 200
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Figure: Cache 5 (root node)
Choungmo (UNS/Inria) PhD defense: TTL-based models 21/02/2014 17 / 27



Single Practical concerns

TTL models and LRU, FIFO, RND

◮ Cache of size B, Content n requested ONLY ONCE, time spent TB,n

◮ Experiment: Poisson (λ = 1), Zipf(α = 0.65), B = 102, Catalog size N = 104
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(a) LRU as a TTL-renewing cache
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(b) FIFO as TTL-non-renewing cache
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(c) RND as TTL-(non)-renewing cache

Choungmo (UNS/Inria) PhD defense: TTL-based models 21/02/2014 18 / 27



Nets

Outline

Introduction

Single cache

Cache networks under i.i.d. requests
Hierarchial networks: Tree/Polytree
General cache networks

Conclusion

Choungmo (UNS/Inria) PhD defense: TTL-based models 21/02/2014 19 / 27



Nets (Poly)Tree

Step by step analysis (I)

Multiple sources

Merging renewal request streams, CDF of first inter-request time

disk
...

11

1ℓ · · ·

· · ·

+Nℓ + 1

N1 + . . .

N1

Nℓ

Figure: Exact results on Linear-star networks
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Nets (Poly)Tree

Step by step analysis (I)

Multiple sources

Merging renewal request streams, CDF of first inter-request time

1. Lawrence’s Theorem =⇒ Exact CDF

1− A(t) =
K

X

k=1

λk
PK

l=1 λl

(1− Ak (t))
K

Y

j=1,j 6=k

λj

Z

∞

t

(1− Aj (u)) du (4)
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Nets (Poly)Tree

Step by step analysis (I)

Multiple sources

Merging renewal request streams, CDF of first inter-request time

1. Lawrence’s Theorem =⇒ Exact CDF

1− A(t) =
K

X

k=1

λk
PK

l=1 λl

(1− Ak (t))
K

Y

j=1,j 6=k

λj

Z

∞

t

(1− Aj (u)) du (4)

2. Poisson approx. =⇒ Exponential CDF

A(t) = 1− e
−Λt

, Λ =

K
X

l=1

λl , c
2
p = 1 (5)
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Nets (Poly)Tree

Step by step analysis (I)

Multiple sources

Merging renewal request streams, CDF of first inter-request time

1. Lawrence’s Theorem =⇒ Exact CDF

1− A(t) =
K

X

k=1

λk
PK

l=1 λl

(1− Ak (t))
K

Y

j=1,j 6=k

λj

Z

∞

t

(1− Aj (u)) du (4)

2. Poisson approx. =⇒ Exponential CDF

A(t) = 1− e
−Λt

, Λ =

K
X

l=1

λl , c
2
p = 1 (5)

3. Whitt approx. =⇒ 2-state Hyper-exp. / Shifted-exp. CDFs

◮ asymptotic method, Λ and c2
a , moments of N (t)

t
◮ stationary interval, Λ and c2

s , moments of X1
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Nets (Poly)Tree

Step by step analysis (I)

Multiple sources

Merging renewal request streams, CDF of first inter-request time

1. Lawrence’s Theorem =⇒ Exact CDF

1− A(t) =
K

X

k=1

λk
PK

l=1 λl

(1− Ak (t))
K

Y

j=1,j 6=k

λj

Z

∞

t

(1− Aj (u)) du (4)

2. Poisson approx. =⇒ Exponential CDF

A(t) = 1− e
−Λt

, Λ =

K
X

l=1

λl , c
2
p = 1 (5)

3. Whitt approx. =⇒ 2-state Hyper-exp. / Shifted-exp. CDFs

◮ asymptotic method, Λ and c2
a , moments of N (t)

t
◮ stationary interval, Λ and c2

s , moments of X1

4. Hybrid Approx. =⇒ Λ and c2
h = wc2

s + (1 − w)c2
p

◮ combines Poisson and Whitt (stationary interv) approx.
◮ provides empirical expressions of w
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Nets (Poly)Tree

Step by step analysis (II)

Multiple destinations

Splitting a request stream (e.g. Bernoulli routing with prob. p)

C + 1

1

disk

disk

...

2

C

C3C2

Figure: Polytree network
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Nets (Poly)Tree

Step by step analysis (II)

Multiple destinations

Splitting a request stream (e.g. Bernoulli routing with prob. p)

1. Sum of geometric number of i.i.d. Xi =⇒ Exact result
2. Poisson, Whitt, and Hybrid approx. (moments matching)

E [Xi,th] =
E [Xi ]

p

E [X 2
i,th] =

E [X 2
i ]

p
+ 2

1 − p

p2
(E [Xi ])

2
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Nets (Poly)Tree

Heterogeneous (LRU, RND, or FIFO) tree cache networks

◮ 4-ary tree of depth 5 with 341 caches (LRU, RND, or FIFO)

◮ Experiment: Poisson requests at leaves (λ = 1), Zipf(α = 0.7), B ∈ [50, 150], N = 104
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Figure: Hybrid approximation
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Nets (Poly)Tree

Heterogeneous (LRU, RND, or FIFO) tree cache networks

◮ 4-ary tree of depth 5 with 341 caches (LRU, RND, or FIFO)

◮ Experiment: Poisson requests at leaves (λ = 1), Zipf(α = 0.7), B ∈ [50, 150], N = 104
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Nets General nets

Routing topology and State dependencies

Consider this five caches network
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Nets General nets

Iterative procedure for our 5 caches network

◮ LRU policy at all caches, Two classes of contents (k = [1..500], [501..1000])

◮ Experiment: per-class Poisson requests (λ = 1), Zipf(α = 0.7), B = 102, N = 103
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Nets General nets

Iterative procedure for our 5 caches network

◮ LRU policy at all caches, Two classes of contents (k = [1..500], [501..1000])

◮ Experiment: per-class Poisson requests (λ = 1), Zipf(α = 0.7), B = 102, N = 103
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Conclusion
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Conclusion

Take off message

1 Cache networks

Think “TTL model”
Apply your constraints (capacity, delay, energy, bandwidth,...)
Deploy your “TTL model” using LRU, RND, FIFO or Pra-TTL

2 New research opportunities

Non-zero delays
q-LRU and LFU policies
Temporal and geographical locality problems
QoS and cache optimization problems

3 TTL-based behaviors not only in cache networks

Economics: Product warranty
Physics: Geiger-Müller counters (of particles)
Smart device design (idle mode)
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