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Abstract

This thesis deals with the design of a robust and safe control algorithm tat @imadificial pancreas
More precisely we will be interested in controlling the stabilizing part of a claksigre. To meet this
objective, the design of a robust nonlinear model predictive controllerdbas the solution of a saddle
point optimization problem is considered. Also, to test the controller perforesaim a realistic case,
numerical simulations on a FDA validated testing platform are envisaged.

In a first part, we present an extension of the usual nonlinear modetfiveccontroller designed
to robustly control, in a sampled-data framework, systems described by remtirdénary differential
equations. This controller, which computes the best control input by comgidde solution of a con-
strained saddle point optimization problem, is cakkleddle point model predictive controll€PMPC).
Using this controller, it is proved that the closed-loop is Ultimately Boundeditld some assumptions
on the problem structure, Input-to-State practically Stable. Then, weterested in numerically solv-
ing the corresponding control problem. To do so, we propose an algoirtspired from the augmented
Lagrangian technique and which makes use of adjoint model.

In a second part, we consider the application of this controller to the probleartificial blood
glucose control. After a modeling phase, two models are retained. A simple oneewidldal to design
the controller and a complex one will be used to simulate realistic virtual patienitslafter is needed
to validate our control approach. In order to compute a good control inmug§RMPC controller needs
the full state value. However, the sensors can only provide the valdead lylucose. That is why the
design of an adequate observer is envisaged. Then, numerical simukatiopsrformed. The results
show the interest of the approach. For all virtual patients, no hypogligcevent occurs and the time
spent in hyperglycemia is too short to induce damageable consequEimadly, the interest of extending
the SPMPC approach to consider the control of time delay systems in a samapdeftaimework is
numerically explored.






Resune

Cette these s'inéresse aué@eloppement d’un coriiteur gire et robuste en tant que partiegigtante d’'un
pancgéas artificiel. Plus f@cigment, nous sommes @resgsa contbler la partie du traitement usuel
qui a pour but cgquilibrer la glyémie du patient. C’est ainsi que |léwkloppement d’'une commande
prédictive nonlirgaire robuste b&e sur la @solution d’'un prol#me de point selle at envisag. Afin
de valider les performances du cdiéur dans une situatiorealiste, des simulations némques en
utilisant une plate-forme de tests vaalpar la FDA sont envisags.

Dans une prengire partie, nous psentons une extension de la classique commarégdkctive non-
linéaire dont le but est d’assurer le c@hrrobuste de systes écrits par degquations diferentielles
ordinaires non ligaires dans un cadézhantillon@. Ce contbleur, qui calcule une action de cobi
adequate en cons@tant la solution d’'un proBme de point selle, est appaladdle point model predic-
tive controller(SPMPC). En utilisant cette commande, il est p@gue le sygme converge en temps
fini dans un espace baret, en supposant une certaine structure dans legmahlgu’il est pratiguement
stable engeétat. Ensuite, nous nous sommegigsgésa la ©solution nurdrique. Pour ce faire, nous
proposons une athode deé&solution inspiee de la rethode du Langrangien augmert qui fait usage
de moales adjoints.

Dans un deuxime temps, nous congicbns I'application de ce coidtieur au prok®me du confile
artificiel de la gly&mie. Apes une phase de melisation, nous avons retenu deux rated : un modle
simple qui est utilié pour dvelopper la commande et un nidel complexe qui est utiiscomme un
simulateur éaliste de patients. Ce dernier egtassaire pour valider notre approche de éatrAfin de
calculer une enée de commande aduate, la commande SPMPC a besoin &@at'complet du syste.
Or, les capteurs ne peuvent fournir qu’une valeur du glucose sanglest pourquoi le @veloppement
d’un observateur est envigagEnsuite, des simulations sobtti®es. Les&sultats obtenugimoignent
de l'intérét de I'approche retenue. En effet, pour tous les patients, aucungligpmie n'aét obsereée
et le temps pagsenétat hyperglyémique est suffisamment faible pour ne ptre dommageable. Enfin,
l'int éret d’eétendre I'approche de commande SPMPC au proklde confile de systmes écrits par des
équations diérentielles retarges non ligaires dans un cadeehantillon®@ est formellement investigu
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14CHAPTER 1. STABILITE ET APPLICATION AU DIABETE DE TYPE 1 D'UNE COMMANDE SPMPC

1.1 Contexte

Le diakete de type 1 (T1DM) est une maladie auto-immune quiaebbrigine de la destruction de
certaines cellules du pargas. Ces cellules sont normalement chagyde produire de l'insuline.
s'agit d'une hormone dont I®le est de favoriser le stockage du sucre sanguin dans le foie, les muscles
... afin de permettre uné&gulation de la glyemie sanguine autour d’une valeur de 100mgdLUn
patient atteint de TIDM ne peut donc pliguler, sans traitement apprdgrsa glyémie. Ceci peut
entrainer de nombreuses complications en raison des risques importants- &hgfoyperglyémies,
c’esta-dire en cas de glgemie trop basse.€. inférieuread 60mg.d-1) ou trop hautei(e. sugerieurea
180mg.dLY).

A ce jour, le seul traitement efficace powgrgr cette maladie consiskerégulierement s'injecter de
linsuline. La dosea se prescrire eséfinie en fonction d’une mesure de la ghyaie courante et, lors
d’'une prise de repas, en fonction d’'une estimation de la qéadétsucre qui v&tre ingree. Bien
sOr, pour viser les meilleures performances égulation, il faut aussi anticiper, autant que possible, sur
les évenementsa venir (par exemple sur la pratiqueepue d’'un sport, etc). Ce traitement a I'avantage
d’apporter un rerade relativement simpla cette maladie. Si le patient digtiue se connait bien, il
peut esprer vivre une vie quasi-normale. Toutefois il est difficile de maitriser eetreent dans toutes
les circonstances d’autant plus s'il est matgou mal accegtpar le patient. Il est en particulier diffi-
cile d’estimer la quant# de sucre contenue dans un aliment ou encore de quantifier I'effetrdéns
phénorenes, comme par exemple une situation de stress. D’autre part, les captelus tegipants ne
mesurent que la ghymie interstitielle ce qui induit un biais dans la mesure (voir par exemple [87]). En
fin, le fait que I'insuline est gréralement inje@&e par voie sous-cutéa, induit un @élai dans I'action de
cette derrére, compliquant d’autant la gestion du traitement. Une sur-estimation ou unestonation
de la dose s’injecter peut entrainer une hypo- ou une hype@gtyie avec tous les risques qui peuvent
y étre assoés. C’est pourquoi 'automatisation de ce traitement permettrait non seuldiaaliorer
le confort du patient mais aussi la qualde son traitement atj fing, ses conditions de vie.

Le projet d’'un systme qui permettrait unéegulation artificielle de la gly@mie, encore appelle
projet panceas artificiel, &t initié dans les arges 1970 par Albisser et al.[8] et Pfeiffer et al.[123],
mais n'a pas encore abotiune solution ambulatoire. Les travaux s’articulent autour de ti&fis d
majeurs :

e |e développement d’'un capteur de géyie fiable,
e le développement d'un sy&sine d’injection d'insuline efficace,
e |e développement de commandes aéagt

Une grande partie du travail@sené dans cette #se concerne essentiellement 'analyse de cettegerni

Les premeres solutions qui oréte propoges, se basent sur des algorithmes de commagslsitm-
ples, par exemple, pour des patients en soins intensifs, un correcteued®Bur un modle linéaire.
Cependant le&bloiement massif chez des patients éiiues dans des conditions de vie baialsde-
mande le éveloppement d’algorithmes plé@volues. Pour ce faire, plusieurs approches peuétnat
envisages. Un premier type d’approche consiatgarder un mogle lineaire mais en &veloppant
des contbleurs robustes comme par exemple des commaadeaade glissant [3]. Un deuxine type
d’approche concerne des nédés plus pecis du patient en conservant le caeaetnon lirgaire propre au
probleme (soit en utilisant des approches boites noires comme dans [4] ou entutidisapproches par
mockle detat comme dans [73]).

L'approche @velopgge dans cette #se chercha faire un compromis entre I'aspect nondaire du
syseme et la complex@ du moele. Pour ce faire une version modgid’'un moéle non lireaire simple
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est retenue et asséeia un contdleur de type commandeéatictive non liraire robuste pour prendre en
compte les erreurs de melisation.

1.2 Le diabete de type 1

1.2.1 Quelques mots sur la maladie

Chez un individu sain, la ghgmie est naturellemeréguke entre 80 et 120mg.dL (avec des glyemies
post-prandial d’au plus 180mg.dt). En temps normal, cett@gulation est principalement assarpar
I'action combirée de deux hormones: le glucagon et I'insuline. L'insuline a une action hygaglgate.
Elle fonctionne en se fixant sur descepteurs approf@s qui provoque la lieration d’autres préines
(GLUT) qui, a leurs tours, favorisent le transport du glucose au travers des memiplaseniques,
permettant ainsi un stockage du sucre du sangditontrariole glucagon est une des hormones hyper-
glycémiantes qui permet de Bloer le sucre falablement stoék Ces deux hormones soitgtees par

le panceas, plus grciment dans les ilots de Langerhans (voir fig.1.1). Linsuline est produitdgsar
cellules dites3 et le glucagon par des cellules die497].

Situation du pancréas

Estomac

Ves. biliaire Pancréas

Ilot de Langerhans

Vaisseau sanguin

Figure 1.1: Une vuedgrérale du netabolisme glucidique

Le diakete de type 1 est une maladie auto-immune qui va induire une destruction dessggllule
La congquence en est claire : le paéas d’'une personne atteinte par cette maladie se retrouve dans
I'incapacié de produire de l'insuline et donc celle-ci ne peut plus diminuer son tasxate. En effet,
l'insuline est la seule hormone hypoggmiante du corps humain. Ceci peut entrainer un grand nom-
bre de complications : soit en raison d’hyperd@ytes durablestoon prend le risque d’'observer des
probemes enaux, cardiaques, ..., soit en raison d’hypogipes. Ces deraresétant extemement
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dangereuses puisqu’elles peuvent rapidement entrainer des éfastes qui peuvent aller jusgula
mort du patient.

1.2.2 Mocklisation d’'un patient diabétique

Le probEme de confie artificiel de la glyémie est exBmement complexe. Cela peut sans doute
partiellement s’expliquer par la complexilieea I'aspect moélisation du rétabolisme glucidique. En
effet, du fait de la difficué de Ealiser des eXgriencesa la fois sures et informatives, il est difficile
d’obtenir des don@es pour construire et/ou identifier un neéelde patient digtique.

Classiqguement, on distingue deux grandes familles deefesd Tout d’abord les meédes qui sont
obtenusa partir d’exgriences complexes et difficilemer@alisables dans un cadre simple. Dans cette
catgorie, on peut trouver le métk de Dalla-Man et al. [106]. Ce dernieg# utilise pour évelopper
une plate-forme de test [90] quiédé valicee par la Food and Drug Administration (FDA). Cela signifie
que cette plate-forme de test pétrte utilisee comme un substitatdes tests sur animaux. Une déume
famille de mo@les ne modlise que les tendances principales détabolisme glucidique. L'exemple
typique d’un moeéle appartenari cette catgorie est le magle de Bergman [14].

D’un point de vue évelopement d’un corditeur, les modles les plus f@cis ne sont pas foeenent
les plus inéressana utiliser. En effet, leur complexdtlimite fortement leur utilisation. D’ailleurs, les
approches qui utilisent ces m@ds ont plubt tendance incorporer une prerare phase de reformulation
(par exemple une phase daluction de moele) comme dans [102]. C’est pourquoi nous avons engisag
d’utiliser un moatle simple pour @velopper notre corfiteur. C’est ainsi que la commande gtre
dévelopgea partir d’'une version modée du moéle de Bergman, quant au ntd de Dalla-Man et
al., il sera utili€ pour valider notre approche de cah. Plus con@&@tement, le mogle de conible est
donre par le systme déquations difrentielles suivant

Modele du nétabolisme glucose-insuline

dG

gt = (PAEX)GH PGy kgrRe,

dXx

ar —PX+Ps(l —1lp),

dl

— = —k¢l +bsU

dt fl +0fUsq,

du;

E = —kSU1+U7 (11)

(Gv Xv I 7U1) (to) = (GO, XOa |0>U1,0)7
Modele du nétabolisme gastro-intestinale

d

TTZ = —Cz(Rg — Rl),
dR

ditl = —C]_(R]_ — d),

(R2,R1)(to) = (Ro,0,R10),

ou Py, Gp, Kgr, P, Ps, Iy, ks, bt, ks, C1 €tC2 sont des paragires (strictement positifs) du mele. L'état

G repiesente la glyemie sanguine, &tatX l'insuline dans un compartiment distantétat! I'insuline
sanguine, BtatU; I'insuline sous-cutage et le€tatsR, et R; des quantés de sucre dans des compar-
timents distants. Les ei@esu et d repesentent respectivement ugahit d’'insuline et une quanétde
sucre.
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1.3 Une commande pedictive par méthode d’'un probleme de point selle
(SPMPC)

D’un point de vue conble, il semble qu’une approche par commandedjmtive pésente de nombreux
avantages (voir par exemple la review [13]). L'un de ces avantagesptalu fait que, lorsqu’un patient
applique son traitement classique, ségigsions peuvengtre interpettes matbmatiquement comme
la résolution d’'un prol#me d’optimisation sous contraintes. En effet le patient cheicléguler sa
glycémiea une valeur dorée (Egulation), il cherchaéviter les hypo- et les hyperglgmies (contraintes
sur I'état) en s’injectant seulement de l'insuline (contraintes sur BentrDe plus I'aspect pdictif est
intéressant puisqu’il permet d’anticiper certaines perturbations cornilesnce, comme par exemple
les perturbations de type repas.

Les techniques de colles pedictives reposent sur le meleé du processus qui dditre contélé.
Toutefois, dans le cas du digte, il est tés difficile d’obtenir un bon maele. C’est pourquoi la plupart
des approchesédelopgies incorporent soit une composante robuste soit des aspects ad@uatife
par exemple dans [73]). Parmi toutes les approches retenueséestaséqLa alors, une approche de
type min-max n'a pagte consi@rée. Il est vrai que cette approche n’est pas souvent retenue comme
une alternative viable du fait des temps de calculs importaetessairea la ©solution du prodme
d’optimisation sous-jacent. Pourtant, dans le cadre dédalation artificielle de la glyamie, les con-
stantes de temps du sgste sont compatibles avec une telle approche (de I'ordre de la dizaine de min-
utes). Dans cette &se, nous allons nous @ressen ce type de condteur.

Le probEme de confile artificiel de la glyémie est typiguement pesians un cadrechantillon.
En effet, le nétabolisme glucidique est un procesausmps continu alors que les capteurs de@tyie
fonctionnent avec des tempsédhantillonnages nonégligeables devant les constantes de temps du
syseme. La literature concernant legsultats qui garantissent la staf@lid’'un contbleur min-max
MPC dans un cadrechantillon@ est tes €duite. Ceci a moti& les travaux de cetteéle qui consistent
a cevelopper des outils #oriques et nugriques garantissant la stal@lid’un tel systme dans le cadre
d’un contbleur de type MPC robuste dont I'eatr de confiile est donée par la solution d’'un probime
de point selle contraint endtat. L'interét de cette formulation par rappartune formulation de type
min-max Eside dans la simplification de la partiesolution nurérique tout en conservant le€mes
garanties de robustesse (sous hyps#s que le point selle est biegfidi). Ce contbleur, appet Saddle
Point Model Predictive Contro{fSPMPC), a pour but d’assurer,dans un caéehantillont, pour des
sysémes écrits par deg€quations difrentielles ordinaires non Eaires, des performances de coter
robuste. Con@tement, on s'iréiresse aux synes qui sonté&krits par degquations du type

dx
a —g(X, U,W), (12)
X(to) = %o,

ou¥ :R™ x R"™ x R™ — R™ est une fonction continug,c R™ est I'etat du systme,u € R™ est I'entée
de contble etw € R™ repesente des perturbations. Le céheur SPMPC fonctionne selon 'algorithme
suivant

Définition 1[SPMPC]

L'algorithme de contble SPMPC consiste, pour un tawédhantillonnage dor@&d, un ensemble robuste
invariant Q:F et un horizon de gdiction T> &, & se donner une erée de conile ut) = u(t) pour
tout t € [tj;ti 1[ oU, pour un temps t=tp +id et une condition initiale x U est donie par la solution
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du probEme de point selle suivant

W) = i i - i i
(Ui, wi") argu'e”Jﬁé‘v‘V” (u,w) =arg WSeLv’fu'QIJJ (u,w),

(1.3)
scx(ti+T)eQfr.
ol x(s) est la valeur pedite de Ietata l'instant s, U et W sont deux sous-ensemblesdé) ldonrés
convexes, fer@s, boriés et non vides, avec | un intervalle de longueur Tiét,lv) est dong par
ti+T

Ji(uw) =E(X(t+T))+ F(x,u,w)ds, (1.4)
t

OUE:R™ - R"etF:R™*xR™ x R™ — R,

Plus concetement, nous avons praensous certaines hyp@tbes, que ce coiileur permet d'assurer
une convergence en temps fini dans un sous-espata thor@ (Ultimately Boundey] ou, sous davan-
tage d’hypotlses, que le sy@ine est pratiquement stable @etrsortie (hput-to-State practically Sta-
ble). Ces esultats sont exprigs au travers des deuxétremes suivant (pour plus defils sur les
hypotheses et la preuve de cegtiemes, seéféerer au chapitre 3):

Théoreme 2. Sous les hypo#ses 1a 9, si les hypothses du lemme 1 sont satisfaites et(&)x
Xge, alors en utilisant un confleur SPMPCa chaque instant &@chantillonnage, la trajectoire état
est "Ultimately Bounded relativementa un sous-ensemble de Xui contient I'origine, et converge
asymptotiquement dans un sous-ensemble qui contient I'origine.

Théoreme 3.Sous les hypo#ses 1a 9, si les hypothses du lemme 1 sont satisfaites,(&)xe Xg,
etsiil existe ab,A € R** avec a< b tel quea?(s) > as" etfe(s) < bs', alors en utilisant un conéleur
SPMPC a chaque instant @chantillonnage, le sysine est Input-to-State practically Stable

1.4 Resultats

L'impl @émentation nu@rique de cette commande est ensuite mise en oeuvre. Pour ce fairétinoeen
numérique pour esoudre les probmes de point selle sous contraintes eésenée. Le but de cette
méthode consist@ remplacer le probme d’optimisation contraint par unéaence de probies
d’optimisations non contraints enétat en utilisant une athode qui s'inspire de la @hode du La-
grangien augmeat[116]. Chaque probme non contraint est ensuitsplu en utilisant une @thode de
gradient conjugé. Le gradient du critrea optimiser est calcalen utilisant un mogle adjoint (pour plus
de cetails et pour d’autres applications biédicales voir [10] et [11]).

Pour €soudre le prolime de confile, les approches @dictives reposent sur I'optimisation de tra-
jectoires détat. Ceci implique qu’un sysine dequations diferentielles doiétre inegi€, et donc que
la condition initiale du systme, doné par la valeur de &tat courant, estatessaire. Toutefois, comme
leur nom l'indique, les capteurs de glucose ne fournissent qu’'unermbsui€e de la concentration en
glucose sanguin. Cela implique qu'’il estgessaire d’envisager l€eloppement d’'un observateur. A
ce titre, trois observateurs reposant sur déshwdologies diffrentes onéte envisags, l'idee étant de
comparer les diffrents esultats d’estimations et de valider les approches retenues dans l& le&s o
diff érents esultats d’observations sont @knts entre eux. A la vue dessultats d’observation obtenus
(cf fig.1.2), un filtre de Kalman sans biais [144] est uélis

L'approche SPMPC est té&st en utilisant tout d'abord le mébkk de conible comme un magle de
simulation puis en utilisant une plateforme de simulation apgewpar la FDA. Le con@eur est teg
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Figure 1.2: Comparaison d’'un observateur de type UKF, MHE et UIEKBatant d’une estimation
initiale exacte

sur deux senarios. Tout d’abord un &oario simple @ le contbleur a pour seul but de stabiliser la
glycémie alors que le patient a initialement une @lyde haute. Avec ce énario, I'objectif est de tester
si pour rejeter une hyperglgmie, le contdleur ne va pas induire une hypogdraie. Ensuite un €mario
consistant en une jou@e avec prise de trois repas est envésaljidée est de tester les performances
du contdleur quand ce dernier est coméia une cure de bolus classique (par exemple équar le
traitement usuel du patient). Plugpiement le sénario de type repas consiste en lersrio suivant

Scenario : Journée classique
t = Oh: La simulation commence. Le glucose sanguin est iniéali$00mg.dCL. Lobservateur (UKF)
est branch.
t = 2h: Le contdleur (SPMPC) est branéh
t = 7h: Le patient mange un repas de 25g en sucre.
t =12h: Le patient mange un repas de 70g en sucre.
t =20h: Le patient mange un repas de 80g en sucre.

t = 35h: La simulation est termiee.

Il est suppog que chaque repas est c@térpar le patient en s’envoyant une quantitinsuline cor-
respondana 75% de ce qu'il s’enverrait en temps normal (relativengensbn traitement usuel). Pour
mesurer les performances du céiur, on s’'inéresse aux indicateurs suivants @& [70, 140 le pour-
centage de temps que le glucose sanguin passe dans l'intd&@tlddmg.dL1, minG la glycémie
minimale et max la glycémie maximale. Chacun d’entre eux ésalle a partir du moment o la
boucle est ferrae. Les esultats de simulation pour les 10 adultes de la version d’essai du simulateur de
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patient virtuel [90] sont fournis dans le tableau 9.8 du chapitre 9ékeltat de simulation pour I'adulte
9 est visible sur la fig. 1.3. Sur cette courbe on peut voir que le @lenitremontre de bonnes proptés.
La glyceémie est stabilise dans un intervalldig, on n'observe pas d’hypoglgmie et le temps pasen
hypergly@mie est eduit.
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Figure 1.3: Rsultat de simulation pour I'adulte 9 de la plateforme de test, cas d’'unélisatibn par
équations difrentielles ordinaires.

A la vue desesultats de condte positifs, I'extension de la éthodologie de conbte SPMPC pour le
contible des systmes retaréls est mise en oeuvre d’un point de vue @uigue. L'objectif est de valider
I'int érét de cette extension en fonction désultats de simulations obtenus dans le cadre deglaation
artificielle de la glyémie. Pour ce faire, le méte de conble jusqua alors utili€ est reform# en
utilisant desequations diferentielles retarees. Suitéd quoi des simulations nwmiques sont&aliges
en consiérant un senario consistant en une jo@m avec prise de trois repas. Commedgdemment,
les patients virtuels sont soit doesmpar le moéle de conible soit par la plateforme de test appréapar
la FDA. Les Esultats de simulation pour les 10 adultes de la version d’essai du simulatedoaaes
dans le tableau 10.3 du chapitre 10. Esultat de simulation pour I'adulte 9 est visible sur la fig. 1.4.
On peut voir que cette fois-ci encore le caéur cemontre de bonnes propiés.

1.5 Conclusions et perspectives

Le probEme de eégulation de la glyemie pour des patients atteints de ditebde type 1 est un prayhe
d'une grande compleXt qui nelangea la fois des aspects de cdilr non lireaire dans un cadre
échantillon®, de processus variant dans le temps, de limitation de pogsithdiction des actionneurs,
etc. L'approche retenue a permis de prendre en compte le plus de costostbles afin de rester
au plus proche du sy&ine eel. Toutefois, pour que le prabhe reste faisable, il a fallu s’orienter vers
des moeéles extemement simples. Afin de prendre en compte cettegigaation entre le syéne et le
mockle, des approches robustes e@tprivilegiees.
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Figure 1.4: Rsultat de simulation pour I'adulte 9 de la plateforme de test, cas d’'unélisatibn par
equations difrentielles retargkes.

Ainsi, le dévelopement thorique et nurarique d’'une commande MPC nonéiire robuste bég
sur la Esolution d’'un prol#me de point selle @ envisage. Dans le cadre de I'application au dééd
de type 1, cette commandecie implemenée en utilisant une version mod@é du moéle minimal de
Bergman. Le proléime d’optimisation correspondanét résolu en utilisant un algorithme qui se base
sur l'utilisation de modles adjoints. Le corteur obtenu a ensuiteé tesé sur un simulateur de patients
virtuels approu@ par la FDA. Les &sultats de simulation montrent I'enét de I'approche retenue en
particulier dans le caside patient est améra reguler lui-néme son repas. L'extension formelle pour le
contdle des systmes écrits par degquations diferentielles retarees s’est aussi mogtextémement
interessante en montrant désultats de conbte touta fait satisfaisant malgia complexié du probéme
sous-jacent.

D’un point de vue perspectives, il pegire ineressant de congider de nouvelles conditions suff-
isantes pour assurer la stald@lilu contdleur. Ensuite, il peuttre inéressant dtudier la stabili
théorique du confileur SPMPC quand ce dernier est cong@nun observateur. En effet, au cours des
simulations, il aété implicitement supp@squ’un pseudo principe dégaratiorétait applicable. Toute-
fois il n'existe pas deésultats g@reraux dans le cas non éaire. C’est pourquoi il peltre ineressant
d’étudier la stabil# du contdleur d’'un point de vue retour de sortie. Aussétlide de la stabikt du
contdleur dans le cadre d’'un prashe de suivi de trajectoire semble pertinente.

A la vue des esultats de simulations obtenus dans le cas du @entfun sysémea retard, il peut
étre ineéressant d’envisager d’un point de vuédhique la stabilé de la boucle ferée.

En ce qui concerne leédeloppement d’'un pareas artificiel, il peugétre judicieux de voir com-
ment il est possible de profiter d'un retour d'@&jgence afin d’obtenir de meilleures performances de
contldle. Enfin, il semble logique deedormais consiter la partie du traitement qui s’éresse rejeter
automatiquement les perturbations de type repas. Ainsi, c@abiec notre approche SPMPC, le patient
n'aurait plusa se soucier de son traitement.
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2.1 Motivation and Background of the Thesis

The focus of this thesis is to consider the design of a robust nonlinearotienin a sampled-data
framewaork. This problem comes from the need to design a controller to arédution to the problem
of artificial blood glucose control. This problem belongs to the fieldedfbiotechnology [76]. That is
the field which is interested in a medical use of control.

Surprisingly enough, this field is not very developed. One reason is rtiadf of the time, the
corresponding control problems gather many control difficulties. Tdegtlee most relevant ones, we
can mention the difficulty to model the process (which are often nonlinear, timmygasubject to delay,
...), the difficulty to obtain relevant measures (sparse and noisy negafficulty to design both human
friendly and informative experiments, ...) or, from an even more gépenat of view, the difficulty to
define a metric which provides a good measure of the performance ofrikigleced algorithm. Another
reason that inhibits its expansion is the difficulty to validate an approachednaiein this field human
lives are concerned, the error is not allowed. This leads to really dentavalidation phase.

Nevertheless, the endocrinology field is currently an important subjectsefarches. These latter
bring new insights but also some hopes for new cure. In this thesis, we avilitbrested in type 1
diabetes mellitus, one special field of the endocrinology field. This disdabke pancreas is an auto-
immune disease which leads to the impossibility of secreting insulin. This has foequmrsce that a
patient suffering from this disease can not regulate its blood glucos&cdh be at the origin of various
complications (e.g. coma or even death).

The main objective of bringing control is to design what is often calledréficial pancreas The
idea is to combine the existing hardware (such as the glucose sensors ansutimregnmps) with an
adequate control algorithm to develop a device which mimic the behavior ofathjg@ancreas. If it
were to work, this would lead to a simpler cure for the millions of people suffdromg diabetes [115].

To provide a potential solution, many control algorithms have already bepoged (see e.g. [165]
or [13] for a review of the considered controller and the remaining chgdéiém this field). Among the
most commonly used control strategies, it is possible to mention the PID contrekerse.g. [109], [80]
or [57]), the controllers which make use of fuzzy logic and/or neurdirnigies (see e.g. [168], [35]
or [93]), the strategies which implement run-to-run algorithm (see e.g],[124] or [119]), the sliding
mode controllers (see e.g. [5] or [58]) or the MPC controllers (see €. d1B5], [159], [89] or [40]).

Even if all approaches present their own advantages compared to pfireaehes (e.g. the PID
controller can provide a good approximation of the behavior of healthy led&a[£53]), lately, it seems
that the MPC approach is the more promising because of numerous attraetiveet. First, it is easy
to interpret its behavior in terms of a classical cure. Indeed, when thenpdgals with his disease, it
can be seen as the patient trying to solve a constrained optimal contré¢mproble wants to stabilize
his blood glucose to a given value (stabilization), to avoid hypoglycemia athateehyperglycemia
(state constraints) by only injecting insulin (input constraints). Then, thdigiiee aspect is interesting
as it enables to anticipate on known disturbances. As an example, a patankobws in advance
when and what he will eat, thus providing the controller with these informatibbgcomes possible
to aim at better control performances (see e.g. [168] or [1]). Finalbaritalso be useful to overcome
physiological delays due to the use of the subcutaneous route for battsthi@ injection and the blood
sugar measures [72].

The problem of controlling blood glucose is challenging in regards to vaaspescts. The considered
system {.e. the human body) is nonlinear and time varying (e.g. the diabetics are subjeet dawm
phenomena which make them more insulin resistant in the early morning). Thebvaiévices favor
the use of the subcutaneous route (see e.g.[139]), which implies thatighsme time lag, either on
the blood glucose measure or on the insulin effect. This makes the desigrefficéent controller more
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challenging as these aspects are detrimental for the stability of the clogedAdsD, all patients are
extremely different in the sense that for the same excitation, we can obtairdifiement responses.
Finally, the patients are subject to various disturbances, the effectsicfi ate hard to quantify (e.qg.
stress, exercise, ...see e.g. [154]).

All these facts have implied that the design of robust controllers haveyallagen the prime concern
of the community. This has lead to a massive interest in adaptive appraseh.(s [23], [16] or [73])
and robust approach (see e.g. [5], [120], [58] or [71]). Thedations have proved to be interesting and
motivate further research in this direction. So far, the design of a min-max MBtotler has not been
considered. As this control approach can guarantee robust cpetiformances and also benefits from
the various advantages of predictive controller, we are interested sidesimg this approach.

For control purpose, we will only be interested in stabilizing blood glucoskerent to reject meal
effects which can be considered as a different problem. Anywaysthi@ aure for type 1 diabetes is also
split into two terms, the basal term to stabilize blood glucose and the bolus temwnritec the sudden
blood glucose increase, e.g. due to meal digestion. Also, because thegylmetabolism is a time
continuous process and the measure are time discrete, we are also interdstggrimg a controller in
a sampled-data framework.

This implies that we are particularly interested in what is usually done to carthielsampled-data
aspect in control problem. The problem of controlling a time continuous dynarsig a control input
which is only computed at discrete time instant is a common situation. This is typically thevbas
considering the digital control of a continuous time system via A/D and D/A aternge(see fig. 2.1)

disercte time | (1) o o L 10 i4) = (e, ut) w(e) |2

Figure 2.1: Sampled data feedback

To design a controller in this framework, many approaches can be ussdming that the sampling
time & is known and constant, one of the most natural approach is to globally eorib& system as
a discrete one. It is possible to use a discrete approximation of the continuousididet and then to
design a discrete controller (see e.g. [150] or [107]). It is also plessibdesign a time continuous
controller and then to apply a discrete approximation of this latter (see e.go{§t14]).

Others approaches, which do not need a discretization step, are eitsatecong the sampled-data
aspect by introducing a time varying delay in the input (see e.qg. [54] ¢y 5By embedding the mixed
continuous-discrete dynamic in an equivalent jump system (see e.g. [88]pr [

The previous techniques are worth applying when it is assumed that theAA&bverters are the
key limiting factors and so that the control input has to remain constant in betweesampling instants.
However nowadays it is not always true. Indeed the progress in mawegsor are such that they can
easily work under the milli- or even micro-seconds so that now , at leaatriglevant class of processes,
the true limiting factor is due to the slow state measurements (e.g. because ofdaegging time of
a chemical sensor). This implies that it is worth considering open-loop sardptadeedback control
[48]. Here the idea is to open-loop apply an input signal which is computegiclit sampling instant (see
fig. 2.2).
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Figure 2.2: Sampled data open loop feedback

In this setting, the usual approach consists in using what is often desigagd@en-loop input gen-
erators (see e.g. [108]). The idea is to combine a stabilizing state feedithdie@dforward simulation
(see e.g. [48]). In this regards, the predictive control approacarigplarly interesting (see e.g. [50] or
[47]). To better understand this assertion, let us remind some well-knasgdancerning this control
technique.

Model Predictive Control (MPC) is a control strategy whose aim is to renstability and control
performances using the tool of optimization. Its principle consists in consgigrencontrol input trajec-
tory which is given as the solution of a finite horizon optimal control problemrma@etely, at a given time
t, the control problem is recast as an optimization problem with a prediction inosidzengthT subject
to a dynamical model of the system that has to be controlled and where teatcstate valug(t) is the
initial condition. Then the computed optimal control input trajectotgs) is applied in open-loop until
a new measure is availabletat 6. At this instant, the prediction horizon is shifted and a new optimal
control problem is solved [22]. Figure 2.3 (which has been inspired {i®]) illustrates this concept in
the case of a single input single output system.
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Figure 2.3: MPC strategy: only the first control move is applied in open loop

One of the main advantage of MPC is that it is easy to consider constraintge amptits or on the
states by solving a constrained optimization problem. Of course, if the plant medelto be perfect,
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there would be no need to solve a new optimal control problem and the teedueence could have been
applied in open loop for a € [t,t + T[. However, as it is most likely, the predicted trajectory will more
or less differ from the actual plant trajectory. That is why the optimizatioblero is solved as often as
possible in order to introduce some robustness viafd@dbackmechanism.

Because of its ability to handle constraints and to ensure a certain optimalityardsew a given
criterion, the MPC control technique has rapidly found its place in indusitty mvore and more appli-
cations, see e.g. [126]. In a sense, this success is quite surprisingedinak its very beginning, in
the early 1980’s, there were no formal guarantee on stability of the closgdand/or feasibility of the
optimization problem. Since then, the situation has changed and in the case oatM§talgorithms,
the necessary tools to ensure stability and feasibility, are now well unddrstee e.g. [110].

One possibility to ensure stability of the closed-loop is to add a final cost inuthetibnal that is
optimized and a supplementary terminal state constraint. The final cost is siriypigteon of the value
of the state at the end of the prediction horizon which can be interpreted aaldyapunov function.
The terminal state constraint requires that at the end of the prediction thehatateached a given
subset which satisfies some properties, e.g. to be positive invariant.nehedst and the terminal state
constraint are usually computed via the design of an intermediate control lagfifal controller can
either be applied when the state has reached the terminal state as in the duapprodela see e.g.
[112] or [146], or never be applied as in the quasi infinite approaéh [2

However, even if MPC controller inherently provides some degree ofstoless (see e.g. [143], [167]
or [125]), it is well known that, at least for nonlinear system, the marginbeaarbitrary small. This has
to be understood in the sense that any discrepancy between the contliell and the system leads to
instability of the closed-loop [62]. From a type 1 diabetes point of view, thig [gime importance as
this is nearly impossible to obtain a good model of the process. That is wipifeldse supplementary
computational burden, it is of prime interest to consider the design of robR&t éontroller.

Many approaches have been developed to cope with robustness. ithdeagbehind all these algo-
rithms comes from the game theoretic approach of the control problem [B8]ofiginal robust stability
and performance problem is transformed into a constrained game type miniiigkzagjion one,i.e.
the control problem is expressed as a game between the control enghriebraims at stabilizing the
system and the nature which has the opposite objective. That is, by applyiseful control on the
system, the first player, which plays the role of the control enginedtsdeeminimize the result of the
game,i.e the value of a given cost functional of the game, while the second plap@hwlays the role
of the various uncertainties, seeks to maximize the result of the game (s @][79]).

Simply, the objective of robust control is to compensate for the undesirtibttseof system distur-
bances through control actions such that a cost function achieves its miniontime fvorst disturbances
[10]. The different algorithms proposed to solve the robust contrddlpro differs by their balance be-
tween the needed on line computation time and the robust performances guaRmmigkly speaking,
when it is desired to have a small on line computation time, then the controller has tgogiverobust-
ness guarantee (e.g. by assuming a structure on the disturbances). \Withang for an exhaustive
enumeration of the available algorithms, it is possible to retain the following apgpesac

One of the most time efficient technique consists in solving off-line the optimal algmtoblem
thanks to parametric programming (see e.g [36], [161], [30] or [38)eSE control strategies are based
on the property that, for a given class of control problem, the optimal salaéa be parametrized. This
approach leads to explicit solutions which are valid for a given subsg#tkne, one limitation of these
approaches comes from the difficulty to determine the various subspadesge dimensional system
and/or long prediction horizon. Also, on line, it can be time consuming to find theeastibbspace and
actually it can be faster to solve the optimization problem.

An other time efficient approach consists in finding an approximate solution twitfiral optimiza-
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tion problem by not directly considering the optimization of a given cost fundtiomaby considering
the optimization of an upper bound of the optimal value of the cost functional(ge [7] or [63]). This
approach provides algorithms whose computation time is tractable but at the tlestiofroduction of
a certain conservatism in the results depending on the quality of the deowed.

In order to ensure optimal control performances relatively to a chosemien and to reduce the
computation time, it is possible to use a tube MPC approach (see e.g. [46]dil@&7]). The idea is
to reduce the on line computational burden to the task of solving on line a MPC cpralidém on the
nominal model of the process. The thus obtained control input is then cbwjtle an auxiliary control
law whose aim is to ensure that the error in the predicted trajectory remaimslust control positive
invariant set. The limitation of the method is in the computation of this auxiliary control i ia
desirable to be both simple and to provide a sufficiently big invariant set ¢iarerm good robustness of
the controller).

Finally, there is the family of algorithms which solves the original minimax optimizationlprob
arising from game theoretic consideration. The aim is here to compute a sedqierargrol action
which enables to stabilize the system under the worst disturbances {wbestinderstood in the sense
that they maximize the value of the game). In this category we can distinguishdretive strategy
which use the same criterion as in the nominal casethe disturbances do not appear explicitly in the
criterion (see e.qg. [94], [130], [51], [100] or [92]) and the stratednich explicitly introduce a negatively
weighted term for the disturbances in the criterion that has be optimized .¢sefL£1], [85] or [98]).
The main advantage of the minimax approach is that the robust performanmecgsaranteed for a well
defined set of disturbances which can take various form (additiverd&taes, parameter disturbances,
...) and that the problem is easier to cast. The main disadvantage comebfébeavy computational
burden as the control problem is recast as a minimax optimization problem.

In the problem of artificial blood glucose control, the sampling time is in the ordéreofinute,
implying that the computation time is not a limit. As the robustness of a minimax approaghici the
best that can be expected, we will focus on this approach. Surprignglygh, there are only few results
that can be found when it comes to design a min max MPC controller in a sampkeffadaework. That
is why in this thesis we will be interested in considering, from a theoretical pbiriew, the design of a
stable robust predictive controller in order to control systems desdopadnlinear ordinary differential
equations in a sampled-data framework. The control input will be given byatuion of a constrained
saddle point optimization problem. We have chosen to consider saddle poltérmprinstead of min-
max problem in order to suppress the implicit advantage which is given to thelsisces in this latter
formulation. This is at the origin of the proposed name of the methodsatidle point MPGSPMPC).
Then, as this controller is perfectly suited to the problem of artificial bloodage control, its application
to this control problem will be considered.

2.2 Outline of the Thesis

The thesis is structured as follows:

In part I, we present theaddle point model predictive controll&lom both a theoretical and numer-
ical point of view. In chapter 3, it will be proved that using a final castl @ terminal state constraint,
under reasonable assumptions, this controller can robustly stabilize thelleohsystem (to be under-
stood in the ultimate bounded or input to state practical stability sense). Alsbe assumptions on
the final cost and the terminal state constraint differ from the usual arfesmulation to compute these
elements using the tool of differential inclusion is given. In chapter 4,raamical method based on
adjoint model is given in order to solve the control problem which is formulaseal eonstrained sad-
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dle point optimization problem. Finally, in chapter 5, the good numerical implementatidrcontrol
performances of the SPMPC controller are assessed by consideripgptiiem of robust control of a
disturbed in parameters Van der Pol oscillator.

In part Il, we are interested in applying the previously presented algotittithe problem of artificial
blood glucose control. In chapter 6, we will present two models of the ghdttsilin metabolism.
The first one, which is quite complex, will be used for validation purpose, tbenseone, which only
provides global trend of the process, will be used to design the controllelhapter 7, we will study the
properties of the control model in regards to its applicability with a SPMPC dtetrén chapter 8, we
will present some state observers. Indeed, in the problem of bloodsglwmmtrol, the sole measure of
the blood glucose is available meaning that the value of the remaining state resgtirbated thanks
to a state observer. In chapter 9, we will consider the numerical validationr @fomtrol approach using
a virtual testing platform. For a given set of virtual patient, the parametetiseofontrol model will
be identified using optimal control on the parameters. Then, the controtiermpances will be tested
thanks to numerical simulation using both the control model and the testing platformui@te a virtual
patient. Finally in chapter 10, the possibility to extend the SPMPC approach toitte| problem of
time delay systems is formally investigated.

2.3 Contributions of the Thesis

The main contributions of this thesis are as follows:
Saddle point MPC to robustly control nonlinear system described bynonlinear ordinary dif-
ferential equations in a sampled-data framework

e Presentation of a new MPC control scheme based on zero sum diffegartiak,
e Theoretical proof of the stability of the closed-loop,

e Under the supplementary assumption of a quadratic stage cost, formulation ofatheohand
the terminal state constraint problems in a LMI framework using differentidligion embedding.

Numerical methods

e Proposition of a numerical algorithm inspired from the augmented Lagrangidrothéased on
adjoint formulation, to solve a constrained saddle point optimization problem.

Application to artificial blood glucose control
e Design of a SPMPC controller to take care of the stabilizing part of the cure,

e Numerical simulation to assess the controller performances and its gooddreklagn combined
with the other part of the classical cure.

Saddle point MPC to robustly control nonlinear system described byhonlinear delay differen-
tial equations in a sampled-data framework

e Assuming that the stage cost is quadratic, formulation of the final cost andrthanaé state
constraint problems in a LMI framework using differential inclusion embegldin

This thesis has lead to the following publication
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3.1 Introduction

Model Predictive Control (MPC) (see e.g. [22]) is a control strategpse aim is to ensure stability and
control performances using the tool of optimization. Because of its ability tdlbaronstraints and to
ensure a certain optimality in regards to a given criterion, the MPC contiohiggee has rapidly found
its place in industry with more and more applications (see e.g. [126]). It has asbe a high level
of maturity in academia. In the case of classical MPC algorithms, the necéssteyo ensure stability
and feasibility, are now well understood (see e.g. [110]).

Despite its widespread use, there is still huge interest in developing algoritrmarfous cases
which differ from the classical theory but covers practically enco@atsituations. Among these latter,
one of the main issue deals with the design of a robust MPC algorithm in a sangikettainework for
systems described by nonlinear ordinary differential equations.

This chapter aims at presenting a MPC controller which guarantees raabsitys properties in a
sampled-data framework. Contrary to some approaches which considsaretidation step (see e.g.
[150]), the presented controller is based on the time continuous dynamiceiasider that the control is
updated at discrete occurrence of time. Moreover it is considered thebti| input is any piecewise
time-continuous function which generalizes the case of piecewise constamt(ége e.g. [101, 85])
what leads to consider an open-loop sampled-data control algorithm [48].

If MPC controller provides some degree of robustness [166], this maaginsometime be small
[62], and it is interesting to consider the design of robust MPC controllemyMapproaches have been
proposed to tackle this control issue. In [132, 27], an upper boutiteafost function instead of the cost
function itself is minimized using a linear representation of the dynamics and the tboéaf matrix
inequality (LMI). Another approach consists in using the MPC algorithm tarobthe nominal model
of the process combined with an auxiliary controller. This later is designddtkac the error induced
by the difference between the system and the model is rejected (see e]y.ofli#hat the error remains
in an invariant set as in tube MPC [167, 46]. Robustness can also bduo#d in MPC by explicitly
considering the disturbances in the model used for prediction. One straiegigts in minimizing the
same criterion as in the nominal case leading to minimax strategy (see e.g.[9811300, 92]). The
approach presented here stems from the game theoretic approach oftitod groblem. It introduces
a negatively weighted term for the disturbances in the criterion [111, &5ar®d, assuming that pure
strategies exist, searches for the saddle point of the game [10].

Despite its robust stability guarantee, the minimax approach is rarely implemestaddse of its
heavy computational load [167]. However, sufficiently slow process wheglds robust stability guar-
antee does exist (e.g. the problem which has motivated our work, namelsotblerp of artificial blood
glucose control in type 1 diabetic). That is why, in this chapter we are stetén presenting a MPC
strategy to consider the robust control problem of nonlinear systemsstijgounded disturbances us-
ing bounded control action. The continuous time control signals which amepridri parametrized, are
calculated, at discrete time instants, when the measures are available,iby aagaddle-point problem.
It is proved that thisaddle point MPGSPMPC) stabilizes, at each sampling instant, the state trajectory
in a robust positive invariant set which contains the target. To simplify tbefpthe case of a constant
sampling time is considered. However, it is straightforward to extend the obtagrelts to the varying
sampling time case as long as uniform bounds on the sampling time are known.

This chapter is organized as follows. First, the required properties @ygtem dynamics are given
and thesaddle point MPCcontroller is presented. Then, under some assumptions, it is proved that the
closed-loop is ultimately bounded relatively to a set which contains the origirttaat the system is
input-to-state practically stable (ISpS). Finally, a last section is devoted tordfsdemn of formulating
the final cost and the terminal state constraint problem using differentiakion.
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3.2 Problem statement

3.2.1 Notation and definition

The notation||x|| stands for the 2-norm of a vectee R™, i.e. ||x|| = VXTx.

For a giverty € R*, the notatiorty wherek € N* stands foty = to + kd whered €]0;T| is a constant
sampling time.

Let Q be a non-empty, bounded subseff with a sufficiently regular boundary, if®) stands for
the interior ofQ.

We remind the following useful definition:

a) Afunctiona :RT — R* is of class# if it is continuous, strictly increasing arw(0) =0,
b) Afunctiona : R* — R is of class#® if it is of class.#” and is unbounded,

c) A continuous functio8 : R x R — R™ is of class#.Z if s— B(s, 1) is of class# for each
T > 0 andt — B(s, 1) is decreasing to zero for eash

3.2.2 System description
The system to be controlled is modeled by the following ordinary differentiahion

dx
at =9 (X,u,w),

X(to) = Xo,

(3.1)

wherex is the state vectofZ : R™ x R x R™ — R™ is a continuous function and where the control
inputu and the disturbancesare such that:

U(l)={uel?(), lut)| <umaetel}, (3.2)

W(I) = {we L%(1), [w(t)|]| <wy aetel}, (3.3)

whereuy andwy are known constant belonging B and| C [tg, +] is an interval. To simplify the
notation we will not further explicit the dependency loand simply write the set of control inpUt and
the set of disturbancés.

Remarkl. In order to avoid the problem of non differentiability nfat the discontinuous point of the
couple control disturbancés,w), we will consider the integral formulation of the differential problem
(3.1),i.e. for a given initial dataxy and for allt > t:

t
X(Xo,U,W,tg;t) =Xo+ [ ¥ (X(X0,u,W,tp;S),u,w)ds

fo

In the sequelx(x;,u,w,t;t) for t > t; will denote the solution (to be understood in an integral form)
of the problem (3.1) with initial conditior(t;) = x; and a given couple control disturbanaew).
Let us make some assumptions on the problem.

Assumption 1. For a given initial condition, the integration of (3.1) with a control inputUinand a
disturbance iW provides a forward complete trajectory.
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Assumption 2. For all boundedk and X'e R™, for all boundedu € R™ and for all boundedv and
W e R™, the function? is Lipschitz inx andw, i.e. there exists two constanits andL,, such that:

1 (%, u,w) = (%, u, W) || < Lyl x—X][,

. N (3.4)
197 (X, u,W) — & (X, u,W) || < Ly|lw—W]|.

Assumption 3. For all boundedk € R™, for all boundedu € R™ and for all boundedv ¢ R™, the
function¥ verifies the following condition, there exists a constiént O such that:

10 u,w) [| < KL [+ [[ull + [Jw]).- (3.5)

Theorem 1. If @ : R™ x R™ x R™ — R™ is a continuous function which satisfies Assumptions 2 and 3,
then for every integrable function u and w and initial conditidty X= %o there exists a unique absolutely
continuous solution of (3.1).

Proof. Let us sketch the main idea of the proof. First, we obtain the local existgngeling that the
operatorx — Tx= xo+/ ¢ (x,u,w)dsis a contraction (and then has unique fixed point). Then, using

the linear growth of7 (3. 5) and similar argument as in continuous caséuolv), (see e.g. [145]), we
can obtain the existence of a global solutiongrto + T]. Finally the uniqueness result can be obtained
by using the Lipschitz condition o# and the Gronwall lemma (see appendix section 12.2). Ol

3.2.3 Control strategy

The control strategy aims at stabilizing the state trajectory to a given set whinthins the target, that
will be considered as the origin for simplicity reasons. The consideretiai@trategy is an open-loop
sampled-data robust MPC controller.

It will be moreover assumed that:

Assumption 4. The right hand side of (3.1) is differentiable and we h&(@,0,0) = 0.
Let us recall the definition of a robust control positive invariant set ésg. [18]):

Definition 1 (RCPI set) A setQ C R™ is said to be a robust controlled positive invariant (RCPI) set for
(3.1) if there exists f R™ — R™ a feedback controller, which ensures the existence and unigueness of
the state trajectory and, which is such that for altey € Q, for all w € W and for all t> to, we have
X(X(to), f(X),w,tp;t) € Q.

Now let us define the retained control strategy:

Definition 2 (SPMPC) Thesaddle point model predictive conti@PMPC) consists, for a given sam-
pling rate 5, RCPI setQ/t and prediction horizon T> &, in calculating ut) = u;(t) for t € [t;;ti 1
where (i is computed at;twith respect to the statq &nd the optimal disturbanceswas the optimal
solution of
(uf,wi) = arg inf supJ'i (u,w) = arg supinf J% (u,w),
ueU wew wew U (3.6)
st X(X,u Wt +T) € QfF.
where U and W denote (t;;t; + T]) and W([t;;t; + T]) and J (u,w) is defined as
ti+T
JW(u,w) = E(X(%, U, Wit t 4+T)) + F(X(%, u,w,ti;s),u,w)ds (3.7
t

where E: R™ — R*" and F: R™ x R™ x R™ — R.
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Remark2. The considered game is symmetric between the control inpat the disturbances Indeed
the terminal state constraint is applied to both player. If this raises some queestithe admissible class
of system for which it does not restrict the class of admissible disturlsaitienables to use the useful
framework of saddle point optimization.

The following assumptions are introduced.

Assumption 5. The stage codft : R™ x R™ x R™ — R is continuous in all its arguments and lower
bounded such that

F(xu,w) = ar([IX]) — B (lwl]), (3.8)
wherear andB are.# * functions.

Assumption 6. The functionu € U — J%(u,w) is assumed to be convex, lower semi-continuous and
Gateaux-differentiable for alv € W. The functionw € W — J%(u,w) is assumed to be concave, upper
semi-continuous and d@eaux-differentiable for all € U.

Remark3. The setdJ andW are convex, closed, bounded and non empty. Combined with assumption
6, this implies thatl® possesses at least one saddle point (see e.g. [10]).

In the sequel we noté (x(t;)) = J%(u",w?) the value of the gamé.g. the value of the cost function
at the saddle point. Using the definition\ofx(ti)), we have for all € U and for allw € W the following
saddle point inequality:

JW(ur,w) <V(x(t)) < 3% (u,w). (3.9)

3.3 Stability analysis

Before further proceeding, let us recall some useful definition. Tl have been adapted in order
to cope with the sampling aspect.
First, let us recall the definition of ultimate bounded trajectory (see e.g..[92])

Definition 3 (UB). The trajectory of system (3.1) is said to be ultimately bounded (UB) in.&’setR™
for initial conditions in X C R™, if for all X(tp) € Xg, for all w € W, there exists a N N such that for
allk > N x(tx) € .7.

Then, let us recall the definition of ISpS trajectory (see e.g. [92]).

Definition 4 (ISpS) System (3.1) is said to be ISpS for initial conditions ;nXR™ if there exists a
¢ functionf3, a % functiony and a non negative number D such that for ea@p)x Xg C R™, for
allw e W, for all k> 0 it holds that at each sampling instant the state trajectory satisfies

Xt < B ([[x(to) k) +y( sup (w)) +D.

teto,t]

The main result of this chapter is that the SPMPC strategy makes the contrydtedhsultimately
bounded (UB). The additional assumptions needed to prove this resulvaretgglow and some inter-
mediate results on feasibility and various properties of the value funetiare presented as lemmas.
Particularly, the value functiol, is used to define a function that, at each sampling instant, satisfies
inequalities (3.32) of discrete ISpS Lyapunov functions (see e.g. [#aljthermore with specific as-
sumptions on the cost functions, it is proved that the closed loop system igdnptate practical Stable
(ISpS) at each sampling instant.

To prove the stability of the closed-loop trajectory, the following assumptionsiace.
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Assumption 7. There existsQ/F, a RCPI set associated with the feedbagk which is such that
| fe(x)|| < um for all xe Q.

In the sequefg(x(t)) denotes the signal resulting from the application of the feedback contfgller
along the controlled state trajectory using this controller.

Assumption 8. There exist€ : R™ — R* such that for alk € Q[ and for allw € W we have:

ae(|[]]) < ()
EX)T.9(x, fe

wherely stands for the gradient operator relativelytandag andbg are.#® functions.

(3.10)

Remark4. If x(t) is defined as the solution of the following differential equation for a given initial
conditionxy € Q/F and for allw € W:

{‘jx—%x fe().),
X(to) = Xo,
then we have:

d dx
3 (EC(©) = BEX®) . )

= OE(X(1)T.Z(x(1), fe (x(1)), w).

Definition 5 (Feasibility) The control problem is said feasible for a given initial conditigh )xe X C
R™ relatively to a subse® c X if there exists at least one couglg w) € U x W such that 9(u, w) < oo
and the terminal state constraint conditiofxx u,w,tj;t; + T) € Q holds.

Assumption 9. For a given RCPI se and a final coskE : R™ — R, for all x(t;) € Xg the saddle point
problem (3.6) admits a solution, whexe c R™ stands for the set of states such that the control problem
is feasible relatively t@.

3.3.1 Intermediate results

The following lemma characterizes the conditions on the sampling time and the distyrépeaneen the
optimal and the real disturbances in order for the control problem to refieasible.

Lemma 1. Under Assumptions 7 to 9, iftx) € Xg and if

Vikbwd sup (Jw; —wP|)eV™ T <, (3.11)

tE[ti ;tprﬂ

where W is a disturbances such that, uf, W ti;ti 1) = X(ti+1) where Xti,1) is the new observation
att=t;,1 and r is a positive constant such that

{x € Xe/|Ix—X(%, U, Wit t T <1} € Q.

Then we have(%.1) € Xg.
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Proof. Let us define the disturbane€ such that:
WP € L2(t3ti1) with Wt € [ti;tipa] [[WP(t)]) < w, (3.12)

and
X(X, U WE, i) = X(tia). (3.13)

It is possible to compute the valuewf by solving an adequate optimization problem.
For allt € [tj;ti + T] let us introduce the signal defined as follows:

i W) I [t
Wt) = { WE(t) if t € [t iT]. (3.14)

SincevviS verifies (3.12) andv;’ € W we have thatve W.

Let us noteAix(t) = X(x, U, Wi, ti;t) — X(Ox, U, Wit 1), As X(x;, U, Wit t) is solution of (3.1) with
u(t) = ui(t) andw(t) = wi'(t) andx(x, u’,W,t;;t) is solution of (3.1) withu(t) = u;'(t) andw(t) = W(t),
forallt € [ti;t; + T], we have:

t
[Ax(E)] =] / G (X(%, U, W 15 8), U7, W) — 4 (X0, U, Wt 8), U, W)ds
< V(X000 9.659) ) — 4 (X0 39,4 00

Using the triangular inequality, it is deduced that:

IO < Ve 19X 97659 0) — 4 (X0 .39 40 0
+\/le 1 (0%, U, Wi 5 8), U, W) — 9 (X0, U, WL ), U, W) [ ds

Using the Lipschitz condition (3.4) we can deduce that:

18X < /L / W — W ds+ /i / |8ix(s)ds (3.15)
According to (3.14) we can deduce that it is possible to rewrite inequalit$) 34 follows:
)] < VAL [ w7 —wFlds vy [ 8x(s)ds (3.16)
And then:
18X ()H<\/n*wa5tE§lip](HV\f* w) +\/rTxLx/ 18ix(s)[ds (3.17)
iitist

Using Gronwall inequality (see 12.2), inequality (3.17) becomes:

8X(0) | < VALud Sup (W —wS)e/ o0,

teftitial
In particular fort =t;+ T we have:

At +T)| < /Mkwd  sup (||wy —w?||)ev™T.

teftisti]
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According to (3.11) we have/mLy,d sup (||wf —wp||)ev™ T < r; so it is deduced that:
te(tistiv]

|AX(t 4+ T)|| <.

And so we have:
[IXOx, U, WE st 4 T ) — X(%i, U5, Wi tis 6 4+ T || < (3.18)

The ball of centex(x, U, W', tj;ti + T) and radiug; is strictly contained irQ};E (according to the
definition ofr;). Using inequality (3.18), it is deduced that

X(%, U, Wit 6 + T) € int(QJE). (3.19)

Let us denote; = x(x;, U, W, ti;ti+T). According to (3.19) and as the feedbef@l«endem;E robust
invariant, it is deduced that for &> 0 we have:

X(z1, fe(X), Wt + T;t + T +t) € QfE. (3.20)

Using the definition ofa® we havex(x,u’,W,t;t,1) = x(ti;1), so for allt € [0,T — 8] we have
X(X, U WLt ti g +t) = X (X1, U5, Woti 1561 +-t), and so itis deduced that (3.20) also holdsdas, fg (X), W, t; +
T;t+T+t) wherezo = X(Xi41, U, W, ti 15t 1+ T).

Finally it is deduced that the following couple of stratedies 1,w;.1) is a feasible solution:

- U (t),if t € ftiaiti+ T,
Uit (t) = { fe(x(t)),if t € [t; jrl'l':'[i+1+-|']7

_ _fowi),ifte i+ T,
Wit (t) = { w(t),if t € [t +¥1;ti+1+T],

wherew s in Lz(ti +T;t+1+T) and such that for atle [t + T;ti.1+ T] |[w(t)|| < wm. By construction
we haveu;, 1 € U andwj, 1 € W.

The state trajectory is forward complete and absolutely continuous (see Assufhptidrtheorem 1
), So itis quite clear that usin@i 1, W 1), the state trajectory remains bounded (the initial condition, and
the couple control disturbancés 1, w; 1) are bounded). Because the functioBas upper bounded by
a .7 function and the functiond¥ is continuous in all its argument, this implies tt#t* (i1, Wi 1)
is bounded.

Under the introduced notion of feasibility (see definition 5), this means that tii#gon remains
feasible for the new initial conditior(tj;1), i.e. if X(tj) € Xg thenx(tj;1) € Xg. This completes the
proof. Ol

Remark5. The assumption (3.11) is a sufficient condition which ensures the recuesgbility of
the control problem. This inequality can be interpreted as conditions on the samipiag and the
control horizonT in order for the problem to remain feasible. Indeed, if we upper boundetime
SURc [ty o] (W —wJ||), then, on line, we can think to a strategy which uses the current valyetof
adjust the sampling time or the prediction horizon. It is important to see that the formus@fiemma
1 is highly related to our definition of feasibility and that a stronger definition ofl#tisr will imply a
simpler formulation of the former.

Lemma 2 links the discrete variations of the value funcifoat sampling time to the integral of the
stage cost.
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Lemma 2. If the assumptions of lemma 1 hold, then we have:

tit1
VX(ti)) -VX(G) < — | FXO6U W85 ), U, w)ds (3.21)
Proof. Let us compare the value df (uf,w) andJ'(u,wi",;), whereu € U andw € W are defined as
follows:
at) = U (t),ift e [tipnti+TJ,
(X(t)),if te[ti+Ttia+T],

e WSE).0f € [

— S(t),if t € [t tiag

w(t) = RN ’

© { Wi (), if e [t + T,

wherew? is defined in lemma 1. The disturbaneg , is well defined because of lemma 1.
First let us expresd' (u7,w):

ti+T
JE(U, W) = E(X(x, U7, Wt +T)) + F(X(%, U, W, ti;s), U7, w)ds,
&
tir1
= E(X(%, U5, Wi 1, it +T)) + F (X(x, ", W2 ti; ), U, we)ds (3.22)
&
ti+T .
+ A F( ( |7V\f|k+17ti;s)7ui 7M+1)ds
i+1
Then let us expresE+ (U, Wi, ;)
" _ _ tip1+T _ _
J |+1(u7vvi*+1) - E(X(Xi+17 u7V\fik+17ti+l;ti+l +T)) + A F(X(Xi+17 uavvi:leti-i-l; 8)7 U,V\fikJrl)dS,
i+1
T
= E(X(Xj+1, fE)V\fik+1ati+1;ti+l+T)) + A F(X(Xi+1a ura\,\fi’:rlvtprl;s)?urvvvi':rl)ds (323)
i+1
ti+T ’
+ T F(X(XiJrlv vaV\fik—Q—l?tiJrl;s)a fEaM+1)dS

It is deduced from the definition af° and theorem 1 that for allc [0;T] the state trajectories are
such that:
X(Xi, U W, tistip1 +1) = X1, U, W, tiy 15t +-1).

And so, using (3.22) and (3.23), it is deduced that:

P ) = 2 = — [ O w9 W
+E(X(Xit1, fe, Wiy o tivastiva + 1)) — E(X(G42, U, Wi, tis i+ T)) (3.24)
+ titrTﬁT F(X(Xi+1, fe, Wiy 1, 8415 S), e, Wy 4 )ds
Let us integrate the second inequality of Assumption 8 betweerm andti 1+ T with w(t) =
W, 4 (). Using the remark 4,we obtain the following inequality:

E(X(Xi+1, fE, W 1, tip 1 tia +T)) — E(X(Xi1, U, Wi 4, i 16 +T))
tip1+T (325)

+ T F(X(Xi+la fE7M+l7ti+l;S)7 fE7M+1)dS§ 0
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According to (3.25), the inequality (3.24) becomes:
tit
AW, ) (W) < — [ R W)U w)ds
{;

Finally using the saddle point inequalities (3.9), we can deduce that:

V(1) V) < — [ Fu WS 9. 1 wS)ds (3.26)

ti

Lemma 3 provides an upper-bound of the value function for all states in tlde;ﬁtfz;E.
Lemma 3. Under Assumptions 7 and 8, ift) € Q/F then V(x(t;)) < E(x(t;)).

Proof. The setQ;E is RCPI under the feedback controllés. Under Assumption 7, we have for all
x € QI || fe(x)|| < um. As the state trajectory is forward complete and absolutely continuous, thé signa
fe(x(t)) resulting from the application of the controllés along the state trajectory is Irf(1), wherel
is an interval of lengti'.
Assume thak(tj) € Q[E. To avoid possible confusion, let us introduiiee U defined as follows

fi o [titi 4+ T] — R,
t — fe(x(t)).

Using the right hand side of (3.9) with tlaepriori suboptimal control signal = f,t_:i we have:
V(x(t) < JU(FE, wp). (3.27)

Let us consider the inequality of Assumption 8 along a state trajectory (this makes kecause it
is assumed that(t;) € QE) with w = w;". Then for allt € [t;;t; + T], we have:

DE(X(XU fé?mﬁ’ti;t))T‘g(X(m? fItEi>V\rik7ti;t)7 fltElvv\rlk) + F(X(Xi7 flt—:iv\/\rik¢ti;t)v féaM) <0.

Let us integrate this inequality betwegmndt; + T, according to remark 4 we obtain:

ti+T
—E(X(t)) + E(X(%, fg, Wi, it +T)) + [ RO, fe, Wi, ti;s), fg,wi)ds< 0. (3.28)

Using the expression dfi(f,‘_:i,vxff), inequality (3.28) becomes:
J(fe,w) —E(x(t)) < 0.
And so using the saddle point inequality (3.9) we deduce\tkgit) < Q;E:
V(X)) < E(x(t))-
O

The previous lemmas 1, 2 and 3 consider properties of the controlled slystamen two successive
sampling instants. From now on, they consider the complete controlled trajectory.
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Lemma 4. Under Assumptions 1 to 6, if the assumptions of lemma 1 hold, then there el@isded
subset of X which contains the origin such that for all boundedoX € Xg the state trajectory reaches
this subset in finite time, the state trajectory is bounded and there exists @otvis> 0 such that for
all bounded » Xg we have \(x) <V.

Proof. We havex(ty) € Xg, soV(xo) is well defined and is finite (because the control and disturbances
are bounded and the state trajectory is absolutely continuous and forevaplete).
For a giver € N*, for all t € [to,tq], let us introduce the following notation:

u'(t)
w(t)

Ui(t) vt e [tk;tk+l[7 vk e {07 L l}a
WR(t) Wt € [t tkea[, Yk e {0,...,n—1}.

Let us introduce the following set:
2 ={xeXe/ar([Ix[[) < Br(wm) + €},

whereg is a strictly positive constant.
First let us prove that for allthe value functiotV is positive atx(tj). Using the left hand side of the
saddle point inequality (3.9) with a null disturbance signal, we have:

V(x(t)) > J%(ur,0) >0, Vi. (3.29)

Now let us prove that the controlled trajectotixo, u*, w>, to;t) reach.2” in finite time. Summing
the inequality of lemma 2 and using the inequality (3.29) we have:

tn
0<V(X(tn)) <V(X(to)) — [ F(X(Xo,u*,W> t0;8),u*,w°)ds
to
where for allt € [t;ti,1] we havex(xo, U*,W", to;t) = X(;, U5, W™, i t).
So it is deduced that:

"E (X(X0, U, W>, tg; 5), u",wo)ds < V (X(tg)).
to
Using inequality (3.8) we have:
/ttn are (|[x(xo, U, W to; 8)[|) — Be (|[Wl|)ds < V (x(to) ). (3.30)

Let us prove that the state trajectory reaghin finite time by contradiction. Assume that the state
trajectory never reacl?’, i.e. for all t > to X(xo, u*,vvs,to;t) ¢ 2, then for alls € [to; ] we have:

UF(HX(X(),U*,WS,IO;S)H) _BF(”WS”) > E.

And so inequality (3.30) becomes:
nde <V (x(to)). (3.31)

What leads to an absurdity because this inequality holds for, alls constant an¥ (x(to)) is finite.

This implies that the state trajectory reacti&sin finite time.

Using lemma 1 we know that K(tp) is a feasible initial condition then, for &lle N, x(t) is also a
feasible solution. This implies that if the state trajectory lea#eshen it returns inZ” in finite time.
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As the state trajectory is absolutely continuous and assumed to be forward mrtipgeimplies that
the controlled state trajectory remains bounded.

The control input and the disturbances are assumed to belotgs i, so they are a.e. bounded.
As F is assumed to be continuous in all its arguments B&nsl upper bounded by & function, this
implies that the value functiovi can not take an infinite value.

According to the expression & which is a function ofF andE, we deduce that for all bounded

X € Xg we have supy (x) < c. So, there exists a positive constant o such that for alk € Xg we have
XEXg

V(x) < V. O
Lemma 5 introduces a functidh that satisfies the inequalities of discrete 1ISpS Lyapunov functions.

Lemma 5. Under Assumptions 1 to 6, if the assumptions of lemma 1 hold arftd ifeXg is bounded
then there exists a function: R™ — R™ such that at each sampling instant the following inequalities
hold:

a([Ix(t)[1) §~\7(X(ti)) < ap([[x(ti)[]) +di,
V(X(ti+1)) =V (x(t)) < —aa([[x(t)]]) + 0 (W) + .

zareinJZ™, oisin.z and(d),_, , are inR™.

(3.32)

Where(or,-)j ....

Proof. Let us prove first that the value functidhcan be upper bounded by&® function. We remind
that because of lemma 4, we know that for all bounsetiXe there exists/ > 0 such that the value
function is uniformly bounded,e. for all x € Xg we haveV (x) <V.

First, let us assume thaft;) € Q.

Using lemma 3 and Assumption 8, we have:

V(x(t) < E(x(t)) < e(|x®)[])- (3:33)
Let us now consider the case whetg) & Q/E. B
Let us callr € R** a constant such thdk € Xg/||x|| < r} ¢ QfF and noteK = max(l, bv(r)>
E

Asx(t) ¢ Qfe, we have<§z {xe Xe/||X|| <r} whatimplies that/x(t;)|| > r. So it is deduced that for
be (||x(t) 1)

all x(t;) ¢ QfF we haveb—() > 1 and so finally we have:
E

Wy <7 <R
V(X)) <V gv?(r)

This enables us to conclude on the upper bound oy a7 function. Indeed, aK > 1, according
to (3.33) and(3.34), for al(t;) € Xg we have that:

V(x(ti) < Be(lIx)1), (3.35)

< Kbe([[x(t)1])- (3.34)

where
Be(s) = Kbe(s). (3.36)

Let us now consider the lower bound ¥rand the upper bound on its variations.
First asx(tp) € Xg, using lemma 1, it is deduced that, for a# N, x(t;) € Xg. So, using theorem 1,
it is deduced that the state trajectory is absolutely continuous with respect tortimsémplies that it is
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uniformly continuous with respect to time. This means that fofaHl 0, there existg (6) > 0 such that
for any couple control disturban¢a,w) € U x W we have:

[IXO6, u, Wi tist) —X(6)]] < 0, vt st t—ti| < &(6).
And so using the triangular inequality it is deduced that fot alich thaft —t;| < £(8) we have:
[x(ti) [ — 6 < [[x(x, u, Wi tis ). (3.37)

To further proceed, let us distinguish two cases depending on whetheaweéx(t;)|| > 08 by intro-
ducing a constarg > 0 and comparingx(t;)|| with 6 + &.

i) Case 1:if||x(tj)|| >68+¢€> 6,
In this case the left hand side of inequality (3.37) can be lower boundied@ss:

clfx(t) [ < fIxt) [ — 8 < [[x04, u,wti )], (3.38)

€
wherec = ——.
- &E+06
Using inequalities (3.8) we can deduce that:
ti+o

ti+o
/ F(X(XiaU:W7ti;S)7uaW)d52/ ar ([Ix(xi, u,witi; S)[|) — Br ([lwi)ds
i i (3.39)

ti+r(0)
> [0 (x5, u et o) ds— e (wn),

wherer (6) = min(J,&(0)), and then (according to (3.38)):

ti+0 ti+r(0)
| Foouwis uwds> [ ar(clx())ds— 5 (w).
> 1(0)ar (cllx(t)[]) — 8 (ww), (3.40)

c
> r(0)ar (5 [Ix(t)I)) — 0L (wWiw)-
In the sequel let us introduce the following ® function:

al(s) = r(G)aF(gS)a (3.41)

BR(s) = O (s).

Let us prove that the value function is lower bounded by'& function.
Using the definition of a saddle point (3.9) we have:

V(x(t) > J(u,0). (3.42)

Using (3.8) and (3.38) it is deduced (as to obtain (3.40)) that for theleawgmtrol disturbances
(u",0) we have:

[ 00, ,0.659). .01 () ) (343)
5
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Using the definition o8 (u*, 0) and inequality (3.43) we have:
ti+T

Ji(ur,0) = E(X(X, U5, 0,ti;t +T)) + A F(x(x;,u",0,t;;s),u",0)ds,

ti+0
=z / F(x(x,u,0,t;s),u,0)ds (3.44)
t

> o ([[x(t)]))-
So finally combining inequalities (3.42) and (3.44) it is deduced that we have:
V(x(t) > o ([x(t)])- (3.45)

Finally let us compute an upper bound on the differeviegti 1)) —V (X(t;)).
Using the results of lemma 2 we have:

V(K1) VX)) < — [ F (060 WS 484 wd)ds

&

And so using the inequalities (3.40) it is deduced that we have:
V(x(tir1)) =V (x(t) < —a@([[x(t)]) + B2 (ww). (3.46)
i) Case 2: if||x(t)]| < 0+¢,

In this case we can not state on the sign|x(t;)|| — 8. However it is possible to rewrite inequality

(3.37) as follows:
0 < |Ix(t) ||+ & < [Ix(%,u,w,ti;t)|| + 6+ €.

We have:

HX(ti)|!+£Z(1+€_i )X = [(t)][-

s+6
Soif |x(t)|| < 6+ € we have:

cl|x(t)]] < IO, u,w,ti;t)|| + 6 + €. (3.47)
Let us add and subtractf)ag (6 + €) on the right hand side of (3.39). We can deduce that:
ti+0 ti+r(0)
/ F(X(Xi, u,w,t;;s),u,w)ds> / e (|x(%, u,W,ti;)|) + o (0 + €)ds
ti Ji
—0f(wm)—r(8)ar(6+¢).
Using the properties of#” function (item 12 of proposition 2, see 12.1) we have:
ti+o ti+r(0) 1
/ F(x(x;,u,w,ti;s),u,w)dsz/ ar (505, U wt;9)| + 6+2))ds
1 i
— 0L (wy)—r(8)ar(6+¢).
And so finally using inequality (3.47), it is deduced that we have:
ti+0 ti+r(9)
| Foouwtiguwds> [T ar (G () )ds— 0B (wi) ~r(0)ar (6 +¢).

>1(0)a ( [X(t)[]) — 0B (W) —r(8)ar (6 + ).
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So finally, with the same steps as in case i), the following inequalities are dkéduce

ap([[x(t)I) <V (x(t))+r(8)ar(6+e),

)+ (3.48)
V(X(tip1)) =V (X(t) < —a@ ([x(t)]]) + B2 (W) + 1 (8) e (6 +€).

Conclusion

Let us define the functiod (x(t)) =V (x(t))) +r(8)ar (8 + €). From (3.45) and (3.46) in case one,
(3.48) in case two and (3.35), it is deduced that

ap ([x()]) <V (x(t) < Be([Ix(t)[l) +r(6)ar (6 +¢),
V(X(ti1) =V (x(t) < —ag([[x(t)]) + B2 (W) +r(8)ar (6 + &),

wherer(8) = min(5,£(0)), ar is defined in (3.8)a2 andB? are defined in (3.41) ang is defined in
(3.36).

So finally we have defined a functidéh(x(t;)) such that there exists thre€ ™ functionsa; = a?,
a = Bg andas = aE, one.# functiono = BE and two non negative constarts=r(6)ar (0 + €) and
d> =r(0)ae (6 + €) which verify inequalities (3.32). O

(3.49)

3.3.2 Main results

Now we are in position to prove the required properties on the closed-lomgtoey. First, at each
sampling instant the state trajectory is proved to be UB. This result is adapiedHeoproof of robust
stability of min-max discrete MPC controllers (see e.g. [94]) thanks to thdifum¢ of lemma 5. Then
supplementary assumptions on the previously introduéednd.7® functions leads to ISpS results.

Theorem 2. Under Assumptions 1 to 6, if the assumptions of lemma 1 hold afig)ifexXg is bounded,
then under the SPMPC controller, at each sampling instant, the state trajastoiy relatively to a sub-
set of X% which contains the origin, and is asymptotically stabilized to a bounded sub&#t edntains
the origin.

Proof. The proof can be obtained by proceeding in three steps. First, the fuitdefined in lemma 5
is used to define a s@tthat is proved invariant. Then, a parametrized set of supeBsetse introduced
and used to prove the UB property. Finally the trajectories are provegnopdstically reach the sé.

In the sequel the variablé, r(8) and ¢ and the functiong3z, ar, al and B2 are the same as
introduced in the proof of lemma 5.

(i) Prove that there exists a subse® C Xg which is invariant under the considered control law,

Using the functioV of lemma 5, let us prove that there exibts .# andc € R* such that the set
0= {xe Xg/V(X) <b(wy)+c} C Xg is invariant at each sampling instang,. if x(t;) € © then for all
ke Nx(ti.k) € ©.

Using the properties of#” function (item 11 of proposition 2, see 12.1), we have:

Be(|Ix(t)]) +r(8)ar (6 +€) < Be(||x(t)[|+ 6+ &) +r(6)ar (|[x(t)]| + 6 + €). (3.50)
According to the right hand side of the first inequality of (3.49) and inkiyu®.50), we have:

V(x(t)) < Be(lIx(t)] +6+e), (3.51)
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where
BE(s) = Be(s) +1(B)ar(s). (3.52)
Sinceﬁg e %, its inverse function exists, and then (3.51) becomes:
IX(t)| + 6 +& = (Be) " (V (x(t)))- (3.53)
Let y(.) be a given#™® function and let us consider the following ™ function:
0 s, .S

ag(s) = min(ag(5), ¥(5))-

Using the properties of#® functions (item 12 of property 2, see 12.1) and inequality (3.53) we
have:

aR (IIx(t)]) +y(6 + &) > ag(||x(t)]| + 6 +¢) (3.54)

> af o (B2)HV(X(t)))-

Using inequalities (3.49) we have:
V(x(tir1)) <V (x(t)) = af ([x(t)][]) + BE (wm) +r(8)ar (6 +¢).

Adding and subtracting(6 + €) on the right hand side of the previous inequality and using inequality
(3.54) it is deduced that we have:

V(x(tir1)) < (id — ag o (B2) ) (V(X(1))) + V(8 + &) + B (ww) +1(8)ar (6 +&). (3.55)

As a composition of twa# ™ functions,igo (B2)Lis az function, it is deduced that there exists
a.#"® functiond which verifies the following inequality (item 13 of property 3, see 12.1):

8(s) < ag o (B2) H(9). (3.56)

and which is such tha— J (s) is a.#" function.
To simplify the notation, let us introduce the following function:

p(s) =y(s) +r(8)ar(s). (3.57)
Using the functions defined in (3.56) and (3.57), (3.55) becomes:
V (x(ti41)) < (id — 9) (Y (X(1))) +p(6+ ) + BE(Win). (3.58)

Assume thax(t;) € ©, then we have that (x(t;)) < b(wy)+c. Asid —3 € %, and so is increasing,
it is deduced that (3.58) becomes:

V(X(ti+1)) < (id — 9) (b(wn) + ) + p (8 + &) + BE (W) (3.59)

Let us choose:

b=(9) "o (2BF) € 4,

c=(9)to(20)(0+¢)eRT.
Using (3.60) and item 12 of property 2 (see 12.1, in the special case &her, ) we deduce that:

b(wm) +c¢> (8) 7" (B(wWm) +p(8+¢)). (3.61)
So finally using (3.61), (3.59) becomes:
V(X(tiy1)) < b(wm) +c.

This implies thak(ti;+1) € ©. Thus it is possible to show thatift;) € ©, then for allk € N, we have
X(ti1k) € ©. This proves that the introduced €&is invariant.

(3.60)
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(ii) Let us prove now that the state trajectory is UB relatively to©, .
Let us introduce the following set:
O = {x€Xe/V(X) < b(ww)+c+A},

whereA > 0.
First it is proved tha®, is invariant at each sampling time, using the same proof a®fdndeed
the only point which changes is inequality (3.59) which becomes:

V(x(ti1)) < (id = 9)(b(wm) +C+A) +p(6+ &) + BR (W) (3.62)

Using item 10 of property ot” functions (see 12.1), inequality (3.62) becomes:

V(X(t42)) < (id — 8)(b(Wiy) +C) + (id — )(A) + (8 + ) + B(Win).

And so finally we conclude that if we haW&x(t;)) < b(wy) +c+ A then we have:

V(X(tiy1)) <b(wm)+c+A,

what proves tha®, is invariant.
Let us introduce the following notation:

Vi =b(wy)+c>0,
Via =b(wm)+Cc+A >V.

Let us prove the sé, is reached in finite time.
Inequality (3.58) can be rewritten:

V (X(ti+1) =V (x(t)) < =8 (V(x(t)) + B2 (Wn) + (6 +€), (3.63)

and inequality (3.61):
8 (Vi) > B2(wi)+p(0+¢). (3.64)

So, from (3.63) it comes:

V(X(ti+2)) =V (x(t)) < =8 (V(x(t))) + (). (3.65)
Assume that for alk > 0, X(tix) ¢ ©, then, asd € %", we have:

—F(V(x(t)) < =9 (Ma). (3.66)
Itis then deduced from (3.65) that:
V(X(ti:1)) =V (X)) < —9(Vix) + V),
and recursively that for ak > 0:
Via SV (X(tiik)) SV(X(1) — k(I (Via) =8 (V).

As 9 € ., for A > 0 small enough, we hav8 (V) — 8 (Vi) > 0. As the value o/ (x(t)) is
bounded, the previous inequality leads to falsify the assumption. So it 8k&ish thak(ti.n) € ©,.

So, for somel > 0 small enough, the s@; c R™ is such that for all initial conditiox(to) € Xe,
there existdN € N, such that, for allv € W, for all k > N, x(tx) € @y (convergence in finite time and
invariance property). The state trajectory is then UB in theSget
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(i) Finally, prove that the state trajectory asymptotically convergegoward ©.

First, it is straightforward to prove that the previous conclusion also Holdall sets©, where
A < A. Letus then introduce the following strictly decreasing sequéhggcn that converges toward 0
defined as follows:

A
E.
Since the sequene®,  is strictly decreasing in the sense of the inclusion, we have:

o= 0,

An:

So, itis deduced that the state trajectory is asymptotically stabiliz€d in O

Now, let us prove that under supplementary assumptions on the stageadthe final cosk, the
system is ISpS at each sampling instant.

Theorem 3. Under Assumptions 1 to 6, if the assumptions of lemma 1 hold aid)ifsxXg is bounded,
if there exists @, A € R** with a < b such thatn@(s) > as' and Bz (s) < bs' then under the SPMPC
controller, at each sampling instant, the system is ISpS.

Proof. Using lemma 5 to only consider sampling instant, the idea of the proof is inspiredtieproof
in the full discrete setting (see e.g. [95]).
Using the assumptions arf_-) andfg, the inequalities (3.49) of lemma 5 become:

allx(t)[* < V(x(t)) < blx()|* +r(6)ar (6 +¢),
V(x(ti+1)) =V (x(t)) < —allx(t )”)\+BF("WM”) +r(6)ar(0+¢).

To simplify the notation, letl denotesd =r(6)ae (6 +¢).

The right hand-side of the first inequality of (3.67) is used to get a lowend of||x(t;)||* that leads
to:

(3.67)

V(x(t) —alx(w)| < (1-2) ¥ (x(t) + od. (3.68)

Let us introduce = o €]0; 1], since it is assumed that< b.
Using (3.68), the second inequalities of (3.67) becomes:

V(x(ti+1) SN\N/(X(ti)) —alx()|1* +BE(|wnl) +d

< Q=T (X(t)) +BE(wn ) + (1+T)d.

And so we have:

V(x(ti1)) < (1= 1)V (x(to)) + (B2 (|Iwml]) + (1+7)d) 0(1— )k, 369

< (1-1)"V (x(to) + (BE(lwm ) + (1+1)d) (-1~ ).
Combining (3.69) with the left hand side of the first inequality of (3.67), wiherD, we have:

[~ =

V(X(tiy1)) < (1—1) 2 (b||x(to) |} +d) + (B2(||wm]|) + (1+ T)d)%(l— (1— 1)1,
i 1 1 (3.70)
< (-0 ol + LA )+ (14 )
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Combining (3.70) with the right hand side of the first inequality of (3.67) weshav
A i+1 PR P 1
alx(ti)[* < (1=1)"0lx(to) [ + —Be([lwml]) + { 14— ) d. (3.71)

Furthermore, using the convexity property of the functoen s/, VX,y,z> 0 we have:

>

>
>

(X+y+2)7 < (3%)7 + (3y)* + (32)7. (3.72)

So combining (3.72) and (3.71) we deduce the following inequality:

. § _ )i+l MY i 0 ' § : %
||x(t.+1>\§<a((1 T blx)| )> +(arﬁFGWMH)) +<a(1+f)d> (373)

< (=) o+ (2t + (a2

a

>

1
. A
To conclude, we have found.&”.Z function B((Xo,i)) = <2((1— T)H'lb)) |I%ol|, &% function
3 o, \7 . 3. 1 \*
y(s) = EBF (s) | and anon negative constddt= 5(l+ ;)d such that:

X)) < B((X(to),1)) + y([wm]) 4 D.
According to definition 4, this proves that at each sampling instant the systepSs IS O

So far, we have presented a SPMPC controller and have proved tihat smme assumptions this
controller ensure good stability properties of the closed-loop system. sioethese properties, one of
the central issue is to satisfy Assumptions 7 and 8. These assumptions deal wiistdece of a final
costE and the existence of a robust controlled positive invarianfet The aim of the next section is
to present algorithms to compute these elements for a given control problem.

3.4 Formulation of the final cost and the terminal state constraint

3.4.1 Formulation of the problem

One of the key issue with MPC controller is the stability property of the closep-I@o ensure good
properties of the controller, one of the classical method consists in addiimg aost and a terminal set
constraint in the optimization problem, see e.g. [26]. As for NMPC, it has bemreg that by adding
a final cost and a terminal state constraint in the optimization problem, the SPMR@ItEr ensures
good stability properties. Using what is classically done in the frameworkN§/®C controller (see
e.g. [110]), the aim of this section is to present algorithms to compute these elememt$ramework
of the here presented controller.

To do so, we will assume that the system dynamic is described by (3.1)klyassbe understood
in an integral form). In the sequel it is assumed that the assumptions 1 to 4iafiedaAlso, we will
consider a quadratic stage cost

F(x,u,w) = X[ &+ [Jull — Wil (3.74)
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whereR, a andQ are symmetric definite positive matrices (it is clear thatatisfies Assumption 5 with
ar (|1X) = Amin(R)||X]1? andBr (W) = Amax(Q)[IW/?).

To solve the final cost problem, we are interested in computing a control iigpwtich locally
stabilizes the system. Practically, this controller won't be applied to the systel@ed, in the previously
presented control strategy, we have retained a quasi-infinite stratéy This means that the final
controller is just used to provide an upper bound on the value funetiout will never be really applied
to control the system. This implies that we are not interested in finding efficgaritoller but more in
finding a simple one. That is why we will look for a simple linear state feedbable. fiain advantage
of this choice is that, using an adequate local formulation of the system dynanécpites possible to
search for a quadratic final cost. As for the terminal state constraint, ib@idhosen as a level set of
E. More precisely, the final cost, the terminal state constraint and the porréisig controller will be
chosen as follows:

E(x) =x"Sx xe R™,
fe(x) = Kx, x e R™, (3.75)
QfF = {xe Xe/E(x) <y},

whereS € R™™ is a symmetric definite positive matrix € R™™ andy € R™* will be chosen such
that all the supplementary constraints on the state and on the control iem#tesfied within the corre-
sponding subspace.

In this section, we will present two algorithms to compute a final cost and a ternat@lcenstraint
based on differential inclusion representation. The concept of diffiaténclusion is a generalization of
the concept of differential equation (see e.g. [17]) where the der@sis no longer equal to a function
but belongs to a given set. The first algorithm will rely on a local polytopic limiféerential inclusion
(LDI) embedding of the full nonlinear disturbed dynamics (3.1). The seatgatithm will assume that a
linear representation of (3.1) through introduction of a norm bounded eliffied inclusion is possible. In
both cases, the idea is to recast the original problem of computing a finarmbatRCPI set using linear
matrix inequalities. Thus, using usual LMI solvers, e.g. the Matlab toolbbk [fe original problem
will be solved. Also, in order to simplify the computation, we will consider strict iredjies for the
inequalities (3.10). Of course, the thus obtained final cost will then saiisfymption 8. Finally, in a
last part the previously presented algorithm will be adjusted in order to tak@a@sount supplementary
constraints on the control input and on the state.

This section is organized as follows. First an algorithm to compute a final casighra polytopic
LDl is presented. Then an algorithm to compute a final cost through a nanndied LDI is presented.
Finally, an algorithm to compute the parametavhich defines the terminal state constraint is presented
for the two previous algorithms.

3.4.2 Formulation via Polytopic Linear Differential Inclusion

First, we will be interested in representing (locally) the original differentiakdign (3.1) via a polytopic
linear differential inclusion (PLDI). This corresponds to the speciad cds differential inclusion where
the derivative belongs to a set which is described by a convex setitef Viertices and each vertex
is described by a linear function. To solve the final cost and the terminal stastraint computation
problem, we will be interested in controlling this PLDI. Because it is assumethgaabnsidered control
problem satisfies Assumption 4, then a local PLDI embedding is possible (s¢&3)g.

Many papers have dealt with the problem of controlling such a LDI, seg¢#gand the references
therein. Even if it is well known that for a PLDI a convex hull Lyapunowmétion provides controller
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which show better performances (see e.g. [74]), for simplicity reasemsyill focus on the problem of
finding a common (quadratic) Lyapunov function (and a correspondingadtam) for all vertices. By
doing so, the final cost will simply be equal to this Lyapunov function and timitel state constraint
will be defined as a level-set of the final cost. The main drawback of thpsoaph is that the subset
corresponding to the terminal state constraint will be possibly small.

In the sequel, let us assume that, locally, the full nonlinear system (3.1) iddeledbe the following
PLDI:

3,[ € Co{AiX+Byiw+Byu, i=1,...,N}, (3.76)

where cd.} denotes the convex hull of a set, foridt {1,...,N} the matrice#\, By andB;; are given
constantx € R™ is the stateyw € R™ is the disturbancey € R™ is the control input and\ > 0 is the
number of vertices of the PLDI.

, . . dx
As we consider a PLDI it is possible to expreé,tsas follows:

d

X N
at Zlﬁl ) (AX+ Byiw+ By uj, (3.77)

where for allt >0, Bi(t) >0, foralli=1,...,N, andZB, )=1.

According to (3.74) and the expression of the derivative given by7j3the second inequality of
Assumptions 8 becomes:

zlﬁ. J(ORE ()T (Ax+ Buiw+ By fe(x) + X3+ | fe )2~ [m]2) < 0. (3.78)

Using the final controlleifz and the final cosE given by (3.75), inequality (3.78) can be rewritten
as follows:

2113. S((A + B2iK)x+ By iw) + X" Rx+Xx" KT aKx—w'Qw) < 0. (3.79)

Inequality (3.79) has to hold everywhere on the PLDI. This implies that thiguialdy holds if and
only if it holds for all family of (Bi)ic(1,..n}- So for alli € {1,...,N} we have to solve s andK the
following inequalities:

TS((A +Bo,iK)x+Byjw) +x' (R+ K aK)x—w'Qw< 0.

And then to solve

(C(\/)T ((25(Ai‘:BZ,iK) S_%i) N (R+ *BTO’K 8)) (;‘v) <0. (3.80)

Since the matriceR anda are symmetric definite positive, we have:

R+KTaK 0\ (Ré K'a?)(l,, O\(R: O
0 0/ \o 0 0 In/\aik 0]’

wherel,, stands for the n-dimensional identity matrix (the expon{zanndlcates that we consider the
square root of the corresponding matrix).
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If the matrix in the inequality (3.80) were to be semi-definite negative then thisiatiey would
be true for allx and for allw and so in particular for the subsets we are interested in. So instead of
considering the inequality (3.80), let us searchSandK such that the following condition holds:

2S(Ai +B2iK) SBy; R: KTa®\/l, O\(R: O
(rrek ou) (1 ety (0 0) (B Yo e

Let us factorize the previous inequalities as follows (site= 9):

GO =

3.82
_(SRE SKTad) (~n O\ (RS 0))(S 0) _, (3:82)
0 0 0 —In/\azks?® 0)/)\0 In,/) ~~

As Sis assumed to be symmetric definite positive, this, in turn, is equivalent to theviiejanatrix
inequality:

_ _ 1 _ 1p KT g3\ /— 251
2AA+B2K)ST Bi)  (STRE STKTad) (lp O\ (RIS 0) o oo
. e 0 0 0 —lIn/) \azks?t o

Using the Schur complement, the previous inequality is equivalent to the follanéogiality:

2(A+ByiK)St By SRz SKTa:

* Q0 0 lco (3.84)
* * —In, 0
* * * —In,

By introducing the notatioB= S~ ! andY = KS, itis finally deduced that the solution of an inequality
on a vertex is given by the solution 8andY of the following LMI (for alli =1,...,N):

#(SY) By SR YTa:

o= * Q@ 0 0 1_q (3.85)
* *  —lp, 0
* * * —In,

where.Z(SY) = AS+SA +ByY +YTBY,.

And so, using the usual tool to solve LMI, it is possible to solve the fina @od the terminal state
constraint problem by solving the following LMI:

diag(D4,...,Dn) <O.

3.4.3 Formulation via Norm Bounded Differential Inclusion

In the previous section, we have assumed that the full nonlinear systeneddestribed thanks to a
PLDI. One difficulty when practically using this algorithm is that the number dices can be too large
in order to obtain an easy to use embedding. That is why, in this section, we wilder an other
formulation based on a norm bounded differential inclusion (NLDI) embedding
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Assume that the nonlinear system (3.1) can be embedded in a NLDI repteseriteen the differ-
ential equation can be rewritten as the following linear time varying system (s€@ @}y

dx

Tt = (A+LALX))X-+ (Br+DB1(t, X)W+ (B +AB (1, ) u+ AT (1,X), (3.86)

whereAA(t, x) = MA(t,X)Na, AB1(t,x) = MA(t,x)Ng,, ABy(t,x) = MA(t,X)Ng,, where the matrices,
B1, B2, M, Na, Ng, andNg, have adequate dimensions and are known and constants. The fx{atxix
and the vectoAf (t,x) are assumed to satisfy the following relations (fott@hd for allx)

A, X)] < WX,
. (3.87)
At X)TALX) <1,
where the matriXV is known and constant.
Using (3.86), the second inequality of Assumption 8 can be rewritten as follows:
OxE(X) T ((A4MA(t,X)Na)x+ (B1 + MA(t,X)Ng, )W+ (B + MA(t, X)Ng, ) fe (X) + Af (X)) (3.89)

+ xR+ [ fe()Z — W& < 0.
According to (3.75), the previous inequality becomes:

2xT S((A+ B2K)x+ Byw) +xT (R+ KT aK)x—w'Qw
+ 2xT SMA(t, X)Nax+ 2x" SMA(t, X)Ng, W+ 2xT SMA(t, X)Ng,Kx (3.89)
+2xTAf(t,x) < 0.

So,

(x)T ((ZS(A+BZK) SBl>+(R+KTaK 0)
W i —Q 0 0 (3.90)

12 (SMAO“’X)> (Na-+Ng,K NBl)> <;‘v> +2xTSAf(t,x) < O.

The idea is now to suppress the tefxtt,x) andAf(t,x) of the previous matrix inequality. To do
so let us express some inequalities by using the following inequafyv < u' Su+ v'S-tv for any
symmetric definite positive matri® We have for alk > 0 andgy > 0%:

o) () o w0 (2)
(2 () mesras o)

+% <;(V>T < (Na+ NBz )T > ((Na-+Ng,K) Ng,) <\j(v>’

2xT SAf(t,X) < goX STSX—i— g—HAf(t,x)Hz.
0

1¢ andgy will be chosen appropriately later (when solving the corresponding reatiiequalities).
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SinceA(t,x)TA(t,x) < | and||Af(t,x)| < [|WX], we can deduce that:

2 (\’A(,)T (SN'AO(t’X)> ((Na+Ng,K) Ng,) <;(V>

U1 <x>T ((NA+ Ng,K)T (Na+Ng,K) (Na+ NBZK)TN51> (x)

e \w * NglNB1 W (3.92)
+ ex" SMM' Sx
2xT A (x) < gox" SSx+- gixTWTWx
0
Using (3.92), inequality (3.90) becomes:
<X>T<<ZS(A+BZK)+SSMMTS+8OSS SB>
W —
: Q (3.93)
N ( T(K, ¢, &) g(NA+NBZK)TNBl>> (x) “0
ZNg, (Na + Ng,K) INg,Ng, W ’
T 1T 1 T
whereT (K, €,&) = R+K aK+£—W W+ E(NA+ Ng,K)"' (Na+ Ng,K)
0
Also, we have
< T(K,&,&) g(NAJrNBZK)TNBl)
INg, (Na+Ng,K) ING Ng,
I 00 0 (3.94)
et 0 00
- 0 0 &l O |7
0 0 0 i,
whereP is defined as follows:
R: 0
1
p_ azK 0 (3.95)
w 0

(NA + NBZK) NBl

By introducing the notatio&= S * andY = KSand using the Schur complement, it is deduced that
the solution is given by the solution B Y, £ andgg to the following LMI:

#(SY) By SR YTaz SW YTNL +SN

* -Q O 0 0 Ng,
* x  —ly 0 0 0

X 0. 3.96
* * * —In, 0 0 = (3.96)
* * * * —&oln, 0
* * * * * —E&lp,

where.#(SY) = AS+SA +B,Y +YTB] +eMMT + glp,.
And so, using the usual tool to solve LMI, it is possible to solve the fina @od the terminal state
constraint problem.
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One advantage of the norm bounded formulation compared to the polytopic formutatiuat in
this case we have only one LMI to solve (to be comparel toMlis with the polytopic formulation).
However, this is at a non negligible cost, as this formulation is generally hardet emd the results are
generally more conservative. This can be interpreted in regards to tHemesioned in [91] which
suggests, under some assumptions, that a PLDI can be over bounded.-by.a N

3.4.4 Formulation to consider state and input constraints
Formulation through a supplementary matrix inequality

In the two previous parts, we have been mainly interested in computing an &eldigpad cost and a
corresponding final controller. Concerning the terminal state constra@tave just said that it can
be chosen as a level set of the final cost. In this part, we will give more detaif®w to choose an
adequate level set such that the state constraints and the control imstrtaguts are satisfied within
the corresponding level set. The idea of this part is to use the same idef28%where a method to
compute a final cost and a terminal state constraint for NMPC controller $emied. The aim is to
slightly modify the previous LMIs to consider the constraints. In this part, thetcaints are assumed
to be given as box constraints..

IA A

— X,
) (3.97)

X
u

cl
IN N

U,

wherex > 0 andu > 0 are given vector of constants of adequate dimension.

In the case whera = Kx, whereK is a constant gain matrix, the previous state and input constraints
define a region in the state space defined as follows:

D={xeR™ (cj+d;K)x<1, j=1,...,r}, (3.98)

wherec; andd; are adequately chosen constant vectorsraadhe number of constraints.

If it is desired that for alk € Q;E the constraints (3.97) are satisfied, then it is sufficient to define the
level set€(y) = {x € R™, x" Sx< y} such that:

&(y) c D. (3.99)

Using the results presented in [29], this implies that we have to searctyfaueh that the following
condition holds

(¢ +diK)(yS Y (cj+diK)T <1, j=1,...,r. (3.100)

Using the Schur complement, this can be translated in the following matrix inequality:

y

1 Cjé-i- de
* S

)zo, j=1,...r (3.101)

Adding (3.101) to the LMI used to compute the final cost then we can deterntierninal state
constraint such that for alle Q/F the constraints (3.97) are satisfied.
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Formulation through a LMI

We have presented the matrix inequality that has to be added in order to eroti@dsupplementary
constraints (3.97). According to what has been done in [29], it is deredmputey directly. The idea

is to use the new variab® = ySandY? = y¥. In this case the LMI (3.101) becomes:

D 4.y0
<1 €S JSrodJY ) >0,j=1,...r (3.102)
*

We can now adjust the LMI to compute the final cost.
First concerning the polytopic case, the LMI on a vertex, previouslgrglwy (3.85), is changed as
follows:
M(BY) yB SRE YOTqi

D, — * 0 0 | .o 3.103
' * x  —Vln, 0 ( )
* * * —ylnu

where.#(SY) = AS +S AT +By;Y0+YOTB]..

In this case, we can directly solve 'méo andY® to compute a final cost, a final controller and a
terminal state constraint which satisfy the constraints.

Then, for the norm bounded case, we also need the following changeiables® = ye andsg =
y&. The LMI, previously given by (3.96), is changed as follows:

A Y% yB TR YOTa: SWT YOTNI +SN]

* —-yQ O 0 0 VNI13-1
* x  —VYln 0 0 0

X < 0. 3.104
* * * —VYin, 0 0 ( )
* * * * —E,’glnX 0
* * * * * —Solnw

where.# (S,Y%) = AS’ + SAT 4+ BoYO + YOTBY + eOMMT + €0,

In this case, we can directly solve jnS’, Y°, €% ande? to compute a final cost, a final controller
and a terminal state constraint which satisfy the constraints.

Possibly, there are several solutions to the previous LMIs. That is whynitdeesting to introduce a
criterion to discriminate the one which is better. As previously mentioned, onewgsen searching for
a final cost with a simple quadratic Lyapunov function instead of a quadudtiistthat the terminal state
constraint is possibly small. This has for consequence that the set ilifl ésiagtial stateXge may be quite
small. Thus, it can be interesting to retain the solution which maximizes the volume afrtiesonding
level set. This leads to consider the following optimization problem:

PLDI formulation:

min logde(S)~?
ySO,Y0
s.t. LMIs (3.102) and (3.103)
NLDI formulation:
min  logde(S)*
y.SO,YO,sO,sg

s.t. LMIs (3.102) and (3.104)

(3.105)
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Finally to compute a final cost and a terminal state constraint for a givenotpntblem, depending
on the chosen embedding, we have to solve one of the optimization problem)(3.105

3.5 Conclusion

In this chapter we have considered the extension of a MPC controller tadbéem of robust control
of nonlinear systems described by ordinary differential equations in a samdatadramework. This
has lead to the presentation of an open-loop sampled-data robust nonlediatiye controller, that we
have called @addle point MPQontroller. The robust control problem is solved at each sampling instant
by considering the solution of a constrained saddle point optimization probléiihan by applying the
usual predictive algorithm. Then, it has been proved, that if some assumsatiersatisfied, then this
controller ensures UB, respectively ISpS, property of the controljstem. As for the usual stability
result of NMPC controller, the main assumptions needed to derive these salliwith the existence
of a final cost and a terminal state constraint. As the needed propertynjoute these elements slightly
differ from the usual case, we have also considered two possible f@tions based on differential
inclusion embedding to compute them.

If this approach theoretically shows interesting properties, it is not cleatheh it is practically
interesting to use it. Indeed, to solve the robust control problem, we hawdvio & constrained saddle
point optimization problem (given by (3.6)). This can be at the origin of soiffieldties as such an
optimization problem is quite unusual from a control point of view. The nbapter will be interested
in presenting robust control problems and numerical methods to solve tfesponding saddle point
problem using gradient based algorithm and adjoint model formulation.
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4.1 Introduction

In chapter 3, we have presented a variant of the classical MPGatldie point MPC:ontroller, which
can robustly stabilized nonlinear system in a sampled-data framework. It baspbeved that under
some assumptions, a system controlled thanks to this controller is ultimately bouedpdctively
input-to-state practically stable at each sampling instant). To compute the optimall Goptit, at each
sampling instant we have to solve a state-constrained saddle point optimizatitenpaizen by (3.6).
In regards to usual MPC algorithm, this optimization problem is quite unusual. Thiespat it is of
prime importance to consider the numerical aspect. Indeed, the SPMPGliesrtan only be a viable
controller if it is possible to solve the corresponding optimization problem &t sampling instant.

The objective of this chapter is to present numerical methods to solve m g@e-constrained sad-
dle point optimization problem. To do so, we intend to use optimization algorithms degimselle an
state-unconstrained problem. That is why in a first step we will recastitjiea constrained optimiza-
tion problem in a state-unconstrained optimization problem by modifying, accordliting constraints,
the functional that has to be optimized. The idea is to begin by characterizingptimeal solution.
Then, on the basis of this characterization, the corresponding statestrained saddle point optimiza-
tion problem is solved using usual gradient-based algorithm. In order tegxphe derivatives of the
criterion needed to build a numerical method, an adjoint model will be introduced

This chapter is organized as follows. First we will consider the problesolefng a state-unconstrained
robust control problem. We begin to characterize the optimal solution. Tisérg this characterization,
a numerical method, based on conjugate gradient, is formally presentedetiond step, the more real-
istic case of a state-constrained robust control problem is envisagéihdlthe solution, we propose an
algorithm which consists in introducing a modified functional, according to thetr@ints, to substitute
the original state-constrained optimization problem by a sequence of staaeairained optimization
problems. Finally, a method based on adjoint model is given to express thatikes of the functional
that has to be optimized.

4.2 State-unconstrained Robust Control Problem

The control input of a SPMPC controller is given by the solution of a statstcained saddle point opti-
mization problem given by (3.6). To solve this optimization problem, we intend to usemcal meth-
ods for state-unconstrained optimization problems. That is why in this sectionlihmmsider a state-
unconstrained robust control problem whose solution is given by théi@olof a state-unconstrained
saddle point optimization problem. To solve this problem, we will first charaeténiz optimal condition
and then present a numerical method based on conjugate gradient atgorith

4.2.1 Formulation of a state-unconstrained control problen and optimality conditions

Let us consider a state-unconstrained robust control problem velohs#on is supposedly given by the
solution of the following saddle point problem
u*,w") =arg inf sup J(u,w)=arg sup inf J(u,w),
(U, w') 9,40 sup (U,w) g sup inf (U,w) @)
s.t. the following system
dx
a _%(X>U7W)> (42)
X(Tp) =y (be given inXg),
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wherex(t) € R™, Xg C R™ is a feasibility spacey(t) € R™ is the control input, interpreted as the control
vector of the first player, and(t) € R™ stands for the disturbances, interpreted a<trerol vector of

the second player. The functiofis assumed to satisfy assumptions 1, 2, 3 and 4. The control and the
disturbance setd,q andW,q4 are assumed to be given non-empty, closed, convex and boundeaseibsp
of L?(1) wherel is an interval of lengtiT. The given cost functional(u,w) := J(x; u,w) is assumed to

be sufficiently regular.

Assume that the nonlinear control problem (4.1) admits an optimal sol(iow") € Uag x Whg, the
necessary conditions for this optimum are given by (see e.g. [10])

o+ T
/O <Zi(u*,v\f*)T(u—u*)> ds>0, Yu € Uyg,
o (4.3)

to+T 2J
/ <(u*,v\f“)T(w—W*)> ds< 0, YW € Wyg.
to ow
In order to solve numerically (4.1), it is necessary to derive the gradiedtwith respect to the
control (u,w). For this, we suppose that the operatsr: (u,w) — .%(u,w) of (4.2) is continuously
differentiable orlJ,q x Wag and its derivativev = .%’(u,w).(g,q) at point(u,w) in direction(g, q) is the
unique solution of

dw
rr Ox¥ (X, u, W)+ 0y (X, u,w)g + 0w (X, u,w)q, 4.4)
w(Tg) =0,

wherelly stands for the gradient operator relativelyxtd], stands for the gradient operator relatively
to u and,, stands for the gradient operator relativelyio These equations will be used to obtain the
adjoint model needed to express the derivatives of the criterion.

To simplify the notation, in the sequel we note- .% (u,w).
Before further proceeding, it is worth mentioning that, in the unconstraiasel the gradient dfcan

be calculated by introducing an adjoint model in the same way as for whatesultme state-constrained
case in the coming section 4.3.3.

4.2.2 A Gradient-based Optimization Method

Now that we have characterized the optimal solution of (4.1), we can prasemnerical algorithm in
order to solve the corresponding optimization problem.

To optimize a differentiable function, many techniques are available. Among tlne sse the
gradient of the objective function to generate descent direction. Theazbhssample belonging to this
class of algorithms is the steepest descent method, which is often very slthe blewton method,
which may not converge at all. There is also the powerful conjugatdayradigorithm [148]. This
optimization method is particularly interesting for large dimensional optimization probleritscan,
theoretically, minimize a positive definite quadratic functiomafriables in at most steps.

The good properties of conjugate gradient algorithm can be resumedoasl &gnvergence speed,
at least faster than simple steepest descent, and good stability properiiesst better than Newton
methods. Furthermore, the conjugate gradient method do not need any itdororathe second order
derivatives of the function that has to be optimized.
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Conjugate Gradient Algorithm

The classical conjugate gradient method is presented in the case of the aptim@roblem given by
(4.1). The iterates of conjugate gradient to solve this optimization problenbsaed as follows:

uktD) — y® y(")dﬁk),

WD) — ) _ s

(4.5)

wherey® andé® are step length which are computed by carrying out some line search (s¢E16]g.
or [34]) anddﬁk) and dé\',‘) are descent direction given by (4.11). Let us present a possiblataigdo
solve this problem. If we note? (y) = J(u® + yd wk) and%(8) = IJu®,wk — 5di), then it is
possible to express the line search problem as the following optimization problem:

YN = argminsZ(y),
y>0

W = argmax# ().
520

(4.6)

In order to solve the line search problem, the usual algorithms need to evaleateltie of the
criterion J for various value of the step length. This implies that it it is needed to integeateus
trajectories which are virtually useless. This task can be time consumingisTiiag, from the numerical
computational viewpoint, it is more efficient to compute admissible step length only>apeattely, e.g.
by using a first order Taylor development. Let us briefly explain how tigisrahm work.

It is possible to express the approximated effect of a given step l¢pgih on the state trajectory
by considering a first order Taylor development as follows

0.7

(U 4yl wh) = 7 (W) y = (0, w) 4.7)
0.7 '
Z(u® w® — 5d¥) ~ .7 Uk, wh) — 5= (u®, wk).dl
Y ’ dW Y 9

where2Z (UM w) is given bycw(u®,w®),d{¥,0) and%Z (u®,wk) is given byw(u®, w0, dy’).
The main interest of these approximate formulation is that we do not need to tetegpgplementary
trajectories to evaluate the influence of a given step length what is computatiefiigilgnt. In addition
if the functionald is quadratic, then, using (4.7), it is possible to give a formula to evaluate the o
y¥ andé® solution of (4.6).
Let us assume thditis given as follows

Auw) = [ (17 (ww)lB-+ [l ~ |wi3) ds 48)

whereR, a andQ are given symmetric definite positive matrices.
Using (4.7), the functioz” and% can be approximated by

— 7 (U Wk OF (0 Wiy g2 (k) k2 _w® 2
AY) = [ (170w 4y (00w, d Rt u® -yl — W ) ds
0.7 (4.9)
#) = | (!ﬂ(u“%w(k))—é<u<k>,w<k>>-d6vk>\%+\u<k>||é—rw<k>—6d5v”|| )ds
|

2
ow Q
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The functions#” and#(d) are quadratic polynomial whose derivatives are given by

0% : 0.7 K K
28 2 [ (v(152 ) R 1015

a
+ (fi(u("),w(k))TRaéj(u(k) wky.dl + u(k)Tad&k)> ) ds

OXx 0.7
_ (k) (k)Y 402 (k)12

0F
_ <?(u(k)’w(k))TRdW(u(k)7W(k))‘d\$\ll<) +W(k)TQd§\|f)>> ds

(4.10)

Using this approximate formulation of (4.6), it becomes straightforward to sobvéntd search problem.
The search directiod&k) andd&,k) are given as follows

—Q(u@ wk)) if k=0
q¥ = op 411
P 03 1) Wk 4 ggqk-D ’ ()
——— (u® Wy By if k>1

Wherer,k) is a scalar ang) stands foiu or w.
Well known conjugate gradient methods include Fletcher-Reeves metRydi(iE the Polak-Riire-

Polyak (PRP) (see e.g. [10]). In these methods, the pararﬁgfe's given by:

(k) ik dJ K) (K Ty (k1)
B(k),(FR) - Ha ( (), wi ))||2 B (PR _ (u( ) wi ))Typ w12)
’ 133wt w2 Haa( CEEWT=TEY -
whereyf Y = ﬂ@,(k), Ky _ ﬂ(u(kfl)jw(kfl)).

ap ap
There also exists hybrid method which were developed in order to bewafitiie various advantages

of each coefficient. For instance, because of the good numericalibelofthe PRP method and the
good convergence of the FR method, the first hybrid conjugate graagorithm was introduced in [6],

where the parameteﬁék) is computed as follows:

grome | Bl T 0 < g7 T < 1T (4.13)
P Bﬁ(,k)’(FR) otherwise

Restart Procedure

As previously mentioned, the conjugate gradient method has the importamriyrdipat it can theo-
retically minimize a positive definite quadratic functionrofariables inn steps. The problem is that
practically this result is rarely verified, e.g. because of numerical appation. Also, the robust control
problem has no reason to be recast as a quadratic problem. A possibiéitoter the good convergence
rate of the method is to introduce a restart procedugeto use a different descent direction whenever
some conditions are met. In the sequel, let us remind some classical restatihalgo

The simplest restart procedure is to use a steepest descent éegagions (see e.g. [31]). The idea
is that near the solution, if the function to be minimized is sufficiently smooth, it is podsiloiake a
Taylor development of at the second order. So, when the solution has entereduhadraticregion,
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some huge progress can be envisaged by simply applying a restart withpastteescent. The main
limitation of this method is that it is not clear how often this restart should be appledier to become
efficient.

It can be proved that the conjugate gradient methods yields descectiatirehich are orthogonal
(see e.g. [148] or [116]). The lost in the convergence rate is due toghef orthogonality between two
successive descent direction. That is why in [113] a restart proedua steepest descent algorithm is
envisaged whenever the orthogonality between two successive tdseetion is too lowj.e. whenever:

03 () \WKN)T 23 (kD) kD))

ap dp
> 4.14
R Wi o

wherep stands either fou or w andv is a chosen positive constant (classically: 0.1).

Finally, it is also possible to envisage more advanced restart algorithms whiott dse a steepest
descent as restart directions. Among them it is possible to quote the Beatd-Rastart procedure (or
any modification of this latter as presented in [33]) which computes the restartidgiras a sum of the
steepest descent, the previous descent direction and a third componeoihe=aj the previous descent
direction.

4.3 State-constrained Robust Control Problem

4.3.1 Formulation of a state-constrained robust control poblem

From a more realistic point of view, the problem of robust control is formulated state-constrained
optimization problem, e.g. in (3.6) a terminal state constraint is needed in ordesuceethe stability
of the closed-loop. That is why in the sequel we are interested in the foljostate-constrained saddle
point optimization problem

(u",w*) =arg inf sup J(u,w)=arg sup inf J(u,w),

ueUad weW,q WEWSq UUad
st. system (4.2)
with ¢(x) > 0,

(4.15)

whereU,q andW,q are assumed to be given non-empty, closed, convex and boundeeheellmﬁbz(l)
wherel is an interval of lengtiT. The functionc is real valued and assumed to be sufficiently regular.
The cost function) is given defined as follows:

T0+T
J(u,w) = E(x(r0+T))+/ F(x,u,w)ds (4.16)
To
It is assumed that the stage cBssatisfy assumption 5 and that the final cBstatisfy assumption 8.

4.3.2 Formulation in state-unconstrained optimization poblems
Motivation

In order to solve the state-constrained optimization problem given by (4vE53re interested in using
the same algorithms as for the state-unconstrained optimization problem givérihy To do so, we

need an algorithm to substitute the original state-constrained optimization problensdéyuence of
state-unconstrained ones. In this part, we propose a method which mem$eieed by the augmented
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Lagrangian technique. This latter, which is a mixed between a simple penalty dnehdor the log-
arithmic barrier method, see e.g. [69]) and a Lagrangian algorithm (seeld.@]),[is often used as it
tends to yield less ill conditioned optimization problems than does a simple penalty methods

Before further proceeding, let us briefly recall how this method wofs rhore details see e.g.
[116]).

The augmented Lagrangian method

The augmented Lagrangian algorithm is a method which combines a quadratic fenetiign with an
explicit Lagrange multiplierwhich is a supplementary variable that has to be estimated. Let us remind
how this algorithm works to handle an inequality constraint with the following simplenniation
example

min f(x)
x (4.17)
st.c(x) >0,
wherex ¢ R", f : R" — R andc: R" — R are sufficiently smooth.
First the problem is recast using a slack variable
min f (X)
%S (4.18)
st.c(x)—s=0,s>0,
Then we define the augmented Lagrangian in term of the equality constfaints= 0:
1
min f(x) — A (¢(X) —S) + — (¢(x) — 5)?
nin f() = A (c(x) —9) + 5 (c(¥) —3) @19

st.s>0,

whereA is a Lagrangian multiplier and stands for a strictly positive constant.
We can see that this problem is convexsjrso without any constraint we had the minimizesirs
given by:
S=C(X) — UA. (4.20)

If s< 0 then the optimal value is 0, so finally we have:
s=maxc(x) — uA,0) (4.21)

This implies that the slack variabkecan be substitute. The augmented Lagrangian method for
inequality constraints consists in modifying the functibas follows [116]

f(x) = f(x)+WH(c(x),A), (4.22)

where L 2
—AZ+ 5= if z—uA <0
WH(z A) = 2 4.23
(z4) { _HAZ ifz—pA >0 (4.23)

with (z,A) € R?.
Then, to solve the original constrained optimization problem, we introduceweseg of uncon-
strained problems for which it costs more and more to violate the constraints. sty thee variable: in
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the quadratic penalty function is defined by a sequercehich decreased toward 0, e.g. by using the
following recurrence formula
IJ(K’HL) — rIJ(K> (424)

wherer is a constant if0; 1] andk stands for an iterate on the outer loop.
Nota benelt is clear, forc sufficiently regular, that the functiofx, A ) — WH(c(x),A ) is continuous.
Indeed ifc(x) — uA = 0, then we have:

“Ae(x) + Zlﬂc(x)z — —%)\2 (4.25)

Moreover formally this function is differentiable and we have (according 183)):

(00 — { [yc(X) (—/\ +%c(x)> if c(x) — pA <0, (4.26)
if ¢(x) — uA >0,
and IWH (X) if c(X) — pA <0
—c(x) if ¢(x) — uA <0,
aa (CX)A) = { “pAif () — pA > 0. (4.27)

Formulation of a state-unconstrained sub-problem

In order to consider the state-constraints in the optimization problem (4.1%ropese an algorithm
based on the previously augmented Lagrangian techniques. To prosaletian of the original state-
constrained optimization problem, we introduce a sequence of state-urdo@dtoptimization prob-
lems by considering a strictly positive varialplewhich converges toward 0 in an outer loop, e.g. using
the formula (4.24). Each subproblem is given by

(u*,W") =arg inf sup Z{ (uW)=arg sup inf ZX'(u,W),
U€Uad e\ W UEVad (4.28)

s.t. system (4.2)

where the setblag andW,g are assumed to be given non-empty, closed, convex and boundedseibsp
of L%(1) wherel is an interval of lengtfT and where the functiona¥’}' is defined by

To+T
20 = Iuw)+ [ WH(e(x).A)ds (4.29)
To
whereW is given by (4.23)¢: R™ — R, for all s, A(s) € Randw= (w",AT)T.

As the saddle point optimization problem (4.28) is state-unconstrained, itsgpo#o solve it using
what has been previously presented. According to (4.3), the optimaligiteams are given by:

To+T H
/0 <0$A (u*’vvk)T(u_u*)) ds> O, YU € Uyq,
) -~ (4.30)

To+T H 5
/ i <agiA (u*,W)T(WvV)> ds< 0, YW € Wyg.
o oW

In order to solve the state-unconstrained saddle point problem (4.28)&d to calculate the deriva-

A7 ozt L : : .
tives and —=-. In the next part we will be interested in presenting a method based on adjoint

u TW,
model to solve this issue.
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4.3.3 Adjoint Model and Optimality Conditions

The Féchet derivatives ojf,f at point(u, W) in direction(g, q) is given by

To+T
20,0 =3 w00+ [ W(e0,A).(6.a)ds (4.31)
whereJ'(f,w).(g,q) andWH (c(x),A).(g,q) are given by

J(u,w).(9,q) = IxEX(To+T)) (10 +T)
+ /TO+T (OxF (%, u,w) " (s) + OuF (X, u,w) T g+ OwF (x, u,w) " qw) ds; (4.32)

i
W(e00.1).(0.0) = Dx(WH(e00.0) w0 (G5 e00)) e

u
whereq = (qw,dy ), Ox (WH(c(x),A)) and%(c(x),)\) are given by (4.26) and (4.27), respectively.
Multiplying (4.4) by a sufficiently regular functiorand integrating by time, we can deduce that

To+T
/O K (047 (%, u, W)+ K 0y (%, u, W) g+ X' Dw (X, U, W)y ) ds

To
i o+ T /g™ (4.33)
=X (ro+T)w(ro+T)—/ (d >ds
To t

Then

/TO+T <ooT <DXE¢(X, u,w) T+ Oy (WH(c(X),A)) + OxF (X, u,w) + ;’f)) ds
+a)(ro+T)T(DXE( X(To+T))—X(10+T))

T0+T T
+/ (0u (%, u, W) T K+ g, (Ow (X, u,w)) i) ds (4.34)

T0+T
_/ T (D (WH(c(x),A)) + OxF (x,u,w))) ds
+ w(To+T)TEMX(To+T)).
Assume now that is the unique solution of the following adjoint model

— % = Ok (X, u, W) T K4 OxF (X, u, W) + Oy (WH(c(x), 7)),

XK(1o+T)=0EX(10+T)),

(4.35)

According to (4.35), (4.34) becomes

To+T
/ (K" Ou¥ (X, u,W)g+ K" 0w (X, U, W)y ) ds
To

_ / ot (O (W(c09.2)) + O (x,uw)T ) ds (4.36)

+OEX(To+T)) T w(to+T).
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And so (4.31) becomes

2= [ (o (0 0ouw) %4 D cuw)
o S (4.37)

(O w8 Do )y (55 (000.0) ) ) s

So, we can deduce the following expression of the gradient of the modifsdunctional (in a weak
sense)

o7t

Jdu
u Tg

0.2, (U) = <DW§¢(X, u,w) ' X+ OwF (X, u,w)>’

oW I (c(x),A)

(U, W) = Oy (X, U, W) "X+ OyF (X, u, W),

(4.38)

wherex is the solution of (4.2) with input$u,w) andX'is the solution of the adjoint problem (4.35)
corresponding tou, w, X).
We can now give an algorithm to resolve the states-constrained saddle judilgrp (4.15).

4.3.4 State-constrained saddle point solver

To solve the state-constrained saddle point optimization problem (4.15), ¢hetép consists in intro-
ducing a modified functional according to the results presented in section 4t88.aEcording to the
results presented in section 4.2, we can use a conjugate gradient algorithivetéhe corresponding
optimization problem.

The solver is based on a conjugate gradient with hybrid coefficient }4.IBe interest of using
a restart will be evaluated by checking the orthogonality between two ssigeevalue of the gradient
according to (4.14). Because in the sequel the functidriglassumed to be quadratic, the step length
will be computed using the approximate formulation given by (4.9).

In order to give a better overview of the envisaged numerical methodss letroduce the following
algorithms. The first algorithm (algorithm 1) shows how a given state-un@instt problem can be
solved and the second one (algorithm 2) shows how the solution of the ostabelconstrained problem
is deduced from the solution of a sequence of state-unconstrained optimjziatimams.

The various trajectories are integrated using Runge-Kutta 54 method.¢s¢2233).

4.4 Conclusion

In this chapter we have presented an algorithm to solve state-constrailtiel gaint optimization prob-
lems. To do so we have first considered the problem of solving a givesat@onstrained saddle point
optimization problem using conjugate gradient technique. Then, to solve thecstastrained optimiza-
tion problem, we have proposed an algorithm which consists in modifying the fuattiosmt has to
be optimized according to the constraints. All this has been done in ordepléxeethe original state-
constrained optimization problem by a sequence of state-unconstrained agitmiproblems. This
strategy has been inspired from the well known augmented Lagrangiamdeeh Also, a technique
based on adjoint model has been presented to express the derivativesaost functional.

The solution of the SPMPC controller is given as the solution of a state-corstraaddle point
optimization problem. So using the result presented in this chapter, we caidatie problem of
applying this controller to a concrete control problem. This is the objectitbehext chapter where
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Algorithm 1 Saddle point optimization problem (4.28) thanks to conjugate gradient algorithm
Require: y e Xg, U € Uag, WO € Wag, Nmaxe R, g, € R, g € R,
1. k=0,

. u(k)fu(kfl) W(k> 7\]\“/“(*1)
2: Wh||e (k S Nmax) and not (W S &u al’ld W S 8W) dO

3. Resolution of (4.2) (based au¥) Ww)) givesx®),
Resolution of (4.35) (based ¢n®, W) andx)) givesxt¥,
Evaluate the gradient o' at (u®, W) using equations (4.38) antf) andxt®,
Compute the descent directidfj{() anddv(vk) according to formula (4.11) in whichplays the role
of Z% and, if needed, a given coefficieit?,
7:  If k> 1 consider the need for a restart,
8:  Resolution of (4.4) (based dqu® W), x¥, x¥), d andd) givesw®,
9:  Compute the step length®) and3) by solving (4.6)
10:  Determine(u®tV) wk+1)) according to (4.5),

o gk

11:  k:=k+1,
12: end while
13: return (s, Wr,) = (U Wikt andx = x = 77 (U wiki),

Algorithm 2 Solving a state-constrained robust control problem thanks to a sexjumnstate-
unconstrained optimization problems
Require: ye Xg, 4@ € R, u@ € Uyag, W € Wag, Nmaxe N**, 1 €]0,1],

1. K =0,

2: while Kk < Nmaxand not (c(x) > 0) do

3.  Expressthe functionaiﬂ,f(m according to (4.29),

4:  Solve (4.28) usinglgorithm 1 gives(uZ(K),vT/Z(K)),
5 Setu®:=u,, andw® =W

u u

6: IJ(K+1) = ru(K),
7. K:=K+1,
8
9

(k)1

: end while
: return (U, W) = (UZ<K+1>7V~\7,<K+1>)-

the here presented numerical method will be implemented to test the SPMPQA penfibomances on a
classical control problem.
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5.1 Introduction

In chapter 3 we have presented from a theoretical point of vieaddle point model predictive controller
When using this controller, the control input is given by the solution of a satstrained saddle-point
optimization problem. As for the usual MPC algorithm, this control input is computeld ae a new
measure is made available. Then, in chapter 4, we have proposed a raimeticod which can be used
to solve the corresponding optimization problem.

The objective of this chapter is to test the good numerical implementation andlqoertformances
on a concrete control example. The problem of controlling a disturbed imeaeas Van der Pol oscil-
lator using a SPMPC controller is envisaged. Because of the relative simpli¢his example, we will
show how to formulate the final cost and the terminal state constraint prolsiegnluoth a polytopic and
a norm bounded differential inclusion. Then it will be shown how theltesif chapter 4 can be used to
express the derivatives of the criterion that has to be optimized. Finallyotiteotier is tested in order
to stabilize the system at the origin.

This chapter is organized as follows. First, under constraints on the #tatépal cost and the
terminal state constraint will be computed. Then, in order to use the algorittsargesl in chapter 4, we
will express the adjoint model and the derivatives of the criterion. Finakyctmtroller performances
will be assessed via numerical simulation.

5.2 Adisturbed in parameters Van der Pol Oscillator

In order to illustrate our approach, we consider the following Van der 8allator:

dX]_

dar - X2,

dx 1 51
H == —X]_ _ EXZ(].—X%) +X1U, ( )
X(to) = Xo.

wherex = il is the state and is the control input.
2

This example is taken from [39], where the solution of the corresponding Handiétoobi Bellman
equation is computed and given b{y= —x;X,. The control aim is to stabilize the system at the origin
which is a stable but uncontrollable equilibrium point.

It is considered that the system parameters are disturbed leading to thérfgliersion of the Van
der Pol oscillator:

dx:

o = (Lrwee,

d _ —(14wWo)xg — }xz(l—x%) + XU, (5-2)
dt 2

X(to) = o,

where for allt we have(w;(t),ws(t)) € [-0.1,0.1] x [-0.1,0.1]. For control purpose, the control is
assumed to be bounded as follows, fortall tp u is such that(t) € [-10,10].
The stage codt is chosen quadratic (3.74) with the following matrices:

R=1y, Q=0.8l,, a =10°.

In order to use the algorithm presented in chapter 3, the final cost isrchoselratic and the terminal
state constraint is chosen as a level set of the final cost.
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5.3 Computation of the final cost

To compute an adequate final cost and terminal state constraint which sassiyptions 7 and 8, we
are interested in finding the larger invariant set containéslinx,) € [—0.3,0.3] x [-0.3,0.3]. To do so,
we are interested in embedding the original dynamics in a differential inclusion.

It is clear that the controller given by the solution of the Hamilton Jacobi equéatibatter than a
simple linear state feedback. That is why it has been chosen to use thislleoratsaa final controller.
That is fg is chosen as follows

fe(X) = —Xx1Xo. (5.3)

Remark6. For all combination ofxi, xz) € [—0.3,0.3] x [-0.3,0.3], we have thafe(x) € [-10,10].

As we have chosen not to compute the final controller simultaneously with thedista the differ-
ential inclusion will not be formulated using (5.2) but using the following déféral equations:

Xm

E = (1+W1)X27

P (1w — Sxo(143), (®-4)
dt 2

X(to) = Xo.

Due to the retained form of the final controller, in order to use (3.105have to se¥ = 0 anda = 0.

Because it is not trivial to determine which one of the PLDI or the NLDI espntation provides the
largest terminal state constraint, we will consider the computation of the finalrcbsth cases. The
method which provides the larger terminal set, according to the criterion)3.dAll be retained.

5.3.1 Computation via a PLDI embedding

The disturbed and controlled with (x) Van der Pol oscillator (5.4) can be expressed as follows:
9( . 0 1 X4 X2 0 W
dt — \-1 —2(1+x3) 0 —x/ " (5.5)
X(to) = Xo.

We search for a local embedding which is only valid for(ail, x2) € [-0.3,0.3] x [-0.3,0.3]. Thus,
the following PLDI embedding is easily deduced from the previous differegtiaations (see e.g. [91]):

dx _ c i (1) (AIX+ Bgjw 5.6
dt = 3 B (A By 56)
where
Ai = (_01 _11> 3 vie {17 3757 7}7
0 2 (5.7)
Ai = < 1 1.09) ) Vie {2747 678}7
B 2
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and

0 .
0g) i (1.2

. (5.8)

- 0.3) i€ {56],

03 O .
Bii = < 0 -0 3) , Vie {78},

0
0
03 0 .
Blyi:< 0 _0'3>,V|e{3,4},
< 3

Then, using what has been presented in chapter 3, it is deduced thadtiiveSin the final cost and
the parametey in the terminal state constraint are given as follows

o_ (224 056
- \056 225/’ (5.9)

y=0.15.

The value of the objective function of the optimization problem (3.105) at the olsiohation is

logdet(S) ' = —5.33. (5.10)

5.3.2 Computation via a NLDI embedding

Because of the simple structure of the disturbed Van der Pol oscillator ifGglpossible to embed it in
a norm bounded differential inclusion. Indeed, it can be rewritten lbmife

dX_ 0 1 X2 0 0
dt = <—1 —;)“ (o —xl> W (—;x%x) 1D

We search for a local embedding which is only valid for(all,x2) € [-0.3,0.3] x [-0.3,0.3]. So it
is deduced that we have (5.4) is locally embedded in the following NLDI

((jj?[(_AX—l— MA(t, x)Ng, W+ Af (t,X), (5.12)

where

10 1 0
M =03 <o 1), Ng, = /0.3 <0 1>’

1 (% 0 0
AtX) = o5 <02 Xl) , Af(t,x) = <_%X%X2>.

Also, because the final cost and the terminal state constraint are compusgkemto find the larger
invariant set contained ir-0.3,0.3] x [—0.3,0.3], then we are sure that within this set we have

(5.13)

AL, X)TA(L,X) < 1.
Also, we have|Af(t,x)|| < ||WX| where:

0.15
wW="2] 5.14
Nk (5.14)
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Then, using what has been presented in chapter 3, it is deduced thattireS in the final cost and
the parametey of the terminal state constraint are given as follows

o_ (3789 556
~\ 556 3799)° (5.15)

y=2091

The value of the objective function of the optimization problem (3.105) at the olgiohation is

logdet(Sp) " = —5.11 (5.16)

5.3.3 Choice of the final cost and terminal state constraint

It can be seen that both methods provide a terminal state constraint with a ségbtialent volume
(see fig.5.1).

Terminal state constraint
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Figure 5.1: Comparison of the terminal state constraint obtained by a PLC Bihd| embedding.

Because the PLDI embedding provides a larger terminal subset, the SPdMaGIler will be im-
plemented using a final cost and a terminal state constraint given by

E(x) = x' Sx
Qle = (xe R™/E(x) <y},
whereSandy are given by (5.9).

5.4 Stabilization of a disturbed Van der Pol oscillator

5.4.1 Robust control problem

According to definition 2, at each sampling instant, the robust control problgmga by the solution
of the optimization problem given by (3.6). To consider the terminal state eanistising the algorithm
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presented in chapter 4, we introduce the following modified functional:
L3H (U, W) = 3% (U, w) + WH (y—Xx06, U, Wit + T)TSx0x, U, w; t +T), Ag). (5.17)

According to (4.35), to obtain the appropriate optimality system (necessadjtons), which cor-
responds to the identification of the gradientiﬂi’“ that is necessary to develop a numerical scheme in
order to solve the saddle point problem, we introduce the adjoint systeoli@sd:

dx o
— =0 = (—(14Wa) + XX + U)K2 + Re.axa,

.1
— H = (1+W1)X1 — EXz(l— X%) + R2,2X2, (518)

K(to+T) =2SXx,u,w;ti +T) + Ox (WH(C, Aq)),
whereC = y— x(x, u,w;t; + T)TSxx,u,w;t; + T)) andx (WH(C, Aq)) is defined as follows

—2(=Aa + ;C)SXx,u,w;t +T),if C < pAg,

1
0,if C > pha, ’ (5.19)

Ox (WH(C,Aq)) = {

According to (4.38), the following expression of the derivativeﬁi‘f“ are deduced:

L
Ju

9K K1x2 — Qr,1Wp (5.20)
@ (U,W) = >

(U, W) = XoX1 + 20U,

& —XoX1 — Q2 2W>
oW '
daq;\u (CaAQ)

where
oWH —C,if C < UAq,

ar (Che)= { —HAg,if C > UAg, 5-21)

5.4.2 Numerical simulation

For simulation purpose it has been assumed that full state information is prawitteslcontroller. The
sampling time has been setdc= 0.25 and the control horizon is setTo= 6. In order to test the benefit
of using a robust controller, the performances of the SPMPC contra&béen compared to the one of
a NMPC controller. The disturbances are given as follows

wi(t) = wo(t) = 0.1sin(3t). (5.22)

The system trajectory and the corresponding control input can beosefen5.2. It can be seen that
in this case a classical NMPC controller provides a stable closed-loopéuabttirol performances are
poorer. This has to be understood in the sense that when using a SPM#®@leothe state follows a
trajectory along which the influence of the disturbances are minimized (see fig-m®ever, in order
to obtain these performances, the computation time has been increased.
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Figure 5.2: State trajectory and Control Input with a SPMPC controllegmatric disturbances
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Figure 5.3: State trajectory and Control Input with a NMPC controller,ipatec disturbances

5.5 Conclusion

In this chapter the implementation of the SPMPC controller to stabilize a disturbedametgers Van

der Pol oscillator has been considered. Through the numerical simulateoootitroller robust perfor-
mances have been shown. To numerically solve the control problem weeulad the numerical meth-
ods presented in chapter 4. It has been shown that these method8aantlf solve the corresponding
state-constrained optimization problem at each sampling instant.
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Now, that the feasibility and the interest of the controller has been shovensonple example, we
will be interested in testing it on a more realistic case. The remaining part of this thi#de interested
in applying a SPMPC controller to the problem of artificial blood glucose oantr
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Modeling Type 1 Diabetes Mellitus
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6.1 Introduction

Diabetes is a group of diseases marked by high levels of blood glucagenmg$rom defects in insulin
production, insulin action or both [52]. For healthy people, glucose is reggligithin narrow rangéee.

in the interval[60; 120mg.dL~ [37]. This regulation is mostly made possible by the combined action
of two hormones: the insulin and the glucagon. The first one enables totlogealue of blood glucose
by favoring the storage of glucose in liver and fat and the second amarmopposite effect.

When this disease is not correctly treatee, when the blood glucose remains too high or too low,
this can lead to various complications including heart disease and stroketdmgien, blindness and
eye problems, kidney disease or nervous system disease [52] s. tfid@wontrol of blood glucose to
safe concentrations (also called euglycemia) is the prime concern of diabetics.

There are two main type of diabetes. Type 2 diabetes (approximately 90%grigsed diabetes),
which was often called non insulin dependent diabetes, usually begirsuis iresistance,e. a disorder
in which the cells do not use insulin properly. As the need for insulin risespdémcreas gradually loses
its ability to produce it. Type 1 diabetes (approximately 5% of prognosed t@ighevhich was often
called insulin dependent diabetes, is developed when the immune systereshrayeld the pancreatic
B cells, which are normally responsible for insulin secretion [52]. In this thassare only interested
in type 1 diabetes. Let us give two reasons that motivate this choice. Betase patients are fully
insulin dependent, they are more in a position to possess a glucose senanriasudin pump which are
parts of a complete artificial pancreas. Also, these patients are easier tobaodese we do not need a
model to describe the insulin and glucagon secretion. Indeed, in type 1 djdbetiosulin secretion is
non existing and the glucagon production can be neglected.

In order to live a normal life, patients who suffer from type 1 diabetesiireqexogenous insulin
which is delivered either by injection or lmypntinuoussubcutaneous infusion using an insulin pump. An
extensive long-term study [37] has demonstrated that intensive diabetapyi.e. the cure which con-
sists in regular insulin injection guided by frequent blood glucose monitoringicesdthe complication
of type 1 diabetes.

However, despite the availability of glucose sensors which regularlyigg@tucose measure (each
1 to 5 minutes depending on the device), euglycemia still remains a difficultgaahieve. In fact this
is not surprising as, in the every day life, it seems complicated, if not imposgildentrol one’s insulin
injection at such a high rate. That is why there has been considerablestritedeveloping amrtificial
pancreag115], [121]. The aim is to use the sensor information to automatically adjustairtime, the
insulin injection to aim at a better glucose control.

Lately, it seems that the MPC approach is the more promising because of msnadtractive fea-
tures. First, it is easy to interpret its behavior in terms of a classical cmgeetl, when the patient
deals with his disease, it can be seen as the patient trying to solve a catstyptrmal control problem.
He wants to stabilize his blood sugar to a given value (stabilization), to avoighygemia and reduce
hyperglycemia (state constraints) by only injecting insulin (input constraihgnTthe predictive aspect
is interesting as it enables to anticipate on known disturbances. As an exampteerda pften knows
in advance when and what he will eat, thus providing the controller with tihésenations, it becomes
possible to aim at better control performances. Finally, it can also belusedvercome physiologi-
cal delay due to the use of the sub-cutaneous route for both the insulitionjend the blood sugar
measures [72], [87].

As its name tends to suggest, the MPC control techniques relies on a predicéorbyg a model of
the process that has to be controlled. So, to obtain the best contraiparices, it is of prime importance
to derive a good model of a patient suffering from type 1 diabetes. Thie Isas lead to several research
and many models describing this disease have been published. In this secéivn atalescribing some
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of the various available one and to explain why we have decided to foctwamsapecific models: the
Dalla-Man et al. model and a modified version of the minimal model of Bergman.

The dynamics of the glucose-insulin metabolism have been studied extgnSigeeral models can
be used depending if the purpose is to provide a realistic simulation of a patiésrirgy from type 1
diabetes or to provide a model in order to design a controller. These modgésfram simple transfer
function (see e.g. [122] or [156]) to more complex models which are based etaded knowledge of
the patient’s internal metabolic behavior (see e.g. the minimal model of Bergmhitt{é Dalla Man et
al. model [106], the Hovorka model [73] or the Sorensen model [151])ovearview of some classical
models is available, e.g., in [105] or [162].

To design a control algorithm which can ensure euglycemia in a type 1 diabveticave retained
two models. The first one, the model of Dalla Man et al. [106], is a simulation modelassismed to
be closed to the patient’s true internal metabolic behavior. It will be usedesiatic virtual patient to
assess the controller performances. It will be used in the frameworlksiofiaation platform approved
by the Food and Drug Administration (FDA) (Uva/Padova T1DM metabolic simuli®distributed
version [90]). The second model will be used to design the controller ftrerié will be chosen simpler.
We will use a modified version of the minimal model of Bergman [14]. This latter, whashoften been
used for control purpose, provides a good global trend of the giditmsilin metabolism. However,
because of is simplicity, it can not be considered as an accurate model refalhgatient metabolism.
This explains the need for a virtual testing platform to test the controller peéioces.

This chapter is organized as follows. First a short discussion on tretstewof the available models
is done. Then, the model of Dalla-Man et al. is presented. Assuming thatldsedcto the internal
metabolic behavior, this gives us the opportunity to have a rough ovenfiBevothe glucose-insulin
metabolism works (at least for the parts we are interested in). Next, the mimod#| of Bergman is
presented. The objective is to show that it can be seen as an approxinfatiertme process and that,
despite its simplicity, it retains the most important aspect of the glucose-insulin atistabFinally the
section is concluded by a short discussion.

6.2 Forewords on the available models

In order to design a controller for artificial blood glucose control foreety diabetic patient, the first step
consists in modeling the glucose-insulin metabolism. It is possible to use black box, made only
use an input output formulation, or a gray box modlel, to introduce a knowledge of the metabolism
in the model [96]. Generally the input-output formulation is simpler but suffers fa lack of insight of
the true metabolic process. That is why, even if gray box models suffier $everal problems such as
the difficulty to estimate individual parameters, we will focus on this latter clhssodel.

The gray box models are usually derived using a knowledge of the phggialed metabolic pro-
cesses. Each metabolic function is treated as a separate compartment with itgnawricd Then, the
various subprocesses are linked thanks to a variable which either staralsdncentration or a quan-
tity of a given molecule, hormones, ... Adapted from [162], the scheme 6skpt the elements of the
glucose metabolism which are usually considered.

The main differences between the various available models lie in the compartmecttsandrcon-
sidered and the way each of them is described. As an example, the éfgetase is often not modeled
because of the difficulty to quantify its effect. An other example, the glucossi&s can be modeled
either globally as in the minimal model of Bergman [14] or by splitting the variable gki@ato the
glucose production part and the glucose disposal part as in the Havardtel [73].

Despite the difficulty to validate a given model, some of them are known to be mareagethan
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Figure 6.1: Representation of the glucose-insulin system

others. The main reason is that they consider the glucose-insulin metabdtisrmavre details. This
can be illustrated by considering the Sorensen model [151]. With its 19 differequations and its 44
parameters, this model divides the body into 6 compartments (see the coriegpibowd diagram on
fig. 6.2) and is quite close to the true human metabolism. This is in opposition to the minimal mod
of Bergman which models the glucose-insulin metabolism only from a (simple)idumat point of view
(no consideration on fine details such as the existence of different tyglease, .. .).

In the next section, we will present more in depth a model close to the human metabolisa
simpler model. The former, the model of Dalla-Man et al. [106], will be useddtidation purpose and
the latter, the minimal model of Bergman, will be used for control design perpos

6.3 The Dalla man et al. model

The model of Dalla-Man et al. [106] is known to be a model close to the patiem¢is metabolic
behavior. It has been designed using complex experiments, e.g. usinguible tracer protocol. This
has given the possibility to model the glucose-insulin metabolism in an accuratesivg several com-
partments which interact among them. More details on how this model has beezddami identified
can be found in [129].

From a control point of view, the overall model can be seen as a MISO (muhiple single output)
system with two inputs (insulin injection and sugar consumption) and one output (tllecase). This
model has been implemented in a virtual testing platform [90] which has beeovapdry the FDA. This
has the huge interest that it can be used as a substitute to test on animalg asigipleoverview of
the glucose-insulin metabolism, the bloc structure of the overall model is summedigyé.3 (inspired
by [129]).

Globally, its structure is divided into three main parts. One is for insulin, one iglfkose and one
is for meal. The insulin and the meal parts interact with the glucose part aedrdee how the blood
glucose value evolves. Roughly speaking, if the insulin quantity increéaeashe blood glucose value
decreases and if a meal is consumed then the blood glucose value iscreases now describe the
various sub-models corresponding to the various compartments.

6.3.1 Gastro-intestinal subsystem

The gastro-intestinal subsystem describes the glucose transfer in thledbleto the digestion of a meal.
This subsystem takes a sugar quantity as input (the sugar quantity in tisécithgeeal) and provides a
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Figure 6.2: Flow diagram of the Sorensen model

glucose flow as output. The gastro-intestinal subsystem is modeled by theifigllsgt of equations

d
stttm = —Kgri Qstar +d(1),

des;toz = _kempt(t,Qsto)Qst(ﬁ+ kgriQstola

dQqu
3? : = kempt(taQsto)Qsto'Z;

fKaps
Ra = TVCqut-

whered(t) mg.mirr ! is a glucose inputife. the sugar content of a given med)V is the patient body
weight. This model is nonlinear because of the parametggi(t, Qsto) which models the fact that the
rate of gastro-emptying depends on the quantity of food in the stomach. Teagtession okemptcan
be found in [106]. The rate of appearance in the bIRgang.kg*.min~1 is given as a fix percentagde
of the glucose in guQgut Mg.
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Figure 6.3: Dalla Man et al. model: structure of the model

6.3.2 Glucose subsystem

The glucose subsystem describes the dynamic of the blood gl@&w®seen influenced by insulin and
glucose flow input. The system of differential equations which govern$ltied glucose evolutios

mg.dL1 is given by

dG
dt

= —kiGp+ koGt + EGP+ Ry —Uji — E,

=ki1Gp — koGt —Ujg,

1
G=_"G
Vg

whereG, mg.kg 1 is the plasma glucose ai® mg.kg ! stands for the glucose value in the tissue. The
value of the blood glucose does not only depend on the action of indyliand the rate of appearance
due to a meal consumptid®, but also on the glucose in tiss@ (e.g. in the muscles), the endogenous
rate of productiorE GP (mainly coming from the liver), an insulin independent utilizatldn (e.g. the
sugar needed for the nervous system or the brain) and a renaltextfagonly active when the plasma
glucose is greater than a given threshold, e.g. 300 mg)dLThe various expression &GP, U;i, Uig
andE can be found in [106].
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6.3.3 Insulin subsystem

The insulin flows, coming from the subcutaneous compartment enters the bloodstream and dethe
graded in the liver and in the periphery. The insulin concentration in bloedrsiris given by

di
gt =~ (Me+me)lp+mli+s,
dlj
at - — (M + M)l +mplp,
1
=
v P

wherel, is the plasma insulin aniglis theliver insulin.V,; is the distribution volume of insulin.

6.3.4 Subcutaneous insulin subsystem

In the project of designing aartificial pancreas the subcutaneous way seems more desirable to inject
insulin [139]. This implies that there is a time-lag between the injection of the insutinfEnmoment
when it reaches the blood stream. Concretely this means that insulin is not inehedaive. Generally
speaking there are several possibilities to model this phenomenon. Itislpdssise a diffusion process
model described by partial differential equations or to use a simple filter. Tités Ehoice has been
retained in the model of Dalla-Man et al., where this sub-system is descriltied wecond order filter

as follows

Oljstl = —(Ka1 +kd)S1+u,
S= kalsl+ka2827

whereu pmol.kg~t.min~? is the injected insulin flowS; pmol.kg stands for polymeric insulin in the
subcutaneous tissue aBglpmol.kg ! stands for monomeric insulin in the subcutaneous tissue.

6.3.5 Subcutaneous glucose subsystem

Most of the available sensors do not directly measure blood glucosenbuplasma glucose. This
subsystem has been added to explicitly consider that the subcutaneocosegiy mg.dL—" is highly
correlated with plasma glucose but its rate of variation is subject to some filt@rig)is described by
the following equation

dGu 1

TR A

Gsensor= Gm + €,

whereGsensoriS the measure given by the sensagsis the diffusion time constant, arais the sensor
noise driven by a Johnson distribution (see [20]).

From a model point of view this subsystem is useless in the sense that tloe isemat part of the
glucose metabolism. However, from a control point of view, it is cruciahascontroller has to show
robustness against the non negligible measurement noise. It is also impedtaose the dynamic of the
sensor is not negligible compared to the one of the glucose metabolism.
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6.3.6 Discussion

The model of Dalla-Man et al. consists in 13 states, 25 patient-dependamigtars and 5 patient-
independent parameters (see [106]). This model has been identifiedaia base of 204 healthy sub-
jects using complex experiments. Then, the obtained model have been modifietbirtamcover the
distinctive features of a patient suffering from type 1 diabetes. The maenéahe of this model is that
by remaining close to a patient internal metabolic behavior, the simulated bebagiquite realistic.
The main disadvantage is that this model is really complex, implying that a direchd&sagcontroller
is unattractive. Thus, the controller which use this model for design perpidsn includes some steps
in order to simplify it (see e.g. [102] where the model is first linearized andetized before to be used
for control purpose). Furthermore, it is nearly impossible to adjust the npadameters for a given pa-
tient. Of course this point is a major drawback as it is well known that thergvidavariety of patients
physiology and so it is highly probable to meet a patient whose behaviorfésedif from one of those
contained in the original database. All these points imply that the Dalla-Man istaagood validation
model but, at least for what we intend to do, a not so good control modetk iFkay in the sequel,
we will introduce an other simpler model which can be used to design a controhen, the control
strategy will be validated using the Dalla-Man et al. model.

6.4 The modified minimal model of Bergman

All human beings are different. If this assertion is easily verifiable via a casgaof our phenotype,
this also holds when dealing with our internal metabolic behavior. If this remesins simplistic, in
fact it is of prime importance when dealing with artificial blood glucose contraleéd, when looking
for anartificial pancreas we are interested in the metabolism of a specific patient. So, in order to aim
at good control performances, it seems unavoidable to consider thisipkeon in the design phase.
A possibility is to adjust the parameters of the control model using identification tdblss the model
can provide a more reliable prediction of the future value of blood glucose nidin problem is that it
is really difficult to identify a nonlinear process . This is exacerbated wiieman is in the loop as the
experiments have to satisfy some heavy constraints in order to remain hueradiyfr That is why it
seems more reasonable to retain control model which are easier to identifyai$tate this need as the
problem of searching for a control model with few states and parameteastid2lly, this implies that
we are not interested in choosing the Dalla-Man et al. model for contrajrdesirpose, and so that a
simpler model has to be found.

The main issue is now to identify the thin frontier between a simple but adequatd amutie@
simplistic model. This question is not trivial at all, especially as it is really difficultatidate a model
in vivo. Instead of claiming that the model we have retained is sufficient to descalggubose-insulin
metabolism, let us enumerate what we were looking for. We think that an atdespodel has to satisfy
the following point:

e being nonlinear (human metabolism is clearly a nonlinear process),

e being time continuous (even if the control input can not be adjusted in consrtirog, it seems
important to consider the continuous time aspect of human metabolism),

e possessing a minimal number of parameters (for identification purpose),

e providing a good global trend of glucose-insulin dynamic.
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It can seem surprising that despite the existence of linear models (e.g. i&ipcus on keeping the
nonlinear aspect, especially as we stress on the need for simplicity. Thig dtasideen made because
the true glucose-insulin is a highly nonlinear process. Furthermore it hasofte® suggested (e.g. in
[99]) that a nonlinear controller can provide better control performsnce

These requirements have made us choose the well-known minimal model of Befgtha This
time continuous nonlinear model is said to be minimal in the sense that it has few pans@tee it
originally describes the glucose-insulin dynamic in response to a glucsistarece test, it provides an
acceptable trend of the glucose-insulin dynamic. Furthermore this model Bagkiensively used for
control design purpose (see e.g. [118] or [16]). Even if this doepmwe that this model is well adapted
for control purpose, at least it tends to show that it is not a really badtmevork with it.

6.4.1 The original minimal model of Bergman

The original minimal model of Bergman (see e.g. [14], [15] or [105]) hesrbdeveloped to provide a
model of the glucose-insulin metabolism of an healthy subject in responseltc@sg tolerance test.
One of the main concern in its design was that it has to be as simple as possitiediAg to this model,
the glucose metabolism is described by the following set of equations

dG

Gp = (Pt X)G+PiGp+ Ry,

dXx

Gt = PXHPs(l = lp), (6.1)
% =ymax0,G— Grp)t — ks (I —lp),

wherePy, Gy, P, Ps, Iy, ¥, Gt andk; are positive parameters. The stéteng.dL~! stands for the blood
glucose concentration. The statenin~! stands for the insulin in a remote compartment. It mimics the
time-lag of the insulin consumption on glucose. The statdJ stands for the blood insulin. The input
R, stands for a glucose flow in the blood.

In this model, the behavior of the healthy pancreas is divided into two termse Ththe constant
flux of insulink¢ 1, whose aim is to stabilize blood glucose, and there is the correctiveyteraw(0, G —
Grn)t, whose aims is to reject sudden disturbances (e.g. to minimize an increasebtifdd glucose in
case of a glucose injection) and which is only active when blood glucosesdreyond a given threshold
GTh-

In order to ease the comparison between the Dalla-Man et al. model and the mininell shod
Bergman, it can be interesting to interpret the terfA G as an insulin independent glucose utilization,
the term—X G as an insulin dependent glucose utilization, and the @ as an endogenous glucose
production. Also it is interesting to consider the state prodi@tfrom a chemical point of view. It can
be interpreted as the fact that to initiate the reaction of glucose storagemaeeuleof glucose has to
interact with onemoleculeof insulin.

As mentioned, a type 1 diabetic can not secrete insulin at all. This means that treslmsdo be
modified in order to take into account the specificity of the disease. Furthermisrmodel does not
possess a digestion model. Indeed in the experience of Bergman only poosagluas injected in the
blood. That is why this model has to be completed with a gastro-intestinal model. Adlidsese will be
considered in the sequel and will lead to what we will call the modified minimal mdd&tgman.
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6.4.2 Gastro-intestinal subsystem

Let us begin with a factin a normal day a normal person eat$his is at the origin of a sudden blood
glucose value increase as, through the digestion process, sugartbetdieod stream. Due to the
amplitude of this phenomenon, to aim at better control performances, it isdiésiaaticipate on these
events. To do so, the patient can provide the control algorithm the meal tinteeodrresponding sugar
content. However, from a control point of view, what really matters is thegge flow induced by the
digestion of the meal. That is why it is desired to add a digestion model. In the sanaspor the
minimal model of Bergman, our choice has been guided by simplicity. That is vehlyave retained a
simple linear model as suggested in [163]. The retained gastro-intestinatsaingg given by

dR

ditl = _Cl(Rl - d)7

d

(TTZ =—C2(R.—Ry), (6.2)
Ra = kgrR27

whereR; andR; stand for the sugar in a remote compartmeint)g is the meal sugar content aRg
mg.dL~t.min~1 is the rate of appearance in the blood.
6.4.3 Glucose subsystem

The glucose subsystem is simply given by the first two equations of the driginénal model of
Bergman (6.1), that is

%G — (P4 X)G+PiGo+Ra,
; (6.3)
dX '

6.4.4 Insulin subsystem

In type 1 diabetes the secretion of insulin from the pancreas is negligible.véo kis need in insulin,
a patient mainly count on insulin injection. That is why the insulin subsystem ahthenal model of
Bergman has to be adjusted. According to what has been done in [48]sthim subsystem becomes

di
g = kil+s (6.4)

wheresis the insulin flow coming from the subcutaneous compartment.

6.4.5 Subcutaneous insulin subsystem

The use of a subcutaneous way of action for insulin injection is at the origindiffuesion process.
To aim at good control performances, it seems unavoidable to model tmempleaon. Searching for
simplicity, a simple first order model has been chosen

dus
Mk
dt Ui, (6.5)

s=bsUy,

whereU; mU is thesubcutaneougsulin, ks and bs are positive parameters andmU.min1 is the
injected insulin flow.
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6.4.6 The modified minimal model of Bergman

Finally, the control model is given by the combination of the sub-models 6.2, 6.3n@.8.58 according
to the scheme 6.4.

Gastro-Intestinal sub system

R

Subcutaneous Insulin sub system Insuline sub system Glucose sub system ———=>

Figure 6.4: Modified minimal model of Bergman: interconnection between stdrags

The final model consists in 6 states and 11 (positive) parameters givehosagst

Glucose-insulin sub-model

dG

ra —(PL+X)G+ PGy + kg Re,

dX

2 PX+R(l -]

e PX +Ps(1 —1p),

dl

at —kil +bsUq,

dU;

gt —kUz +u, (6.6)

(G, X,1,U1)(to) = (Go, Xo, l0,U10),
Gastro-intestinal sub-model

dR
™ G(R-R
at c2(Re—Ry),
dR,
dftl =—C1(Ri—d),

(R2,R1)(to) = (R2,0,R10).

The Dalla-Man et al. model and the modified minimal model of Bergman share a contrmctuie.
This can be seen by comparing the structure of the two models respectivetylyiviig.6.3 and fig.6.5.
The modified minimal model of Bergman considers the same three components ofdbseginsulin
metabolism, namely the absorption from the gut (given by the RiaedR;), the insulin kinetics (given
by the statd andU;) and the glucose kinetics (given by the st@tandX). The main difference is that,
for each compartment, the model is extremely simple. Thus, only global trendsodieded.

6.5 Conclusion

In this chapter, we have presented some of the models which are availabéetibe¢he glucose-insulin
metabolism. We have been patrticularly interested in two models: the Dalla-Manmebdel, which is
rather complex but is known to be accurate, and a modified minimal model of Bergvhah provides
rough blood glucose trend but possesses a simple structure. At thatigois remind that one difficulty
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Insulin Meal

gastro-intestinal

subsystem

s.c. insulin
Rate of appearance

subsystem

Absorption utilization 1

ghucose Insulin-independent
subsystem subsystem I
utilization
insulin

subsystem

Degradation Insulin-dependent

utilization

Figure 6.5: Modified minimal model of Bergman: structure of the model

with artificial blood glucose control is the inter-patient variability. We havggested that this problem
can be, at least partially, solved by identifying the parameters of the madeaéd patient. However,
this task is limited to simple model. Concretely, using simple experiment, it is unrealisticritfyde
the Dalla-Man et al. model. This point raises a question. Is this better to desigmraler with an
accurate model of the glucose metabolism but which can not be identified esitgnch controller with a
model which only provides rough trend but which can be identified ? In thisshee have assumed that
the second choice is the more interesting. Then, to compensate for the knownigoplice control
model, we will consider the design of a SPMPC controller. The Dalla-Man et alelhwdtl be used in
the framework of a testing platform [90] to assess the controller perforasanc

To design the controller, we have to verify whether the modified minimal model frBan satisfy
the needed assumptions in order to be sure that the closed-loop is stableathenitie control problem
is well-posed. This is the objective of the next chapter.
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7.1

CHAPTER 7. MODEL ANALYSIS AND CONTROLLER DESIGN

Introduction

In chapter 6, we have been interested in modeling the glucose-insulin metabatisider to obtain
models, some assumptions have been made (e.g. assuming that the process ig/siatitatzhe effect
of all hormones but insulin is negligible). In regards to the true metabolism, tisssenations are quite
simplistic. So, in order to ensure good control performances, the deS@mabust controller seems
unavoidable. In the sequel, the design of the previously presented SiedRroller is envisaged.

Let us more precisely motivate our controller choice:

To obtain a model suitable for control purpose, some dynamics of the ghirtcsaden metabolism
have been neglected (e.g. the effect of adrenaline in a situation of stresgh lbe interesting
to design a controller which is robust against these dynamics by introdu@raiddquate distur-
bances in the model that has to be controlled.

The retained models in chapter 6 are stationary. However, human metabolism is\atyime
process, e.g. in type 1 diabetics, the dawn phenomena implies a sudden iasidtance in
the early morning. We can model these phenomenon thanks to time varying pasantietie
variations are bounded (what is obviously the case as we consider aib@dlpgpcess), the time
varying parameters can be expressed as the sum between a nominsteasnd a bounded time
varying disturbance. By using a SPMPC controller, it is possible to ertsumeol performances
for disturbed parameters. Thus, by introducing adequate bounds pardmeter disturbances, we
will design a controller which consider this aspect and so that will guagartetrol performances
despite this phenomenon.

It is difficult to identify a nonlinear time continuous model with discrete noisy measemé This
is even more critical when the control problem is concerned with human béiged, the patient
welfare is the most important issue. This strongly restricts the scope of deadgeriments to
obtain data for identification purpose. Practically, this implies that the paranvteb®e known
relatively to a non negligible bound. By introducing adequate bounds @meder disturbances,
using a SPMPC controller, we can use this information to mitigate the influenceaieatially
badly identified model.

The up to date technology implies that the sensors sampling-time is not negligible cdrtgtire
metabolism time constant (depending on the sensor, a measure is availdbleteds minutes).
This means that the control problem has to be cast in a sampled-data frdméiter SPMPC
controller is a sampled-data controller, so by using this controller, this poiot g big issue.

The up to date hardware favors the choice of the subcutaneous wayverdbeé cure, implying
that, before insulin becomes active, there is some time lag. This point is hdndied combined
use of a state space model which has a memory of the past via the actual viieestdte and
a predictive control approach which computes the adequate control dgtioansidering state
trajectories.

The control objective is asymmetric, e.g. if a blood glucose of 200md.é not too dangerous,

a blood glucose of Omg.dit, means that the patient is dead. A SPMPC controller solves the
robust control problem by considering an optimization problem. So, to takestiremetric control
objective into account, it is possible either to optimize an asymmetric cost funcsomh@ has
been done in [89]) or to consider a state-constrained optimization problenmstwesthat blood
glucose remains in a safe interval.



7.2. CONSISTENCY OF THE MODIFIED MINIMAL MODEL OF BERGMAN 97

e When consuming a meal, the blood glucose grows faster than the time neefsdlio to become
active. This implies that if it is desired to have a good control of meals eitheagitedyeated by the
patient himself or an anticipatory behavior is needed. In both cases th@GERbhtroller is well
suited because the problem will be recast in a variational form and thiefiwedspect enables to
anticipate on known disturbances.

At that point, it seems quite clear that the SPMPC approach provides aipb&swer to many dif-
ficulties surrounding the problem of artificial blood glucose control. st aspect of the controller
can cope with the problem of neglected dynamics, time-varying metabolismoatially badly iden-
tified parameters. Also, the predictive approach can give an answernegleor anticipatory behavior.
The asymmetric objective can be handled via introduction of a constrained agioniproblem or by
using an asymmetric cost function. In the remaining part of this thesis, we wilt&ested in applying
this control technique using the modified minimal model of Bergman given by themyaf differential
equations (6.6).

In this chapter, we will study the properties of the modified minimal model of Bergrrast, we
will be interested in testing its consistency. To do so, we will search for thaitbtoms on the parameters
and on the inputs in order for the state to keep its physiological meaning. wswijll be interested in
verifying that the model is both observable and controllable. Then the giepef the model in regards
to its applicability for control purpose are studied. We will begin to verify thiee the control problem
is well-posed. The first step will consist in formulating the control problem im@ational form. It
will then be verified whether the retained control model satisfy the needeoingsgions of theorem 1
and 2. Finally, a PLDI embedding is provided in order to compute the final caoltree terminal state
constraint. Also the adjoint model and the expression of the gradient ofitagan are given.

7.2 Consistency of the modified minimal model of Bergman

In this section we are interested in presenting some general properties gaystfiee modified minimal
model of Bergman. We will begin to search for the condition on the parametdremithe inputs
in order for the state to satisfy a kind of invariance property. Then, weshidw that this model is
observable. Also, under the assumptions that the initial condition of the gaststiiial sub-model and
the meal consumption profile are perfectly known, it will be proved that theogknsulin sub-model
is controllable.

7.2.1 Invariance property

When considering the problem of artificial blood glucose control, we degdated in a biological pro-
cess. This has for consequence that some states, which have a phgalatoganing, have to satisfy
some properties for all time instant. As an example a concentration or a quantity tegsain always
positive. In this section we will be interested in looking for the conditions that #rarpeters of the
model and the inputs have to satisfy in order for the state to keep its physidlogieaing.

To do so let us consider the following theorem which will prove that if the ing@idition of the
system satisfies some bounds, if the parameters of the model are positivetanahguts are bounded
then the state is bounded for all time instant.

Theorem 4. Assume that the parameters of the model are given and positive, andl ford, the

control input Ut) € [u,U], and the meal input@d) € [d,d]. Then, for a given datéG, X,1,U,R,,Ry) €
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li,Rz Ri)(to) < (G,X,T U1 Rz,Rl) then for all t > tg

we have that ifG, X,1,U,R,,Ry) < (G, X, I, ,
< ) < (G, X,I,U1, Ry, Ry).

(G X, LU, R, Ry) < (G, X, 1,U1,Ra, Ry)(t

Proof. o~Let us consider the stateJ;. N
DenoteU; = U; —U;. Using the differential equation od; we deduce that); evolves via the
following differential equation: .
du ~
T: = —kSU1+ u— ksgl. (71)

Let us introducé);” = max(0,~U;), we haveJ;” > 0. Multiplying (7.1) by—U;", we have

~_dU . ~
—ul—d—t1 = Uy (—kJ1+u—kd,). (7.2)
T—12
Since—U; dOLIJtl ;d‘Lcjﬁ | (see e.g. [60]), by integrating (7.2) we obtain
t 1 dIJ |12 t 5 .
1du, | ds:/ —ks|U; |2 (u—kU,)U; ds (7.3)
t, 2 dt to

Because it is assumed that kU ;, and that the parameters are positive, it is deduced that

t1d|0; 2
= ds< 0 7.4
to 2 dt 5= (7.4)
and then
0< |Ug P(t) < |U; [(to). (7.5)

As U (to) > U, this implies thatU; |?(to) = 0 and therJs (t) > U, for allt > to.
Using the same method (by taking 105 the valueU; = U; — U;) and the fact that < kdU; and
Ui (to) > Uz we can deduce that; (t) <U,, forallt > to.

e Consider now the statesX and |.

According to the positivity of the parameters and the assumptions on the initiatioord< | (ty) <
- Kt Ksks _
I, and on the control mpubPl <u< b—l, using the same method as fdy, we havel <I(t) <1,
f f
forall t > tg.
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In the same way, by using the assumptions on the initial conditienX (ty) < X, and on the control

ksk ksk _
b (Ib+:z23X> <u< ; f (Ib+:223x>,we can deduce that < X(t) < X, for allt > tp. So we
f f

omit the details.
e Let us consider the stateR; and R».

According to the positivity of the parameters and the assumptions on the initiaticon@,, R, ) <
(Ro,R1)(to) < (Rp,Ry), and on the meal inpud < d < d, using the same method as 1dg, we have
(RZ,R]_) (Rz,Rl)( ) (ﬁz,ﬁl), for all t > to.

e Finally, consider the stateG.

Let us introduceG = G— G andG~ = max0,—G), using the differential equation o@ and the
same method as faf, we have:

t1d|G |2 t . )
'L !dtl ds= [ ~(Pi+X)I6~ [P~ (~(P+ X)G-+PiGy + kyRe)Gds. (7.6)
0 0

According to the positivity of the parameters and the assumptions on the initiatioonX, R,) <
k
(X,Re)(to), al (Ib + 2X> , it is deduced that

tdiG 2 .
b ds< / —(—(PL+X)G+PiGy + kyR,)G ds (7.7)
t, 2 dt to

K¢ PG R L
(Ib+ @ (—P1+ 1b+kgr2> ) , and as the parameters are positive, it is deduced

~ by Ps G
from inequality (7.7) that
t1d|G; 2
= < 7.
L2 dt ds<0 (7.8)
and then
0<|G (1) < |G [(to)- (7.9)

AsG(tp) > G, this implies thatG |2 (to) =0 and therG(t) > Gforallt > to. Using similar arguments
as bellow we can deduce also ti@t) < G, for allt > to. O

Remark?7. The previous results can be used to deduce that if the parameters of theamogesitive,
ksk P . ,
; f (| — ;?)) and the meal input is such that> 0,

f
then the state keeps their physiological meanigif at t = to we have(G, X, 1,U1, Ry, Ry ) (tg) € R* x
RXxR* xR" x RT x RT then we havéG, X,1,U;,Ry,Ry)(t) € RT™* x Rx RT x R™ x RT x R for all
t > to. Because the only constraint on the control input is thatO, the set of parameter is guaranteed
to be coherent if we havl, < PiP».

if the control input is such that > max(O,
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7.2.2 Observability and Controllability properties

Let us verify that the modified minimal model (6.6) is both observable and coritl®lldo do so, let us
consider the following proposition.

Proposition 1. Assume that the parameters of the model (6.6) are given and strictly jgositive control
input u and the meal input d are known and given then the modified miniou#iraf Bergman is almost
everywhere locally observable and if the initial conditid® ,R1)(to) and the meal consumption profile
d are known and given then this model is controllable for a¢®.

Proof. In order to simplify the presentation, let us write (6.6) as follows:

dx
= P Xk + Kk + PGy
d
d—? = —Poxo+ Paxg — Pl
dX3
at —Kixz+Dbxs
d
da oy (7.10)
dt
dxs
at —CoX5 + C2Xp
dxe
o d
at C1Xg+C1
Y =X,

wherey stands for the model output.
e Let us begin to verify that the modified minimal model of Bergman is olservable.
It is assumed that the control inputand the meal inpudl are known and given, so, to verify if this
model is observable, we will consider the rank of the matrix (see e.g.[78])
Oxh(X)

(7.11)

where the Lie derivatives are defined as follows
™ dh
—%(x) if k=1
LSh(x) = 2,057 , (7.12)
Ly (L;—lh(x)) if k> 1
and where the functio andh are given by
—PiX1 — XX + kng5 + PGy
—PoX2 + P3xg — Pslp

_ —kiXg+Dbrxa _
G(x) = kot u , h(X) = xq. (7.13)
—CoXs5 + CoXg

—C1Xe+C1d
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It is shown that the matriQ is almost everywhere full rank, thus proving that the modified minimal
model of Bergman is almost everywhere locally observable. For more details skee appendix the
section 12.4.

e Let us verify that the modified minimal model of Bergman is controllable

It is assumed that the initial conditidms, Xs) (tp) and the meal consumption profileare known and
given. So we can integrate the gastro-intestinal sub-system. In the sequalpstitute the terrky xs
in the glucose-insulin sub-model by the known rate of appearBgeekyxs. This leads to consider the
controllability of the following model

dx
dftl =—Pix1 —X1X2 + PiGp +Ra
d
= = —Poxe+ Poxa—Raly
(7.14)
dxs = —KiX3+bfxa
at £X3 + bs
dxq
b
dt X4+ U

To test the controllability, let us consider the rank of the matrix (see e.g.[78])
%= (9(x) adig(x) adig(x) adig(x)), (7.15)

where the Lie bracket are defined as follows

adig) — Ox (9(x)) f(x) — Ox (f(x)) 9(x) ifk=1 (7.16)
19 =1 o, (adﬁlg(x)) f(x)— O (f(x)ad2gx) ifk>1 - '
and where the functiof andg stands for
—PiXg — 1% + PGy + Ry 0
- —PoXo + P3X3 — Pslp _ |0
f(X) - —kfX3+ be4 ) g(X) - 0 (717)
—KsXa 1
We have
0O O 0 —Psbixg
[0 © —Psbs  —Psbs (P> + ks +ks)
Z=10 by be(kitk) bi(k2+K+kike) (7.18)
1 —ks _kg _k:s3

Because all the parameters are assumed to be given strictly positive dtissdithat the matrisZ is
full rank for all x; # 0 thus proving that the modified minimal model of Bergman is locally controllable
for all x; # 0. O

Remark8. Practically, the fact that the model is not controllable wigs 0 is not a big issue. Indeed,
in this case, the patient has absolutely no sugar in the blood meaning thatdasljssdch that it might
be useless to envisage control action then.

Now that we have verified that the modified minimal of Bergman is consistent, lebnsder the
design of a SPMPC controller.
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7.3 Controller design

So far, we have been interested in studying general properties sdbigfileel modified minimal model of
Bergman. Now let us consider some properties which are desirable wienauSPMPC controller. To
do so, we will begin to express the control problem using a variational fotronlalrhen, we will verify
whether the control problem is well-posed. To do so, we will verify if it Sessassumptions 2 and 3.
Next, we will be interested in proposing an adequate PLDI embedding whichecased to compute a
final cost and a terminal state constraint which satisfy assumptions 7 andafly Rime necessary tools
to numerically solve the control problem using adjoint model will be introduced.

7.3.1 Control problem

For control purpose, we have chosen to only consider the global tfdhd glucose-insulin metabolism.
This has lead us to model this phenomenon thanks to the modified minimal model of Betmwlaich
a simple gastro-intestinal sub-model has been added. For convenienterdetind the equation of the
model

Glucose-insulin sub-model

dG

a = —(P1+X>G+ Ple+kgrR2,

dX

a = —P2X+P3(| — |b),

dl (7.19)
— = —ki¢l

at £l +bfUy,

duU,

W = —k5U1+U,

(G7 Xa I 7U1)(t0) - (G0> XOa IOa Ul,O)a

Gastro-intestinal sub-model

d

TTZ = —Cz(Rz — Rl),

dR (7.20)
ditl = —C]_(R]_ . d),

(R2,R1)(to) = (R0, R10)-

For control purpose, it is assumed that the meal consumption prbfiled the initial condition
(Rz,R1)(to) are known and given. That is why itis possible to integrate (7.20) to obtaistéte trajectory
Ro(t) for all t > to. Let us callRs(t) = kgrRo(t) the rate of appearance. Then, for control purpose we
consider the following model

dG

dX

ar —PoX +PR3(l —1lp),

di (7.21)
ai K¢l +bfUq,

du;

Mk

dt SUl+u7

(Gv X, | 7U1) (tO) = (Go, Xo, |07U1,0)-
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In the sequel, theominal modetorresponds to (7.21) where all the parameters are assumed to be
perfectly known. The trajectory generated by the nominal model for agiveal condition(Go, Xo, 10,U1.0),
a given rate of appearan&g(t) and a given insulin flowu(t) is callednominal trajectory

To obtain the variational problem, we begin to write the nominal model when distindté in states
and parameters. This leads to the following disturbed system

OI(deJtFG) = — (P +P0) (X1 +G—Gp) — (X2 + X) (X1 +G) + (Ra(t) +ra(t)),

d(XZdTX) = —(P2+P2) (e +X) + (P3+Ps) g +1 —Ip),

d(XZjl) = —(ki +ki)(a+1) + (b +br) (4 +Ua), (7.22)
W = —(ks+ks) (X4 +U1) + (u+f),

(X1 + G, %2+ X, %3+ |,Xa+U1)(to) = (X1,0+ Go, X2,0+ Xo,%3.0 + lo,X4.0+U1,0),

whereu andR,(t) are the inputs such that the variallleX, | andU; describe a desired nominal trajectory
issued from the nominal model (7.21). The control infuis a disturbance of the nominal input
which has been introduced in order to reject the state disturbaqge s, .4y despite the parameters
disturbancesp;, p,, P3, K¢, bs,ks) T and the rate of appearance disturbange In the sequel we note
W= (Pr, P2, Pa, Kt b, ks, Ta) T

To use the previously presented control algorithm, let us introduce the fodjovariational model
which is obtained by subtracting the nominal model (7.21) from the disturbedlrffogg)

% =—P1(x1+G—Gp) — (PL+X)x1 — Gxp — X1 X2 +ra(t),

C:;z = —Po(X2+X) +Pa(X3+ 1 —lp) — PoXo + PsXa,

(:ICT>:3 = —ki(x3+1) +br (x4 +U1) —kixs+ brxa, (7.23)
%4 = —Ks(xa +U1) —kexa + ,

(X1,%2,X3,Xa) (to) = (X1,0,%2,0,%3,0,%4,0)-

Now that we have expressed the control problem using a variational faionyldet us consider
the problem of verifying that the control problem is well-poseel, let us verify that the model (7.23)
satisfies assumptions 2 and 3.

7.3.2 Well-posed Primal Problem

Lemma 6. For all bounded x and in R™, for all bounded f inR™ and for all bounded w and in R™,
if the nominal statéG, X, 1,U;)(t) is bounded for all t> to , then the model (7.23) satisfies assumption
2 and 3.
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Proof. Let us introduce the following notation:

g1(x, f,w)
| 92(x, f,w)

g(x’ f’W) N gS(X7 f7W) '
ga(x, f,w)

_ (7.24)
—P1(X1+G—Gp) — (PL+ X)X1 — GXp — X1X2 + Ia

—Po(2+X) + P30 +1 —1Ip) — Poxa + Paxg
_kf(X3+L)+bf(X4+U1)—kfX3+be4 ’
—ks(x4+U71) —ksxg + f

wherew = (ﬁl’b27ﬁ3)Rf an 7RSa ra)T-
Lipschitz assumption
First let us prove that the disturbed control model (7.23) satisfies assur@ption
e Letus show that there exists a constiansuch that we havg? (x, f,w) —4 (X, f,w)|| < Lx|[x—X||.

Let us begin to express the different component of the vegtar f,w) — (X f,w):

gl(x, f,W) — gl(”, f,W) = —(T)l + Pl) (X1 — )~(1) — G(Xz — )?2) — X1X2 — X1 X0,
92(X7 f,W) - gZ(~7 f,W) = _(b2+ PZ)(XZ _)~(2) (TQ + P3)( ) (7 25)
93(X7f7W)_g3(~7fﬂW>:_(Rf+kf)<x3_~3) (B +bf)( )?4)7 .
g4(X7 f,W) - g4(~7 f,W) - _(R5+k5)(x4_)'z4>
Let us considefjgi(x, f,w) —g1(X, f,w)||. We have
[92(%, f, W) — (X, f,w) || = [| = (P + Pr) (X1 — K1) — G2 — K2) — XaX2 — Ko
== (P+PL+X)(x1—%1) — (C+X1) (%2 — %2)|| (7.26)

< [Py A+ Pr+ X[ X1 — %al| 4+ |G + X[ x2 — Zo||.

The next step consists in finding an upper-bound which is indepentiéma specific value op;, X2,
G andxj. Since the disturbances, the nominal state and the state are assumed todezlbae consider
the new upper-bound which consider the (well-defined) supremunpsuP; + x2| and supG + X |

[9a(x, f,w) —ga (X, f,w)|| < (sup|py+ PL+X2|)[[x1 — %[ + (SUP|G + K |) [ %2 — R (7.27)
Similarly, we have

W)l < (suplpz + P2|)[|x2 — %[ + (sup/Ps + Ps)[|xs — %,
f.w)[l < (suplks + ki) [[xs — Ka|| + (sup(|s + bt )| — Xa]|, (7.28)
f.w)[| < (suplks+ kel ) [[ X4 — %]

||g3(xv f,W) - g3()~(’

||92(X7 f,W) - 92()?,
||g4(X, f,W) - g4()z’

So it is deduced that

J92x F.w) ~ Ga(K. T, W] < Ka (0 —Sall + e ~l)).

G20 F.w) = Go(%. f. W] < Ka e —%el| + [0 —Sal). 729
Iga(x, .w) ~ ga(%, f. W] < Kal e —Sall + s — ).

4% ) ~ Ga(R, )| < Kalxa — Sl
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whereK; = max(sup|p; +Pi+Xz|,Sup|G+X%4|), Ko = max(sup|p,+ P2/, sup|ps + Ps)), K3 = max(sup|ks +

k¢ |,sup(|bs + bt|) andKy = sup|ks + K|

We have
1< (x, f,w) w)| < Zngl (x f,w) —gi(X f,w). (7.30)
Let us introduce the following constant
Ly = max(Ky, K2 + Kz, K3+ Ka) (7.31)
So, using (7.30) and (7.29) it is deduced that we have
|9 (x, f,w) —Z(X fw)|| < Ly|x—X||. (7.32)
e Now let us show that there exists a consthgtsuch that we hav@¥ (x, f,w) — 4 (x, f,W)|| <
Lwl|w—W|.
Let us begin to express the different component of the vegtar f,w) — 4 (x, f,W)
gl(X,f,W)_g]_( ) 7 ) (X1+G Gb)(pl_:pl)+(ra_ra)7
92(x, f,w) —ga(X, f,W) = (X2+X)(pz—p2) (X341 —1p)(P3— Ps3), 733)
ga(x, f,w) — ga(x, f,W) = —(xg+1) (ks kf) + (x4 +U1)(bs — by), '
Ga(x, f,W) — Ga(x, f,W) = — (x4 +U1) (ks — ko).
As the state is bounded, it is deduced that we have
lga(x, f,w) —ga(x, f,W)|| < ke(|[Py — Pall + lIra—Fall).
192(X, f,w) —ga2(x, f,W)|| < ka(|[P2 — Pl + [[Ps — Psll) (7.3
1g3(x, f,w) —ga(x, f,W)|| < ks(|lkr —ke||+ [[br — b ), '
19a(x, f,w) —ga(x, f,W)|| < ka|[ks — ks,
where k; = max(1,sup|x; + G — Gp|), ko = max(sup|xz + X|,sup|xs + 1 — lp|), ks = max(sup|xz +
I],sup|xsa +U1|) andks = sup|xs +U4].
Let us introduce the following constant
Ly = maX(kl,kz,kg,k4) (735)
Using (7.33) it is deduced that we have
19 (x, f,w) —Z(x, f,W)| < Lw|lw—W||. (7.36)

Linear Growth assumption

Then, let us prove that the disturbed control model (7.23) satisfy assun®ti®imce the state and

the nominal state are assumed to be bounded, it is deduced that we have

1920%; F,wW) | < ca([xall + [[x2ll + [[Poll + [Iral),
192(x, f, W) || < ca([[P2ll + [IPsll + X2l + [[xs]]),
lga(x. f,w)[| < ca(lIks || + [br || +[|xsl] +[|xal])
194 (% f,w)[| < ca(llksl| +[1xall + I T1]).

(7.37)
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where c; = max(sup|xy + G — Gp|,sup|Py + X|,sup|G + x1|,1), ¢z = max(sup|xz + X|,sup|xs + | —
lp|, P2, P3), c3 = max(sup|xs + | |, sup|xs + U1|,ks, bs) andcs = max(sup|xs +Uq|, ks, 1).
Let us introduce the following constant

¢ = max(Cy,Cy+ C3,C3+ C4). (7.38)

Using (7.37) it is deduced that we have
1906, £, W) | < (I + (111 + [[wi])- (7.39)
0

Now that it has been shown that the robust control problem is well-ptéestags introduce the neces-
sary tools needed to solve it.

7.3.3 Formulation of a PLDI embedding

The final cost will be computed assuming that the meal effect is negligible anthefeéhe prediction
horizon. This implies that to formulate an adequate differential inclusion emigpeBnconsider the
following control model

% = —P1(X1 +G—Gp) — (PL+ X)x1 — Gxo — X1 %2,

(L)iz = —Pa(X2+X) +P3(X3+1 —Ip) — PoXo + P3Xs,
dd—):g:—Rf(X3+|)+Bf(X4+Ul)_kfx3+bfx4’ (740
0(';? — Re(xa+U1) — kexa + ,

(X1,%2,X3,Xa)(to) = (X1,0,%2,0,%3,0,X4,0)-

To apply the algorithm presented in chapter 3, the simpler possibility is to use bePtizdding of
(7.40). To do so, the idea is to see that the only nonlinearity in the state comeshiegoroducix;x,.
Furthermore, as it has been previously shown, we know that the stateriddmbfor bounded inputs.
Concretely, in the case of the stade this means that there exists < X; such that if we havey (tg) €
[X1,X1] then for allt > to we havex; (t) € [x;,X1]. So using«; as aparameterit should be straightforward
to design an adequate embedding by first considering a linear parametat v@pisentation of (7.40)
and then to use classical results (see e.g. [91]) to build an PLDI embeddavgever, because of the
disturbances on the parameters, we also have nonlinearities arising frgmothect state/ parameter
disturbances. To simplify the problem, the idea is to enlarge the space of ddendisturbances, such
that all the disturbances which are not linkedi@ppear as additive disturbances.

Let us exemplify this approach with the temg(xz + X). We know that the state, is bounded,
i.e. there existx, and X, with x, < X» such that for allt > ty we havexy(t) € [x,,X2]. Let us call
X2 = max(|%,|, |X2|) and assume that is non null and constant then for &lwe have:

X
Po(Xe+X) < PoX <1+ |x2|> . (7.41)
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So if the disturbanc®, originally belongs tda, b] then we consider theewdisturbancep, <1+ X2>

X]
which belongs to the interv%a <1+ ))((2|> ,b <1+ |)><(2‘>] Thus, it is possible to suppress the non-
linearity in the termp,(x2 + X) by considering the new term,X <1qL |X2|) which provides worst

disturbances.
Assuming thatG, X, | andU; are given non null constant such that I, is non null, we introduce
the following new additive disturbances to suppress the nonlinearity statehpter disturbances

- X2
2 2 ‘X|

_ X
p3=p3<1+‘°’>,
I —1lp|

= _ X
K — K <1+ “3> , (7.42)
br=b (1424,

f f( U1
ks=ks| 14+ — |.

° S( U1

Using the previous reformulation of the disturbances to transform multiplicativerligstoes into
additive disturbances, the variational model (7.40) becomes

dx
d—tl = —P1(X1+G—Gp) — (PL+X)x1 — GXo — XX,
d _ _
(T)? = X+ Pa(l — Ip) — Poxo + Paxg,
% :—ifl +EfU1—kfX3+be4, (7.43)
d =
di)? = —ksUs —kexa + f,
(X1,X2,%3,%4) (to) = (X1,0,X2,0,X3,0,%4,0)-
Using matrix notation, it is possible to rewrite (7.43) as follows
dx
a = A(Xl)X—|— Bl(Xl)W+ Bz f, (7.44)
wherew stands for the vector of disturbances and
—(PL+X) —(G+x) O 0 0
_ 0 P P 0 _]o0
A= g 0~k b |7 |o]
0 0 0 —ks 1
(7.45)
—(x1+G—-Gp) O 0 0 0 0
B 0 X I—-lp 0 O 0
Bu(xa) = 0 0O 0 -1 U 0
0 0 0 0O 0 -y
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As we have for alt > tg x1(t) € [x1,X1], it is possible to use (7.44) to express (7.43) with a PLDI
formulation,i.e. (7.43) is locally embedded in the following PLDI

d 4
d%‘ - k; Bi(t) (Akx+ Brw+ B ), (7.46)

whereA; = A, = A(l(l), Azs=As= A(Xl), Bl,l = Bl73 = Bl(l(l), 8172 = Bl’4 = 51(7(1), forallk e {l, e ,4}
4
and for allt B«(t) >0 and Z B(t) =1.
k=1

Thus, assuming that the stage cbsis quadratic, using the algorithm presented in chapter 3, it is
possible to compute a final cagtx) = x" Sxand a terminal state constraiRff = {x € Xg /xTSx< y}
associated to a final controllég (x) = Kx.

Remark9. To compute a PLDI embedding which can be used to compute a final cost and aalermin
state constraint that can be used to design a stabilizing SPMPC controlleaweéntroduced additive
disturbances. It is important to see that this embedding is valid for (7.40ubedhe thus obtained
disturbances are strictly larger than the original disturbances.

7.3.4 Adjoint model and Gradient of the Criterion

In this section, the necessary tools to solve a sub-problem via adjoint medeiterduced. In order
to consider that hypoglycemia are more dangerous than hyperglycemidgwieeasupplementary state
constraintx; > x, in the optimization problem (3.6). Similarly to the results presented in chapter 4, to
consider both the terminal state constraint and the supplementary inequabtyaiot, we introduce the
following modified functional

ti+T

L (F W) = 38 (F,w) + A (WH (X1 — Xq,Ac)) ds+WH(y— [Ix(t +T) 13, Aa), (7.47)

wherew= (W', Ac,Aq)T andJ is given as follows
t 2 M7 2 2 2
J (W) = X, Fowit T+ [ (Ixx@), Fwti9) [+ 112~ Iwld)ds (7.48)

Let us assume that the initial condition of (7.43) is perfectly known. Accgrdin(4.4), let us
introducew the Féchet derivatives in directiofg, q) of the operator solutioff,w) — x(x(t;), f,w,t;.)
given as the solution of the following differential equation

dan
dt
dwp _ _
e —0p, (X2 + X) 4+ apy (Xa + 1 — Ip) — (Po+Po) a4+ (P3 + Pa) s,
daxy
dt
dw, _
d—t“ = — Ok, (Xa+U1) — (Ks+ Ks)a + 0,

w(t) =0.

=—0p,(X1+G—Gp) — (PL+ P+ X +X2) 1 — (G+X1) w2 + s

= —Qk (Xa+1) + 0, (Xa +U1) — (ki + ks )os + (bs +br) s, (7.49)

According to (4.35), to obtain the appropriate necessary optimality systeditioms, which corre-
sponds to the identification of the gradientﬁﬂ’“ that is necessary to develop a numerical scheme in
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order to solve the saddle point problem, we introduce the adjoint systeoti@sds

dx . .
- ditl = —(P1+PL+ X)%1 — X% 4+ Ry 1x1 + Oy (WH(Ce, Ac))
dx . .
— gt =~ (tG)fa— (D + PR+ Rooke,
dx I o
— (Txts = (P3+ P3)%2 — (Kt +Kf)X3 4 Ra 33, (7:50)
dXs - . o
gt = (bt + bf)X3 — (ks + Ks) X4 + R4 4Xa,
X(ti+T) =2SXx;, f,w ti;ti+T) + Ox (WH(Ca, Aq)),
whereC; = x1 — ¥ andCo = y— [|x(t + T)|3, and
—Ap+1Cp),if Cp < A
n _ (=2p e p = HAp,
Ox (WH(Cp,Ap)) { 0,if Cp > Ay, , (7.51)
wherep stands either foc or Q.
According to (4.38), the following expression of the derivativeéfif“ are deduced:
9.2 3
df (f7W)_X4+af7
—X1(X1+G—Gp) — Qr1Py
—Ro(X2 4+ X) — Q2212
So(x3+1—1p) — Qs 3P3
. AH —Xa(X3 +1) — Qa ks (7.52)
d® (f,w) = %3(xa +U1) — Qs by
—X4(X4 +U1) — Qs 6Ks
>~<1“— Q7.7ra
a[9i)\<CCJAC)

2% (Ca,sAa)

wherex is the solution of (7.43) with initial conditior(t;) under the influence of the couple control
disturbancesf,w) andxis the solution of (7.50) and where

oWH —Cp,if Cp < uAp,

o\ (CP>/\P) = { —H)\p,if Cp > u)\p’ ’ (753)

wherep stands either foc or Q.

7.4 Conclusion

In this chapter we have studied the properties of the retained control magglards to its applicability
with a SPMPC controller. First we have studied some general propertiefieshlig the control model.
We have begun to show that if the initial condition is bounded, if the paramdtdrs model are positive
and if the inputs satisfy some bounds, then the state is bounded for all timet.ifistam this properties,
the conditions on the input in order for the state to keep their physiologicalingehave been deduced.
Also it has been shown that the nominal model is almost everywhere obkerarad controllable. In a
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second part, we have been interested in testing if the control problem is @geltip To do so, we have
begun to express the control problem in a variational form and then itdes \erified that the control
model satisfies assumptions 2 and 3. Then, the design of the SPMPC contrslgdmaenvisaged by
considering the design of a PLDI embedding which can be used to computeguedel final cost and a
terminal state constraint. Also, according to the results presented in cHapterhave been interested
in the numerical implementation by considering an adjoint model formulation to solveittesponding
saddle point optimization problem.

u

Gastro-intestinal L nsulin | Saiet! ‘ AN
d astro-intestina R, Glucose-insulin SPMPC Insulin Pump Patient
sub-model sub-model 't

Observer " Glucose sensor

=

Figure 7.1: Structure of the control scheme

Let us mention that, concretely, we have chosen the nominal model to be a statedyf the system.
This has been done because the simple structure of the modified minimal modegyofaBegnables a
simple computation of the corresponding control inpst For a more general case, a control problem
has to be solved.

Now it just remains to test, through numerical simulations, the controller perfaresa Before
further proceeding, we have to consider the problem of designing aofiseever. Indeed, from a control
point of view, the knowledge of the full initial condition is needed at each sampistgnt. However,
practically, the sensors can only provide the value of the blood glu@psaplying that a state observer
is needed. This leads to consider the control problem according to tletusergiven by fig.7.1. The
model used in the SPMPC bloc is the disturbed model (7.23) and the model usedlrstreer bloc
is the modified minimal model of Bergman (6.6). The objective of the next chaptemisesent some
observers to solve this issue.
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8.1 Introduction

To solve the problem of artificial blood glucose control, the design of alS@kbntroller on the modified
minimal model of Bergman is envisaged. By solving a constrained saddle paiinmtization problem
on a finite prediction horizon subject to a dynamical model of the system thab teescontrolled and
where the current state value is the initial condition, this controller providesathieol input that has to
be applied in order to robustly stabilize the system. However, from a prbptiod of view, the sensors
can only provide a (noisy) measure of the blood glucose. This implies thaatbe of the remaining
states has to be inferred on the basis of the measurement, the insulin and thgoisaThis task will
be done by a state observer.

The task of estimating the state is crucial in regards to the expectable conmforhpences. Indeed,
if we begin to compute an optimal control sequence for an erroneous initidit@n, then the system
trajectory will strongly differ from the predicted trajectory what can jiadgdead to instability of the
closed-loop. That is why it is of prime importance to assess if an obsemedps sagoodstate estimate.
To try to solve this issue, our idea consists in designing multiple observers, afgidiased on different
methodologies, and to compare their relative state estimate. In case the estimialedioy all observers
are comparable, then we will assume that the observers performancsatiafactory. However, for
control purpose, we will use only one of them.

We will consider the design of three observers. Two of them will be desigrsing the complete
modified minimal model of Bergman. The first one is an Unscented Kalman filter (3¢ e.g. [144])
and the second one is a Moving Horizon Estimator (MHE) (see e.g. [1B8f)these observers, it will
be assumed that the meal times and the meal contents are perfectly knowtheg.gan be provided
by the patient at the moment when the corresponding event occurs. Tdhelisierver will be designed
using only the glucose-insulin sub-model. The idea of this observer will bedottre rate of appearance
(which is given by the terrkgR> in the modified minimal model of Bergman (6.6)) as an unknown input
that has to be estimated at the same time that the state is estimated. To do so thef@asignkmown
Input Observer based on an Extended Kalman Filter (UIEKF) is envis@ge e.g. [61] or [141]). This
choice has been done for validation purpose. Indeed, it seems legitimate to #tithetietained gastro-
intestinal sub-model is too simple in regards to the true digestion process. Sovw@weder if this has
some consequence in the process of estimating theGta{el andU;. By comparing the state of the
UIEKF with the ones given by the UKF and MHE, it will be possible to verifyatter the simplicity
of the digestion model do deteriorate the estimation of the remaining states. Holesause for this
observer this input can not only model a glucose flow due to meal consumpticaisiuall kind of
unknown dynamics, it is not intended to directly use it to detect a meal corigump

Because the system dynamic is time continuous and the measurement are diseneaepus ob-
servers will have to work in a sampled-data framework. It is worth noticingdha advantage to have
retained an (open-loop) sampled-data control strategy is that it becors&blpdo consider a different
sampling rate on the inpls; (measurement rate) and on the outfed (control update rate), under
the only condition that the latter is a multiple of the former. In the process of estimatirgjates we
have decided to use the nominal form of the control model (see section 7.Bel$tdte of the disturbed
model is then deduced by subtracting from the estimated state the (known) #leenominal state.

This chapter is organized as follows. First, the various observersiafylpresented. Then, their
respective performances are tested using the control model for simulatiposeu Finally, this chapter
is concluded.
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8.2 Some nonlinear observers

In this section let us briefly recall how an unscented Kalman filter, a movingdroestimator and an
unknown input observer based on an extended Kalman filter work.

To design the two Kalman filters (UKF and UIEKF) it will be assumed that the migdadditively
disturbed. These disturbances are different from the one introdacedntrol purpose in chapter 3 as,
in the framework of these observers, the noise is assumed to be givliasiodclassically assumed
to be given Gaussian). To design the MHE observer, even if it is pogsibi@erk with more complex
disturbances, it will also be assumed that the model is additively disturbésl.cfibice has been done
in order to use the previously presented Kalman filter to determine the avosaheeded to ensure the
good convergence property of the observer.

8.2.1 State observer via Unscented Kalman Filter

In 1960, R.E. Kalman published his famous paper describing a recurdiviéios to the discrete data
filtering problem [83]. The Kalman filter is a simple set of equations which pes/al minimum mean
squared state error estimate for linear systems. This filter can be used fotasksiyanging from simple
state estimator to information fusion (see e.g. [152]). Because of its hugessuo solve the estimate
problem in the linear case, many attempts have been done to extend its use tolitean@ase. The
most common approach is to use the so called Extended Kalman Filter (EKF).gsé&36] or [137])
which is based on the linearization of the nonlinear model. Some difficulties with thisagpcan arise,
e.g. because of the nontrivial task of computing Jacobian matrices. Mortb@veesulting filter can be
unstable.

Generally speaking, Kalman filter works on mean and covariance of therobability distribution
of the state (which may be non Gaussian). In the EKF, the idea is to use a lateariaf the model
in order to make the assumption that if the probability distribution of the state were tabssian
then it would remain Gaussian for all further time instant, making it sufficienstionate the first two
momentum of the distribution. This approach is awkward as in general, theraéason that through
a nonlinear process a Gaussian distribution remains Gaussian. In ordee tihisakact into account,
the Unscented Kalman Filter (UKF) has been developed (see e.g. [8B$.idEa remains to design
an algorithm which only estimates the first two momentum of the distribution law. Basadsehof
symmetrically distributed sampled points (called sigma points), the main idea is to pararttetrmean
and covariance of the true probability distribution of the state and then toxpmat this latter (at least
at the second order). As a consequence, such a filter do not requyitanearization step. Up to today,
UKF is a vast subject of research and one of the main issue deals with tigan désnethods which
enable to choose the best set of sigma points under various assumptioag ($66], [152] or [41]).

In the sequel we will remind the UKF equations in the continuous-discrete settitigedasis of the
work presented in [144] and [152]. The retained formulation of the filteresmponds to what is called
the additive Unscented Kalman Filter in [68].

To derive the observer equations, we assume in this section that the noisgendhlss and on the
measures are additive, that is foF [t_1,t]

% =9 (x,u) +w(t),
X(tk—1) = Xi—1, (8.1)

Yic = h(X(Xi—1, U, W; ty)) + I,

wherex,_; € R™ is the initial conditionx € R™ is the stateyx € R" is the measurementy is a white
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noise process with varian€gandry is a zero mean Gaussian measurement noise with covariance matrix
R.

The objective is as follows. For a given state estinxgte att = t,_, with meanmy_; and covariances
Pi_1, the inputu(t) for t € [tx_1;t[ and the measurng att = ti, the objective is to estimate &t ty the
mean and covariance of the state of (8.1). To do so, let us introducellitwify unscented transform
denotedJ T (my_1, Z«_1) Which generatesr + 1 sigma pointsZ; with the associated weight§

Zo(tk-1) = Mk1 Wo = 74+,
Zi(tk-1) = M1+ (v/ (Nk+ K) P 1)) W = o
i) =M1 — (VI +HA) P t)nrin. Wati = Z(TlJr,\)a

wherei = {1,...,ny}, A = a?(ny+K) — ny is a scaling parametegr andk are (positive) parameters

of the method(+/(nx+ k) P_1)i stands for thé!" column of the matrix\/(nx + k) Z«_1) and where
(v/(nx+ K) P«_1) stands for the square root ofx + k) Z_1. Let us introduce the following variable

Wi = Wb, ..., Wan, T,
W = (I2n 11— [Win, . . -, Win] ) diag(WE, WA, . .., Wbn,) (I2n 41 — [Win, - - ., Wm]) T,
Z () = [Zo(k), - - - » Zon, ()]
h(2 () = [n(Zo(t)), - .., h(Zan,(t))],
whereW$S = Wo + 1 — a?+ B, |, stands for then dimensional identity matrix an@ is a (positive)
parameter of the method.

In terms of the unscented transfothT the UKF equations are quite similar to the classical Kalman
filter equation. They can be divided in one prediction and one correction step

(8.2)

e Time update:Compute the vector of sigma point& (tx_1) usingUT (my_1, %k_1) and compute
their propagationi.e. fori € {1,...,2ns+ 1} compute
tk
Ziltdi) 1= 2iten) + | #(2iu)ds (8.3)
Jl—1

Compute the predicted mean and covariance as follows

M1 °= W2 (tk[tc—1)",

(8.4)
Pk = X (tltic1) TWZ (tfte-1) "+ Q.
Then, compute the following new set of sigma point
Z (tlte—1) = UT (M1, Pik-1)- (8.5)
Finally compute the expected output as follows
Yik-1:=h(Z (&), (8.6)

Yilk—1 := WmYkjk—1-
e Measurement update€€ompute the following variance and covariance

Pyyk =Y W -1+ R,

2ny (C) T (87)
Pyyk = Z)Wi (2 (tlte-1) — Migr—1) (Vi k-1 — Yik-1)
i=
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whereW® =W if i > 0 andWg =Wp+1— a2+ B.

Then update the estimated meapand covariance?, using the filter gairky as follows
Ky = yxy,kyy_y’lka
Mg = M1+ Kie(Yk — Yik—1), (8.8)
P = Prk—1— K PyyiKy -

The estimated statg att = tx has meamy and covariance?y.

8.2.2 State observer via Moving Horizon Estimator

Kalman filters are known to be efficient but they suffer from a major demkbit is not easy to con-
sider constraints on the state, e.g. to consider that a concentration or a gisaalitgys positive. As
observer are often used to estimate unmeasured concentration, many attarafiedradone to solve
this issue. Some strategies consist in adjusting the existing algorithm (see etg.d@m$ider state con-
straints when using an UKF). Others strategies consist in develogwglgorithm in a more adequate
framework. One of the most natural possibility is to recast the original estimptisiem as a series
of constrained optimal control problem (see e.g. [133]) where the iniiadlition is the control. Each
time a new measurement is available, an optimization problem is solved to compute theamitizion
which provides the best fit in regards to the past data. The problem istleattime goes by, the number
of stored measures increased, making it longer and longer to solve the @pitimiproblem and also
increasing the need for memory. That is why this strategy has been refinatrdducing a receding
approach. Only a finite number of past measures is stored, thus enswirthemeed for memory is
controlled and that the computation time remains reasonable. This kind of obseoatled a Mov-
ing Horizon Observer (MHE). The idea is to minimize estimationcost function, subject to various
constraints, defined on a sliding window involving a finite number of past samplesse observers
have been used for time continuous measurement (see e.g. [127] or §&24¢ll as for time discrete
measurement (see e.g. [133] or [70]).

To estimate the state at= tx using a MHE observer, we are given a set\bimeasurements where
N € N*. We consider that the system of nonlinear ordinary differential equatiahthardiscrete measure
y(tx) are additively disturbed. That is fok [tc_n;, tk]

dx
at =9 (X, U) +Ww,

X<tk—N) = Xk—N,
y(ti) = h(X(Xn,U,W;ti)) + Vi, i € {k—N,... Kk},

(8.9)

wherex € R™ is the state vectox,_yn € R™ is the unknown initial state that has to be estimated R
is the control inputw € R™ is a (bounded) disturbancgty) € R is a measurement vector ange R™
is a (bounded) measurement noise vector.

The objective of this observer is to derive for each{k— N, ... k} the estimate ok(xx_n, U, w;t;)
and the corresponding disturbaneeandv;. The measurements and the inputs are collected within the
sliding window [t_n;tk]. The estimate problem is cast as the problem of minimizing the following cost
function each time a new measurement is made available

k ti
W = e =Rl + Y IR [ Wi ds (8.10)
i=k—N i-1
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where the matrices?y, Rq and Qx are assumed to be positive definite. The teépgn — >?k—N||Za,/:k1
which is often called arrival cost, penalizes the distance from the initialiton x,_y to somea priori
estimatexc_n which incorporates the past informationt;))jco,. k-n-1;- The termHviHEek penalizes

ti
the measurement noise and the tefm HwHékdspenalizes the noise on the model.
i1

In a stochastic setting?x can be interpreted as the inverse of the covariance matrix correspdading
the state estimatg_"y. This means that if we are confident in the estimatg,, then the corresponding
covariance matrix will be small and its inverse will be large. Thus, it implies th#ténoptimization
problem it will be costly to estimate a different state vakuey. As for Ry, it can be interpreted as the
inverse of the measurement noise covariance matriXrasb the inverse of the model noise covariance
matrix [70].

One of the main issue with MHE observer is to compute an adequate arritalébsn computing
this term the idea is to have a first guess which is not too bad and not too inallyedemanding.
Classically a Kalman filter (either EKF or UKF) is used (see e.g. [127]) . Irs#ngiel, we will compute
the arrival cost using the previously presented UKF. An other main isgbhéVIHE observer comes from
the computational burden [9]. Indeed to obtain a state estimate it is needed torsdive a constrained
optimization problem. Many approaches have been introduced to solve fiteaezation problems (see
e.g. [70], [169] or [157]). In our case, we intend to use the numenrethod presented in chapter 4. For
more details see section 8.3.1.

8.2.3 Unknown input and state observer via Extended Kalman Hier.

In the modeling part we have retained a really simple model for the gastro-intestiisgistem. Indeed,
a real digestion process is far more complex than a simple couple of linear diff¢muations. In
particular, the digestion process depends on the ingested quantity, theftgpasomed sugar (e.g.
the digestion process between bread and orange juice is clearly diffirento the different nature
of carbohydrates). That is why, it is interesting to design an observehvidimdependent from the
digestion model and which can estimate both an unknown input (correspdodheyrate of appearance
Ra = kgrR2) and the state. The aim of this observer, which is designed using only tbesghinsulin
sub-model, is that it can be used to verify whether the use of a simple gatgstisial sub-model is
detrimental when it comes to estimate the state of the glucose-insulin sub-model.

Many algorithms are available to meet this purpose (see e.g. [147], [19%p0]). As we have
soon be interested in using a Kalman filter to estimate the state, we intend to usmaamsidiscrete
unknown input observer based on the use of an Extended Kalman Féeee(g. [141]).This observer
has been developed based on what has been done in the linear caselingiagiealman filter (see e.g.
[61]).

The steps to estimate both the state and the unknown input are similar to the cnetass$ical
Kalman filter,i.e. a prediction and a correction step. The only thing that change is that there is a
supplementary prediction and correction step for the unknown input th&b basestimated (see fig. 8.1
which has been inspired from [141]). A good explanation of the diffeneganing of the equation in a
stochastic setting and a convergence proof in the linear case can be fdéadl iHere, we will simply
recall the different equations of the filter.

We are interested in estimating the state vajyéhe corresponding covariancé, and the unknown
input d¢ att = tx using an iterative observeii.e. under the assumption that we are given the estimate
X1 of the state, a corresponding covariance matdx ; and an estimate of the unknown inlyt ; at
t =tx_1. Todo so, fott € [tx_1,t], let us consider the following setting which is related to our estimation
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Figure 8.1: Comparison of the bloc diagram of Kalman Filter and unknown iripgerger

problem

dX—Eﬁ(x,u)+de+w,

3=
X(te_1) = X1, (8.11)
Y(tk) = CX(Xk—1, U, W, di; ti) + Vi,
wherex € R™ is the statey(tx) € R™ is the measured outpudy € R™ is the unknown input that has to
be estimated and which is assumed to be piecewise conBtanR™ " is a given matrixy is a white
noise process with covariance mat@andvy is a white noise process with covariance maRix
The set of equations of the filter are given as follows

e Prediction: When we begin to solve the estimation problem, we do not know the valdge &o,
to make a prediction oftx_1,t], we use the value of the last estimate of the disturbahce
To obtain the predicted state valkg, "1 = X(%_1,U,dx_1;t) and the predicted covariance matrix
Pk—1 = P (P, U, 01, 1), we integrate the following set of equation tof [t 1;t]

dx .

a = g(X, U) + defl,

d&

ar =AMt 2+ 2At) +Q, (8.12)
R(tk—1) = K1,

P (-1) = Pi-1,

whereA(t) = Ox (¢ (X,u) + Fdk_1).
e Estimate Unknown Inpuffo estimate the unknown inpdg, we use the following set of equations

F~Qk = C@k‘k_lCT +R,

M= ((CR)TR;{(CR)) ™ (CR)TR., (8.13)
dk := Mi(Y(tk) — CRek-1);

whereR, = (exp(A(ty)) — 1)A(ty) " 1F if A(ty) is not singular.
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e Correction: We obtain the estimated statg d&nd the estimated covariance matr#% using the
following set of equation

R 1= K1+ R,

Lk = Zqk-1CT R,

Pyx:=((CR)TRA(CR))

P = Pke1+RPaxRd — RPax(CR)TLE — L(CR) ZaxR
X =% + Li(y(te) —CR.),

Pyi= Py — L(Re— FeZa xR LLE.

(8.14)

8.3 \Validation on the modified minimal model of Bergman

8.3.1 Numerical methods

To solve the problem of estimating the state using an UKF or an UIEKF obseveesimply need to
integrate some differential equations, e.g. using the Dormand-Prince met®d.§. [32]). When using
a MHE observer, we also need to solve a minimization problem whose cosioiuiggiven by (8.10).
Let us briefly show how the numerical methods presented in chapter 4aased to solve this problem.
Let us write the additively disturbed version of (6.6) as follows

% = —Py(X1 — Gp) — XaX2 + KgrXs + Wi,

O(';‘tz = —Paxa + P3(x3 — Ip) + W,

%3 = —KkiX3 +biXq + Wz,

03;4 = ke + U+ W, (8.15)
O(I;f[s = —C2(X5 — Xg) + Ws,

6 — —culxe— ) +we,

X(tk-N) = Xk—N;
Y(ti) = CX(X—N, U, W; 1) + Vi,

whereC=[100000, (wj)j(1... 6 iS the model noisey is the measurement noiseis an insulin input
assumed to be known amtlis a glucose input assumed to be known. The objective is to estimate the
value ofxe N, (Wj)jeq1,...6y @andy; foralli € {k—N,... k}.

First we rewrite (8.10) by substituing the tekmby y(ti) — Cx(Xk—n, U, W; t;)

k o]
P )= acn—Snln = 3 0 -Cxunumt)lh+ [ Iwlhds (@19
i=k—N i—1

Then, similarly to (4.35), to obtain the appropriate optimality system (necessadjtions), which
corresponds to the identification of the gradientJbfgiven by (8.16) that is necessary to develop a
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numerical scheme in order to solve the minimization problem, we introduce the agljeiatm as follows

dX o
- ditl = —(PL+x2)%4,
dx . .
— (th = —x1X1 — PXo,
dXs . o
T PsXo — kX3,
dXy o .
— =t = bi%— ks,
ddit (8.17)
-2 KgrX1 — CoXs,
dt
dX . .
- dfxf = C2X5 — C1Xs,
X(t) =0,
K(K(ti-1)it) = X(t) — CTR(y(t)
—CX(%-N,u,wW;t)) Vie {k—N+1,... k},
According to (4.38), the following expression of the derivatives'ofire deduced
0% . .
A W) = Kltien) + PXen = Ren) — CTR(Y(tkn) — CXe—n):
6
X+ ) Quiwi
i% VY]
X2+ ) Qiw
i% VY]
oot X3+ 'ZLQ&,iWi (8.18)
ﬂ(xk—Naw) = IE )
Xa+ ) Qaiw
i% 1V
%5+ ) Qsiwi
i% VY]
X6+ ) QsiWi
i; Wi

wherexis the solution of (8.17).

8.3.2 Numerical simulation

To test the good numerical implementation and performances of the varioas/elhsve simulate a
virtual patient given by an additively disturbed modified minimal of Bergmare fidise on the model
is given by a Gaussian noisex .4"(0,Q). The matrixQ has been chosen diagonal

Q = diag(qla 02,03, 04,05, QB) . (819)

Because in this case we have access to the true state value, it is possitdekovblether the three
observer converge toward ttreie state. To simulate the virtual patient, we consider the set of parameters

-----
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| Name| Value | Unit \
PL [317x10°° min—1
P, | 153x1072 min—1
P; [6.41x10 7| LmU Imint?
ki | 3.85x10°2 min—I
bf | 1.77x10° L~ Imin?t
ke | 554x10°3 min—1
c1 25x 102 min—1T
Cy 25x 102 min—1T
kgr |3.13x103| dL lmin!
Gp 82 mg.di?
I 24.3 muU

Table 8.1: Set of parameters used to simulate a virtual patient.

a1 g2 O3 Ga Us Je

Table 8.2: Chosen value of the componentQof

To simulate that only sampled noisy measurement are available, the measunedi®gipgen by
G(KTech) + Vk WhereTech = 5min andvy ~ .47(0,5). The first guess to initialize the observers is either
set to the equilibrium point of the model which is given by a blood glucose vdl@G o= 100mg.dt?
or set to the exact initial condition. The horizon of the MHE observer is s¢pi@st data.

The observers is tested by considering the following scenario

t = Oh: The simulation is initialized. The initial blood glucose is set at 100mg.drhe observer (UKF)
is switched on.

t =7h: The patient eats a meal of 25g.
t = 12h: The patient eats a meal of 70g.
t = 20h: The patient eats a meal of 80g.
t = 35h: The simulation is ended.

In order to study the influence of the noise on the measure, the simulation i90@utinies. The
observer performances are compared thanks to the computation of the memeansquare (RMS) of
the relative error between the estimated state and the trué state

420
S \/ IX(t) — X(t) H>, (6.20)

[x(ti)

wherex stands for the true value of the state andtands for the estimated value of the state. This
definition of the RMS has a sense because we kawe0 for allt > tg.

T
1The number 420 comes from the following computatﬁwmwherﬂend experiment= 35 60 min andTecy= 5Smin.

ech
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Observer| UKF

UMHE UIEKF

RMS 15397 1.9193 1.4322

Table 8.3: RMS of the three observer for equilibrium starting point.

Observer| UKF

uMHE UIEKF

RMS | 1.5675 1.8868 1.4191

Table 8.4: RMS of the three observer for exact starting point.

A simulation example, when the observer initial condition is set to the equilibrium starting po
can be seen on fig.8.2. The mean RMS for the three observers is giveablen3.3. A simulation
example when the observer initial condition is set to the exact initial condition caedreon fig.8.3.
The corresponding mean RMS for the three observers is given on tdble 8

G
1601
—— UKF
1501 fﬁ ——EKF UI
140/ 1 1| ——umHE
%1 i&r 4 true
\@130’ 4 + % | + measure
£ 120 : I %
5 L
110 R
100¢
20 ‘ : : :
5 10 15 20
time [h]
|
45
—— UKF
401 ' ' ' ‘ ——EKF UI
35} —uMHE
— ] true
=30
E o5t A
20
150
107 ‘
0 5 10 15 20 25 30 35

time [h]

X[1/min]

12000

10000

U1[mU]

6000

40001

8000

— UKF
——EKF Ul
——uMHE
true
5 10 15 20 25 30 35
time [h]
U1
— UKF
— EKF UI
——uMHE
true
5 10 15 20 25 30 35
time [h]

Figure 8.2: Comparison of the UKF, uMHE and UIEKF observer, equilibriumistapoint

All of the three designed observers converge toward the true stattheFuore, it can be seen that
none of them show better convergence results than the two others.8dtaudifficult to give a sense
to the estimated unknown input when using the UIEKF observer, we do teotdrio use this approach
to estimate the state of the system. That is why, in the sequel, we will only retaimeetted Kalman
Filter. This choice has been done because this observer is less computagapalhgsive than a MHE

observer.
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G
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Figure 8.3: Comparison of the UKF, uMHE and UIEKF observer, exadtisggpoint

8.4 Conclusion

In this chapter we have considered that the measure can not providgl $tate information and so that
the state of the system (6.6) has to be estimated. When dealing with this probleof,tbadlifficulty

is to assess on the quality of the estimate. To solve this issue, we have ceddlieidesign of three
different observers. It has been shown that the three obsergeyerge toward the true state of the
system with similar performances. Because it is difficult to give a sense &stimated unknown input
when using the UIEKF observer, we have retained the simplest appffoacha computational point of
view), i.e. the UKF observer.

At that point, we have all the necessary tools to solve the problem of aftifloiad glucose control.
That is why, in the next chapter, we will be interested in considering thécagipn of the SPMPC
controller from a numerical simulation point of view. The controller perforogsnwill be assessed
using both the control model and the testing platform to simulate virtual patients.
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9.1 Introduction

In chapter 3 we have considered a SPMPC controller which ensurastrobntrol performances by
repeatedly solving a constrained saddle point optimization problem. It haspbeeed that if the dis-

turbances on the model belong to a given set, then the state of the systeniliestdi finite time in

a bounded subset. Also, under some assumptions on the criterion, it hasrbeeth fhat the system
is input-to-state practically stable. Then, in chapter 4, we have propasedrital methods to solve a
state-constrained saddle point problem.

This thesis has been motivated by the problem of artificial blood glucoseotomtrat is why, in a
second part we have considered the application of the previously pedssmtroller in order to bring a
solution to this problem. Thus, in chapter 6, we have been interested in the modpkaty d%his has lead
us to consider two models. One, the model of Dalla-Man et al., which can b&leogd as a complex
model, is used for validation purpose while the other, the modified minimal model of Bergenased
to design the controller. Then, in chapter 7, we have been interested yingfdme properties of this
latter. One of the main point was to verify that the control model satisfies allebessary properties
needed to use theorem 2. Finally, because the sensors can only mavigiesure of blood glucose, in
chapter 8, it has been necessary to consider the design of a stateeobser

In this chapter we are interested in validating the retained control strategy iabla &lternative
for artificial blood glucose control. To do so, we will consider numerigaluations using both the
control model and the Dalla-Man et al. model to simulate virtual patients. This laittdsesmused in
the framework of the UVA-Padova testing platform [90]. It has been vaditidy the Food and Drug
Administration as a substitute to test on animals. From a pragmatic point of view, litiatican using
a testing platform was absolutely necessary in regards to the relative simpfitiity petained control
model. Indeed, it seems quite clear that the human metabolism can hardly be nmmndsleth a simple
system of ordinary differential equations. The simulation will be undergonthe trial version of the
platform and will concern all of the 10 adults. For each adult, a set airpaters will be identified
using optimal control technique. Before further proceeding let udlibed the classical cure of a type 1
diabetic can be split in two parts: the basal term which objective is to stabiline blocose in a safe in-
terval (usually set t¢70,140mg.dL—1) and the bolus part which consists in injecting important quantity
of insulin in a short lapse of time to counter sudden blood glucose incregsalue the consumption of
a meal. For control purpose we will only be interested in controlling the basabonent of the cure (see
e.g. [37]),i.e. the stabilizing part of the cure. Let us briefly explain this choice. Genesalaking, a
patient can quite easily handle meals effect such that in term of quality otrad cure the introduction
of control will only bring minor benefits in regards to the introduced riskatlis why it is considered
that the objective of the controller is restrained to use the numerous megsavided by the sensor in
order to bring more safety in the cure by dynamically adjusting the basal vathe phtient.

To validate the approach we have to consider simulation scenarios whichtarehadlenging and
realistic. Indeed, as previously mentioned, it is assumed that the bolus duaedted thanks to an
other algorithm (e.g. by the patient himself). So, the various scenariosthidedesigned according
to this complementary algorithm. To assess the controller performances we willleotvgo different
scenarios. The first one will consist in stabilizing the blood glucose toengdiie when it is initially
quite high (overnight type scenario). This scenario is introduced irr dodest whether the controller is
safe in regards to hypoglycemia when it has to stabilize a high blood gluebse Whe second scenario
will consist in a day with three meals. This scenario is considered in ordesttavkeether the controller
can be efficiently combined with a bolus cure.

This chapter is organized as follows. First, the identification proceduretéinod set of parameters
for each patient is briefly presented. Then, simulation concerning the tweraéntioned scenarios are
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undergone using the modified minimal model of Bergman to simulate a virtual patieallyFihe same
experiments are undergone using the virtual testing platform.

9.2 lIdentification procedure

9.2.1 Motivation and Identification procedure

The problem of artificial blood glucose control has been tackled usingdehpredictive controller.
When using such an approach, the model of the process is of prime imppaaddhas strong influence
on the expectable controller performances. For control purpose awe rietained a simple nonlinear
model which provides a rough global trend of the process. This has enabte easily consider the de-
sign of the controller. There is an other advantage in this choice. As the inaslenly few parameters,
the identification of an adequate model for a given patient with simple and gadeiments is rendered
possible. This is particularly interesting as this enables us to consider th@atient variability. That
is why, even if in this thesis we focus on the control aspect, we have sonmesinie identifying the
parameters of the model. In this section, an identification technique based on agiirtral on the pa-
rameters is presented. The retained methodology is somewhat simple lnigstfé provideadmissible
parameters.

Now, let us describe the identification procedure. Assuming that a first patameters is given (e.g.
using Matlab toolbox), the identification procedure will consist in estimating agggrthe glucose-
insulin sub-model and the gastro-intestinal sub-model. This choice has baenrdorder to avoid
compensatory effect through the gastro-intestinal sub-model. Indeed, cothel model, the meal
inputd can induce an increase in the blood glucose value with more dynamics tharreasmclue to
a variation of the value of the sta¥e So, if both sub-models were to be identified simultaneously, we
will take the risk that the gastro-intestinal sub-model will be used to explainotharamics that have
been neglected in the model. In order to converge to an admissible set ofgtars, the procedure is
implemented recursively,e., for given parameters of the gastro-intestinal sub-model, the parameters
of the glucose insulin are identified, then using these new parameters, tragbars of the gastro-
intestinal sub-model are identified, and so on until the parameters conVérgalentification procedure
is summed up in fig. 9.1.

9.2.2 Numerical methods
Formulation of a general identification problem

The problem of identifying the model parameters will be handled as a contiollgmn on the parameters.
The identification problem will be cast as a minimization problem. The aim is to find thengders such
that the error between the measured output during an experiment anchthated output is minimized.
That is, to obtain the model parameters, we are interested in solving the follopfimgization problem:

p* =arg minJ(p),
PeR"? (9.1)
st. (3.1) withX(Tstart) = Xo is known

wherep is the vector of parameters that has to be identified and the functiopjis given as follows:

Tend
AP =pTap+ [ (ly—yooslR) ds 92
start
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Figure 9.1: Identification procedure

whereyopsis the measured outputjs the simulated outpuTs;arr andTeng Stand for the time value at the

beginning and at the end of the experiment respectivelgndR are given definite symmetric positive
matrices.

This optimization problem will be solved using the results presented in chapfey #entify the
model parameters of (6.6) it is assumed that the sole value of blood glucaséabke.

Formulation for the glucose-insulin sub-model

To identify the parameters of the glucose-insulin sub-model, we consideptingzation problem given
by (9.1), where the vector of parametg@rthat has to be identified is given by

p=FP P P3 ki br ks Gb)T- (9.3)

According to (4.35), to obtain the appropriate optimality system (necessadjtmns), which cor-
responds to the identification of the gradientl¢p) that is necessary to develop a numerical scheme in
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order to solve the minimization problem (9.1), we introduce the adjoint systeailas$

dx .
— ditl = —(PL+X2)%1 + R(X1 — X1,0bs),
(0)'¢ -
- (th = —X1X1 — PXo,
dax .
- (Tt?’ = Ps% — k¢X3,
dXs o o .
T at = bX3 — ks¥a, (9.4)
dx -
— dits = KgrX1 — CoXs,
dX N .
T CoXs — C1 X,
)?(Tend) = Oa
wherexy ops Stands for the measured output andtands for the simulated output.
According to (4.38), the following expression of the derivative@d) is deduced
Tend
—/ )~(1(X;|_ — Gb)dS—l- a171P1
Tstart .
—/ Xoxod s+ C(272P2
detart
/ Xo(X3 — lp)ds+ az 3P3
23 Tstart -
=] - / foxadst aaaki | (9.5)
p .Tstzzljrt
/ X3X4ds+ o5 50y
TstaF
end -
— KaXads+ 0 6Ks
Ttag
—/ PiXids+ a7 7Gp
Tstart

Formulation for the gastro-intestinal sub-model

To identify the parameters of the glucose-insulin sub-model, we consideptingization problem given
by (9.1), where the vectgris chosen as follows

p=(kg © c)'. (9.6)

In this case, the adjoint model is also given by (9.4). According to (4.38)dénivative ofJ(p) is
given by

Tend -
/ Xixsds+ alegr
I

start
end
T?p(p) = —/ X5(Xs — Xg)ds+ 02.2C2 | - (9.7)
rt
end

— X6(xe —d)ds+ az 3y

Tstart
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Adult Py P Ps ks bt Ks Gp Ip

32x103 153x102 126x10° 385x102 1.77x10% 65x10°3 767 253
129x 102 52x10°3 146x10°% 11x102 493x10* 564x102 803 286
1.14x 102 114x102 448x10°% 1.04x102 6.17x10* 642x102 891 318
727x10% 194x102 1.16x10° 1.08x102 567x10* 558x102 834 189
8.67x103 867x10°3 150x10°% 580x102 481x10* 106x102 924 295
451x103% 134x102 482x10°% 841x103% 264x10% 39x102 85 269
6.11x103 187x102 1.23x10° 422x102 334x10* 91x10°2 854 23
281x103 229x102 159x10°% 388x102 450x10* 124x102 892 253
38x102% 533x102% 546x107 6.65x102 9.34x10* 137x102 756 30
714x10° 93x103% 150x10°% 502x102 511x10% 111x102 912 326

O©CO~NOOPA~WNPE

[y
o

Table 9.1: Parameters value for the adults of the simulator, glucose-insblimasdel

9.2.3 Identification results

To obtain the data necessary to identify the parameters of the model, we haigeced the simulation
scenario which consists in a day with three meals as the one given giveriions&8. These data have
been generated using the testing platform [90]. It has been assumedetidtad glucose is measured
each minute. Also, to simplify the problem, we have considered that a non meiagure of the blood
glucose was available. Of course this assumption is unrealistic when congidelrpatient data.

The matrices of the criterion (9.2) are chosen as follows

For the glucose-insulin sub-model

R=1,
(9.8)
1 1 1 1 1 1 1
a:01d|ag OV (0 (0 (0. (0. (0 (0 )
Pl(O) P2(0) PéO) kS(O) bg‘O) k§0) GéO)
For the gastro-intestinal sub-model
R=1,
(9.9)

. 1 1 1
kr €17 G

WherePl(O), Pz(o), Ps(o), k<f°), b(fo), 0, GE)O), 9, C(10) and c(zo) correspond to the value of the first set of
identified parameters.

The comparison between the measured output used to identify the paranmetetise ssimulated
output for adult 7 is shown on fig. 9.2 and for adult 10 on fig. 9.3. Onelfiggires it can be seen that
the global trend of the glucose metabolism is respected. However, the qfdliyidentification results
can vary from satisfactory as for adult 7 to debatable as for adultti®.aksumed that by introducing
time varying parameters we can make up for the gap between the output oéittiéiedl model and the
simulated value.

The parameters obtained for the 10 adults of the testing platform are summetabfzif.1 and 9.2.

Remark10. According to the results presented in section 7.2.1, for all adults, it is dddhe¢ the
state keeps its physiological meaning (it evolves inR™* x R x RT x RT x RT x R™) simply if we
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Identification result A7
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Figure 9.2: Comparison between the data used for identification purpose andteamutput for adult
7
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Figure 9.3: Comparison between the data used for identification purpose andtsohmutput for adult
10

haveu > 0 andd > 0. Concretely, this does not set any supplementary conditions on the irgointsya
correspond to an injected flow and a quantity respectively.
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Adult Kgr Co C1
1 1x10° 239x102 995x102
2 4x10°3 6x103 9.26x 102
3 45x102% 56x10° 925x10°?
4 42x103 91x10°% 947x10°?
5 32x10°% 66x103% 032x10°3
6 4x103% 87x10° 9.35x10°?2
7 3x103% 86x10°% 934x10°7?
8 5x10% 79x103% 0933x10°?
9 18x103 74x10°3 9.33x10?2
10 | 3.7x10°% 83x103% 0935x10°?

Table 9.2: Parameters value for the adults of the simulator, gastro-intestinaicel

9.3 Simulation Scenarios and Controller Setting

Now that the parameters of the model of each adult have been identifiedpinle possible to consider
the numerical simulation. To do so, we will consider two kind of virtual patient fiitst series will be
given by the control model. With this series, the aim is to test the controllerrpesfaces in case the
model of the process is nearly perfect. The second series will be gitre ladult of the testing platform
[90]. In this case the objective is to test the controller robustness ageigisicted dynamics.

To test the controller performances, two scenarios will be consideree fiflst one aims at testing
the controller performances when it works alone. The second scasamiboduced in order to test the
controller performances when combined with a classical bolus cure.

One difficulty when dealing with control techniques which are based on ttieiaption of a crite-
rion is to tune this latter in order to obtain thestcontrol performances. The more simple and common
approach consists in trial and error techniques. That is, numerous sonaléor various criterion are
done and the one which leads to the best control performances is retRireddlem of this approach is
that it can not be used when dealing with more realistic case. Indeed, wheantisi in the loop, we are
more interested in ensuring control performances at first try rather gilamgfbecause the first tuning
was too aggressive. That is why, for each virtual patient, we will cenglte sameefaultsetting.

9.3.1 Simulation Scenarios

Let us begin to present the two scenarios that have been chosen t@teshtioller performances.

Overnight scenario

To begin with, we are interested in testing the controller performances whenksatmne By this
assertion we mean that it is desired to test whether the controller can effigeattilize a high initial
blood glucose without inducing an hypoglycemia. To do so, let us envisadeltbwing scenario

Scenario 1: Overnight

t = Oh: The simulation is initialized. The initial blood glucose is set at 200mg.dlhe observer (UKF)
is switched on.

t = 2h: The controller is switched on.
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t = 24h: The simulation is ended.

This scenario has been called overnight scenario because it canrpedtdd as an evening/ night situ-
ation of a classical life. Indeed, after dinner, before sleeping, the lghawbse value can be quite high
(e.g. because of a miscalculation in the bolus) despite a negligible rate of appeae. R, ~ 0. Thus,
during the night, the objective of the controller is to stabilize the blood glucoaes&der value without
needing to consider meals effects because the patient is assumed to disepsamon active.

With this scenario, to assess the controller performances, we are inteire8te@ < [70;14Q the
percentage of time spent in the interya0; 14Qmg.dL~! (which corresponds to a safe blood glucose),
in % G < [80;120Q the percentage of time spent in the inter{@0; 120mg.dL~ (which corresponds
to tight blood glucose control) and in nfithe minimal value of blood glucose during the complete
experiments. All these metrics are computed when the loop is closed.

Classical day scenario

Then we are interested in testing the controller performances when combinelalagsical bolus cure.
This point is of prime importance as a complete cure consists in the combination ailabds bolus
component. As we have been interested in considering only one compondmyéo verify that the
controller will not over react when combined with the other algorithm. To do $ajdesnvisage the
following scenario

Scenario 2: Classical day

t = Oh: The simulation is initialized. The initial blood glucose is set at 100md.drhe observer (UKF)
is switched on.

t = 2h: The controller is switched on.

t = 7h: The patient eats a meal of 25¢.
t = 12h: The patient eats a meal of 70g.
t = 20h: The patient eats a meal of 80g.
t = 35h: The simulation is ended.

The information concerning the meal size and the injected bolus are provitieel ¢ontroller when the
corresponding event occurs (no anticipatory behavior).

Some variations of this scenario are envisaged depending on the way tlsepbaiwf the cure is
handled. In a first variation, it is assumed that each meal are self regulatagection of 75% of the
optimal bolus (according to the insulin to carbohydrate ratio determined byhfsgen). In a second
variation, it will be assumed that no boluses are injected.

With this scenario, to assess the controller performances, we introdufmdtiéng metrics: %G €
[70;14Q the percentage of time spent in the inter{&0; 140mg.dL~%, minG the minimal value of
blood glucose during the complete experiment and Gthe maximal value of blood glucose during the
complete experiment. All metrics are computed when the loop is closed.

In its first variation, the objective of the scenario is to test whether the dtartoan be efficiently
combined with a classical bolus cure. If it does then this means that the lesenped SPMPC controller
is a potential candidate to design an artificial pancreas. In its second varthgarbjective is to test the
controller robustness in face to major disturbances and also if it can beaugederate the bolus part of
the cure.
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9.3.2 Controller Settings

The tuning of the controller is a problem in itself. Indeed, as we considaahwbeings, a simple and
safe tuning has to be available for all patients at first try. In order toidena somewhat realistic case,
the same default tuning is used for all adults. The idea is to test whetherkioflany control experience
for a given patient, we can design a safe controller.

First, let us consider the setting of the controller objective. For all adultsphifextive will be to
stabilize blood glucose &eq= 100mg.dL L. In this case, the nominal control input is givenst Ueq
where

ek <Ib_ P2P1<Geq—Gb>>, (9.10)

[
e bf I:)3(3‘eq

The prediction horizom of the SPMPC controller has been set to 5h. To consider the asymmetric
control objective, the constraif® > 80mg.dL! has been added in the optimization problem. The matrix
R, a andQ are chosen as follows:

1 1 111111 1
R=diag| —,0,—,0),Q=diag{ —, —, —, —, —, — |, 0 = —, 9.11
g<G‘eq leg > Q g<P1 P Ps ks bt ks) Ueq ( )

Pzpl(Geq— Gb)
PiGeq
The matrixR only weight the blood glucose and the blood insulin which corresponds towihe
natural state of the system. The uncertainties on the parameters are given by waraftie0% around
the nominal value of the corresponding parameters.
The disturbed model, the adjoint model, the final cost and the terminal stateatonhate defined
according to the results of chapter 7.

whereleq= Ip —

9.4 Simulation results with the modified model of Bergman

First, to validate the implementation and the performances of the control methodetagg/consider the
control of the modified minimal model of Bergman in case this model is also usedtfenpsimulation
purpose.

For simulation purpose, it is assumed that the meals are uniformly consumed in Tdraisampling
time on the blood glucos@é is set to 5min and the sampling time on the control inpig set to 15min.
For control purpose, a noisy blood glucose value is provided for tkergbr,.e.:

Gsensak = Gk + Vk; (9.12)

wherev ~ .47(0,5).

9.4.1 Scenario 1: Overnight

The table 9.3 sums up the simulation results for all adults. It can be seen th#tddults the results are
satisfactory. The blood glucose is efficiently and rapidly stabilized. Alsdyypoglycemia event has to
be deplored.
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Adult | %G € [70;149 %G € [80;129 minG mg.dL !
1 83 76 92
2 95 91 94
3 95 90 93
4 91 88 90
5 94 88 92
6 88 84 92
7 90 87 91
8 85 83 94
9 87 81 91
10 93 86 92

Table 9.3: Simulation results for scenario 1, using the control model as patieriator

Adult | % G € [70;140 minGmg.dL."? maxG mg.dL !
1 88 92 169
2 87 95 175
3 96 90 150
4 92 90 177
5 91 92 158
6 86 88 209
7 95 83 155
8 100 91 115
9 94 93 148
10 87 92 187

Table 9.4: Simulation results for scenario 2 variation 1, using the control mogeliast simulator

9.4.2 Scenario 2: Classical day
Variation 1: 75%of bolus injected

The simulation results for all adults can be seen in table 9.4. It can be seeretbéidd glucose is well
controlled. For all adults, no hypoglycemia event is detected. Also, the tierd gphyperglycemia is
negligible. Furthermore, as it can be seen with the simulation result for adult §.8r4fithe controller
shows an interesting behavior. The blood glucose is stabilized thanks to ariation of the basal
insulin what is quite safe from a cure point of view.

Variation 2: no bolus injected

The table 9.5 sums up the simulation results for all adults. Once again the resuitsitarsatisfactory.
The simulation result for adult 9 can be seen on fig.9.5. Itis interesting to sebelw@ntroller naturally
works under a basal/ bolus strategy. By this assertion we mean that thegilicode is stabilized thanks
to the injection of a nearly constant insulin flow (basal behavior), while tleetsfof meals are rejected
thanks to the injection of a more important dose of insulin (bolus behavior).
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Figure 9.4: Simulation result for adult 9 with scenario 2 variationl, using the#aanodel as patient
simulator
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Figure 9.5: Simulation result for adult 9 with scenario 2 variation2, using thealanodel as patient
simulator

Scenario 2 variation 1 bis: time varying parameters

Finally we have considered a last variation of the second scenario. Aaweehplemented the virtual
patient, it is possible to consider time varying parameters. By doing so the aiot 8 mimic some
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Adult | % G € [70;140 minGmg.dL."?  maxG mg.dL!
1 85 92 176
2 82 91 195
3 86 92 189
4 83 89 228
5 84 93 188
6 79 88 242
7 88 80 189
8 100 95 119
9 84 94 173
10 81 93 223

Table 9.5: Simulation results for scenario 2 variation 2, using the control mogeliast simulator

Adult | %G € [70;140 minGmg.dL"! maxG mg.dL?!
1 84 98 173
2 84 100 183
3 96 93 147
4 90 85 186
5 90 100 161
6 80 90 218
7 87 85 177
8 100 98 111
9 89 93 154
10 86 100 190

Table 9.6: Simulation results for scenario 2 variation 1bis, using the controlImdtthetime varying
parameters as patient simulator

realistic phenomena (e.g. the dawn phenomena) but more to test the contrbfigids when the process
is time-varying. For a parameter with nominal valpgm to simulate the virtual patient, we have
considered the time varying paramepgt) given by

05, . . ,
p(t) = Pnom <1+ ?(sm(O.ZSt) +sin(0.5t) + sm(t))) .
The simulation results are summed up in table 9.6. In this case, the results arealgmpathe one
given by table 9.4. These results are interesting as they show the robftst@nces of the retained
control approach. The simulation result for adult 9 can be seen on figlt &6nteresting to see that the
profile of injected insulin is comparable to the one given by the first variationefario 2 (see fig. 9.4).

9.4.3 Discussion

It can be seen that using a SPMPC controller the blood glucose is safbiljzstd Indeed, for all
scenarios and for all adults, no hypoglycemic event occurs and the tieme isphyperglycemia is too
short to induce any damages. It has been shown, with the first variatibe second scenario, that the
controller can be efficiently combined with a classical bolus cure. Also, witke¢lend variation of the
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Figure 9.6: Simulation result for adult 9 with scenario 2 variationlbis, usingdh#a model as patient
simulator

second scenario, it can be seen that the controller does not lost too fiteperformances in case of
meal consumption and no bolus injection. This can be seen on fig.9.7 where thetisimrdaults for
the two variations of the scenario 2 on adult 10 are compared. As for the tnition of the second
scenario, it has enabled to show that the controller provides robusbtperformances when used to
control a time-varying process.

Now that it has been verified that the SPMPC controller can be efficieratytoscontrol the modified
minimal model of Bergman, we can envisage a more realistic series of virtual {3atibrdeed, the
retained control model is too simple to simulate a realistic metabolic behavior of a tfijpbédtic (see
e.g. the non negligible difference between the measured and the simulatetooufigl®.3). That is why,
in the next part, we will consider numerical simulation using a testing platform inhathie Dalla-Man
et al. model is implemented.

9.5 Simulation Result with the virtual testing platform

In this section we will be interested in testing the controller performances with éveopsly presented
scenarios using a testing platform approved by the FDA [90]. The contiaddormances will be
compared to the ones given by a classical NMPC controller (whose solutiamrputed using the
numerical tools presented in chapter 4).

9.5.1 Scenario 1: Overnight

The table 9.7 sums up the simulation results for all adults. It can be seen thahbd¥VPC and
the SPMPC controller can safely stabilize blood glucose in the sense thgpoglyxcemia event has
occurred. With this scenario, the performances of the SPMPC controfleroanparable with the one
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Figure 9.7: Simulation results for adult 10 with scenario 2 using the control nasdetient simulator

given by a NMPC controller. This implies that it is certainly more interesting to censite SPMPC
approach because of the guaranteed robustness. Indeed, in &hig tasperformances are comparable,
it is also because the modified minimal model of Bergman is well adjusted, whereazalifhatients,

it will be more difficult to obtain such identification results. It is also interesting talsaethe injected
insulin profile consists in small variation around a given basal (see e.gintidason result for adult 7
on fig. 9.8).

9.5.2 Scenario 2: Classical day
Variation 1: 75%of bolus injected

The simulation results for all adults can be seen in table 9.8. The performanoeth ahe NMPC and
SPMPC controller are satisfactory. For all adults, no hypoglycemia alydaominor hyperglycemia
for adult 9 can be seen. The performances of the NMPC controlledighgly better than the one of
the SPMPC controller. This can be explained by the reduced consengititiis approach. However,
concretely, when dealing with artificial blood glucose control, it is prefered®be robust but conserva-
tive rather than being too optimistic in regards to the prediction given by the muaeicularly in this
application where it is hopeless to aim at good model).

The simulation results for the adult 9 using a SPMPC controller and a NMPCotlentran be seen
on fig. 9.9 and fig. 9.10 respectively. The first point that is worth mentioisitigat the sensor noise is a
real issue. The bias on the measure can be really large. This can beedgthef a bad estimate of the
current state value and in turn at the origin of bad control performaf¢escontrol input of the NMPC
mainly differs from the control input of the SPMPC controller in terms of laayaplitude. Because it
is safer to act carefully, this tends to suggest that a SPMPC contraagphas to be favored.
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Table 9.7: Simulation results for scenario 1, using the Dalla-Man et al. modetiaat@mulator

Table 9.8: Simulation results for scenario 2 variation 1, using the Dalla-Man ehatlel as patient

simulator

CHAPTER 9. NUMERICAL SIMULATION ON A VIRTUAL PATIENT

Adult | %Ge[70;140 | %G<[80;120 | minGmg.dL™?
NMPC SPMPC| NMPC SPMPC| NMPC SPMPC

1 89 89 87 86 82 82
2 86 83 60 61 106 106
3 89 89 76 75 97 92
4 90 91 87 88 95 90
5 87 86 83 81 95 96
6 88 87 80 83 94 90
7 90 92 91 90 91 81
8 91 90 88 88 82 83
9 88 84 82 71 103 108
10 88 87 84 83 90 90

Adult | % G€[70;14Q0 | minGmg.dL"! | maxG mg.dL?
NMPC SPMPC| NMPC SPMPC| NMPC SPMPC
1 92 91 75 74 155 155
2 100 84 88 96 131 152
3 100 96 79 77 135 149
4 93 92 80 77 177 178
5 100 100 74 78 130 137
6 93 85 83 81 150 158
7 100 100 79 70 127 127
8 100 100 79 79 132 132
9 74 71 66 76 174 183
10 90 85 74 76 157 164
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Figure 9.8: Simulation result using SPMPC controller for adult 7 with scenatigifig the Dalla-Man
et al. model as patient simulator
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Figure 9.9: Simulation result using SPMPC controller for adult 9 with scenavariationl, using the
Dalla-Man et al. model as patient simulator

Variation 2: no bolus injected

The table 9.9 sums up the simulation results for all adults. Once again, for bdtolEnthe results
are satisfactory. The poorer results are than in the previous variatioa s€émario can be explained by
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Figure 9.10: Simulation result using NMPC controller for adult 9 with scenaxiariationl, using the
Dalla-Man et al. model as patient simulator

the fact that the controller becomes more sensitive on the quality of the gatgtstinal sub-model. It is
certainly too simple to model a realistic digestion process.

9.5.3 Discussion

Using a more realistic patient model, the controller performances remain satigfddie blood glucose
is still safely and robustly stabilized. Of course the results are poorerithidie previous part where
the virtual patients were given by the control model. This was quite prediciattlee Dalla-Man et al.
model is a more realistic model of the glucose metabolism and so the predicted bloogegitajectory
were not as accurate as before.

The comparison with the NMPC controller tends to show that the intrinsic rolssstifeasimple
predictive controller is sufficient for control purpose when using tkerig platform as a virtual patient.
However, it has to be noticed that despite the supplementary conservétisenamproach, the SPMPC
controller provides nearly equivalent control performances. This @i@vour interest in considering
this robust approach. Indeed, it is well known that the gap between stiageplatform and a real
patient is still important. As an example, contrary to what is assumed in the testingrplat real
patient is a time-varying process (e.qg. it is subject to the dawn phenommah#)ia not reduced to the
sole glucose metabolism. Also, because the controller has to be safe inceeaimstances, despite
the supplementary complexity, this motivates to consider the design of the ramistler which can
guarantee sufficient robustness.
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Adult | %G [70;140 | minGmg.dL™! | maxGmg.dL™?
NMPC SPMPC| NMPC SPMPC| NMPC SPMPC
1 87 85 73 70 164 164
2 94 77 91 102 149 174
3 96 77 73 81 149 166
4 87 86 86 83 217 212
5 93 83 79 83 153 167
6 85 80 89 87 171 188
7 93 95 85 74 151 146
8 98 97 78 78 144 145
9 68 62 68 79 181 196
10 85 75 75 79 179 198

Table 9.9: Simulation results for scenario 2 variation 2, using the Dalla-Man ehatlel as patient
simulator

9.6 Conclusion

The problem of artificial blood glucose control has been tackled via thigef a SPMPC controller
using a modified minimal model of Bergman. As the model possesses a few numtamaofgters,
it has been possible to consider the inter-patient variability by identifying afggarameters for each
virtual patient. The performances of the controller have then been testeslooscenarios. The first
one can be considered as an overnight sceniagiathe controller is only plug to control blood glucose
during night. The idea was to test the controller performances againsbtastially badly identified
parameters, the neglected dynamics and the sensor noise. The semuaribdetas been used to test the
controller performances during a classical day with three meals. The @etowest if the controller can
be combined with a bolus cure. In all cases the controller performancesshawn to be satisfactory.
Indeed, the blood glucose is safely and robustly stabilized.

These results are particularly interesting as it can be seen that in all aasgpoglycemia event
occurs. Also, the time spent in hyperglycemia is not hazardous for thenggti@his tends to show
that it is worth considering a SPMPC controller in order to dynamically adjesbésal component of
a classical cure. However, this does not mean that the problem of artifloadl glucose control is
solved. Indeed, as it has been previously mentioned, it is nearly impossihkadel human metabolism,
meaning that even the set of realistic virtual patient isreatenough. That is why these positive results
have to be interpreted under the sole fact that it is worth considering thisot@pproach for some
clinical tests with real patients in the loop. It is only after these tests that wergly ftonclude on the
real interest of using this control methodology.

From a control point of view, because the controller performanceguate good, it is worth consid-
ering an extension of the SPMPC control approach to other controlgmnoknown to be challenging.
This is the objective of the next chapter where it will be investigated, framaraerical point of view,
the interest of extending this control approach to control processideddy nonlinear uncertain delay
differential equations.
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10.1 Introduction

In the previous chapters, we have considered, from a theoreticah amunerical point of view, the
SPMPC controller. It consists in a variation of a classical MPC controller hvhiacs been designed
to control systems described by nonlinear ordinary differential equatidrtlaat need robust control
performances in a sampled-data framework. This controller has been testetve the problem of
artificial blood glucose control and has shown satisfactory perfornsariddas motivates us to consider
an extension of this controller to the class of system which are describedrtiynear delay differential
equations.

This extension is interesting as it is well known that many engineering phemomevolve both
nonlinearities and time delays, e.g. in the mass transport flow problem. Forstfsses it is of prime
importance to explicitly consider the time delay in the design phase otherwise thediayefaktors can
lead to poor control performances (see e.g. [103]). On the other lmapidctical systems, uncertainties
are really common. They can be caused either by the need to neglect soamaicky/io obtain a model
of a complex process or the difficulty to identify the parameters of a nonlineaegs.

The control of time delay systems has been considered for a long time. Dhiepris known to
be really complex. One reason is that the state belongs to an infinite dimenganal §he available
results in this field strongly depend on the structure of the consideredrsy$tee field is quite mature
for what deals with the problem of robust control of linear time delay systeamyMontroller originally
designed for linear ordinary differential equation have been sucdlyssansposed to control systems
described by linear delay differential equation. Thus, it is possible to ugieyebust guarantee on the
control performances, a minimax approach (see e.g. [81]}, agiproach (see e.g. [42]) or a robust MPC
approach (see e.g. [66] or [25]). These control techniques #ardea of using the LMI framework. As
for the nonlinear case, the results are more sparse. This may be becauseas¢hit is more intricate
to find an adequate representation in ordeforget the delay differential equations. Of course, it is
always possible to make some assumptions on the system structure such tlwatsibgring a robust
design against a given nonlinearity, it becomes possible to use linear ceatioiques (see e.g. [158]).
An other classical idea is to impose some assumptions on the system structure (eithemay the
delay appears or on the model structure) in order to use some specificseols.§. [149] or [67]). To
consider the control of a more general structure of equations, the extexigsiee NMPC controller have
been considered (see e.g. [44], [134] or [164]). The main issue wagethpproaches is that they do not
ensure theoretical robustness against model uncertainties. Practieltyptilem of designing a robust
MPC controller for nonlinear time delay systems has rarely been considéhed.is why we want to
explore the possibility of extending the SPMPC controller to this class of prable

The objective of this chapter is not to rigorously prove that when usingMNFEC controller it is pos-
sible to robustly stabilize a given system subject to delay. We will simply be stegtén the numerical
implementation of an adjusted version of the SPMPC controller. It is intendecdesiiqn the interest of
this extension in the framework of artificial blood glucose control. Dependimthe obtained control
performances, the relevance of theoretically extending this controbapipmwill be assessed.

This chapter is organized as follows. First, in order to motivate our extensiarconcrete example,
we will search for a model of the glucose-insulin metabolism, based on a varidtioa modified mini-
mal model of Bergman (6.6), which makes use of nonlinear delay differentigt®ns. The invariance
property of this model is studied. Then, assuming that what has been dioN&PC controller for
delay differential equation (see e.g. [134]) can be extended to a SPMRtIker, we will adjust the
algorithm to compute an adequate final cost and an adequate terminal stataicbpsesented in chap-
ter 3. Finally, numerical simulations are performed using both the control modeharvirtual testing
platform for simulation purpose.
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10.2 Modeling a type 1 diabetic using delay differential equations

10.2.1 The delay minimal model of Bergman

The objective of this chapter is to formally explore the interest of extendiagthviously presented
SPMPC controller to the control problem of time delay systems. To do so, tetnssder the problem of
artificial blood glucose control assuming that it is more interesting to model thisgsarsing nonlinear
delay differential equations.

Let us recall that to describe the action of the blood insulim the blood glucosé, the fictitious
stateX has been introduced (see equation (6.3)). This state is assumed to modet thatfé is not
insulin that ensures glucose storage but that insulin only initiates a sexjakaction leading to glucose
storage. From a control point of view, it may be advantageous to corssidiffierent model to describe
this phenomenon. As we are not really interested in modeling the biological piegrom leading to
glucose storage but rather in considering that there is a delay in the institim,aa possibility is to
model this phenomenon using delay differential equations. This leads to moddlitoseysub-system

as follows
dG

a:—PG—kOGI(t—r)JrDJrkgrRz, (10.1)
whereP, kg andD are positive parameters amds a known positive and constant delay.

Also, as previously mentioned, the problem of artificial blood glucose coistrconcerned with
delays in regards to various others aspects, e.g. because of thethsesab-cutaneous route for both
the insulin injection and the glucose measurement [72], [87]. Howevertipady it is not clear whether
these are delays in the control sense or whether it is more some kind of filfasiitchas been assumed
in the Dalla Man et al. model). That is why we will continue to model these phenomeadinst order
filter. For what deals with the gastro-intestinal sub-model, because it is moraildifcevaluate the
interest of introducing delay differential equations to model a digestion mopeeswill simply keep a
simple second order filter.

Finally, the following model of a type 1 diabetic is deduced

Glucose-insulin sub-model

%; = —PG—KoGI(t — T) + D+ kg Ry,
|
‘;t: kel +byU, (10.2)
du;
W = —ksU1+u,

(G,1,U1)(s) = (Go, lo,U10)(s)for all s€ [tg— T,tg],

Gastro-intestinal sub-model
dR

W = —Cz(Rz - Rl),
dR, (10.3)
E — —C]_(R]_ — d),

(Rz,Ry)(s) = (R27o, R170) (s)for all se [to— 1,10],

whereGy, lo, U1,0, Rz20, R1,0 belong toC([to — T,to], R).
In the sequel, we will call the combination of (10.2) and (10.3) the delay minimal hod@=rgman
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10.2.2 Invariance property

The delay minimal model of Bergman consists in 5 states which are all concergratignantities, and
so have to remain positive for all time instant. Assuming that the differentiat&mns (10.2) and (10.3)
satisfy all the required properties to be integrated, let us find the condititimegrarameters and on the
control input such that the state of the model keeps their physiological ngeahinobtain the desired
result, let us prove the following theorem.

Theorem 5. Assume that the parameters of the model are given and positive, andl fordg the
control input Ut) € [u, U], and the meal inputd) € [d, d]. Then, for a given datdG,|,U;,R,,R;) €
RT* xRT x RT x Rt x Rt and (G,1,U1,Rx,Ry) € R** xRT xRT x RT x RT such that

k¢ G
KKy b - D+kgrR2
u= by |n<k Ul,l,ko< P+ G >>
g = max(BL RZ) ’
d=min(R,Ry),
0<u<m,
0<d<d,
1 D+kgrR2 - 1 D+kgrR2>
— | -P+ — <I<I<=(-P
k0< G )“ _ko< G

we have that, if for all & [to — T,t0] (G,1,U;,Ry,R;) < (G,1,U1,Rp,Ry)(S) < (G,1,U1, Ry, Ry) then for
allt >to (G,1,U,R,Ry)) < (G,1,U1,Ro,R1)(t) < (G,T,U1, R, Ry).

Proof. The proof is the same as for the theorem 4. Thus let us simply consider th&sta
For this, let us considégd = G— G andG~ = max0, —G), using the differential equation d& we
have:

t1d|G? t = 3
5 | gt | ds= / —(P+kol(s—1))|G >~ (~(P+kol(s—1))G+D+kyR)G ds  (10.4)
AT to
According to the positivity of the parameters and the assumptions on the initiatioond, R,) <
(I,Re)(8) forall s [to— T, to], >
f
that ~
t1d|G |2 t ~
5 dtcmg/f4—m+mu&4wg+0+@£geds (10.5)
to to

. ksk D R -1 D R .
Sinceu< = [ —p+ DtkaRe) ondi <= (-P+ Dt kaRp , as the parameters are positive,
btko G ko G

|@—ﬂfﬁi(—P+D+gﬂ%>. (10.6)

it is deduced for alk > tg

So, using inequality (10.5), we have
t1d|G;?
Jtp 2 dt

ds<0 (10.7)
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and then
0< |G A(t) < |Gy [*(to)- (10.8)

As G(tp) > G, this implies thatG~|?(tp) = 0 and therG(t) > G for all t > to. Using the same method
we can deduce th&(t) < G, for allt > to. O

Remarkll Using this theorem it is straightforward to show that the states rem&m ik R™ x RT x
R* x R if the parameters of the model are positive and if the inputs are suct th&andu > 0.

10.2.3 Control problem

In this part let us present the disturbed model that will be used for cqmirpbse.

In order to consider the same control problem as for the ordinary difted case, in the sequel it is
assumed that the meal consumption prafilnd the initial conditior{Ry, Ry)(s) for all s€ [to — 7,to] are
known and given. So, as for what has been done in chapter 7, itsip@$o integrate (10.3) to obtain
the state trajectorfRs(t). Let us callRa(t) = kgrRo(t) the rate of appearance. Then, for control purpose
we consider the following model

%—?:—PG—koGl(t—T)JrDjLRa,

dl

& kil +bU

gt <P (10.9)
dU;

™Mk

dt SU1+U7

(G, | ,Ul)(S) = (Go, |0,U170) (S)fOI’ allt e [to — T,'[o],

The nominal modelcorresponds to (10.9) where all the parameters are assumed to betlyperfec
known. The trajectory generated by the nominal model for a given initiatliton, a given rate of
appearance profilR,(t) and a given insulin flowu(t) is callednominal trajectory

To obtain the variational problem, we begin to write the nominal model when distidté in states
and parameters. This leads to the following disturbed system

d(Xl(;G) = —(P+P)(x¢+G) — (ko +ko) (x1 + G) (Xe(t — T) +1(t = 7))
+D+(Ratra),

d(le:rl) = = (K +k1) (2 +1) + (br +br) (x4 U1), (10.10)

W = —(ks+ks)U1+ (u+f),

(X1 +G, %2+ 1,x3+U1)(s) = &s(s) + (Go, lo,U1,0)(S) Vt € [to— T,to],

whereés € € ([to — T,10], R®). The control inputf is a disturbance of the control input It has been
introduced in order to reject the state disturbanogsc 2.3 despite the parameters disturbanpeko,
k¢, by andks and the disturbance of the rate of appearagce

To obtain the control model, let us subtract the nominal model (10.9) from thegois disturbed
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model
dX]_ _ -
& = =P+ 8) Ko+ ) (et~ 1) +1(t— 1))
— (P+kol (t —1))x1 — koG (t — T) — koxaXa(t — T) +ra,
d _ _
d—)iz = —ki(x2+1) +bs (x3+U1) — ki X2 + bexa, (10.11)
d _
(T):g = —ks(x3+U1) —ksXg+ f,

(X1,X2,%3)(S) = &s(S) Vs € [to— T,1o].

In the sequel let us consider how the final cost and the terminal stateaiohfave to be adjusted
in order to obtain a stable closed-loop when controlling time delay systems with SRbhtroller.

10.3 On the final cost and the terminal state constraint

10.3.1 Context

As mentioned in [140], the control of time delay systems remains extremely chaljen@his may
explain the numerous issue when it comes to design a stable model predictiv@leo for nonlinear
time delay systems despite the relative simple formulation of the correspondinglgootslem. Lately,
it seems that it is possible to adjust the tools used for the usual NMPC (seft8]gor [134]). The
idea behind these results is to introduce a final cost and a terminal stateacdnahich share the
same meanings as for the usual ordinary differential case. Namely thedisiais interpreted as a
local Lyapunov function and the terminal set is a positive control invasantlf the idea is simple, its
application is more intricate. Indeed, in the delay differential case, thereeageas formulation of the
Lyapunov theorem (e.g. we can use either Krasovskii or Razumikhin fuattath a delay dependent
or independent criteria, see e.g.[65]) leading to as many possibilities tessxire final cost problem.
This is at the origin of some difficulties as it is not easy to choose the repedgs which provides the
best balance between simplicity and conservatism in the result. An other Itffiecumes from the fact
that, as we consider an infinite dimensional space, it is not straightforwdaydild the terminal state
constraint. Indeed, classically in the ordinary differential case, the tatrsiate constraint is defined as
a level set of the final cost. However for infinite dimensional system, weaat sure that a level set of
the final cost provides a compact, closed and bounded subset, and me#mis that this latter has to be
defined cautiously.

In the sequel we consider time delay systems which are given as follows

dx

gt~ G (X X(t—1),u,w),
X(s) = @(s), Vs€ [to—T,to,

(10.12)

wheret € R™ is a known constant delay, is assumed to satisfy all the necessary assumptions in order
to provide forward complete trajectory apd= C([to — T,tp]) is the initial condition. The control input
and the disturbancegare such that

U(l)={uel?(), ut)|<uwaetell, (10.13)

W(I) = {we L%(1), [w(t)]| <wy aetel}, (10.14)

whereuy andwy are known constants belonginglko™ andl is an interval of lengtiT .
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For allt > to, for all x € C([t — 1,t],R™), in order to simplify the notation, we introduce the segment
% € C([—T1,0],R™) which is defined by
%(s) =x(t+s) forallse [—1,0]. (10.15)
To solve the robust control problem, it is intended to design a SPMPC dlengiven by the solution
of the following optimization problem

(us,wp) = arg inf supJ®(u,w) = arg supinf J°(u,w),
ueu wew wew ueu (1016)
st. Xy 7(@,U,W1p;.) € QfF.

whereU andW denotel ([to;to + T]) andW([to; to + T]) andJ®(u,w) is defined as:
to+T
Jo(u,w) = E(Xto+T(<0,u,W,ti;-))+/o F(x(¢,u,Wto;s),u,w)ds (10.17)
to

whereE : C([-1,0],R™) — R" andF : R™ x R™ x R™ — R.

The objective of this chapter is not to prove that the SPMPC controlleriges\a stabilizing con-
troller for time delay systems but only to present algorithms which can be usednjoute an adequate
final cost and terminal state constraint. The idea is to adjust assumptions 7 arxbg&ling to the as-
sumptions needed to provide a stable NMPC controller for delay differentiedtieqp (DDE) (see e.g.
[135]), to provide asupposedlgtable SPMPC controller.

10.3.2 Conjecture on the adjustment of the assumptions

As previously mentioned, we assume that the SPMPC controller can proval@econtroller by simply
extending the result of chapter 3 and what has been done for DDE wite@Iddntroller (see e.g. [135]).
So, to formulate the problem of computing an adequate final cost and terminalatateaint which can
be used to build a (supposedly) stable controller, we will consider the fiolgpadjusted assumptions.

Assumption 10. For allt > to, there existQ[E(t) ¢ C([—1,0],R™), a RCPI set associated with the
feedbackfg, which is such that for ay € QF (t) we havel| fe(y)|| < um.

Assumption 11. There exists a quadratic Lyapunov Krasovskii functidbaC([—1,0],R™) — R ™" (see
e.g. [65])

0
E() = Y(O)PY0)+2¢(0)" | Q(ely(S)ds
0/ (0 0
n ( _Ty(S)TR(s,n)y(n)dn> ds+ [ y(9TSisys)ds
whereP, Q RandSare defined as in [65], such that for sl QE(t) and for allw € W we have:

2y(0)"PZ (y(0),y(—T), fe(y),w) + 2¢4(y(0),y(— 1), fe(y),w) " [ OT Q(s)y(s)ds
_[°dQ

#2107 QOO - Q-Ty(-1) - [ (syioas)

2 <y<0)T /—Or R(0,m)y(m)dn _y(_T)T _OT R(—T, U)Y(”I)d”l> (10.18)
_/_Or /_()Ty(S)T (Zi(s,n) + ((;';(37'7)) y(n)dnds

+Y(0)TS(0)y(0) —y(—1)"S(—T)y(—T) — /_ 0 y(S)T%i(S)y(S)dss —F(y(0), fe(y),w).
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Remarkl2. For simplicity reasons we have assumed that the final cost is given by eatjgdgrapunov
Krasovskii functional. It is also possible to use more general formulation. lrtésis the left hand side
of (10.18) has to be understood as the derivatives of the final cog alstate trajectory.

10.3.3 Algorithm to compute a final cost and a terminal state enstraint for DDE
Formulation of the final cost and terminal state constraint problem

To design a final cost and a terminal state constraint according to assusnpfiand 11, we will for-
mulate the final cost problem using a Lyapunov Krasovskii functional aed e will determine an
adequate terminal state constraint problem using Razumikhin arguments.

As for the ordinary differential equation case, the stage Eoi assumed to be given quadratic
(3.74). Furthermore we assume that a local PLDI embedding of (10.12) s#bfmyse.g. by assuming
that¥ satisfies assumption 4.

The final cost and the final controller

To compute the final cost and the final controller, we will use a local polytopgar differential inclusion
embedding of (10.12). The final controll&t will be chosen as a memory linear state feedback and the
final costE will be searched as a quadratic Lyapunov Krasovskii functional:

fe(y) = Koy(0) +Kay(-1),

10.19
£0) =0 Sy(0)+ [ y(97Sy(s)ds -

wherey € C([-1,0],R™), Koy € R™™ andK; € R™"™. The matricesS; € R™™ andS, € R™"™ are
symmetric definite positive.

Remark13. From a theoretical point of view, it would have been more advantageousptess the
final cost as a complete quadratic Lyapunov Krasovskii and to choosmltbeing final controller

0
fe(y) = Koy(0) + / K(s)y(s)ds however from a numerical point of view, the retained form are better.

—T
Also, as for the ordinary differential case, it is more desirable to work witloravex hull Lyapunov
functional (see e.g. [21]). But, for simplicity reasons, we will focus ongreblem of searching for a
common Lyapunov functional which is valid on the complete PLDI.

The aim of this part is to use a PLDI embedding in order to formulate the problemnoputing a
final controllerfg and a final cosE which satisfy assumption 11 in the LMI framework. Let us assume
that such an embedding is available. Then, we have that (10.12) is contathedollowing differential
inclusion

d .
d%( € co{Agi%(0) +Agix(—T) +Briw+Byju, i € {1,...,N}}, (10.20)

where cd.} denotes the convex hull of a set aNd> 0 is the number of vertices of the PLDI. The
matricesAo, A1, B1j andBy; are given and constant.

. . _ d
As we consider a PLDI it is possible to expreciéas follows

N
%( = Zlﬁ (t) (Ao’iXt(O) +A17i)(t(—T) +Bgiw+ Bzviu) , (20.212)
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where for allt > to and for alli we have;(t) >0 anleB. =1.

According to the retain form of the final cost and of the final controll€r.1®) and to the previous
expression of the state derivative, we have the inequality (10.18) become

ZB. )(2%(0) TSy ((Aoj + B2iKo)% (0) + (Arj 4 B2iK1 )% (—T) + Byw)

% (0) TS (0) — X (— 1) Sox¢(— 1)
+Xt(0)TR>€(0) + (Koxt(0) + Kax (—T)) "o (Kox (0) + Kix (—T)) —w'Qw) < 0

(10.22)

Inequality (10.22) has to hold everywhere on the PLDI. This implies that teguality holds if and
only if it holds for all family of (3 )ic(1,...ny- So for alli € {1,...,N} we have to solve ii§;, S, Ko and
K; the following inequalities

2% (0)" S1((Ao, + B2,iKo)% (0) + (Aqj + B2iKy)% (—T) + Byiw)
x:(0)T Sp%(0) — X (— 1) TS (—7) (10.23)
+%(0)TR%(0) + (Kox (0) + K1x (— 1)) T a (Kox (0) + Kyx (—T)) —w' Qw < 0.

Using matrix notation, the previous inequalities becomes:

( % (0) ) ! ( (ZSL(AOJ +B2iKo)+S  Si(A1j+BgiKi) SlBl.i)
%(—T) * -S 0
W * * _Q

KgaKo+R KjaK; 0 % (0)
+ * KfakK; 0 x(—T1) | <O.
* * 0 w

As for what has been done in chapter 3, in order to use the LMI franievetr us introduce the
following factorization

KJaKo+R KlaKi) (R: Kiaz) (In, O R? 0 (10.25)
* KIGK]_ o 0 K;I_I-C{:’zL 0 Inu C(%Ko (J%Kl . .

Using the Schur complement, inequality (10.24) can be rewritten as follows

(10.24)

2A0iS1+2B2iYo+S AiSi+B2iY1 Buj SRz YOTO!%

x -5 0 0 Yfa:

Di = * * -Q O 0 | <0 (10.26)
* * *  —ln, 0
* * * * —In,

whereS; =S4, S =SS5 % Yo = KoS; H andY; = Ky S
Thus, the problem of computing a final cost and a final controller is solveckifdtiowing LMI
admits a solution irg;, S, Ko andK;

diag(Ds, ...,Dn) < 0. (10.27)
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The terminal state constraint

At that point we have computed a final controller and a final cost whichfgatssumption 11. Now
we can provide an algorithm to compute a robust control positive invarianget) under the final
controller fg which satisfies assumption 10. This set will be expressed using Razumikhindikaents.
That is, we search for a terminal state constraint which can be exprass$eitbws

QeflE (to+T)= {Xto+T S C([*Tao]aRnX)/egia{_).(o] Xto+T(9)TP0Xto+T(6) <y} (10.28)

For simplicity, in the sequel, we dendfF = Q¢ (to+T).

To determine an adequate terminal state constraint, we have to find a symm#gtite g®sitive
matrix P and a positive constagisuch that the s&/F is robust control positive invariant when using the
final controllerfg. To solve this problem, we will use a PLDI embedding and a first order wamsttion.
The idea behind this transformation is to use an equivalent formulatirf-ef). The positive invariant
set is then searched on a system which use this new formulation. It is importa@é timat such an
approach is valid because the terminal state constraint is determined iddapgiof the initial condition
of the differential equation. The interest of this transform is that we willsaer a delay-dependent
stability test meaning that the result is less conservative.

Before further proceeding, let us recall how this transformation wddisifore details see e.g. [65]
or [104] and the references therein). We have

0
%(=1)=%(0)— [ “(%(s),%(s—1),u(s),w(s))ds (10.29)
—T
Using the previous equation to substitute the teg(n-7) in the system (10.12), we introduce the
following system
dé

¥ g <E(t),f(t) — _OT%(E(tJrS),E(HS— r),u(t+s),w(t+s))ds,u(t),w(t)) :

&(s) =Y(s), Vse [to—21,1p).

Then, the idea is to look for stability results on this new system independeritig afitial conditiony.
Indeed, if conditions are found that prove stability on this system, then thi@alrgystem is also stable.
However, this is very important to see that the two systems are not equivBlectically, this implies
that if we can not prove the stability of the transformed system then this a@oésply that the original
system is unstable.

Let us use the first order transformation on the PLDI embedding of the systea1). We have:

(10.30)

dE—N-t PR
dt i;BI( ) ((Aoki +Aakj ) € (t) + Briw(t)

0 (20.312)
— Agii /—rAOk’if(t +59) +A]_k.’if(t +s—1)+ Bl7iW(t +9)ds),

¢(s) = Y(s), Vs€ [to— 21,0,

whereAo; = Ao, + B2iKo andAq; = A1 + B2 iK1 whereKg andK; are the previously computed gain
andw e W.
Let us define the following Razumikhin candidate:

V(&) =ETRE, (10.32)
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whereR, is a symmetric definite positive matrix.

To solve the terminal state constraint problem, we have to find a nRtrsxich that the previous
candidate is a Lyapunov function (in the Razumikhin sense) everywheteed?LDI. In particular, this
implies that this candidate has to be a Lyapunov function at each vertexs censider thé" vertex of
the PLDI. In this case, the derivative \6falong a state trajectory is given as follows

d (E(t))T <2P0(A0k,i+A1k,i) POBl,i> (f(t)

at V)=o) B],R 0 W(t)> +N1+ N2+ N, (10.33)

where
0
m=-28t)"PAw; [ Axié(t+9s)ds
-1

0
N2 = —2E(t) " PoAw; | Awié(t+s—1)ds (10.34)

—T
0
Na=—2&(t) PoAwk; [ Briw(t+s)ds
-7
We remind that for any symmetric definite positive masizx R™" and for allvy,v, € R", we have:
—2vivo < VI Stvy V] Sw. (10.35)

Using the previous inequality, it is deduced thjatcan be upper-bounded

0
M < TEM)" (Po(AiAoki)Pr H(AwkiAoki)TPo) + [ &E(t+9)TPE(t+9)ds (10.36)
-7
whereP; is chosen definite symmetric positive with the supplementary constraint thaawee h
PL—PR<O. (10.37)

In particular, this implies that for alt € R™ we havev' Piv < vI Ryv. So, it is deduced from (10.36) that

0
N < €M) (Po(AkiAoki )P (AdkiAoki) T Ro) + _TE(tJrs)TPoE(tJrs)ds (10.38)

Before further proceeding, let us recall that a funcdbrs a Lyapunov Razumikhin function if it is
such that (see e.g. [65])
S @) <o (10.39)
whenever there exisfs > 1 such that for alb € [—27;0]:

V(E(t+0)) <pV(E()). (10.40)

According to what is done in ([135]), let us consider the sig%qfnt\/(f)) in case the condition given
by (10.40) holds. In this case, using (10.38), we have

M < € ()T (Po(AwkiAoki) Pt (ArkiAoki) T Po+ pPo) € (t). (10.41)
Let us introduces > 0 and 0< P, < Ry. Then, using the same arguments asfgrwe have

N2 < € (1) (Po(AkiAwki )Py H(AwkiAwki) TP+ pPo) & (1),
L1 § 0 . (10.42)
ns < TE() (wPO<A1k,iBLi><A1k,i By) Po> E0+w [ wit+9Twt+s)ds

=T
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Since the disturbances are given bounded far, alle have
W% < wiy.

Then, according to Razumikhin-like arguments (see e.g. [65] and [d5yfficient condition to
formulateQ‘,‘;E is given by the following condition oW

& V() <0if V(&) >y, and|wi? < wh,. (10.43)

To solve (10.43), we will use the S-procedure (see e.g. [19]). T@desus introduce the following
variable:

DE = S IV(E) +A(V(E) ~y) + Aolwy —wTw), (10.44)

whereA; and A, are positive chosen constants. The problem of interest admits a solutionhifiwvee
A& <0.
Assume that for a givem, it is possible to choose the constahisandA, such that we have:

—A1y+ (Tyr+A2)wy < 0 (10.45)
Then it is deduced that we have:

E()\ " (2Po(Aoki+Awi) + (AL +2Tp)R  PoByi \ (E(t)
AES(W(t)) ( o lIIE(BLPo ' —OAzllnN> <W(t)>

+ T& (1) T (Po(AwkiAok,i )Py H(ArkiAoki) T Po)€ (1)
+1& (1) (Po(AwkiAwki )Py H(AwkiAwki) TPo)E (t)

+r£<t>T<y11Po<A1k.Bl. (AukiBu, T%)E

(10.46)

Let us introduce the following factorization

TP (Agk iAok )Py H(AakiAoki) T Po+ TPy (Agk iAwki)Ps *(AgkiAwki) " Po

t 10.47
+ ﬁpo(Alk,i B1i)(AkiB1i)"Po= MNMT, ( )

where
M = (TRoAwiAoki TPAW Ak TPoAwiBL),

1p-1
Lo (90 (10.48)
Ni=[ 0 iml 0 |.

0o 0 L,

Using the Schur complement, it is finally deduced that we gvec O, if there exist?, P, P> and
y1 such that:

Mi(Po)  PoBri  TRAWiAwki TPoAwiAwki TPoAwiB1,
Aol 0 0 0
N = * * —1P 0 0 <0,
* * * —TR 0 (10.49)
* * * * —Tyiln,

PL<P, PL<h,
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where.Z; (Po) = 2Po(Aoki +Auwki) + (A1 +2Tp)R.
Finally, to solve the terminal state constraint problem, we have to solve the pselvidis for all
ie{l,...,N}, thatis

diag(Ny,...,Ny) <0,
PL>0 PL>0 v>0, (10.50)
PL<P, <Hh,

10.4 Numerical implementation

At that point, we have formally presented what has to be adjusted in ordeseta SPMPC controller to
control time delay systems. Also, in order to consider the delay in the insulimaetéhave modeled the
glucose metabolism using delay differential equations (10.2). The nexwdtamnsist in considering
the numerical implementation issues (e.g. the issue of estimating the state value sténe) sin order
to integrate the various state trajectories we will usedithe?3command in Matlab (see e.g. [88]).

This section will be organized as follows. First, we will present a state ebséor DDE system
whose aim is to estimate the value of the state of the system, forcally — 7,tx|, each time a new
measure is made available. Then, in order to use the numerical methodd¢uieearhapter 4, we will
present the adjoint model and the derivatives of the criterion to solve boidehtification problem and
the control problem. Finally, numerical simulations, using both the control modethe virtual patient
testing platform, will be performed.

10.4.1 Observer
An EKF filter for DDE

The problem of state estimation is of prime importance especially when consigeedgtive control
technique. In the ODE case, this problem was not too much trouble as mamyearssexist. In the DDE
case this problem is more intricate. One of the reason is that in this case thevsted¢s @ a functional
space.

In order to estimate the state value of (10.2) on the basis of the measurertenbafod glucosé,
we will extendthe work of [128]. This work deals with an adjustment of the classical EledriKalman
filter to design an observer for systems described by time continuous nonligagrdifferential equa-
tions using time continuous measurement. However, in our case, we work in a desafdgramework.
So, in order to use this filter, we propose to add a step in the observer edmslsts in pre-processing the
measures thanks to an interpolation algorithm (e.g. using smoothing spline [188]ndin drawback
of this approach is that the quality of the estimate and the convergencetgropiie complete observer
scheme is correlated with the properties of the interpolation algorithm.

Let us consider the following nonlinear time-delay system fot allt,_1,ty]

dx
Fil
Yk = Cx(@, u; t) + W,

X(t) = @(t) Vt € [te_1 — T; 1],

g(X,X(t - T)a U) TW,
(10.51)

whereyy is the measured outpu,is a known matrixw is the noise on the system of variar@&andvy
is the noise on the measure of variaicel' he objective is, given the discrete measydo estimate the
functionx(¢, u,0;t) for all t € [ty — T,tx].
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The vector fields : R™ x R™ x R™ — R™ is assumed to be continuously differentiable with respect
to its first two arguments. The observer is given as follows [128]

x>

=9 (X,X(t = 1),u) +L(t)(Jk(t) = Y(1)),
CX(@,u,0;t), (10.52)

~

t) vt € [tke1— T;tk_1],

2/ g

(t)
R(t)

<
Il

whereL(t) is a time varying observer matrix ayg(f) is defined for alt € [ty_1,tk]. This latter signal is
obtained by interpolating th@ past measured dat@ )ic k—m... ;- The observer matrik(t) is computed
as for the classical Extended Kalman filter (see e.g. [131]), that is

L(t)= 2(t)C'R, (10.53)
whereZ(t) is the solution of the following modified Riccati equation:

% = PN +A 7 — PCTRICZ+Q+AlA, (10.54)

where

AO = ng(%a %(t - T)v U), (10.55)
A =OpZ (X X(t—1),u),
wherel1,¥ stands for the derivative ¢f relatively to its first argument ard,¥ stands for the derivative
of ¢ relatively to its second argument.
In the case of time continuous measures, it is possible to prove that the ebseavVocal asymptoti-
cally stable observer [128]. In our case, to prove the good conveegaroperty, the interaction between
the interpolation error and the observer error should be studied.

Validation on the delay minimal model of Bergman

To test the good numerical implementation and performances of the obsgeveonsider the problem
of estimating the state of the delay minimal of Bergman (10.9) when this latter is aldéousémulation
purpose. By doing so, we can check whether the observer conwevged thetrue state value. To do so
let us consider the parameters given in table 10.1.

To test the observer performances, we simulate the model (10.9) wherétidecondition is given
by [@Geq, bleg, CU1eq,0,0] for all t € [to — 7,t] where (a,b,c) € (R+*)3. The considered simulation
scenario is given by

e t =1tp: the simulation begins,

e t =tp+ 7h: the patient eats a meal of 25gCHO,

t =to+ 12h: the patient eats a meal of 70gCHO,

t =to+ 20h: the patient eats a meal of 80gCHO,

t = tg+ 35h: the simulation is ended.
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| Name| Value | Unit
P |[625x10°* min—1
ko | 1.06x10% | mUlmin?!
D 0.27 mg.dLt.min~?
ki | 3.85x10°2 min—1
bt 1.77x 1074 L~ Imin~1T
ks 6.5x 103 min—1
c. | 9.95x10°7? min—1
c, | 239x10°7? min—1
ke | 1.2x10° | dL tmin’?

105 min

Table 10.1: Parameters of the delay minimal model of Berman used for validatioa observer

To simulate that only sampled noisy measure are available, the output is giv@&(ftoby k Tech) + Vi
whereTech= 5min andvk =~ .47(0,5). The interpolation is given by a simple linear interpolation between
two successive measures.

The observer first estimate of the state is either set to the initial function

@eFDDE(S) = [Geq’ leq;U1,eq, 0, 0l

for all s € [to — T,tg] or set to the true initial condition. In order to study the influence of the noise
on the measure, the simulation is run 100 times. The observer performarcesngpared thanks to
the computation of the mean RMS of the relative error between the estimated stdtednde state
according to the following formula

RMS = \/420 I )(_X‘( >”> ds (10.56)

IX(s)]

wherex stands for the true value of the state arstands for the estimated value of the state.

A simulation example when the observer initial condition is set to the equilibrium starting poin
can be seen on fig.10.1. In this figure, we have drawn the value of the extistate function at each
sampling instant. That is, &t= ty, we have estimatex( @, u;t) for all t € [t_1,t] and we have plot the
corresponding piece of trajectory. In this case, the mean RMS is equal to

RMS= 0.3142 (10.57)

A simulation example when the observer initial condition is set to the exact initial condaiotve
seen on fig.10.2. The corresponding mean RMS is equal to

RMS= 0.1082 (10.58)

It can be seen that for both initial condition, the observer convergesrdothia true state. The
difference in the RMS between the equilibrium starting point and the exact stpdingis mainly due
to the needed convergence time which is naturally larger when the initial estinzaitetisry chosen.
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G

true
+ measure
EKFDDE

G[mg/dL]

15 ‘ ‘ : ‘ : ‘ ! 4000 ‘ ‘ : ’ ‘ ‘ !
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
time [h] time [h]
Figure 10.1: EKFDDE observer, equilibrium starting point
G
140 true
+ measure
130 EKFDDE
3 120p
2 110
]

100

5 10 15 20 25 30 35

i i i i ; 4000 | i i i
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

time [h] time [h]

Figure 10.2: EKFDDE observer, exact starting point

10.4.2 Adjoint model and Gradient of the criterion
The control problem

The robust control problem is given by the solution of the optimization probigendy (10.16). Sim-
ilarly to (4.29), to consider the terminal state constraint (10.28), we intethue following modified
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functional
LOH(F,W) = Jo(f,w)

+WH(y— L X(to+T +6) Rx(to+ T +6),Aa), (10.59)
whereJb is given by (10.17) wittF quadratic (3.74) an# given by (10.19).
To solve this optimization problem, we will use the algorithms presented in chapterdb 3o, let
us introduce the adequate adjoint model and the corresponding valuedrivative of the criterion.
According to (4.35), to obtain the appropriate optimality system (necessadjticms), which cor-
responds to the identification of the gradientiﬁf’“ that is necessary to develop a numerical scheme in
order to solve the saddle point problem, we introduce the adjoint systeoti@sds

~ 3 . )
- % =— (P+ P+ (ko+ko) (xe(t = 7) +1(t— 1)) >?1+_; (Rlv' +S Lt rt01T) (t)) Xi,
- ‘]Z‘tz = — (ki + k)2 — (ko+Ko(t + 7)) (Xa(t + T) + Gt + T))Re(t + T) Lggpp 71/ (1)
3 . .
3 (R + S g rapum (0)) %, (10.60)
ds

3 . .
— o = (ke k)% + (br +bp)%e + i; (RS" + S Tt (t)) X,

X(to+T)=2Sx(to+T) + Ox (LIJ“(V eg[]far)-(q X(to+T+60)"Pox(to+ T + 6),)\9)) ,

where1 is the indicator function[Jx <LP“(y— ] n[1ax0] X(to+T+60) Pox(to+ T + 9),/\Q)> is defined
c|—T,

according to (4.26).
According to (4.38), the following expression of the derivativeﬂi?’“ are deduced

to,U
0’?’; (W) =% +af,
—%1 (X1 +G) —Qu1P -
—X1(x1+G)(Xe(t —T) +1(t —T)) — Qz.2Ko
dgto# —)?z(Xz + |) — Q3’3I§f (1061)
d\%/ (f, W) = X2(X3+U1) — Qa.abt ,
—X3(%3+U1) — Qs 5Ks
LLP“( — max X(to+T+6) Px(to+T+8),Aq)
oA y 9el-1:0) 0 oAlto s NQ

wherex is the solution of (10.11) with initial conditiop under the influence of the couple control
disturbance$f, w), Xis the solution of (10.60) and, ,¥* is defined according to (4.27).

The identification problem

To test the controller performances using the virtual testing platform, wetneéentify an adequate set
of parameters for each adult of the simulator.

As the structure of the gastro-intestinal sub-model has remained unchatsgearameters are as-
sumed to remain unchanged and are given in table 9.2.
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To identify the parameters of the glucose-insulin sub-model, we consider thedaéogy presented
in chapter 9 wherg given as follows

p=(P k D ki by ko). (10.62)

According to (4.35), to obtain the appropriate optimality system (necessadjtions), which cor-
responds to the identification of the gradienti¢p) that is necessary to develop a numerical scheme in
order to solve the corresponding minimization problem, we introduce the adysietns as follows

_ dd)z'[l = —(P+koxo(t — 7))%1 + R(X1 — X1.0bs),

_ % = —k¢X — koxa (t + 1)K (t + 1) Liemyn, Tong—1]

_ dc;jf — by% — Kk, (10.63)
_ dc;f[“ = KgrXq — Co%a,

- % = Cp¥X4 — C1Xs,

X(Tend) =0,

wherexy obs Stands for the measured output aqdtands for the simulated output.
According to (4.38), the following expression of the derivative@d) is deduced

Tend -
— / X1xpds+ ap1P
T )

start

end
—/ )?1X1X2(S— T)dS+ aZ,ZkO
Tstart
Tend
33 / X1ds+ a3 3D
3P = far, : (10.64)
P - / KoXodS+ 0a 4K

Tstart

end -
/ Koxad s+ 0575bf
Tst

'aftend
—/ KXaxzd s+ CYe./eks

Tstart

Then, for a given set of parameters, to estimate the delas use the same methodology wiik= 7.
The adjoint model is also given by (10.63). Similarly to (4.38), the derivativtbe criterion is given by

dJ Tstart " d(p
a—p(r) =— /Tsmr KoX1(s+ T)x1(s+ r)a(s)ds

Tend—T
- / Ko (S+ T)Xa(S+ T) (—keXa(S) + byxa(s)) ds+ ar,

Tstart

(10.65)

whereg is the initial condition of the system which is assumed to be sufficiently regular.

Finally, in order to converge to a set of parameters, the procedure is imputiednecursively accord-
ing to fig. 10.3.

The parameters obtained for the 10 adults with this methodology are resumdaleii®2. The
comparison between the measured output used to identify the parameterg airdutated output for
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Given set of parameters
Glucose-insulin sub-model: PC(?I)M

Time delay value 7(%)

1
.

Using Pg I

compute Pg;

uc
i=i+l Using Pgl)uc

Identify the time delay 7(%)

v

(@) (i—1)
if P& e =Pere | < e

—1 =
1PGre |

no

|
and if T <e

yes

v

Identified set of parameters

Glucose-insulin sub-model: Pgl)uc

Time delay value 7 := 7(%)

Figure 10.3: Identification procedure for time-delay system

adult 7 is shown on fig. 10.4 and for adult 10 on fig. 10.5. It can be #Hearthe global trend of the

glucose metabolism is well represented. However, as for the ordindeyadifial case, the quality of
the identification result strongly depends on the patient. Also, for adult t@nibbe observed that the
simplicity of the gastro-intestinal sub-model can be at the origin of a poor fittingeddithulated output

and so can be an issue when it comes to control.

10.4.3 Simulation scenario

To test the controller performances, we consider the following scenahizli corresponds to the first
variation of scenario 2 in chapter 9)

t = Oh The simulation is initialized. The initial blood glucose is set at 100mg.dThe observer (an
EKF for DDE) is switched on.

t =2h The controller is switched on.

t = 7h The patient eats a meal of 25g.
t = 12h The patient eats a meal of 70g.
t = 20h The patient eats a meal of 80g.

t = 35h The simulation is ended.



162 CHAPTER 10. FURTHER EXTENSION ON SPMPC

Identification result A7

1701~ —— Measured output
— Simulated output
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Figure 10.4: Comparison between the data used for identification purposeranated output for adult
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Figure 10.5: Comparison between the data used for identification purposerarated output for adult
10

It is assumed that each meals are regulated via injection of 75% of the optimal(bBottording to the
insulin to carbohydrate ratio determined by the physician). The informatiarecnimg the meal size and
the injected bolus are provided to the controller when the correspondeérg ecurs (no anticipatory
behavior).

The prediction horizon has been set th 570 consider the asymmetric control objective, the con-
straintG > 80mg.dL! has been added in the optimization problem. The control objective is to robustly
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Adult P ko D ks bs ks T
1 6.25x10% 1.06x10% 0.27 385x107% 177x10% 65x10° 105
2 1x102% 405x10% 1 11x102 493x10* 564x102 50
3 0 415x 104 12 104x102 6.17x10* 642x102 80
4 187x10° 7.09x10% 13 108x102 567x10* 558x102 73
5 3x10% 172x10%* 072 580x102 480x10* 1.06x102 75
6 749x108 593x10% 092 841x10°3 158x10* 390x102 78
7 155x 107 6.11x10% 137 422x102 334x10*% 91x10°% 55
8 446x10° 106x10* 026 388x102 449x10* 124x102 101
9 378x10°° 934x10° 022 665x102 933x10% 1.37x102 101
10 | 1.5x10°% 193x10% 062 502x102 478x10* 1.11x102 63

Table 10.2: Parameters value for the adults of the simulator, glucose-inghtimsdel

stabilize the blood glucose at a value &y = 100mg.dL-t. The uncertainties on the parameters are
given by variations of 10% around the nominal value of the corresporudirgmeters.
The stage codt is chosen quadratic (see equation 3.74) with the following weight:

R:diag<1,l,0> , Q:diag< 1 111 1) o = i, (10.66)
Geq |eq S Ueq

D-PGe ksks
whereleg= ————3 andUeg = —— log-
eq kOGeq eq bf eq
The variational model, the adjoint model, the final cost and the terminal stateaiahaie defined
according to the results of the previous sections.

10.4.4 Simulation with the delay minimal model of Bergman

In order to validate the implementation of the control methodology, let us consieerotitrol of the
delay minimal model of Bergman in case the model is also used to simulate a virtuat.patien
The meals are assumed to be uniformly consumed in 15min. The sampling time on the sgiut is
to 5min and on the output to 15min. For control purpose, a noisy blood glu@dse is provided for the
observerij.e.
Gsensok = Gk + Vk; (10.67)

wherev, ~ .4#7(0,5). The remaining state of the system are estimated using the previously pdesente
observer.

The simulation results for the 10 adults are summed up in table 10.3. The simulatitte egsu
good in the sense that no hypoglycemia and no hyperglycemia have to loeedepin this case it is
difficult to compare the results with the one given by the modified minimal model ofrBsmgjust see
the difference between fig. 9.3 and fig. 10.5).

The simulation result for adult 9 on fig.10.6 is really interesting as it shows bothdventage and
the inconvenient of using a SPMPC controller to stabilize a time delay systemisloabe the system
is indeed robustly stabilize despite the complexity of the control problem, but $o,done of the only
action of the controller has been to reduce the effect of the bolus (théibpstis decreased at meal
time where a bolus was injected) leading to a very conservative contrtdgpira

Now that we have validated the controller implementation and performances, ¢tensiler the
control problem of blood glucose using realistic patient.
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Adult | %G € [70;14Q minGmg.dL"? maxG mg.dL™?
1 98 83 141
2 93 86 152
3 100 72 137
4 100 74 132
5 85 78 158
6 85 74 158
7 88 78 132
8 100 83 114
9 83 95 174
10 83 75 177

Table 10.3: Simulation results using the control model to simulate a patient

Glycemia A9
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Figure 10.6: Simulation result for adult 9, using the control model as patientationu

10.4.5 Simulation with the virtual testing platform

Then we are interested in testing the controller performances when usingtihg f@atform approved
by the FDA [90]. The table 10.4 sums up the simulation results for all adults. ifthéation results are
quite good and comparable to the one given by a SPMPC controller desigried modified minimal
model of Bergman (see table 9.8). For all adults the blood glucose is safiilyzsta.

For all adults no hypoglycemia events occur and the time spent in hypenglyctate is small
enough such that it does not lead to heavy trauma. The percentage opéntérsthe target is relatively
good. Also, the control behavior is relatively safe in the sense that thigot@ction consist in small
variation of the insulin dose. This can be seen with the simulation results of acae9ig.10.7).
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Adult

%G € [70;14Q minG mg.dL™?

maxG mg.dL T
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84 78
88 78
78 89
75 82
87 91
70 96
82 96
100 72
71 68
75 83

163
151
188
190
156
200
161
134
179
176

Table 10.4: Simulation results using the Dalla-Man et al. model as patient simulator
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Figure 10.7: Simulation result for adult 9, using the Dalla-Man et al. model aspatieulator

10.5 Conclusion

In this chapter we have been interested in testing the possibility of extendind*ti®&S control ap-
proach to the control problem of time delay systems. To do so, we hawederimodel of the glucose
metabolism using nonlinear delay differential equations. Then, we havideoed a numerical imple-
mentation of an adjusted SPMPC controller. This has lead us to adjust the asssroptibe final cost
and on the terminal state constraint similarly to what has been done in the N&&eCIeinally, numer-
ical simulations have been performed using both the control model and the tdsatifogrp to simulate

virtual patient.

It is worth noticing that from a numerical point of view the control problenmiglved. First, to
compute an adequate final cost and terminal state constraint, we have thustecdhassumptions which
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lead to more complex formulation. This has implied that to make the computation of the finahcbst
terminal state constraint tractable, we have made conservative cheitled final controller and the final
cost have been chosen with a simple structure). This is at the origin of @odatien of the expectable
performances. Then, comes the problem of estimating the value of the stetierfiahat each sampling
instant. This task is quite complex because we have considered a samplechdwadrk. Despite
the lack of convergence guarantee, we have considered an extensioradjusted extended Kalman
filter. The idea has been to introduce an interpolation step in order to usdianfittontinuous observer.
Finally, one last issue comes from the problem of estimating the parametersmbtie. This issue is
also of prime importance as it is not realistic to expect good control perfuresaf the nominal model
of the process is really too bad to explain the true process. To solve thesigsliave considered optimal
control techniques.

Despite all these difficulties, the obtained results were quite satisfactory setiee that they are
comparable to the one obtained in chapter 9. This motivates us to consider a mep¢hstdidy of this
extension.
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Conclusion

11.1 Summary and Discussion

The main idea behind model predictive control is to solve on line, each time a tompub has to be
computed, an optimization problem. The resulting optimal control input is then appliegein-loop
to the system for a small fraction of the prediction length. One problem is thattéanaibis optimal
trajectory, the control algorithm relies on a model of the process. Most diinttee this model is derived
by neglecting some dynamics of the true process or that the real process -igatyimegy. Also, an
other difficulty is that the control input can be applied in open-loop foragtion of time which is
not negligible compared to the system time constant leading to the need of worlangpimpled-data
framework. Therefore the design of a robust NMPC controller whiguess good control performances
in a sampled-data framework is of prime importance.

In the first part of this thesis, we have focused on the presentation atgs&nof asaddle point
MPC controller (SPMPC). This controller has been designed to ensuretrotmisol performances of
systems described by nonlinear ordinary differential equations in a samaiadraimework. It has been
proved that, under reasonable assumptions, this controller ensures thystdma is ultimately bounded
and, under supplementary assumptions, input-to-state practically stable.t@tsstimg point is that to
ensure these results, we use the same tools as for a usual NMPC cqmanihely a final cost and a
terminal state constraint. The problem of computing these elements for a SPME@lleo has then be
formulated in the LMI framework using a local differential inclusion embedding.

One of the difficulty when it comes to design a SPMPC controller for a gieetral problem lies
in the problem of solving an unusual optimization problem, namely a state-cimestreaddle point
optimization problem. That is why in this thesis we have proposed a numerical ane#ised on the
augmented Lagrangian techniques. That is, to solve a given stateatoedtsaddle point optimization
problem, we consider the solution of a sequence of adequately penalizedistanstrained saddle
point optimization problem. Each unconstrained sub-problem has beerd s@ireg adjoint method.
The numerical implementation and the controller performances have beene@laathe problem of
controlling a disturbed in parameters Van der Pol oscillator.

In the second part of this thesis, we were concerned with the applicatioe dietreloped SPMPC
controller to artificially control blood glucose of a type 1 diabetic. This cdlerahoice is relevant
in regards to many specificities of this control problem. Indeed, the probifertificial blood glucose
control is surrounded with uncertainties (to obtain a model of the glucose afistabwe have neglected
some dynamics, also the real process is time varying and the model is stationayyus robust per-
formances are desired. Also the control problem is naturally set up in a Sduagia framework (the
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glucose metabolism is time continuous and the measure are discrete) and soatdlerest control
performances, it is needed to work in a sampled-data framework. Mocesehg we have been inter-
ested in controlling the stabilizing part (basal) of the classical cure. Thes/ittate the approach, we
have considered numerical simulations on a testing platform validated by the F®AaVé considered
two scenarios. The first one is an overnight type scenario and thedsenerconsists in a classical day
with three meals. In both cases, the numerical simulations have shown gotid.résieed, no hypo-
glycemia event occurs and the time spent in hyperglycemia does not lead tgekbteaconsequences.
Also, with the second scenario, it has been shown that our contradagprcan be efficiently combined
with a given bolus cure. This means that the SPMPC controller can be eoedids a viable solution to
artificially control blood glucose.

Also, some exploratory works have been done by considering the potxtéasion of the SPMPC
approach to control, in a sampled-data framework, nonlinear time delay systendo So, we have
considered the modeling problem of the glucose metabolism using nonlinear didesmdial equations.
Then, assuming that the controller yields a stable closed-loop, we hasenped what has to be adjusted
from a numerical point of view. Numerical simulations have then been pertbusimg the validated
testing platform to simulate realistic virtual patients. It has been shown that thi*GRontroller
provides satisfactory control performances, thus motivating a more in depthdittids extension.

Because of the good simulation results obtained when using the testing platfdmutate realistic
virtual patients, it can be interesting to consider the control on real situatiorg aknical data, with
collaboration of medical staff. In particular, in the framework of an existintaboration, it is planned
to perform some clinical tests with the physicians of the University Hospitalesfnigs to assess the
behavior performances of the SPMPC controller when this latter is useshtmtthe blood glucose of
real patients.

11.2 Future work

Several results addressed in this thesis offer the opportunity for fugbearch.

First of all, it can be worth considering the impact of the symmetry betweenahteat input and
the disturbances. Indeed, even if the controller has performed well ifratreework of this thesis, it
is natural to think that for some class of systems, the fact that the constaéntdso imposed on the
disturbances can lead to some difficulties. Hence a future work can be e tledi class of systems for
which the envisaged symmetry is not damageable in regards to the confoshpemces and robustness
guarantee. Afterwards, it can also be interesting to develop other assunfptitertama 1 on recursive
feasibility. Indeed, itis clear that the sufficient condition (3.11) is not sisfgiang from a control point of
view as it needs on line information. A possibility is to reformulate the notion of feasibiityquiring
the existence of at least one control input such that for all admissiblerluistces the terminal state
constraint is satisfied. The problems of this choice come then from the tifftoucharacterize the set
of admissible initial condition or to compute an adequate control input.

An other obvious future work consists in considering the theoreticalcagiiehe extension of the
SPMPC controller to control time delay systems.

Also, in order to apply the SPMPC controller for artificial blood glucosetmnwe have used a
state observer. This situation is quite usual when it comes to practical problerosr case we have
implicitly assumed that a separation principle holds such that the combination of thev@band the
SPMPC controller is stable. However, in the nonlinear case, no genpaaksien principle exists. So,
it can be interesting to consider the stability of the SPMPC controller from amubtégpdback point of
view (e.g. by adding a supplementary disturbance in the initial condition).nlatso be interesting to
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consider how the controller has to be adjusted when it is used to track tipeyarajectory.

Finally for what concerns the application to type 1 diabetes, because obtltemprformances of
the controller, it is desirable to see in what extent enhancements arelpogdsilvalidate our approach
we have considered that we have no control experience, and that tatesa default tuning has to be
available. So, it can be interesting to see how we can use control exgignorder to change the
weighting in the criterion to aim at better control performances. Also, as thteatler only take care of
the basal part of the cure, it can now be interesting to consider the batusf plzae cure.

It can also be interesting other applications where it can be advantageousstder the design of
a SPMPC controller. As an example, it can be more or less straightforwares$adeo other biological
control problems, e.g. in thermal therapy, or to consider the controlgarobf some slow process, e.g.
in building control.
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Chapter 12

Appendix

12.1 x, 7%, #.¥ functions

Let us remind the definition and various properties’én .7z * and.# . functions (see e.g. [94]):

Definition 6.  a) A functiona : R* — R* is of class.#  if it is continuous, strictly increasing and
a(0) =0,

b) A functiona : RT — R* is of class# * if it is of class.#” and is unbounded,

c) A continuous functiof : R" x R™ — R is of class.#" . if s — B(s, 1) is of class#” for each
T >0andt — B(s, 1) is decreasing to zero for each s.

The following proposition recall some properties#f, .2 * and.# . functions (see e.qg. [94]).

Proposition 2. Let6; : R™ — R and6, : R™ — R* be.# functions, letn; : R™ — R* anda, : R —
R* be#® functions ang3 : R™ x N — R* be a.#.# function, then:

1) 6;tis a.# function,

2) 6106y is a.x function,

3) a;(.) is au#™ function,

4) aiodqis aZ ™ function,

5) 610 is a.# ¥ function,

6) max(6y,6,) is a.# function,

7) maxay, a2) is a.#* function,

8) min(6y,6,) is a.# function,

9) min(a1,az) is a.#* function,
10) 61(s1+%2) < 61(s1) + 61(%),
11) 61(s1) + 61(s2) < B3(s1+52) WhereBs(s) = 61(s) + 82(9),
12) 61(s1) + 61(s2) > Ba(s1+52) whereBy(s) =min(61(3),62(3))-
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Finally, let us recall a last property related to the existence.sf &unction:

Proposition 3. 13) For all a € .# there exist®s € .#* such thatbs(s) < ai(s) for all s> 0 and
0s(s) = s— 65(s) is a.# function

12.2 Gronwall-Bellman inequality

Let us recall the Gronwall inequality (see e.g. [10]):

Lemma 7 (Gronwall inequality) Be given three continuous functiopsy and y{a; b] — R™ satisfying:

e @bl yo < o) + [ wisysds

< [osws exp( [ w<u>du) dst o(t).

If the functiong is equal to a constant € R™ then Gronwall inequality can be expressed as follows

then for all te [a; b]

vt e [a;b], y(t) < Cexp(/at Lp(s)ds> :

12.3 Schur complement

Let us recall the results concerning the Schur complement.

Theorem 6 (Schur complement)Be given three matrices R, Q and S where R and Q are symmetric then
we have:
R<0, . ([Q S
{ 0_SRIS <0, iff <* R> <0. (12.1)

12.4 Computation of the observation matrixQ

In order to prove the observability of the model (6.6), we have to consigecdmputation of various
Lie derivatives which are given as follows

h(x) = xq. (12.2)

L(;h(X) = a:(LO)X]_ + aéO)Xs + ag_%)X]_XZ + d(o), (123)

wherea&o) =—P, a(50> = Kyr, a(f;) = —1andd©® = PG,

(1)

LZh(x) = alV% + %o + al!xs + al'xe + al} o

X1Xp + 813 X1X3 + a%) XoXs + aﬁ_lz)lex% +d¥,  (12.9)

wheream Pl o _ a12 P3I az) = a(lg)P G = al kgr a,sO C, a6 a.5 e, a(llz) = —a<10) -
Ay PL—aly P, agg = Py, a25 = a9 kgr, Aip = — ( ) andd® = a” PG,
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L2h(x) = a?x; + a0 + agz)X3 + aéz)xs +axe+ a(lzz) XiXo + a(lzg)xleg + a(li)x X4
+ 3(222) X3+ 83 X2Xa + g - +abgxoXs + A xaXs + G +alzpwexs  (125)
+ 85598%s + algp3 +d 2
Wherea(1 ) — —a(l1 P —Psl ba(llz) , a? = a(llz) PGy — a(zl) P — 2Pl ba(llz)z, a? = a(llg) PGy + a(zl) Ps, a(52) =

TSI St
1 2 1) 2
a(ls’)kf’ a(14) = brajz, ay, = a:(LZ) PGy — 2I32""122’ a23 = 2a12 P, a25 a )kg P2a2 C2ag5)' age) =

1) {2 1 1
02355) , a(35) = ag_a) kor + P3325’ 312)2— a122P 312’ a(lz)s— 313’ 3225— a(lzzkgr' a(12)22: _3(12)2 and

d(z) = aq(_l) PGy — a(zl) Ps + aél) c.d.

akgr — Palnag —coal, o = coag” - cael az -
1 42 _

LEh(X) = a¥x + a0 + & xs + &) x4+a5 x5+a6 X6+a12X1X2+a(13)X1X3-|—a(14)X1X4

+a)XG + 8% XoXa + Bb XoXa + B XaX5 + Bl XaXe -+ B + B XaXs + Bl XaXe -+ Bl XaXs
+ a6 + alzaxeXs + Al XaXexs + 133 + 858 + ByeX3Xs + BeaXs
+ 853XaXeX5 + 815, X03 + 815530 XEXs + 856 + 8l gppa)G + d¥
(12.6)
Wherea(1 )= Pla1 —Psl balz) af) Py G a(lz) Pza2 — 2R3l ba22 +cCd a26 , a3 =PG a13 + P:«;a2 -
kiag |, &) = PIGya —Polodg + bia”, & — krdy” —Poledly — ok, o = ~Pulol  cof

claé2)12a§32) = —a” — Pia}y — Paly 2Pty bz, Ay = —Pias Ay Psaly — Pl 3122 kfa%), a%’ =

—Pralf + by a(13) ksa(14) ! a(zz) =hG 31 I322‘3‘22) , a(zs) =hG 312 + I:’32‘5‘22 P2a23 K a(23) - agzl) =
2

bray, as = kgray 2P3Iba2 02325 az = —Poayy +Cza2 az ag = Psagy, a35

kgra(123,)+R’>325 k a35 C2 a35 336 = P3326 +C 835, a45 Kgr 6‘14 + by a35 3122— a:(LZ) I3‘3‘122
2P2a(122)2_ 3P3>|ba(12222v a(l?s = _a(ls) P 3123"‘ 2P3>3122 I:’2‘3‘(12)3_ K a(12)3’ a(1324 = a(14) + bfa,(lzz)3, a(l?s =
I33""1223’ az?éz =P, Gba12222’ ags = kgra(122)2 - 2P2‘5‘é22)5 - C2aé22)51 ag)a = C2a;22)5’ ag)5 = I‘gr""(122)3+ 2P3aézz)5’
6‘4_222 = _3(122 Plaﬂ_zzz 3P2a(122)22, a(132)23 = _3(122)37L 3P3a(122)22, a;32)25: kgra(lzz)zz a(132)222: _a(122)22 and

d® = PGyal? — Pslpal? +uald +cydal?.

(4)

L2h(x) = al¥x; +alxo + &l xe,+a§1 x4+a5 %6+ 8’ X6+612X1X2+613X1X3+314X1X4+32 )2
4 ) (42 | A(4) 4)

+ 853 XoX3 + Ay, XoXq + 6125 XoXs5 + 6126 XoXp +- 33 X3 + 34 X3X4 + Qg5 X3X5 + 6136 X3Xs
+ alg Xaxs + g XaXo + 12X + alpaXXe + 5 X XeXa + B33 + B13XaXs
+ a§4)2><3 + a§?3><§><3 +apdXs + aé?exgxe + ag‘;,35x2x3x5 + aleeXaXs

+ a245x2x4x5 + a335x3x5 + ""1222)(1X3 + a1223x1x2x3 + a1224X1X2X4

+ 8 5530238 + 83,9 + A3peX3XG + B XX + yeeXaXaXs + 89, Xa X3

4 4 4
+ 81555303Xs + A53,53X6 + 85099035 + Y
(12.7)
wherea (4) —P P3Iba12 + ua14, P G a12 Pza2 2P3Iba23; + uagj? +c1da(2?g, ag‘) =

Plea13+P3a2 —Pg;lba23 kfaé +C1 da%,a4 _PGba14 P3Iba24+bfag ksa(3>,aé4):kgra(13)—
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Plalz P3|b325 + ua45 czaé3), aé4) = _P3|ba(232 +C23£53) Cla63 ayy = —a” — Pay) — 2Pslyayy+
ua124, a(13) =—P a(13 + Psafé P3Ibal:23 kfa(l?é)’ a(li) = a14 F)3|b""124+ by a(13 ksaﬁ)’ a(zég =

P Gpald,— 2Pal) — 3P3Iba2 +clda226, a23 — Plea123+ 2P3a2 P2a23 kraly, aby = PiGpald, —

PZazi +bfa(za ksaz4 a25 *kgralz P2a2 —2Pslp a22 @ a25 aQ6 = PZazsf,s 2Py ag)e"‘CZa(z?_
Claze’ 333) = P Gba133+ %323 2kf a(s?’ as4 = P3a24 + 2Dy a33 a35 = kg a + P3325) - F)3|b‘5‘(2:j:«:)5_
K a35 C2 ass 5‘36 = P3a26 i ase +‘325‘35 C1 ase’ agl5) = kgra(14) + by ass ksagts) - czafg, aEfg =
by a3 +C2a£15) , a(12)2: _a(lz P a122 2P2""12 3%Iba1:;22’ a1‘;3 a133 P a(32)3+ 2P3a1322 P2a1%3

2P3|b31223_ K a(lz)s’ 124— 314 P a124 I:’23‘124+ bfalz ksaﬂ_24v a4_33— —P a133Jr P33123 2K ?13@
a(13)4 (—3) '335‘12)4jL él))fa(1333, ?32)22 _(4)Plea(12)22 3P23(22)2’ az23 —(?ljlelv(il)(lz)zs+ 3'?3)5‘222' azz(g)— kgra(%e%z
2Pa,55 — 3Pslbas555 — C28505, 8hpp = —2P2a2 + CZazz C18576 8p3s = Kgrdp3+ 2Psas,5 — Podygs —

K 3533)5_ CZa%)Sv agge = 2P3aé32)6+ 023235’ a245 = kgr 124+ by ag33)5 aggs = kgr""(133)3Jr I33"51(233)5 a(li)zz: _3(1322_
Pla@zz_ 3P23g)22_ 4Rs| ba@zzz a:(é)23: _3(1:23_ Pl""(lgé)zsJr 3P33(13222_ ZPZaﬂ(_?é)zf K a(13223, 35?24: _3(1:24+
by a(l?é)za a(1‘233 = —a(13é,)3+ 2P3af223, aggzz = Plea(lsé)zzz agg25 = kgra(i?é)zz_ 3P23g)25_ CZag)ZSv agé)za =
023(23225’ 35?35: kf.Jr"J‘(lsz)zs+ 3%6‘%32)25 3(1‘2222— —a(132)22 Pla:(LSZ)ZZZ 4P23(132222 a(li)zzs— _a(132)23+ 4%35_32)222
ag;)zzs: kgra@??? av(é)????: —aﬁs;)”?andd( ) = Pleal I:’3|baz + ua4 o daa

It is deduced that the lines 61 are given by

Oh(x)=(1 0 0 0 0 O, (12.8)
OyLgh(x) = (a<10> +a9%% a% 0 0 0 o) , (12.9)
1) (1) (1)
+ta X1+ axXs (1) 1, D (1)
OL2h(x) = (Tay (%2 7212 5 a¥ 0 a+alx 12.10
xLgh(X) ( 31 ( +2a(112)2x1X2 ) 13X1 ag b5 X2 g ( )
where
Ta1= (agl) +allx+alyxs+ a(112)2x§> ;
2 2
a +a3x1 2 , .2
X
OEh) = | Tax Taz | +a3xo+alxs apzx < a?z) +6125(2)2 2) 3 +a5g% |,
2 35 X3+ Apo5%5
+a153X1X3
(12.11)
where
T41= (a(lz) + @)%+ a8 xs + allxs + a5 2 + aldxoxs + a<122>22x§) :
Top= a(zz) + a(lzz) X1+ 2a(222) X2 + a%)xg + aézs) X5 + a%)xe + 28.(122)2X1X2 + a(lg3x1x3
7 —|—2ag22)5x2x5 + 361(122)22Xlxg
a?; +a§é)(X§ (3) (3)
3 3 3 3
+ X3+ a + X
0dEh() | Tsx Top Tog Toa | 3,0 (a8 ( %, 962 2) . (1212)
+8505%X5 1 8y35X2X3 1836 X3 1 ap06%2

3
+aé2)25x§
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where

Ts1 = <a1 + 312 X2+ a13 X3+ a14 X4+ a122X2 + a123X2X3 + a(12)4x2x4 + a133x3>
JF""1222X3 + a‘122?‘2"3 + aL12222X4

al? + al¥x + 22 (3)
Tso =

9

X2+ agg)x3 bt ¥ xs + a26 X6+ 2a122x1x2
+ a123X1X3 + a12)4x1x4 + 33222"2 + 2a225X2X5 + 23226X2X6 + a235x3x5 ,
+3a1222x1x2 + 28L(1223X1X2X3 + 3a22)25x2x5 + 4a(12)222x1x2

Toa— a8 +a1 x1+a2 xz+2a3 x;:,Jra3 )% +a36x5+a23x1xz+2a133x1x3
+alaeeXs + 8125903

(a 3 + a14 X1+ a(24)x2 + 3515>X5 + a(12>4x1x2)

and
e
ot | (o s
+al¥ %2+ al xox +aPxs+alt
OxLgh() = | Tex Tez Toz Tea aff)‘r’ 2 a23?4)2 S 21?6 ~ (5})6)(4 . (12.13)
"‘5(‘%45)(2)(4 "‘( 3335)(3 1T376%5 (1‘) A)36X2X3
Jr‘5‘2225)(3(2)7 859355X3 +85976
89055
where

Tor= (a(f” +al e+ 8l Xa + g Xa + 8198 + alpeXs + ApeK + algad + a&‘éf4><3><4>

"‘3(1‘222)@2 + a(fgzaxgx?, + a(1£224X%X4 + a(é)%xzx% + ag‘gzzz"é1 + 3(1?2239(2)(3 + a(fgzzzz"g
)+ a1+ 2855 X2 + by Xa + by Xa + g X5 + g Xs + 28 5x0xe + BpXaXs + AKX
+3a0), ) + 285:XX3 + 2859:XoXs -+ 2859XoX6 + By3sXaXs + AageXaXs + BygXaXs
33,9038 + 2831 X0Xa + 284 50 X1XoXa + 8l exaE + 480,53 + 3853 08Xs + 355, 3CXe
+2ag235x2x3x5 + 43(1?222’(1)(3 + 3351?22§(1X§X3 + 432)225)(%)(5 + 5‘"‘(11;)2222(1)(‘21
ol ol 2 - il + ol
Toa = | +2a\95a%s + al XX + 859 + alxoXs + BbacxoXe + 2a5XeXs + 8l 359wXE + 28, 3590 Xes | -
—|—a(2‘235x§x5 + a(fgzz?(lxg

X5+ 8 X6 +al5xre + s + abipeoxs + ol a3 ).

9

Teo =

Toa = (2 +alf + o+ alfjxo + 2l

It can then be verified that the matidXis almost everywhere full rank.
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