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Selle en Optimisation sous Contraintes :

Analyse de Stabilit́e et Application au Diab̀ete de Type 1

Date de soutenance : 10 Octobre 2013

Jury :

M. Mazen ALAMIR Universit́e de Grenoble, GIPSA-lab Rapporteur
M. Aziz BELMILOUDI INSA de Rennes, IRMAR Directeur de thèse
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cette th̀ese.

Enfin, j’aimerai remercier ma famille qui a contribué à faire de moi ce que je suis aujourd’hui et
qui de par son soutien m’a permis de voir la lumière dans les endroits les plus sombres. A ce titre, je
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Abstract

This thesis deals with the design of a robust and safe control algorithm to aim at anartificial pancreas.
More precisely we will be interested in controlling the stabilizing part of a classical cure. To meet this
objective, the design of a robust nonlinear model predictive controller based on the solution of a saddle
point optimization problem is considered. Also, to test the controller performances in a realistic case,
numerical simulations on a FDA validated testing platform are envisaged.

In a first part, we present an extension of the usual nonlinear model predictive controller designed
to robustly control, in a sampled-data framework, systems described by nonlinear ordinary differential
equations. This controller, which computes the best control input by considering the solution of a con-
strained saddle point optimization problem, is calledsaddle point model predictive controller(SPMPC).
Using this controller, it is proved that the closed-loop is Ultimately Bounded and, with some assumptions
on the problem structure, Input-to-State practically Stable. Then, we are interested in numerically solv-
ing the corresponding control problem. To do so, we propose an algorithm inspired from the augmented
Lagrangian technique and which makes use of adjoint model.

In a second part, we consider the application of this controller to the problem of artificial blood
glucose control. After a modeling phase, two models are retained. A simple one will be used to design
the controller and a complex one will be used to simulate realistic virtual patients. This latter is needed
to validate our control approach. In order to compute a good control input, the SPMPC controller needs
the full state value. However, the sensors can only provide the value of blood glucose. That is why the
design of an adequate observer is envisaged. Then, numerical simulationsare performed. The results
show the interest of the approach. For all virtual patients, no hypoglycemia event occurs and the time
spent in hyperglycemia is too short to induce damageable consequences.Finally, the interest of extending
the SPMPC approach to consider the control of time delay systems in a sampled-data framework is
numerically explored.
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Résuḿe

Cette th̀ese s’int́eresse au d́eveloppement d’un contrôleur ŝure et robuste en tant que partie intégrante d’un
pancŕeas artificiel. Plus préciśement, nous sommes intéresśesà contr̂oler la partie du traitement usuel
qui a pour but d’́equilibrer la glyćemie du patient. C’est ainsi que le développement d’une commande
prédictive nonlińeaire robuste basée sur la ŕesolution d’un probl̀eme de point selle áet́e envisaǵe. Afin
de valider les performances du contrôleur dans une situation réaliste, des simulations numériques en
utilisant une plate-forme de tests validée par la FDA sont envisagées.

Dans une première partie, nous présentons une extension de la classique commande prédictive non-
linéaire dont le but est d’assurer le contrôle robuste de systèmes d́ecrits par deśequations diff́erentielles
ordinaires non lińeaires dans un cadreéchantillonńe. Ce contr̂oleur, qui calcule une action de contrôle
ad́equate en considérant la solution d’un problème de point selle, est appelé saddle point model predic-
tive controller(SPMPC). En utilisant cette commande, il est prouvé que le syst̀eme converge en temps
fini dans un espace borné et, en supposant une certaine structure dans le problème, qu’il est pratiquement
stable entŕee-́etat. Ensuite, nous nous sommes intéresśesà la ŕesolution nuḿerique. Pour ce faire, nous
proposons une ḿethode de ŕesolution inspiŕee de la ḿethode du Langrangien augmenté et qui fait usage
de mod̀eles adjoints.

Dans un deuxìeme temps, nous considérons l’application de ce contrôleur au probl̀eme du contr̂ole
artificiel de la glyćemie. Apr̀es une phase de modélisation, nous avons retenu deux modèles : un mod̀ele
simple qui est utiliśe pour d́evelopper la commande et un modèle complexe qui est utilisé comme un
simulateur ŕealiste de patients. Ce dernier est nécessaire pour valider notre approche de contrôle. Afin de
calculer une entrée de commande adéquate, la commande SPMPC a besoin de l’état complet du système.
Or, les capteurs ne peuvent fournir qu’une valeur du glucose sanguin. C’est pourquoi le d́eveloppement
d’un observateur est envisagé. Ensuite, des simulations sont réaliśees. Les ŕesultats obtenus témoignent
de l’intér̂et de l’approche retenue. En effet, pour tous les patients, aucune hypoglycémie n’aét́e observ́ee
et le temps passé enétat hyperglyćemique est suffisamment faible pour ne pasêtre dommageable. Enfin,
l’int ér̂et d’étendre l’approche de commande SPMPC au problème de contr̂ole de syst̀emes d́ecrits par des
équations diff́erentielles retard́ees non lińeaires dans un cadreéchantillonńe est formellement investigué.
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1.1 Contexte

Le diab̀ete de type 1 (T1DM) est une maladie auto-immune qui està l’origine de la destruction de
certaines cellules du pancréas. Ces cellules sont normalement chargées de produire de l’insuline. Il
s’agit d’une hormone dont le rôle est de favoriser le stockage du sucre sanguin dans le foie, les muscles,
. . . afin de permettre une régulation de la glyćemie sanguine autour d’une valeur de 100mg.dL−1. Un
patient atteint de T1DM ne peut donc plus réguler, sans traitement approprié, sa glyćemie. Ceci peut
entrainer de nombreuses complications en raison des risques importants d’hypo- et d’hyperglyćemies,
c’est-̀a-dire en cas de glycèmie trop basse (i.e. inférieureà 60mg.dL−1) ou trop haute (i.e. suṕerieureà
180mg.dL−1).

A ce jour, le seul traitement efficace pour gérer cette maladie consisteà ŕegulìerement s’injecter de
l’insuline. La dosèa se prescrire est définie en fonction d’une mesure de la glycémie courante et, lors
d’une prise de repas, en fonction d’une estimation de la quantité de sucre qui vâetre inǵeŕee. Bien
sûr, pour viser les meilleures performances de régulation, il faut aussi anticiper, autant que possible, sur
les événements̀a venir (par exemple sur la pratique prévue d’un sport, etc). Ce traitement a l’avantage
d’apporter un rem̀ede relativement simplèa cette maladie. Si le patient diabétique se connait bien, il
peut esṕerer vivre une vie quasi-normale. Toutefois il est difficile de maitriser le traitement dans toutes
les circonstances d’autant plus s’il est mal géŕe ou mal accepté par le patient. Il est en particulier diffi-
cile d’estimer la quantit́e de sucre contenue dans un aliment ou encore de quantifier l’effet de certains
phénom̀enes, comme par exemple une situation de stress. D’autre part, les capteurs les plus courants ne
mesurent que la glycémie interstitielle ce qui induit un biais dans la mesure (voir par exemple [87]). En-
fin, le fait que l’insuline est ǵeńeralement inject́ee par voie sous-cutanée, induit un d́elai dans l’action de
cette dernìere, compliquant d’autant la gestion du traitement. Une sur-estimation ou une sous-estimation
de la dosèa s’injecter peut entrainer une hypo- ou une hyperglycémie avec tous les risques qui peuvent
y être associés. C’est pourquoi l’automatisation de ce traitement permettrait non seulementd’améliorer
le confort du patient mais aussi la qualité de son traitement et,in fine, ses conditions de vie.

Le projet d’un syst̀eme qui permettrait une régulation artificielle de la glyćemie, encore appelé le
projet pancŕeas artificiel, áet́e initié dans les anńees 1970 par Albisser et al.[8] et Pfeiffer et al.[123],
mais n’a pas encore aboutià une solution ambulatoire. Les travaux s’articulent autour de trois défis
majeurs :

• le développement d’un capteur de glycémie fiable,

• le développement d’un système d’injection d’insuline efficace,

• le développement de commandes adaptées.

Une grande partie du travail présent́e dans cette th̀ese concerne essentiellement l’analyse de cette dernière.
Les premìeres solutions qui ont́et́e propośees, se basent sur des algorithmes de commande très sim-

ples, par exemple, pour des patients en soins intensifs, un correcteur PIDrégĺe sur un mod̀ele linéaire.
Cependant le d́eploiement massif chez des patients diabétiques dans des conditions de vie banalisées de-
mande le d́eveloppement d’algorithmes plusévolúes. Pour ce faire, plusieurs approches peuventêtre
envisaǵees. Un premier type d’approche consisteà garder un mod̀ele linéaire mais en d́eveloppant
des contr̂oleurs robustes comme par exemple des commandesà mode glissant [3]. Un deuxième type
d’approche concerne des modèles plus pŕecis du patient en conservant le caractère non lińeaire propre au
probl̀eme (soit en utilisant des approches boites noires comme dans [4] ou en utilisant des approches par
mod̀ele d’́etat comme dans [73]).

L’approche d́evelopṕee dans cette thèse cherchèa faire un compromis entre l’aspect non linéaire du
syst̀eme et la complexité du mod̀ele. Pour ce faire une version modifiée d’un mod̀ele non lińeaire simple
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est retenue et associéeà un contr̂oleur de type commande prédictive non lińeaire robuste pour prendre en
compte les erreurs de modélisation.

1.2 Le diab̀ete de type 1

1.2.1 Quelques mots sur la maladie

Chez un individu sain, la glyćemie est naturellement réguĺee entre 80 et 120mg.dL−1 (avec des glyćemies
post-prandial d’au plus 180mg.dL−1). En temps normal, cette régulation est principalement assurée par
l’action combińee de deux hormones: le glucagon et l’insuline. L’insuline a une action hypoglycémiante.
Elle fonctionne en se fixant sur des récepteurs appropriés qui provoque la lib́eration d’autres protéines
(GLUT) qui, à leurs tours, favorisent le transport du glucose au travers des membranes plasmiques,
permettant ainsi un stockage du sucre du sanguin.A contrario le glucagon est une des hormones hyper-
glycémiantes qui permet de libérer le sucre préalablement stocké. Ces deux hormones sont sécŕet́ees par
le pancŕeas, plus pŕeciśement dans les ilots de Langerhans (voir fig.1.1). L’insuline est produite pardes
cellules ditesβ et le glucagon par des cellules ditesα [97].

Foie

Estomac

PancréasVes. biliaire

cellule β

Vaisseau sanguin

Insuline

Situation du pancréas

Ilot de Langerhans

Vaisseau sanguin

Figure 1.1: Une vue ǵeńerale du ḿetabolisme glucidique

Le diab̀ete de type 1 est une maladie auto-immune qui va induire une destruction des cellules β .
La conśequence en est claire : le pancréas d’une personne atteinte par cette maladie se retrouve dans
l’incapacit́e de produire de l’insuline et donc celle-ci ne peut plus diminuer son taux desucre. En effet,
l’insuline est la seule hormone hypoglycémiante du corps humain. Ceci peut entrainer un grand nom-
bre de complications : soit en raison d’hyperglycémies durables òu on prend le risque d’observer des
probl̀emes ŕenaux, cardiaques, . . . , soit en raison d’hypoglycémies. Ces dernièresétant extr̂emement
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dangereuses puisqu’elles peuvent rapidement entrainer des effets néfastes qui peuvent aller jusqu’à la
mort du patient.

1.2.2 Mod́elisation d’un patient diabétique

Le probl̀eme de contr̂ole artificiel de la glyćemie est extr̂emement complexe. Cela peut sans doute
partiellement s’expliquer par la complexité liéeà l’aspect mod́elisation du ḿetabolisme glucidique. En
effet, du fait de la difficult́e de ŕealiser des exṕeriences̀a la fois sures et informatives, il est difficile
d’obtenir des donńees pour construire et/ou identifier un modèle de patient diab́etique.

Classiquement, on distingue deux grandes familles de modèles. Tout d’abord les modèles qui sont
obtenus̀a partir d’exp̀eriences complexes et difficilement réalisables dans un cadre simple. Dans cette
cat́egorie, on peut trouver le modèle de Dalla-Man et al. [106]. Ce dernier aét́e utilisé pour d́evelopper
une plate-forme de test [90] qui aét́e valid́ee par la Food and Drug Administration (FDA). Cela signifie
que cette plate-forme de test peutêtre utiliśee comme un substitutà des tests sur animaux. Une deuxième
famille de mod̀eles ne mod̀elise que les tendances principales du métabolisme glucidique. L’exemple
typique d’un mod̀ele appartenant̀a cette cat́egorie est le mod̀ele de Bergman [14].

D’un point de vue d́evelopement d’un contrôleur, les mod̀eles les plus pŕecis ne sont pas forcément
les plus int́eressant̀a utiliser. En effet, leur complexité limite fortement leur utilisation. D’ailleurs, les
approches qui utilisent ces modèles ont plut̂ot tendancèa incorporer une première phase de reformulation
(par exemple une phase de réduction de mod̀ele) comme dans [102]. C’est pourquoi nous avons envisagé
d’utiliser un mod̀ele simple pour d́evelopper notre contrôleur. C’est ainsi que la commande vaêtre
dévelopṕeeà partir d’une version modifíee du mod̀ele de Bergman, quant au modèle de Dalla-Man et
al., il sera utiliśe pour valider notre approche de contrôle. Plus concŕetement, le mod̀ele de contr̂ole est
donńe par le syst̀eme d’́equations diff́erentielles suivant

Modèle du ḿetabolisme glucose-insuline:

dG
dt

=−(P1+X)G+P1Gb+kgrR2,

dX
dt

=−P2X+P3(I − Ib),

dI
dt

=−kf I +bfU1,

dU1

dt
=−ksU1+u,

(G,X, I ,U1)(t0) = (G0,X0, I0,U1,0),

Modèle du ḿetabolisme gastro-intestinale:

dR2

dt
=−c2(R2−R1),

dR1

dt
=−c1(R1−d),

(R2,R1)(t0) = (R2,0,R1,0),

(1.1)

où P1, Gb, kgr, P2, P3, Ib, kf , bf , ks, c1 et c2 sont des param̀etres (strictement positifs) du modèle. L’état
G repŕesente la glyćemie sanguine, l’étatX l’insuline dans un compartiment distant, l’état I l’insuline
sanguine, l’́etatU1 l’insuline sous-cutańee et leśetatsR2 et R1 des quantit́es de sucre dans des compar-
timents distants. Les entréesu et d repŕesentent respectivement un débit d’insuline et une quantité de
sucre.
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1.3 Une commande pŕedictive par méthode d’un problème de point selle
(SPMPC)

D’un point de vue contr̂ole, il semble qu’une approche par commande prédictive pŕesente de nombreux
avantages (voir par exemple la review [13]). L’un de ces avantages provient du fait que, lorsqu’un patient
applique son traitement classique, ses décisions peuvent̂etre interpŕet́ees math́ematiquement comme
la résolution d’un probl̀eme d’optimisation sous contraintes. En effet le patient chercheà ŕeguler sa
glycémieà une valeur donńee (ŕegulation), il cherchèaéviter les hypo- et les hyperglycémies (contraintes
sur l’état) en s’injectant seulement de l’insuline (contraintes sur l’entrée). De plus l’aspect prédictif est
intéressant puisqu’il permet d’anticiper certaines perturbations connuesà l’avance, comme par exemple
les perturbations de type repas.

Les techniques de contrôles pŕedictives reposent sur le modèle du processus qui doitêtre contr̂olé.
Toutefois, dans le cas du diabète, il est tr̀es difficile d’obtenir un bon mod̀ele. C’est pourquoi la plupart
des approches dévelopṕees incorporent soit une composante robuste soit des aspects adaptatifs(comme
par exemple dans [73]). Parmi toutes les approches retenues et testées jusqu’̀a alors, une approche de
type min-max n’a paśet́e consid́eŕee. Il est vrai que cette approche n’est pas souvent retenue comme
une alternative viable du fait des temps de calculs importants nécessaires̀a la ŕesolution du probl̀eme
d’optimisation sous-jacent. Pourtant, dans le cadre de la régulation artificielle de la glyćemie, les con-
stantes de temps du système sont compatibles avec une telle approche (de l’ordre de la dizaine de min-
utes). Dans cette thèse, nous allons nous intéresser̀a ce type de contrôleur.

Le probl̀eme de contr̂ole artificiel de la glyćemie est typiquement posé dans un cadréechantillonńe.
En effet, le ḿetabolisme glucidique est un processusà temps continu alors que les capteurs de glycémie
fonctionnent avec des temps d’échantillonnages non négligeables devant les constantes de temps du
syst̀eme. La litt́erature concernant les résultats qui garantissent la stabilité d’un contr̂oleur min-max
MPC dans un cadréechantillonńe est tr̀es ŕeduite. Ceci a motiv́e les travaux de cette thèse qui consistent
à d́evelopper des outils théoriques et nuḿeriques garantissant la stabilité d’un tel syst̀eme dans le cadre
d’un contr̂oleur de type MPC robuste dont l’entrée de contr̂ole est donńee par la solution d’un problème
de point selle contraint en l’état. L’intér̂et de cette formulation par rapportà une formulation de type
min-max ŕeside dans la simplification de la partie résolution nuḿerique tout en conservant les mêmes
garanties de robustesse (sous hypothèses que le point selle est bien défini). Ce contr̂oleur, appeĺeSaddle
Point Model Predictive Control(SPMPC), a pour but d’assurer,dans un cadreéchantillonńe, pour des
syst̀emes d́ecrits par deśequations diff́erentielles ordinaires non linéaires, des performances de contrôle
robuste. Concŕetement, on s’int́eresse aux systèmes qui sont d́ecrits par deśequations du type

dx
dt

= G (x,u,w),

x(t0) = x0,
(1.2)

oùG :Rnx×Rnu×Rnw →Rnx est une fonction continue,x∈Rnx est l’état du syst̀eme,u∈Rnu est l’entŕee
de contr̂ole etw∈Rnw repŕesente des perturbations. Le contrôleur SPMPC fonctionne selon l’algorithme
suivant

Définition 1[SPMPC]

L’algorithme de contr̂ole SPMPC consiste, pour un taux d’échantillonnage donńeδ, un ensemble robuste
invariant Ω fE

a et un horizon de pŕediction T> δ, à se donner une entrée de contr̂ole u(t) = u∗i (t) pour
tout t ∈ [ti ; ti+1[ où, pour un temps ti = t0+ iδ et une condition initiale xi , u∗i est donńee par la solution
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du probl̀eme de point selle suivant

(u∗i ,w
∗
i ) = arg inf

u∈U
sup
w∈W

Jti (u,w) = arg sup
w∈W

inf
u∈U

Jti (u,w),

s.c. x(ti +T) ∈ Ω fE
a .

(1.3)

où x(s) est la valeur pŕedite de l’́etat à l’instant s, U et W sont deux sous-ensembles de L2(I) donńes
convexes, ferḿes, borńes et non vides, avec I un intervalle de longueur T et Jti (u,w) est donńe par

Jti (u,w) = E(x(ti +T))+
∫ ti+T

ti
F(x,u,w)ds, (1.4)

où E : Rnx → R+ et F : Rnx ×Rnu ×Rnw → R.

Plus concŕetement, nous avons prouvé, sous certaines hypothèses, que ce contrôleur permet d’assurer
une convergence en temps fini dans un sous-espace d’état borńe (Ultimately Bounded), ou, sous davan-
tage d’hypoth̀eses, que le système est pratiquement stable entrée-sortie (Input-to-State practically Sta-
ble). Ces ŕesultats sont expriḿes au travers des deux théor̀emes suivant (pour plus de détails sur les
hypoth̀eses et la preuve de ces théor̀emes, se ŕeférer au chapitre 3):

Théorème 2. Sous les hypoth̀eses 1̀a 9, si les hypoth̀eses du lemme 1 sont satisfaites et si x(t0) ∈
XE, alors en utilisant un contr̂oleur SPMPC,̀a chaque instant d’échantillonnage, la trajectoire d’état
est ”Ultimately Bounded” relativement à un sous-ensemble de XE qui contient l’origine, et converge
asymptotiquement dans un sous-ensemble qui contient l’origine.

Théorème 3.Sous les hypoth̀eses 1̀a 9, si les hypoth̀eses du lemme 1 sont satisfaites, si x(t0) ∈ XE,
et si il existe a,b,λ ∈R∗+ avec a< b tel queα 0

F(s)≥ asλ etβE(s)≤ bsλ , alors en utilisant un contr̂oleur
SPMPC,à chaque instant d’échantillonnage, le système est ”Input-to-State practically Stable”.

1.4 Résultats

L’impl émentation nuḿerique de cette commande est ensuite mise en oeuvre. Pour ce faire une méthode
numérique pour ŕesoudre les problèmes de point selle sous contraintes est présent́ee. Le but de cette
méthode consistèa remplacer le problème d’optimisation contraint par une séquence de problèmes
d’optimisations non contraints en l’état en utilisant une ḿethode qui s’inspire de la ḿethode du La-
grangien augmenté [116]. Chaque problème non contraint est ensuite résolu en utilisant une ḿethode de
gradient conjugúe. Le gradient du critèreà optimiser est calculé en utilisant un mod̀ele adjoint (pour plus
de d́etails et pour d’autres applications biomédicales voir [10] et [11]).

Pour ŕesoudre le problème de contr̂ole, les approches prédictives reposent sur l’optimisation de tra-
jectoires d’́etat. Ceci implique qu’un système d’́equations diff́erentielles doit̂etre int́egŕe, et donc que
la condition initiale du système, donńe par la valeur de l’́etat courant, est nécessaire. Toutefois, comme
leur nom l’indique, les capteurs de glucose ne fournissent qu’une mesure bruit́ee de la concentration en
glucose sanguin. Cela implique qu’il est nécessaire d’envisager le développement d’un observateur. A
ce titre, trois observateurs reposant sur des méthodologies diff́erentes ont́et́e envisaǵes, l’idéeétant de
comparer les diff́erents ŕesultats d’estimations et de valider les approches retenues dans le cas où les
diff érents ŕesultats d’observations sont cohérents entre eux. A la vue des résultats d’observation obtenus
(cf fig.1.2), un filtre de Kalman sans biais [144] est utilisé.

L’approche SPMPC est testée en utilisant tout d’abord le modèle de contr̂ole comme un mod̀ele de
simulation puis en utilisant une plateforme de simulation approuvée par la FDA. Le contrôleur est test́e
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Figure 1.2: Comparaison d’un observateur de type UKF, MHE et UIEKF enpartant d’une estimation
initiale exacte

sur deux sćenarios. Tout d’abord un scénario simple òu le contr̂oleur a pour seul but de stabiliser la
glycémie alors que le patient a initialement une glycémie haute. Avec ce scénario, l’objectif est de tester
si pour rejeter une hyperglycémie, le contr̂oleur ne va pas induire une hypoglycémie. Ensuite un scénario
consistant en une journée avec prise de trois repas est envisagé. L’idée est de tester les performances
du contr̂oleur quand ce dernier est combiné à une cure de bolus classique (par exemple donné par le
traitement usuel du patient). Plus préciśement le sćenario de type repas consiste en le scénario suivant

Scenario : Journée classique

t = 0h: La simulation commence. Le glucose sanguin est initialisé à 100mg.dL−1. L’observateur (UKF)
est branch́e.

t = 2h: Le contr̂oleur (SPMPC) est branché.

t = 7h: Le patient mange un repas de 25g en sucre.

t = 12h: Le patient mange un repas de 70g en sucre.

t = 20h: Le patient mange un repas de 80g en sucre.

t = 35h: La simulation est termińee.

Il est suppośe que chaque repas est contrôlé par le patient en s’envoyant une quantité d’insuline cor-
respondant̀a 75% de ce qu’il s’enverrait en temps normal (relativementà son traitement usuel). Pour
mesurer les performances du contrôleur, on s’int́eresse aux indicateurs suivants : %G∈ [70,140] le pour-
centage de temps que le glucose sanguin passe dans l’intervalle[70,140]mg.dL−1, minG la glycémie
minimale et maxG la glycémie maximale. Chacun d’entre eux estévalúe à partir du moment òu la
boucle est ferḿee. Les ŕesultats de simulation pour les 10 adultes de la version d’essai du simulateur de
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patient virtuel [90] sont fournis dans le tableau 9.8 du chapitre 9. Le résultat de simulation pour l’adulte
9 est visible sur la fig. 1.3. Sur cette courbe on peut voir que le contrôleur d́emontre de bonnes propriét́es.
La glycémie est stabiliśee dans un intervalle sûr, on n’observe pas d’hypoglycémie et le temps passé en
hyperglyćemie est ŕeduit.
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Figure 1.3: Ŕesultat de simulation pour l’adulte 9 de la plateforme de test, cas d’une modélisation par
équations diff́erentielles ordinaires.

A la vue des ŕesultats de contrôle positifs, l’extension de la ḿethodologie de contrôle SPMPC pour le
contr̂ole des syst̀emes retard́es est mise en oeuvre d’un point de vue numérique. L’objectif est de valider
l’int ér̂et de cette extension en fonction des résultats de simulations obtenus dans le cadre de la régulation
artificielle de la glyćemie. Pour ce faire, le modèle de contr̂ole jusqu’̀a alors utiliśe est reformuĺe en
utilisant deśequations diff́erentielles retard́ees. Suitèa quoi des simulations nuḿeriques sont ŕealiśees
en consid́erant un sćenario consistant en une journée avec prise de trois repas. Comme préćedemment,
les patients virtuels sont soit donnés par le mod̀ele de contr̂ole soit par la plateforme de test approuvée par
la FDA. Les ŕesultats de simulation pour les 10 adultes de la version d’essai du simulateur sont donńes
dans le tableau 10.3 du chapitre 10. Le résultat de simulation pour l’adulte 9 est visible sur la fig. 1.4.
On peut voir que cette fois-ci encore le contrôleur d́emontre de bonnes propriét́es.

1.5 Conclusions et perspectives

Le probl̀eme de ŕegulation de la glyćemie pour des patients atteints de diabète de type 1 est un problème
d’une grande complexité qui ḿelangeà la fois des aspects de contrôle non lińeaire dans un cadre
échantillonńe, de processus variant dans le temps, de limitation de possibilité d’action des actionneurs,
etc. L’approche retenue a permis de prendre en compte le plus de contraintes possibles afin de rester
au plus proche du système ŕeel. Toutefois, pour que le problème reste faisable, il a fallu s’orienter vers
des mod̀eles extr̂emement simples. Afin de prendre en compte cette inadéquation entre le système et le
mod̀ele, des approches robustes ontét́e privilégíees.
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Figure 1.4: Ŕesultat de simulation pour l’adulte 9 de la plateforme de test, cas d’une modélisation par
équations diff́erentielles retard́ees.

Ainsi, le d́evelopement th́eorique et nuḿerique d’une commande MPC non linéaire robuste basée
sur la ŕesolution d’un probl̀eme de point selle áet́e envisaǵee. Dans le cadre de l’application au diabète
de type 1, cette commande aét́e impĺement́ee en utilisant une version modifiée du mod̀ele minimal de
Bergman. Le problème d’optimisation correspondant aét́e ŕesolu en utilisant un algorithme qui se base
sur l’utilisation de mod̀eles adjoints. Le contrôleur obtenu a ensuitéet́e test́e sur un simulateur de patients
virtuels approuv́e par la FDA. Les ŕesultats de simulation montrent l’intér̂et de l’approche retenue en
particulier dans le cas où le patient est amené à ŕeguler lui-m̂eme son repas. L’extension formelle pour le
contr̂ole des syst̀emes d́ecrits par deśequations diff́erentielles retard́ees s’est aussi montré extr̂emement
intéressante en montrant des résultats de contrôle toutà fait satisfaisant malgré la complexit́e du probl̀eme
sous-jacent.

D’un point de vue perspectives, il peutêtre int́eressant de considérer de nouvelles conditions suff-
isantes pour assurer la stabilité du contr̂oleur. Ensuite, il peut̂etre int́eressant d’́etudier la stabilit́e
théorique du contr̂oleur SPMPC quand ce dernier est combiné à un observateur. En effet, au cours des
simulations, il áet́e implicitement supposé qu’un pseudo principe de séparatiońetait applicable. Toute-
fois il n’existe pas de ŕesultats ǵeńeraux dans le cas non linéaire. C’est pourquoi il peut̂etre int́eressant
d’étudier la stabilit́e du contr̂oleur d’un point de vue retour de sortie. Aussi, l’étude de la stabilité du
contr̂oleur dans le cadre d’un problème de suivi de trajectoire semble pertinente.

A la vue des ŕesultats de simulations obtenus dans le cas du contrôle d’un syst̀emeà retard, il peut
être int́eressant d’envisager d’un point de vue théorique la stabilit́e de la boucle ferḿee.

En ce qui concerne le développement d’un pancréas artificiel, il peut̂etre judicieux de voir com-
ment il est possible de profiter d’un retour d’expérience afin d’obtenir de meilleures performances de
contr̂ole. Enfin, il semble logique de désormais consid́erer la partie du traitement qui s’intéressèa rejeter
automatiquement les perturbations de type repas. Ainsi, combiné avec notre approche SPMPC, le patient
n’aurait plusà se soucier de son traitement.
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2.1 Motivation and Background of the Thesis

The focus of this thesis is to consider the design of a robust nonlinear controller in a sampled-data
framework. This problem comes from the need to design a controller to bringa solution to the problem
of artificial blood glucose control. This problem belongs to the field ofred biotechnology [76]. That is
the field which is interested in a medical use of control.

Surprisingly enough, this field is not very developed. One reason is that,most of the time, the
corresponding control problems gather many control difficulties. To quote the most relevant ones, we
can mention the difficulty to model the process (which are often nonlinear, time varying, subject to delay,
. . . ), the difficulty to obtain relevant measures (sparse and noisy measure, difficulty to design both human
friendly and informative experiments, . . . ) or , from an even more general point of view, the difficulty to
define a metric which provides a good measure of the performance of the considered algorithm. Another
reason that inhibits its expansion is the difficulty to validate an approach. Indeed as in this field human
lives are concerned, the error is not allowed. This leads to really demanding validation phase.

Nevertheless, the endocrinology field is currently an important subject ofresearches. These latter
bring new insights but also some hopes for new cure. In this thesis, we will be interested in type 1
diabetes mellitus, one special field of the endocrinology field. This disease of the pancreas is an auto-
immune disease which leads to the impossibility of secreting insulin. This has for consequence that a
patient suffering from this disease can not regulate its blood glucose. This can be at the origin of various
complications (e.g. coma or even death).

The main objective of bringing control is to design what is often called anartificial pancreas. The
idea is to combine the existing hardware (such as the glucose sensors and the insulin pumps) with an
adequate control algorithm to develop a device which mimic the behavior of an healthy pancreas. If it
were to work, this would lead to a simpler cure for the millions of people sufferingfrom diabetes [115].

To provide a potential solution, many control algorithms have already been proposed (see e.g. [165]
or [13] for a review of the considered controller and the remaining challenge in this field). Among the
most commonly used control strategies, it is possible to mention the PID controllers (see e.g. [109], [80]
or [57]), the controllers which make use of fuzzy logic and/or neural techniques (see e.g. [168], [35]
or [93]), the strategies which implement run-to-run algorithm (see e.g. [117], [24] or [119]), the sliding
mode controllers (see e.g. [5] or [58]) or the MPC controllers (see e.g. [2], [156], [159], [89] or [40]).

Even if all approaches present their own advantages compared to other approaches (e.g. the PID
controller can provide a good approximation of the behavior of healthy beta cells [153]), lately, it seems
that the MPC approach is the more promising because of numerous attractive features. First, it is easy
to interpret its behavior in terms of a classical cure. Indeed, when the patient deals with his disease, it
can be seen as the patient trying to solve a constrained optimal control problem. He wants to stabilize
his blood glucose to a given value (stabilization), to avoid hypoglycemia and reduce hyperglycemia
(state constraints) by only injecting insulin (input constraints). Then, the predictive aspect is interesting
as it enables to anticipate on known disturbances. As an example, a patient often knows in advance
when and what he will eat, thus providing the controller with these informations,it becomes possible
to aim at better control performances (see e.g. [168] or [1]). Finally, itcan also be useful to overcome
physiological delays due to the use of the subcutaneous route for both theinsulin injection and the blood
sugar measures [72].

The problem of controlling blood glucose is challenging in regards to variousaspects. The considered
system (i.e. the human body) is nonlinear and time varying (e.g. the diabetics are subject to the dawn
phenomena which make them more insulin resistant in the early morning). The available devices favor
the use of the subcutaneous route (see e.g.[139]), which implies that thereis some time lag, either on
the blood glucose measure or on the insulin effect. This makes the design of an efficient controller more
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challenging as these aspects are detrimental for the stability of the closed-loop. Also, all patients are
extremely different in the sense that for the same excitation, we can obtain verydifferent responses.
Finally, the patients are subject to various disturbances, the effects of which are hard to quantify (e.g.
stress, exercise, . . . see e.g. [154]).

All these facts have implied that the design of robust controllers have always been the prime concern
of the community. This has lead to a massive interest in adaptive approach (see e.g. [23], [16] or [73])
and robust approach (see e.g. [5], [120], [58] or [71]). Thesesolutions have proved to be interesting and
motivate further research in this direction. So far, the design of a min-max MPC controller has not been
considered. As this control approach can guarantee robust controlperformances and also benefits from
the various advantages of predictive controller, we are interested in considering this approach.

For control purpose, we will only be interested in stabilizing blood glucose and not to reject meal
effects which can be considered as a different problem. Anyway, the usual cure for type 1 diabetes is also
split into two terms, the basal term to stabilize blood glucose and the bolus term to counter the sudden
blood glucose increase, e.g. due to meal digestion. Also, because the glucose metabolism is a time
continuous process and the measure are time discrete, we are also interested indesigning a controller in
a sampled-data framework.

This implies that we are particularly interested in what is usually done to consider the sampled-data
aspect in control problem. The problem of controlling a time continuous dynamicsusing a control input
which is only computed at discrete time instant is a common situation. This is typically the case when
considering the digital control of a continuous time system via A/D and D/A converters (see fig. 2.1)

δi
x(ti) u(ti) u(t) x(t)discrete time

controller
ZOH ẋ(t) = G(x(t), u(t), w(t))

u

tti ti+1

Figure 2.1: Sampled data feedback

To design a controller in this framework, many approaches can be used. Assuming that the sampling
time δ is known and constant, one of the most natural approach is to globally consider the system as
a discrete one. It is possible to use a discrete approximation of the continuous timemodel and then to
design a discrete controller (see e.g. [150] or [107]). It is also possible to design a time continuous
controller and then to apply a discrete approximation of this latter (see e.g. [64]or [114]).

Others approaches, which do not need a discretization step, are either considering the sampled-data
aspect by introducing a time varying delay in the input (see e.g. [54] or [53]) or by embedding the mixed
continuous-discrete dynamic in an equivalent jump system (see e.g. [84] or [86]).

The previous techniques are worth applying when it is assumed that the AD/DA converters are the
key limiting factors and so that the control input has to remain constant in between two sampling instants.
However nowadays it is not always true. Indeed the progress in microprocessor are such that they can
easily work under the milli- or even micro-seconds so that now , at least fora relevant class of processes,
the true limiting factor is due to the slow state measurements (e.g. because of long processing time of
a chemical sensor). This implies that it is worth considering open-loop sampled-data feedback control
[48]. Here the idea is to open-loop apply an input signal which is computed ateach sampling instant (see
fig. 2.2).
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Figure 2.2: Sampled data open loop feedback

In this setting, the usual approach consists in using what is often designed as an open-loop input gen-
erators (see e.g. [108]). The idea is to combine a stabilizing state feedback with feedforward simulation
(see e.g. [48]). In this regards, the predictive control approach is particularly interesting (see e.g. [50] or
[47]). To better understand this assertion, let us remind some well-known facts concerning this control
technique.

Model Predictive Control (MPC) is a control strategy whose aim is to ensure stability and control
performances using the tool of optimization. Its principle consists in considering the control input trajec-
tory which is given as the solution of a finite horizon optimal control problem. Concretely, at a given time
t, the control problem is recast as an optimization problem with a prediction horizon of lengthT subject
to a dynamical model of the system that has to be controlled and where the current state valuex(t) is the
initial condition. Then the computed optimal control input trajectoryu∗(s) is applied in open-loop until
a new measure is available att +δ. At this instant, the prediction horizon is shifted and a new optimal
control problem is solved [22]. Figure 2.3 (which has been inspired from [12]) illustrates this concept in
the case of a single input single output system.

t t+ Tt+ δ

u(t)
Predicted input

Predicted state trajectory

past future

reference

Figure 2.3: MPC strategy: only the first control move is applied in open loop

One of the main advantage of MPC is that it is easy to consider constraints on the inputs or on the
states by solving a constrained optimization problem. Of course, if the plant modelwere to be perfect,



2.1. MOTIVATION AND BACKGROUND OF THE THESIS 27

there would be no need to solve a new optimal control problem and the control sequence could have been
applied in open loop for alls∈ [t, t +T[. However, as it is most likely, the predicted trajectory will more
or less differ from the actual plant trajectory. That is why the optimization problem is solved as often as
possible in order to introduce some robustness via thisfeedbackmechanism.

Because of its ability to handle constraints and to ensure a certain optimality in regards to a given
criterion, the MPC control technique has rapidly found its place in industry with more and more appli-
cations, see e.g. [126]. In a sense, this success is quite surprising. Indeed, at its very beginning, in
the early 1980’s, there were no formal guarantee on stability of the closed-loop and/or feasibility of the
optimization problem. Since then, the situation has changed and in the case of classical MPC algorithms,
the necessary tools to ensure stability and feasibility, are now well understood, see e.g. [110].

One possibility to ensure stability of the closed-loop is to add a final cost in the functional that is
optimized and a supplementary terminal state constraint. The final cost is simply afunction of the value
of the state at the end of the prediction horizon which can be interpreted as a local Lyapunov function.
The terminal state constraint requires that at the end of the prediction the statehas reached a given
subset which satisfies some properties, e.g. to be positive invariant. The final cost and the terminal state
constraint are usually computed via the design of an intermediate control law. This final controller can
either be applied when the state has reached the terminal state as in the dual mode approach, see e.g.
[112] or [146], or never be applied as in the quasi infinite approach [26].

However, even if MPC controller inherently provides some degree of robustness (see e.g. [143], [167]
or [125]), it is well known that, at least for nonlinear system, the margin canbe arbitrary small. This has
to be understood in the sense that any discrepancy between the control model and the system leads to
instability of the closed-loop [62]. From a type 1 diabetes point of view, this isof prime importance as
this is nearly impossible to obtain a good model of the process. That is why, despite the supplementary
computational burden, it is of prime interest to consider the design of robust MPC controller.

Many approaches have been developed to cope with robustness. The main idea behind all these algo-
rithms comes from the game theoretic approach of the control problem [28]. The original robust stability
and performance problem is transformed into a constrained game type minimax optimization one,i.e.
the control problem is expressed as a game between the control engineerwhich aims at stabilizing the
system and the nature which has the opposite objective. That is, by applying a useful control on the
system, the first player, which plays the role of the control engineer, seeks to minimize the result of the
game,i.e the value of a given cost functional of the game, while the second player, which plays the role
of the various uncertainties, seeks to maximize the result of the game (see e.g.[10] or[79]).

Simply, the objective of robust control is to compensate for the undesirable effects of system distur-
bances through control actions such that a cost function achieves its minimum for the worst disturbances
[10]. The different algorithms proposed to solve the robust control problem differs by their balance be-
tween the needed on line computation time and the robust performances guarantee.Roughly speaking,
when it is desired to have a small on line computation time, then the controller has to giveup on robust-
ness guarantee (e.g. by assuming a structure on the disturbances). Withoutlooking for an exhaustive
enumeration of the available algorithms, it is possible to retain the following approaches.

One of the most time efficient technique consists in solving off-line the optimal control problem
thanks to parametric programming (see e.g [36], [161], [30] or [38]). These control strategies are based
on the property that, for a given class of control problem, the optimal solution can be parametrized. This
approach leads to explicit solutions which are valid for a given subspace.Off line, one limitation of these
approaches comes from the difficulty to determine the various subspaces for large dimensional system
and/or long prediction horizon. Also, on line, it can be time consuming to find the active subspace and
actually it can be faster to solve the optimization problem.

An other time efficient approach consists in finding an approximate solution to theoriginal optimiza-
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tion problem by not directly considering the optimization of a given cost functional but by considering
the optimization of an upper bound of the optimal value of the cost functional (see e.g. [7] or [63]). This
approach provides algorithms whose computation time is tractable but at the cost ofthe introduction of
a certain conservatism in the results depending on the quality of the derivedbound.

In order to ensure optimal control performances relatively to a chosen criterion and to reduce the
computation time, it is possible to use a tube MPC approach (see e.g. [46], [166]or [167]). The idea is
to reduce the on line computational burden to the task of solving on line a MPC controlproblem on the
nominal model of the process. The thus obtained control input is then coupled with an auxiliary control
law whose aim is to ensure that the error in the predicted trajectory remains in arobust control positive
invariant set. The limitation of the method is in the computation of this auxiliary control law as it is
desirable to be both simple and to provide a sufficiently big invariant set (to ensure a good robustness of
the controller).

Finally, there is the family of algorithms which solves the original minimax optimization problem
arising from game theoretic consideration. The aim is here to compute a sequenceof control action
which enables to stabilize the system under the worst disturbances (worstto be understood in the sense
that they maximize the value of the game). In this category we can distinguish between the strategy
which use the same criterion as in the nominal case,i.e. the disturbances do not appear explicitly in the
criterion (see e.g. [94], [130], [51], [100] or [92]) and the strategy which explicitly introduce a negatively
weighted term for the disturbances in the criterion that has be optimized (see e.g. [111], [85] or [98]).
The main advantage of the minimax approach is that the robust performancesare guaranteed for a well
defined set of disturbances which can take various form (additive disturbances, parameter disturbances,
. . . ) and that the problem is easier to cast. The main disadvantage comes fromthe heavy computational
burden as the control problem is recast as a minimax optimization problem.

In the problem of artificial blood glucose control, the sampling time is in the order ofthe minute,
implying that the computation time is not a limit. As the robustness of a minimax approach isa priori the
best that can be expected, we will focus on this approach. Surprisinglyenough, there are only few results
that can be found when it comes to design a min max MPC controller in a sampled-data framework. That
is why in this thesis we will be interested in considering, from a theoretical pointof view, the design of a
stable robust predictive controller in order to control systems describedby nonlinear ordinary differential
equations in a sampled-data framework. The control input will be given by thesolution of a constrained
saddle point optimization problem. We have chosen to consider saddle point problem instead of min-
max problem in order to suppress the implicit advantage which is given to the disturbances in this latter
formulation. This is at the origin of the proposed name of the method, thesaddle point MPC(SPMPC).
Then, as this controller is perfectly suited to the problem of artificial blood glucose control, its application
to this control problem will be considered.

2.2 Outline of the Thesis

The thesis is structured as follows:
In part I, we present thesaddle point model predictive controllerfrom both a theoretical and numer-

ical point of view. In chapter 3, it will be proved that using a final cost and a terminal state constraint,
under reasonable assumptions, this controller can robustly stabilize the controlled system (to be under-
stood in the ultimate bounded or input to state practical stability sense). Also, asthe assumptions on
the final cost and the terminal state constraint differ from the usual ones, a formulation to compute these
elements using the tool of differential inclusion is given. In chapter 4, a numerical method based on
adjoint model is given in order to solve the control problem which is formulated as a constrained sad-
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dle point optimization problem. Finally, in chapter 5, the good numerical implementationand control
performances of the SPMPC controller are assessed by considering theproblem of robust control of a
disturbed in parameters Van der Pol oscillator.

In part II, we are interested in applying the previously presented algorithm to the problem of artificial
blood glucose control. In chapter 6, we will present two models of the glucose-insulin metabolism.
The first one, which is quite complex, will be used for validation purpose, the second one, which only
provides global trend of the process, will be used to design the controller. In chapter 7, we will study the
properties of the control model in regards to its applicability with a SPMPC controller. In chapter 8, we
will present some state observers. Indeed, in the problem of blood glucose control, the sole measure of
the blood glucose is available meaning that the value of the remaining state has to be estimated thanks
to a state observer. In chapter 9, we will consider the numerical validation of our control approach using
a virtual testing platform. For a given set of virtual patient, the parameters ofthe control model will
be identified using optimal control on the parameters. Then, the controller performances will be tested
thanks to numerical simulation using both the control model and the testing platform to simulate a virtual
patient. Finally in chapter 10, the possibility to extend the SPMPC approach to thecontrol problem of
time delay systems is formally investigated.

2.3 Contributions of the Thesis

The main contributions of this thesis are as follows:
Saddle point MPC to robustly control nonlinear system described bynonlinear ordinary dif-

ferential equations in a sampled-data framework

• Presentation of a new MPC control scheme based on zero sum differentialgames,

• Theoretical proof of the stability of the closed-loop,

• Under the supplementary assumption of a quadratic stage cost, formulation of the final cost and
the terminal state constraint problems in a LMI framework using differential inclusion embedding.

Numerical methods

• Proposition of a numerical algorithm inspired from the augmented Lagrangian method, based on
adjoint formulation, to solve a constrained saddle point optimization problem.

Application to artificial blood glucose control

• Design of a SPMPC controller to take care of the stabilizing part of the cure,

• Numerical simulation to assess the controller performances and its good behavior when combined
with the other part of the classical cure.

Saddle point MPC to robustly control nonlinear system described bynonlinear delay differen-
tial equations in a sampled-data framework

• Assuming that the stage cost is quadratic, formulation of the final cost and the terminal state
constraint problems in a LMI framework using differential inclusion embedding.

This thesis has lead to the following publication

Articles
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3.1 Introduction

Model Predictive Control (MPC) (see e.g. [22]) is a control strategy whose aim is to ensure stability and
control performances using the tool of optimization. Because of its ability to handle constraints and to
ensure a certain optimality in regards to a given criterion, the MPC control technique has rapidly found
its place in industry with more and more applications (see e.g. [126]). It has also reached a high level
of maturity in academia. In the case of classical MPC algorithms, the necessarytools to ensure stability
and feasibility, are now well understood (see e.g. [110]).

Despite its widespread use, there is still huge interest in developing algorithms for various cases
which differ from the classical theory but covers practically encountered situations. Among these latter,
one of the main issue deals with the design of a robust MPC algorithm in a sampled-data framework for
systems described by nonlinear ordinary differential equations.

This chapter aims at presenting a MPC controller which guarantees robust stability properties in a
sampled-data framework. Contrary to some approaches which consider a discretization step (see e.g.
[150]), the presented controller is based on the time continuous dynamics andconsider that the control is
updated at discrete occurrence of time. Moreover it is considered that thecontrol input is any piecewise
time-continuous function which generalizes the case of piecewise constant input (see e.g. [101, 85])
what leads to consider an open-loop sampled-data control algorithm [48].

If MPC controller provides some degree of robustness [166], this margincan sometime be small
[62], and it is interesting to consider the design of robust MPC controller. Many approaches have been
proposed to tackle this control issue. In [132, 27], an upper bound ofthe cost function instead of the cost
function itself is minimized using a linear representation of the dynamics and the tool oflinear matrix
inequality (LMI). Another approach consists in using the MPC algorithm to control the nominal model
of the process combined with an auxiliary controller. This later is designed such that the error induced
by the difference between the system and the model is rejected (see e.g. [142]) or that the error remains
in an invariant set as in tube MPC [167, 46]. Robustness can also be introduced in MPC by explicitly
considering the disturbances in the model used for prediction. One strategy consists in minimizing the
same criterion as in the nominal case leading to minimax strategy (see e.g.[94, 130, 51, 100, 92]). The
approach presented here stems from the game theoretic approach of the control problem. It introduces
a negatively weighted term for the disturbances in the criterion [111, 85, 98] and, assuming that pure
strategies exist, searches for the saddle point of the game [10].

Despite its robust stability guarantee, the minimax approach is rarely implemented because of its
heavy computational load [167]. However, sufficiently slow process which needs robust stability guar-
antee does exist (e.g. the problem which has motivated our work, namely the problem of artificial blood
glucose control in type 1 diabetic). That is why, in this chapter we are interested in presenting a MPC
strategy to consider the robust control problem of nonlinear systems subject to bounded disturbances us-
ing bounded control action. The continuous time control signals which are nota priori parametrized, are
calculated, at discrete time instants, when the measures are available, by solving a saddle-point problem.
It is proved that thissaddle point MPC(SPMPC) stabilizes, at each sampling instant, the state trajectory
in a robust positive invariant set which contains the target. To simplify the proof, the case of a constant
sampling time is considered. However, it is straightforward to extend the obtainedresults to the varying
sampling time case as long as uniform bounds on the sampling time are known.

This chapter is organized as follows. First, the required properties on thesystem dynamics are given
and thesaddle point MPCcontroller is presented. Then, under some assumptions, it is proved that the
closed-loop is ultimately bounded relatively to a set which contains the origin and that the system is
input-to-state practically stable (ISpS). Finally, a last section is devoted to the problem of formulating
the final cost and the terminal state constraint problem using differential inclusion.
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3.2 Problem statement

3.2.1 Notation and definition

The notation‖x‖ stands for the 2-norm of a vectorx∈ Rnx, i.e. ‖x‖=
√

xTx.
For a givent0 ∈R+, the notationtk wherek∈N∗ stands fortk = t0+kδ whereδ ∈]0;T[ is a constant

sampling time.
Let Ω be a non-empty, bounded subset ofRnx with a sufficiently regular boundary, int(Ω) stands for

the interior ofΩ.
We remind the following useful definition:

a) A functionα : R+ → R+ is of classK if it is continuous, strictly increasing andα (0) = 0,

b) A functionα : R+ → R+ is of classK ∞ if it is of classK and is unbounded,

c) A continuous functionβ : R+×R+ → R+ is of classK L if s→ β(s,τ ) is of classK for each
τ ≥ 0 andτ → β(s,τ ) is decreasing to zero for eachs.

3.2.2 System description

The system to be controlled is modeled by the following ordinary differential equation

dx
dt

= G (x,u,w),

x(t0) = x0,
(3.1)

wherex is the state vector,G : Rnx ×Rnu ×Rnw → Rnx is a continuous function and where the control
inputu and the disturbancesw are such that:

U(I) = {u∈ L2(I), ‖u(t)‖ ≤ uM a.e. t ∈ I}, (3.2)

W(I) = {w∈ L2(I), ‖w(t)‖ ≤ wM a.e. t ∈ I}, (3.3)

whereuM andwM are known constant belonging toR+∗ andI ⊂ [t0,+∞[ is an interval. To simplify the
notation we will not further explicit the dependency onI and simply write the set of control inputU and
the set of disturbancesW.

Remark1. In order to avoid the problem of non differentiability ofx at the discontinuous point of the
couple control disturbances(u,w), we will consider the integral formulation of the differential problem
(3.1), i.e. for a given initial datax0 and for allt ≥ t0:

x(x0,u,w, t0; t) = x0+
∫ t

t0
G (x(x0,u,w, t0;s),u,w)ds.

In the sequel,x(xi ,u,w, ti ; t) for t ≥ ti will denote the solution (to be understood in an integral form)
of the problem (3.1) with initial conditionx(ti) = xi and a given couple control disturbance(u,w).

Let us make some assumptions on the problem.

Assumption 1. For a given initial condition, the integration of (3.1) with a control input inU and a
disturbance inW provides a forward complete trajectory.
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Assumption 2. For all boundedx and x̃ ∈ Rnx, for all boundedu ∈ Rnu and for all boundedw and
w̃∈ Rnw, the functionG is Lipschitz inx andw, i.e. there exists two constantsLx andLw such that:

‖G (x,u,w)−G (x̃,u,w)‖ ≤ Lx‖x− x̃‖,
‖G (x,u,w)−G (x,u, w̃)‖ ≤ Lw‖w− w̃‖.

(3.4)

Assumption 3. For all boundedx ∈ Rnx, for all boundedu ∈ Rnu and for all boundedw ∈ Rnw, the
functionG verifies the following condition, there exists a constantK > 0 such that:

‖G (x,u,w)‖ ≤ K(1+‖x‖+‖u‖+‖w‖). (3.5)

Theorem 1. If G : Rnx ×Rnu ×Rnw →Rnx is a continuous function which satisfies Assumptions 2 and 3,
then for every integrable function u and w and initial condition x(t0) = x0 there exists a unique absolutely
continuous solution of (3.1).

Proof. Let us sketch the main idea of the proof. First, we obtain the local existence by proving that the

operatorx→ Tx= x0+
∫ t

t0
G (x,u,w)ds is a contraction (and then has unique fixed point). Then, using

the linear growth ofG (3.5) and similar argument as in continuous case of(u,w), (see e.g. [145]), we
can obtain the existence of a global solution on[t0; t0+T]. Finally the uniqueness result can be obtained
by using the Lipschitz condition onG and the Gronwall lemma (see appendix section 12.2).

3.2.3 Control strategy

The control strategy aims at stabilizing the state trajectory to a given set whichcontains the target, that
will be considered as the origin for simplicity reasons. The considered control strategy is an open-loop
sampled-data robust MPC controller.

It will be moreover assumed that:

Assumption 4. The right hand side of (3.1) is differentiable and we haveG (0,0,0) = 0.

Let us recall the definition of a robust control positive invariant set (see e.g. [18]):

Definition 1 (RCPI set). A setΩ ⊂Rnx is said to be a robust controlled positive invariant (RCPI) set for
(3.1) if there exists f: Rnx → Rnu a feedback controller, which ensures the existence and uniqueness of
the state trajectory and, which is such that for all x(t0) ∈ Ω, for all w ∈ W and for all t≥ t0, we have
x(x(t0), f (x),w, t0; t) ∈ Ω.

Now let us define the retained control strategy:

Definition 2 (SPMPC). Thesaddle point model predictive control(SPMPC) consists, for a given sam-
pling rate δ, RCPI setΩ fE

a and prediction horizon T> δ, in calculating u(t) = u∗i (t) for t ∈ [ti ; ti+1[
where u∗i is computed at ti with respect to the state xi and the optimal disturbances w∗i , as the optimal
solution of

(u∗i ,w
∗
i ) = arg inf

u∈U
sup
w∈W

Jti (u,w) = arg sup
w∈W

inf
u∈U

Jti (u,w),

s.t. x(xi ,u,w, ti; ti +T) ∈ Ω fE
a .

(3.6)

where U and W denote U([ti ; ti +T]) and W([ti ; ti +T]) and Jti (u,w) is defined as

Jti (u,w) = E(x(xi ,u,w, ti; ti +T))+
∫ ti+T

ti
F(x(xi ,u,w, ti ;s),u,w)ds, (3.7)

where E: Rnx → R+ and F : Rnx ×Rnu ×Rnw → R.
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Remark2. The considered game is symmetric between the control inputu and the disturbancesw. Indeed
the terminal state constraint is applied to both player. If this raises some questions on the admissible class
of system for which it does not restrict the class of admissible disturbances, it enables to use the useful
framework of saddle point optimization.

The following assumptions are introduced.

Assumption 5. The stage costF : Rnx ×Rnu ×Rnw → R is continuous in all its arguments and lower
bounded such that

F(x,u,w)≥ αF(‖x‖)−βF(‖w‖), (3.8)

whereαF andβF areK
∞ functions.

Assumption 6. The functionu ∈ U → Jti (u,w) is assumed to be convex, lower semi-continuous and
Gâteaux-differentiable for allw∈W. The functionw∈W → Jti (u,w) is assumed to be concave, upper
semi-continuous and Ĝateaux-differentiable for allu∈U .

Remark3. The setsU andW are convex, closed, bounded and non empty. Combined with assumption
6, this implies thatJti possesses at least one saddle point (see e.g. [10]).

In the sequel we noteV(x(ti)) = Jti (u∗i ,w
∗
i ) the value of the game,i.e. the value of the cost function

at the saddle point. Using the definition ofV(x(ti)), we have for allu∈U and for allw∈W the following
saddle point inequality:

Jti (u∗i ,w)≤V(x(ti))≤ Jti (u,w∗
i ). (3.9)

3.3 Stability analysis

Before further proceeding, let us recall some useful definition. Theselatter have been adapted in order
to cope with the sampling aspect.

First, let us recall the definition of ultimate bounded trajectory (see e.g. [92]).

Definition 3 (UB). The trajectory of system (3.1) is said to be ultimately bounded (UB) in a setS ⊂Rnx

for initial conditions in XE ⊂ Rnx, if for all x(t0) ∈ XE, for all w ∈W, there exists a N∈ N such that for
all k ≥ N x(tk) ∈ S .

Then, let us recall the definition of ISpS trajectory (see e.g. [92]).

Definition 4 (ISpS). System (3.1) is said to be ISpS for initial conditions in XE ⊂ Rnx if there exists a
K L functionβ , a K functionγ and a non negative number D such that for each x(t0) ∈ XE ⊂Rnx, for
all w ∈W, for all k≥ 0 it holds that at each sampling instant the state trajectory satisfies

‖x(tk)‖ ≤ β (‖x(t0)‖,k)+γ( sup
t∈[t0,tk]

(w))+D.

The main result of this chapter is that the SPMPC strategy makes the controlled system ultimately
bounded (UB). The additional assumptions needed to prove this result are given below and some inter-
mediate results on feasibility and various properties of the value functionV are presented as lemmas.
Particularly, the value functionV, is used to define a function that, at each sampling instant, satisfies
inequalities (3.32) of discrete ISpS Lyapunov functions (see e.g. [95]).Furthermore with specific as-
sumptions on the cost functions, it is proved that the closed loop system is Inputto State practical Stable
(ISpS) at each sampling instant.

To prove the stability of the closed-loop trajectory, the following assumptions aremade.
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Assumption 7. There existsΩ fE
a , a RCPI set associated with the feedbackfE, which is such that

‖ fE(x)‖ ≤ uM for all x∈ Ω fE
a .

In the sequelfE(x(t)) denotes the signal resulting from the application of the feedback controllerfE
along the controlled state trajectory using this controller.

Assumption 8. There existsE : Rnx → R+ such that for allx∈ Ω fE
a and for allw∈W we have:

aE(‖x‖)≤ E(x)≤ bE(‖x‖),
∇ xE(x)

T .G (x, fE(x),w)+F(x, fE(x),w)≤ 0,
(3.10)

where∇ x stands for the gradient operator relatively tox andaE andbE areK
∞ functions.

Remark4. If x(t) is defined as the solution of the following differential equation for a given initial
conditionx0 ∈ Ω fE

a and for allw∈W:

{ dx
dt

= G (x, fE(x),w),

x(t0) = x0,

then we have:

d
dt

(E(x(t))) = ∇ xE(x(t))
T .

dx
dt

(t)

= ∇ xE(x(t))
T .G (x(t), fE(x(t)),w).

Definition 5 (Feasibility). The control problem is said feasible for a given initial condition x(ti) ∈ X ⊂
Rnx relatively to a subsetΩ ⊂ X if there exists at least one couple(u,w) ∈U ×W such that Jti (u,w)< ∞
and the terminal state constraint condition x(xi ,u,w, ti; ti +T) ∈ Ω holds.

Assumption 9. For a given RCPI setΩ and a final costE : Rnx →R+, for all x(ti) ∈ XE the saddle point
problem (3.6) admits a solution, whereXE ⊂Rnx stands for the set of states such that the control problem
is feasible relatively toΩ.

3.3.1 Intermediate results

The following lemma characterizes the conditions on the sampling time and the discrepancy between the
optimal and the real disturbances in order for the control problem to remainfeasible.

Lemma 1. Under Assumptions 7 to 9, if x(ti) ∈ XE and if

√
nxLwδ sup

t∈[ti ;ti+1]

(‖w∗
i −wS

i ‖)e
√

nxLxT < r i , (3.11)

where wS
i is a disturbances such that x(xi ,u

∗
i ,w

S
i , ti ; ti+1) = x(ti+1) where x(ti+1) is the new observation

at t = ti+1 and ri is a positive constant such that

{x∈ XE/‖x−x(xi ,u
∗
i ,w

∗
i , ti ; ti +T)‖ ≤ r i}( Ω fE

a .

Then we have x(ti+1) ∈ XE.
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Proof. Let us define the disturbancewS
i such that:

wS
i ∈ L2(ti ; ti+1) with ∀t ∈ [ti ; ti+1] ‖wS

i (t)‖ ≤ wM, (3.12)

and
x(xi ,u

∗
i ,w

S
i , ti ; ti+1) = x(ti+1). (3.13)

It is possible to compute the value ofwS
i by solving an adequate optimization problem.

For all t ∈ [ti ; ti +T] let us introduce the signal ˜w defined as follows:

w̃(t) =

{

wS
i (t) if t ∈ [ti ; ti+1[,

w∗
i (t) if t ∈ [ti+1; ti +T].

(3.14)

SincewS
i verifies (3.12) andw∗

i ∈W we have that ˜w∈W.
Let us note∆ix(t) = x(xi ,u

∗
i ,w

∗
i , ti ; t)− x(xi ,u

∗
i , w̃, ti ; t). As x(xi ,u

∗
i ,w

∗
i , ti ; t) is solution of (3.1) with

u(t) = u∗i (t) andw(t) = w∗
i (t) andx(xi ,u

∗
i , w̃, ti ; t) is solution of (3.1) withu(t) = u∗i (t) andw(t) = w̃(t),

for all t ∈ [ti ; ti +T], we have:

‖∆ix(t)‖= ‖
∫ t

ti
G (x(xi ,u

∗
i ,w

∗
i , ti ;s),u

∗
i ,w

∗
i )−G (x(xi ,u

∗
i , w̃, ti ;s),u

∗
i , w̃)ds‖,

≤√
nx

∫ t

ti
‖G (x(xi ,u

∗
i ,w

∗
i , ti ;s),u

∗
i ,w

∗
i )−G (x(xi ,u

∗
i , w̃, ti ;s),u

∗
i , w̃)‖ds.

Using the triangular inequality, it is deduced that:

‖∆ix(t)‖ ≤
√

nx

∫ t

ti
‖G (x(xi ,u

∗
i ,w

∗
i , ti ;s),u

∗
i ,w

∗
i )−G (x(xi ,u

∗
i ,w

∗
i , ti ;s),u

∗
i , w̃)‖ds

+
√

nx

∫ t

ti
‖G (x(xi ,u

∗
i ,w

∗
i , ti ;s),u

∗
i , w̃)−G (x(xi ,u

∗
i , w̃, ti ;s),u

∗
i , w̃)‖ds.

Using the Lipschitz condition (3.4) we can deduce that:

‖∆ix(t)‖ ≤
√

nxLw

∫ t

ti
‖w∗

i − w̃‖ds+
√

nxLx

∫ t

ti
‖∆ix(s)‖ds. (3.15)

According to (3.14) we can deduce that it is possible to rewrite inequality (3.15) as follows:

‖∆ix(t)‖ ≤
√

nxLw

∫ ti+1

ti
‖w∗

i −wS
i ‖ds+

√
nxLx

∫ t

ti
‖∆ix(s)‖ds. (3.16)

And then:

‖∆ix(t)‖ ≤
√

nxLwδ sup
t∈[ti ;ti+1]

(‖w∗
i −wS

i ‖)+
√

nxLx

∫ t

ti
‖∆ix(s)‖ds. (3.17)

Using Gronwall inequality (see 12.2), inequality (3.17) becomes:

‖∆ix(t)‖ ≤
√

nxLwδ sup
t∈[ti ;ti+1]

(‖w∗
i −wS

i ‖)e
√

nxLx(t−ti).

In particular fort = ti +T we have:

‖∆ix(ti +T)‖ ≤ √
nxLwδ sup

t∈[ti ;ti+1]

(‖w∗
i −wS

i ‖)e
√

nxLxT .
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According to (3.11) we have
√

nxLwδ sup
t∈[ti ;ti+1]

(‖w∗
i −wS

i ‖)e
√

nxLxT < r i so it is deduced that:

‖∆ix(ti +T)‖< r i .

And so we have:
‖x(xi ,u

∗
i ,w

∗
i , ti ; ti +T)−x(xi ,u

∗
i , w̃, ti ; ti +T)‖< r i (3.18)

The ball of centerx(xi ,u
∗
i ,w

∗
i , ti ; ti +T) and radiusr i is strictly contained inΩ fE

a (according to the
definition ofr i). Using inequality (3.18), it is deduced that

x(xi ,u
∗
i , w̃, ti ; ti +T) ∈ int(Ω fE

a ). (3.19)

Let us denotez1 = x(xi ,u∗i , w̃, ti ; ti +T). According to (3.19) and as the feedbackfE renderΩ fE
a robust

invariant, it is deduced that for allt ≥ 0 we have:

x(z1, fE(x), w̃, ti +T; ti +T + t) ∈ Ω fE
a . (3.20)

Using the definition ofwS
i we havex(xi ,u

∗
i , w̃, ti ; ti+1) = x(ti+1), so for all t ∈ [0,T − δ] we have

x(xi ,u
∗
i , w̃, ti ; ti+1+t)= x(xi+1,u

∗
i , w̃, ti+1; ti+1+t), and so it is deduced that (3.20) also holds forx(z2, fE(x), w̃, ti+

T; ti +T + t) wherez2 = x(xi+1,u∗i , w̃, ti+1; ti+1+T).
Finally it is deduced that the following couple of strategies(ui+1,wi+1) is a feasible solution:

ui+1(t) =

{

u∗i (t), if t ∈ [ti+1; ti +T[,
fE(x(t)), if t ∈ [ti +T; ti+1+T],

wi+1(t) =

{

w∗
i (t), if t ∈ [ti+1; ti +T[,

w(t), if t ∈ [ti +T; ti+1+T],

wherew is in L2(ti +T; ti+1+T) and such that for allt ∈ [ti +T; ti+1+T] ‖w(t)‖ ≤ wM. By construction
we haveui+1 ∈U andwi+1 ∈W.

The state trajectory is forward complete and absolutely continuous (see Assumption1 and theorem 1
), so it is quite clear that using(ui+1,wi+1), the state trajectory remains bounded (the initial condition, and
the couple control disturbances(ui+1,wi+1) are bounded). Because the functionalE is upper bounded by
a K

∞ function and the functionalF is continuous in all its argument, this implies thatJti+1(ui+1,wi+1)
is bounded.

Under the introduced notion of feasibility (see definition 5), this means that the problem remains
feasible for the new initial conditionx(ti+1), i.e. if x(ti) ∈ XE thenx(ti+1) ∈ XE. This completes the
proof.

Remark5. The assumption (3.11) is a sufficient condition which ensures the recursive feasibility of
the control problem. This inequality can be interpreted as conditions on the samplingtime δ and the
control horizonT in order for the problem to remain feasible. Indeed, if we upper bound theterm
supt∈[ti ;ti+1]

(‖w∗
i −wS

i ‖), then, on line, we can think to a strategy which uses the current value ofr i to
adjust the sampling time or the prediction horizon. It is important to see that the formulationof lemma
1 is highly related to our definition of feasibility and that a stronger definition of thislatter will imply a
simpler formulation of the former.

Lemma 2 links the discrete variations of the value functionV at sampling time to the integral of the
stage cost.
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Lemma 2. If the assumptions of lemma 1 hold, then we have:

V(x(ti+1))−V(x(ti))≤−
∫ ti+1

ti
F(x(xi ,u

∗
i ,w

S
i , ti ;s),u

∗
i ,w

S
i )ds. (3.21)

Proof. Let us compare the value ofJti (u∗i , w̄) andJti+1(ū,w∗
i+1), whereū∈U andw̄∈W are defined as

follows:

ū(t) =

{

u∗i (t), if t ∈ [ti+1; ti +T[,
fE(x(t)), if t ∈ [ti +T; ti+1+T],

and

w̄(t) =

{

wS
i (t), if t ∈ [ti ; ti+1[,

w∗
i+1(t), if t ∈ [ti+1; ti +T],

wherewS
i is defined in lemma 1. The disturbancew∗

i+1 is well defined because of lemma 1.
First let us expressJti (u∗i , w̄):

Jti (u∗i , w̄) = E(x(xi ,u
∗
i , w̄, ti ; ti +T))+

∫ ti+T

ti
F(x(xi ,u

∗
i , w̄, ti ;s),u

∗
i , w̄)ds,

= E(x(xi ,u
∗
i ,w

∗
i+1, ti ; ti +T))+

∫ ti+1

ti
F(x(xi ,u

∗
i ,w

S
i , ti ;s),u

∗
i ,w

S
i )ds

+
∫ ti+T

ti+1

F(x(xi ,u
∗
i ,w

∗
i+1, ti ;s),u

∗
i ,w

∗
i+1)ds.

(3.22)

Then let us expressJti+1(ū,w∗
i+1):

Jti+1(ū,w∗
i+1) = E(x(xi+1, ū,w

∗
i+1, ti+1; ti+1+T))+

∫ ti+1+T

ti+1

F(x(xi+1, ū,w
∗
i+1, ti+1;s), ū,w∗

i+1)ds,

= E(x(xi+1, fE,w
∗
i+1, ti+1; ti+1+T))+

∫ ti+T

ti+1

F(x(xi+1,u
∗
i ,w

∗
i+1, ti+1;s),u∗i ,w

∗
i+1)ds

+
∫ ti+T

ti+T
F(x(xi+1, fE,w

∗
i+1, ti+1;s), fE,w

∗
i+1)ds.

(3.23)

It is deduced from the definition ofwS
i and theorem 1 that for allt ∈ [0;T] the state trajectories are

such that:
x(xi , ū, w̄, ti ; ti+1+ t) = x(xi+1, ū, w̄, ti+1; ti+1+ t).

And so, using (3.22) and (3.23), it is deduced that:

Jti+1(ū,w∗
i+1)−Jti (u∗i , w̄) =−

∫ ti+1

ti
F(x(xi ,u

∗
i ,w

S
i , ti ;s),u

∗
i ,w

S
i )ds

+E(x(xi+1, fE,w
∗
i+1, ti+1; ti+1+T))−E(x(xi+1,u

∗
i ,w

∗
i+1, ti+1; ti +T))

+
∫ ti+1+T

ti+T
F(x(xi+1, fE,w

∗
i+1, ti+1;s), fE,w

∗
i+1)ds

(3.24)

Let us integrate the second inequality of Assumption 8 betweenti + T and ti+1 + T with w(t) =
w∗

i+1(t). Using the remark 4,we obtain the following inequality:

E(x(xi+1, fE,w
∗
i+1, ti+1; ti+1+T))−E(x(xi+1,u

∗
i ,w

∗
i+1, ti+1; ti +T))

+
∫ ti+1+T

ti+T
F(x(xi+1, fE,w

∗
i+1, ti+1;s), fE,w

∗
i+1)ds≤ 0.

(3.25)
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According to (3.25), the inequality (3.24) becomes:

Jti+1(ū,w∗
i+1)−Jti (u∗i , w̄)≤−

∫ ti+1

ti
F(x(xi ,u

∗
i ,w

S
i , ti ;s),u

∗
i ,w

S
i )ds.

Finally using the saddle point inequalities (3.9), we can deduce that:

V(x(ti+1))−V(x(ti))≤−
∫ ti+1

ti
F(x(xi ,u

∗
i ,w

S
i , ti ;s),u

∗
i ,w

S
i )ds. (3.26)

Lemma 3 provides an upper-bound of the value function for all states in the final setΩ fE
a .

Lemma 3. Under Assumptions 7 and 8, if x(ti) ∈ Ω fE
a then V(x(ti))≤ E(x(ti)).

Proof. The setΩ fE
a is RCPI under the feedback controllerfE. Under Assumption 7, we have for all

x∈ Ω fE
a ‖ fE(x)‖ ≤ uM. As the state trajectory is forward complete and absolutely continuous, the signal

fE(x(t)) resulting from the application of the controllerfE along the state trajectory is inL2(I), whereI
is an interval of lengthT.

Assume thatx(ti) ∈ Ω fE
a . To avoid possible confusion, let us introducef ti

E ∈U defined as follows

f ti
E : [ti ; ti +T]→ Rnu,

t → fE(x(t)).

Using the right hand side of (3.9) with thea priori suboptimal control signalu= f ti
E we have:

V(x(ti))≤ Jti ( f ti
E,w

∗
i ). (3.27)

Let us consider the inequality of Assumption 8 along a state trajectory (this makes sense because it
is assumed thatx(ti) ∈ Ω fE

a ) with w= w∗
i . Then for allt ∈ [ti ; ti +T], we have:

∇ E(x(xi , f ti
E,w

∗
i , ti ; t))

T .G (x(xi , f ti
E,w

∗
i , ti ; t), f ti

E,w
∗
i )+F(x(xi , f ti

E,w
∗
i , ti ; t), f ti

E,w
∗
i )≤ 0.

Let us integrate this inequality betweenti andti +T, according to remark 4 we obtain:

−E(x(ti))+E(x(xi , f ti
E,w

∗
i , ti ; ti +T))+

∫ ti+T

ti
F(x(xi , f ti

E,w
∗
i , ti ;s), f ti

E,w
∗
i )ds≤ 0. (3.28)

Using the expression ofJti ( f ti
E,w

∗
i ), inequality (3.28) becomes:

Jti ( f ti
E,w

∗
i )−E(x(ti))≤ 0.

And so using the saddle point inequality (3.9) we deduce that∀x(ti) ∈ Ω fE
a :

V(x(ti))≤ E(x(ti)).

The previous lemmas 1, 2 and 3 consider properties of the controlled systembetween two successive
sampling instants. From now on, they consider the complete controlled trajectory.
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Lemma 4. Under Assumptions 1 to 6, if the assumptions of lemma 1 hold, then there exists abounded
subset of XE which contains the origin such that for all bounded x(t0) ∈ XE the state trajectory reaches
this subset in finite time, the state trajectory is bounded and there exists a constant V̄ > 0 such that for
all bounded x∈ XE we have V(x)≤ V̄ .

Proof. We havex(t0) ∈ XE, soV(x0) is well defined and is finite (because the control and disturbances
are bounded and the state trajectory is absolutely continuous and forward complete).

For a givenn∈ N∗, for all t ∈ [t0, tn], let us introduce the following notation:

u∗(t) = u∗k(t) ∀t ∈ [tk; tk+1[, ∀k∈ {0, . . . ,n−1},
wS(t) = wS

k(t) ∀t ∈ [tk; tk+1[, ∀k∈ {0, . . . ,n−1}.

Let us introduce the following set:

X = {x∈ XE/αF(‖x‖)≤ βF(wM)+ ε},

whereε is a strictly positive constant.
First let us prove that for alli the value functionV is positive atx(ti). Using the left hand side of the

saddle point inequality (3.9) with a null disturbance signal, we have:

V(x(ti))≥ Jti (u∗i ,0)≥ 0, ∀i. (3.29)

Now let us prove that the controlled trajectoryx(x0,u
∗,wS, t0; t) reachX in finite time. Summing

the inequality of lemma 2 and using the inequality (3.29) we have:

0≤V(x(tn))≤V(x(t0))−
∫ tn

t0
F(x(x0,u

∗,wS, t0;s),u∗,wS)ds,

where for allt ∈ [ti ; ti+1] we havex(x0,u
∗,wS, t0; t) = x(xi ,u

∗
i ,w

S
i , ti ; t).

So it is deduced that:
∫ tn

t0
F(x(x0,u

∗,wS, t0;s),u∗,wS)ds≤V(x(t0)).

Using inequality (3.8) we have:

∫ tn

t0
αF(‖x(x0,u

∗,wS, t0;s)‖)−βF(‖wS‖)ds≤V(x(t0)). (3.30)

Let us prove that the state trajectory reachX in finite time by contradiction. Assume that the state
trajectory never reachX , i.e. for all t ≥ t0 x(x0,u∗,wS, t0; t) 6∈ X , then for alls∈ [t0; tn] we have:

αF(‖x(x0,u
∗,wS, t0;s)‖)−βF(‖wS‖)≥ ε.

And so inequality (3.30) becomes:
nδε ≤V(x(t0)). (3.31)

What leads to an absurdity because this inequality holds for alln, ε is constant andV(x(t0)) is finite.
This implies that the state trajectory reachesX in finite time.
Using lemma 1 we know that ifx(t0) is a feasible initial condition then, for allk ∈ N, x(tk) is also a

feasible solution. This implies that if the state trajectory leavesX then it returns inX in finite time.
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As the state trajectory is absolutely continuous and assumed to be forward complete, this implies that
the controlled state trajectory remains bounded.

The control input and the disturbances are assumed to belongs toU ×W, so they are a.e. bounded.
As F is assumed to be continuous in all its arguments andE is upper bounded by aK ∞ function, this
implies that the value functionV can not take an infinite value.

According to the expression ofV which is a function ofF andE, we deduce that for all bounded
x∈ XE we have sup

x∈XE

V(x)< ∞. So, there exists a positive constantV̄ < ∞ such that for allx∈ XE we have

V(x)≤ V̄.

Lemma 5 introduces a functioñV that satisfies the inequalities of discrete ISpS Lyapunov functions.

Lemma 5. Under Assumptions 1 to 6, if the assumptions of lemma 1 hold and if x(t0) ∈ XE is bounded
then there exists a functioñV : Rnx → R+ such that at each sampling instant the following inequalities
hold:

α1(‖x(ti)‖)≤ Ṽ(x(ti))≤ α2(‖x(ti)‖)+d1,

Ṽ(x(ti+1))−Ṽ(x(ti))≤−α3(‖x(ti)‖)+σ(wM)+d2,
(3.32)

where(α j) j=1,...,3 are inK
∞, σ is in K and(dk)k=1,2 are inR+.

Proof. Let us prove first that the value functionV can be upper bounded by aK ∞ function. We remind
that because of lemma 4, we know that for all boundedx ∈ XE there existsV̄ > 0 such that the value
function is uniformly bounded,i.e. for all x∈ XE we haveV(x)≤ V̄.

First, let us assume thatx(ti) ∈ Ω fE
a .

Using lemma 3 and Assumption 8, we have:

V(x(ti))≤ E(x(ti))≤ bE(‖x(ti)‖). (3.33)

Let us now consider the case wherex(ti) 6∈ Ω fE
a .

Let us callr ∈ R+∗ a constant such that{x∈ XE/‖x‖ ≤ r} ⊂ Ω fE
a and noteK = max

(

1,
V̄

bE(r)

)

.

As x(ti) 6∈ Ω fE
a , we havex 6∈ {x∈ XE/‖x‖ ≤ r} what implies that‖x(ti)‖> r. So it is deduced that for

all x(ti) 6∈ Ω fE
a we have

bE(‖x(ti)‖)
bE(r)

> 1 and so finally we have:

V(x(ti))≤ V̄ ≤ V̄
bE(‖x(ti)‖)

bE(r)
≤ KbE(‖x(ti)‖). (3.34)

This enables us to conclude on the upper bound ofV by aK
∞ function. Indeed, asK ≥ 1, according

to (3.33) and(3.34), for allx(ti) ∈ XE we have that:

V(x(ti))≤ βE(‖x(ti)‖), (3.35)

where
βE(s) = KbE(s). (3.36)

Let us now consider the lower bound onV and the upper bound on its variations.
First asx(t0) ∈ XE, using lemma 1, it is deduced that, for alli ∈ N, x(ti) ∈ XE. So, using theorem 1 ,

it is deduced that the state trajectory is absolutely continuous with respect to time.This implies that it is
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uniformly continuous with respect to time. This means that for allθ > 0, there existsξ (θ)> 0 such that
for any couple control disturbance(u,w) ∈U ×W we have:

‖x(xi ,u,w, ti; t)−x(ti)‖ ≤ θ, ∀t s.t. |t − ti | ≤ ξ (θ).

And so using the triangular inequality it is deduced that for allt such that|t − ti | ≤ ξ (θ) we have:

‖x(ti)‖−θ ≤ ‖x(xi ,u,w, ti; t)‖. (3.37)

To further proceed, let us distinguish two cases depending on whether wehave‖x(ti)‖> θ by intro-
ducing a constantε > 0 and comparing‖x(ti)‖ with θ + ε.

i) Case 1: if‖x(ti)‖ ≥ θ + ε > θ,

In this case the left hand side of inequality (3.37) can be lower bounded asfollows:

c‖x(ti)‖< ‖x(ti)‖−θ ≤ ‖x(xi ,u,w, ti; t)‖, (3.38)

wherec=
ε

ε +θ
.

Using inequalities (3.8) we can deduce that:

∫ ti+δ

ti
F(x(xi ,u,w, ti;s),u,w)ds≥

∫ ti+δ

ti
αF(‖x(xi ,u,w, ti;s)‖)−βF(‖w‖)ds,

≥
∫ ti+r(θ)

ti
αF(‖x(xi ,u,w, ti;s)‖)ds−δβF(wM),

(3.39)

wherer(θ) = min(δ,ξ (θ)), and then (according to (3.38)):

∫ ti+δ

ti
F(x(xi ,u,w, ti;s),u,w)ds≥

∫ ti+r(θ)

ti
αF(c‖x(ti)‖)ds−δβF(wM),

≥ r(θ)αF(c‖x(ti)‖)−δβF(wM),

≥ r(θ)αF(
c
2
‖x(ti)‖)−δβF(wM).

(3.40)

In the sequel let us introduce the followingK ∞ function:

α 0
F(s) = r(θ)αF(

c
2

s),

β0
F(s) = δβF(s).

(3.41)

Let us prove that the value function is lower bounded by aK
∞ function.

Using the definition of a saddle point (3.9) we have:

V(x(ti))≥ Jti (u∗i ,0). (3.42)

Using (3.8) and (3.38) it is deduced (as to obtain (3.40)) that for the couple control disturbances
(u∗i ,0) we have:

∫ ti+δ

ti
F(x(xi ,u

∗
i ,0, ti ;s),u

∗
i ,0)ds≥ α 0

F(‖x(ti)‖). (3.43)
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Using the definition ofJti (u∗i ,0) and inequality (3.43) we have:

Jti (u∗i ,0) = E(x(xi ,u
∗
i ,0, ti ; ti +T))+

∫ ti+T

ti
F(x(xi ,u

∗
i ,0, ti ;s),u

∗
i ,0)ds,

≥
∫ ti+δ

ti
F(x(xi ,u

∗
i ,0, ti ;s),u

∗
i ,0)ds,

≥ α 0
F(‖x(ti)‖).

(3.44)

So finally combining inequalities (3.42) and (3.44) it is deduced that we have:

V(x(ti))≥ α 0
F(‖x(ti)‖). (3.45)

Finally let us compute an upper bound on the differenceV(x(ti+1))−V(x(ti)).
Using the results of lemma 2 we have:

V(x(ti+1))−V(x(ti))≤−
∫ ti+1

ti
F(x(xi ,u

∗
i ,w

S
i , ti ;s),u

∗
i ,w

S
i )ds.

And so using the inequalities (3.40) it is deduced that we have:

V(x(ti+1))−V(x(ti))≤−α 0
F(‖x(ti)‖)+β0

F(wM). (3.46)

ii) Case 2: if‖x(ti)‖ ≤ θ + ε,

In this case we can not state on the sign of‖x(ti)‖−θ. However it is possible to rewrite inequality
(3.37) as follows:

0< ‖x(ti)‖+ ε ≤ ‖x(xi ,u,w, ti ; t)‖+θ + ε.

We have:
‖x(ti)‖+ ε ≥ (1+

ε
ε +θ

)‖x(ti)‖ ≥
ε

ε +θ
‖x(ti)‖.

So if ‖x(ti)‖ ≤ θ + ε we have:

c‖x(ti)‖ ≤ ‖x(xi ,u,w, ti ; t)‖+θ + ε. (3.47)

Let us add and subtractr(θ)αF(θ + ε) on the right hand side of (3.39). We can deduce that:

∫ ti+δ

ti
F(x(xi ,u,w, ti;s),u,w)ds≥

∫ ti+r(θ)

ti
αF(‖x(xi ,u,w, ti;s)‖)+αF(θ + ε)ds

−δβF(wM)− r(θ)αF(θ + ε).

Using the properties ofK function (item 12 of proposition 2, see 12.1) we have:

∫ ti+δ

ti
F(x(xi ,u,w, ti;s),u,w)ds≥

∫ ti+r(θ)

ti
αF(

1
2
(‖x(xi ,u,w, ti;s)‖+θ + ε))ds

−δβF(wM)− r(θ)αF(θ + ε).

And so finally using inequality (3.47), it is deduced that we have:

∫ ti+δ

ti
F(x(xi ,u,w, ti;s),u,w)ds≥

∫ ti+r(θ)

ti
αF(

c
2
‖x(ti)‖)ds−δβF(wM)− r(θ)αF(θ + ε),

≥ r(θ)αF(
c
2
‖x(ti)‖)−δβF(wM)− r(θ)αF(θ + ε).
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So finally, with the same steps as in case i), the following inequalities are deduced:

α 0
F(‖x(ti)‖)≤V(x(ti))+ r(θ)αF(θ + ε),

V(x(ti+1))−V(x(ti))≤−α 0
F(‖x(ti)‖)+β0

F(wM)+ r(θ)αF(θ + ε).
(3.48)

Conclusion

Let us define the functioñV(x(ti)) =V(x(ti))+ r(θ)αF(θ + ε). From (3.45) and (3.46) in case one,
(3.48) in case two and (3.35), it is deduced that

α 0
F(‖x(ti)‖)≤ Ṽ(x(ti))≤ βE(‖x(ti)‖)+ r(θ)αF(θ + ε),

Ṽ(x(ti+1))−Ṽ(x(ti))≤−α 0
F(‖x(ti)‖)+β0

F(wM)+ r(θ)αF(θ + ε),
(3.49)

wherer(θ) = min(δ,ξ (θ)), αF is defined in (3.8),α 0
F andβ0

F are defined in (3.41) andβE is defined in
(3.36).

So finally we have defined a functioñV(x(ti)) such that there exists threeK ∞ functionsα1 = α 0
F ,

α2 = βE andα3 = α 0
F , oneK functionσ = β0

F and two non negative constantsd1 = r(θ)αF(θ +ε) and
d2 = r(θ)αF(θ + ε) which verify inequalities (3.32).

3.3.2 Main results

Now we are in position to prove the required properties on the closed-loop trajectory. First, at each
sampling instant the state trajectory is proved to be UB. This result is adapted from the proof of robust
stability of min-max discrete MPC controllers (see e.g. [94]) thanks to the function Ṽ of lemma 5. Then
supplementary assumptions on the previously introducedK andK

∞ functions leads to ISpS results.

Theorem 2. Under Assumptions 1 to 6, if the assumptions of lemma 1 hold and if x(t0) ∈ XE is bounded,
then under the SPMPC controller, at each sampling instant, the state trajectoryis UB relatively to a sub-
set of XE which contains the origin, and is asymptotically stabilized to a bounded subset which contains
the origin.

Proof. The proof can be obtained by proceeding in three steps. First, the function Ṽ defined in lemma 5
is used to define a setΘ that is proved invariant. Then, a parametrized set of supersetsΘλ are introduced
and used to prove the UB property. Finally the trajectories are proved to asymptotically reach the setΘ.

In the sequel the variableθ, r(θ) and ε and the functionsβE, αF , α 0
F and β0

F are the same as
introduced in the proof of lemma 5.

(i) Prove that there exists a subsetΘ( XE which is invariant under the considered control law,

Using the functionṼ of lemma 5, let us prove that there existsb∈ K andc∈ R+ such that the set
Θ= {x∈ XE/Ṽ(x)≤ b(wM)+c}( XE is invariant at each sampling instant,i.e. if x(ti) ∈ Θ then for all
k∈ N x(ti+k) ∈ Θ.

Using the properties ofK function (item 11 of proposition 2, see 12.1), we have:

βE(‖x(ti)‖)+ r(θ)αF(θ + ε)≤ βE(‖x(ti)‖+θ + ε)+ r(θ)αF(‖x(ti)‖+θ + ε). (3.50)

According to the right hand side of the first inequality of (3.49) and inequality (3.50), we have:

Ṽ(x(ti))≤ β0
E(‖x(ti)‖+θ + ε), (3.51)
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where
β0

E(s) = βE(s)+ r(θ)αF(s). (3.52)

Sinceβ0
E ∈ K

∞, its inverse function exists, and then (3.51) becomes:

‖x(ti)‖+θ + ε ≥ (β0
E)

−1(Ṽ(x(ti))). (3.53)

Let γ(.) be a givenK ∞ function and let us consider the followingK ∞ function:

α 0
F(s) = min(α 0

F(
s
2
),γ(

s
2
)).

Using the properties ofK ∞ functions (item 12 of property 2, see 12.1) and inequality (3.53) we
have:

α 0
F(‖x(ti)‖)+γ(θ + ε)≥ α 0

F(‖x(ti)‖+θ + ε)

≥ α 0
F ◦ (β0

E)
−1(Ṽ(x(ti))).

(3.54)

Using inequalities (3.49) we have:

Ṽ(x(ti+1))≤ Ṽ(x(ti))−α 0
F(‖x(ti)‖)+β0

F(wM)+ r(θ)αF(θ + ε).

Adding and subtractingγ(θ+ε) on the right hand side of the previous inequality and using inequality
(3.54) it is deduced that we have:

Ṽ(x(ti+1))≤ (id−α 0
F ◦ (β0

E)
−1)(Ṽ(x(ti)))+γ(θ + ε)+β0

F(wM)+ r(θ)αF(θ + ε). (3.55)

As a composition of twoK ∞ functions,α 0
F ◦ (β0

E)
−1 is aK

∞ function, it is deduced that there exists
aK

∞ functionϑ which verifies the following inequality (item 13 of property 3, see 12.1):

ϑ (s)≤ α 0
F ◦ (β0

E)
−1(s). (3.56)

and which is such thats−ϑ (s) is aK function.
To simplify the notation, let us introduce the following function:

ρ(s) = γ(s)+ r(θ)αF(s). (3.57)

Using the functions defined in (3.56) and (3.57), (3.55) becomes:

Ṽ(x(ti+1))≤ (id−ϑ )(Ṽ(x(ti)))+ρ(θ + ε)+β0
F(wM). (3.58)

Assume thatx(ti)∈ Θ, then we have that̃V(x(ti))≤ b(wM)+c. As id−ϑ ∈K , and so is increasing,
it is deduced that (3.58) becomes:

Ṽ(x(ti+1))≤ (id−ϑ )(b(wM)+c)+ρ(θ + ε)+β0
F(wM). (3.59)

Let us choose:

b= (ϑ )−1◦ (2β0
F) ∈ K

∞,

c= (ϑ )−1◦ (2ρ)(θ + ε) ∈ R+.
(3.60)

Using (3.60) and item 12 of property 2 (see 12.1, in the special case whenθ1 = θ2 ) we deduce that:

b(wM)+c≥ (ϑ )−1(β0
F(wM)+ρ(θ + ε)

)

. (3.61)

So finally using (3.61), (3.59) becomes:

Ṽ(x(ti+1))≤ b(wM)+c.

This implies thatx(ti+1) ∈ Θ. Thus it is possible to show that ifx(ti) ∈ Θ, then for allk∈N, we have
x(ti+k) ∈ Θ. This proves that the introduced setΘ is invariant.
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(ii) Let us prove now that the state trajectory is UB relatively toΘλ .

Let us introduce the following set:

Θλ = {x∈ XE/Ṽ(x)≤ b(wM)+c+λ },

whereλ > 0.
First it is proved thatΘλ is invariant at each sampling time, using the same proof as forΘ. Indeed

the only point which changes is inequality (3.59) which becomes:

Ṽ(x(ti+1))≤ (id−ϑ )(b(wM)+c+λ )+ρ(θ + ε)+β0
F(wM). (3.62)

Using item 10 of property onK functions (see 12.1), inequality (3.62) becomes:

Ṽ(x(ti+1))≤ (id−ϑ )(b(wM)+c)+(id−ϑ )(λ )+ρ(θ + ε)+β0
F(wM).

And so finally we conclude that if we havẽV(x(ti))≤ b(wM)+c+λ then we have:

Ṽ(x(ti+1))≤ b(wM)+c+λ ,

what proves thatΘλ is invariant.
Let us introduce the following notation:

Vl = b(wM)+c> 0,

Vl ,λ = b(wM)+c+λ >Vl .

Let us prove the setΘλ is reached in finite time.
Inequality (3.58) can be rewritten:

Ṽ(x(ti+1))−Ṽ(x(ti))≤−ϑ (Ṽ(x(ti)))+β0
F(wM)+ρ(θ + ε), (3.63)

and inequality (3.61):
ϑ (Vl )≥ β0

F(wM)+ρ(θ + ε). (3.64)

So, from (3.63) it comes:

Ṽ(x(ti+1))−Ṽ(x(ti))≤−ϑ (Ṽ(x(ti)))+ϑ (Vl ). (3.65)

Assume that for allk≥ 0, x(ti+k) /∈ Θλ then, asϑ ∈ K , we have:

−ϑ (Ṽ(x(ti)))≤−ϑ (Vl ,λ ). (3.66)

It is then deduced from (3.65) that:

Ṽ(x(ti+1))−Ṽ(x(ti))≤−ϑ (Vl ,λ )+ϑ (Vl ),

and recursively that for allk≥ 0:

Vl ,λ ≤ Ṽ(x(ti+k))≤ Ṽ(x(ti))−k(ϑ (Vl ,λ )−ϑ (Vl )).

As ϑ ∈ K , for λ > 0 small enough, we haveϑ (Vl ,λ )− ϑ (Vl ) > 0. As the value ofṼ(x(ti)) is
bounded, the previous inequality leads to falsify the assumption. So it existsN such thatx(ti+N) ∈ Θλ .

So, for somēλ > 0 small enough, the setΘλ̄ ⊂ Rnx is such that for all initial conditionx(t0) ∈ XE,
there existsN ∈ N, such that, for allw ∈ W, for all k ≥ N, x(tk) ∈ Θλ̄ (convergence in finite time and
invariance property). The state trajectory is then UB in the setΘλ̄ .
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(iii) Finally, prove that the state trajectory asymptotically convergestoward Θ.

First, it is straightforward to prove that the previous conclusion also holdsfor all setsΘλ where
λ ≤ λ̄ . Let us then introduce the following strictly decreasing sequence(λn)n∈N that converges toward 0
defined as follows:

λn =
λ̄
2n .

Since the sequenceΘλn
is strictly decreasing in the sense of the inclusion, we have:

Θ=
⋂

n∈N
Θλn

So, it is deduced that the state trajectory is asymptotically stabilized inΘ.

Now, let us prove that under supplementary assumptions on the stage costF and the final costE, the
system is ISpS at each sampling instant.

Theorem 3. Under Assumptions 1 to 6, if the assumptions of lemma 1 hold and if x(t0) ∈ XE is bounded,
if there exists a,b,λ ∈ R∗+ with a< b such thatα 0

F(s) ≥ asλ andβE(s) ≤ bsλ then under the SPMPC
controller, at each sampling instant, the system is ISpS.

Proof. Using lemma 5 to only consider sampling instant, the idea of the proof is inspired fromthe proof
in the full discrete setting (see e.g. [95]).

Using the assumptions onα 0
F andβE, the inequalities (3.49) of lemma 5 become:

a‖x(ti)‖λ ≤ Ṽ(x(ti))≤ b‖x(ti)‖λ + r(θ)αF(θ + ε),

Ṽ(x(ti+1))−Ṽ(x(ti))≤−a‖x(ti)‖λ +β0
F(‖wM‖)+ r(θ)αF(θ + ε).

(3.67)

To simplify the notation, letd denotesd = r(θ)αF(θ + ε).
The right hand-side of the first inequality of (3.67) is used to get a lower bound of‖x(ti)‖λ that leads

to:
Ṽ(x(ti))−a‖x(ti)‖λ ≤

(

1− a
b

)

Ṽ(x(ti))+
a
b

d. (3.68)

Let us introduceτ =
a
b
∈]0;1[, since it is assumed thata< b.

Using (3.68), the second inequalities of (3.67) becomes:

Ṽ(x(ti+1))≤ Ṽ(x(ti))−a‖x(ti)‖λ +β0
F(‖wM‖)+d,

≤ (1− τ )Ṽ(x(ti))+β0
F(‖wM‖)+(1+ τ )d.

And so we have:

Ṽ(x(ti+1))≤ (1− τ )i+1Ṽ(x(t0))+
(

β0
F(‖wM‖)+(1+ τ )d

)

i

∑
k=0

(1− τ )k,

≤ (1− τ )i+1Ṽ(x(t0))+
(

β0
F(‖wM‖)+(1+ τ )d

) 1
τ
(1− (1− τ )i+1).

(3.69)

Combining (3.69) with the left hand side of the first inequality of (3.67), wheni = 0, we have:

Ṽ(x(ti+1))≤ (1− τ )i+1(b‖x(t0)‖λ +d)+(β0
F(‖wM‖)+(1+ τ )d)

1
τ
(1− (1− τ )i+1),

≤ (1− τ )i+1b‖x(t0)‖λ +
1
τ

β0
F(‖wM‖)+

(

1+
1
τ

)

d.
(3.70)
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Combining (3.70) with the right hand side of the first inequality of (3.67) we have:

a‖x(ti+1)‖λ ≤ (1− τ )i+1b‖x(t0)‖λ +
1
τ

β0
F(‖wM‖)+

(

1+
1
τ

)

d. (3.71)

Furthermore, using the convexity property of the functions→ s1/λ , ∀x,y,z≥ 0 we have:

(x+y+z)
1
λ ≤ (3x)

1
λ +(3y)

1
λ +(3z)

1
λ . (3.72)

So combining (3.72) and (3.71) we deduce the following inequality:

‖x(ti+1)‖ ≤
(

3
a
((1− τ )i+1b‖x(t0)‖λ )

) 1
λ
+

(

3
aτ

β0
F(‖wM‖)

) 1
λ
+

(

3
a
(1+

1
τ
)d

) 1
λ

≤
(

3
a
((1− τ )i+1b)

) 1
λ
‖x(t0)‖+

(

3
aτ

β0
F(‖wM‖)

) 1
λ
+

(

3
a
(1+

1
τ
)d

) 1
λ
.

(3.73)

To conclude, we have found aK L functionβ((x0, i)) =

(

3
a
((1− τ )i+1b)

) 1
λ
‖x0‖, a K function

γ(s) =
(

3
aτ

β0
F(s)

) 1
λ

and a non negative constantD =

(

3
a
(1+

1
τ
)d

) 1
λ

such that:

‖x(ti)‖ ≤ β((x(t0), i))+γ(‖wM‖)+D.

According to definition 4, this proves that at each sampling instant the system is ISpS.

So far, we have presented a SPMPC controller and have proved that under some assumptions this
controller ensure good stability properties of the closed-loop system. To ensure these properties, one of
the central issue is to satisfy Assumptions 7 and 8. These assumptions deal with the existence of a final
costE and the existence of a robust controlled positive invariant setΩ fe

a . The aim of the next section is
to present algorithms to compute these elements for a given control problem.

3.4 Formulation of the final cost and the terminal state constraint

3.4.1 Formulation of the problem

One of the key issue with MPC controller is the stability property of the closed-loop. To ensure good
properties of the controller, one of the classical method consists in adding afinal cost and a terminal set
constraint in the optimization problem, see e.g. [26]. As for NMPC, it has been proved that by adding
a final cost and a terminal state constraint in the optimization problem, the SPMPC controller ensures
good stability properties. Using what is classically done in the framework of aNMPC controller (see
e.g. [110]), the aim of this section is to present algorithms to compute these elements in the framework
of the here presented controller.

To do so, we will assume that the system dynamic is described by (3.1) (possibly to be understood
in an integral form). In the sequel it is assumed that the assumptions 1 to 4 are satisfied. Also, we will
consider a quadratic stage cost

F(x,u,w) = ‖x‖2
R+‖u‖2

α −‖w‖2
Q, (3.74)



52 CHAPTER 3. SADDLE POINT MPC: STABILITY PROPERTIES

whereR, α andQ are symmetric definite positive matrices (it is clear thatF satisfies Assumption 5 with
αF(‖x‖) = λmin(R)‖x‖2 andβF(‖w‖) = λmax(Q)‖w‖2).

To solve the final cost problem, we are interested in computing a control inputfE which locally
stabilizes the system. Practically, this controller won’t be applied to the system. Indeed, in the previously
presented control strategy, we have retained a quasi-infinite strategy [26]. This means that the final
controller is just used to provide an upper bound on the value functionV but will never be really applied
to control the system. This implies that we are not interested in finding efficientcontroller but more in
finding a simple one. That is why we will look for a simple linear state feedback. The main advantage
of this choice is that, using an adequate local formulation of the system dynamic, it becomes possible to
search for a quadratic final cost. As for the terminal state constraint, it willbe chosen as a level set of
E. More precisely, the final cost, the terminal state constraint and the corresponding controller will be
chosen as follows:

E(x) = xTSx, x∈ Rnx,

fE(x) = Kx, x∈ Rnx,

Ω fE
a = {x∈ XE/E(x)≤ γ},

(3.75)

whereS∈ Rnx,nx is a symmetric definite positive matrix,K ∈ Rnx,nu andγ ∈ R+∗ will be chosen such
that all the supplementary constraints on the state and on the control input are satisfied within the corre-
sponding subspace.

In this section, we will present two algorithms to compute a final cost and a terminal state constraint
based on differential inclusion representation. The concept of differential inclusion is a generalization of
the concept of differential equation (see e.g. [17]) where the derivatives is no longer equal to a function
but belongs to a given set. The first algorithm will rely on a local polytopic linear differential inclusion
(LDI) embedding of the full nonlinear disturbed dynamics (3.1). The secondalgorithm will assume that a
linear representation of (3.1) through introduction of a norm bounded differential inclusion is possible. In
both cases, the idea is to recast the original problem of computing a final costand a RCPI set using linear
matrix inequalities. Thus, using usual LMI solvers, e.g. the Matlab toolbox [55], the original problem
will be solved. Also, in order to simplify the computation, we will consider strict inequalities for the
inequalities (3.10). Of course, the thus obtained final cost will then satisfyAssumption 8. Finally, in a
last part the previously presented algorithm will be adjusted in order to take into account supplementary
constraints on the control input and on the state.

This section is organized as follows. First an algorithm to compute a final cost through a polytopic
LDI is presented. Then an algorithm to compute a final cost through a norm bounded LDI is presented.
Finally, an algorithm to compute the parameterγ which defines the terminal state constraint is presented
for the two previous algorithms.

3.4.2 Formulation via Polytopic Linear Differential Inclusion

First, we will be interested in representing (locally) the original differential equation (3.1) via a polytopic
linear differential inclusion (PLDI). This corresponds to the special case of a differential inclusion where
the derivative belongs to a set which is described by a convex set of finite vertices and each vertex
is described by a linear function. To solve the final cost and the terminal state constraint computation
problem, we will be interested in controlling this PLDI. Because it is assumed thatthe considered control
problem satisfies Assumption 4, then a local PLDI embedding is possible (see e.g.[19]).

Many papers have dealt with the problem of controlling such a LDI, see e.g.[75] and the references
therein. Even if it is well known that for a PLDI a convex hull Lyapunov function provides controller
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which show better performances (see e.g. [74]), for simplicity reasons,we will focus on the problem of
finding a common (quadratic) Lyapunov function (and a corresponding controller) for all vertices. By
doing so, the final cost will simply be equal to this Lyapunov function and the terminal state constraint
will be defined as a level-set of the final cost. The main drawback of this approach is that the subset
corresponding to the terminal state constraint will be possibly small.

In the sequel, let us assume that, locally, the full nonlinear system (3.1) is embedded in the following
PLDI:

dx
dt

∈ co{Aix+B1,iw+B2,iu, i = 1, . . . ,N}, (3.76)

where co{.} denotes the convex hull of a set, for alli ∈ {1, . . . ,N} the matricesAi , B1,i andB2,i are given
constant,x ∈ Rnx is the state,w∈ Rnw is the disturbance,u∈ Rnu is the control input andN > 0 is the
number of vertices of the PLDI.

As we consider a PLDI it is possible to express
dx
dt

as follows:

dx
dt

=
N

∑
i=1

βi(t)(Aix+B1,iw+B2,iu) , (3.77)

where for allt ≥ 0, βi(t)≥ 0, for all i = 1, . . . ,N, and
N

∑
i=1

βi(t) = 1.

According to (3.74) and the expression of the derivative given by (3.77), the second inequality of
Assumptions 8 becomes:

N

∑
i=1

βi(t)(∇ xE(x)
T (Aix+B1,iw+B2,i fE(x))+‖x‖2

R+‖ fE(x)‖2
α −‖w‖2

Q)< 0. (3.78)

Using the final controllerfE and the final costE given by (3.75), inequality (3.78) can be rewritten
as follows:

N

∑
i=1

βi(t)
(

2xTS((Ai +B2,iK)x+B1,iw)+xTRx+xTKTαKx−wTQw
)

< 0. (3.79)

Inequality (3.79) has to hold everywhere on the PLDI. This implies that this inequality holds if and
only if it holds for all family of (βi)i∈{1,...,N}. So for all i ∈ {1, . . . ,N} we have to solve inSandK the
following inequalities:

2xTS((Ai +B2,iK)x+B1,iw)+xT (R+KTαK
)

x−wTQw< 0.

And then to solve
(

x
w

)T((
2S(Ai +B2,iK) SB1,i

∗ −Q

)

+

(

R+KTαK 0
0 0

))(

x
w

)

< 0. (3.80)

Since the matricesRandα are symmetric definite positive, we have:

(

R+KTαK 0
0 0

)

=

(

R
1
2 KTα 1

2

0 0

)(

Inx 0
0 Inu

)

(

R
1
2 0

α 1
2 K 0

)

,

whereIn stands for the n-dimensional identity matrix (the exponent
1
2

indicates that we consider the

square root of the corresponding matrix).
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If the matrix in the inequality (3.80) were to be semi-definite negative then this inequality would
be true for allx and for allw and so in particular for the subsets we are interested in. So instead of
considering the inequality (3.80), let us search forSandK such that the following condition holds:

(

2S(Ai +B2,iK) SB1,i

∗ −Q

)

+

(

R
1
2 KTα 1

2

0 0

)(

Inx 0
0 Inu

)

(

R
1
2 0

α 1
2 K 0

)

< 0. (3.81)

Let us factorize the previous inequalities as follows (sinceST = S):

(

S 0
0 Inw

)((

2(Ai +B2,iK)S−1 B1,i

∗ −Q

)

−
(

S−1R
1
2 S−1KTα 1

2

0 0

)(

−Inx 0
0 −Inu

)

(

R
1
2 S−1 0

α 1
2 KS−1 0

))

(

S 0
0 Inw

)

< 0.

(3.82)

As S is assumed to be symmetric definite positive, this, in turn, is equivalent to the following matrix
inequality:

(

2(Ai +B2,iK)S−1 B1,i

∗ −Q

)

−
(

S−1R
1
2 S−1KTα 1

2

0 0

)(

−Inx 0
0 −Inu

)

(

R
1
2 S−1 0

α 1
2 KS−1 0

)

< 0. (3.83)

Using the Schur complement, the previous inequality is equivalent to the followinginequality:









2(Ai +B2,iK)S−1 B1,i S−1R
1
2 S−1KTα 1

2

∗ −Q 0 0
∗ ∗ −Inx 0
∗ ∗ ∗ −Inu









< 0. (3.84)

By introducing the notationS=S−1 andY=KS, it is finally deduced that the solution of an inequality
on a vertex is given by the solution inSandY of the following LMI (for all i = 1, . . . ,N):

Di =









Mi(S,Y) B1,i SR
1
2 YTα 1

2

∗ −Q 0 0
∗ ∗ −Inx 0
∗ ∗ ∗ −Inu









< 0. (3.85)

whereMi(S,Y) = AiS+SAT
i +B2,iY+YTBT

2,i .
And so, using the usual tool to solve LMI, it is possible to solve the final cost and the terminal state

constraint problem by solving the following LMI:

diag(D1, . . . ,DN)< 0.

3.4.3 Formulation via Norm Bounded Differential Inclusion

In the previous section, we have assumed that the full nonlinear system can be described thanks to a
PLDI. One difficulty when practically using this algorithm is that the number of vertices can be too large
in order to obtain an easy to use embedding. That is why, in this section, we will consider an other
formulation based on a norm bounded differential inclusion (NLDI) embedding.
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Assume that the nonlinear system (3.1) can be embedded in a NLDI representation, then the differ-
ential equation can be rewritten as the following linear time varying system (see e.g. [19]):

dx
dt

= (A+∆A(t,x))x+(B1+∆B1(t,x))w+(B2+∆B2(t,x))u+∆ f (t,x), (3.86)

where∆A(t,x) = M∆(t,x)NA, ∆B1(t,x) = M∆(t,x)NB1, ∆B2(t,x) = M∆(t,x)NB2, where the matricesA,
B1, B2, M, NA, NB1 andNB2 have adequate dimensions and are known and constants. The matrix∆(t,x)
and the vector∆ f (t,x) are assumed to satisfy the following relations (for allt and for allx)

‖∆ f (t,x)‖ ≤ ‖Wx‖,
∆(t,x)T∆(t,x)≤ I ,

(3.87)

where the matrixW is known and constant.
Using (3.86), the second inequality of Assumption 8 can be rewritten as follows:

∇ xE(x)
T ((A+M∆(t,x)NA)x+(B1+M∆(t,x)NB1)w+(B2+M∆(t,x)NB2) fE(x)+∆ f (x))

+‖x‖2
R+‖ fE(x)‖2

α −‖w‖2
Q < 0.

(3.88)

According to (3.75), the previous inequality becomes:

2xTS((A+B2K)x+B1w)+xT(R+KTαK)x−wTQw

+2xTSM∆(t,x)NAx+2xTSM∆(t,x)NB1w+2xTSM∆(t,x)NB2Kx

+2xTS∆ f (t,x)< 0.

(3.89)

So,

(

x
w

)T((
2S(A+B2K) SB1

∗ −Q

)

+

(

R+KTαK 0
0 0

)

+ 2

(

SM∆(t,x)
0

)

(

NA+NB2K NB1

)

)(

x
w

)

+2xTS∆ f (t,x)< 0.

(3.90)

The idea is now to suppress the term∆(t,x) and∆ f (t,x) of the previous matrix inequality. To do
so let us express some inequalities by using the following inequality±2uv≤ uTSu+ vTS−1v for any
symmetric definite positive matrixS. We have for allε > 0 andε0 > 01:

2

(

x
w

)T(
SM∆(t,x)

0

)

(

(NA+NB2K) NB1

)

(

x
w

)

≤

ε
(

x
w

)T(
SM∆(t,x)

0

)

(

∆(t,x)TMTS 0
)

(

x
w

)

+
1
ε

(

x
w

)T(
(NA+NB2K)T

NT
B1

)

(

(NA+NB2K) NB1

)

(

x
w

)

,

2xTS∆ f (t,x)≤ ε0xTSTSx+
1
ε0
‖∆ f (t,x)‖2.

(3.91)

1ε andε0 will be chosen appropriately later (when solving the corresponding matrices inequalities).



56 CHAPTER 3. SADDLE POINT MPC: STABILITY PROPERTIES

Since∆(t,x)T∆(t,x)≤ I and‖∆ f (t,x)‖ ≤ ‖Wx‖, we can deduce that:

2

(

x
w

)T(
SM∆(t,x)

0

)

(

(NA+NB2K) NB1

)

(

x
w

)

≤ 1
ε

(

x
w

)T(
(NA+NB2K)T(NA+NB2K) (NA+NB2K)TNB1

∗ NT
B1

NB1

)(

x
w

)

+ εxTSMMTSx,

2xTS∆ f (x)≤ ε0xTSSx+
1
ε0

xTWTWx.

(3.92)

Using (3.92), inequality (3.90) becomes:

(

x
w

)T((
2S(A+B2K)+ εSMMTS+ ε0SS SB1

∗ −Q

)

+

(

T(K,ε,ε0)
1
ε (NA+NB2K)TNB1

1
ε NT

B1
(NA+NB2K) 1

ε NT
B1

NB1

))(

x
w

)

< 0,

(3.93)

whereT(K,ε,ε0) = R+KTαK+
1
ε0

WTW+
1
ε
(NA+NB2K)T(NA+NB2K)

Also, we have

(

T(K,ε,ε0)
1
ε (NA+NB2K)TNB1

1
ε NT

B1
(NA+NB2K) 1

ε NT
B1

NB1

)

= PT









Inx 0 0 0
0 Inu 0 0
0 0 1

ε0
Inx 0

0 0 0 1
ε Inw









P,

(3.94)

whereP is defined as follows:

P=











R
1
2 0

α 1
2 K 0

W 0
(NA+NB2K) NB1











. (3.95)

By introducing the notationS= S−1 andY = KSand using the Schur complement, it is deduced that
the solution is given by the solution inS, Y, ε andε0 to the following LMI:

















M (S,Y) B1 SR
1
2 YTα 1

2 SWT YTNT
B2
+SNT

A
∗ −Q 0 0 0 NT

B1

∗ ∗ −Inx 0 0 0
∗ ∗ ∗ −Inu 0 0
∗ ∗ ∗ ∗ −ε0Inx 0
∗ ∗ ∗ ∗ ∗ −εInw

















< 0. (3.96)

whereM (S,Y) = AS+SAT +B2Y+YTBT
2 + εMMT + ε0Inx.

And so, using the usual tool to solve LMI, it is possible to solve the final cost and the terminal state
constraint problem.
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One advantage of the norm bounded formulation compared to the polytopic formulationis that in
this case we have only one LMI to solve (to be compared toN LMIs with the polytopic formulation).
However, this is at a non negligible cost, as this formulation is generally harder to get and the results are
generally more conservative. This can be interpreted in regards to the result mentioned in [91] which
suggests, under some assumptions, that a PLDI can be over bounded by a NLDI.

3.4.4 Formulation to consider state and input constraints

Formulation through a supplementary matrix inequality

In the two previous parts, we have been mainly interested in computing an adequate final cost and a
corresponding final controller. Concerning the terminal state constraint,we have just said that it can
be chosen as a level set of the final cost. In this part, we will give more detailson how to choose an
adequate level set such that the state constraints and the control input constraints are satisfied within
the corresponding level set. The idea of this part is to use the same idea as in[29] where a method to
compute a final cost and a terminal state constraint for NMPC controller is presented. The aim is to
slightly modify the previous LMIs to consider the constraints. In this part, the constraints are assumed
to be given as box constraints,i.e.:

−x≤ x≤ x,

−u≤ u≤ u,
(3.97)

wherex> 0 andu> 0 are given vector of constants of adequate dimension.
In the case whereu= Kx, whereK is a constant gain matrix, the previous state and input constraints

define a region in the state space defined as follows:

D = {x∈ Rnx, (c j +d jK)x≤ 1, j = 1, . . . , r}, (3.98)

whereci anddi are adequately chosen constant vectors andr is the number of constraints.
If it is desired that for allx∈ Ω fE

a the constraints (3.97) are satisfied, then it is sufficient to define the
level setE (γ) = {x∈ Rnx, xTSx≤ γ} such that:

E (γ)⊂ D. (3.99)

Using the results presented in [29], this implies that we have to search for aγ such that the following
condition holds

(c j +d jK)(γS−1)(c j +d jK)T < 1, j = 1, . . . , r. (3.100)

Using the Schur complement, this can be translated in the following matrix inequality:

(1
γ c jS+d jY

∗ S

)

≥ 0, j = 1, . . . , r. (3.101)

Adding (3.101) to the LMI used to compute the final cost then we can determine aterminal state
constraint such that for allx∈ Ω fE

a the constraints (3.97) are satisfied.
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Formulation through a LMI

We have presented the matrix inequality that has to be added in order to consider the supplementary
constraints (3.97). According to what has been done in [29], it is desiredto computeγ directly. The idea

is to use the new variableS
0
= γSandY0 = γY. In this case the LMI (3.101) becomes:

(

1 c jS
0
+d jY0

∗ S
0

)

≥ 0, j = 1, . . . , r. (3.102)

We can now adjust the LMI to compute the final cost.
First concerning the polytopic case, the LMI on a vertex, previously given by (3.85), is changed as

follows:

Di =









Mi(S,Y) γB1,i S
0
R

1
2 Y0,Tα 1

2

∗ −γQ 0 0
∗ ∗ −γInx 0
∗ ∗ ∗ −γInu









< 0. (3.103)

whereMi(S,Y) = AiS
0
+S

0
AT

i +B2,iY
0+Y0,TBT

2,i .

In this case, we can directly solve inγ, S
0

andY0 to compute a final cost, a final controller and a
terminal state constraint which satisfy the constraints.

Then, for the norm bounded case, we also need the following change ofvariableε0 = γε andε0
0 =

γε0. The LMI, previously given by (3.96), is changed as follows:


















M (S
0
,Y0) γB1 S

0
R

1
2 Y0,Tα 1

2 S
0
WT Y0,TNT

B2
+S

0
NT

A
∗ −γQ 0 0 0 γNT

B1

∗ ∗ −γInx 0 0 0
∗ ∗ ∗ −γInu 0 0
∗ ∗ ∗ ∗ −ε0

0 Inx 0
∗ ∗ ∗ ∗ ∗ −ε0Inw



















< 0. (3.104)

whereM (S
0
,Y0) = AS

0
+S

0
AT +B2Y

0+Y0,TBT
2 + ε0MMT + ε0

0 Inx.

In this case, we can directly solve inγ, S
0
, Y0, ε0 andε0

0 to compute a final cost, a final controller
and a terminal state constraint which satisfy the constraints.

Possibly, there are several solutions to the previous LMIs. That is why it isinteresting to introduce a
criterion to discriminate the one which is better. As previously mentioned, one issue when searching for
a final cost with a simple quadratic Lyapunov function instead of a quadratic hull is that the terminal state
constraint is possibly small. This has for consequence that the set of feasible initial stateXE may be quite
small. Thus, it can be interesting to retain the solution which maximizes the volume of the corresponding
level set. This leads to consider the following optimization problem:

PLDI formulation:

min
γ,S0

,Y0
logdet(S

0
)−1

s.t. LMIs (3.102) and (3.103)

NLDI formulation:

min
γ,S0

,Y0,ε0,ε0
0

logdet(S
0
)−1

s.t. LMIs (3.102) and (3.104)

(3.105)
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Finally to compute a final cost and a terminal state constraint for a given control problem, depending
on the chosen embedding, we have to solve one of the optimization problem (3.105).

3.5 Conclusion

In this chapter we have considered the extension of a MPC controller to the problem of robust control
of nonlinear systems described by ordinary differential equations in a sampled-data framework. This
has lead to the presentation of an open-loop sampled-data robust nonlinear predictive controller, that we
have called asaddle point MPCcontroller. The robust control problem is solved at each sampling instant
by considering the solution of a constrained saddle point optimization problem and then by applying the
usual predictive algorithm. Then, it has been proved, that if some assumptions are satisfied, then this
controller ensures UB, respectively ISpS, property of the controlled system. As for the usual stability
result of NMPC controller, the main assumptions needed to derive these resultsdeal with the existence
of a final cost and a terminal state constraint. As the needed property to compute these elements slightly
differ from the usual case, we have also considered two possible formulations based on differential
inclusion embedding to compute them.

If this approach theoretically shows interesting properties, it is not clear whether it is practically
interesting to use it. Indeed, to solve the robust control problem, we have to solve a constrained saddle
point optimization problem (given by (3.6)). This can be at the origin of some difficulties as such an
optimization problem is quite unusual from a control point of view. The next chapter will be interested
in presenting robust control problems and numerical methods to solve the corresponding saddle point
problem using gradient based algorithm and adjoint model formulation.
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4.1 Introduction

In chapter 3, we have presented a variant of the classical MPC, thesaddle point MPCcontroller, which
can robustly stabilized nonlinear system in a sampled-data framework. It has been proved that under
some assumptions, a system controlled thanks to this controller is ultimately bounded (respectively
input-to-state practically stable at each sampling instant). To compute the optimal control input, at each
sampling instant we have to solve a state-constrained saddle point optimization problem given by (3.6).
In regards to usual MPC algorithm, this optimization problem is quite unusual. This implies that it is of
prime importance to consider the numerical aspect. Indeed, the SPMPC controller can only be a viable
controller if it is possible to solve the corresponding optimization problem at each sampling instant.

The objective of this chapter is to present numerical methods to solve a given state-constrained sad-
dle point optimization problem. To do so, we intend to use optimization algorithms designedto solve an
state-unconstrained problem. That is why in a first step we will recast the original constrained optimiza-
tion problem in a state-unconstrained optimization problem by modifying, accordingto the constraints,
the functional that has to be optimized. The idea is to begin by characterizing theoptimal solution.
Then, on the basis of this characterization, the corresponding state-unconstrained saddle point optimiza-
tion problem is solved using usual gradient-based algorithm. In order to express the derivatives of the
criterion needed to build a numerical method, an adjoint model will be introduced.

This chapter is organized as follows. First we will consider the problem ofsolving a state-unconstrained
robust control problem. We begin to characterize the optimal solution. Then,using this characterization,
a numerical method, based on conjugate gradient, is formally presented. Ina second step, the more real-
istic case of a state-constrained robust control problem is envisaged. To find the solution, we propose an
algorithm which consists in introducing a modified functional, according to the constraints, to substitute
the original state-constrained optimization problem by a sequence of state-unconstrained optimization
problems. Finally, a method based on adjoint model is given to express the derivatives of the functional
that has to be optimized.

4.2 State-unconstrained Robust Control Problem

The control input of a SPMPC controller is given by the solution of a state-constrained saddle point opti-
mization problem given by (3.6). To solve this optimization problem, we intend to use numerical meth-
ods for state-unconstrained optimization problems. That is why in this section we will consider a state-
unconstrained robust control problem whose solution is given by the solution of a state-unconstrained
saddle point optimization problem. To solve this problem, we will first characterize the optimal condition
and then present a numerical method based on conjugate gradient algorithm.

4.2.1 Formulation of a state-unconstrained control problem and optimality conditions

Let us consider a state-unconstrained robust control problem whosesolution is supposedly given by the
solution of the following saddle point problem

(u∗,w∗) =arg inf
u∈Uad

sup
w∈Wad

J(u,w) = arg sup
w∈Wad

inf
u∈Uad

J(u,w),

s.t. the following system,
(4.1)

dx
dt

= G (x,u,w),

x(τ0) = y (be given inXE),
(4.2)
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wherex(t)∈Rnx, XE ⊂Rnx is a feasibility space,u(t)∈Rnu is the control input, interpreted as the control
vector of the first player, andw(t) ∈ Rnw stands for the disturbances, interpreted as thecontrol vector of
the second player. The functionG is assumed to satisfy assumptions 1, 2, 3 and 4. The control and the
disturbance setsUad andWad are assumed to be given non-empty, closed, convex and bounded subspace
of L2(I) whereI is an interval of lengthT. The given cost functionalJ(u,w) := J(x;u,w) is assumed to
be sufficiently regular.

Assume that the nonlinear control problem (4.1) admits an optimal solution(u∗,w∗)∈Uad×Wad, the
necessary conditions for this optimum are given by (see e.g. [10])

∫ t0+T

t0

(

∂J
∂u

(u∗,w∗)T(u−u∗)

)

ds≥ 0, ∀u∈Uad,

∫ t0+T

t0

(

∂J
∂w

(u∗,w∗)T(w−w∗)

)

ds≤ 0, ∀w∈Wad.

(4.3)

In order to solve numerically (4.1), it is necessary to derive the gradientof J with respect to the
control (u,w). For this, we suppose that the operatorF : (u,w) → F (u,w) of (4.2) is continuously
differentiable onUad×Wad and its derivativeω = F ′(u,w).(g,q) at point(u,w) in direction(g,q) is the
unique solution of

dω
dt

= ∇ xG (x,u,w)ω+ ∇ uG (x,u,w)g+ ∇ wG (x,u,w)q,

ω(τ0) = 0,
(4.4)

where∇ x stands for the gradient operator relatively tox, ∇ u stands for the gradient operator relatively
to u and∇ w stands for the gradient operator relatively tow. These equations will be used to obtain the
adjoint model needed to express the derivatives of the criterion.

To simplify the notation, in the sequel we notex= F (u,w).

Before further proceeding, it is worth mentioning that, in the unconstrained case, the gradient ofJ can
be calculated by introducing an adjoint model in the same way as for what is done in the state-constrained
case in the coming section 4.3.3.

4.2.2 A Gradient-based Optimization Method

Now that we have characterized the optimal solution of (4.1), we can presenta numerical algorithm in
order to solve the corresponding optimization problem.

To optimize a differentiable function, many techniques are available. Among them, some use the
gradient of the objective function to generate descent direction. The classical example belonging to this
class of algorithms is the steepest descent method, which is often very slow, or the Newton method,
which may not converge at all. There is also the powerful conjugate gradient algorithm [148]. This
optimization method is particularly interesting for large dimensional optimization problems as it can,
theoretically, minimize a positive definite quadratic function ofn variables in at mostn steps.

The good properties of conjugate gradient algorithm can be resumed as a good convergence speed,
at least faster than simple steepest descent, and good stability properties,at least better than Newton
methods. Furthermore, the conjugate gradient method do not need any information on the second order
derivatives of the function that has to be optimized.
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Conjugate Gradient Algorithm

The classical conjugate gradient method is presented in the case of the optimization problem given by
(4.1). The iterates of conjugate gradient to solve this optimization problem are obtained as follows:

u(k+1) = u(k)+γ(k)d(k)
u ,

w(k+1) = w(k)−δ(k)d(k)
w ,

(4.5)

whereγ(k) andδ(k) are step length which are computed by carrying out some line search (see e.g.[116]
or [34]) andd(k)

u andd(k)
w are descent direction given by (4.11). Let us present a possible algorithm to

solve this problem. If we noteH̃ (γ) = J(u(k)+ γd(k)
u ,w(k)) andR̃(δ) = J(u(k),w(k)−δd(k)

w ), then it is
possible to express the line search problem as the following optimization problem:

γ(k) = argmin
γ≥0

H̃ (γ),

δ(k) = argmax
δ≥0

R̃(δ).
(4.6)

In order to solve the line search problem, the usual algorithms need to evaluate the value of the
criterion J for various value of the step length. This implies that it it is needed to integrate various
trajectories which are virtually useless. This task can be time consuming. Thatis why, from the numerical
computational viewpoint, it is more efficient to compute admissible step length only approximately, e.g.
by using a first order Taylor development. Let us briefly explain how this algorithm work.

It is possible to express the approximated effect of a given step length(γ,δ) on the state trajectory
by considering a first order Taylor development as follows

F (u(k)+γd(k)
u ,w(k))≈ F (u(k),w(k))+γ

∂F

∂u
(u(k),w(k)).d(k)

u ,

F (u(k),w(k)−δd(k)
w )≈ F (u(k),w(k))−δ

∂F

∂w
(u(k),w(k)).d(k)

w ,

(4.7)

where∂F

∂u (u
(k),w(k)) is given byω(u(k),w(k),d(k)

u ,0) and ∂F

∂w (u(k),w(k)) is given byω(u(k),w(k),0,d(k)
w ).

The main interest of these approximate formulation is that we do not need to integrate supplementary
trajectories to evaluate the influence of a given step length what is computationallyefficient. In addition
if the functionalJ is quadratic, then, using (4.7), it is possible to give a formula to evaluate the value of
γ(k) andδ(k) solution of (4.6).

Let us assume thatJ is given as follows

J(u,w) =
∫

I

(

‖F (u,w)‖2
R+‖u‖2

α −‖w‖2
Q

)

ds, (4.8)

whereR, α andQ are given symmetric definite positive matrices.
Using (4.7), the functionH̃ andR̃ can be approximated by

H (γ) =
∫

I

(

‖F (u(k),w(k))+γ
∂F

∂u
(u(k),w(k)).d(k)

u ‖2
R+‖u(k)+γd(k)

u ‖2
α −‖w(k)‖2

Q

)

ds,

R(δ) =
∫

I

(

‖F (u(k),w(k))−δ
∂F

∂w
(u(k),w(k)).d(k)

w ‖2
R+‖u(k)‖2

α −‖w(k)−δd(k)
w ‖2

Q

)

ds.

(4.9)
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The functionH andR(δ) are quadratic polynomial whose derivatives are given by

∂H

∂γ
= 2

∫

I

(

γ
(

‖∂F

∂u
(u(k),w(k)).d(k)

u ‖2
R+‖d(k)

u ‖2
α

)

+

(

F (u(k),w(k))TR
∂F

∂u
(u(k),w(k)).d(k)

u +u(k)Tαd(k)
u

))

ds,

∂R

∂δ
= 2

∫

I

(

δ
(

‖∂F

∂w
(u(k),w(k)).d(k)

w ‖2
R+‖d(k)

w ‖2
Q

)

−
(

F (u(k),w(k))TR
∂F

∂w
(u(k),w(k)).d(k)

w +w(k)TQd(k)w

))

ds.

(4.10)

Using this approximate formulation of (4.6), it becomes straightforward to solve the line search problem.
The search directiond(k)

u andd(k)
w are given as follows

d(k)
ρ =















− ∂J
∂ρ

(u(k),w(k)) if k= 0

− ∂J
∂ρ

(u(k),w(k))+β (k)
ρ d(k−1)

ρ if k≥ 1
, (4.11)

whereβ (k)
ρ is a scalar andρ stands foru or w.

Well known conjugate gradient methods include Fletcher-Reeves method (FR) and the Polak-Ribiére-
Polyak (PRP) (see e.g. [10]). In these methods, the parameterβ (k)

ρ is given by:

β (k),(FR)
ρ =

‖ ∂J
∂ρ (u

(k),w(k))‖2

‖ ∂J
∂ρ (u

(k−1),w(k−1))‖2
, β (k),(PRP)

ρ =

∂J
∂ρ (u

(k),w(k))Ty(k−1)
ρ

‖ ∂J
∂ρ (u

(k−1),w(k−1))‖2
, (4.12)

wherey(k−1)
ρ =

∂J
∂ρ

(u(k),w(k))− ∂J
∂ρ

(u(k−1),w(k−1)).

There also exists hybrid method which were developed in order to benefit from the various advantages
of each coefficient. For instance, because of the good numerical behavior of the PRP method and the
good convergence of the FR method, the first hybrid conjugate gradientalgorithm was introduced in [6],
where the parametersβ (k)

ρ is computed as follows:

β (k),(TS)
ρ =

{

β (k),(PRP)
ρ if 0 ≤ β (k),(PRP)

ρ ≤ β (k),(FR)
ρ

β (k),(FR)
ρ otherwise

, (4.13)

Restart Procedure

As previously mentioned, the conjugate gradient method has the important property that it can theo-
retically minimize a positive definite quadratic function ofn variables inn steps. The problem is that
practically this result is rarely verified, e.g. because of numerical approximation. Also, the robust control
problem has no reason to be recast as a quadratic problem. A possibility to recover the good convergence
rate of the method is to introduce a restart procedure,i.e. to use a different descent direction whenever
some conditions are met. In the sequel, let us remind some classical restart algorithms.

The simplest restart procedure is to use a steepest descent everyr iterations (see e.g. [31]). The idea
is that near the solution, if the function to be minimized is sufficiently smooth, it is possibleto make a
Taylor development off at the second order. So, when the solution has entered thisquadraticregion,
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some huge progress can be envisaged by simply applying a restart with a steepest descent. The main
limitation of this method is that it is not clear how often this restart should be applied inorder to become
efficient.

It can be proved that the conjugate gradient methods yields descent direction which are orthogonal
(see e.g. [148] or [116]). The lost in the convergence rate is due to thelost of orthogonality between two
successive descent direction. That is why in [113] a restart procedure by a steepest descent algorithm is
envisaged whenever the orthogonality between two successive descent direction is too low,i.e. whenever:

∂J
∂ρ (u

(k),w(k))T ∂J
∂ρ (u

(k+1),w(k+1))

‖ ∂J
∂ρ (u

(k+1),w(k+1))‖2
≥ ν , (4.14)

whereρ stands either foru or w andν is a chosen positive constant (classicallyν = 0.1).
Finally, it is also possible to envisage more advanced restart algorithms which donot use a steepest

descent as restart directions. Among them it is possible to quote the Beale-Powell restart procedure (or
any modification of this latter as presented in [33]) which computes the restart direction as a sum of the
steepest descent, the previous descent direction and a third component, e.g. one of the previous descent
direction.

4.3 State-constrained Robust Control Problem

4.3.1 Formulation of a state-constrained robust control problem

From a more realistic point of view, the problem of robust control is formulatedas a state-constrained
optimization problem, e.g. in (3.6) a terminal state constraint is needed in order to ensure the stability
of the closed-loop. That is why in the sequel we are interested in the following state-constrained saddle
point optimization problem

(u∗,w∗) =arg inf
u∈Uad

sup
w∈Wad

J(u,w) = arg sup
w∈Wad

inf
u∈Uad

J(u,w),

s.t. system (4.2),

with c(x)≥ 0,

(4.15)

whereUad andWad are assumed to be given non-empty, closed, convex and bounded subspace ofL2(I)
whereI is an interval of lengthT. The functionc is real valued and assumed to be sufficiently regular.
The cost functionJ is given defined as follows:

J(u,w) = E(x(τ0+T))+
∫ τ0+T

τ0

F(x,u,w)ds, (4.16)

It is assumed that the stage costF satisfy assumption 5 and that the final costE satisfy assumption 8.

4.3.2 Formulation in state-unconstrained optimization problems

Motivation

In order to solve the state-constrained optimization problem given by (4.15),we are interested in using
the same algorithms as for the state-unconstrained optimization problem given by (4.1). To do so, we
need an algorithm to substitute the original state-constrained optimization problem bya sequence of
state-unconstrained ones. In this part, we propose a method which has been inspired by the augmented
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Lagrangian technique. This latter, which is a mixed between a simple penalty method (as for the log-
arithmic barrier method, see e.g. [69]) and a Lagrangian algorithm (see e.g. [116]), is often used as it
tends to yield less ill conditioned optimization problems than does a simple penalty methods.

Before further proceeding, let us briefly recall how this method works (for more details see e.g.
[116]).

The augmented Lagrangian method

The augmented Lagrangian algorithm is a method which combines a quadratic penaltyfunction with an
explicit Lagrange multiplierwhich is a supplementary variable that has to be estimated. Let us remind
how this algorithm works to handle an inequality constraint with the following simple minimization
example

min
x

f (x)

s.t. c(x)≥ 0,
(4.17)

wherex∈ Rn, f : Rn → R andc : Rn → R are sufficiently smooth.
First the problem is recast using a slack variables:

min
x,s

f (x)

s.t. c(x)−s= 0, s≥ 0,
(4.18)

Then we define the augmented Lagrangian in term of the equality constraintc(x)−s= 0:

min
x,s

f (x)−λ (c(x)−s)+
1

2µ
(c(x)−s)2

s.t. s≥ 0,
(4.19)

whereλ is a Lagrangian multiplier andµ stands for a strictly positive constant.
We can see that this problem is convex ins, so without any constraint we had the minimizer ins is

given by:
s= c(x)−µλ . (4.20)

If s< 0 then the optimal value ofs is 0, so finally we have:

s= max(c(x)−µλ ,0) (4.21)

This implies that the slack variables can be substitute. The augmented Lagrangian method for
inequality constraints consists in modifying the functionf as follows [116]

f̃ (x) = f (x)+Ψµ(c(x),λ ), (4.22)

where

Ψµ(z,λ ) =
{ −λ z+ 1

2µ z2 if z−µλ ≤ 0
− µ

2 λ 2 if z−µλ ≥ 0
, (4.23)

with (z,λ ) ∈ R2.
Then, to solve the original constrained optimization problem, we introduce a sequence of uncon-

strained problems for which it costs more and more to violate the constraints. To doso, the variableµ in
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the quadratic penalty function is defined by a sequenceµκ which decreased toward 0, e.g. by using the
following recurrence formula

µ(κ+1) = rµ(κ ) (4.24)

wherer is a constant in]0;1[ andκ stands for an iterate on the outer loop.
Nota bene: It is clear, forc sufficiently regular, that the function(x,λ )→ Ψµ(c(x),λ ) is continuous.

Indeed ifc(x)−µλ = 0, then we have:

−λ c(x)+
1

2µ
c(x)2 =−µ

2
λ 2 (4.25)

Moreover formally this function is differentiable and we have (according to (4.23)):

∇ xΨµ(c(x),λ ) =

{

∇ xc(x)
(

−λ + 1
µ c(x)

)

if c(x)−µλ ≤ 0,

0 if c(x)−µλ ≥ 0,
(4.26)

and
∂Ψµ

∂λ
(c(x),λ ) =

{

−c(x) if c(x)−µλ ≤ 0,
−µλ if c(x)−µλ ≥ 0.

(4.27)

Formulation of a state-unconstrained sub-problem

In order to consider the state-constraints in the optimization problem (4.15), wepropose an algorithm
based on the previously augmented Lagrangian techniques. To provide asolution of the original state-
constrained optimization problem, we introduce a sequence of state-unconstrained optimization prob-
lems by considering a strictly positive variableµ which converges toward 0 in an outer loop, e.g. using
the formula (4.24). Each subproblem is given by

(u∗, w̃∗) =arg inf
u∈Uad

sup
w̃∈W̃ad

L
µ

A (u, w̃) = arg sup
w̃∈W̃ad

inf
u∈Uad

L
µ

A (u, w̃),

s.t. system (4.2).
(4.28)

where the setsUad andW̃ad are assumed to be given non-empty, closed, convex and bounded subspace
of L2(I) whereI is an interval of lengthT and where the functionalL µ

A is defined by

L
µ

A (u, w̃) = J(u,w)+
∫ τ0+T

τ0

Ψµ(c(x),λ )ds, (4.29)

whereΨ is given by (4.23),c : Rnx → R, for all s, λ (s) ∈ R andw̃= (wT ,λ T)T .
As the saddle point optimization problem (4.28) is state-unconstrained, it is possible to solve it using

what has been previously presented. According to (4.3), the optimality conditions are given by:

∫ τ0+T

τ0

(

∂L
µ

A

∂u
(u∗, w̃∗)T(u−u∗)

)

ds≥ 0, ∀u∈Uad,

∫ τ0+T

τ0

(

∂L
µ

A

∂ w̃
(u∗, w̃∗)T(w̃− w̃∗)

)

ds≤ 0, ∀w̃∈ W̃ad.

(4.30)

In order to solve the state-unconstrained saddle point problem (4.28), we need to calculate the deriva-

tives
∂L

µ
A

∂u
and

∂L
µ

A

∂ w̃
. In the next part we will be interested in presenting a method based on adjoint

model to solve this issue.
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4.3.3 Adjoint Model and Optimality Conditions

The Fŕechet derivatives ofL µ
A at point(u, w̃) in direction(g,q) is given by

L
µ′

A (u, w̃).(g,q) = J′(u,w).(g,q)+
∫ τ0+T

τ0

Ψµ′(c(x),λ ).(g,q)ds, (4.31)

whereJ′( f ,w).(g,q) andΨµ′(c(x),λ ).(g,q) are given by

J′(u,w).(g,q) = ∇ xE(x(τ0+T))Tω(τ0+T)

+
∫ τ0+T

τ0

(

∇ xF(x,u,w)Tω(s)+ ∇ uF(x,u,w)Tg+ ∇ wF(x,u,w)Tqw
)

ds,

Ψµ′(c(x),λ ).(g,q) = ∇ x (Ψµ(c(x),λ ))T ω+

(

∂Ψµ

∂λ
(c(x),λ )

)T

qλ ,

(4.32)

whereq= (qw,qλ ), ∇ x (Ψµ(c(x),λ )) and
∂Ψµ

∂λ
(c(x),λ ) are given by (4.26) and (4.27), respectively.

Multiplying (4.4) by a sufficiently regular function ˜x and integrating by time, we can deduce that

∫ τ0+T

τ0

x̃T (∇ xG (x,u,w)ω+ x̃T ∇ uG (x,u,w)g+ x̃T ∇ wG (x,u,w)qw
)

ds

= x̃T(τ0+T)ω(τ0+T)−
∫ τ0+T

τ0

(

dx̃
dt

T

ω
)

ds.

(4.33)

Then
∫ τ0+T

τ0

(

ωT
(

∇ xG (x,u,w)T x̃+ ∇ x (Ψµ(c(x),λ ))+ ∇ xF(x,u,w)+
dx̃
dt

))

ds

+ω(τ0+T)T (∇ xE(x(τ0+T))− x̃(τ0+T))

+
∫ τ0+T

τ0

(

gT (∇ uG (x,u,w))T x̃+qT
w (∇ wG (x,u,w))T x̃

)

ds

=
∫ τ0+T

τ0

(

ωT (∇ x (Ψµ(c(x),λ ))+ ∇ xF(x,u,w))
)

ds

+ω(τ0+T)T ∇ xE(x(τ0+T)).

(4.34)

Assume now that ˜x is the unique solution of the following adjoint model

− dx̃
dt

= ∇ xG (x,u,w)T x̃+ ∇ xF(x,u,w)+ ∇ x(Ψµ(c(x),λ )) ,

x̃(τ0+T) = ∇ xE(x(τ0+T)),
(4.35)

According to (4.35), (4.34) becomes

∫ τ0+T

τ0

(

x̃T ∇ uG (x,u,w)g+ x̃T ∇ wG (x,u,w)qw
)

ds

=
∫ τ0+T

τ0

(

(∇ x (Ψµ(c(x),λ ))+ ∇ xF(x,u,w))T ω
)

ds

+ ∇ xE(x(τ0+T))Tω(τ0+T).

(4.36)
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And so (4.31) becomes

L
µ′

A (u, w̃).(g,q) =
∫ τ0+T

τ0

(

gT
(

(∇ uG (x,u,w))T x̃+ ∇ uF(x,u,w)
)

+qT
w

(

(∇ wG (x,u,w))T x̃+ ∇ wF(x,u,w)
)

+qλ

(

∂Ψµ

∂λ
(c(x),λ )

))

ds.
(4.37)

So, we can deduce the following expression of the gradient of the modified cost functional (in a weak
sense)

∂L
µ

A

∂u
(u, w̃) = ∇ uG (x,u,w)T x̃+ ∇ uF(x,u,w),

∂L
µ

A

∂ w̃
(u, w̃) =

(

∇ wG (x,u,w)T x̃+ ∇ wF(x,u,w)
∂Ψµ

∂λ (c(x),λ )

)

,

(4.38)

wherex is the solution of (4.2) with inputs(u,w) and x̃ is the solution of the adjoint problem (4.35)
corresponding to(u,w,x).

We can now give an algorithm to resolve the states-constrained saddle point problem (4.15).

4.3.4 State-constrained saddle point solver

To solve the state-constrained saddle point optimization problem (4.15), the first step consists in intro-
ducing a modified functional according to the results presented in section 4.3.2. Then according to the
results presented in section 4.2, we can use a conjugate gradient algorithm to solve the corresponding
optimization problem.

The solver is based on a conjugate gradient with hybrid coefficient (4.13). The interest of using
a restart will be evaluated by checking the orthogonality between two successive value of the gradient
according to (4.14). Because in the sequel the functionalJ is assumed to be quadratic, the step length
will be computed using the approximate formulation given by (4.9).

In order to give a better overview of the envisaged numerical methods, letus introduce the following
algorithms. The first algorithm (algorithm 1) shows how a given state-unconstrained problem can be
solved and the second one (algorithm 2) shows how the solution of the originalstate-constrained problem
is deduced from the solution of a sequence of state-unconstrained optimizationproblems.

The various trajectories are integrated using Runge-Kutta 54 method (see e.g. [32]).

4.4 Conclusion

In this chapter we have presented an algorithm to solve state-constrained saddle point optimization prob-
lems. To do so we have first considered the problem of solving a given state-unconstrained saddle point
optimization problem using conjugate gradient technique. Then, to solve the state-constrained optimiza-
tion problem, we have proposed an algorithm which consists in modifying the functional that has to
be optimized according to the constraints. All this has been done in order to replace the original state-
constrained optimization problem by a sequence of state-unconstrained optimization problems. This
strategy has been inspired from the well known augmented Lagrangian technique. Also, a technique
based on adjoint model has been presented to express the derivatives of the cost functional.

The solution of the SPMPC controller is given as the solution of a state-constrained saddle point
optimization problem. So using the result presented in this chapter, we can consider the problem of
applying this controller to a concrete control problem. This is the objective ofthe next chapter where
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Algorithm 1 Saddle point optimization problem (4.28) thanks to conjugate gradient algorithm

Require: y∈ XE, u(0) ∈Uad, w̃(0) ∈ W̃ad, Nmax∈ R+∗, εu ∈ R+∗, εw̃ ∈ R+∗,
1: k=0,

2: while (k≤ Nmax) and not ( ‖u(k)−u(k−1)‖
‖u(k−1)‖ ≤ εu and ‖w̃(k)−w̃(k−1)‖

‖w̃(k−1)‖ ≤ εw̃) do

3: Resolution of (4.2) (based on(u(k), w̃(k))) givesx(k),
4: Resolution of (4.35) (based on(u(k), w̃(k)) andx(k)) givesx̃(k),
5: Evaluate the gradient ofL µ

A at (u(k), w̃(k)) using equations (4.38) andx(k) andx̃(k),

6: Compute the descent directiond(k)
u andd(k)

w̃ according to formula (4.11) in whichJ plays the role
of L

µ
A and, if needed, a given coefficientβ (k),

7: If k≥ 1 consider the need for a restart,
8: Resolution of (4.4) (based on(u(k), w̃(k)), x(k), x̃(k), d(k)

u andd(k)
w̃ ) givesω(k),

9: Compute the step lengthγ(k) andδ(k) by solving (4.6)
10: Determine(u(k+1), w̃(k+1)) according to (4.5),
11: k := k+1,
12: end while
13: return (u∗µ , w̃

∗
µ) = (u(k+1), w̃(k+1)) andx∗µ = x(k+1) = F (u(k+1),w(k+1)).

Algorithm 2 Solving a state-constrained robust control problem thanks to a sequence of state-
unconstrained optimization problems

Require: y∈ XE, µ(0) ∈ R+∗, u(0) ∈Uad, w̃(0) ∈ W̃ad, Nmax∈ N+∗, r ∈]0,1[,
1: κ = 0,
2: while κ ≤ Nmaxand not (c(x)≥ 0) do

3: Express the functionalL µ(κ )

A according to (4.29),
4: Solve (4.28) usingalgorithm 1 gives(u∗µ(κ ) , w̃

∗
µ(κ )),

5: Setu(0) := u∗µ(κ ) andw̃(0) := w̃∗
µ(κ ) ,

6: µ(κ+1) := rµ(κ ),
7: κ := κ +1,
8: end while
9: return (u∗, w̃∗) = (u∗µ(κ+1) , w̃

∗
µ(κ+1)).

the here presented numerical method will be implemented to test the SPMPC control performances on a
classical control problem.
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5.1 Introduction

In chapter 3 we have presented from a theoretical point of view asaddle point model predictive controller.
When using this controller, the control input is given by the solution of a state-constrained saddle-point
optimization problem. As for the usual MPC algorithm, this control input is computed each time a new
measure is made available. Then, in chapter 4, we have proposed a numerical method which can be used
to solve the corresponding optimization problem.

The objective of this chapter is to test the good numerical implementation and control performances
on a concrete control example. The problem of controlling a disturbed in parameters Van der Pol oscil-
lator using a SPMPC controller is envisaged. Because of the relative simplicityof this example, we will
show how to formulate the final cost and the terminal state constraint problem using both a polytopic and
a norm bounded differential inclusion. Then it will be shown how the results of chapter 4 can be used to
express the derivatives of the criterion that has to be optimized. Finally the controller is tested in order
to stabilize the system at the origin.

This chapter is organized as follows. First, under constraints on the state,the final cost and the
terminal state constraint will be computed. Then, in order to use the algorithm presented in chapter 4, we
will express the adjoint model and the derivatives of the criterion. Finally, the controller performances
will be assessed via numerical simulation.

5.2 A disturbed in parameters Van der Pol Oscillator

In order to illustrate our approach, we consider the following Van der Pol oscillator:

dx1

dt
= x2,

dx2

dt
=−x1−

1
2

x2(1−x2
1)+x1u,

x(t0) = x0.

(5.1)

wherex=

(

x1

x2

)

is the state andu is the control input.

This example is taken from [39], where the solution of the corresponding Hamilton Jacobi Bellman
equation is computed and given byu∗ = −x1x2. The control aim is to stabilize the system at the origin
which is a stable but uncontrollable equilibrium point.

It is considered that the system parameters are disturbed leading to the following version of the Van
der Pol oscillator:

dx1

dt
= (1+w1)x2,

dx2

dt
=−(1+w2)x1−

1
2

x2(1−x2
1)+x1u,

x(t0) = x0,

(5.2)

where for allt we have(w1(t),w2(t)) ∈ [−0.1,0.1]× [−0.1,0.1]. For control purpose, the control is
assumed to be bounded as follows, for allt ≥ t0 u is such thatu(t) ∈ [−10,10].

The stage costF is chosen quadratic (3.74) with the following matrices:

R= I2, Q= 0.8I2, α = 10−6.

In order to use the algorithm presented in chapter 3, the final cost is chosen quadratic and the terminal
state constraint is chosen as a level set of the final cost.
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5.3 Computation of the final cost

To compute an adequate final cost and terminal state constraint which satisfyassumptions 7 and 8, we
are interested in finding the larger invariant set contained in(x1,x2) ∈ [−0.3,0.3]× [−0.3,0.3]. To do so,
we are interested in embedding the original dynamics in a differential inclusion.

It is clear that the controller given by the solution of the Hamilton Jacobi equationis better than a
simple linear state feedback. That is why it has been chosen to use this controller as a final controller.
That is fE is chosen as follows

fE(x) =−x1x2. (5.3)

Remark6. For all combination of(x1,x2) ∈ [−0.3,0.3]× [−0.3,0.3], we have thatfE(x) ∈ [−10,10].

As we have chosen not to compute the final controller simultaneously with the final cost, the differ-
ential inclusion will not be formulated using (5.2) but using the following differential equations:

dx1

dt
= (1+w1)x2,

dx2

dt
=−(1+w2)x1−

1
2

x2(1+x2
1),

x(t0) = x0.

(5.4)

Due to the retained form of the final controller, in order to use (3.105), wehave to setY = 0 andα = 0.
Because it is not trivial to determine which one of the PLDI or the NLDI representation provides the

largest terminal state constraint, we will consider the computation of the final costin both cases. The
method which provides the larger terminal set, according to the criterion (3.105), will be retained.

5.3.1 Computation via a PLDI embedding

The disturbed and controlled withfE(x) Van der Pol oscillator (5.4) can be expressed as follows:

dx
dt

=

(

0 1
−1 −1

2(1+x2
1)

)

x+

(

x2 0
0 −x1

)

w,

x(t0) = x0.

(5.5)

We search for a local embedding which is only valid for all(x1,x2) ∈ [−0.3,0.3]× [−0.3,0.3]. Thus,
the following PLDI embedding is easily deduced from the previous differential equations (see e.g. [91]):

dx
dt

=
8

∑
i=1

βi(t)(Aix+B1,iw) , (5.6)

where

Ai =

(

0 1
−1 −1

2

)

, ∀i ∈ {1,3,5,7},

Ai =

(

0 1
−1 −1.09

2

)

, ∀i ∈ {2,4,6,8},
(5.7)
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and

B1,i =

(

−0.3 0
0 0.3

)

, ∀i ∈ {1,2},

B1,i =

(

−0.3 0
0 −0.3

)

, ∀i ∈ {3,4},

B1,i =

(

0.3 0
0 0.3

)

, ∀i ∈ {5,6},

B1,i =

(

0.3 0
0 −0.3

)

, ∀i ∈ {7,8},

(5.8)

Then, using what has been presented in chapter 3, it is deduced that thematrixS in the final cost and
the parameterγ in the terminal state constraint are given as follows

S=

(

2.24 0.56
0.56 2.25

)

,

γ = 0.15.

(5.9)

The value of the objective function of the optimization problem (3.105) at the optimal solution is

logdet
(

S̄0
)−1

=−5.33. (5.10)

5.3.2 Computation via a NLDI embedding

Because of the simple structure of the disturbed Van der Pol oscillator (5.4), it is possible to embed it in
a norm bounded differential inclusion. Indeed, it can be rewritten as follows

dx
dt

=

(

0 1
−1 −1

2

)

x+

(

x2 0
0 −x1

)

w+

(

0
−1

2x2
1x2

)

(5.11)

We search for a local embedding which is only valid for all(x1,x2) ∈ [−0.3,0.3]× [−0.3,0.3]. So it
is deduced that we have (5.4) is locally embedded in the following NLDI

dx
dt

= Ax+M∆(t,x)NB1w+∆ f (t,x), (5.12)

where

M =
√

0.3

(

1 0
0 1

)

, NB1 =
√

0.3

(

1 0
0 −1

)

,

∆(t,x) =
1

0.3

(

x2 0
0 x1

)

, ∆ f (t,x) =

(

0
−1

2x2
1x2

)

.

(5.13)

Also, because the final cost and the terminal state constraint are computed inorder to find the larger
invariant set contained in[−0.3,0.3]× [−0.3,0.3], then we are sure that within this set we have

∆(t,x)T∆(t,x)≤ I2.

Also, we have‖∆ f (t,x)‖ ≤ ‖Wx‖ where:

W =
0.15√

2
I2 (5.14)
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Then, using what has been presented in chapter 3, it is deduced that thematrixS in the final cost and
the parameterγ of the terminal state constraint are given as follows

S=

(

37.89 5.56
5.56 37.99

)

,

γ = 2.91.

(5.15)

The value of the objective function of the optimization problem (3.105) at the optimal solution is

logdet
(

S0
)−1

=−5.11. (5.16)

5.3.3 Choice of the final cost and terminal state constraint

It can be seen that both methods provide a terminal state constraint with a slightlyequivalent volume
(see fig.5.1).
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−0.3
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−0.1

0

0.1

0.2

0.3

x
1

x
2

Terminal state constraint

 

 

PLDI

NLDI

Figure 5.1: Comparison of the terminal state constraint obtained by a PLDI anda NLDI embedding.

Because the PLDI embedding provides a larger terminal subset, the SPMPC controller will be im-
plemented using a final cost and a terminal state constraint given by

E(x) = xTSx,

Ω fe
a = {x∈ Rnx/E(x)≤ γ},

whereSandγ are given by (5.9).

5.4 Stabilization of a disturbed Van der Pol oscillator

5.4.1 Robust control problem

According to definition 2, at each sampling instant, the robust control problem isgiven by the solution
of the optimization problem given by (3.6). To consider the terminal state constraint using the algorithm
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presented in chapter 4, we introduce the following modified functional:

L
ti ,µ
A (u, w̃) = Jti (u,w)+Ψµ(γ−x(xi ,u,w; ti +T)TSx(xi ,u,w; ti +T),λΩ). (5.17)

According to (4.35), to obtain the appropriate optimality system (necessary conditions), which cor-
responds to the identification of the gradient ofL

ti ,µ
A that is necessary to develop a numerical scheme in

order to solve the saddle point problem, we introduce the adjoint system as follows:

− dx̃1

dt
= (−(1+w2)+x1x2+u)x̃2+R1,1x1,

− dx̃2

dt
= (1+w1)x̃1−

1
2

x̃2(1−x2
1)+R2,2x2,

x̃(t0+T) = 2Sx(xi ,u,w; ti +T)+ ∇ x (Ψµ(C,λΩ)) ,

(5.18)

whereC= γ−x(xi ,u,w; ti +T)TSx(xi ,u,w; ti +T)) and∇ x (Ψµ(C,λΩ)) is defined as follows

∇ x (Ψµ(C,λΩ)) =

{ −2(−λΩ + 1
µ C)Sx(xi ,u,w; ti +T), if C≤ µλΩ,

0, if C≥ µλΩ,
, (5.19)

According to (4.38), the following expression of the derivatives ofL
ti ,µ
A are deduced:

∂L
ti ,µ
A

∂u
(u, w̃) = x̃2x1+2αu,

∂L
ti ,µ
A

∂ w̃
(u, w̃) =





x̃1x2−Q1,1w1

−x̃2x1−Q2,2w2
∂Ψµ

∂λ (C,λΩ)



 ,

(5.20)

where
∂Ψµ

∂λ
(C,λΩ) =

{

−C, if C≤ µλΩ,
−µλΩ, if C≥ µλΩ,

. (5.21)

5.4.2 Numerical simulation

For simulation purpose it has been assumed that full state information is providedto the controller. The
sampling time has been set toδ = 0.25 and the control horizon is set toT = 6. In order to test the benefit
of using a robust controller, the performances of the SPMPC controller has been compared to the one of
a NMPC controller. The disturbances are given as follows

w1(t) = w2(t) = 0.1sin(3t). (5.22)

The system trajectory and the corresponding control input can be seenon fig.5.2. It can be seen that
in this case a classical NMPC controller provides a stable closed-loop but the control performances are
poorer. This has to be understood in the sense that when using a SPMPC controller the state follows a
trajectory along which the influence of the disturbances are minimized (see fig.5.3). However, in order
to obtain these performances, the computation time has been increased.
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Figure 5.2: State trajectory and Control Input with a SPMPC controller, parametric disturbances
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Figure 5.3: State trajectory and Control Input with a NMPC controller, parametric disturbances

5.5 Conclusion

In this chapter the implementation of the SPMPC controller to stabilize a disturbed in parameters Van
der Pol oscillator has been considered. Through the numerical simulation, the controller robust perfor-
mances have been shown. To numerically solve the control problem we have used the numerical meth-
ods presented in chapter 4. It has been shown that these methods can efficiently solve the corresponding
state-constrained optimization problem at each sampling instant.
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Now, that the feasibility and the interest of the controller has been shown ona simple example, we
will be interested in testing it on a more realistic case. The remaining part of this thesis will be interested
in applying a SPMPC controller to the problem of artificial blood glucose control.
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6.1 Introduction

Diabetes is a group of diseases marked by high levels of blood glucose resulting from defects in insulin
production, insulin action or both [52]. For healthy people, glucose is regulated within narrow rangei.e.
in the interval[60;120]mg.dL−1 [37]. This regulation is mostly made possible by the combined action
of two hormones: the insulin and the glucagon. The first one enables to lowerthe value of blood glucose
by favoring the storage of glucose in liver and fat and the second one has an opposite effect.

When this disease is not correctly treated,i.e. when the blood glucose remains too high or too low,
this can lead to various complications including heart disease and stroke, hypertension, blindness and
eye problems, kidney disease or nervous system disease [52] . . . Thus the control of blood glucose to
safe concentrations (also called euglycemia) is the prime concern of diabetics.

There are two main type of diabetes. Type 2 diabetes (approximately 90% of prognosed diabetes),
which was often called non insulin dependent diabetes, usually begins as insulin resistance,i.e. a disorder
in which the cells do not use insulin properly. As the need for insulin rises, the pancreas gradually loses
its ability to produce it. Type 1 diabetes (approximately 5% of prognosed diabetes), which was often
called insulin dependent diabetes, is developed when the immune system has destroyed the pancreatic
β cells, which are normally responsible for insulin secretion [52]. In this thesis, we are only interested
in type 1 diabetes. Let us give two reasons that motivate this choice. Because these patients are fully
insulin dependent, they are more in a position to possess a glucose sensor andan insulin pump which are
parts of a complete artificial pancreas. Also, these patients are easier to modelbecause we do not need a
model to describe the insulin and glucagon secretion. Indeed, in type 1 diabetic, the insulin secretion is
non existing and the glucagon production can be neglected.

In order to live a normal life, patients who suffer from type 1 diabetes require exogenous insulin
which is delivered either by injection or bycontinuoussubcutaneous infusion using an insulin pump. An
extensive long-term study [37] has demonstrated that intensive diabetes therapy (i.e. the cure which con-
sists in regular insulin injection guided by frequent blood glucose monitoring) reduces the complication
of type 1 diabetes.

However, despite the availability of glucose sensors which regularly provide glucose measure (each
1 to 5 minutes depending on the device), euglycemia still remains a difficult goalto achieve. In fact this
is not surprising as, in the every day life, it seems complicated, if not impossible, to control one’s insulin
injection at such a high rate. That is why there has been considerable interest in developing anartificial
pancreas[115], [121]. The aim is to use the sensor information to automatically adjust, in real-time, the
insulin injection to aim at a better glucose control.

Lately, it seems that the MPC approach is the more promising because of numerous attractive fea-
tures. First, it is easy to interpret its behavior in terms of a classical cure. Indeed, when the patient
deals with his disease, it can be seen as the patient trying to solve a constrained optimal control problem.
He wants to stabilize his blood sugar to a given value (stabilization), to avoid hypoglycemia and reduce
hyperglycemia (state constraints) by only injecting insulin (input constraint). Then, the predictive aspect
is interesting as it enables to anticipate on known disturbances. As an example, a patient often knows
in advance when and what he will eat, thus providing the controller with theseinformations, it becomes
possible to aim at better control performances. Finally, it can also be useful to overcome physiologi-
cal delay due to the use of the sub-cutaneous route for both the insulin injection and the blood sugar
measures [72], [87].

As its name tends to suggest, the MPC control techniques relies on a prediction given by a model of
the process that has to be controlled. So, to obtain the best control performances, it is of prime importance
to derive a good model of a patient suffering from type 1 diabetes. This issue has lead to several research
and many models describing this disease have been published. In this section weaim at describing some
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of the various available one and to explain why we have decided to focus ontwo specific models: the
Dalla-Man et al. model and a modified version of the minimal model of Bergman.

The dynamics of the glucose-insulin metabolism have been studied extensively. Several models can
be used depending if the purpose is to provide a realistic simulation of a patient suffering from type 1
diabetes or to provide a model in order to design a controller. These models range from simple transfer
function (see e.g. [122] or [156]) to more complex models which are based on a detailed knowledge of
the patient’s internal metabolic behavior (see e.g. the minimal model of Bergman [14], the Dalla Man et
al. model [106], the Hovorka model [73] or the Sorensen model [151]). Anoverview of some classical
models is available, e.g., in [105] or [162].

To design a control algorithm which can ensure euglycemia in a type 1 diabetic,we have retained
two models. The first one, the model of Dalla Man et al. [106], is a simulation model. It isassumed to
be closed to the patient’s true internal metabolic behavior. It will be used as arealistic virtual patient to
assess the controller performances. It will be used in the framework of asimulation platform approved
by the Food and Drug Administration (FDA) (Uva/Padova T1DM metabolic simulatorthe distributed
version [90]). The second model will be used to design the controller, therefore it will be chosen simpler.
We will use a modified version of the minimal model of Bergman [14]. This latter, whichhas often been
used for control purpose, provides a good global trend of the glucose-insulin metabolism. However,
because of is simplicity, it can not be considered as an accurate model of thereal patient metabolism.
This explains the need for a virtual testing platform to test the controller performances.

This chapter is organized as follows. First a short discussion on the structure of the available models
is done. Then, the model of Dalla-Man et al. is presented. Assuming that it is closed to the internal
metabolic behavior, this gives us the opportunity to have a rough overview of how the glucose-insulin
metabolism works (at least for the parts we are interested in). Next, the minimalmodel of Bergman is
presented. The objective is to show that it can be seen as an approximation of the true process and that,
despite its simplicity, it retains the most important aspect of the glucose-insulin metabolism. Finally the
section is concluded by a short discussion.

6.2 Forewords on the available models

In order to design a controller for artificial blood glucose control for a type 1 diabetic patient, the first step
consists in modeling the glucose-insulin metabolism. It is possible to use black box model, i.e. to only
use an input output formulation, or a gray box model,i.e. to introduce a knowledge of the metabolism
in the model [96]. Generally the input-output formulation is simpler but suffers from a lack of insight of
the true metabolic process. That is why, even if gray box models suffer from several problems such as
the difficulty to estimate individual parameters, we will focus on this latter class of model.

The gray box models are usually derived using a knowledge of the physiology and metabolic pro-
cesses. Each metabolic function is treated as a separate compartment with its own dynamic. Then, the
various subprocesses are linked thanks to a variable which either stands for a concentration or a quan-
tity of a given molecule, hormones, . . . Adapted from [162], the scheme 6.1 present the elements of the
glucose metabolism which are usually considered.

The main differences between the various available models lie in the compartments which are con-
sidered and the way each of them is described. As an example, the effect of exercise is often not modeled
because of the difficulty to quantify its effect. An other example, the glucose kinetics can be modeled
either globally as in the minimal model of Bergman [14] or by splitting the variable glucose into the
glucose production part and the glucose disposal part as in the Hovorkamodel [73].

Despite the difficulty to validate a given model, some of them are known to be more accurate than
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Figure 6.1: Representation of the glucose-insulin system

others. The main reason is that they consider the glucose-insulin metabolism with more details. This
can be illustrated by considering the Sorensen model [151]. With its 19 differential equations and its 44
parameters, this model divides the body into 6 compartments (see the corresponding flow diagram on
fig. 6.2) and is quite close to the true human metabolism. This is in opposition to the minimal model
of Bergman which models the glucose-insulin metabolism only from a (simple) functional point of view
(no consideration on fine details such as the existence of different type ofglucose, . . . ).

In the next section, we will present more in depth a model close to the human metabolism and a
simpler model. The former, the model of Dalla-Man et al. [106], will be used forvalidation purpose and
the latter, the minimal model of Bergman, will be used for control design purpose.

6.3 The Dalla man et al. model

The model of Dalla-Man et al. [106] is known to be a model close to the patient’s internal metabolic
behavior. It has been designed using complex experiments, e.g. using the double tracer protocol. This
has given the possibility to model the glucose-insulin metabolism in an accurate way using several com-
partments which interact among them. More details on how this model has been derived and identified
can be found in [129].

From a control point of view, the overall model can be seen as a MISO (multipleinput single output)
system with two inputs (insulin injection and sugar consumption) and one output (bloodglucose). This
model has been implemented in a virtual testing platform [90] which has been approved by the FDA. This
has the huge interest that it can be used as a substitute to test on animals. To give asimpleoverview of
the glucose-insulin metabolism, the bloc structure of the overall model is summed upin fig.6.3 (inspired
by [129]).

Globally, its structure is divided into three main parts. One is for insulin, one is for glucose and one
is for meal. The insulin and the meal parts interact with the glucose part and determine how the blood
glucose value evolves. Roughly speaking, if the insulin quantity increasesthen the blood glucose value
decreases and if a meal is consumed then the blood glucose value increases. Let us now describe the
various sub-models corresponding to the various compartments.

6.3.1 Gastro-intestinal subsystem

The gastro-intestinal subsystem describes the glucose transfer in the blood due to the digestion of a meal.
This subsystem takes a sugar quantity as input (the sugar quantity in the ingested meal) and provides a
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Figure 6.2: Flow diagram of the Sorensen model

glucose flow as output. The gastro-intestinal subsystem is modeled by the following set of equations

dQsto1

dt
=−kgriQsto1+d(t),

dQsto2

dt
=−kempt(t,Qsto)Qsto2+kgriQsto1,

dQgut

dt
= kempt(t,Qsto)Qsto2,

Ra =
f kabs

BW
Qgut.

whered(t) mg.min−1 is a glucose input (i.e. the sugar content of a given meal),BW is the patient body
weight. This model is nonlinear because of the parameterkempt(t,Qsto) which models the fact that the
rate of gastro-emptying depends on the quantity of food in the stomach. The full expression ofkempt can
be found in [106]. The rate of appearance in the bloodRa mg.kg−1.min−1 is given as a fix percentagef
of the glucose in gutQgut mg.
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6.3.2 Glucose subsystem

The glucose subsystem describes the dynamic of the blood glucoseG when influenced by insulin and
glucose flow input. The system of differential equations which governs theblood glucose evolutionG
mg.dL−1 is given by

dGp

dt
=−k1Gp+k2Gt +EGP+Ra−Uii −E,

dGt

dt
= k1Gp−k2Gt −Uid ,

G=
1

VG
Gp,

whereGp mg.kg−1 is the plasma glucose andGt mg.kg−1 stands for the glucose value in the tissue. The
value of the blood glucose does not only depend on the action of insulinUid and the rate of appearance
due to a meal consumptionRa but also on the glucose in tissueGt (e.g. in the muscles), the endogenous
rate of productionEGP (mainly coming from the liver), an insulin independent utilizationUii (e.g. the
sugar needed for the nervous system or the brain) and a renal extraction E (only active when the plasma
glucose is greater than a given threshold, e.g. 300 mg.dL−1). The various expression ofEGP, Uii , Uid

andE can be found in [106].
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6.3.3 Insulin subsystem

The insulin flows, coming from the subcutaneous compartment enters the bloodstream and is then de-
graded in the liver and in the periphery. The insulin concentration in blood streamI is given by

dIp
dt

=−(m2+m4)Ip+m1Il +s,

dIl
dt

=−(m1+m3)Il +m2Ip,

I =
1
VI

Ip,

whereIp is the plasma insulin andIl is theliver insulin.VI is the distribution volume of insulin.

6.3.4 Subcutaneous insulin subsystem

In the project of designing anartificial pancreas, the subcutaneous way seems more desirable to inject
insulin [139]. This implies that there is a time-lag between the injection of the insulin and the moment
when it reaches the blood stream. Concretely this means that insulin is not immediately active. Generally
speaking there are several possibilities to model this phenomenon. It is possible to use a diffusion process
model described by partial differential equations or to use a simple filter. This latter choice has been
retained in the model of Dalla-Man et al., where this sub-system is described with a second order filter
as follows

dS1

dt
=−(ka1+kd)S1+u,

dS2

dt
= kdS1−ka2S2,

s= ka1S1+ka2S2,

whereu pmol.kg−1.min−1 is the injected insulin flow,S1 pmol.kg−1 stands for polymeric insulin in the
subcutaneous tissue andS2 pmol.kg−1 stands for monomeric insulin in the subcutaneous tissue.

6.3.5 Subcutaneous glucose subsystem

Most of the available sensors do not directly measure blood glucose but only plasma glucose. This
subsystem has been added to explicitly consider that the subcutaneous glucoseGM mg.dL−1 is highly
correlated with plasma glucose but its rate of variation is subject to some filtering.This is described by
the following equation

dGM

dt
=− 1

τd
(GM −G),

Gsensor= GM + ε,

whereGsensoris the measure given by the sensors,τd is the diffusion time constant, andε is the sensor
noise driven by a Johnson distribution (see [20]).

From a model point of view this subsystem is useless in the sense that the sensor is not part of the
glucose metabolism. However, from a control point of view, it is crucial asthe controller has to show
robustness against the non negligible measurement noise. It is also importantbecause the dynamic of the
sensor is not negligible compared to the one of the glucose metabolism.
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6.3.6 Discussion

The model of Dalla-Man et al. consists in 13 states, 25 patient-dependent parameters and 5 patient-
independent parameters (see [106]). This model has been identified on adata base of 204 healthy sub-
jects using complex experiments. Then, the obtained model have been modified in order to cover the
distinctive features of a patient suffering from type 1 diabetes. The main advantage of this model is that
by remaining close to a patient internal metabolic behavior, the simulated behavior are quite realistic.
The main disadvantage is that this model is really complex, implying that a direct design of a controller
is unattractive. Thus, the controller which use this model for design purpose often includes some steps
in order to simplify it (see e.g. [102] where the model is first linearized and discretized before to be used
for control purpose). Furthermore, it is nearly impossible to adjust the modelparameters for a given pa-
tient. Of course this point is a major drawback as it is well known that there is awide variety of patients
physiology and so it is highly probable to meet a patient whose behavior is different from one of those
contained in the original database. All these points imply that the Dalla-Man et al. is a good validation
model but, at least for what we intend to do, a not so good control model. That is why in the sequel,
we will introduce an other simpler model which can be used to design a controller. Then, the control
strategy will be validated using the Dalla-Man et al. model.

6.4 The modified minimal model of Bergman

All human beings are different. If this assertion is easily verifiable via a comparison of our phenotype,
this also holds when dealing with our internal metabolic behavior. If this remark seems simplistic, in
fact it is of prime importance when dealing with artificial blood glucose control. Indeed, when looking
for anartificial pancreas, we are interested in the metabolism of a specific patient. So, in order to aim
at good control performances, it seems unavoidable to consider this phenomenon in the design phase.
A possibility is to adjust the parameters of the control model using identification tools. Thus the model
can provide a more reliable prediction of the future value of blood glucose. The main problem is that it
is really difficult to identify a nonlinear process . This is exacerbated when human is in the loop as the
experiments have to satisfy some heavy constraints in order to remain human friendly. That is why it
seems more reasonable to retain control model which are easier to identify. We translate this need as the
problem of searching for a control model with few states and parameters. Practically, this implies that
we are not interested in choosing the Dalla-Man et al. model for control design purpose, and so that a
simpler model has to be found.

The main issue is now to identify the thin frontier between a simple but adequate model and a
simplistic model. This question is not trivial at all, especially as it is really difficult to validate a model
in vivo. Instead of claiming that the model we have retained is sufficient to describe the glucose-insulin
metabolism, let us enumerate what we were looking for. We think that an adequate model has to satisfy
the following point:

• being nonlinear (human metabolism is clearly a nonlinear process),

• being time continuous (even if the control input can not be adjusted in continuous time, it seems
important to consider the continuous time aspect of human metabolism),

• possessing a minimal number of parameters (for identification purpose),

• providing a good global trend of glucose-insulin dynamic.
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It can seem surprising that despite the existence of linear models (e.g. [59]),we focus on keeping the
nonlinear aspect, especially as we stress on the need for simplicity. This choice has been made because
the true glucose-insulin is a highly nonlinear process. Furthermore it has been often suggested (e.g. in
[99]) that a nonlinear controller can provide better control performances.

These requirements have made us choose the well-known minimal model of Bergman [15]. This
time continuous nonlinear model is said to be minimal in the sense that it has few parameters. Since it
originally describes the glucose-insulin dynamic in response to a glucose resistance test, it provides an
acceptable trend of the glucose-insulin dynamic. Furthermore this model has been extensively used for
control design purpose (see e.g. [118] or [16]). Even if this does not prove that this model is well adapted
for control purpose, at least it tends to show that it is not a really bad idea to work with it.

6.4.1 The original minimal model of Bergman

The original minimal model of Bergman (see e.g. [14], [15] or [105]) has been developed to provide a
model of the glucose-insulin metabolism of an healthy subject in response to a glucose tolerance test.
One of the main concern in its design was that it has to be as simple as possible. According to this model,
the glucose metabolism is described by the following set of equations

dG
dt

=−(P1+X)G+P1Gb+Ra,

dX
dt

=−P2X+P3(I − Ib),

dI
dt

= γmax(0,G−GTh)t −kf (I − Ib),

(6.1)

whereP1, Gb, P2, P3, Ib, γ, GTh andkf are positive parameters. The stateG mg.dL−1 stands for the blood
glucose concentration. The stateX min−1 stands for the insulin in a remote compartment. It mimics the
time-lag of the insulin consumption on glucose. The stateI mU stands for the blood insulin. The input
Ra stands for a glucose flow in the blood.

In this model, the behavior of the healthy pancreas is divided into two terms. There is the constant
flux of insulinkf Ib, whose aim is to stabilize blood glucose, and there is the corrective termγmax(0,G−
GTh)t, whose aims is to reject sudden disturbances (e.g. to minimize an increase of the blood glucose in
case of a glucose injection) and which is only active when blood glucose grows beyond a given threshold
GTh.

In order to ease the comparison between the Dalla-Man et al. model and the minimal model of
Bergman, it can be interesting to interpret the term−P1G as an insulin independent glucose utilization,
the term−XG as an insulin dependent glucose utilization, and the termP1Gb as an endogenous glucose
production. Also it is interesting to consider the state productXG from a chemical point of view. It can
be interpreted as the fact that to initiate the reaction of glucose storage, onemoleculeof glucose has to
interact with onemoleculeof insulin.

As mentioned, a type 1 diabetic can not secrete insulin at all. This means that this model has to be
modified in order to take into account the specificity of the disease. Furthermore this model does not
possess a digestion model. Indeed in the experience of Bergman only pure glucose was injected in the
blood. That is why this model has to be completed with a gastro-intestinal model. All these issue will be
considered in the sequel and will lead to what we will call the modified minimal model of Bergman.
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6.4.2 Gastro-intestinal subsystem

Let us begin with a fact:in a normal day a normal person eats. This is at the origin of a sudden blood
glucose value increase as, through the digestion process, sugar entersthe blood stream. Due to the
amplitude of this phenomenon, to aim at better control performances, it is desired to anticipate on these
events. To do so, the patient can provide the control algorithm the meal time andthe corresponding sugar
content. However, from a control point of view, what really matters is the glucose flow induced by the
digestion of the meal. That is why it is desired to add a digestion model. In the same spirit as for the
minimal model of Bergman, our choice has been guided by simplicity. That is why we have retained a
simple linear model as suggested in [163]. The retained gastro-intestinal subsystem is given by

dR1

dt
=−c1(R1−d),

dR2

dt
=−c2(R2−R1),

Ra = kgrR2,

(6.2)

whereR1 andR2 stand for the sugar in a remote compartment,d mg is the meal sugar content andRa

mg.dL−1.min−1 is the rate of appearance in the blood.

6.4.3 Glucose subsystem

The glucose subsystem is simply given by the first two equations of the original minimal model of
Bergman (6.1), that is

dG
dt

=−(P1+X)G+P1Gb+Ra,

dX
dt

=−P2X+P3(I − Ib).
(6.3)

6.4.4 Insulin subsystem

In type 1 diabetes the secretion of insulin from the pancreas is negligible. To cover his need in insulin,
a patient mainly count on insulin injection. That is why the insulin subsystem of theminimal model of
Bergman has to be adjusted. According to what has been done in [49], theinsulin subsystem becomes

dI
dt

=−kf I +s, (6.4)

wheres is the insulin flow coming from the subcutaneous compartment.

6.4.5 Subcutaneous insulin subsystem

The use of a subcutaneous way of action for insulin injection is at the origin of adiffusion process.
To aim at good control performances, it seems unavoidable to model this phenomenon. Searching for
simplicity, a simple first order model has been chosen

dU1

dt
=−ksU1+u,

s= bfU1,
(6.5)

whereU1 mU is thesubcutaneousinsulin, ks and bf are positive parameters andu mU.min−1 is the
injected insulin flow.
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6.4.6 The modified minimal model of Bergman

Finally, the control model is given by the combination of the sub-models 6.2, 6.3, 6.4 and 6.5 according
to the scheme 6.4.

u

d

R2

U1 I G
Glucose sub systemSubcutaneous Insulin sub system

Gastro-Intestinal sub system

Insuline sub system

Figure 6.4: Modified minimal model of Bergman: interconnection between subsystems

The final model consists in 6 states and 11 (positive) parameters given as follows:

Glucose-insulin sub-model:

dG
dt

=−(P1+X)G+P1Gb+kgrR2,

dX
dt

=−P2X+P3(I − Ib),

dI
dt

=−kf I +bfU1,

dU1

dt
=−ksU1+u,

(G,X, I ,U1)(t0) = (G0,X0, I0,U1,0),

Gastro-intestinal sub-model:

dR2

dt
=−c2(R2−R1),

dR1

dt
=−c1(R1−d),

(R2,R1)(t0) = (R2,0,R1,0).

(6.6)

The Dalla-Man et al. model and the modified minimal model of Bergman share a common structure.
This can be seen by comparing the structure of the two models respectively given by fig.6.3 and fig.6.5.
The modified minimal model of Bergman considers the same three components of the glucose-insulin
metabolism, namely the absorption from the gut (given by the stateR1andR2), the insulin kinetics (given
by the stateI andU1) and the glucose kinetics (given by the stateG andX). The main difference is that,
for each compartment, the model is extremely simple. Thus, only global trends aremodeled.

6.5 Conclusion

In this chapter, we have presented some of the models which are available to describe the glucose-insulin
metabolism. We have been particularly interested in two models: the Dalla-Man et al.model, which is
rather complex but is known to be accurate, and a modified minimal model of Bergman, which provides
rough blood glucose trend but possesses a simple structure. At that point, let us remind that one difficulty
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with artificial blood glucose control is the inter-patient variability. We have suggested that this problem
can be, at least partially, solved by identifying the parameters of the model for each patient. However,
this task is limited to simple model. Concretely, using simple experiment, it is unrealistic to identify
the Dalla-Man et al. model. This point raises a question. Is this better to design a controller with an
accurate model of the glucose metabolism but which can not be identified or to design a controller with a
model which only provides rough trend but which can be identified ? In this thesis, we have assumed that
the second choice is the more interesting. Then, to compensate for the known simplicity of the control
model, we will consider the design of a SPMPC controller. The Dalla-Man et al. model will be used in
the framework of a testing platform [90] to assess the controller performances.

To design the controller, we have to verify whether the modified minimal model of Bergman satisfy
the needed assumptions in order to be sure that the closed-loop is stable and whether the control problem
is well-posed. This is the objective of the next chapter.
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7.1 Introduction

In chapter 6, we have been interested in modeling the glucose-insulin metabolism. In order to obtain
models, some assumptions have been made (e.g. assuming that the process is stationary or that the effect
of all hormones but insulin is negligible). In regards to the true metabolism, these assumptions are quite
simplistic. So, in order to ensure good control performances, the design of a robust controller seems
unavoidable. In the sequel, the design of the previously presented SPMPC controller is envisaged.

Let us more precisely motivate our controller choice:

• To obtain a model suitable for control purpose, some dynamics of the glucose-insulin metabolism
have been neglected (e.g. the effect of adrenaline in a situation of stress). It can be interesting
to design a controller which is robust against these dynamics by introducing the adequate distur-
bances in the model that has to be controlled.

• The retained models in chapter 6 are stationary. However, human metabolism is a timevarying
process, e.g. in type 1 diabetics, the dawn phenomena implies a sudden insulinresistance in
the early morning. We can model these phenomenon thanks to time varying parameters. If the
variations are bounded (what is obviously the case as we consider a biological process), the time
varying parameters can be expressed as the sum between a nominal parameter and a bounded time
varying disturbance. By using a SPMPC controller, it is possible to ensurecontrol performances
for disturbed parameters. Thus, by introducing adequate bounds on theparameter disturbances, we
will design a controller which consider this aspect and so that will guarantee control performances
despite this phenomenon.

• It is difficult to identify a nonlinear time continuous model with discrete noisy measurement. This
is even more critical when the control problem is concerned with human beings. Indeed, the patient
welfare is the most important issue. This strongly restricts the scope of available experiments to
obtain data for identification purpose. Practically, this implies that the parameterswill be known
relatively to a non negligible bound. By introducing adequate bounds on parameter disturbances,
using a SPMPC controller, we can use this information to mitigate the influence of a potentially
badly identified model.

• The up to date technology implies that the sensors sampling-time is not negligible compared to the
metabolism time constant (depending on the sensor, a measure is available each 1 to 5 minutes).
This means that the control problem has to be cast in a sampled-data framework. The SPMPC
controller is a sampled-data controller, so by using this controller, this point is not a big issue.

• The up to date hardware favors the choice of the subcutaneous way to deliver the cure, implying
that, before insulin becomes active, there is some time lag. This point is handledby the combined
use of a state space model which has a memory of the past via the actual value ofthe state and
a predictive control approach which computes the adequate control actionby considering state
trajectories.

• The control objective is asymmetric, e.g. if a blood glucose of 200mg.dL−1 is not too dangerous,
a blood glucose of 0mg.dL−1, means that the patient is dead. A SPMPC controller solves the
robust control problem by considering an optimization problem. So, to take theasymmetric control
objective into account, it is possible either to optimize an asymmetric cost function (as what has
been done in [89]) or to consider a state-constrained optimization problem to ensure that blood
glucose remains in a safe interval.
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• When consuming a meal, the blood glucose grows faster than the time needed for insulin to become
active. This implies that if it is desired to have a good control of meals either theyare treated by the
patient himself or an anticipatory behavior is needed. In both cases the SPMPC controller is well
suited because the problem will be recast in a variational form and the predictive aspect enables to
anticipate on known disturbances.

At that point, it seems quite clear that the SPMPC approach provides a potential answer to many dif-
ficulties surrounding the problem of artificial blood glucose control. The robust aspect of the controller
can cope with the problem of neglected dynamics, time-varying metabolism and potentially badly iden-
tified parameters. Also, the predictive approach can give an answer to theneed for anticipatory behavior.
The asymmetric objective can be handled via introduction of a constrained optimization problem or by
using an asymmetric cost function. In the remaining part of this thesis, we will beinterested in applying
this control technique using the modified minimal model of Bergman given by the system of differential
equations (6.6).

In this chapter, we will study the properties of the modified minimal model of Bergman. First, we
will be interested in testing its consistency. To do so, we will search for the conditions on the parameters
and on the inputs in order for the state to keep its physiological meaning. Also,we will be interested in
verifying that the model is both observable and controllable. Then the properties of the model in regards
to its applicability for control purpose are studied. We will begin to verify whether the control problem
is well-posed. The first step will consist in formulating the control problem in a variational form. It
will then be verified whether the retained control model satisfy the needed assumptions of theorem 1
and 2. Finally, a PLDI embedding is provided in order to compute the final cost and the terminal state
constraint. Also the adjoint model and the expression of the gradient of the criterion are given.

7.2 Consistency of the modified minimal model of Bergman

In this section we are interested in presenting some general properties satisfied by the modified minimal
model of Bergman. We will begin to search for the condition on the parameters and on the inputs
in order for the state to satisfy a kind of invariance property. Then, we willshow that this model is
observable. Also, under the assumptions that the initial condition of the gastro-intestinal sub-model and
the meal consumption profile are perfectly known, it will be proved that the glucose-insulin sub-model
is controllable.

7.2.1 Invariance property

When considering the problem of artificial blood glucose control, we are interested in a biological pro-
cess. This has for consequence that some states, which have a physiological meaning, have to satisfy
some properties for all time instant. As an example a concentration or a quantity hasto remain always
positive. In this section we will be interested in looking for the conditions that the parameters of the
model and the inputs have to satisfy in order for the state to keep its physiological meaning.

To do so let us consider the following theorem which will prove that if the initialcondition of the
system satisfies some bounds, if the parameters of the model are positive and ifthe inputs are bounded
then the state is bounded for all time instant.

Theorem 4. Assume that the parameters of the model are given and positive, and for all t ≥ t0 the
control input u(t) ∈ [u,u], and the meal input d(t) ∈ [d,d]. Then, for a given data(G,X, I ,U1,R2,R1) ∈
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R+∗×R×R+×R+×R+×R+ and(G,X, I ,U1,R2,R1) ∈ R+∗×R×R+×R+×R+×R+ such that

(G,X, I ,U1,R2,R1)≤ (G,X, I ,U1,R2,R1),

u=
kskf

bf
max

(

bf

kf
U1, I ,

(

Ib+
P2

P3
X

)

,

(

Ib+
P2

P3

(

−P1+
P1Gb+kgrR2

G

)))

,

u=
kskf

bf
min

(

bf

kf
U1, I ,

(

Ib+
P2

P3
X

)

,

(

Ib+
P2

P3

(

−P1+
P1Gb+kgrR2

G

)))

,

d = max(R1,R2) ,

d = min
(

R1,R2
)

,

0≤ u≤ u,

0≤ d ≤ d,

we have that if(G,X, I ,U1,R2,R1) ≤ (G,X, I ,U1,R2,R1)(t0) ≤ (G,X, I ,U1,R2,R1) then for all t≥ t0
(G,X, I ,U1,R2,R1)≤ (G,X, I ,U1,R2,R1)(t)≤ (G,X, I ,U1,R2,R1).

Proof. • Let us consider the stateU1.
DenoteŨ1 = U1 −U1. Using the differential equation onU1 we deduce that̃U1 evolves via the

following differential equation:
dŨ1

dt
=−ksŨ1+u−ksU1. (7.1)

Let us introduceŨ−
1 = max(0,−Ũ1), we haveŨ−

1 ≥ 0. Multiplying (7.1) by−Ũ−
1 , we have

−Ũ−
1

dŨ1

dt
=−Ũ1

−
(−ksŨ1+u−ksU1). (7.2)

Since−Ũ−
1

dŨ1

dt
=

1
2

d|Ũ−
1 |2

dt
(see e.g. [60]), by integrating (7.2) we obtain

∫ t

t0

1
2

d|Ũ−
1 |2

dt
ds=

∫ t

t0
−ks|Ũ−

1 |2− (u−ksU1)Ũ
−
1 ds. (7.3)

Because it is assumed thatu≥ ksU1, and that the parameters are positive, it is deduced that

∫ t

t0

1
2

d|Ũ−
1 |2

dt
ds≤ 0 (7.4)

and then
0≤ |Ũ−

1 |2(t)≤ |Ũ−
1 |2(t0). (7.5)

As U1(t0)≥U1, this implies that|Ũ−
1 |2(t0) = 0 and thenU1(t)≥U1 for all t ≥ t0.

Using the same method (by taking forŨ1 the valueŨ1 = U1−U1) and the fact thatu ≤ ksU1 and
U1(t0)≥U1 we can deduce thatU1(t)≤U1, for all t ≥ t0.

• Consider now the statesX and I .

According to the positivity of the parameters and the assumptions on the initial condition I ≤ I(t0)≤
I , and on the control input

kskf

bf
I ≤ u≤ kskf

bf
I , using the same method as forU1, we haveI ≤ I(t) ≤ I ,

for all t ≥ t0.
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In the same way, by using the assumptions on the initial conditionX ≤ X(t0)≤ X, and on the control

input
kskf

bf

(

Ib+
P2

P3
X

)

≤ u≤ kskf

bf

(

Ib+
P2

P3
X

)

, we can deduce thatX ≤ X(t)≤ X, for all t ≥ t0. So we

omit the details.

• Let us consider the stateR1 and R2.

According to the positivity of the parameters and the assumptions on the initial condition (R2,R1)≤
(R2,R1)(t0) ≤ (R2,R1), and on the meal inputd ≤ d ≤ d, using the same method as forU1, we have
(R2,R1)≤ (R2,R1)(t)≤ (R2,R1), for all t ≥ t0.

• Finally, consider the stateG.

Let us introduceG̃ = G−G and G̃− = max(0,−G̃), using the differential equation onG and the
same method as forU1 we have:

∫ t

t0

1
2

d|G̃−|2
dt

ds=
∫ t

t0
−(P1+X)|G̃−|2− (−(P1+X)G+P1Gb+kgrR2)G̃

−ds. (7.6)

According to the positivity of the parameters and the assumptions on the initial condition (X,R2)≤
(X,R2)(t0), on the meal inputd ≤ d and on the control inputu≥ kskf

bf

(

Ib+
P2

P3
X

)

, it is deduced that

∫ t

t0

1
2

d|G̃−|2
dt

ds≤
∫ t

t0
−(−(P1+X)G+P1Gb+kgrR2)G̃

−ds. (7.7)

Sinceu≤ kskf

bf

(

Ib+
P2

P3

(

−P1+
P1Gb+kgrR2

G

))

, and as the parameters are positive, it is deduced

from inequality (7.7) that
∫ t

t0

1
2

d|G̃−
1 |2

dt
ds≤ 0 (7.8)

and then

0≤ |G̃−|2(t)≤ |G̃−|2(t0). (7.9)

AsG(t0)≥G, this implies that|G̃−|2(t0)=0 and thenG(t)≥G for all t ≥ t0. Using similar arguments
as bellow we can deduce also thatG(t)≤ G, for all t ≥ t0.

Remark7. The previous results can be used to deduce that if the parameters of the model are positive,

if the control input is such thatu≥ max

(

0,
kskf

bf

(

Ib−
P1P2

P3

))

and the meal input is such thatd ≥ 0,

then the state keeps their physiological meaning,i.e. if at t = t0 we have(G,X, I ,U1,R2,R1)(t0) ∈R+∗×
R×R+×R+×R+×R+ then we have(G,X, I ,U1,R2,R1)(t) ∈ R+∗×R×R+×R+×R+×R+ for all
t ≥ t0. Because the only constraint on the control input is thatu≥ 0, the set of parameter is guaranteed
to be coherent if we haveP3Ib ≤ P1P2.
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7.2.2 Observability and Controllability properties

Let us verify that the modified minimal model (6.6) is both observable and controllable. To do so, let us
consider the following proposition.

Proposition 1. Assume that the parameters of the model (6.6) are given and strictly positive, if the control
input u and the meal input d are known and given then the modified minimal model of Bergman is almost
everywhere locally observable and if the initial condition(R2,,R1)(t0) and the meal consumption profile
d are known and given then this model is controllable for all G6= 0.

Proof. In order to simplify the presentation, let us write (6.6) as follows:

dx1

dt
=−P1x1−x1x2+kgrx5+P1Gb

dx2

dt
=−P2x2+P3x3−P3Ib

dx3

dt
=−kf x3+bf x4

dx4

dt
=−ksx4+u

dx5

dt
=−c2x5+c2x6

dx6

dt
=−c1x6+c1d

y= x1,

(7.10)

wherey stands for the model output.

• Let us begin to verify that the modified minimal model of Bergman is observable.

It is assumed that the control inputu and the meal inputd are known and given, so, to verify if this
model is observable, we will consider the rank of the matrix (see e.g.[78])

Ω =

















∇ xh(x)
∇ xLG h(x)
∇ xL2

G
h(x)

∇ xL3
G

h(x)
∇ xL4

G
h(x)

∇ xL5
G

h(x)

















(7.11)

where the Lie derivatives are defined as follows

Lk
G h(x) =











nx

∑
i=1

∂h
∂xi

Gi(x) if k= 1

LG

(

Lk−1
G

h(x)
)

if k> 1
, (7.12)

and where the functionG andh are given by

G (x) =

















−P1x1−x1x2+kgrx5+P1Gb

−P2x2+P3x3−P3Ib
−kf x3+bf x4

−ksx4+u
−c2x5+c2x6

−c1x6+c1d

















, h(x) = x1. (7.13)
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It is shown that the matrixΩ is almost everywhere full rank, thus proving that the modified minimal
model of Bergman is almost everywhere locally observable. For more details see in the appendix the
section 12.4.

• Let us verify that the modified minimal model of Bergman is controllable.

It is assumed that the initial condition(x5,x6)(t0) and the meal consumption profiled are known and
given. So we can integrate the gastro-intestinal sub-system. In the sequel, we substitute the termkgrx5

in the glucose-insulin sub-model by the known rate of appearanceRa = kgrx5. This leads to consider the
controllability of the following model

dx1

dt
=−P1x1−x1x2+P1Gb+Ra

dx2

dt
=−P2x2+P3x3−P3Ib

dx3

dt
=−kf x3+bf x4

dx4

dt
=−ksx4+u

(7.14)

To test the controllability, let us consider the rank of the matrix (see e.g.[78])

R =
(

g(x) adf g(x) ad2
f g(x) ad3

f g(x)
)

, (7.15)

where the Lie bracket are defined as follows

adk
f g(x) =

{

∇ x (g(x)) f (x)− ∇ x ( f (x))g(x) if k= 1

∇ x

(

adk−1
f g(x)

)

f (x)− ∇ x ( f (x))adk−1
f g(x) if k> 1

. (7.16)

and where the functionf andg stands for

f (x) =









−P1x1−x1x2+P1Gb+Ra

−P2x2+P3x3−P3Ib
−kf x3+bf x4

−ksx4









, g(x) =









0
0
0
1









. (7.17)

We have

R =









0 0 0 −P3bf x1

0 0 −P3bf −P3bf (P2+kf +ks)
0 bf bf (kf +ks) bf (k2

f +k2
s +kf ks)

1 −ks −k2
s −k3

s









(7.18)

Because all the parameters are assumed to be given strictly positive, it is deduced that the matrixR is
full rank for all x1 6= 0 thus proving that the modified minimal model of Bergman is locally controllable
for all x1 6= 0.

Remark8. Practically, the fact that the model is not controllable whenG= 0 is not a big issue. Indeed,
in this case, the patient has absolutely no sugar in the blood meaning that he is dead, such that it might
be useless to envisage control action then.

Now that we have verified that the modified minimal of Bergman is consistent, let usconsider the
design of a SPMPC controller.
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7.3 Controller design

So far, we have been interested in studying general properties satisfiedby the modified minimal model of
Bergman. Now let us consider some properties which are desirable when using a SPMPC controller. To
do so, we will begin to express the control problem using a variational formulation. Then, we will verify
whether the control problem is well-posed. To do so, we will verify if it satisfies assumptions 2 and 3.
Next, we will be interested in proposing an adequate PLDI embedding which can be used to compute a
final cost and a terminal state constraint which satisfy assumptions 7 and 8. Finally, the necessary tools
to numerically solve the control problem using adjoint model will be introduced.

7.3.1 Control problem

For control purpose, we have chosen to only consider the global trendof the glucose-insulin metabolism.
This has lead us to model this phenomenon thanks to the modified minimal model of Bergman to which
a simple gastro-intestinal sub-model has been added. For convenience, letus remind the equation of the
model

Glucose-insulin sub-model:

dG
dt

=−(P1+X)G+P1Gb+kgrR2,

dX
dt

=−P2X+P3(I − Ib),

dI
dt

=−kf I +bfU1,

dU1

dt
=−ksU1+u,

(G,X, I ,U1)(t0) = (G0,X0, I0,U1,0),

(7.19)

Gastro-intestinal sub-model:

dR2

dt
=−c2(R2−R1),

dR1

dt
=−c1(R1−d),

(R2,R1)(t0) = (R2,0,R1,0).

(7.20)

For control purpose, it is assumed that the meal consumption profiled and the initial condition
(R2,R1)(t0) are known and given. That is why it is possible to integrate (7.20) to obtain the state trajectory
R2(t) for all t ≥ t0. Let us callRa(t) = kgrR2(t) the rate of appearance. Then, for control purpose we
consider the following model

dG
dt

=−(P1+X)G+P1Gb+Ra(t),

dX
dt

=−P2X+P3(I − Ib),

dI
dt

=−kf I +bfU1,

dU1

dt
=−ksU1+u,

(G,X, I ,U1)(t0) = (G0,X0, I0,U1,0).

(7.21)
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In the sequel, thenominal modelcorresponds to (7.21) where all the parameters are assumed to be
perfectly known. The trajectory generated by the nominal model for a given initial condition(G0,X0, I0,U1,0),
a given rate of appearanceRa(t) and a given insulin flowu(t) is callednominal trajectory.

To obtain the variational problem, we begin to write the nominal model when disturbed both in states
and parameters. This leads to the following disturbed system

d(x1+G)

dt
=−(p1+P1)(x1+G−Gb)− (x2+X)(x1+G)+(Ra(t)+ ra(t)),

d(x2+X)

dt
=−(p2+P2)(x2+X)+(p3+P3)(x3+ I − Ib),

d(x3+ I)
dt

=−(k f +kf )(x3+ I)+(bf +bf )(x4+U1),

d(x4+U1)

dt
=−(ks+ks)(x4+U1)+(u+ f ),

(x1+G,x2+X,x3+ I ,x4+U1)(t0) = (x1,0+G0,x2,0+X0,x3,0+ I0,x4,0+U1,0),

(7.22)

whereuandRa(t) are the inputs such that the variableG, X, I andU1 describe a desired nominal trajectory
issued from the nominal model (7.21). The control inputf is a disturbance of the nominal inputu
which has been introduced in order to reject the state disturbance(xi)i∈{1,...,4} despite the parameters
disturbances(p1, p2, p3,k f ,bf ,ks)

T and the rate of appearance disturbancera. In the sequel we note
w= (p1, p2, p3,k f ,bf ,ks, ra)

T .

To use the previously presented control algorithm, let us introduce the following variational model
which is obtained by subtracting the nominal model (7.21) from the disturbed model (7.22)

dx1

dt
=−p1(x1+G−Gb)− (P1+X)x1−Gx2−x1x2+ ra(t),

dx2

dt
=−p2(x2+X)+ p3(x3+ I − Ib)−P2x2+P3x3,

dx3

dt
=−k f (x3+ I)+bf (x4+U1)−kf x3+bf x4,

dx4

dt
=−ks(x4+U1)−ksx4+ f ,

(x1,x2,x3,x4)(t0) = (x1,0,x2,0,x3,0,x4,0).

(7.23)

Now that we have expressed the control problem using a variational formulation, let us consider
the problem of verifying that the control problem is well-posed,i.e. let us verify that the model (7.23)
satisfies assumptions 2 and 3.

7.3.2 Well-posed Primal Problem

Lemma 6. For all bounded x and̃x inRnx, for all bounded f inRnu and for all bounded w and̃w inRnw,
if the nominal state(G,X, I ,U1)(t) is bounded for all t≥ t0 , then the model (7.23) satisfies assumption
2 and 3.
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Proof. Let us introduce the following notation:

G (x, f ,w) =









g1(x, f ,w)
g2(x, f ,w)
g3(x, f ,w)
g4(x, f ,w)









,

=









−p1(x1+G−Gb)− (P1+X)x1−Gx2−x1x2+ ra

−p2(x2+X)+ p3(x3+ I − Ib)−P2x2+P3x3

−k f (x3+ I)+bf (x4+U1)−kf x3+bf x4

−ks(x4+U1)−ksx4+ f









,

(7.24)

wherew= (p1, p2, p3,k f ,bf ,ks, ra)
T .

Lipschitz assumption
First let us prove that the disturbed control model (7.23) satisfies assumption2.

• Let us show that there exists a constantLx such that we have‖G (x, f ,w)−G (x̃, f ,w)‖≤ Lx‖x− x̃‖.

Let us begin to express the different component of the vectorG (x, f ,w)−G (x̃, f ,w):

g1(x, f ,w)−g1(x̃, f ,w) =−(p1+P1)(x1− x̃1)−G(x2− x̃2)−x1x2− x̃1x̃2,

g2(x, f ,w)−g2(x̃, f ,w) =−(p2+P2)(x2− x̃2)+(p3+P3)(x3− x̃3),

g3(x, f ,w)−g3(x̃, f ,w) =−(k f +kf )(x3− x̃3)+(bf +bf )(x4− x̃4),

g4(x, f ,w)−g4(x̃, f ,w) =−(ks+ks)(x4− x̃4).

(7.25)

Let us consider‖g1(x, f ,w)−g1(x̃, f ,w)‖. We have

‖g1(x, f ,w)−g1(x̃, f ,w)‖= ‖− (p1+P1)(x1− x̃1)−G(x2− x̃2)−x1x2− x̃1x̃2‖
= ‖− (p1+P1+x2)(x1− x̃1)− (G+ x̃1)(x2− x̃2)‖
≤ |p1+P1+x2|‖x1− x̃1‖+ |G+ x̃1|‖x2− x̃2‖.

(7.26)

The next step consists in finding an upper-bound which is independent of the specific value ofp1, x2,
G andx̃1. Since the disturbances, the nominal state and the state are assumed to be bounded, we consider
the new upper-bound which consider the (well-defined) supremum sup|p1+P1+x2| and sup|G+ x̃1|

‖g1(x, f ,w)−g1(x̃, f ,w)‖ ≤ (sup|p1+P1+x2|)‖x1− x̃1‖+(sup|G+ x̃1|)‖x2− x̃2‖. (7.27)

Similarly, we have

‖g2(x, f ,w)−g2(x̃, f ,w)‖ ≤ (sup|p2+P2|)‖x2− x̃2‖+(sup|p3+P3|)‖x3− x̃3‖,
‖g3(x, f ,w)−g3(x̃, f ,w)‖ ≤ (sup|k f +kf |)‖x3− x̃3‖+(sup(|bf +bf |)‖x4− x̃4‖,
‖g4(x, f ,w)−g4(x̃, f ,w)‖ ≤ (sup|ks+ks|)‖x4− x̃4‖.

(7.28)

So it is deduced that

‖g1(x, f ,w)−g1(x̃, f ,w)‖ ≤ K1(‖x1− x̃1‖+‖x2− x̃2‖) ,
‖g2(x, f ,w)−g2(x̃, f ,w)‖ ≤ K2(‖x2− x̃2‖+‖x3− x̃3‖) ,
‖g3(x, f ,w)−g3(x̃, f ,w)‖ ≤ K3(‖x3− x̃3‖+‖x4− x̃4‖) ,
‖g4(x, f ,w)−g4(x̃, f ,w)‖ ≤ K4‖x4− x̃4‖,

(7.29)
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whereK1=max(sup|p1+P1+x2|,sup|G+ x̃1|), K2=max(sup|p2+P2|,sup|p3+P3|), K3=max(sup|k f +
kf |,sup(|bf +bf |) andK4 = sup|ks+ks|.

We have

‖G (x, f ,w)−G (x̃, f ,w)‖ ≤
4

∑
i=1

‖gi(x, f ,w)−gi(x̃, f ,w)‖. (7.30)

Let us introduce the following constant

Lx = max(K1,K2+K3,K3+K4) (7.31)

So, using (7.30) and (7.29) it is deduced that we have

‖G (x, f ,w)−G (x̃, f ,w)‖ ≤ Lx‖x− x̃‖. (7.32)

• Now let us show that there exists a constantLw such that we have‖G (x, f ,w)−G (x, f , w̃)‖ ≤
Lw‖w− w̃‖.

Let us begin to express the different component of the vectorG (x, f ,w)−G (x, f , w̃)

g1(x, f ,w)−g1(x, f , w̃) =−(x1+G−Gb)(p1− p̃1)+(ra− r̃a),

g2(x, f ,w)−g2(x, f , w̃) =−(x2+X)(p2− p̃2)+(x3+ I − Ib)(p3− p̃3),

g3(x, f ,w)−g3(x, f , w̃) =−(x3+ I)(k f − k̃ f )+(x4+U1)(bf − b̃f ),

g4(x, f ,w)−g4(x, f , w̃) =−(x4+U1)(ks− k̃s).

(7.33)

As the state is bounded, it is deduced that we have

‖g1(x, f ,w)−g1(x, f , w̃)‖ ≤ k1(‖p1− p̃1‖+‖ra− r̃a‖),
‖g2(x, f ,w)−g2(x, f , w̃)‖ ≤ k2(‖p2− p̃2‖+‖p3− p̃3‖),
‖g3(x, f ,w)−g3(x, f , w̃)‖ ≤ k3(‖k f − k̃ f ‖+‖bf − b̃f ‖),
‖g4(x, f ,w)−g4(x, f , w̃)‖ ≤ k4‖ks− k̃s‖,

(7.34)

where k1 = max(1,sup|x1 + G− Gb|), k2 = max(sup|x2 + X|,sup|x3 + I − Ib|), k3 = max(sup|x3 +
I |,sup|x4+U1|) andk4 = sup|x4+U1|.

Let us introduce the following constant

Lw = max(k1,k2,k3,k4) (7.35)

Using (7.33) it is deduced that we have

‖G (x, f ,w)−G (x, f , w̃)‖ ≤ Lw‖w− w̃‖. (7.36)

Linear Growth assumption
Then, let us prove that the disturbed control model (7.23) satisfy assumption3. Since the state and

the nominal state are assumed to be bounded, it is deduced that we have

‖g1(x, f ,w)‖ ≤ c1(‖x1‖+‖x2‖+‖p1‖+‖ra‖),
‖g2(x, f ,w)‖ ≤ c2(‖p2‖+‖p3‖+‖x2‖+‖x3‖),
‖g3(x, f ,w)‖ ≤ c3(‖k f ‖+‖bf ‖+‖x3‖+‖x4‖),
‖g4(x, f ,w)‖ ≤ c4(‖ks‖+‖x4‖+‖ f‖).

(7.37)
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where c1 = max(sup|x1 + G− Gb|,sup|P1 + X|,sup|G+ x1|,1), c2 = max(sup|x2 + X|,sup|x3 + I −
Ib|,P2,P3), c3 = max(sup|x3+ I |,sup|x4+U1|,kf ,bf ) andc4 = max(sup|x4+U1|,ks,1).

Let us introduce the following constant

c= max(c1,c2+c3,c3+c4). (7.38)

Using (7.37) it is deduced that we have

‖G (x, f ,w)‖ ≤ c(‖x‖+‖ f‖+‖w‖). (7.39)

Now that it has been shown that the robust control problem is well-posed, let us introduce the neces-
sary tools needed to solve it.

7.3.3 Formulation of a PLDI embedding

The final cost will be computed assuming that the meal effect is negligible at the end of the prediction
horizon. This implies that to formulate an adequate differential inclusion embedding we consider the
following control model

dx1

dt
=−p1(x1+G−Gb)− (P1+X)x1−Gx2−x1x2,

dx2

dt
=−p2(x2+X)+ p3(x3+ I − Ib)−P2x2+P3x3,

dx3

dt
=−k f (x3+ I)+bf (x4+U1)−kf x3+bf x4,

dx4

dt
=−ks(x4+U1)−ksx4+ f ,

(x1,x2,x3,x4)(t0) = (x1,0,x2,0,x3,0,x4,0).

(7.40)

To apply the algorithm presented in chapter 3, the simpler possibility is to use a PLDI embedding of
(7.40). To do so, the idea is to see that the only nonlinearity in the state comes from the productx1x2.
Furthermore, as it has been previously shown, we know that the state is bounded for bounded inputs.
Concretely, in the case of the statex1, this means that there existsx1 < x1 such that if we havex1(t0) ∈
[x1,x1] then for allt ≥ t0 we havex1(t)∈ [x1,x1]. So usingx1 as aparameter, it should be straightforward
to design an adequate embedding by first considering a linear parameter variant representation of (7.40)
and then to use classical results (see e.g. [91]) to build an PLDI embedding.However, because of the
disturbances on the parameters, we also have nonlinearities arising from theproduct state/ parameter
disturbances. To simplify the problem, the idea is to enlarge the space of admissible disturbances, such
that all the disturbances which are not linked tox1 appear as additive disturbances.

Let us exemplify this approach with the termp2(x2 +X). We know that the statex2 is bounded,
i.e. there existsx2 and x2 with x2 < x2 such that for allt ≥ t0 we havex2(t) ∈ [x2,x2]. Let us call
X2 = max(|x2|, |x2|) and assume thatX is non null and constant then for allt we have:

p2(x2+X)≤ p2X

(

1+
X2

|X|

)

. (7.41)
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So if the disturbancep2 originally belongs to[a,b] then we consider thenewdisturbancep2

(

1+
X2

|X|

)

which belongs to the interval

[

a

(

1+
X2

|X|

)

,b

(

1+
X2

|X|

)]

. Thus, it is possible to suppress the non-

linearity in the termp2(x2 +X) by considering the new termp2X

(

1+
X2

|X|

)

which provides worst

disturbances.
Assuming thatG, X, I andU1 are given non null constant such thatI − Ib is non null, we introduce

the following new additive disturbances to suppress the nonlinearity state/ parameter disturbances

p2 = p2

(

1+
X2

|X|

)

,

p3 = p3

(

1+
X3

|I − Ib|

)

,

k f = k f

(

1+
X3

|I |

)

,

bf = bf

(

1+
X4

|U1|

)

,

ks = ks

(

1+
X4

|U1|

)

.

(7.42)

Using the previous reformulation of the disturbances to transform multiplicative disturbances into
additive disturbances, the variational model (7.40) becomes

dx1

dt
=−p1(x1+G−Gb)− (P1+X)x1−Gx2−x1x2,

dx2

dt
=−p2X+ p3(I − Ib)−P2x2+P3x3,

dx3

dt
=−k f I +bfU1−kf x3+bf x4,

dx4

dt
=−ksU1−ksx4+ f ,

(x1,x2,x3,x4)(t0) = (x1,0,x2,0,x3,0,x4,0).

(7.43)

Using matrix notation, it is possible to rewrite (7.43) as follows

dx
dt

= A(x1)x+B1(x1)w+B2 f , (7.44)

wherew stands for the vector of disturbances and

A(x1) =









−(P1+X) −(G+x1) 0 0
0 −P2 P3 0
0 0 −kf bf

0 0 0 −ks









,B2 =









0
0
0
1









,

B1(x1) =









−(x1+G−Gb) 0 0 0 0 0
0 −X I− Ib 0 0 0
0 0 0 −I U1 0
0 0 0 0 0 −U1









.

(7.45)
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As we have for allt ≥ t0 x1(t) ∈ [x1,x1], it is possible to use (7.44) to express (7.43) with a PLDI
formulation,i.e. (7.43) is locally embedded in the following PLDI

dx
dt

=
4

∑
k=1

βk(t)(Akx+B1,kw+B2 f ) , (7.46)

whereA1=A2=A(x1), A3=A4=A(x1), B1,1=B1,3=B1(x1), B1,2=B1,4=B1(x1), for all k∈{1, . . . ,4}

and for allt βk(t)≥ 0 and
4

∑
k=1

βk(t) = 1.

Thus, assuming that the stage costF is quadratic, using the algorithm presented in chapter 3, it is
possible to compute a final costE(x) = xTSxand a terminal state constraintΩ fE

a = {x∈ XE/xTSx≤ γ}
associated to a final controllerfE(x) = Kx.

Remark9. To compute a PLDI embedding which can be used to compute a final cost and a terminal
state constraint that can be used to design a stabilizing SPMPC controller, wehave introduced additive
disturbances. It is important to see that this embedding is valid for (7.40) because the thus obtained
disturbances are strictly larger than the original disturbances.

7.3.4 Adjoint model and Gradient of the Criterion

In this section, the necessary tools to solve a sub-problem via adjoint model are introduced. In order
to consider that hypoglycemia are more dangerous than hyperglycemia, we add the supplementary state
constraintx1 ≥ x1 in the optimization problem (3.6). Similarly to the results presented in chapter 4, to
consider both the terminal state constraint and the supplementary inequality constraint, we introduce the
following modified functional

L
ti ,µ
A ( f , w̃) = Jti ( f ,w)+

∫ ti+T

ti
(Ψµ(x1−x1,λc))ds+Ψµ(γ−‖x(ti +T)‖2

S,λΩ), (7.47)

wherew̃= (wT ,λc,λΩ)
T andJti is given as follows

Jti ( f ,w) = ‖x(x(ti), f ,w, ti; ti +T)‖2
S+

∫ ti+T

ti

(

‖x(x(ti), f ,w, ti;s)‖2
R+‖ f‖2

α −‖w‖2
Q

)

ds. (7.48)

Let us assume that the initial condition of (7.43) is perfectly known. According to (4.4), let us
introduceω the Fŕechet derivatives in direction(g,q) of the operator solution( f ,w)→ x(x(ti), f ,w, ti; .)
given as the solution of the following differential equation

dω1

dt
=−qP1(x1+G−Gb)− (P1+ p1+X+x2)ω1− (G+x1)ω2+qra,

dω2

dt
=−qP2(x2+X)+qP3(x3+ I − Ib)− (P2+ p2)ω2+(P3+ p3)ω3,

dω3

dt
=−qkf (x3+ I)+qbf (x4+U1)− (kf +k f )ω3+(bf +bf )ω4,

dω4

dt
=−qks(x4+U1)− (ks+ks)ω4+g,

ω(ti) = 0.

(7.49)

According to (4.35), to obtain the appropriate necessary optimality system conditions, which corre-
sponds to the identification of the gradient ofL

ti ,µ
A that is necessary to develop a numerical scheme in
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order to solve the saddle point problem, we introduce the adjoint system as follows

− dx̃1

dt
=−(p1+P1+X)x̃1−x2x̃2+R1,1x1+ ∇ x (Ψµ(Cc,λc)) ,

− dx̃2

dt
=−(x1+G)x̃1− (p2+P2)x̃2+R2,2x2,

− dx̃3

dt
= (p3+P3)x̃2− (k f +kf )x̃3+R3,3x3,

− dx̃4

dt
= (bf +bf )x̃3− (ks+ks)x̃4+R4,4x4,

x̃(ti +T) = 2Sx(xi , f ,w, ti; ti +T)+ ∇ x (Ψµ(CΩ,λΩ)) ,

(7.50)

whereCc = x1−x1 andCΩ = γ−‖x(ti +T)‖2
S, and

∇ x
(

Ψµ(Cρ ,λρ)
)

=

{

(−λρ +
1
µ Cρ), if Cρ ≤ µλρ ,

0, if Cρ ≥ µλρ ,
, (7.51)

whereρ stands either forc or Ω.
According to (4.38), the following expression of the derivatives ofL

ti ,µ
A are deduced:

∂L
ti ,µ
A

∂ f
( f ,w) = x̃4+α f ,

∂L
ti ,µ
A

∂w
( f ,w) =































−x̃1(x1+G−Gb)−Q1,1p1
−x̃2(x2+X)−Q2,2p2

x̃2(x3+ I − Ib)−Q3,3p3

−x̃3(x3+ I)−Q4,4k f

x̃3(x4+U1)−Q5,5bf

−x̃4(x4+U1)−Q6,6ks

x̃1−Q7,7ra
∂Ψµ

∂λ (Cc,λc)
∂Ψµ

∂λ (CΩ,λΩ)































(7.52)

wherex is the solution of (7.43) with initial conditionx(ti) under the influence of the couple control
disturbances( f ,w) andx̃ is the solution of (7.50) and where

∂Ψµ

∂λ
(Cρ ,λρ) =

{

−Cρ , if Cρ ≤ µλρ ,
−µλρ , if Cρ ≥ µλρ ,

, (7.53)

whereρ stands either forc or Ω.

7.4 Conclusion

In this chapter we have studied the properties of the retained control model inregards to its applicability
with a SPMPC controller. First we have studied some general properties satisfied by the control model.
We have begun to show that if the initial condition is bounded, if the parameters of the model are positive
and if the inputs satisfy some bounds, then the state is bounded for all time instant. From this properties,
the conditions on the input in order for the state to keep their physiological meaning have been deduced.
Also it has been shown that the nominal model is almost everywhere observable and controllable. In a
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second part, we have been interested in testing if the control problem is well-posed. To do so, we have
begun to express the control problem in a variational form and then it has been verified that the control
model satisfies assumptions 2 and 3. Then, the design of the SPMPC controller has been envisaged by
considering the design of a PLDI embedding which can be used to compute an adequate final cost and a
terminal state constraint. Also, according to the results presented in chapter4, we have been interested
in the numerical implementation by considering an adjoint model formulation to solve the corresponding
saddle point optimization problem.

SPMPC Insulin Pump

Observer

Patient

Glucose sensor
Gsensor

d
Ra

u

fGastro-intestinal

sub-model

Glucose-insulin

sub-model
+

−

+
+Nominal

state

Figure 7.1: Structure of the control scheme

Let us mention that, concretely, we have chosen the nominal model to be a steadystate of the system.
This has been done because the simple structure of the modified minimal model of Bergman enables a
simple computation of the corresponding control inputueq. For a more general case, a control problem
has to be solved.

Now it just remains to test, through numerical simulations, the controller performances. Before
further proceeding, we have to consider the problem of designing a stateobserver. Indeed, from a control
point of view, the knowledge of the full initial condition is needed at each samplinginstant. However,
practically, the sensors can only provide the value of the blood glucoseG, implying that a state observer
is needed. This leads to consider the control problem according to the structure given by fig.7.1. The
model used in the SPMPC bloc is the disturbed model (7.23) and the model used in theobserver bloc
is the modified minimal model of Bergman (6.6). The objective of the next chapter isto present some
observers to solve this issue.
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8.1 Introduction

To solve the problem of artificial blood glucose control, the design of a SPMPC controller on the modified
minimal model of Bergman is envisaged. By solving a constrained saddle point optimization problem
on a finite prediction horizon subject to a dynamical model of the system that hasto be controlled and
where the current state value is the initial condition, this controller provides thecontrol input that has to
be applied in order to robustly stabilize the system. However, from a practical point of view, the sensors
can only provide a (noisy) measure of the blood glucose. This implies that thevalue of the remaining
states has to be inferred on the basis of the measurement, the insulin and the meal inputs. This task will
be done by a state observer.

The task of estimating the state is crucial in regards to the expectable control performances. Indeed,
if we begin to compute an optimal control sequence for an erroneous initial condition, then the system
trajectory will strongly differ from the predicted trajectory what can possibly lead to instability of the
closed-loop. That is why it is of prime importance to assess if an observer provides agoodstate estimate.
To try to solve this issue, our idea consists in designing multiple observers, whichare based on different
methodologies, and to compare their relative state estimate. In case the estimate provided by all observers
are comparable, then we will assume that the observers performances aresatisfactory. However, for
control purpose, we will use only one of them.

We will consider the design of three observers. Two of them will be designed using the complete
modified minimal model of Bergman. The first one is an Unscented Kalman filter (UKF) (see e.g. [144])
and the second one is a Moving Horizon Estimator (MHE) (see e.g. [133]).For these observers, it will
be assumed that the meal times and the meal contents are perfectly known, e.g.they can be provided
by the patient at the moment when the corresponding event occurs. The third observer will be designed
using only the glucose-insulin sub-model. The idea of this observer will be to treat the rate of appearance
(which is given by the termkgrR2 in the modified minimal model of Bergman (6.6)) as an unknown input
that has to be estimated at the same time that the state is estimated. To do so the design of an Unknown
Input Observer based on an Extended Kalman Filter (UIEKF) is envisaged (see e.g. [61] or [141]). This
choice has been done for validation purpose. Indeed, it seems legitimate to think that the retained gastro-
intestinal sub-model is too simple in regards to the true digestion process. So we can wonder if this has
some consequence in the process of estimating the stateG, X, I andU1. By comparing the state of the
UIEKF with the ones given by the UKF and MHE, it will be possible to verify whether the simplicity
of the digestion model do deteriorate the estimation of the remaining states. However,because for this
observer this input can not only model a glucose flow due to meal consumption but also all kind of
unknown dynamics, it is not intended to directly use it to detect a meal consumption.

Because the system dynamic is time continuous and the measurement are discrete,the various ob-
servers will have to work in a sampled-data framework. It is worth noticing that one advantage to have
retained an (open-loop) sampled-data control strategy is that it becomes possible to consider a different
sampling rate on the inputTs,i (measurement rate) and on the outputTs,o (control update rate), under
the only condition that the latter is a multiple of the former. In the process of estimating thestate, we
have decided to use the nominal form of the control model (see section 7.3.1). The state of the disturbed
model is then deduced by subtracting from the estimated state the (known) value of the nominal state.

This chapter is organized as follows. First, the various observers are briefly presented. Then, their
respective performances are tested using the control model for simulation purpose. Finally, this chapter
is concluded.
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8.2 Some nonlinear observers

In this section let us briefly recall how an unscented Kalman filter, a moving horizon estimator and an
unknown input observer based on an extended Kalman filter work.

To design the two Kalman filters (UKF and UIEKF) it will be assumed that the modelis additively
disturbed. These disturbances are different from the one introducedfor control purpose in chapter 3 as,
in the framework of these observers, the noise is assumed to be given stochastic (classically assumed
to be given Gaussian). To design the MHE observer, even if it is possibleto work with more complex
disturbances, it will also be assumed that the model is additively disturbed. This choice has been done
in order to use the previously presented Kalman filter to determine the arrivalcost needed to ensure the
good convergence property of the observer.

8.2.1 State observer via Unscented Kalman Filter

In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete data
filtering problem [83]. The Kalman filter is a simple set of equations which provides a minimum mean
squared state error estimate for linear systems. This filter can be used for manytasks ranging from simple
state estimator to information fusion (see e.g. [152]). Because of its huge success to solve the estimate
problem in the linear case, many attempts have been done to extend its use to the nonlinear case. The
most common approach is to use the so called Extended Kalman Filter (EKF) (see e.g. [136] or [137])
which is based on the linearization of the nonlinear model. Some difficulties with this approach can arise,
e.g. because of the nontrivial task of computing Jacobian matrices. Moreover the resulting filter can be
unstable.

Generally speaking, Kalman filter works on mean and covariance of the trueprobability distribution
of the state (which may be non Gaussian). In the EKF, the idea is to use a linearization of the model
in order to make the assumption that if the probability distribution of the state were to be Gaussian
then it would remain Gaussian for all further time instant, making it sufficient to estimate the first two
momentum of the distribution. This approach is awkward as in general, there is noreason that through
a nonlinear process a Gaussian distribution remains Gaussian. In order to take this fact into account,
the Unscented Kalman Filter (UKF) has been developed (see e.g. [82]). The idea remains to design
an algorithm which only estimates the first two momentum of the distribution law. Based ona set of
symmetrically distributed sampled points (called sigma points), the main idea is to parametrize the mean
and covariance of the true probability distribution of the state and then to approximate this latter (at least
at the second order). As a consequence, such a filter do not requireany linearization step. Up to today,
UKF is a vast subject of research and one of the main issue deals with the design of methods which
enable to choose the best set of sigma points under various assumptions (seee.g. [56], [152] or [41]).

In the sequel we will remind the UKF equations in the continuous-discrete setting on the basis of the
work presented in [144] and [152]. The retained formulation of the filter corresponds to what is called
the additive Unscented Kalman Filter in [68].

To derive the observer equations, we assume in this section that the noise on the process and on the
measures are additive, that is fort ∈ [tk−1, tk]

dx
dt

= G (x,u)+w(t),

x(tk−1) = xk−1,

yk = h(x(xk−1,u,w; tk))+ rk,

(8.1)

wherexk−1 ∈ Rnx is the initial condition,x∈ Rnx is the state,yk ∈ Rny is the measurement,w is a white
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noise process with varianceQ andrk is a zero mean Gaussian measurement noise with covariance matrix
R.

The objective is as follows. For a given state estimate ˆxk−1 att = tk−1 with meanmk−1 and covariances
Pk−1, the inputu(t) for t ∈ [tk−1; tk[ and the measureyk at t = tk, the objective is to estimate att = tk the
mean and covariance of the state of (8.1). To do so, let us introduce the following unscented transform
denotedUT(mk−1,Pk−1) which generates 2nx+1 sigma pointsXi with the associated weightsWi

X0(tk−1) = mk−1 W0 =
λ

nx+λ ,

Xi(tk−1) = mk−1+(
√

(nx+κ )Pk−1)i Wi =
1

2(nx+λ ) ,

Xnx+i(tk−1) = mk−1− (
√

(nx+λ )Pk−1)nx+i Wnx+i =
1

2(nx+λ ) ,

wherei = {1, . . . ,nx}, λ = α 2(nx + κ )− nx is a scaling parameter,α andκ are (positive) parameters
of the method,(

√

(nx+κ )Pk−1)i stands for theith column of the matrix(
√

(nx+κ )Pk−1) and where
(
√

(nx+κ )Pk−1) stands for the square root of(nx+κ )Pk−1. Let us introduce the following variable

wm = [W0, . . . ,W2nx]
T ,

W = (I2nx+1− [wm, . . . ,wm])diag(Wc
0 ,W1, . . . ,W2nx)(I2nx+1− [wm, . . . ,wm])

T ,

X (tk) = [X0(tk), . . . ,X2nx(tk)],

h(X (tk)) = [h(X0(tk)), . . . ,h(X2nx(tk))],

(8.2)

whereWc
0 = W0 + 1− α 2 + β , In stands for then dimensional identity matrix andβ is a (positive)

parameter of the method.
In terms of the unscented transformUT the UKF equations are quite similar to the classical Kalman

filter equation. They can be divided in one prediction and one correction step

• Time update:Compute the vector of sigma pointsX (tk−1) usingUT(mk−1,Pk−1) and compute
their propagation,i.e. for i ∈ {1, . . . ,2nx+1} compute

Xi(tk|tk−1)
∗ := Xi(tk−1)+

∫ tk

tk−1

G (Xi ,u)ds. (8.3)

Compute the predicted mean and covariance as follows

mk|k−1 := wmX (tk|tk−1)
∗,

Pk|k−1 := X (tk|tk−1)
∗TWX (tk|tk−1)

∗+Q.
(8.4)

Then, compute the following new set of sigma point

X (tk|tk−1) :=UT(mk|k−1,Pk|k−1). (8.5)

Finally compute the expected output as follows

Yk|k−1 := h(X (tk)),

yk|k−1 := wmYk|k−1.
(8.6)

• Measurement update:Compute the following variance and covariance

Pyy,k :=YT
k|k−1WYk|k−1+R,

Pxy,k :=
2nx

∑
i=0

W(c)
i (Xi(tk|tk−1)−mk|k−1)(Yi,k|k−1−yk|k−1)

T ,
(8.7)
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whereW(c)
i =Wi if i > 0 andWc

0 =W0+1−α 2+β .

Then update the estimated meanmk and covariancePk using the filter gainKk as follows

Kk = Pxy,kP
−1
yy,k,

mk = mk|k−1+Kk(yk−yk|k−1),

Pk = Pk|k−1−KkPyy,kK
T
k .

(8.8)

The estimated state ˆxk at t = tk has meanmk and covariancePk.

8.2.2 State observer via Moving Horizon Estimator

Kalman filters are known to be efficient but they suffer from a major drawback, it is not easy to con-
sider constraints on the state, e.g. to consider that a concentration or a quantityis always positive. As
observer are often used to estimate unmeasured concentration, many attempts have been done to solve
this issue. Some strategies consist in adjusting the existing algorithm (see e.g. [77]to consider state con-
straints when using an UKF). Others strategies consist in developingnewalgorithm in a more adequate
framework. One of the most natural possibility is to recast the original estimationproblem as a series
of constrained optimal control problem (see e.g. [133]) where the initial condition is the control. Each
time a new measurement is available, an optimization problem is solved to compute the initialcondition
which provides the best fit in regards to the past data. The problem is thatwhen time goes by, the number
of stored measures increased, making it longer and longer to solve the optimization problem and also
increasing the need for memory. That is why this strategy has been refined by introducing a receding
approach. Only a finite number of past measures is stored, thus ensuring that the need for memory is
controlled and that the computation time remains reasonable. This kind of observer is called a Mov-
ing Horizon Observer (MHE). The idea is to minimize anestimationcost function, subject to various
constraints, defined on a sliding window involving a finite number of past samples. These observers
have been used for time continuous measurement (see e.g. [127] or [124]) as well as for time discrete
measurement (see e.g. [133] or [70]).

To estimate the state att = tk using a MHE observer, we are given a set ofN measurements where
N∈N∗. We consider that the system of nonlinear ordinary differential equations and the discrete measure
y(tk) are additively disturbed. That is fort ∈ [tk−N, tk]

dx
dt

= G (x,u)+w,

x(tk−N) = xk−N,

y(ti) = h(x(xk−N,u,w; ti))+vi , i ∈ {k−N, . . . ,k},

(8.9)

wherex∈Rnx is the state vector,xk−N ∈Rnx is the unknown initial state that has to be estimated,u∈Rnu

is the control input,w∈Rnw is a (bounded) disturbance,y(tk)∈Rny is a measurement vector andvk ∈Rnv

is a (bounded) measurement noise vector.
The objective of this observer is to derive for eachi ∈ {k−N, . . . ,k} the estimate ofx(xk−N,u,w; ti)

and the corresponding disturbancesw andvi . The measurements and the inputs are collected within the
sliding window[tk−N; tk]. The estimate problem is cast as the problem of minimizing the following cost
function each time a new measurement is made available

Jtk(xk−N,w) = ‖xk−N − x̂k−N‖2
Pk

+
k

∑
i=k−N

‖vi‖2
Rk
+
∫ ti

ti−1

‖w‖2
Qk

ds, (8.10)
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where the matricesPk, Rk and Qk are assumed to be positive definite. The term‖xk−N − x̂k−N‖2
Pk

,
which is often called arrival cost, penalizes the distance from the initial condition xk−N to somea priori
estimate ˆxk−N which incorporates the past information(y(t j)) j∈{0,...,k−N−1}. The term‖vi‖2

Rk
penalizes

the measurement noise and the term
∫ ti

ti−1

‖w‖2
Qk

dspenalizes the noise on the model.

In a stochastic setting,Pk can be interpreted as the inverse of the covariance matrix correspondingto
the state estimate ˆxk−N. This means that if we are confident in the estimate ˆxk−N, then the corresponding
covariance matrix will be small and its inverse will be large. Thus, it implies that inthe optimization
problem it will be costly to estimate a different state valuexk−N. As for Rk, it can be interpreted as the
inverse of the measurement noise covariance matrix andQk as the inverse of the model noise covariance
matrix [70].

One of the main issue with MHE observer is to compute an adequate arrival cost. When computing
this term the idea is to have a first guess which is not too bad and not too numerically demanding.
Classically a Kalman filter (either EKF or UKF) is used (see e.g. [127]) . In thesequel, we will compute
the arrival cost using the previously presented UKF. An other main issuewith MHE observer comes from
the computational burden [9]. Indeed to obtain a state estimate it is needed to solveon-line a constrained
optimization problem. Many approaches have been introduced to solve these optimization problems (see
e.g. [70], [169] or [157]). In our case, we intend to use the numericalmethod presented in chapter 4. For
more details see section 8.3.1.

8.2.3 Unknown input and state observer via Extended Kalman Filter.

In the modeling part we have retained a really simple model for the gastro-intestinal subsystem. Indeed,
a real digestion process is far more complex than a simple couple of linear differential equations. In
particular, the digestion process depends on the ingested quantity, the type of consumed sugar (e.g.
the digestion process between bread and orange juice is clearly differentdue to the different nature
of carbohydrates). That is why, it is interesting to design an observer which is independent from the
digestion model and which can estimate both an unknown input (correspondingto the rate of appearance
Ra = kgrR2) and the state. The aim of this observer, which is designed using only the glucose-insulin
sub-model, is that it can be used to verify whether the use of a simple gastro-intestinal sub-model is
detrimental when it comes to estimate the state of the glucose-insulin sub-model.

Many algorithms are available to meet this purpose (see e.g. [147], [155] or[160]). As we have
soon be interested in using a Kalman filter to estimate the state, we intend to use a continuous-discrete
unknown input observer based on the use of an Extended Kalman Filter (see e.g. [141]).This observer
has been developed based on what has been done in the linear case using alinear Kalman filter (see e.g.
[61]).

The steps to estimate both the state and the unknown input are similar to the ones ofa classical
Kalman filter, i.e. a prediction and a correction step. The only thing that change is that there is a
supplementary prediction and correction step for the unknown input that hasto be estimated (see fig. 8.1
which has been inspired from [141]). A good explanation of the different meaning of the equation in a
stochastic setting and a convergence proof in the linear case can be found in[61]. Here, we will simply
recall the different equations of the filter.

We are interested in estimating the state value ˆxk, the corresponding covariancePk and the unknown
input dk at t = tk using an iterative observer ,i.e. under the assumption that we are given the estimate
x̂k−1 of the state, a corresponding covariance matrixPk−1 and an estimate of the unknown inputdk−1 at
t = tk−1. To do so, fort ∈ [tk−1, tk], let us consider the following setting which is related to our estimation
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Figure 8.1: Comparison of the bloc diagram of Kalman Filter and unknown input observer

problem

dx
dt

= G (x,u)+Fdk+w,

x(tk−1) = xk−1,

y(tk) =Cx(xk−1,u,w,dk; tk)+vk,

(8.11)

wherex∈ Rnx is the state,y(tk) ∈ Rny is the measured output,dk ∈ Rnd is the unknown input that has to
be estimated and which is assumed to be piecewise constant,F ∈ Rnx×nd is a given matrix,w is a white
noise process with covariance matrixQ andvk is a white noise process with covariance matrixR.

The set of equations of the filter are given as follows

• Prediction: When we begin to solve the estimation problem, we do not know the value ofdk. So,
to make a prediction on[tk−1, tk], we use the value of the last estimate of the disturbancedk−1.
To obtain the predicted state value ˆxk|k−1 = x̂(x̂k−1,u,dk−1; tk) and the predicted covariance matrix
Pk|k−1 = P(Pk,u,dk−1; tk), we integrate the following set of equation fort ∈ [tk−1; tk]

dx̂
dt

= G (x̂,u)+Fdk−1,

dP

dt
= A(t)P +PA(t)T +Q,

x̂(tk−1) = x̂k−1,

P(tk−1) = Pk−1,

(8.12)

whereA(t) = ∇ x (G (x̂,u)+Fdk−1).

• Estimate Unknown Input:To estimate the unknown inputdk, we use the following set of equations

R̃k :=CPk|k−1C
T +R,

Mk :=
(

(CF̄k)
TR̃−1

k (CF̄k)
)−1

(CF̄k)
TR̃−1

k ,

dk := Mk(y(tk)−Cx̂k|k−1),

(8.13)

whereF̄k = (exp(A(tk))− I)A(tk)−1F if A(tk) is not singular.
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• Correction: We obtain the estimated state ˆxk and the estimated covariance matrixPk using the
following set of equation

x̂−k := x̂k|k−1+ F̄kdk,

Lk := Pk|k−1C
TR̃−1

k ,

Pd,k :=
(

(CF̄k)
TR̃−1

k (CF̄k)
)−1

,

P
−
k := Pk|k−1+ F̄kPd,kF̄

T
k − F̄kPd,k(CF̄k)

TLT
k −Lk(CF̄k)Pd,kF̄

T
k ,

x̂k := x̂−k +Lk(y(tk)−Cx̂−k ),

Pk := P
−
k −Lk(R̃k− F̄kPd,kF̄

T
k )LT

k .

(8.14)

8.3 Validation on the modified minimal model of Bergman

8.3.1 Numerical methods

To solve the problem of estimating the state using an UKF or an UIEKF observer, we simply need to
integrate some differential equations, e.g. using the Dormand-Prince method (see e.g. [32]). When using
a MHE observer, we also need to solve a minimization problem whose cost function is given by (8.10).
Let us briefly show how the numerical methods presented in chapter 4 can be used to solve this problem.
Let us write the additively disturbed version of (6.6) as follows

dx1

dt
=−P1(x1−Gb)−x1x2+kgrx5+w1,

dx2

dt
=−P2x2+P3(x3− Ib)+w2,

dx3

dt
=−kf x3+bf x4+w3,

dx4

dt
=−ksx4+u+w4,

dx5

dt
=−c2(x5−x6)+w5,

dx6

dt
=−c1(x6−d)+w6,

x(tk−N) = xk−N,

y(ti) =Cx(xk−N,u,w; ti)+vi ,

(8.15)

whereC= [1 0 0 0 0 0], (w j) j{1,...,6} is the model noise,vi is the measurement noise,u is an insulin input
assumed to be known andd is a glucose input assumed to be known. The objective is to estimate the
value ofxk−N, (w j) j∈{1,...,6} andvi for all i ∈ {k−N, . . . ,k}.

First we rewrite (8.10) by substituing the termvi by y(ti)−Cx(xk−N,u,w; ti)

Jtk(xk−N,w) = ‖xk−N − x̂k−N‖2
Pk

+
k

∑
i=k−N

‖y(ti)−Cx(xk−N,u,w; ti)‖2
Rk
+
∫ ti

ti−1

‖w‖2
Qk

ds, (8.16)

Then, similarly to (4.35), to obtain the appropriate optimality system (necessaryconditions), which
corresponds to the identification of the gradient ofJtk given by (8.16) that is necessary to develop a
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numerical scheme in order to solve the minimization problem, we introduce the adjointsystem as follows

− dx̃1

dt
=−(P1+x2)x̃1,

− dx̃2

dt
=−x1x̃1−P2x̃2,

− dx̃3

dt
= P3x̃2−kf x̃3,

− dx̃4

dt
= bf x̃3−ksx̃4,

− dx̃5

dt
= kgrx̃1−c2x̃5,

− dx̃6

dt
= c2x̃5−c1x̃6,

x̃(tk) = 0,

x̃(x̃(ti−1); ti) = x̃(ti)−CTRk(y(ti)

−Cx(xk−N,u,w; ti)) ∀i ∈ {k−N+1, . . . ,k},

(8.17)

According to (4.38), the following expression of the derivatives ofJtk are deduced

∂Jtk

∂xk−N
(xk−N,w) = x̃(tk−N)+Pk(xk−N − x̂k−N)−CTRk(y(tk−N)−Cxk−N),

∂Jtk

∂w
(xk−N,w) =

















































x̃1+
6

∑
i=1

Q1,iwi

x̃2+
6

∑
i=1

Q2,iwi

x̃3+
6

∑
i=1

Q3,iwi

x̃4+
6

∑
i=1

Q4,iwi

x̃5+
6

∑
i=1

Q5,iwi

x̃6+
6

∑
i=1

Q6,iwi

















































,

(8.18)

wherex̃ is the solution of (8.17).

8.3.2 Numerical simulation

To test the good numerical implementation and performances of the various observer, we simulate a
virtual patient given by an additively disturbed modified minimal of Bergman. The noise on the model
is given by a Gaussian noisew≈ N (0,Q). The matrixQ has been chosen diagonal

Q= diag(q1,q2,q3,q4,q5,q6) . (8.19)

Because in this case we have access to the true state value, it is possible to check whether the three
observer converge toward thetruestate. To simulate the virtual patient, we consider the set of parameters
given in table 8.1 and the variables(qi)i∈{1,...,6} according to table 8.2.
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Name Value Unit

P1 3.17×10−3 min−1

P2 1.53×10−2 min−1

P3 6.41×10−7 L.mU−1.min−1

kf 3.85×10−2 min−1

bf 1.77×10−4 L−1min−1

ks 5.54×10−3 min−1

c1 2.5×10−2 min−1

c2 2.5×10−2 min−1

kgr 3.13×10−3 dL−1.min−1

Gb 82 mg.dl−1

Ib 24.3 mU

Table 8.1: Set of parameters used to simulate a virtual patient.

q1 q2 q3 q4 q5 q6

0.1P1Geq 0.1P2Xeq 0.1kf Ieq 0.1ksU1,eq 1×10−10 1×10−10

Table 8.2: Chosen value of the components ofQ.

To simulate that only sampled noisy measurement are available, the measured output is given by
G(kTech)+ vk whereTech= 5min andvk ≈ N (0,5). The first guess to initialize the observers is either
set to the equilibrium point of the model which is given by a blood glucose value of Geq= 100mg.dl−1

or set to the exact initial condition. The horizon of the MHE observer is set to6 past data.
The observers is tested by considering the following scenario

t = 0h: The simulation is initialized. The initial blood glucose is set at 100mg.dl−1. The observer (UKF)
is switched on.

t = 7h: The patient eats a meal of 25g.

t = 12h: The patient eats a meal of 70g.

t = 20h: The patient eats a meal of 80g.

t = 35h: The simulation is ended.

In order to study the influence of the noise on the measure, the simulation is run 100 times. The
observer performances are compared thanks to the computation of the mean root mean square (RMS) of
the relative error between the estimated state and the true state1

RMS=

√

420

∑
k=0

(‖x(tk)− x̂(tk)‖
‖x(tk)‖

)2

, (8.20)

wherex stands for the true value of the state and ˆx stands for the estimated value of the state. This
definition of the RMS has a sense because we havex1 > 0 for all t ≥ t0.

1The number 420 comes from the following computation
Tend experiment

Tech
whereTend experiment= 35×60 min andTech= 5min.
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Observer UKF uMHE UIEKF
RMS 1.5397 1.9193 1.4322

Table 8.3: RMS of the three observer for equilibrium starting point.

Observer UKF uMHE UIEKF
RMS 1.5675 1.8868 1.4191

Table 8.4: RMS of the three observer for exact starting point.

A simulation example, when the observer initial condition is set to the equilibrium starting point,
can be seen on fig.8.2. The mean RMS for the three observers is given ontable 8.3. A simulation
example when the observer initial condition is set to the exact initial condition can beseen on fig.8.3.
The corresponding mean RMS for the three observers is given on table 8.4.
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Figure 8.2: Comparison of the UKF, uMHE and UIEKF observer, equilibrium starting point

All of the three designed observers converge toward the true state. Furthermore, it can be seen that
none of them show better convergence results than the two others. Because it is difficult to give a sense
to the estimated unknown input when using the UIEKF observer, we do not intend to use this approach
to estimate the state of the system. That is why, in the sequel, we will only retain the Unscented Kalman
Filter. This choice has been done because this observer is less computationallyexpensive than a MHE
observer.
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Figure 8.3: Comparison of the UKF, uMHE and UIEKF observer, exact starting point

8.4 Conclusion

In this chapter we have considered that the measure can not provide the full state information and so that
the state of the system (6.6) has to be estimated. When dealing with this problem, oneof the difficulty
is to assess on the quality of the estimate. To solve this issue, we have considered the design of three
different observers. It has been shown that the three observers converge toward the true state of the
system with similar performances. Because it is difficult to give a sense to theestimated unknown input
when using the UIEKF observer, we have retained the simplest approach(from a computational point of
view), i.e. the UKF observer.

At that point, we have all the necessary tools to solve the problem of artificial blood glucose control.
That is why, in the next chapter, we will be interested in considering the application of the SPMPC
controller from a numerical simulation point of view. The controller performances will be assessed
using both the control model and the testing platform to simulate virtual patients.
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9.1 Introduction

In chapter 3 we have considered a SPMPC controller which ensures robust control performances by
repeatedly solving a constrained saddle point optimization problem. It has been proved that if the dis-
turbances on the model belong to a given set, then the state of the system is stabilized in finite time in
a bounded subset. Also, under some assumptions on the criterion, it has been proved that the system
is input-to-state practically stable. Then, in chapter 4, we have proposed numerical methods to solve a
state-constrained saddle point problem.

This thesis has been motivated by the problem of artificial blood glucose control. That is why, in a
second part we have considered the application of the previously presented controller in order to bring a
solution to this problem. Thus, in chapter 6, we have been interested in the modeling aspect. This has lead
us to consider two models. One, the model of Dalla-Man et al., which can be considered as a complex
model, is used for validation purpose while the other, the modified minimal model of Bergman, is used
to design the controller. Then, in chapter 7, we have been interested in studying some properties of this
latter. One of the main point was to verify that the control model satisfies all the necessary properties
needed to use theorem 2. Finally, because the sensors can only providea measure of blood glucose, in
chapter 8, it has been necessary to consider the design of a state observer.

In this chapter we are interested in validating the retained control strategy as a viable alternative
for artificial blood glucose control. To do so, we will consider numerical simulations using both the
control model and the Dalla-Man et al. model to simulate virtual patients. This latter will be used in
the framework of the UVA-Padova testing platform [90]. It has been validated by the Food and Drug
Administration as a substitute to test on animals. From a pragmatic point of view, the validation using
a testing platform was absolutely necessary in regards to the relative simplicity of the retained control
model. Indeed, it seems quite clear that the human metabolism can hardly be modeledby such a simple
system of ordinary differential equations. The simulation will be undergone on the trial version of the
platform and will concern all of the 10 adults. For each adult, a set of parameters will be identified
using optimal control technique. Before further proceeding let us recall that the classical cure of a type 1
diabetic can be split in two parts: the basal term which objective is to stabilize blood glucose in a safe in-
terval (usually set to[70,140]mg.dL−1) and the bolus part which consists in injecting important quantity
of insulin in a short lapse of time to counter sudden blood glucose increase,e.g. due the consumption of
a meal. For control purpose we will only be interested in controlling the basal component of the cure (see
e.g. [37]),i.e. the stabilizing part of the cure. Let us briefly explain this choice. Generallyspeaking, a
patient can quite easily handle meals effect such that in term of quality of the usual cure the introduction
of control will only bring minor benefits in regards to the introduced risk. That is why it is considered
that the objective of the controller is restrained to use the numerous measures provided by the sensor in
order to bring more safety in the cure by dynamically adjusting the basal value ofthe patient.

To validate the approach we have to consider simulation scenarios which are both challenging and
realistic. Indeed, as previously mentioned, it is assumed that the bolus cure ishandled thanks to an
other algorithm (e.g. by the patient himself). So, the various scenarios haveto be designed according
to this complementary algorithm. To assess the controller performances we will consider two different
scenarios. The first one will consist in stabilizing the blood glucose to a safe value when it is initially
quite high (overnight type scenario). This scenario is introduced in order to test whether the controller is
safe in regards to hypoglycemia when it has to stabilize a high blood glucose value. The second scenario
will consist in a day with three meals. This scenario is considered in order to test whether the controller
can be efficiently combined with a bolus cure.

This chapter is organized as follows. First, the identification procedure to obtain a set of parameters
for each patient is briefly presented. Then, simulation concerning the two aforementioned scenarios are
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undergone using the modified minimal model of Bergman to simulate a virtual patient. Finally, the same
experiments are undergone using the virtual testing platform.

9.2 Identification procedure

9.2.1 Motivation and Identification procedure

The problem of artificial blood glucose control has been tackled using a model predictive controller.
When using such an approach, the model of the process is of prime importance and has strong influence
on the expectable controller performances. For control purpose, we have retained a simple nonlinear
model which provides a rough global trend of the process. This has enabled us to easily consider the de-
sign of the controller. There is an other advantage in this choice. As the modelhas only few parameters,
the identification of an adequate model for a given patient with simple and safe experiments is rendered
possible. This is particularly interesting as this enables us to consider the inter-patient variability. That
is why, even if in this thesis we focus on the control aspect, we have some interest in identifying the
parameters of the model. In this section, an identification technique based on optimalcontrol on the pa-
rameters is presented. The retained methodology is somewhat simple but sufficient to provideadmissible
parameters.

Now, let us describe the identification procedure. Assuming that a first setof parameters is given (e.g.
using Matlab toolbox), the identification procedure will consist in estimating separately the glucose-
insulin sub-model and the gastro-intestinal sub-model. This choice has been done in order to avoid
compensatory effect through the gastro-intestinal sub-model. Indeed, in thecontrol model, the meal
input d can induce an increase in the blood glucose value with more dynamics than an increase due to
a variation of the value of the stateX. So, if both sub-models were to be identified simultaneously, we
will take the risk that the gastro-intestinal sub-model will be used to explain others dynamics that have
been neglected in the model. In order to converge to an admissible set of parameters, the procedure is
implemented recursively,i.e., for given parameters of the gastro-intestinal sub-model, the parameters
of the glucose insulin are identified, then using these new parameters, the parameters of the gastro-
intestinal sub-model are identified, and so on until the parameters converge.The identification procedure
is summed up in fig. 9.1.

9.2.2 Numerical methods

Formulation of a general identification problem

The problem of identifying the model parameters will be handled as a control problem on the parameters.
The identification problem will be cast as a minimization problem. The aim is to find the parameters such
that the error between the measured output during an experiment and the simulated output is minimized.
That is, to obtain the model parameters, we are interested in solving the followingoptimization problem:

p∗ = arg min
p∈Rnp

J(p),

s.t. (3.1) withx(Tstart) = x0 is known,
(9.1)

wherep is the vector of parameters that has to be identified and the functionalJ(p) is given as follows:

J(p) = pTα p+
∫ Tend

Tstart

(

‖y−yobs‖2
R

)

ds, (9.2)
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Figure 9.1: Identification procedure

whereyobs is the measured output,y is the simulated output,Tstart andTend stand for the time value at the
beginning and at the end of the experiment respectively,α andR are given definite symmetric positive
matrices.

This optimization problem will be solved using the results presented in chapter 4.To identify the
model parameters of (6.6) it is assumed that the sole value of blood glucose is available.

Formulation for the glucose-insulin sub-model

To identify the parameters of the glucose-insulin sub-model, we consider the optimization problem given
by (9.1), where the vector of parametersp that has to be identified is given by

p=
(

P1 P2 P3 kf bf ks Gb
)T

. (9.3)

According to (4.35), to obtain the appropriate optimality system (necessary conditions), which cor-
responds to the identification of the gradient ofJ(p) that is necessary to develop a numerical scheme in
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order to solve the minimization problem (9.1), we introduce the adjoint system as follows

− dx̃1

dt
=−(P1+x2)x̃1+R(x1−x1,obs),

− dx̃2

dt
=−x1x̃1−P2x̃2,

− dx̃3

dt
= P3x̃2−kf x̃3,

− dx̃4

dt
= bf x̃3−ksx̃4,

− dx̃5

dt
= kgrx̃1−c2x̃5,

− dx̃6

dt
= c2x̃5−c1x̃6,

x̃(Tend) = 0,

(9.4)

wherex1,obs stands for the measured output andx1 stands for the simulated output.
According to (4.38), the following expression of the derivative ofJ(p) is deduced

∂J
∂ p

(p) =















































−
∫ Tend

Tstart

x̃1(x1−Gb)ds+α1,1P1

−
∫ Tend

Tstart

x̃2x2ds+α2,2P2
∫ Tend

Tstart

x̃2(x3− Ib)ds+α3,3P3

−
∫ Tend

Tstart

x̃3x3ds+α4,4kf
∫ Tend

Tstart

x̃3x4ds+α5,5bf

−
∫ Tend

Tstart

x̃4x4ds+α6,6ks

−
∫ Tend

Tstart

P1x̃1ds+α7,7Gb















































. (9.5)

Formulation for the gastro-intestinal sub-model

To identify the parameters of the glucose-insulin sub-model, we consider the optimization problem given
by (9.1), where the vectorp is chosen as follows

p=
(

kgr c2 c1
)T

. (9.6)

In this case, the adjoint model is also given by (9.4). According to (4.38), the derivative ofJ(p) is
given by

∂J
∂ p

(p) =















∫ Tend

Tstart

x̃1x5ds+α1,1kgr

−
∫ Tend

Tstart

x̃5(x5−x6)ds+α2,2c2

−
∫ Tend

Tstart

x̃6(x6−d)ds+α3,3c1















. (9.7)
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Adult P1 P2 P3 kf bf ks Gb Ib
1 3.2×10−3 1.53×10−2 1.26×10−6 3.85×10−2 1.77×10−4 6.5×10−3 76.7 25.3
2 1.29×10−2 5.2×10−3 1.46×10−6 1.1×10−2 4.93×10−4 5.64×10−2 80.3 28.6
3 1.14×10−2 1.14×10−2 4.48×10−6 1.04×10−2 6.17×10−4 6.42×10−2 89.1 31.8
4 7.27×10−3 1.94×10−2 1.16×10−5 1.08×10−2 5.67×10−4 5.58×10−2 83.4 18.9
5 8.67×10−3 8.67×10−3 1.50×10−6 5.80×10−2 4.81×10−4 1.06×10−2 92.4 29.5
6 4.51×10−3 1.34×10−2 4.82×10−6 8.41×10−3 2.64×10−4 3.9×10−2 85 26.9
7 6.11×10−3 1.87×10−2 1.23×10−5 4.22×10−2 3.34×10−4 9.1×10−3 85.4 23
8 2.81×10−3 2.29×10−2 1.59×10−6 3.88×10−2 4.50×10−4 1.24×10−2 89.2 25.3
9 3.8×10−3 5.33×10−3 5.46×10−7 6.65×10−2 9.34×10−4 1.37×10−2 75.6 30
10 7.14×10−3 9.3×10−3 1.50×10−6 5.02×10−2 5.11×10−4 1.11×10−2 91.2 32.6

Table 9.1: Parameters value for the adults of the simulator, glucose-insulin sub-model

9.2.3 Identification results

To obtain the data necessary to identify the parameters of the model, we have considered the simulation
scenario which consists in a day with three meals as the one given given in section 8.3. These data have
been generated using the testing platform [90]. It has been assumed that the blood glucose is measured
each minute. Also, to simplify the problem, we have considered that a non noisymeasure of the blood
glucose was available. Of course this assumption is unrealistic when considering real patient data.

The matrices of the criterion (9.2) are chosen as follows

For the glucose-insulin sub-model:

R= 1,

α = 0.1diag





1

P(0)
1

,
1

P(0)
2

,
1

P(0)
3

,
1

k(0)f

,
1

b(0)f

,
1

k(0)s

,
1

G(0)
b



 ,

(9.8)

For the gastro-intestinal sub-model:

R= 1,

α = 0.1diag

(

1

k(0)gr

,
1

c(0)1

,
1

c(0)2

)

,

(9.9)

whereP(0)
1 , P(0)

2 , P(0)
3 , k(0)f , b(0)f , k(0)s , G(0)

b , k(0)gr , c(0)1 andc(0)2 correspond to the value of the first set of
identified parameters.

The comparison between the measured output used to identify the parameters and the simulated
output for adult 7 is shown on fig. 9.2 and for adult 10 on fig. 9.3. On these figures it can be seen that
the global trend of the glucose metabolism is respected. However, the qualityof the identification results
can vary from satisfactory as for adult 7 to debatable as for adult 10. It is assumed that by introducing
time varying parameters we can make up for the gap between the output of the identified model and the
simulated value.

The parameters obtained for the 10 adults of the testing platform are summed up intable 9.1 and 9.2.

Remark10. According to the results presented in section 7.2.1, for all adults, it is deduced that the
state keeps its physiological meaning (i.e. it evolves inR+∗×R×R+×R+×R+×R+) simply if we
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Figure 9.2: Comparison between the data used for identification purpose and simulated output for adult
7
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Figure 9.3: Comparison between the data used for identification purpose and simulated output for adult
10

haveu≥ 0 andd ≥ 0. Concretely, this does not set any supplementary conditions on the inputs as they
correspond to an injected flow and a quantity respectively.



130 CHAPTER 9. NUMERICAL SIMULATION ON A VIRTUAL PATIENT

Adult kgr c2 c1

1 1×10−3 2.39×10−2 9.95×10−2

2 4×10−3 6×10−3 9.26×10−2

3 4.5×10−3 5.6×10−3 9.25×10−2

4 4.2×10−3 9.1×10−3 9.47×10−2

5 3.2×10−3 6.6×10−3 9.32×10−3

6 4×10−3 8.7×10−3 9.35×10−2

7 3×10−3 8.6×10−3 9.34×10−2

8 5×10−4 7.9×10−3 9.33×10−2

9 1.8×10−3 7.4×10−3 9.33×10−2

10 3.7×10−3 8.3×10−3 9.35×10−2

Table 9.2: Parameters value for the adults of the simulator, gastro-intestinal sub-model

9.3 Simulation Scenarios and Controller Setting

Now that the parameters of the model of each adult have been identified, it becomes possible to consider
the numerical simulation. To do so, we will consider two kind of virtual patient. The first series will be
given by the control model. With this series, the aim is to test the controller performances in case the
model of the process is nearly perfect. The second series will be given by the adult of the testing platform
[90]. In this case the objective is to test the controller robustness againstneglected dynamics.

To test the controller performances, two scenarios will be considered. The first one aims at testing
the controller performances when it works alone. The second scenariois introduced in order to test the
controller performances when combined with a classical bolus cure.

One difficulty when dealing with control techniques which are based on the optimization of a crite-
rion is to tune this latter in order to obtain thebestcontrol performances. The more simple and common
approach consists in trial and error techniques. That is, numerous simulations for various criterion are
done and the one which leads to the best control performances is retained. Problem of this approach is
that it can not be used when dealing with more realistic case. Indeed, when human is in the loop, we are
more interested in ensuring control performances at first try rather than failing because the first tuning
was too aggressive. That is why, for each virtual patient, we will consider the samedefaultsetting.

9.3.1 Simulation Scenarios

Let us begin to present the two scenarios that have been chosen to test the controller performances.

Overnight scenario

To begin with, we are interested in testing the controller performances when it works alone. By this
assertion we mean that it is desired to test whether the controller can efficientlystabilize a high initial
blood glucose without inducing an hypoglycemia. To do so, let us envisage the following scenario

Scenario 1: Overnight

t = 0h: The simulation is initialized. The initial blood glucose is set at 200mg.dl−1. The observer (UKF)
is switched on.

t = 2h: The controller is switched on.
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t = 24h: The simulation is ended.

This scenario has been called overnight scenario because it can be interpreted as an evening/ night situ-
ation of a classical life. Indeed, after dinner, before sleeping, the bloodglucose value can be quite high
(e.g. because of a miscalculation in the bolus) despite a negligible rate of appearance,i.e. Ra ≈ 0. Thus,
during the night, the objective of the controller is to stabilize the blood glucose toa safer value without
needing to consider meals effects because the patient is assumed to sleep and so is non active.

With this scenario, to assess the controller performances, we are interestedin % G ∈ [70;140] the
percentage of time spent in the interval[70;140]mg.dL−1 (which corresponds to a safe blood glucose),
in % G ∈ [80;120] the percentage of time spent in the interval[80;120]mg.dL−1 (which corresponds
to tight blood glucose control) and in minG the minimal value of blood glucose during the complete
experiments. All these metrics are computed when the loop is closed.

Classical day scenario

Then we are interested in testing the controller performances when combined witha classical bolus cure.
This point is of prime importance as a complete cure consists in the combination of a basal and a bolus
component. As we have been interested in considering only one component, wehave to verify that the
controller will not over react when combined with the other algorithm. To do so, let us envisage the
following scenario

Scenario 2: Classical day

t = 0h: The simulation is initialized. The initial blood glucose is set at 100mg.dl−1. The observer (UKF)
is switched on.

t = 2h: The controller is switched on.

t = 7h: The patient eats a meal of 25g.

t = 12h: The patient eats a meal of 70g.

t = 20h: The patient eats a meal of 80g.

t = 35h: The simulation is ended.

The information concerning the meal size and the injected bolus are provided tothe controller when the
corresponding event occurs (no anticipatory behavior).

Some variations of this scenario are envisaged depending on the way the bolus part of the cure is
handled. In a first variation, it is assumed that each meal are self regulatedvia injection of 75% of the
optimal bolus (according to the insulin to carbohydrate ratio determined by the physician). In a second
variation, it will be assumed that no boluses are injected.

With this scenario, to assess the controller performances, we introduce thefollowing metrics: %G∈
[70;140] the percentage of time spent in the interval[70;140]mg.dL−1, minG the minimal value of
blood glucose during the complete experiment and maxG the maximal value of blood glucose during the
complete experiment. All metrics are computed when the loop is closed.

In its first variation, the objective of the scenario is to test whether the controller can be efficiently
combined with a classical bolus cure. If it does then this means that the here presented SPMPC controller
is a potential candidate to design an artificial pancreas. In its second variation, the objective is to test the
controller robustness in face to major disturbances and also if it can be usedto generate the bolus part of
the cure.
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9.3.2 Controller Settings

The tuning of the controller is a problem in itself. Indeed, as we consider human beings, a simple and
safe tuning has to be available for all patients at first try. In order to consider a somewhat realistic case,
the same default tuning is used for all adults. The idea is to test whether, in lack of any control experience
for a given patient, we can design a safe controller.

First, let us consider the setting of the controller objective. For all adults, theobjective will be to
stabilize blood glucose atGeq= 100mg.dL−1. In this case, the nominal control input is given byu= ueq

where

ueq=
kskf

bf

(

Ib−
P2P1(Geq−Gb)

P3Geq

)

. (9.10)

The prediction horizonT of the SPMPC controller has been set to 5h. To consider the asymmetric
control objective, the constraintG≥ 80mg.dL−1 has been added in the optimization problem. The matrix
R, α andQ are chosen as follows:

R= diag

(

1
Geq

,0,
1
Ieq

,0

)

, Q= diag

(

1
P1

,
1
P2

,
1
P3

,
1
kf

,
1
bf

,
1
ks

)

, α =
1

ueq
, (9.11)

whereIeq= Ib−
P2P1(Geq−Gb)

P3Geq
.

The matrixR only weight the blood glucose and the blood insulin which corresponds to thetwo
natural state of the system. The uncertainties on the parameters are given by variations of 50% around
the nominal value of the corresponding parameters.

The disturbed model, the adjoint model, the final cost and the terminal state constraint are defined
according to the results of chapter 7.

9.4 Simulation results with the modified model of Bergman

First, to validate the implementation and the performances of the control methodology, let us consider the
control of the modified minimal model of Bergman in case this model is also used for patient simulation
purpose.

For simulation purpose, it is assumed that the meals are uniformly consumed in 15min. The sampling
time on the blood glucoseG is set to 5min and the sampling time on the control inputu is set to 15min.
For control purpose, a noisy blood glucose value is provided for the observer,i.e.:

Gsensor,k = Gk+vk, (9.12)

wherevk ≈ N (0,5).

9.4.1 Scenario 1: Overnight

The table 9.3 sums up the simulation results for all adults. It can be seen that forall adults the results are
satisfactory. The blood glucose is efficiently and rapidly stabilized. Also, no hypoglycemia event has to
be deplored.
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Adult % G∈ [70;140] % G∈ [80;120] minG mg.dL−1

1 83 76 92
2 95 91 94
3 95 90 93
4 91 88 90
5 94 88 92
6 88 84 92
7 90 87 91
8 85 83 94
9 87 81 91
10 93 86 92

Table 9.3: Simulation results for scenario 1, using the control model as patient simulator

Adult % G∈ [70;140] minG mg.dL−1 maxG mg.dL−1

1 88 92 169
2 87 95 175
3 96 90 150
4 92 90 177
5 91 92 158
6 86 88 209
7 95 83 155
8 100 91 115
9 94 93 148
10 87 92 187

Table 9.4: Simulation results for scenario 2 variation 1, using the control model aspatient simulator

9.4.2 Scenario 2: Classical day

Variation 1: 75%of bolus injected

The simulation results for all adults can be seen in table 9.4. It can be seen that the blood glucose is well
controlled. For all adults, no hypoglycemia event is detected. Also, the time spent in hyperglycemia is
negligible. Furthermore, as it can be seen with the simulation result for adult 9 on fig.9.4, the controller
shows an interesting behavior. The blood glucose is stabilized thanks to small variation of the basal
insulin what is quite safe from a cure point of view.

Variation 2: no bolus injected

The table 9.5 sums up the simulation results for all adults. Once again the results are quite satisfactory.
The simulation result for adult 9 can be seen on fig.9.5. It is interesting to see that the controller naturally
works under a basal/ bolus strategy. By this assertion we mean that the bloodglucose is stabilized thanks
to the injection of a nearly constant insulin flow (basal behavior), while the effects of meals are rejected
thanks to the injection of a more important dose of insulin (bolus behavior).
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Figure 9.4: Simulation result for adult 9 with scenario 2 variation1, using the control model as patient
simulator
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Figure 9.5: Simulation result for adult 9 with scenario 2 variation2, using the control model as patient
simulator

Scenario 2 variation 1 bis: time varying parameters

Finally we have considered a last variation of the second scenario. As we have implemented the virtual
patient, it is possible to consider time varying parameters. By doing so the aim is not to mimic some
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Adult % G∈ [70;140] minG mg.dL−1 maxG mg.dL−1

1 85 92 176
2 82 91 195
3 86 92 189
4 83 89 228
5 84 93 188
6 79 88 242
7 88 80 189
8 100 95 119
9 84 94 173
10 81 93 223

Table 9.5: Simulation results for scenario 2 variation 2, using the control model aspatient simulator

Adult % G∈ [70;140] minG mg.dL−1 maxG mg.dL−1

1 84 98 173
2 84 100 183
3 96 93 147
4 90 85 186
5 90 100 161
6 80 90 218
7 87 85 177
8 100 98 111
9 89 93 154
10 86 100 190

Table 9.6: Simulation results for scenario 2 variation 1bis, using the control model with time varying
parameters as patient simulator

realistic phenomena (e.g. the dawn phenomena) but more to test the controller behavior when the process
is time-varying. For a parameter with nominal valuepnom, to simulate the virtual patient, we have
considered the time varying parameterp(t) given by

p(t) = pnom

(

1+
0.5
3
(sin(0.25t)+sin(0.5t)+sin(t))

)

.

The simulation results are summed up in table 9.6. In this case, the results are comparable to the one
given by table 9.4. These results are interesting as they show the robust performances of the retained
control approach. The simulation result for adult 9 can be seen on fig. 9.6.It is interesting to see that the
profile of injected insulin is comparable to the one given by the first variation of scenario 2 (see fig. 9.4).

9.4.3 Discussion

It can be seen that using a SPMPC controller the blood glucose is safely stabilized. Indeed, for all
scenarios and for all adults, no hypoglycemic event occurs and the time spent in hyperglycemia is too
short to induce any damages. It has been shown, with the first variation ofthe second scenario, that the
controller can be efficiently combined with a classical bolus cure. Also, with thesecond variation of the
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Figure 9.6: Simulation result for adult 9 with scenario 2 variation1bis, using the control model as patient
simulator

second scenario, it can be seen that the controller does not lost too much of its performances in case of
meal consumption and no bolus injection. This can be seen on fig.9.7 where the simulation results for
the two variations of the scenario 2 on adult 10 are compared. As for the third variation of the second
scenario, it has enabled to show that the controller provides robust control performances when used to
control a time-varying process.

Now that it has been verified that the SPMPC controller can be efficiently used to control the modified
minimal model of Bergman, we can envisage a more realistic series of virtual patients. Indeed, the
retained control model is too simple to simulate a realistic metabolic behavior of a type 1diabetic (see
e.g. the non negligible difference between the measured and the simulated output on fig.9.3). That is why,
in the next part, we will consider numerical simulation using a testing platform in which the Dalla-Man
et al. model is implemented.

9.5 Simulation Result with the virtual testing platform

In this section we will be interested in testing the controller performances with the previously presented
scenarios using a testing platform approved by the FDA [90]. The controller performances will be
compared to the ones given by a classical NMPC controller (whose solution is computed using the
numerical tools presented in chapter 4).

9.5.1 Scenario 1: Overnight

The table 9.7 sums up the simulation results for all adults. It can be seen that boththe NMPC and
the SPMPC controller can safely stabilize blood glucose in the sense that no hypoglycemia event has
occurred. With this scenario, the performances of the SPMPC controller are comparable with the one
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Figure 9.7: Simulation results for adult 10 with scenario 2 using the control modelas patient simulator

given by a NMPC controller. This implies that it is certainly more interesting to consider the SPMPC
approach because of the guaranteed robustness. Indeed, in this case, if the performances are comparable,
it is also because the modified minimal model of Bergman is well adjusted, whereas withreal patients,
it will be more difficult to obtain such identification results. It is also interesting to seethat the injected
insulin profile consists in small variation around a given basal (see e.g. the simulation result for adult 7
on fig. 9.8).

9.5.2 Scenario 2: Classical day

Variation 1: 75%of bolus injected

The simulation results for all adults can be seen in table 9.8. The performances of both the NMPC and
SPMPC controller are satisfactory. For all adults, no hypoglycemia and only a minor hyperglycemia
for adult 9 can be seen. The performances of the NMPC controller are slightly better than the one of
the SPMPC controller. This can be explained by the reduced conservatismof this approach. However,
concretely, when dealing with artificial blood glucose control, it is preferable to be robust but conserva-
tive rather than being too optimistic in regards to the prediction given by the model (particularly in this
application where it is hopeless to aim at good model).

The simulation results for the adult 9 using a SPMPC controller and a NMPC controller can be seen
on fig. 9.9 and fig. 9.10 respectively. The first point that is worth mentioningis that the sensor noise is a
real issue. The bias on the measure can be really large. This can be at theorigin of a bad estimate of the
current state value and in turn at the origin of bad control performances. The control input of the NMPC
mainly differs from the control input of the SPMPC controller in terms of larger amplitude. Because it
is safer to act carefully, this tends to suggest that a SPMPC control approach has to be favored.



138 CHAPTER 9. NUMERICAL SIMULATION ON A VIRTUAL PATIENT

Adult % G∈ [70;140] % G∈ [80;120] minG mg.dL−1

NMPC SPMPC NMPC SPMPC NMPC SPMPC
1 89 89 87 86 82 82
2 86 83 60 61 106 106
3 89 89 76 75 97 92
4 90 91 87 88 95 90
5 87 86 83 81 95 96
6 88 87 80 83 94 90
7 90 92 91 90 91 81
8 91 90 88 88 82 83
9 88 84 82 71 103 108
10 88 87 84 83 90 90

Table 9.7: Simulation results for scenario 1, using the Dalla-Man et al. model as patient simulator

Adult % G∈ [70;140] minG mg.dL−1 maxG mg.dL−1

NMPC SPMPC NMPC SPMPC NMPC SPMPC
1 92 91 75 74 155 155
2 100 84 88 96 131 152
3 100 96 79 77 135 149
4 93 92 80 77 177 178
5 100 100 74 78 130 137
6 93 85 83 81 150 158
7 100 100 79 70 127 127
8 100 100 79 79 132 132
9 74 71 66 76 174 183
10 90 85 74 76 157 164

Table 9.8: Simulation results for scenario 2 variation 1, using the Dalla-Man et al.model as patient
simulator
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Figure 9.8: Simulation result using SPMPC controller for adult 7 with scenario 1, using the Dalla-Man
et al. model as patient simulator
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Figure 9.9: Simulation result using SPMPC controller for adult 9 with scenario 2variation1, using the
Dalla-Man et al. model as patient simulator

Variation 2: no bolus injected

The table 9.9 sums up the simulation results for all adults. Once again, for both controller, the results
are satisfactory. The poorer results are than in the previous variation of the scenario can be explained by
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Figure 9.10: Simulation result using NMPC controller for adult 9 with scenario 2variation1, using the
Dalla-Man et al. model as patient simulator

the fact that the controller becomes more sensitive on the quality of the gastro-intestinal sub-model. It is
certainly too simple to model a realistic digestion process.

9.5.3 Discussion

Using a more realistic patient model, the controller performances remain satisfactory. The blood glucose
is still safely and robustly stabilized. Of course the results are poorer thanin the previous part where
the virtual patients were given by the control model. This was quite predictableas the Dalla-Man et al.
model is a more realistic model of the glucose metabolism and so the predicted blood glucose trajectory
were not as accurate as before.

The comparison with the NMPC controller tends to show that the intrinsic robustness of asimple
predictive controller is sufficient for control purpose when using the testing platform as a virtual patient.
However, it has to be noticed that despite the supplementary conservatism of the approach, the SPMPC
controller provides nearly equivalent control performances. This motivates our interest in considering
this robust approach. Indeed, it is well known that the gap between the testing platform and a real
patient is still important. As an example, contrary to what is assumed in the testing platform, a real
patient is a time-varying process (e.g. it is subject to the dawn phenomena) and it is not reduced to the
sole glucose metabolism. Also, because the controller has to be safe in everycircumstances, despite
the supplementary complexity, this motivates to consider the design of the robust controller which can
guarantee sufficient robustness.
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Adult % G∈ [70;140] minG mg.dL−1 maxG mg.dL−1

NMPC SPMPC NMPC SPMPC NMPC SPMPC
1 87 85 73 70 164 164
2 94 77 91 102 149 174
3 96 77 73 81 149 166
4 87 86 86 83 217 212
5 93 83 79 83 153 167
6 85 80 89 87 171 188
7 93 95 85 74 151 146
8 98 97 78 78 144 145
9 68 62 68 79 181 196
10 85 75 75 79 179 198

Table 9.9: Simulation results for scenario 2 variation 2, using the Dalla-Man et al.model as patient
simulator

9.6 Conclusion

The problem of artificial blood glucose control has been tackled via the design of a SPMPC controller
using a modified minimal model of Bergman. As the model possesses a few number of parameters,
it has been possible to consider the inter-patient variability by identifying a set of parameters for each
virtual patient. The performances of the controller have then been tested on two scenarios. The first
one can be considered as an overnight scenario,i.e. the controller is only plug to control blood glucose
during night. The idea was to test the controller performances against the potentially badly identified
parameters, the neglected dynamics and the sensor noise. The second scenario has been used to test the
controller performances during a classical day with three meals. The idea was to test if the controller can
be combined with a bolus cure. In all cases the controller performances have shown to be satisfactory.
Indeed, the blood glucose is safely and robustly stabilized.

These results are particularly interesting as it can be seen that in all cases no hypoglycemia event
occurs. Also, the time spent in hyperglycemia is not hazardous for the patients. This tends to show
that it is worth considering a SPMPC controller in order to dynamically adjust the basal component of
a classical cure. However, this does not mean that the problem of artificialblood glucose control is
solved. Indeed, as it has been previously mentioned, it is nearly impossible tomodel human metabolism,
meaning that even the set of realistic virtual patient is notreal enough. That is why these positive results
have to be interpreted under the sole fact that it is worth considering this control approach for some
clinical tests with real patients in the loop. It is only after these tests that we can finally conclude on the
real interest of using this control methodology.

From a control point of view, because the controller performances arequite good, it is worth consid-
ering an extension of the SPMPC control approach to other control problem known to be challenging.
This is the objective of the next chapter where it will be investigated, from anumerical point of view,
the interest of extending this control approach to control process described by nonlinear uncertain delay
differential equations.
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10.1 Introduction

In the previous chapters, we have considered, from a theoretical anda numerical point of view, the
SPMPC controller. It consists in a variation of a classical MPC controller which has been designed
to control systems described by nonlinear ordinary differential equation and that need robust control
performances in a sampled-data framework. This controller has been testedto solve the problem of
artificial blood glucose control and has shown satisfactory performances. This motivates us to consider
an extension of this controller to the class of system which are described bynonlinear delay differential
equations.

This extension is interesting as it is well known that many engineering phenomenon involve both
nonlinearities and time delays, e.g. in the mass transport flow problem. For thesesystems it is of prime
importance to explicitly consider the time delay in the design phase otherwise the time delay factors can
lead to poor control performances (see e.g. [103]). On the other hand,in practical systems, uncertainties
are really common. They can be caused either by the need to neglect some dynamics to obtain a model
of a complex process or the difficulty to identify the parameters of a nonlinear process.

The control of time delay systems has been considered for a long time. This problem is known to
be really complex. One reason is that the state belongs to an infinite dimensional space. The available
results in this field strongly depend on the structure of the considered system. The field is quite mature
for what deals with the problem of robust control of linear time delay system. Many controller originally
designed for linear ordinary differential equation have been successfully transposed to control systems
described by linear delay differential equation. Thus, it is possible to use, with robust guarantee on the
control performances, a minimax approach (see e.g. [81]), a H∞ approach (see e.g. [42]) or a robust MPC
approach (see e.g. [66] or [25]). These control techniques sharethe idea of using the LMI framework. As
for the nonlinear case, the results are more sparse. This may be because in this case it is more intricate
to find an adequate representation in order toforget the delay differential equations. Of course, it is
always possible to make some assumptions on the system structure such that, by considering a robust
design against a given nonlinearity, it becomes possible to use linear controltechniques (see e.g. [158]).
An other classical idea is to impose some assumptions on the system structure (either on the way the
delay appears or on the model structure) in order to use some specific tools (see e.g. [149] or [67]). To
consider the control of a more general structure of equations, the extension of the NMPC controller have
been considered (see e.g. [44], [134] or [164]). The main issue with these approaches is that they do not
ensure theoretical robustness against model uncertainties. Practically, the problem of designing a robust
MPC controller for nonlinear time delay systems has rarely been considered.That is why we want to
explore the possibility of extending the SPMPC controller to this class of problems.

The objective of this chapter is not to rigorously prove that when using a SPMPC controller it is pos-
sible to robustly stabilize a given system subject to delay. We will simply be interested in the numerical
implementation of an adjusted version of the SPMPC controller. It is intended to question the interest of
this extension in the framework of artificial blood glucose control. Depending on the obtained control
performances, the relevance of theoretically extending this control approach will be assessed.

This chapter is organized as follows. First, in order to motivate our extension on a concrete example,
we will search for a model of the glucose-insulin metabolism, based on a variation of the modified mini-
mal model of Bergman (6.6), which makes use of nonlinear delay differential equations. The invariance
property of this model is studied. Then, assuming that what has been done for NMPC controller for
delay differential equation (see e.g. [134]) can be extended to a SPMPC controller, we will adjust the
algorithm to compute an adequate final cost and an adequate terminal state constraint presented in chap-
ter 3. Finally, numerical simulations are performed using both the control model and the virtual testing
platform for simulation purpose.
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10.2 Modeling a type 1 diabetic using delay differential equations

10.2.1 The delay minimal model of Bergman

The objective of this chapter is to formally explore the interest of extending the previously presented
SPMPC controller to the control problem of time delay systems. To do so, let usconsider the problem of
artificial blood glucose control assuming that it is more interesting to model this process using nonlinear
delay differential equations.

Let us recall that to describe the action of the blood insulinI on the blood glucoseG, the fictitious
stateX has been introduced (see equation (6.3)). This state is assumed to model the fact that it is not
insulin that ensures glucose storage but that insulin only initiates a sequence of action leading to glucose
storage. From a control point of view, it may be advantageous to considera different model to describe
this phenomenon. As we are not really interested in modeling the biological phenomenon leading to
glucose storage but rather in considering that there is a delay in the insulin action, a possibility is to
model this phenomenon using delay differential equations. This leads to model the glucose sub-system
as follows

dG
dt

=−PG−k0GI(t − τ )+D+kgrR2, (10.1)

whereP, k0 andD are positive parameters andτ is a known positive and constant delay.
Also, as previously mentioned, the problem of artificial blood glucose control is concerned with

delays in regards to various others aspects, e.g. because of the use ofthe sub-cutaneous route for both
the insulin injection and the glucose measurement [72], [87]. However, practically it is not clear whether
these are delays in the control sense or whether it is more some kind of filtering(as it has been assumed
in the Dalla Man et al. model). That is why we will continue to model these phenomenonvia first order
filter. For what deals with the gastro-intestinal sub-model, because it is more difficult to evaluate the
interest of introducing delay differential equations to model a digestion process, we will simply keep a
simple second order filter.

Finally, the following model of a type 1 diabetic is deduced

Glucose-insulin sub-model:

dG
dt

=−PG−k0GI(t − τ )+D+kgrR2,

dI
dt

=−kf I +bfU1,

dU1

dt
=−ksU1+u,

(G, I ,U1)(s) = (G0, I0,U1,0)(s)for all s∈ [t0− τ , t0],

(10.2)

Gastro-intestinal sub-model:

dR2

dt
=−c2(R2−R1),

dR1

dt
=−c1(R1−d),

(R2,R1)(s) = (R2,0,R1,0)(s)for all s∈ [t0− τ , t0],

(10.3)

whereG0, I0, U1,0, R2,0, R1,0 belong toC([t0− τ , t0],R).
In the sequel, we will call the combination of (10.2) and (10.3) the delay minimal model of Bergman



146 CHAPTER 10. FURTHER EXTENSION ON SPMPC

10.2.2 Invariance property

The delay minimal model of Bergman consists in 5 states which are all concentrations or quantities, and
so have to remain positive for all time instant. Assuming that the differential equations (10.2) and (10.3)
satisfy all the required properties to be integrated, let us find the condition onthe parameters and on the
control input such that the state of the model keeps their physiological meaning. To obtain the desired
result, let us prove the following theorem.

Theorem 5. Assume that the parameters of the model are given and positive, and for all t ≥ t0 the
control input u(t) ∈ [u,u], and the meal input d(t) ∈ [d,d]. Then, for a given data(G, I ,U1,R2,R1) ∈
R+∗×R+×R+×R+×R+ and(G, I ,U1,R2,R1) ∈ R+∗×R+×R+×R+×R+ such that

(G, I ,U1,R2,R1)≤ (G, I ,U1,R2,R1),

u=
kskf

bf
max

(

bf

kf
U1, I ,

1
k0

(

−P+
D+kgrR2

G

))

,

u=
kskf

bf
min

(

bf

kf
U1, I ,

1
k0

(

−P+
D+kgrR2

G

))

d = max(R1,R2) ,

d = min
(

R1,R2
)

,

0≤ u≤ u,

0≤ d ≤ d,

1
k0

(

−P+
D+kgrR2

G

)

≤ I ≤ I ≤ 1
k0

(

−P+
D+kgrR2

G

)

we have that, if for all s∈ [t0− τ , t0] (G, I ,U1,R2,R1)≤ (G, I ,U1,R2,R1)(s)≤ (G, I ,U1,R2,R1) then for
all t ≥ t0 (G, I ,U1,R2,R1)≤ (G, I ,U1,R2,R1)(t)≤ (G, I ,U1,R2,R1).

Proof. The proof is the same as for the theorem 4. Thus let us simply consider the stateG.
For this, let us consider̃G= G−G andG̃− = max(0,−G̃), using the differential equation onG we

have:
∫ t

t0

1
2

d|G̃−|2
dt

ds=
∫ t

t0
−(P+k0I(s− τ ))|G̃−|2− (−(P+k0I(s− τ ))G+D+kgrR2)G̃

−ds. (10.4)

According to the positivity of the parameters and the assumptions on the initial condition (I ,R2) ≤
(I ,R2)(s) for all s∈ [t0− τ , t0], on the meal inputd ≤ d and on the control inputu≥ kskf

bf
I , it is deduced

that
∫ t

t0

1
2

d|G̃−|2
dt

ds≤
∫ t

t0
−(−(P+k0I(s− τ ))G+D+kgrR2)G̃

−ds. (10.5)

Sinceu≤ kskf

bf k0

(

−P+
D+kgrR2

G

)

andI ≤ 1
k0

(

−P+
D+kgrR2

G

)

, as the parameters are positive,

it is deduced for alls≥ t0

I(s− τ )≤ 1
k0

(

−P+
D+kgrR2

G

)

. (10.6)

So, using inequality (10.5), we have
∫ t

t0

1
2

d|G̃−
1 |2

dt
ds≤ 0 (10.7)
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and then

0≤ |G̃−
1 |2(t)≤ |G̃−

1 |2(t0). (10.8)

As G(t0)≥G, this implies that|G̃−|2(t0) = 0 and thenG(t)≥G for all t ≥ t0. Using the same method
we can deduce thatG(t)≤ G, for all t ≥ t0.

Remark11. Using this theorem it is straightforward to show that the states remain inR+∗×R+×R+×
R+×R+ if the parameters of the model are positive and if the inputs are such thatd ≥ 0 andu≥ 0.

10.2.3 Control problem

In this part let us present the disturbed model that will be used for controlpurpose.
In order to consider the same control problem as for the ordinary differential case, in the sequel it is

assumed that the meal consumption profiled and the initial condition(R2,R1)(s) for all s∈ [t0−τ , t0] are
known and given. So, as for what has been done in chapter 7, it is possible to integrate (10.3) to obtain
the state trajectoryR2(t). Let us callRa(t) = kgrR2(t) the rate of appearance. Then, for control purpose
we consider the following model

dG
dt

=−PG−k0GI(t − τ )+D+Ra,

dI
dt

=−kf I +bfU1,

dU1

dt
=−ksU1+u,

(G, I ,U1)(s) = (G0, I0,U1,0)(s)for all t ∈ [t0− τ , t0],

(10.9)

The nominal modelcorresponds to (10.9) where all the parameters are assumed to be perfectly
known. The trajectory generated by the nominal model for a given initial condition, a given rate of
appearance profileRa(t) and a given insulin flowu(t) is callednominal trajectory.

To obtain the variational problem, we begin to write the nominal model when disturbed both in states
and parameters. This leads to the following disturbed system

d(x1+G)

dt
=−(p+P)(x1+G)− (k0+k0)(x1+G)(x2(t − τ )+ I(t − τ ))

+D+(Ra+ ra),

d(x2+ I)
dt

=−(k f +kf )(x2+ I)+(bf +bf )(x3+U1),

d(x3+U1)

dt
=−(ks+ks)U1+(u+ f ),

(x1+G,x2+ I ,x3+U1)(s) = ξs(s)+(G0, I0,U1,0)(s) ∀t ∈ [t0− τ , t0],

(10.10)

whereξs ∈ C ([t0− τ , t0],R3). The control inputf is a disturbance of the control inputu. It has been
introduced in order to reject the state disturbances(xi)i∈1,2,3 despite the parameters disturbancesp, k0,
k f , bf andks and the disturbance of the rate of appearancera.

To obtain the control model, let us subtract the nominal model (10.9) from the previous disturbed
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model

dx1

dt
=−p(x1+G)−k0(x1+G)(x2(t − τ )+ I(t − τ ))

− (P+k0I(t − τ ))x1−k0Gx2(t − τ )−k0x1x2(t − τ )+ ra,

dx2

dt
=−k f (x2+ I)+bf (x3+U1)−kf x2+bf x3,

dx3

dt
=−ks(x3+U1)−ksx3+ f ,

(x1,x2,x3)(s) = ξs(s) ∀s∈ [t0− τ , t0].

(10.11)

In the sequel let us consider how the final cost and the terminal state constraint have to be adjusted
in order to obtain a stable closed-loop when controlling time delay systems with a SPMPC controller.

10.3 On the final cost and the terminal state constraint

10.3.1 Context

As mentioned in [140], the control of time delay systems remains extremely challenging. This may
explain the numerous issue when it comes to design a stable model predictive controller for nonlinear
time delay systems despite the relative simple formulation of the corresponding control problem. Lately,
it seems that it is possible to adjust the tools used for the usual NMPC (see e.g. [43] or [134]). The
idea behind these results is to introduce a final cost and a terminal state constraint which share the
same meanings as for the usual ordinary differential case. Namely the final cost is interpreted as a
local Lyapunov function and the terminal set is a positive control invariantset. If the idea is simple, its
application is more intricate. Indeed, in the delay differential case, there are several formulation of the
Lyapunov theorem (e.g. we can use either Krasovskii or Razumikhin functional with a delay dependent
or independent criteria, see e.g.[65]) leading to as many possibilities to express the final cost problem.
This is at the origin of some difficulties as it is not easy to choose the representation which provides the
best balance between simplicity and conservatism in the result. An other difficulty comes from the fact
that, as we consider an infinite dimensional space, it is not straightforwardto build the terminal state
constraint. Indeed, classically in the ordinary differential case, the terminal state constraint is defined as
a level set of the final cost. However for infinite dimensional system, we are not sure that a level set of
the final cost provides a compact, closed and bounded subset, and so thismeans that this latter has to be
defined cautiously.

In the sequel we consider time delay systems which are given as follows

dx
dt

= G (x,x(t − τ ),u,w),

x(s) = φ(s), ∀s∈ [t0− τ , t0],
(10.12)

whereτ ∈R+∗ is a known constant delay,G is assumed to satisfy all the necessary assumptions in order
to provide forward complete trajectory andφ ∈C([t0− τ , t0]) is the initial condition. The control inputu
and the disturbancesw are such that

U(I) = {u∈ L2(I), ‖u(t)‖ ≤ uM a.e. t ∈ I}, (10.13)

W(I) = {w∈ L2(I), ‖w(t)‖ ≤ wM a.e. t ∈ I}, (10.14)

whereuM andwM are known constants belonging toR+∗ andI is an interval of lengthT.
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For all t ≥ t0, for all x∈C([t − τ , t],Rnx), in order to simplify the notation, we introduce the segment
xt ∈C([−τ ,0],Rnx) which is defined by

xt(s) = x(t +s) for all s∈ [−τ ,0]. (10.15)

To solve the robust control problem, it is intended to design a SPMPC controller given by the solution
of the following optimization problem

(u∗0,w
∗
0) = arg inf

u∈U
sup
w∈W

Jt0(u,w) = arg sup
w∈W

inf
u∈U

Jt0(u,w),

s.t. xt0+T(φ,u,w, t0; .) ∈ Ω fE
a .

(10.16)

whereU andW denoteU([t0; t0+T]) andW([t0; t0+T]) andJt0(u,w) is defined as:

Jt0(u,w) = E(xt0+T(φ,u,w, ti; .))+
∫ t0+T

t0
F(x(φ,u,w, t0;s),u,w)ds, (10.17)

whereE : C([−τ ,0],Rnx)→ R+ andF : Rnx ×Rnu ×Rnw → R.
The objective of this chapter is not to prove that the SPMPC controller provides a stabilizing con-

troller for time delay systems but only to present algorithms which can be used to compute an adequate
final cost and terminal state constraint. The idea is to adjust assumptions 7 and 8, according to the as-
sumptions needed to provide a stable NMPC controller for delay differential equation (DDE) (see e.g.
[135]), to provide asupposedlystable SPMPC controller.

10.3.2 Conjecture on the adjustment of the assumptions

As previously mentioned, we assume that the SPMPC controller can provide a stable controller by simply
extending the result of chapter 3 and what has been done for DDE with NMPC controller (see e.g. [135]).
So, to formulate the problem of computing an adequate final cost and terminal stateconstraint which can
be used to build a (supposedly) stable controller, we will consider the following adjusted assumptions.

Assumption 10. For all t ≥ t0, there existsΩ fE
a (t) ⊂ C([−τ ,0],Rnx), a RCPI set associated with the

feedbackfE, which is such that for ally∈ Ω fE
a (t) we have‖ fE(y)‖ ≤ uM.

Assumption 11. There exists a quadratic Lyapunov Krasovskii functionalE : C([−τ ,0],Rnx)→R+ (see
e.g. [65])

E(y) = y(0)TPy(0)+2y(0)T
∫ 0

−τ
Q(s)y(s)ds

+
∫ 0

−τ

(

∫ 0

−τ
y(s)TR(s,η )y(η )dη

)

ds+
∫ 0

−τ
y(s)TS(s)y(s)ds,

whereP, Q RandSare defined as in [65], such that for ally∈ Ω fE
a (t) and for allw∈W we have:

2y(0)TPG (y(0),y(−τ ), fE(y),w)+2G (y(0),y(−τ ), fE(y),w)
T
∫ 0

−τ
Q(s)y(s)ds

+2y(0)T
(

Q(0)y(0)−Q(−τ )y(−τ )−
∫ 0

−τ

dQ
ds

(s)y(s)ds

)

+2

(

y(0)T
∫ 0

−τ
R(0,η )y(η )dη −y(−τ )T

∫ 0

−τ
R(−τ ,η )y(η )dη

)

−
∫ 0

−τ

∫ 0

−τ
y(s)T

(

∂R
∂s

(s,η )+
∂R
∂η

(s,η )
)

y(η )dηds

+y(0)TS(0)y(0)−y(−τ )TS(−τ )y(−τ )−
∫ 0

−τ
y(s)T dS

ds
(s)y(s)ds≤−F(y(0), fE(y),w).

(10.18)
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Remark12. For simplicity reasons we have assumed that the final cost is given by a quadratic Lyapunov
Krasovskii functional. It is also possible to use more general formulation. In thiscase the left hand side
of (10.18) has to be understood as the derivatives of the final cost along a state trajectory.

10.3.3 Algorithm to compute a final cost and a terminal state constraint for DDE

Formulation of the final cost and terminal state constraint problem

To design a final cost and a terminal state constraint according to assumptions 10 and 11, we will for-
mulate the final cost problem using a Lyapunov Krasovskii functional and then we will determine an
adequate terminal state constraint problem using Razumikhin arguments.

As for the ordinary differential equation case, the stage costF is assumed to be given quadratic
(3.74). Furthermore we assume that a local PLDI embedding of (10.12) is possible, e.g. by assuming
thatG satisfies assumption 4.

The final cost and the final controller

To compute the final cost and the final controller, we will use a local polytopiclinear differential inclusion
embedding of (10.12). The final controllerfE will be chosen as a memory linear state feedback and the
final costE will be searched as a quadratic Lyapunov Krasovskii functional:

fE(y) = K0y(0)+K1y(−τ ),

E(y) = y(0)TS1y(0)+
∫ 0

−τ
y(s)TS2y(s)ds,

(10.19)

wherey ∈ C([−τ ,0],Rnx), K0 ∈ Rnx,nu andK1 ∈ Rnx,nu. The matricesS1 ∈ Rnx,nx andS2 ∈ Rnx,nx are
symmetric definite positive.

Remark13. From a theoretical point of view, it would have been more advantageous to express the
final cost as a complete quadratic Lyapunov Krasovskii and to choose thefollowing final controller

fE(y) = K0y(0)+
∫ 0

−τ
K(s)y(s)ds, however from a numerical point of view, the retained form are better.

Also, as for the ordinary differential case, it is more desirable to work with aconvex hull Lyapunov
functional (see e.g. [21]). But, for simplicity reasons, we will focus on theproblem of searching for a
common Lyapunov functional which is valid on the complete PLDI.

The aim of this part is to use a PLDI embedding in order to formulate the problem ofcomputing a
final controller fE and a final costE which satisfy assumption 11 in the LMI framework. Let us assume
that such an embedding is available. Then, we have that (10.12) is containedin the following differential
inclusion

dx
dt

∈ co{A0,ixt(0)+A1,ixt(−τ )+B1,iw+B2,iu, i ∈ {1, . . . ,N}}, (10.20)

where co{.} denotes the convex hull of a set andN > 0 is the number of vertices of the PLDI. The
matricesA0,i , A1,i , B1,i andB2,i are given and constant.

As we consider a PLDI it is possible to express
dx
dt

as follows

dx
dt

=
N

∑
i=1

βi(t)(A0,ixt(0)+A1,ixt(−τ )+B1,iw+B2,iu) , (10.21)
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where for allt ≥ t0 and for alli we haveβi(t)≥ 0 and
N

∑
i=1

βi(t) = 1.

According to the retain form of the final cost and of the final controller (10.19) and to the previous
expression of the state derivative, we have the inequality (10.18) becomes

N

∑
i=1

βi(t)(2xt(0)
TS1((A0,i +B2,iK0)xt(0)+(A1,i +B2,iK1)xt(−τ )+B1,iw)

+xt(0)
TS2xt(0)−xt(−τ )TS2xt(−τ )

+xt(0)
TRxt(0)+(K0xt(0)+K1xt(−τ ))Tα (K0xt(0)+K1xt(−τ ))−wTQw)≤ 0.

(10.22)

Inequality (10.22) has to hold everywhere on the PLDI. This implies that this inequality holds if and
only if it holds for all family of (βi)i∈{1,...,N}. So for alli ∈ {1, . . . ,N} we have to solve inS1, S2, K0 and
K1 the following inequalities

2xt(0)
TS1((A0,i +B2,iK0)xt(0)+(A1,i +B2,iK1)xt(−τ )+B1,iw)

+xt(0)
TS2xt(0)−xt(−τ )TS2xt(−τ )

+xt(0)
TRxt(0)+(K0xt(0)+K1xt(−τ ))Tα (K0xt(0)+K1xt(−τ ))−wTQw≤ 0.

(10.23)

Using matrix notation, the previous inequalities becomes:





xt(0)
xt(−τ )

w





T







2S1(A0,i +B2,iK0)+S2 S1(A1,i +B2,iK1) S1B1,i

⋆ −S2 0
⋆ ⋆ −Q





+





KT
0 αK0+R KT

0 αK1 0
⋆ KT

1 αK1 0
⋆ ⋆ 0













xt(0)
xt(−τ )

w



≤ 0.

(10.24)

As for what has been done in chapter 3, in order to use the LMI framework, let us introduce the
following factorization

(

KT
0 αK0+R KT

0 αK1

⋆ KT
1 αK1

)

=

(

R
1
2 KT

0 α 1
2

0 KT
1 α 1

2

)

(

Inx 0
0 Inu

)

(

R
1
2 0

α 1
2 K0 α 1

2 K1

)

. (10.25)

Using the Schur complement, inequality (10.24) can be rewritten as follows

Di =















2A0,iS1+2B2,iY0+S2 A1,iS1+B2,iY1 B1,i S1R
1
2 YT

0 α 1
2

⋆ −S2 0 0 YT
1 α 1

2

⋆ ⋆ −Q 0 0
⋆ ⋆ ⋆ −Inx 0
⋆ ⋆ ⋆ ⋆ −Inu















≤ 0, (10.26)

whereS1 = S−1
1 , S2 = S−1

1 S2S−1
1 , Y0 = K0S−1

1 andY1 = K1S−1
1 .

Thus, the problem of computing a final cost and a final controller is solved if the following LMI
admits a solution inS1, S2, K0 andK1

diag(D1, . . . ,DN)≤ 0. (10.27)
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The terminal state constraint

At that point we have computed a final controller and a final cost which satisfy assumption 11. Now
we can provide an algorithm to compute a robust control positive invariant set Ω fE

a (t) under the final
controller fE which satisfies assumption 10. This set will be expressed using Razumikhin like arguments.
That is, we search for a terminal state constraint which can be expressedas follows

Ω fE
a (t0+T) = {xt0+T ∈C([−τ ,0],Rnx)/ max

θ∈[−τ ;0]
xt0+T(θ)TP0xt0+T(θ)≤ γ}. (10.28)

For simplicity, in the sequel, we denoteΩ fE
a = Ω fE

a (t0+T).
To determine an adequate terminal state constraint, we have to find a symmetric definite positive

matrixP0 and a positive constantγ such that the setΩ fE
a is robust control positive invariant when using the

final controllerfE. To solve this problem, we will use a PLDI embedding and a first order transformation.
The idea behind this transformation is to use an equivalent formulation ofxt(−τ ). The positive invariant
set is then searched on a system which use this new formulation. It is important tosee that such an
approach is valid because the terminal state constraint is determined independently of the initial condition
of the differential equation. The interest of this transform is that we will consider a delay-dependent
stability test meaning that the result is less conservative.

Before further proceeding, let us recall how this transformation works (for more details see e.g. [65]
or [104] and the references therein). We have

xt(−τ ) = xt(0)−
∫ 0

−τ
G (xt(s),xt(s− τ ),ut(s),wt(s))ds. (10.29)

Using the previous equation to substitute the termxt(−τ ) in the system (10.12), we introduce the
following system

dξ
dt

= G

(

ξ (t),ξ (t)−
∫ 0

−τ
G (ξ (t +s),ξ (t +s− τ ),u(t +s),w(t +s))ds,u(t),w(t)

)

,

ξ (s) = ψ(s), ∀s∈ [t0−2τ , t0].
(10.30)

Then, the idea is to look for stability results on this new system independently ofthe initial conditionψ.
Indeed, if conditions are found that prove stability on this system, then the original system is also stable.
However, this is very important to see that the two systems are not equivalent. Practically, this implies
that if we can not prove the stability of the transformed system then this does not imply that the original
system is unstable.

Let us use the first order transformation on the PLDI embedding of the system(10.21). We have:

dξ
dt

=
N

∑
i=1

βi(t)((A0k,i +A1k,i)ξ (t)+B1,iw(t)

−A1k,i

∫ 0

−τ
A0k,iξ (t +s)+A1k,iξ (t +s− τ )+B1,iw(t +s)ds),

ξ (s) = ψ(s), ∀s∈ [t0−2τ , t0],

(10.31)

whereA0k,i = A0,i +B2,iK0 andA1k,i = A1,i +B2,iK1 whereK0 andK1 are the previously computed gain
andw∈W.

Let us define the following Razumikhin candidate:

V(ξ ) = ξ TP0ξ , (10.32)
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whereP0 is a symmetric definite positive matrix.
To solve the terminal state constraint problem, we have to find a matrixP0 such that the previous

candidate is a Lyapunov function (in the Razumikhin sense) everywhere onthe PLDI. In particular, this
implies that this candidate has to be a Lyapunov function at each vertex. Let us consider theith vertex of
the PLDI. In this case, the derivative ofV along a state trajectory is given as follows

d
dt

(V(ξ )) =
(

ξ (t)
w(t)

)T(
2P0(A0k,i +A1k,i) P0B1,i

BT
1,iP0 0

)(

ξ (t)
w(t)

)

+η1+η2+η3, (10.33)

where

η1 =−2ξ (t)TP0A1k,i

∫ 0

−τ
A0k,iξ (t +s)ds,

η2 =−2ξ (t)TP0A1k,i

∫ 0

−τ
A1k,iξ (t +s− τ )ds,

η3 =−2ξ (t)TP0A1k,i

∫ 0

−τ
B1,iw(t +s)ds,

(10.34)

We remind that for any symmetric definite positive matrixS∈ Rn,n and for allv1,v2 ∈ Rn, we have:

−2vT
1 v2 ≤ vT

1 S−1v1+vT
2 Sv2. (10.35)

Using the previous inequality, it is deduced thatη1 can be upper-bounded

η1 ≤ τξ (t)T (P0(A1k,iA0k,i)P
−1
1 (A1k,iA0k,i)

TP0
)

+
∫ 0

−τ
ξ (t +s)TP1ξ (t +s)ds, (10.36)

whereP1 is chosen definite symmetric positive with the supplementary constraint that we have

P1−P0 ≤ 0. (10.37)

In particular, this implies that for allv∈ Rnx we havevTP1v≤ vTP0v. So, it is deduced from (10.36) that

η1 ≤ τξ (t)T (P0(A1k,iA0k,i)P
−1
1 (A1k,iA0k,i)

TP0
)

+
∫ 0

−τ
ξ (t +s)TP0ξ (t +s)ds. (10.38)

Before further proceeding, let us recall that a functionV is a Lyapunov Razumikhin function if it is
such that (see e.g. [65])

d
dt

(V(ξ ))≤ 0 (10.39)

whenever there existsρ ≥ 1 such that for allθ ∈ [−2τ ;0]:

V(ξ (t +θ))≤ ρV(ξ (t)). (10.40)

According to what is done in ([135]), let us consider the sign of
d
dt

(V(ξ )) in case the condition given

by (10.40) holds. In this case, using (10.38), we have

η1 ≤ τξ (t)T (P0(A1k,iA0k,i)P
−1
1 (A1k,iA0k,i)

TP0+ρP0
)

ξ (t). (10.41)

Let us introduceγ1 > 0 and 0< P2 ≤ P0. Then, using the same arguments as forη1, we have

η2 ≤ τξ (t)T (P0(A1k,iA1k,i)P
−1
2 (A1k,iA1k,i)

TP0+ρP0
)

ξ (t),

η3 ≤ τξ (t)T
(

1
γ1

P0(A1k,iB1,i)(A1k,iB1,i)
TP0

)

ξ (t)+γ1

∫ 0

−τ
w(t +s)Tw(t +s)ds,

(10.42)
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Since the disturbances are given bounded for allt, we have

‖w‖2 ≤ w2
M.

Then, according to Razumikhin-like arguments (see e.g. [65] and [45]),a sufficient condition to
formulateΩ fE

a is given by the following condition onV

d
dt

(V(ξ ))≤ 0 if V(ξ )≥ γ, and‖w‖2 ≤ w2
M. (10.43)

To solve (10.43), we will use the S-procedure (see e.g. [19]). To do so, let us introduce the following
variable:

∆ξ =
d
dt

(V(ξ ))+λ1(V(ξ )−γ)+λ2(w
2
M −wTw), (10.44)

whereλ1 andλ2 are positive chosen constants. The problem of interest admits a solution if wehave
∆ξ ≤ 0.

Assume that for a givenγ, it is possible to choose the constantsλ1 andλ2 such that we have:

−λ1γ+(τγ1+λ2)w
2
M ≤ 0 (10.45)

Then it is deduced that we have:

∆ξ ≤
(

ξ (t)
w(t)

)T(
2P0(A0k,i +A1k,i)+(λ1+2τρ)P0 P0B1,i

BT
1,iP0 −λ2Inw

)(

ξ (t)
w(t)

)

+ τξ (t)T(P0(A1k,iA0k,i)P
−1
1 (A1k,iA0k,i)

TP0)ξ (t)
+ τξ (t)T(P0(A1k,iA1k,i)P

−1
2 (A1k,iA1k,i)

TP0)ξ (t)

+ τξ (t)T
(

1
γ1

P0(A1k,iB1,i)(A1k,iB1,i)
TP0

)

ξ (t).

(10.46)

Let us introduce the following factorization

τP0(A1k,iA0k,i)P
−1
1 (A1k,iA0k,i)

TP0+ τP0(A1k,iA1k,i)P
−1
2 (A1k,iA1k,i)

TP0

+
τ
γ1

P0(A1k,iB1,i)(A1k,iB1,i)
TP0 = MN−1MT ,

(10.47)

where

M =
(

τP0A1k,iA0k,i τP0A1k,iA1k,i τP0A1k,iB1,i
)

,

N−1 =





1
τ P−1

1 0 0
0 1

τ P−1
2 0

0 0 1
τγ1

Inw



 .
(10.48)

Using the Schur complement, it is finally deduced that we have∆ξ ≤ 0, if there existP0, P1, P2 and
γ1 such that:

Ni =













Mi(P0) P0B1,i τP0A1k,iA0k,i τP0A1k,iA1k,i τP0A1k,iB1,i

⋆ −λ2Inw 0 0 0
⋆ ⋆ −τP1 0 0
⋆ ⋆ ⋆ −τP2 0
⋆ ⋆ ⋆ ⋆ −τγ1Inw













≤ 0,

P1 > 0, P2 > 0, γ1 > 0,

P1 ≤ P0, P2 ≤ P0,

(10.49)
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whereMi(P0) = 2P0(A0k,i +A1k,i)+(λ1+2τρ)P0.
Finally, to solve the terminal state constraint problem, we have to solve the previous LMIs for all

i ∈ {1, . . . ,N}, that is

diag(N1, . . . ,NN)≤ 0,

P1 > 0, P2 > 0, γ1 > 0,

P1 ≤ P0, P2 ≤ P0,

(10.50)

10.4 Numerical implementation

At that point, we have formally presented what has to be adjusted in order touse a SPMPC controller to
control time delay systems. Also, in order to consider the delay in the insulin action, we have modeled the
glucose metabolism using delay differential equations (10.2). The next stepwill consist in considering
the numerical implementation issues (e.g. the issue of estimating the state value of the system). In order
to integrate the various state trajectories we will use thedde23command in Matlab (see e.g. [88]).

This section will be organized as follows. First, we will present a state observer for DDE system
whose aim is to estimate the value of the state of the system, for allt ∈ [tk − τ , tk], each time a new
measure is made available. Then, in order to use the numerical methods presented in chapter 4, we will
present the adjoint model and the derivatives of the criterion to solve both the identification problem and
the control problem. Finally, numerical simulations, using both the control model and the virtual patient
testing platform, will be performed.

10.4.1 Observer

An EKF filter for DDE

The problem of state estimation is of prime importance especially when consideringpredictive control
technique. In the ODE case, this problem was not too much trouble as many observers exist. In the DDE
case this problem is more intricate. One of the reason is that in this case the state evolves in a functional
space.

In order to estimate the state value of (10.2) on the basis of the measurement ofthe blood glucoseG,
we will extendthe work of [128]. This work deals with an adjustment of the classical Extended Kalman
filter to design an observer for systems described by time continuous nonlinear delay differential equa-
tions using time continuous measurement. However, in our case, we work in a sampled-data framework.
So, in order to use this filter, we propose to add a step in the observer whichconsists in pre-processing the
measures thanks to an interpolation algorithm (e.g. using smoothing spline [138]). The main drawback
of this approach is that the quality of the estimate and the convergence property of the complete observer
scheme is correlated with the properties of the interpolation algorithm.

Let us consider the following nonlinear time-delay system for allt ∈ [tk−1, tk]

dx
dt

= G (x,x(t − τ ),u)+w,

yk =Cx(φ,u; tk)+vk,

x(t) = φ(t) ∀t ∈ [tk−1− τ ; tk−1],

(10.51)

whereyk is the measured output,C is a known matrix,w is the noise on the system of varianceQ andvk

is the noise on the measure of varianceR. The objective is, given the discrete measureyk, to estimate the
functionx(φ,u,0;t) for all t ∈ [tk− τ , tk].
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The vector fieldG : Rnx ×Rnx ×Rnu →Rnx is assumed to be continuously differentiable with respect
to its first two arguments. The observer is given as follows [128]

dx̂
dt

= G (x̂, x̂(t − τ ),u)+L(t)(ỹk(t)− ŷ(t)),

ŷ(t) =Cx̂(φ̂,u,0;t),

x̂(t) = φ̂(t) ∀t ∈ [tk−1− τ ; tk−1],

(10.52)

whereL(t) is a time varying observer matrix and ˜yk(t) is defined for allt ∈ [tk−1, tk]. This latter signal is
obtained by interpolating thempast measured data(yi)i∈{k−m,...,k}. The observer matrixL(t) is computed
as for the classical Extended Kalman filter (see e.g. [131]), that is

L(t) = P(t)CTR, (10.53)

whereP(t) is the solution of the following modified Riccati equation:

dP

dt
= PAT

0 +A0P −PCTR−1CP +Q+AT
1 A1, (10.54)

where

A0 = ∇ xG (x̂, x̂(t − τ ),u),
A1 = ∇ hG (x̂, x̂(t − τ ),u),

(10.55)

where∇ xG stands for the derivative ofG relatively to its first argument and∇ hG stands for the derivative
of G relatively to its second argument.

In the case of time continuous measures, it is possible to prove that the observer is a local asymptoti-
cally stable observer [128]. In our case, to prove the good convergence property, the interaction between
the interpolation error and the observer error should be studied.

Validation on the delay minimal model of Bergman

To test the good numerical implementation and performances of the observer,we consider the problem
of estimating the state of the delay minimal of Bergman (10.9) when this latter is also used for simulation
purpose. By doing so, we can check whether the observer convergetoward thetruestate value. To do so
let us consider the parameters given in table 10.1.

To test the observer performances, we simulate the model (10.9) where the initial condition is given
by [aGeq,bIeq,cU1,eq,0,0] for all t ∈ [t0 − τ , t0] where(a,b,c) ∈ (R+∗)3. The considered simulation
scenario is given by

• t = t0: the simulation begins,

• t = t0+7h: the patient eats a meal of 25gCHO,

• t = t0+12h: the patient eats a meal of 70gCHO,

• t = t0+20h: the patient eats a meal of 80gCHO,

• t = t0+35h: the simulation is ended.
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Name Value Unit

P 6.25×10−4 min−1

k0 1.06×10−4 mU−1.min−1

D 0.27 mg.dL−1.min−1

kf 3.85×10−2 min−1

bf 1.77×10−4 L−1min−1

ks 6.5×10−3 min−1

c1 9.95×10−2 min−1

c2 2.39×10−2 min−1

kgr 1.2×10−3 dL−1.min−1

τ 105 min

Table 10.1: Parameters of the delay minimal model of Berman used for validation of the observer

To simulate that only sampled noisy measure are available, the output is given byG(t0+kTech)+vk

whereTech= 5min andvk ≈N (0,5). The interpolation is given by a simple linear interpolation between
two successive measures.

The observer first estimate of the state is either set to the initial function

φEKFDDE(s) = [Geq, Ieq,U1,eq,0,0]

for all s∈ [t0 − τ , t0] or set to the true initial condition. In order to study the influence of the noise
on the measure, the simulation is run 100 times. The observer performances are compared thanks to
the computation of the mean RMS of the relative error between the estimated state andthe true state
according to the following formula

RMS=

√

420

∑
k=0

∫ tk

tk−τ

(‖x(s)− x̂(s)‖
‖x(s)‖

)2

ds, (10.56)

wherex stands for the true value of the state and ˆx stands for the estimated value of the state.
A simulation example when the observer initial condition is set to the equilibrium starting point

can be seen on fig.10.1. In this figure, we have drawn the value of the estimated state function at each
sampling instant. That is, att = tk, we have estimated ˆx(φ,u; t) for all t ∈ [tk−1, tk] and we have plot the
corresponding piece of trajectory. In this case, the mean RMS is equal to

RMS= 0.3142. (10.57)

A simulation example when the observer initial condition is set to the exact initial conditioncan be
seen on fig.10.2. The corresponding mean RMS is equal to

RMS= 0.1082. (10.58)

It can be seen that for both initial condition, the observer converges toward the true state. The
difference in the RMS between the equilibrium starting point and the exact startingpoint is mainly due
to the needed convergence time which is naturally larger when the initial estimate isarbitrary chosen.
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Figure 10.1: EKFDDE observer, equilibrium starting point
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Figure 10.2: EKFDDE observer, exact starting point

10.4.2 Adjoint model and Gradient of the criterion

The control problem

The robust control problem is given by the solution of the optimization problem given by (10.16). Sim-
ilarly to (4.29), to consider the terminal state constraint (10.28), we introduce the following modified
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functional

L
t0,µ
A ( f , w̃) = Jt0( f ,w)

+Ψµ(γ− max
θ∈[−τ ;0]

x(t0+T +θ)TP0x(t0+T +θ),λΩ),
(10.59)

whereJt0 is given by (10.17) withF quadratic (3.74) andE given by (10.19).
To solve this optimization problem, we will use the algorithms presented in chapter 4. To do so, let

us introduce the adequate adjoint model and the corresponding value of thederivative of the criterion.
According to (4.35), to obtain the appropriate optimality system (necessary conditions), which cor-

responds to the identification of the gradient ofL
t0,µ
A that is necessary to develop a numerical scheme in

order to solve the saddle point problem, we introduce the adjoint system as follows

− dx̃1

dt
=−

(

P+ p+(k0+k0)(x2(t − τ )+ I(t − τ ))
)

x̃1+
3

∑
i=1

(

R1,i +S1,i
2 1[t0+T−τ ;t0+T](t)

)

xi ,

− dx̃2

dt
=−(kf +k f )x̃2− (k0+k0(t + τ ))(x1(t + τ )+G(t + τ ))x̃1(t + τ )1[t0;t0+T−τ ](t)

+
3

∑
i=1

(

R2,i +S1,i
2 1[t0+T−τ ;t0+T](t)

)

xi ,

− dx̃3

dt
=−(ks+ks)x̃3+(bf +bf )x̃2+

3

∑
i=1

(

R3,i +S1,i
2 1[t0+T−τ ;t0+T](t)

)

xi ,

x̃(t0+T) = 2S1x(t0+T)+ ∇ x

(

Ψµ(γ− max
θ∈[−τ ;0]

x(t0+T +θ)TP0x(t0+T +θ),λΩ)

)

,

(10.60)

where1 is the indicator function,∇ x

(

Ψµ(γ− max
θ∈[−τ ;0]

x(t0+T +θ)TP0x(t0+T +θ),λΩ)

)

is defined

according to (4.26).
According to (4.38), the following expression of the derivatives ofL

t0,µ
A are deduced

∂L
t0,µ
A

∂ f
( f , w̃) = x̃3+α f ,

∂L
t0,µ
A

∂ w̃
( f , w̃) =





















−x̃1(x1+G)−Q1,1p
−x̃1(x1+G)(x2(t − τ )+ I(t − τ ))−Q2,2k0

−x̃2(x2+ I)−Q3,3k f

x̃2(x3+U1)−Q4,4bf

−x̃3(x3+U1)−Q5,5ks
∂Ψµ

∂λ
(γ− max

θ∈[−τ ;0]
x(t0+T +θ)TP0x(t0+T +θ),λΩ)





















,

(10.61)

wherex is the solution of (10.11) with initial conditionφ under the influence of the couple control
disturbances( f ,w), x̃ is the solution of (10.60) and∇ λΩΨµ is defined according to (4.27).

The identification problem

To test the controller performances using the virtual testing platform, we needto identify an adequate set
of parameters for each adult of the simulator.

As the structure of the gastro-intestinal sub-model has remained unchanged, its parameters are as-
sumed to remain unchanged and are given in table 9.2.
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To identify the parameters of the glucose-insulin sub-model, we consider the methodology presented
in chapter 9 wherep given as follows

p=
(

P k0 D kf bf ks
)T

. (10.62)

According to (4.35), to obtain the appropriate optimality system (necessary conditions), which cor-
responds to the identification of the gradient ofJ(p) that is necessary to develop a numerical scheme in
order to solve the corresponding minimization problem, we introduce the adjoint system as follows

− dx̃1

dt
=−(P+k0x2(t − τ ))x̃1+R(x1−x1,obs),

− dx̃2

dt
=−kf x̃2−k0x1(t + τ )x̃1(t + τ )1t∈[Tstart,Tend−τ ],

− dx̃3

dt
= bf x̃2−ksx̃3,

− dx̃4

dt
= kgrx̃1−c2x̃4,

− dx̃5

dt
= c2x̃4−c1x̃5,

x̃(Tend) = 0,

(10.63)

wherex1,obs stands for the measured output andx1 stands for the simulated output.
According to (4.38), the following expression of the derivative ofJ(p) is deduced

∂J
∂ p

(p) =







































−
∫ Tend

Tstart

x̃1x1ds+α1,1P

−
∫ Tend

Tstart

x̃1x1x2(s− τ )ds+α2,2k0
∫ Tend

Tstart

x̃1ds+α3,3D

−
∫ Tend

Tstart

x̃2x2ds+α4,4kf
∫ Tend

Tstart

x̃2x3ds+α5,5bf

−
∫ Tend

Tstart

x̃3x3ds+α6,6ks







































. (10.64)

Then, for a given set of parameters, to estimate the delayτ , we use the same methodology withp= τ .
The adjoint model is also given by (10.63). Similarly to (4.38), the derivativeof the criterion is given by

∂J
∂ p

(τ ) =−
∫ Tstart

Tstart−τ
k0x̃1(s+ τ )x1(s+ τ )

dφ
dt

(s)ds

−
∫ Tend−τ

Tstart

k0x̃1(s+ τ )x1(s+ τ )(−kf x2(s)+bf x3(s))ds+ατ ,
(10.65)

whereφ is the initial condition of the system which is assumed to be sufficiently regular.
Finally, in order to converge to a set of parameters, the procedure is implemented recursively accord-

ing to fig. 10.3.
The parameters obtained for the 10 adults with this methodology are resumed in table 10.2. The

comparison between the measured output used to identify the parameters and the simulated output for
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Given set of parameters

Glucose-insulin sub-model: P
(0)
Gluc

if
‖P

(i)

Gluc
−P

(i−1)

Gluc
‖

‖P
(i−1)

Gluc
‖

≤ ǫ

i = i+ 1

Identified set of parameters

Glucose-insulin sub-model: P
(i)
Gluc

yes

no

Identify the time delay τ
(i)

Time delay value τ
(0)

Using P
(i−1)
Gluc

compute P
(i)
Gluc

Using P
(i)
Gluc

Time delay value τ := τ
(i)

and if
‖τ (i)−τ

(i−1)‖
‖τ (i−1)‖

≤ ǫ

Figure 10.3: Identification procedure for time-delay system

adult 7 is shown on fig. 10.4 and for adult 10 on fig. 10.5. It can be seenthat the global trend of the
glucose metabolism is well represented. However, as for the ordinary differential case, the quality of
the identification result strongly depends on the patient. Also, for adult 10, itcan be observed that the
simplicity of the gastro-intestinal sub-model can be at the origin of a poor fitting of the simulated output
and so can be an issue when it comes to control.

10.4.3 Simulation scenario

To test the controller performances, we consider the following scenario (which corresponds to the first
variation of scenario 2 in chapter 9)

t = 0h The simulation is initialized. The initial blood glucose is set at 100mg.dl−1. The observer (an
EKF for DDE) is switched on.

t = 2h The controller is switched on.

t = 7h The patient eats a meal of 25g.

t = 12h The patient eats a meal of 70g.

t = 20h The patient eats a meal of 80g.

t = 35h The simulation is ended.
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It is assumed that each meals are regulated via injection of 75% of the optimal bolus (according to the
insulin to carbohydrate ratio determined by the physician). The information concerning the meal size and
the injected bolus are provided to the controller when the corresponding event occurs (no anticipatory
behavior).

The prediction horizon has been set to 5τ . To consider the asymmetric control objective, the con-
straintG≥ 80mg.dL−1 has been added in the optimization problem. The control objective is to robustly
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Adult P k0 D kf bf ks τ
1 6.25×10−4 1.06×10−4 0.27 3.85×10−2 1.77×10−4 6.5×10−3 105
2 1×10−3 4.05×10−4 1 1.1×10−2 4.93×10−4 5.64×10−2 50
3 0 4.15×10−4 1.2 1.04×10−2 6.17×10−4 6.42×10−2 80
4 1.87×10−5 7.09×10−4 1.3 1.08×10−2 5.67×10−4 5.58×10−2 73
5 3×10−3 1.72×10−4 0.72 5.80×10−2 4.80×10−4 1.06×10−2 75
6 7.49×10−6 5.93×10−4 0.92 8.41×10−3 1.58×10−4 3.90×10−2 78
7 1.55×10−7 6.11×10−4 1.37 4.22×10−2 3.34×10−4 9.1×10−3 55
8 4.46×10−5 1.06×10−4 0.26 3.88×10−2 4.49×10−4 1.24×10−2 101
9 3.78×10−5 9.34×10−5 0.22 6.65×10−2 9.33×10−4 1.37×10−2 101
10 1.5×10−3 1.93×10−4 0.62 5.02×10−2 4.78×10−4 1.11×10−2 63

Table 10.2: Parameters value for the adults of the simulator, glucose-insulin sub-model

stabilize the blood glucose at a value ofGeq = 100mg.dL−1. The uncertainties on the parameters are
given by variations of 10% around the nominal value of the correspondingparameters.

The stage costF is chosen quadratic (see equation 3.74) with the following weight:

R= diag

(

1
Geq

,
1
Ieq

,0

)

, Q= diag

(

1
P+10−10,

1
k0
,

1
kf

,
1
bf

,
1
ks

)

,α =
1

ueq
, (10.66)

whereIeq=
D−PGeq

k0Geq
andueq=

kskf

bf
Ieq.

The variational model, the adjoint model, the final cost and the terminal state constraint are defined
according to the results of the previous sections.

10.4.4 Simulation with the delay minimal model of Bergman

In order to validate the implementation of the control methodology, let us consider the control of the
delay minimal model of Bergman in case the model is also used to simulate a virtual patient.

The meals are assumed to be uniformly consumed in 15min. The sampling time on the input isset
to 5min and on the output to 15min. For control purpose, a noisy blood glucose value is provided for the
observer,i.e.

Gsensor,k = Gk+vk, (10.67)

wherevk ≈ N (0,5). The remaining state of the system are estimated using the previously presented
observer.

The simulation results for the 10 adults are summed up in table 10.3. The simulation results are
good in the sense that no hypoglycemia and no hyperglycemia have to be deplored. In this case it is
difficult to compare the results with the one given by the modified minimal model of Bergman (just see
the difference between fig. 9.3 and fig. 10.5).

The simulation result for adult 9 on fig.10.6 is really interesting as it shows both theadvantage and
the inconvenient of using a SPMPC controller to stabilize a time delay system. In this case the system
is indeed robustly stabilize despite the complexity of the control problem, but to doso, one of the only
action of the controller has been to reduce the effect of the bolus (the basal input is decreased at meal
time where a bolus was injected) leading to a very conservative control strategy.

Now that we have validated the controller implementation and performances, let usconsider the
control problem of blood glucose using realistic patient.
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Adult % G∈ [70;140] minG mg.dL−1 maxG mg.dL−1

1 98 83 141
2 93 86 152
3 100 72 137
4 100 74 132
5 85 78 158
6 85 74 158
7 88 78 132
8 100 83 114
9 83 95 174
10 83 75 177

Table 10.3: Simulation results using the control model to simulate a patient
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Figure 10.6: Simulation result for adult 9, using the control model as patient simulator

10.4.5 Simulation with the virtual testing platform

Then we are interested in testing the controller performances when using the testing platform approved
by the FDA [90]. The table 10.4 sums up the simulation results for all adults. The simulation results are
quite good and comparable to the one given by a SPMPC controller designed on the modified minimal
model of Bergman (see table 9.8). For all adults the blood glucose is safely stabilized.

For all adults no hypoglycemia events occur and the time spent in hyperglycemia state is small
enough such that it does not lead to heavy trauma. The percentage of time spent in the target is relatively
good. Also, the control behavior is relatively safe in the sense that the control action consist in small
variation of the insulin dose. This can be seen with the simulation results of adult 9 (see fig.10.7).
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Adult % G∈ [70;140] minG mg.dL−1 maxG mg.dL−1

1 84 78 163
2 88 78 151
3 78 89 188
4 75 82 190
5 87 91 156
6 70 96 200
7 82 96 161
8 100 72 134
9 71 68 179
10 75 83 176

Table 10.4: Simulation results using the Dalla-Man et al. model as patient simulator
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Figure 10.7: Simulation result for adult 9, using the Dalla-Man et al. model as patient simulator

10.5 Conclusion

In this chapter we have been interested in testing the possibility of extending the SPMPC control ap-
proach to the control problem of time delay systems. To do so, we have derived a model of the glucose
metabolism using nonlinear delay differential equations. Then, we have considered a numerical imple-
mentation of an adjusted SPMPC controller. This has lead us to adjust the assumptions on the final cost
and on the terminal state constraint similarly to what has been done in the NMPC case. Finally, numer-
ical simulations have been performed using both the control model and the testing platform to simulate
virtual patient.

It is worth noticing that from a numerical point of view the control problem isinvolved. First, to
compute an adequate final cost and terminal state constraint, we have to use adjusted assumptions which
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lead to more complex formulation. This has implied that to make the computation of the final costand
terminal state constraint tractable, we have made conservative choice (i.e. the final controller and the final
cost have been chosen with a simple structure). This is at the origin of a deterioration of the expectable
performances. Then, comes the problem of estimating the value of the state functional at each sampling
instant. This task is quite complex because we have considered a sampled-data framework. Despite
the lack of convergence guarantee, we have considered an extensionof an adjusted extended Kalman
filter. The idea has been to introduce an interpolation step in order to use a fulltime continuous observer.
Finally, one last issue comes from the problem of estimating the parameters of themodel. This issue is
also of prime importance as it is not realistic to expect good control performances if the nominal model
of the process is really too bad to explain the true process. To solve this issue we have considered optimal
control techniques.

Despite all these difficulties, the obtained results were quite satisfactory in thesense that they are
comparable to the one obtained in chapter 9. This motivates us to consider a more in depth study of this
extension.



Chapter 11

Conclusion

11.1 Summary and Discussion

The main idea behind model predictive control is to solve on line, each time a control input has to be
computed, an optimization problem. The resulting optimal control input is then applied inopen-loop
to the system for a small fraction of the prediction length. One problem is that to obtain this optimal
trajectory, the control algorithm relies on a model of the process. Most of thetime, this model is derived
by neglecting some dynamics of the true process or that the real process is time-varying. Also, an
other difficulty is that the control input can be applied in open-loop for a fraction of time which is
not negligible compared to the system time constant leading to the need of working ina sampled-data
framework. Therefore the design of a robust NMPC controller which ensures good control performances
in a sampled-data framework is of prime importance.

In the first part of this thesis, we have focused on the presentation and analysis of asaddle point
MPC controller (SPMPC). This controller has been designed to ensure robust control performances of
systems described by nonlinear ordinary differential equations in a sampled-data framework. It has been
proved that, under reasonable assumptions, this controller ensures that thesystem is ultimately bounded
and, under supplementary assumptions, input-to-state practically stable. The interesting point is that to
ensure these results, we use the same tools as for a usual NMPC controller, namely a final cost and a
terminal state constraint. The problem of computing these elements for a SPMPC controller has then be
formulated in the LMI framework using a local differential inclusion embedding.

One of the difficulty when it comes to design a SPMPC controller for a given control problem lies
in the problem of solving an unusual optimization problem, namely a state-constrained saddle point
optimization problem. That is why in this thesis we have proposed a numerical method based on the
augmented Lagrangian techniques. That is, to solve a given state-constrained saddle point optimization
problem, we consider the solution of a sequence of adequately penalized state-unconstrained saddle
point optimization problem. Each unconstrained sub-problem has been solved using adjoint method.
The numerical implementation and the controller performances have been validated on the problem of
controlling a disturbed in parameters Van der Pol oscillator.

In the second part of this thesis, we were concerned with the application of the developed SPMPC
controller to artificially control blood glucose of a type 1 diabetic. This controller choice is relevant
in regards to many specificities of this control problem. Indeed, the problemof artificial blood glucose
control is surrounded with uncertainties (to obtain a model of the glucose metabolism, we have neglected
some dynamics, also the real process is time varying and the model is stationary, .. . ) thus robust per-
formances are desired. Also the control problem is naturally set up in a sampled-data framework (the
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glucose metabolism is time continuous and the measure are discrete) and so, to aimat the best control
performances, it is needed to work in a sampled-data framework. More precisely, we have been inter-
ested in controlling the stabilizing part (basal) of the classical cure. Then, tovalidate the approach, we
have considered numerical simulations on a testing platform validated by the FDA. We have considered
two scenarios. The first one is an overnight type scenario and the second one consists in a classical day
with three meals. In both cases, the numerical simulations have shown good results. Indeed, no hypo-
glycemia event occurs and the time spent in hyperglycemia does not lead to damageable consequences.
Also, with the second scenario, it has been shown that our control approach can be efficiently combined
with a given bolus cure. This means that the SPMPC controller can be considered as a viable solution to
artificially control blood glucose.

Also, some exploratory works have been done by considering the potential extension of the SPMPC
approach to control, in a sampled-data framework, nonlinear time delay systems. To do so, we have
considered the modeling problem of the glucose metabolism using nonlinear delay differential equations.
Then, assuming that the controller yields a stable closed-loop, we have presented what has to be adjusted
from a numerical point of view. Numerical simulations have then been performed using the validated
testing platform to simulate realistic virtual patients. It has been shown that the SPMPC controller
provides satisfactory control performances, thus motivating a more in depth study of this extension.

Because of the good simulation results obtained when using the testing platform to simulate realistic
virtual patients, it can be interesting to consider the control on real situation, using clinical data, with
collaboration of medical staff. In particular, in the framework of an existing collaboration, it is planned
to perform some clinical tests with the physicians of the University Hospital of Rennes to assess the
behavior performances of the SPMPC controller when this latter is used to control the blood glucose of
real patients.

11.2 Future work

Several results addressed in this thesis offer the opportunity for further research.
First of all, it can be worth considering the impact of the symmetry between the control input and

the disturbances. Indeed, even if the controller has performed well in theframework of this thesis, it
is natural to think that for some class of systems, the fact that the constraintsare also imposed on the
disturbances can lead to some difficulties. Hence a future work can be to define the class of systems for
which the envisaged symmetry is not damageable in regards to the control performances and robustness
guarantee. Afterwards, it can also be interesting to develop other assumptionsfor lemma 1 on recursive
feasibility. Indeed, it is clear that the sufficient condition (3.11) is not so satisfying from a control point of
view as it needs on line information. A possibility is to reformulate the notion of feasibility by requiring
the existence of at least one control input such that for all admissible disturbances the terminal state
constraint is satisfied. The problems of this choice come then from the difficulty to characterize the set
of admissible initial condition or to compute an adequate control input.

An other obvious future work consists in considering the theoretical aspect of the extension of the
SPMPC controller to control time delay systems.

Also, in order to apply the SPMPC controller for artificial blood glucose control, we have used a
state observer. This situation is quite usual when it comes to practical problems.In our case we have
implicitly assumed that a separation principle holds such that the combination of the observer and the
SPMPC controller is stable. However, in the nonlinear case, no general separation principle exists. So,
it can be interesting to consider the stability of the SPMPC controller from an output-feedback point of
view (e.g. by adding a supplementary disturbance in the initial condition). It can also be interesting to
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consider how the controller has to be adjusted when it is used to track time-varying trajectory.
Finally for what concerns the application to type 1 diabetes, because of the good performances of

the controller, it is desirable to see in what extent enhancements are possible. To validate our approach
we have considered that we have no control experience, and that in thiscase a default tuning has to be
available. So, it can be interesting to see how we can use control experiences in order to change the
weighting in the criterion to aim at better control performances. Also, as the controller only take care of
the basal part of the cure, it can now be interesting to consider the bolus part of the cure.

It can also be interesting other applications where it can be advantageous to consider the design of
a SPMPC controller. As an example, it can be more or less straightforward to consider other biological
control problems, e.g. in thermal therapy, or to consider the control problem of some slow process, e.g.
in building control.



170 CHAPTER 11. CONCLUSION



Bibliography

[1] A. Abu-Rmileh and W. Garcia-Gabin. Feedforward-feedback multiple predictive controllers for
glucose regulation in type 1 diabetes.Computer Methods and Programs in Biomedicine, 99:113–
123, 2010.

[2] A. Abu-Rmileh and W. Garcia-Gabin. A gain-scheduling model predictivecontroller for blood
glucose control in type 1 diabetes.IEEE Transactions on Biomedical Engineering, 57:2478–2484,
2010.

[3] A. Abu-Rmileh and W. Garcia-Gabin. Smith predictor sliding mode closed-loopglucose controller
in type 1 diabetes. In18th World IFAC congress, 2011.

[4] A. Abu-Rmileh and W. Garcia-Gabin. Wiener sliding-mode control for artificial pancreas: a
new nonlinear approach to glucose regulation.Computer Methods and Programs in Biomedicine,
107:327–340, 2012.

[5] A. Abu-Rmileh, W. Garcia-Gabin, and D. Zambrano. Internal model slidingmode control ap-
proach for glucose regulation in type 1 diabetes.Biomedical Signal Processing and Control,
5:94–102, 2010.

[6] T. Ahmed and D. Storey. Efficient generalized conjugate gradients,part 1: Theory. J. Optim.
Theorem. Appl., 71:399–405, 1991.

[7] T. Alamo, D.R. Ramirez, and D. Munoz de la Pena. Min-max MPC using a tractable qp problem.
In Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control
Conference, 2005.

[8] A.M. Albisser, B.S. Leibel, T.G. Ewart, C.K. Botz Z. Davidovac, and W.Zingg. An artificial
endocrine pancreas.Diabetes, 23:389–404, 1974.

[9] A. Alessandri, M. Baglietto, G. Battistelli, and V. Zavala. Advances in moving horizon estimation
for nonlinear systems. In49th IEEE Conference on Decision and Control, 2010.

[10] A. Belmiloudi. Stabilization, Optimal and Robust Control. Springer Verlag London, 2008.

[11] A. Belmiloudi. Thermal Therapy: Stabilization and Identification. In Edited Book: Heat Transfer-
Mathematical Modelling, Numerical Methods and Information Technology. Chapter 2, INTECH,
Vienna, 2011.

[12] A. Bemporad and A. Morari. Robust model predictive control: a survey. Lecture Notes in Control
and Information Sciences, 245:207–226, 1999.

171



172 BIBLIOGRAPHY

[13] B.W. Bequette. Challenges and progress in the development of a closed-loop artificial pancreas.
In 2012 American Control Conference, Fairmont Queen Elizabeth, Montréal, Canada, 2012.
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[28] H. Chen, C.W. Scherer, and F. Allgöwer. A game theoretic approach to nonlinear robust receding
horizon control of constrained systems. InProceedings of the American Control Conference,
1997.

[29] W.-H. Chen, D.J. Ballance, and J. O’Reilly. Optimization of Attraction Domainsof Nonlinear
MPC via LMI Methods. InProceedings of the American Control Conference, 2001.



BIBLIOGRAPHY 173

[30] D. Chu, T. Chen, and H.J. Marquez. Offline robust model predictive control with rewinding
prediction. InProceedings of the 2006 American Control Conference, 2006.

[31] A. Cohen. Rate of convergence of several conjugate gradientalgorithms.SIAM J. Numer. Anal.,
9:248–259, 1972.
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Chapter 12

Appendix

12.1 K , K ∞, K L functions

Let us remind the definition and various properties onK , K ∞ andK L functions (see e.g. [94]):

Definition 6. a) A functionα : R+ → R+ is of classK if it is continuous, strictly increasing and
α (0) = 0,

b) A functionα : R+ → R+ is of classK ∞ if it is of classK and is unbounded,

c) A continuous functionβ : R+×R+ → R+ is of classK L if s→ β(s,τ ) is of classK for each
τ ≥ 0 andτ → β(s,τ ) is decreasing to zero for each s.

The following proposition recall some properties ofK , K ∞ andK L functions (see e.g. [94]).

Proposition 2. Letθ1 : R+ →R+ andθ2 : R+ →R+ beK functions, letα1 : R+ →R+ andα2 : R+ →
R+ beK ∞ functions andβ : R+×N→ R+ be aK L function, then:

1) θ−1
1 is aK function,

2) θ1◦θ2 is aK function,

3) α−1
1 (.) is aK ∞ function,

4) α1◦α2 is aK ∞ function,

5) θ1◦β is aK L function,

6) max(θ1,θ2) is aK function,

7) max(α1,α2) is aK ∞ function,

8) min(θ1,θ2) is aK function,

9) min(α1,α2) is aK ∞ function,

10) θ1(s1+s2)≤ θ1(s1)+θ1(s2),

11) θ1(s1)+θ1(s2)≤ θ3(s1+s2) whereθ3(s) = θ1(s)+θ2(s),

12) θ1(s1)+θ1(s2)≥ θ4(s1+s2) whereθ4(s) = min
(

θ1
(

s
2

)

,θ2
(

s
2

))

.
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Finally, let us recall a last property related to the existence of aK function:

Proposition 3. 13) For all α ∈ K ∞ there existsθ5 ∈ K ∞ such thatθ5(s) ≤ α1(s) for all s ≥ 0 and
θ6(s) = s−θ5(s) is aK function

12.2 Gronwall-Bellman inequality

Let us recall the Gronwall inequality (see e.g. [10]):

Lemma 7 (Gronwall inequality). Be given three continuous functionsφ, ψ and y:[a;b]→R+ satisfying:

∀t ∈ [a;b], y(t)≤ φ(t)+
∫ t

a
ψ(s)y(s)ds,

then for all t∈ [a;b]

y(t)≤
∫ t

a
φ(s)ψ(s)exp

(

∫ t

s
ψ(u)du

)

ds+φ(t).

If the functionφ is equal to a constant C∈R+ then Gronwall inequality can be expressed as follows

∀t ∈ [a;b], y(t)≤Cexp

(

∫ t

a
ψ(s)ds

)

.

12.3 Schur complement

Let us recall the results concerning the Schur complement.

Theorem 6(Schur complement). Be given three matrices R, Q and S where R and Q are symmetric then
we have:

{

R< 0,
Q−SR−1ST < 0.

iff

(

Q S
⋆ R

)

< 0. (12.1)

12.4 Computation of the observation matrixΩ

In order to prove the observability of the model (6.6), we have to consider the computation of various
Lie derivatives which are given as follows

h(x) = x1. (12.2)

LGh(x) = a(0)1 x1+a(0)5 x5+a(0)12 x1x2+d(0), (12.3)

wherea(0)1 =−P1, a(0)5 = kgr, a(0)12 =−1 andd(0) = P1Gb.

L2
Gh(x) = a(1)1 x1+a(1)2 x2+a(1)5 x5+a(1)6 x6+a(1)12 x1x2+a(1)13 x1x3+a(1)25 x2x5+a(1)122x1x2

2+d(1), (12.4)

wherea(1)1 = −P1a(0)1 − a(0)12 P3Ib, a(1)2 = a(0)12 P1Gb, a(1)5 = a(0)1 kgr − a(0)5 c2, a(1)6 = a(0)5 c2, a(1)12 = −a(0)1 −
a(0)12 P1−a(0)12 P2, a(1)13 = a(0)12 P3, a(1)25 = a(0)12 kgr, a(1)122=−a(0)12 andd(1) = a(0)1 P1Gb
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L3
Gh(x) = a(2)1 x1+a(2)2 x2+a(2)3 x3+a(2)5 x5+a(2)6 x6+a(2)12 x1x2+a(2)13 x1x3+a(2)14 x1x4

+a(2)22 x2
2+a(2)23 x2x3+a(2)25 x2x5+a(2)26 x2x6+a(2)35 x3x5+a(2)122x1x2

2+a(2)123x1x2x3

+a(2)225x
2
2x5+a(2)1222x1x3

2+d(2),

(12.5)

wherea(2)1 = −a(1)1 P1−P3Iba(1)12 , a(2)2 = a(1)12 P1Gb−a(1)2 P2−2P3Iba(1)122, a(2)3 = a(1)13 P1Gb+a(1)2 P3, a(2)5 =

a(1)1 kgr −P3Iba(1)25 −c2a(1)5 , a(2)6 = c2a(1)5 −c1a(1)6 , a(2)12 =−a(1)1 −a(1)12 P1−a(1)12 P2, a(2)13 =−a(1)13 P1+a(1)12 P3−
a(1)13 kf , a(2)14 = bf a

(1)
13 , a(2)22 = a(1)122P1Gb−2P2a(1)122, a(2)23 = 2a(1)122P3, a(2)25 = a(1)12 kgr −P2a(1)25 − c2a(1)25 , a(2)26 =

c2a(1)25 , a(2)35 = a(1)13 kgr +P3a(1)25 , a(2)122 = −a(1)122P1− a(1)12 , a(2)123 = −a(1)13 , a(2)225 = a(1)122kgr, a(2)1222= −a(1)122 and

d(2) = a(1)1 P1Gb−a(1)2 P3+a(1)6 c1d.

L4
Gh(x) = a(3)1 x1+a(3)2 x2+a(3)3 x3+a(3)4 x4+a(3)5 x5+a(3)6 x6+a(3)12 x1x2+a(3)13 x1x3+a(3)14 x1x4

+a(3)22 x2
2+a(3)23 x2x3+a(3)24 x2x4+a(3)25 x2x5+a(3)26 x2x6+a(3)33 x2

3+a(3)35 x3x5+a(3)36 x3x6+a(3)45 x4x5

+a(3)122x1x2
2+a(3)123x1x2x3+a(3)124x1x2x4+a(3)133x1x2

3+a(3)222x
3
2+a(3)225x

2
2x5+a(3)226x

2
2x6

+a(3)235x2x3x5+a(3)1222x1x3
2+a(3)1223x1x2

2x3+a(3)2225x
3
2x5+a(3)12222x1x4

2+d(3),

(12.6)

wherea(3)1 =−P1a(2)1 −P3Iba(2)12 , a(3)2 =P1Gba(2)12 −P2a(2)2 −2P3Iba(2)22 +c1da(2)26 , a(3)3 =P1Gba(2)13 +P3a(2)2 −
kf a

(2)
3 , a(3)4 = P1Gba(2)14 −P3Iba(2)23 +bf a

(2)
3 , a(3)5 = kgra

(2)
1 −P3Iba(2)25 −c2a(2)5 , a(3)6 =−P3Iba(2)26 +c2a(2)5 −

c1a(2)6 , a(3)12 = −a(2)1 −P1a(2)12 −P2a(2)12 − 2P3Iba(2)122, a(3)13 = −P1a(2)13 +P3a(2)12 −P3Iba(2)123− kf a
(2)
13 , a(3)14 =

−P1a(2)14 +bf a
(2)
13 −ksa

(2)
14 , a(3)22 = P1Gba(2)122−P22a(2)22 , a(3)23 = P1Gba(2)123+P32a(2)22 −P2a(2)23 −kf a

(2)
23 , a(3)24 =

bf a
(2)
23 , a(3)25 = kgra

(2)
12 −P2a(2)25 −2P3Iba(2)225−c2a(2)25 , a(3)26 =−P2a(2)26 +c2a(2)25 −c1a(2)26 , a(3)33 = P3a(2)23 , a(3)35 =

kgra
(2)
13 +P3a(2)25 −kf a

(2)
35 −c2a(2)35 , a(3)36 = P3a(2)26 +c2a(2)35 , a(3)45 = kgra

(2)
14 +bf a

(2)
35 , a(3)122= −a(2)12 −P1a(2)122−

2P2a(2)122−3P3Iba(2)1222, a(3)123= −a(2)13 −P1a(2)123+2P3a(2)122−P2a(2)123− kf a
(2)
123, a(3)124= −a(2)14 +bf a

(2)
123, a(3)133=

P3a(2)123, a(3)222 = P1Gba(2)1222, a(3)225 = kgra
(2)
122− 2P2a(2)225− c2a(2)225, a(3)226 = c2a(2)225, a(3)235 = kgra

(2)
123+ 2P3a(2)225,

a(3)1222= −a(2)122−P1a(2)1222− 3P2a(2)1222, a(3)1223= −a(2)123+ 3P3a(2)1222, a(3)2225= kgra
(2)
1222, a(3)12222= −a(2)1222 and

d(3) = P1Gba(2)1 −P3Iba(2)2 +ua(2)14 +c1da(2)6 .

L5
Gh(x) = a(4)1 x1+a(4)2 x2+a(4)3 x3+a(4)4 x4+a(4)5 x5+a(4)6 x6+a(4)12 x1x2+a(4)13 x1x3+a(4)14 x1x4+a(4)22 x2

2

+a(4)23 x2x3+a(4)24 x2x4+a(4)25 x2x5+a(4)26 x2x6+a(4)33 x2
3+a(4)34 x3x4+a(4)35 x3x5+a(4)36 x3x6

+a(4)45 x4x5+a(4)46 x4x6+a(4)122x1x2
2+a(4)123x1x2x3+a(4)124x1x2x4+a(4)133x1x2

3+a(4)134x1x3x4

+a(4)222x
3
2+a(4)223x

2
2x3+a(4)225x

2
2x5+a(4)226x

2
2x6+a(4)235x2x3x5+a(4)236x2x3x6

+a(4)245x2x4x5+a(4)335x
2
3x5+a(4)1222x1x3

2+a(4)1223x1x2
2x3+a(4)1224x1x2

2x4

+a(4)1233x1x2x2
3+a(4)2222x

4
2+a(4)2225x

3
2x5+a(4)2226x

3
2x6+a(4)2235x

2
2x3x5+a(4)12222x1x4

2

+a(4)12223x1x3
2x3+a(4)22225x

4
2x5+a(4)122222x1x5

2+d(4),

(12.7)

wherea(4)1 = −P1a(3)1 −P3Iba(3)12 + ua(3)14 , a(4)2 = P1Gba(3)12 −P2a(3)2 − 2P3Iba(3)22 + ua(3)24 + c1da(3)26 , a(4)3 =

P1Gba(3)13 +P3a(3)2 −P3Iba(3)23 −kf a
(3)
3 +c1da(3)36 , a(4)4 =P1Gba(3)14 −P3Iba(3)24 +bf a

(3)
3 −ksa

(3)
4 , a(4)5 = kgra

(3)
1 −
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P1a(3)12 −P3Iba(3)25 +ua(3)45 −c2a(3)5 , a(4)6 =−P3Iba(3)26 +c2a(3)5 −c1a(3)6 , a(4)12 =−a(3)1 −P2a(3)12 −2P3Iba(3)122+

ua(3)124, a(4)13 = −P1a(3)13 +P3a(3)12 −P3Iba(3)123− kf a
(3)
13 , a(4)14 = −P1a(3)14 −P3Iba(3)124+ bf a

(3)
13 − ksa

(3)
14 , a(4)22 =

P1Gba(3)122−2P2a(3)22 −3P3Iba(3)222+c1da(3)226, a(4)23 = P1Gba(3)123+2P3a(3)22 −P2a(3)23 −kf a
(3)
23 , a(4)24 = P1Gba(3)124−

P2a(3)24 +bf a
(3)
23 −ksa

(3)
24 , a(4)25 = kgra

(3)
12 −P2a(3)25 −2P3Iba(3)225−c2a(3)25 , a(4)26 =−P2a(3)26 −2P3Iba(3)226+c2a(3)25 −

c1a(3)26 , a(4)33 = P1Gba(3)133+P3a(3)23 − 2kf a
(3)
33 , a(4)34 = P3a(3)24 + 2bf a

(3)
33 , a(4)35 = kgra

(3)
13 +P3a(3)25 −P3Iba(3)235−

kf a
(3)
35 − c2a(3)35 , a(4)36 = P3a(3)26 − kf a

(3)
36 + c2a(3)35 − c1a(3)36 , a(4)45 = kgra

(3)
14 + bf a

(3)
35 − ksa

(3)
45 − c2a(3)45 , a(4)46 =

bf a
(3)
36 +c2a(3)45 , a(4)122=−a(3)12 −P1a(3)122−2P2a(3)122−3P3Iba(3)1222, a(4)123=−a(3)13 −P1a(3)123+2P3a(3)122−P2a(3)123−

2P3Iba(3)1223−kf a
(3)
123, a(4)124=−a(3)14 −P1a(3)124−P2a(3)124+bf a

(3)
123−ksa

(3)
124, a(4)133=−P1a(3)133+P3a(3)123−2kf a

(3)
133,

a(4)134 = P3a(3)124+ 2bf a
(3)
133, a222 = P1Gba(3)1222− 3P2a(3)222, a223 = P1Gba(3)1223+ 3P3a(3)222, a(4)225 = kgra

(3)
122−

2P2a(3)225− 3P3Iba(3)2225− c2a(3)225, a(4)226 = −2P2a(3)226+ c2a(3)225− c1a(3)226, a(4)235 = kgra
(3)
123+ 2P3a(3)225−P2a(3)235−

kf a
(3)
235−c2a(3)235, a(4)236= 2P3a(3)226+c2a(3)235, a(4)245= kgra

(3)
124+bf a

(3)
235, a(4)335= kgra

(3)
133+P3a(3)235, a(4)1222=−a(3)122−

P1a(3)1222−3P2a(3)1222−4P3Iba(3)12222, a(4)1223=−a(3)123−P1a(3)1223+3P3a(3)1222−2P2a(3)1223−kf a
(3)
1223, a(4)1224=−a(3)124+

bf a
(3)
1223, a(4)1233= −a(3)133+ 2P3a(3)1223, a(4)2222= P1Gba(3)12222, a(4)2225= kgra

(3)
1222− 3P2a(3)2225− c2a(3)2225, a(4)2226=

c2a(3)2225, a(4)2235= kgra
(3)
1223+3P3a(3)2225, a(4)12222=−a(3)1222−P1a(3)12222−4P2a(3)12222, a(4)12223=−a(3)1223+4P3a(3)12222,

a(4)22225= kgra
(3)
12222, a(4)122222=−a(3)12222andd(4) = P1Gba(3)1 −P3Iba(3)2 +ua(3)4 +c1da(3)6 .

It is deduced that the lines ofΩ are given by

∇ xh(x) =
(

1 0 0 0 0 0
)

, (12.8)

∇ xLGh(x) =
(

a(0)1 +a(0)12 x2 a(0)12 x1 0 0 0 0
)

, (12.9)

∇ xL
2
Gh(x) =

(

T3,1

(

a(1)2 +a(1)12 x1+a(1)25 x5

+2a(1)122x1x2

)

a(1)13 x1 0 a(1)5 +a(1)25 x2 a(1)6

)

(12.10)

where
T3,1 =

(

a(1)1 +a(1)12 x2+a(1)13 x3+a(1)122x
2
2

)

,

∇ xL
3
Gh(x) =






T4,1 T4,2







a(2)3 +a(2)13 x1

+a(2)23 x2+a(2)35 x5

+a(2)123x1x3






a(2)14 x1

(

a(2)5 +a(2)25 x2

+a(2)35 x3+a(2)225x
2
2

)

a(2)6 +a(2)26 x2






,

(12.11)
where

T4,1 =
(

a(2)1 +a(2)12 x2+a(2)13 x3+a(2)14 x4+a(2)122x
2
2+a(2)123x2x3+a(2)1222x

3
2

)

,

T4,2 =

(

a(2)2 +a(2)12 x1+2a(2)22 x2+a(2)23 x3+a(2)25 x5+a(2)26 x6+2a(2)122x1x2+a(2)123x1x3

+2a(2)225x2x5+3a(2)1222x1x2
2

)

∇ xL
4
Gh(x)











T5,1 T5,2 T5,3 T5,4











a(3)5 +a(3)25 x2

+a(3)35 x3+a(3)45 x4

+a(3)225x
2
2+a(3)235x2x3

+a(3)2225x
3
2











(

a(3)6 +a(3)26 x2

+a(3)36 x3+a(3)226x
2
2

)











, (12.12)
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where

T5,1 =

(

a(3)1 +a(3)12 x2+a(3)13 x3+a(3)14 x4+a(3)122x
2
2+a(3)123x2x3+a(3)124x2x4+a(3)133x

2
3

+a(3)1222x
3
2+a(3)1223x

2
2x3+a(3)12222x

4
2

)

,

T5,2 =







a(3)2 +a(3)12 x1+2a(3)22 x2+a(3)23 x3+a(3)24 x4+a(3)25 x5+a(3)26 x6+2a(3)122x1x2

+a(3)123x1x3+a(3)124x1x4+3a(3)222x
2
2+2a(3)225x2x5+2a(3)226x2x6+a(3)235x3x5

+3a(3)1222x1x2
2+2a(3)1223x1x2x3+3a(3)2225x

2
2x5+4a(3)12222x1x3

2






,

T5,3 =

(

a(3)3 +a(3)13 x1+a(3)23 x2+2a(3)33 x3+a(3)35 x5+a(3)36 x6+a(3)123x1x2+2a(3)133x1x3

+a(3)235x2x5+a(3)1223x1x2
2

)

,

T5,4 =
(

a(3)4 +a(3)14 x1+a(3)24 x2+a(3)45 x5+a(3)124x1x2

)

.

and

∇ xL
5
Gh(x) =





















T6,1 T6,2 T6,3 T6,4





















a(4)5 +a(4)25 x2

+a(4)35 x3+a(4)45 x4

+a(4)225x
2
2+a(4)235x2x3

+a(4)245x2x4+a(4)335x
2
3

+a(4)2225x
3
2+a(4)2235x

2
2x3

+a(4)22225x
4
2































a(4)6 +a(4)26 x2

+a(4)36 x3+a(4)46 x4

+a(4)226x
2
2+a(4)236x2x3

+a(4)2226x
3
2































, (12.13)

where

T6,1 =

(

a(4)1 +a(4)12 x2+a(4)13 x3+a(4)14 x4+a(4)122x
2
2+a(4)123x2x3+a(4)124x2x4+a(4)133x

2
3+a(4)134x3x4

+a(4)1222x
3
2+a(4)1223x

2
2x3+a(4)1224x

2
2x4+a(4)1233x2x2

3+a(4)12222x
4
2+a(4)12223x

3
2x3+a(4)122222x

5
2

)

,

T6,2 =











a(4)2 +a(4)12 x1+2a(4)22 x2+a(4)23 x3+a(4)24 x4+a(4)25 x5+a(4)26 x6+2a(4)122x1x2+a(4)123x1x3+a(4)124x1x4

+3a(4)222x
2
2+2a(4)223x2x3+2a(4)225x2x5+2a(4)226x2x6+a(4)235x3x5+a(4)236x3x6+a(4)245x4x5

+3a(4)1222x1x2
2+2a(4)1223x1x2x3+2a(4)1224x1x2x4+a(4)1233x1x2

3+4a(4)2222x
3
2+3a(4)2225x

2
2x5+3a(4)2226x

2
2x6

+2a(4)2235x2x3x5+4a(4)12222x1x3
2+3a(4)12223x1x2

2x3+4a(4)22225x
3
2x5+5a(4)122222x1x4

2











,

T6,3 =







a(4)3 +a(4)13 x1+a(4)23 x2+2a(4)33 x3+a(4)34 x4+a(4)35 x5+a(4)36 x6+a(4)123x1x2

+2a(4)133x1x3+a(4)134x1x4+a(4)223x
2
2+a(4)235x2x5+a(4)236x2x6+2a(4)335x3x5+a(4)1223x1x2

2+2a(4)1233x1x2x3

+a(4)2235x
2
2x5+a(4)12223x1x3

2






,

T6,4 =
(

a(4)4 +a(4)14 x1+a(4)24 x2+a(4)34 x3+a(4)45 x5+a(4)46 x6+a(4)124x1x2+a(4)134x1x3+a(4)245x2x5+a(4)1224x1x2
2

)

.

It can then be verified that the matrixΩ is almost everywhere full rank.
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