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Introduction

It is the aim of this work to further our understanding of atomic transport
phenomena and mechanisms in uranium dioxide, which is the most widely
used nuclear fuel in water reactors. Thermally or radiation induced trans-
port properties impact practically all engineering aspects of nuclear oxide fu-
els, whether at the manufacturing stage, during in-reactor operation, or under
long-term repository conditions. Oxygen transport in particular has a direct ef-
fect upon fuel performance. For example, oxygen redistribution within a fuel
pellet alone can lead to local microstructural changes that will affect fission
product diffusion and the thermodynamic properties of the fuel itself. Atomic
transport is controlled by point defects, and since many other fuel properties
that govern fuel performance are influenced by point defects and more gen-
erally the material microstructure, it is of high significance to investigate their
thermodynamic properties and migration mechanisms.

Conversely and following for instance the work of Dieckmann [64] in bi-
nary and ternary transition metal oxides, measuring atomic transport and elec-
trical properties is a means of determining the characteristics of point or com-
plex defects that are responsible for those properties. UO2 is reputed to be an
oxygen deficient/excess oxide because deviation from stoichiometry is mainly
accommodated by anion defects. Incorporation into the lattice of electronega-
tive oxygen atoms is structurally possible but is accommodated electrically by
a change in the valence state of uranium atoms. This also enables the presence
of substitutional impurities or doping agents, mainly cations. Electronic and
oxygen defects enter into quasi-chemical equilibria as a consequence of which
their concentrations are strongly related. As a result, in certain situations, it
is the impurity content that determines the composition of the material, hence
defect concentrations and atomic transport properties. In the sixties and sev-
enties, many studies relating to oxygen self-diffusion in UO2 and UO2+x have
been carried out, but none unequivocally identified the mechanism or activa-
tion energy for its migration [30, 50, 142]. The main reason for this uncertainty
lies in part in the difficulties in measuring all the thermodynamic variables
influencing oxygen diffusion (i.e. oxygen partial pressure, impurity content
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and temperature). In fact, only recently was it demonstrated that a strict con-
trol of these three thermodynamic variables enables oxygen diffusion mech-
anisms to be identified. However, this approach concerned only slightly off-
stoichiometric UO2 [68, 78].

In the past many studies have also been carried out in relation to fission
product diffusion. Among the elements produced following the fission of a
heavy atom, iodine is one the most crucial: it is volatile and can induce stress
corrosion cracking [52] during strong pellet - zircalloy cladding interactions.
Contrary some other fission products such as xenon or krypton, the trace dif-
fusion of iodine can be studied through depth profiling of low dose ion im-
plantations but only the apparent activation energy for trace diffusion in sto-
ichiometric UO2 [165] has been assessed. To our knowledge, there still lacks
a systematic study which would enable the determination of iodine diffusion
mechanisms in UO2±x.

In this framework, this thesis aims to characterize the nature and properties
of charged defects involved in oxygen and iodine diffusion in UO2±x. To this
end, we will mainly study oxygen self-diffusion under broader temperature
and oxygen potential ranges than those studied in the past [68, 78]. The focus
upon the UO2+x (as opposed to other oxide phases) is due to the broad range of
conditions over which it is stable and because of its technological significance.
In parallel to determining transport properties as a function of oxygen content,
we also aim to characterise the effect controlled oxidation has upon the elec-
tronic structure of our material. The methodology adopted involves annealing
UO2 specimens under controlled thermodynamic conditions of temperature
and pO2 (oxygen partial pressure) in order to stabilise defect populations in
the samples. Oxygen diffusion is then studied in regard to self-diffusion by
using the isotopic exchange method using 18O as a tracer element. For chem-
ical diffusion, the kinetics with which equilibrium in the samples is restored
following a change in the oxygen partial pressure is monitored from electrical
conductivity measurements. The analysis of atomic and electronic transport
property dependencies upon temperature and oxygen partial pressure should
enable us to shear light upon the nature of the defects involved in the oxygen
or iodine diffusion process in UO2±x.

The first chapter critically reviews literature results concerning the struc-
ture, electronic structure, atomic transport properties and electrical conductiv-
ity of UO2+x. Emphasis is put upon the importance of charged defects in this
material and how oxidation is accommodated both structurally and in terms
of electronic structure. Chapter two describes the characterisation techniques
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we have implemented.
Chapter three is devoted to the development of a point defect model that si-

multaneously reproduces electrical conductivity and deviation from stoichiom-
etry data [162, 151] previously published. This provides us with a means to
estimate different electronic and anion defects as a function of temperature,
oxygen partial pressure and impurity content. Defect formation energies are
determined and compared to recently published first principles results.

Experimental results relating to electrical conductivity, oxygen self- and
chemical diffusion for two sample sets: Cr-doped and undoped polycrystalline
UO2 samples, are reported in chapter four.

The fifth chapter is devoted to X-ray Absorption Spectroscopy at the oxy-
gen K- and uranium N- edges of UO2+x and higher oxide phases. This enables
us to determine electronic structure modifications induced by sample anneal-
ing and is based on the study of reference phases UO2, U4O9 and U3O7.

The sixth chapter critically analyses and reviews the experimental data ob-
tained in Chapters 4 and 5 in the light of the model developed in Chapter 3
and of electronic structure calculations. Consistency of the results obtained is
verified and reliability of the approach used to study UO2+x is discussed.

A general conclusion summarizes the major results obtained and defines
some outlook necessary to complete this work.

Work on iodine is consigned to an Appendix, as only a preliminary study of
its diffusion properties could be carried out. The experimental characterization
of its transport properties is limited to the evaluation of the iodine diffusion
coefficient dependence upon oxygen partial pressure at the fixed temperature
of 1500°C.





Chapter 1

Literature review

UO2 has been so extensively studied over the years that it is virtually impossi-
ble to draw up a comprehensive review of all the properties we are concerned
with in this work. Rather, in this chapter we will try to emphasize how struc-
tural, point defect and electronic properties of the material are related to each
other and to macroscopic properties. In the first part of this chapter we review
some aspects of our knowledge of uranium oxides in their various forms: how
deviation from stoichiometry is accommodated, the phase transitions it under-
goes and the electronic structure of UO2.

We then go on to review how temperature or oxygen partial pressure depen-
dences of defect concentrations may be described using models based on de-
fect equilibria in combination with defect formation energies provided from
first principle calculations.

Part three is devoted to our current knowledge of electrical and oxygen
diffusion properties of UO2+x as they constitute very sensitive tracers of bulk
electronic and atomic defects.

1.1 Structure and electronic structure in the U-O sys-

tem

1.1.1 Deviation from stoichiometry and phase diagram

1.1.1.1 A complex phase diagram

UO2 crystallizes in a fluorite structure: its space group is Fm3̄m and its cell
parameter is equal to 5.47 Å at room temperature; its structure is represented
in Figure 1.1.
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Figure 1.1: UO2 fluorite structure; uranium atoms are represented in grey, oxy-
gen atoms in green.

The uranium sublattice is of the Face Centred Cubic (FCC) type whereas the co-
penetrated anion sublattice has a simple cubic structure, with an O-O distance
equal to half the cell parameter. A useful way of looking at this fluorite struc-
ture is to consider it as being made up of oxygen cubes, with every other cube
containing a uranium atom in its centre. The centres of the empty oxygen cubes
constitute the only interstitial site available. This site is usually referred to as
octahedral site in relation to its position with respect to the cation sublattice
and plays a crucial role in the behaviour of the fluorite structured materials.
Data relating to neutron irradiated uranium oxide shows that the material can
accommodate large quantities of crystalline defects and foreign atoms without
changing structure. In a similar way, the composition of uranium oxide may
deviate substantially from exact stoichiometry, which is usually represented
as UO2±x. At a given temperature and pressure, UO2 will equilibrate with the
surrounding atmosphere so that the activity of oxygen in the gas phase and
the solid are equal. Therefore, oxygen being extremely mobile in UO2 [30],
the composition of the solid rapidly adapts to the oxygen partial pressure of
the gas phase. As composition deviates from exact stoichiometry, a variety of
higher oxide phases appear which explains the complex phase diagram indi-
cated in Figure 1.2.
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Figure 1.2: Phase-diagram of the U-O system, as reported by [92]

In this work, we are mainly concerned with the UO2+x phase which exists over
a broad range of compositions but also with higher oxide phases such as U4O9.
The reason for this is twofold. Firstly, UO2+x can decompose at lower temper-
atures into a two phase system so that when one characterises at room tem-
perature samples equilibrated at high temperature, a proportion of the solid
may comprise U4O9 [92, 180]. The second reason lies in that the structures of
❛-, ❜- and ❣-U4O9 are actually quite similar to that of UO2. U4O9 may be seen
as resulting from a rearrangement of structural defects that are found in UO2+x

[15, 61]. This aspect will be detailed in the following sections.

1.1.1.2 Deviation from stoichiometry

Any thermodynamic representation of UO2+x should be capable of capturing
the actual dependence of oxygen composition upon oxygen partial pressure
(pO2) and temperature. There are many studies relating to this property and
authors (see for instance [27, 45, 88, 105, 118, 125, 151]) have extensively criti-
cally reviewed these data in order to construct coherent thermodynamic repre-
sentations of the system. It is of course not our aim to revisit these reviews but
rather to look at this property (the chemical potential of oxygen), based on a
restricted number of examples which illustrate the different compositional re-
gions within the single UO2±x phase. This will later provide us with an insight
into how the material accommodates deviation from stoichiometry. The data
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reported here essentially concern thermogravimetric analyses of UO2±x sam-
ples. This method consists in measuring at constant temperature the weight
gain or loss of samples of known composition as they equilibrate with a gas
phase which has a given oxygen partial pressure. Weight or gain loss is of
course interpreted as gain or loss of oxygen. In addition to the absolute un-
certainties in determining the value of deviation from stoichiometry, which
requires an end or starting point of known composition, there are also un-
certainties associated with the deviation from stoichiometry increments. Usu-
ally these uncertainties represent deviation from stoichiometry variations esti-
mated between ± 0.002 and ± 0.01 [118].

Hyper-stoichiometry

Basically though, deviation from stoichiometry is made possible in this iono-
covalent system by the property of uranium atoms to take on valence states
which are greater than +4 [184]. In an ideally ionic representation, hyperstoi-
chiometry which concerns a large region of the phase diagram, is thought to
result from the incorporation of additional oxygen atoms at the interstitial sites
described above and a concomitant oxidation of uranium atoms to a U5+ state.
Note there are conflicting reports in relation to the existence of U6+. Conradson
[49, 48] claims that these may exist in U4O9 although more systematic absorp-
tion analyses would suggest that U6+ only appear in non-cubic phases [117].
Increase in average cation valence induces also local distortions of atomic en-
vironment and a shortening the U-O bonds (see §1.1.1.3).

Studies dealing with composition as a function of temperature and oxygen par-
tial pressure have been extensively reported [22, 33, 82, 91, 110, 129, 130, 160].
Perron [151] carried out a review of these data, critically evaluating the validity
and sensitivity of the experiments reported by different authors. He succeeded
in constructing a simple function which, in the range of temperatures we are
concerned with, provides us with an indication of the relationship between de-
viation from stoichiometry and oxygen partial pressure. It is encouraging that
Perron’s relationship is based on experimental data sets which have recently
been reviewed and validated [27, 118]. Figure 1.3 therefore presents Perron’s
evaluation of the dependence of the oxygen to metal ratio (O/M) upon pO2 in
the temperature range 1073-1573 K.



1.1 Structure and electronic structure in the U-O system 9

Figure 1.3: Deviation from stoichiometry dependence upon temperature and
oxygen partial pressure as compiled by Perron [151].

This figure indicates that depending on the range of oxygen partial pressure
there appears to be two (at the highest temperatures) or three (at the low-
est temperatures) distinct regimes of deviation from stoichiometry which no
doubt is a reflection of how, on the atomic scale, the material is accommodat-
ing hyperstoichiometry (see for instance [149]). There appears to be a transi-
tion from a x ∝ pO2

1/5 to a x ∝ pO2
1/2 at the lowest oxygen potentials and for

the lowest temperatures, whereas at high deviations from stoichiometry, the
O/M ratio levels off as the material approaches the transition to U4O9. Figure
1.3 shows also that for a fixed value of pO2, lower temperatures correspond to
higher deviations from stoichiometry.

Substoichiometry

The hypo-stoichiometric or substoichiometric material is only stable at high
temperature and low oxygen partial pressures, as suggested in Figure 1.2 and
is thought to be due mainly to the presence of oxygen vacancies [109, 143].
Because the conditions are difficult to obtain and control experimentally, few
deviation from stoichiometry measurements exist. Those carried out in the
past by Tetembaum and Hunt [173] and Javed [101] are represented in Figure
1.4. Although a certain scatter exists in the data, the results of Tetembaum
[173] at temperatures in excess of 2000 K indicate a transition from x ∝ pO2

-1/2

to roughly x ∝ pO2
-1/4 as sub-stoichiometry increases. The results of Javed

[101] on the other hand would tend to indicate x ∝ pO2
-1/2.
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Figure 1.4: Dependence upon oxygen partial pressure of the deviation from
stoichiometry x: comparison between data taken at different temperatures re-
ported by Javed [101] and Tetembaum [173].

1.1.1.3 Higher oxide phases

In addition to hyperstoichiometric uranium dioxide, there is a range of higher
oxide phases the composition of which may substantially deviate from exact
stoichiometry depending upon temperature and oxygen activity. This is the
case of cubic U4O9 and orthorhombic U3O8. The structure of these phases and
the conditions under which they are stable are now relatively well known.
Although X-Ray diffraction has extensively been used and continues to be to
identify the formation of a new phase and establish details of the U-O phase
diagram (see [85]) this technique may not be used to resolve the structure of
uranium oxides completely. The reason for this is that scattering intensities
of uranium atoms are far greater than those of oxygen. Willis [181] pioneered
neutron diffraction work on uranium oxides, which, because oxygen and ura-
nium atoms have similar neutron scattering intensities, enabled determining
the positions of both uranium and oxygen atoms. In addition to this, because
neutrons have a greater penetration depth than X-rays, they provide informa-
tion relative to the bulk of the material rather than the surface. Willis [182]
further carried out neutron diffraction experiments of a hyperstoichiometric
UO2.12 single crystal at 1100 K. His analysis showed that the simplest model
which could account for the experimental data corresponded to the so-called
2:2:2 cluster. This aggregate involves four oxygen interstitials, 2 of which are
displaced with respect to the cubic coordinated interstitial site along the <1 1
0> direction, and the remainder displaced from an ordinary oxygen site along
the <1 1 1> direction. This is accompanied by the formation of two oxygen
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vacancies. In this work the uranium lattice was shown to remain undisturbed
with respect to the fluorite structure. In particular Willis reported the absence
of uranium vacancies [183].

Figure 1.5: 2:2:2 cluster proposed by Willis based on neutron diffraction study
[182].

Depending upon temperature but at temperatures below circa 1400 K (see Fig-
ure 1.2), oxidation of UO2+x is reported to lead to the formation of ❛, ❜, or ❣-
U4O9, the structures of which are all based on the fluorite arrangement of UO2.
Cooper and Willis [51] only recently refined the structure of ❜-U4O9 which had
been described earlier by Bevan [32]. In this phase, the uranium positions
are close to those of the original fluorite phase but excess oxygen atoms are
accommodated in so-called cuboctahedral clusters. These clusters proposed
originally by Bevan (see Figure 1.6) comprise 12 oxygen atoms (instead of the
eight illustrated in Figure 1.1) contained within the original FCC cation cell.

Figure 1.6: Oxygen cluster structure proposed by Bevan [32]

The presence of an additional interstitial oxygen atom sitting at the centre of
the cuboctahedron has also been reported [61]. U4O9 may be considered as
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resulting from the long range ordering of these cuboctahedral clusters which
gives rise to a cubic superstructure. ❛-U4O9, which is observed at lower tem-
peratures, is a trigonal distortion of ❜-U4O9: Desgranges et al. [62] have re-
cently proposed a refinement of this structure with a view to deriving a struc-
tural model for the oxidation of UO2 to U3O8.
U3O8 is known to exist in two allotropic orthorhombic forms ❛ and ❜ [127] and
was studied mainly since it constitutes the near highest oxide form of UO2

[14, 62]. Also, it has been recognised for some time that U3O7 which has a
tetragonal structure plays a key role in the low temperature oxidation process
of UO2 to U3O8 [137]. However U3O7 is a metastable phase [63]. This implies
for example that if one heats a homogeneous sample with that composition
and structure in a sealed environment, it will readily disproportionate depend-
ing upon temperature into U4O9 and U3O8 [94]. One very self-explanatory way
of identifying its influence in the oxidation process to U3O8 is to carry out ox-
idation experiments during which structural features are characterised in-situ.
A good example of this was reported by Rousseau et al. [161] who followed
the structural evolution of UO2 powders at 470 K under air using synchrotron
radiation. Figure 1.7 reports some of the more striking results which show
the emergence of the tetragonal distortion of the fluorite structure as an inter-
mediate state between the fluorite U4O9 and the orthorhombic U3O8 phases.
The details of the cluster arrangements in ❜-U3O7 were later published by Des-
granges et al. [63] based on oxidation experiments monitored using neutron
diffraction. They suggested that ❜-U3O7 actually resulted from cuboctahedra
moving closer together which is responsible for the tetragonal distortion and
shorter U-O bonds.

Figure 1.7: Structural evolution in time of a UO2 powder exposed to air at a
temperature of 250°C [161].

During the oxidation process, the reduction in U-O bond lengths is accompa-
nied by an increase in the covalent nature of these bonds. In the UO2 and U4O9
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cubic fluorite structures, the U-O bonds can be considered partially ionic. As
the oxidation process leads to higher oxide phases, the degree of covalence
increases and the U-O atomic distances decrease to reach values typical of
(UO2)O2 uranyl-groups. This is accompanied by a concomitant lowering of
the crystal symmetry. While U4O9 keeps a cubic fluorite structure, U3O7 be-
comes tetragonal, U3O8 orthorhombic and UO3 tetragonal with an uranyl ge-
ometry. In this latter phase uranium atoms are surrounded at a distance of
about 2.3 Å by a 5 coplanar oxygen atoms which form a pentagon with 2 oxy-
gen atoms placed along an axis perpendicular to this plane at a shorter dis-
tance (1.79 Å). It is quite natural to assume that methods for determining the
electronic structure of the material (which is liable to characterise the nature
of the bonds) will constitute a useful complement to the structural characteri-
sations reported here. The next section aims at reviewing the most important
features relating to the electronic structure UO2 obtained both from theoretical
and experimental methods.

1.1.2 Electronic structure

1.1.2.1 Introduction: the characteristics of UO2 electronic structure

UO2 has a complex electronic structure largely determined by the strong cor-
relation effects of the Uranium 5f electrons. The UO2 energy bands near the
Fermi level are basically divided into four distinct regions:

1. A wide 3.7 eV valence band formed by hybridised O 2p with U 5f and U
6d orbitals [26];

2. A narrow 2.3 eV band containing two well-localized U 5f electrons, that
lies just below the Fermi level [26];

3. A gap, estimated at 2.1±0.1 eV [166];

4. A wide conduction band whose lowest energy levels that spread over ap-
proximately 4 eV are composed of the hybridised O 2p and U 5f orbitals
[187].

These characteristics were determined from a combination of different tech-
niques used either to study the occupied sates (such as X-Ray Photoemission
Spectroscopy - XPS) or the unoccupied states (such as Bremsstrahlung Isochro-
mat Spectroscopy - BIS - and X-ray Absorption Spectroscopy - XAS). The first
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experimental study of UO2 valence and conduction band features (see Figure
1.8) was carried out by Baer and Shoenes [26] who used XPS and BIS.

Figure 1.8: Experimental XPS ans BIS spectra of UO2 [26]

Optical measurements carried out by Schoenes [166] may only reveal unoccu-
pied 6d states because of the dipole selection rule. Based on that, Baer sug-
gested that the unoccupied states observed in BIS also corresponded to such
transitions [26]. However, as pointed out by Yu [187], the cross section for the f
state is dominant at the high energy of the electrons used for BIS measurements
and consequently it becomes implausible that BIS signal is originated from the
6d states. In fact, Yu succeeded in demonstrating with other techniques that
the bottom of the conduction band is mainly composed of uranium 5f states
(see Figure 1.10). In fact, a combination of X-ray Absorption Spectroscopy
(XAS) and DOS ab-initio calculations demonstrated the f-type character of the
unoccupied states observed [187] conferring unto UO2 a f-f type semiconduct-
ing nature.

This shows that the combination of XAS and ab-initio simulations consti-
tutes a powerful tool for determining the electronic structure of this material.
In the following paragraphs we review our knowledge of the electronic struc-
ture of UO2 based on these two techniques.

1.1.2.2 Growing contribution of ab-initio approaches

In recent years, ab-initio calculations which are based upon solving the Schrödinger
equation, have been widely used to describe actinide oxide materials. In order
to solve this equation and calculate the wave function associated with all the
electrons in the system, practically all recent studies rely upon Density Func-
tional Theory (or DFT). DFT is based upon two theorems established by Ho-
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henberg and Kohn [96]. These theorems enable the ground state of a system
to be determined not from the minimisation of the energy of the system with
respect 3N unknowns (N wave functions of the N particles each with three de-
grees of freedom) but with 1 space dependent scalar function: the electronic
density. However even with this formulation the problem remains untreat-
able, because the only known formulation for the kinetic energy term in the
Schrödinger equation is that which corresponds to N independent electrons.
Replacing a system comprising N interacting electrons with a system compris-
ing N independent electrons is known as the Kohn-Sham approximation [108]
in which all interaction terms between electrons are contained in the exchange-
correlation functional. Various approximations have been used depending
upon whether one assumes a uniform electron gas (Local Density Approxi-
mation or LDA) or whether the exchange-correlation functional is dependent
upon the gradient of electronic density (Generalized Gradient Approximations
or GGA).

Although efficient, exchange-correlation functionals in their standard for-
mulation [96, 108] fail to entirely capture strong correlations. In particular
these functionals predict UO2 to be a metal when it is known to be a Mott-
insulator (see previous section), the properties of which are to large extent
determined by the strong correlations between 5f electrons. Improving the
modelling of these strong correlations requires using approximations which go
“beyond DFT”. The most widely used alternative to standard DFT is known
as DFT+U (where U is the Hubbard correction term) [20]. This approxima-
tion succeeds in opening a gap [89] and localising electrons on the 5f orbitals.
However, the consequence of this is that the system may be trapped in a lo-
cal energy minimum which does not correspond to the ground state. Dorado
[65, 69] has recently suggested a method known as occupation matrix control
which guarantees that the ground state is reached. These methods have been
used with increasing success to reproduce both the electronic structure of UO2

[65] (see section §1.1.2.3) and calculate defect formation and migration energies
[18, 17, 65, 66] (see section §1.2.2).

1.1.2.3 UO2 Oxygen K-edge XAS characterization

X-ray absorption spectroscopy is a technique used for characterising the ab-
sorption properties of a material as a function of the incident photon energy
[147]. A compound absorption coefficient µ is strongly dependent upon its
physical characteristics (density, atomic number and atomic mass) and upon
the energy of the incident X-rays. Following the Fermi golden rule, for X-ray
energies greater than the core-level binding energy, the photoelectric effect is
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activated and the promotion of one core electron to an excited state is possible.
The excitation process follows the dipole selection rules, according to which
an electron can jump to an excited level only with a change of the angular mo-
mentum (❉l = ±1) but no change of its spin (❉s = 0). Therefore, the absorption
coefficient µ can be seen as the probability to induce a transition between these
two quantum states. A XAS spectrum, at least close to the absorption edge,
represents the density of unoccupied (i.e. available) states.

In particular, a XAS spectrum at oxygen K-edge corresponds to electronic tran-
sitions of oxygen 1s core electrons to unoccupied np level, with n≥2. For en-
ergies up to 10 eV above the absorption edge the spectrum is mainly charac-
teristic of 1s → 2p transitions. At higher incident photon energies, the photo-
electron is energetic enough to actually leave the atom and multiple scattering
occurs thus providing information relating to the local environment around
oxygen atoms [86, 103, 131].

We now turn our attention to UO2. In a purely ionic model one expects ura-
nium and oxygen ions to take on the following configuration: 6p65f26d07s0 for
U and 2p6 for O. However, this representation does not reflect the true nature
of the bonds. A degree of covalency gives rise to hybridized valence orbitals
of type 5f3L and 5f26d1L, where L is an O 2p ligand hole. Therefore, in UO2

the promotion of a 1s O electron to the 2p level produces a signature of the hy-
bridized 5f3 and 5f26d1 orbital configurations, modulated by the 1s O core hole
attraction. Note that in a cubic crystal field, the d orbitals are split into two eg

and three t2g orbitals, the last ones having higher energy levels [86, 103]. As a
consequence, there are two possible configurations for the hybridised orbital
5f26d1 : 5f26eg

1 or 5f26t2g
1.

The first UO2 O K-edge XAS spectrum was collected by Jollet et al. [103] and is
represented in Figure 1.9.
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Figure 1.9: Oxygen K-edge XAS spectrum of UO2: letters indicate peak posi-
tions; peaks indicated with normal letters give a picture of the electronic struc-
ture of the empty states of the oxygen atoms. Peaks indicated with capital
letters instead are due to multiple scattering phenomena.

There is consensus [103, 187, 185] regarding features a and b which are at-
tributed to the hybridization of the O 2p with the U 5f orbitals (5f3 config-
uration). Peaks c and d are instead due to the more energetic U 6d orbitals
(5f26eg

1or 5f26t2g
1 configurations). This analysis is based on the comparison of

the O K-edge XAS spectrum with ab-initio DOS calculations (see Figure 1.10)
carried out using different approaches (LDA+U [103], GGA+U [187]) none of
which took the core-hole effect inevitably present during a XAS experiment
into account. In fact the promotion of a core electron into the conduction
band leads to the appearance of a hole in the atomic core states. In princi-
ple, its presence induces modifications in the DOS probed by XAS and can
only be reproduced using first-principles methods if an appropriate pseudo-
potential is used [100, 40, 136]. However in transition metal oxides, modifica-
tions to the oxygen DOS induced by the presence of the core-hole are limited,
as the total unoccupied bands are more affected by the cation contributions
[86]. Figure 1.10 illustrates this point made by De Groot [86]: in UO2 the cal-
culated O 2p orbital contribution to the DOS of the empty conduction band is
much weaker than the cation one. As a consequence, an oxygen 1s core hole
shouldn’t strongly affect the empty DOS of UO2 in an excited state.
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Figure 1.10: Comparison of the oxygen K- (black), uranium N5- (green) and
uranium N7-edge (red curve) spectra with ab-initio oxygen 2p, uranium 5f and
6d DOS calculation carried out with the GGA+U approximation [187].

Oxygen K-edge spectra are strongly affected by the oxidation state of the cation.
Two examples are given by Martin et al. [131] and Modin et al. [140] who re-
spectively studied the modifications of UO2 and PuO2 O K-edge XAS spectra
induced by supposed oxidation. In particular, the work of Martin et al. [131]
on a UO2 single crystal and polycrystalline samples seems to demonstrate that
oxidation leads to the appearance of an intense peak at low energy. As seen in
§1.1.1.2, UO2 hyperstoichiometry is associated with the presence in the lattice
of cations with a 5+ oxidation state. This work tended to preclude the presence
of U6+ in UO2+x samples although a definite conclusion could not be reached
due to the fact that ab-initio calculated DOS were not available at the time.
A seen previously, interpretation of XAS spectra is based on their comparison
with DOS calculated by ab-initio. In recent years substantial inroads have been
made to provide reliable models capable of describing the complexity of UO2

electronic structure.

1.2 Modelling point defect concentrations in tran-

sition metal oxides and in UO2+x in particular

In literature, uranium dioxide has been the subject of many studies in relation
to equilibrium point defect concentration estimates. We will be focusing here
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on two complementary approaches both of which are concerned with mod-
elling various defect equilibria. Whereas the first approach focuses on ade-
quately representing available experimental data to derive for instance chem-
ical equilibrium constants, the second uses results from first principle calcula-
tions of defect formation energies as input data for the various defect equilibria
envisaged. It is important to stress that these two approaches should at some
stage converge to give a comprehensive and coherent picture of point defect
concentrations and this essentially arbitrary distinction has been adopted here
mainly to rationalise results available in the literature.

In the first approach, one is in principle capable of describing the effects
upon defect concentrations of temperature and of the local oxygen activity in
the solid in equilibrium with the surrounding gaseous atmosphere. The nature
of defects is generally postulated based on ones knowledge of basic thermody-
namic data such as the partial molar free energy of oxygen and its dependence
upon composition and temperature. The models can be then assessed upon
their ability to rationalise other basic material properties.

The second approach is found in studies primarily concerned with first
principle modelling and is often presented as one of its most obvious appli-
cations: the determination as a function of composition and temperature of
the concentration of point defects based on calculated point defect formation
energies. The relevance of these applications is obviously intimately connected
with the type of exchange correlation functional chosen (GGA, LDA, LDA+U,
hybrid functionals, etc.) and is, because of the relatively recent availability of
such techniques, still very much the subject of discussion. Even if it is still
somewhat unrealistic to think that defect concentrations may be assessed es-
sentially from first principles, we will see in what follows the capability of
these ab-initio methods in their more advanced forms to reflect at least qualita-
tively some of the more complex aspects of our material’s behaviour.

1.2.1 Thermodynamic models based on the analysis of experi-

mental data

Thermodynamic models used to calculate equilibrium point defect concentra-
tions in oxide materials in general are often based on the law of mass action. In
this formalism, originally developed by Wagner and Schottky [111] using the
Kröger and Vink formalism [113], the mass-action type equations describing
equilibria between electronic and ionic defects are written under the assump-
tion that defects are non interacting and infinitely diluted. With this approxi-
mation defect activities are simply expressed in terms of defect concentrations.
To complete the model, electroneutrality and site conservation equations on
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both sublattices are added. Success of this theory is however mitigated by
some important shortcomings [37]:

• The mass action law assumes defects as non-interacting species. How-
ever in oxide systems defects are usually charged and as a result subject
to long range Coulomb interactions.

• Because the mass action law generally assumes infinite dilution, the con-
figurational entropy contribution of the different defects in the Gibbs free
energy of the system reduces to site fractions (i.e. the probability that
an anion or cation site is occupied by a defect of a particular anionic or
cationic type). However for high defect concentrations, defects are no
longer statistically uncorrelated because the presence of a defect excludes
others from sharing the same region in the lattice. This is known as the
site exclusion effect and becomes increasingly relevant as the defect con-
centration in the material rises (high deviations from stoichiometry).

Authors [60, 98, 126, 139, 167, 170, 186] have therefore attempted to consider
one or the other or both of these effects; i.e. defect interactions and site exclu-
sion. Ling [126] for example proposed a general theory which he applied to
the description of the behaviour of point defects in cerium oxide. The author
claims the model reproduces deviation from stoichiometry data in CeO2-x even
at high values of x. Despite their more physical description of the system, these
approaches loose the attractive simplicity that characterizes the ideal mass ac-
tion law approach.

This latter more simple approach has encountered reasonable success in
rationalising experimental data such as non-stoichiometry, electrical conduc-
tivity or atomic transport properties and their dependence upon oxygen par-
tial pressure for a wide range of oxides [71, 106, 111, 148, 174, 175], including
uranium dioxide [73, 114, 145, 146, 149].

A. Nakamura and T. Fujino [145] and Park and Olander [149] used the
model to reproduce the available partial oxygen enthalpy and entropy de-
pendences upon oxide composition and temperature. M. Fraczkiewicz [73]
attempted to simultaneously reproduce deviation from stoichiometry data as
reviewed by Perron [151] and Ruello’s electrical conductivity data [164].
Despite efforts made to understand the relationship between the presence of a
given type of defect and atomic transport and/or thermodynamic properties



1.2 Modelling point defect concentrations in transition metal oxides and in UO2+x in
particular 21

of UO2, these authors did not succeed in reproducing the entire range of avail-
able data. They provided some possible explanations for these shortcomings.
For example, M. Fraczkiewicz suggested that an improved knowledge of the
relative mobility of electrons with respect to holes could help rationalise devi-
ation from stoichiometry and electrical conductivity data. A. Nakamura and
T. Fujino instead suggested that the strong electrostatic interactions that exist
between charged defects may play a crucial role. They attempted [146] to take
this into account by considering the defect interaction and formation energies
as dependent upon UO2+x molar volume. They derived an extra enthalpy term
called “excess enthalpy term”, and recalculated the partial oxygen molar en-
thalpy and entropy of oxygen to find a better agreement between their model
and the experimental data.

In relation to UO2 at least, authors have nonetheless been able to derive de-
fect formation energies from the analysis of the experimental data with such
models. It is interesting to note that these defect formation energies actually
characterise a given chemical equilibrium and as such are in principle directly
comparable to values which may be computed from first principles.

In the following section, we focus on point defect models that incorporate
defect formation energies calculated from first principles and assess the rele-
vance of these approaches to capture the specificity of our material.

1.2.2 Models based on formation energies calculated from first

principles

As mentioned in §1.1.2.2, methods which go beyond standard DFT have be-
come increasingly useful not only for clarifying details relating to the elec-
tronic structure of UO2 but also as will be seen later for shedding light upon
the nature of point defects and their most stable configurations.

However, the first attempts at calculating defect concentrations from first
principles were done with standard DFT (see [56] and [74, 75] respectively for
LDA and GGA formalisms). These methods were shown to provide bulk prop-
erties (e.g. cell parameter, bulk modulus and cohesive energy) in reasonable
agreement with experiment and despite the fact that these functionals were
incapable of capturing the semi-conducting nature of UO2, they were used to
calculate defect formation energies. The energies were used in a mass action
type model (originally proposed by Matzke [135] and Lidiard [121]) with the
usual simplifying assumptions of infinite dilution. The defects accounted for
were oxygen interstitials (Oi) and vacancies (VO), uranium interstitials (Ui) and
vacancies (VU) and the equilibria modelled comprised oxygen and uranium
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Frenkel disorder (FPO and FPU) and Schottky disorder (Si). As one would ex-
pect, the energies associated with the different equilibria lay in the following
order (of increasing energies): oxygen Frenkel (3.6 eV [74]or 3.9 eV [56]), Schot-
tky (5.6 eV [74] or 5.8 eV [56]), uranium Frenkel pairs (11.8 eV [74] or 10.7 eV
[56]). Also oxygen interstitials were calculated as forming much more read-
ily than oxygen vacancies. When solved, the model predicts that the most
abundant defects in the sub-stoichiometric regime are oxygen vacancies (as
expected, see section §1.1.1.2), but in the hyperstoichiometric regime, uranium
vacancies become the predominant defect species above deviations from stoi-
chiometry of the order of 10-4, in contradiction with Willis’s neutron diffraction
results (see section §1.1.1.3). There is one essential shortcoming with all these
approaches that has its roots in the fact that with standard DFT it is impossible
to model charged defects in UO2 in contradiction with any basic description of
the material behaviour. As a consequence of this all the defects accounted for
in these approaches are by construction neutral defects and as an example, it
is impossible to attempt to reproduce the electrical properties of the material.

Effect of charge

It is only with the advent of methods which go beyond standard DFT (e.g.

DFT+U [18, 65, 69] or hybrid functionals [57]) that it has been possible to model
charged defects and to try to reconcile approaches described in the previous
section with first principle calculations. Table 1.1 reports the formation ener-
gies calculated using different approaches for isolated uranium and oxygen
defects. Interpreting this table requires a number of points be kept in mind:

• Any comparison between the energy values that appear in this table
should be made with great care. From one study to the other, energies
may indeed correspond to different equilibria. This is the case in partic-
ular for Crocombette’s values [57, 55]. The authors’ values could have
been modified to produce values comparable to other data but we have
chosen to quote the data that appear in the original paper.

• The comparisons which are most significant are those that involve de-
fects for which the formation equilibria do not require defining a refer-
ence state such as uranium and oxygen Frenkel pairs and Schottky de-
fects. Authors often use reference states that are different or for which
their approximations provide different values making it extremely tenu-
ous to compare defect formation energies between studies.

• The Schottky defect formation energies reported refer to unaggregated
Schottky disorder (the uranium vacancy and the two oxygen vacancies
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are uninteracting).

• The formation energies of the charged defects that are reported allude to
doubly charged anion defects (Oi” and VO°°) and uranium interstitials
and vacancies have a +/-4 charge state.

Method Ref. Oi VO FPO Ui VU FPU Si

Ab-initio - Neutral defects
LDA [56] -2.9 6.7 3.9 7.3 3.3 10.7 5.8
GGA [74] -2.5 6.1 3.6 7.0 4.8 11.8 5.6

LSDA+U [99] -0.4 4.5 4.1 4.7 8.4 13.1 –
LSDA+U [80] -2.2 7.5 5.4 8.2 9.1 17.2 10.6
GGA+U [65] -0.05 5.36 4.96 5.38 10.43 15.81 10.66
LDA+U [18] – – 5.26 – – – 10.15

Hybr. Funct. [57] -0.8 7 6.4 – -3.5 – 9.9
Ab-initio - Charged defects

LDA+U [18] – – 3.32 – – – 6.00
LDA+U [66] -0.6 – – – – 11.82 –
GGA+U [66] -0.45 – – – – – –

Hybr. Funct. [57] – – 4.8 – – – 5.8
Hybr. Funct.(*) [55] -1.4 5.6 4.2 – -4.7 – 6.4
PDM - Charged defects

[149] -2.17 6.7/9
[145] -0.12/-0.5 5.3

Experiments - Charged defects
[130] -1.3

[46, 135] 3.0–4.6 6.0–7.0
(*)The formation energies of the defects Oi”, VO°° and VU”” are calculated in the
middle of the gap.

Table 1.1: Formation energies (in eV) of different defects calculated in the fluo-
rite phase.

At a glance, one notices that all calculated interstitial formation energies are
negative, as are also the available experimental values. It is also quite striking
that all oxygen vacancy formation energies (including the sole available exper-
imental value) are highly positive, roughly 5 eV. These observations are con-
sistent with the fact that UO2 readily oxidises whereas the substoichiometric
phase is rather difficult to form and only appears at high temperatures un-
der very reducing atmospheres (see section §1.1.1.2). Also consistent with our
understanding of the material (see section §1.1.1.3 and Willis’s neutron diffrac-
tion work [183]) is the fact that oxygen Frenkel pairs are less costly energeti-
cally than uranium Frenkel pairs which is an indication that oxygen disorder
prevails over disorder on the cation sublattice.
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The charge states of point defects also have a substantial effect upon their
formation energy. Crocombette [57] was the first to have recently quantified
this and his results are also reported in Table 1.1. It is striking for instance that
the energy of a charged Frenkel pair lies between 1.6 eV and 2 eV below the
formation energy of the Frenkel pair involving neutral defects. Andersson [18]
reports (see Table 1.1) the same energy differences between charged and neu-
tral oxygen Frenkel pairs. The same applies to formation energies of neutral
and doubly charged oxygen vacancies.

Crocombette’s work also enables us to have an idea of the charge of the
most stable defect as a function of the Fermi level, which itself depends upon
deviation from stoichiometry or indeed the level of aliovalent cation doping.
In particular he observed that:

• The -4 charged uranium vacancy (VU””) is the most stable defect at prac-
tically all Fermi levels, hence deviations from stoichiometry.

• The -2 charged oxygen interstitial (Oi”) appears to be stable over a wide
range of compositions.

• The +2 charged oxygen vacancy (VO°°) is more stable in the hyperstoi-
chiometric region (Fermi level closer to the valence band) although singly
charged and even neutral vacancies may prevail in the sub-stoichiometric
region.

Note that unfortunately within the GGA+U approximation, no systematic data
exist in relation to the effect of charge.

It is important to note that an attempt has recently been made to interpret
uranium self-diffusion experiments in near stoichiometric material based on a
point defect model for which defect formation energies have been determined
within the GGA + U approximation [66]. The charge of the defects modelled
are chosen of the strength of Crocombette’s study and the point defect model
that underpins the approach predicts that electronic disorder prevails over dis-
order on the oxygen sub-lattice which itself is more important than disorder
on the uranium sublattice. In addition, the model enables the authors to ra-
tionalise the experimental data available in near stoichiometric material and
to interpret these data based on the nature of the atmosphere under which
the diffusion experiments are carried out and in particular the oxygen partial
pressure.

Clustering

In hyperstoichiometric material, it was demonstrated experimentally (see §1.1.1.3)
that increasing values of x will lead to a greater degree of covalency which is
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manifest in a shortening of U-O bonds. Using the hybrid functional approach,
Crocombette [55] calculates that decreasing Fermi levels (i.e. increasing oxy-
gen partial pressures) will favour oxygen clustering. In addition he showed
that as the size of an oxygen cluster increases, its charge moves away from that
expected based on a purely ionic model. The more stable cluster configura-
tions obtained within the DFT+U approximation or using hybrid functionals
are illustrated in Figure 1.11:

• The oxygen di-interstitial [19, 65] or the split di-interstitial [19, 44, 81, 80]
are respectively represented in red and blue in Figure 1.11a). The former
defect is composed by 2 O ions in 2 adjacent octahedral sites. The latter
is by contrast composed of 3 oxygen interstitials in a {111} plane and 1
O vacancy. This kind of defect is calculated by Crocombette [55] to be
energetically more stable if singly negatively charged.

• The oxygen quad-interstitial [17] is composed of two split di-interstitials
(it is represented in Figure 1.11b) with blue and green spheres).

• The cuboctahedron (COT) [17, 44] corresponds to a cluster as described
by Bevan [32], or possibly containing an additional oxygen interstitial
in its centre as suggested by Desgranges et al. in [61] (see §1.1.1.3 for
details). These defects containing 4 or 5 additional oxygen ions (COTv
and COTo) are represented in Figure1.11c). Crocombette [55] calculated
that both these defects bear a -2 charge instead of -8 or -10, as expect in a
purely ionic model.
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a) b)

c)

Figure 1.11: Representation of: a) an oxygen di-interstitial (represented in red),
a split di-interstitial (in blue) [19]. b) an oxygen quadinterstitial, as calculated
by Andersson et al. within the DFT+U formalism [17] c) the 2 possible types of
cuboctahedra . [44]

1.2.3 Conclusions

To conclude this section, it appears that DFT provides defect formation ener-
gies that are broadly compatible (irrespective of the approximation) with the
behaviour of the material. However, there are two aspects relating to point
defects which a mechanistic approach should take into account:

• The charge of defects constitutes a key aspect of the behaviour of UO2 to
the extent that methods which go beyond standard DFT are necessary in
any meaningful attempt to compare theoretical and experimental data.
It seems that DFT+U in particular opens up the prospect of interpret-
ing atomic transport properties quantitatively [66] and hybrid functional
studies may guide us towards the nature of the defect which a point de-
fect model should describe [57, 55].

• The effect of clustering of oxygen ions in the hyperstoichiometric region
of the phase diagram appears also to be key to understanding the mate-
rial’s properties.

Point defect models have been developed in the past either based on the anal-
ysis of equilibrium properties or on first principles calculations. No attempt
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has, to our knowledge, been made to reconcile these approaches, i.e. to bench-
mark defect properties derived from the analysis of the material’s properties to
comparable values obtained from first principles. This aspect will be looked at
in detail in Chapter 3. In the following section however, we examine in greater
detail the type of property that may be used in order to derive basic quantities
relating to point defects, i.e. defect formation and migration energies.

1.3 Experimental approaches to evaluate UO2+x trans-

port properties

As seen in paragraph §1.2.1, point defect models can be used to analyse ther-
modynamic equilibrium properties and derive quantitative information relat-
ing to point or complex defect populations. In past studies, they were essen-
tially applied to reproduce deviation from stoichiometry data. However, these
models should in principle be capable of reproducing the range of properties
which show a strong dependence upon defect populations, such as electrical
or atomic transport properties some of which are the focus of this section.

1.3.1 Electrical properties

In an oxide system, electrical conductivity can be ensured either by electronic
defects (electrons or holes) or mobile ionic species. In UO2, Bates et al. [29]
observed no effect upon electrical conductivity measurements of using either
direct or alternative currents at different frequencies and therefore concluded,
as is now generally accepted, that the ionic contribution to the electrical con-
ductivity is negligible. As a result, the electrical conductivity of UO2 can be
considered as the sum of two contributions, each corresponding to the prod-
uct of the electronic defect concentration with its mobility [28, 111]:

σ = e · (µe

[
e
′

]
+ µp

[
h°]) ·Ns,U = µp · e ·

(
µrel

[
e
′

]
+
[
h°]) ·NAv ·

d

M
(1.1)

Here µe and µp are the electron and hole mobilities respectively, e the elemen-
tary electrical charge, µrel is the ratio of the electron to hole mobilities, [e’] and
[h°] are respectively the electron and hole concentrations and Ns,U is the num-
ber of uranium sites. Supposing all cation sites occupied, Ns,U can be calcu-
lated as NAv · d

M
, where NAv is the Avogadro’s number and d and M are the

density and the molar mass of UO2 respectively. At a given temperature, elec-
trical conductivity variations may therefore be seen as reflecting changes in the
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electronic charge carrier concentrations. Many studies have been dedicated to
quantifying the electrical conductivity of UO2 over a wide range of conditions.

1.3.1.1 Electrical conductivity dependence upon thermodynamic variables

P. Ruello [162] measured UO2 single crystal electrical conductivity at different
values of oxygen partial pressures and at seven different temperatures; his
data are reported in Figure 1.12a).

a) b)

Figure 1.12: a) Electrical conductivity data measured by Ruello [162, 164]. For
each considered temperature, electrical conductivity is represented as a func-
tion of oxygen partial pressure. b) Comparison of Ruello’s data with the con-
ductivity measurements of a Cr-doped UO2 polycristalline sample (Cr being
presumably present as a 3+ ion on the cation sublattice [73, 132, 159]) collected
by [73]. Each set of data was taken at 1273 K.

With a few reasonable assumptions, the UO2 electrical conductivity curves re-
veal the dependence upon oxygen partial pressure and temperature of the na-
ture and relative defect concentrations (see the insert of the Figure 1.12a)):

1. At low temperatures (less than ca. 1273 K) and oxygen potentials, un-
der conditions where at a given temperature electrical conductivity is
independent of oxygen partial pressure, electrical conduction in UO2 has
been demonstrated from Seebeck coefficient measurements [164] to be
ensured by holes (i.e. p-type conduction) created for charge compensa-
tion reasons by impurities, hence reference to an extrinsic regime. These
impurities have a valence less than +4 and are assumed to be present on
the cation sublattice.

2. As the oxygen potential rises, the material incorporates negatively charged
ions which cause a fraction of uranium ions to take on valences in excess
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of +4. When the concentration of oxidised uranium ions created in this
way becomes equivalent to that which compensates for the presence of
aliovalent impurities, the electrical conductivity rises above the extrin-
sic plateau. Ruello observed a Log(s✈) vs. Log(pO2) slope of roughly 1/2
which he interpreted as being due to singly negatively charge oxygen
di-interstitials. This interpretation also tallies with the 1/2 slope of the
Log(x) vs. Log(pO2) slopes mentioned in the previous section (see Figure
1.3). This change from a presumably purely ionic behaviour in which
the absolute charge of a cluster increases by less than 2 as an additional
oxygen atom is incorporated to it corroborates the calculations of Cro-
combette alluded to in the previous section and indicates an increase, as
expected from our knowledge of the oxidation process, in the covalent
nature of bonds (see §1.1.1.3).

3. Only at high temperatures does the behaviour become intrinsic for all
accessible oxygen partial pressures (in Ruello’s case this is noticeable at
and above 1473 K). The authors showed through measuring Seebeck co-
efficients that the minimum the electrical conductivity goes through as a
function of oxygen partial pressure corresponds to an n to p transition.
Further assuming that electrons and holes have similar mobilities and
that oxygen vacancies and interstitials have identical charges, the elec-
troneutrality condition requires that the minimum corresponds to exact
stoichiometry.

4. At all temperatures, as the oxygen partial pressures increases, the electri-
cal conductivity appears to level off. Here deviation from stoichiometry
is high enough that larger size oxygen clusters form and the author as-
sociates this with the onset of a phase transition towards U4O9. At those
partial pressures, it is also noted that the time necessary to equilibrate
UO2+x samples increases substantially.

1.3.1.2 Mobility of the charge carriers

In UO2 electrical conductivity is thought to occur via a small polaron hopping
mechanism [43, 70, 144, 163, 184]. This mechanism applies to semiconduc-
tors in which the interactions between charge carriers and lattice vibrations
(phonons) are strong. The charge carrier mobilities may be expressed depend-
ing on the nature of the process: adiabatic (respt. non-adiabatic) for which
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hopping occurs over a characteristic time shorter (respt. longer) than a lattice
vibration [43]:

µp/e =
µ0

T q
· exp

[
− EH

kBT

]
(1.2)

Where q is 1 (respt. 3/2) in the case of an adiabatic (respt. non-adiabatic)
mechanism, EH is the charge carrier migration barrier and µ0 a pre-exponential
factor.

Ruello [164] showed from electrical conductivity and Seebeck coefficient mea-
surements that UO2 is a p-type conductor below roughly 1273 K so that an
analysis of conductivity data in this range can provide information relating to
hole mobility. Dudney et al. [70] carried out electrical conductivity measure-
ments on yttria-doped and pure uranium dioxide. Samples of containing vary-
ing quantities of yttria were prepared and characterised as a function of tem-
perature and oxygen partial pressure. At a given temperature and in an extrin-
sic regime, the electrical conductivity appeared to have a linear dependence
upon the mol fraction of yttrium oxide incorporated during the manufactur-
ing process, whence the authors deduced based on equation 1.1 (and assuming
that [h°] ~ mol fraction of yttrium) values of the hole mobility at four different
temperatures. This analysis provided an estimate of µ0 (554 cm²�K/V�s) and
EH. Similarly in a p-type extrinsic regime, Ruello [162] analysed his conduc-
tivity data to estimate EH for both mechanisms (adiabatic and non-adiabatic).
In the former case, he found EH to be 0.26 eV, in the latter EH was estimated at
0.31 eV.

There exists a reasonable understanding of electrical properties of UO2 which
can be seen as providing an estimate of the concentration in electronic de-
fects. In particular, it is possible to interpret at least qualitatively the data in
terms of charge compensation due to the presence of impurities at low temper-
atures and oxygen partial pressures. It also appears at high temperatures that
this property reflects changes in the oxygen defect populations with clusters
emerging rapidly as the oxygen potential rises and so presumably oxygen in-
terstitials and vacancies dominating at lower partial pressures. These qualita-
tive results have however never been rationalised in the framework of a point
defect model which is the aim and scope of Chapter 3. We now take a look
at properties which potentially provide a more direct estimate of the oxygen
defect population.
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1.3.2 Self-diffusion and chemical diffusion of oxygen

1.3.2.1 Why study these properties?

We have just seen how electrical conductivity can be regarded as a measure
of the electronic charge carrier concentrations and indirectly oxygen point de-
fect concentrations. Self-diffusion properties have a more explicit dependence
upon point defect concentrations and in certain cases, their study may provide
migration mechanisms and associated energy barriers. Indeed in principle the
self-diffusion coefficient may be written as follows (pag. 139 of [153]):

D∗
O =

∑

d

fd ·NdDd (1.3)

which represents the sum of contributions over all types of defects on the
oxygen sublattice responsible for the diffusion of oxygen and Dd the corre-
sponding defect diffusion coefficient, DO* the tracer diffusion coefficient of
oxygen, Nd the corresponding oxygen defect concentration and fd the corre-
lation factor corresponding to mechanism d. Philibert then goes on to show
that assuming a single type of defect responsible for diffusion predominates,
then DO* may be expressed in the following way:

D∗
O = α (T ) · pOm

2 (1.4)

where ❛(T) is an exponential function of temperature and m is characteristic
of the defect and its charge.

Another important property we are interested in is diffusion in a chemical
potential gradient otherwise know as chemical diffusion. We may use here
Darken’s equation in conjunction with the Gibbs-Duhem relation (see [31]) to
derive an expression for the chemical diffusion of oxygen D̃O, assuming that
oxygen self-diffusion is much greater than uranium self-diffusion in uranium
dioxide [30]:

D̃O = xUD
∗
O

(
1 +

∂ ln (γO)

∂ ln (xO)

)
(1.5)

where xU and xO are the mole fractions of uranium and oxygen and ❣O

is the activity coefficient of oxygen in the solid. This activity coefficient is at
equilibrium related to the oxygen partial pressure through the relation:

ln (xOγO) =
1

2
ln (pO2) (1.6)

One can then derive an expression for ln (γO) based on equation 1.6 which
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can be inserted into equation 1.5 to yield:

D̃O = xUD
∗
O · 1

2

∂ ln (pO2)

∂ ln (xO)
(1.7)

This equation shows that the chemical diffusion coefficient is a property
which relates the self-diffusion coefficient to the thermodynamic factor, which
characterises the dependence upon composition of the equilibrium oxygen
partial pressure, a property extensively reported in sections §1.1.1 and §1.2.1
and obtainable via thermogravimetric measurements. A review of these prop-
erties in relation to UO2 is now carried out.

1.3.2.2 Self-diffusion

Oxygen self-diffusion involves determining the diffusion coefficient of a tracer
atom (usually use the 18O isotope) in a homogeneous sample. Several tech-
niques have been used to set up a tracer-atom concentration profile during a
diffusion experiment amongst which the most frequently encountered are:

1. The solid-solid exchange method which involves a diffusion couple made
up of two solid samples of identical chemical composition but different
isotopic composition. Samples are placed face to face pressed and heated
in an inert atmosphere in order to allow the isotopic exchange to take
place.

2. The gas-solid exchange method: the sample is annealed under an atmo-
sphere composed of a well defined H2/H2O or CO/CO2 mixture, with
one of the oxide gases enriched in 18O. In this case the oxygen partial
pressure is determined by one or the other of the following chemical
equilibria: H2 +

1
2
O2 ⇋ H2O or CO + 1

2
O2 ⇋ CO2.

In both cases the molecular oxygen which results from these equilibria is en-
riched in 18O, following which gas-solid exchange occurs at the surface of the
sample that eventually leads to the establishment of an 18O concentration pro-
file.
The isotopic mixing that has occurred as a result of the diffusion process which
determines the concentration profile can then be characterized by Nuclear Re-
action Analysis – NRA – (using for example the reactions 18O(p,❣)19F, 18O(p,n)18F
or 18O(p,❛)15N) [90] or by the Secondary Ion Mass Spectrometry – SIMS – [25,
30, 50, 78, 128, 141, 142]. Once the concentration profile is determined, the data
is modelled using Fick’s second equation. These methods have been widely
used to deduce oxygen diffusion coefficients in near- and hyper-stoichiometric
uranium dioxide.
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The studies involving purportedly stoichiometric material [25, 30, 90, 128] showed
a rather large scatter (see Figure 1.13) which Garcia et al. [78] and Dorado, Gar-
cia et al. [68] have ascribed to two main factors:

1. In the past, experiments were carried with no particular control of the
oxygen partial pressure of the carrier gas or measurement thereof. Using
a reducing or neutral atmosphere is certainly conducive to maintaining
the material close to stoichiometric composition. However, under those
conditions, deviation from stoichiometry is likely to be different from
one study to the next or actually be slightly modified as a result of the
diffusion annealing process. Small compositional changes will induce
very large variations of the oxygen activity in the sample, hence scat-
tered results. The Markin and Bones data at 800°C [129, 130] reveals that
a stoichiometry change of 2.5 10-3 is equivalent around stoichiometric
composition to a four orders of magnitude change in the oxygen partial
pressure. Since DO* is proportional to pO2

m (see equation 1.4) this is likely
to lead to large variations in the resulting tracer diffusion coefficient.

2. In the temperature range usually looked at in oxygen diffusion studies
(up to about 1000°C) UO2 behaves extrinsically. Therefore the hole con-
centration is likely determined by the aliovalent impurity content. Their
study showed that this could lead to an extra order of magnitude scatter.

They further showed that by carrying out experiments over a range of oxygen
partial pressures and temperatures whilst measuring the relative hole concen-
tration by measuring the electrical conductivity of the samples, that one could
rationalise tracer diffusion data obtained for samples containing different im-
purity concentrations. Indeed, if one assumes the two following mass balance
equations (implying only isolated and doubly charged interstitials (negative)
and vacancies (positive) coexist):





1
2
O2(g) ⇋ O”

i + 2h° KOi
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[O”
i ][h°]

2
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Equation 1.3 may be rewritten as follows:
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Where, ∆HOi
m and ∆HVO

m are respectively the migration enthalpies of oxygen
interstitials and vacancies, [h°] the hole concentration, pO2 the oxygen par-
tial pressure, while KOi

and KAF are respectively the oxygen interstitial and
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the Frenkel pair formation reaction constants. In an extrinsic regime, [h°] is
presumably independent of oxygen partial pressure so that at constant tem-
perature, DO is expected to be proportional to pO2 to the exponent 1/2 or -1/2
depending on whether the diffusion mechanism is assisted by interstitials or
vacancies (see Figure 1.14). This was taken as substanding both the intersti-
tial mechanism for oxygen diffusion and the fact that interstitials are doubly
charged, in line with the theoretical results of Crocombette [57] (see section
§1.2.2). Based on these data they were also capable of estimating the sum of
the oxygen formation and migration energies at roughly 0.6 eV.

Figure 1.13: Arrhenius dependence of the O self-diffusion coefficient [68, 78].
Yellow circles and squares two UO2 sample sets containing different impurity
levels; red circles concern Cr-doped samples

Figure 1.14: Oxygen diffusion coefficient dependence upon oxygen partial
pressure evaluated at 1173 K for a Cr-doped UO2 sample in an extrinsic regime
[68].

Work has also been extensively carried out at higher deviations from stoi-
chiometry.
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In much the same way as for most of the stoichiometric work, self-diffusion
was studied as a function of deviation from stoichiometry: Figure 1.15 rep-
resents the dependence of D upon x as reported by Contamin et al. [50] or
reviewed by Belle [30].

Figure 1.15: Dependence of oxygen self-diffusion coefficients upon deviation
from stoichiometry: represented data are reported by Contamin et al. [50] and
by Belle [30].

As shown in Figure 1.15, deviation from stoichiometry induces a strong in-
crease in oxygen diffusion coefficients; however, all the authors [25, 30, 50, 128,
141, 142] agree that oxygen self-diffusion levels off beyond deviation from sto-
ichiometry values of roughly 0.01. Few if any quantitative interpretations for
these dependences have been proposed connecting the property to the nature
of the defects responsible for oxygen self-diffusion. In particular no clear re-
lation is made between the self-diffusion coefficient and the clustering of oxy-
gen interstitials which inevitably occurs (as seen experimentally from electrical
conductivity and neutron diffraction studies) in the range of deviation from
stoichiometry reported in these studies. One qualitative explanation could be
that as deviation from stoichiometry increases then so does the proportion of
oxygen clusters with regard to the free oxygen interstitials responsible for dif-
fusion.

On the strength of successes encountered with the studies involving oxygen
tracer diffusion measurements as a function of oxygen partial pressure, it is
probably worth conducting similar work at higher and lower oxygen partial
pressures in an attempt to ascertain the influence either of oxygen vacancies or
clusters on oxygen diffusion. Such a study is described in Chapter 4.
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1.3.2.3 Chemical diffusion of oxygen

The oxygen chemical diffusion coefficient may be derived from the kinetics
required for a sample to incorporate oxygen atoms as a result of a sudden in-
crease of the equilibrium oxygen partial pressure. This may be done through
thermogravimetric measurements [107] or as is more commonly found through
electrical conductivity measurements. Jost et al. [104] have demonstrated that
in the long time approximation, the conductivity change with time of the elec-
trical conductivity of a parallelepipedic sample is related to the oxygen chem-
ical diffusion coefficient by the following relationship:

σ (t)− σ∞

σ0 − σ∞
=

(
8

π2

)3

exp

[
−π2 ·

(
1

a2
+

1

b2
+

1

c2

)
D̃Ot

]
(1.9)

Here s✈ is the conductivity at time t, s✈∞ and s✈0 are the asymptotic and initial
conductivity values, is the initial value, D̃O is the chemical diffusion coefficient,
while a, b and c are the sample dimensions. The disadvantage of this method
lies in the fact that the range of temperatures and oxygen partial pressures in
which the conductivity is extrinsic is inaccessible.

Ruello [162] made some measurements of oxygen chemical diffusion in UO2+x,
within 2 different ranges in values of x: the first covers values between 0.005
and 0.01, while the second one covers values between 0.1 and 0.2. The results
(reported in Figure 1.16) show that oxygen chemical diffusion coefficients fol-
low roughly an Arrhenius dependence upon temperature and are strongly de-
pendent upon the actual value of deviation from stoichiometry of the sample.

Figure 1.16: Arrhenius dependence of oxygen chemical diffusion coefficients
evaluated by Ruello [162]
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As illustrated in Figure 1.16, the chemical diffusion coefficient decreases as
deviation from stoichiometry increases. Based on an asymptotic point de-
fect model which assumes di-interstitial clusters to constitute the majority de-
fect population, Ruello [162] estimates that the chemical diffusion coefficient
should be roughly proportional to the ratio of the self-diffusion coefficient over
deviation from stoichiometry x. Assuming the self-diffusion coefficient to level
off above deviation from stoichiometry values of about 0.01, one would expect,
from the 1

x
dependency of the chemical diffusion coefficient, that it should de-

crease by about one order of magnitude when x increases by approximately
the same amount. This is indeed what is observed in Figure 1.16.

As in self-diffusion studies, it would be interesting to analyse the depen-
dence upon the oxygen partial pressure of the chemical diffusion coefficient.

1.3.3 Conclusions

We have shown here how electrical conductivity and atomic transport prop-
erties are intimately related to point defect populations in the crystal. Elec-
trical conductivity reflects electronic defect concentrations. The study of such
a property is important for three reasons: firstly under extrinsic conditions,
it can help us evaluate the negatively charged substitutional cation impurity
concentration and study the hole mobility. Secondly, electrical conductivity
measurements under out-of-equilibrium conditions in an intrinsic regime en-
able us to study oxygen chemical diffusion as a function of oxygen partial pres-
sure or sample composition. Finally, in the context of evaluating oxygen point
defect concentrations via atomic diffusion measurements, the more important
reason for measuring the electronic conductivity of a sample is to evaluate un-
der precise temperature and oxygen partial pressure conditions the hole con-
centration, which enters in an equilibrium with anionic defects.

Another useful property for studying oxygen defect populations in UO2 is
to measure oxygen self-diffusion coefficients and combining these to electrical
conductivity measurements. From the point of view of methodology, Garcia
et al. [78] and Dorado, Garcia et al. [68] have demonstrated that analysing the
dependence of oxygen self-diffusion coefficients upon oxygen potential is the
better suited in the near stoichiometric composition region than monitoring
oxygen content.
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1.4 Conclusions

Many years of research have provided us with a great deal of knowledge about
the U-O system, be it in terms of phase diagram (section §1.1.1), the nature of
point defects (section §1.2), equilibrium properties (deviation from stoichiom-
etry, electrical or atomic transport properties, section §1.3) or electronic struc-
ture (section §1.1.2). However, the most relevant phase from a technological
standpoint remains the UO2+x phase and there is no comprehensive analysis
available that would enable us to connect a description of equilibrium proper-
ties (deviation from stoichiometry, electrical and atomic transport properties...)
with the more recent electronic structure calculations via a point defect model.
We have seen that this model should account for the presence of various elec-
tronic and charged point defects (section §1.2.1) and the clustering of inter-
stitial oxygen ions (sections §1.1.1.3 and §1.2.2) and that electronic disorder
should prevail over disorder on the oxygen sub-lattice. The aim of Chapter
3 is indeed to attempt to set up such a model which will constitute a useful
guide for the remainder of this work.

There exists little quantitative data relating to the nature and concentra-
tion of the majority defect population in the UO2+x phase and a picture of this
emerges in Chapter 3. In order to build upon this picture and on the strength of
results obtained in past for UO2+x compositions close to stoichiometry, we have
chosen to focus on two areas that are poorly documented in the literature: the
range of oxygen partial pressures in which oxygen vacancies are present and
conditions (based on results from Chapter 3), not far removed from the stoi-
chiometric composition in which the majority defect population changes from
isolated anion interstitials to oxygen clusters. Oxygen defects are monitored by
combining electrical conductivity and self- or chemical diffusion experiments
applied to samples containing different quantities of impurities. As seen in
section §1.3, it is important to monitor experiments as a function of oxygen
partial pressure as opposed to composition. Having presented the details of
the experimental techniques used in the course of this work in Chapter 2, we
go on to describe the results of the diffusion and electrical conductivity exper-
iments in Chapter 4.

We have also seen in this chapter that oxidation of the material is accompa-
nied by a change in the valence of uranium ions, a shortening of U-O bonds,
both of which are manifestations of changes in the electronic structure of the
material. In an attempt to characterise this, Chapter 5 is devoted to XAS exper-
iments at the O K-edge and U N-edges that should, in addition to providing
information about the electronic structure of the material as a function of oxy-
gen contents, provide us with a detailed insight into rearrangements at the
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atomic scale. The aim that underpins this work is to correlate modifications of
the transport properties observed in Chapter 4 with changes in the electronic
structure. Results from Chapters 4 and 5 are interpreted in Chapter 6 using the
approach in Chapter 3 as a guide.





Chapter 2

Materials and Methods

Measuring the atomic transport properties of UO2+x constitutes an efficient
means of understanding more about the nature and the behaviour of point or
complex defects in the material. This type of measurement however requires
properties to be measured as a function of the thermodynamic conditions, i.e.

temperature and equilibrium oxygen partial pressure. We have seen that the
sample impurity content also plays an essential role and that electrical proper-
ties may constitute a way of assessing the role of cation impurities. As a result
of this we first focus in this chapter upon the techniques used for characteris-
ing the material properties carried out in the remainder of this work: oxygen
diffusion and electrical properties. Because atomic diffusion is based upon
characterisation of 18O concentration profiles, a section is devoted to depth
profiling using SIMS.

Also, as shown in section §1.1, the oxidation of UO2 will modify the charge
of uranium cations lead to structural changes and eventually the formation
of new oxide phases. In this work structural changes due to oxidation was
probed by X-Ray Diffraction (XRD). Variations in electronic density of states
were characterised by X-ray Absorption Spectroscopy (XAS).

This chapter proposes firstly a detailed description of the sample prepara-
tion and annealing conditions under controlled atmospheres. The characteri-
zation techniques mentioned in this introduction are then detailed.

2.1 Sample characteristics and preparation

In this work we used two different types of polycrystalline samples: either
pure or Cr-doped UO2. Both kinds of samples were sliced from cylindrical
pellets of 8.2 mm in diameter and roughly 1 cm in height. Undoped pellets
were obtained by sintering a UO2 powder at 1700°C under a dry Ar/5% H2

atmosphere. These pellets have a theoretical density of roughly 98% of the
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theoretical value (10.96 g/cm3) and a mean grain size of 6 µm. The Cr-doped
UO2 pellets were fabricated adding 1990 ppm of Cr2O3 to the UO2 powder
before the sintering process, performed at 1760°C under an oxygen potential
of -396 kJ/mol. Chromium addition led to the growth of the grains to a size
of circa 200 µm, probably as a consequence of the presence of a liquid CrO
phase during sintering [73, 134]. Following sintering, Cr-doped UO2 pellets
were annealed at 1765°C under an oxygen potential of -392 kJ/mol (Ar/5%H2

with 1240 ppm of H2O). Figure 2.1 represents the thermodynamic conditions
under which the thermal annealing cycles were carried out.

Figure 2.1: Thermodynamic conditions under which Cr-doped pellets were
sintered and annealed (dot) as regards to the Cr-O predominance diagram
[134]

To obtain our samples, these pellets were sliced into disks of 1 mm thick-
ness. Each sample was then progressively polished with silicon carbide polish-
ing disks of decreasing abrasive size and finally with a diamond paste with a
1 µm grain (mirror polishing). In addition, some Cr-doped samples were sub-
mitted to another polishing step carried out with a colloidal silica suspension
of 50 nm of granulometry (OPU). Between each polishing step, the samples
were placed in ethanol and cleansed using ultrasounds for three minutes at
ambient temperature. Specimens used for electrical conductivity characteri-
sations were cut into parallelepiped shapes, the faces of which were carefully
polished only with the least abrasive silicon carbide polishing disk we had.
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2.2 Oxygen diffusion experiments under controlled

oxygen potential

In this work, when studying oxygen diffusion in UO2, the sample oxygen com-
position has been controlled by controlling annealing conditions. Annealing
cycles were performed in a furnace equipped with a system that constantly
monitors the oxygen partial pressure in situ. We now present the experimental
device (and its oxygen potential control system) used to anneal the samples
dedicated to oxygen diffusion studies.

2.2.1 Thermal treatment device

The samples dedicated to the study of oxygen diffusion were submitted to
two annealing stages. The first drives the oxide to a given composition by
exposing it to an atmosphere with well controlled temperature and oxygen
potential. The second is carried out under the same thermodynamic conditions
but under an atmosphere enriched in 18O. Chemical reactions at the sample
surface enable an 18O enrichment of the samples which sets up an isotopic
concentration gradient or diffusion profile.

For this purpose, the oxygen diffusion setup was equipped with the fol-
lowing elements:

1. a furnace that consists of a hot zone in which the samples are annealed,
and a cold zone, in which samples are moved to after extraction from the
hot zone

2. a quenching system, which consists of a platinum sample holder mounted
upon an alumina rod which enables a rapid transfer of the samples from
the hot to the cold zone of the furnace. Samples are quenched so that their
composition, and it is hoped their microstructure, remains unchanged
with respect to the high temperature annealing conditions.

3. the oxygen potential control system, that consists of a zirconia probe.
Depending on the device layout, it can be placed either inside the furnace
in close proximity to the sample or in a furnace maintained at an optimal
temperature through which the main gas flow may be diverted.

4. a gas mixture controller, composed of 4 fluxmeters that control the fluxes
of the gases (Ar or Ar/10%H2) sent into the furnace

5. two bubblers, one filled with distilled water, the other with water en-
riched to 98% of 18O. When the gas mixture passes through a bubbler, it
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is assumed that the water vapour pressure equilibrates to its equilibrium
value.

a)

b)

Figure 2.2: The oxygen diffusion setup with the zirconia probe placed in a
standard (a) or in a “bypass” (b) configuration.
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The oxygen diffusion setup was applied in two different configurations,
schematically represented in Figure 2.2. At the beginning, the zirconia probe
was placed at one extremity of the furnace (see Figure 2.2a)). The zirconia
probe was later placed in a furnace maintained at 900°C which is the optimal
temperature for probe operation, to which the main gas flow may be diverted.
After this important change in configuration, a system calibration was per-
formed. Section §2.2.2 reports how the response of the device to different gas
compositions was evaluated.

In this oxygen diffusion setup, the oxygen partial pressure is fixed through-
out the system by the redox couple H2/H2O (both of which are of course in a
gaseous form) present in the Ar and Ar/10%H2 mixture and which picks up
water vapour after going through the bubblers. The hydrogen partial pressure
is determined by the Ar and Ar/10%H2 flow rates. The water vapour pres-
sure is determined by the temperature at which the bubblers are maintained.
The oxygen partial pressure is determined by the local temperature in the fur-
nace (providing this temperature is high enough) and is fixed by the following
equilibrium: H2(g) +

1
2
O2(g) ⇋ H2O(g) (see Appendix A). The resulting oxygen

partial pressure should not depend upon the oxygen isotope which composes
the water molecules present in the bubblers [21]. The oxygen potential in the
furnace atmosphere is constantly monitored by the zirconia probe.

2.2.1.1 Operation of a zirconia probe

This kind of gauge is in fact an electrochemical cell which consists of two Pt or
Pt-Rh electrodes placed on either side of a purely ionic conductor. The ionic
conductor in our case is made up of yttria doped zirconia (YSZ). Doping serves
the dual purpose of stabilizing a particular form of zirconia and fixing via
charge compensation processes the oxygen vacancy concentration. This gives
the oxides ionic conducting properties at least up to 1100°C. Both sides of the
electronic conductor are exposed to atmospheres of differing oxygen content
only one of which is known and which constitutes the reference electrode. The
following Figure schematically shows its functioning principle:
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Figure 2.3: Functioning of a zirconia probe.

The following reaction occurs at both electrodes [41, 152]:

O2 + 4e− ⇋ 2O2− (2.1)

The oxygen potential difference on either side of the conductor creates a
flux of oxygen ions across the thickness of the zirconia probe. In the present
case, the reference atmosphere is simply air, the oxygen partial pressure of
which is 0.21 atm. The other side of the probe is in contact with the furnace
atmosphere, the oxygen partial pressure of which has to be measured. A po-
tential drop across the ionic conductor ❉V is set up which is determined by
the electrical properties of the electrolyte and the chemical potential of oxygen
on either side of the electrolyte :

∆V = −tion
nF

(
µO2 − µ0

O2

)
(2.2)

This potential drop ❉V may be monitored using a high impedance volt-
meter. With this type of device, measurements of the electrical potential differ-
ence are reliable as they are not affected by electrical contact resistances. Here,
n is the number of electrons involved in the redox reaction (4 in this case ac-
cording to Equation (2.1)), F is the Faraday constant, µO2 is the unknown oxy-
gen potential that we are seeking to determine and µ0

O2
is the oxygen potential

of the reference atmospheres, while tion is the YSZ ionic number which repre-
sents the ratio of the ionic conductivity to the total conductivity [111]. Within
the 650°C-1000°C temperature range , tion is equal to 1, i.e. the electronic con-
tribution to the total conductivity is negligible.

If the probe is inserted into an oven maintained at constant temperature
(900°C in the bypass configuration of oxygen device), both sides of the probe
are at the same temperature. With this condition and expressing the oxygen
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activity as µO2 = RT ln (pO2), it comes:

∆V =
RT

4F
ln

(
pO0

2

pO2

)
(2.3)

which is also known as the Nernst relationship [153]. Knowing the oxygen
partial pressure of the reference atmosphere and the electrical potential drop
❉V across the solid electrolyte, it is possible from Equation 2.3 to estimate the
oxygen potential of the furnace atmosphere.

2.2.2 Calibration of the setup in bypass configuration

2.2.2.1 Oxygen partial pressure

Oxygen partial pressure in the furnace is dependent upon the temperature and
the partial pressures of water and hydrogen in the gas stream. Appendix A
explains in detail how pO2 is estimated from the various experimental condi-
tions, i.e. the gas flow rates and the temperature at which the bubblers operate.
We report here the simplified relationship used to estimate pO2:

pOf
2 = r2

[
pH2O

(1− pH2O) ·K (Tf )

]2
(2.4)

Where pOf
2 is the oxygen partial pressure at temperature Tf, pH2O is the wa-

ter partial pressure assumed to be roughly equal to the saturation water pres-
sure at the temperature at which the bubblers are maintained (roughly 278 K),
K(Tf) is the water formation equilibrium constant at furnace temperature Tf: its
value is determined from well reported relationships [116]; r is the ratio of the
hydrogen and argon flow rates over the hydrogen flow rate:

1

r
≡ 0.1 · V̇Ar/10%H2

V̇Ar + V̇Ar/10%H2

(2.5)

where V̇Ar and V̇Ar/10%H2 are the argon and the Ar/10%H2 flow rates respec-
tively.

Relationship 2.4 shows that the oxygen partial pressure may be estimated
from

1. Flow rate values

2. The saturation water vapour pressure which is dependent upon the tem-
perature at which bubblers operate
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3. The equilibrium constant for the formation of water vapour from reaction
between oxygen and hydrogen

In order to qualify the setup, it is important to ascertain the extent to which
relationship 2.4 is valid. We therefore measured for different r values, obtained
for different values of the Ar and Ar/10%H2 flow rates, the oxygen partial
pressure with our zirconia probe maintained at 900°C and compared it to the
theoretical value obtained from application of relationship2.4. The results are
plotted in Figure 2.4.

Figure 2.4: Comparison between the oxygen partial pressures that were mea-
sured and calculated with the theoretical formula 2.4.

In this log-log representation, experimental values are roughly aligned and
the slope of the corresponding line has been estimated at 2.11 (±0.04), as ex-
pected from Equation 2.4. This calibration shows that the setup enables oxy-
gen partial pressures to be adequately controlled over practically seven orders
of magnitude. However there appears to be a systematic deviation between
theoretical and experimental values which is difficult to explain. It could be
ascribed to contact resistances between the electrodes and the solid electrolyte.
However an offset was set on the voltmeter whilst measurements were carried
out under air, so that the electrical potential drop under those conditions was
zero. Nevertheless this qualification is deemed adequate in view of the fact
that properties we intend to measure are usually dependent upon oxygen par-
tial pressures via a power law. The crucial issue is the value of the exponent
which will be no different if oxygen partial pressures are measured to within a
constant factor.
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2.2.2.2 Control of the temperature in the furnace

The sample holder itself is not equipped with a thermocouple. However the
resistance furnace is and this thermocouple is closer to the resistances than the
samples are and does not provide a satisfactory estimate of the temperature
inside the quartz tube. It is therefore necessary to determine the relationship
between the temperature in the hot zone of the furnace (i.e. where the samples
are placed) as a function of the temperature picked up by the thermocouple of
the furnace. To this end, a type K thermocouple is inserted in the hot zone of
the furnace where the sample holder is meant to sit. Under different Ar fluxes,
the furnace temperature is then progressively increased from 760°C to 1027°C
and the temperature measured by the type-K thermocouple recorded. Inter-
polation of the measured values provides a linear relationship which is then
used to determine the sample temperature Tsample based on the temperature
measured by the furnace thermocouple Tfc:

Tsample = 0.9209 · Tfc + 41.603 (2.6)

We checked that the sample temperature was unaffected by variations in gas
flow rates in the range of those that were used throughout this work. The
uncertainty related to the annealing temperature measure is only related to
the capability of the furnace to maintain temperature Tfc at a stable value. This
uncertainty is estimated to be ±5°C.

2.3 Electrical conductivity measurements

Electrical conductivity measurements are carried out under controlled thermo-
dynamic conditions. They provide equilibrium concentrations of the electronic
defects present in UO2 samples. This section describes the four-point bridge
method used to perform the measurements.

2.3.1 Physical principle

Electrical conductivity measurements are performed using a double Kelvin
Bridge [1] and the 4-point method. The corresponding electrical circuit is
shown in Figure 2.5.
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Figure 2.5: Schematic diagram of the double Kelvin bridge used to measure
the sample resistance (between the contacts 2 and 3).

The 4-point method consists in evaluating an unknown resistance (Rsample)
by adjusting the variable resistance Rv until the bridge is completely balanced
(i.e. until the potential difference between the nodes A and B in Figure 2.5 is
zero). If the resistances also fulfil the condition R1

R2
= R3

R4
, the sample resistance

can be calculated using the following relationship:

Rsample = Rv ·
R1

R2

= Rv ·
R3

R4

(2.7)

In practice, R1 and R2 are much greater than Rv and Rsample, in order that
most of the current passes through the sample. The bridge is also sensitive to
small sample resistances if R3 and R4 are lower than R1 and R2. But, in this
case, the contributions of the contact resistances are no longer negligible. For
this reason, R3 is usually set equal to R1, and R4 to R2.

2.3.2 Presentation of the device

The device used for electrical conductivity measurements (shown in Figure
2.6) is based on the electrical circuit represented in Figure 2.5.
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Figure 2.6: Schematic diagram of the device used for electrical conductivity
masurements.

The sample-holder is inserted into the alumina rod shown in Figure 2.6.
This element is placed in a dedicated furnace in order that electrical conduc-
tivity measurements be carried out at high temperatures (up to 1600°C). The
control of the oxygen potential of the atmosphere surrounding the sample is
carried out using a zirconia probe, located in the furnace just after the speci-
men. Contacts 1 and 4 are platinum meshes between which the samples are
clamped. Contacts 2 and 3 are made of two Pt wires wrapped around the sam-
ple: they have to be parallel so that the cell coefficient may be calculated simply
and to adhere properly to the parallelepipedic sample faces. All contacts 1, 2, 3
and 4 are connected to the bridge by additional Pt wires. Calibrated electrical
resistances are used for R1, R2, R3 and R4: in our case, R1 and R3 are equal to
100 k❲, and R2 and R4 to 1 k❲. Rv is a variable resistance that can reach at max-
imum 1 k❲. The bridge is balanced with the help of a lock-in amplifier. This
electronic component is also the generator of the electric signal that supplies
the bridge. The principle of the method is to multiply an AC signal provided
by the generator with the voltage difference that we wish to measure and to in-
tegrate the resulting signal over time. The system relies upon the orthogonality
properties of sinusoidal functions and eventually enables the low signal (ten-
sion AB) intensity to be properly amplified. This guarantees an optimal system
sensitivity and enables low currents to be extracted from the noise which do
no more interfere with the actual measurement [2, 3].
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2.3.3 Uncertainty associated to an electrical conductivity mea-

surement

Generally sample electrical conductivity is estimated through the following
relationship [73]:

σ =

(
1

Rsample

· l

S

)
· 1

(1− fpor)
(2.8)

Here, s✈ is electrical conductivity, fpor is the fraction of porosity in the sample
(2% in our case - see §2.1), while Rsample, l and S are respectively sample resis-
tance, length and surface measured between the contacts 2 and 3 (see Figure
2.5).

Following Equation 2.8, sample electrical conductivity is therefore deter-
mined by measuring Rsample, l and S:

• Rsample is reliably measured with the double Kelvin bridge (see §2.3.1).
Its relative uncertainty mainly corresponds to the ratio between its value
and the resistance of contacts wrapped on the sample [73]. Supposing
the contact resistance and Rsample respectively of the order of 1 k❲ and 1
❲, sample resistance would have a relative uncertainty of 10-3 and can be
neglected in the data analysis.

• Sample section S is directly measured once specimen is prepared.

• Distance l is measured once sample is placed in the sample-holder (see
Figure 2.7).

Figure 2.7: Measurement of the distance between contact 2 and 3 wrapped on
a parallepipedic UO2 sample.
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As indicated in Figure 2.7, the l estimate is based on the measurements of
the average, the minimum and the maximum distance between the Pt wires
constituting contacts 2 and 3. The average value of l enables us to simply esti-
mate an average value of sample electrical conductivity; measure uncertainty
rather depends on the extreme values of l and it usually reaches 10-15%. This
method of distance evaluation therefore constitutes the major source of un-
certainty of an electrical conductivity measurement. Moreover, besides this
systematic error, Pt wire positions can vary during a sample anneal caused by
sample thermal dilatation and Pt wire creep.

2.4 Sample characterization techniques

This paragraph presents all the techniques used to characterize the polycrys-
talline UO2 samples studied in this work.

2.4.1 X-Ray Diffraction (XRD) and its application to our poly-

crystalline samples

X-ray diffraction (XRD) [87, 150] is a non-destructive technique used to identify
the crystalline structure of solid materials, i.e. it is sensitive to the long range
ordering of atoms. It basically uses Bragg’s law which relates the wavelength
❧ of the incident X-Rays, the angle between the incident and diffracted X-Rays
2·❥hkl and the inter-reticular distance dhkl between planes of Miller indices (h, k,
l):

2dhkl sin (θhkl) = n · λ, n ǫN (2.9)

where n is an integer.
Measuring the intensity of X-rays diffracted by a single crystal sample re-

quires a complex instrumentation. Indeed, for single crystals, diffraction only
concerns a few points located on a sphere centred on the sample. Specific con-
figurations between the X-ray source, the sample and the detection system are
required so that the Bragg conditions be verified. For polycrystalline samples
on the other hand, many crystalline orientations can be found within the spec-
imen and in the ideal case (referred to as "powder") it can be assumed that
diffracted rays form a cone only defined by the diffraction angle associated
with an (h, k, l) Bragg line and the vector normal to diffracting planes. There-
fore for polycrystalline sample analyses, movement between the source, the
sample surface and the detector can be significantly simplified: basically the
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source and detection system only need to move around a circle with sample in
its centre.

Laboratory diffractometers have X-ray sources often based on a Coolidge
tube principle1. In this work a Bruker D8 advance diffractometer located at
the “Laboratoire UO2” facility at the Cadarache nuclear centre was used. It is
equipped with Cu tube which delivers two characteristic lines (Cu K❛1 and Cu
K❛2, respectively equal to 8046.6 and 8026.7 eV).

We have used two distinct configurations for analysing our samples. The
first and more common setup involves what is known as the Bragg-Brentano
geometry or “❥-2❥” configuration (see Figure 2.8) in which the detector moves
with respect to the sample on a circle centred on the sample. This results in dif-
ferent volumes being probed at each angular position and requires of course
the samples to be homogeneous. In the case where one wishes to characterise
surface effects, a different setup known as “❥in-❥out” is used. In this configura-
tion, the incident X-Ray beam angle is fixed with respect to the sample at a low
value (typically a few degrees) and an angular detector scan enables X-Rays
diffracted by different atomic planes to be intercepted.

Figure 2.8: The Bragg-Brentano configuration in the “❥-2❥” (A) or in the “❥in-
❥out” (B) XRD analysis.

Different detectors were used for both data collection configurations (low
incidence angle, 5°, and “❥-2❥” scans).

Regarding the low incidence angle configuration, a point detector was used
whereas a 1D solid state LYNX EYE detector was preferred for the “❥-2❥”

1The Coolidge tube is composed of a tungsten cathode and a metallic anticathode (com-
posed for example of Mo, Cu, Co or Fe). The electrons emitted from the cathode hit the an-
ticathode provoking the emission of X-rays. Their energy spectrum is characterized by char-
acteristic lines (K❛ and K❜) of the metal composing it and by the bremmstrahlung radiation. A
superimposed filter removes the background radiation and selects the monochromatic X-rays
of energy K❛. Remark however that at the exit of the Coolidge tube the X-rays have two en-
ergetic components, called K❛1 and K❛2, that differ in energy less than 20 eV and that the filter
cannot separate.
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scans. In our experiments, we collected diffraction patterns on different ura-
nium oxide phases both in the “❥-2❥” and in “❥in-❥out” configurations. In all
cases, the sample was set in rotational motion around an axis perpendicular to
its surface during the data collection in order to ensure good sampling statis-
tics.

The intensity of rays diffracted by a given (h, k, l) set of planes is actually
proportional to the square of the norm of the structure factor corresponding to
this family of planes. This factor is entirely determined by where (location) and
what (site occupancy and atomic number) atoms are present in the diffracting
planes. Analysing XRD diffraction patterns requires determining a structural
model that best reproduces the intensity of diffracted rays.

The XRD diffraction patterns were quantitatively analysed using the Ri-
etveld method [4] which enables this optimisation process to be carried out2.
The Fullprof software package [5] was used to deduce sample compositions
and phase lattice parameters.

We have shown using Electron Backscattered Diffraction that our polycrys-
talline samples did not exhibit any texture [154]. It is also important to note
that the grain size of our undoped samples is roughly 6 µm whilst a millimetre
size X-Ray beam is used in our analyses. As a result, XRD analyses on these
samples may be considered as powder diffraction.

2.4.2 X-Ray Absorption Spectroscopy (XAS)

Unlike XRD technique, X-ray Absorption Spectroscopy (XAS) is sensitive to
the short-range ordering of atoms constitutive a solid target [147]. In particular,
this characterization technique measures the absorption of X-rays by various
atoms in a sample depending on the incident X-ray energy. During a XAS
spectrum collection, monochromatic X-rays are sent to the sample to induce
atomic excitations through the photoelectric effect. When this phenomenon is
activated, X-rays have a sufficient energy to let some core-electrons reach the
energy continuum (Figure 2.9a)). Once excited, the atoms tend to come back

2The Rietveld method consists in a simulation of the diffractogramme peak intensities, po-
sitions and widths to obtain information on the microstructure and composition of a sample.
The simulation takes into account the experimental setup, the reflections of sample phases,
sample X-ray absorption and diffusion and the radiation background. The theoretical curve
that best simulates the experimental XRD spectra is found by minimising◗², i.e. the difference
between the measured data and the calculated intensities:

χ2
=

∑

i

wi ·
[
yi,exp − yi,cal

(
~β
)]2

(2.10)

where i is the number of experimental points, wi is the inverse of the variance associated
to the yi,exp experimental observations, yi,cal is the simulated value dependent on the model
parameters ~β.
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in their ground state: their electrons drop from their higher energetic levels
to fill the core-holes created by the X-ray absorptions. The energy released
from this de-excitation process leads the atoms either to emit X-rays of a well
defined energy (de-excitation by fluorescence - see Figure 2.9b)) or to promote
a second electron into the energy continuum (Auger effect - see Figure 2.9c)).

a) b) c)

Figure 2.9: Atom excitation by X-ray absorption (a) and subsequent de-
excitation by fluorescence (b) or by the Auger effect (c).

As already said, after the excitation process, the photo-electrons travel into
the energy continuum. The photo-electron wavefunctions (the wavelengths
of which are dependent upon their kinetic energy) propagate in the local en-
vironment of the excited atoms. The electrons of their neighbouring atoms
can scatter the travelling photo-electrons inducing their retrodiffusion. This
phenomenon modulates the amplitudes of the photo-electron wavefunctions
and modulates the X-ray absorption probability of the absorbing atoms. In
this sense XAS (in particular with the EXAFS spectra) is an atomic probe and
can provide a practical way to determine the chemical state and local atomic
structure for a selected atomic species (see Figure 2.10).

Figure 2.10: Modification (indicated in red) of the normal photoelectron wave-
length (in blue) due to the presence of a neighbouring atom. Its influence mod-
ifies the X-ray absorption probability.
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Generally the absorption of an homogeneous material can be deduced from
the Beer’s law:

I = I0 · exp (−µ · t) (2.11)

Here, I is the sample transmitted X-ray intensity, I0 the X-ray intensity sent
on the sample, t the sample thickness and µ its absorption coefficient. µ can
be calculated using the Fermi golden rule, that expresses the probability of the
transition between the ground and the excited state of atoms:

µ (E) =
2π

~
| < i|H|f > |2δ (Ef − Ei − ~ω) (2.12)

Here the ❞ function takes care of the energy conservation in an atomic ex-
citation process, while the squared matrix element gives the transition rate
between the initial ground state and the final excited state of the atom, respec-
tively indicated with i and f. H is the Hamiltonian operator that describes
the X-ray absorption. This equation demonstrates that µ depends upon f, i.e.

the unoccupied (i.e. available) Density Of States (hereafter called DOS) of the
excited atom. Consequently, a XAS spectrum is an experimental evidence of
these empty states, modulated by the presence of the core-hole presence.

The absorption coefficient µ can be measured in the transmission mode: in
this case, µ is directly given through the Beer law (see equation 2.11), mea-
suring the incoming and the transmitted X-ray beam energies. Otherwise,
µ can be measured either in the fluorescence or in the total electron modes.
As X-ray absorption induces the electronic reorganisation of the excited atom,
it also influences its de-excitation. Therefore, both the fluorescence and the
Auger electrons emission phenomena are proportional to its X-ray absorption
cross-section. As a consequence, in the fluorescence mode µ is estimated from
the X-ray fluorescence yield (fY), i.e. detecting the characteristic X-rays pro-
duced during atomic de-excitations. Conversely, in the Total electron Yield
(TeY) mode XAS spectra are collected by detecting the Auger electrons.

Just above the absorption energy threshold (i.e. up to 30-50 eV), photo-
electrons are emitted from the absorber atoms with small kinetic energies: this
fact induces photo-electrons, consequently to the Heisenberg uncertainty rela-
tionship ❉E�❉t ~ è, to have long life-times. In this case, photo-electrons are
scattered many times by the first neighbours of the excited atoms before be-
ing retrodiffused towards their originating atoms. This phenomenon, called
multiple scattering, prevails in the low energy part of a XAS front, called X-
Ray Absorption Near Edge Structure (XANES) spectrum. For energies much
higher than the absorption threshold (ranging from 50 to 1000 eV), the cre-
ated photo-electrons have relatively short life-times and they are usually retro-
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diffused by only the first or second neighbours of the excited atoms through a
single diffusion phenomenon. Due to these short life-times, at the highest en-
ergies the XAS spectra present attenuated oscillations: this part of the spectra
is called the EXAFS (Extended X-Ray Absorption Fine Structure) signal. The
EXAFS spectra provide information on distances between the atoms present
in the lattice and on their coordination number, as they depend upon the atom
neighbourhood.

2.4.2.1 Experimental details of our experiences

In this work, all our XAS characterizations were carried out at the SGM beam-
line of the Canadian synchrotron CLS [6] (see Figures 2.11 and 2.12). This
beam-line (placed in ultra-high vacuum 10-10- 5·10-9 torr) provides users with
a high flux and high resolution photon beam with photon energies between
250 and 2000 eV. This low energy range is particularly suited for studying
the electronic structure of light elements (such as oxygen) containing samples
through core level excitation. In our case, samples were characterized acquir-
ing XANES spectra at the following edges:

• Oxygen K-edge (532 eV): this edge probes the electronic transition 1s →
2p. Spectra are collected in the energy range 520 – 580 eV.

• Uranium N4,5-edges (respectively at 778.3 and 736.2 eV): these edges cor-
respond respectively to the electronic transition 4d3/2→ 5f5/2 and 4d5/2 →
5f7/2. Their spectra are collected in the energy range 720 – 810 eV.

• Uranium N6,7-edges (respectively at 388.2 and 377.4 eV): these edges cor-
respond respectively to the electronic transition 4f5/2 → 6d3/2 and 4f7/2 →
6d5/2. Their spectra are collected in the energy range 360 – 420 eV.

For each edge, Fluorescence Yield (fY) and Total Electron Yield (TeY) spectra
were simultaneously collected.
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a) b)

Figure 2.11: The endstation of the SGM beamline of the Canadian synchrotron
CLS.

Figure 2.12: An insight of the the sample chamber of which the SGM beam-line
is equipped.

2.4.2.2 XANES data processing

Analysis of XANES spectra passes through the normalization of the collected
raw data. This operation consists in 3-steps data processing, represented in
Figure 2.13a). Firstly, a pre-edge function have to be subtracted from µ(E) to
get rid of the matrix absorption (indicated in Figure 2.13a) with a green line).
Secondly, the threshold energy E0 has to be identified, typically as the energy
value where the maximum first derivative of µ(E) falls (indicated with a orange
point on the black curve of Figure 2.13a)). Lastly, a normalization range has to
be defined to normalize µ(E) from 0 to 1 (indicated in Figure 2.13a) with red
circles). In this way the so-normalised XANES spectra (see the example in
Figure 2.13b)) are completely independent on the concentration of the probed
atoms and are ready to be analysed.



60 2. Materials and Methods

a)

520 530 540 550 560 570 580
-0,5

0,0

0,5

1,0

1,5

2,0

 

 

R
aw

 X
A

N
ES

 d
at

a

Energy (eV)

 Raw XANES spectrum
 Pre-edge line
 Normalization Range
 Spectrum 1st derivative
 Threshold energy E

0

b)

520 530 540 550 560 570 580

0

1

2

 

 

N
or

m
al

is
ed

 X
A

N
ES

 sp
ec

tru
m

Energy (eV)

Figure 2.13: Normalisation of a raw XAS spectrum: processing of raw data
(graph a) and the final result (normalised spectrum - graph b).

2.4.3 Secondary Ion Mass Spectrometry (SIMS)

Secondary ion mass spectrometry is a partially destructive local isotopic and
chemical analysis technique. A beam of energetic Cs+ or O2+ ions (10-15 keV)
sputters and ionizes atoms at the sample surface. The secondary ions pro-
duced are then extracted and separated using a magnetic sector mass spec-
trometer [24, 58, 59, 13, 155]. The mass resolution for a IMS 6f such as that used
in our studies is of the order of 103. Therefore isotopes such as 16O and 18O can
easily be separated. Figure 2.14 is a schematic diagram of the shielded Cameca
IMS 6f SIMS instrument at the LECA STAR laboratory CEA – Cadarache.
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Figure 2.14: Scheme of CAMECA IMS-6f SIMS device of the LECA STAR lab-
oratory of CEA Cadarache.

The main components of a SIMS are placed under high vacuum (10-3-10-7

Pa). As we can see in Figure 2.14, they are:

• the ion source (Cs+, O2+), that produces the primary beam

• the primary column, that enables the focusing of the primary beam

• the sample chamber, in which samples are placed and analysed

• the secondary column, through which the secondary ions produced are
accelerated

• the mass spectrometer, that separates ions.

The CAMECA SIMS used in our work enables several modes to be imple-
mented. The mode we are most concerned with in our study is depth pro-
filing. In this configuration, a primary beam is focused upon the surface of
the sample and rastered over an area typically between 50x50 to 250x250 µm².
Typical technical characteristics are nanometric scale depth resolution, a low
ionic detection limit (of the order of magnitude of the ppb for some elements,
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depending on the matrix) and a high mass resolution (103). This technique
is very appropriate for characterising elemental concentrations in a material.
The main drawback with SIMS resides in the fact that the method basically
provides relative isotopic distributions and that the methodologies for deriv-
ing quantitative data can prove complex to control.

The reason for this is that not all atoms of a given species that are sputtered
from the sample surface actually contribute to the ion current detected by the
mass spectrometer [24, 179]. These two quantities (i.e. isotopic concentration
and secondary ion current of a given isotope) are connected through a set of
proportionality factors which we will now introduce.

As primary ions hit the surface of the material, atoms of the sample are
sputtered from the surface. Sputtering depends on many factors, such as the
current intensity of the primary beam (called IP hereafter), the angle with which
the primary beam hits the sample surface and the sample composition and tex-
ture (e.g. polycrystal or single crystal) [97]. Assuming a steady state sputtering
regime is reached, the composition of sputtered atoms is identical to the com-
position of the material. Let Ysput be the total sputtering yield under a given
set of experimental conditions and CA be the concentration of atoms A we are
trying to detect, the total number of sputtered A atoms per second may be
expressed as Ysput · IP · CA.

Of these atoms only a restricted set will actually be ionised. If Yi is the
ionization yield, i.e. the probability that a sputtered A atom is ionised, then the
total number of ionised A atoms is: Yi · Ysput · IP ·CA. Yi is of course dependent
upon the experimental conditions but also upon the nature of atoms A and the
composition of the matrix (i.e. matrix effect).

Of these ionised A atoms, only a fraction is actually detected. This contri-
bution to the secondary ion current is termed collection factor Yc and covers
a wide range of effects: extraction, transmission, detection of secondary ions.
It is dependent upon the nature of A, experimental conditions and essentially
the secondary part of the SIMS set-up (transmission characteristics of the sec-
ondary system). If Yc represents the proportion of secondary A ions that are
detected, then the secondary A-ion current IA+/- can be written:

IA+/− = Yc · Yi · Ysput · IP · CA = KA · CA (2.13)

The product of the sputtering, ionization and collection (i.e. extraction,
transmission and detection) yields with the primary ion current is called the
absolute sensitivity factor KA, and connects the concentration of each atomic
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species of the analysed sample to its measured secondary ionic current:



KA = Yc · Yi · Ysput · IP
IA+ = KA · CA

(2.14)

Note that collected ion currents strongly depend upon SIMS experimental
conditions. If a matrix element of the sample (the concentration of which is
known) behaves in a similar way to that of the ions one is attempting to char-
acterise the concentration, then the ratio between the ion current of the isotope
of interest (termed A in the example) and the ion current of the matrix ion
(called B) is not influenced by experimental conditions. This data processing
leads to the definition of another parameter, called relative sensitivity factor,
here indicated as KAB:

IA+

IB+

= KAB · CA

CB

(2.15)

In Equation 2.15 IA+ and IB+ are the measured currents of the ions A+ and
B+, while CA and CB are the concentrations of the atoms A and B in the sample.
The parameter KAB opens up the prospect of SIMS constituting a quantitative
analysis.

Oxygen 18 characterisations represent a simple situation. Indeed, in this
case one is capable of normalising the 18O signal to the total oxygen signal
(18O + 16O). Unless transmission effects are notably different for one or the
other isotope (which should not be the case) then one is capable of eliminating
all collection and ionisation caveats because oxygen is a matrix component.
Therefore

18O
16O+18O

actually represents the 18O concentration.
Finally, in depth-profiling mode, SIMS collects signals as a function of the

sputtering time. To convert this signal into a depth profile, the depth of SIMS
craters have to be measured. We have done this using an optical technique
(chromatic confocal microscopy) which is described in paragraph §2.4.4. The
next sub-section provides useful information relative to the optimization of
SIMS settings.

2.4.3.1 Optimisation of SIMS conditions

In this subsection we describe how SIMS settings are optimised for quantita-
tive depth profiling.

After a succinct optimization of the primary beam the secondary beam is
first adjusted. The secondary beam is made up of single atom or molecular
ions sputtered from the sample and of charged molecules produced from the
interaction between beam and sample ions. It may be advantageous to anal-
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yse these molecules as in some cases, they can help to eliminate matrix effects
which we know are important in UO2. It is known that the energy spectra of
these ionic molecules are narrower than the ones of single ions. This leads to
an improved ion energy resolution and to an increase of the extraction and de-
tection yields [24, 58, 59]. In this work the MCs+ method was tested: oxygen
isotopes and dopant concentrations were measured through the detection of
the molecules formed by the sample atoms of interest and the Cs+ ions from
the incident beam.

The main settings relative to the secondary column are: the contrast and
the field aperture, the energy slit, the entrance and the exit slits (see Figure
2.14 for their placement). In general all these parameters enable optimisation
of the collection yield (see § 2.4.3) and the quality of the detected signal:

• The contrast aperture affects the quantity of ions that can enter into the
mass spectrometer. In our setup it is equal to 400 µm and corresponds
to a widely opened window, which guarantees a high signal intensity.
However, if the signal is too intense and saturates, the contrast aperture
can be set to a lower value.

• The mass spectrometer separates ions depending upon their mass to charge
ratio M

q
as expected from the Lorentz equation which relates this param-

eter to the magnetic field and the charged particle trajectory. Following
the application of a calibration procedure, a relationship is established
between the applied magnetic field and the mass of the ions detected.
Counts may then be monitored as a function of the mass of detected ions
as indicated in Figure 2.15 for 16O133Cs+, 18O133Cs+, 52Cr133Cs+, 235U+ by
modifying the magnetic field continually. Note that these curves have
shapes that approach that of a rectangular window function. This is ex-
tremely desirable since during subsequent analyses, the count rate will
be unaffected by slight modifications of the magnetic field thus provid-
ing a very stable signal. It is during this optimisation process that the
desired mass resolution is chosen. To this end, the entrance slits may be
closed generally in such a way that separation of close peaks is satisfac-
tory as illustrated in Figure 2.15 a) and b). This also substantially con-
tributes to having ion count rate signals with flat peak tops that resemble
window functions. However adjusting the entrance slits is necessarily a
compromise between mass resolution (Figure 2.15 shows that our setup
guarantees a mass resolution M/❉M of about 100-150) and count rate.

• The exit slits usually have to be 2.5 times more open than the entrance
one, to avoid optical aberrations and to enable almost all the ions to reach
the detector.
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a) b)

c) d)

Figure 2.15: Mass calibration for the ionic species chosen to be detected during
a SIMS experiment: 16O133Cs+ (a), 18O133Cs+ (b), 52Cr133Cs+ (c) and 235U+ (d).

• Secondary ions of a given type are generally produced over a wide en-
ergy spectrum. The energy slit is used to select ions in a small energy
range. This sometimes helps eliminate matrix effects (e.g. texture) and
contributes to providing quantitative analyses. This slit is placed before
the magnetic sector of the mass spectrometer. A greater energy resolution
(which one obtains by closing these slits) also helps improve the resolu-
tion of the mass spectrometer. In our oxygen diffusion experiments it is
set to select ions with an energy spread in the range of ±20 eV (see Figure
2.16).

Figure 2.16: Energy calibration of the 52Cr+ ion. The energy slits are positioned
to collect ions within an energy range of ±20 eV.
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The primary beam is then optimised. Four electrostatic lenses are used to
focus and control the intensity of the incident caesium beam. The one nearest
the sample is the first to be adjusted. The three others affect the primary beam
intensity. The lens nearest to the primary ion source controls the beam density
and alignment in the primary column. The deflectors positioned just after the
source are adjusted so that the primary beam is homogeneous and as small as
possible.

Beam alignment and focusing on the sample are firstly obtained in a fixed
probe mode for a small value of the primary beam current. Primary beam cur-
rent is then continuously increased up to the desired optimal (usually highest)
value: alignment, dimensions and shape of the beam have to be continuously
monitored and optimised during this stage. Typical beam size under condi-
tions investigated is 10-20 µm.

Once all parameters are properly set, the profiling conditions for the depth-
profiling mode must be optimised. In this mode, a primary beam rastered over
a square area at the sample surface. Because the sides of the crater are slanting,
it is important that the detected signal comes from an area much smaller than
the crater size. Indeed if this is not the case ions will contribute to the signal
that originates from depths different from the crater bottom inducing substan-
tial errors. To avoid crater side effects, it is also important that the beam size be
much smaller than the crater size. An accepted rule of thumb is that the crater
size should be at least equal to the analysed area plus four times the beam size.
For a 30 µm analysed area, the crater should have sides of between 80 and
100 µm [13]. This choice is ideal for Cr-doped UO2 samples, as they comprise
grains which can reach 200 µm in size (see §2.1). In this case in fact, the size of
the rastered area is smaller than the grain dimensions which means that craters
usually remain within one grain. In case of undoped samples, grains have an
average size of only 6 µm. These small dimensions make it impossible to anal-
yse with SIMS a single grain in case, it is best to average the contribution over
many grains. An analysed area of about 60 µm is the most suited to select and
consequently the crater size is increased up to 150 µm.

2.4.4 Chromatic confocal Microscopy

Chromatic confocal microscopy is here used to characterize the topology of the
sample craters produced by the incident SIMS ion beam. The system used is
made up of white light source, a lens, the sample one wishes to characterise,
mirrors and a spectrometer capable of analysing visible wavelengths (see Fig-
ure 2.17). The method relies on the chromatic aberrations of the optical system
that are such that if the light beam is focused at a point of the surface of the
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sample, the elevation at that point will be in the focal plane for a single wave-
length only. The wavelength reflected back to the spectrometer is therefore
related to the elevation of a given point on the surface of the sample. Points of
the surface located at different depths are detected as different colours.

Figure 2.17: Schematic diagram of a confocal microscope.

Cartographies are obtained by rastering the light source over the sample
surface in predetermined steps of the order of the size of the light beam (1 µm
steps). The SurfaceMap and SPIP softwares [7] are used to save and analyse
the data generated with this technique.

2.5 Determination of diffusion coefficients

Oxygen diffusion coefficients are estimated by simulating changes in depth
profiles obtained during an isothermal annealing cycle. Depth profiles are ob-
tained from SIMS time-dependent signals. The sputtering rate which we can
check is constant is estimated in order to correlate the SIMS sputtering time to
a given crater depth. Confocal microscopy observations provide an estimate
of the sputtering rate. Its determination and the subsequent depth profile sim-
ulation are described in the following subsections.

2.5.1 SIMS sputtering rate

Here the methodology developed to estimate the sputtering rate is presented.
After having straightened the confocal microscopy image, two areas within

these images are selected. The first is taken at the centre of the crater bot-
tom and has a circular shape (its surface corresponds roughly to the area from
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which secondary ions are extracted). The second is made of portions of the
sample surface and constitutes the reference altitude. From these areas a depth
distribution is determined with points of the surface constituting the reference
and points located at altitudes corresponding to the crater bottom, as shown
in Figure 2.18:

a) b)

Figure 2.18: Selection of areas at the sample surface and at crater bottom (a)
and the corresponding depth distribution (b).

The two portions of the depth distribution, related to the crater bottom and
to the sample surface, are normalized to obtain two distribution functions:





´ xc,max

xc,min
fcrater (x) dx = 1

´ xsurf,max

xsurf,min
fsurface (x) dx = 1

(2.16)

Their convolution represents the crater depth distribution function:

f (δ) =

ˆ xsurf,max

xsurf,min

fcrater (x+ δ) · fsurface (x) dx (2.17)

Here, ❞ is the crater depth, xsurf,min and xsurf,max are respectively the lowest
and the highest possible surface altitudes, while fcrater(x+❞) and fsurface(x) are the
depth distribution functions respectively of the crater bottom and of the sam-
ple surface.

If the SIMS primary beam current remains constant during the analysis, the
crater depth distribution f (❞) function is proportional to the sputtering rate dis-
tribution. From f (❞) are deduced the average sputtering rate v̄ and its standard
deviation, which defines the depth resolution. From v̄, the average instanta-
neous depth z (t) at sputtering time t is calculated as follows :

z (t) = v̄ · t (2.18)

Now, our analysis is not restricted by the fact that the primary beam cur-
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rent, hence sputtering rate, remains constant during the analysis. Indeed, as-
suming that the sputtering rate at a given point of the surface i is proportional
to the SIMS primary beam current (i.e. vi (t) = αi · Ip (t), with αi ǫR

+), it comes
that at a given sputtering time t, the altitude corresponding to point i is given
by:

zi (t) =

ˆ t

0

vi (t) dt = αi ·
ˆ t

0

Ip (t) dt (2.19)

If Ip(t) is determined from the experimental data or assumed to be propor-
tional to a measured physical quantity (such as the ion current corresponding
to a matrix species), then ❛i may be obtained from applying the previous rela-
tionship for a time corresponding to the total analysis time tan:

αi =
zi,crater

´ tan
0

Ip (t) dt
(2.20)

Here zi,crater is the final crater depth measured by confocal microscopy at
point i at the sample surface and Ip(t) is the primary ion beam current. Hence
at any given sputtering time t depth zi may be obtained from relationship 2.19.

For each sample, several depth profiles are characterised in order to check
both the reproducibility of the method and the homogeneity of the sample
composition. Depth profile changes resulting from sample annealing are simu-
lated using Fick’s law whence diffusion coefficients are derived for the element
analysed.

2.5.2 Simulation of oxygen depth profiles

Diffusion coefficients are deduced by solving Fick’s second law:

∂c (x, t)

∂t
= D · ∂

2c (x, t)

∂x2
(2.21)

In Equation 2.21, D is supposed to be independent on concentration.
In the oxygen studies, the relatively low temperatures imposed during an-

nealing enables us to neglet the phenomenon of the sample surface evapora-
tion (see Appendix B). The initial and the two boundary conditions are set as
follows:





[
∂c(x,t)
∂x

]
x=0

= K
D
· (c (0, t)− cgas)

c (∞, t) = c0

c (x, 0) = F (x)
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In this system, D represents the diffusion coefficient, K the parameter used
to describe the exchange of atoms between the sample surface and the gaseous
atmosphere, cgas the 18O concentration in the atmosphere (during the diffusion
annealing stage, it is equal to 0.98, cf. section §2.2.1), c0 corresponds to the nat-
ural abundance of 18O (roughly 0.002), c(x,t) is the time and space dependent
18O concentration and F(x) is the initial depth profile prior to annealing.

Analytical solutions to this equation are reported in simple cases (as, for
example, when F(x) is a constant) [153, 168]. Tarento [171] succeeded however
in finding an analytical solution to this partial differential equation for any
function F(x) (see Appendix B for details).

Ideally, the initial condition c(x,0) is equal to the natural abundance of 18O
(c0). However, the furnace atmosphere used to bring samples to equilibrium
was sometimes polluted by the 18O adsorbed during the previous experiments.
In this case, the 18O tracer penetrates inside the UO2 bulk also during the an-
nealing step of sample equilibration. In this case, we need firstly to simulate
the phenomenon of contamination to obtain the initial 18O depth profile F(x).
A second simulation provides an oxygen self-diffusion coefficient estimate.



Chapter 3

A point defect model for UO2+x

based on electrical conductivity and

deviation from stoichiometry

measurements

Although uranium dioxide has been extensively studied for over 50 years
[25, 114] there still does not exist a comprehensive understanding of prevail-
ing point or complex defects or how these defects control most of its physical
properties. As seen in §1.1.1, the reason for that is probably to be found in the
complexity of the material which is stable over a very wide range of deviation
from stoichiometry. This comes about through modifications mainly in oxygen
related defect concentrations [182, 183] and is made possible by the property
uranium has of existing under different charge states (3+, 4+, 5+ and 6+). In
relation to this, we have seen in §1.2.2 that reliable determinations of point de-
fect formation or migration energies are only just emerging [19, 69] and rely
upon an improved description of the strong correlations which exist between
the uranium 5f electrons. The nature of point defects may be obtained through
structural characterisations of the material (see §1.1.1) or application of first
principles methods (see §1.2.2). Another very complementary approach is to
study the material’s physical properties as a function of temperature, equilib-
rium oxygen partial pressure, possibly impurity concentrations (see §1.3) and
develop a point defect model or theory capable of reproducing these proper-
ties (§1.2.1). Many atomic transport properties can be analysed in this way
(see for instance [64]) but we focus here on electrical conductivity and to a
lesser degree on deviation from stoichiometry measurements. In this chapter,
we attempt to develop a comprehensive point defect model, based on defect
chemistry which reproduces these data and which we will later use in Chapter
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stoichiometry measurements

6 to analyse the atomic transport data described in Chapter 4. The first part
of this work is devoted to laying out the principles and hypotheses that un-
derpin the model. Particular attention is paid to building into the model our
knowledge of the electrical properties of UO2 but also, following Kröger [115],
of the relationship between deviation from stoichiometry and oxygen partial
pressure. We then go on to derive the model equations and how the model pa-
rameters are determined, initially from an asymptotic analysis of the available
experimental data. Finally, we discuss the ability of the model to reproduce the
electrical conductivity measurements of Ruello [164] between 973 K and 1673
K and to provide an estimate of each defect concentration dependence upon
oxygen partial pressure. Particular attention is devoted to comparing the ac-
tivation energies of the mass balance equations involving the defects to defect
formation energies derived from first principles.

3.1 Modelling hypotheses in relation to our knowl-

edge of UO2

The model developed is similar to others reported in the past (notably Kröger
[115] and Park Olander[149]) and is based on defect chemistry. In this type of
formulation, charged defect concentrations are governed by a set of simulta-
neous equations amongst which so-called mass-action laws are the expression
of thermodynamic equilibrium. This approach is in the general case invalid
because applicable in principle only to a limited range of defect concentra-
tions, i.e. a limited region of the UO2±x phase diagram (see §1.2.1). Hence the
equations described below are applicable in theory to low deviations from sto-
ichiometry only but we boldly apply them to deviations from stoichiometry in
excess of this value.

We follow here the assumption of many other authors [70, 164] that thermally
activated electronic disorder is controlled by the disproportionation of two U4+

(5f2) ions into one U5+ (5f1) ion and one U3+ (5f3) ion. U5+ ions may also be
formed through a charge compensation mechanism on introduction of an oxy-
gen interstitial or vacancy as suggested from recent electronic structure calcu-
lations [68]. As reported in §1.3.1, UO2 electrical conductivity is expressed as
the sum of an electron and a hole contribution and occurs via the small po-
laron hopping. Supposing this mechanism adiabatic and coupling together
Equations 1.1 and 1.2, UO2 electrical conductivity can be generally expressed
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as follows:

σ =
µ0

T
exp

[
−∆Hm

KBT

]
· e ·Ns,U · (µrel [e

′] + [h°]) (3.1)

where T represents temperature, ♠0 is a constant and ❉Hm is the charge mi-
gration enthalpy. Although no direct measurement of the hole mobility ♠p (see
Equation 1.2) is reported for UO2, an estimate can be obtained from an analysis
of the temperature dependence of electrical conductivity data at low oxygen
partial pressures and at temperatures below the transition from an intrinsic be-
haviour (see §1.3.1.2). As a result of Equation 3.1, the Arrhenius dependence
of s✈T provides an estimate of the hole mobility, i.e. ❉Hm and the product of ♠0

with the impurity concentration. Dudney [70] proposed a value for ♠0 of 0.0554
m²·K·V-1·s-1 (widely used) and Ruello [162] an activation energy of 0.26 eV for
the study of a particular type of single crystal sample. This activation energy
can be determined unequivocally from Ruello’s data. On the other hand, ♠0

cannot and only the product of ♠0 with y (the extrinsic carrier concentration)
may be determined directly from the data. We will see below how considering
deviation from stoichiometry data may help provide a more appropriate esti-
mate of ♠0. We also assume following Ruello [162] that the electron and hole
mobilities are similar (i.e. ♠rel~1) although this inference is essentially indirect,
i.e. no straightforward measurement of the electron mobility has ever, to our
knowledge, been carried out for UO2. The relevance of such a hypothesis will
be looked at in the discussion section. In the following, we use Kröger-Vink no-
tation to express thermodynamic equilibria between the various point defect
species. To respect this notation, equations have to guarantee mass equilib-
rium. The disproportionation equation provides the following relationship:

2UX
U ⇋ U5+

U + U3+
U ou ∅ ⇋ h° + e

′

(3.2)

where UX
U designates a uranium atom on an ordinary uranium lattice site (U4+)

with the superscript X indicating a neutral defect. The second relationship of
equation 3.2 supposes that electronic defects, as well as vacancies, are defects
without mass.

As described in §1.3.2.2, the recent analysis of oxygen self-diffusion experi-
ments [68, 78] has shown the existence of doubly charged oxygen interstitials.
This work also highlighted the relevance for UO2 at least for small deviations
from stoichiometry of the following defect equilibrium equation which de-
scribes the introduction in the material of an oxygen interstitial from the gas
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phase:

2UX
U +

1

2
O2 + V X

i ⇋ O
′′

i + 2U5+
U ou

1

2
O2 ⇋ O

′′

i + h° (3.3)

The model presented here also enables the description of the sub-stoichiometric
region of the phase diagram. Section §1.1.1.2 describes how substantial (i.e.

measurable) deviation from stoichiometry in the sub-stoichiometric region is
only observed at high temperature (greater than 1873 K) and very low oxygen
partial pressures [101], which corresponds to conditions that in the main lie
outside those of the electrical conductivity data used to validate the model.
Following the majority of previous authors (e.g. Murch [143] and Kim [109]),
we assume that sub-stoichiometry is due to the presence of oxygen vacancies.
Assuming oxygen vacancies of charge +p constitute the predominant anion-
type defect population, one would expect (see §3.3.1) that deviation from sto-
ichiometry follows a power law dependence of oxygen partial pressure with
an exponent of -½ close to stoichiometry (i.e. when e’~h°) and this irrespective
of the charge of the point defect, so long as O

′′

i are the interstitial species. As
x decreases still further and electrons become the predominant electronic de-
fect species, the slope of this property is expected to be close to − 1

2(p+1)
. Based

on this analysis, the results of thermogravimetric experiments of Tetembaum
[173] (see Figure 1.4) suggest a singly charged oxygen vacancy at least at large
deviations from stoichiometry. The results of Javed [101] on the other hand
would tend to indicate for the oxygen vacancy a charge of +2. To state on the
effective charge of oxygen vacancies, we turned also to recent charged defect
calculations of Crocombette and co-workers [57] (see §1.2.2). Even if in their
work oxygen vacancy charge is calculated to vary as a function of Fermi en-
ergy level, we surmise here the existence of doubly charged positive vacancies
only. Oxygen disorder on the anion sublattice is therefore assumed to result
from the following Frenkel equilibrium:

OX
O + V X

i ⇋ O
′′

i + V °°
O (3.4)

where V X
i is a vacant interstitial site.

It has long been demonstrated for UO2 that in the hyperstoichiometric region
of the phase diagram, excess oxygen atoms readily agglomerate to form so-
called clusters (see §1.1.1.3). Here we consider the existence of complex Willis
defects in the so-called 2:2:2 configuration (see Figure 1.5 in §1.1.1.3), which we
rename W in the remainder of this work. There remains to determine an appro-
priate charge for this defect. Again we turn to Ruello’s data [164] with which
we aim to remain consistent. The author showed a square root dependence of
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electrical conductivity upon oxygen potential above 1273 K and at high oxy-
gen potentials in a region where the material has an intrinsic behaviour (see
Figure 1.12a) in §1.3.1.1). Assuming n excess oxygen atoms make up the defect
and that a single type of defect predominates, then it is quite straightforward to
prove that the electrical conductivity is proportional to oxygen partial pressure
to the power n

2(p+1)
where -p is the apparent charge of the defect. Assuming,

as suggested by Willis that n equals two, a charge of -1 for this type of clus-
ter is compatible with the experimental results. The mass balance equation
describing the formation of such a cluster may be written as follows:

O2 + 2OX
O + 2V X

i + UX
U ⇋ W

′

+ U5+
U (3.5)

It is quite probable that clusters of different composition exist in UO2 and
that their proportion varies depending upon oxygen potential and tempera-
ture (see §1.1.1.3 and §1.2.2) but for sake of keeping this model simple and in
the absence of straightforward experimental evidence, we choose here to con-
sider only one type of cluster. Based again on Willis neutron diffraction results
[183] (see again §1.1.1.3), we assume here that uranium vacancies constitute a
minority defect for all deviations from stoichiometry. Table 3.1 summarises the
nature of defects described by the model.

Notation Effective Charge Nature
UX
U 0 Uranium atom on an ordinary cation lattice site
h° +1 Hole, i.e. U5+ ion
e’ -1 Electron, i.e. U3+ ion
OX

O 0 Oxygen atom on an ordinary anion lattice site
O2 0 Oxygen molecule present in the gas phase
O”

i -2 Doubly charged oxygen interstitial
V X
i 0 Vacant interstitial site

V °°
O +2 Oxygen vacancy

W ’ -1 Di-Oxygen cluster

Table 3.1: Defects considered in the model.

3.2 Model equations

In the dilute limit approximation, the configurational entropy terms for each
of the chemical potentials of the different defect species are given by the cor-
responding site fractions. If ❉G❛ designates the Gibbs free energy of defect
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formation equation (❛), then thermodynamic equilibrium determines relation-
ships between the activities, i.e. site fractions under our approximations. Site
fractions are proportional to defect concentrations and it can be shown that
the equilibrium constants are expressed as a function of defect concentrations
normalized to the uranium site concentration. Thermodynamic equilibrium
is therefore expressed as four relationships, each corresponding to the four
chemical equilibria described in the previous section:

Ke =

[
U5+
U

] [
U3+
U

]

[UX
U ]

2 = exp

[
−∆Ge

kBT

]
(3.6)

KOi
=

[
O

′′

i

] [
U5+
U

]2

[UX
U ]

2
[V X

i ] · √pO2

= exp

[
−∆GOi

kBT

]
(3.7)

KW =

[
W

′
] [

U5+
U

]

[OX
O ]

2
[V X

i ]
2
[UX

U ] · pO2

= exp

[
−∆GW

kBT

]
(3.8)

KAF =

[
O

′′

i

] [
V °°
O

]

[OX
O ] [V

X
i ]

= exp

[
−∆GAF

kBT

]
(3.9)

where the square brackets represent defect concentrations normalised to the
uranium site concentration Ns,U and pO2 the equilibrium oxygen partial pres-
sure.There are eight unknowns to this problem and in addition to the four
defect equilibrium relationships, one guarantees electroneutrality and three
additional equations express the constraints imposed by the crystalline struc-
ture:

y
′

+ 2
[
O

′′

i

]
+
[
e
′

]
+
[
W

′

]
=

[
h°]+ 2

[
V °°
O

]
(3.10)

where y represents the extrinsic charge carrier concentration due to aliova-
lent cations present on the uranium sub-lattice. In case of Chromium-doped
uranium dioxide, y is affected by an effective charge of -1, and therefore in
Equation 3.10 it is expressed as y’. These impurities are responsible for the ex-
trinsic behaviour observed at low oxygen partial pressures and temperatures.
Additional constraints are written as follows:

y
′

+
[
e
′

]
+
[
h°]+

[
UX
U

]
= 1 (3.11)

[
OX

O

]
+ 2

[
W

′

]
+
[
V °°
O

]
= 2 (3.12)

[
O

′′

i

]
+
[
V X
i

]
+ (2 + α)

[
W

′

]
= 1 (3.13)
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An empirical parameter ❛ is introduced at this point that limits deviation from
stoichiometry to a value of the order of 0.25 which correspond to a phase tran-
sition towards U4O9. At this phase limit, if the di-interstitial cluster constitutes
the majority defect population then deviation from stoichiometry is simply
approximately 2

[
W

′
]

which limits the cluster concentration to 0.125. At this
point there are no interstitial sites readily available to accept additional in-
terstitials and equation 3.13 yields a value of approximately 6. The physical
reason why cluster concentrations are limited is probably to be found in the
fact that as their concentration increases they are brought closer and closer to
each other and Coulombic interactions are no longer negligible. At this point,
strong electrostatic repulsive forces appear between these complexes. The lev-
elling off of deviation from stoichiometry and electrical conductivity observed
at high oxygen potentials is probably related to this. In fact, it was experimen-
tally demonstrated by [61] that the formation of the more complex defect of
type cuboctahedra induces a deep rearrangement of anionic sublattice and the
consequent UO2 phase transition towards U4O9 (see §1.1.1.3). It is also possi-
ble that clusters of different composition and charge exist: the actual details of
how, why and indeed if the majority defect population in UO2+x changes from
a (2:2:2) to a cuboctahedron configuration are unknown.

The conductivity is obtained from relationship 3.1. Also, an estimate of devi-
ation from stoichiometry x may be calculated, assuming uranium vacancies to
be negligible in comparison to oxygen defect populations:

[
O

′′

i

]
+ 2

[
W

′

]
−

[
V °°
O

]
= x (3.14)

3.3 Asymptotic model approach

3.3.1 Asymptotic model in an intrinsic, substoichiometric regime

dominated by oxygen vacancies

In this paragraph we derive simplified expressions for deviation from stoi-
chiometry and electrical conductivity under certain limiting conditions. We
assume the majority anion-type defect is the oxygen vacancy but treat the gen-
eral case where the formal charge of the oxygen vacancy is +p. The electroneu-
trality equation may be expressed as:

2
[
O

′′

i

]
+
[
e
′

]
=

[
h°]+ p

[
V

p°
O

]
(3.15)
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Frenkel equilibrium (i.e. equation 3.9) has to be re-written to take into account
a charge state for the oxygen vacancy which may differ from +2:

OX
O + V X

i + (2− p)UX
U ⇋ O

′′

i + V
p°
O + (2− p)h° (3.16)

This equilibrium yields a general expression for KAF:

KAF =

[
O

′′

i

] [
V

p°
O

] [
h°
]2−p

2
(3.17)

We continue to assume equilibrium 3.3. Substituting the expression for [Oi”]
from equation 3.3 into the relationship 3.17 yields:

[
V

p°
O

]
=

2KAF

[
h°
]p

KOi

√
pO2

(3.18)

Two limiting cases are then considered. If
[
h°
]

predominates over anion-type
defects, as is typically the case close to stoichiometry; then equation 3.15 re-
duces to

[
e
′
]
∼

[
h°
]

and
[
h°
]
=

√
Ke. Substituting this expression into equation

3.18 yields:

[
V

p°
O

]
=

2KAFK
p/2
e

KOi

√
pO2

(3.19)

If x ∼
[
V p°
O

]
, then Log(x) vs. Log(pO2) must bear a slope of approximately -0.5.

If anion type defects predominate, then
[
e
′
]
= Ke

[h°]
= p

[
V

p°
O

]
which yields after

substitution into equation 3.18:

[
V

p°
O

]
=

(
1

p

) p
p+1

(
2KAF

KOi

) 1
p+1

K
p

p+1
e pO

− 1
2(p+1)

2 (3.20)

In which case the Log(x) vs. Log(pO2) must bear a slope of approximately
− 1

2(p+1)
.

3.3.2 Analysis of electrical conductivity data of Ruello with an

asymptotic model approach

The electrical conductivity of Ruello was reported in detail in Chapter 1 –
§1.3.1.1 and indeed we follow his analysis of these data. We assume UO2+x

is an electronic conductor and therefore that electrical conductivity reflects the
level of electronic disorder. The difficulty with this type of analysis lies in de-
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termining a set of model parameters that reproduces the experimental data
over a wide range of oxygen partial pressures and temperatures adequately
but also in demonstrating this set is unique. To do this we need to determine
ranges of temperature and oxygen potential over which it is reasonable to as-
sume only a restricted set of defects predominate and all other defects may be
neglected in the analysis. We first focus on the low temperature electrical con-
ductivity data (i.e. 973 K, 1073 K, 1173 K) because as indicated from Ruello’s
Seebeck coefficient measurements, under all oxygen partial pressures studied,
there is no risk of there being a transition from a n to p type conduction. As a
result, we can be relatively sure that only h°, Oi” and W’ defects need be con-
sidered.

3.3.2.1 Analysis of the low temperature data (973 K, 1073 K, 1173 K)

At a given temperature, we consider 3 regions depending upon oxygen par-
tial pressure. At low oxygen partial pressures, i.e. in the so-called p extrinsic
region, where electrical conductivity is independent of oxygen partial pres-
sures, the hole concentration is determined by the level of aliovalent impuri-
ties which in turn determines the extrinsic charge carrier concentration y’. This
region is known as region 1. In this region electroneutrality condition reduces
to:

y
′

=
[
h°] (3.21)

Assuming the equilibria 3.3 and 3.4, we can express oxygen vacancies as de-
pendent upon the aliovalent impurity concentration y’:

[
V °°
O

]
=

2KAF

KOi

√
pO2

· y′2 (3.22)

As a consequence, an increase in the doping agent amount leads to an in-
crease of oxygen vacancy concentration in UO2, extending its hypo-stoichiometric
domain.
As the oxygen partial pressure rises, but before oxygen interstitials form com-
plex defects, the appropriate electroneutrality equation is instead given by:

y
′

+ 2
[
O

′′

i

]
=

[
h°] (3.23)

A transition occurs at the point where isolated oxygen interstitials predom-
inate over extrinsic electronic defects, i.e. when y’~2�[Oi”] and s✈ is equal to
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2�s✈plat, where s✈plat is the electrical conductivity in the purely extrinsic regions.
Figure 3.1 indicates that electrical conductivity data exists beyond this tran-
sition oxygen partial pressure only at 1173 K. The region in which isolated
oxygen interstitials constitute the majority anionic defect is known as region 2.

Figure 3.1: Electrical conductivity data at the three lowest temperatures 973,
1073 and 1173 K.

With increasing oxygen partial pressures and as extrinsic carriers become neg-
ligible, the appropriate electroneutrality equation becomes

[
W

′
]
+ 2

[
O

′′

i

]
=[

h°
]

and a transition to region 3 in which oxygen complexes become the pre-
dominant oxygen species must occur at an oxygen partial pressure noted pO2,trans

for which [W’]~ 2�[Oi”]. Combining this latter relationship with equations 3.7
and 3.8 yields:

KOi
= 4

√
2pO2,transK

3/2
W (3.24)

In region 3, assuming complex oxygen clusters of the W’ type constitute the
majority oxygen defect population, electroneutrality may be approximated by
[h°]~[W’]. As a result, from equation 3.8 it follows (assuming V X

i ∼ UX
U ∼

OX
O

2
∼ 1) that deviation from stoichiometry may be expressed as:

x ≈ 2
[
W

′

]
≈ 4 ·

√
KW · pO2 (3.25)

which suggests Log(x) varies as ½�Log(pO2). Note that under those assump-
tions, Log(s✈) has the same dependence upon Log(pO2). The problem now
comes down to determining µ0, y’, KOi

, KW unequivocally. These four quan-
tities are intimately connected. Indeed if µ0 is known, then y’ is determined
from the analysis of the extrinsic electrical conductivity data which provides
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an estimate of (µ0· y’ · e). A simple model may then be developed that accounts
for the oxygen defects that are isolated only. This model uses equations 3.23
and 3.7 (with V X

i ∼ UX
U ∼ 1) the combination of which yields:

[
h°]3 − y

′
[
h°]2 = 2KOi

√
pO2 (3.26)

KOi
may then be determined from comparison of experimental electrical con-

ductivity measurements to the theoretical results obtained from solving equa-
tion 3.26. KW may then be determined through the equation 3.24. Equation
3.26 may be rendered adimensional by dividing both sides of the equation by
y’3. For any value of the oxygen potential pO2, if a different value of y’ (i.e. z’)
hence µ0 is considered, one sees that the electrical conductivity given by the
model is identical, providing the KOi

’ is chosen proportional to KOi
and such

that K ′
Oi

= KOi

z′3

y′3
. Indeed, the adimensional form of equation 3.26 is:

x3 − x2 = 2
KOi

y′3

√
pO2 = γ

√
pO2 (3.27)

For a given value of y’, the value of KOi
that provides an adequate fit of the

model to experimental conductivity values corresponding to regions 1 and 2 is
unique, and so the theoretical curve that fits the data is unique and indepen-
dent of y’. In order to determine pO2,trans at a given temperature from exper-
iment, it is necessary that for some values of the oxygen potential defects W’

and Oi” exist. Of the three lower temperatures, only the 1173 K data would an-
swer this criterion. Firstly, ❣ is determined so the solution to equation 3.27 re-
produces as many experimental data points (s✈/s✈plat, where s✈plat is the electrical
conductivity value in the extrinsic region) as possible. Figure 3.2 shows the re-
sults obtained for ❣ ~ 5�107. It was further assumed that the experimental data
point obtained at this temperature and at the highest oxygen partial pressure
corresponds to region 3 were clusters constitute the majority defect. Electrical
conductivity may therefore be approximated beyond this point by a straight
line in a Log–Log representation with a slope of 0.5 which goes through this
last data point. The intersection between this line and the optimised theoretical
curve provides an estimate of pO2,trans (~10-13 atm, see Figure 3.2).

Note at this point that with a value of µ0 of 0.0554 m²·K·V-1·s-1 as suggested by
Dudney [70], y’ is estimated at 2.4�1025 m-3 based on experimental data in the
extrinsic region, which in turn yields a value (based on relationship 3.27) of
KOi

of roughly 2.4�10-2. With a value of pO2,trans of 10-13, one may estimate KW
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Figure 3.2: Adimensional analysis of electrical conductivity data taken at 1173
K: pO2,trans falls at the intersection between the two simulation curves.

from relationship 3.24 at roughly 1.5�107. We turn now to the deviation from
stoichiometry data compiled by Perron [151] at 1173 K. Figure 3.3 indicates
these experimental data along with deviation from stoichiometry estimated
from relationship 3.25 and the previous estimate of KW .

Figure 3.3: Deviation from stoichiometry estimates based on asymptotic model
and different values of KW.

A discrepancy is seen which may be cancelled by assuming a different value
for KW of 5.6�105 as seen in Figure 3.3. In other words assuming a pre-exponential
factor for hole mobility of 0.0554 m²·K·V-1·s-1 renders electrical conductivity
measurements inconsistent with deviation from stoichiometry values. If KW is
assumed to be approximately 5.6�105 as suggested from deviation from stoi-
chiometry measurements only, KOi

is once again estimated from equation 3.24
to be 1.7�10-4. The value of ❣ determined previously then enables an estimate
of y and finally µ0 to be made. Application of relationship 3.27 yields y for the
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afore mentioned value of KOi
, and from the Arrhenius representation of Log

(s✈T), the product (µ0 x y) is determined. This analysis yields values of 4.6�1024

m-3 and 0.29 m²·K·V-1·s-1for y and µ0 respectively. At this stage, a model that
takes into account only impurities, oxygen interstitials and complex defects
was applied to optimise the values of parameters µ0, KOi

and KW at 1173 K. A
value of 0.26 ±0.05 m²·K·V-1·s-1 is determined for µ0 which appears to be ap-
proximately five times the value suggested by Dudney. From the quantity (µ0

· y), y is estimated at 5.2�1024 m-3. We then reproduce the data at 973 K and
1073 K considering this last estimate of µ0 using a simplified model and rela-
tionships 3.7 and 3.8.

T (K)
Simplified Model

µ0 KOi
KW

1173 0.26 2.5 10-4 6.3 105

1073 0.26 3.2 10-4 7.9 106

973 0.26 1.3 10-3 1.6 108

Table 3.2: Best estimate determination of equilibrium constants KOi
and KW

obtained using a simplified model with a value of µ0 of 0.26 m²·K·V-1·s-1

Figure 3.4a), b) shows the experimental data and corresponding model results
at 973 and 1173K. These results are consistent with the fact that at those tem-
peratures, electrons and oxygen vacancies are negligible in comparison with
holes and oxygen interstitials or clusters.
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a) b)

a) b)

Figure 3.4: Experimental data and corresponding simplified model results at
973 (a), and 1173K (b).

3.3.2.2 Analysis of the high temperature data (1473 K, 1573 K, 1673 K)

We follow Ruello’s [162] hypotheses in the sense that electrons and holes are
assumed to have similar mobilities. As a result, a combination of equations 3.1
and 3.6 suggests that electrical conductivity data shows a minimum for values
of [h°] given by:

[
h°] ≈

[
e’] ≈

√
Ke (3.28)

Minima in the conductivity data are only clearly observed above 1473 K, which
is why estimates of Ke and KAF are only attempted at those temperatures. Based
on our previous estimate of µ0, we can now estimate Ke at all three tempera-
tures from the actual value of the minimum electrical conductivity data:

Ke =
([
h°])2 =


 σminT

2 · e · µ0 exp
[
−∆Hm

KBT

]
·NAv · d

M




2

(3.29)

Further assuming that the material behaves intrinsically at those temperatures,
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the electroneutrality equation reduces to:

[
O

′′

i

]
∼

[
V °°
O

]
(3.30)

Noting pO2,min the value of the oxygen potential at which the minimum electri-
cal conductivity is obtained, combining equations 3.28, 3.29, 3.7 and 3.9 yields:

KAF =
K2

Oi
pO2,min

2K2
e

(3.31)

Note that pO2,min may also be considered as the oxygen partial pressure at
which exact stoichiometry is obtained. However, because of the shape of the
electrical conductivity curves, there is probably a relatively large uncertainty
in the determination of pO2,min and hence KAF. Table 3.3 indicates all estimated
values of KOi

, KW, Ke and KAF either obtained directly from the data analysis
or extrapolated at lower or higher temperatures with values of µ0 and y as in-
dicated in the previous section (0.26 m²·K·V-1·s-1and 5.2�1024 m-3) respectively.
Note that if electrons and holes are assumed to have different mobilities, then
the analytical expressions derived from the asymptotic model are modified as
follows:

Ke =
1

µrel


 σminT

2 · e · µ0 exp
[
−∆Hm

KBT

]
·NAv · d

M




2

(3.32)

KAF =
K2

Oi
pO2,min

2µ2
relK

2
e

+
KOi

√
pO2,min

4µ
3/2
rel

√
Ke

(1− µrel) (3.33)

3.4 Results and sensitivity analysis

The aim of the analysis of Ruello’s data [164] with this model is to determine
whether values of defect equilibrium constants may be determined that simul-
taneously reproduce electrical conductivity and deviation from stoichiometry
data adequately. A mathematical model was therefore set up that solves equa-
tions 3.6 to 3.13 simultaneously for given values of the equilibrium constants, ❛
and µ0. Because of the number of physical constants involved, it was necessary
to devise a method for providing a starting estimate of these constants based
on the asymptotic model approach described in the previous section (§3.3.2).
This involves analysing the electrical conductivity of Ruello and previously
obtained deviation from stoichiometry data simultaneously with assumptions
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relative to the predominance of a given defect population. Equilibrium con-
stants, for which whenever possible the asymptotic analysis provides starting
values, and the ❛ parameter are adjusted for a data set at a given temperature
in order to minimise the difference between the model and the experimental
data points. Greater emphasis is given to the electrical conductivity data. Table
3.3 provides a summary of model parameters determined from the asymptotic
analysis and obtained from fitting the data with the complete model. As can
be seen, values of the estimates are very close to the model parameter values
obtained upon considering the model in its complete form. Also indicated in
Table 3.3 are the uncertainties associated with each of the model parameters
based on an estimated relative error of ±10% for electrical conductivity data
and ± 5�10-3 postulated for deviation from stoichiometry data. These uncer-
tainties are estimated from the minimum and maximum values of equilibrium
constants that reproduce the experimental data within the uncertainties pos-
tulated for both these properties (deviation from stoichiometry and electrical
conductivity).

T [K]
KOi

KW Ke KAF

Initial Fit Initial Fit Initial Fit Initial Fit

973 1.3 10-3 1.3 10-3±0.4 1.6 108 1.6 108±0.4 1.8 10-12 2.0 10-10±0.2 5.6 10-13 5.0 10-15±0.4

1073 3.2 10-4 3.2 10-4±0.4 7.9 106 7.9 106±0.4 3.1 10-11 5.0 10-10±0.2 5.2 10-12 4.0 10-14±0.4

1173 2.5 10-4 2.0 10-4±0.4 6.3 105 6.3 105±0.4 3.3 10-10 1.0 10-10±0.2 3.4 10-11 1.3 10-13±0.4

1273 1.1 10-4 1.3 10-4±0.4 7.7 104 4.0 104±0.4 2.4 10-9 5.0 10-9±0.2 1.6 10-10 4.0 10-13±0.4

1373 6.5 10-5 7.9 10-5±0.4 1.3 104 1.8 104±0.4 1.3 10-8 1.6 10-8±0.2 6.1 10-10 1.0 10-12±0.4

1473 4.1 10-5 5.6 10-5±0.4 2.7 103 6.3 103±0.4 6.3 10-8 6.3 10-8±0.2 1.7 10-9 4.0 10-9±0.4

1573 2.7 10-5 2.4 10-5±0.4 6.9 102 1.6 103±0.4 1.6 10-7 1.7 10-7±0.2 6.6 10-9 1.0 10-8±0.4

1673 1.9 10-5 1.3 10-5±0.4 2.1 102 3.2 103±0.4 7.1 10-7 7.1 10-7±0.2 1.1 10-8 3.2 10-8±0.4

Table 3.3: Model parameters determined from the asymptotic analysis pre-
sented in section 3.3.2 (“Initial” column) and obtained from comparison of the
model in its complete form to the data (“Fit” column). The hole mobility is
assumed at 0.26 m²·K·V-1·s-1. Initial estimates of equilibrium constants are in-
dicated in red; initial extrapolated values are in blue.

The main conclusions one may draw from this analysis and results from
section §3.3.2 are as follows:

1. If the mobility pre-exponential factor µ0 is postulated, adjusting the model
parameters to reproduce the electrical conductivity data alone provides a
unique set of equilibrium constants. However, deviation from stoichiom-
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etry will in general not be properly reproduced because electrical con-
ductivity data alone provides an estimate of (µ0 · y) only.

2. It is the combined analysis of deviation from stoichiometry and electri-
cal conductivity data that enables us to determine all model parameters
(equilibrium constants, ❛ and µ0) unequivocally. A best-estimate value of
0.26 m²·K·V-1·s-1 was derived from the data analysis.

3. In principle deviation from stoichiometry measurements should be car-
ried out on the same set of samples as those used to measure out elec-
trical conductivity since as now widely reported, impurity content will
modify these material properties. However, we only consider deviations
from stoichiometry in excess of about 5�10-3 simply because it basically
constitutes the minimal error associated with this kind of measurement.
In this region most samples are expected to behave intrinsically unless
purposefully doped.

4. Our analysis shows that KAF and Ke cannot be determined from the low
temperature electrical conductivity data (i.e. 973 K, 1073 K, 1173 K). This
is also the case for KW with the exception of the 1173 K data. However,
KW may be estimated with reasonable accuracy in the low temperature
range based on deviation from stoichiometry measurements. Conversely
because of the presence of impurities and the limited impact of isolated
oxygen interstitials upon deviation from stoichiometry, KOi

may not be
determined from deviation from stoichiometry measurements alone.

Figure 3.5 a) and b) gives an example of both calculated and measured electri-
cal conductivity and deviation from stoichiometry data at 1173 K and 1573 K.
Also shown in 3.6 a) and b) are the corresponding defects concentrations.
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a) b)

Figure 3.5: Fit of electrical conductivity and deviation from stoichiometry data
taken at 1173 K (a) and 1573 K (b).

a) b)

Figure 3.6: Calculated defect concentrations at a temperature equal to 1173 K
(a) and to 1573 K (b).

As expected, at 1173 K, complex anion clusters only appear at the highest oxy-
gen potential values. Electronic defects constitute the majority defect popu-
lation at all temperatures and oxygen partial pressures. The equilibrium con-
stants determined from the data analysis are plotted in an Arrhenius represen-
tation in Figure 3.7 a, b, c and d.
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a) s b)

c) d)

Figure 3.7: Arrhenius representation of the defect formation constants: graph
a) refers to KOi

, b) to KW, c) to KAF and d) to Ke.

Activation energies are reported for all four equilibrium constants in Table 3.4.

K Associated defect
Formation

Energy (eV)

Ab-initio

Calculations (eV)

Ke Pair h°-e’ 2.2 ± 0.1 1.8 [18]

KAF Oxygen Frenkel pair 2.2 < E < 6.5 3.5 [18]

KOi
Oxygen interstitial -0.8 ± 0.1 -0.6 [66]

KW Willis defect -2.3 ± 0.2 -1.9 [65]

Table 3.4: Comparison of first principle estimates of defect formation energies
[18, 65] with results form the analysis of electrical conductivity data.

3.5 Discussion

3.5.1 Determination of equilibrium constants

As Figure 3.7 indicates, the equilibrium constants are roughly aligned when
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plotted in an Arrhenius representation which gives credit to the activation en-
ergies derived. It is however worth mentioning that not all equilibrium con-
stants may be determined at all temperatures. Indeed, an accurate determina-
tion of equilibrium constants can only be derived first if a defect involved in
this equilibrium is actually present in substantial quantities under the condi-
tions investigated and if the property is actually sensitive to the presence of
that defect. Electrical conductivity is more directly sensitive to charge carrier
concentrations and deviation from stoichiometry to disorder on the oxygen
sublattice. In relation to the di-interstitial constant for instance, analysing de-
viation from stoichiometry data at high oxygen potentials with a very simple
asymptotic model, provides very good estimates of the corresponding equi-
librium constant because di-interstitials constitute the majority defect popula-
tion and that property is sensitive to it. Another good example is the mono-
interstitial formation constant. Figure 3.8 indicates the experimental data at
1173 K in comparison with model calculations assuming the presence of both
di-interstitials and mono-interstitials on the one hand, and di-interstitials alone
on the other.

Figure 3.8: Simulation of conductivity data at 1173 K assuming the presence
of both di- interstitials and mono-interstitials (red curve) on the one hand, and
di-interstitials alone on the other (green curve).

This figure illustrates that electrical conductivity measurements are sensitive,
albeit in a small range of partial pressures, to the presence of oxygen mono-
interstitials, which gives credit to any defect characteristics derived from this
property analysis. Conversely, Figure 3.5a) shows that because of the accuracy
one may assume for thermogravimetric measurements, deviation from stoi-
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chiometry estimates are too insensitive in the region where mono-interstitials
prevail for any meaningful data to be derived in relation to these defects. If
improved accuracy were possible then it would be necessary to measure devi-
ation from stoichiometry and electrical conductivity on identical sets of sam-
ples to draw combined, coherent conclusions. Along these lines, it is important
to note that at the lowest temperatures for example, the Frenkel defect or the
electron hole formation constants may be discounted altogether with no loss
in terms of model representation. In other words it is impossible to deter-
mine Frenkel equilibrium constants from the lowest temperatures. The green
points reported in Figure 3.7 represent upper values for the formation con-
stants (oxygen Frenkel and electron-hole formation) above which the model
cannot reproduce the experimental data adequately. Regarding the Frenkel
disorder equilibrium constant in particular, its influence is only notable at the
highest temperatures and its determination relies on an estimate of the oxygen
potential at which electrical conductivity is minimal (with the added hypoth-
esis that electrons and holes have similar mobilities, see section §3.3.2). The
electrical conductivity data shows that it is difficult to determine this partial
pressure adequately. So it is expected that using electrical conductivity mea-
surements (or indeed deviation from stoichiometry) will lead to a generally
poor estimate of the Frenkel formation constant.

3.5.2 Nature of defects, formation energies and comparison

with theoretical approaches

Figure 3.6a) shows that the crossover point from a regime where mono-interstitials
predominate to a regime where di-interstitials become the majority defect pop-
ulation occurs at 1173 K at an oxygen potential between 10-14 atm and 10-13

atm. The corresponding deviation from stoichiometry lies between 10-4 and
10-3 which is very low indeed. Beyond that crossover point, the charge of the
di-interstitial defect does not follow the value expected from a purely ionic
model, in coherence with the work of Crocombette and co-workers [57, 55]
(see Chapter 1 - §1.2.2). For instance, the most stable di-interstitial (IX2) re-
ported in [55] at high oxygen partial pressures has a charge of -1, as transpires
from the present analysis. We can also compare quantitatively the results of
our data analysis to these theoretical approaches based on Density Functional
Theory. The results of Andersson and co-workers [18] are reported in Table
3.4. A good agreement is noted for both the electron-hole formation energy
and the doubly charged mono-interstitial. One may also note the very close
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agreement with the band gap of 2.1±0.1 eV determined from optical methods
by Schoenes [166]. A lack of accuracy in the Frenkel pair formation constant
makes comparisons difficult between experiment and theory. We have also
used results derived from Dorado’s work [65] to estimate the formation en-
ergy of di-interstitial clusters. This exercise is also extremely encouraging since
it shows very close theoretical and experimental values (2.3 eV vs. 1.9 eV for
the experimental and theoretical values respectively).

Such close agreement between experimentally determined formation energies
and electronic structure calculations has never, to our knowledge, been demon-
strated to this point. Both approaches are therefore encouraging. Also, inter-
esting indications stem from the close inspection of Figure 3.4 which indicates
deviation from stoichiometry as calculated by the model and corresponding
experimental data at 973 K. As the oxygen partial pressure rises the slope of
Log(x) vs. Log(pO2) curves changes from roughly ½ to 1 possibly indicating the
emergence of a defect population of charge p and containing n excess oxygen
atoms such that n

2(p+1)
∼ 1. Assuming a single negative charge would indicate

that the cluster may be made up of roughly 4 excess oxygen atoms as would
be expected for a cuboctahedron (see [61]).
Finally, the fact that this simple defect equilibrium approach is capable of re-
producing properties over a wide range of temperature and oxygen partial
pressure would indicate that uranium defects play a negligible part. By de-
fault, it therefore corroborates the broadly accepted view that electronic de-
fects are present at a greater concentration than defects on the anion sublattice
which themselves are more concentrated than defects on the cation sublattice.
As in Ruello’s analysis [162], in the work detailed in the previous sections we
have assumed that the electron and hole mobilities are equivalent. This hy-
pothesis is expected to have an impact upon the data analysis, hence the equi-
librium constants derived; at high temperature mainly since it is at the higher
temperatures (above 1473 K) that conduction undergoes a transition from p to
n type conduction as the oxygen partial pressure decreases. In fact, as seen in
section §3.3.2.2, Ke and KAF are the constants mainly affected by the hypothesis
of similar hole and electron mobilities. We have checked that a five fold mod-
ification of the electron relative mobility does not substantially modify values
of KW or KOi

, nor does it in general modify the activation energies of any of the
equilibrium constants, as suggested from the analysis in section §3.3.2.2.

3.6 Conclusions

In this work a simple point defect model has been developed based on point
defect equilibria. It very satisfactorily reproduces electrical conductivity and
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deviation from stoichiometry data over a wide range of temperatures and oxy-
gen partial pressures. In this model, defects on the cation sublattice are ne-
glected other than electronic defects which is consistent with the generally held
view in relation to UO2 that electronic disorder dominates over anion disorder,
which itself is more significant than cation disorder. A rather large value for
the preexponential factor of the hole mobility is deduced from this analysis
(0.26 m2K V-1s-1), approximately 5 times greater than the value suggested by
Dudney [70]. Based on the temperature analysis, it appears that formation
energies for mono-interstitials, di-interstitials, and the electron-hole pairs can
be determined with reasonable accuracy. The energy of oxygen Frenkel pair
however cannot, probably because under the conditions examined, oxygen
vacancies constitute the minority defect. Furthermore, the energies derived
for the mono-interstitials and the electron-hole pair are shown to be close to
values derived from first principles. In addition to this, the charge and appar-
ent composition of di-interstitials is well in line with the more recent DFT+U
calculations which predict a decrease in the charge per additional oxygen in-
terstitial that makes up the cluster. Our results show that in relatively pure
material, oxygen clustering is predominant at very low levels of hyperstoi-
chiometry. Although encouraging, these conclusions should be backed up by
further investigations. In particular, mobility measurements should be carried
out even at low temperatures in order to confirm the conduction mechanism
and the value of the hole mobility used at high temperature. It would be most
enlightening to have an idea of the effect upon hole mobility of the nature and
concentration of dopants. In a similar vein, the electron mobility should be
sort to be determined through doping our material with pentavalent cations.
It is also quite obvious that our analysis in principle requires that electrical
conductivity and deviation from stoichiometry measurements be carried out
on samples from identical batches. This is all the more true when samples are
doped purposefully.

We have seen in this chapter how electrical conductivity and deviation from
stoichiometry data may be rationalised using a point defect model for which
equilibrium constants are thought to be characteristic of the material. Defect
concentration calculations (Figure 3.6) tell us that we can expect rather radical
changes in the oxygen self-diffusion coefficient as the majority defect popula-
tion changes from mono-interstitials to di-interstitial clusters. Also the model
tells us (see equation 3.22) that an increase in the dopant concentration is con-
ducive to stabilising oxygen vacancies. In the next Chapter we study oxygen
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self-diffusion over a range of oxygen partial pressures in materials doped with
trivalent ions in order both to characterise the effect of a change in the pre-
dominant defect population upon this property (for the higher oxygen partial
pressures) and to ascertain whether oxygen vacancies may indeed be stabilised
at the lowest oxygen partial pressures in the hope of improving our estimates
of the Frenkel pair formation constant. Later in Chapter 6 we will attempt to
interpret these experimental data quantitatively and ascertain whether they
are compatible with the model outlined in this chapter.



Chapter 4

Electrical conductivity, oxygen

chemical and self-diffusion

coefficient measurements in UO2+x

as a function of temperature and

oxygen partial pressure

In Chapter 3, we saw that the analysis of electrical conductivity and deviation
from stoichiometry data provided us with an estimate of formation energies of
bulk defects. This of course only applies in an intrinsic region in which elec-
trical conductivity is essentially an indirect means of tracking the behaviour of
oxygen point defects. In particular, the analysis of existing data in an extrin-
sic region does not enable us to derive reliable information relating to oxygen
vacancies.

The study of atomic transport properties is extremely complementary to this
because this property is always sensitive to disorder on the oxygen sub-lattice.
Oxygen self-diffusion coefficient measurements (see Chapter 1 - §1.3.2.2) which
are the main object of this chapter are liable to confirm the point defect analysis
presented previously, enhance our knowledge of certain defect equilibria and
possibly even enable us to derive defect migration barriers.

In this chapter self-diffusion measurements are carried out with two essen-
tial objectives:

• Determining data (formation and migration energies) which are mean-
ingful to oxygen vacancies. To this end we define and study a range of
conditions (impurity content, temperature and oxygen partial pressures)
which we consider as being favourable to the stabilisation of oxygen va-
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cancies, despite the relatively low temperatures accessible with our cur-
rent equipment (i.e. below 1273 K). Doping with a trivalent cation such
as chromium has the effect of increasing the oxygen potential value at
which the material changes from substoichiometry to hyperstoichiome-
try (see Chapter 3, §3.3.2.1).

• Determining the transition region between a regime where mono-interstitials
dominate to a regime in which di-interstitials constitute the majority oxy-
gen defect population. This transition point is not well documented
(other than from the results of Chapter 3) and we attempt to use oxygen
self-diffusion coefficient measurements to determine it. Self-diffusion
data at exact stoichiometry and at high deviations from stoichiometry
exist but not at this transition point (as shown in §1.3.2.2, Figure 1.15).

In this chapter, we measure oxygen self-diffusion coefficients over a wide range
of oxygen partial pressures and between 800°C and 1000°C. As was demon-
strated from previous studies [68, 78], it is essential when doing this to ascer-
tain the charge carrier concentrations by determining the electrical conductiv-
ity of the samples under identical conditions to those in which self-diffusion is
measured. The technique used for electrical property measurements is the four
point Kelvin bridge method outlined in Chapter 2, §2.3.1. Self-diffusion mea-
surements are carried out by first equilibrating samples under the prescribed
temperature and oxygen partial pressure and subsequently annealing under
identical conditions in an atmosphere enriched with 18O thus enabling isotopic
exchange to occur. Diffusion coefficients are derived from the 18O depth pro-
files determined from SIMS (see §2.5).

4.1 Conditions under which experiments are car-

ried out

4.1.1 Choice of experimental conditions

In order to increase the chance of characterising vacancy assisted migration,
we have chosen to study chromium doped samples (see paragraph §3.3.2.1).
This serves the added advantage of prescribing the hole concentration as demon-
strated in previous studies [68, 78], thus simplifying the analysis of the depen-
dence upon oxygen partial pressure of the oxygen self-diffusion coefficient.
This nonetheless requires determining the electrical conductivity of the ma-
terial to provide an estimate of the hole concentration. In these samples an
oxygen diffusion study was carried out at four temperatures (between 750°C
and 950°C) and at the lowest oxygen partial pressure possible. Based on these
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results, an analysis at 800°C was carried out as a function of oxygen partial
pressure to ascertain the effect of oxygen vacancies. These samples were also
studied at 900°C and 1000°C at higher oxygen potentials (see Chapter 3) in
the hope of characterising a change from a mono-interstitial to a di-interstitial
regime. The higher temperatures were motivated on the grounds that this
would guarantee shorter periods of time to reach equilibrium.

In parallel to this, relatively pure polycrystalline samples were looked at
and their electrical and self-diffusion properties were characterised at 900°C
and 1000°C and identical oxygen partial pressures to those at which our 900°C
and 1000°C annealed chromium doped samples were studied. Because the
materials were known to contain only small levels of impurities, they were
also earmarked for a chemical diffusion study that could potentially enable us
to determine the thermodynamic factor ❣ (see Chapter 1, §1.3.2), which would
enable further validation of the point defect model developped in Chapter 3.

The following provides a summary of the type of samples (either chromium
doped or undoped polycrystalline samples) characterised and the conditions
under which each property (electrical conductivity, chemical diffusion and
self-diffusion) was studied.

4.1.2 Electrical and chemical diffusion experiments

Electrical conductivity as a function of temperature

Table 4.1 reports the experimental conditions under which the electrical con-
ductivity of Cr-doped and undoped samples were characterised. The aim here
was to determine the hole mobility and estimate the impurity or doping con-
tent in in both sets of samples studied. To this end, parallelepipedic samples
were prepared from both sample sets and exposed to a reducing atmosphere
(Ar/10% H2 or Ar cleansed of its oxygen using an electrochemical pump [41])
at different temperatures in the 500-1000°C temperature range; the oxygen par-
tial pressure of the gas was always monitored using a zirconia probe located in
the gas flow just beyond the sample holder (see electrical conductivity device
layout in Figure 2.6).
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Nature of
sample studied

Employed Gas T (°C) pO2 (atm)

692 4.4 10-23

793 2.9 10-21

Undoped UO2 Ar/10%H2 893 2.3 10-19

893 3.4 10-19

937 9.2 10-19

993 2.9 10-18

533 9 10-27

Ar cleansed of its residual oxygen 626 1.8 10-23

Cr-doped UO2 using an electrochemical zirconia 721 9.8 10-21

pump and such that the pO2 817 1.8 10-18

at 650°C was roughly 10-22 atm 912 1.5 10-16

1003 5.2 10-15

Table 4.1: Thermodynamic conditions under which the dependence upon tem-
perature of the electrical conductivity was evaluated.

Electrical conductivity as a function of oxygen partial pressure for subse-

quent chemical diffusion measurements

The following table presents the thermodynamic conditions in which electrical
conductivity either of Cr-doped or un-doped UO2 sample was characterized
as a function of oxygen partial pressure. In particular, we evaluated electrical
conductivity for oxygen partial pressures ranging between 10-19 atm and 10-11

atm and at two temperatures: 893°C and 993°C.

Any variation of conductivity is an indication that the composition of the
sample is changing. As a consequence, if the sample behaves intrinsically, any
variation of annealing atmosphere induces a change of the recorded electrical
conductivity signal. When a sample is at equilibrium with the atmosphere,
its composition and in particular its oxygen content is homogeneous. If a
change occurs in the composition of the surrounding atmosphere, the oxygen
surface concentration changes and the kinetics with which the sample even-
tually reaches a new equilibrium (tracked by the electrical conductivity mea-
surement) is determined by the oxygen (chemical) diffusion coefficient.

The thermodynamic conditions indicated with an asterisk in Table 4.2 are
those in which both electrical conductivity and chemical diffusion coefficient
measurements were carried out.
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T (°C)
pO2 (atm)

T (°C)
pO2 (atm)

Undoped
UO2

Cr-doped
UO2

Undoped
UO2

Cr-doped
UO2

893

2.3 10-19 1.0 10-19

993

2.3 10-18 1.9 10-18

3.4 10-19 2.1 10-18 2.8 10-15 5.9 10-18

2.8 10-18(*) 1.3 10-17 2.9 10-13 (*) 3 10-17

2.3 10-17(*) 1.3 10-16 8.4 10-13 (*) 9.2 10-17

2.4 10-16(*) 6.2 10-16 4.3 10-12 (*) 3.5 10-16

1.2 10-15 (*) 1.2 10-15 1.7 10-15

9.4 10-16 4.5 10-15 1.2 10-14

6.8 10-15(*) 2.5 10-14 7.9 10-14

2.4 10-13(*) 8.2 10-14 2.5 10-13

5.7 10-13 (*) 1.4 10-13 1.0 10-12

2.1 10-12 (*) 4.3 10-13 6.3 10-12

Table 4.2: Thermodynamic conditions at which we estimated electrical conduc-
tivity (and in same cases oxygen chemical diffusion coefficients) dependence
upon oxygen partial pressure.

4.1.3 Self-diffusion experiments

Oxygen self-diffusion dependence upon temperature

Table 4.3 presents the experimental conditions under which the oxygen self-
diffusion coefficients of chromium doped samples were characterised as a func-
tion of temperature. Four temperatures were studied at the lowest possible
oxygen potential. The carrier gas used is a mixture of Ar/10%H2, which is
then humidified by bubbling in water containing either ordinary distilled wa-
ter or enriched in 18O and maintained at a temperature of 5°C. The system set
up is that reported in Figure 2.2a) and the oxygen partial pressure was moni-
tored using an in-situ yttria stabilised zirconia probe placed at the furnace inlet
in close proximity to the sample holder.

Nature of sample
T (°C)

16O equilibrating anneal 18O diffusion anneal
studied t (h) pO2 (atm) t (h) pO2 (atm)

Cr-doped UO2 748 14.3 2.8±1 10-22 3 4.8±2 10-22

Cr-doped UO2 800 5 1.2±0.4 10-20 2.11 1.3±0.5 10-20

Cr-doped UO2 870 3.42 2.0±0.6 10-19 3 3.1±1 10-19

Cr-doped UO2 950 4.15 4.8±1.5 10-18 3 7.3±2.3 10-18

Table 4.3: Thermodynamic conditions imposed for annealing dedicated to the
oxygen self-diffusion activation energy study.
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Oxygen diffusion dependence upon pO2 at 800°C at low oxygen potentials

An identical experimental setup was used for the following diffusion experi-
ments involving chromium doped samples.

Nature of sample
T (°C)

16O equilibrating anneal 18O diffusion anneal
studied t (h) pO2 (atm) t (h) pO2 (atm)

Cr-doped UO2 800 5 1.2±0.4 10-20 2.11 1.3±0.5 10-20

Cr-doped UO2 800 2.5 2.1±0.9 10-20 16 2.1±0.9 10-20

Cr-doped UO2 800 6 1.3±0.5 10-19 14,3 1.1±0.4 10-19

Cr-doped UO2 800 3.15 2.8±0.8 10-19 2.05 3±1 10-19

Cr-doped UO2 800 12 2.6±0.9 10-17 1 2.9±0.8 10-17

Table 4.4: Thermodynamic conditions dedicated to the study of the oxygen
self-diffusion dependence upon oxygen partial pressure at a temperature of
800°C.

Oxygen diffusion dependence upon pO2 at 890°C and 990°C and at high oxy-

gen potentials

In the following set of experiments the configuration described in Figure 2.2b)
was used. In particular, the oxygen partial pressure was not only monitored
in-situ but also measured prior to the beginning and following the end of an
annealing sequence by diverting the humidified carrier gas over a short period
of time through a furnace maintained at 900°C and containing an air reference
yttria stabilised zirconia probe. During annealing, the gas outlet was continu-
ally monitored using this system.

Table 4.5 reports the thermodynamic conditions and anneal time applied dur-
ing the equilibration period and 18O-diffusion annealing carried out.
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N°
Nature of

sample
T (°C)

16O equilibrating anneal 18O diffusion anneal

t (h) pO2 before TT

(atm)

pO2 after TT

(atm)

t (min) pO2 before TT

(atm)

pO2 after TT

(atm)

1
Cr-doped

890 5 1.0±0.3 10-15 9.4±3 10-16 30 7.1±2 10-16 6.8±2 10-16

Undoped

2
Cr-doped

890 5 7.4±2 10-15 8.6±2 10-15 30 5.5±1 10-15 5.5±1 10-15

Undoped

3
Cr-doped

890 5 6.3±2 10-14 6.9±2 10-14 30 1.2±0.3 10-13 1.2±0.3 10-13

Undoped

4
Cr-doped

890 5 9.5±3 10-13 8.9±2 10-13 30 1.0±0.3 10-12 1.9±0.5 10-12

Undoped

5
Cr-doped

987 2.5 2.5±0.6 10-15 2.6±0.6 10-15 15 3.7±0.9 10-15 3.6±0.8 10-15

Undoped

6
Cr-doped

987 2.5 1.1±0.3 10-13 1.2±0.3 10-13 15 1.2±0.3 10-13 1.2±0,3 10-13

Undoped

7
Cr-doped

987 2.5 5.9±1 10-13 6.7±2 10-13 15 8.0±2 10-13 8.3±2 10-13

Undoped

8
Cr-doped

987 2.5 1.2±0.3 10-11 1.6±0.4 10-11 15 1.3±0.3 10-11 1.4±0.3 10-11

Undoped

Table 4.5: Oxygen partial pressures and temperatures for all self-diffusion mea-
surements at the highest oxygen partial pressures.

A typical annealing sequence corresponding to experiments described in Ta-
ble 4.5, is shown in Figure 4.1. It shows the oxygen partial pressure prior to
any treatment, during the equilibration period and following it, prior to the
diffusion anneal, during the diffusion anneal and following it.

Figure 4.1: Example of pO2 monitoring during diffusion experiment N°6
(987°C, 10-13 atm).
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Figure 4.1 shows that in the first instants of the equilibration period, the oxy-
gen partial pressure drops substantially. The oxygen partial pressure returns
to its expected value in about half an hour; this observation was systematic
and could be the result of adsorption of hydrogen molecules at the surface of
the sample holder and alumina rod on which the sample holder is attached
(see Figure 2.2), during the prolonged period when they are located in the cold
region of the furnace and exposed to a flowing gas mixture containing hydro-
gen.

Special care was taken to make sure that the samples were equilibrated under
exactly the same conditions as those used for the diffusion sequence proper,
i.e. isotopic exchange.

4.2 Results of electrical conductivity and oxygen chem-

ical diffusion measurements

4.2.1 Electrical conductivity

As seen previously, electrical conductivity provides an estimate of the hole
concentration in the sample which is related to the oxygen point defect con-
centration and hence its self-diffusion coefficient. This underlines importance
of collecting electrical conductivity data on the same sample sets as those used
for oxygen self-diffusion studies. Figure 4.2 reports the electrical conductiv-
ity measurements as a function of oxygen partial pressure collected at the two
temperatures of 893 and 993°C on Cr-doped and undoped UO2 samples. The
quality of such data is very much dependent upon the fact that sufficient time
is allowed for stable thermodynamic conditions to be reached. For aim of com-
parison, we added to our measurement points the literature data collected by
Ruello at 1000°C [162].

Compared to the undoped samples, the high amount of doping agents in our
Cr-doped sample set induces an increase of electrical conductivity of about
one order of magnitude. The collected data enables us also to verify the oxy-
gen partial pressure range in which our Cr-doped samples show an extrinsic
behaviour. For a temperature equal either to 893°C or 993°C electrical conduc-
tivity is fixed by the doping agent concentration up to oxygen partial pressures
which may be estimated at between 10-12 and 10-11 atm. This fact will be useful
for the analysis of oxygen self-diffusion coefficients. In fact, even at high val-
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Figure 4.2: Electrical conductivity of un-doped and Cr-doped UO2: depen-
dence upon oxygen partial pressure at different values of temperatures and
comparison of the data with those of Ruello [162]

ues of oxygen partial pressures, the hole concentration is a constant function of
oxygen potential and has the same impact upon the oxygen self-diffusion coef-
ficient at all oxygen partial pressures (as suggested by equation 1.8). However,
the chemical diffusion coefficient cannot be determined in a range of oxygen
partial pressures in which the electrical conductivity of the sample does not
change.

Conversely, our undoped polycrystalline UO2 sample behaves differently.
As we can see in Figure 4.2, the extremely low impurity content present inside
this type of samples induces a transition to the intrinsic region at much lower
oxygen partial pressures than our Cr-doped samples. Comparison of our data
with those of Ruello [162] demonstrates that impurities are present in both
these samples in similar quantities.

Electrical conductivity data obtained by exposing the sample to the most
reducing atmosphere allows to evaluate the characteristics of hole mobility.
Next sections aims to present our results and compare them to the data of
Fraczkiewicz [73] who studied similar sample sets.

4.2.2 Hole mobility study

The study of the hole mobility can be carried out by analysing conductivity
data collected under the most reducing atmosphere. In fact, if the contribution
of electrons is negligible compared to that of holes, Equation 3.1 can be written
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as follows:

log (σT ) = log (µ0e [h°])− ∆Hm

ln (10) · kBT
(4.1)

Therefore, following equation 4.1, the Arrhenius representation of the quan-
tity log(s✈T) allows to directly deduce hole mobility activation enthalpy ❉Hm

and to indirectly estimate the hole concentration [h°] assuming µ0 to be known
(evaluated in Chapter 3 at roughly 0.26 m2K/V·s). Note that if the material be-
haves extrinsically, [h°] is determined by the impurity content y (see Equation
3.21).

Figure 4.3a) and b) reports the Arrhenius dependence of log(s✈T) we found
respectively for our Cr-doped and undoped specimens together with the data
collected by M. Fraczkiewicz [73] on the same sample sets.

a) b)

Figure 4.3: Dependence of Cr-doped (a) or undoped (b) UO2 sample conduc-
tivity upon temperature

Our values of conductivity are identical to those of Fraczkiewicz [73], within
the 10% systematic uncertainty which is estimated based on the precision with
which one is capable of determining the distances between connecting wires
(see Chapter 2, §2.3.3). The extrinsic behaviour of our Cr-doped sample is
clearly visible in Figure 4.3a). Conversely, Figure 4.3b) shows that the contri-
bution of the thermally activated holes becomes comparable to those produced
by impurities at about 800°C. Consequently, an estimate of the impurity con-
tent of the undoped samples can be carried on only with the analysis of the
data collected at low temperatures (dash black curve of Figure 4.3b)).

Table 4.6 reports our estimates of ❉Hm and of (♠0· y). Our values are in great
correspondence with the ones found by Fraczkiewicz.
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Sample kind
❉Hm (eV) (♠0· y) (at·K·m-1·V-1·s-1)

This work [73] This work [73]

Cr-doped UO2 0.22 0.22 1.2 1025 1.1 1025

Un-doped UO2 (LT) 0.23 0.23 6.1 1023 6.6 1023

Un-doped UO2 (HT) 0.91 0.95 8.0 1026 8.5 1026

Table 4.6: Hole activation enthalphy and (♠0 x y) estimates obtained based on
electrical conductivity data: our values are compared to those of Fraczkiewicz
[73] assuming an adiabatic hopping process.

4.2.3 Oxygen chemical diffusion

As seen in Chapter 1, oxygen chemical diffusion (hereafter indicated as D̃)
measurements are also an indication of the defects present in non-stoichiometric
UO2+x. Out of equilibrium electrical conductivity measurements following an
abrupt change in the oxygen potential surrounding the sample enabled us to
estimate this physical quantity.

To estimate D̃, we proceed as follows: the electrical conductivity of the sample
is measured every 5 minutes following a change in the gas flow rates to an
appropriate value, until it stabilises to a different value. Data are analysed by
plotting the natural logarithm of the ratio σ(t)−σ∞

σ0−σ∞

against time (see Equation
1.9 in Chapter 1): the slope of the graph obtained provides an estimate of D̃.
The next figure shows an example of this analysis.

a) b)

Figure 4.4: Change with time of the conductivity of an un-doped UO2 sample
maintained at 893°C following a change in the oxygen partial pressure from
2.3·10-13 to 5.3·10-13 atm: a) Comparison between the simulated and the exper-
imental curve; b) Determination of the oxygen chemical diffusion.

Table 4.7 reports the values obtained for chemical diffusion coefficients of un-
doped samples.
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T = 893°C T = 993°C

Rejoined pO2 (atm) D̃ (m²/s) Rejoined pO2 (atm) D̃ (m²/s)

2.8 10-18 5.4 10-10 2.9 10-13 1.1 10-9

2.3 10-17 7 10-10 8.4 10-13 8.4 10-10

2.4 10-16 6.1 10-10 4.3 10-12 3.6 10-10

1.2 10-15 6 10-10

6.8 10-15 5.3 10-10

2.4 10-13 3.9 10-10

5.7 10-13 3.1 10-10

2.1 10-12 1.4 10-10

Table 4.7: Estimates of oxygen chemical diffusion coefficients for different val-
ues of pO2.

Figure 4.5 shows the oxygen chemical diffusion coefficients reported in Ta-
ble 4.7 as a function of the final oxygen partial pressure. The major source of
uncertainty for all data reported here is given by the error affecting electrical
conductivity measurements (we remind again to Chapter 2, §2.3.3 for details).

Figure 4.5: Dependence of UO2+x oxygen chemical diffusion coefficient upon
pO2 at two different temperatures: 890°C and 990°C.

While at low oxygen partial pressures oxygen chemical diffusion remains more
or less independent of oxygen partial pressure, it appears to decrease substan-
tially at the higher oxygen potentials, i.e. in the intrinsic region proper. For
both temperatures studied (893°C and 993°C), the last three points collected
appear to form a straight line the slope of which is estimated at -0.48 and -
0.42. These values seems to indicate that for oxygen potentials between 10-13

and 10-11 atm D̃ is proportional to pO2
-1/2. However, following Equation 1.7, a
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through analysis of the oxygen chemical diffusion requires the determination
of the oxygen self-diffusion coefficients in undoped samples annealed under
identical thermodynamic conditions and the evaluation of the thermodynamic
factor ❣. Analysis of the data in Figure 4.5 is therefore deferred to Chapter 6.
The next section reports the determination of oxygen self-diffusion coefficients.

4.3 Results of oxygen self-diffusion experiments

As reported in Chapter 2, oxygen tracer diffusion profiles are determined ex-
perimentally by depth profiling with Secondary Ion Mass Spectrometry. Crater
depths required to determine the sputtering rates are characterised using chro-
matic confocal microscopy. Oxygen diffusion coefficients are then determined
by fitting Fick’s 2nd law to the experimental tracer profile. The next sub-sections
present the results obtained; interpretations are postponed to Chapter 6.

4.3.1 Experimental determination of 18O diffusion profiles

Sample characterisations were carried out using the SIMS IMS 6f Cameca in-
strument at CEA Cadarache. The optimisation of ion-beam conditions is a
relatively long and delicate process: paragraph §2.4.3.1 provides all the details
required prior to carrying out an oxygen depth profile. In our experiments the
collected secondary ions are the oxygen isotopes 16O and 18O and some ionic
species characteristic of sample matrix, such as 235U and 52Cr. The 18O relative
concentration profile is then determined by calculating the 18O isotope frac-
tion of the total oxygen content (sum of the 16O and 18O signals). Note that a
quantitative analysis is therefore possible as the ionisation yields for both these
isotopes are identical.

Once the time-dependent SIMS data is converted into depth profiles (see §2.5.1),
18O profiles were successively simulated using Fick’s law (see section §2.5.2 or
Appendix B for details). Two examples of the profiles obtained are reported in
the following Figure.
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a) b)

Figure 4.6: Example of an ideal 18O depth profile (a) and one corresponding to
a sample that has suffered from 18O bulk contamination during the equilibrium
annealing sequence (b): profile a) is that of a sample annealed at 800°C, 1.3 10-20

atm; the profile b) is of a sample annealed at 890°C, 5.5 10-15 atm.

As indicated in Figure 4.6, in some cases (Figure b), the collected 18O depth
profiles do not follow a simple erf function: 18O is present at relatively high
concentrations in the bulk of the sample. The reason for this is assumed to be
that the sample was contaminated with 18O during the equilibration stage due
to residual 18O adsorbed during previous experiments onto the surrounding
materials (quartz tube and alumina sample holder rod). This residual 18O may
then be released during the equilibration stage and may contaminate the sam-
ple. During this equilibration stage, the carrier gas mixture is humidified with
ordinary distilled water (H2

16O). Under such circumstances, the oxygen self-
diffusion phenomenon corresponding to the diffusion anneal proper is visible
only on the first points of the 18O depth profile. We have therefore deduced
self-diffusion coefficients, whenever contamination was apparent, by repro-
ducing the first few data points only; we assume in this case that the initial
conditions are given by depth profiles determined towards the tail end of the
18O profile.

Diffusion coefficients and isotopic exchange coefficients were determined
for up to three or four SIMS depth profiles per sample. From a set of values
corresponding to a single sample (i.e. several craters), an average diffusion co-
efficient and its corresponding standard deviation is evaluated. In some cases,
a more complex procedure was applied which involved generating for a given
crater up to twenty depth profiles, obtained from the experimentally deter-
mined sputtering rate distribution (which constitutes the main source of error,
see Chapter 2) and determining for each of these depth profiles a different dif-
fusion coefficient.

In the following subsections, the oxygen diffusion coefficients are presented as
a function of the thermodynamic conditions.
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4.3.2 Oxygen diffusion dependence upon temperature

The oxygen diffusion coefficients for samples annealed in conditions presented
in Table 4.3 are reported in an Arrhenius representation in Figure 4.7. This
figure also shows the oxygen diffusion coefficients previously published [68]
for UO2 sample sets containing different impurity levels.

Figure 4.7: Comparison between oxygen diffusion coefficients evaluated for
Cr-doped samples with the ones reported in [68] for different UO2 samples
containing different impurity levels. Single crystals are characterized by a high
level of impurity content.

Figure 4.7 shows that oxygen diffusion coefficients of our Cr-doped samples
follow an Arrhenius dependence quite similar to the one found for UO2 sam-
ples containing high levels of impurities. The slope gives an indication of the
oxygen diffusion activation energy: in the case of our doped sample, activation
energy is equal to 3±0.2 eV, quite comparable to the estimates found by Dorado
et al. [68] for their un-doped sample sets (equal to 3.26 and 3.22 eV). However
one should employ extreme caution when interpreting such activation ener-
gies (as explained in Chapter 3) since this activation energy is primarily due to
the dependence upon the oxygen partial pressure of the defect concentration
in the samples.
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4.3.3 Oxygen diffusion dependence upon pO2 at low temper-

ature (800°C)

Here we report the results relative to the oxygen diffusion coefficient depen-
dence upon pO2 at 800°C. The following figure shows the oxygen diffusion
coefficients obtained and their comparison to the results of B. Dorado et al.

[68] at 900°C. Comparison is possible because as the Cr-doped samples used
in this study were manufactured and their surface prepared in the same way
as those previously studied [68] (samples were cut and progressively polished
with silicon carbides cloths, diamond paste and OPU paste - see section §2.1).

Figure 4.8: Comparison of the oxygen diffusion coefficient dependence upon
pO2 obtained at 800°C with results obtained for samples annealed at 900°C
[68].

Figure 4.8 allows us to visualize the strong differences that exist between the
pO2 dependences at the two analyzed temperatures. It shows that the 900°C
published data are on a straight line the slope of which is ½, fact that suggests
an interstitial controlled diffusion mechanism. At 800°C however, our oxygen
self-diffusion coefficient does not follow a similar trend possibly indicating the
presence of a different type of defect. At the four lowest oxygen partial pres-
sures, oxygen self-diffusion coefficients have similar values (roughly 5 10-18

m²/s). Also at higher oxygen partial pressures, the data do not seem to line up
in a straight line with a slope of ½. In Chapter 6 we attempt to rationalise these
results using the model presented in Chapter 3.
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4.3.4 Oxygen diffusion dependence upon pO2 at high oxygen

potentials

Figures 4.9 and 4.10 indicate the oxygen self-diffusion coefficients measured
for different oxygen partial pressures at 890°C and 990°C respectively. For
the lowest temperature, the data corresponding to our Cr-doped samples are
plotted together with previously published results [68] for comparison. Note
however that samples studied here were not subjected to the last OPU polish-
ing stage as were those presented in [68].

a) b)

Figure 4.9: Oxygen self-diffusion coefficient dependence upon oxygen partial
pressure for an annealing temperature of 890°C: graph a) corresponds to Cr-
doped samples; graph b) to undoped samples.

a) b)

Figure 4.10: Oxygen self-diffusion coefficient dependence upon oxygen partial
pressure for an annealing temperature of 990°C: graph a) corresponds to Cr-
doped samples; graph b) to undoped samples.

As we can see in Figures 4.9 and 4.10, the absolute values of oxygen diffusion
data found in this work at 890°C and 990°C differ significantly from the data
previously published by [78, 68]. It is difficult at this stage to explain the dis-
crepancies observed in Figures 4.9 and 4.10 and we shall differ the discussion
relative to the possible causes of these discrepancies until Chapter 6.
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At 890°C the trend followed by the O diffusion coefficient for Cr-doped sam-
ples changes beyond an oxygen partial pressure of 10-15 atm. We can therefore
imagine that beyond 10-15 atm the predominant oxygen defect is no longer the
isolated interstitial. The trend followed by undoped samples is similar: oxygen
diffusion strongly lowers between 5.5 10-15 and 1.2 10-13 atm.
At 990°C oxygen diffusion behaves differently. For Cr-doped samples, as we
can see in Figure 4.10a), until 10-12 atm the diffusion coefficients increase for
increasing values of oxygen partial pressure; then, at about 10-11 atm, they de-
crease substantially. Undoped samples follow a similar trend: the slope of 0.46
seems to confirm the interstitial mechanism for oxygen diffusion for oxygen
potentials as high as 1.2 10-13 atm. Beyond this value, oxygen diffusion coef-
ficients progressively decrease with increasing values of oxygen partial pres-
sures.
To conclude, we can say that for both the sample sets studied there appears to
be an oxygen potential threshold beyond which oxygen diffusion coefficients
decrease substantially. In other words, at high oxygen potentials oxygen self-
diffusion in UO2 appears to be inhibited. We attempt to interpret these obser-
vations in Chapter 6.

4.4 Conclusions

This chapter is dedicated to the study of oxygen and electrical transport prop-
erties in UO2+x: in particular, we assessed UO2+x oxygen self- and chemical
diffusion coefficients and their dependence upon temperature and oxygen po-
tential in an attempt to probe the nature of defects and their influence upon
oxygen diffusion phenomena. Cr-doped and undoped UO2 polycrystalline
samples were annealed under controlled atmospheres and quenched to fix
their composition. Oxygen diffusive spreading was studied using 18O tracer
isotopes characterized following each experiment with SIMS. The experimen-
tally evaluated profiles were simulated using Fick’s 2nd law and oxygen self-
diffusion coefficients were evaluated.

Basically two studies were performed, one for which oxygen self-diffusion
coefficients were measured at fixed temperature (800°C, 890°C and 990°C) as a
function of oxygen partial pressure. These experiments were carried out on Cr-
doped and un-doped samples at 890°C and 990°C and on Cr-doped samples
only at 800°C. Electrical conductivity of Cr-doped and undoped samples were
determined in parallel as a means to estimate hole concentrations. At both tem-
peratures studied, Cr-doped samples behave extrinsically until 10-12-10-11 atm
circa. Since in the range of pO2 in which the diffusion coefficients are measured
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the hole concentration is determined by the Cr concentration, the evaluation
of oxygen self-diffusion dependence upon oxygen potential can be evaluated
by directly plotting the estimated oxygen diffusion coefficients as a function of
oxygen partial pressures. Conversely, the low impurity content polycrystalline
material shows an intrinsic behaviour at 890°C and 990°C. This enabled us to
estimate the oxygen chemical diffusion coefficients. In agreement with [162],
we showed that oxygen chemical diffusion decreases for increasing values of
oxygen potentials.
The second study involved measuring diffusion coefficients for doped sam-
ples only as a function of temperature in an extrinsic regime in order to gen-
erate data relative to activation energies. The activation energy for Cr-doped
samples in this regime was estimated at 3±0.2 eV which is quite comparable to
the values reported in literature for samples [68] containing various levels of
doping agents.

The interpretation of oxygen transport data presented here is carried out in
Chapter 6: we base our analysis on the use of the point defect model devel-
oped in Chapter 3. This general discussion of results, established in the light
of oxygen transport property measurements, is enriched with results from
the characterisation of the electronic structure of UO2+x which is the object of
the following Chapter. In it, we look at results from X-ray Absorption Spec-
troscopy experiments carried out on higher oxide reference phases and UO2+x

samples to gain insight into the effect of oxidation upon the electronic structure
of UO2+x and the local environment of oxygen atoms.





Chapter 5

Evaluation of the oxidation effect on

the electronic structure of uranium

oxides by XAS

This chapter aims to evaluate how oxidation impacts the electronic structure
of different phases of the U-O system, i.e. the modifications of the density of
states (electronic structure) that are induced by hyperstoichiometry and asso-
ciated atomic local environments.

The first part of this chapter is dedicated to our reference oxide phases. After a
description of the sample preparation and XRD characterization, XAS results
at the oxygen K- and uranium N-edges are detailed. The experimental results
obtained are compared to ab-initio simulations and existing neutron diffraction
experiments.
The second part of this chapter is dedicated to the electronic structure of UO2+x

specimens based on the analysis of our reference samples.

5.1 Sample preparation and XRD analysis of U4O9

and U3O7 reference phases

Our aim now is to produce stoichiometric reference samples (U4O9 and U3O7)
so that UO2+x data may be analysed. In the first part of this section a brief
review of literature studies relative to the oxidation of UO2 is carried out to
determine the most adapted procedure for producing these phases. Thermally
treated samples are then characterized by XRD to evaluate their structure.
Higher oxide phases will be the object also of the XAS characterization: XAS
spectra of our specimens are used as reference to interpret XAS spectra col-
lected on UO2+x. But despite their importance, no literature data on U4O9 and
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U3O7 are available; in fact, past studies report XAS O K- and U N-edges data
on UO2 only [103, 131, 187].

5.1.1 Choice of the most relevant method for transforming UO2

into higher oxide phases

As seen in section §1.1.1.3, the transformation of UO2 to U3O8 can be easily
attained: for example, U3O8 powder can be obtained by heating a sintered
UO2 sample at low temperature (i.e. 250°C) under air. However, producing
U4O9 and U3O7 requires a stricter control of the thermodynamic conditions.
Three methods were initiallty selected:

1. Garrido et al. [79], W. Van Lierde et al. [123, 124] and Masaki and Ishii
[133] produced a U4O9 single crystal by the method of “oxygen transfer”.
Calculated amounts of stoichiometric UO2 single crystals and U3O8 pow-
ders were placed in a quartz tube and heated for one month at T=1100°C
under vacuum so that the final composition was expected to be 2.242 ±
0.001. This results in the oxidation of the UO2 single crystal into U4O9−y

by the excess oxygen. The induced phase transition was then checked
by the mentioned authors characterizing the oxidised sample by neutron
diffraction.

2. Willock and Pearce [180] annealed UO2 polycrystalline samples under
different oxygen potentials (corresponding to an O/M ratio between 2.05
and 2.12) and at different temperatures ( in the 600°C-1200°C range). Fol-
lowing annealing, samples were cooled down very slowly to the ambient
temperature. With this method, authors observed by XRD that UO2 and
U4O9 phases coexist, as expected from the phase diagram shown in Fig-
ure 1.2 of Chapter 1. SEM analyses demonstrated also that needles of
U4O9 are located at the boundaries of UO2 grains.

3. U3O7 or U4O9 layers on a UO2 substrate can be created by annealing UO2

specimens at low temperatures (T<400°C) under oxidising atmospheres
(i.e. air or Ar + 150 ppm of O2). This method was applied to pellets
[34, 137, 172, 178, 158] or powders [23, 95, 137, 156, 161].

X-rays corresponding to the oxygen K-edge have an energy of 532 eV (see
§2.4.2.1) and can penetrate the sample over 0.1 µm only [131]. At these en-
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ergy conditions, XAS characterization can be considered a surface technique
and consequently, a surface layer 1 µm thick is quite sufficient for our XAS
experiments. Safety rules at the CLS (Canadian Light Source) beamline where
experiements were carried out require bulk samples to be used as opposed to
powders.

5.1.2 Production of a higher oxide layer on UO2 specimen sub-

strate

Our choice of conditions to produce either U4O9 or U3O7 was defined through
the analysis of weight gain curve of UO2 annealed in air. One such example is
given in Figure 5.1.

Figure 5.1: Weight gain curve of a UO2 powder annealed at 250°C under air
[161].

It was demonstrated [161] that under air and below 250°C UO2 powders ox-
idize to U4O9 before transforming into U3O7 (see Figure 1.7). However, the
annealing conditions to produce U4O9 exclusively cannot be deduced from a
UO2 weight gain curve (as the one presented in Figure 5.1). In fact, a sample
with an O/M ratio equal to 2.25 can be either exclusively composed of U4O9

or a mixture of UO2 and U3O7. Conversely, the U3O7 phase unequivocally cor-
responds to an O/M ratio equal to 2.33 (see the plateau region of Figure 5.1): as
a consequence, the annealing conditions to obtain a U3O7 phase can be more
easily determined from a weight gain curve.
Several attempts were made at producing either U4O9 or U3O7 from UO2 sam-
ples. Following Rousseau et al. [161]’s study of UO2 powders, two thermal
treatments of 3 and 5 hours at 250°C were carried out. In addition to them, the
thermal treatment suggested in [63] of 90 minutes at 300°C was also tested.
Concerning U4O9 three different annealing conditions were tested. Firstly, we
applied the conditions reported by C. Viaud in [178] who demonstrated that a



1185. Evaluation of the oxidation effect on the electronic structure of uranium oxides by XAS

20 hour annealing at 170°C does not lead to the production of a U3O7 layer on
a UO2 substrate. Secondly, a UO2 sample was annealed at 250°C for 1 hour. In
a powder sample these annealing conditions seem to correspond to an O/M
ratio equal to 2.25 [161] (see Figure 5.1). Because the oxidation kinetics of a
powder is exepected to be much greater than that of a sintered sample [137]
hour attempt to oxidize the surface of a UO2 sample to U4O9 was carried out
at a lower temperature (200°C) with 1 hour of hold time. Table 5.1 summarizes
the conditions tested.

Sample N°
Annealing conditions

Desired phase
Temperature (°C) Duration (h)

1 250 3
U3O72 250 5

3 300 1.5
4 170 20

U4O95 250 1
6 200 1

Table 5.1: Annealing conditions used to produce a oxidised layer on a UO2

substrate under air.

All of these thermal treatments are carried out on UO2 samples in a furnace
under air. At the end of the annealing period, samples were quenched by
extracting them as quickly as possible. The oxidised samples were observed
by optical microscopy to determine whether annealing had affected the sample
surface. Figure 5.2a) is representative of our annealed samples, while Figure
5.2b) represents the surface of a sample converted into U3O8 [158].

a) b)

Figure 5.2: Comparison between the optical microscopy images of the our an-
nealed UO2 sample surface (case of sample n°4) - image a) - and of the surface
of sample whose surface has been transformed to U3O8 [158] - image b).
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As shown in Figure 5.2a), our samples are homogeneous: their surface shows
no obvious microstructural modifications. Conversely, Figure 5.2b) shows that
oxidation of UO2 into U3O8 induces the exfoliation and cracking of the sam-
ple surface. Consequently, the comparison of these two images leads us to
suppose the complete absence of the U3O8 phase in our annealed samples.

5.1.3 XRD characterization

5.1.3.1 Results

XRD characterization in the ❥-2❥ Bragg-Brentano configuration confirmed the
absence of the U3O8 phase. A slight contamination by CaCO3 was neverthe-
less observed in all our annealed samples. As shown in Figure 5.3, in the ❥-
2❥ configuration we were able to verify the appearance of a thick U3O7 layer
on specimens n°2 and n°3. Conversely, the diffractogrammes collected on the
other annealed samples show no significant differences with the one collected
on UO2 reference.

Figure 5.3: Comparison between the 220 Bragg line acquired on samples n°2
and n°3 with the UO2 reference.

In the ❥-2❥ configuration with ❥=47° (corresponding to the UO2 220 Bragg
line) we probed a sample thickness of 1.22 µm. In a ❥in–❥out configuration, a
smaller incidence ❥in enhances the contribution of the atomic layers closer to
the sample surface (see §2.4.1). Therefore, this configuration should help to
characterise the possible presence of a higher oxide layer on the UO2 annealed
surface. After fixing ❥in at 5°, we were able to probe a sample thickness of only
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about 0.26 µm. The best results obtained are represented in Figure 5.4: there,
we compare the 220 Bragg line collected on the reference sample with the one
corresponding to specimens n°1, 4, 5 and 6.

Figure 5.4: Comparison between the 220 Bragg line corresponding to annealed
samples with the UO2 reference. Annealing at 250°C leads to the formation
of U3O7, while the counting statistics doesn’t allow us to conclude as to the
possible presence of U4O9 formed during annealings done at the two lowest
temperatures.

5.1.3.2 Discussion of XRD results

As reported in §1.1.1.3, the U3O7 phase is tetragonal. Its crystalline features in-
duce a splitting of some diffraction peaks (such as the Bragg lines 200, 220, 131).
Therefore, the split peaks positioned at 47.45° and 47.8° in the ❥-2❥ diffrac-
togrammes of Figure 5.3 enables us to conclude that a U3O7 layer has formed
on annealed samples n°2 and n°3.
The diffractogrammes collected with the ❥in–❥out geometry (see Figure 5.4) do
not clearly indicate the presence of a U4O9 layer. The similar lattice parameters
and the same cubic structure of UO2 and U4O9 result in Bragg lines positionned
at almost identical angles. Moreover, Figure 5.4 demonstrates the presence of
U3O7 on all samples annealed at 250°C; for the same annealing temperature the
increase in annealing time induces an increase of the oxidized layer thickness.
To discuss these results critically, all the collected diffractogrammes were anal-
ysed with the FullProf software [5] in the FullPatternMatching mode. This
analysis consists in reproducing with an analytical function the collected XRD
spectra through the refinement of the lattice parameters of the phases that
the sample contains. The refinement procedure was applied to the diffrac-
togrammes collected on the annealed and reference specimens. Figures 5.5
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and 5.6 report the simulation of the XRD spectra collected for samples n°3 and
n°6, while the determined lattice parameters are indicated in Table 5.2. Once
again, we cannot clearly detect a U4O9 phase from the diffractogrammes col-
lected on the UO2 samples annealed at 170°C and 200°C. Their simulations are
however carried out with the insertion of the U4O9 phase.

Sample N° ◗2 UO2 U4O9 U3O7

a (nm) a (nm) a (nm) c (nm)
2 27.8 0.547 — 0.538 0.542
3 26.8 0.547 — 0.539 0.542
4 2.2 0.547 0.545 — —
6 5.5 0.546 0.545 — —

UO2 Reference 57 0.547 — — —
Theoretical values — 0.547 0.544 0.533 0.553

Table 5.2: FullProf estimates of the lattice parameters of the phases present in
annealed samples.

Figure 5.5: Simulation with the tool provided by the FullProf software of the
diffractogramme acquired on the sample annealed at 300°C for 1 hour and half.
It shows the presence of three phases: UO2 (substrate), CaCO3 (impurity) and
U3O7 (created layer).



1225. Evaluation of the oxidation effect on the electronic structure of uranium oxides by XAS

Figure 5.6: Simulation with FullProf software of the diffractogramme acquired
on the sample annealed at 200°C for 1 hour. The fitting procedure was devel-
oped using three phases: UO2 (substrate), CaCO3 (impurity) and U4O9.

Results concerning U3O7 phase are in agreement with literature. As reported
in [63, 161], under our annealing conditions this oxide phase is expected to
form. Moreover, the refinement shows clearly that the created U3O7 phase is
distorted along the c axis. In fact, the c parameter of the surface layer (0.542
nm) is close to the lattice parameter of UO2, but different from its theoreti-
cal value (0.553 nm), which demonstrates in agreement with [61, 161] that the
growth of U3O7 on a UO2 substrate is accommodated through a distortion of
the FCC lattice.

On the other hand, the presence of U4O9 on the samples annealed at the two
lowest temperatures cannot be either confirmed or excluded. However, from
Figure 5.4, the probable presence of U3O7 traces on the samples lead us to
expect the formation of a U4O9 layer on the UO2 substrate as U4O9 is an inter-
mediate oxidation product between UO2 and U3O7 [161].

As a conclusion, we can confirm that we have succeeded in producing sam-
ples with a U3O7 layer. Conversely, XRD results on the samples dedicated to
the production of U4O9 are not conclusive. The XAS spectra collected at the
oxygen K- and uranium N-edges on these samples will allow us to conclude
as to the presence of U4O9. XAS characterization of all of these samples is
described in the following section.
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5.2 XAS characterisation on the reference compounds

UO2, U3O7 and intermediate phase

This section summarizes the most important XAS characterisation results of
samples presented in the previous section . All our annealed samples (the ones
reported in Table 5.1) together with a UO2 reference were characterized at the
oxygen K edge (electronic transition: 1s→2p) and uranium N4,5 (transitions:
4d3/2→ 5f5/2 and 4d5/2→5f7/2) and N6,7 edges (4f5/2→6d3/2 and 4f7/2→6d5/2), to
respectively probe the oxygen 2p and uranium 5f and 6d orbitals. We refer the
reader back to section §2.4.2 (Chapter 2) for the technical details relating to this
type of characterization.

5.2.1 Oxygen and Uranium local environment in UO2 and higher

oxides

The local environment of oxygen and uranium atoms in UO2, U4O9 and U3O7

was estimated inserting in the Artemis software [8] the spatial coordinates of
all the atoms constituting the elementary cell of each phase considered. For
UO2, the spatial coordinates of uranium and oxygen are respectively taken
equal to (0, 0, 0) and (1

4
, 1

4
, 1

4
). For U4O9 and U3O7, the atomic arrangements

given by L. Desgranges et al. [61] were used. For the elementary cell of U4O9,
the authors determined the atomic coordinates of 14 oxygen and 7 uranium
atoms. For U3O7 they defined the atomic coordinates of 44 oxygen and 16 ura-
nium atoms. All the reported atomic coordinates were inserted in the Artemis
program to calculate the coordination spheres around each oxygen or uranium
atom present in the elementary cell of these phases. Oxygen and uranium
neighbour polyhedra are here represented using the VESTA [9] software.

First we focus our attention on oxygen: Figure 5.7 represents the first two
coordination spheres of oxygen atoms in UO2.

As shown in Figure 5.7a), in UO2 oxygen are firstly surrounded by 4 ura-
nium atoms, disposed at the vertexes of a tetrahedron at a distance of 2.369 Å.
Figure 5.7b) describes the second coordination sphere, with 6 oxygen atoms at
a distance of 2.375 Å. The local environment of oxygen in U4O9 and U3O7 is
more complicated to picture, because of the high number of atoms composing
their elementary cells: 828 for U4O9 and 848 for U3O7. Despite this, in U4O9

many of the defined oxygen atoms have a local environment quite similar to
that of UO2. In fact, they are firstly surrounded by 4 uranium atoms, at a dis-
tance ranging between 2.25-2.6 Å; their second neighbours are 6 or 7 oxygen
atoms at a distance ranging between 2.6 and 3 Å. These atomic coordination
shells is consistent with the fact that U4O9 keeps a cubic symmetry, although
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a) b)

Figure 5.7: Representation of the first (graph a) and second (graph b) neigh-
bours of oxygen in UO2. Oxygen is represented in red, uranium in grey and
coordination polyhedra in yellow.

it contains a higher number of oxygen atoms. The oxygen local environment
in U3O7 is more difficult to ascertain because of the high number of oxygen
atoms in the elementary cell (594) and the departure from cubic symmetry.

Figure 5.8 represents the local environment of uranium in the UO2 phase.

a) b)

Figure 5.8: Representation of the first (graph a) and second (graph b) neigh-
bours of uranium in UO2.

As represented in Figure 5.8, in UO2 a uranium atom is firstly surrounded
by eight oxygen atoms, disposed at the verteces of a cube at a distance of 2.369
Å. Then come 12 uranium atoms, at a distance of 3.868 Å. In the higher oxides
phases considered here, a uranium atom is always surrounded by more than
eight oxygen atoms. In U4O9 there are ten, eleven or twelve depending on the
uranium atom considered in the elementary cell; in U3O7, their number ranges
between 11 and 16. All these oxygen atoms are at variable distances from the
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central uranium atom: in U4O9 the distances range between 2.2 and 3.6 Å,
while in U3O7 they range between 1.7-4 Å. Also in this case all these anions
are disposed in a geometry that is difficult to determine. Like in UO2, in these
higher oxides, the second neighbours of uranium are always twelve uranium
atoms. Both in U4O9 and U3O7 they lie between 3.7-4.3 Å away.

To conclude, in higher oxides, cation coordination shells are almost identi-
cal to the ones in UO2 and composed by the same number of uranium atoms,
while the number of nearest neighbour oxygen atoms increases and their po-
sitions are strongly modified by oxidation.

5.2.2 Calculation details

First principle simulations of UO2 and UO2+x have been used to guide us in the
interpretation of the XAS data as they provide electronic structure information
which may be compared to experimental data. These DOS calculations were
carried out in the laboratory by E. Vathonne under the supervision of M. Freyss
[176]. The following systems were studied :

• UO2 with a perfect fluorite structure (reference DOS)

• UO2 with an oxygen interstitial

• UO2 with an oxygen di-interstitial

These calculations are performed in the framework of DFT using the projector
augmented wave (PAW) method implemented in the VASP code [35] in the
GGA approximation. The DFT+U formalism [122] was used to account for the
strong Coulomb interactions between 5f electrons. In all calculations, the U
and J parameters of the DFT+U approximation were set to 4.5 and 0.5 eV re-
spectively as estimated from analyses of X-ray Photoemission Spectra carried
out by Kotani [112].
Calculations were carried out on a 96 atom supercell. The actual paramagnetic
order observed above the Néel temperature (30 K) [119] is approximated by a
1k AntiFerromagnetic order [16, 72]. Calculation of oxygen and uranium DOS
were made both with neutral and negatively charged supercells. However,
only simulations carried out for neutral supercells are reported in this chapter.
Such supercells are more representative of our system: in neutral supercells
in fact local charge compensation occurs on uranium atoms adjacent to the
oxygen defect, inducing the uranium valence to increase for the presence of
additional charged defects. Conversely, negatively charged cells forces cations
to assume a valence of 4+ and don’t allow us to appreciate the influence of
cation valence variation on UO2 electronic structures.
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All the DOS hereafter represented are calculated additioning all the electronic
structures respectively of oxygen or uranium atoms present in the supercell.
This representation is the most representative of our system, as oxygen (or
uranium) XAS signal convolutes all the anions (or cations) constituting the
sample. In case of oxygen, XAS averages the contributions of both atoms of the
lattice and the defects. In case of uranium, XAS averages the signals coming
from cations with a 4+ valence with the ones of valence 5+.

Because the experiments provide a picture of the empty electronic states,
the DOS are plotted from the top of the valence band only.

5.2.3 Experimental and theoretical results obtained for UO2

We now compare the UO2 XAS spectra to the calculated DOS with the results
available in literature. Figure 5.9 reports the fluorescence (fY) and total elec-
tron yield (TeY) O K-edge XAS spectra collected on our reference presumably
stoichiometric UO2 which we compare to the total electron yield spectrum re-
ported by Jollet et al. [103]: note this spectrum was shifted of 2.3 eV to enable
a direct comparison to our data. Table 5.3 summarizes the peak position ener-
gies: the error associated with reported energies is ±0.1 eV.

Figure 5.9: UO2 oxygen K-edge XAS spectra: comparison between our data (
collected in fY and TeY modes respectively) and the TeY spectrum reported by
Jollet [103]
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Spectrum
Peak Positions

a b c d e

fY mode - this work 531.0 533.0 533.6 539.0 539.8
TeY mode- this work 531.2 533.2 534.4 — 539.4

TeY mode [103] 530.85 532.95 534.5 — 539.2
A B C D E

fY mode - this work 542.9 545.3 550.0 553.6 565.8
TeY mode- this work 543.2 545.4 549.4 553.6 566.2

TeY mode [103] 543.2 545.4 549.15 554.15 566.35

Table 5.3: Positions (in eV) of the oxygen K-edge resonances: comparison be-
tween our fY and TeY data with the data (shifted by 2.3 eV) of Jollet et al. [103].
Energies are affected by an error of ±0.1 eV.

As detailed in Chapter 2, a TeY spectrum corresponds to Auger electrons.
Because Auger electrons has a shorter range of penetration than fluorescence
photons (10 nm instead of 0.1 µm probed by X-ray photons [103, 131]), these
spectra are much more sensitive to the sample surface than fluorescence spec-
tra. The TeY and fY spectra in Figure 5.9 present the same resonances: the
electronic structure of oxygen atoms at the surface and in the bulk are similar.
However, the peaks in the TeY spectrum, with the exception of feature a, are
much less intense than the resonances seen in fluorescence mode. This is an
indication of differing oxydation states between the sample surface and bulk:
in fact, as pointed out by McEachern and Taylor [138], a UO2 sample has ox-
idised surface layers which host many foreign atoms and contaminants (e.g.

hydroxyl groups or water molecules). The differences between fY and TeY col-
lected spectra would appear to indicate that the TeY spectrum is characteristic
of the surface not the bulk as sometimes previously assumed [103].

Based on these results, we would suggest taking the fluorescence spectrum
indicated in Figure 5.9 as a reference for oxygen DOS in UO2, being the most
representative of the sample bulk.

Covalent bonding between atoms induce the oxygen 2p and the uranium
5f and 6d orbitals to hybridize. The DOS of these three orbitals calculated by
ab-initio are represented in Figure 5.10a). Experimentally, uranium 5f and 6d
orbitals are probed by N4,5 and N6,7 uranium edges. Figure 5.10b) shows the fY
spectra corresponding to uranium N5 and N7 edges together with the oxygen
K-edge spectrum: each XAS spectrum is translated along the abscissa of the
minimum energy value necessary to activate the electronic transition.
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a) b)

Figure 5.10: a) UO2 uranium 5f, 6d and oxygen 2p DOS calculated by ab-initio;
b) Comparison between the spectrum collected at the O K-edge with the U N5

and N7 edges.

Our experimental and theoretical DOS results reported in Figure 5.10 are in
agreement with the study of Yu et al. [187]. In fact, Figure 5.10a) and b) show
that the first part of the O K-edge spectrum is due to the hybridisation of the
oxygen 2p and U 5f orbitals. The DOS calculations (Figure 5.10a) show that in
these hybridized orbitals the 5f cation states are predominant. The hybridised
O 2p/U 6d orbitals on the other hand are observed at higher energies and
induce the c, d and e resonances of the O K-edge spectrum (Figure 5.10b).

As indicated in Chapter 2 - §2.4.2, a XAS spectrum represents the available
density of states of the absorber atom modulated by its core-hole attraction.
Core-hole lifetime depends on the energy at which the electronic transition
takes place. In our case (see §2.4.2.1 for details), oxygen K, uranium N5 and
uranium N7 edges are respectively activated at 532, 736.2 and 377.4 eV. The
lifetime of the core hole created during the atomic excitation phenomenon re-
spectively provokes a broadening of 0.22, 5.62 and 0.27 eV [8]. Figure 5.10b)
shows that the energy broadening at the N5 edge is greater than that observed
at the oxygen K and uranium N7 edges. In fact, the N5 edge promotes the
transition 4d5/2 → 5f7/2 that is activated at higher energies.

Figure 5.11 shows the fY experimental spectrum of the reference UO2 sample
and the calculated partial DOS of oxygen 2p orbitals. We have added to DOS
resonances a Lorentzian contribution of 0.22 eV to take into account the core
hole lifetime broadening and a Gaussian contribution of 0.2 eV to account for
the dispersion corresponding to the energy resolution of the experimental set-
up.



5.2 XAS characterisation on the reference compounds UO2, U3O7 and intermediate phase129

Figure 5.11: Comparison between our experimental XAS spectrum for UO2

collected at the oxygen K-edge and the oxygen 2p DOS calculated by ab-initio.

As shown in Figure 5.11, the experimental spectrum is comparable with the
calculated electronic structure of UO2 for the first 10 eV: this part of the spec-
trum probes the empty oxygen electronic states directly. For energies higher
than 10 eV, the XANES spectrum is not only the result of the empty states
but also of multiple scattering phenomenona: the photo-electrons promoted
in the continuum have enough kinetic energy to be scattered several times by
the neighbour atoms before they backscatter to the excited atom. In fact, at
energies higher than 10 eV the calculated DOS doesn’t exactly reproduce the
experimental evidence. Figure 5.11 shows also that the “a” feature of experi-
mental fY XAS spectrum is not present in the calculated DOS. This difference
points to the fact that in our UO2 sample, the density of states of oxygen atoms
differs slightly from the one present in a perfect fluorite structure. As already
said to describe the Figure 5.9, resonance “a” can be ascribed to sample oxi-
dation: sample exposure to air induces a slight oxidation of the surface which
may induce the the small pre-edge peak observed. It appears therefore, as one

may have expected, that oxidation induces variations in the electronic struc-

ture of our material. The next sections are therefore dedicated to evaluating
how the UO2 electronic structure changes as the material oxidises to U4O9 or
U3O7.
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5.2.4 XAS results on higher oxide phases

5.2.4.1 Oxidation effects on oxygen K-edge spectra

U3O7

As described in §5.1.3, the annealed samples n°1, 2, 3 and 5 present an oxidised
U3O7 layer. In Figure 5.12 the fY Oxygen K edge spectra of all these samples
are compared to the reference spectrum.

Figure 5.12: O K-edge XAS spectra of the samples whose XRD diffrac-
togrammes show the presence of a U3O7 layer; comparison with the reference
UO2 spectrum

As shown in Figure 5.12, the oxygen K-edge spectra of samples n°1, 2, 3 and
5 share the same features. Therefore, each of these samples shares the same
oxygen local environment. This fact is in agreement with the XRD results
which showed these samples have a U3O7 layer at their surface. Figure 5.12
shows also the effect of oxidation on UO2. UO2 oxidation is due to the incor-
poration of oxygen defects in the lattice. Insertion of additional oxygen atoms
charged negatively is compensated by an increase of the average uranium va-
lence. This corresponds to an increase in the hole concentration in the valence
band, which, in higher oxide phases, induces a decrease in the band gap. The
fact that the U3O7 oxygen XAS spectrum starts 1 eV before the spectrum rela-
tive to UO2 demonstrates experimentally the decrease of the band gap occur-
ring in U3O7. Moreover, section §5.2.3 shows that the less energetic part of the
spectrum is given by the hybridization of the O 2p and U 5f orbitals. There-
fore, the appearance of the pre-edge peak “a” is a sign of the more available
hybridised O 2p/U 5f states in the conduction band. As oxygen valence state
is fixed at -2, we can assume that the presence of this peak indirectly probes
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the uranium valence increase occurring when UO2 transforms to U3O7. Fig-
ure 5.12 shows also that transformation of UO2 to U3O7 leads peaks b, d and
D to disappear and induces a strong intensity decrease of all the other peaks.
Broadening of the higher energy peaks is indicative of radical changes in the
multiple scattering phenomena (i.e. local environment of oxygen) with an in-
crease in the number of paths photo-electrons can travel. All these features can
be considered as the spectroscopic signature of the phase transition from the
UO2 cubic phase to the tetragonal U3O7.

Intermediate Phase (IP)

fY Oxygen K-edge spectra of UO2, U3O7 and of the samples purported to have
a U4O9 layer are compared in Figure 5.13. Recorded peak positions for UO2,
the two IP and U3O7 are reported in Table 5.4: compared to the UO2 peak po-
sitions, resonances of the IP spectra show shifts in energy significantly smaller
than the ones relative to the U3O7 spectra.

Figure 5.13: Comparison between the oxygen K-edge spectra of samples which
possibly have a U4O9 layer (samples n°4 and 6) and the spectra of our reference
phases UO2 and U3O7.

Phase
Peak Positions

a b c d e A B C D E

UO2 531.0 533.0 533.6 539.0 539.8 542.9 545.3 550.0 553.6 565.8
IP 531.4 532.8 534.5 — 539.2 542.9 545.3 550.0 554.0 566.1

U3O7 531.6 — 534.7 — 538.5 544.3 545.3 550.0 — 568.5

Table 5.4: Positions (in eV) of the resonances present in the oxygen K-edge
spectra of UO2, IP (sample n°6) and U3O7 phases. Energy positions have an
associated error of ±0.1 eV.



1325. Evaluation of the oxidation effect on the electronic structure of uranium oxides by XAS

The trend observed in our XAS spectra reported in Figure 5.13 and in Table
5.4 is consistent with the oxidation mechanisms UO2→U4O9→U3O7 described
in literature [161]. For example, in the spectra of annealed samples n°4 and
6, resonance “a” is more intense than in UO2; however, it still constitutes a
pre-edge shoulder to the spectrum and it is not a well formed peak like in
U3O7. Oxygen XAS spectra of IP samples present intermediate characteris-
tics between UO2 and U3O7. As in U3O7, all their resonances are less intense
than for UO2. However, they still maintain the same features as the ones ob-
served in the reference UO2 spectrum: this characteristic demonstrates that
oxygen electronic structure and the local environment in the annealed speci-
mens are similar to those of UO2. Similar positions of peaks in UO2 reference
and oxidised sample spectra are compatible with the conservation of the cu-
bic crystalline structure typical of U4O9. Therefore, from the spectra collected
for the IP samples we can deduce that our annealing conditions led to oxida-
tion of the sample surfaces and may have created layers composed of UO2 and
U4O9. However note that from Figure 5.13, spectra for samples n°4 (annealed
at 170°C for 20 hours) and n°6 (annealed at 200°C for 1 hour) are not identical:
the same resonances are observed (peak positions) but their relative intensi-
ties are different. If the same line of reasoning as in §5.2.3 is applied, sample
n°6 would appear to be less oxidised than sample n°4. We therefore assume
the spectrum collected on sample n°6 is more characteristic of the intermedi-
ate UO2/U4O9 phase than that of sample n°4: later on this work we consider
sample n°6 as the only reference for IP.

5.2.4.2 Oxidation effects on uranium N-edge spectra

We now try to correlate changes in the oxygen K-edge spectra to the XAS char-
acterisation at the uranium edges. In fact, to respect the electroneutrality rule,
the insertion of negatively charged oxygen defects in the UO2 lattice induces
an increase of the average valence of uranium atoms. Consequently, XAS spec-
tra collected at uranium edges should follow similar trends to the oxygen ones.
We therefore acquired the XAS spectra of the three phases UO2, IP and U3O7 at
the uranium N4,5 edges to probe the 5f orbitals and at the uranium N6,7 edges
to probe the 6d states. At this stage, comparison of the penetration depths
of the X-rays used to characterize the oxygen 2p and uranium 5f and 6d or-
bitals is necessary to determine the thickness of the sample layer probed in
both cases. While the attenuation length of the X-rays used to probe oxygen
is estimated at 0.18 µm, the X-rays sent on samples to probe the N4,5 and N6,7

edges are respectively equal to 0.12 and 0.42 µm [10]. Based on these values
we say that the sample thickness probed during oxygen K-edge and uranium
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N4,5-edges XAS characterisations are almost identical. With a greater attenua-
tion length, the X-rays used to probe the uranium N6,7-edges travel further into
UO2 samples. Despite this fact, in all three cases considered, the X-ray pene-
tration depth is smaller than the thickness of the oxidised layer grown on the
UO2 substrate (see §5.1.1). As a consequence, the XAS results presented in this
section are representative of the higher oxide phases grown on the UO2 sub-
strate. For both the anionic and cationic sublattice we can therefore compare
results obtained for IP or U3O7 with results obtained for UO2.

Intermediate phase (IP)

While Figure 5.14a) and b) compares the results obtained for UO2 with our IP,
Table 5.5 summarizes their peak positions.

a) b)

Figure 5.14: Uranium spectra at the N4,5 (a) and N6,7 (b) edges of our references:
UO2 (red) and IP (green). In (b), peak near 370 eV can be ascribed to the N5

uranium second harmonic.

Phase N5 N4
N7 N6

a b c d e f g

UO2 738.2 779.4 384.4 387.6 389.6 395.4 398.6 400.1 405.3
IP 738.4 779.6 384.5 387.7 389.7 395.6 398.5 400.0 —

Table 5.5: Peak positions (in eV) relative to the uranium XAS spectra collected
at the N4,5 and N6,7 edges. N4,5 resonance positions have an error bar of 0.15
eV, while the resolution associated at N6,7 edges is 0.08 eV.

As we can see from Table 5.5 and in Figure 5.14a) and b), uranium N-edges
spectra are consistent with the results obtained at the oxygen K-edge. Oxida-
tion shifts the N4,5 edge peaks to higher energies slightly: this fact is consistent
with a uranium valence change. From litterature we know that higher oxides
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have uranium XAS resonances placed at higher energies and that U4O9 cation
valence doesn’t assume values higher than 5+ [117]. As a consequence, we can
assume that the 0.2 eV shift of N4,5 edge peaks is due to the valence increase
from 4+ to 5+. Figure 5.14b) demonstrates that uranium N6,7 edge XAS spec-
trum of the IP sample has features similar to UO2: the presence of the same
resonances confirms that in both these phases uranium keeps the same local
environment. As already seen in Chapter 1 - §1.1.2.3, a cubic lattice induces
the splitting of the uranium 6d states into the eg and t2g orbitals, the energetic
levels of which differ by 2.8 eV [166]. A comparison of the experimental and
calculation results (see Figure 5.15), reveals that peaks a and b may be associ-
ated to the eg and t2g ,orbitals respectively. With this association, we found a
splitting of 3.2±0.1 eV, comparable to the literature value; this splitting is also
indicative that our IP sample conserves the same cubic symmetry of UO2. We
derived also an estimate of the eg/t2g orbital splitting from the uranium 6d
DOS calculated by ab-initio (the blue curve represented in Figure 5.10a)). We
convoluted the theoretical curve with a Lorentzian and a Gaussian contribu-
tion respectively of 0.3 eV and 0.2 eV, to take into account both the effects of
core hole lifetime and experimental broadening and we compared this curve
with our XAS uranium N7 edge spectrum.

Figure 5.15: Comparison between our experimental XAS spectrum of UO2 col-
lected at the oxygen N7-edge with the uranium 6d DOS calculated by ab-initio.

As shown in Figure 5.15, splitting between the uranium eg and t2g orbitals is
estimated to be 3.1 eV. This value is in complete agreement with the experi-
mental values reported above. Note however that comparison between exper-
iment and calculations is only qualitatively. There are several reasons for this.
Firstly, DFT is well suited for ground state calculations and less reliable when
used to study excited states. Also, in our DFT calculations, the core hole ef-
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fect is not taken into account. Finally, we have not eliminated the empty states
from the calculations which correspond to electronic transition forbidden as a
result of selection rules (see Chapter 2 - section §2.4.2). Considering these limi-
tations, Figure 5.15 shows that calculated uranium 6d states well matches with
the spectra acquired at the N7 edge; note that no contribution of multiple scat-
tering phenomena in the uranium N7 edge spectra is clearly visible because of
the adiacent presence of the N6 edge.

U3O7

The same analysis carried out for IP is now developped for the U3O7 phase.

a) b)

Figure 5.16: Uranium spectra at the N4,5 (a) and N6,7 (b) edges of our reference
phases UO2 (red), and U3O7 (blue).

Phase N5 N4
N7 N6

A B C D E

U3O7 738.8 780.1 388 391 397.3 400.7 402.2

Table 5.6: Peak position energies (in eV) relative to the uranium XAS spectra
collected at the N4,5 and N6,7 edges.

As shown in Figure 5.16a), the phase transition to U3O7 induces a shift of the
N4,5 energies greater than the shift observed for IP: in U3O7 the number of ura-
nium atoms which have a valence higher than 4+ is greater. Actually, Figure
5.16b) shows a profound change in the uranium 6d states has occurred due to
the phase transition from UO2 to U3O7. This higher oxide phase spectrum in
fact presents less well defined and broader peaks than for UO2. This feature
in indicative of a change in the uranium local environment and its electronic
structure: the delocalisation of the U3O7 6d orbitals is greater than in for UO2

and our IP sample. The observation of the N6,7 edge spectrum is entirely con-
sistent with the loss of the cubic symmetry in U3O7. As crystallography would



1365. Evaluation of the oxidation effect on the electronic structure of uranium oxides by XAS

predict, U3O7 because it is tetragonal leads to the disappearance of the 6d split-
ting into eg and t2g orbitals.

5.2.4.3 Oxidation effects evaluated by ab-initio

This section aims to determine to what extent the ab-initio calculated DOS of
uranium dioxide with increasing deviations from stoichiometry follows the
oxidation-induced observations.
For each supercell (perfect, containing one oxygen interstitial, one di-interstitial),
Figure 5.17 represents the calculated DOS of the oxygen 2p orbitals, while Fig-
ure 5.18a) and b) reports respectively the DOS of uranium 5f and 6d orbitals of
the empty energy levels (conduction band).

Figure 5.17: Comparison between Oxygen 2p DOS of UO2 with a perfect lattice
(green), an oxygen interstitial (red) and an oxygen di-interstitial (blue).

a) b)

Figure 5.18: Comparison between Uranium 5f (a) and 6d (b) DOS of UO2 with a
perfect lattice (green), an oxygen interstitial (red) and an oxygen di-interstitial
(bleu).

In presence of oxygen defects, partial UO2 O 2p DOS shows the growing of
a pre-peak at the beginning of the conduction band (see Figure 5.17). This
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pre-peak can be associated with peak “a” observed experimentally. Calculated
5f and 6d uranium DOS of the perfect UO2 (see Fig. 5.18) are positioned at
lower energies than the defective supercells. Moreover, with the exception of
peak a in the oxygen DOS, all the other peaks of both the anion and cation
electronic structures are less defined and intense (see Figures 5.17 and 5.18)
as is observed in experiments demonstrating the relevance of these electronic
structure calculations.

5.3 Discussion relative to XAS results obtained for

reference phases

XAS characterization technique directly probes the empty electronic states. As
a consequence of this, a XANES spectrum is sensitive to atomic bonding of
the absorber atom, allowing us to deduce its local atomic environment (at a
distance of 6-8 Å) and, in certain cases, the symmetry of the crystal field it
is inserted in. Until now in fact we have seen that this technique enabled us
to determine experimentally the DOS both of UO2 and U3O7. An interesting
feature of the DOS for U3O7 is the impact the change of symmetry from cubic
to tetragonal has upon it. However the composition of our IP phase remains
uncertain and we now further investigate this point.
With the Athena [8] software we reproduced the oxygen K-edge XAS spectrum
of our IP phase using a linear combination of spectra relative to UO2 and U3O7.
With a fit quality factor ◗²=0.326, the spectrum is composed of 34.9% of UO2

and of 65.1% of the U3O7 spectra; these percentages are affected by 0.7% error.

In §5.2.4 we showed that our IP sample conserves a cubic structure. One
may further state, on the grounds of the phase diagram, that it is quite prob-
ably composed of a mixture of UO2 and U4O9. As oxidation induces also a
cation valence increase, the same linear combination found to reproduce the
oxygen spectrum is applied to estimate the average cation valence of the IP
sample. Theoretical uranium valences of UO2 and U3O7 are 4+ and 4.66+ re-
spectively: based on the proportions of both spectra found in that of the IP,
one can estimate the cation valence of our IP sample at approximately 4.43+,
corresponding to an average O/M ratio of 2.215. From the phase diagram in
chapter 1 - Figure 1.2, one further estimates the proportion of substoichiomet-
ric U4O9 in the IP at a value in excess of 90%. This result is consistent with a
important change in the electronic structure of oxygen atoms (see Figure 5.13)
but a conservation of the cubic symmetry as deduced from the splitting of the
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Figure 5.19: Reproduction of the U4O9 O K-edge spectrum with a linear com-
bination of the UO2 and U3O7 spectra.

eg/t2g orbitals seen at N7 edge (see Figure 5.16b). It is therefore reasonable to
assume that the spectrum of the IP is that characteristic of U4O9.

Figure 5.19 demonstrates also that the contribution of U3O7 is necessary to
reproduce U4O9 spectrum adequately. As a consequence, local environments
of U4O9 and U3O7 should share similar features. Each O K-edge XAS spec-
trum collected on uranium oxide phases has mainly two contributions (the
first given by the anions of regular lattice sites, the second by the oxygen atoms
constituting the defects): the reproduction of our U4O9 reference phase spec-
trum with a linear combination of UO2 and U3O7 can be seen as a confirmation
that the oxygen defects present in U3O7 and in U4O9 phases are equal and that
only their concentration differs.

These results are consistent with the structural analyses of Desgranges et al.

[61] on similar phases. Through the simulation of the neutron diffraction data
of U4O9 and U3O7, they showed that UO2 transforms to U4O9 before taking on
the more distorted tetragonal structure typical of the U3O7 phase. This modifi-
cation is induced by inserting an increasing number of oxygen cubocthaedral
defects in the lattice. They observed also that in the phase change from U4O9

to U3O7 the number of complex oxygen defects increases whilst their compo-
sition remains essentially unchanged. Despite these two phases having differ-
ent crystalline symmetries, their atomic lattices accommodate the same kind
of oxygen defects.

Good reproduction of our IP sample spectrum with the linear combina-
tion found here is consistent also with the U4O9 oxygen and uranium local
environments discussed in §5.2.1. In that section we showed that in U4O9 the
disposition of atoms around oxygen has features similar to UO2 and that each
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oxygen or uranium of the elementary cell is surrounded by a higher number
of oxygen atoms.

5.4 XAS study of UO2+x specimens

We also carried out XAS characterisations of our UO2+x samples. These sam-
ples were prepared and annealed in pairs, the second sample being dedicated
to oxygen self-diffusion studies (annealing conditions are reported in Table
4.5). Two sets of specimens were analysed: the undoped and the Cr-doped
UO2 polycrystalline samples. As an example we report in Figure 5.20 and Fig-
ure 5.21 the oxygen K- and at uranium N4,5-edge XAS spectra collected on
undoped samples annealed at 890°C at four oxygen potentials (7.1 10-16 atm,
5.5 10-15 atm, 1.2 10-13 atm and 1.0 10-12 atm). Figure 5.20 reports the relative in-
tensity of peak a for all the UO2+x spectra. Each reported value is calculated as
the ratio between the intensity of peak a of the UO2+x sample to that measured
on the U3O7 reference phase.

pO2 (atm) Ia,rel (%)

7.1 10-16 91.8
5.5 10-15 56.2
1.2 10-13 11.3
1.0 10-12 81.5

Figure 5.20: fY XAS spectra respectively collected at the O K-edge on UO2

undoped samples annealed at 890°C at four increasing oxygen potentials. The
table reports the relative intensities of peak “a” measured for all the reported
spectra.

From Figure 5.20, we see that the UO2 sample annealed at the lowest pO2

has an oxygen K-edge spectrum that shows the strongest signs of oxidation. As
the equilibrium partial pressure rises to 1.2 10-13 atm, oxidation effects gradu-
ally decrease: the intensity of peak “a” gradually decreases while the other
peaks increases their intensity. Above 1.2 10-13 atm (i.e. at 1.0 10-12 atm) the
spectrum resembles that of U3O7. The spectra relative to the N4,5 edge (see Fig-
ure 5.21) show trends similar those observed at the O K edge with strong signs
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of oxidation: peaks shift towards higher energy values for the lowest oxygen
partial pressure.

Sample N5 N4

UO2 738.2 779.4
U3O7 738.8 780.1

7.1 10-16 atm 738.6 779.8
5.5 10-15 atm 738.3 779.6
1.2 10-13 atm 738.2 779.4
1.0 10-12 atm 738.4 779.7

Figure 5.21: XAS spectra collected at the uranium N4,5 edges on UO2 undoped
samples annealed at 890°C at four oxygen potentials. The table summarizes
the resonance energy positions.

These observations are of course completely counter intuitive since higher
equilibrium partial pressures should lead to more and more obvious signs of
oxidation.
The O K-edge spectra of each annealed sample were reproduced by a linear
combination of UO2 and U3O7 spectra to quantify their degree of oxidation.
Table 5.7 reports the quality factor of each fit and the percentages of UO2 and
U3O7 necessary to reproduce the spectrum for each annealed UO2+x specimen.
Figure 5.22 represents only the calculated contribution of U3O7 as a function of
the annealing oxygen partial pressure for each temperature.

Figure 5.22: Quantification of the oxidation degree of UO2+x samples.

Before analysing the trends in spectrum modifications induced by oxida-
tion, we aim to briefly describe the results reported in Table 5.7. Figure 5.23
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Annealing
Sample ◗²

Percentage
T (°C) pO2 (atm) UO2 U3O7

890

7.1 10-16

Cr-doped

0.2 52 48
5.5 10-15 0.144 87 13
1.2 10-13 0.336 1 0
1.0 10-12 0.627 14 86

890

7.1 10-16

Undoped

0.294 20 80
5.5 10-15 0.162 50 50
1.2 10-13 0.19 94 6
1.0 10-12 0.21 21 80

990

3.7 10-15

Undoped

0.090 9 92
1.2 10-13 0.070 82 18
8 10-13 0.146 50 50

1.3 10-11 0.347 9 91

Table 5.7: UO2 and U3O7 contributions used to best reproduce the experimental
spectra of the UO2+x specimens. Percentages are affected by an error of 1%. ◗²
is a value indicative of the quality of the fit.

reports the simulation of the two spectra that respectively have the best and
the worst ◗² value.

a) b)

Figure 5.23: Comparison of XAS spectra of the Cr-doped sample annealed at
890°C, 10-12 atm (a) (worst ◗²) and of the undoped UO2+x sample annealed at
990°C, 1.2 10-13 atm (b) (best ◗²) to the best-fit linear combination of UO2 and
U3O7 reference spectra.

We can see from figure 5.23a), that the greater differences between the ex-
perimental and the simulated curves are located in the lower part of the spectra
(in the energy range 530-540 eV). However, it appears from Table 5.7 and Fig-
ure 5.23, that the fits are enough good to allow a reliable quantification of the
sample oxidation induced by our annealing conditions.

The unexpected results outlined in Figure 5.22 require identifying of all the
parameters that are liable to affect the collected XAS spectra:

• The sample annealing conditions. Annealing conditions are designed to
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control and modify the deviation from stoichiometry of the sample. As
seen in the previous sections, XAS signals are strongly dependent upon
the sample oxidation induced by annealing.

• The quenching stage of annealing. After being annealed, samples are
quenched so that the UO2+x microstructure supposedly remains in a state
close to what it is at high temperature. UO2+x in fact is a phase stable
only at temperatures higher than 400°C (see the phase diagram reported
in Chapter 1, Figure 1.2); depending upon cooling rate, UO2+x should
form a two phase compound comprising UO2 and U4O9 as it cools.

• The impurity concentration present in the samples. At low pO2, Cr dop-
ing fixes the sample hole concentration and consequently modifies the
concentration of isolated point defects by the relationship 3.7 (see Chap-
ter 3) so long as equilibrium is kinetically possible.

• The incorporation of point defects as a result of exposure to air. It is
reported by [138] that the exposure of UO2 samples to air provokes an
oxidation of the first atomic layers of the sample including at ambient
temperature. However oxidation of UO2 is known to occur less readily
as the sample deviation from stoichiomerty increases.

If one compares as in Figure 5.22 the XAS spectra of Cr-doped and undoped
samples, it would appear that the annealing conditions have a first order im-
pact upon the oxidation state of the sample surface subsequently characterised
at room temperature. The comparison of Cr-doped and undoped samples en-
ables us also to demonstrate the influence upon the DOS of the presence of
trivalent chromium ions (see Figure 5.24).

As seen in Figures 5.24a) and 5.22, until the oxygen partial pressure exceeds
10-13 atm, XAS signals of Cr-doped samples show slightly smaller signs of oxi-
dation than the undoped ones. This is consistent with the dependence of oxy-
gen interstitial concentrations upon the charge carrier concentrations given by
Equation 3.7. When isolated defects predominate, at identical oxygen partial
pressures, an increase in hole concentration due to the presence of a trivalent
doping agent induces a decrease in oxygen interstitial content. Conversely, at
the highest pO2 Figure 5.24b) demonstrates that the two analysed specimen
own have identical spectra hence DOS. This is consistent with the fact that at
high oxygen partial pressures samples behave intrinsically (see Chapter 3) and
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a) b)

Figure 5.24: Comparison between the oxygen K-edge spectra of a Cr-doped
sample with the one collected on an undoped specimen; these two samples
were annealed at the same time and were therefore exposed to identical ther-
modynamic conditions. Samples were annealed at 890°C: Graph a) corre-
sponds to annealing at a pO2 of 5.5 10-15 atm, Graph b) to 1.2 10-13 atm.

it is not surprising that DOS loose their dependence upon doping concentra-
tions.

Exposure to air in the first instants after quenching may influence the collected
XAS signals. At low oxygen pressures, sample compositions are nearer to sto-
ichiometry and consequently sample surface is more reactive to the presence
the oxygen of the atmosphere. Additional oxygen atoms can penetrate into the
first atomic layers of the surface inducing a strong variation in the probed XAS
spectra. This fact explains the first part of the curves plotted in Figure 5.22:
spectra of samples annealed at lower oxygen partial pressure show stronger
signs of oxidation. Conversely, it seems that the oxidation effects induced by
annealings become visible only after overcoming an oxygen potential thresh-
old. This phenomenon can be associated with the predominance of oxygen
clusters in the samples annealed at high pO2. As seen in Chapter 4, these de-
fects inhibit bulk diffusion of oxygen in UO2 , preventing the incorporation of
oxygen atoms contained in the surrounding gaseous environment. The pO2

value at which DOS modifications begin to linearly follow the oxidising an-
nealing conditions can be therefore interpreted as the pO2 at which oxygen
clusters become predominant over isolated defects. From these XAS results,
it would appear that the transition oxygen partial pressure at which isolated
oxygen interstitials become negligible in comparison to clusters is in the range
5.5 10-15 and 1.2 10-13 atm at 890°C, and at 10-13 atm circa at 990°C. This in-
terpretation is however in contradiction with the fact that the reference sam-
ple for the stoichiometric UO2 phase exhibits the characteristics of unoxidised
UO2. As shown in Chapter 2 - §2.1, its preparation protocol aims only that is
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sliced from sintered pellets and carefully polished, but doesn’t forecast a post-
polishing annealing. The reason for this contradiction is with no doubt to be
found in the fact that all the other samples studied were annealed under an
argon hydrogen mixture made to bubble through distilled water. It is likely
that the water molecules adsorbed at the surface of the samples is crucial in
increasing the reactivity of the surface. So the XAS characterisation of the sur-
face layers of UO2 is the subtle consequence of changes in the bulk and surface
reactivity of the material.

Following this interpretation, the presence of a smaller concentration of
oxygen interstitials in Cr-doped samples at low oxygen potential would in-
duce their XAS signals to present stronger signs of oxidation. Conversely,
Figure 5.24a) shows an opposite behaviour, i.e. samples seems to be less ox-
idised than the undoped specimens. This fact may be due to the presence of
Chromium, that leads sample surface reactivity to decrease and consequently
disables oxygen atoms to be incorporated in the lattice.

As for U4O9, the spectra collected on UO2+x samples are successfully re-
produced using a linear combination of UO2 and U3O7 references. This fact
indicates that oxygen defects are of the same kind in both hyperstoichiomet-
ric samples and in the higher oxide phases U4O9 and U3O7. As explained in
the previous section (§5.3), comparison of our XAS spectra with the published
neutron diffraction results demonstrates that both in U4O9 and U3O7 lattices
additional oxygen atoms are disposed on cubocthaedra or on cluster defects
sharing part of their structure (such as the Willis one).

5.5 Conclusions

In this chapter we evaluated the impact of the oxidation of UO2 upon its elec-
tronic structure. Experimental DOS characterization of hyperstoichiometric
samples was possible only after the detailed analysis of the XAS spectra of
higher oxide phases, taken as references. Annealing a sample at low tempera-
tures under air enabled the formation of a U4O9 or U3O7 layer on a UO2 sub-
strate that was subsequently characterized by XAS.
The high energy resolution provided us with high quality oxygen K-edge XAS
reference spectra. Moreover, their comparison with uranium N4,5 and N6,7-
edge spectra was used to show the hybridisation phenomenon that occurs be-
tween the O 2p and the U 5f and 6d orbitals. We succeeded also in collecting
the first reference XAS spectra relative to U4O9 and U3O7 phases and in demon-
strating experimentally that oxidation induces strong modifications of the elec-
tronic structure of uranium oxides. It appears that a change in the XAS oxy-
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gen K-edge spectrum is always coupled to a variation in the uranium N-edge
spectra, as expected from simple charge compensation arguments. Oxidation
induces also a progressive variation in the oxygen local environment: its mod-
ifications are consistent with the neutron diffraction results [61]. DFT+U cal-
culations [176] compare very favourably with the experimental DOS for UO2

or its higher oxide forms, to the extent that we have been able to use these
theoretical approaches to interpret the experimental data.

Also in hyperstoichiometric UO2+x samples oxygen and uranium local envi-
ronments and density of states are direcly affected by sample composition, i.e.

by their impurity content and thermodynamic conditions under which they
are equilibrated. The influence of trivalent doping content on XAS spectra
correlates both the fact that doping agents let decrease not only the oxygen
isolated defect concentration but also the sample surface reactivity to air.

We have also seen that the degree of oxidation of hyperstoichiometric sam-
ples is not an increasing function of the oxygen potential as would be expected.
Only XAS spectra of samples annealed at the highest pO2 follow this expected
trend. We interpret this as being due to the fact that the degree of surface oxi-
dation is the result of a subtle combination of surface reactivity and transport
in the bulk material. Specimens annealed at low pO2 but in the presence of
water vapour appear to be more reactive than those annealed at higher partial
pressures providing that isolated oxygen interstitials constitute the majority
defect population. We therefore interpret the pO2 at which UO2+x XAS spectra
show the minimum signs of oxidation as the transition oxygen partial pressure
at which clusters begin to dominate.

The intimate relationship existing between the impurity concentration, sam-
ple deviation from stoichiometry and thermodynamic conditions imposed dur-
ing sample annealings continues to be analysed in the next chapter. In Chapter
6 in fact we will calculate the trivalent impurity concentration present in our
samples from the conductivity data reported in Chapter 4. Then, for each kind
of sample studied, we will simulate these conductivity data with the model
developed in Chapter 3 to theoretically estimate oxygen defect concentrations
and the transition pO2 between isolated oxygen defects and defect clusters.





Chapter 6

Discussion of experimental results

In Chapter 4 we presented the experimental results relative to electrical con-
ductivity, oxygen self- and chemical diffusion in UO2 under various thermo-
dynamic conditions. In particular we investigated the dependencies of these
three properties upon oxygen potential, temperature and impurity content.
Chapter 5 was devoted to the characterisation using XAS of the effect of ox-
idation upon electronic structure and attempted to relate to it local environ-
ment variations induced by the insertion of additional oxygen atoms. Now,
the major aim of this chapter is to analyse the results obtained and to check
their overall consistency.

Firstly, electrical conductivity data collected on several different types of
samples are analysed in the light of the point defect model developed in Chap-
ter 3. Application of the model to different specimens, i.e. specimens contain-
ing different types of additives and at different concentrations, is a guarantee
the model may be used to estimate defect concentrations.

In the second part of this chapter we go on to determine fundamental de-
fect properties (migration energies in particular) based on the combination of
defect concentration calculations and self-diffusion measurements. We anal-
yse data reported from previous studies and extend this analysis to the data
reported in Chapter 4. In particular, we discuss the influence of increasing
oxygen partial pressures upon self-diffusion and interpret this influence on
the grounds of defect clustering and concentrations.

6.1 Analysis of conductivity data

The point defect model developed in Chapter 3 allows us to determine defect
concentration dependencies upon oxygen potential by simulating electrical
conductivity and deviation from stoichiometry data from literature [162, 151].
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In particular, we showed that simulations of such data allows us to unequivo-
cally determine the Arrhenius dependencies of each defect formation reaction
constant considered in the model and the pre-exponential term of the hole mo-
bility µ0 estimated at 0.26 m²·K·V-1·s-1 (see §3.3.2.1 and 3.4). There is no reason
why the values determined for the reaction constant of a given type of defect
should depend upon the nature or concentration of the doping agent. With no
evidence to the contrary we similarly assume that the pre-exponential term µ0

is also independent of doping agent nature and concentration. However, dif-
ferences may arise in the nature of the complex oxygen interstitial aggregates
which may form as the oxygen partial pressure increases.

In order to determine the influence of doping agents and to further test
the scope of our point defect model, we analyse the electrical conductivity
measurements of Gadolinium-doped UO2 collected by Veziteu et al. [177] and
the measurements carried out on our own both chromium doped and undoped
samples (see Chapter 4).

6.1.1 UO2 samples doped with trivalent doping agents

6.1.1.1 Gd-doped UO2 samples

We assume that substitutional gadolinium atoms remain trivalent. The experi-
mental data relating to these samples were collected and studied by Veziteu et

al. [177]. These samples were obtained by sintering for 72 hours at 1400°C and
in an Ar/H2 atmosphere, a mixture of UO2 powder with 0.5 mol.% of Gd2O3.
The electrical conductivity data were collected as a function of oxygen partial
pressure at 1000°C, 1100°C and 1200°C. They are presented in Figure 6.1a) and
an Arrhenius representation of (s✈�T) in the extrinsic region is given in Figure
6.1b).

a) b)

Figure 6.1: a) Gd-doped UO2 electrical conductivity curves collected by Vezi-
teu [177]. b) Arrhenius dependence of (s✈�T) in the extrinsic region.
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The hole migration barrier (EH) and the negative cation concentration (y’)
were estimated from the Arrhenius relationship in Figure 6.1b) at 0.21 eV and
3.76 1025 at·m-3. Note that the estimate of y’ strongly depend on the value taken
for the electron mobility ♠0 and can be compared to the effective doping agent
concentration present in the samples. Also, from Figure 6.1a) we note that the
slope of the electrical conductivity curve in the intrinsic region as a function of
log(pO2) is steeper than the one observed in Ruello’s study. In fact, the slopes
relative to the Gd doped data have a value of 0.6 rather than 0.5, as reported
previously (Chapter 3). In Chapter 3, we saw these slopes were determined by
the nature of the majority defect. Similarly, a slope of 0.6 is compatible with
an oxygen complex defect that has 2 additional oxygen atoms and a fractional
charge -2/3. The formation reaction constant for this defect (named Wb here-
after) can be written as follows:

O2 + 2OX
O + 2V X

i +
2

3
UX
U ⇋ W

2/3′

b +
2

3
U5+
U (6.1)

Note that for the same number of additional oxygen atoms, the apparent
charge of the defect is less than that determined for a material containing im-
purity cations at lower concentrations (see Chapter 3) as would be expected in
a material at high deviations from stoichiometry [55].

We simulated the entire set of data relative to the Gd-doped UO2 material
considering defect Wb and with values of EH and y reported above. An exam-
ple of the results obtained at 1100°C is shown in Figure 6.2.

Figure 6.2: Simulation of Gd-doped electrical conductivity data taken at
1100°C.
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6.1.1.2 Cr-doped UO2 samples

We have also modelled the conductivity data relative to Cr-doped samples
presented in Chapter 4 collected at 893°C and 993°C. From the hole mobility
study reported in Table 4.6 and Figure 4.3a) we estimated the parameters of
the hole activation energy EH and y’ due to Cr doping: they were found equal
to 0.22 eV and 4.3 1025 at·m-3.

Figures 6.3a) and b) show the calculation results. Note that we assumed the
same defect cluster for Cr doped material as for Gd doped.

a) b)

Figure 6.3: Fit of electrical conductivity and deviation from stoichiometry data
taken at 893°C (a) and 993°C (b) for chromium doped material.

Figures 6.4a) and b) report the corresponding defect concentrations.

a) b)

Figure 6.4: Calculated defect concentrations at a temperature equal to 893°C
(a) and to 993°C for chromium doped material (b).

From the calculated defect concentrations, we were able to estimate (see
Table 6.1) the oxygen partial pressure at which oxygen clusters begins to pre-
dominate over oxygen interstitials.
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Temperature (°C) Model pO2,trans (atm)

800 3.6 10-17

893 5 10-15

993 6.6 10-14

Table 6.1: Theoretically calculated pO2 at which a transition occurs between
oxygen interstitials and defects clusters for Cr-doped samples.

6.1.1.3 Equilibrium constant for Wb

As mentioned previously, as regards the Gd-doped samples, the physical pa-
rameters that characterise the model are obtained from electrical conductiv-
ity data. Concerning Cr-doped samples, no electrical conductivity data exists
at high oxygen partial pressures. However, we assume the effect of doping
agents upon clustering to be similar in both cases and KWb

values are there-
fore determined from deviation from stoichiometry data. The equilibrium con-
stants KWb

obtained from the data analysis (i.e. electrical conductivity data for
Gd-doped samples and deviation from stoichiometry data at the temperatures
Cr-doped samples are studied) are presented in Figure 6.5.

Figure 6.5: Arrhenius representation of the formation constant of the complex
defect Wb present in Gd-doped UO2 sample.

From this, it is possible to derive formation energies and entropies corre-
sponding to the assumed defect cluster. A value of -2.9±0.1 eV is found for the
formation energy of the more complex oxygen cluster which is less than the
value of -2.2 eV obtained for the di-interstitial assumed from data analyses in
Chapter 3. This is entirely consistent with the theoretical results of Crocom-
bette [55]: the stability of a complex oxygen defect increases as the (absolute)
charge to oxygen ratio of the defect decreases.
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6.1.2 Undoped UO2 samples

As shown in Figure 4.2, our polycrystalline samples behave quite similarly to
the UO2 single crystal specimen studied by Ruello [162]: in the extrinsic region,
conductivities are similar. We choose to model the system with di-interstitial
clusters as in Chapter 3.

Values of EH and y characteristic of our undoped UO2 sample set were de-
rived in Chapter 4 from the low temperature conductivity study (see Table 4.6
and Figure 4.3b). Values derived are 0.23 eV and 2.4 1024 at·m-3 for EH and y re-
spectively. In order to reproduce the data collected at 893°C and 993°C, Ke, KOi

and KW need to be determined. This was done by implementing the method
outlined in Chapter 3 and Figures 6.6a), b) and c) indicate the values obtained
for these reaction constants.

a) b)

c)

Figure 6.6: Optimized Ke(a), KOi
(b) and KW (c) reaction constants to fit electri-

cal conductivity data of our undoped samples: comparison with their linear
trends found in Chapter 3.

Experimental data are compared to the best-fit calulated values in Figure
6.7.
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a) b)

Figure 6.7: Measured and modelled electrical conductivity and deviation from
stoichiometry at 893°C (a) and 993°C (b).

As can be seen in Figure 6.7b), the model reproduces the 993°C data ade-
quately. At 893°C on the other hand, the impression derived from Figure 6.6
is confirmed since reproduction of experimental data is less satisfactory. No
clear cause may be given other than an experimental caveat.

The defect concentration changes with pO2 estimated at 893°C and at 993°C
are presented in Figure 6.8.

a) b)

Figure 6.8: Calculated defect concentrations at a temperature equal to 893°C
(a) and to 993°C (b).

From figures 6.8 a) and b) we can estimate the oxygen partial pressure at
which oxygen interstitials become less abundant than di-interstitial clusters.
These values are summarised in Table 6.2.

Temperature (°C) Model pO2,trans (atm)

893 8.5 10-14

993 7.4 10-13

Table 6.2: Theoretically calculated pO2 for the transition between isolated oxy-
gen defects and defect clusters for undoped samples.
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6.1.3 Conclusions

The methodology we have derived in Chapter 3 in which we analyse changes
in electrical conductivity and composition as a function of oxygen partial pres-
sure and temperature can be applied to uranium dioxide systems containing
various doping agents and at different concentrations.

Regarding gadolinium doped samples, it appears that electrical conductiv-
ity values above 1000°C point to the existence of an oxygen cluster for which
the absolute charge to oxygen ratio is less than for the di-interstitial identified
in Chapter 3. Data relating to Cr-doped material are interpreted assuming a
similar type of aggregate and a corresponding formation energy is estimated
at -2.9 eV. This is in qualitative agreement with first principal results which
predict this decrease with a decrease in the charge to atom ratio of the cluster
as alluded to in Chapter 1 - §1.2.2. For undoped samples, the di-interstitial
formation constant is close to that determined in Chapter 3 for a different low
impurity sample.

It is reasonable to assume that the method applied in Chapter 3 and here
provides appropriate estimates of defect concentrations. Their dependence
upon temperature, oxygen potential and impurity content enables us to the-
oretically estimate the oxygen partial pressure ranges in which each kind of
oxygen defect predominates. In particular, we can evaluate the minimal value
of pO2 at which oxygen clusters start to predominate over isolated defects.
The theoretical evaluations reported in Tables 6.1 and 6.2 can now be used to
analyse oxygen self- and chemical diffusion coefficients.

6.2 Interpretation of oxygen diffusion coefficients

In this section we combine defect concentration calculations and oxygen self-
diffusion coefficient measurements to estimate migration mechanisms and bar-
riers.

6.2.1 Oxygen interstitial diffusion coefficients based on previ-

ous studies

B. Dorado and co-workers [68] report an oxygen diffusion coefficient study at
low oxygen partial pressures in which the diffusion mechanism is identified as
being interstitial. The model developed previously (see Chapter 3 and previ-
ous section) enables us to estimate defect concentrations based upon reported
electrical conductivity data. Although it is in principle preferable to have elec-
trical conductivity data that covers both the extrinsic and intrinsic regions, it
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is possible to estimate defect concentrations at the temperature and oxygen
partial pressures at which tracer diffusion coefficients were determined based
upon:

1. the reaction constants determined in Chapter 3 and in the previous sec-
tion for chromium doped samples, extrapolated at the relevant tempera-
ture

2. µ0 determined from the analysis in Chapter 3

3. parameters y and EH determined from the electrical conductivity values
reported by the authors [68]

If oxygen interstitials constitute the majority defect population then the tracer
diffusion coefficient (Chapter 1, Equation 1.3) may be expressed as:

D∗
O = fOi

·DOi
· [Oi”] (6.2)

where fOi
is the correlation factor for an interstitialcy mechanism, DOi

is the
oxygen interstitial diffusion coefficient and [Oi”] the oxygen interstitial con-
centration. Based upon the tracer diffusion coefficients reported by the authors
[68] and defect concentrations calculated as outlined above, one may estimate
the defect diffusion coefficient (dependent upon temperature only) assuming
a correlation factor of 0.7391 as suggested by Compaan and Haven [47] for this
type of diffusion mechanism. The results are given in Table 6.3 where tracer
diffusion coefficients, corresponding thermodynamic conditions indicated and
values of DOi

estimated from Equation 6.2 are reported. DOi
values are then

plotted in an Arrhenius representation in Figure 6.9.

Sample {T (°C), pO2 (atm)} D*
O (m²/s) [Oi”] DOi

(m²/s)

Set 1

{750, 2.8 10-22} 1.4 10-17 3.0 10-8 6.3 10-10

{800, 4.3 10-21} 7.5 10-17 8.3 10-8 1.2 10-9

{870, 1.6 10-19} 8.9 10-16 3.1 10-7 3.9 10-9

{950, 5.2 10-18} 5.0 10-15 9.7 10-7 7.0 10-9

Set 2

{750, 2.8 10-22} 6.5 10-19 2.6 10-9 3.3 10-10

{800, 4.3 10-21} 3.6 10-18 6.9 10-9 7.1 10-10

{870, 1.6 10-19} 3.2 10-17 2.5 10-8 1.7 10-9

{950, 5.2 10-18} 2.8 10-16 8.0 10-8 4.7 10-9

Set 3
{900, 4.2 10-18} 6.6 10-17 1.2 10-7 7.2 10-10

{900, 6.8 10-17} 2.3 10-16 5.0 10-7 6.4 10-10

{900, 1.1 10-15} 1.2 10-15 2.0 10-6 7.7 10-10

Table 6.3: Oxygen interstitial diffusion coefficients and concentrations under
different temperature and oxygen partial pressure conditions.
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DOi
is given by the following relationship [153]:

DOi
= D0,Oi

· exp
[
−∆Hm

Oi

kBT

]
(6.3)

where D0,Oi
is the pre-exponential factor and ∆Hm

Oi
the migration enthalpy

for the diffusion of the defect.

Figure 6.9: Arrhenius relationship of the oxygen interstitial self-diffusion coef-
ficient.

∆Hm
Oi

is estimated from this Figure at 1±0.4 eV and the pre-exponential
factor at 2.5 10-5 m²/s. The figure begs a number of comments. Firstly there
appears to be some dispersion related to the nature of the samples. However,
the migration barrier deduced from sample set 1 in Figure 6.9 is very close to
the value related to sample set 2 (∆Hm

Oi
~ 1.3±0.1 eV and ∆Hm

Oi
~ 1.4±0.03 eV

for sample sets 1 and 2 respectively). Also, because the chromium doped data
in Figure 6.9 were obtained at different oxygen partial pressures, the results in
this Figure seem to confirm the fact that in Equation 6.2 only [Oi”] is depen-
dent upon oxygen partial pressure. The dispersion that appears in Figure 6.9
could be due to variations in the hole mobility which may be a consequence
of differences in doping agents and concentrations. The factor of 5 dispersion
observed in figure 6.9 in the defect diffusion coefficient could be explained by
a variation of hole mobility by a factor of 2 only, since the interstitial concen-
tration varies as 1

[h°]2
. This further justifies the need to carry out hole mobility

measurements.
Note that the migration barrier estimated from Figure 6.9 (1±0.4 eV) is com-

parable to the value of ~ 0.9 eV, reported from first principle estimates for an
interstitialcy mechanism [68].
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The pre-exponential factor D0,Oi
is estimated from Figure 6.9 at 2.5 10-5m²/s.

Assuming this term is given by:

D0,Oi
= fOi

· a2 · ν · exp
[
∆Sm

Oi

kB

]
(6.4)

where fOi
is the correlation factor (0.7391), a is the jump distance (7.7 10-10

m) and ♥ is close to the Debye frequency (~ 1013 s-1). From this equation,
∆Sm

Oi

kB
,

the migration entropy, is estimated at roughly 1.8.

6.2.2 Analysis of data collected at low oxygen potential on Cr-

doped samples

In this section we focus on oxygen self-diffusion data obtained on Cr-doped
samples (see §4.3.2 and §4.3.3) at lower oxygen partial pressures. Under these
conditions, the imposed deviation from stoichiometry is small and it is reason-
able to assume that oxygen defect clustering is negligible.

As indicated previously (Equation 6.2), an approximate expression for the
tracer diffusion coefficient may be given in the case of a purely interstitial
mechanism:

D∗
O = fOi

·DOi
· KOi

√
pO2

[h°]2
(6.5)

Therefore, if one considers two sample types for which this equation ap-
plies at identical temperatures, it follows that:

α ≈
log

(
Dref

√
pO2,X

DX

√
pO2,ref

)

log
(

h°
X

h°
ref

) ∼ 2 (6.6)

where the subscripts refer to a reference sample (subscript ref ) or a sample
type for which the diffusion mechanism is unknown (subscript X). Following
Dorado and co-workers [68], we take the reference sample set to be the poly-
crystalline samples in Figure 6.9 (sample set 1). Figure 6.10a) shows parameter
❛ derived for chromium doped samples annealed at the lowest oxygen poten-
tials and obtained from Dorado et al.’s study whilst Figure 6.10b) shows the
❛ parameter estimated at 800°C for 5 different oxygen partial pressures. Fig-
ure 6.10 shows that the data obtained at 870°C and collected at 800°C and at
oxygen potential values of 1.1 10-19 and 3.0 10-19 atm only are consistent with



158 6. Discussion of experimental results

purely interstitial diffusion mechanisms.

a) b)

Figure 6.10: Estimate of the ❛ parameter (see text for details) for our sample set
and comparison with previously published data [68] at different temperatures
(a) and at 800°C (b).

DOi
values only corresponding to the Cr-doped samples with ❛ equal to 2

are plotted in an Arrhenius representation equivalent to Figure 6.9. From the
linear trend relative to the Cr-doped samples, ∆Hm

Oi
for the sample set n°3 is

estimated at 1.3±0.2 eV, value close to the ones found for sample sets 1 and
2 in §6.2.1. Moreover, our data points can improve the estimate of ∆Hm

Oi
ob-

tained interpolating all the available estimates for DOi
. From linear interpola-

tion plotted in Figure 6.11, the oxygen interstitial migration barrier is estimated
at 1.2±0.4 eV and the pre-exponential term 1.5 10-4 m²/s. This value of D0,Oi

(see
Equation 6.4) provides a

∆Sm
Oi

kB
estimate of 3.5.

Figure 6.11: Arrhenius relationship of the oxygen interstitial self-diffusion co-
efficient for each of the three kinds of samples studied: Cr-doped samples (our
data + data of [68]), un-doped UO2 polycristalline and UO2 single cristals [68].

Because the ❛ parameter was low at 800°C, we carried out a self-diffusion study
as a function of oxygen partial pressure at that temperature in order to quantify
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a possible contribution of oxygen vacancies. As can be seen in Figure 6.10b),
there appears to be a contribution of vacancies below an oxygen potential of
10-19 atm.

If only isolated oxygen interstitials and vacancies prevail, the oxygen tracer
diffusion coefficient is given by:

D∗
O = fOi

·D0,Oi
exp

[
−∆Hm

Oi

kBT

]
[Oi”]+ fVO

·D0,VO
exp

[
−
∆Hm

VO

kBT

]
[VO°°] (6.7)

Further expressing, for small variations of deviation from stoichiometry,
the oxygen Frenkel equilibrium (Equation 3.9 - Chapter 3) and the oxygen in-
terstitial formation equilibrium yields the following general expression for the
tracer diffusion coefficient in an isolated defect regime:

D∗
O = fOi

·D0,Oi
exp

[
−∆Hm

Oi

kBT

]
KOi

√
pO2

[h°]2
+ fVO

·D0,VO
exp

[
−∆Hm

VO

kBT

]
KAF

KOi

[h°]2√
pO2

D∗
O ∼ A · √pO2 +

B√
pO2

(6.8)

Term A above is determined from the expression derived previously for
the oxygen interstitial diffusion coefficient and KOi

determined in Chapter 3.
Term B is then deduced for various values of the self-diffusion coefficient de-
termined at 800°C. Table 6.4 gives the value of B for the two lowest oxygen
partial pressures. Based on this value, we have plotted Equation 6.8 in Figure
6.12a). The figure shows that the tracer diffusion coefficient does indeed fol-
low the law predicted by Equation 6.8 for a value of B approximately equal to
5 10-28. At higher oxygen potentials, it is expected that oxygen clusters become
the predominant species as indicated in Figure 6.12b) (in which the defect con-
centrations are given for values of KOi

, Ke and KWb
given in Chapter 3 - §3.4

and Chapter 6 - §6.1). It is the mergence of this more complex defect popula-
tion which explains why the tracer diffusion coefficient deviates from the law
corresponding to Equation 6.8.

pO2 (atm) Term B
1.3 10-20 4.7 10-28

2.3 10-20 4.2 10-28

Table 6.4: B values obtained by our oxygen diffusion coefficients.
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a) b)

Figure 6.12: a) Application of the point defect model developed in Chapter 3
(T=800°C) to oxygen self-diffusion coefficients relative to Cr-doped UO2 sam-
ples. b) defect concentrations as a function of oxygen potential.

Figure 6.13: Application of our point defect model developped to simulate
electrical conductivity of Cr-doped UO2 sample set [73] and deviation from
stoichiometry [151] at 800°C.

As indicated in Figure 6.13, the model reproduces available electrical conduc-
tivity data and deviation from stoichiometry adequately.

6.2.3 Analysis of data obtained at higher oxygen potentials

6.2.3.1 Comparison of model results with our oxygen self-diffusion mea-

surements

In this section we aim to discuss oxygen self-diffusion results obtained with
Cr-doped and undoped samples annealed at high oxygen potentials and deter-
mine whether this behaviour is consistent with the presence of isolated point
defects.
In Chapter 4 - §4.3.4, we observed that there exists a threshold partial pressure
beyond which the oxygen tracer-diffusion coefficient decreases (see Figures 4.9
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and 4.10). The oxygen partial pressure values at which this change is experi-
mentally observed are summarized in Table 6.5.

Studied Temperature Model pO2,trans Exp. pO2,trans

Sample (°C) (atm) (atm)

Cr-doped 893 5 10-15 (1.1±0.3) 10-15< pO2 < (5.5±1) 10-15

Cr-doped 993 6.6 10-14 (8±2) 10-13< pO2 < (1.3±0.3) 10-11

Undoped 893 8.5 10-14 (5.5±1) 10-15 < pO2 < (1.2±0.3) 10-13

Undoped 993 7.4 10-13 (1.2±0.3) 10-13 < pO2 < (8±2) 10-13

Table 6.5: pO2 of transition between oxygen isolated and cluster defects for
Cr-doped and undoped samples: comparison between the theoretical and the
experimental estimates.

In Chapter 4 we interpreted the change in oxygen self-diffusion with pO2 as
being due to a change in the type of oxygen defect that predominates. To
further investigate the consistency of this interpretation, we compared the val-
ues of oxygen potentials collected in Table 6.5 with the theoretical estimates
of transition oxygen partial pressures corresponding to a change from an iso-
lated oxygen defect to defect clusters found with our model in §6.1 (see Tables
6.1 and 6.2). Considering also the experimental error bars that affect our oxy-
gen partial pressure measurements, the pO2,trans evaluated with both the ap-
proaches are comparable for each temperature and sample type studied. We
conclude that oxygen self-diffusion in UO2+x is inhibited at higher oxygen po-
tentials because of clustering of oxygen interstitials. In fact their progressive
increase in concentration is always associated to the diminution of oxygen in-
terstitials, which constitutes the defect responsible of oxygen self-diffusion in
hyperstoichiometric UO2. Unfortunately, no quantitative analysis of the re-
ported oxygen self-diffusion coefficients may be given due to the fact that dif-
fusion coefficient dependences upon pO2 do not follow entirely reproducible
trends.
Despite the experimental difficulties encountered in estimating oxygen self-
diffusion coefficients (see §4.3.1), there appears to be some consistency be-
tween the observed trends and those expected from our theoretical model.

6.2.3.2 Consistency with collected oxygen K-edge spectra

In Chapter 5 - §5.4, we show that oxidation-induced modifications as observed
from the oxygen K-edge spectra first appear to decrease and then, beyond
a threshold partial pressure increase as would be expected (see Figure 5.22).
The threshold oxygen potential value is estimated at between (5.5±1) 10-15 and
(1.2±0.3) 10-13 atm for Cr-doped samples at 890°C lies at about 10-13 atm at
890°C or 990°C for undoped material.
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For both types of samples and at the temperatures studied, these values are
comparable to the theoretical estimates reported in Table 6.5. This is not incon-
sistent with the interpretation to put forward in Chapter 5: the surface of the
samples is unstable when exposed to air with respect to oxidation since it is
reactive and the low defect concentration enables diffusion to proceed at high
rates. Formation of oxygen clusters at high oxygen partial pressures stabilises
the surface when subsequently exposed to air. Moreover, at these higher oxy-
gen partial pressures, doping effects upon K-edge spectra are not observed.
This behaviour can be thought of as indicating that in the intrinsic region (i.e.

when defect clusters predominate) the effect of Cr-doping becomes negligible
because its concentration lies below the defect cluster concentration brought
about by the annealing conditions.

6.2.3.3 Analysis of the oxygen chemical diffusion dependence upon oxy-

gen potential

In this section we aim to deduce the theoretical oxygen chemical diffusion
dependence upon oxygen partial pressure and compare it with the trend ob-
served experimentally (see §4.2.3 in Chapter 4). This comparison helps us to
consolidate the determination of the oxygen potential regions of predominance
of different oxygen defects studied above. It enables also to evaluate the con-
sistency of our results with the theory reported in Chapter 1, §1.3.2.3.

In Figure 4.5, we observed that at 890°C and at oxygen potentials below
10-13 atm, oxygen chemical diffusion of undoped samples is relatively constant,
while at higher pO2 values oxygen chemical diffusion varies as pO2

-1/2. As
seen in the previous section (see Figures 6.4 and 6.8), oxygen interstitials are
no longer the predominant defect species at oxygen partial pressures above
10-13 atm as oxygen interstitial aggregates predominate.

Chemical diffusion is related to the self-diffusion coefficient through the
molar fraction of uranium (xU) and the quantity ∂ ln(pO2)

∂ ln(xO)
(see Chapter 1 - Equa-

tion 1.7). This factor is clearly dependent upon the molar fraction of oxygen
(xO) in the oxide. This variable, as well as xU, can be expressed as a function of
the deviation from stoichiometry x:




xO = 2+x

3+x

xU = 1
3+x

(6.9)

As a result, the thermodynamic factor ∂ ln(pO2)
∂ ln(xO)

can be expressed as follows:

∂ ln (pO2)

∂ ln (xO)
=

∂pO2

∂x
(3 + x)2 · (2 + x)

(3 + x) · pO2

(6.10)
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Thanks to the expression 6.10 we can finally express the oxigen chemical
diffusion in the following way:

D̃O =
1

2
D∗

O · 2 + x

pO2

· ∂pO2

∂x
(6.11)

Let’s focus first on the oxygen partial pressure range in which oxygen inter-
stitials predominate (i.e. at low oxygen partial pressures). At oxygen partial
pressures above 10-17 atm and below roughly 10-13 atm, the electroneutrality
equation is given by [h°] ~ 2 · [Oi”]. Assuming x ~ [Oi”], one may substitute
these expressions for [h°] and [Oi”] into Equation 3.7, so that pO2 ∝ x6; as a
result:

D̃O ∝ D∗
O · 2 + x

x
≈ D∗

O · 2
x

(6.12)

In case of isolated defect predominance, oxygen self-diffusion is propror-
tional to [Oi”] [68]. As a consequence of equation 6.12, at low pO2 D̃O assume
constant values. This result is in coherence with the first part of the curve rep-
resented in Figure 4.5.

We focus now our attention on the region above 10-13 atm (cluster predom-
inance). In this case, deviation from stoichiometry is assumed proportional
to the concentration of defect clusters (x ~ [W’]), whose formation reaction
constant is expressed by Equation 3.8. Simplifying assumptions outlined in
section §3.3.2.1 yield x ∝

[
W

′
]
∝ √

pO2 and finally:

D̃O ∝ D∗
O · 2 + x

x
(6.13)

Equations 6.12 and 6.13 demonstrate that D̃O shows the same dependence
upon D∗

O and x in both the domains. However, we can show that in cluster
domain the quantity D∗

O · 2+x
x

is a decreasing function of x.

The results obtained by Contamin et al. [50] at 800°C for example show that
oxygen self-diffusion is constant for deviations from stoichiometry higher than
0.1 (following [183], in this range of x there is predominance of clusters). From
equation 6.13, increasing values of x and constant values of D∗

O lead D̃O to de-
crease. However, if all data points in [50] are considered, D̃O decreases by a
factor of 5 also for lower values of x, comprised between 0.0055 and 0.164: our
model links this deviation from stoichiometry range to cluster defect predom-
inance too (see Figure 3.5). Our experimental data of D̃O taken at the highest
values of pO2 (see again Figure 4.5) show once again that D̃O decreases for
increasing values of pO2. We can therefore conclude that our results are in
line with literature and that the overall dependence of D̃O with oxygen partial
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pressure appears to be consistent with the model developed in Chapter 3.

6.2.4 Comparison with literature of our diffusion coefficients

6.2.4.1 Oxygen self-diffusion

In the past (see Chapter 1 - Figure 1.15), oxygen self-diffusion coefficients were
evaluated as a function of the oxide composition at much higher deviations
from stoichiometry because the solid diffusion couple method [50] was used
as opposed to the solid-gas isotopic exchange method in our case. This latter
method restricts the deviation from stoichiometry value investigated because
the maximum oxygen partial pressure is prescribed by the H2O, O2, H2 equi-
librium (see §2.2.2). Nonetheless, in order to compare literature results with
ours, we determined the deviation from stoichiometry in our samples during
the annealing based on our model analysis which provides an estimate of x.
Our data together with the results published by Contamin et al. [50] and Marin
and Contamin [128] are compared at 800°C and 890°C in Figure 6.14.

a) b)

Figure 6.14: Oxygen diffusion coefficient dependence upon UO2+x composi-
tion: comparison between published results [50, 68, 128] and our data, col-
lected at 800°C (graph a) and at 900°C (graph b).

As shown in both the graphs of Figure 6.14, the composition range we stud-
ied is more restricted than the one evaluated by previous authors [50, 128].

At 800°C, Figure 6.14a) demonstrates that our estimates of oxygen self-
diffusion coefficients are comparable to existing data. This gives credit also
to the interpretation given in §6.2.2 to our oxygen self-diffusion data collected
at extremely low pO2: they correspond to a nearly stoichiometric material. Fig-
ure 6.14b) shows clearly that while Dorado et al.’s [68] coefficients obtained at
low oxygen partial pressures are comparable to the data of Marin and Con-
tamin [50, 128], our self-diffusion data collected at 890°C are systematically
lower than the published results of the past.
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Also Figure 4.9 shows that all the oxygen self-diffusion estimates collected
at high oxygen potentials are significantly lower than those previously pub-
lished. This is inconsistent because, as our data were collected on the same
sample set but at higher oxygen potentials than those studied by Dorado et

al., we expected our oxygen diffusion coefficients to be at least comparable, if
not higher. These differences can be ascribed to the sample preparation proce-
dure. First of all, in our study carried out at 890°C and 990°C, the high oxy-
gen potentials imposed during annealing may have resulted in enriched water
condensating in areas of the gas circuit. As a result samples may have been
bulk-contaminated with 18O during the first annealing stage aimed at equili-
brating the samples. Consequently, the depth over which the concentration
profile could actually be used to determine oxygen self-diffusion coefficients
was reduced to the near surface region, which is most affected by the various
initial sample polishing stages. Note that the samples examined in this high
oxygen potential study and in [68] or the one described in section §6.2.2 are
identical bar the last polishing stage, which was in previous work carried out
using an OPU suspension with a 50 nm grain size. As a consequence, the sec-
ond reason identified to explain the discrepancies observed for the study at
high pO2 is the surface roughness of the samples. Polishing the surface with a
1 µm grain instead of 50 nm may modify oxygen exchange between solid and
gas phases and possibly even bulk diffusion properties.

6.2.4.2 Oxygen chemical diffusion

In this section we compare our chemical diffusion coefficient measurements to
those published by Ruello [162]. This comparison may be seen in the Arrhe-
nius graph reported in Figure 6.15.

Figure 6.15: Arrhenius representation of estimated oxygen chemical diffusion
coefficients: comparison with Ruello’s data [162] estimated for a deviation
from stoichiometry range between 0.005 and 0.01.
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In Figure 6.15 we report only Ruello’s data associated to the smallest deviation
from stoichiometry range (between 0.005 – 0.01) he studied. The deviation
from stoichiometry which corresponds to annealing conditions and samples
may be estimated from our previous model analyses. Our annealing condi-
tions correspond to low deviations from stoichiometry (the highest deviation
from stoichiometry are in fact roughly equal to 0.001). We have plotted Ru-
ello’s data with ours because they correspond to the lowest composition range
available in the literature.
As Ruello’s data are measured on samples with greater deviation from sto-
ichiometry than ours, his estimates of D̃ are expectedly lower. This fact is
consistent with the fact that annealing at higher oxygen potential leads to an
increase in deviation from stoichiometry and a decrease in the oxygen chemical
diffusion coefficients. However, a more precise comparison of our data with
Ruello’s is difficult as he derived and reported only a range of composition for
which he estimated D̃ .

6.3 Conclusions

In this chapter we have tried to apply the point defect model described in
Chapter 3 to analyse our oxygen tracer diffusion coefficients, chemical diffu-
sion coefficients and electrical conductivity data reported in Chapter 4. We
have also analysed electrical conductivity data of Gd-doped material previ-
ously reported [177].

The electrical conductivity data of gadolinium doped, chromium doped
and low impurity content samples were first analysed with the model follow-
ing the same methodology as in Chapter 3. The data relating to the Gd-doped
material was consistent with the presence of oxygen clusters for which “the ab-
solute charge to additional oxygen ion” ratio was lower than that determined
in Chapter 3. The formation energy for this defect cluster was estimated at
roughly -2.9 eV which is consistent with -2.2 eV determined for a di-interstitial,
singly charged cluster. The analysis of electrical conductivity data relating to
low impurity material, for which an intrinsic behaviour is observed, provides
electron-hole, di-interstitial cluster and doubly ionised oxygen interstitial reac-
tion constants in line with those determined in Chapter 3 on different sample
sets. This preliminary study enabled us to determine a Brouwer diagram for
the subsequent interpretation of self-diffusion and chemical diffusion coeffi-
cients.

Self-diffusion data collected on Cr-doped material at different temperatures
and at the lowest possible oxygen potentials were analysed. Using the point
defect model and applying it to those self-diffusion data available for which
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it is assumed that doubly ionised oxygen interstitials predominate, it is pos-
sible to estimate the oxygen interstitial diffusion coefficient and therefore the
migration barrier for interstitial diffusion which is estimated at about 1.3 eV.
This value compares relatively well with first principles estimates assuming
an indirect interstitial mechanism [68]. The fact that interstitial diffusion co-
efficients for samples containing different types of impurities lie on roughly
parallel lines suggests an influence of the doping agent, although further in-
vestigations would be required to conclude for certain. In particular, if the hole
mobility were specific to a sample set then the defect concentrations, hence es-
timated defect diffusion coefficients, would be affected.

Oxygen diffusion measurements carried out at higher oxygen partial pres-
sures and at roughly 900°C and 1000°C show that there is a threshold partial
pressure above which the self-diffusion coefficient appears to decrease. We in-
terpret this as resulting from the aggregation of oxygen interstitials into less
mobile clusters. The threshold partial pressures are in reasonable agreement
with the partial pressure values above which, according to the model, single
oxygen interstitials cease to be the predominant defect species. These thresh-
old partial pressures are also comparable with the oxygen partial pressures
above which sample oxidation, as estimated from post-annealing XAS charac-
terizations, is seen to increase monotonously.

Chemical diffusion experiments were also carried out at 900°C on low im-
purity content material. The substantial decrease in chemical diffusion coeffi-
cient above a threshold oxygen partial pressure is again very close to the partial
pressure at which the model predicts that oxygen clusters become the predom-
inant defect species.

Finally, all the results we obtained on oxygen self- and chemical diffusion
were compared to literature data. Such analysis demonstrates that at 800°C
our estimates of oxygen self-diffusion coefficients are comparable to existing
data [50, 128]. Also our chemical diffusion coefficients estimates were consis-
tent with published results [162]. Conversely, the oxygen self-diffusion esti-
mates collected at high oxygen potentials are significantly lower than Dorado
et al.’s [68] coefficients. We ascribed such difference to the sample preparation
procedure: the high oxygen potentials imposed during the annealing resulted
in enriched water condensating in the device and causes samples to be bulk-
contaminated with 18O. As a consequence, the concentration profile useful to
determine oxygen self-diffusion coefficients was reduced to the near surface
region, which is most affected by the initial sample polishing stages. Polishing
the surface with a 1 µm grain (as done for our samples) instead of 50 nm (as
done for Dorado et al.’s ones) may worsen oxygen exchange between solid and
gas phases and even may affect bulk diffusion properties.





Conclusions and Prospects

In this work, we have strived to relate some macroscopic properties of UO2 to
point defect behaviour and characteristics by applying trusted methodologies
set up originally in relation to transition metal oxides [64]. We have focused in
particular upon measuring and analysing electrical and atomic transport prop-
erties of oxygen (self- and chemical diffusion). Prior to this work, although
some experimental data regarding these properties were available, there had
been no comprehensive effort to relate defect concentrations to them.

As detailed in Chapter 3, the starting point was to set up a charged oxy-
gen and electronic defect model which was subsequently used to simultane-
ously analyse existing electrical conductivity and deviation from stoichiome-
try data. This simultaneous analysis enabled us to propose a reassessed value
for the pre-exponential factor of the hole mobility, assuming an adiabatic hop-
ping process, of 0.26 m²·K·V-1·s-1, which is approximately five times greater
than values previously reported. Our analyses as a function of oxygen partial
pressure, at different temperatures, enabled us to estimate defect equilibrium
constants with reasonable precision. Formation energies of -0.8 eV, -2.3 eV and
2.2 eV are suggested for doubly charged oxygen mono-interstitials, singly neg-
atively charged oxygen di-interstitials and the electron-hole pair respectively.
An important feature of this analysis is that at a given temperature, the de-
pendence of electrical conductivity upon oxygen potential is consistent with a
change in the predominant oxygen defect. Although the exact nature of these
clusters is impossible to identify unequivocally based upon property measure-
ments alone, it seems that their composition and charge do not follow a simple
ionic model. So at relatively low oxygen partial pressures, oxygen clusters take
over from single interstitials as the predominant oxygen defect species and the
model we have derived enables us to estimate the value of deviation from sto-
ichiometry at which this occurs. Our model enables us to estimate that the
regime change occurs for deviation from stoichiometries of the order of 10-3,
i.e. below the accuracy usually available through thermogravimetric measure-
ments. An important consequence is that any defect property derived from
thermogravimetry probably relates to oxygen clusters.

As outlined in Chapter 6, the model applied equally well to electrical con-
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ductivity data acquired in this study (concerning low impurity content and
Cr-doped sintered samples) and previous studies (Gd-doped sintered mate-
rial and high impurity content single crystals). The data relating to the Gd-
doped material however was consistent with the presence of oxygen clusters
for which “the absolute charge to additional oxygen ion” ratio was lower than
that determined for a material containing no or much fewer trivalent cations
(as in Ruello [162]). The formation energy for this defect cluster was estimated
at roughly -2.9 eV.

Two self-diffusion coefficient studies were carried out. The first was per-
formed at relatively low oxygen partial pressures and at different temperatures
between circa 750°C and 950°C; it concerned Cr-doped material only. The sec-
ond was carried out at higher oxygen partial pressures and at circa 900°C and
1000°C for Cr-doped and low impurity content material. The oxygen poten-
tials for this latter study were chosen so as to try to quantify the effect of radical
changes in the defect populations upon self-diffusion.

Regarding the low oxygen partial pressure self-diffusion studies, an anal-
ysis was first carried out so as to identify the conditions (i.e. temperature and
oxygen partial pressure) for which it was reasonable to assume that no oxygen
clustering occurred and that oxygen diffusion was due mainly to interstitials.
Using the defect concentrations calculated with the model, it was possible to
estimate the oxygen interstitial diffusion coefficient. The analyses carried out
of our self-diffusion coefficients and those reported in previous studies pro-
vide a consistent migration barrier for oxygen interstitial migration of roughly
1.3 eV (see Chapter 6, §6.2.2).

Self-diffusion coefficient measurements were also carried out at higher oxy-
gen partial pressures at two temperatures (900°C and 1000°C) for Cr-doped
material and low impurity content samples. The measurements showed that
there is a threshold partial pressure above which the self-diffusion coefficient
appears to decrease which was interpreted as the manifestation of the aggre-
gation of oxygen interstitials into less mobile clusters. These threshold partial
pressures are indeed in reasonable agreement with the partial pressure values
above which, according to the model, single oxygen interstitials cease to be
the predominant defect species. However, in comparison to data previously
reported in the literature (notably Dorado et al. [68] and Marin and Contamin
[128]), our self-diffusion coefficients appear to be rather low. It is possible that
measurements were marred by the accumulation of 18O enriched water which
contaminated the samples during the equilibrium annealing stage of the diffu-
sion experiment. This made it virtually impossible to quantitatively interpret
18O concentration values beyond a micron from the sample surface. More ex-
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perimental work is therefore necessary to clarify this point.

In order to identify possible effects upon the electronic structure of the ma-
terial of different defect populations, XAS characterisations were carried out
at the oxygen K-edge and uranium N edges (N4,5 and N6,7) of samples equili-
brated under the same conditions as in the high oxygen potential self-diffusion
study. The spectra obtained were interpreted from data relating to one UO2 ref-
erence sample and two U4O9 and U3O7 samples obtained from controlled oxi-
dation of uranium dioxide specimens. Hybridisation of the oxygen 2p and ura-
nium 5f and 6d orbitals was demonstrated experimentally as was the change
in Fermi energy resulting from the oxidation process. The loss of symmetry as
the material changes from a cubic (UO2, UO2+x, U4O9) structure to tetragonal
U3O7 is also manifest in the collected spectra. Indeed, the cubic symmetry of
uranium oxide over the composition range extending from UO2 to U4O9 pro-
duces a crystal field which lifts the degeneracies of the uranium 6d orbitals
into eg/t2g levels that are no longer observed in the U3O7 spectra.

We have also seen from this study that the oxygen K-edge data of a ura-
nium oxide sample with a composition intermediate between UO2 and U3O7

may be expressed as a linear combination of UO2 and U3O7 spectra. This im-
portant result is consistent with the fact that the long range structure of the
material results from ordering of defects which have similar short range char-
acteristics, as demonstrated from neutron diffraction studies [61]. This result
to some extent justifies using a defect model that spans the whole composition
range from UO2 to U4O9. A detailed analysis of the spectra obtained from sam-
ples annealed under conditions identical to those corresponding to diffusion
experiments shows that the level of oxidation does not increase monotonously
with oxygen partial pressure. This unexpected result is interpreted as being
due to the fact that the degree of surface oxidation of the sample exposed to
air for some time following the annealing treatment, is the result of a combi-
nation of post-annealing surface reactivity and transport of oxygen in the bulk
material.

Throughout this work we have endeavoured to compare, quantitatively
when possible, results from first principles calculations and results from the
analyses of our or previously reported experimental data. For instance, in
Chapter 3 we saw that the electron hole pair, the doubly ionised mono-interstitial
and the singly ionised di-interstitial formation energies determined from ex-
periment were all within less than half an eV of the DFT+U values. In a
similar way, the migration energy for the oxygen interstitial determined ex-
perimentally (1.3 eV) is reasonably close to the value determined from first
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principles assuming an interstitialcy mechanism (0.9 eV). From a qualitative
standpoint also, we saw in Chapter 3 from deviation from stoichiometry data
at low temperature and as stoichiometry rises, the signs of a defect more stable
than a singly charge di-interstitial. The absolute charge per additional atom
was lower than for the di-interstitial which is entirely consistent with the most
recent theoretical studies of charged defect aggregates. Finally despite being
a ground state theory and not taking into account core-hole effects, DFT was
extremely useful in interpreting XAS spectra.

A number of studies should now be carried out in order to tackle some of
the unresolved issues raised in this work. Firstly the effect of high oxygen par-
tial pressures on self-diffusion should be further investigated so that the con-
sistency with previously published data (notably Marin [128]) be definitively
established. This probably requires improving the experimental methodology
by for instance annealing the system out thoroughly between two diffusion
experiments in addition to testing for the presence of undesired enriched wa-
ter vapour in the gas phase. As regards electrical properties, we proposed
in Chapter 3 a revised hole mobility. This should really be confirmed from
Hall effect measurements which would provide an independent estimate of
the charge carrier concentration and the sample conductivity whence mobility
may be derived. This could possibly improve the consistency between intersti-
tial diffusion coefficients derived from samples containing different impurity
or doping levels.

Neutron diffraction provides a vision of oxidation of the material in which
the long range ordering of cuboctahedra leads to the formation of U4O9. As ox-
idation proceeds still further U3O7 will form as a result of cuboctahedra mov-
ing still closer together. Since the absorption work carried out in our study
shows that the UO2+x spectra can be described as a linear combination of spec-
tra relating to U3O7 and UO2, one wonders whether these more complex oxy-
gen clusters already exist in hyperstoichiometric UO2 and to what extent this
contradicts Willis’s original assumptions. Answering this question requires
carrying out specific in-situ neutron diffraction experiments on samples care-
fully equilibrated and would no doubt yield a detailed vision of the structure
of UO2+x for technologically relevant values of deviation from stoichiometry.

Regarding the defect model, it is expected that improvements could come
from one of two efforts. The first would require setting up a specific theory
that may be substituted to the one we have used which assumes infinite dilu-
tion. This could enable us to do away with the composition constraint which
is build into the model at the moment in a somewhat arbitrary fashion. The
second could involve describing uranium defects (vacancies and interstitials)
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which have been entirely neglected in this work. This actually is an indication
that electronic and oxygen type defects are present in much greater concen-
trations. However, it is essential to build upon our approach by determining
uranium self-diffusion coefficients which could lead to identifying diffusion
mechanisms and associated defect concentrations.
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Appendix A

Theoretical determination of the

oxygen potential imposed with an

humidified mixture of Ar and H2

This appendix aims to determine the theoretical oxygen partial pressure of the
atmosphere imposed during UO2 specimen annealing.

In the device conceived for oxygen diffusion (see §2.2.1), the oxygen partial
pressure imposed to a sample (maintained at the temperature T) is controlled
by the water dissociation reaction:

H2 +
1

2
O2 ⇋ H2O (A.1)

The equilibrium constant Keq of this chemical reaction is defined as follows:

Keq =
[H2O]

[H2] [O2]
1/2

(A.2)

From Equation (A.2), oxygen partial pressure can be written as following:

pO2 =

(
pH2O

pH2 ·Keq (T )

)2

(A.3)

Here, the reaction constant Keq figures as a function of temperature. In fact,
Kubachewscki [116] found the relationship governing the Gibbs free energy of
the water dissociation reaction as a function of the temperature at which the
reaction is produced:

∆G (T ) [cal] = −RT ln (K (T )) = −58900 + 13.1 · T [K] (A.4)

The dissociation reaction A.1 is activated inserting in a gas mixture con-
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A. Theoretical determination of the oxygen potential imposed with an humidified mixture

of Ar and H2

trolled quantites of hydrogen and water vapour. Hydrogen presence is guar-
anteed because of gas mixture composition: Ar (inert) and H2 (reductor). Our
oxygen diffusion device in fact has two types of bottles available: Argon and
Ar/10%H2. Such gases are mixed together through fluxmeters to obtain the
desired composition of the gas to send in the furnace. Therefore, it’s possible
to rely the hydrogen partial pressure (hereafter, pH2

) of the gas mixture to the
fluxes of Ar and Ar/10%H2 through the following expression:

pH2

pAr + pH2

=
0.1 · V̇Ar/10%H2

V̇Ar + V̇Ar/10%H2

≡ 1

r
(A.5)

whereV̇Ar/10%H2 and V̇Ar are respectively the fluxes of Ar/10%H2 and Ar
regulated by the fluxmeters, while pAr and pH2 the argon and hydrogen partial
pressures.

Water vapour molecules are assured by the constant circulation of the gas
mixture in a bubbler, filled with water and maintained at the temperature of
5°C (hereafter Tth); this imposes water vapour partial pressure to correspond
to the water vapour partial pressure of saturation at Tth:

ln (pH2O) = −6640.2

Tth

− 4.517 · ln (Tth) + 44.55 (A.6)

Assuming that the oxygen partial pressure of the gas mixture is negligible
compared to the ones of argon, hydrogen and water vapour1, we can write:

pAr + pH2 + pH2O ≈ 1 (A.7)

Coupling together equations A.5 and A.7, pH2
is found to be:

pH2 =
1

r
· (pAr + pH2) =

1

r
· (1− pH2O) (A.8)

From equation A.8, the ratio between pH2O and pH2
appearing in equation

A.3 can be expressed as follows:

pH2O

pH2

= r · pH2O

1− pH2O

(A.9)

1For oxygen partial pressures of about 10-4 atm, the term pO2
can be nomore neglected and

equation A.7 must be written as follows:

pAr + pH2
+ pH2O + pO2

= 1
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Combining together equations A.3 and A.9, oxygen partial pressure results:

pO2 = r2 ·
(

pH2O

(1− pH2O)Keq (T )

)2

(A.10)

For given temperatures of the furnace (T) and of the bubbler (Tth), Equation
A.10 shows that the oxygen partial pressure imposed to the sample depends
upon r2 (i.e. the composition of the gas mixture sent in the device).





Appendix B

Solutions of the diffusion equations

This appendix aims to shortly present the mechanisms and the laws that gov-
ern atomic diffusion (Fick’s equations). Moreover, some analytical solutions to
the second Fick law are given: attention will be directed towards the boundary
conditions gouverning the exchange reaction between the sample surface and
the atmosphere surrounding it.

B.1 The various mechanisms of bulk diffusion and

the Fick laws

The phenomenon of diffusion appears with the presence and the migration of
defects of different nature inside a material. For example, point defects (such as
vacancies or interstitials) give birth to the phenomenon of the lattice diffusion
(i.e. the bulk or volume diffusion). Three different diffusion mechanisms are
generally cited in the books [111, 153]:

• Vacancy mechanism: an atom situated in a normal lattice position can
jump in a lattice vacant site, leaving empty its nominal site; note that
vacancy movement is opposite to the one of the atom.

• Direct interstitial mechanism: an atom situated in an interstitial site jumps
directly to the neighbour one. Note that this kind of migration leads to a
strong distortion of the crystal lattice.

• Indirect interstitial (or interstitialcy) mechanism: the interstitial atom pushes
away an atom from its regular site taking its place in the lattice; the dis-
placed atom will take the neighbour interstitial position. Depending on
the jump direction of this second atom, the jump can be collinear or not-
collinear.
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Note that jumps made by atoms of the same nature are completely random, in-
dependent and uncorrelated. But diffusion phenomenon is commonly studied
using isotopes of the diffusing species as tracers of the atomic movement. In
vacancy and interstitialcy mechanisms, the use of isotopes leads to consider no
more jumps as uncorrelated, as the probability to make the reverse movement
is greater than the others. Therefore, a correlation factor has to be introduced.
The diffusion coefficient of the tracer can be expressed in the following way:

D∗ = f ·D (B.1)

Where D* is the diffusion coefficient of the tracer, D is the one of the diffus-
ing species under analysis and f is the correlation factor.

In direct analogy with the heat transfer phenomenon, diffusion can be ex-
pressed with the following equation (the first Fick law):

J = −D · ∂c (x, t)
∂x

(B.2)

Where J is the flux of the diffusing species, c is its concentration and D is the
diffusion coefficient. Equation (B.2) is referred to the simple one-dimensional
case.

In a not-stationary diffusion regime, time evolution of the diffusing species
concentration can be expressed with a combination of the first Fick law and
the mass balance equation, giving birth to the following relationship:

∂c (x, t)

∂t
= −∂J

∂x
=

∂

∂x

(
D · ∂c (x, t)

∂x

)
(B.3)

This equation is universally known as the second Fick law. It can be simpli-
fied only if the diffusion coefficient D is not dependent upon position. In this
case equation (B.3) can be written in the following way:

∂c (x, t)

∂t
= D · ∂

2c (x, t)

∂x2
(B.4)

More generally, if the temperature at which diffusion occurs is sufficiently
high, sample presents also the phenomenon of surface evaporation. In case
of UO2, some authors (reviewed in [120]) fixed this threshold temperature in
the range 1400-1600°C. Mathematically, this phenomenon is represented by
adding to the second member of the equation (B.4) a term proportional to the
surface evaporation rate. Equation (B.4) then becomes:

∂c (x, t)

∂t
= D · ∂

2c (x, t)

∂x2
+ v

∂c (x, t)

∂x
(B.5)
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Here all the symbols have the same meanings of the ones used in equation
(B.4); v expresses the sample evaporation rate.

In case of oxygen, the highest temperature at which anneals are carried
out is equal to 1000°C. At this temperature evaporation doesn’t occur, so the
most suited diffusion equation to simulate oxygen self-diffusion profiles is the
equation B.4. Conversely, iodine diffusion is activated at higher temperatures,
i.e. T≥1300°C: in this case, the most suited equation to use is B.5.

Both equations (B.4) and B.5 have to be coupled with some initial and
boundary conditions to be solved. In particular, these conditions have to repre-
sent mathematically what happens in a diffusion experiment. Next subsection
presents the diffusion equation solutions that are used during our work.

B.2 Analytical solutions of the Fick equation

B.2.1 Tracer exchange between the sample surface and the at-

mosphere without sample surface evaporation: case of

initial condition equal to a constant

In this case the boundary and the initial conditions to associate to the equation
(B.4) are the followings:





[
∂c(x,t)
∂x

]
x=0

= K
D
· (c (0, t)− cgas)

c (∞, t) = c0

c (x, 0) = c0

(B.6)

Here K is the exchange coefficient, cgas is the tracer concentration of the
atmosphere surrounding the sample and c0 is the tracer natural isotopic con-
centration.

Solution of the diffusion equation (B.4) coupled with the conditions B.6 is
provided by Philbert [153]:

c (x)− c0
cgas − c0

= erfc

[
x√

4Dtdiff

]
−exp

[(
K

D

)
x−

(
K

D

)2

Dtdiff

]
·erfc

[
x+ 2Ktdiff√

4Dtdiff

]

(B.7)

where all the symbols have the same meaning of the equations above and
tdiff is the duration of the tracer diffusion annealing.



210 B. Solutions of the diffusion equations

B.2.2 Tracer exchange between the sample surface and the at-

mosphere with and without sample surface evaporation:

initial condition equal to a generic function F(x)

In litterature, the Fick equation B.5 associated to the boundary condition ex-
pressing the tracer exchange between the sample surface and a gaseous atmo-
sphere and to the initial condition equal to a generic function is already solved.
In fact, Tarento [171] found a solution to the equation B.5 for the following
boundary and initial conditions:





[
∂c(x,t)
∂x

]
x=0

= K
D
· (c (0, t)− cgas)

c (∞, t) = 0

c (x, 0) = F (x)

(B.8)

Here K is the exchange coefficient, cgas is the tracer concentration of the at-
mosphere surrounding the sample and F(x) is a generic function that expresses
the initial tracer concentration profile inside the sample bulk. The following
equation reports the found solution to this problem:

c (x, t) =
1

2

ˆ ∞

0

F (y)√
πDt

· exp
[
−(y − x− vt)2

4Dt

]
dy

+
1

2

ˆ ∞

0

F (y)√
πDt

· exp
[
−(y + x+ vt)2

4Dt

]
exp

[vy
D

]
dy

−
(
H +

v

2D

) ˆ ∞

0

F (y) · exp
[
H2Dt+H · (x+ y + vt)

]
exp

[vy
D

]
·

· erfc
[
x+ y + vt

4Dt
+H

√
Dt

]
dy

+ cgas
H

2
(
H + v

D

) exp
[
−vx

D

]
· erfc

[
x− vt√
4Dt

]
+

1

2
erfc

[
x− vt√
4Dt

]

− cgas
H + v

2D

H + v
D

exp
[
H2Dt+H · (x+ vt)

]
· erfc

[
x+ vt

4Dt
+H

√
Dt

]

(B.9)

where H is defined as the ratio between the exchange coefficient K and the
diffusion coefficient D.

Equation B.9 leads us to simply deduce the solution of the diffusion equa-
tion also for a material that doesn’t evaporate during the annealing. In this
case we simply impose the evaporation rate v equal to 0:
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c (x, t) =
1

2

ˆ ∞

0

F (y)√
πDt

· exp
[
−(y − x)2

4Dt

]
dy

+
1

2

ˆ ∞

0

F (y)√
πDt

· exp
[
−(y + x)2

4Dt

]
dy

−H

ˆ ∞

0

F (y) · exp
[
H2Dt+H · (x+ y)

]
· erfc

[
x+ y

4Dt
+H

√
Dt

]
dy

+
1

2
(cgas + 1) · erfc

[
x√
4Dt

]

− cgas exp
[
H2Dt+Hx

]
· erfc

[ x

4Dt
+H

√
Dt

]
(B.10)

Note that such equation (B.10) constitutes the solution of the Fick law B.4
coupled with the initial and boundary conditions B.8.





Appendix C

Iodine diffusion coefficients in

UO2±x: study of their dependence

upon oxygen partial pressure

This thesis is all dedicated to study UO2 anionic sublattice. In particular, we as-
certained how oxidation influences oxygen transport properties and UO2 elec-
tronic structure. Conversely, from a complementary standpoint, this appendix
aims to analyse the cationic sublattice through the study of fission product
diffusion. Here attention is focused on iodine. After a review of past arti-
cles studying diffusion of fission product in general and iodine in particular,
the experiments carried out to evaluate iodine diffusion dependence upon the
oxygen partial pressure are reported. This study was studied through this
methodology: iodine-implanted UO2 polycrystalline samples were annealed
at 1500°C under strictly controlled oxygen partial pressures. Iodine diffusion
profiles were then characterized experimentally by SIMS and simulated with
the 2nd Fick law to obtain iodine diffusion coefficients. The analysis of iodine
diffusion dependence upon oxygen partial pressure aims to shear light upon
the nature of the defect that promotes iodine diffusion in UO2±x.

C.1 Literature review

In Chapter 1- Figure 1.13, we showed that oxygen diffusion is activated at rel-
atively low temperatures (at about 600°C) and allows to study oxygen redis-
tribution in the UO2 anionic sublattice. On the contrary, the complementary
study of the cationic sublattice is based on the study of those ionic species
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whose diffusion is activated at much higher temperatures (i.e. 1300°C). In par-
ticular, fission products (such as Xe, Cs and I) moves in UO2 at temperatures
similar to those uranium atoms move. Therefore, these elements can be consid-
ered as model systems to study UO2 cationic sublattice. This paragraph aims
to summarize the major results of past studies effectuated on fission product
diffusion.

C.1.1 Introduction: fission product and iodine diffusion

Historically, much attention was paid to study the diffusion mechanisms of
fission products (i.e. rare gases, as xenon and krypton, and volatile species,
as iodine) in UO2. The phenomenon of fission gas release is of fundamental
importance to evaluate in-pile performance and ultimate disposal behaviour
of the nuclear fuel. In fact, it can induce phenomena like fuel swelling, rod
overpressure, gap thermal conductivity lowering and thermal feedback [52,
102].
Three different ways to measure out FP diffusion properties were conceived in
the past [42, 120]:

1. Post-irradiation annealing experiments. In this case, UO2 samples are
irradiated at values of temperatures not enough to activate diffusion and
then out-of-pile annealed to induce the release of fission product gases
produced during irradiation. The amount of gases released during the
annealing is measured by a gamma counter.

2. In-pile experiments. UO2 samples are encapsulated and inserted in an
experimental reactor; the capsule atmosphere has to be constantly re-
newed to control sample composition, while its position in reactor has
to be fixed to univocally determine sample irradiation rate. This type of
experiment is the most similar to the reactor conditions the nuclear fuel is
subjected to. However, the diffusion coefficient is more difficult to ascer-
tain, as phenomena like radioelement production-decay processes have
to be taken into account.

3. Ion-implantation. The ion species that have to be studied are inserted
inside UO2 through implantation. Parameters as ion energy and fluence
have to be determined to know respectively ion penetration depth and
concentration inside the UO2 lattice. This type of experiments is the most
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flexible and allows to study fission gas diffusion through the separate
effect method.

Fission gas diffusion coefficient can be estimated by measuring over time the
fraction of gas released from the sample during a thermal annealing. In this
case, gas release curves are analysed with the Booth model [36], that consider
UO2 as an assembly of spheres that communicate with the surrounding atmo-
sphere through channels of open porosity. This model yields an effective diffu-
sion coefficient, D/a², where a is the hypothetical radius of these ideal spheres.
The major difficulty of this approach consists in defining a reliable value for a,
which Booth defined as follows:

a =
3

S/V
(C.1)

Here, S is the total microscopic surface area while V is the volume of the
bulk UO2. According to [93], the most reliable technique to determine precisely
diffusion coefficients consists in measuring the gas concentration profile in the
UO2 bulk with the Secondary Ion Mass Spectrometry (SIMS).

Many authors applied these three different methodologies to evaluate FP
diffusion in UO2; although the huge scatter in the collected data, these studies
(critically reviewed by Lawrence [120]) clarify what phenomena impact on FP
diffusion:

• UO2 deviation from stoichiometry. The slightest increase of oxygen con-
tent in the annealing atmosphere leads to a strong increase of gas release
rates. This phenomenon was for the first time observed by Lindner and
Matzke (in ref. [120]) in 1959, analysing rare gas release curves of UO2

powder specimens with different stoichiometries.

• Sample irradiation burn-up (or, in case of ion-implantation technique, by
the ion dose). Increase in burn up is associated to a diminution of the
gas released fraction. MacEwan and Stevens (in ref. [120]) explained this
phenomenon affirming that irradiation-induced defects act as traps for
gas atoms, inhibiting their release from the lattice.

• Sample density. The effect of reducing the open porosity of the sample
leads to a variation the Booth radius a estimation [169]. In this sense, it’s
still unclear if it leads also to a variation to the true diffusion coefficient
D.
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• Rating (i.e. fission density) influence. For a rating range comprised be-
tween 7 and 30 W/g, ion gas concentration inside the lattice increases
with rating with no corresponding increase in its release rate. This effect
can be explained with the UO2 change in microstructure during irradia-
tion (as, for example, creation of traps).

• Surface vaporisation. This phenomenon is strongly dependent upon the
annealing temperature. In fact, if temperature is high (i.e. superior to
1600°C), sample surface can sublimate. As a consequence, the apparent
activation energy value that can be inferred in this case is the sublima-
tion heat of UO2, equal to 147 kcal/mol. Moreover, the control of sample
stoichiometry is made more difficult. So, it is still more difficult to as-
certain the contribution of the O/M variation from the contribution of
vaporisation in the ion diffusion coefficient estimates.

Among all the atomic species that are produced in a fission event, iodine as-
sumes a role of huge importance in nuclear fuel in-pile performance and out-
of-pile behaviour. In pressurized water reactors, iodine is produced from a
fission reaction of a 235U nucleus with a yield of roughly 1%. In the event of
Pellet-Cladding Interaction (PCI) as a result of a power-transient, iodine can
be instrumental in the Stress Corrosion Cracking (SCC) of the Zircaloy sheath
[52]. Moreover, under long term storage conditions, iodine can contribute in
the event of cladding failure to the instantaneous release fraction (IRF) [102].
Next subsections therefore review more in detail the experimental and theo-
retical studies conducted in the past to analyse iodine migration in UO2.

C.1.2 Iodine diffusion experiments

Different kinds of studies were experimentally pursued in the past. Iodine
diffusion was primarily analysed as a function of temperature to determine its
activation energy in UO2. Authors tried then to determine if deviation from
stoichiometry has an impact on iodine diffusion in UO2 to try to shear light
upon the nature of the UO2 defect responsible of iodine migration.
All the three methodologies cited in §C.1.1 were used to study iodine diffusion:

1. Prussin et al. [157] studied with post-irradiation experiments Cs, I and
other FP release in UO2 polycrystalline samples in a range of temperature
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of 1450°C – 1750°C. Their diffusion coefficients were obtained using the
Booth model.

2. Friskney and Turnbull [76] conducted a study on iodine diffusion in small
and large grained UO2 with the in-pile experiment method.

3. Hocking et al. [93] and M. Saidy et al. [165] (together with P. Garcia [77])
used the SIMS technique on ion-implanted samples to determine iodine
thermally- and radiation-induced diffusion coefficients in stoichiometric
UO2. To deduce iodine diffusion coefficients, each iodine relative con-
centration profile of the annealed (or irradiated) samples was simulated
with the Fick law. Remark that the iodine initial profile is taken equal to
the iodine profile of an as-implanted and not-annealed sample.

Figure C.1 reports in a Arrhenius graph the iodine diffusion coefficients found
by all of these authors.

Figure C.1: Arrhenius graph which collects all the literature data [76, 93, 157,
165] referred to iodine thermally activated diffusion coefficients in stoichiomet-
ric UO2. Remark that data collected by Fiskney and Turnbull [76] are indicated
with two different colours because they refers to two different sample sets.

As shown in Figure C.1, data acquired with the post-irradiation annealing
technique [157] don’t really follow an Arrhenius behaviour. In fact, the effec-
tive diffusion coefficient estimated with the Booth model decrease from 1550°C
to 1650°C. The authors explained this fact as due to the probable negative
charge of iodine ions, that leads them to interact with other charged defects cre-
ated during irradiation. Data acquired with SIMS technique on ion-implanted
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specimens are instead completely reproducible [93, 165] and follow the Arrhe-
nius relationship here reported [77, 165]:

DI

(
m2/s

)
= 2.04 · 10−8 · exp

[
− 3.6 (eV )

KBT (K)

]
(C.2)

Also the Friskney and Turnbull [76] data are aligned along an Arrhenius trend;
however, their estimation of iodine diffusion activation energy is about 1 eV
smaller than the one found with the ion-implantation technique [77, 165]. This
difference can be ascribed to the technique they used to activate iodine dif-
fusion. In fact, in in-pile experiments sample are exposed not only to high
temperatures but also to reactor irradiation. The phenomenon of radiation
enhanced diffusion could therefore be activated, modifying the estimation of
iodine diffusion coefficients. It seems then that their data cannot be ascribed
exclusively to the thermally-induced diffusion. Influence of radiation was re-
ported also by Hocking et al. [93]. They stated that irradiation leads to a
spreading in the iodine distribution profiles in iodine-implanted samples.

As cited in §C.1.1, not only irradiation but also many other factors can influ-
ence FP diffusion in UO2. Hocking et al. [93] demonstrated in fact that the
iodine-implantation dose plays an important role in the determination of io-
dine diffusion coefficients. Above a fluence of 1016 atoms/cm3, iodine trapping
is activated and iodine concentration profiles in annealed samples don’t show
any evidence of bulk diffusive spreading.

M. Saidy et al. [165] instead attempted to evaluate if iodine migration is af-
fected by UO2 deviation from stoichiometry. In a UO2.02 sample, iodine diffu-
sion coefficient turns out to be two orders-of-magnitude higher than the value
estimated for a stoichiometric specimen. They ascribed this strong difference
as due to the presence, inside the hyper-stoichiometric sample, of a higher ura-
nium vacancy concentration that will favour iodine migration.

The reproducible data of Hocking et al. [93] and of M. Saidy et al. [165] confirms
that the ion-implantation is the most reliable technique to clarify the iodine dif-
fusion dependences upon temperature and UO2 composition. However, more
experimental studies have to be yielded to shear light upon the nature of the
defect that is responsible for iodine migration inside the UO2 lattice. Many
efforts were done also from a theoretical standpoint to elucidate what UO2 lat-
tice defect is involved in the incorporation and migration of iodine atoms. The
results published in this sense are reviewed in the next subsection.
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C.1.3 Iodine incorporation and solution energy estimates by

first principle calculations

Literature is full of theoretical study on iodine incorporation and solution in
UO2 [38, 39, 53, 54, 67, 84, 83]. Incorporation energy is defined by theoreticians
as the energy needed to insert iodine in a pre-existing trap. Its value can give
an indication of what happens in the fuel at low burn-ups, as the FP concen-
tration is still small and traps populations are much higher than at thermal
equilibrium. Solution energy is instead related to what happens at thermal
equilibrium: its value is defined as the FP incorporation energy plus the ap-
parent formation energies of the trap site. Note that trap formation energy
(and consequently the FP solution energy too) is dependent upon deviation
from stoichiometry. Next table (C.1) aims to summarize the defects that, from
calculations, own the lowest iodine solution energies in case of hypo-, hyper-
or exactly stoichiometric material.

The little summary of Table C.1 shows strong discrepancies among the pub-
lished results. Even the iodine solubility in the UO2 matrix is not yet com-
pletely assessed. While many authors found iodine atoms quite insoluble
(see for example [39, 53, 84, 83]), the slightly positive or negative values of
[67, 38] may account for an eventual solubility of iodine ions in UO2±x. De-
spite this variability, all these studies seem to indicate that solubility of iodine
is favoured in case of UO2 hyper-stoichiometry. Some authors refers also to
the charge iodine can assume inside UO2 and, also in this field, published re-
sults disagree: while B. Dorado et al. [67] found iodine ions always charged
-1, Grimes et al. [84, 83] found that the iodine charge state may change with
UO2 stoichiometry, acting as a buffer to the fuel redox potential. Their cal-
culations seem to indicate that iodine is more stable as an anion in hypo- and
stoichiometric UO2, and as cation in case of a hyper-stoichiometric lattice. Very
recently, J. P. Crocombette [54] developed ab-initio calculation in charged (and
not neutral as in all the other studies) supercells to evaluate the interaction be-
tween the iodine charge with the charge of the defect iodine is incorporated
into. Insertion of an iodine ion inside a defect tends to decrease the total de-
fect charge, in accord with the iodine elevated electronegativity. Moreover,
he remarked that to take into account the charge of point defects leads to an
appreciable decrease in the iodine incorporation and solution energies.

The only study that reports an estimation of activation energies for iodine dif-
fusion in hypo-, hyper- or exactly stoichiometric UO2 is the one of Busker et

al. [39]. They found that activation energy is quite dependent upon the defect
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iodine is trapped and, as a consequence, upon UO2 deviation from stoichiom-
etry. They estimated it equal to 1 eV, 5.6 eV or 6.3 eV respectively for hypo-,
exactly or hyper-stoichiometric UO2. Remark that their value found for the ex-
act stoichiometry doesn’t correspond to the activation energy experimentally
assessed [165]. This may be explained saying that they take into account wrong
defect migration mechanisms.
As a conclusion, we can say that despite all the studies conducted on unravel-
ling the iodine behaviour in UO2, until nowadays theoretical approaches lack
of a clear picture of iodine incorporation, solubilisation and migration in the
UO2 lattice. Big tendencies however can be deduced by the conducted sim-
ulations: for all the values of deviation from stoichiometry uranium dioxide
can assume, iodine seems to be insoluble. Moreover, as this ionic species is
strongly electronegative, each defect that traps an iodine ion sees its charge
modified.

C.2 Iodine diffusion experiences carried out

C.2.1 Sample preparation

To study iodine diffusion in UO2, we used some undoped polycrystalline sam-
ples, the preparation conditions of which were already discussed in Chapter
2 - §2.1. After their preparation, these samples were annealed at 1400°C for
4 hours and then implanted with 127I2+ ions of 800 keV and with a very low
implantation dose (∼1011 at/cm²). SRIM software [11] calculated that iodine
beam energy of 800 keV leads ions to penetrate in UO2 at an average depth
of 130 nm. The implantation dose used rather corresponds to an iodine con-
centration in the UO2 lattice of about 6 1015 at/cm3 (see Figure C.2). Note that
such low concentration limits the damage of the UO2 lattice and reduces the
probability for iodine ions to interact and cluster together. Moreover, this low
concentration is still sufficient for a reliable SIMS characterisation, since this
technique is extremely sensitive to the presence of iodine in UO2 [93].

C.2.2 Sample anneals

C.2.2.1 Thermal treatment device used to control oxygen partial pressure

The setup in which iodine diffusion experiments are performed is made up of
a furnace with two gas inputs: Ar and Ar/5%H2. The gas flow rates are regu-
lated by ball flowmeters. A fraction of the carrier gas mixture is then diverted
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Figure C.2: SRIM simulation corresponding to the implantation of iodine ions
of 800 keV at the dose of 1011 at/cm² into the UO2 lattice.

from the main gas stream and sent through a bubbler containing water at con-
stant temperature (20°C). The output gas is then sent back into the main gas
stream. Before sending the the furnace input, a part of it is sampled to control
its oxygen partial pressure: its dew point temperature is measured with an hy-
grometer equipped with a mirror system. The water vapour pressure is then
determined from the dew point temperature [12] instead of using the same re-
lationship as that used to derive the saturation water vapour pressure in the
previous paragraph. The oxygen partial pressure of the gas can be deduced
from the thermodynamic equilibrium constant of the reaction corresponding
to water vapour formation:

pO2 =

(
pH2O

pH2 ·K (T )

)2

(C.3)

Here pH2O, pH2 and pO2 are the partial pressures of water, hydrogen and
oxygen respectively while K(T) is the water formation equilibrium constant at
temperature T [116]. The fraction of gas initially diverted from the main gas
stream is adjusted in such a way that the final gas flow reaches the desired
oxygen potential. The thermal cycle can be started only after having waited
long enough for the oxygen partial pressure to stabilise.

This molybdenum furnace is not equipped with a quenching system. To
reduce the possibility of any atomic movement during the cooling process, the
temperature decreases at the highest possible rate: in this case, 16.6°C/min.

C.2.2.2 Conditions under which sample anneals are carried out

To focalize on iodine diffusion dependence upon oxygen partial pressure, we
realized 4 thermal treatments of 2 hours at the fixed temperature of 1500°C.
Oxygen partial pressures are controlled by imposing different humidity con-



C.2 Iodine diffusion experiences carried out 223

tents in the gas mixture surrounding the sample during the annealing (see
§C.2.2.1). By checking the humidification limits of the available furnace, the
imposed 4 oxygen partial pressures are ranging between 10-17 and 10-12 atm.
Table C.2 summarizes the experimental conditions of the anneals.

Employed gas
Added H2O Dew point temperature Estimated pO2

(ppm) (°C) (atm)

H2 100 -42.5± 0.1 (9.6±0.3)10-18

H2 500 -25.6 ± 0.4 (4.6±0.4)10-16

H2 3000 -6.5 ± 0.4 (1.7±0.1)10-14

Ar/5%H2 1200 -16.2 ± 1 (1.1±0.2)10-12

Table C.2: Imposed atmosphere, measured dew point temperature and oxygen
partial pressure estimates obtained for each annealing carried out.

Remark that, together with the annealed samples, we dispose also of a not-
annealed specimen that was implanted at the same time of the others. This
sample constitutes the reference useful to determine the iodine concentration
profile present in the sample before the annealing. The reference and the four
annealed samples were therefore characterized by SIMS and by confocal mi-
croscopy to evaluate iodine concentration profiles: the following subsection
gives details of this sample characterization.

C.2.3 Determination of iodine spreading induced by sample

anneals by SIMS and confocal microscopy

SIMS depth profiling is used to determine diffusion coefficients derived from
depth profile modifications due to annealing. A priori, a SIMS analysis is only
qualitative. However, the analysis of iodine diffusion can be rendered quan-
titative. This requires having an as-implanted reference sample for which the
127I
238U

ratio may be used to evaluate an iodine concentration profile (assuming
the total number of implanted ions is known)1.

1Case of iodine diffusion characterisation treated here is quite different to oxygen diffu-
sion characterisation reported in Chapter 2 and requires a different approach. As regards the
implanted iodine (127I) samples, previous works [77, 165] appeared to indicate that ionisation
and collection yields of both iodine and uranium species were very much dependent upon
experimental conditions and texture. As a result, it is virtually impossible to define a rela-
tive sensitivity factor (see equation 2.15). However, normalising the iodine signal to a matrix
species does enable sputtering effects to be corrected. Also, we have shown (see [77]) that do-
ing this greatly reduces variations in depth profiles characterised under identical experimental
conditions at the surface of implanted samples.
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In our experience, primary beam is constituted by a 20 nA current of Cs+ ions,
previously accelerated with a 15 kV high voltage. The sputtered secondary
ions are instead negatively charged and extracted from the sample by the ex-
traction voltage of -5 kV. Note that, due to the low iodine concentration stud-
ied, all the iodine secondary ions were collected, including those which are
less energetic (i.e. energy slit - see §2.4.3.1 - was placed in largely opened po-
sition). In the depth-profiling mode, while primary beam rasters a sample
surface equal to 150x150 µm², the secondary ions are collected at the centre of
the crater from a circular area of 60 µm of diameter (see again §2.4.3.1). These
ions are then counted by the mass spectrometer which SIMS is equipped with.
In each sample we made 2 or 3 craters, in order to assure result reproducibil-
ity; for each crater we collected the signal of the iodine isotope 127I and of some
elements constituting the lattice, such as 238U.

After having analysed the craters with the confocal microscopy (see §2.4.4),
SIMS signals can be converted into depth-dependent profiles (see §2.5.1) to be
analysed (see the next subsection).

C.2.4 Simulation of depth profiles

Diffusion coefficients are deduced by solving Fick’s second law:

∂c (x, t)

∂t
= D · ∂

2c (x, t)

∂x2
+ v · ∂c (x, t)

∂x
(C.4)

The second term of Equation C.4 describes surface evaporation effects that
occurs at the high annealing temperatures (T >1400°C) [168, 171] necessary
to activate iodine diffusion (see Appendix B). Surface evaporation rate v is
considered as a model parameter determined from fitting the model to the
experimental data, in much the same way as D is. The boundary and initial
conditions used to simulate the diffusion in UO2 of the pre-implanted iodine
ions are:





c (0, t) = 0

c (∞, t) = 0

c (x, 0) = F (x)

Here F(x) is the as-implanted iodine concentration profile. The depth pro-
file in this reference sample was analysed with SIMS just prior to analysing the
annealed sample (i.e. under identical experimental conditions).

Note that in both the oxygen and the iodine analyses, the physical parame-
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ters are fitted to the experimental data by minimizing the following estimator:

e =

√√√√
n∑

i=1

(
ciexp − cisim

)2 (C.5)

Here n is the number of experimental points, ciexp defines the ith experi-
mental data point and cisim is the simulated concentration estimate at the same
distance from the sample surface.

C.3 Results

Next Figure aims to compare the iodine depth-dependent profiles found for all
annealed samples with the reference profile.

Figure C.3: Iodine diffusion profiles obtained experimentally: comparison of
the annealed sample iodine profiles with the one of the reference.

As shown in Figure C.3, the thermal anneals carried out on our samples acti-
vated the iodine volume migration in UO2. Moreover, in this figure we can
observe that relative iodine concentration strongly increases just below the
sample surface. This peak may be due to a chemical reaction between the im-
planted iodine ions with the hydrogen of the atmosphere: peak intensities in
fact decrease with decreasing hydrogen amounts. Consequently, simulations
with the Fick law of these iodine diffusion profiles were pursued starting from
a sample depth of about 150 nm, where hydrogen has no-more impact on the
experimental curve.
Figure C.4 reports an example of iodine relative concentration profile simula-
tion, together with the profile of the reference sample (taken as initial condition
for the Fick law resolution).
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Figure C.4: Simulation of iodine diffusion profiles for the sample annealed at
1.1 10-12 atm. Here, the experimental iodine diffusion profile of the annealed
samples is plotted in red while its simulations are represented in bleu. Green
profile is the iodine concentration profile present inside the sample before the
annealing (iodine profile of the reference sample).

Table C.3 reports the iodine diffusion coefficient D and the evaporation rate v

of each examined sample, together with their corresponding errors. As previ-
ously done with oxygen, both of these estimates were calculated as the average
and the standard deviation of all the D and v values obtained analysing all the
craters made on a single sample.
Figure C.5 represents these values as a function of pO2 and reports their com-
parison with the most recent published results [165]. In this Figure the green
point is calculated through the Arrhenius relationship reported in [165] (see
Chapter 1 - Equation C.2): for an annealing temperature of 1500°C the iodine
diffusion coefficient measured in a stoichiometric UO2 sample is estimated to
be 1.24 10-18 m²/s. For aim of completeness we added also the only iodine dif-
fusion coefficient evaluated on a hyper-stoichiometric UO2+x sample (with x ≈
0.02), although annealed at 1400°C [165].

Annealing pO2 Diffusion Coeff. D Evaporation rate v
(atm) (m²/s) (m/s)

(9.6±0.3)10-18 (2.65±0.07) 10-18 (2.3±0.4) 10-11

(4.6±0.4)10-16 (2.1±0.3) 10-18 (1.2±0.3) 10-11

(1.7±0.1)10-14 (1.6±0.4) 10-18 (2.5±3) 10-12

(1.1±0.2)10-12 (1.7±0.2) 10-18 (2.5±3) 10-12

Table C.3: Evaluation of iodine diffusion coefficients D and of the sample sur-
face evaporation rate v for the four diffusion annealings carried out.

As reported in Table C.3 and shown in Figure C.5, in this range of oxygen
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Figure C.5: Iodine diffusion coefficient dependence upon pO2: comparison
with the estimations reported in the published study [165].

potential considered iodine diffusion coefficients do not strongly depend upon
the oxygen partial pressure imposed in the anneals.

The next graph in Figure C.6 plots our results together with all the literature
data used to evaluate the Arrhenius trend describing iodine diffusion coeffi-
cients in UO2 [165]. There, all our data well align on the Arrhenius relation-
ship traced for UO2: this demonstrates once again that in the entire pO2 range
probed here our diffusion coefficients are equivalent to the one assumed by
iodine diffusing in a stoichiometric material. Analysis of all these data is post-
poned to the next section to find the mechanism iodine ions use to migrate in
the UO2 lattice.

Figure C.6: Insertion of our diffusion coefficients into the Arrhenius graph re-
ferred to iodine diffusion in stoichiometric UO2 [165].
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C.4 Discussion

A critical discussion of the obtained results needs firstly to correlate the ob-
served iodine diffusion behaviour to a particular UO2 deviation from stoi-
chiometry domain (i.e. hypo-, near- or hyper-stoichiometry). The oxygen par-
tial pressure imposed during each anneal in fact fixes a particular uranium
dioxide composition. For this reason we try to compare our data, spreading
over a wide range of oxygen partial pressures, with the experimental iodine
diffusion coefficients published by [77, 165] for UO2 stoichiometric samples.
These authors considered a UO2 sample as stoichiometric when it is annealed
under a not-humidified Ar/5%H2 gas mixture. Because at 1500°C they gave no
indication of the oxygen potential reached by this atmosphere, we measured
the dew point temperature of a gas with an identical composition to evaluate
its corresponding oxygen partial pressure. This measurement enabled us to
find a pO2 value equal to 1.5 10-13 atm. Its comparison to our oxygen partial
pressures ranging between 10-17 and 10-12 atm leads us to consider our UO2

samples as hypo- or nearly stoichiometric.

In a hypo-stoichiometric lattice, the experimental results previously reported
(see section §C.3) give evidence of an iodine diffusion independent upon UO2

composition. But Figure C.5 shows also that iodine behaves differently in a
hyperstoichiometric lattice: UO2 hyperstoichiometry in fact induces a strong
increase of iodine diffusion [165].

This difference clearly indicates that in these two stoichiometry domains io-
dine diffusion is assisted by defects of different nature. In particular, in hypos-
toichiometric uranium dioxide the defect assisting iodine migration is present
with a concentration independent upon oxygen partial pressure. Supposing
that iodine diffusion is assisted by Schottky defects, we can write the follow-
ing relationship:

DI ∝ [Sch]Dsch (C.6)

where DI is the iodine diffusion coefficient, while [Sch] and DSch are respec-
tively the concentration and the diffusion coefficient of the Schottky defect. To
verify if this hypothesis is consistent with our experimental results, we need to
evaluate if its concentration is independent on oxygen potential. As the con-
centration of a defect generally vary together with its formation rate, we need
to analyze the formation reaction of a Schottky defect by evaluating its forma-
tion reaction constant KSch as a function of pO2. Following [66], KSch can be
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written as follows:

KSch =
[
V °°
o

]2 [
V

′′′′

U

]
(C.7)

where VO°° is a doubly positive charged oxygen vacancy, while VU”” is a
four-times negatively charged uranium vacancy. As [VO°°] is dependent upon
pO2

1/2 [68, 78] and [VU””] upon pO2
-1 [66], Equation C.7 demonstrates that KSch

(and consequently the corresponding Schottky defect concentration) doesn’t
depend upon oxygen potential. Therefore, Equation C.6 enables us to demon-
strate that also iodine diffusion coefficients don’t depend upon oxygen poten-
tial too, if assisted by Schottky defects. This theoretical result full matches with
our experimental evidences and allows us to validate our starting hypothe-
sis. Moreover, our analysis is also consistent to the most recent first-principle
calculations of Crocombette [54], that indicates the Schottky defects, together
with the di-vacancies, as the most probable hosts of iodine in UO2-x.

C.5 Conclusions

This appendix summarizes the major results obtained for iodine diffusion.
Iodine-implanted UO2 samples were annealed at 1500°C under four strictly
controlled oxygen partial pressures (comprised between 10-17 and 10-12 atm)
and later on characterised with SIMS to evaluate iodine thermally activated
volume diffusion. Iodine diffusion coefficients were then estimated by sim-
ulating the experimental profiles with the 2nd Fick law. In the studied pO2

range, the annealed UO2 samples were hypo- or nearly stoichiometric and had
iodine diffusion coefficients independent upon oxygen potential and compa-
rable with literature results [77, 165]. A theoretical analysis of our experimen-
tal data succeeded in demonstrating that, in a hypostoichiometric UO2 lattice,
diffusion of iodine ions can be assisted by Schottky defects. This thesis is con-
sistent also to the most recent ab-initio simulations, that indicate the Schottky
defects as the traps that incorporate iodine in a hypo-stoichiometric lattice [54].
This analysis, although interesting, should be confirmed by a much more de-
tailed study that would take into account a more extended range of oxygen
partial pressures and temperatures. Repeated breakdowns of the ion implanter
don’t allow us to pursue this aim. Consequently, it can be considered as an
outlook of the present work.
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Parmi les nombreuses phases présentes dans le système binaire U-O, la phase
UO2+x s’etend sur une large gamme de températures et de compositions: la
phase d’UO2 donc peut s’éloigner très fortement de la stricte stœchiométrie
avant de se transformer en U4O9 [92]. Le réseau cristallin de l’UO2 est ca-
pable d’accommoder un grand nombre de défauts sans changer notablement
sa structure cristalline à longue distance [85]. L’écart à la stœchiométrie est
surtout accommodé par des défauts chargés de type anionique [182]. L’incorpo-
ration dans la maille de ces défauts oxygène chargés doit toutefois être com-
pensée par un changement de valence de l’uranium pour pouvoir conserver
l’électroneutralité du matériau. Le même type de compensation de charge in-
tervient en présence d’impuretés. En conséquence, le dopage et la simple oxy-
dation du matériau modifient les concentrations en défauts anioniques et donc
leurs propriétés de transport atomique. Cette caractéristique est essentielle
dans les conditions d’usage du matériau comme combustible nucléaire, com-
bustible le plus exploité dans les réacteurs de puissance actuels (production
d’électricité). Chaque variation de composition de cet oxyde influence donc
de manière importante son comportement, non seulement pendant son utili-
sation en réacteur mais aussi en situation d’entreposage. Ainsi, la diffusion de
l’oxygène dans l’UO2 induit des modifications microstructurales importantes.
De plus, par des jeux d’équilibres entre populations de défauts sur les deux
sous-réseaux, les modifications du sous-réseau anionique sont susceptibles de
modifier les concentrations d’équilibres de défauts sur le sous-réseau cation-
ique et donc de contrôler les évolutions microstructurales du matériau y com-
pris sous irradiation. Dans la mesure où les produits de fission sont sensibles
au premier ordre à la présence de défauts sur le réseau cationique, les modi-
fications de la nature et de la concentration en défauts oxygène sont suscepti-
bles d’affecter aussi la mobilité des produits de fission dits gazeux ou réputés
corrosifs tels le xénon ou l’iode dont le comportement détermine la durée de
vie de l’élément combustible lui-même. En conclusion, la maitrise et la pré-
diction du comportement de l’UO2 sous irradiation nécessite une profonde
compréhension des relations entre microstructure, composition d’une part et
transport atomique d’autre part.
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Dans la littérature des années 1960-1970, beaucoup d’auteurs ont étudié
l’autodiffusion de l’oxygène dans l’UO2 et dans l’UO2+x mais aucun d’entre eux
n’a identifié clairement de mécanisme (barrière de migration et nature du dé-
faut assistant cette diffusion) [30, 50, 142]. La raison principale de cette incerti-
tude réside dans la difficulté qu’il y a à maitriser et mesurer tous les paramètres
qui influencent le phénomène de diffusion, c’est-à-dire la pression partielle
d’oxygène, la température et la concentration en impuretés du matériau. En
contrôlant ces trois paramètres, un mécanisme d’autodiffusion de l’oxygène a
pu être récemment proposé. Toutefois, celui-ci n’a pu être validé que dans le
domaine d’une faible sur-stœchiométrie (i.e. à l’équilibre avec les faibles pres-
sions partielles d’oxygène) [78].

Par le passé, beaucoup d’études ont été menées sur la diffusion des pro-
duits de fission. Parmi eux, un des plus importants est l’iode, qui constitue
un élément chimique volatile et qui peut provoquer le phénomène de cor-
rosion sous contrainte de la gaine (c’est-à-dire qu’en cas de rampe de puis-
sance, il peut être relâché de la pastille et réagir chimiquement avec la gaine
en Zircaloy et ainsi causer sa rupture) [52]. Au niveau expérimental, seule
l’énergie d’activation de la diffusion de l’iode a été déterminée et uniquement
dans un matériau proche de la stœchiométrie [165] : la littérature manque ainsi
d’une étude systématique dédiée à la complète compréhension du type de dé-
faut impliqué dans la migration de l’iode dans l’UO2±x.

Pour compléter cet état de la connaissance, deux thèmes principaux sont
abordés dans ce travail : l’autodiffusion de l’oxygène dans une gamme de pO2

plus étendue que celle déjà étudiée dans la littérature [68, 78] et la migration
de l’iode dans l’UO2 sous-stœchiométrique. Pour y parvenir, il a été choisi
d’étudier respectivement le sous-réseau anionique dans UO2+x et le sous-réseau
cationique dans UO2-x. L’approche générale utilisée pour ces deux axes de
recherche est celle développée par Dieckmann [64]. Elle s’appuie sur la mise
à l’équilibre d’un oxyde à stœchiométrie variable (par exemple, l’UO2+x) dans
des atmosphères (potentiels d’oxygène) et à des températures contrôlées. Ainsi,
les concentrations en défauts dans le matériau sont fixées par les conditions
extérieures et a priori reproductibles. Pour avoir une vision générale et com-
plète du système analysé, les échantillons ainsi traités peuvent être étudiés
avec plusieurs méthodes expérimentales et les résultats analysés de la manière
suivante :

1. la caractérisation structurale directe qui permet de déterminer directe-
ment la nature des défauts présents. Un nombre important des résultats
est disponible dans la littérature

2. la détermination des propriétés de transport atomique, qui sont influ-
encées par la concentration de chaque défaut. L’étude de la dépendance
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des coefficients de diffusion d’une espèce atomique à la température, la
pO2 et la concentration en dopant donne ainsi des informations sur la
nature du défaut responsable de sa migration dans la maille cristalline.

3. le travail précédent nécessite une analyse de ces propriétés avec un mod-
èle thermodynamique de défauts qui permet de décrire l’évolution de
leur concentration en fonction des conditions thermodynamique consid-
érées (T, pO2 et concentration en impuretés)

4. la caractérisation de la structure électronique des différents atomes con-
stitutifs du matériau, qui est affectée par la présence de défauts chargés
dans la maille

5. le calcul d’énergie de formation et de migration des défauts (par exemple,
par DFT) ainsi que du mécanisme de migration.

La majorité de ce travail a été consacrée à l’étude du comportement de l’oxygène
qui a fait l’objet des points 2, 3 et 4 ci-dessus.. L’étude relative à la diffusion
de l’iode s’est limitée à une caractérisation des propriétés de transport dans un
domaine limité.

Sur la base de l’étude bibliographique établie au Chapitre 1, un modèle
de défauts ponctuels prenant en compte les défauts de type électronique et
anioniques a d’abord été développé (voir Chapitre 3). Ce modèle prend en
compte des défauts rapportés dans la littérature : les défauts ponctuels élec-
troniques (trous et électrons) [70, 164], les défauts oxygène (lacunes et intersti-
tiels) [78, 109, 143] et les défauts de type agrégés tels les di-interstitiels proposés
par Willis [183]. Sous l’hypothèse d’une mobilité relative des électrons égale
à celle de trous, ce modèle reproduit simultanément les données de la littéra-
ture relatives à la conductivité électrique [162] et à l’écart à la stœchiométrie
[151]. Ce modèle a été validé dans une gamme de températures (entre 700°C
et 1400°C) et de pO2 étendues. Les constantes de réaction de formation de
défauts sont les paramètres de ce modèle thermodynamique et leur détermi-
nation est optimisée à partir des données de littérature. Les lois d’Arrhenius
qui gouvernent ces constantes de réaction permettent ainsi d’estimer les éner-
gies de formation de chaque défaut du modèle ou plus exactement de l’énergie
associée à l’équilibre quasi-chimique décrivant le défaut. Il apparaît que les es-
timations des énergies de formation de la paire électron/trou, de l’interstitiel
d’oxygène et du défaut de Willis sont très proches des estimations des mêmes
grandeurs physiques calculées à l’aide de méthodes ab-initio [18, 65]. Par con-
tre, l’évaluation de l’énergie de formation d’une paire de Frenkel d’oxygène
est entachée d’une plus grande incertitude, car peu de données expérimen-
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tales sont disponibles dans des conditions thermodynamiques où les lacunes
d’oxygène constituent un défaut présent en concentration suffisante.

La deuxième étude rapportée dans ce document concerne la caractérisa-
tion expérimentale du sous-réseau anionique dans le système UO2+x dans des
gammes de températures et potentiels d’oxygène plus étendues que celles étu-
diées antérieurement [78] et [68] (Chapitre 4). Deux types d’échantillons ont
été considérés : des polycristaux dopés au chrome et d’autres présentant une
faible teneur en impuretés (et donc non dopés). Dans un premier temps, ceux-
ci ont été recuits sous atmosphères contrôlées (humidifiées avec H2

16O) pour
fixer leur concentration en défauts. La population de défauts électroniques a
été caractérisée par conductivité électrique et la densité d’états électroniques
a été déterminée par Spectroscopie d’Absorption X (XAS). Dans un deuxième
temps ces échantillons ont été recuits dans une atmosphère enrichie en 18O
dans les mêmes conditions thermodynamiques que lors de leur mise à l’équilibre
et ultérieurement analysés par SIMS et par microscopie confocale. Cela nous
a permis de déterminer les profils de concentration isotopique. Ces profils
ont finalement été reproduits avec la deuxième loi de Fick et les coefficients
d’autodiffusion de l’O ont ainsi été évalués.

Les données de conductivité électrique à 890°C et 990°C ont permis, pour
ces deux types d’échantillons, de déterminer la gamme de pO2 où la concentra-
tion en dopants fixe la concentration en trous : ce domaine définit le comporte-
ment extrinsèque du matériau. Du fait de la forte teneur en impuretés dans les
échantillons dopés au Cr, le domaine extrinsèque s’étend jusqu’à de fortes pO2

(c’est-à-dire, dans toutes les conditions thermodynamiques analysées dans cette
étude). Ainsi, à une température donnée et sur toute la gamme de pression
partielle étudiée, la concentration en trous est indépendante de la pression
partielle d’oxygène. Par conséquent, la dépendance à la pression partielle
d’oxygène du coefficient d’autodiffusion fournit directement des indications
relatives à la nature du défaut qui contrôle la migration de l’oxygène. Dans
les échantillons non-dopés, il a été montré que le faible niveau d’impuretés
limite le domaine extrinsèque à de plus faibles pO2. Pour les fortes valeurs de
pO2, les défauts anioniques introduisent des trous dont la concentration est du
même ordre de grandeur que la concentration en trous présents du fait de la
présence des dopants. Leur contribution est donc visible sur les courbes de
conductivité électrique. Ainsi pour les fortes valeurs de pO2, la simulation de
l’évolution de la conductivité électrique en fonction du temps à la suite d’une
modification de la pression partielle d’oxygène permet l’estimation des coef-
ficients de diffusion chimique dans différentes conditions thermodynamiques
et l’évaluation de leur dépendance au potentiel d’oxygène. Il en résulte, en co-
hérence avec les résultats de la littérature [162], que les coefficients de diffusion



Résumé 235

chimique diminuent avec l’augmentation du potentiel d’oxygène.

La dépendance des coefficients d’autodiffusion de l’oxygène à la tempéra-
ture dans les échantillons dopés Cr a été analysée et une énergie d’activation
apparente pour l’autodiffusion de l’O a été évaluée à 3 eV, comparable aux
valeurs estimées antérieurement [68].

Les spectres d’absorption X ont été acquis et interprétés au seuil K de l’oxy-
gène (532 eV) et aux seuils N4,5 (778.3 et 736.2 eV) et N6,7 (388.2 et 377.4 eV) de
l’uranium (voir Chapitre 5). Tout d’abord, ces spectres ont été collectés sur
trois phases de référence, l’une étant de l’UO2 et les deux autres élaborées par
oxydation ménagée afin d’obtenir U4O9 et U3O7. Les densités d’états ainsi
obtenues sont en très bon accord avec celles calculées récemment par ab-initio

(théorie de la fonctionnelle de densité) [176]. L’hybridation des orbitales 2p
de l’oxygène avec les orbitales 5f et 6d de l’uranium de même que la diminu-
tion de l’énergie de Fermi induite par le processus d’oxydation ont pu être
ainsi confirmées expérimentalement. On observe aussi la perte de symétrie
liée au passage d’une structure cubique à une structure tétragonale. Ainsi la
levée de dégénérescence des orbitales 6d de l’uranium en niveaux eg/t2g in-
duite par le champ cristallin et liée à la symétrie cubique des phases UO2 et
U4O9 est clairement observée dans les spectres collectés sur ces deux phases.
Ce dédoublement disparaît dans le spectre collecté sur U3O7 et s’explique par
la perte de symétrie liée à la structure tétragonale de cette phase. De plus,
nous avons démontré que les spectres au seuil K de l’oxygène des échantil-
lons de stœchiométrie intermédiaire sont reproduits par combinaison linéaire
des spectres d’UO2 et d’U3O7. Ceci permet de montrer que l’augmentation
du rapport O/U n’implique pas une variation du type du défaut, mais seule-
ment une augmentation de la concentration du même défaut dans la gamme
de composition qui va de UO2 à U3O7. Ceci est en accord avec les résultats
de diffraction neutronique [61] selon lesquels le défaut oxygène présent dans
les deux phases pures U4O9 et U3O7 est le cuboctaèdre. Les oxydes intermédi-
aires peuvent donc être décrits par l’accumulation de ce défaut dans la struc-
ture fluorine. Cette méthodologie a été appliquée aux spectres collectés sur
des échantillons d’UO2 sur-stœchiométriques provenant des deux lots étudiés
en diffusion. L’évolution des spectres à mesure qu’augmente la pression par-
tielle d’oxygène à laquelle les échantillons sont mis à l’équilibre ne suit pas
l’évolution monotone attendue. Ceci a été interprété comme étant lié aux pro-
priétés de volume (diffusion chimique même à température ambiante) et de
surface (réactivité de la surface d’autant plus forte que le matériau est exposé
à une atmosphère humidifiée).

Dans la dernière partie de ce travail une synthèse de l’ensemble des ré-
sultats est proposée (Chapitre 6). Le modèle de défauts ponctuels développé
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à partir de données de la littérature est appliqué aux mesures de conductiv-
ité électrique réalisées dans ce travail (sur des échantillons dopés Cr et non
dopés). Le défaut majoritaire pour chaque température considérée et gamme
de potentiel d’oxygène a été déterminé et sa concentration estimée. Dans une
gamme de pO2 où les interstitiels d’O prédominent, une expression pour le
coefficient de diffusion du défaut oxygène interstitiel est proposé, son énergie
de migration étant estimée à 1±0.4 eV. Ce coefficient de diffusion est obtenu
à partir du coefficient d’auto-diffusion de l’oxygène et de la concentration
en défauts calculées avec le modèle. De plus, dans le domaine de défauts
isolés (aux basses pO2), et exclusivement pour les échantillons d’UO2 con-
tenant du chrome, nous mettons en évidence à 800°C une contribution des
lacunes d’oxygène à l’auto-diffusion.

Aux plus fortes pO2, nous montrons qu’à partir d’une valeur critique du
potentiel d’oxygène, les coefficients d’autodiffusion diminuent fortement. La
valeur mesurée de ce seuil de pO2 est comparable à la pO2 de transition entre
défauts isolés et agrégés, prédite par le modèle. Ainsi, notre interprétation de
la baisse du coefficient d’autodiffusion de l’oxygène à fortes pO2 est liée à la
formation de défauts oxygène complexes. Il est intéressant de noter que cette
valeur de seuil en pO2 délimite également deux types d’évolution des spectres
d’absorption mais aussi des coefficients de diffusion chimique mesurés UO2+x.
L’ensemble des différentes caractérisations est donc cohérente. La comparai-
son de nos données d’autodiffusion avec celles déjà publiées [30, 50, 68, 78, 142]
a montré que dans certains cas des écarts existaient. Cette différence est at-
tribuée à une la sensibilité de la méthode utilisée pour l’estimation de coef-
ficients d’autodiffusion, à la préparation et au conditionnement des échantil-
lons (polissage, recuit et trempe) : seuls les échantillons polis avec des sus-
pensions de granulométrie très fine (50 nm) donnent des résultats fiables et
reproductibles.

Une deuxième partie de ce travail, moins aboutie, est néanmoins présentée
en Annexe C. Une étude du sous-réseau cationique a été effectuée au travers
de l’analyse de la diffusion de l’iode dans l’UO2±x. Cette étude a porté sur
l’évaluation de la dépendance du coefficient de diffusion en volume de l’iode
à la pression partielle d’oxygène, à une unique température (1500°C). Dans la
gamme de pO2 visée, le dioxyde d’uranium est sous- ou proche de la stœ-
chiométrie : dans ce domaine de composition, les coefficients de diffusion
estimés ne dépendent pas du potentiel d’oxygène. Cette évolution, en co-
hérence avec les résultats ab-initio les plus récents [54], suggère que la migra-
tion de l’iode dans l’UO2-x est assistée par le défaut de Schottky, puisque la
concentration de ce type de défaut n’est pas dépendante à la pression partielle
d’oxygène.
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En conclusion, en associant à l’étude des propriétés de transport électrique
et atomiques des méthodes de modélisation à plusieurs échelles (dont les méth-
odes aux échelles atomiques comme la DFT), il est possible de déterminer les
caractéristiques essentielles des défauts du matériau. Ces défauts qui sont à
l’origine de la mobilité des atomes dans UO2±x. Les méthodes que nous avons
mises en œuvre sont parfaitement adaptées à l’ensemble des oxydes à base
d’actinides. Pour ce qui concerne le matériau étudié ici, plusieurs perspectives
émergent:

• l’étude de la conductivité électrique de l’UO2 dopé avec un cation pen-
tavalent (comme, par exemple, le niobium), pour exacerber la contribu-
tion des électrons à la conductivité et l’éventuelle détermination expéri-
mentale de leur mobilité

• l’étude systématique de l’autodiffusion de l’oxygène dans l’UO2 sous-
stœchiométrique, pour mieux caractériser la nature et la charge des la-
cunes d’oxygène

• l’étude systématique de la dépendance à la température et au potentiel
d’oxygène, des coefficients d’autodiffusion de l’uranium et de différents
produits de fission, pour définir leurs mécanismes de migration

• l’évaluation des phénomènes de diffusion induite et/ou accrue par l’irra-
diation, pour mieux comprendre et prévoir le comportement du dioxyde
d’uranium pendant son utilisation en réacteur.




