. Sb-angenent, H. Hulshof, and . Matano, The Radius of Vanishing Bubbles in Equivariant Harmonic Map Flow from $D^2$ to $S^2$, SIAM Journal on Mathematical Analysis, vol.41, issue.3, pp.1121-1137, 2009.
DOI : 10.1137/070706732

A. Arnold, J. Carrillo, . Desvillettes, . Dolbeault, C. Jüngel et al., Entropies and equilibria of many-particle systems : an essay on recent research, pp.35-43, 2004.

J. Ball, REMARKS ON BLOW-UP AND NONEXISTENCE THEOREMS FOR NONLINEAR EVOLUTION EQUATIONS, The Quarterly Journal of Mathematics, vol.28, issue.4, pp.473-486, 1977.
DOI : 10.1093/qmath/28.4.473

W. Beckner, Sharp Sobolev Inequalities on the Sphere and the Moser--Trudinger Inequality, The Annals of Mathematics, vol.138, issue.1, pp.213-242, 1993.
DOI : 10.2307/2946638

I. Bejenaru and D. Tataru, Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions. arXiv preprint, 2010.

A. Blanchet, J. Carlen, and . Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak???Keller???Segel model, Journal of Functional Analysis, vol.262, issue.5, pp.2142-2230, 2012.
DOI : 10.1016/j.jfa.2011.12.012

URL : https://hal.archives-ouvertes.fr/hal-00512743

A. Blanchet, B. Dolbeault, and . Perthame, Two-dimensional Keller-Segel model : optimal critical mass and qualitative properties of the solutions, Electronic Journal of Differential Equations, vol.44, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00113519

P. Blythe and D. Crighton, Shock-Generated Ignition: The Induction Zone, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.426, issue.1870, pp.189-209, 1870.
DOI : 10.1098/rspa.1989.0123

H. Brezis, Analyse fonctionelle, 1983.

J. Campos, S. , and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic Keller- Segel model in the plane. arXiv preprint arXiv :1206, 1983.
URL : https://hal.archives-ouvertes.fr/hal-00706194

E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofris inequality ons n. Geometric & Functional Analysis GAFA, pp.90-104, 1992.

E. , C. , and A. Figalli, Stability for a gns inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation, Duke Mathematical Journal, vol.162, issue.3, pp.579-625, 2013.

K. Chang, R. Ding, and . Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, Journal of Differential Geometry, vol.36, issue.2, pp.507-515, 1992.
DOI : 10.4310/jdg/1214448751

S. Childress and J. Percus, Nonlinear aspects of chemotaxis, Mathematical Biosciences, vol.56, issue.3-4, pp.217-237, 1981.
DOI : 10.1016/0025-5564(81)90055-9

M. Cohen and A. Robertson, Wave propagation in the early stages of aggregation of cellular slime molds, Journal of Theoretical Biology, vol.31, issue.1, pp.101-118, 1971.
DOI : 10.1016/0022-5193(71)90124-X

J. Coron and J. Ghidaglia, Equations aux dérivées partielles Explosion en temps fini pour le flot des applications harmoniques. Comptes rendus de l'Académie des sciences, Mathématique, vol.1, issue.12, pp.308339-344, 1989.

R. Côte, Instability of nonconstant harmonic maps for the (1 + 2)-dimensional equivariant wave map system, International Mathematics Research Notices, issue.57, pp.3525-3549, 2005.

R. Côte, C. Kenig, W. Lawrie, and . Schlag, Characterization of large energy solutions of the equivariant wave map problem : I. arXiv preprint arXiv :1209, 2012.

R. Côte, Y. Martel, and F. Merle, Construction of multi-soliton solutions for the L 2 supercritical gKdV and NLS equations, Revista Matematica Iberoamericana, vol.27, issue.1, pp.273-302, 2011.

S. Dejak, . Lushnikov, N. Yu, and . Ovchinnikov, On spectra of linearized operators for Keller???Segel models of chemotaxis, Physica D: Nonlinear Phenomena, vol.241, issue.15, 2012.
DOI : 10.1016/j.physd.2012.04.003

J. Diaz, J. Nagai, and . Rakotoson, Symmetrization Techniques on Unbounded Domains: Application to a Chemotaxis System on RN, Journal of Differential Equations, vol.145, issue.1, pp.156-183, 1998.
DOI : 10.1006/jdeq.1997.3389

W. Ding and G. Tian, Energy identity for a class of approximate harmonic maps from surfaces. Communications in analysis and geometry, pp.543-554, 1995.

J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional Keller???Segel model in, Comptes Rendus Mathematique, vol.339, issue.9, pp.611-616, 2004.
DOI : 10.1016/j.crma.2004.08.011

J. Eells and J. Sampson, Harmonic Mappings of Riemannian Manifolds, American Journal of Mathematics, vol.86, issue.1, pp.109-160, 1964.
DOI : 10.2307/2373037

S. Filippas, M. Herrero, and J. Veláazquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.456, issue.2004, pp.4562957-2982, 2000.
DOI : 10.1098/rspa.2000.0648

A. Freire, Uniqueness for the harmonic map flow from surfaces to general targets, Commentarii Mathematici Helvetici, vol.70, issue.1, pp.310-338, 1995.
DOI : 10.1007/BF02566010

A. Freire, Uniqueness for the harmonic map flow in two dimensions, Calculus of Variations and Partial Differential Equations, vol.37, issue.1, pp.95-105, 1995.
DOI : 10.1007/BF01190893

S. Gallot, J. Hulin, and . Lafontaine, Riemannian geometry, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00002870

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Communications on Pure and Applied Mathematics, vol.28, issue.4, pp.525-598, 1981.
DOI : 10.1002/cpa.3160340406

Y. Giga and R. Kohn, Nondegeneracy of blowup for semilinear heat equations, Communications on Pure and Applied Mathematics, vol.55, issue.6, pp.845-884, 1989.
DOI : 10.1002/cpa.3160420607

Y. Giga and V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Communications on Pure and Applied Mathematics, vol.38, issue.3, pp.297-319, 1985.
DOI : 10.1002/cpa.3160380304

Y. Giga, S. Matsui, and . Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana University Mathematics Journal, vol.53, issue.2, pp.483-514, 2004.
DOI : 10.1512/iumj.2004.53.2401

Y. Giga, S. Matsui, and . Sasayama, On blow-up rate for sign-changing solutions in a convex domain, Mathematical Methods in the Applied Sciences, vol.27, issue.15, pp.1771-1782, 2004.
DOI : 10.1002/mma.562

M. Guan, T. Gustafson, and . Tsai, Global existence and blow-up for harmonic map heat flow, Journal of Differential Equations, vol.246, issue.1, pp.1-20, 2009.
DOI : 10.1016/j.jde.2008.09.011

S. Gustafson, T. Nakanishi, and . Tsai, Asymptotic Stability, Concentration, and Oscillation in Harmonic Map Heat-Flow, Landau-Lifshitz, and Schr??dinger Maps on $${\mathbb R^2}$$, Communications in Mathematical Physics, vol.247, issue.7???8, pp.205-242, 2010.
DOI : 10.1007/s00220-010-1116-6

M. Herrero and J. Velázquez, Explosion de solutions d'équations paraboliques semilinéaires supercritiques Comptes rendus de l'Académie des sciences, Mathématique, vol.1, issue.2, pp.319141-145, 1994.

M. Herrero and J. Velázquez, A blow up result for semilinear heat equations in the supercritical case. preprint, 1995.

M. Herrero and J. Velázquez, Singularity patterns in a chemotaxis model, Mathematische Annalen, vol.XXI, issue.Fasc. 4, pp.583-623, 1996.
DOI : 10.1007/BF01445268

M. Hillairet and P. Raphaël, Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation, Analysis & PDE, vol.5, issue.4, pp.777-829, 2012.
DOI : 10.2140/apde.2012.5.777

URL : https://hal.archives-ouvertes.fr/hal-00524838

T. Hillen and K. Painter, A user???s guide to PDE models for chemotaxis, Journal of Mathematical Biology, vol.15, issue.1, pp.183-217, 2009.
DOI : 10.1007/s00285-008-0201-3

D. Horstmann, From 1970 until present : the Keller-Segel model in chemotaxis and its consequences. I. Jahresbericht der Deutschen Mathematiker-Vereinigung, pp.103-165, 2003.

D. Horstmann, From 1970 until present : The Keller-Segel model in chemotaxis and its consequences. II, Jahresbericht der Deutschen Mathematiker Vereinigung, vol.106, issue.2, pp.51-70, 2004.

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society, vol.329, issue.2, pp.819-824, 1992.
DOI : 10.1090/S0002-9947-1992-1046835-6

D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources Archive for Rational Mechanics and Analysis, pp.241-269, 1973.

P. Karageorgis and W. Strauss, Instability of steady states for nonlinear wave and heat equations, Journal of Differential Equations, vol.241, issue.1, pp.184-205, 2007.
DOI : 10.1016/j.jde.2007.06.006

N. Kavallaris and P. Souplet, Grow-Up Rate and Refined Asymptotics for a Two-Dimensional Patlak???Keller???Segel Model in a Disk, SIAM Journal on Mathematical Analysis, vol.40, issue.5, pp.1852-1881, 2009.
DOI : 10.1137/080722229

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, vol.26, issue.3, pp.399-415, 1970.
DOI : 10.1016/0022-5193(70)90092-5

E. Keller and L. Segel, Model for chemotaxis, Journal of Theoretical Biology, vol.30, issue.2, pp.225-234, 1971.
DOI : 10.1016/0022-5193(71)90050-6

E. Keller and L. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, Journal of Theoretical Biology, vol.30, issue.2, pp.235-248, 1971.
DOI : 10.1016/0022-5193(71)90051-8

J. Krieger and Y. Martel, Two-soliton solutions to the three-dimensional gravitational Hartree equation, Communications on Pure and Applied Mathematics, vol.61, issue.1, pp.1501-1550, 2009.
DOI : 10.1002/cpa.20292

URL : https://hal.archives-ouvertes.fr/hal-00408105

J. Krieger and W. Schlag, On the focusing critical semi-linear wave equation, American Journal of Mathematics, vol.129, issue.3, pp.843-913, 2007.
DOI : 10.1353/ajm.2007.0021

J. Krieger, D. Schlag, and . Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Inventiones mathematicae, vol.127, issue.2, pp.543-615, 2008.
DOI : 10.1007/s00222-007-0089-3

M. Landman, C. Papanicolaou, P. Sulem, and . Sulem, Rate of blowup for solutions of the nonlinear Schr??dinger equation at critical dimension, Physical Review A, vol.38, issue.8, pp.3837-3843, 1988.
DOI : 10.1103/PhysRevA.38.3837

L. Lemaire, Existence des applications harmoniques et courbure des vari??t??s, In Bourbaki Seminar Lecture Notes in Math, vol.197980, issue.842, pp.174-195, 1981.
DOI : 10.1007/BFb0089934

M. Lemou and . Méhats, Structure of the Linearized Gravitational Vlasov???Poisson System Close to a Polytropic Ground State, SIAM Journal on Mathematical Analysis, vol.39, issue.6, pp.1711-1739, 2008.
DOI : 10.1137/060673709

Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg???de Vries equation, Journal de mathématiques pures et appliquées, pp.339-425, 2000.
DOI : 10.1016/S0021-7824(00)00159-8

URL : https://hal.archives-ouvertes.fr/hal-00189839

Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg???de Vries equation, Geometric and Functional Analysis, vol.11, issue.1, pp.74-123, 2001.
DOI : 10.1007/PL00001673

URL : https://hal.archives-ouvertes.fr/hal-00189836

Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the L 2 ?critical generalized KdV equation, Journal of the American Mathematical Society, vol.15, issue.03, pp.617-664, 2002.
DOI : 10.1090/S0894-0347-02-00392-2

URL : https://hal.archives-ouvertes.fr/hal-00107235

Y. Martel and F. Merle, Stability of Blow-Up Profile and Lower Bounds for Blow-Up Rate for the Critical Generalized KdV Equation, The Annals of Mathematics, vol.155, issue.1, pp.235-280, 2002.
DOI : 10.2307/3062156

URL : https://hal.archives-ouvertes.fr/hal-00194565

Y. Martel and . Merle, Blow up and near soliton dynamics for the L^2 critical gKdV equation, S??minaire Laurent Schwartz ??? EDP et applications, 2012.
DOI : 10.5802/slsedp.28

Y. Martel and . Merle, Blow up for the critical gKdV equation II : minimal mass blow up, 2012.

Y. Martel and . Merle, Blow up for the critical gKdV equation III : exotic regimes, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00843250

H. Matano and F. Merle, On Nonexistence of type II blowup for a supercritical nonlinear heat equation, Communications on Pure and Applied Mathematics, vol.38, issue.11, pp.1494-1541, 2004.
DOI : 10.1002/cpa.20044

H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, Journal of Functional Analysis, vol.256, issue.4, pp.992-1064, 2009.
DOI : 10.1016/j.jfa.2008.05.021

F. Merle, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation. Geometric and Functional Analysis, pp.591-642, 2003.

F. Merle, On universality of blow-up profile for L 2 critical nonlinear Schr???dinger equation, Inventiones Mathematicae, vol.156, issue.3, pp.565-672, 2004.
DOI : 10.1007/s00222-003-0346-z

F. Merle, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schr??dinger equation, Annals of Mathematics, vol.161, issue.1, pp.157-222, 2005.
DOI : 10.4007/annals.2005.161.157

F. Merle, Profiles and Quantization of the Blow Up Mass for Critical Nonlinear Schr???dinger Equation, Communications in Mathematical Physics, vol.87, issue.3, pp.675-704, 2005.
DOI : 10.1007/s00220-004-1198-0

F. Merle, On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation, Journal of the American Mathematical Society, vol.19, issue.01, pp.37-90, 2006.
DOI : 10.1090/S0894-0347-05-00499-6

F. Merle and I. Rodnianski, Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map, Comptes Rendus Mathématique. Académie des Sciences. Paris, vol.349, pp.5-6279, 2011.

F. Merle and H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Communications on Pure and Applied Mathematics, vol.51, issue.2, pp.139-196, 1998.
DOI : 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C

F. Merle and H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Mathematische Annalen, vol.316, issue.1, pp.103-137, 2000.
DOI : 10.1007/s002080050006

N. Mizoguchi, Type-II blowup for a semilinear heat equation Advances in Differential Equations, pp.1279-1316, 2004.

N. Mizoguchi, Rate of Type II blowup for a semilinear heat equation, Mathematische Annalen, vol.338, issue.4, pp.839-877, 2007.
DOI : 10.1007/s00208-007-0133-z

N. Mizoguchi, Nonexistence of type II blowup solution for a semilinear heat equation, Journal of Differential Equations, vol.250, issue.1, pp.26-32, 2011.
DOI : 10.1016/j.jde.2010.10.012

T. Nagai, Behavior of solutions to a parabolic-elliptic system modelling chemotaxis, J. Korean Math. Soc, vol.37, issue.5, pp.721-733, 2000.

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, Journal of Theoretical Biology, vol.42, issue.1, pp.63-105, 1973.
DOI : 10.1016/0022-5193(73)90149-5

C. Patlak, Random walk with persistence and external bias. The Bulletin of mathematical biophysics, pp.311-338, 1953.

G. Perelman, On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D, Nonlinear dynamics and renormalization group of CRM Proc. Lecture Notes, pp.147-164, 1999.

B. Perthame and A. Vasseur, Regularization in Keller-Segel type systems and the De Giorgi method, Communications in Mathematical Sciences, vol.10, issue.2, 2010.
DOI : 10.4310/CMS.2012.v10.n2.a2

URL : https://hal.archives-ouvertes.fr/hal-01374730

S. Pohozaev, On the eigenfunctions of the equation ?u + ?f (u) = 0.(russian), In Dokl. Akad. Nauk SSSR, vol.165, pp.36-39, 1965.

J. Qing and G. Tian, Bubbling of the heat flows for harmonic maps from surfaces, Communications on Pure and Applied Mathematics, vol.50, issue.4, pp.295-310, 1997.
DOI : 10.1002/(SICI)1097-0312(199704)50:4<295::AID-CPA1>3.0.CO;2-5

P. Raphaël, Existence and stability of a solution blowing up on a sphere for an $L^2$ -supercritical nonlinear Schr??dinger equation, Duke Mathematical Journal, vol.134, issue.2, pp.199-258, 2006.
DOI : 10.1215/S0012-7094-06-13421-X

P. Raphaël and I. Rodnianski, Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills problems. Publications mathématiques de l'IHÉS, pp.1-122, 2012.

P. Raphaël and R. Schweyer, On the stability of critical chemotaxis aggregation. arXiv preprint, 2012.

P. Raphaël and R. Schweyer, Quantized slow blow up dynamics for the corotational energy critical harmonic heat flow. arXiv preprint, 2013.

P. Raphaël and R. Schweyer, Stable Blowup Dynamics for the 1-Corotational Energy Critical Harmonic Heat Flow, Communications on Pure and Applied Mathematics, vol.63, issue.3, pp.414-480, 2013.
DOI : 10.1002/cpa.21435

P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, Journal of the American Mathematical Society, vol.24, issue.2, pp.471-546, 2011.
DOI : 10.1090/S0894-0347-2010-00688-1

I. Rodnianski and J. Sterbenz, -model, Annals of Mathematics, vol.172, issue.1, pp.187-242, 2010.
DOI : 10.4007/annals.2010.172.187

URL : https://hal.archives-ouvertes.fr/hal-00942929

R. Schweyer, Type II blow-up for the four dimensional energy critical semi linear heat equation, Journal of Functional Analysis, vol.263, issue.12, pp.3922-3983, 2012.
DOI : 10.1016/j.jfa.2012.09.015

URL : https://hal.archives-ouvertes.fr/hal-00942940

T. Senba, Grow-up rate of a radial solution for a parabolic-elliptic system in R 2 Advances in Differential Equations, pp.11-121155, 2009.

M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Commentarii Mathematici Helvetici, vol.60, issue.1, pp.558-581, 1985.
DOI : 10.1007/BF02567432

C. Sulem and P. Sulem, The nonlinear Schrödinger equation, Self-focusing and wave collapse, 1999.

P. Topping, Winding behaviour of finite-time singularities of the harmonic map heat flow *, Mathematische Zeitschrift, vol.247, issue.2, pp.279-302, 2004.
DOI : 10.1007/s00209-003-0582-3

J. Van-de-berg, J. King, and . Hulshof, Formal Asymptotics of Bubbling in the Harmonic Map Heat Flow, SIAM Journal on Applied Mathematics, vol.63, issue.5, pp.1682-1717, 2003.
DOI : 10.1137/S0036139902408874

J. Velázquez, Stability of Some Mechanisms of Chemotactic Aggregation, SIAM Journal on Applied Mathematics, vol.62, issue.5, pp.1581-1633, 2002.
DOI : 10.1137/S0036139900380049

J. Velázquez, Singular solutions of partial differential equations modelling chemotactic aggregation, Proceedings oh the International Congress of Mathematicians : Madrid, pp.321-338, 2006.
DOI : 10.4171/022-3/17

M. Weinstein, Nonlinear Schr???dinger equations and sharp interpolation estimates, Communications in Mathematical Physics, vol.41, issue.4, pp.567-57683, 1982.
DOI : 10.1007/BF01208265

M. Weinstein, Modulational Stability of Ground States of Nonlinear Schr??dinger Equations, SIAM Journal on Mathematical Analysis, vol.16, issue.3, pp.472-491, 1985.
DOI : 10.1137/0516034