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Abstract

If radiation plays an important role in many engineering applications, especially
in those including combustion systems, influence of radiation on turbulent flows,
particularly on the turbulent boundary layers, is still not well known.The ob-
jective is here to perform a detailed study of radiation effect on turbulent flows.
An optimized emission-based reciprocal (OERM) approach of the Monte-Carlo
method is proposed for radiation simulation using the CK model for radiative
gas properties. OERM allows the uncertainty of results to be locally controlled
while it overcomes the drawback of the original emission-based reciprocity ap-
proach by introducing a new frequency distribution function that is based on
the maximum temperature of the domain.
Direct Numerical Simulation (DNS) has been performed for turbulent channel
flows under different pressure, wall temperatures and wall emissivity conditions.
Flow field DNS simulations are fully coupled with radiation simulation using
the OERM approach. The role of radiation on the mean temperature field and
fluctuation field are analyzed in details. Modification of the mean temperature
profile leads to changes in wall conductive heat fluxes and new wall laws for
temperature when radiation is accounted for. The influence on temperature
fluctuations and the turbulent heat flux is investigated through their respective
transport equations whose balance is modified by radiation. A new wall-scaling
based on the energy balance is proposed to improve collapsing of wall-normal
turbulent flux profiles among different channel flows with/without considering
radiation transfer. This scaling enables a new turbulent Prandtl number model
to be introduced to take into account the effects of radiation.
In order to consider the influence of radiation in the near-wall region and predict
the modified wall law, a one-dimensional wall model for Large Eddy Simulation
(LES) is proposed. The 1D turbulent equilibrium boundary layer equations are
solved on an embedded grid in the inner layer. The obtained wall friction stress
and wall conductive flux are then fed back to the LES solver. The radiative
power term in the energy equation of the 1D wall model is computed from an
analytical model. The proposed wall model is validated by a comparison with
the former DNS/Monte-Carlo results.
Finally, two criteria are proposed and validated. The first one is aimed to
predict the importance of wall radiative heat flux while the other one predicts
whether a wall model accounting for radiation in the near wall region is neces-
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6 Abstract

sary. A parametric study is then performed where a k-ǫ model and a turbulent
Prandtl number model are applied to simulate the velocity and temperature
field of different channel flows under various flow conditions. The obtained
criteria values are analyzed and compared.
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Résumé

Le rayonnement joue un rôle important dans de nombreuses applications in-
dustrielles, en particulier celles mettant en jeu un processus de combustion.
Cependant, son influence sur les écoulements turbulents, notamment les couches
limites, n’est pas encore bien connu. L’objectif est ici d’analyser en détail l’effet
du rayonnement sur les écoulements turbulents.
Utilisant le modèle CK pour décrire les propriétés radiatives des gaz, une ap-
proche optimisée de la méthode de Monte-Carlo (OERM) basée sur l’émission
et le principe de réciprocité est développée. La méthode OERM permet de con-
trôler localement l’imprécision des résultats tout en corrigeant l’inconvénient de
la méthode originale en introduisant une nouvelle fonction de répartition des
fréquences basée sur la température maximale du domaine.
Plusieurs écoulements de canal plan turbulent sous différentes conditions de
pression, de températures et d’émissivités de parois sont résolus par simulation
numérique directe (DNS). Les simulations DNS de l’écoulement et du champ de
rayonnement par la méthode OERM sont entièrement couplées. L’impact du
rayonnement sur le champ moyen de température et ses fluctuations est analysé
en détail. La modification du profil de température moyenne induit un change-
ment des flux de chaleur conductifs aux parois et de nouvelles lois de paroi
pour la température lorsque le rayonnement est pris en compte. L’impact sur
les fluctuations de température et le flux de chaleur par transport turbulent est
étudié au travers de leurs équations de transport respectives dont l’équilibre est
modifié par le rayonnement. Une nouvelle normalisation (wall-scaling) basée
sur le bilan d’énergie est proposée pour améliorer le recouvrement des profils
obtenus sous les différentes configurations étudiées avec et sans transfert ra-
diatif. Cette normalisation permet d’introduire un modèle pour le nombre de
Prandtl turbulent lorsque le rayonnement est pris en compte.
Afin de prédire l’effet du rayonnement sur la zone proche paroi et sa modifi-
cation des lois de paroi, un modèle de paroi pour la simulation aux grandes
échelles (LES) est développé. Les équations 1D de couche limite turbulente à
l’équilibre sont résolues sur une grille intégrée au maillage LES pour traiter la
zone interne. La contrainte pariétale et le flux de chaleur conductif obtenus
sont renvoyés au code LES. La puissance radiative dans l’équation d’énergie
du modèle de paroi 1D est évaluée à partir d’un modèle analytique. Le mod-
èle de paroi est validé par comparaison avec les résultats des calculs couplés
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8 Résumé

DNS/Monte-Carlo.
Deux critères sont finalement proposés et validés. Le premier a pour but de
prédire l’importance du flux radiatif pariétal tandis que le second détermine
si un modèle de paroi prenant en compte l’effet du rayonnement dans la zone
interne de la couche limite est nécessaire. Une étude paramétrique est ensuite
réalisée où un modèle k-ǫ et un modèle de nombre de Prandtl turbulent sont
utilisés pour estimer les champs moyens de vitesse et température d’écoulements
de canal plan sous différentes conditions. Les valeurs des critères obtenues sont
analysées puis comparées.
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Nomenclature

Roman Symbols

cp Thermal capacity at constant pressure [J·kg−1·K−1].
e Optical thickness [-].
f Probability density function [-].
h Enthalpy per unit mass [J·kg−1].
I Radiative intensity [W·m−2· sr−1].
k Turbulent kinetic energy [m−2· s−2].
L Length [m].
l Length of the column or length scale [m].
n Surface normal unit vector[-].
N Number [-].
p Pressure [Pa].
Pr Prandtl number [-].
P Power per unit volume [W·m−3].
q Heat flux [W·m−2].
Q̇ Energy source term [W·m−3].
Re Reynolds number [-].
R Cumulative distribution function [-].
R Indicator for wall radiative heat flux [-].
r Distance [m].
Si Momentum source term [N·m−3] or surface [m2].
s Propagation direction unit vector[-].
s Position of a photon bundle [m].
t Time [s].
T Temperature [K].
u Streamwise velocity component [m·s−1].
ui , uj Velocity vector [m·s−1].
V Volume [m3].
X ,Y ,Z Cartesian coordinates [m].
xi Coordinate vector (tensorial) [m].
y Distance to a wall [m].
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14 Nomenclature

Greek Symbols

α Absorptivity [-].
β Extinction coefficient [m−1].
∆ Direction of photon bundle [m] or indicator for scaled temper-

ature.
δ Channel half-width [m] or the change of quantity [-].
δij Kronecker delta operator [-].
κ Absorption coefficient [m−1] or Karman constant [-].
σ Scattering coefficients [m−1].
Φ Scattering phase function [-].
λ Thermal conductivity [W·K−1·m−1].
ρ Gas mass density [kg·m−3] or reflectance [-].
τ Optical thickness [-] or transmisivity [-].
τij Viscous shear stress tensor [N·m−2].
Ω Solid angle [sr].
ω Scattering albedo [-].
ν Radiation wave number [cm−1] or kinematic viscosity [m2/s].
θ Polar angle [sr].
φ Azimuthal angle [sr].
µ Dynamic viscosity [kg·s−1·m−1] or cosine of polar angle.
ǫ Turbulent dissipation rate [m2· s−3].

Superscript

·̄ Filtered quantities or Reynolds averaged quantities.
·̃ Mass-weighted filtered quantities or Favre averaged quantities

or statistical estimated quantities.
′′ Favre mean fluctuating quantities.
SGS Sub-grid scale quantities.
a Absorbed quantities.
e Emitted quantities.
0 Equilibrium quantities.
+ Wall scaled quantities or quantity in positive y direction.
− Quantities in negative y direction.
∗ Semi-locally scaled quantities or normalized quantities.
R∗ Radiative quantities without wall-wall radiation.
exch Exchanged quantities.
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Nomenclature 15

Subscript

b Bulk quantities.

c , h Refer to the cold wall, respectively to the hot wall.

cd Conductive quantities.

coupled Quantities resulting from a fully-coupled simulation.

q Quantities associated with heat flux.

R Radiative quantities.

t Turbulent Quantities.

tot Total Quantities.

V D Van Driest transformation.

w Wall quantities.

yw Quantities at position y = yw of the 1D model.

τ Friction quantities.

ν Spectral quantities.

0 Quantities at position y = 0 of the 1D model.

Brackets

〈·〉 Reynolds averaged quantity in the 1D model.
{·} Favre averaged quantity in the 1D model.

Abbrevation

ARM Absorption-based Reciprocity Method.
CFL Courant-Fredrichs-Lewy
DNS Direct Numerical Simulation.
ERM Emission-based Reciprocity Method.
FM Forward Method.
Fo Fourier number
LES Large Eddy Simulation.
MCM Monte-Carlo Method
ORM Optimized Reciprocity Method.
OERM Optimized Emission-based Reciprocity Method
PDF Probability Density Function
RANS Reynolds-Averaged Navier-Stokes equations
rms root mean square
SGS Sub-Grid Scale
TLM Two-Layer Model
TRI Turbulence-Radiation Interaction
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Introduction

Thermal radiation is one of the most important transfer modes. Any object
emits thermal radiation. As temperature increases, radiative transfer rate in-
creases markedly. Thereby, it plays an extremely important role in many en-
gineering applications, especially in combustion systems and in plasmas with
high operating temperature and pressure conditions.

Influence of radiation transfer

In most of industrial furnaces, due to a large combustor size, radiation often
plays a predominant role over convective heat transfer. Fig. 1 shows a detailed
energy flow diagram for an industrial furnace. Among the 35% useful output,
only 4% is contributed by convection while all the other heat transfer is from
radiation. Therefore, prediction and control of radiative transfer is crucial for
furnace performance.
In modern gas turbine combustors, as shown in Fig. 2, the peak temperatures
of the hot gases in primary zone can be higher than 2100K, whereas for the ma-
terials commonly used for liner and dome, the maximum operating temperature
should not exceed 1100K (Lefebvre and Ballal 2010). Consequently, protecting
liner walls and domes from hot gases is critical and challenging for combustor
designers.
Generally, film-cooling air is applied to protect combustor walls. To control the
quantity of cooling air, information about the heat fluxes on walls is necessary.
In the presence of film cooling, a sizable fraction of the heat transferred from
gas to combustor walls is by radiation. And this importance of radiative flux
is even higher in modern gas turbine as operating pressure and temperature
increase. Moreover, in order to release more air for mixing and controlling of
pollutant emission, the amount of air employed for cooling of liner walls must
be minimized. The determination of the minimum quantity requires a sound
knowledge of radiation.
The pollutant emission of combustors is also influenced by radiation due to its
sensitivity to local temperature. It follows that accurate assessment of pollutant
emission necessitates precise prediction of local radiative transfer rate.
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18 Introduction

Figure 1: Energy flow diagram for one operating point of an industrial furnace,
illustrating the four different contributions to output and the effect of wall-to-wall
radiation exchange (from Ref. (Enomot et al. 1975)).

Liner

Radiation

Figure 2: Temperature field inside a realistic Pratt & Whitney combustor (from Ref.
(CITS 2004)).

Coupled turbulent convective transfer and radiative
transfer

In most of the practical systems involving heat transfer process, the flow is
turbulent and hence radiation is coupled with turbulent convection. For in-
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Radiative flux

 from gas

Convective heat 

flux from gas

Conductive heat 

flux through wall

Radiative flux

to casing

Convective heat 

flux to annulus air

Liner

Figure 3: Scheme of basic heat processes related to combustor liner.

stance, as shown in Fig. 3, the basic heat transfer processes for a liner wall
of combustor include: heating by radiation and turbulent convection from the
hot combustion gas, cooling by radiation to the outer casing and by turbulent
convection to the annulus air and heat transferring through the wall by con-
duction. The liner-wall temperature is then determined by the balance of these
processes.
Among these heat transfer processes, radiative transfer differs from conduction
and convection. The latter two are short-range phenomena and commonly the
energy conservation could be performed in an "infinitesimal volume". By con-
trast, radiation is a long-range phenomenon and an integro-differential equation
is required in order to represent it. The difficulty of radiation problem is even
further enhanced by the need to consider radiative properties of participative
gases, which generally vary significantly with wave number.
Generally, the radiation problem can be investigated experimentally or numer-
ically. However, due to formidable difficulties encountered, radiation has not
been subjected to extensive experimental investigations, especially in combus-
tion at high pressure. Fortunately, numerical simulation appears as an ex-
tremely useful tool.

Numerical simulation of radiation and turbulence

In early stage of combustor design, global radiation models were widely applied
to assess radiation contribution. The simple, global model based on mean beam
length (Hottel hemisphere) concept does not consider the non-uniformities of
temperature and species concentration, and hence could lead to inaccurate
results.
Thanks to an increasing understanding of radiative transfer, various methods
have then been developed, including zonal method, ray tracing method, direct
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Sub-layer

Turbulent 

core

(a)

Sub-layer

Turbulent 

core

(b)

Figure 4: Scheme of grid system for wall-resolved LES (a) and for wall-modeled LES
(b).

ordinate model, spherical harmonics model, Monte-Carlo method, etc.. Among
them, Monte-Carlo is one of the most promising methods since it can be easily
employed in any complicated system and can incorporate all the important
radiative effects without any assumption and large increment of computational
effort. However, its computational cost is high since it needs a large number of
rays to obtain statistically meaningful results.
Regarding the simulation of turbulence, a proper treatment of near wall region
is alway an important issue, especially in Large Eddy Simulation (LES). As
shown in Fig. 4 (a), for resolving the near wall region, a fine grid is required in
the wall vicinity and this yields a high resolution requirement. To alleviate this
constraint, wall models are employed to treat the near wall region and a coarse
grid can then be applied as shown in Fig. 4 (b). The chosen wall model uses
the velocity u and the temperature T at LES grid point y as outer boundary
conditions and the wall friction stress τw and the wall conductive heat flux qw
are then calculated and sent back to LES solver. Wall-modeled LES is more
and more applied in engineering applications characterized by a high Reynolds
number.
Various numerical investigations have also been performed in order to inves-
tigate the coupling between turbulent flows and radiation. It has been found
that, in reactive flows, radiation can affect the mean or local temperature pro-
file (dos Santos et al. 2008; Damien et al. 2012; Liu et al. 2004), NOx emission
(Barlow et al. 2001) and soot volume fraction (Liu et al. 2004). For example,
in the study of dos Santos et al. (2008), LES of a turbulent premixed flame
has been performed and a ray-tracing method has been used for the calcula-
tion of the radiation field. They have reported that radiation decreases the
maximum temperature by about 200 K (as shown in Fig. 5), homogenizes the
mean temperature field and strongly enhances the flame dynamics. Damien
et al. (2012) have also found that radiation decreases the mean temperature
and changes the local extreme temperature in a laboratory flame configuration,
while Liu et al. (2004) have observed a change of flame peak temperature and
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Introduction 21

Figure 5: Instantaneous temperature fields without (top) and with (bottom) radiation
(from Ref. (dos Santos et al. 2008)).

soot volume fraction due to radiation in counterflow ethylene diffusion flames.
Meanwhile, regarding the effect of radiation on non-reactive flows, Soufiani et al.
(1990) have found that, in turbulent channel flow, the temperature profile and
the conductive heat flux on walls are strongly affected by radiation. Gupta et al.
(2009) have also observed a similar effect of radiation on the mean temperature
profile. However, in the study of Amaya et al. (2010), a weak effect of radiation
is found in a similar channel flow, which can be attributed to the small optical
thickness of the medium.
Furthermore, great attention has been given to the interaction between turbu-
lence and radiation (TRI). Experimental studies (Gore et al. 1987; Ji et al.
2000; Zheng and Gore 2005), theoretical analysis (Burns 1999; Baum and Mell
2000; Soufiani et al. 1990) and numerical simulations (Wu et al. 2005; Desh-
mukh et al. 2007; Deshmukh et al. 2008; dos Santos et al. 2008) have been
carried out to investigate the effect of TRI in different systems and comprehen-
sive reviews are available in (Coelho 2007; Coelho 2012).
TRI arises from the high non-linear coupling between fluctuation of temperature
and species concentration and fluctuation of radiation. It consists of two parts:
effect of turbulence on radiation field and vice-versa.
Regarding the effect of turbulence on radiation, it is observed that turbulence
leads to an increase in the medium transmissivity (Jeng and Faeth 1984; Gore
et al. 1987), the radiative power (Coelho 2004; Tessé et al. 2004) and radiative
energy loss (Li and Modest 2003; Tessé et al. 2004). Coelho et al. have reported
that, in a non-luminous turbulent jet diffusion flame (Coelho et al. 2003), TRI
enhances the radiative energy loss by a factor of 30% while a similar change in
a luminous turbulent flame is also revealed in Ref. (Tessé et al. 2004).
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22 Introduction

Moreover, the contribution of TRI on the mean radiation field is constituted
with different contributions: the temperature self-correlation, the absorption
coefficient self-correlation, the absorption coefficient-temperature correlation
and the absorption coefficient-radiative intensity correlation (Coelho 2007).
In order to isolate and quantify individual contributions to TRI in a statis-
tically one-dimensional premixed combustion system, Wu et al. (2005) have
performed a direct numerical simulation (DNS) coupled with a Monte-Carlo
method. Their results have revealed that the temperature self-correlation con-
tribution is only dominant in the case with smallest optical thickness in their
study. Among the three correlation terms of the absorption coefficient, the ones
with the Planck function and with the incident radiative intensity are not neg-
ligible, even in the most optically thin case, while for a case with intermediate
value of optical thickness, the three correlations are all significant. Deshmukh
et al. (Deshmukh et al. 2007; Deshmukh et al. 2008) have also studied different
contributions to TRI with DNS in a statistically homogeneous isotropic non-
premixed combustion system and a one-dimensional turbulent non-premixed
flame. Only the latter one was fully coupled with radiation.
By contrast to the former described effects, only a few studies have been de-
voted to the effect of radiation on turbulence. Among them, Soufiani (1991)
have carried out a theoretical analysis of the influence of radiation on thermal
turbulence spectra and it has been concluded that radiation acts as a dissi-
pation term and it could smooth the intensity of temperature fluctuation and
modify the structure of temperature spectra. Damien et al. (2012) have also
reported that radiation modifies the temperature fluctuation while the energy
and frequency distribution is homogenized. Moreover, Ghosh et al. (2011) have
presented that radiation modifies the Reynolds stress and affects the turbulence
structure in supersonic shear layers in a non-negligible way.

The objective of this thesis

Despite of the various studies of radiation effect on turbulent flows, there still
exist several fields of research:

• No general trend or physical understanding of the influence of radiation
in turbulent boundary layer is obtained;

• The existing wall models used in LES do not consider radiation effect
which could be very important in some conditions;

• There is no adequate principle to assess the necessity of a radiation sim-
ulation under certain conditions in practical applications.



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 23 — #23
✐

✐

✐

✐

✐

✐

Introduction 23

The main objective of this thesis is to explore better understanding and
prediction of the influence of radiation in turbulent flows. The struc-
ture of the manuscript is detailed in the following.

Structure of this manuscript

Chapter 1 Notions related to radiation and various approaches to represent
participating radiative properties and to solve the radiative transfer equa-
tion are introduced. Different Monte-Carlo methods, especially the Reciprocal
Monte-Carlo method, are detailed;

Chapter 2 An Optimized Emission-based Reciprocity Monte Carlo Method
(OERM) has been developed and validated by comparison, in benchmark cases,
with analytical reference results. In this method, the frequency distribution
function, generally equal to the emission distribution function at the emitting
cell temperature, has been replaced by a distribution function associated with
the maximum temperature within the domain. The real emission distribution
function of a cell at any temperature is then obtained by applying a corrective
factor to each shot;

Chapter 3 After an introduction of the balance equations of turbulent flows
and of the three numerical approaches (DNS, LES and RANS), wall functions
associated with the boundary layers are presented. The code YALES2 used for
flow field simulation and the coupling between this code and the Monte-Carlo
method are also detailed;

Chapter 4 Direct numerical simulations of a turbulent flow in a two-dimensional
channel are performed. The fluid solver is coupled to the reciprocal Monte Carlo
method OERM when radiation is taken into account. Effects of gas-gas radia-
tion and gas-wall radiation on the mean temperature and flux field are studied
separately. The dependence of radiation effects on the set of conditions (tem-
perature level, wall emissivity, pressure, Reynolds number) is also analyzed;

Chapter 5 This chapter focuses on radiation effects on fluctuation field in tur-
bulent channel flow. The influence of radiation on enthalpy root-mean-square,
on turbulent heat flux and on the budget of the corresponding transport equa-
tion are analyzed. To improve the agreement of results of non-dimensional tur-
bulent quantities between flows without and with radiation, a new radiation-
based scaling is proposed. The influence of radiation on turbulent Prandtl
number is also presented and a model based on the new scaling is proposed;

Chapter 6 In order to take into account the effect of radiation on the temper-
ature wall law in turbulent boundary layers, a new wall model for large eddy
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24 Introduction

simulation (LES) is proposed. After a separate validation of different compo-
nents of the proposed wall model, fully coupled wall-modeled LES/Monte-Carlo
simulations of turbulent channel flow are performed. The obtained results are
compared with DNS/Monte-Carlo results from chapter 4 to assess the accuracy
of this new model;

Chapter 7 A criterion regarding the importance of radiative heat flux on
walls is proposed to assess the necessity of performing radiation simulation un-
der a given flow condition. Similarly, another criterion based on the change
of non-dimensional temperature (scaled in wall units) due to radiation, is also
developed to predict whether the wall model accounting for radiation is re-
quired for a given flow. The validity of these two criteria is confirmed from an
analysis of fully-coupled DNS/Monte-Carlo results of several turbulent channel
flows. Mean flow fields of channel flows under different flow conditions are then
resolved with a k-ǫ model and a model for the turbulent Prandtl number. The
obtained criterion results are presented and analyzed.
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Chapter 1

Introduction to radiation

simulation

In this section, the radiative transfer equation (RTE) is detailed and dif-
ferent approaches to represent participative radiative properties and to
solve the RTE are discussed. Finally, a detailed description of different
Monte-Carlo methods, especially the Reciprocal Monte-Carlo method, is
also presented.

1.1 Radiative transfer

Thermal radiative transfer is commonly described as the heat transfer caused
by electromagnetic waves. As one of the three heat transfer modes, radiation
transfer is quite different from the other two modes: conduction and convec-
tion. As we know, the latter two can be both described by using a partial
differential equation since they are short-range phenomena and commonly the
energy conservation could be performed in an "infinitesimal volume". By con-
trast, radiation is a long-range phenomenon and the energy conservation need
to be carried out over the entire enclosure under consideration. To represent the
radiation, an integro-differential equation is retained with seven independent
variables: three spatial coordinates, two angle coordinates, one spectral vari-
able and the time. Although generally the time dependence is omitted in most
practical applications since the transfer speed of radiation beam is superior
than the typical velocity of such flows by several order of magnitude, there re-
mains six independent variables. The radiation problem is further complicated
by the need to calculate radiative properties of the medium. The absorption
coefficient of radiant gases, especially CO2 and H2O, is constituted by hundreds
of thousands of spectral lines and it varies significantly with wave number. This
makes the radiation a difficult problem to resolve.
On the other hand, radiative transfer rates are crudely proportional to differ-
ences of temperature to the fourth (or higher) power. Therefore, as tempera-
ture increases, radiative transfer becomes more important and may be totally
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Figure 1.1: A schematic description of radiation energy evolution.

dominant over conduction and convection at very high temperatures. As a con-
sequence, in combustion applications where the temperature is high, radiation
is important and needs to be modeled accurately.

1.1.1 Radiative Transfer equation

Radiative intensity is one of the most used quantities to describe the radiative
phenomenon. It is defined as the radiative energy flux per unit solid angle
and per surface area normal to the rays. The total radiative intensity is the
intensity over the entire spectrum while the spectral radiative intensity is the
one at given frequency and per unit frequency interval.
As shown in Fig. 1.1, in an elemental cylindrical control volume which contains
emitting-absorbing-scattering medium, the incident spectral radiative intensity
Iν , with a direction s and a wave-number ν, could be attenuated by absorption
of the medium in the control volume and by the deviation of the beam from
the original direction s (out-scattering). On the other hand, the emission of
the medium and in-scattering from the radiative intensity in other propagation
directions si to the direction s contribute to amplify the radiative intensity.
From an analysis of energy balance of the control volume in the direction s the
radiative transfer equation (RTE), for homogeneous and isotropic participative
media with a refractive index equal to 1 can be written as

dIν
ds

= −κνIν − σsνIν + κνI
0
ν +

σsν
4π

∫

4π
Iν(si)Φν(s, si)dΩi, (1.1)

where κν and σsν are the spectral absorption and scattering coefficients re-
spectively and Φi the so-called scattering phase function which represents the
probability that a beam from direction si, that is scattered within is scattered
to direction s within dV (as shown in Fig. 1.2). Ω denote the solid angle. The
four terms on the right side of Eq. (1.1) denote the extinction by absorption,
by out-scattering, augmentation by emission and by in-scattering respectively.
The dependence of intensity on time is neglected in this equation since com-
monly the speed of photons exceeds velocities of other terms by many order of
magnitude.
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s

s
ds

si

dV

Figure 1.2: A schematic description of scattered beam.

Introducing the extinction coefficient βν , the single scattering albedo ων and
the non-dimensional optical thickness τν as

βν = κν + σsν , (1.2)

ων =
σsν

κν + σsν
, (1.3)

τν =

∫ s

0
(κν + σsν)ds, (1.4)

the RTE can be written in a simple form as

dIν
dτν

+ Iν = Sν(τν , s), (1.5)

where the source function Sν(τν , s) is defined as

Sν(τν , s) = (1− ων)I
0
ν +

ων

4π

∫

4π
Iν(si)Φν(s, si)dΩi. (1.6)

An integration of Eq. (1.5) from s′ = 0 to s′ = s gives rise to the integral
formulation of the RTE as

Iν(τν) = Iν(0)e
−τν +

∫ τν

0
Sν(τ

′
ν , s)e

−(τν−τ ′ν)dτ ′ν . (1.7)

Here the first term on the right side represents the incident radiative intensity
at s′ = 0 attenuated along the trajectory of the beam until s′ = s while the
second term is the contribution of the source term (by emission or scattering)
of every element and attenuated over the distance τν − τ ′ν .
If the medium is non-scattering (σsν = 0), the differential and integral formu-
lations reduce to the following forms respectively:

dIν
ds

= κν(I
0
ν − Iν), (1.8)
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28 1.1. RADIATIVE TRANSFER

Figure 1.3: A schematic description of the reflection.

Iν(τν) = Iν(0)e
−τν +

∫ τν

0
I0ν (τ

′
ν)e

−(τν−τ ′ν)dτ ′ν . (1.9)

1.1.2 Boundary condition

Generally, the radiative intensity leaving a wall surface which surrounds the
participation medium, can be specified and employed as boundary conditions
for the RTE.
For diffusely emitting and reflecting opaque surfaces, the exiting radiative in-
tensity at position rw on the surface is independent of the direction, and it can
be expressed as the sum of emitted intensity and reflected intensity:

Iν(rw, s) = Iν(rw) = ǫ(rw)I
0
ν (rw) + ρ(rw)

Hν(rw)
π

, (1.10)

where Hν is the hemispherical irradiation defined as

Hν(rw) =
∫

nw·s′<0
Iν(rw, s′)|nw · s′|dΩ′, (1.11)

where, as indicated in Fig. 1.3, nw is the surface normal unit vector and s′ is
the direction unit vector of the incoming intensity Iν(rw, s′).
It is often considered that the radiative properties are a combination of diffuse
and specular ones, and then Eq. (1.10) changes to:

Iν(rw, s) = ǫ(rw, ss)I
0
ν (rw) + ρd(rw)

Hν(rw)
π

+ ρs(rw, ss)Iν(rw, ss), (1.12)

where ρs and ρd are the specular and diffuse components of the reflectance
respectively. The wall emissivity is ǫ = 1 − ρ, where the total reflectance ρ,
while not diffuse, can be adequately represented by a combination of a diffuse
and a specular component as

ρ = ρs + ρd. (1.13)

Besides, the direction ss and s have a relationship as

ss = s− 2(s · nw)nw. (1.14)
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1.1.3 Radiative source term

In order to correlate radiation field with flow field, a source term PR (W/m3),
named radiative power per unit volume, is added in the energy balance equation
of the flow. The radiative power per unit volume PR is defined as the negative
derivative of radiative flux qR:

PR = −▽ ·qR = ▽ ·
∫ +∞

0
qR
ν dν (1.15)

where qRν , the spectral radiative flux crossing a surface with normal unit vector
n, is expressed as

qRν = qR
ν · n =

∫

4π
Iνn · sdΩ (1.16)

And the divergence of the spectral radiative flux qR
ν writes

▽ · qR
ν = ▽ ·

∫

4π
Iν s dΩ (1.17)

Integrating Eq. (1.1) over the entire solid angle gives rise to

▽ · qR
ν = ▽ ·

∫

4π
Iν s dΩ = 4πκνI

0
ν −

∫

4π
βνIνdΩ

+
σsν
4π

∫

4π
Iν(si)

(∫

4π
Φν(s, si)dΩ

)
dΩi

(1.18)

In case of a non-scattering isotropic medium, this equation can be simplified
as:

▽ · qR
ν = κν(4πI

0
ν −

∫

4π
IνdΩ) (1.19)

This expression implies that the variation of radiative energy inside a control
volume is the difference between emitted energy and absorbed energy.

1.1.4 Radiative properties of participative gas

The prediction of radiative properties of medium is one of the most impor-
tant factors that make describing the radiation phenomenon a difficult task.
Participative gases, particularly CO2 and H2O which are typical products of
combustion system, emit and absorb radiative energy selectively. Consequently,
it is important to take into account the wave-number dependence of radiative
properties. Exact prediction results can only be obtained with line-by-line cal-
culations (Taine 1983; Hartmann et al. 1984) which represents each discrete
absorption-emission line of the infinite spectrum by its strength and half-width.
However, due to its requirement of vast amounts of computer resources, Line-by-
line method is only used as benchmarks for the validation of more approximate
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30 1.1. RADIATIVE TRANSFER

spectral models (Modest 2003b). In practical applications, it is not feasible to
account for each individual spectral line and hence a model for the spectral
calculation is needed. In the literatures, there exist three different types of ap-
proaches for the representation of radiative properties: Narrow-band models,
wide-band models and Global approach.

• Narrow-band models
Over a narrow spectrum band, although the absorption coefficient varies
rapidly with wave number, other radiative quantities such as the black-
body intensity, doesn’t change appropriately. Hence, it is reasonable to
replace the actual absorption coefficient by smoothened values appro-
priately averaged over a narrow spectral range. In order to calculate the
averaged value, some information on the spacing of individual lines within
the narrow band and on their relative strengths is needed. Various narrow
band models have been proposed for this purpose. In the Elsasser model
(Elsasser 1943), it is assumed that the lines are of uniform intensity and
are equally spaced while the Goody or statistical model (Goody 1952)
postulates a random exponential line intensity distribution and a random
line position selected from a uniform probability distribution. Both of
these models yield reasonably accurate results for practical engineering
calculations.
An alternative to the "traditional" narrow band models is the so-called
"correlated κ-distribution" (CK model) (Goody et al. 1989). Provided
that in the narrow spectral range, the averaged band quantities are not
affected by the precise location of the frequency, the absorption coefficient
could be reordered, resulting in a smooth monotonically increase function
of absorption coefficient vs. artificial wavenumber. This function provides
an efficient and accurate scheme for the spectral integration of radiative
quantities of interest. A more detailed description of this model could
found in Ref. (Soufiani and Taine 1997; Taine and Soufiani 1999). The
CK model has been widely used in radiation studies (Tessé et al. 2004;
Zhang et al. 2009) and is also used in this thesis for the representation
of the gas radiative properties.

• Wide-band models
In the 70s, a correlated approach at scales of a spectroscopic wide band
has been developed by Edwards and Menard(Edwards and Menard 1964;
Edwards 1976). Due to the fact that the necessary calculations are rela-
tively simple, this wide band model was very popular in the past. How-
ever, nowadays, it is not commonly used anymore because of its low
correlational accuracy.

• Global models
Among various global models, the models based on the distribution of the
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absorption coefficient weighted by the Planck function are the most widely
used (Taine and Soufiani 1999). These models are commonly called the
weighted-sum-of-gray-gases (WSGG) models. The original version of the
WSGG model is proposed by Hottel and Sarofim (1967), where the total
emissivity of the medium is expressed as the summation of several virtual
gray gases with weighting factors depending on the temperature. The
main interest of WSGG model is its low computational cost. However,
their application is generally limited to problems with grey walls and/or
particles.
More accurate global model could be found in Refs. (Denison and Webb
1993) and (Pierrot et al. 1999) where the spectral line-based weighted-
sum-of-grey-gases model (SLW) and the absorption distribution function
model with fictitious gases (ADFFG) are proposed respectively.

1.1.5 Numerical approaches to resolve RTE

In order to solve the RTE, various approximated models have been proposed in
the literature. Depending on the form of the resolved RTE, these models can
be divided into two classes: differential and integral methods.
In the catalogue of differential methods, the differential form of RTE is resolved
by using an approximation of the incident intensity. It includes the discrete
ordinate model (Fiveland 1984), finite volume model (Raithby and Chui 1990),
spherical harmonics model (Mengüç and Viskanta 1986) and discrete transfer
methods (Lockwood and Shah 1981).
On the other hand, integral methods resolve the integral formulation of RTE
and the mostly used methods include the zonal method (Hottel and Sarofim
1967), ray tracing method (Iacona et al. 2002; Coelho et al. 2003), boundary
element (Bialecki 1993) and Monte-Carlo method (Howell 1998). A detailed
description about these methods can be found in some comprehensive references
or books about radiative transfer, such as Ref. (Modest 2003b; Viskanta and
Menguc 1987).
Among these models, Monte-Carlo method is a statistical method, where the
history of a large number of photon bundles is traced as they travel through the
enclosure and the radiative quantities are statistically calculated. This model
is well-known for its high accuracy of the solution. In this thesis, the Monte-
Carlo method is retained in order to predict the result with a good accuracy.
A detailed description of Monte-Carlo methods will be presented in the next
paragraph.

1.2 Monte-Carlo Method

The Monte-Carlo method (MCM), based on the statistical characteristics of
physical processes, has been extensively used in engineering and science inves-
tigations. The application of MCM in thermal radiative transfer was pioneered
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by Fleck (1961), Howell and Perlmutter (1964) who studied the radiation in
participative medium. Nowadays, as the rapidly increase of computer power,
the use of MCM in radiation calculation becomes more and more popular. Com-
prehensive reviews about the implementation of MCM in radiative transfer are
available in refs. (Howell 1998; Walters and Buckius 1994).
In the conventional MCM, a large number of photon bundles carrying a fixed
amount of radiative energy are emitted in the system and their history is traced
until the energy carried is absorbed at a certain point in the participative
medium or at the wall, or until it exits the system. The departure point,
propagation direction, spectral frequency of the ray and the point where the
energy is absorbed are independently and randomly chosen according to given
distribution functions. A main advantage of MCM is that it can be easily
employed in complicated systems and can incorporate all the important physical
effects (such as the anisotropic scattering distribution, spectral dependence
of wall or medium properties, the directional dependence of wall properties)
without any assumption and a large increment of computional effort. Moreover,
the statistical features of the results of MCM enables the system uncertainty,
commonly represented by the standard deviation, to be computed in addition
to other quantities. This is generally unavailable in other more deterministic
approaches. However, the drawback attendant is the need of a large number of
rays to obtain statistically meaningful results. In fact, the standard deviation
tends to be proportional to 1/

√
N (Howell 1998), where N is the total number

of bundles. Therefore, an increment of three times of ray number only reduces
the uncertainty by one half.

1.2.1 Different approaches for variance reduction

In order to reduce the long convergence time and the large memory requirement
of MCM, several approaches, such as the "energy partitioning" method, the re-
verse MCM and the reciprocal MCM, have been proposed in the literature.

• "Energy partitioning" method
In conventional MCM, the energy carried by each ray is fixed until either
the energy is totally absorbed at a single point or it exits the domain.
This method, referred to as "standard ray tracing" method here, is very
inefficient in an open configuration with highly reflective walls and/or op-
tically thin medium, since most of the rays exit the system without any
contribution to the statistical but consuming CPU time (Modest 1978;
Shamsundar et al. 1973). To alleviate this obstacle, the "energy par-
titioning" method (Walters and Buckius 1994) is proposed, where the
energy carried by a ray is attenuated gradually by absorption of the cells
along the optical path until its depletion or it leaves the enclosure. Each
ray in this method can provide more statistical samples than the one
in the "standard ray tracing" method and a smaller standard deviation
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Pab

A B

(a) Forward MC

Pab
A B

(b) Reverse MC

Pab

Pba

A B

(c) Reciprocal MC

Figure 1.4: A schematic description of different MC methods (the solid line means
the radiative power is calculated directly while the dashed line indicates the computation
is based on reciprocity principle).
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is resulted. Consequently, this method is more efficient, particularly in
the open system aforementioned, a tremendous computer time savings is
achieved (Modest 2003b). Due to its high efficiency, this "energy parti-
tioning" method is applied in this thesis.

• Reverse MCM
The solution of the entire enclosure is calculated simultaneously in con-
ventional MCM (also called forward MCM) by emitting in all the cells.
Generally, this method is reasonably efficient for a majority of systems
where the overall radiation field is desired. However, if only the radia-
tive intensity hitting a small detector and/or over a small solid angle is
needed, this method can become inefficient since the ray which hits the
small detector is only a very small fraction of the emitted bundles inside
a large enclosure while all the other rays have no contribution. In order
to obtain an accurate solution of the intensity incident at the detector,
a prohibitive large number of photon bundles are needed, resulting in a
huge computational cost. To alleviate this problem, the reverse MCM
(also called backward MCM) based on the principle of reciprocity, can
be applied instead. As shown in Fig. 1.4 (b), in order to calculate P ea

AB

(the radiative power emitted by radiation source A and absorbed by the
detector B), the bundle is followed in a reverse direction, from the termi-
nation site (the detector B) to the participative medium A, rather than
track it from A to B as in forward MCM ( Fig. 1.4 (a)). Hence, in reverse
MCM, only the rays having a contribution to the solutions have been fol-
lowed, and this greatly enhances the efficiency (Walters and Buckius 1992;
Walters and Buckius 1994). Li and Modest (2003) has used the reverse
MCM to compute the apparent directional emissivity of one-dimensional
absorbing-emitting-scattering semitransparent slab and it is revealed that
the reverse MCM converges more quickly than the forward MCM. How-
ever, generally, a large radiation source is required in this reverse MCM.
In order to extend its use into a system with collimated irradiation or
point sources, Modest (2003a) has improved it by separating direct and
scattered radiation.

• Reciprocal MCM
Another two well known difficulties of conventional MCM are: 1) the
treatment of quasi-isothermal system is difficult as the energy balance is
very small compared to emission and absorption. A small error in the
prediction of emitted and/or absorbed energy may cause a catastrophic
error of the energy balance; 2) the computational effort of conventional
MCM rapidly increases with the optical thickness (Howell 1998). In fact,
if the medium is optically thick, the mean optically free path is short,
most of the rays emitted are directly absorbed in the vicinity of the cell
under consideration and only a very few bundles participate in the distant
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radiative energy transportation. Hence a huge number of rays is needed to
get statistically meaningful solution. These problems are also encountered
by the backward MCM.
Note that both of these two problems are associated with the violation of
reciprocity principle. A main interest of a reciprocal MCM is to allevi-
ate these problems since this method intrinsically fulfills the reciprocity
principle. As shown in Fig. 1.4 (c), instead of using the path between A
and B only for calculation of P ea

AB (energy emitted by A and absorbed by
B), the same path is used for the exchanged energy which is equal to the
difference between P ea

AB and P ea
BA (energy emitted by B and absorbed by

A). Here P ea
AB is calculated directly while P ea

BA is computed by using the
reciprocity principle. In reciprocal MCM, the energy transport from A to
B and from B to A are considered simultaneously. This reciprocal MCM
was applied by Cherkaoui et al. (Cherkaoui et al. 1996; Cherkaoui et al.
1998) to simulate radiation in the limited cases of an one-dimensional
quasi-isothermal slab with diffusely or specularly reflecting surface and
non-gray gases. They reported that this method converged at least two
orders faster than the conventional Monte-Carlo method and was much
less sensitive to optical thickness. Moreover, in order to insure satisfac-
tory convergence of reciprocal MCM for all types of optical thicknesses
but always in 1D slabs, De Lataillade et al. (2002) applied an adapted
optical path sampling procedure which makes the Reciprocal MCM re-
main efficient even for very high optical thicknesses. Tésse et al. have
also compared two different approaches of the Reciprocal MCM with the
conventional MC method in one-dimensional benchmark cases with par-
ticipative gases (Tessé et al. 2002). These methods have been applied to
3D cases in Ref. (Tessé et al. 2004). The comprehensive formulations of
the reciprocal approaches will be detailed later in section 1.2.2.

In addition to these approaches, biasing techniques have also been implemented.
For example, Ref. (Martin and Pomraning 1990) have successfully used the bi-
asing of sampled directions towards the parts of the system that most contribute
to the addressed radiative quantity, while the biasing of sampled frequencies as
function of temperature field and spectral properties are used in Ref. (Dufresne
et al. 1999).

1.2.2 Formulations of Reciprocal Monte-Carlo method

Any complex system, which consists of non-isothermal walls and non-isothermal,
heterogeneous, emitting-absorbing participative medium, can be discretized
into Nv and Ns isothermal, homogenous finite cells of volume Vi and surface
Si respectively. The radiative power Pi (W ) in any cell i can be written as the
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sum of the exchange powers P exch
ij between i and all the other cells j, i.e:

Pi =

Nv+Ns∑

j=1

P exch
ij = −

Nv+Ns∑

j=1

P exch
ji . (1.20)

For volume cells, for instance, P exch
ij is defined as:

P exch
ij = P ea

ji − P ea
ij =

∫ ∞

0
(P ea

ν,ji − P ea
ν,ij)dν, (1.21)

where P ea
ν,ij is the spectral radiative power emitted by volume i and absorbed by

volume j. The exchanged power is calculated by using the reciprocity principle
in reciprocal MCM.

Reciprocity principle

As shown in Fig. 1.5, dP ea
ν,ij , the energy emitted by the differential volume

element dVi and absorbed by dVj(=dAj × dsj), is the energy emitted from dVi,
transmitted by the media and absorbed within dAj dsj, or:

dP ea
ν,ij = [4π κν(Ti) I

0
ν (Ti) dVi]×

(
dAj

4πr2

)
× (τν,r)× [κν(Tj) dsj ] (1.22)

where κν the spectral absorption coefficient. I0ν (T ) is the equilibrium spectral
intensity. r is the distance between dVi and dVj and τν,r is the corresponding
spectral transmissivity. This equation can be recast as

dP ea
ν,ij

I0ν (Ti)
= τν,r κν(Ti)κν(Tj)

dVidVj

r2
(1.23)

Similarly, we can also demonstrate that dP ea
ji can be expressed as

dP ea
ν,ji

I0ν (Tj)
= τν,r κν(Ti)κν(Tj)

dVidVj

r2
(1.24)

Note that the right sides of these two Eqs. (1.23) and (1.24) are the same, so
we obtain

dP ea
ν,ij

I0ν (Ti)
=

dP ea
ν,ji

I0ν (Tj)
, (1.25)

and this is the so-called "reciprocity principle" which indicates that the ratio
between dP ea

ν,ij and dP ea
ν,ji is equal to the corresponding equilibrium spectral

intensity ratio.
The "reciprocity principle" can be also applied to energy transfer between sur-
face elements or between surface and volume elements. It is also valid in scat-
tering or reflecting media.
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Figure 1.5: Radiative exchange between two differential volume elements.

Formulation of exchanged power

Using the reciprocity principle Eq. (1.25), the corresponding exchanged power
between dVi and dVj can be expressed as (Tessé et al. 2002):

dP exch
ν,ij = dP ea

ν,ji−dP ea
ν,ij = τν,r κν(Ti)κν(Tj) [I

0
ν (Tj)− I0ν (Ti)]

dVidVj

r2
. (1.26)

If we substitute dVj with the solid angle dΩi and dsj by using the following
relationship

dVj

r2
= dsjdΩi (1.27)

then Eq. (1.26) yields

dP exch
ν,ij = τν,r κν(Ti)κν(Tj) dsj [I

0
ν (Tj)− I0ν (Ti)] dVidΩi (1.28)

An integration of dP exch
ν,ij gives

P exch
ij =

∫ +∞

0
κν(Ti)[I

0
ν (Tj)− I0ν (Ti)]

∫

Vi

∫

4π
Aij νdΩidVidν, (1.29)

where

Aij ν =

Np∑

m=1

τν(BFm)αj m, (1.30)

and Np represents the total number of crossing of the cell j by a given optical
path issued from the cell i. For the m-th crossing of the given optical path,
τν(BFm) is the spectral transmissivity between the source point B in cell i and
the inlet point Fm in the cell j (as shown in Fig. 1.6). αj m is the spectral
absorptivity associated with the column m, defined as

αj m = 1− exp [−κν(Tj)ljm] (1.31)

where ljm is the length of m-th column. The exchanged radiative energy be-
tween cell i and cell j can be calculated from Eq. (1.29) where the reciprocity
principle is clearly fulfilled.
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B

dVi
Vj

Vi

dVj

F1

F2

lj1 lj2

Figure 1.6: Elementary cells for reciprocal Monte-Carlo method.

Probability Density Functions

In MCM, a lot of photon bundles are emitted in the enclosure in order to
calculate the radiative quantities. The departure point B, propagation direction
∆ and wave-number ν of these bundles are determined randomly according to
the corresponding Probability Density Function (PDF) which will be presented
in this part.
In fact, by introducing the emitted power P e

i (Ti) of Vi, which is defined as

P e
i (Ti) = 4π Vi

∫ +∞

0
κν(Ti)I

0
ν(Ti)dν, (1.32)

Eq. (1.29) can then be transformed into

P exch
ij = P e

i (Ti)

∫ +∞

0
[
I0ν (Tj)

I0ν (Ti)
− 1]

∫

Vi

∫

4π
Aij νfi(B,∆, ν)dΩidVidν, (1.33)

where fi(B,∆, ν) is a possible joint PDF, expressed as

fi(B,∆, ν) dVidΩidν =
κiν I

0
ν (Ti) dVidΩidν

P e
i (Ti)

. (1.34)

Since the position B, direction ∆ and wave-number ν are statistically indepen-
dent, fi(B,∆, ν) is separated into three parts: fV i, f∆i and fνi, given

fi(B,∆, ν) dVidΩidν = fV i(B)dVi f∆i(∆)dΩi fνi(ν)dν

=
1

Vi
dVi

1

4π
dΩi

κν(Ti)I0ν(Ti)∫ +∞
0 κν(Ti)I0ν(Ti)dν

dν
(1.35)
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Here the three independent function fV i(B), f∆i(∆) and fνi(ν) can be used as
the PDF for B, ∆ and ν respectively, given

fV i(B) =
1

Vi
, (1.36)

f∆i(∆) =
1

4π
, (1.37)

fνi(ν) =
κν(Ti)I0ν(Ti)∫ +∞

0 κν(Ti)I
0
ν(Ti)dν

. (1.38)

Furthermore, since the direction ∆ is determined by the azimuthal angle φ and
the polar angle θ, the solid angle Ωi is replaced with θi and φi, and we obtain

f∆i(∆)dΩi =
1

4πi
dΩi =

sin(θi)
2

dθi
1

2π
dφi = fθi(θi)dθi fφi(φi)dφi. (1.39)

Here the PDF for φ and θ are respectively given as:

fθi(ν) =
sin(θi)

2
, (1.40)

fφi(ν) =
1

2π
. (1.41)

All of these PDFs are independent and they will be applied for the determina-
tion of photon bundles.

Determination of a bundle

In order to mimic the radiation correctly in MCM, the bundles should be sta-
tistically emitted according to the PDFs. Assuming that Ni bundles carrying
equal energy P e

i /Ni are emitted from cell Vi, the probability that a given bundle
has a wave-number between ν and ν + dν is equal to fνi(ν)dν. Moreover, the
probability that a given bundle has a wave-number between 0 and ν is given
by the cumulative distribution function Rν , defined as

Rν =

∫ ν

0
fνi(ν)dν =

∫ ν
0 κν(Ti)I0ν(Ti)dν∫ +∞

0 κν(Ti)I
0
ν(Ti)dν

. (1.42)

It indicates that if we want to simulate the emitted energy from Vi by using Ni

bundles of equal energy, the fraction Rν(ν) of these bundles should have a wave-
number lower than ν. To realize this, a random number uniform distributed
between 0 and 1 can be used. In fact, the probability that a uniform distributed
random number has a value Rν0 is also Rν0. For a given random number Rν0,
the corresponding wave-number ν0 can be computed implicitly from Eq. (1.42).
If the wave-number ν of each bundle is always determined from a random
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number R by using Eq. (1.42), then the fraction of the wave-number smaller
than ν0 is Rν0 and the cumulative distribution function is fulfilled.
Similarly, to choose the polar angle θ and azimuthal angle φ, a random number
Rθ and Rφ are generated respectively, given

Rθ =

∫ θ

0
fθ(θi)dθi =

∫ θ

0

sin(θi)
2

dθi, (1.43)

Rφ =

∫ φ

0
fφ(φi)dφi =

∫ φ

0

1

2π
dφi. (1.44)

Then the angles can be explicitly calculated from these two independent uni-
form distributed random number Rθ and Rφ as

θ = arccos(1− 2Rθ), (1.45)

φ = 2πRφ. (1.46)

For an opaque surface node with diffuse emissivity, the distribution function
for θ changes to

Rθw =

∫ θw

0
fθw(θi)dθi =

∫ θw

0
sin(θi)cos(θi)dθi, (1.47)

and angle θw is calculated as

θw = arccos(
√

Rθw). (1.48)

Generally, as discussed in Ref. (Zhang 2011), the departure point B can also
be randomly chosen by following three steps: i) create a smallest parallelepiped
surrounding cell Vi; ii) randomly pick one point within this parallelepiped; iii)
if the picked point is within cell Vi, then use this point as the departure point
B. If not, repeat the second step until the picked point is inside cell Vi.
However, in Emission-based Reciprocity Method, an "infinitesimal volume" dVi

centered in a given point B can be applied and now all the photon bundles are
directly started from B, avoiding the process to randomly choose the departure
point. This will be discussed later in detail.

Statistical estimations

After being emitted from the source point, each photon bundle crosses succes-
sively each cell in the selected optical direction. When the bundle goes through
a cell, the energy absorbed in this cell is computed with the local absorptiv-
ity (based on the crossed length) and the remained energy in the path leaving
from this cell can be computed with the local transmissivity. In this way, the
energy carried by the bundle will decrease gradually until the amount of en-
ergy becomes less than a cutoff value or until the bundle leaves the enclosure.
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Finally, for a given shot n, the spectral radiative power emitted by a cell i that
is absorbed by a cell j writes (Tessé et al. 2002)

P ea
ijn ν =

P e
i (Ti)

Ni
Aijn ν , (1.49)

where Ni is the total number of bundles from cell i. According to the reciprocity
principle, the radiative power which is exchanged between i and j, for the shot
n, is

P exch
ijn ν = P ea

jin ν − P ea
ijn ν = P ea

ijn ν [
I0ν (Tj)

I0ν (Ti)
− 1]. (1.50)

Note that here P ea
ijn ν is calculated in a deterministic way (use Eq. (1.49) while

P ea
jinν is computed from the reciprocity principle as

P ea
jin ν = P ea

ijn ν

I0ν (Tj)

I0ν (Ti)
. (1.51)

If a large number of photon bundles Ni are emitted from cell i, after tracing
the history of these bundles, the statistical estimation of P exch

ij and P ea
ij can be

calculated by averaging the contribution of all the optical paths as:

P̃ ea
ij =

Nij∑

n=1

P ea
ijn ν (1.52)

P̃ exch
ij =

Nij∑

n=1

P exch
ijn ν (1.53)

where Nij is the number of optical paths which give rise to a non-zero contri-
bution and ·̃ denotes a statistical estimation value.
The conventional forward MCM is based on P̃ ea

ij . In addition, by using P̃ exch
ij ,

two reciprocal MCMs, the Emission-based Reciprocity Method (ERM) and
Absorption-based Reciprocity Method (ARM), are also proposed in Ref. (Tessé
et al. 2002). The principles of these three models are detailed in the following
part.

Forward Method (FM)

As mentioned previously, in FM, a photon emitted from cell Vj and arriving at
cell Vi is only used for the energy transport from Vj to Vi (P ea

ν,ji). By summing
the contribution of all the rays started from all the cells Vj of the enclosure (as
shown in Fig. 1.7), the radiative power of cell Vi is statistically estimated as

P̃FM
i =

Nv+Ns∑

j=1

P̃ ea
ji − P e

i (Ti), (1.54)

where P e
i (Ti) is calculated deterministically from Eq. (1.32). Obviously, the

calculation of P̃FM
i depends on the emission of all the cells in the system.
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cell i

cell 2

cell j

cell Ns+Nv

cell 1

FM
cell i

cell 2

cell j

cell Ns+Nv

cell 1

ERM
cell i

cell 2

cell j

cell Ns+Nv

cell 1

ARM

Figure 1.7: Principles of computation of ERM, ARM and FM: Cell i is the cell where
radiative power is computed; The continuous arrows start from emission points and
reach absorption points; The dashed arrows deals with the reciprocity principle.

Emission-based Reciprocity Method (ERM)

In the Emission Reciprocity Method (ERM), the statistic estimation of the
radiative power in the cell i is calculated as

P̃ERM
i =

Nv+Ns∑

j=1

P̃ exch
ij . (1.55)

As shown in Fig. 1.7, in ERM, all the photon bundles are started from cell i,
which indicates only the bundles from the cell Vi are needed for the computation
of P̃ERM

i . Therefore, for the situation where only the solution of a certain
domain is needed, this method is efficient. Moreover, by controlling the bundle
number emitted from each cells, the uncertainty can be locally controlled. This
feature is useful if highly accurate solution is only required in a certain part of
the system.
Note that, for cell i, the emitted energy is calculated in a deterministic way
while the absorbed energy is computed by using the reciprocity principle. Obvi-
ously, the accuracy of deterministic calculation is higher than reciprocal calcu-
lation. Therefore, the computed emitted energy is more accurate than absorbed
energy and hence ERM is more adapted to the zone where emission is dominant
than absorption (high temperature zone).

Absorption-based Reciprocity Method (ARM)

In ARM, a lot of bundles are shot from every cell of the system. By following
the progress of all the bundles and using the reciprocity principle, the radiative
power in cell Vi is calculated as

P̃ARM
i = −

Nv+Ns∑

j=1

P̃ exch
ji . (1.56)

It indicates that the computation of P̃i depends on the emission of all the cells
in the enclosure (as shown in Fig. 1.7). To reduce the variance of cell Vi,
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more bundles are needed in every cell of the entire domain. By contrast to
ERM, for cell Vi, the absorbed energy is deterministically calculated whereas
the reciprocity principle is applied for emitted energy. Consequently, ARM is
more adapted for the low temperature region.
In addition to these two reciprocal methods, an Optimized Reciprocity Method
(ORM) is proposed by Dupoirieux et al. (2006) where ERM is used in the case
when Ti is higher than Tj, and ARM in the opposite case.

"Infinitesimal" emission source volume

In ERM, by substituting Eq. (1.50) and (1.49) into Eq. (1.53), then the
radiative power of cell Vi can be expressed as

P̃ERM
i =

P e
i (Ti)

Ni

Nv+Ns∑

j=1

Aijn ν [
I0ν (Tj)

I0ν (Ti)
− 1] = P e

i (Ti)S. (1.57)

where

S =
1

Ni

Nv+Ns∑

j=1

Aijn ν [
I0ν (Tj)

I0ν (Ti)
− 1]. (1.58)

And the mean volume radiative power ̂̃
PERM

i (W/m3) of cell Vi can be calcu-
lated as

̂̃
PERM

i =
P̃ERM

i

Vi
=

P e
i (Ti)

Vi
S = 4π S

∫ +∞

0
κν(Ti)I

0
ν(Ti)dν (1.59)

where Vi disappears on the right side. It implies that, the mean volume radiative

power ̂̃
PERM

i is not affected by the volume of the emission source in ERM.
Hence, instead of Vi, we can apply an "infinitesimal volume" dVi centered at

point B to calculate ̂̃
PERM

i (B) at position B, and now all the optical paths
can be directly emitted from B rather than randomly choose the departure
point inside Vi. Moreover, the isothermal and homogenous assumption in the
"infinitesimal volume" is now physically true. If assume that the volume power

is a constant inside Vi, the mean volume power of Vi is then equal to ̂̃
PERM

i (B).
However, this "infinitesimal" emission source volume is only valid for ERM. In
fact, for ARM as an instance, the radiative power of Vi is calculated as

P̃ARM
i =

Nv+Ns∑

j=1

P e
j (Tj)

Nj
Ajin ν [

I0ν (Ti)

I0ν (Tj)
− 1]

=

Nv+Ns∑

j=1

4πVj

∫ +∞
0 κν(Tj)I0ν(Tj)dν

Nj
Ajin ν [

I0ν (Ti)

I0ν (Tj)
− 1].

(1.60)



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 44 — #44
✐

✐

✐

✐

✐

✐

44 1.2. MONTE-CARLO METHOD

and the volume power is

̂̃
PARM

i =
P̃ARM

i

Vi
=

1

Vi

Nv+Ns∑

j=1

4πVj

∫ +∞
0 κν(Tj)I0ν(Tj)dν

Nj
Ajin ν [

I0ν (Ti)

I0ν (Tj)
−1] (1.61)

Obviously, ̂̃
PARM

i depends on the emission source volume Vj and the "infinites-
imal" volume can not be used.

Statistical Variance

Since Monte Carlo methods are statistical methods, the solution will gener-
ally fluctuates randomly around the correct answer and these fluctuations will
decrease as the number of samples increases. In order to estimate the error
associated with the statistical result X(N), the N photon are broken up into I
subsamples and normally, each subsample would include identical amounts of
bundles, leading to

Ni =
N

I
i = 1, 2, . . . , I. (1.62)

X(N) =
1

N

N∑

i=1

NiX(Ni) =
1

I

n∑

i=1

X(Ni) i = 1, 2, . . . , I. (1.63)

where X(Ni) is the mean value of the i-th subsample. The I subsamples may
then be treated as if they were independent experimental measurements of the
same quantity. And the corrected sample standard deviation can be calculated
as

σ2 =
1

(I − 1)

I∑

i=1

[
X(Ni)−X(N)

]2
i = 1, 2, . . . , I. (1.64)

while the variance or corrected standard deviation of the sample mean X(N)
equals

σ2
m =

σ2

I
. (1.65)

Based on the central limit theorem, we can say with 68.3% confidence that the
correct answer lies within the limits of X(N) ± σm, with 95.5% confidence
within X(N) ±2σm, or with 99% confidence within X(N) ± 2.58σm.
The determination of the variance associated with a computed quantity is an
important advantage of the MCM, when compared to other more deterministic
models for which the accuracy is not easy to determined.



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 45 — #45
✐

✐

✐

✐

✐

✐

Chapter 1 - Introduction to radiation simulation 45

1.3 Conclusion

Two main difficulties of the radiation transfer problem are: i) The radiative
transfer equation is difficult to be solved since it is an integro-differential equa-
tion which generally involves six independent variables; ii) The radiative prop-
erties of participative gases, which strongly vary with frequency, are hard to
be represented. With respect to the latter point, there are different approaches
such as Line-by-line method, Narrow-band model, Wide-band model and Global
model. Various methods have also been proposed to solve the integral form or
the differential form of radiative transfer equation.
Monte-Carlo method (MCM) is a statistical method which is easy to be imple-
mented in complex configuration and enables the uncertainty of the results to
be evaluated. However, its computational cost is high in order to obtain sta-
tistically meaningful results. The reciprocal MCM, which intrinsically fulfills
the reciprocity principle, can reduce the long convergence time and the large
memory requirement of the traditional MCM.
There exist several different reciprocal Monte-Carlo methods, including the
emission-based reciprocity MCM, absorption-based reciprocity MCM and op-
timized reciprocity MCM. Among them, emission-based reciprocity MCM is
the most promising one since it enables the uncertainty of result to be locally
controlled. However, it has a problem when dealing with the cold region of
the system. To alleviate this drawback of emission-based reciprocity MCM,
another variant will be proposed in the next chapter.
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Chapter 2

Optimized Emission-based

Reciprocity Monte-Carlo

Method

Among different Monte-Carlo methods, the Emission-based Reciprocity
Monte-Carlo method (ERM) is one of the most promising approaches
since it intrinsically fulfills the reciprocity principle and enables a lo-
cal control of the statistical error. However, it has some problems to
deal with the radiative power or flux in low temperature region. In this
chapter, an Optimized Emission-based Reciprocity Monte Carlo Method
(OERM) is developed to improve the efficiency of ERM and to solve
its problems in cold regions. This method applies a new frequency dis-
tribution function associated with the maximum temperature within the
domain. A detailed description is presented in the following publica-
tion: Y.F. Zhang, O. Gicquel and J. Taine (2012). Optimized
Emission-based Reciprocity Monte Carlo Method to speed up
computation in complex systems. International Journal of
Heat and mass Transfer 55 (2012) 8172-8177
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48 2.1. ABSTRACT

Optimized Emission-based Reciprocity

Monte Carlo Method to speed up

computation in complex systems
Y. F. Zhang, O. Gicquel and J. Taine.

International Journal of Heat and mass Transfer 55 (2012)
8172-8177

2.1 Abstract

An Optimized Emission-based Reciprocity Monte Carlo Method (OERM) has
been developed and validated by comparison, in benchmark cases, with ana-
lytical reference results. In this method, the frequency distribution function,
generally equal to the emission distribution function at the emitting cell tem-
perature, has been replaced by a distribution function associated with the max-
imum temperature within the domain. The real emission distribution function
of a cell at any temperature is then obtained by applying a corrective factor to
each shot.
Keyword: Monte Carlo, frequency distribution function, Reciprocity Method,
radiative power, statistic error

2.2 Introduction

Monte Carlo method is widely used in many applications involving radiative
transfer (Howell 1998; Farmer and Howell 1998). At the beginning it was mainly
used to produce reference solutions to validate more approximated techniques
(see for instance, (Guo and Maruyama 2000; Marakis et al. 2000; Mishra et al.
2003)). But the method is now directly used for determining the effects of
radiation in combustion media (Zhang et al. 2009; Tessé et al. 2004; Lataillade
2001), for studying turbulence-radiation interactions (Coelho 2007; Wu et al.
2005; Snegirev 2004), scattering media (Stankevich and Shkuratov 2004) or
collimated pulse irradiation (Wu 2009), etc.
Walters et al. (Walters and Buckius 1992; Walters and Buckius 1994) have pro-
posed a reverse Monte Carlo algorithm based on the reciprocity principle. This
approach generally accelerates the convergence of the Monte Carlo method.
Cherkaoui et al. (Cherkaoui et al. 1996; Cherkaoui et al. 1998), Dufresne et al.
(1998) and De Lataillade et al. (2002) have developed a net-exchange Monte
Carlo computations based on the reciprocity principle.
Nevertheless, in complex three-dimensional geometrical configurations that in-
clude absorbing and emitting gases characterized by spectral radiative prop-
erties, a complete reciprocal computation, i.e. the determination of all the
radiative powers exchanged by all the couples of cells of the discretization,
cannot be carried out. However, Emission-based Reciprocity Method(ERM)
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and Absorption-based Reciprocity Method (ARM), developed by Tessé et al.
(2002), allow the determination of the radiative power in any cell for these
complex systems. These authors have shown that ERM and ARM are more
suitable than the Forward Monte Carlo Method (FM) for optically thick or
nearly isothermal media. ARM is efficient in the calculation of radiative power
or flux in low temperature regions, while ERM is, on the contrary, more ef-
ficient in hot regions. Dupoirieux et al. (2006) have proposed an optimized
reciprocity method (ORM) by combining ERM and ARM.
However, to compute the radiative power in some precise cells, FM, ARM or
ORM requires to generate optical paths from all the cells of the system, while
ERM is only based on the optical paths issued from the cells where results are
expected. Therefore, ERM is more efficient when the calculation is limited to
a part of the system. Consequently the aim of the present paper is to improve
the efficiency of ERM, in particular in the treatment of the radiative fluxes and
powers in the colder regions. The resulting Optimized Emission Reciprocity
Method (OERM) is based on a frequency distribution function associated with
the system maximum temperature.
Section 2.3 briefly summarizes different approaches of the reciprocity method.
The principles of the ERM optimization are defined in Sec. 2.4 and first applied
to a simple case involving a grey medium. Results of OERM for four benchmark
cases, typical of combustion gases, are discussed in Sec.2.5. Comparisons with
ERM results of Ref. (Tessé et al. 2002) are also carried out.

2.3 Different reciprocity Monte Carlo approaches

Any complex system can be discretized into Nv and Ns isothermal finite cells
of volume Vi or surface Si, respectively. The radiative power in any cell i can
be written as the sum of the exchange powers P exch

ij between i and all the other
cells j, i.e.

Pi =

Nv+Ns∑

j=1

P exch
ij = −

Nv+Ns∑

j=1

P exch
ji . (2.1)

For volume cells, for instance, P exch
ij is given by

P exch
ij =

∫ +∞

0
κν(Ti) [I

◦
ν (Tj)− I◦ν (Ti)]

∫

Vi

∫

4π
Aij νdΩdVidν, (2.2)

where I◦ν (T ) is the equilibrium spectral intensity and κν(Ti) the spectral ab-
sorption coefficient relative to the cell i. Aij ν accounts for all the paths between
emission from any point of the cell i and absorption in any point of the cell j,
after transmission, scattering and possible wall reflections along the paths. Its
expression is detailed in Ref. (Tessé et al. 2002). Similar expressions are also
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given for exchanges between a volume cell and a surface or between two surface
cells.
In a Monte Carlo method, a large number of shots Ni, each of them char-
acterized by a source point, a direction and a frequency ν, are stochastically
generated from a cell i. For a given shot n, the spectral radiative power emitted
by a cell i absorbed by a cell j writes

P ea
ijn ν =

P e
i (Ti)

Ni
Aijn ν , (2.3)

where P e
i (Ti), the total emitted power of cell i and it is expressed as:

P e
i (Ti) = 4πVi

∫ +∞

0
κν(Ti)I

◦
ν (Ti)dν. (2.4)

According to the reciprocity principle, the radiative power which is exchanged
between i and j, for the shot n, is

P exch
ijn ν = P ea

ijn ν

[
I0ν (Tj)

I0ν (Ti)
− 1

]
(2.5)

Statistical estimations P̃ ea
ij and P̃ exch

ij of P ea
ij and P exch

ij are obtained, at the large
number limit, by summing the contributions of all the shots which connect i
and j, i.e.

P̃ ea
ij =

Nij∑

n=1

P ea
ijn ν , (2.6)

P̃ exch
ij =

Nij∑

n=1

P exch
ijn ν , (2.7)

where Nij is the number of the shots which are issued from cell i and have a
contribution to P ea

ij or P exch
ij .

Accurate statistical determination of P̃ exch
ij can only be obtained if the num-

ber of shots connecting the cells i and j is large. For complex 3D geometrical
configurations, characterized for instance by about 104 cells, a huge 104 × 104

matrix has then to be generated for each frequency. The previous approach is
only realistic for simple configurations, typically for one-dimensional systems.
Consequently, simplified reciprocity Monte Carlo approaches have been devel-
oped for complex systems (Tessé et al. 2002; Tessé et al. 2004; Dupoirieux
et al. 2006) by cumulating during the computation the results related to a
cell i. In the Emission-based Reciprocity Method(ERM) and Absorption-based
Reciprocity Method (ARM), the radiative power in a cell i are respectively
estimated by

P̃ERM
i =

Nv+Ns∑

j=1

P̃ exch
ij , (2.8)
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cell i

cell 2

cell j

cell Ns+Nv

cell 1

ARM

cell i

cell 2

cell j

cell Ns+Nv

cell 1

ERM

cell i

cell 2

cell j

cell Ns+Nv

cell 1

FM

Figure 2.1: Principles of computation of ERM, ARM and FM: Cell i is the cell where
radiative power is computed; The continuous arrows start from emission points and
reach absorption points; The dashed arrows deal with the reciprocity principle.
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P̃ARM
i = −

Nv+Ns∑

j=1

P̃ exch
ji , (2.9)

without storage of P̃ exch
ij ν . The principles of ERM and ARM are summarized in

Fig. 2.1. P̃ERM
i and P̃ARM

i can be simultaneously computed. An optimization
can be realized (Dupoirieux et al. 2006) by using ERM when the exchange
between cell i and cell j is controlled by the error of cell i meaning that Ti > Tj,
and ARM in the opposite case. But ARM, as the Forward Monte Carlo Method
(FM) which is classically defined as

P̃FM
i =

Nv+Ns∑

j=1

P̃ ea
ji − P e

i (Ti), (2.10)

presents an important drawback compared to ERM. In these two approaches,
paths have to be shot from all the cells of the system, even if the results are
only required in some critical cells. On the contrary, by using ERM, paths are
only shot from cells where the results are wished. Moreover, when radiation is
coupled to turbulent transfer, generally in reacting systems, much more accu-
rate computations are required close to an emission point than far from this
point. The use of ERM is also in this case more pertinent than using ARM.
Consequently, an Optimized Emission-based Reciprocity Method (OERM) is
developed in the next section.

2.4 Optimization principle

2.4.1 Analysis of ERM limitations

P exch
ij (Eq. (2.2)) can be expressed as

P exch
ij = P e

i (Ti)

∫ +∞

0

[
I◦ν (Tj)

I◦ν (Ti)
− 1

]
×
∫

Vi

∫

4π
Aijν fν i(ν)dν fV i dVi fΩ i dΩi,

(2.11)

where the distribution functions of frequency, volume and solid angle are (Tessé
et al. 2002)

fν i(ν) =
κν(Ti)I

◦
ν (Ti)∫ +∞

0 κν(Ti)I◦ν (Ti)dν
; fV i =

1

Vi
; fΩ i =

1

4π
. (2.12)

At the limit of large shot number, statistical estimation P̃ exch
ij is as

P̃ exch
ij =

P e
i (Ti)

Ni

Nij∑

n=1

[
I◦νn(Tj)

I◦νn(Ti)
− 1

]
Aijn νn (2.13)
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Figure 2.2: Mean radiative power and standard deviation over NxNz points ; :
reference solution; −▽−: ERM; � : OERM.

In a Monte Carlo method, the frequency νn associated with a shot n is generally
obtained by using a uniform random number Rn belonging to the range [0, 1];
νn is then determined from the implicit equation

Rn =

∫ νn

0
fν i(ν)dν =

∫ νn
0 κν(Ti)I

◦
ν (Ti)dν∫ +∞

0 κν(Ti)I◦ν (Ti)dν
. (2.14)

The limitations of this approach applied to ERM are illustrated by a simple
example for which an analytical reference solution (Taine et al. 2008) exists:
The computation of the field of radiative power per unit volume within a slab
of a hot grey medium of uniform absorption coefficient κ. The slab is normal
to Oy and bounded by two cold grey opaque isothermal infinite planes, parallel
to xOz and of diffuse emissivity εw and temperature Tw. The symmetrical
medium temperature field is parabolic. The symmetry plane temperature is
Tc.
Although the system is one-dimensional, 3D computations have been carried
out for characterizing ERM, in a cube of edge L, discretized in 20 × 20 × 20
cells. Periodic boundary conditions have been applied to the open boundary
cross sections x and z. The number of shots emitted from the 2, 400 surface
cells and 8, 000 volume cells is uniform (125 from each cell). As the system
is, in fact, one-dimensional, the 400 results related to the radiative power field
and the 800 ones related to the wall radiative flux, obtained in planes parallel
to yOz, have been cumulated.
It appears in Fig.2.2 that, if the radiative power field predicted by ERM is
accurate for the high temperature region, the discrepancies with the reference
field are important for the low temperature region. Moreover, the average wall
flux obtained by ERM is 418.3 kW/m2, with a very high value of the standard
deviation (441kW/m2), while the reference wall flux is 559.6 kW/m2. The ori-
gin of these discrepancies can be explained by considering the spectral emitted
and absorbed power P e

ν and P a
ν for the cells at 700K (in Fig 2.3) and 2, 500K
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Figure 2.3: Spectral emitted and absorbed power for a cell of temperature 700K;
:P e

ν ; :P a
ν .
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Figure 2.4: Spectral emitted and absorbed power for a cell of temperature 2500K;
symbols as figure 2.3.

(in Fig 2.4). The frequency distribution function used in ERM is based on the
spectral emitted power. Consequently, as shown in Fig. 2.3, most of the shots
issued from cells at 700 K are characterized by low frequencies. But the power
that is absorbed by a cold cell at 700 K has mainly be emitted by hot regions,
characterized by much higher frequencies. P a

ν is then strongly underestimated
by ERM in the case of cells at 700 K. This phenomenon obviously does not
appear for hot cells at 2,500 K as the emitted radiation spectrum is very close
to the absorbed one, as shown in Fig. 2.4. Moreover if emission at low frequen-
cies by cells at 700 K is underrepresented in the spectrum at 2,500 K, it weakly
contributes to the absorbed power of a cell at 2,500 K.
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2.4.2 OERM

The key idea of this optimized method is to use a frequency distribution func-
tion independent of the local emission distribution function. This frequency
distribution function has to be suitable for both emission, that characterizes
hot regions, and absorption. A simple choice is the emission distribution func-
tion which is associated with Tmax, the highest temperature within the system,
i.e:

fν(ν, Tmax) =
κν(Tmax)I

◦
ν (Tmax)∫ +∞

0 κν(Tmax)I◦ν (Tmax)dν
. (2.15)

In these conditions, the radiative exchange power between i and j given by Eq.
(2.2) can be expressed as

P exch
ij =P e

i (Tmax)

∫ +∞

0

I◦ν (Ti)

I◦ν (Tmax)

κν(Ti)

κν(Tmax)[
I◦ν (Tj)

I◦ν (Ti)
− 1

]
fν(ν, Tmax)dν fV i dVi fΩ i dΩi,

(2.16)

The optimized Monte Carlo method, based on Ni shots n of frequencies νn from
the cell i, allows now P exch

ij to be estimated as

P̃ exch
ij =

P e
i (Tmax)

Ni

Nij∑

n=1

I◦νn(Ti)

I◦νn(Tmax)

κνn(Ti)

κνn(Tmax)

[
I◦νn(Tj)

I◦νn(Ti)
− 1

]
Aijn νn (2.17)

and finally P̃OERM
i is computed by using Eq. (2.8). It is the Optimized

Emission-based Reciprocity Method (OERM), characterized by the frequency
distribution function defined by Eq. (2.15). Note that, if the frequency dis-
tribution function is associated with the emission distribution function at the
maximum temperature, a corrective factor

I◦νn(Ti)

I◦νn(Tmax)
κνn(Ti)

κνn (Tmax)
is applied to each

shot in order to rigorously obtain the emission distribution function at temper-
ature Ti in a cell i. The results of OERM applied to the example of Sec.2.4.1,
in the same computation conditions, are shown in Fig.2.2. They agree very well
with the reference solution for the whole temperature range, contrary to the
case of ERM results, according with the previous analysis of Sec.2.4.1. Indeed,
the standard deviation is nearly uniform along y, while in the ERM case, it is
much higher in the cold zone near the wall. Note that, in the hot central region
of the slab, the results of ERM and OERM are very close: as the two frequency
distribution functions are practically identical, OERM turns into ERM in this
region.
The averaged wall flux obtained from OERM is 556.4 kW/m2 with a standard
deviation of only 16.4 kW/m2. This result is very close to the reference value
of 559.6 kW/m2, contrary to the result of ERM (418.3 kW/m2).
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Table 2.1: Validation cases

case 1 case 2 case 3 case 4

L(m) 0.2 0.2 4 4

ǫw 1.0 1.0 1.0 1.0

Tc(K) 2500 500 2500 500

Tw(K) 500 2500 500 2500

Table 2.2: Averaged wall flux over two walls, and in parentheses, the corresponding
standard deviation, the unit of wall flux is kW/m2

case 1 case 2 case 3 case 4

reference solution 54.00 -100.5 195.6 -317.2

ERM 52.69( 33.1) -99.7(23.5) 174.9(185) -316.0(36.4)

OERM 53.39(12.2) -101.8(23.4) 193.7(22.0) -315.4(38.7)

FM(Tessé et al. 2002) 53.98(3.02) - 194.7(17.7) -

ERM(Tessé et al. 2002) 52.46(39.93) - 182.5(283.7) -

ARM(Tessé et al. 2002) 53.98(2.98) - 194.8(17.6) -

2.5 Results for real gases and discussion

OERM results are characterized in this section from four typical cases which
involve a CO2-H2O-N2 mixture, at 1 atm, of molar fractions: xCO2

= 0.116,
xH2O = 0.155. The same system and temperature field as in Sec.2.4.1 are
considered. The other conditions are shown in table 1. Gas spectral radiative
properties are treated by a CK model (Goody et al. 1989), by using the param-
eters of Soufiani and Taine (1997). Cases 1 and 2 correspond to a thin medium:
the total emissivities of the whole gas medium, assumed to be isothermal at
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Figure 2.5: Mean radiative power and standard deviation over NxNz points (case 1);
symbols as figure 2.2.
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Figure 2.6: Comparison of the present standard deviation with ref. (Tessé et al.
2002) (case 1); −▽−: ERM; � : OERM; : ARM; − · −: FM.
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Figure 2.7: Mean radiative power value and standard deviation over NxNz points
(case 2) ; symbols as figure 2.2.

2500K and 500K, are equal to 0.03 and 0.15, respectively. Cases 3 and 4 cor-
respond to a globally thick medium. For cases 1 and 3, the gas mixture is hot
and the walls are cold; the contrary occurs for cases 2 and 4. Results obtained
from OERM and ERM are compared. They are also compared with FM and
ARM results of Ref. (Tessé et al. 2002), when available. There is no physical
discrepancies between ERM results of this work and of Ref. (Tessé et al. 2002).
Figures 2.5 and 2.8 deal with radiative power per unit volume for cases 1 and 3
and Table 2 with the wall flux. As expected, the average values of the radiative
power per unit volume and the radiative flux obtained from OERM are always
close to the reference ones. Figure 2.6 shows that the associated standard
deviations obtained by ERM in all cases is much higher than that of OERM in
cold zones, near a wall or at a wall, but similar results are found in the core of
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Figure 2.8: Mean radiative power and standard deviation over NxNz points (case 3);
symbols as figure 2.2.
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Figure 2.9: Comparison of the present standard deviation with ref. (Tessé et al.
2002) (case 1) −▽−: ERM; � : OERM; : ARM; − · −: FM.

the gaseous medium by the two methods. Moreover, if the average flux value
predicted by ERM is acceptable in case 1 (thin medium) when compared to
the reference one, in the thick medium case (case 3) it strongly differs from the
reference solution and has an important standard deviation. In the last case the
Monte Carlo computation is far from the convergence. In these common cases
(cold walls and hot gas), the frequency distribution function of OERM allows
again the absorption by the cold regions to be accurately computed, contrary
to the case of ERM.
Figure 2.9 (for case 3) and Table 2 (for cases 1 and 3) also compare the pre-
viously obtained standard deviations with those issued from ARM and FM, in
Ref.(Tessé et al. 2002). It appears that the standard deviations issued from
ARM and FM are often close to those obtained by OERM, however, in some
cases, they are smaller. For the Forward Method (FM) and the Absorption-
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Figure 2.10: Mean radiative power value and standard deviation over NxNz points
(case 4); symbols as figure 2.2.

based Reciprocity Method (ARM), the explanation is simple: it is always the
frequency distribution function of the cell emitting the shots which is used for
calculating absorption by a cold region. However FM and ARM present many
drawbacks detailed in Ref.(Tessé et al. 2002). Moreover, by using these ap-
proaches, computations have to be completely achieved in all the cells of the
system, and not only in cells where a result is needed.
Figures 2.7 and 2.10 present radiative power per unit volume and Table 2 the
wall flux, for cases 2 and 4. In these much less common cases, conclusions are
similar to the previous ones. OERM leads to much better results than ERM in
the cold region, i.e. in the central region of the gas mixture. The two models
agree in the hot regions, close to the walls. As the walls are hot, there are only
small discrepancies on the wall flux results obtained by OERM and ERM.

2.6 Conclusion

A complete Monte Carlo reciprocity method, based on complete calculation of
exchange powers between cells is not realistic for system involving absorbing-
emitting gases in complex geometrical configurations. An Emission-based Reci-
procity Method (ERM) allows paths of the Monte Carlo method to be shot
only from the points where results are wished, which is a determinant compu-
tational advantage, by comparison with Forward Monte Carlo Methods (FM)
or Absorption-based Reciprocity Methods (ARM). The main drawback of the
classical approaches of ERM is its inaccuracy in the treatment of absorption
by cold regions. This disadvantage has been eliminated by using a frequency
distribution function based on the emission distribution at the maximum tem-
perature encountered in the system, in an Optimized Emission-based Reci-
procity Method (OERM). The real emission distribution function of a cell at
any temperature is then obtained by applying a corrective factor to each shot.
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60 2.6. CONCLUSION

This approach has been validated in benchmark cases, by comparison with an
analytical reference solution and ERM, but also, with FM and ARM when
available.
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Chapter 3

Models and numerical

approaches for the flow

Firstly, the general transport equations of fluid flows and the three nu-
merical approaches for turbulent flows, DNS, LES and RANS, are dis-
cussed. Then, wall functions associated with boundary layers are pre-
sented. Finally, the code YALES2 used for flow field simulations and
its coupling with the Monte-Carlo method are detailed.

3.1 Transport equations of fluid flows

As proposed by Taylor and Kármán in 1937 (Goldstein 1938), turbulence can be
defined as "an irregular motion which in general makes its appearance in fluids,
gaseous or liquid, when they flow past solid surfaces or even when neighboring
streams of the same fluid flow past or over one another". It is characterized
by its irregularity in time and space and continuous spectra of length and time
scales. In most of the practical engineering applications, flows are turbulent
since the Reynolds number is large (Wilcox 1993). This turbulent nature of
flows introduces important difficulties in its understanding and description.
However, even though turbulence is chaotic, it is deterministic and is described
by transport equations. The continuity equation, momentum and energy bal-
ance equations and the ideal gas equation of state for three-dimensional and
turbulent flows with variable medium properties can be written in the following
form:

∂ρ

∂t
+

∂ρui
∂xi

= 0, (3.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+

∂τij
∂xj

+ Si i ∈ [1, 3], (3.2)

∂ρh

∂t
+

∂ρujh

∂xj
=

∂p

∂t
+

∂puj
∂xj

+ τij
∂uj
∂xi

−
∂qcdj
∂xj

+ Q̇, (3.3)



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 62 — #62
✐

✐

✐

✐

✐

✐

62 3.1. TRANSPORT EQUATIONS OF FLUID FLOWS

Computed in LES SGS

Computed in DNS

Modeled in RANS

kc kd k

E(k)

Figure 3.1: Typical energy spectrum of turbulence (kc is the cut-off wave number in
LES; kd = 2π/η, where η is the Kolmogorov length scale).

p

ρ
= rT (3.4)

where ρ, p and ui are the fluid mass density, pressure and velocity components,
respectively. r is the ideal gas constant per mass unit. The enthalpy per mass
unit h is expressed: h = ∆h0 +

∫ T
T0

cp(T
′) dT ′, where cp is the mixture thermal

capacity at constant pressure, T the temperature, T0 a reference temperature
and ∆h0 the corresponding standard formation enthalpy. The viscous shear
stress tensor τij writes

τij = µ

(
∂ui
∂xj

+
∂uj
∂ui

)
− 2

3
µ

(
∂uk
∂xk

δij

)
, (3.5)

where µ is the dynamic viscosity. Only homogeneous gas compositions will be
considered, the total heat flux is then only composed of the conductive heat
flux qcdi that is given by Fourier’s law as

qcdi = −λ
∂T

∂xi
, (3.6)

where λ is the thermal conductivity. Si and Q̇ are the source terms in momen-
tum and energy balance equation, respectively. When radiation is taken into
account, Q̇ is equal to radiative power per unit volume PR which is defined in
section 1.1.3.
When dealing with numerical simulations of turbulent flows, three different ap-
proaches are generally considered: Direct Numerical Simulation, Large Eddy
Simulations and Reynolds Averaged Navier-Stokes Equations. These three ap-
proaches are discussed in the following.
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3.2 Direct Numerical Simulation

In Direct Numerical Simulation (DNS), the Navier-Stokes equations are solved
without any approximate modeling (as shown in Fig. 3.1). All the spatial and
temporal scales of turbulence should be resolved on the computational grid.
Therefore, this leads to severe requirements on space and time resolution.

3.2.1 Resolution Requirement

Regarding space discretization, since the smallest turbulent length scales are
of the same order of magnitude as the Kolmogorov scale which is defined as
η = (ν3/ǫ)1/4 (here ν = µ/ρ is the kinematic viscosity and ǫ is the dissipation
rate of turbulent kinetic energy), the grid spacing of DNS should have the
order of Kolmogorov scale O(η). Nevertheless, in order to ensure the relevant
large scale to be represented properly, the computational domain should be
large enough. In inhomogenous direction, the domain size is determined by the
geometrical constraints while in homogeneous direction, the velocity fluctuation
should be uncorrelated within half of the domain size.
For time advancement, explicit scheme or semi-implicit scheme are often ap-
plied. The time steps for explicit time advancement are generally smaller than
the Kolmogorov time scale tη = (ν/ǫ)1/2 from the linear stability criteria. In
the near wall region, the viscous time scale ν/u2τ (uτ is the friction velocity on
the wall) is also used to limit the time steps (Friedrich et al. 2001). In semi-
implicit time advancement, the time step could be larger. Commonly implicit
time advancement is only used for viscous term while explicit time advancement
is still applied for convection term (semi-implicit time advancement) since the
use of implicit time advancement for convection term is generally not suitable
(Moin and Mahesh 1998).

3.2.2 Application of DNS

Although DNS has a huge requirement on resolution, it remains a valuable
tool in turbulence studies. DNS results are used to analyze the turbulence
physics, to assess turbulent modeling or even to quantify the accuracy of ex-
perimental techniques. DNS has been performed in various frameworks such as
homogeneous turbulence (Vincent and Meneguzzi 1991; Jiménez et al. 1993),
mixing-layers (Vreman et al. 1996; Maghrebi and Zarghami 2010), pipe flow
(Eggels et al. 1994; Feldmann and Wagner 2012), boundary layers (Manhart
and Friedrich 2002; Na and Moin 1998), backward-facing step (Le et al. 1997;
Barri et al. 2010), channel flow (Kim et al. 1987; Antonia and Kim 1994) and
even combustion systems (Wu et al. 2005; Luo et al. 2012). Among them,
turbulent channel flow is extremely useful for the study of wall-bounded flow
since its geometry is simple and it has the fundamental nature to investigate
the turbulence structures in the near wall region.
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64 3.2. DIRECT NUMERICAL SIMULATION

DNS of channel flow

In the pioneering work of Kim and Moin (Kim et al. 1987; Kim and Moin 1987),
they have investigated both the turbulent statistics of velocity field (Kim et al.
1987) and the transport of passive scalars (Kim and Moin 1987) in a fully de-
veloped channel flow with a Reynolds number of 3300. Many other studies have
been carried out for both compressible and incompressible channel flows.

• Compressible channel flow
Coleman et al. (1995) have performed DNS of a supersonic channel flow
with isothermal walls in order to investigate compressibility effects in
boundary layers. They have shown that such compressibility effects are
mainly caused by the mean density variation and the Morkovin’s hypoth-
esis is almost valid while the Van Driest transformation is successful.
Morkovin’s hypothesis is that: for compressible flow at moderate free-
stream Mach numbers (M<=5), dilatation is small and any deviation
from incompressible turbulence can be accounted for by mean variations
of fluid properties. This is the basis for the Van Driest transformation,
a velocity scaling that accounts for the fluid-property variations to col-
lapse compressible flow data onto the "universal" incompressible velocity
profile. The success of van Driest transformation has also been demon-
strated in study of Huang et al. (1995). However, it is presented in Ref.
(Morinishi et al. 2004) that Morkovin’s hypothesis does not explain well
the near-wall asymptotic behavior of wall-normal turbulence intensity.
The effect of compressibility is also investigated in details in various Refs.
(Foysi et al. 2004; Heinz 2006).

• Incompressible channel flow
The low-Reynolds number effect in the near-wall region of incompressible
channel flows has been studied by Antonia and Kim (1994) and Moser
et al. (1999). It has been indicated that a significant low-Reynolds num-
ber effect appears in the near-wall region of flows with small Reynolds
numbers. Kasagi et al. (1992) have carried out a detailed analyzes of
turbulent statistics and budget of temperature variance, its dissipation
rate and turbulent heat flux in a channel flow with iso-flux walls. Great
attention has also been given to the Reynolds number effect (Abe et al.
2001; Abe et al. 2004; Abe et al. 2004; Kozuka et al. 2009) and Pr num-
ber effect (Kawamura et al. 1998; Abe et al. 2004; Kozuka et al. 2009;
Na et al. 1999; Schwertfirm and Manhart 2007) on turbulent statistics.
Moreover, Matsubara et al. have performed DNS for the investigation
of the spanwise heat flux in a channel flow with spanwise temperature
gradient (Matsubara et al. 2012) while some other effect in channel flow,
such as variable gas properties (Nicoud 1998), buoyancy (Garcia-Villalba
and del Alamo 2011), chemistry (Cabrit and Nicoud 2009) haven been
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widely studied. Additionally, modified channel configurations are used to
examine some other factors, such as transverse curvature (Neves et al.
1994), transpiration (Sumitani and Kasagi 1995) and rotation (Kristof-
fersen and Andersson 1993).

As the development of high-performance computation technology, DNS is ap-
plied in more and more complex configurations. However, since the computa-
tional resource requirement increases rapidly with Reynolds number (degrees
of freedom increase as ≈ Re9/4), its application is still limited to flows at low
or medium values. In simulations of flows characterized with a high Reynolds
number, RANS models are widely used and some of them will be presented in
the next section.

3.3 RANS simulation

In RANS (Reynolds Averaged Navier-Stokes equations) approach, only the
mean flow fields are resolved while all the turbulence scales are modeled (as
shown in Fig. 3.1). The balance equations in RANS simulation are obtained
by averaging the instantaneous transfer equations. Time-averaged continuity
equation and momentum equation write

∂ρ

∂t
+

∂(ρũi)

∂xi
= 0, (3.7)

∂(ρũi)

∂t
+

∂(ρũiũj)

∂xj
= −

∂ρũ′′i u
′′
j

∂xj
− ∂p

∂xi
+

∂τ ij
∂xj

+ Si, (3.8)

where over-line · and tilde ·̃ denote Reynolds and Favre averaged quantities
respectively in RANS. The Reynolds averaged molecular viscous stress term
τ ij is generally approximated as

τ ij = µ

(
∂ũi
∂xj

+
∂ũj
∂ui

)
− 2

3
µ

(
∂ũk
∂xk

δij

)
. (3.9)

And −ρũ′′i u
′′
j is the so-called Reynolds stress tensor needed to be modeled. Note

that the Favre average is used here instead of Reynolds average in order to avoid
the mass source term ρ′u′i and other terms due to Reynolds average (Poinsot
and Veynante 2005).
To model the Reynolds stress tensor and close the averaged momentum equa-
tion, there are two different kinds of models: eddy viscosity models and Reynolds
stress models.
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66 3.3. RANS SIMULATION

Turbulent viscosity models

Based on the Boussinesq assumption (Boussinesq 1877; Tennekes and Lumley
1972), the Reynolds stress tensor is linked to the mean velocity gradient via
the turbulent viscosity, given

−ρũ′′i u
′′
j = µt

(
∂ũi
∂xj

+
∂ũj
∂ui

)
− 2µt

3

(
∂ũk
∂xk

δij

)
+

2

3
ρk, (3.10)

where the turbulent dynamic viscosity is expressed as µt = ρνt (here νt is the
turbulent kinematic viscosity) and the turbulent kinetic energy k is defined as

k =
1

2

3∑

k=1

ũ′′ku
′′
k. (3.11)

In order to model the turbulent viscosity, three different approaches are pro-
posed in the literature: algebraic model, one-equation model and two-equation
model.

• Algebraic model
After the introduction of the mixing length concept, an algebraic expres-
sion has been proposed by Prandtl where the turbulent viscosity is related
to the mixing length lm as

νt ≈ l2m|S̃|. (3.12)

Here S̃ is the mean stress tensor, defined as

S̃ =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (3.13)

This model is the so-called mixing-length model. One problem associated
with this model is the unknown mixing length which depends on the flow.
Other algebraic models are the Baldwin-Lomax model (Baldwin and Lo-
max 1978) and the Cebeci-Smith model (Cebeci and Smith 1974), which
separate the flow into inner and outer layers and apply different algebraic
models for each layer. These models are more frequently used in practical
applications

• One-equation model
An alternative to the algebraic model is the one-equation model where the
turbulent viscosity is expressed as a function of turbulent kinetic energy
k and a transport equation is solved for k. In one-equation models, the
turbulent viscosity writes

νt = Cµl
√
k, (3.14)
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where Cµ is the model constant and l is the length scale to compute.
When the length scale is defined as l = k3/2/ǫ, Cµ is generally set to 0.09.
The main disadvantage of this model, as for the algebraic model, is that
it is not possible to find a general expression for the length scale.

• Two-equation model
In addition to the balance equation of k, another transport equation for
the turbulent dissipation rate ǫ can be solved, leading to the k− ǫ model.
The turbulent viscosity is then expressed as

νt = Cµ
k2

ǫ
. (3.15)

Generally, the standard k − ǫ model is only suitable for flows far way
from walls since fully turbulent conditions are assumed. The flow in
the near wall region, characterized by a local low turbulent Reynolds
number, is either modeled by using wall functions or solved by applying
a low-Reynolds number k − ǫ model (Patel et al. 1985) which uses some
dumping functions to make the terms in the balance equations behave in
a right way when approaching the wall.
Besides k−ǫ model, other two-equation models such as k−ω (Wilcox 1993)
model and k − τ model (Speziale et al. 1990) have also been proposed
where the balance equation for specific dissipation ω or turbulent time
scale τ is derived respectively.
Two-equation models work reasonably well for a large number of engi-
neering flows in term of mean quantities. However, due to the isotropic
eddy viscosity assumption, they are unable to account for curvature ef-
fects or irrotational strains.

Reynolds stress models

Reynolds stress models (RSM) avoid the isotropic eddy-viscosity hypothesis and
close the Reynolds-averaged Navier-Stokes equations by solving transport equa-
tions for the transports of the Reynolds stress tensor. These models are more
realistic than the eddy viscosity models. However, they introduce six additional
equations describing Reynolds stresses which makes it hard to implement and to
stabilize numerically. Generally, algebraic Reynolds stress models (Wallin and
Johansson 2000) solve algebraic equations for the Reynolds stresses, whereas
differential Reynolds stress models (Chen and Jaw 1998; Cécora et al. 2012)
solve differential transport equations individually for each Reynolds stress com-
ponent.
Since RSM models the Reynolds stress tensor anisotropy in a more rigorous
manner than the eddy-viscosity models, it has greater potential to give accurate
predictions for complex flows. However, the fidelity of RSM predictions is still
limited by the closure assumptions employed to model various terms in the
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exact transport equations for the Reynolds stresses. More details about the
RSM are available in Ref. (Launder 1996).
An intermediate approach between DNS and RANS is the Large Eddy Simu-
lation (LES) where only part of the turbulent scales are modeled. LES will be
presented in the following section.

3.4 Large Eddy Simulation

In large eddy simulation, only the large dynamically important scales are re-
solved while the contribution of the small, nearly isotropic turbulent scales are
modeled by using Sub-Grid Scale (SGS) models (as shown in Fig. 3.1).
Applying a filter operator, the instantaneous mass, momentum and energy
balance equations yield

∂ρ

∂t
+

∂(ρũi)

∂xi
= 0, (3.16)

∂(ρũi)

∂t
+

∂(ρũiũj)

∂xj
= −

∂τSGS
ij

∂xj
− ∂p

∂xi
+

∂τ ij
∂xj

+ Si, (3.17)

∂(ρh̃)
∂t

+
∂(ρũj h̃)
∂xj

= −
∂qSGS

j

∂xj
+

∂p

∂t
+

∂puj
∂xj

+ τij
∂uj
∂xi

−
∂qcdj
∂xj

+ Q̇, (3.18)

where over-line · and tilde ·̃ denote, in the case of LES, filtered and mass-
weighted filtered quantities, respectively.
Based on the SGS eddy-viscosity concept, the unresolved SGS stress tensor
τSGS
ij = −ρ(ũiuj−ũiũj) and the turbulent SGS heat flux qSGS

i = −ρ(h̃uj−h̃ũj)
are modeled as

τSGS
ij − 1

3
δijτ

SGS
kk = −2ρνSGS(Sij −

1

3
δijSkk), (3.19)

qSGS
j = −λSGS ∂T

∂xj
, (3.20)

where Sij is the filtered shear stress tensor and the SGS conductivity is given
by

λSGS =
ρ cpν

SGS

PrSGS . (3.21)

There exist various turbulent SGS models in the literature, for instance, the
Smagorinsky model (Smagorinsky 1963), the dynamic Smagorinsky model (Ger-
mano 1992; Lilly 1992; Meneveau et al. 1996), similarity model (Bardina et al.
1980), mixed model (Vreman 2004), WALE model (Nicoud and Ducros 1999)
and σ model (Nicoud et al. 2011). Among them, the σ model, based on the
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singular value decomposition of the velocity gradient tensor, ensures the cube
behavior in the near wall region and predict the classic periodic channel flow
(which is studied in this thesis) with a slightly higher accuracy than the dynamic
Smagorinsky model (Nicoud et al. 2011). Moreover, it is easy to implement
and has a low computational cost. Therefore, the σ model is used for modeling
νSGS in this thesis and the SGS Prandtl number PrSGS is set to 0.9. For a
comprehensive information on SGS models, the readers are referred to reviews
or books such as Refs. (Sagaut 2006; Pope 2000; Meneveau and Katz 2000).

3.4.1 Limitation of wall-resolved LES

In order to resolve properly the large vortical motions, the filter width should
be smaller than the inertial length scale by a minimal factor, for instance, in
a channel flow, the ratio between the filter width ∆ and the local integral
dissipation length scale L = k3/2/ǫ (here k is the turbulent kinetic energy and
ǫ is the turbulent dissipation rate) is ∆/L ≈ 1/10 (Baggett et al. 1997). In the
near wall region of a wall-bounded flow, since the integral length scale becomes
of the same order of magnitude as viscous scales, the grid resolution is high
there and the total computational cost scales as Re2.4 (Piomelli 2008). Hence,
if the near wall region is well resolved in LES (named wall-resolved LES), most
of the resources are then used by the inner layer which is only 10% of the flow.
For a Reynolds number ≈ 104, about 50% of the resources are used for the inner
layer (Piomelli 2008). Obviously, the high cost of resolving the inner layer makes
the wall-resolved LES inappropriate for industrial applications characterized by
high Reynolds number. In order to overcome this obstacle of LES, there are
two types of approaches, namely wall-modeled LES and hybrid LES.

3.4.2 Wall-modeled LES

In wall-modeled LES, instead of resolving the momentum transport in the inner
layer, an approximated boundary conditions are applied, where the wall shear
stress is related to the outer layer velocity. An equilibrium wall-stress model or
a two-layers model could be used to obtain approximated boundary conditions.

Equilibrium model

In the equilibrium model, it is assumed that in the inner layer, a constant shear
stress layer exists which implies that the effect of pressure and acceleration term
are omitted. Meanwhile, if the first grid point y0 is located out of the viscous
sub-layer, the molecular viscous term could be neglected, and hence the log-law
yields

u+|| =
u||

uτ
=

1

κ
log

youτ
ν

+B, (3.22)

where u|| is the mean longitudinal velocity at y0 and uτ is the friction stress. κ
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is the von Kármán’s constant while B is the loglaw intercept. ν is the kinematic
viscosity.
The equilibrium model was firstly proposed by Deardorff (1970) in a turbulent
channel flow with infinite Reynolds number. However, since the grid in the outer
LES region was too coarse, the prediction in this case was poor when compared
to experimental results. Later in 1975, Schumann (1975) successfully applied
it in a calculation of turbulent channel flow and annuli flow where the shear
stress τ at walls are computed as

τxy,w(x, z) =
〈τw〉

〈u(x, yo, z)〉
u(x, yo, z),

τyz,w(x, z) = ν
w(x, yo, z)

y0

(3.23)

where x, y and z are the streamwise, wall normal and spanwise direction re-
spectively. 〈·〉 denotes averaging over an xz plane. 〈τw〉 is balanced by the
imposed pressure gradient or is calculated iteratively requiring that the mean
velocity 〈u(x, yo, z)〉 satisfies the logarithmic law (Eq. (3.22)) at y0. The results
of Schumann’s studies were in good agreement with reference data. However,
since the original equilibrium models are based on the constant shear stress
layer approximation, its application is limited to simple flows. In order to ex-
tend its use to more complex configurations, some modifications are carried out
by considering the effect of the inclination of the elongated structure in near
wall region (Piomelli et al. 1989), the pressure gradient (Wang 1999; Duprat
et al. 2011), buoyancy (Moeng 1984) or chemistry (Cabrit and Nicoud 2009).

Two-Layers Model

An alternative to the equilibrium model is the two-layer model. This model has
firstly been proposed by Balaras et al. (1996) by resolving the two-dimensional
turbulent boundary layer equations on a fine embedded grid, given

∂ui

∂t
= −∂uiuj

∂xj
− 1

ρ

∂p

∂xi
+

∂

∂xj

[
(ν + νt)

∂ui

∂xj

]
for i = 1, 3

u2 = −
∫ y

0

(
∂u1

∂x1
+

∂u3

∂x3

)
dy,

(3.24)

where ∂p
∂xi

is the pressure gradient at the first point of the outer layer. i = 1, 2
and 3 represents the streamwise, wall-normal and spanwise direction respec-
tively. A simple mixing-length model was used for the turbulent viscosity νt

νt = (κy)2D(y)|S|, (3.25)

where |S| is the magnitude of strain rate and the expression of D(y) used in
Ref. (Balaras et al. 1996) is

D(y) = 1− exp[−(y+/A+)3] (3.26)
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with A+ = 25. Results of this study show that LES with this two-layers
model gave a good prediction of the flow in a plane channel, square duct or a
rotating channel flow. This model was also extensively applied and assessed in
different configurations (Cabot 1995; Cabot and Moin 2000; Wang and Moin
2002; Kemenov and Menon 2006).
However, it is outlined in Refs. (Cabot and Moin 2000; Nicoud et al. 2001) that
since the filter width of the first few points near the wall is larger than the local
integral length scale, sub-grid errors can be dominant in the near wall region.
Hence the information at the first off-wall point, provided from LES to the wall
model, always suffers from sub-grid errors and also numerical errors. In order
to increase the accuracy of the information fed from LES, Kawai and Larsson
(2012) proposed an effective strategy where, instead of the first off-wall point,
a point located further away from the wall is used as the outer boundary of the
wall model. It has been demonstrated that the prediction is improved when
using this approach. Another way to increase the accuracy of the wall-modeled
LES results is stochastic forcing which will be detailed later.
Most of the models described so far are dedicated to the velocity field. In
order to extend them to the temperature field, a thermal wall model has been
proposed by Benarafa et al. (2007), given the equation for energy transport as

∂T

∂t
= −∂T uj

∂xj
+

∂

∂xj
[(α+ αt)

∂T

∂xj
] + Q̇ (3.27)

where T is the mean temperature and α is the molecular diffusivity. The turbu-
lent diffusivity αt is calculated from the turbulent viscosity νt and a prescribed
turbulent Prandtl number. Banarafa et al. have applied this thermal wall model
in a heated turbulent channel flow where the computed wall normal heat flux
has shown to be accurate. This thermal wall model has also been successfully
employed and modified by applying a different formula for turbulent Prandtl
number in Ref. (Rani et al. 2009).

3.4.3 Hybrid LES

Another popular approach is the hybrid LES, where the simulation model is
switched from RANS in the inner layer to LES in the outer layer, by a modifi-
cation of a length scale (Spalart et al. 1997; Nikitin et al. 2000) or the use of
a blending function in the turbulent transport model (Hamba 2003; Shur et al.
2008).
In this approach, near the interface of RANS and LES, the resolved length scale
is close to those characterized in RANS region which is commonly larger than
the length scale of the outer LES region. Hence, the generation of resolved small
eddy scales are delayed and this results in the ’logarithmic law mismatch’ (the
logarithmic sub-layer is displace upwards) (Baggett 1998). In order to remove
the logarithmic law mismatch, Piomelli et al. (2003) introduced stochastic
forcing in the interface region of RANS and LES which could accelerate the
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generation of resolved eddy scales. This artificial forcing has improved the
hybrid LES results and the logarithmic law mismatch has been reduced. It has
also been found by Radhakrishnan et al. (2006) that the hybrid LES performs
well without any forcing mechanism in flows where the mean flow has some
destabilizing perturbation. A more detailed description of the wall models and
hybrid LES could be found in the reviews (Piomelli and Balaras 2002; Piomelli
2008; Cabot and Moin 2000).
However, for numerical simulation of turbulent flows, a main issue always exists
in the treatment of the near wall region. In the following section, boundary
layer theory is detailed.

3.5 Boundary layer theory

When a fluid flows past a surface, or an object moves through a fluid, there is
a thin layer in the immediate vicinity of the surrounding surfaces where the ef-
fects of viscosity are significant. This thin layer is the so-called boundary layer
where the velocity rapidly increases from zero on the surface to the free stream
value away from the surface. If the Reynolds number is low, the boundary
layer has a laminar structure whereas for a high Reynolds number as encoun-
tered in most applications, the boundary layer becomes turbulent. A detailed
description of the flow within the boundary layer is very important for many
problems, including the skin friction drag on an object, the heat and mass
transfer that occurs in combustors. In this section, non-dimensional mean flow
quantities of boundary layer are presented. It is worth noting that following
the Morkovin’s hypothesis, development of boundary layer theory is commonly
done by Reynolds averaged variables instead of Favre average. Effects of density
fluctuation are therefore usually neglected.

3.5.1 Mean flows in wall units

As demonstrated in appendix A, in thin equilibrium turbulent boundary layer,
such as the inner layer in a channel flow, the momentum and energy balance
equation can be simplified as

dτtot
dy

=
d

dy

(
µ
∂u

∂y
− ρũ′′v′′

)
= 0, (3.28)

dqtot
dy

= − d

dy

(
λ
∂T

∂y
− ρh̃′′v′′

)
= 0, (3.29)

where τtot and qtot are the total shear stress and heat flux respectively while

ρũ′′v′′ and ρh̃′′v′′ are the turbulent shear stress and turbulent heat flux respec-
tively. Based on some assumptions, the dynamic and thermal boundary layer
can be represented by wall functions as described in the following part.
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Momentum boundary layer in wall units

An integration of the momentum equation (Eq. (3.28)) from the wall gives rise
to

τw = µ
du
dy

− ρũ′′v′′ (3.30)

where τw = µw
du
dy

∣∣
y=0

is the wall shear stress. The turbulent shear stress

−ρũ′′v′′ can be approximated with the Boussinesq assumption (Boussinesq
1877; Schmitt et al. 2007), given

−ρũ′′v′′ ≈ µt
du
dy

, (3.31)

where the turbulent dynamic viscosity µt can be modeled by using the Prandtl
mixing-length approximation

µt = ρl2m

(
du
dy

)
. (3.32)

The mixing length lm in the near wall region linearly increases with the wall
distance y as lm = κy where κ is the Von Kármán constant and usually takes
the value 0.41 (Pope 2000). Based on this, we obtain the expression for µt as

µt = ρ(κy)2
(

du
dy

)
. (3.33)

And Eq. (D.6) changes to

τw = µ
du
dy

+ µt
du
dy

= µ
du
dy

+ ρ(κy)2
(

du
dy

)2

. (3.34)

Using the gas properties on the wall, a non-dimensional wall normal distance
y+ and non-dimensional velocity u+ can be defined as

uτ =

√
τw
ρw

, y+ =
ρwuwy

µw
, u+ =

u

uτ
, (3.35)

and hence equation (3.34) is expressed as

µ

µw

du+

dy+
+

ρ

ρw
(κy+)2

(
du+

dy+

)2

= 1. (3.36)

By analyzing the importance of the two terms on the left side of Eq. (3.36), the
turbulent boundary layer can be divided into two main parts: a viscous sub-
layer and a logarithmic sub-layer (Schlichting and Gersten 2000; Pope 2000)
(as shown in Fig. 3.2).
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• Viscous sub-layer
In the immediate vicinity of the wall where 0 < y+ < 5, the effect of
the turbulent shear stress is negligible compared to that of the molecular
shear stress, and we have

µ

µw

du+

dy+
= 1. (3.37)

After an integration, it yields

u+ =

∫ y+

0

µw

µ
dy′+. (3.38)

If the variation of µ is small, then a linear wall function is obtained

u+ = y+, (3.39)

which indicates that the u+ increases linearly with non-dimensional wall-
normal distance y+ in the very near wall region.

• Logarithmic sub-layer
On the other hand, in the region where y+ > 30 , the effect of the
turbulent shear stress is predominant while the molecular shear stress is
negligible. Then Eq. (3.36) writes

ρ

ρw
(κy+)2

(
du+

dy+

)2

= 1, (3.40)

and it can be recast as
(

ρ

ρw

) 1

2

du+ =
dy+

κy+
. (3.41)

By using the Van Driest transformation (Van Driest 2003; Huang and
Coleman 1994), this equation is integrated into

u+V D =

∫ u+

0

(
ρ

ρw

) 1

2

du′
+
=

1

κ
In(y+) + C, (3.42)

where C is the logarithmic law intercept. Similarly, by omitting the
variation of gas properties, the classic log law is obtained:

u+ =
1

κ
ln(y+) + C. (3.43)

The Von Kármán constant κ and constant C are generally set to 0.41 and
5.0 respectively (Pope 2000). However, for flows with a small Reynolds
number, κ and C are commonly evaluated as 0.4 and 5.5 respectively
(Kim et al. 1987). The transition layer between the Viscous sub-layer
and the logarithmic sub-layer is the buffer layer. It is the location of the
main production of turbulence.
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Figure 3.2: Velocity profile of turbulent boundary layer in wall units.

Thermal boundary layer in wall units

Similarly, for the thermal boundary layer, an integration of the energy balance
equation (Eq. (3.29)) leads to

qw = −λ
∂T

∂y
+ ρh̃′′v′′. (3.44)

Based on the classic Reynolds analogy (Reynolds 1961) between momentum

and heat flux, the turbulent fluxes of enthalpy ρh̃′′v′′ can be modeled as

ρh̃′′v′′ ≈ ρ cp ṽ′′T ′′ = −λt
dT
dy

(3.45)

where λt is the turbulent heat diffusion coefficient, defined as

λt =
µtcp
Prt

=
ρ cp(κy)

2

Prt

du
dy

. (3.46)

The turbulent Prandtl number Prt here is commonly set to a constant as 0.85-
0.9 in boundary layers (Wilcox 1993; Kader 1981). Introducing µt, Eq. (3.44)
can be rewritten as

qw = −λ
dT

dy
− λt

dT
dy

= −λ
dT

dy
− ρ cp(κy)

2

Prt

du
dy

dT
dy

. (3.47)

The non-dimensional temperature T+, based on the wall gas properties, as

T+ =
|T − Tw|

Tτ
, Tτ =

|qw|
cpwρwuτ

, (3.48)

then Eq. (3.47) can be non-dimensioned as

λ

cpwρw νw

dT+

dy+
+

1

Prt

ρcp
ρwcpw

(κy+)2
du+

dy+
dT+

dy+
= 1. (3.49)
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Similarly, for the viscous sub-layer and logarithmic sub-layer, Eq. (3.49) can
be simplified and integrated as:

• Viscous sub-layer

T+ = −
∫ y+

0

cpwρw νw

λ
dy′+. (3.50)

If the gas properties variation is omitted, the linear wall function is ob-
tained as

T+ = Pr y+. (3.51)

• logarithmic sub-layer

∫ T+

0

(
ρ

ρw

) 1

2 cp
cpw

dT ′+ = −Prt
κ

In(y+) + C ′. (3.52)

Omitting the change in gas properties, it is obtained that

T+ = −Prt
κ

In(y+) + C ′. (3.53)

Note that the constant C’ depends on the Prandtl number Pr. Based on
experimental results, Kader (1981) proposed a logarithmic law for thermal
boundary layer as

T+ = α In(y+) + β(Pr), (3.54)

where α = 2.12, that corresponds to Prt ≅ 0.85, and the constant β is
given as

β(Pr) = (3.85Pr1/3 − 1.3)2 + 2.12In Pr. (3.55)

3.5.2 Mean flows in semi-local coordinate

When the gas properties significantly vary in the flow, Huang et al. (1995)
recommended to use the semi-local coordinates where the local gas properties
are considered. This will be described in the following part.

Momentum boundary layer

For a momentum boundary layer, if the non-dimensional velocity and wall
distance are defined based on the gas properties as

u∗τ =

√
τw
ρ(y)

, y∗ =
ρ(y)u∗τy

µ(y)
, u∗ =

u

u∗τ
, (3.56)
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Equation (3.34) can be transformed into

du∗

dy∗
+ (κy∗)2

(
du∗

dy∗

)2

= 1. (3.57)

Then for the viscous and logarithmic sub-layer, the wall functions obtained are:

• Viscous sub-layer

u∗ = y∗; (3.58)

• logarithmic sub-layer

u∗ =
1

κ
In(y∗) + C. (3.59)

Note that now the wall functions are "universal" for all thin equilibrium tur-
bulent boundary inner layers.

3.5.2.1 Thermal boundary layer

Similarly, for thermal boundary layer, if define

T ∗
τ =

|qw|
cp(y) ρ(y)u∗τ

, T ∗ =
|T − Tw|

T ∗
τ

, (3.60)

then equation (3.47) can be rewritten as

1

Pr
dT ∗

dy∗
+

1

Prt
(κy∗)2

(
du∗

dy∗

)(
dT ∗

dy∗

)
= 1. (3.61)

And the "universal" wall functions for the viscous and logarithmic sub-layer
are

• Viscous sub-layer

T ∗ ≈ Pr y∗, (3.62)

• logarithmic sub-layer

T ∗ ≈ Prt
κ

In(y∗) + C. (3.63)

It has been demonstrated by Dailey et al. (2003) that using semi-local coor-
dinates, the velocity profiles nearly collapse for different cases of channel flow
with variable density. The semi-local coordinates have also been supported by
Coleman et al. (1995) in their study of compressible channel flows.
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3.6 The code YALES2

The unstructured parallel finite-volume code YALES has been developed by Dr.
Vincent Moureau (CORIA, Rouen) since 2007. This is a versatile numerical
solver for a broad range of flow problems (combustion, magnetohydrodynamics,
multi-phase flows, etc.). It is capable to efficiently handle unstructured meshes
of several billions of elements (Moureau et al. 2011a; Moureau et al. 2010),
thus enabling the DNS or highly resolved LES of laboratory and semi-industrial
configurations. YALES2 is based on the Low Mach number approximation
and the corresponding low-Mach Navier-Stokes equations are resolved with a
projection method (Chorin 1968) for constant or variable density flows.

3.6.1 Low-Mach Navier-Stokes equations

As demonstrated in Appendix B, based on the Low Mach number approxima-
tion implied in YALES2, the original balance equations of mass (Eq. (3.1)),
momentum (Eq. (3.2)) and energy (Eq. (3.3)) and the ideal gas equation of
state (Eq. (3.4)) can be written in the following form

∂ρ

∂t
+

∂ρui
∂xi

= 0 (3.64)

∂ρui
∂t

+
∂ρuiuj
∂xj

= −∂p2
∂xi

+
∂τij
∂xj

+ Si i ∈ [1, 3] (3.65)

∂ρh

∂t
+

∂ρujh

∂xj
=

∂p0
∂t

− ∂qj
∂xj

+ Q̇ (3.66)

p0
ρ

= rT (3.67)

where the pressure p is decomposed into two parts: a constant thermodynamic
pressure p0 and a pressure fluctuation p2. Based on this decomposition, the
density is now directly calculated from p0 in Eq. (3.67) rather than coupled
with the p2.

3.6.2 Interest of Low Mach number approximation

In order to ensure the numerical stability when solving the governing equations,
the time step needs to be limited by two restrictions namely, the Courant-
Fredrichs-Lewy (CFL) condition and the restriction on the basis of grid-Fourier
(Fo) numbers (for momentum, energy and scalars). Regarding the CFL condi-
tion, two number CFLa and CFLc, associated with the propagation of acoustic
wave and convection respectively, are defined as

CFLa =
(|v|+ c)∆t

∆x
, (3.68)
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CFLc =
(|v|)∆t

∆x
, (3.69)

where v is the velocity along the direction considered, c is the sound speed, and
∆x is the space step. When the diffusion terms in the governing equations are
more important, the condition necessary to ensure stability is dictated by the
restriction on the Fo numbers, for instance, the Fourier number for the energy
equation is defined as

Fo =
α∆t

∆x2
, (3.70)

where α is the thermal diffusivity. These characteristic numbers are used to
limit the time step, where the smallest time step is chosen from these numbers.
In low Mach number, the limit of time step from the CFLa is the most serious
(Julien 2002), since

CFLa
∆x

(|v|+ c)
< Fo

∆x2

α
< CFLc

∆x

(|v|) . (3.71)

where the latter part of the above expression is generally valid for wall-resolved
flows.
However, if the Low Mach number approximation is used, the propagation of
acoustic wave disappears and hence the time step is released from the restriction
of CFLa.

3.6.3 Numerics

For space discretization, a vertex-centered method is adopted in YALES2,
where a dual set of control volumes is created, which are centered around the
vertices of elements. For a detailed description of the spatial discretization
in 3D, readers are referred to the Ph.D thesis of S. Vantieghem (Vantieghem
2011).
The spatial discretization available in YALES2 includes second order and fourth
order centered finite-volume schemes. A detailed description of the higher order
spatial discretization in available in Ref. (Kraushaar 2012). To advance the
solution in time, YALES2 disposes of explicit as well as implicit time integration
schemes. The numerical schemes for time advancement in YALES2 are: 2nd-
order or 4th-order Runge-Kutta scheme, Crank-Nicholson scheme and TFV4A
scheme which is a blending of RK4 and TTG4A (Moureau 2011). In this
thesis, the 4th-order centered schemes and 4th-order TFV4A explicit scheme
are retained for spacial discretization and time advancement respectively.
YALES2 employs several iterative solvers to solve the Poisson equation. They
are: Preconditioned Conjugated Gradient (PCG), Bi-Conjugate Gradient sta-
bilized (BICGSTAB), Bi-Conjugate Gradient stabilized(2) (BICGSTAB2), De-
flated PCG (DPCG) and Deflated BiCGstab(2) (DBICGSTAB2). Among
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them, DPCG is used in this work with a convergence criterion of 1E−8. The
mass conservation equation is implicitly fulfilled by solving the Poisson equa-
tion.

3.7 Coupling between YALES2 and the Monte-Carlo
method

In order to investigate the interaction of radiation and turbulent flows, it is
necessary to fully couple the flow field code YALES2 and the Monte-Carlo
method described in section 1.2.2. Several variables such as radiative power
and temperature are exchanged on the interface of the two solvers while the
synchronization in CPU time is also very important for the computational ef-
ficiency.

• Data exchange
The procedure used for coupling YALES2 and the Monte-Carlo method
is shown in Fig. 3.3. Firstly, to calculate the gas radiative properties
and then the radiative field, the instantaneous temperature T and gas
composition profile (mole fraction of species Xi) calculated in YALES2
are required in the Monte-Carlo method. However, in this thesis, since
all the cases have a constant gas composition, only temperature profile
is sent from YALES2 to the Monte-Carlo code. On the other hand, the
radiative power term calculated in the Monte-Carlo code is required by
YALES2. It acts as a source term in the balance equation of energy and
hence modify the temperature field.
It is worth noting that the grid used in Monte-Carlo is not necessarily the
same as the one for flow field. Hence, before sending the radiative power
term or after receiving the temperature field, an interpolation is carried
out in order to obtain the needed variable field over the grid.

• Synchronization in CPU time
In order to use the processors efficiently, one should pay attention to the
synchronization in CPU time.
As discussed in Refs. (Amaya 2010; dos Santos et al. 2008), there is
no need to couple the flow and radiation calculations every iteration.
This is important, especially when Monte-Carlo method is applied, since
the computation of radiation is much more expensive than the flow field
calculation. In fact, as shown in Fig. 3.4, for a periodic channel flow
which has a bulk Reynolds number of 12000 and two isothermal walls
with wall temperature Tw1 = 950K and Tw2 = 1150K respectively (case
C4 used in chapter 4), the change of instantaneous temperature profile
during five iterations are very small. Therefore, it is reasonable to use
the same radiative power field for five consecutive iterations of flow field.
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Flow Radiation
T,Xi

PR

Figure 3.3: Schema of coupling.

This indicates that for a coupled simulation, the radiation calculation is
only performed every Ni (Ni = 5 for the case aforementioned) iterations
of the flow field. This makes the computation much less expensive while
ensuring the computation accuracy.
Moreover, to avoid waiting of processors, one should make sure that:
tr = Ni · tf , where tr and tf are the time needed for one iteration of
radiation and of flow field respectively. They depend on the number of
processors used for each solver, i.e.

tf = γf (Pf )
t1f
Pf

, (3.72)

tr = γr(Pr)
t1r
Pr

, (3.73)

where the subscript f and r denote the flow and radiation calculation
respectively while γ(P ) is the speeding-up function. t1 is the time required
for one iteration on one processor and P is the number of processors. If
the total number of processors used for the two solvers is Ptot, a balanced
distribution of the processors for flow field calculation is then

Pf =
Ptot γf t

1
f

γr t1r/Ni + γf t
1
f

. (3.74)

3.8 Conclusion

To simulate turbulent flows, there exist three different approaches: DNS, RANS
and LES. DNS is the most accurate approach but its application is limited
to flows at low or moderate Reynolds number due to its high resolution re-
quirement. RANS models are commonly employed in engineering applications
thanks to its low computational cost. However, the accuracy of its results
are questionable in complex configurations. A technique intermediate between
DNS and RANS is LES which models only the small turbulent scales. In LES
of wall-bounded flows, the near wall region is generally modeled in order to
alleviate the high cost to well resolve the boundary layer.
The boundary layer can be divided into two main layers and wall functions are
retained for each layer. For flows with gas properties variation, the semi-local
coordinate enables the obtained wall functions become "universal" by applying
the local gas properties.
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Figure 3.4: Instantaneous temperature profile along a line at different number of
iterations (position of the line x = 0.0, z = 0.0).

A low-Mach finite-volume solver YALES2 is used for the flow field simulation
of this work. And it is fully coupled with Monte-Carlo method to investigate
radiation-flow field interaction. Special attention has been given to the data
exchange of these two solvers and the synchronization in CPU time.



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 83 — #83
✐

✐

✐

✐

✐

✐

Chapter 4

DNS of turbulent channel flow:

effect of radiation on the mean

flow fields

In this chapter, Direct numerical simulation of a CO2-H2O-N2 mixture
turbulent flow in a two-dimensional channel is performed. The fluid
solver is coupled to a reciprocity Monte Carlo method based solver when
radiation is taken into account. Effect of gas-gas radiation and gas-wall
radiation on the mean temperature and flux field have been studied
separately. The dependence of radiation effects on the set of conditions
(temperature level, wall emissivity, pressure, Reynolds number) is also
analyzed. A publication about this work is inserted:
Y.F. Zhang, R. Vicquelin, O. Gicquel and J. Taine (2012).
Physical study of radiation effects on the boundary layer
structure in a turbulent channel flow. International Journal
of Heat and Mass Transfer 61 (2013) 654-666.

Additional information are available in annexes:
• The adequacy of computational domain of channel flow is

validated in Appendix C.

• An original approach to specify the source term Si in the mo-
mentum equation in order to control the channel flow Reynolds
number is detailed in Appendix D.



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 84 — #84
✐

✐

✐

✐

✐

✐

84 4.1. ABSTRACT

Physical study of radiation effects on the

boundary layer structure in a turbulent

channel flow
Y. F. Zhang, R. Vicquelin, O. Gicquel and J. Taine.

International Journal of Heat and Mass Transfer 61 (2013)
654-666

4.1 Abstract

A complete numerical coupling between radiation and turbulent convection in a
channel gas flow has been performed for different temperature, optical thickness
(pressure) and wall emissivity conditions. In this model, radiation is treated
from the CK approach and a Monte Carlo transfer method; The flow by a
Direct Numerical Simulation. Both the effects of turbulence on radiation fields
and of radiation on turbulent fields are accounted for.
Gas-gas and gas-wall radiation interactions generate antagonist effects on the
temperature and flux fields. The first one tends to increase wall conductive flux
while the second one to decrease it. Consequently, the structure of the tempera-
ture field and the wall conductive flux often strongly differ from results without
radiation. Classical wall log-laws for temperature are then strongly modified
by the global radiation effects. Many conditions encountered in applications
are discussed in the paper. The observed modifications depend on all the set of
conditions (temperature level, wall emissivity, pressure, Reynolds number), i.e.
on the relative magnitudes of radiation gas-gas and gas-wall phenomena and of
global radiation flux and conductive flux without radiation.
Keyword: DNS, turbulence, gas radiation, Monte-Carlo, channel flow, tem-
perature, wall-law

4.2 Introduction

In many industrial systems such as those dealing with combustion, conductive
heat fluxes and radiative energy fluxes at walls condition the design stage and
the material choice. Predicting these different fluxes with numerical simula-
tions is therefore a great challenge that has been investigated in many works.
From the fundamental understanding of boundary layers and radiation energy
transfer, models have been proposed to calculate this quantities. Although im-
proving the prediction of heat fluxes remains an active area in each field, the
determination of radiative fluxes and conductive fluxes at walls is always done
separately without considering any coupling between these two modes of energy
transfer. In this paper, the coupling of radiation and turbulent forced convec-
tion is studied to investigate whether the wall heat flux and the boundary layer
structure can be modified by radiative energy transfer.
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The importance of Turbulence-Radiation Interaction (TRI) has been high-
lighted in several works. Experimental studies (Gore et al. 1987; Ji et al.
2000; Zheng and Gore 2005), theoretical analysis (Burns 1999; Baum and Mell
2000; Soufiani et al. 1990) and numerical simulations (Wu et al. 2005; Desh-
mukh et al. 2007; Deshmukh et al. 2008; dos Santos et al. 2008) have been
carried out to investigate the effect of TRI in different systems and a compre-
hensive review is available in (Coelho 2007; Coelho 2012). TRI is a consequence
of the highly non-linear coupling between the radiative intensity and the tur-
bulent temperature and gas species composition fields. It consists of two parts,
namely the influence of turbulence on radiation and vice-versa. Regarding the
former, turbulence leads to an increase in the medium transmissivity (Jeng and
Faeth 1984; Gore et al. 1987), the radiative power (Coelho 2004; Tessé et al.
2004) and radiative heat loss (Li and Modest 2003; Tessé et al. 2004). In order
to isolate and quantify individual contributions to TRI in a statistically one-
dimensional premixed combustion system, Wu et al. (2005) have performed a
direct numerical simulation (DNS) coupled with a Monte-Carlo method. The
results reveal that the temperature self-correlation contribution is only domi-
nant in the case with smallest optical thickness in their study. Among the three
correlation terms of the absorption coefficient, the ones with the Planck function
and with the incident radiative intensity are not negligible, even in the most
optically thin case, while for a case with intermediate value of optical thickness,
the three correlations were all significant. Deshmukh et al. (Deshmukh et al.
2007; Deshmukh et al. 2008) have also studied different contributions to TRI
with DNS in a statistically homogeneous isotropic non-premixed combustion
system and a one-dimensional turbulent non-premixed flame. Only the latter
one was fully coupled with radiation.
Regarding the effect of radiation on the flow, radiation interacts and modifies
the temperature field in non-reactive flows (Gupta et al. 2009; Soufiani et al.
1990; Ghosh et al. 2011) and in reactive flows (dos Santos et al. 2008; Damien
et al. 2012). In combustion applications, the change of maximum temperature
has a significant effect on NOx emission (Barlow et al. 2001). Influence of ra-
diation is not restricted to the average temperature field: The intensity of the
temperature fluctuations changes when radiation is taken into account(Damien
et al. 2012; Soufiani 1991); dos Santos et al. (2008) have shown an impact of
radiation on turbulent flame dynamics; Ghosh et al. (2011) have studied the
effects of radiation in a turbulent compressible channel flow and have shown
that radiation modified the Reynolds stresses in the near wall layer even for
an optically thin medium. Using a low-Reynolds RANS model, Soufiani et al.
(1990) have also carried out a channel flow simulation where the wall conduc-
tive heat flux has been found to be significantly affected by radiation while,
in a similar case with DNS here, Amaya et al. (2010) have found the effect
of radiation in the boundary layer to be weak. Using a grey gas model and
varying the medium optical thickness, Gupta et al. (2009) have shown that the
temperature profile in a turbulent channel flow can be modified by radiation.
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Previous studies on the impact of radiation in a channel flow configuration
(Amaya et al. 2010; Soufiani and Taine 1987; Soufiani et al. 1990; Gupta et al.
2009; Ghosh et al. 2011) do not expose a general trend or understanding of
the influence of radiation in turbulent boundary layers. In LES and RANS,
wall models are necessary to predict wall heat flux in turbulent boundary lay-
ers. Among these models, standard wall laws are still widely used although
they are only valid for relatively simple flows with zero-pressure gradient and
constant fluid properties. In real applications with more complex conditions,
standard wall laws might have a great inaccuracy. In order to extend their
usage to practical systems, other physical effects need to be considered such as
compressibility (Foysi et al. 2004; Huang et al. 1995; Coleman et al. 1995),
Prandtl number effect (Kader 1981; Kawamura et al. 1998), streamwise pres-
sure gradient (Huang and Bradshaw 1995; Nickels 2004) or chemical reaction
(Cabrit and Nicoud 2009).
The objective of this paper is to study the radiation effects on the temperature
field in turbulent boundary layers by considering a turbulent channel flow.
DNS is performed for the flow field in order to generate high-fidelity data.
For radiation simulation, a reciprocal Monte Carlo method is employed. This
method is generally regarded as the most accurate one and is widely used in
many applications involving radiative transfer (Coelho 2007; Wu et al. 2005;
Zhang et al. 2009; Tessé et al. 2004). The two solvers are fully coupled when
radiation is taken into account. The gas radiative properties are determined by
means of the correlated k-distribution (CK) model or its weak absorption limit
(Soufiani and Taine 1997), depending on the pressure condition. A detailed
analysis of gas-gas and gas-wall radiation effect is carried out in this paper.
For the gas-gas radiation, only the energy exchange between a gas cell and
the surrounding gas is accounted for, while gas-wall radiation includes only
radiative energy transfer between a gas cell and the walls. A priori these two
parts have different effects on the gas temperature profile and, hence, the wall
heat flux.
The numerical models and approaches are presented in Section 4.3. In Section
4.4, the effects of gas-gas and gas-wall radiation are studied for both large and
intermediate optical thickness medium. Results associated with different wall
emissivity, wall temperature and Reynolds number are discussed in Section 4.5.

4.3 Models and numerical approaches

4.3.1 Flow simulation

Under the low-Mach number approximation, the mass, momentum, energy bal-
ance equations and the ideal gas equation of state write respectively, in tensorial
notations

∂ρ

∂t
+

∂(ρui)

∂xi
= 0, (4.1)
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∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂τij
∂xj

+ Si, (4.2)

∂(ρh)
∂t

+
∂(ρujh)
∂xj

=
∂p

∂t
−

∂qcdj
∂xj

+ PR (4.3)

p = ρ r T, (4.4)

where ρ, p and ui are the fluid mass density, pressure and velocity compo-
nents, respectively. The enthalpy per unit mass h is expressed: h = ∆h0 +∫ T
T0

cp(T
′) dT ′, where cp is the mixture thermal capacity at constant pressure,

T the temperature, T0 a reference temperature and ∆h0 the corresponding stan-
dard formation enthalpy. The viscous shear stress tensor τij and the conductive
flux vector qcdi write

τij = µ

(
∂ui
∂xj

+
∂uj
∂ui

)
− 2µ

3

(
∂uk
∂xk

δij

)
, (4.5)

qcdi = −λ
∂T

∂xi
, (4.6)

where µ is the dynamic viscosity and λ the thermal conductivity. Si is a forcing
source term required in the following channel flow computations. It is uniform
and is not null only in the streamwise direction. It plays the same role as the
pressure gradient to drive the flow against viscous forces. PR is the radiative
power per unit volume.
A finite-volume method for massively parallel computations on complex grids,
suitable for variable density flow (code YALES2 (Moureau et al. 2011b; Moureau
et al. 2011c)) is used to solve Eqs. (4.1)-(4.4) with associated boundary con-
ditions. The code is a low Mach-number solver: the pressure p is split into a
uniform thermodynamic pressure p0 and a hydrodynamic one p1. p0 is used
in the equation of state to compute the gas density ρ, while p1 is obtained by
solving a Poisson equation to enforce mass conservation. Spatial gradients are
calculated with a centered fourth order accurate scheme. Advancement in time
is done with a fourth-order Runge Kutta scheme for velocity. For scalars (here
enthalpy), the latter temporal scheme is blended with another fourth-order
two-step scheme based on Taylor expansion (Kraushaar 2011) that is more dis-
sipative. The blending factor is set as small as possible and yet high enough
to avoid spurious oscillations in the scalar field with centered schemes. In this
study, a typical value of 0.05 is retained.

4.3.2 Non-dimensional quantities in channel flows

For the channel flow defined in Fig. 4.1, bulk, practical and friction Reynolds
numbers Reb, ReDh

and Reτ are respectively defined by

Reb =
ρb ub δ

µb
, ReDh

= 4Reb, Reτ =
ρw uτ δ

µw
(4.7)
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Figure 4.1: Computational domain of channel flow cases. X, Y and Z are the
streamwise, wall normal and spanwise directions. LX, LY and LZ are the dimensions
of the channel case in each direction. δ is the channel half-width. The lower wall
(resp. upper wall) is at temperature Tw,c (resp. Tw,h; Tw,h ≥ Tw,c). Periodic boundary
conditions are applied along X and Z.

with ρb =

∫ 2δ
0 ρdY

2δ
, ub =

∫ 2δ
0 ρudY
∫ 2δ
0 ρdY

, µb = µ(Tb) ; (4.8)

The bulk enthalpy per mass unit and the friction velocity, based on the wall
viscous stress τw, by

hb =

∫ 2δ
0 ρuhdY
∫ 2δ
0 ρudY

, uτ =

(
τw
ρw

)1/2

, (4.9)

where indices b and w are related to bulk and wall quantities, respectively, and
· refers to average quantities. The bulk temperature Tb is evaluated from the
bulk enthalpy : hb = h(Tb). When the channel flow case is not symmetrical
(Tw,c 6= Tw,h), the friction velocity is different on both walls: uτ,c 6= uτ,h and,
therefore: Reτ,c 6= Reτ,h.
The non-dimensional distance y+, based on the distance to a wall y, the non-
dimensional streamwise velocity u+, and the non-dimensional temperature T

+

are written

y+ =
ρw y uτ
µw

, u+ =
u

uτ
, T

+
=

|T − Tw|
Tτ

, (4.10)

where Tτ is the friction temperature defined by

Tτ =
|qcdw |

ρw cpw uτ
, (4.11)

where qcdw is the wall conductive flux, chosen positive in the Y direction. Ac-
cording to this definition and Fig. 4.1, qcdw is negative on both walls since
Tw,c ≤ Tw,h.
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Reb ReDh
Tw,c(K) Tw,h(K) p(atm)

C0 2800 11200 — — 1.0

C1

5850 23400
950 1150

40.0

C2 1.0

C3 950 2050 40.0

C4 11750 47000 950 1150 40.0

Table 4.1: Channel flow parameters. In case C0, non-dimensional passive scalars
are considered. Reynolds numbers are given with an accuracy of 0.5 %.

4.3.3 Validation of the flow simulation

In order to test the suitability of the code for direct numerical simulations, the
channel flow case of Kim and Moin (Kim et al. 1987; Kim and Moin 1987) is
computed and taken as reference for cases where temperature acts as a passive
scalar. This case, named C0, is defined in Tab. 4.1. The discretization of the
domain, defined in Tab. 4.2, is uniform along X and Z. ∆X, the cell length in
the X direction, is expressed in wall units:

∆X+ =
ρw∆Xuτ

µw
. (4.12)

∆Y + and ∆Z+, associated with the cell lengths ∆Y and ∆Z in the Y and
Z directions respectively, are defined similarly. The mesh is refined along the
Y direction close to the wall where ∆Y + = 0.8. The size of the domain was
chosen large enough for results to be independent of this parameter.
For this case C0 only, density and gas properties are uniform and Tw,c = Tw,h.
Three temperature fields associated with three values of Prandtl numbers Pr1 =
0.1, Pr2 = 0.71 and Pr3 = 2.0 are simulated. In this case, the temperature
behaves like a passive scalar and non-dimensional results do not depend on the
actual value of Tw,c. A uniform source term is added in the energy equation as
in Ref. (Kim and Moin 1987) to counterbalance conductive heat fluxes at the
walls.
The non-dimensional mean velocity u+ and the scalar T

+
are plotted in Fig. 4.2

and compared to numerical results of Kim and Moin (Kim et al. 1987; Kim and
Moin 1987), and to the log-law obtained by these authors: u+ = 2.5 lny++5.5,
in Fig. 4.2 a and to the log-law of Kasagi et al. (Kasagi et al. 1992): T+ =
2.78 lny++2.09, in Fig. 4.2 b. Good agreement is obtained between our results
and those of the previous authors, demonstrating the accuracy of the chosen
numerical set up to perform DNS of channel flows.

4.3.4 Radiation simulation

The general organization of the radiation model, based on a reciprocal Monte
Carlo approach, has been detailed by Tésse et al. (Tessé et al. 2002). This
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nX × nY × nZ ∆X+ ∆Y + ∆Z+

hot/cold hot/cold

C0 120× 100× 120 17.85/17.85 [0.8—8.0] 8.92/8.92

C1,C2 110× 135× 110 16.9/21.3 [0.8—8.0] 8.4/10.6

C3 160× 163× 160 8.9/22.4 [0.8—8.0] 4.4/11.2

C4 200× 230× 200 17.3/21.8 [0.8—8.0] 8.6/10.8

Table 4.2: Discretization of the simulated cases: nX , respectively nY and nZ , is the
number of points in the X direction, respectively Y and Z direction. Domain size:
(4πδ, 2δ, 2πδ) for C0 and (2πδ, 2δ, πδ) for C1-C4. ∆X+ and ∆Z+ are given at the
cold and hot sides for C1-C4.
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1 10 100
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+

= Pr y+

T
+

= 2.78 ln(y+) + 2.09

(b)

Figure 4.2: Mean profiles of non-dimensional streamwise velocity (a): © (Kim et al.
1987); and non-dimensional temperature in wall units (b): △(Pr = 0.1),▽(Pr =
0.71),�(Pr = 2) (Kim and Moin 1987); : present results.
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model has been previously applied to combusting media involving radiation
(Tessé et al. 2004) and improved in (Zhang et al. 2012). Only the principles
of the method are briefly summarized here.
In the approach of Ref.(Tessé et al. 2002), the radiation computational domain
is discretized into Nv and Nf isothermal finite cells of volume Vi and faces of
area Si, respectively. The radiative power in any cell i is written as the sum of
the exchange powers P exch

ij between i and all the other cells j, i.e.

Pi =

Nv+Nf∑

j=1

P exch
ij = −

Nv+Nf∑

j=1

P exch
ji . (4.13)

For volume cells, for instance, P exch
ij is given by

P exch
ij =

∫ +∞

0
κν(Ti)[I

◦
ν (Tj)− I◦ν (Ti)]

∫

Vi

∫

4π
Aij νdΩidVidν, (4.14)

where I◦ν (T ) is the equilibrium spectral intensity and κν(Ti) the spectral ab-
sorption coefficient relative to the cell i. dΩ is an elementary solid angle and
Aij ν accounts for all the paths between emission from any point of the cell i
and absorption in any point of the cell j, after transmission, scattering and
possible wall reflections along the paths. Its expression and similar expressions
for exchanges between a volume cell and a surface cell or between two surface
cells are detailed in Ref.(Tessé et al. 2002).
In the reciprocity Monte Carlo method, a huge number of optical shots are
issued from the cells. Statistical estimation P̃ exch

ij of P exch
ij are obtained by

summing the contributions of the Nij shots that connect i and j, i.e.

P̃ exch
ij =

Nij∑

n=1

P exch
ijn ν . (4.15)

In order to increase the computational efficiency, emission is here only carried
out from arbitrary small spheres around grid points instead of using finite
grid cells that are neither isothermal nor homogeneous. In this condition, the
small emission spheres are isothermal, homogeneous and optically thin. A
consequence of this choice is that the Absorption-based Reciprocity Method
(ARM), which requires emission from finite cell, is not suitable. Only Emission-
based Reciprocity Methods (ERM) can then be used. In order to overcome
some drawbacks of ERM compared to ARM in cold regions of the medium, the
Optimized Emission Based Reciprocity Method (OERM), proposed by Zhang
et al. (Zhang et al. 2012), is here used for the radiation frequency treatment.
An other advantage of ERM and OERM method is to allow the Monte Carlo
convergence to be locally controlled. In all the present simulations a radiative
power standard deviation of 3% of radiative power maximum value has been
imposed at any grid point (as shown in Fig. 4.3 for instance).
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Figure 4.3: Comparison of mean radiative power of C1R1, C1R1_GG and
C1R1_GW ( : C1R1; : C1R1_GW; : C1R1_GG; color : Cold
side; color : Hot side; error bars represent the standard deviation).

R1 R2 R3 R4

ǫ1 (cold wall) 0.8 0.3 0.1 0.1

ǫ2 (hot wall) 0.8 0.3 0.1 1.0

Table 4.3: Wall emissivities in radiative conditions R1, R2, R3 and R4.

4.3.5 Coupled simulation

For all cases considered in the paper, a non-reacting CO2-H2O-N2 gas mixture
flows, in developed turbulent regime, through a plane channel in different con-
ditions. The molar fractions of CO2, H2O and N2 are 0.116, 0.155 and 0.729.
Cases involving radiation cannot be entirely characterized by non-dimensional
numbers, contrary to cases without radiation. The value of δ, the channel
half-width, is then given here: δ = 0.1 m.
The dynamic viscosity µ is computed as a function of temperature from the
CHEMKIN package (Kee et al. 1986; Kee et al. 1989) for the chosen mixture
composition. The thermal conductivity λ is computed from a Prandtl number
Pr. In all considered configurations, the Prandtl number is very close to the
chosen value 0.71.
The flow computational cases, called Cn (n= 1 to 4), are defined in Table 4.1 by
a set of bulk Reynolds number Reb, pressure and wall temperatures. Similarly,
cases which include radiative energy transfer are called Rm (m= 1 to 4) and
are defined by the emissivities (ε1, ε2) of the opaque walls given in Table 4.3.
Consequently, a computation case without radiation in conditions n is called
Cn and a computation that accounts for radiation effects, in conditions n and
m, CnRm. The associated spatial discretizations are defined in Table 4.2.
Gas radiative properties are treated in a correlated manner by the CK approach
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for atmospheric pressure condition, and by using the weak absorption limit for
high pressure cases (Soufiani and Taine 1997). In the directions X and Z,
periodicity conditions are also used for radiation simulation, i.e., if a shot exits
the domain, for instance, at the point (LX , Y, Z), it will enter at the point
(0, Y, Z) with the same propagation direction. The grid of the radiation model
is three times coarser in X direction and two times in Y and Z directions than
the corresponding grid of the flow model.
In the chosen DNS conditions, all averaged fluxes are uniform in directions X
and Z. The averaged energy balance equation then writes, from Eq. (4.3),

d

dY
[ρṽ′′h′′(Y ) + qcd(Y ) + qR(Y )] =

d

dY
qtot = 0, (4.16)

where ρṽ′′h′′, qcd, and qR and qtot are the averaged turbulent convective heat
flux, conductive flux, radiative energy flux and total flux, respectively. This
total flux is also uniform along Y . Note that, the radiative energy flux can be
split into two parts :

qR(Y ) = qR∗(Y ) + qRww, (4.17)

where qRww is the flux exchanged between the walls through the whole gaseous
medium, that does not participate to the fluid energy balance and is zero if the
walls are at the same temperature, as encountered in many applications. In
the studied configurations, it is always uniform. Then Eq. (4.16) writes

ρṽ′′h′′(Y ) + qcd(Y ) + qR∗(Y ) = qw , (4.18)

where qw = qtot is the total flux exchanged between a wall and the gaseous
mixture without the wall-wall radiation contribution. At the wall Y = δ, for
instance, qw writes

qw = qcd(Y = δ) + qR∗(Y = δ) = qcdw + qR∗
w . (4.19)

The balance of these three terms in Eq. (4.18) is presented in Fig. 4.4 for
the case C2 without radiation and the related case C2R3 which accounts for
radiative energy transfer. This illustrates that radiation modifies the balance
of the terms in Eq. (4.19) and hence, the wall conductive flux, given in Tab. 4.4.
These complex coupling effects are progressively detailed in the next sections.

4.4 Effects of Gas-Gas and Gas-Wall radiative inter-
actions

The effects of radiation are due to different coupled phenomena, in particu-
lar Gas-Gas (GG) and Gas-Wall (GW) interactions, but also possible multiple
reflections. In this section, the effects of gas-gas and gas-wall interactions are
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Figure 4.4: Mean heat flux distribution for C2 (a), C2R3 (b) and comparison of
these two cases (c) ( : Turbulent convective heat flux; : Conductive heat
flux; · · · : Radiative energy flux; · : total heat flux; black lines: C2; gray lines:
C2R3).
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separately considered. In gas-gas interaction, a given gas volume only exchanges
radiative energy with all other gas volumes, while the walls only partially reflect
radiation. Emission by the walls is not accounted for in the GG calculations.
On the contrary, in gas-wall interaction, a given gas volume only exchanges
energy with walls, while the other gas volumes only transmit energy. Emission
by the other gas volumes is not accounted for in GW calculations. A coupled
computational case that is limited to gas-gas (respectively gas-wall) radiative
interactions is called CnRm_GG (respectively CnRm_GW). The obtained re-
sults are then compared with the corresponding cases CnRm, which include all
the radiation interactions, and Cn, which does not take into account radiative
energy transfer.

4.4.1 Large optical thickness medium

In the case C1R1, defined in Tables 4.1 to 4.3 and characterized by a high
pressure, the optical thickness of the gaseous mixture is large: The global
medium Hotell’s transmissivity at 1000 K is equal to 0.271. This allows the
effects of gas-gas and gas-wall radiative interactions to be studied with a weak
radiative coupling between the two walls.
Due to the small wall temperature difference, the variation in mass density
in cases C1 and C1R1 is small. The profiles of the mean non-dimensional
streamwise velocity u+, not shown here, are not different from the one of case
C0.
The profiles of the mean temperature T associated with the cases C1 and
C1R1 are compared in Fig. 4.5 a. The corresponding T

+
profiles, for both

the cold and the hot sides, are plotted in Fig. 4.5 b. In the case C1, without
radiation, the distribution of T is practically antisymmetric and the T

+
profiles

are identical for the two sides. These results agree well with the results of Kim
and Moin (Kim and Moin 1987), obtained under the assumptions that the
temperature is a passive scalar.
When only gas-wall radiation is considered, in the C1R1_GW case, the tem-
perature gradient is smaller in the vicinity of a wall than in C1 case: The
associated wall conductive fluxes presented in Table 4.4 are two to three times
smaller than in C1 case. Indeed, the wall tends to impose its temperature to
the fluid. Consequently, the temperature variation is higher in the core of the
flow than in case C1. The conductive flux variations are more important at
the hot side than at the cold one, as gas-wall radiative interactions strongly
increase with the temperature.
On the other hand, in the case C1R1_GG, the gas-gas radiative transfer is a
supplementary transfer that homogenizes the temperature field within the gas
by comparison with the case C1, without radiation, as shown in Figs. 4.5 a and
b . Consequently the temperature gradients and the conductive fluxes strongly
increase at the two walls, as shown in Table 4.4.
When all the radiative effects are accounted for, in the case C1R1, the gas-gas
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Figure 4.5: Mean temperature profiles in global coordinates (a) and in wall units (b):
▽ DNS results (Pr= 0.71) (Kim and Moin 1987) ; : C1; : C1R1_GW;

: C1R1_GG; : C1R1; in (b), : Cold side; color : Hot side.

Reτ,c Reτ,h qcd
w,c qcd

w,h qR*
w,c qR*

w,h

(cold) (hot) (cold) (hot) (cold) (hot)

C0 178.5 178.5 – – – –

C1 386.6 305.7 -875 -875 – –

C1R1 390.8 303.3 -1230 (+40.6%) -960 (+9.7%) -6970 -7240

C1R1_GW 394.7 304.4 -460 ( -47.4%) -270 ( -69.1%) – –

C1R1_GG 389.5 306.1 -1930 (+120.6%) -1750 (+100.0%) – –

C2 386.4 305.2 -870 -870 – –

C2R1_GW 386.3 307.9 -875 (+0.6 %) -760 (-12.6%) – –

C2R1_GG 384.1 308.0 -1100 (+26.4%) -1060 (+21.84%) – –

C2R1 386.3 307.1 -1070 (+23.0%) -930 (+6.9%) -2580 -2720

C2R2 386.6 306.4 -1220 (+40.2%) -1100 (+26.4%) -1480 -1600

C2R3 387.4 307.1 -1280 (+47.1%) -1210 (+39.1%) -730 -800

C2R4 401.1 324.5 -2060 (+136.8%) -350 (-59.8%) -460 -2170

C3 578.3 229.3 -6510 -6510 – –

C3R1 668.2 260.5 -16260 (+149.8%) -8720 (+34.0%) -114560 -122100

C4 719.7 557.1 -1550 -1550 – –

C4R1 723.3 566.9 -1650 (+6.5%) -1290 (-16.8%) -7210 -7570

Table 4.4: Wall fluxes (in W/m2) qcdw and qR*
w for different cases at cold and hot

walls (see Eqs. (4.16) and (4.17)). For each case CnRm, the relative variation of qcdw
compared to the case Cn without radiation is put between parentheses. Flux values are
rounded, typical errors are within 2-3 %.



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 97 — #97
✐

✐

✐

✐

✐

✐

Chapter 4 - DNS of turbulent channel flow: effect of radiation on

the mean flow fields
97

and gas-wall interactions, that have opposite effects, are coupled. As shown
in Fig. 4.3, in the vicinity of the wall, the amplitude of the radiative power
associated with gas-gas interaction is much larger than the one associated with
gas-wall interactions. Consequently, in the present conditions, the wall tem-
perature gradients and the conductive fluxes increase, as in the gas-gas case,
at the two walls by comparison with the case C1 without radiation, as shown
in Tab. 4.4 and Fig. 4.5 a.
An important result is that, in this case, no log-law can be clearly identified.

4.4.2 Intermediate optical thickness medium

All the previous study has been again carried out for the case C2R1, charac-
terized by a fluid at atmospheric pressure instead of 40 atm, but with the same
data as for C1R1 (Reb, δ, T1, T2, ε1, ε2). In these new conditions, the optical
thickness of the medium is much smaller than previously. The global Hotell’s
transmissivity at 1000 K of the channel is equal to 0.811. Consequently, inter-
action phenomena between the two walls now occur, due to multiple reflections.
Results are shown in Figs. 4.6 a, b and c. The same analysis as previously can
be drawn, but the effects related to gas-gas and gas-wall interactions are smaller
than at high-pressure. As shown in Tab. 4.4 , the conductive fluxes obtained
by only accounting for gas-gas interaction (case C2R1_GG) for the two sides
are larger than the conductive fluxes associated with the case C2, without radi-
ation. On the contrary, the conductive fluxes obtained in case C2 and by only
accounting for gas-wall interaction (case C2R1_GW) are close, especially at
the cold side. Finally, the conductive flux associated with all radiation effects
(C2R1) is larger than in the C2 case at the two walls as in the optically thick
case. Moreover, the temperature fields obtained by accounting for all radiation
effects differ from the fields computed without radiation. Once again the pro-
files associated with the case C2 agree with the temperature profile of (Kim
and Moin 1987) while it is not any more valid when radiation is accounted for.
As for the case C1R1, the usual thermal log-law is not valid in this case.

4.5 Influences of different parameters

The radiation intensity field and, consequently, the radiative power and the
temperature fields within the gaseous medium are strongly influenced by the
wall emissivities, the wall temperatures and the bulk Reynolds number of the
flow. The roles of these three quantities are studied in this Section.

4.5.1 Influence of wall emissivity

Three other couples of wall emissivities are now considered, in the conditions
C2 of the flow at atmospheric pressure: These radiative conditions R2, R3 and
R4 are defined in Tab. 4.3. From a practical point of view, an emissivity of
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Figure 4.6: Comparison of mean temperature profile (a), T
+

profile (b,c) of C2,
C2R1_GW, C2R1_GG and C2R1 (▽: DNS results of a passive scalar of Kim and
Moin : (Kim et al. 1987) (with Pr=0.71); : C2; : C2R1_GW;

: C2R1_GG; : C2R1; in (b), color : Cold side; color : Hot side).
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Figure 4.7: Mean profile of temperature (a), T
+

on the cold side (b) for C2, C2R1,
C2R2 and C2R3 ( ▽: DNS results of a passive scalar of Kim and Moin (Kim et al.
1987) (with Pr=0.71); : C2; : C2R1; · : C2R2; · · · : C2R3).

about 0.8 typically corresponds to walls made of oxides, an emissivity of about
0.3 to polished metals. Emissivities of 0.1 and 1 are extreme cases.
The mean temperature fields associated with C2, C2R1, C2R2 and C2R3 cases
are plotted in Fig. 4.7 a. When the wall emissivity decreases, gas-gas effects
become more and more important and the temperature profile becomes more
uniform in the flow center part while the temperature gradient near the wall
increases, as shown in Tab. 4.4. Similarly, T

+
decreases on both sides when the

wall emissivity decreases. Only the cold side results are shown in Fig. 4.7 b.
The antagonist gas-gas and gas-wall effects also appear on the average radiative
power field shown in Fig. 4.8 a. On both walls, the radiative power magnitude
increases when wall emissivities decrease. This global effect can be analyzed
from gas-gas and gas-wall exact contributions to the total radiative power in
cases C2Rm. These contributions are given in Figs. 4.8 b and c.
When wall emissivity decreases, the reflected flux and possibly the number of
reflections increase. Consequently, the gas-gas interaction effects increase as
seen in Fig. 4.8 b . On the other hand, the flux exchanged between the gas
and the walls and, hence, the gas-wall interaction effects decrease as seen in
Fig. 4.8 c. The shape of the gas-wall contribution to the total radiative power
is explained by splitting the gas-wall interaction into a gas-cold-wall and a gas-
hot-wall interactions. These latter contributions are given in Fig. 4.8 d. Finally,
the global radiative power is the sum of all contributions and follows the same
trend as the gas-gas interaction which is significantly larger than the gas-wall
interaction in these cases.
The radiative conditions R4 (see Tab. 4.3 ) corresponds to two extreme cases:
Very reflecting cold wall of emissivity 0.1 and black hot wall. The previous
effects on the averaged temperature field are here amplified, as shown in Fig.
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Figure 4.8: Mean profile of total radiative power (a), gas-gas radiative power (b),
gas-wall radiative power (c) and gas-cold wall and gas-hot wall radiative power (d) of
C2R1, C2R2 and C2R3 ( : C2R1; · : C2R2; · · · : C2R3; in (a) and (b),
color : Cold side; color : Hot side; error bars in (a) represents standard
deviation).



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 101 — #101
✐

✐

✐

✐

✐

✐

Chapter 4 - DNS of turbulent channel flow: effect of radiation on

the mean flow fields
101

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y /δ

(T
−

T
w

,c
)/

(T
w

,h
−

T
w

,c
)

(a)

10
−2

10
−1

10
0

−1.2

−0.4

0.4

1.2

2
x 10

5

y/δ

ra
d
ia

ti
v
e

p
o
w

er
(W

/
m

3
)

(b)

Figure 4.9: Mean profile of temperature of C2, C2R3 and C2R4 (a) and radiative
power of C2R3 and C2R4 (b) ( : C2; · · · : C2R3; ·· : C2R4; in (b),
color : Cold side; color : Hot side; error bars in (b) represent standard
deviation).

4.9 a, by comparing the cases C2, C2R3 and C2R4. For case C2R4, the hot black
wall strongly imposes its temperature to the close gaseous layer. In the other
hand, the reflecting cold wall strongly increase gas-gas radiative interactions
and homogenizes the fluid temperature. The cumulation of these effects leads
to: i) A much smaller temperature gradient and conductive flux at the hot wall
than in case C2R3 associated with an emissivity equal to 0.1 (see Tab. 4.4 );
ii) A weak averaged temperature variation in the core of the gaseous medium;
iii) Consequently the temperature gradient at the cold wall and the associated
conductive flux are much larger than in case C2R3, as shown in Tab. 4.4 .
The radiative power fields of the two extreme cases C2R3 and C2R4 differ in
the vicinity of both walls as shown in Fig. 4.9 b. It can be explained by the
previously discussed cumulative effects on the temperature profile : On the hot
side, the gas temperature is close to the hot wall temperature, which decreases
the magnitude of the radiative power; On the cold side, both the black hot wall
and the large hot region contribute to increase the radiative power.
Figure 4.10 shows the radiative power field in the hot half part of the channel.
It appears that the radiative power in case C2R3 is dominated by gas-gas
interaction. On the contrary, in the case C2R4, gas-wall interaction overcomes
gas-gas interaction except for the close vicinity of the hot wall. For intermediate
emissivity value, intermediate radiative power fields are encountered.
Note that, in the present simple case as in most of the previous ones, both
gas-wall and gas-gas radiative interactions are strongly modified by the wall
reflection, as the optical thickness of the mediums is weak. Gas-gas and gas-
wall interactions are not isolated phenomena, as in case C1Rm at high-pressure,
characterized by a large global optical thickness. The wall reflection law and
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Figure 4.10: Mean profile of radiative power for the channel hot side for C2R3 (a)
and C2R4 (b) ( ·· : Total; ∗ : Gas-wall; ⋄ : Gas-gas).

the medium optical thickness have important effects on the temperature fields
as they can enhance or reduce the gas-gas or the gas-wall contributions.

4.5.2 Influence of the temperature

In order to study the influence of both the temperature level and the tempera-
ture difference, the C3 and C3R1 cases are considered. They are characterized
by wall temperatures equal to 950K and 2050K. On the cold side, these data
correspond to classical combustion applications at high pressure. The associ-
ated results are compared with those of C1 and C1R1 cases.
Contrary to the previous cases, the gaseous medium density strongly varies for
C3 and C3R1 cases and variations in the averaged velocity profiles are now
observed in Fig. 4.11 a. Similarly, differences between the u+ profiles are
observed in Fig. 4.11 b, showing that the classical velocity log-law is not valid
anymore. However, if the Van Driest transformation, defined by

u+V D =

∫ u+

0

√
ρ

ρw
du+, (4.20)

is used to account for variable density effects, all velocity profiles collapse to
the usual log-law (see Fig. 4.11 c).
The averaged temperature profile of C3R1 case is compared in Fig. 4.12 a with
those of C3, C1 and C1R1. As the temperature of the hot wall is much higher in
C3R1 case than in C1R1 case, the radiative transfer is much stronger in this case
(see qR∗

w in Tab. 4.4) and the opposite effects of gas-gas and gas-wall radiative
interactions shown in this latter case are amplified. The same analysis as for the
case C1R1 can be achieved (see Sec. 4.4.1) and the results are similar, with an
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Figure 4.11: Mean profile of velocity (a), u+ (b) and u+

VD (c) of C3, C3R1 and C1
( • : Wall function of Ref. (Kim et al. 1987) ; : C3; ·· : C3R1;

: C1; in (b) and (c), color : Cold side; color : Hot side).
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Figure 4.12: Mean profile of mean temperature(a) and T
+
(b) of C3, C3R1, C1 and

C1R1 ( • : Wall function of Ref. (Kasagi et al. 1992) ; : C3; ·· : C3R1;
: C1; : C1R1; in (b), color : Cold side; color : Hot side ).

amplification effect for the conductive fluxes, as given in Tab. 4.4. Consequently,
the averaged temperature is much higher than in C3 case. Figure 4.12 b shows
that the usual log-law is not valid when radiation is accounted for. Moreover,
no temperature log-law even appears between y+ = 30 and y+ = 200.

4.5.3 Influence of the Reynolds number

The results of the C4 and C4R1 cases, characterized by a higher Reynolds
number than previously (see Tab. 4.1), are here compared with cases C1 and
C1R1 in order to study the influence of the Reynolds number. The temperature
profiles are plotted in Fig. 4.13. The curve T

+
(y+) for case C4R1 in Fig. 4.13 b

lies between the ones where radiation is not accounted for and the one of case
C1R1. Increasing the Reynolds number between cases C1R1 and C4R1 has then
moved the obtained wall-law closer to the usual one. There are two different
explanations for this behavior.
First, by increasing the Reynolds number, turbulent transport has been en-
hanced and its weight compared to the other energy transfer mechanisms is
increased. This is shown in Fig. 4.14 a where turbulent transport is twice
larger in case C4R1 than in case C1R1. One effect of the Reynolds number is
therefore to relax the curve T

+
(y+) obtained when radiation effects are consid-

ered towards the usual law of the wall which should be retrieved when radiative
energy transfer is negligible.
In addition to this first effect, there is a second one that deals with a modifica-
tion of the radiative energy transfer. In this specific configuration, the gas-gas
and gas-wall radiative contributions to the total radiative power field in case
C4R1 are modified as shown in Fig. 4.15 where they are compared to results
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Figure 4.13: Mean temperature profile (a) and T
+

of C4, C4R1, C1 and C1R1 (b)
( : C4; ·· : C4R1; : C1; : C1R1; in (b), color : Cold side;
color : Hot side).

in case C1R1. Magnitude of the gas-gas contribution decreases for the larger
Reynolds number case while the magnitude of the gas-wall contribution in-
creases. Since a larger Reynolds number leads to a larger gradient of the mean
temperature close to the wall, the gas temperature at a given position gets
closer to the average one in the core of the channel when the Reynolds number
increases, while its difference with the near wall temperature gets larger. This
explains the observed trends for the gas-gas and gas-wall radiative contribu-
tions. Consequently, the gas-gas effects on the wall conductive heat flux and
the wall law dwindle while the gas-wall effects grow. This is seen in Tab. 4.4
where the conductive heat flux increase on the cold wall due to radiation is less
in case C4R1 than in case C1R1. On the hot wall, the conductive heat flux
even decreases between cases C4 and C4R1, showing that gas-wall effects over-
come gas-gas effects there. Finally, the modification of the gas-gas and gas-wall
contributions make the observed wall law go up compared to case C1R1.
Among these two effects of the Reynolds number, the latter one is dominant in
the present configuration where the radiative flux is much larger than turbulent
transport (see Fig. 4.14). Would radiation remain dominant, increasing the
Reynolds number even more could move the curve T

+
(y+) above the usual

wall law. This could not be check here due to the limitations of DNS on
computational ressources with increasing Reynolds numbers.

4.6 Conclusion

In practical conditions of coupling between turbulent convection and radiation,
there is no simple way for accurately predicting the averaged temperature profile
and wall conductive flux, without undertaking a complete coupled computation.
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Figure 4.14: Comparison of turbulent convective heat flux (a) and radiative energy
flux (b) of C4R1 and C1R1 ( ·· : C4R1; : C1R1).
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Such a computation has been achieved in this work, in typical combustion
conditions, by coupling a direct numerical simulation of a turbulent channel
flow with a radiative transfer model based on a Monte Carlo simulation, an
optimized emission-based reciprocity and a CK or k gaseous radiative model.
When the radiative flux within a turbulent gaseous medium is of the same
order of magnitude or higher than the averaged turbulent convective flux, or
the wall conductive flux, strong coupling effects occur within all the medium
and at the walls. It was shown that the usual temperature profile and its cor-
responding log-law are generally no more valid within a turbulent boundary
layer. The couplings between conduction, turbulent convection and radiation
are complex and first strongly depend on both gas-gas and gas-wall radiative
interactions. The global radiation effects are not easily predictable as gas-gas
and gas-wall radiative interactions bring contributions of opposite sign to the
wall conductive flux. Moreover, depending on the transversal optical thickness
of the gaseous medium, complex effects, that are linked to multiple wall re-
flections, can also occur and strongly modify both the averaged temperature
profiles and the conductive wall fluxes. Finally, the averaged temperature pro-
files and wall conductive fluxes were shown to also strongly depend on: i) the
wall emissivities, that rule the wall reflection effects; ii) the temperature level,
that controls the non linear radiative fluxes; iii) the Reynolds number that con-
trols the weight of turbulence transport and the balance of gas-gas and gas-wall
radiative effects.
The development of simpler models for the determination of the temperature
profile in the turbulent boundary layer is necessary.
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Chapter 5

DNS of turbulent channel flow:

effect of radiation on second

order moments

This chapter focuses on radiation effects on fluctuation field in turbu-
lent channel flow. The influence of radiation on enthalpy root-mean-
square, on turbulent heat flux and on the budget of the corresponding
transport equation are analyzed. To improve the agreement of results
of non-dimensional turbulent quantities between flows without and with
radiation, a new radiation-based scaling is proposed. The influence of
radiation on turbulent Prandtl number is also presented and a model
based on the new scaling is proposed. The details of this study are pre-
sented in the format of a paper entitled:
Analysis of direct numerical simulations coupled to radiation
in turbulent channel flow.
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110 5.1. ABSTRACT

Analysis of direct numerical simulations
coupled to radiation in turbulent channel flow

5.1 Abstract

In the present paper, the role of radiative energy transfer on turbulent boundary
layers is carefully analyzed, focusing on the effect on temperature fluctuations
and heat turbulent transport. The work is based on direct numerical simula-
tions of channel flows with hot and cold walls coupled to a Monte-Carlo method
to compute the field of radiation power. In the studied conditions, the structure
of the boundary layers are strongly modified by radiation. Temperature fluctu-
ations and the turbulent heat flux are reduced, and new radiative terms appear
in their respective balance equations. It is shown that they always counteract
turbulence production terms. These effects are analyzed under different con-
ditions of Reynolds numbers and wall temperatures where it is demonstrated
that collapsing of wall-scaled profiles breaks down when radiation is considered.
This is corrected by the introduction of a radiation-based scaling. Finally, the
significant impact of radiation on heat turbulent transport is studied in terms
of turbulent Prandtl number and a model for this quantity is developed based
on the new proposed scaling and validated.

5.2 Introduction

Radiation plays an important role in many industrial applications, particularly
combustion systems such as boilers, gas turbines, rocket engines and furnaces.
For instance, in gas turbines, a crucial portion of the heat transferred from hot
gas to the combustor solid walls comes from radiative energy transfer (Lefebvre
and Ballal 2010). The importance of radiation is even higher in modern gas
turbines as the pressure ratio increases, which poses a severe problem on the
cooling of the combustor walls. Moreover, radiation can influence the temper-
ature distribution and hence the emission of pollutant in combustion systems.
Therefore, an accurate prediction of radiation effect is important for the design
of combustors.
Among the studies of radiation effects in turbulent flows, great attention has
been given to the interaction between turbulence and radiation (TRI). Two
aspects of TRI can be identified: the effect of radiation on the temperature and
species concentrations and vice versa. A comprehensive review about TRI is
available in (Coelho 2007; Coelho 2012).
Regarding the effects of turbulence on radiation, it is observed that turbulence
leads to an increase in the medium transmissivity (Jeng and Faeth 1984; Gore
et al. 1987), the radiative power (Coelho 2004; Tessé et al. 2004) and heat loss
(Li and Modest 2003; Tessé et al. 2004). Coelho et al. (2003) reported that,
in a non-luminous turbulent jet diffusion flame, TRI enhanced the heat losses
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by a factor of 30% while a similar change in a luminous turbulent flame was
also revealed in Ref. (Tessé et al. 2004). Moreover, individual contributions
to emission and absorption TRI have been isolated and quantified in a 1D
premixed combustion system (Wu et al. 2005), a homogeneous isotropic non-
premixed combustion system (Deshmukh et al. 2007) and a 1D turbulent non-
premixed flame (Deshmukh et al. 2008).
By contrast to the former, only a few studies have been devoted to the effect of
radiation on turbulence. Among them, Soufiani (Soufiani 1991) carried out a
theoretical analysis of the influence of radiation on thermal turbulence spectra
and it was concluded that radiation acted as a dissipation term and it could
smooth the intensity of temperature fluctuations and modify the structure of
the temperature variance spectrum. Damien et al. (2012) also reported that
radiation modifies the level of temperature fluctuations and homogenizes the
spectral distribution of energy. Moreover, it was reported that the Reynolds
stress and turbulence structure in supersonic shear layers were modified by
radiation (Ghosh et al. 2011).
The objective of this paper is to investigate the effects of radiation in the bound-
ary layer structure of turbulent channel flows. It has already been reported in
Ref. (Zhang et al. 2013) that radiation can significantly modify the mean
temperature profile and consequently, the temperature wall law and the wall
conductive heat flux. The different observed effects on the mean temperature
profile have been understood thanks to the decomposition of radiation into
wall-gas and gas-gas contribution. In this paper, Direct Numerical Simulations
(DNS) of channel flows coupled with a reciprocal Monte Carlo method to deal
with radiation from Ref. (Zhang et al. 2013) are analyzed focussing on radi-
ation effects on higher-order statistical moments such as turbulent transport
heat flux, enthalpy root-mean-square (RMS) and of their budget equations.
After a detailed description of the studied problem in section 5.3, effects of ra-
diation are analyzed in a first channel flow configuration in section 5.4.1. Then,
changes of radiation effects with wall temperature difference and bulk Reynolds
number are reported in section 5.4.2 where a new turbulent scaling is proposed.
Finally, the associated results for the turbulent Prandtl number are shown in
section 5.4.3 and a model based on the proposed scaling is derived.

5.3 Problem description

In order to study accurately the effects of radiation on the structure of turbulent
boundary layers, direct numerical simulations of a planar channel flow coupled
with a reciprocity Monte-Carlo method for radiation calculations have been
considered. The set of governing equations in the fluid writes

∂ρ

∂t
+

∂(ρui)

∂xi
= 0, (5.1)
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∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂τij
∂xj

+ Si, (5.2)

∂(ρh)
∂t

+
∂(ρujh)
∂xj

=
∂p

∂t
−

∂qcdj
∂xj

+ PR (5.3)

p = ρ r T, (5.4)

where ρ, ui, h, p and T are the fluid mass density, velocity components, en-
thalpy, pressure and temperature, respectively. h is expressed from the mixture
thermal capacity at constant pressure cp: h = ∆h0 +

∫ T
T0

cp(T
′) dT ′, where T0

is a reference temperature and ∆h0 the corresponding standard formation en-
thalpy. The viscous shear stress tensor τij and the conductive flux vector qcdi
write

τij = µ

(
∂ui
∂xj

+
∂uj
∂ui

)
− 2µ

3

(
∂uk
∂xk

δij

)
, (5.5)

qcdi = −λ
∂T

∂xi
, (5.6)

where µ is the dynamic viscosity, function of temperature computed like the
mixture thermal capacity cp by the CHEMKIN package (Kee et al. 1986;
Kee et al. 1989). λ is the thermal conductivity, and is computed from the
Prandtl number Pr=0.71. PR is the radiative power per unit volume. Si is a
uniform forcing source term which acts as a pressure gradient term and drives
the channel flow to obtain the desired bulk Reynolds number Reb.
The set of governing equations is solved with the finite-volume solver YALES2
(Moureau et al. 2011b; Moureau et al. 2011c) under a low Mach-number ap-
proximation. As detailed in Ref. (Zhang et al. 2013), the numerical setup is
composed of a centered fourth-order spatial discretization and a fourth-order
time integration. The computation of the radiation power is handled by an
Optimized Emission-based Reciprocity Monte-carlo method (OERM) (Zhang
et al. 2012). Gas radiative properties are calculated by using the weak absorp-
tion limit of CK model (Soufiani and Taine 1997) in the studied cases that are
characterized by high pressure.
The studied configuration, a fully developed turbulent channel flow with two
isothermal walls, is shown in Fig. 5.1. The medium is a non-reacting CO2-H2O-
N2 gas mixture with a corresponding molar fraction of 0.116-0.155-0.729.
Three computational cases from Ref. (Zhang et al. 2013), called here A, B and
C, are defined in Tab. 5.1 by a set of bulk Reynolds number, pressure and wall
temperatures (Tw,c and Tw,h). When radiation is considered, theses cases are
referred as A_RAD, B_RAD and C_RAD, respectively and the emissivity ε
of the opaque walls is set to 0.8.
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Figure 5.1: Computational domain of channel flow cases with the half-width δ = 0.1
m. The lower wall (resp. upper wall) is at temperature Tw,c (resp. Tw,h; Tw,h ≥ Tw,c).

Reb Tw,c [K] Tw,h [K] p [atm]

A
5850

950 1150 40.0

B 950 2050 40.0

C 11750 950 1150 40.0

Table 5.1: Channel flow parameters: Bulk Reynolds number Reb, wall temperatures
and pressure. Cases without radiation A, B and C correspond to cases C1, C3 and C4
in Ref. (Zhang et al. 2013) respectively, and radiative cases A_RAD, B_RAD and
C_RAD to cases C1R1, C3R1 and C4R1, respectively.

5.4 Results

5.4.1 Results for reference cases A and A_RAD

Results are first presented for cases A and A_RAD. Effects of radiation on
the boundary layer structure are analyzed in terms of effects on the mean
temperature field, on the enthalpy fluctuations and on the turbulent transport
heat flux. Then, influence of temperature fluctuations on the radiative power
is studied.

5.4.1.1 Mean temperature field

Owing to the small variation of mass density, mean velocity profiles (not shown
here) are not affected by radiation when comparing cases A and A_R that are
both characterized by a small wall temperature difference. However, the mean
temperature profile, shown in Fig. 5.2 (a), is significantly modified by radiation
over the whole domain. The mean temperature in wall units T

+
is defined as,

T
+
=

|T − Tw|
Tτ

with Tτ =
|qcdw |

ρw cpw uτ
, uτ =

(
τw
ρw

)1/2

, (5.7)

where qcdw , ρw, cpw and τw are the mean conductive heat flux, mass density,

thermal capacity and shear stress at the wall, respectively. The T
+

profiles of
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Figure 5.2: Profiles of mean temperature scaled by wall temperatures (a) and in wall
units (b) on the cold side (blue color) and hot side (red color) in cases A (thin line)
and A_R (thick line).

cases A and A_RAD are plotted in Fig. 5.2 (b) as functions of the normalized
wall distance y+ that writes,

y+ =
ρw y uτ
µw

, (5.8)

where µw is the mean dynamic viscosity at the wall. The obtained tempera-
ture wall law for case A_R strongly deviates from that of case A, showing a
significant effect of radiation on the thermal boundary layer structure in the
considered conditions. A detailed analysis of such radiation effects on the mean
temperature field in different channel flow conditions is available in Ref. (Zhang
et al. 2013). Opposite effects of radiation on the wall conductive heat flux and
on the temperature wall law have been observed and they have been understood
thanks to a decomposition of radiation into gas-gas and gas-wall contributions.

5.4.1.2 Fluctuations of enthalpy

Profiles of the enthalpy Favre root-mean-square, hrms =

√
h̃′′h′′, in cases A and

A_RAD are shown in Fig. 5.3 (a), where hrms is scaled by the center tempera-
ture defined as Tc = (Tw,c + Tw,h)/2 and the center thermal capacity cp,c, also
defined as an average between wall thermal capacities. In case A, without ra-
diation, peaks of variance are located in the near wall regions as expected from
standard boundary layer theory where production of turbulent fluctuations is
maximal within the buffer layer. Because of the specific configuration where
wall temperatures are different, a larger peak in hrms appears in the core of
the channel where, as explained in Ref. (Debusschere and Rutland 2004), fluid
pockets of high and low temperature converge from the hot and cold walls,
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Figure 5.3: Profiles of enthalpy root-mean-square scaled by center temperature and
thermal capacity (a) and in wall units (b) on the cold side (blue color) and hot side
(red color) in cases A (thin line) and A_R (thick line).
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Figure 5.4: Budget of enthalpy variance (cold side only) in cases A (a) and A_R
(b): Production (plain line); Molecular dissipation (dashed line); Radiative dissipa-
tion (dashed-dashed-dotted line); Turbulent diffusion (dashed-dotted line); Molecular
diffusion (dotted line); Density-enthalpy correlation term (dashed-dotted-dotted line).
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respectively. In case A_R where radiation is accounted for, a significant reduc-
tion in enthalpy fluctuations is observed in the near wall region, especially on
the hot side, and the central peak vanishes.
Wall-scaled profiles of enthalpy rms against y+ are presented in Fig. 5.3 (b),
where the non-dimensional enthalpy rms h+

rms is defined as

h+
rms =

hrms

cpw Tτ
(5.9)

Despite changes in the wall conductive heat flux are included in the wall scaling
formulation through the definition of Tτ , a large difference between results of
cases A and A_R remains, indicating that the strong effect of radiation on
fluctuations of enthalpy and temperature is a real modification of the boundary
layer structure.
This point is further investigated by analyzing the balance of the enthalpy
variance transport equation which, in the studied configuration, writes

− ∂

∂y
(qcd

′

y h′)− 1

2

∂

∂y
(ρṽ′′h′′h′′)− ρṽ′′h′′dh̃

dy
+ qcd

′

i

∂h′

∂xi
+ h′′PR′

+ h′′ ∂

∂y
(ρṽ′′h′′) = 0

(5.10)

where the terms on the left hand side are molecular diffusion, turbulent dif-
fusion, production, molecular dissipation, correlation between enthalpy and
radiative power fluctuations and a term proportional to h′′ related to enthalpy-

density correlation. These different terms are scaled by qcdw
2
/µw and compared

in Fig. 5.4 (a) and (b) for cases A and A_R (only the results on the cold side
are shown since the hot side is similar). On the one hand, in case A, production
and molecular dissipation terms are dominant and decrease away from the wall
as expected in such standard conditions. On the other hand, in case A_RAD,
a third dominant term appears in the balance of enthalpy variance in addition
to the latter two, that is the enthalpy-radiative power correlation. Since this
term appears as a negative contribution to the budget, it will be referred as
radiative dissipation in the following. Hence, equilibrium between production
and molecular dissipation away from the buffer layer for y+ > 30 is replaced
by a balance of production with molecular and radiative dissipations in the
case with radiation. In the studied case, this equilibrium takes place sooner for
y+ > 20 and molecular dissipation remains weaker than radiative dissipation
for y+ > 50 approximatively.
For both cases A and A_RAD, the term related to h′′, mean of mass-weighted
fluctuating enthalpy, is negligible because of the small density variations. Re-
garding the scaled production, modification by radiation of the mean temper-
ature field and of the turbulent heat flux (shown later) results in a reduction
of this term in case A_R. This decrease in production and the presence of an
additional radiation-related dissipative term in the budget of enthalpy variance
explain the smaller level of enthalpy fluctuations shown in Fig. 5.3 for the case
with radiation.
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Figure 5.5: Profiles of wall-normal turbulent heat flux scaled by bulk variables (a)
and in wall-units (b) on the cold side (blue color) and hot side (red color) in cases A
(thin line) and A_R (thick line).

5.4.1.3 Wall-normal turbulent heat flux

Profiles of wall-normal turbulent heat flux ρṽ′′h′′ in cases A and A_R are
presented in Fig. 5.5, where the wall-scaled turbulent heat flux is defined as

ρv′′h′′+ =
ρṽ′′h′′

ρwuτ cpw Tτ
=

ρṽ′′h′′

|qcdw |
. (5.11)

The wall-normal turbulent heat flux is seen to decrease when radiation is ac-
counted for. The aforementioned reduction in enthalpy fluctuations due to
radiation is a first explanation why the turbulent transfer is less efficient. This
effect can be filtered out by looking at the correlation coefficient between en-
thalpy and wall-normal velocity fluctuations shown in Fig. 5.6. It is observed
that accounting for the local rms of enthalpy corrects the asymmetry of case
A_RAD in Fig. 5.5 (a) and that correlation between enthalpy and wall-normal
velocity is stronger with radiation. However, the correlation remains different
in both cases, indicating another source of disagreement between the two cases
than just the change in enthalpy rms.
The second reason is the requirement for the turbulent heat flux to fulfill the
mean balance equation for energy which writes,

− ∂

∂y

(
qcdy + ρṽ′′h′′

)
+ PR = 0. (5.12)

Introducing the radiative flux vector qRi , the mean energy balance equation
writes as a constant sum of energy fluxes,

qcdy + ρṽ′′h′′ + qRy = qcdw + qRw , (5.13)
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Figure 5.6: Profiles of correlation between enthalpy and wall-normal velocity fluctu-
ations in cases A (thin line) and A_R (thick line).
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Figure 5.7: Budget of wall-normal turbulent heat flux (cold side only) in cases A (a)
and A_R (b): Production (plain line); Molecular diffusion (dotted line); Turbulent
diffusion (dashed-dotted line); Pressure term (dashed-dotted-dotted line); Molecular
dissipation (dashed line); Velocity-Radiative power correlation term (dashed-dashed-
dotted line).
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where qcdw and qRw are the wall conductive heat flux and wall radiative flux,
respectively. Hence, the turbulent heat flux is constrained to equilibrate with
conductive and radiative fluxes, establishing a strong two-way coupling between
the mean and the fluctuations of the temperature and radiative power fields.
More information about the profiles of energy fluxes is available in Ref. (Zhang
et al. 2013).

The balance equation of the turbulent heat flux ρṽ′′h′′ writes

∂

∂y

(
τ ′22h

′ − qcd′y v′
)
− ∂

∂y

(
ρṽ′′v′′h′′

)
− ρṽ′′v′′

dh̃
dy

−
(
τ ′2i

∂h′

∂xi
− qcd

′

i

∂v′

∂xi

)

+v′′PR′
+

(
p′
∂h′

∂y
− ∂p′h′

∂y

)
+

(
h′′ ∂

∂y

(
ρṽ′′v′′

)
+ v′′

∂

∂y

(
ρṽ′′h′′

))
= 0.

(5.14)

The seven terms on the left hand side are molecular diffusion, turbulent diffu-
sion, production, molecular dissipation, correlation between wall-normal veloc-
ity and radiative power fluctuations, pressure contribution and a term related
to the average of Favre fluctuations of enthalpy and velocity. These terms,
except for the last one which is again negligible, are shown for cases A and
A_RAD in Fig. 5.7 (a) and (b) where they are scaled by |qcdw | τw/µw . In case
A, predominant terms are production and the pressure contribution and molec-
ular dissipation accounts for the remaining balance. As shown in Ref. (Kasagi
et al. 1992), the two terms in the pressure contribution are of the same or-
der of magnitude. When radiation is taken into account, most of the terms
are reduced in magnitude and broader. For y+ > 25, the balance is split into
production, the pressure contribution, the wall-normal velocity-radiative power
correlation term and molecular dissipation which has the smallest contribution
among these four terms. The pressure term is dominant for y+ < 100 until the
velocity-radiative power correlation term takes over.

5.4.1.4 Radiative power field

The mean profile of the radiative power is shown in Fig. 5.8 (a). It is positive
(resp. negative) in the very near wall region on the cold side (resp. hot side).
Further away from the wall, the radiative power changes sign twice around
y+ = 20 and 100 on both sides. This shape of the mean radiative power has
been understood thanks to a separation of gas-gas and gas-wall contributions
to radiation done in Ref. (Zhang et al. 2013).
One of the most studied aspect of turbulence-radiation interaction is the effect
of turbulent fluctuations on the mean radiative power (Coelho 2012). Indeed,
the mean radiative power writes

PR =

∫ +∞

0

(∫

4π
κνIνdΩ− 4πκνI◦ν (T )

)
dν , (5.15)
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Figure 5.8: Profiles of the PR (a) and PR
rms (b) in case A_R on the cold side (blue

color) and hot side (red color). Circles : mean radiative power computed from the
mean temperature field.
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Figure 5.9: Correlation coefficients between radiative power and enthalpy (a) and
between radiative power and wall-normal velocity (b) in case A_R on the cold side
(blue color) and hot side (red color).
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where the spectral intensity Iν , the equilibrium spectral intensity I◦ν and the
spectral absorption coefficient κν are integrated over frequency ν and solid angle
Ω ranges. Equation 5.15 can alternatively be expressed as

PR =

∫ +∞

0

(∫

4π

(
κνIν + κ′νI

′
ν

)
dΩ− 4π

(
κνI◦ν (T ) + κ′νI

◦′
ν (T )

))
dν , (5.16)

Hence, local and non-local correlations between spectral intensities and absorp-
tion coefficients appear in the expression of the mean radiative power. Besides,
radiation is highly non-linear with temperature. For all theses reasons, in most
cases, PR cannot be computed from the mean temperature field, i.e.

PR({T}) 6= PR({T }). (5.17)

To investigate this effect, the radiative power computed from the mean tem-
perature field is also shown in Fig. 5.8 (a). No difference is seen with the ex-
act profile, showing that turbulent fluctuations of temperature are not intense
enough to perturb the mean radiative power. This result can be generalized to
most thermal boundary layers when the wall and bulk temperature ratio is low.
Indeed, it is demonstrated in appendix that, in air, the level of temperature
fluctuations is very small when with a small temperature ratio and it even de-
creases with Reynolds number. However, when the temperature ratio increases,
the fluctuation level can be as high as 30%, which might be high enough to have
an effect on the mean radiative power. Moreover, such an interaction between
turbulence and radiation is mostly observed in combustion applications (Coelho
2012) where the heat release stemmed from chemical reactions greatly enhances
temperature fluctuations.
Although the mean radiative power is not influenced by temperature fluctu-
ations in the present case, fluctuations of the radiative power field modify
the balance of enthalpy variance and turbulent heat flux transport equations,
Eqs. 5.10 and 5.14, and hence interact with the mean temperature field. In
order to compute the relevant radiative power root-mean-square PR

rms, it is
necessary to subtract the standard error of the Monte-Carlo method from the
total rms data. Indeed, since the Monte-Carlo method is a statistical approach,
the computed time-averaged variance of radiative power writes

PR′2
= PR′2

phys + PR2

err + 2PR′

physP
R
err, (5.18)

where the instantaneous radiative power PR = PR
phys + PR

err is composed of the

real physical value of radiative power, PR
phys, that is estimated by the Monte-

Carlo method with a controlled error, and of a statistical error PR
err. Assum-

ing independency, between physical and statistical fluctuations, the root-mean-
square of radiative power is computed as

(PR
rms)

2 = PR′2 − PR2

err , (5.19)
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using the statistical estimation of PR2

err provided by the Monte-Carlo approach.
The profile of radiative power root-mean-square PR

rms is plotted in Fig. 5.8 (b).
Contrary to the mean radiative power that abruptly vanishes away from the
walls, fluctuations of radiative power do not disappear and their magnitude
presents only slight variations for y+ > 20.
As shown previously, the fluctuating radiative power introduces a new radiative
dissipation term in Eq. 5.10 that writes h′′PR′ . Since radiation power is the
difference between absorbed and emitted powers, PR = PR

a −PR
e , the radiative

dissipation term is also composed of two terms:

h′′PR′ = h′′PR′

a − h′′PR′

e . (5.20)

As shown in Ref. (Ammouri et al. 1994), the emitted part always leads to
a negative contribution to the total radiative dissipation term because a pos-
itive (resp. negative) fluctuation of enthalpy yields a higher (resp. smaller)
emitted radiative power, while the absorbed part is mainly positive. The so-
called radiative dissipation could then be positive in some conditions. However,
the corresponding correlation coefficient between enthalpy and radiative power
shown in Fig. 5.9 (a) is negative and indicates that fluctuations of radiative
power are fairly correlated with local fluctuations of enthalpy or temperature,
especially close to the wall. The radiative dissipation is then here dominated
by its emission part.
In the balance equation of the turbulent heat flux (Eq. 5.14), the term v′′PR′

related to the correlation coefficient shown in Fig. 5.9 (b) appears if radiation
is taken into account. In the present case, this term is positive in the whole
computational domain although there is no reason to generalize this result. It
is worth noting that, by introducing the radiative energy flux, this term can
also be split into two terms as done for the conductive heat flux in Eq. 5.14:

v′′PR′ = − ∂

∂xi
(qR

′

i v′) + qR
′

i

∂v′

∂xi
(5.21)

It seems interesting to understand the sign of the term v′′PR′ in view of the
fair correlation between enthalpy and radiative power fluctuations. Indeed, one
could argue that the fluctuation of wall-normal velocity leads to a fluctuation
of enthalpy due to convection which finally generate a variation in the radiative
power. In order to verify this effect, a first attempt could consist in passing
over the convected enthalpy fluctuations and directly approximate the varia-
tion of radiative power as a result from convection and the shape of the mean
profile PR. Turbulent diffusion of the mean radiative power with a gradient
assumption would then lead to

v′′PR′ ∼ −∂PR

∂xi
(5.22)

Although this approximation gives the right sign for the term v′′PR′ in the
very near wall region on both sides, it becomes rapidly erroneous for y+ > 25



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 123 — #123
✐

✐

✐

✐

✐

✐

Chapter 5 - DNS of turbulent channel flow: effect of radiation on

second order moments
123

−0.1 −0.05 0 0.05 0.1

1

1.5

2

2.5

Y /δ

C

Figure 5.10: Correlation coefficient defined in Eq. 5.25 in case A_R.

where the monotonicity of the mean radiative power profile changes. Skipping
the enthalpy fluctuations to understand the correlation between wall-normal
velocity and the radiative power is therefore not appropriate. Another approach
is proposed by considering the fourth-order cross-moment v′′h′′h′′PR′ which
introduces enthalpy fluctuations as the vessel that could explain the correlation
mechanism between velocity and radiative power variations. Two high-order
correlation coefficient C1 and C2 are then defined as

v′′h′′h′′PR′ = C1ṽ′′h′′h′′PR′ (5.23)

v′′h′′h′′PR′

= C2h̃′′h′′v′′PR′ (5.24)

Finally, the term v′′PR′ can be indirectly related to the high-order statistical
moment by writing

v′′PR′ = C
ṽ′′h′′h′′PR′

h̃′′h′′
, (5.25)

where C, defined as C1/C2, is computed from Eq. 5.25 and plotted in Fig. 5.10.
The profile of the coefficient C is regular, positive and varies from approxima-
tively unity close to the walls to 2.7 in the core of the channel. Since the radia-
tive dissipation term h′′PR′ is negative, it can then be postulated from Eq. 5.25
that the term v′′PR′ appearing in Eq. 5.14 may always have the opposite sign
of the turbulent flux ρṽ′′h′′. In the present configuration, this explains the pos-
itive sign of the correlation between wall-normal velocity and radiative power.
Being of opposite sign with the turbulent heat flux, the term v′′PR′ would
therefore always be a loss term in Eq 5.14. This loss mechanism described by
Eq. 5.25 is as follows: A positive or negative variation of wall-normal velocity
generates a fluctuation of enthalpy whose sign is determined by the direction of
the turbulent heat flux; And this enthalpy fluctuation then induces a variation
in radiative power of opposite sign.
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Figure 5.11: Scheme of coupling effects in turbulent channel flow with radiation.
The fields of velocity (u, v, w), temperature (T ) and radiation are split into mean
and fluctuating components. Several quantities are considered for the radiation field:
The radiative power (PR), the spectral intensity (Iν) and absorption coefficient (κν).
Main effects are represented by thick plain arrows while thin dotted arrows indicate
negligible/null effects.

5.4.1.5 Summary of radiation effects in turbulent channel flow

The coupling between the temperature and radiative fields has been carefully
detailed through the analysis of DNS/Monte-Carlo results obtained in cases
A and A_R. Figure 5.11 sums up the different interactions between mean
(Favre or Reynolds average) and fluctuating fields of velocity, temperature and
radiation observed in the present channel flow simulations.
The feed back of mean temperature on velocity is done through the variation
of temperature-dependent properties such as mean density and dynamic vis-
cosity. In cases A and A_R characterized by a relative small difference of wall
temperatures, this effect is negligible although it is present in cases with larger
temperature difference as reported in Ref. (Zhang et al. 2013). On the other
hand, impact of temperature fluctuations on the velocity field mainly through
density variations is negligible in all investigated cases, making Reynolds and
Favre averaging operations similar. In the specific configuration of a channel
flow, convection by the mean velocity field does not influence the temperature
field directly. It has obviously a major role in any general flow configuration.
However, at least through the turbulent heat flux and the production of en-
thalpy variance, the fluctuations of velocity play a critical role in the profile of
mean and root-mean-square of temperature.
As outlined in Fig 5.11, the mean temperature and its fluctuations are tightly
connected through the turbulent heat flux and the production term in the
enthalpy variance balance equation. Similarly, the mean temperature field and
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Figure 5.12: Profiles of mean temperature scaled by wall temperatures (a) and in
wall units (b) on the cold side (blue color) and hot side (red color) in cases A (thin
plain line), A_R (thick plain line), B (thin dashed line) and B_R (thick dashed line).

the mean radiative power strongly depend on each other. The aforementioned
modification of production in Eq. 5.10 is an indirect effect of radiation involving
the two-way interaction between PR, T and T ′.
Another indirect effect of radiation on the mean temperature comes from the
interaction between fluctuations of temperature and radiation. Accounting for
radiation makes additional loss terms appear in the balance equations of en-
thalpy variance and turbulent heat flux, which makes turbulent transport of
the mean temperature field less efficient. The variations of radiative fields are
also determined from the level of mean temperature and mean radiative fields.
Finally, it has been observed that the influence of fluctuations of the tempera-
ture and radiative fields is not noticeable on the mean radiative field.

5.4.2 Effects of wall temperature difference and Reynolds num-
ber

In this section, cases A, B and C are compared with and without accounting for
radiation to understand the effects of wall temperature difference and Reynolds
number. Analysis of the results focuses on the turbulent heat flux, the enthalpy
root-mean-square and the main contributing terms in their balance equations.
A new scaling is proposed to improve collapsing of several profiles.

5.4.2.1 Effect of wall temperature difference

In comparison to the cases A and A_R, cases B and B_R are characterized by
a large wall temperature difference (see Tab. 5.1). Mean temperature profiles of
these four cases are shown in Fig. 5.12. Small differences between cases without
radiation are due to noticeable effects of mean density variations. When ac-
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Figure 5.13: Profiles of turbulent kinetic energy on the cold side (blue color) and hot
side (red color) in cases A (thin plain line), A_R (thick plain line), B (thin dashed
line) and B_R (thick dashed line). (a) With standard wall-scaling. (b) With semi-local
scaling.

counting for radiation, the modification of the mean temperature in both T and
T
+

profiles is stronger between case B and B_R because of the amplification
of radiation at high temperature.
Profiles of mean velocity reported in Ref. (Zhang et al. 2013) exhibit an more
significant impact of the mean density on cases B and B_R. The turbulent

kinetic energy in wall units k+ = 0.5 ũ′′i u
′′
i /u

2
τ is plotted in Fig. 5.13 (a). Simi-

larly, the variations of mean density prevent collapsing of the profiles, especially
when comparing cases with small and large wall temperature difference. The
effect of radiation through the change in mean temperature profile and, hence,
mean density is small.
In order to improve the agreement between profiles of different cases, an al-
ternative semi-local scaling is applied where non-uniformity of gas properties
is considered by using their local values (Huang et al. 1995; Coleman et al.
1995; Dailey et al. 2003). The corresponding friction velocity u∗τ and friction
temperature T ∗

τ are then defined as:

u∗τ =

(
τw
ρ

)1/2

, T ∗
τ =

|qcdw |
ρ cp u∗τ

, (5.26)

and the non-dimensional wall distance y∗ writes

y∗ =
ρ y u∗τ
µ

. (5.27)

As shown in Fig. 5.13 (b), collapsing of profiles of turbulent kinetic energy
k∗ scaled by the factor u∗τ

2 is significantly improved, including cases with ra-
diation. Scaling and collapsing of profiles enables some cases variability to be
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Figure 5.14: Profiles of turbulent heat flux (a) and production (b), pressure term (c)
and correlation between velocity and radiative power (d) in semi-local scaled units on
the cold side (blue color) and hot side (red color) in cases A (thin plain line), A_R
(thick plain line), B (thin dashed line) and B_R (thick dashed line).

filtered out and to validate whether the same physical interpretation can be
use to understand the shape of the profiles. Here, it confirms that radiation
affects turbulent kinetic energy indirectly through the change of temperature-
dependent gas properties. Henceforward, semi-local scaling is used to normalize
turbulent quantities in replacement of standard wall-scaling.
Using semi-local scaling, the scaled turbulent heat flux,

ρv′′h′′ ∗ =
ρṽ′′h′′

ρu∗τ cp T ∗
τ

=
ρṽ′′h′′

|qcdw |
(5.28)

is not different from the one using standard wall-scaling. Profiles of ρv′′h′′ ∗

are compared in Fig. 5.14 (a). Good agreement between results of A and B is
obtained. However, cases with radiation A_R and B_R are quite different nor
do they match each other. Radiation effects are strongly dependent on tem-
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perature and non-linear, which explains why the deviation from cases without
radiation is larger in case B_R because of its higher temperatures.
The three dominant terms in the balance equation (Eq. 5.14) of the turbulent
heat flux, i.e. production, pressure and radiation terms, are also reported
in Fig. 5.14. Following the semi-local scaling approach, these quantities are
scaled by |qcdw |τw/µ. The collapsing of production and pressure-term profiles
corresponding to cases A and B is good except for the hot side in case B which
presents a small difference that could not be corrected entirely by semi-local
scaling.
In cases with radiation, the scaled production that is related to −ṽ′′v′′

∗ dh̃∗

dy∗

is smaller in magnitude. Since, as shown for the turbulent kinetic energy k,
the semi-local scaled root-mean-square of wall-normal velicity ṽ′′v′′

∗
is barely

affected by radiation through the mean density variation, the modification of
the production magnitude is due to the change of scaled mean enthalpy gra-

dient dh̃∗

dy∗ which is tightly connected to dT
+

dy+ . Looking at the gradient of the

scaled mean temperature T
+

in cases with radiation for y+ between 10 and
30 in Fig. 5.12 (b), where the production peaks, the same variations between
different cases are almost retrieved for the peak value of scaled production in
Fig. 5.14 (b). This demonstrates the major role of the wall-scaled enthalpy
gradient in this term.
As for the pressure term in Fig. 5.14 (c), since it mostly compensates production
for y∗ < 100, the same trend is retrieved. The scaled correlation between
wall-normal velocity and radiative power that appears in Eq. 5.14 is shown in
Fig. 5.14 (d). For both A_R and B_R, this term does not vary much beyond
y∗ = 50 and is larger in case A_R. The explanation is not obvious as the
magnitude of this radiative loss term is determined by multiple phenomena as
described in section 5.4.1.4.

5.4.2.2 Radiation-based scaling

It has been shown that semi-local scaling is working well for cases without ra-
diation by accounting for the effects of variable flow properties. However, it is
not able to handle that, under different conditions, radiation changes in magni-
tude and in nature (gas-gas versus gas-wall contributions (Zhang et al. 2013)).
Consequently, each case appears as different from the others although the same
physical interpretation might stand to explain the shape and magnitude of the
observed profiles as seen for the production term.
In order to derive a new scaling that could account for the variability of ra-
diation effects, let’s first consider the mean energy balance equation without
radiation:

qcdy (Y ) + ρṽ′′h′′(Y ) = qcdw . (5.29)

Consequently, outside of the viscous sublayer, where the conductive heat flux
is negligible, the turbulent heat flux is the same as the wall conductive flux qcdw .
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Figure 5.15: Profiles of turbulent heat flux (a) and production (b), pressure term (c)
and correlation between velocity and radiative power (d) using radiation-based scaling
on the cold side (blue color) and hot side (red color) in cases A (thin plain line), A_R
(thick plain line), B (thin dashed line) and B_R (thick dashed line).
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It is then the right quantity for scaling of the turbulent heat flux and to define
the friction temperature. Similarly, when radiation is taken into account, the
mean energy balance equation in Eq. 5.13 is written as

qcdy (Y ) + ρṽ′′h′′(Y ) = qcdw −∆qR(Y ) ≡ q†(Y ) , (5.30)

where the change of radiative flux in respect to the wall radiative flux ∆qR(Y )
is given by

∆qR(Y ) = qR(Y )− qRw . (5.31)

The definition ∆qR(Y ) automatically suppress any wall-wall radiative contri-
bution that, regarding the fluid, is a passive energy transfer. For cases involving
radiation, the sum of conductive and turbulent heat flux q†(Y ) is a function of
wall distance whose shape is determined by the intensity and nature of radiative
energy transfer. For cases without radiation, q†(Y ) turns back to the wall con-
ductive flux. Normalizing by |q†(Y )| the turbulent heat flux, the corresponding

profiles of ρv′′h′′ † are shown in Fig. 5.15 (a). In comparison to Fig. 5.14 (a), the
agreement between the different cases is significantly improved. Thanks to the
radiation-based scaling, the scaled turbulent heat flux represents the relative
strength of turbulent transport compared to conduction for all cases. That is
why all profiles now present the same shape and reach a plateau. The remaining
discrepancies concern the level of this plateau that is related to the remaining
contribution of the conductive heat flux which, in the studied configurations
with hot and cold walls, does not tend to zero in the core of the channel. The
level of the plateau is then determined by the mean temperature gradient at
the center of the channel and is different for each case. It is expected that, for
symmetrical channel flows with the same wall temperatures or external bound-
ary layers, this effect is not present, making the proposed scaling even more
efficient.
The three main terms in the balance equation of turbulent heat flux are also
shown in Fig. 5.15, where production, pressure and radiation terms are now
scaled by |q†(Y )|τw/µ. The agreement between profiles is also much better
when the radiation-based scaling is considered. In order to understand why,
the scaled production term is written as

−ρv′′v′′ d h̃
d y

|q†(Y )|τw/µ
≈ −ρṽ′′v′′

∗
Pr
(
1− ρv′′h′′ †

)
, (5.32)

where d h̃
d y ≈ cp

d T̃
d y is replaced by introducing the mean energy balance equation.

The improved agreement between scaled production profiles is then due to
the same agreement on the turbulent heat flux. Discrepancies are nonetheless

more noticeable in Fig. 5.15 (b) because the term
(
1− ρv′′h′′ †

)
makes the

aforementioned plateau mismatch more visible. As the radiation-based scaling
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Figure 5.16: Profiles of enthalpy rms (a) and production (b), molecular dissipation
(c) and radiative dissipation (d) using semi-local scaling on the cold side (blue color)
and hot side (red color) in cases A (thin plain line), A_R (thick plain line), B (thin
dashed line) and B_R (thick dashed line).

has improved the collapsing of production profiles, its main counter-balancing
terms that are the pressure and radiation terms benefit from the same effect
although it is not striking for the latter.
The enthalpy root-mean-square and the main terms in the enthalpy variance
balance equation (Eq. 5.10), production, molecular and radiative dissipations,
are shown in Fig. 5.16 using semi-local scaling (the transport equation terms

are scaled by qcdw
2
/µ). Once again, the good collapsing of profiles corresponding

to cases without radiation demonstrate the efficiency of semi-local scaling to
account for variable flow properties effects. Nonetheless, when radiation is
taken into account, rms of enthalpy, its production and molecular dissipation
are totally different. As shown previously, then deviation from cases without
radiation is stronger for higher temperatures.
The same results using radiation-based scaling are presented in Fig. 5.17. Defin-
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Figure 5.17: Profiles of enthalpy rms (a) and production (b), molecular dissipation
(c) and radiative dissipation (d) using radiation-based scaling on the cold side (blue
color) and hot side (red color) in cases A (thin plain line), A_R (thick plain line), B
(thin dashed line) and B_R (thick dashed line).
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ing a radiation-based friction temperature,

T †
τ =

|q†(Y )|
ρ cp uτ

, (5.33)

the normalized enthalpy h†
rms is scaled by cpT

†
τ while the balance equation terms

are scaled by the quantity q†(Y )2/µ. The radiation-based scaling allows similar
shapes of h†

rms to be retrieved for all cases. Cases with and without radiation
seem to collapse together separately although case B_R deviates from case
A_R for y∗ > 75. As the proposed radiation-based scaling mainly accounts
for variations of the turbulent heat flux profiles, the fact that the enthalpy
rms is not directly expressed as a function of the turbulent heat flux by a
simple expression can explain this discrepancies. On the other hand, the scaled
production that writes

−ρṽ′′h′′ d h̃
d y

q†(Y )2/µ
≈ −ρv′′h′′ † Pr

(
1− ρv′′h′′ †

)
, (5.34)

is related to the turbulent heat flux and the obtained agreement between pro-
duction profiles in Fig. 5.17 (b) is good. Production of enthalpy variance is
mainly compensated by molecular and radiative dissipations which then in-
dividually show a fair agreement of their profiles using the new scaling. As
radiation introduces a new significant loss term in the balance equation of en-
thalpy variance, the agreement between profiles of molecular dissipation seems
only valid for cases without and with radiation separately. However, switching
progressively from a case without radiation to cases with more and more sig-
nificant radiative effects, one would expect a continuous transition. This trend
is more visible in other cases and is detailed in the next section on Reynolds
number effect.
Finally, it should be mentioned that the use of the radiation-based friction tem-
perature T †

τ is not able to improve the agreement between mean temperature
profiles (see Fig. 5.18). Like the enthalpy root-mean-square, the mean tempera-
ture cannot be directly expressed as a function of the turbulent heat flux. Intro-
ducing the turbulent thermal diffusivity, the turbulent heat flux is in fact related
to the gradient of mean temperature. Theses quantities can alternatively be
connected through the mean energy balance equation in Eq. 5.30. Therefore,
although the radiation-based friction temperature may properly scale the gra-
dient of mean temperature, its dependence on wall distance prevents it from
appearing straightforwardly in the expression of the mean temperature.

5.4.2.3 Effect of Reynolds number

Figure 5.19 compares cases A and A_R to cases C and C_R, characterized
by a larger Reynolds number, interns of mean temperature profiles. On the
one hand, radiation effects are reduced by the increased influence of turbulent
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Figure 5.18: Profiles of mean temperature scaled by the radiation-based friction tem-
perature T †

τ on the cold side blue color) and hot side (red color) in cases A (thin plain
line), A_R (thick plain line), B (thin dashed line) and B_R (thick dashed line).
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Figure 5.19: Profiles of mean temperature scaled by wall temperatures (a) and in wall
units (b) on the cold side (blue color) and hot side (red color) in cases A (thin plain
line), A_R (thick plain line), C (thin dashed-dotted line) and C_R (thick dashed-
dotted line).
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Figure 5.20: Profiles of turbulent heat flux (a) and production (b), pressure term (c)
and correlation between velocity and radiative power (d) in semi-local scaled units on
the cold side (blue color) and hot side (red color) in cases A (thin plain line), A_R
(thick plain line), C (thin dashed-dotted line) and C_R (thick dashed-dotted line).



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 136 — #136
✐

✐

✐

✐

✐

✐

136 5.4. RESULTS

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

y∗

−
ρ
v
′′
h
′′
†

(a)

0 50 100 150 200
−0.1

−0.08

−0.06

−0.04

−0.02

0

y∗

P
ro

du
ct

io
n

(b)

0 50 100 150 200
0

0.02

0.04

0.06

y∗

P
re

ss
ur

e
te

rm

(c)

0 50 100 150 200
0

0.02

0.04

0.06

y∗

R
ad

ia
ti
on

te
rm

(d)

Figure 5.21: Profiles of turbulent heat flux (a) and production (b), pressure term (c)
and correlation between velocity and radiative power (d) using radiation-based scaling
on the cold side (blue color) and hot side (red color) in cases A (thin plain line), A_R
(thick plain line), C (thin dashed-dotted line) and C_R (thick dashed-dotted line).
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Figure 5.22: Profiles of enthalpy rms (a) and production (b), molecular dissipation
(c) and radiative dissipation (d) using semi-local scaling on the cold side (blue color)
and hot side (red color) in cases A (thin plain line), A_R (thick plain line), C (thin
dashed-dotted line) and C_R (thick dashed-dotted line).
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Figure 5.23: Profiles of enthalpy rms (a) and production (b), molecular dissipation
(c) and radiative dissipation (d) using radiation-based scaling on the cold side (blue
color) and hot side (red color) in cases A (thin plain line), A_R (thick plain line), C
(thin dashed-dotted line) and C_R (thick dashed-dotted line).
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transport, which makes the temperature profile in case C_R closer to those of
cases without radiation. On the other hand, a modification of the nature of
radiative energy transfer has also been observed (Zhang et al. 2013).
Regarding the profiles of mean turbulent heat flux and its balance equation
main terms shown in Fig. 5.20 using semi-local scaling, good agreement of
profiles without radiation is obtained while results of case C_R sit between
profiles of cases without radiation and the ones of case B_R because of the
weakened radiative effects at higher Reynolds number. The same profiles are
reported in Fig. 5.21 using the radiation-based scaling. Agreement between
profiles is improved although results for case C_R are still noticed to remain
between case B_R and case A/B.
Similar observations are obtained for the enthalpy root-mean-square and for its
production and dissipation terms shown in Fig. 5.22 and 5.23 using semi-local
scaling and radiation-based scaling, respectively. Contrary to the comparison of
cases A_R and B_R, it clearly appears in Fig. 5.23 (d) for the scaled molecular
dissipation that there is a transition between cases without radiation and cases
with stronger and stronger radiative energy transfer. Consequently, although
profiles of production correctly collapse with the proposed radiation-based scal-
ing, its necessary splitting into two main terms, when radiation is taken into
account, prevents collapsing for molecular and radiative dissipation profiles sep-
arately. The balance between molecular and radiative dissipations is controlled
by the importance of radiation so that a smooth transition between profiles of
different cases can be expected when radiative energy transfer increases from
being negligible to strongly dominant.
With the same arguments, the profiles of pressure and radiation terms in the
balance equation of the turbulent heat flux are not supposed to entirely collapse
and the balance between the two terms is determined by the weight of radiation
effects.

5.4.3 Effects on the turbulent Prandtl number

Previously results have outlined the effect of radiation on the turbulent heat
flux. In order to model turbulent heat transfer, the turbulent Prandtl number
Prt is a very important quantity that is extensively used to relate the thermal
eddy diffusivity at to the turbulent eddy viscosity νt. It is defined as

Prt =
νt
at

=
−ρũ′′v′′

−ρṽ′′T ′′

dT/dY
du/dY

. (5.35)

The definition could alternatively be based on the gradient of Favre average
of temperature and velocity. As mentioned earlier, the difference between
Reynolds and Favre averaging approaches is small in the studied conditions.
The profiles of Prt are presented in Fig. 5.24 for all studied cases. The profile
of the turbulent Prandtl number in boundary layers has been widely studied
(Kays 1994) and results for cases without radiation are consistent with channel
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Figure 5.24: Profiles of the turbulent Prandtl number on the cold side (blue color)
and hot side (red color) in cases A (thin plain line), A_R (thick plain line), B (thin
dashed line), B_R (thick dashed line), C (thin dashed-dotted line) and C_R (thick
dashed-dotted line).
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Figure 5.25: Profiles of time scale ratio R in cases A (thin plain line) and A_R.
In case A_R, different definitions of the thermal time scale are based on: Molecular
dissipation only (thick plain line); Radiative dissipation only (thick dashed line); Both
dissipation terms (thick dashed-dotted line).
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Figure 5.26: Comparison of predicted turbulent Prandtl number with DNS results
in cases A and A_R (only the cold side is shown). Case A: DNS (filled circles);
Model A1 (thin dotted line); Model B1 (thin dashed line). Case A_R: DNS (empty
circles); Model B1 (thick dashed line); Model A2 (thick dotted line); Model B2 (thick
dashed-dotted line).

flow simulations in the literature with air (Pr= 0.71) and fixed temperature
at the wall (Kim and Moin 1987; Kong et al. 2000): The value is close to
unity at the wall and decreases along the wall-normal distance, reaching an
asymptotic value for high Reynolds number flows. Deviation of case B from
cases A and C is probably due to mean density effects. Nonetheless, cases
with radiation exhibit a much stronger difference where the obtained profiles of
turbulent Prandtl number are all above the standard ones without radiation.
Profiles for cases A_R, B_R and C_R on different sides of the channel are all
different from each other but have the same pattern: Prt decreases from a value
larger than unity at the wall until y∗ ≈ 15, then increases between y∗ = 15 and
75 to reach a plateau beyond. The value y∗ = 75 also corresponds to the value
where the radiation-based turbulent heat flux reaches a plateau (see Figs. 5.14

and 5.21). This is not surprising since Prt is related to ρv′′h′′ †:

Prt ∼
dT/dY

−ρṽ′′T ′′
∼

(
1− ρv′′h′′ †

)

−ρv′′h′′ †
(5.36)

Finally, the effects of Reynolds number and wall temperature difference are
consistent with previous results: Case C_R is closer to results without radiation
while the hot wall profile in case B_R presents the largest difference.
In Reynolds Averaged Numerical Simulations (RANS), the turbulent Prandtl
number is either taken as constant or calculated by a more comprehensive
model. In the latter, the model usually uses the time scale ratio R = τt/τu,
where the velocity turbulent time scale τu and thermal turbulent time scale τt
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are defined as

τu =
k

ǫ
, τt =

h̃′′h′′

2ǫt
, (5.37)

and ǫ and ǫt are dissipation terms of the turbulent kinetic energy k and enthalpy
variance, respectively. When radiation is accounted for, there are two different
types of dissipation, molecular and radiative dissipation, so that three different
thermal time scales could be defined: the first based on molecular dissipation
only, the second based on radiative dissipation only and the third one based on
the sum of theses two terms. The different corresponding time scale ratios are
shown in Fig. 5.25 in case A and A_R. The common time scale ratio based
on thermal molecular dissipation is larger in case A_R while the one based
on radiative dissipation is much smaller. Finally, the combination of the two
dissipative terms in the definition of R leads to the shortest thermal turbulent
time scale. As radiation dissipation dominates, this latter definition is close to
the one based on radiative dissipation only.
Different models for the thermal turbulent diffusivity at, which takes the time
scale ratio R as an input and are then able to predict variable turbulent Prandtl
number, are now considered. These models are completed with four transport
equations to compute the different turbulent time scales. Here, DNS data are
used to assess their accuracy. The turbulent diffusivity at is modeled as

at = Cλ k τm fλ, (5.38)

where τm is a mixed time scale expressed from τu and R, Cλ a model constant
usually set to retrieve the asymptotically constant turbulent Prandtl (∼ 0.85)
in air at high Reynolds number and fλ is a damping function accounting for low-
Reynolds effects very close to the wall. Two formulations for τm are considered.
The first one (referred as model A) used in Refs. (Nagano and Kim 1988;
Soufiani et al. 1990) writes

τm ∼ τuR
m with m = 0.5, (5.39)

while the second formulation (referred as model B) used in Ref. (Abe et al.
1995) can be written

τm ∼ τu
R

R+ Cm
. (5.40)

For each of these models, the thermal turbulent time scale can be evaluated
either from the molecular dissipation only (modeled referred and A1 and B1)
or from the total dissipation, sum of molecular and radiative dissipative terms
(modeled referred as A2 and B2). The latter approach was already proposed
in Ref. (Ammouri et al. 1994). Models A1, A2, B1 and B2 are a priori tested
using data from DNS to compute at. Models constant values and damping
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functions for A1 and A2 are taken from Ref. (Soufiani et al. 1990) while, for
models B1 and B2, they are taken from Ref. (Abe et al. 1995). The predicted
profiles of at are combined with the turbulent viscosity profiles extracted from
DNS results to compute profiles of turbulent Prandtl number Prt that are given
in Fig. 5.26.
In case A, without radiation, predictions of models A1 and B1 are similar and
tend to an asymptotic value of Prt. Agreement with the DNS data is correct
although the turbulent Prandtl number obtained in DNS does not reach a
plateau and keeps decreasing. This behavior can be attributed to low-Reynolds
effects in the core of the channel but also to the specific configuration of different
wall temperatures, which leads to an increase of enthalpy fluctuations, starting
at y+ ≈ 100, in the center of the channel (see Fig. 5.3).
With radiation, results of model B1 (and A1, not shown) shows that consid-
ering only the molecular dissipation significantly underestimates the turbulent
Prandtl number and even predicts the wrong trend, the predicted values of Prt
being smaller. On the other hand, when both molecular and radiative dissipa-
tions are used in the definition of the thermal time scale, the turbulent Prandtl
number predicted by models A2 and B2 is correctly boosted by radiation effects
but the deviation from the DNS profile remains important.
Using previous results with the radiation-based scaling, another model for Prt
is proposed to account for radiation effects in turbulent boundary layers. In
section 5.4.2, it has been demonstrated that the non-dimensional turbulent heat
flux, when normalized with radiation-based scaling, agree well between different
cases with and without radiation, i.e.,

ρv′′h′′ †

R ≈ ρv′′h′′ †

0, (5.41)

where subscript indices R and 0 correspond to quantities in cases with and
without radiation, respectively. For cases with radiation, the thermal turbulent
diffusivity can then be written

at,R =
1

ρR cpR

ρv′′h′′
R

dTR/dy
≈ 1

ρR cpR

|q†R(Y )|
dTR/dy

ρv′′h′′ †

0 (5.42)

For cases without radiation, ρv′′h′′ †

0 is expressed as

ρv′′h′′ †

0 =
ρv′′h′′

0

|qcdw,0|
=

at,0
a0 + at,0

dT 0/dy

|dT 0/dy|
=

νt,0

a0 Pr0t + νt,0

dT 0/dy

|dT 0/dy|
, (5.43)

where a0 is the thermal diffusivity. From Eqs. (5.42) and (5.43), the turbulent
Prandtl number Prt,R when radiation effects are taken into account can be
calculated as

Prt,R =
νt,R
at,R

= ρR cpR
|dTR/dy|
|q†R(Y )|

νt,R
(
a0 Pr0t + νt,0

)

νt,0
. (5.44)
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Figure 5.27: Profiles of modeled turbulent Prandtl number on the cold side (a) and
hot side (b) compared to DNS in cases A_R (DNS: Circles; Model: Plain line) , B_R
(DNS: Down-pointing triangles; Model: Dashed line) and C_R (DNS: Up-pointing
triangles; Model: Dotted line).

Neglecting radiation effects on the velocity field, νt,0 can then be replaced with
νt,R. Assuming also that aR ≈ a0, finally gives

Prt,R = ρR cpR
|dTR/dy|
|q†R(Y )|

(
aR Pr0t + νt,R

)
, (5.45)

Effects of radiation are included through q†R(Y ) which is related to the radia-
tive flux and through the change of the mean temperature profile in the term
|dTR/dy|. When no radiative energy transfer is considered, the previous re-
lation simplifies to Pr0t , profile of turbulent Prandtl number in cases without
radiation. This last piece of the model can either be given by an algebraic
formula to predicted by a more complex model. Here, the formula proposed in
Ref. (Kays 1994) is considered:

Pr0t =
1

0.5882 + 0.228(νt,R/νR)− 0.0441(νt,R/νR)2
[
1− exp

(
−5.165
νt,R/νR

)] . (5.46)

Equations 5.45 and 5.46 form a turbulent Prandtl model for turbulent boundary
layers with radiation that can be used in RANS simulations but also in wall-
model for large eddy simulations. Using DNS data to evaluate Eq. 5.45, results
of the proposed model are compared with DNS results in Fig. 5.27 for all
studied cases. The agreement of the model with DNS is impressive, showing
the importance of the radiation-based scaling.
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5.5 Conclusion

Several direct numerical simulations of turbulent channel flows composed of
burnt gases under different conditions (Reynolds number, wall temperature
difference) with and without radiative energy transfer, computed with a Monte-
Carlo method, are analyzed. Beside the previously observed modification of the
mean temperature profiles and associated wall laws, fluctuations of temperature
and the turbulent heat transport are significantly reduced by radiation effects
in the studied conditions for two main reasons. On the one hand, radiation
indirectly influence production terms that appear in the balance equation of
these quantities by changing gradients of the mean temperature field. On the
other hand, the additional radiative power source term in the energy balance
equation creates new terms in transport equations of enthalpy variance and
turbulent heat flux. The two new terms, correlations between radiative power
and enthalpy fluctuations and between radiative power and wall-normal veloc-
ity fluctuations, appears as loss terms in these equations. There is therefore
a strong interaction between the fluctuations of radiative power and of tem-
perature, and the latter then influences the mean temperature field through
turbulent transport. However, the widely studied impact of turbulent fluctua-
tions on the mean radiative power is negligible in the considered channel flows
where no combustion takes place.
The impact of radiation on the turbulent heat flux, the enthalpy variance and
their transport equation terms is shown to be different in each case, for different
wall temperature and different Reynolds. The usual profiles collapsing of wall-
scaled variables under these different conditions then falls apart when radiation
is taken into account. This effect is corrected by introducing a radiation-based
scaling instead. Good agreement between profiles of scaled turbulent heat flux
and production terms is obtained for all studied cases. The balance between
scaled molecular dissipation (or pressure term) and radiation loss term, that
both compensate production, remains determined by the importance of radia-
tive energy transfer.
Finally, using radiation-based scaling, a model for the turbulent Prandtl number
in boundary layers with radiation effects is proposed and validated. This model
can be used in RANS or wall-modeled LES when radiation is able to modify
the boundary layer structure.
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146 5.6. APPENDIX: LEVEL OF TEMPERATURE FLUCTUATIONS IN

THERMAL BOUNDARY LAYERS

5.6 Appendix: Level of temperature fluctuations in
thermal boundary layers

In a turbulent thermal boundary layer, the peak of temperature rms is located
in the buffer layer. The peak value and position have been shown to depends
on both Reynolds number and Prandtl number (Kim and Moin 1987; Kawa-
mura et al. 1998; Kawamura et al. 1999; Abe et al. 2004). In air with
Pr= 0.71, optimum value of temperature rms in wall units and its position
become Reynolds-independent at sufficiently high Reynolds numbers (Kasagi
et al. 1992; Kawamura et al. 1998; Kawamura et al. 1999; Kong et al. 2000;
Abe et al. 2004). Therefore, the maximum temperature rms writes

Tmax
rms = Trms(y

+
BL(Re,Pr)) = T+,max

rms (Re,Pr)Tτ , (5.47)

where y+BL is the position of the peak and T+,max
rms is the maximum temperature

rms, both in wall units. For air, it is found that y+BL ≈ 12 and T+,max
rms ≈ 2.5.

Common approximations of the friction coefficient and Nusselt number in ducts
are

cf =
τw
ρu2b

≈ αRe−0.2 , Nu =
|qcdw |Dh

|Tw − Tb|λ
≈ βRe0.8Pr0.5 (5.48)

where ub is the bulk velocity, Tb the bulk temperature, Dh the hydraulic diam-
eter of the duct and Re= ρubDh/µ. The constant coefficients are α = 0.023
and β = 0.022 in air. The friction temperature can then be expressed as

Tτ = α−0.5βRe−0.1Pr−0.5|Tw − Tb|. (5.49)

As the friction velocity uτ increases faster with the Reynolds number than
the conductive heat flux, the friction temperature decreases with the Reynolds
number and so is the maximum temperature rms. The relative variation of
temperature is

Tmax
rms

T (y+BL)
=

T+,max
rms (Re,Pr)

sign(Tb − Tw)T
+
(y+BL(Re,Pr)) + Tw

Tτ

. (5.50)

Introducing Eq. 5.49, it is found that

Tmax
rms

T (y+BL)
=

T+,max
rms (Re,Pr)

sign(Tb/Tw − 1)T
+
(y+BL(Re,Pr)) + α0.5β−1Re0.1Pr0.5|Tb/Tw − 1|−1

.

(5.51)

Finally, in air, the following result is obtained for the relative variation of
temperature:

Tmax
rms

T (y+BL)
=

2.5

6.9 sign(Tb/Tw − 1) + 5.8 Re0.1|Tb/Tw − 1|−1
, (5.52)
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Figure 5.28: Relative variation of temperature Tmax
rms /T (y

+

BL) as a function of the
Reynolds number for several values of Tb/Tw.

where T
+
(y+BL = 12) ≈ 6.9 is calculated from the formula proposed by Kader

(1981). Equation 5.52 is plotted in Fig. 5.28 for several values of the ratio Tb/Tw

which is less (resp. greater) than unity in heating (resp. cooling) systems. The
level of temperature fluctuations decreases with the Reynolds number in all
cases so that it can be expected to remain below 30% in all turbulent boundary
layers in air.
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Chapter 6

A wall model for LES

accounting for radiation effects

As detailed in chapter 4, temperature profile in turbulent boundary layer
and the corresponding wall conductive heat flux are strongly modified by
radiation. In order to take into account this effect of radiation, a new
wall model for large eddy simulation (LES) is proposed in this chapter.
After a separate validation of different components of the proposed
wall model, full-coupled wall-model LES/Monte-Carlo simulation of
turbulent channel flow is performed. And the obtained results are
compared with DNS/Monte-Carlo results from chapter 4 to assess the
accuracy of the new model. This study is detailed in the following
submitted publication: Y.F. Zhang, R. Vicquelin, O. Gicquel and
J. Taine (submitted). A wall model for LES accounting for
radiation effects. International Journal of Heat and mass
Transfer (2013).

An additional section (Sec. 6.9) then presents results of the de-
veloped wall model combined with the turbulent Prandtl model proposed
in chapter 5. Finally, as in direct numerical simulations, the bulk
Reynolds number in LES is controlled by the method detailed in
Appendix D.
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150 6.1. ABSTRACT

A wall model for LES accounting for

radiation effects
Y. F. Zhang, R. Vicquelin, O. Gicquel and J. Taine.

International Journal of Heat and mass Transfer (submitted)

6.1 Abstract

In several conditions, radiation can modify the temperature law in turbulent
boundary layers. In order to predict such an effect and the corresponding
change in conductive heat flux at the wall, a new wall model for large-eddy
simulation (LES) is proposed. The wall model describes the inner boundary
layer which cannot be resolved by the LES. The radiative power source term is
calculated from an analytical expression of the intensity field within the inner
layer. In the outer layer, wall stress and conductive heat flux predicted by
the wall model are fed back to the large-eddy simulation which is coupled to a
reciprocal Monte-Carlo method to account for radiation.
Several mixing-length models and turbulent Prandtl number formula are in-
vestigated. Then, the level of accuracy of the discretized radiation analytical
model is investigated. Finally, fully coupled results are compared with Direct
Numerical Simulation/Monte-Carlo results of turbulent channel flows at differ-
ent Reynolds number, wall temperature and pressure conditions. The proposed
wall model greatly improves the accuracy of the predicted temperature profiles
and wall conductive heat fluxes compared to approaches without radiation ac-
counted for in the inner layer.
Keyword: Wall model, LES, radiation, temperature, channel flow

6.2 Introduction

Fully resolved Large Eddy Simulation (LES) of the inner layer of a wall-bounded
turbulent flow requires highly resolved grids since the integral length scale be-
comes of the same order of magnitude as viscous scales in the close vicinity
of the wall. The computational cost is then proportional to Re2.4 (Piomelli
2008). Hence, fully resolved LES is impracticable for wall-bounded flows at
high Reynolds number, encountered in most of engineering applications, due to
the prohibitive cost. Several kinds of approaches are commonly used in order
to alleviate these difficulties: A wall model prescribes the correct wall shear
stress to the LES that is too poorly resolved close to the wall to estimate it
accurately.
In hybrid RANS/LES, the simulation is switched from RANS in the inner layer
to LES in the outer layer by the modification of the length scales (Spalart
et al. 1997; Nikitin et al. 2000) or the use of a blending function (Hamba
2003; Shur et al. 2008) in the turbulent transport model. In other wall models
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for LES, the wall stress is estimated by using an algebraic wall function or by
locally solving a simplified RANS equation. These approaches correspond to
equilibrium-stress model and Two-Layer Model (TLM), respectively.
The equilibrium-stress model has been firstly proposed by Deardorff (1970). It
has then been successfully applied to turbulent channel flows and annuli flows
(Schumann 1975). However, this model is restricted to simple flows, since it
implies the existence of a logarithmic layer. In order to widen its use to more
complex flows, the original equilibrium model has been modified by considering
inclination of the elongated structure in near wall region (Piomelli et al. 1989),
pressure gradient (Wang 1999; Duprat et al. 2011), buoyancy (Moeng 1984) or
chemistry (Cabrit and Nicoud 2009).
In two-layer models, turbulent boundary layer equations are resolved on a local
embedded grid (Balaras et al. 1996). This approach has been extensively
applied and assessed in different configurations (Cabot and Moin 2000; Wang
and Moin 2002; Gungor and Menon 2006). Moreover, since all wall modeled
LES unavoidably suffers from the numerical and sub-grid error at the first grid
point close to a wall (Cabot and Moin 2000; Nicoud et al. 2001), an effective
strategy has recently been proposed by Kawai et al. (Kawai and Larsson 2012)
to increase the accuracy of the information transmitted from LES in the outer
layer to the inner thin turbulent boundary layer equations.
A more detailed description of wall models for velocity is given in Refs. (Pi-
omelli and Balaras 2002; Piomelli 2008; Cabot and Moin 2000). In order to
deal with turbulent heat transfer and predict wall heat fluxes accurately, these
wall models have to be extended to describe the thermal boundary layer as in
(Benarafa et al. 2007; Rani et al. 2009). To the best of our knowledge, no wall
model for LES has accounted for radiation effects, although radiation strongly
modifies the temperature field in many applications, particularly in combustion
processes at high pressure (Gupta et al. 2009; Soufiani et al. 1990; Ghosh et al.
2011). It has been recently shown (Zhang et al. 2013) in coupled DNS-Monte
Carlo simulations that radiation can significantly influence the temperature
wall-law and the corresponding wall conductive heat flux. The temperature
law is very different from the usual logarithmic law for strong radiation effects
and has been observed to differ significantly under different radiative conditions.
It is therefore unrealistic to hope for a general algebraic wall-law to account
for these effects and a two-layer approach is then chosen. Besides, in order
to predict the radiative field outside of the inner boundary layer, a reciprocal
Monte-Carlo method is considered. The method is accurate and can be applied
to complex geometries so that the proposed wall-model and its coupling with
LES and the Monte-Carlo method remain general.
The objective of this study is to account for radiation effects in the inner layer
wall model to accurately predict wall stress and heat flux. Here, a two-layer
model is retained where, in the outer layer, LES is coupled to a radiation Monte
Carlo method as in Ref. (Zhang et al. 2013). Coupled DNS-Monte Carlo
results of Ref. (Zhang et al. 2013) are considered to validate the proposed
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LES wall model. The fluid and radiation models in both layers are detailed
in Sec. 6.3, followed by a description of coupling between the inner and outer
layers . Separate validations of the different model components are presented
in Sec. 6.4. Finally, in Sec. 6.5, fully coupled results assess the model accuracy.

6.3 Wall-modeled LES coupled to radiation

In all fluid simulations, LES is here carried out in the outer layer and the
boundary inner layer is modeled by solving 1D balance equations. For radiation,
a reciprocal Monte Carlo approach is implemented to estimate the radiative
power at all LES grid points and an analytical radiative 1D model is developed
for the inner layer. For both radiation and fluid models, a particular care is
brought to the boundary conditions, especially between the inner and outer
layers.

6.3.1 Fluid model

As shown in Fig. 6.1, an embedded grid is used in the inner layer. The inner
layer model uses the velocity ũyw and temperature T̃yw values computed by the
LES model at a particular point characterized by the wall distance yw. The
wall stress τw and conductive heat flux qcdw computed by the inner layer model
are then sent back to the LES solver.

wall model

LES, Monte-Carlo

y wall model grids

LES grid

yw

ũywτw

T̃ywqcdw

0

Figure 6.1: Scheme of wall model grids embedded within the LES grid. In this
example, the wall distance yw for the coupling point corresponds to the first LES grid
point off the wall.
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6.3.1.1 Inner layer fluid model

As explained in Ref. (Piomelli 2008), filtered equations in the inner layer are
similar to averaged Navier-Stokes equations.Then, treating the unresolved inner
layer [0, yw] as a thin equilibrium boundary layer (Wang and Moin 2002; Cabot
and Moin 2000) leads to the following equations

d
dy

(
(〈µ〉+ 〈µt〉)

d{u||}
dy

)
= 0;

d
dy

(
〈cp〉

(〈µ〉
Pr

+
〈µt〉
Prt

)
d{T}
dy

)
+〈PR〉 = 0,

(6.1)

where the angled brackets 〈·〉 and curly brackets {·} denote Reynolds averaged
and Favre averaged values respectively. u|| is the tangential velocity, parallel
to the wall, and y is the distance to the wall. T is the temperature, PR is the
radiative power per unit volume. As in Ref. (Zhang et al. 2013), µ, the dynamic
viscosity, and cp, the thermal capacity at constant pressure, are functions of
temperature, while the molecular Prandtl number Pr is set to 0.71. µt and Prt
are the turbulent viscosity and the turbulent Prandtl number, respectively. µt

is computed using a mixing-length model (Cabot 1996; Cabot and Moin 2000)

〈µt〉 = κ〈ρ〉y
√

〈τw〉/〈ρ〉(1− exp(−y+/A+))2 (6.2)

where κ = 0.4 and A+ = 17 are here chosen in order to retrieve the velocity
logarithmic law in the low-Reynolds DNS cases that are considered for valida-
tion. 〈ρ〉 is the gas density and 〈τw〉 the shear stress at the wall. The wall
coordinate y+ is defined as

y+ =
〈ρw〉uτy
〈µw〉

, uτ =

√
〈τw〉
〈ρw〉

, (6.3)

where gas properties at the wall, ρw and µw, are used. In order to take into
account the non-uniformity of the gas properties, an alternative semi-local co-
ordinate y∗ (Huang et al. 1995) can also be used in Eq. (6.2) instead of y+,
where local gas properties are considered

y∗ =
〈ρ〉u∗τy
〈µ〉 , u∗τ =

√
〈τw〉
〈ρ〉 , (6.4)

The mixing-length models based on wall coordinate y+ and semi-local coordi-
nate y∗ will subsequently be referred as standard and semi-local mixing-length
models, respectively.
Three models for the turbulent Prandtl number are considered in the following.
First, a constant value Prt = 0.9 which is a usual crude assumption in wall
models. Secondly, in order to account for variation of Prt in the boundary
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layer, two different formula proposed in Ref. (Kays 1994), both fitted from
experimental data, are considered

Prt =
2.0

Pr (〈µt〉/〈µ〉)
+ 0.85, (6.5)

and

Prt =
1

0.5882 + 0.228(〈µt〉/〈µ〉)− 0.0441(〈µt〉/〈µ〉)2(1− exp( −5.165
〈µt〉/〈µ〉

))
. (6.6)

6.3.1.2 Outer layer LES

A low-Mach code, YALES2 (Moureau et al. 2011c; Moureau et al. 2011b),
is used for the Large Eddy Simulation (LES) of the main flow. The same
numerical set-up as in Ref. (Zhang et al. 2013) is retained: A 4th-order central
difference finite-volume scheme with a 4th-order time integration scheme.
Under the low-Mach number approximation, the spatially filtered instantaneous
mass, momentum and energy balance equations write

∂ρ

∂t
+

∂(ρũi)

∂xi
= 0, (6.7)

∂(ρũi)

∂t
+

∂(ρũiũj)

∂xj
= −

∂τSGS
ij

∂xj
− ∂p

∂xi
+

∂τ ij
∂xj

+ Si, (6.8)

∂(ρh̃)
∂t

+
∂(ρũj h̃)
∂xj

= −
∂qSGS

j

∂xj
+

∂p

∂t
−

∂qcdj
∂xj

+ P
R
, (6.9)

where p is the pressure, ui the velocity components and · and ·̃ denote filtered
and mass-weighted filtered quantities in the context of LES. The enthalpy per
unit mass h is expressed as h = ∆h0 +

∫ T
T0

cp(T
′) dT ′, where cp is the mixture

thermal capacity at constant pressure, T0 a reference temperature and ∆h0 the
corresponding standard formation enthalpy. τij and qcdi are the viscous shear
stress tensor and the conductive heat flux vector respectively. Si is a driving
force source term to obtain the intended bulk Reynolds number in channel flow
simulations.
Based on the Sub-Grid Scale (SGS) eddy-viscosity concept, the SGS stress
tensor τSGS

ij = −ρ(ũiuj − ũiũj) and the SGS heat flux qSGS
j = −ρ(h̃uj − h̃ũj)

are modeled as

τSGS
ij − 1

3
δijτ

SGS
kk = −2ρνSGS(Sij −

1

3
δijSkk), (6.10)

qSGS
j = −λSGS ∂T

∂xj
, (6.11)
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where Sij is the filtered shear stress tensor. The Sigma model (Nicoud et al.
2011) is used for modeling the SGS kinematic viscosity νSGS. The SGS thermal
conductivity λSGS is computed from the SGS Prandtl number PrSGS which is
set to 0.9

λSGS =
ρ cpν

SGS

PrSGS . (6.12)

6.3.2 Radiation model

For the radiation field, a Monte-Carlo method is used to calculate the radiative
power field in the outer layer, i.e. at all the LES grid points. For the inner layer,
the radiation field is analytically obtained from a one-dimensional model that
uses the intensity field obtained from the Monte Carlo approach as a boundary
condition for the point with wall distance yw, where information from the LES
grid is fed back to the wall model.

6.3.2.1 Monte Carlo approach

The general organization of the radiation model, based on a reciprocal Monte
Carlo approach, has been detailed by Tessé et al. (Tessé et al. 2002). The
precise approach used here is the Optimized Emission-based Reciprocity Monte
Carlo Method (OERM) (Zhang et al. 2012), as in Ref. (Zhang et al. 2013).
This method allows the convergence to be locally controlled while it overcomes
the drawback of the original Emission-based Reciprocity Method (Tessé et al.
2002) in the cold region and greatly increases the computational efficiency. This
method also allows the spectral anisotropic radiation intensity field I−ν (yw, µ)
at any point of abscissa yw of the LES grid, required by the inner layer radiation
model, to be determined, as detailed in Sec. 6.3.2.2 and Appendix.

6.3.2.2 Analytical radiation model in the inner layer

0

wall

yw
y

I+ν (y, µ1)

I−ν (y, µ2)

θ1
θ2Tw

ǫν

Figure 6.2: Definition of forward and backward intensities I+ν and I−ν (µ1 and µ2

are the cosine of polar angle θ1 and θ2 respectively; y = 0 and y = yw are the two
boundaries of the 1D model).

The one-dimensional configuration for radiation in the inner layer is shown in
Fig. 6.2. The opaque wall is isothermal at temperature Tw and its emissivity ǫν
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is assumed isotropic. At any point y of the inner layer, the radiative power per
unit volume PR(y), difference between absorbed and emitted powers, writes

PR(y) = P a(y)− P e(y) (6.13)

P e(y) = 4π

∫ +∞

0
κν(y)I

◦
ν (y)dν (6.14)

P a(y) =

∫ +∞

0
κν(y)

[∫ 0

−1
I−ν (y, µ)2πdµ +

∫ 1

0
I+ν (y, µ)2πdµ

]
dν (6.15)

where ν is the radiation wave number, µ is the cosine of the angle θ defined
in Fig. 6.2, and I◦ν (y) is the equilibrium spectral intensity at the temperature
T (y) associated with the current position y. The current spectral intensity in a
positive y direction I+ν (y, µ), associated with µ > 0, and the spectral intensity
in a negative direction I−ν (y, µ), associated with µ < 0 are given by

I+ν (y, µ) = τν0y(µ)I
+
ν (0) +

∫ y

0
κν(y

′)I◦ν (y
′)τνy′y(µ)

dy′

µ

with: y′ < y; dy′ > 0; µ > 0,

(6.16)

I−ν (y, µ) = τνywy(µ)I
−
ν (yw, µ) +

∫ y

yw

κν(y
′)I◦ν (y

′)τνy′y(µ)
dy′

µ

with: y′ > y; dy′ < 0; µ < 0,

(6.17)

where

I+ν (0) = ǫν I
◦
ν (Tw) − 2 (1 − ǫν)

∫ 0

−1
I −
ν (0, µ) µdµ, (6.18)

and τ
′

νy′y is the directional spectral transmissivity between y′ and y given by

τνy′y(µ) = exp[−eν(y
′, y)/µ] with : eν(y

′, y) =

∫ y

y′
κν(y

′′)dy′′. (6.19)

Here eν(y
′, y)/µ > 0 is the spectral optical thickness between y′ and y in the

direction µ while κν is the spectral absorption coefficient of the medium. Note
that: i) dy′ and µ in Eqs. (6.16) and (6.17), and eν(y

′, y) and µ in Eq. (6.19)
are simultaneously positive or negative; ii) As the wall reflection is assumed
diffuse, the intensity leaving a wall I+ν (0) is isotropic, whereas I−ν (yw, µ) the
intensity entering the inner layer at abscissa yw is anisotropic.
By introducing the exponential integral function, detailed in Ref. (Modest
2003b), i.e.

En(X) =

∫ 1

0
µn−2 exp(−X/µ)dµ (6.20)
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and the generalized incomplete function defined by

En(X, [µj , µj+1]) =

∫ µj+1

µj

µn−2 exp(−X/µ)dµ, (6.21)

a discretized expression of the radiative power PR(y) is simply given by

PR(y) ≈ 2π

∫ +∞

0
κν(y)





Nµ∑

j=1

E2(eν(y, yw), [µj , µj+1]) I
−
ν (yw, [µj , µj+1])



 dν

+2π

∫ +∞

0
κν(y) E2(eν(0, y)) I

+
ν (0) dν

+2π

∫ +∞

0
κν(y)

{∫ yw

0
κν(y

′)I◦ν (y
′) E1(eν(y

′, y)) dy′
}

dν,

−4π

∫ +∞

0
κν(y) I◦ν (y) dν.

(6.22)

where Nµ is the number of angular sectors [µj, µj+1] used to discretize the 2π

steradians associated with the incoming intensity at a point yw. I
−
ν (yw, [µj , µj+1])

is the average value of I −
ν (yw, µ) over the range [µj, µj+1]

1.

The mean anisotropic spectral incoming intensity field I
−
ν (yw, [µj , µj+1]) at

any grid point yw is determined by the Monte Carlo method, as detailed in
Appendix.
In this analytical radiation model in the boundary inner layer, the radiative
power PR(x) is a function of the temperature field within the fluid inner layer
model given by Eq. (6.1). It is then worth noticing that the effects of turbulence
fluctuations on the radiative power are not accounted for within the inner layer
only. In fact, these effects can indeed be neglected in channel flows with non-
reacting gases where fluctuations of temperature remain moderate, as shown by
Ref. (Gupta et al. 2009) and by post-processing of DNS results in Ref. (Zhang
et al. 2013) .

6.3.3 Coupling of inner and outer layers radiation and turbu-
lence models

The purpose of wall-modeled LES is to overcome the under-resolution of the
boundary inner layer, which leads to erroneous estimations of wall temperature
and velocity gradients. For each LES grid point on the wall and each time
step, the set of equations (6.1) combined with the analytical radiation model
is solved with an iterative procedure and provides an accurate estimation of
the wall stress τw and wall conductive heat flux qcdw . The procedure used to

1If I −

ν (yw, µ) were isotropic the first term of the second member of Eq. (6.22) would be
similar to the classical result of the second one.
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RADIATION WALL MODEL COMPONENTS

couple LES, Monte-Carlo model and the radiation and turbulence wall models
is schematized in Fig. 6.3.
For each grid point on the wall, LES provides velocity uyw and temperature
Tyw at a distance yw from the wall to the 1D turbulence model. It also provides
the resolved temperature field TLES to the Monte-Carlo method.
The Monte-Carlo method calculates both the radiative power PR

MC, source
term of the energy balance equation in LES, and the incoming intensities
I
−
ν (yw, [µj , µj+1]) required by the 1D radiation model.

Note that in Monte Carlo model, when a ray enters the inner layer, the 1D
model temperature field is used to determine the exchanged energy between
the point initiating the ray and the inner layer. The accuracy of the results is
then improved when compared to results associated with the LES temperature
field (much coarser in the near wall region).

LES Monte-Carlo
TLES

PR
MC

τw, q
cd
w

uyw , Tyw T1D I
−
ν (yw, [µj , µj+1])

1D Wall Model

Fluid

Radiation

PR
1D T1D

Figure 6.3: Scheme of coupling between LES, the Monte-Carlo method and wall
model. T1D and PR

1D are the inner layer temperature and radiative power fields on the
embedded grids.

6.4 Separate validation of the turbulence and radia-
tion wall model components

The previously described 1D turbulence wall model is a priori validated against
DNS data from Ref. (Zhang et al. 2013) accounting or not for radiation. This
a priori study consists in comparing 1D profiles of average quantities predicted
by the wall-model while taking some information from DNS cases.
DNS cases from Ref. (Zhang et al. 2013) that are retained is this study are
defined in Table 6.1. For cases A, B, C and D, the temperature of the two
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Figure 6.4: Computational domain of channel flow cases. X, Y and Z are the
streamwise, wall normal and spanwise directions. LX , LY and LZ are the dimensions
of the channel case in each direction. δ is the channel half-width. The lower wall
(resp. upper wall) is at temperature Tw,c (resp. Tw,h; Tw,h ≥ Tw,c). Periodic boundary
conditions are applied along X and Z.

walls Tw,h and Tw,c are different, as shown in Fig. 6.4, and radiation is not ac-
counting for. For cases A, B and C, the corresponding cases with radiation are
named A_RAD, B_RAD and C_RAD respectively and opaque wall emissiv-
ities are set to 0.8. Two different cases at one atmosphere, named D_RAD03
and D_RAD08, are considered for case D with wall emissivities of 0.3 and
0.8 respectively. The gas radiative properties are modeled by using the CK
model (Soufiani and Taine 1997) for atmospheric pressure cases and its weak
absorption limit for cases at 40 atm.
The domain is defined in Fig. 6.4 with : δ = 0.1m, LX = 2πδ, LY = 2δ,
LZ = πδ. A non-reacting CO2-H2O-N2 gas mixture is considered and the
molar fractions of CO2, H2O and N2 are set to 0.116, 0.155 and 0.729 to mimic
combustion exhaust gases. Similarly to Ref. (Zhang et al. 2013), the dynamic
viscosity µ and thermal capacity cp are computed as functions of temperature
from the CHEMKIN package (Kee et al. 1986; Kee et al. 1989) for the chosen
mixture composition. The thermal conductivity λ is computed from the Prandtl
number Pr= 0.71.
In the following sections, different wall-model components are separately vali-
dated.

6.4.1 Validation of the turbulence wall model without radia-
tion

An integration of Eq. (6.1), in which the wall friction stress and wall heat
flux results of DNS are imposed as boundary conditions, leads to velocity and
temperature profiles in the near wall region. Since the proposed mixing-length
model is only valid in the inner layer, only results within the near wall region
(0, 0.2δ) are presented.
Velocity profile of case B that presents the most important wall temperature
and gas properties variations is shown in Fig. 6.5. The velocity profile is under-
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RADIATION WALL MODEL COMPONENTS

Reb ReDh
Tw,c(K) Tw,h(K) p(atm)

A
5850 23400

950 1150 40.0

B 950 2050 40.0

C 11750 47000 950 1150 40.0

D 5850 23400 950 1150 1.0

Table 6.1: Channel flow parameters: Bulk Reynolds number Reb, Reynolds number
based on the hydraulic diameter Dh = 4δ, wall temperatures and pressure. Cases
without radiation A, B, C and D correspond to cases C1, C3, C4 and C2 in Ref. (Zhang
et al. 2013) respectively, and radiative cases A_RAD, B_RAD, C_RAD, D_RAD03
and D_RAD08 to cases C1R1, C3R1, C4R1, C2R2 and C2R1 respectively.

1 10 100
0

0

10

20

y+

u
+

B

Ref.

Figure 6.5: Mean velocity profile in wall units, i.e. {u}/uτ , of case B (only the
cold side) and Ref. (Hoyas and Jimenez 2006) (circles: DNS reference data; black
line: Semi-local mixing-length model; gray line: Standard wall mixing-length model).
For the sake of clarity, curves of the different cases are translated.

predicted by the wall model based on standard mixing-length model, Eq. (6.3).
The semi-local model, Eq. (6.4), enables to correct this effect. When tempera-
ture variations are negligible, both models are identical and perform accurately
as shown in Fig. 6.5 for the DNS case from Ref. (Hoyas and Jimenez 2006)
characterized by constant temperature and a larger Reynolds number.
Regarding the temperature profile, the two mixing-length models and the three
models of turbulent Prandtl number defined in Sec. 6.3.1.1 are investigated in
Fig. 6.6. Best results are obtained using the semi-local mixing-length model
and Eq. (6.6) for the turbulent Prandtl number.
These modeling conditions are henceforth retained. Velocity and temperature
profiles for cases A and C are shown in Fig. 6.7. Very good agreement with
DNS data is observed.
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y+

T
+

Figure 6.6: Mean temperature profile in wall units, i.e. |{T } − Tw|/Tτ with Tτ =
|qcdw |/(〈ρw〉cpw

uτ ), on the cold side of case B (circles: DNS datas from Ref. (Zhang
et al. 2013); black lines: Semi-local mixing-length model; gray lines: Standard mixing-
length model; dashed-dotted line: Constant Prt; dashed line: Eq. (6.5) for Prt; plain
line: Eq. (6.6) for Prt.

1 10 100
0

0

10

20

y+

u
+

A

C

(a)

1 10 100
0

0

10

20

y+

T
+

A

C

(b)

Figure 6.7: Mean velocity profile (a) and mean temperature profile (b) in wall units
on the cold side of case A and C (circles: DNS datas from (Zhang et al. 2013); plain
line: Semi-local mixing-length model + Eq. (6.6) for Prt). For the sake of clarity,
curves of the different cases are translated.



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 162 — #162
✐

✐

✐

✐

✐

✐

162 6.4. SEPARATE VALIDATION OF THE TURBULENCE AND

RADIATION WALL MODEL COMPONENTS
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(a)

Figure 6.8: Mean temperature profile in wall units of A_RAD, B_RAD and C_RAD
(circles: DNS datas from (Zhang et al. 2013); dashed line: Wall model without radiative
power source term; plain line: Wall model with radiative power source term; color

: Cold side; color : Hot side).

6.4.2 Validation of the turbulence wall model with prescribed
radiative power field

In this validation cases, the reference radiative power issued from the radiation
Monte Carlo method coupled to DNS is also used in addition to the DNS wall
friction stress and wall heat flux in Eq. (6.1).
Figure 6.8 shows that the complete wall model (semi-local mixing-length model,
Eq. (6.6) for Prt and radiative power source term) accurately predicts the tem-
perature field for the two near wall regions of the three cases A_RAD, B_RAD
and C_RAD. Note that the results of wall models that do not account for ra-
diative power source term strongly deviate from the DNS corresponding results,
which indicates that in these three cases, radiation strongly modifies the mean
temperature field within the inner layer.

6.4.3 Validation of the radiation wall model with prescribed
temperature field

In order to validate the radiative analytical wall model, Eq. (6.22) is solved
using the mean temperature profile obtained from DNS data in Ref. (Zhang
et al. 2013) and Nµ spectral anisotropic incoming intensity values issued from
the reference cases post-processing as explained in Appendix. The influence of
the number of angular sectors Nµ and of the wall distance yw where anisotropic
intensities are calculated is investigated. Results are shown in Fig. 6.9. The
radiative power is accurately predicted with Nµ = 2 at each value of yw between
0.05δ and 0.2δ. Nµ = 2 is therefore used in the following. Note that results
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associated with Nµ = 1 are practically acceptable.

6.5 Results of the turbulence and radiation wall mod-
els fully coupled with LES and Monte Carlo method

In this section, the turbulence and radiation wall models are fully coupled to
LES and Monte Carlo models for the same cases A to D as in the previous
section without prior knowledge from the reference DNS cases. For all these
cases, the LES grid consists of 36 × 36 × 36 points and the first off-wall point
locates at y+ = 15, while all the other grid spacings are uniform. The wall
model, defined by Eqs. (6.1, 6.22), is resolved at each point on the wall on a
local embedded grid (see Fig. 6.1). Given first guesses of the wall shear stress
and wall heat flux, this set of equations is iteratively solved while ensuring grid
convergence.

6.5.1 Cases without radiation

When coupling LES and wall models, numerical and sub-grid model errors at
the first few points near the wall induce perturbations within the LES domain
(Cabot and Moin 2000; Nicoud et al. 2001), leading to the so-called "loga-
rithmic law mismatch" (Piomelli 2008). The term "logarithmic law mismatch"
specifically refers to cases where a logarithmic law is found for the velocity
profile. A similar mismatch between the wall modeled LES and the reference
results can also be observed for the temperature profile of the different cases
studied here, where the temperature law is not logarithmic as soon as radiation
is accounted for.
In order to reduce this error, Kawai et al.(Kawai and Larsson 2012) have pro-
posed to place the feed back point of the wall model, placed at the wall distance
yw, further away from the wall than the first off-wall LES grid point. Following
this approach, different yw positions are compared, i.e. yw located at the first
point, second and third off-wall points, denoted case Y1, Y2 and Y3 respec-
tively. The corresponding embedded grids, which are stretched along the wall
normal direction, contain 30, 60 and 100 points.
Fig. 6.10 shows that, for case A, the case Y3 presents the best agreement for
both u+ and T+ profiles as expected. This trend is retrieved for wall friction
stress τw and conductive heat flux qcdw values shown in Tab. 6.2. The feed back
point position does not affect the root mean square (rms) profiles of u, v, w
and T (see Fig. 6.11). Henceforward, the third off-wall point is retained as a
feed back point.
Results for cases B and C are presented in Fig. 6.12 and Tab. 6.2 demonstrating
the relevance of this choice.
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6.5. RESULTS OF THE TURBULENCE AND RADIATION WALL

MODELS FULLY COUPLED WITH LES AND MONTE CARLO

METHOD
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Figure 6.9: Radiative power on the cold side of case B with yw = 0.05δ (a), yw = 0.1δ
(b) and yw = 0.2δ (c) (circles: DNS datas from Ref. (Zhang et al. 2013); dashed-dotted
line: Nµ = 1; dashed line: Nµ = 2; plain line: Nµ = 3).
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Figure 6.10: Mean velocity (a) and mean temperature (b) profile in wall units on the
cold side of A (circles: DNS datas from (Zhang et al. 2013); dashed-dotted line: Y1;
dashed line: Y2; plain line: Y3).

side DNS Y1 Y2 Y3

A

τw
cold 1.63E-3 1.50E-3 1.54E-3 1.60E-3

hot 1.62E-3 1.55E-3 1.57E-3 1.61E-3

qcdw
cold 875 813 837 873

hot 875 813 834 870

B

τw
cold 3.69E-3 – – 3.73E-3

hot 3.57E-3 – – 3.89E-3

qcdw
cold 6510 – – 6804

hot 6510 – – 6766

C

τw
cold 5.7E-3 – – 5.4E-3

hot 5.5E-3 – – 5.4E-3

qcdw
cold 1550 – – 1502

hot 1550 – – 1498

Table 6.2: Comparison of mean friction stress τw and conductive heat flux qcdw for
cases A, B and C between wall-modeled LES (Y1, Y2, Y3) and DNS results from
Ref. (Zhang et al. 2013). For case A, Y1, Y2 and Y3 correspond to wall-normal
distances of 0.05δ, 0.098δ and 0.156δ respectively.
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Figure 6.11: Rms of velocity components u (a), v (b), w (c) and temperature (d) in
wall units on the cold side of case A (circles: DNS datas from (Zhang et al. 2013);
dashed-dotted line: Y1; dashed line: Y2; plain line: Y3).
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Figure 6.12: Mean velocity (a) and mean temperature (b) profile in wall units on
the cold side of case B and C (circles: DNS datas from (Zhang et al. 2013); plain
line: Y3). For the sake of clarity, curves of the different cases are translated.
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Figure 6.13: Mean velocity (a) and mean temperature (b) profile in wall units on
the cold side of case A_RAD, B_RAD and C_RAD (circles: DNS datas from (Zhang
et al. 2013); dashed-dotted line: No wall model; dashed line: Standard wall model;
plain line: New wall model). For the sake of clarity, curves of the different cases are
translated.
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6.5.2 Cases involving radiation at high pressure

The finally proposed wall model based on semi-local mixing-length model,
Eq. (6.6) for Prt, the radiation analytical model described in Sec. 6.3.2.2 and
using the third off-wall point for coupling (case Y3) will be denoted as "new"
wall model. In order to demonstrate the accuracy of this model, it is com-
pared to a "standard" wall model based on standard mixing-length model and
constant turbulent Prandtl number, that does not account for radiation effects
within the inner layer. Note that this "standard" model is also coupled at the
third off-wall point and that radiation is treated with the Monte-Carlo method
in the outer layer. Results without any wall model are also presented.
DNS results of u+ and T+ in cases A_RAD, B_RAD and C_RAD are com-
pared in Fig. 6.13 to those predicted by wall-modeled LES with the "standard"
and "new" approaches. The velocity field is similarly reproduced by both mod-
els whereas the "new" model shows a significant improvement of the predicted
temperature profile. Values of τw and qcdw for the different cases are given in
Tab. 6.3 where the same conclusion is retrieved.

6.5.3 Case involving radiation at 1 atm

Cases A to C correspond to optically thick media at 40 atm, in which the
effects of radiation are important. Case D, considered in this paragraph and
defined in Tab. 6.1, deals with media at atmospheric pressure. LES of the
two cases D_RAD03 and D_RAD08, with wall emissivities set to 0.3 and 0.8
respectively, with the "new" and "standard" wall models are compared with
DNS data from Ref. (Zhang et al. 2013).
Figure 6.14.a compares the u+ profiles that are only shown on the cold side
(similar on the hot side) and demonstrates that both models predict the correct
result as in the high pressure cases. The same behavior is observed for the wall
shear stress in Tab. 6.3.
Regarding the T+ profiles (Figs. 6.14.b and 6.14.c) and wall conductive fluxes
given in Tab. 6.3, the "new" model leads to the best agreement with DNS-
Monte Carlo results compared to the "standard" model. However, since the
radiation effects are weaker at 1 atm than at 40 atm, the difference between
the results of the two wall-modeled LES are smaller than those at high pressure,
especially on the cold side.

6.6 Conclusion

A wall model for LES has been proposed to take into account the effects of radi-
ation within the turbulent boundary inner layer. The model follows a two-layer
approach with an embedded grid for each point at the wall. It is composed
of 1D equilibrium thin boundary layer equations that are solved on each em-
bedded grid along with mixing-length and turbulent Prandtl models and an
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Figure 6.14: Mean velocity profile in wall units on the cold side (a), mean temperature
profile in wall units on the cold side (b) and hot side (c) of cases D_RAD03 and
D_RAD08 (circles: DNS datas from (Zhang et al. 2013); dashed-dotted line: No wall
model; dashed line: Standard wall model; plain line: New wall model). Curves of the
different cases are translated.
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analytical expression of the radiative source term within the inner layer.
First results have shown that: i) A semi-local scaling of the mixing-length is
necessary to account for the variations of gas properties, such as mass density
and dynamic viscosity, within the inner layer; ii) A non-constant turbulent
Prandtl number, here Eq. (6.6), gives better results; iii) In the studied cases, the
mean incoming intensity at the outer boundary of the wall model has required
the discretization of the corresponding solid angle into at least two angular
sectors to accurately account for anisotropy; iv) The point where information
is transmitted from LES to the wall model has been moved away from the
wall while remaining in the validity range of the wall-model. Here, the third
grid point off the wall has been used in order to decrease the mismatch in the
obtained wall laws due to numerical and sub-grid errors in the wall vicinity.
The LES is coupled to a reciprocal Monte-Carlo method as it could be done
in any configuration to tackle radiation and turbulent flows. Here, the combi-
nation of the proposed wall model and LES/Monte-Carlo method is compared
to DNS/Monte-Carlo results on turbulent channel flows. Coupled results are
compared to those obtained with a standard wall model which does not account
for radiation effects within the inner layer. Note that this standard model with
LES and Monte-Carlo simulations is already quite advanced to accurately pre-
dict wall heat transfer in the presence of radiation. Nonetheless, coupled results
for high pressure cases show that the new wall-model greatly improves the ac-
curacy of the predicted results compared to a standard wall model. The same
trend is retrieved in atmospheric cases even though the magnitude of difference
is smaller than the one at high pressure.
It has been finally shown that accounting for radiation effects within the mod-
eled boundary inner layer is necessary in several conditions, especially in high
pressure applications, as soon as the radiative energy transfer is strong enough
to modify the temperature wall law.
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side DNS new model standard model no model

A_RAD

τw
cold 1.67E-3 1.64E-3 1.68E-3 1.0E-3

hot 1.59E-3 1.63E-3 1.61E-3 1.09E-3

qcdw
cold 1230 1270 918 443

hot 960 1030 631 363

qRw
cold 19930 19589 - -

hot 20200 20020 - -

B_RAD

τw
cold 5.0E-3 4.8E-3 4.82E-3 3.1E-3

hot 4.6E-3 4.6E-3 4.37E-3 3.1E-3

qcdw
cold 16260 16041 10985 6583

hot 8720 8911 3738 3303

qRw
cold 399000 392000 - -

hot 406300 402000 - -

C_RAD

τw
cold 5.7E-3 5.6E-3 5.71E-3 3.24E-3

hot 5.5E-3 5.4E-3 5.37E-3 3.51E-3

qcdw
cold 1650 1666 1288 660

hot 1290 1358 925 569

qRw
cold 20150 19644 - -

hot 20500 20307 - -

D_RAD03

τw
cold 6.6E-3 6.3E-3 6.5E-3 4.0E-3

hot 6.5E-3 6.3E-3 6.4E-3 4.4E-3

qcdw
cold 1220 1180 1105 677

hot 1100 1055 955 622

qRw
cold 8860 8819 - -

hot 8980 8948 - -

D_RAD08

τw
cold 6.6E-3 6.4E-3 6.6E-3 4.1E-3

hot 6.5E-3 6.6E-3 6.3E-3 4.5E-3

qcdw
cold 1070 1040 1018 773

hot 930 926 821 750

qRw
cold 32590 32475 - -

hot 32730 32633 - -

Table 6.3: Comparison of mean friction stress τw, wall conductive heat flux qcdw and
total wall radiative flux qRw of cases with radiation between wall-modeled LES (new,
standard and no wall model) and DNS results from Ref. (Zhang et al. 2013).
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1726.8. APPENDIX : DETERMINATION OF THE INCOMING INTENSITY

FIELD FOR THE WALL MODEL

6.8 Appendix : Determination of the incoming inten-
sity field for the wall model

physical wall virtual wall
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ǫν
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Figure 6.15: Scheme showing how the mean incoming intensity I
−

ν (yw, [µj , µj+1]),
boundary condition of the wall model, is computed from the reciprocal Monte-Carlo
method by using a virtual wall. µj and µj+1 correspond to the cosine of angles θj and
θj+1 respectively.

As described in Sec. 6.3.2.2, the proposed wall model requires mean anisotropic
spectral incoming intensities I

−
ν (yw, [µj , µj+1]) at a grid point yw averaged over

the solid angles corresponding to the ranges [µj, µj+1] as a boundary condition.
The emission-based reciprocity Monte Carlo method defined in Ref. (Zhang
et al. 2013) is used in this paper. Consequently, the mean spectral intensities
can easily be deduced from reciprocal emission phenomena issued from all the
other cells of the system.
The precise used procedure is the following: i) The grid point at wall distance yw
is assumed to be a virtual opaque wall of temperature T (yw) and of arbitrary
wall emissivity ǫ = 1; ii) For each range [µj , µj+1], a large number of shots
are emitted in the Monte Carlo method from this virtual wall in a randomly
determined direction with the cosine of polar angle within the range [µj, µj+1],
and in any elementary spectral range ∆ν ; iii) The reciprocity method allows
Φ∆ν(yw, [µj , µj+1]), the contribution to the radiative flux at the virtual wall
associated with both [µj , µj+1] and ∆ν, to be determined; vi) The absorbed flux
at the wall Φa

∆ν(yw, [µj , µj+1]), and consequently the mean spectral absorbed
intensity I

a
ν(yw, [µj , µj+1]), associated with [µj, µj+1] and ∆ν is then calculated

as

Φa
∆ν(yw, [µj , µj+1]) = Φ∆ν(yw, [µj , µj+1]) + Φe

∆ν(yw, [µj , µj+1]), (6.23)

I
a
ν(yw, [µj , µj+1]) =

Φa
∆ν(yw, [µj , µj+1])

2π
∫ µj+1

µj
µdµ∆ν

=
Φ∆ν(yw, [µj , µj+1])

2π
∫ µj+1

µj
µdµ∆ν

+I0ν (yw); (6.24)

v) The mean spectral incoming intensity I
−
ν (yw, [µj , µj+1]) required by the wall

model is then equal to I
a
ν(yw, [µj , µj+1]), as the virtual wall absorptivity has

been set to unity.



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 173 — #173
✐

✐

✐

✐

✐

✐

Chapter 6 - A wall model for LES accounting for radiation effects 173

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

y/δ

P
r t

(a)

10 100
0

2

4

6

8

10

y+

T
+

(b)

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

y/δ

P
r t

(c)

10 100
0

2

4

6

y+

T
+

(d)

Figure 6.16: Profiles of turbulent Prandtl number (a,c) and scaled mean temperature
profile (b,d) on the cold (a,b) and hot (c,d) sides in case B_R (circles: DNS; black
dashed line: New turbulent Prandtl number model Eq. (5.45); gray plain line: Eq. (6.6)
for turbulent Prandtl number).
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MODEL

6.9 Assessment of the new turbulent Prandtl number
model

In section 5.4.3 of chapter 5, a new turbulent Prandtl number model Eq. (5.45)
has been proposed to account for radiation effects and its feasibility has been
demonstrated by the results of a-priori tests using DNS data only. It has not
been used in the previous paper describing the wall model since it has been
developed afterwards. In order to assess the performance of the new turbulent
Prandtl number model in the new wall model, a more complete test is performed
in this section.
Only the most challenging case B_R is retained in this test since it reveals the
most important radiation effects and gas property variations. Following the
methodology of the wall model validation, a similar a priori validation taking
as little knowledge from DNS as possible. The test has the following features:
i) Only the energy equation of Eq. (6.1) is solved and the mean temperature at
position yw ≈ 0.2δ is taken from DNS and used as boundary condition; ii) The
turbulent viscosity 〈µt〉 is computed from the mixing-length model (Eq. (6.2))
along with the semi-local coordinate y∗ (Eq. (6.3)), using the DNS results for
the wall shear stress τw; iii) An iterative procedure is carried out to solve the
energy equation; iv) The radiative power term in Eq. (6.1) is interpolated
from DNS results and is fixed during the iterative procedure; v) The turbulent
Prandtl number is calculated either from Eq. (6.6) or from the new model
Eq. (5.45).
The results of the wall model are compared with DNS datas from (Zhang et al.
2013) in Fig. 6.16. On the cold side of case B_R, except in the very vicinity of
walls where turbulent heat transfer is negligible compared to conduction, the
turbulent Prandtl number profile predicted by the new model Eq. (5.45) agrees
well with DNS datas whereas it is underestimated by Eq. (6.6). However,
profiles of mean temperature T

+
show only small differences between results

obtained with both turbulent Prandtl number models. In fact, in this case
as for the other ones that have been studied, the radiative transfer dominates
over the turbulent heat transfer and hence the accuracy of turbulent Prandtl
number is not critical. However, when turbulent convection is predominant or is
of the same order of magnitude as radiative transfer, the influence of turbulent
Prandtl number model is expected to be more important, although radiation
effects might then be weaker.
Regarding the Prt profile on the hot side, the accuracy of the predicted results
is also improved by the new model. However, a noticeable gap is still observed
between wall model results and DNS data, indicating the necessity of a further
improvement. Nevertheless, as for the cold side, the profile of T

+
remains well

predicted by both turbulent Prandtl number models.
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Chapter 7

Practical criteria to compare

radiative and conductive fluxes

and their coupling effects

A criterion controlling the weight of radiative flux on walls is proposed
to assess the necessity of performing radiation simulation under a given
flow condition. Similarly, to predict whether the wall model accounting
for radiation is required for a given flow, another criterion based on the
change of non-dimensional temperature due to radiation (scaled in wall
unit) is also developed. The validity of these two criteria is confirmed by
an analysis of fully-coupled DNS/Monte-Carlo results. Mean flow fields
of many turbulent channel flows at different flow conditions are then
resolved with a k-ǫ model and a formula for turbulent Prandtl number.
The obtained criterion results are presented and detailedly analyzed to
investigate a large set of conditions, which would not be feasible with
DNS or LES.

7.1 Description of the criteria

Since calculating the radiation field is generally very expensive, it could be
useful if one could predict the importance of radiation before performing an
accurate simulation. In this section, several criteria are proposed in order to
determine whether it is necessary to simulate the radiation field and further,
to predict if the wall model proposed in chapter 6 is required under the studied
flow conditions.

7.1.1 Criteria for radiative flux

Having a good estimation of wall heat flux is mandatory in engineering appli-
cations. This flux can be decomposed into two parts: The conductive heat flux
and the radiative flux. To evaluate the importance of wall radiative flux com-
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pared to the conductive one, it is reasonable to define a criterion as following:

Rq,coupled =
qR∗
w ({T coupled})
qcdw ({T coupled})

(7.1)

where subscript coupled denotes quantities resulting from a simulation per-
formed with a full coupling between fluid mechanics and radiation while {·}
relates to the whole field of quantities. qR∗

w ({T coupled}) and qcdw ({T coupled}) are
the wall radiative and conductive flux respectively. Like that in section 4.3.5
of chapter 4, the flux exchanged between the walls are not included in the the
wall radiative flux qR∗

w considered here.
However, since the objective of the criterion is to predict the importance of
radiative flux before performing a real coupled radiation/flow field simulation,
the quantities qR∗

w ({T coupled}) and qcdw ({T coupled}) are generally not available.
To resolve this problem, the mean temperature field T obtained without ac-
counting for radiation is then used to compute a fictitious wall radiative flux
qR∗
w ({T}). And another criterion can then be defined with this radiative flux
qR∗
w ({T}) and the corresponding wall conductive heat flux qcdw ({T}) as following:

Rq =
qR∗
w ({T })
qcdw ({T })

. (7.2)

These two criteria Rq and Rq,coupled have been compared for all the channel
flow cases presented in chapter 4 and both walls (cold and hot). These results
are presented in Fig. 7.1 (a) It reveals that for all the cases, values of the two
criteria are highly correlated, indicating that Rq can be used to roughly predict
the contribution of the wall radiative flux to the total wall heat flux instead of
Rq,coupled.

7.1.2 Criteria for wall-scaled temperature

Since radiation can strongly influence the temperature law of turbulent bound-
ary layer under certain conditions (as presented in chapter 4 and 5), a wall
model considering this effect has been proposed and validated in chapter 6. In
this part, a criterion is proposed to predict if it is mandatory to use the new
wall model or not in order to have a good estimation of the temperature field
in the boundary layer.
In near wall regions, when omitting viscous heating and unsteadiness, the mean
balance equation of energy then writes

d
dy

[
cpcoupled

(
µcoupled

Pr
+

µR
t,coupled

PrRt,coupled

)
dT coupled

dy

]
+PR({T coupled}, y) = 0 (7.3)

where subscript coupled also denotes quantities associated with the case with
radiation. PR is the radiative power per unit volume, µ and cp are the dynamic
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viscosity and the thermal capacity at constant pressure respectively, and µt is
the turbulent viscosity. Pr and Prt are the molecular Prandtl number and tur-
bulent Prandtl number respectively. If one integrates and normalizes Eq. (7.3)
with the wall scaling, it yields

(
1

Pr
+

µ+
t,coupled

Prt,coupled

)
dT

+
coupled

dy+
= 1− ∆qR({T coupled}, y)

qcdw ({T coupled})
, (7.4)

where qR({T coupled}, y) is the radiative flux and

∆qR({T coupled}, y) = −
∫ y

0
PR({T coupled}, y′)dy′ (7.5)

= qR({T coupled}, y) − qRw({T coupled}) (7.6)
is the change of radiative flux. The non-dimensional turbulent viscosity is
defined as: µ+

t = µt/µ. The non-dimensional distance y+, based on the distance

to a wall y and the non-dimensional temperature T
+

write

y+ =
ρw y uτ
µw

, T
+
=

|T − Tw|
Tτ

, (7.7)

where Tτ is the friction temperature which is defined by

Tτ =
|qcdw |

ρw cpw uτ
, uτ =

(
τw
ρw

)1/2

. (7.8)

and τw is the wall shear stress.
For cases where no radiation is considered, Eq. (7.4) turns into

(
1

Pr
+

µ+
t

Prt

)
dT

+

dy+
= 1. (7.9)

Assuming that the change of µ+
t /Prt due to radiation is not important, the

difference of wall-scaled temperature between the case without/with radiation
from Eq. (7.4) and Eq. (7.9) can be approximated as

(
1

Pr
+

µ+
t

Prt

)
d(T

+ − T
+
coupled)

dy+
≈ ∆qR({T coupled}, y)

qcdw ({T coupled})
(7.10)

Note that the quantities without a subscript coupled relates to those of cases
without radiation.
An integration of Eq. (7.10) leads to

T
+ − T

+
coupled

T
+ ≈ 1

T
+

∫ y+

0

1

1
Pr +

µ+
t

Prt

∆qR({T coupled}, y)
qcdw ({T coupled})

dy′+. (7.11)

Here the term on the left hand side, varying with position y, is the rela-
tive change of wall-scaled temperature due to radiation. The position y =
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0.1δ is here chosen to quantify the importance of this change and a criterion

∆ref
t+,coupled

∣∣∣
y=0.1δ

is defined as

∆ref
t+,coupled

∣∣∣
y=0.1δ

=


 1

T
+

∫ y+

0

1

1
Pr +

µ+
t

Prt

∆qR({T coupled}, y)
qcdw ({T coupled})

dy′+



∣∣∣∣∣
y=0.1δ

.

(7.12)

The wall-normal distance 0.1δ is approximatively the limit of the boundary
inner layer, where the upcoming turbulent models are valid.

The values of this criterion ∆ref
t+,coupled

∣∣∣
y=0.1δ

for all the cases from chapter

4 (except the case with different emissivities on the two walls) are compared

against DNS results of
T

+
−T

+

coupled

T
+

∣∣∣
y=0.1δ

in Fig. 7.1 (b). It shows that criterion

values calculated from Eq. (7.12) are nearly the same as DNS results, despite
the assumption that µ+

t /Prt is not modified by radiation, which is not entirely
true for the turbulent Prandtl number as shown in chapter 6.
Similarly, since results of cases with radiation (i.e. ∆qR({T coupled}, y), qcdw ({T coupled})
etc.) are generally not available, another criterion based only on the flow field
of the case without radiation is defined as

∆ref
t+

∣∣∣
y=0.1δ

=


 1

T
+

∫ y+

0

1

1
Pr +

µ+
t

Prt

∆qR({T }, y)
qcdw ({T })

dy′+



∣∣∣∣∣
y=0.1δ

, (7.13)

where qcdw ({T }) is employed instead of qcdw ({T coupled}) and radiative flux qR({T }, y)
is calculated from the mean temperature field of the case without radiation.
The results of this criterion are also shown in Fig. 7.1 (b). Although the

agreement between the value of this criterion and
T

+
−T

+

coupled

T
+

∣∣∣
y=0.1δ

is poorer,

the trend is correct. A higher criterion value implies a larger change of T
+

due

to radiation. Hence, the criterion ∆ref
t+

∣∣∣
y=0.1δ

based only on the case without

radiation can be used.
If the criterion Rq tells us when a radiation simulation is needed, then ∆ref

t+

∣∣∣
y=0.1δ

indicates whether the simulations of radiation and flow field need to be fully
coupled, and more importantly, whether the wall model considering radiation
is required to predict wall heat flux accurately. The values of these two criteria
in different turbulent channel flows will be calculated in the following section.

7.2 Numerical model for flow field

These two criteria will later be used to perform a parametric study in channel
flow in order to identify conditions where simulating the radiative transfer is
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Figure 7.1: Results of criteria for wall radiative flux (a) and for T
+

(b).

important. To obtain the velocity field in these channel flows, the k-ǫ model is
employed, where the turbulent viscosity is also obtained. An empirical formula
of turbulent Prandtl number is used to resolve the mean temperature field.

7.2.1 Main equations

Firstly, to simulate the mean velocity field, the k-ǫ model from Ref. (Abe et al.
1995) is used, which resolves the following equations:

d
dy

[
(µ+ µt)

du
dy

]
+ Su = 0, (7.14)

d
dy

[(
µ+

µt

σk

)
dk
dy

]
+ µt

(
du
dy

)2

− ρǫ = 0, (7.15)

d
dy

[(
µ+

µt

σǫ

)
dǫ
dy

]
+ Cǫ1

ǫ

k
µt

(
du
dy

)2

− Cǫ2fǫ
ρǫ2

k
= 0, (7.16)

where Su is the source term which acts as a pressure gradient term and drives
the flow to obtain a target practical Reynolds number RetDh

. k is the turbulent
kinetic energy and ǫ is the dissipation rate of k. The turbulent viscosity µt is
computed as

µt = Cµfµ
ρk2

ǫ
(7.17)

where

fµ =
[
1− exp

(
−y∗
14

)]2
{
1 +

5

Re3/4t

exp

[
−
(

Ret
200

)2
]}

, (7.18)
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y∗ =
ρ uǫ y

µ
with uǫ = (νǫ)1/4, (7.19)

Ret =
ρk2

µǫ
. (7.20)

And the model function fǫ writes

fǫ =
[
1− exp

(
− y∗
3.1

)]2
{
1− 0.3 exp

[
−
(

Ret
6.5

)2
]}

(7.21)

while the model constants are as follow: Cµ = 0.09, σk = 1.4, σǫ = 1.4, Cǫ1 =
1.5, Cǫ2 = 1.9. The wall boundary conditions for Eq. (7.14), (7.15) and (7.16)
are: uw = 0.0, kw = 0.0, ǫw = 2 νw(∂k

1/2/∂y)2w.
Using the turbulent viscosity µt obtained from k-ǫ model, the temperature field
is then calculated by solving the energy equation:

d
dy

[
cp

(
µ

Pr
+

µt

Prt

)
dT
dy

]
+ ST = 0 (7.22)

where the turbulent Prandtl number Prt is modeled as (Kays 1994)

Prt =
1

0.5882 + 0.228(µt/µ)− 0.0441(µt/µ)2(1− exp(−5.165
µt/µ

))
. (7.23)

and the prescribed wall temperatures are used as boundary conditions. A source
term ST is added in Eq. (7.22) in order to sustain a target central temperature
value T

t
c. The treatment of the source terms, Su and ST , along with special

attentions dedicated to the discretization and stabilization of the main equa-
tions are given in Appendix E. Once the temperature field T is obtained, the
radiative flux qR({T }, y) can then be computed analytically (Taine et al. 2008)
in the whole channel. This is similar to the radiation wall-model in chapter
6 which takes into account anisotropic boundary conditions, although, here,
the classical textbook solution is used since radiative boundary conditions are
located at the two channel walls and are then isotropic.

7.2.2 Validation of flow field

Using the set of equations described above, the channel flow case of Kim and
Moin (Kim et al. 1987; Kim and Moin 1987) is computed and the results for
mean velocity u and temperature T are compared in Fig. 7.2 (here the tem-
perature acts as a passive scaler and only the results of the passive scalar with
Pr=0.71 are shown). It reveals that both the velocity and temperature are pre-
dicted with a very good agreement with corresponding DNS results validating
the numerical strategy.
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Figure 7.2: Velocity profiles (a) and temperature profiles (b) of the case of Kim and
Moin (Kim et al. 1987).

7.3 Results of the criteria

The aforementioned numerical approach is used to simulate many channel flows
for a large range of hydraulic diameters of channel, pressure, wall emissivity
and practical Reynolds number. For all the cases under consideration, the tem-
peratures at walls and in the center are set to typical values in gas turbine
combustors, i.e., 800K and 1800K respectively. The medium is non-reacting
CO2-H2O-N2 gas mixture, as that used in previous studies of this thesis. Molar
fractions of CO2, H2O and N2 are 0.116, 0.155 and 0.729. The dynamic viscos-
ity µ is computed as a function of temperature from the CHEMKIN package
(Kee et al. 1986; Kee et al. 1989) for the chosen mixture composition. The
thermal conductivity λ is computed from a Prandtl number Pr. In all con-
sidered configurations, the Prandtl number is very close to the chosen value
0.71. The obtained results of the two criteria are presented and analyzed in
this section.

7.3.1 Variation of radiation effect at high pressure

Fig. 7.3 (a) shows the contour plot of criterion Rq when practical Reynolds
number ReDh

and hydraulic diameter of channel vary. The wall emissivity is
0.8 and the pressure is set to 40 atm in order to have relatively optically thick
medium. a criterion value of 0.2 is chosen as a threshold to start a radiation
calculation since a weight of 20% of radiative flux is already important. As
expected in such a case, the region where Rq is higher than 0.2 and hence where
a radiation simulation is needed, covers the main part of the domain (gray zone
in the figure). Moreover, for a certain Reynolds number, the importance of wall
radiative flux increases with hydraulic diameter of channel due to an increased
optical thickness. On the other hand, weight of wall radiative flux becomes
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(a) (b)

Figure 7.3: contour plots of criteria Rq for heat fluxes (a) and ∆ref
t+

∣∣∣
y=0.1δ

for T
+

(b) when change practical Reynolds number (ReDh
) and hydraulic diameter of channel

(pressure=40 atm; wall emissivity=0.8).

(a) (b)

Figure 7.4: contour plots of criteria Rq for heat fluxes (a) and ∆ref
t+

∣∣∣
y=0.1δ

for T
+

(b) when change practical Reynolds number (ReDh
) and wall emissivity (pressure=40

atm; hydraulic diameter=0.4 m).
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(a) (b)

Figure 7.5: contour plots of criteria Rq for heat fluxes (a) and ∆ref
t+

∣∣∣
y=0.1δ

for T
+

(b) when change wall emissivity and hydraulic diameter of channel (pressure=40 atm;
practical Reynolds number=48000).

less important at higher Reynolds number, especially with a small channel size,
as the thickness of boundary layer decreases and hence wall conductive flux
increases with Reynolds number. Then two physical behaviors are retrieved by
the criterion.
The variation of ∆ref

t+

∣∣∣
y=0.1δ

with ReDh
and hydraulic diameter of channel at a

pressure of 40 atm is also shown in Fig. 7.3 (b). Similarly, a criterion value of
0.2 is also chosen as an indication of a non-negligible radiation effect on T

+
and

of the need to apply the wall model proposed in chapter 6. The gray color in

the figure is related to the region where ∆ref
t+

∣∣∣
y=0.1δ

≥ 0.2. Obviously, this gray

region is smaller than the one of Rq, indicating that in some region, although
the wall radiative flux is important, the radiation effect is not strong enough
to influence T

+
profiles near the wall.

The magnitude of criterion value generally increases with the hydraulic diam-
eter of channel while the change with Reynolds number is more complicated.
In fact, regarding the influence of Reynolds number on wall-scaled tempera-
ture, two aspects have been identified in Ref. (Zhang et al. 2013): i) As the
Reynolds number increases, the weight of turbulent convective heat transfer
increases and hence it yields a relatively less important radiation effect. Con-
sequently, T

+
profile approaches to the usual wall law, i.e., absolute value of

∆ref
t+

∣∣∣
y=0.1δ

decreases; ii) The temperature gradient in vicinity of walls increases

with Reynolds number. Gas temperature at a given position then differs more
from wall temperature while the difference with the average gas temperature is
reduced. Consequently, the importance of gas-gas radiation declines while gas-
wall radiation effect is enhanced. Moreover, as indicated in Ref. (Zhang et al.
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2013), gas-gas radiation decreases the T
+

value and yields a positive ∆ref
t+

∣∣∣
y=0.1δ

value whereas gas-wall radiation has an opposite effect. Therefore, as Reynolds
number increases, value of the criterion is expected to decrease and even become
negative when gas-wall radiation dominates over gas-wall radiation.
Indeed, in Fig. 7.3 (b), it turns out that when Reynolds number is relatively
small (smaller than 40000), gas-gas radiation is dominant and a positive crite-
rion value is obtained. Both of the two aforementioned aspects tend to decrease
the criterion value when Reynolds number increases. Furthermore, if Reynolds
number becomes even higher, a negative criterion value appears indicating that
gas-wall radiation overcomes gas-gas radiation. However, this negative value is
small since radiation effect is weak at high Reynolds number.
Figure 7.4 shows the contour plot of the two criteria when practical Reynolds
number and wall emissivity change for a pressure set at 40 atm and a hydraulic
diameter of channel fixed at 0.4 m. It is observed as expected that the radiative
flux, and hence Rq, increases with wall emissivity since the gas-wall radiation
is enhanced. On the other hand, as wall emissivity increases, the weight of gas-

gas radiation decreases and hence the value of criterion ∆ref
t+

∣∣∣
y=0.1δ

decreases

from a high positive value to even a negative value when with a high Reynolds
number.
The contour plots of the criteria associated with variable hydraulic diameter
and wall emissivity are shown in Fig. 7.5. The pressure condition is the same
as before while practical Reynolds number is 48,000. As described above, both
these two criteria increase with hydraulic diameter of channel while the trends
with wall emissivity are opposite. Therefore, for criterion Rq, the gray region
is on the top-right corner while it is located on the bottom-right corner for

∆ref
t+

∣∣∣
y=0.1δ

.

7.3.2 Variation of radiation effect at 1 atm

The results of criteria at 1 atm are demonstrated in Fig. 7.6, 7.7 and 7.8 when
changing different flow conditions. The trends of these results are similar to
those at 40 atm whereas the magnitude of the values and the size of the gray
region decrease owing to decrease in the optical thickness at 1 atm compared
to that at 40 atm. Unsurprisingly, smaller radiation effects are then observed
at 1 atm.

7.3.3 Variation of radiation effect with pressure

Since the gas absorption coefficients increase and hence the optical thickness
of medium, with pressure condition, stronger radiation effects are achieved as
the pressure increases. This is observed in Figs. 7.9, 7.10 and 7.11 where both
criteria values are plotted.
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(a) (b)

Figure 7.6: contour plots of criteria Rq for heat fluxes (a) and ∆ref
t+

∣∣∣
y=0.1δ

for T
+

(b) when change practical Reynolds number (ReDh
) and hydraulic diameter of channel

(pressure=1 atm; wall emissivity=0.8).

(a) (b)

Figure 7.7: contour plots of criteria Rq for heat fluxes (a) and ∆ref
t+

∣∣∣
y=0.1δ

for T
+

(b) when change practical Reynolds number (ReDh
) and wall emissivity (pressure=1

atm; hydraulic diameter=0.4 m).
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(a) (b)

Figure 7.8: contour plots of criteria Rq for heat fluxes (a) and ∆ref
t+

∣∣∣
y=0.1δ

for T
+

(b) when change wall emissivity and hydraulic diameter of channel (pressure=1 atm;
practical Reynolds number=48000).

(a) (b)

Figure 7.9: contour plots of criteria Rq for heat fluxes (a) and ∆ref
t+

∣∣∣
y=0.1δ

for T
+

(b)

when change practical Reynolds number (ReDh
) and pressure (hydraulic diameter=0.4

m; wall emissivity=0.8).
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(a) (b)

Figure 7.10: contour plots of criteria Rq for heat fluxes (a) and ∆ref
t+

∣∣∣
y=0.1δ

for T
+

(b) when change wall emissivity and pressure (hydraulic diameter=0.4 m; practical
Reynolds number =48000).

(a) (b)

Figure 7.11: contour plots of criteria Rq for heat fluxes (a) and ∆ref
t+

∣∣∣
y=0.1δ

for

T
+

(b) when change hydraulic diameter of channel and pressure (wall emissivity=0.8;
practical Reynolds number =48000).
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7.4 Conclusions

Two different criteria are proposed and validated against DNS/Monte-Carlo
results. The first one aims to predict the weight of wall radiative flux. The
other defines whether it is necessary to use the proposed new wall model in
chapter 6, that accounts for radiation in the near wall region. Both of these
criteria are only based on flow fields resulted from a simulation performed
without radiation.
A k-ǫ model and a formula for turbulent Prandtl number are used to simulate
the mean velocity and temperature field of channel flows. Many simulations
of turbulent channel flows are performed to build 2D maps of criterion values
under different flow conditions.
These observations under a multitude of conditions have confirmed and gener-
alized the conclusions obtained from previously analyzed DNS data: Due to an
increased optical thickness of medium, radiation effect is enhanced and higher
criterion values are obtained as hydraulic diameter of channel or/and pressure
increase. When wall emissivity changes, the trend of the two criteria are op-
posite since the wall radiative flux is mainly due to gas-wall radiation while
change of wall-scaled temperature, on the other hand, is generally dominated
by gas-gas radiation. The two criterion values generally decrease with Reynolds
number, while a small negative value of the criterion for wall-scaled temper-
ature can be achieved when gas-wall radiation overcomes gas-gas radiation in
flows characterized by high Reynolds number.
Finally, the proposed criteria and their evaluation method form a practical tool
for engineers to determine whether radiative effects must be accounted for.
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Conclusion

The general objective of this thesis is to assess a better understanding and
prediction of the influence of radiation on turbulent flows. Although various
studies have been dedicated to this problem, there was still no general trend
or understanding of radiation effects in turbulent boundary layers. Therefore,
a detailed physical study of such effects on the mean flow field and fluctuation
field in turbulent channel flows has been performed in this thesis. A new wall
model for LES has also been developed to account for radiation in the near
wall region. Finally, two criteria have been proposed to assess the necessity
of performing a radiation simulation and to predict whether the proposed wall
model is required under a given flow condition. The main achievements of this
thesis are described in the following.

Main achievements

• For radiation simulations in this work, the Monte-Carlo method is re-
tained in order to obtain high-fidelity results. Among various approaches
of Monte-Carlo methods, the Emission-based Reciprocity Method (ERM)
is more efficient since it enables to control the uncertainty of the results
locally or/and to shot photon bundles only from the points where results
are required. However, this method is inaccurate in the treatment of ab-
sorption in cold regions. In order to overcome this drawback of ERM, an
Optimized Emission-based Reciprocity Method (OERM) is proposed and
validated in the first part of this thesis. OERM applies a new frequency
distribution function based on the maximum temperature of the whole
domain while it still fulfills the real emission distribution function of any
temperature by adding a corrective factor to each shot. This method has
been validated in several benchmark cases by a comparison with analyti-
cal reference solutions and results of some other reciprocity Monte-Carlo
methods when available.

• In the second part of this thesis, the coupling between turbulent con-
vection and radiation in channel flows has been investigated for different
temperature, optical thickness (pressure) and wall emissivity conditions.
Direct Numerical Simulation has been performed for the flow field and
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has been fully coupled to radiation simulation using OERM combined to
the CK model to describe radiative properties. In the studied conditions,
the structure of the temperature field and the wall conductive flux often
strongly differ from results without radiation. Classical wall log-laws for
temperature are then modified by the global radiation effects. It has been
understood that gas-gas and gas-wall radiation interactions generate op-
posite effects on the temperature and flux fields. The first one tends to
increase wall conductive flux while the second one to decrease it. Finally,
the averaged temperature profiles and wall conductive fluxes were shown
to strongly depend on: i) pressure, that controls the optical thickness of
the medium; ii) the wall emissivities, that rule the wall reflection effects;
iii) the temperature level, that controls the non linear radiative fluxes;
iv) the Reynolds number that controls the weight of turbulence transport
and the balance of gas-gas and gas-wall radiative effects.

• Radiation effects on the fluctuation field within a turbulent channel flow
have also been analyzed. Firstly, radiation reduces the enthalpy fluctu-
ation and influences the turbulent transport of enthalpy fluctuation by
decreasing production terms and introducing additional radiative dissi-
pative terms. Various conditions lead to distinctive profiles of wall-scaled
quantities. A new radiation-based scaling has been proposed, it improves
the agreement between profiles of turbulent heat flux and other quanti-
ties in channel flows with/without accounting for radiative transfer. From
this new scaling, a model for the turbulent Prandtl number is proposed
to take into account radiation effects.

• In order to accurately predict the influence of radiation on the temper-
ature profile in turbulent boundary layers, a new one-dimensional wall
model for large-eddy simulation (LES) is proposed. The wall model de-
scribes the inner boundary layer which cannot be resolved by the LES.
The radiative power source term is calculated from an analytical expres-
sion of the intensity field within the inner layer. Wall stress and conduc-
tive heat flux predicted by the wall model are fed back to the large-eddy
simulation in the outer layer which is coupled to OERM to account for
radiation.
First results have shown that: i) A semi-local scaling of the mixing-length
is necessary to account for the variations of gas properties, such as mass
density and dynamic viscosity, within the inner layer; ii) A non-constant
turbulent Prandtl number gives better results; iii) In the studied cases,
the mean incoming intensity at the outer boundary of the wall model
has required the discretization of the corresponding solid angle into at
least two angular sectors to accurately account for anisotropy of incident
radiation field; iv) The point where information is transmitted from LES
to the wall model has been moved away from the wall while remaining in
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the validity range of the wall-model. This is done in order to decrease the
mismatch in the obtained wall laws due to numerical and sub-grid errors
in the wall vicinity.
Then, the combination of the proposed wall model and LES/Monte-Carlo
method has been compared to DNS/Monte-Carlo results on turbulent
channel flows. Coupled results have also been compared to those ob-
tained with a standard wall model which does not account for radiation
effects within the inner layer. Results for high pressure cases show that
the new wall-model greatly improves the accuracy of the predicted results
compared to a standard wall model. The same trend is retrieved in at-
mospheric cases even though the magnitude of difference is smaller than
the one at high pressure.

• Although all the cases considered in the previous study show an important
radiation effect, the magnitude of radiative transfer in real applications
depends on the flow condition. It could then be very useful to estimate the
importance of radiation before performing an accurate simulation which is
generally very expensive. In order to realize this, a criterion is proposed to
assess the weight of wall radiative flux compared to wall conductive flux.
Moreover, to predict whether the wall model accounting for radiation is
required for a given flow, another criterion based on the change of non-
dimensional temperature due to radiation (scaled in wall units) is also
developed. These two criteria are then validated with DNS/Monte-Carlo
results. Both criteria are based on flow fields resulting from a simulation
performed without radiation.
In order to carry out a parametric study, a k-ǫ model and a formula for
turbulent Prandtl number are applied to simulate the mean velocity and
temperature field of channel flows under different flow conditions. And
the corresponding criterion values are computed and compared.
The results generalize the previous observations: An increased optical
thickness of medium enhances radiation effects and higher values for both
criteria are obtained as hydraulic diameter of channel or/and pressure in-
crease. When wall emissivity changes, the trend of the two criteria are
opposite since the wall radiative flux is mainly due to gas-wall radiation
while change of wall-scaled temperature, on the other hand, is generally
dominated by gas-gas radiation. The two criteria generally decrease with
Reynolds number, while a small negative value of the criterion for wall-
scaled temperature can be achieved when gas-wall radiation overcomes
gas-gas radiation in flows characterized by high Reynolds number.
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Perspectives

The perspectives for this work include the following points:

• The radiation effect in a reactive combustion system should be inves-
tigated. Due to higher temperature fluctuations in these systems, the
influence of TRI is known to be even more important.

• The turbulent Prandtl number model proposed in chapter 5 has actually
been developed after the wall-model and it should be combined with the
wall-modeled LES to further increase the accuracy of the approach. Its
impact is small in the studied conditions where radiation was predominant
but can be expected to be more noticeable when radiation and turbulent
heat transfer are of the same order in magnitude.

• The wall modeled-LES can be applied to more complex systems such as
combustion systems. Other physical effects, such as chemistry, pressure
gradient or non-equilibrium boundary layers, could be included in the
wall model. Finally, under other configurations, the requirement on the
discretization of the solid angle in the wall-model might be different.

• The proposed wall model could be implemented in RANS which is widely
used for engineering applications.

• The criteria maps built in chapter 7 should be used to determine operating
conditions of furnaces, gas turbines, rocket engines, ... where the observed
effects of radiation on the boundary layer structure must be accounted
for in numerical simulations.

Publications related to the thesis

Several results obtained during this thesis have led to the following interna-
tional publications:

• Y.F. Zhang, O. Gicquel and J. Taine (2012). Optimized Emission-based
Reciprocity Monte Carlo Method to speed up computation in complex
systems. International Journal of Heat and mass Transfer 55 (2012) 8172-
8177;

• Y.F. Zhang, R. Vicquelin, O. Gicquel and J. Taine (2012). Physical study
of radiation effects on the boundary layer structure in a turbulent channel
flow. International Journal of Heat and mass Transfer 61 (2013) 654-666;
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• Y.F. Zhang, R. Vicquelin, O. Gicquel and J. Taine. A wall model for
LES accounting for radiation effects. submitted to International Journal
of Heat and mass Transfer (2013);

Two other publications associated with chapter 5 and 7 are planned. Addition-
ally, several posters have been presented in international conferences:

• Y.F. Zhang, R. Vicquelin, O. Gicquel, and J. Taine. Direct numerical
simulation of a turbulent channel flow coupled to radiative transfer. 23rd
International Congress of Theoretical and Applied Mechanics, Beijing,
China, 2012;

• Y. F. Zhang, R. Vicquelin, O. Gicquel, J. Taine and Y. Huang. Wall-
modeled LES with a new wall model accounting for radiation effects.
7th International Symposium on Radiative Transfer (RAD-13), Kusadasi,
Turkey, 2013.
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Appendix A

Derivation of turbulent

boundary layer equations

In this part, the thin equilibrium boundary layer equations are demonstrated
for turbulent periodic channel flows. Both the momentum and energy equations
are here considered. And these equations can also be derived similarly in most
of the configurations.

A.1 Analysis of the momentum equation

For a turbulent flow in a statistically stationary state, the averaged equation
of continuity (Eq. (3.2)) writes

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0. (A.1)

Introducing the Favre average, it becomes

∂(ρũ)

∂x
+

∂(ρṽ)

∂y
+

∂(ρw̃)

∂z
= 0. (A.2)

Since the periodic channel flow is homogeneous in z direction, it yields w̃ =
and ∂(ρw̃)

∂z =. Moreover, when the flow is full developed, ∂(ρũ)
∂x = and hence, Eq.

(A.2) becomes

∂(ρṽ)

∂y
= 0. (A.3)

An integration of this equation from the wall gives rise to

ρṽ = (ρṽ)w = 0, (A.4)

indicating that the Favre-averaged ṽ is always zero in the whole channel flow.
If the density is variable, the Reynolds averaged wall-normal velocity v might
not be zero (Cabrit and Nicoud 2009).
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The equation of momentum in direction x, when averaged, becomes

∂(ρũ2)

∂x
+

∂(ρũv)

∂y
+

∂(ρũw)

∂z
= −∂p

∂x
+

∂(τ1j)

∂xj
. (A.5)

Since ṽ = 0, w̃ = 0, this equation can be reduced as

∂[ρ(ũ2 + ũ′′2)]

∂x
+

∂(ρũ′′v′′)

∂y
+

∂(ρũ′′w′′)

∂z
= −∂p

∂x
+

∂τ1j
∂xj

. (A.6)

Moreover, for a periodic channel flow, one have: dρũ2

dx = 0, ∂ρũ′′2

∂x = 0 and
∂ρũ′′w′′

∂z = 0 Hence the terms on the left-hand side remains only ∂(ρũ′′v′′)
∂y .

The viscous shear stress term ∂τ1j
∂xj

writes

∂τ1j
∂xj

=
∂τ11
∂x

+
∂τ12
∂y

+
∂τ13
∂z

=
∂

∂x

[
2µ

∂u

∂x
− 2

3
µ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)]

+
∂

∂y

[
µ

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂z

[
µ

(
∂u

∂z
+

∂w

∂x

)]
.

(A.7)

By separating the terms into the mean and fluctuation part, it becomes

∂τ1j
∂xj

=
∂

∂x

[
2µ

∂u

∂x
− 2

3
µ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)]

+
∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂u

∂z
+ µ

∂w

∂x

)

+
∂

∂x

[
2µ′

∂u′

∂x
− 2

3
µ′
(∂u′
∂x

+
∂v′

∂y
+

∂w′

∂z

)]

+
∂

∂y

(
µ′
∂u′

∂y
+ µ′

∂v′

∂x

)
+

∂

∂z

(
µ′
∂u′

∂z
+ µ′

∂w′

∂x

)
.

(A.8)

Considering that the layer is thin, and the averaged values v and w are much
smaller than u, the predominant term associated with the mean velocity is
∂
∂y

(
µ∂u

∂y

)
, while for the term with fluctuation, ∂

∂y

(
µ′ ∂u′

∂y

)
is the most impor-

tant one. All the other terms are much smaller compared to these two terms.
Moreover, as discussed in Ref.(Cabrit and Nicoud 2009), ∂

∂y

(
µ′ ∂u′

∂y

)
is negligible

when compared to ∂
∂y

(
µ∂u

∂y

)
. Therefore, Eq. (A.6) is reduced to

dp
dx

=
d
dy

(
µ

du
dy

− ρũ′′v′′
)

=
dτ tot
dy

. (A.9)
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where the total stress τ tot writes

τ tot = µ
du
dy

− ρũ′′v′′. (A.10)

Eq. (A.9) indicates that the flow inside a turbulent channel flow is driven by the
gradient of pressure. In a periodic channel flow, since the pressure is constant,
a source term is then required to play the same role as pressure gradient, i.e., to
balance with the total stress gradient. τ tot has a linear profile when a spatially
uniform source term is applied.
Furthermore, in the close vicinity of walls, a constant total stress region can be
assumed, indicating

dτ tot
dy

=
d

dy

(
µ

du
dy

− ρũ′′v′′
)

≈ 0. (A.11)

This is the so-called equilibrium momentum equation for turbulent boundary
layers.

A.2 Analysis of the energy equation

The averaged form of the energy transport equation for a statistically stationary
turbulent flow writes

∂(ρ ũh )

∂x
+

∂(ρṽh)

∂y
+

∂(ρw̃h)

∂z
=

∂

∂x

(
λ
∂T

∂x

)
+

∂

∂y

(
λ
∂T

∂y

)
+

∂

∂z

(
λ
∂T

∂z

)

+ ui
∂p

∂xi
+ τij

∂ui
∂xj

,

(A.12)

where the terms on the left hand can be separated into

∂(ρũh̃)
∂x

+
∂(ρũ′′h′′)

∂x
+

∂(ρṽh̃)
∂y

+
∂(ρṽ′′h′′)

∂y
+

∂(ρw̃h̃)
∂z

+
∂(ρw̃′′h′′)

∂z
. (A.13)

Here, for periodic channel flows, one has ∂(ρũ′′h′′)
∂x = 0, ∂(ρũh̃)

∂x = 0, ∂(ρw̃′′h′′)
∂z = 0,

∂(ρw̃h̃)
∂z = 0 and ṽ = 0. Hence the terms on the left side is then reduced to only

one term: ∂(ρṽ′′h′′)
∂y .

Furthermore, the first three terms on the right hand can be transformed as

∂

∂x

(
λ
∂T

∂x

)
+

∂

∂y

(
λ
∂T

∂y

)
+

∂

∂z

(
λ
∂T

∂z

)

+
∂

∂x

(
λ′
∂T ′

∂x

)
+

∂

∂y

(
λ′
∂T ′

∂y

)
+

∂

∂z

(
λ′
∂T ′

∂z

)

≈ ∂

∂y

(
λ
∂T

∂y

)
+

∂

∂y

(
λ′
∂T ′

∂y

)
≈ ∂

∂y

(
λ
∂T

∂y

)
.

(A.14)
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This gives rise to the following simplified energy equation:

∂

∂y

(
λ
∂T

∂y

)
− ∂(ρṽ′′h′′)

∂y
+ ui

∂p

∂xi
+ τij

∂ui
∂xj

= 0. (A.15)

For flows with a small Ma number (Ma< 0.2), the effects of pressure term and
viscous term are negligible in the energy equation, hence, it yields

dqtot
dy

= − d

dy

(
λ
∂T

∂y
− ρh̃′′

sv
′′

)
= 0 (A.16)

where the total heat flux qtot is defined as

qtot = λ
∂T

∂y
− ρh̃′′

sv
′′. (A.17)

Eq. (A.17) is the equilibrium energy equation for turbulent boundary layers in
channel flows.
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Appendix B

Low Mach-number

approximation

If the gas velocity is small compared to the sound speed (Mach number Ma
< 0.2), the low Mach number approximation can be used where the density is
decoupled from the pressure and hence acoustics is filtered out of the compu-
tation.
In order to derive the low Mach number approximation, the non-dimensional
variables are expanded as power series of the Mach number. The variables are
normalized as follow

x = x0x
∗, v = v0v

∗, t = x0/v0t
∗, ρ = ρ0ρ

∗,

T = T0T
∗, h = v20h

∗, p = ρ0r0T0p
∗

(B.1)

where the subscript 0 denotes a reference value of the corresponding quantity.
Substituting these equations into the governing equations yields (Julien 2002)

∂ρ∗

∂t∗
+

∂(ρ∗u∗i )

∂x∗i
= 0, (B.2)

∂(ρ∗u∗i )

∂t∗
+

∂(ρ∗u∗i u
∗
j)

∂x∗j
= − 1

γMa2
∂p∗

∂x∗i
+

1

Re

∂τ∗ij
∂x∗j

+S∗
i i ∈ [1, 3], (B.3)

ρ∗c∗p
∂T ∗

∂t∗
+ ρ∗u∗j

∂(c∗pT
∗)

∂x∗j
=

γ − 1

γ

(
∂p∗

∂t∗
+ u∗j

∂p∗

∂x∗j

)

+
Ma2 (γ − 1)

Re
τ∗ij

∂u∗j
∂x∗i

− 1

RePr

∂q∗j
∂x∗j

+ Q̇∗,

(B.4)

p∗

ρ∗
= rT ∗. (B.5)

where γ is the heat capacity ratio and Re is the Reynolds number. Considering
that the Mach number is small, the non-dimensional pressure can be expressed
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as

p∗ = p∗0 + Ma p∗1 + γMa2p∗2 +O(Ma3), (B.6)

The set of equations for low-Mach number flows is obtained by i) Substituting
this equation into Eqs. (B.3) and (B.4); ii) Identifying systems of equations
for each order in the Mach number; iii) and keeping only the dominant orders
for low Mach-number, i.e. Ma−2, Ma−1 and Ma0. The obtained system of
equations writes

∂p∗0
∂x∗i

= 0, (B.7)

∂p∗1
∂x∗i

= 0, (B.8)

∂(ρ∗u∗i )

∂t∗
+

∂(ρ∗u∗i u
∗
j)

∂x∗j
= −∂p∗2

∂x∗i
+

1

Re

∂τ∗ij
∂x∗j

+ S∗
i i ∈ [1, 3], (B.9)

ρ∗c∗p
∂T ∗

∂t∗
+ ρ∗u∗j

∂(c∗pT
∗)

∂x∗j
=

γ − 1

γ

(
∂p∗0
∂t∗

+ u∗j
∂p∗0
∂x∗j

)
− 1

RePr

∂q∗j
∂x∗j

+ Q̇∗.

(B.10)

Eq. (B.7) indicates that the pressure p∗0 = p∗0(t) is uniform in space while Eq.
(B.10) implies that p∗1 has the same feature as p∗0. Therefore, it is reasonable
to set p∗1 = 0 and hence from Eq. (B.6), the pressure now can be decomposed
into two parts: a constant pressure p∗0 and the pressure fluctuation γMa2p∗2.
The dimensional conservation equations for low-Mach number flows become

∂ρ

∂t
+

∂(ρui)

∂xi
= 0, (B.11)

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= −∂p2

∂xi
+

∂τij
∂xj

+ Si i ∈ [1, 3], (B.12)

∂(ρh)

∂t
+

∂(ρujh)

∂xj
=

∂p0
∂t

− ∂qj
∂xj

+ Q̇, (B.13)

where p0 and p2 are the uniform thermodynamic pressure and the hydrody-
namic pressure respectively while p2/p0 ≈ o(Ma2).
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Appendix C

Test of the adequacy of

computational domain of

channel flow

As discussed in section 3.2.2, in DNS, the computational domain should be
large enough to represent the large turbulent scale properly. One way to ensure
the adequacy of domain size in homogenize direction is to make sure that the
fluctuations of main quantities are uncorrelated within half of the domain, i.e.,
the two-point correlation should decrease to zero within half size.
In present study, to illustrate the adequacy of the domain size (2πh, 2h, πh), the
two point correlations for case C2 (described in section 4.3.5) are shown in Fig
C.1 (the results in other cases are similar). It demonstrates that the domain
is wide enough since most of the correlations decay to zero, except that the
stramwise velocity correlation in the steamwise direction has a small value in the
central region. In order to further examine the suitability of domain dimension
in streamwise direction, a simulation of case C1 with a longer computational
domain (4πh, 2h, πh) is performed and the results of u+ and T+ are compared
in Fig C.2. The results of the two grids are the same (the results on the hot
side are similar), hence, it is believed that the shorter domain size (2πh, 2h, πh)
is appropriate and can be applied for all the cases.
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Figure C.1: Two-point correlations in streamwise and spanwise direction for C2 at
different wall normal distance.
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Figure C.2: Comparison of velocity (a) and temperature (b) for different domain size
(the cold side of C2).
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Appendix D

Streamwise momentum source

term to control the bulk

Reynolds number

The momentum equation in the streamwise direction (Eq. 3.2 when i=1) can
be recast as

∂

∂t
(ρu) +

∂

∂xj
(ρuiu) = − ∂p

∂X
+

∂τi1
∂xi

+ S1 (D.1)

where a homogeneous source term S1 is added to compensate for viscous dis-
sipation and enforces the flow to have a target bulk Reynolds number Retb. In
standard flows with constant flow properties and without multi-physical phe-
nomena (chemistry, radiation, ...), non-dimensional equations can be written
and this source term is directly specified by the Reynolds number. However,
in more complex flows such as the studied ones, equations are kept in their di-
mensional form and S1 must be determined differently. A first method consists
in taking a fixed constant in time Sref (Ghosh et al. 2011; Cabrit and Nicoud
2009) that is either chosen arbitrarily, leading to an unknown and different
Reynolds number in each different configuration, or more carefully evaluated
from the friction coefficient using experimental/theoretical formulas, functions
of the Reynolds number. Nonetheless, in the latter, the final Reynolds number
that is obtained remains different from the intended one since formulas that
are considered correspond to simple flows. The deviation from the target value
increases as the studied flow is more and more complex.
A second method consists in dynamically adapting the source term value after
each iteration so that the Reynolds number is brought towards its target value
(Bocquet et al. 2012; Cabrit and Nicoud 2009). The following procedure has
been reported in (Cabrit 2009; Bocquet et al. 2012):

Sn+1
1 = Sref +

(
ρt
b u

t
b −

∫

V
ρnun dV ′/V

)
/τref, (D.2)
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where the superscript t, n+1 and n denote target values, prescribed time step
n + 1 and n, respectively while subscript b is related to the bulk quantities as
defined in section 4.3.1. The relaxation time τref is set to 0.3δ/uτ and V is
the volume of the computational domain. The source term value is modified at
each iteration when the simulation bulk Reynolds number is different from Retb
but tends to a constant value as a permanent regime is reached. However, in
complex flows, the constant value that is obtained is different from Sref and the
second term in Eq. D.2 remains constant and not null, necessarily introducing
a finite bias between Reb and Retb
Here, another approach is proposed which ensures the channel flow to converge
exactly and efficiently to the target bulk Reynolds number. The idea is to
derive a second order ordinary differential equation with constant coefficients
for Reb whose time response can then be controlled.
Integration of Eq. D.1 over the whole computational domain V gives rise to

d
dt

(∫

V
ρudV ′

)
=

∮
τi1 · ~n dS + S1 V (D.3)

where ~n is the surface normal vector. Note that the integration of pressure
gradient term is null since the periodic boundary condition is applied in X
directions, same for the convective flux of momentum.
The integrated term on the left side of Eq. D.3 can be expressed as

∫

V
ρu dV ′ = ρb ub V =

µb Reb V
δ

(D.4)

where δ is the half-height of the channel and subscript b is related to the bulk
quantities as aforementioned.
Moreover, we have

∮
τi1 · ~n ds = −(|τw,c|+ |τw,h|)Sw (D.5)

where τw,c and τw,h is the friction stress at the cold and hot wall respectively
and Sw is the surface area of each wall of the computational domain. For
simplicity, the change of gas properties are not considered in the calculation of
wall friction stress, which yields: |τw,c| = |τw,h| = |τw|. Meanwhile, the mean
wall friction stress |τw| = (|τw,c|+ |τw,h|)/2 can be estimated from the friction
coefficient Cf as

|τw| =
ρbu

2
b

2
Cf (D.6)

where Cf is approximately evaluated from the practical Reynolds number Reb,Dh

as (W.M. Kays and Weigand 2004)

Cf = 0.046 Re−0.2
Dh

for 104 < ReDh
< 5× 106 (D.7)
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Reynolds number
205

with ReDh
= 4Reb. The wall friction stress |τw| is then a function of Reb, i.e.,

|τw| = 0.0174
µ2
b

ρbδ2
Re1.8b . (D.8)

By substituting Eqs. D.4, D.5 and D.8 into Eq. D.3, it yields

dReb
dt

= −0.0348
µb

ρbδ2
Re1.8b +

δ

µb
S1 (D.9)

where the change of µb with time is neglected. Differentiating Eq. D.9 gives

d2Reb
dt2

= −0.0626
µb

ρbδ2
Re0.8b

dReb
dt

+
δ

µb

dS1

dt
. (D.10)

Let’s assume the following definition for the source term S1:

dS1

dt
= a1

dReb
dt

+ a2, (D.11)

where a1 and a2 are to be determined. Equation D.12 is then recast as

d2Reb
dt2

=

(
−0.0626

µb

ρbδ2
Re0.8b + a1

δ

µb

)
dReb
dt

+ a2
δ

µb
. (D.12)

In this study, in order to obtain a relaxation towards the target value Retb, a2
is set as

a2 = Sref
Retb − Reb

τref
, (D.13)

where the reference source term Sref and relaxation time τref are similar to
those in Ref. (Cabrit 2009). To control the time response Reb(t) and reduce
the computational time, the remaining value a1 needs to be optimized. In fact,
with

p = 0.0626
µb

ρbδ2
(
Retb
)0.8 − a1

δ

µb
, q =

δ

µb

Sref

τref
, g =

δ

µb

Sref

τref
Retb, (D.14)

when Reb is close to Retb, Eq. D.12 can be written as a second-order ordinary
differential equation with constant coefficients:

d2Reb
dt2

+ p
dReb
dt

+ qReb = g. (D.15)

Note that Retb is used instead of Reb in the expression of p. The dynamics of
Reb(t) is then controlled by the discriminant p2 − 4q, and the solution of this
equation can be divided into two parts:
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Underdamped regime: p2 − 4q < 0

The solution of Eq. D.15 writes

Reb = Retb + eαt [C1 cos(βt) + C2 sin(βt)] (D.16)

with α = −p/2, β =
√

4q − p2/2. This damped regime is not desirable since
the computational time to reach the target value is penalized by oscillations.

Critically damped and overdamped regime: p2 − 4q ≥ 0

The solution of Eq. D.15 writes

Reb = Retb + C1 e
r1 t + C2 e

r2 t, for p2 − 4q > 0

Reb = Retb + (C1 + C2 t ) e
r1 t, for p2 − 4q = 0

(D.17)

with r1 =
−p+

√
p2 − 4q

2
, r2 =

−p−
√

p2 − 4q

2
. (D.18)

Among both regimes, the critical regime (p2 − 4q = 0) gives the shortest delay
to reach the target value (see Fig. D.1). The corresponding optimized value of
a1 in Eq. D.11 is then

a1 =
µb

δ

[
0.0626

µb

ρbδ2
(
Retb
)0.8 − 2

(
δ Sref

µb τref

)1/2
]
. (D.19)

The final formulation for the source term is therefore:

dS1

dt = a1
dReb
dt + a2

S1(0) = Sref

a1 = µb

δ

[
0.0626 µb

ρbδ2

(
Retb
)0.8 − 2

(
δ Sref
µb τref

)1/2 ]

a2 = Sref
Retb−Reb

τref

(D.20)

Using a first order discretization, the time differential equation for S1(t) gives
a new value Sn

1 at each new iteration. This approach has been applied in the
reported DNS and LES.
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Figure D.1: Change of Reb with number of iterations when ratio of p2/4q varies (the
target Reynolds number is 6000; plain line: p2/4q = 1; dashed line: 10; dashed-dashed-
dotted line: 50; dashed-dotted line: 100; dotted line: 500).



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 208 — #208
✐

✐

✐

✐

✐

✐



✐

✐

“thesis_yufang” — 2013/11/27 — 19:31 — page 209 — #209
✐

✐

✐

✐

✐

✐

Appendix E

Discretization of main equations

and treatment of source terms

for RANS in channel flows

In section 7.2, a RANS approach is used to compute channel flows. In this part,
the discretization of the main equations and the treatment of different source
terms is detailed.

E.1 Discretization

∆yi

∆y−i ∆y+i

i i+1i-1

Figure E.1: A schematic of discretization.

Note that the governing equations (7.14), (7.15), (7.16) and (7.22) can be iden-
tically written as

d
dy

(
DΦ

dΦ
dy

)
+ SΦ = 0. (E.1)

To solve this type of equation, a finite volume method is used. As shown in
Fig. E.1, the integration of Eq. (E.1) over the control volume ∆yi yields the
following form

(
DΦ

dΦ
dy

)

i+ 1

2

−
(
DΦ

dΦ
dy

)

i− 1

2

+

∫ y
i+1

2

y
i− 1

2

SΦdy = 0. (E.2)
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If a second-order central difference scheme is used for the derivative terms and
if the mean value of the source term is taken as the point value SΦ,i, Eq. (E.2)
then writes (Patankar 1980)

DΦ,i+ 1

2

Φi+1 − Φi

yi+1 − yi
−DΦ,i− 1

2

Φi − Φi−1

yi − yi−1
+ SΦ,i∆yi = 0. (E.3)

Generally, the source term can be expressed as (see section E.2)

SΦ,i = SCΦ,i + SPΦ,iΦi, (E.4)

and then Eq. (E.3) is recast into the following form:

aiΦi = ai+1Φi+1 + ai−1Φi−1 + bi, (E.5)

with

ai+1 =
DΦ,i+ 1

2

yi+1 − yi
, (E.6)

ai−1 =
DΦ,i− 1

2

yi − yi−1
, (E.7)

ai = ai+1 + ai−1 − SPΦ,i∆yi, (E.8)

bi = SCΦ,i∆yi. (E.9)

DΦ,i+ 1

2

is calculated as

DΦ,i+ 1

2

=

(
fi

DΦ,i
+

1− fi
DΦ,i+1

)−1

with fi =
∆y+i
∆yi

(E.10)

while the calculation of DΦ,i− 1

2

is similar.

Equation (E.5) is solved with an iterative procedure: If the superscript n + 1
and n denote the present and previous iterative step respectively, Eq. (E.5)
becomes

ani Φ
n+1
i = ani+1Φ

n+1
i+1 + ani−1Φ

n+1
i−1 + bni , (E.11)

where i = 1, 2, ..., N and N is the number of grid points. In this study, the
TriDiagonal-Matrix Algorithm (also called Thomas algorithm) (Patankar 1980)
is applied to solve this linear algebraic equations (E.11).

E.2 Source terms

In the main equations of k-ǫ model, a source term appears in addition to other
different derivative terms. For numerical stability, a proper treatment of these
source terms is carried out of the iterative procedure. Moreover, the source
terms of momentum and energy balance equations are also discussed since they
respectively control the practical Reynolds number and temperature value on
the central line of channel.
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E.2.1 Source terms for k and ǫ

Since the k-ǫ model is notoriously stiff (Wilcox 1993), spatial attention should
be paid to corresponding source terms.
As detailed in Ref. (Huang and Coakley 1992), the source terms of k and ǫ can
be linearized into positive part and negative part as

Sk,i = µt,i

(
du
dy

)2

i

− ρiǫi = SCk,i + SPk,iki, (E.12)

Sǫ,i = Cǫ1
ǫi
ki
µt,i

(
du
dy

)2

i

− Cǫ2fǫ,i
ρiǫ

2
i

ki
= SCǫ,i + SPǫ,i ǫi, (E.13)

with

SCk ,i = µt,i

(
du
dy

)2

i

; SPk,i = −ρi
ǫi
ki
; (E.14)

SCǫ,i = Cǫ1
ǫi
ki
µt,i

(
du
dy

)2

i

; SPǫ,i = −Cǫ2fǫ,i
ρiǫi
ki

. (E.15)

This linearization ensures the positive value of k or ǫ and stabilizes the iterative
method.
Moreover, a threshold value 10−12 is used as the minimum value of k in the
iterative process. The final flow field results are not affected by this threshold
value since k is always much larger than 10−12 when converged.

E.2.2 Source term for u

Uniform source terms Su and ST are added in the momentum and energy
balance equations respectively to obtain a target practical Reynolds number
RetDh

and a target central temperature T
t
c. When the flow is stabilized at

ReDh
, the integral value of Su over the whole channel flow should equal the

sum of shear stresses on the two walls. Since the velocity profile is symmetric
in this study, the shear stress on the two wall are the same. Therefore,

Su = τw/δ, (E.16)

where the wall shear stress τw can be calculated from the skin friction coefficient
Cf as

τw =
ρb u

2
b

2
Cf . (E.17)

In this equation, indice b relates to bulk quantities and Cf can be approximated
as (W.M. Kays and Weigand 2004)

Cf = 0.046Re−0.2
Dh

for 3× 104 < ReDh
< 106 (E.18)
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with

ReDh
=

ρb ub Dh

µb

. (E.19)

where Dh is the hydraulic diameter and it equals to 4δ for a channel flow.
Therefore, the source term for velocity expresses

Su = 0.092
µ2
b

ρb D
3
h

Re1.8Dh
. (E.20)

In the iterative process, the source term corresponding to step n+ 1 is then
calculated as

Sn+1
u,i = Sn

u,i + 0.092
µ2
b

ρb D
3
h

[
(RetDh

)1.8 − (RenDh
)1.8
]
. (E.21)

E.2.3 Source term for T

If the temperature at two walls are equal, a source term is also needed for
compensating heat losses at walls and for sustaining the central temperature
value T

t
c. This source term ST then writes

ST = −qcdw /δ. (E.22)

where wall conductive heat flux qcdw can be calculated from the Nusselt number
Nu, which is defined as

Nu =
qcdw

λb
Tw−Tb
Dh

, (E.23)

where the bulk temperature T b and hydraulic diameter Dh are chosen as the
reference temperature and length respectively. Similarly, the formula from Ref.
(W.M. Kays and Weigand 2004) is applied for Nu:

Nu =
0.023Re0.8Dh

Pr

0.88 + 2.03
(
Pr2/3 − 0.78

)
Re−0.1

Dh

(E.24)

with the valid rang of 3 × 104 < ReDh
< 106 and 0.6 < Pr < 6. Then the

source term writes

ST = Nu
4λb(T b − Tw)

D2
h

. (E.25)

Assuming a 1/7-law profile for mean temperature: T b ≈ 7
8 (T c − Tw) + Tw, the

source term ST at step n+ 1 can then be calculated as:

Sn+1
T,i = Sn

T,i + Nu
32λb(T

t
c − Tc)

7D2
h

. (E.26)
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