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I. Introduction General problem: duct aeroacoustics 
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Fluid:
kinematic
viscosity ν

Flow:
velocity

U

Duct:
height

H

Noise:
speed of
sound c

Duct aeroacoustics?

Reynolds
number:

Re = UH/ν

Mach
number:
M = U/c



Low Mach numbers
(M<0.3)

→ incompressible flows

I. Introduction Moderate Reynolds numbers
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Re ≤ 102 102 ≤ Re ≤ 104 104 ≤ Re

Flow classification according to Reynolds number

e.g.
- Stokes flows

- geophysical flows
(glaciers)

e.g.
- biological airflows

(respiration,
speech production...)

e.g.
- industrial flows

(aircrafts, trains...)
- wind flows

( hurricanes...)

Gap in literature?

low

laminar  turbulent

high

transition

Reynolds number



I. Introduction Human upper airways & speech sounds

Yo FUJISO - PhD Defense - 14/02/14 4

Human speech production:

Airflow → Re=O(104) & M<0.3 
(from in-vivo observations)

Upper airways, vocal tract [Sataloff 1992]

Various speech sounds:

* Voiced sounds e.g. vowels → 
vibration of vocal folds

* Unvoiced (or voiceless) 
sounds e.g. unv. stops, unv. 
fricatives
→ no vibration of vocal folds
→ various sound sources



I. Introduction Unvoiced fricative noise
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[Shadle 1985-1991; Ramsay 2006]

System: upstream duct + 
downstream obstacle

Source: turbulent jet interacting 
with surface/obstacle

[Nozaki et al 2008]

Unvoiced fricative consonants:
/f/ ('fanfare'), /s/ ('scie'), /∫/ ('chat')

Approach:
→ In-vitro 
geometries



I. Introduction Some previous works
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Incisor & free field 
[Cisonni et al 2013]

Tongue & incisor
[Van Hirtum et al 2011]

Tongue & incisor
[Van Hirtum et al 2009]

Human oral cavity 
[Nozaki 2010]

Increasing
geometrical
complexity

→ Influence of initial conditions? (IC)

≠

Re=4000, uniform 
inlet velocity profile

Cisonni et al 2013

Grandchamp 2009



Introduction Objectives of this thesis
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Unvoiced
fricative

production

Previous studies:
* Reynolds number Re = 4000 (exp.+sim.) 
* Constriction degree (exp.+sim.)
* Uniform inlet velocity profile (sim.)

Flow initial
conditions?

Reynolds
numbers Re?

Aeroacoustic
analysis

* Experiments
* Simulations

Obstacle(s)
geometry?

This thesis



Outline

I. Introduction

II. Theory
- Jet
- Obstacle
- Noise

III. Method

IV. Results

V. Conclusion
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Theory Duct aeroacoustics
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FLOW OBSTACLE NOISE

Rectangular jet Interaction with flow Flow fluctuations

9



Theory Rectangular jets
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Potential core length

Strouhal number

center bulk
velocity

Vortex shedding 
St~0.3 (typically)

'Square' decay law

center
bulk

velocity
at x=0



Theory 'Hybrid' jet parameters (obstacle)
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Obstacle

Turbulence intensity

Bulk Reynolds number

Reynolds decomposition
for velocity field:

Fluctuating 
velocity

Mean 
velocity

RMS velocity
(2nd order 
moment)

Width of rect. duct

Aspect ratioConstriction degree

11



Theory Flow-obstacle interaction
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Conservation of momentum → Navier-Stokes equation

unsteadiness convection pressure-
driven

stress
tensor

body forces

12



Turbulent flow 3D modeling by LES

Large Eddy Simulation (LES)Theory
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filtered pressure

filtered velocity filtered 
continuity 
equation

filtered 
momentum 

equation

C
s
: Smagorinsky

constant

resolvable
part

subgrid-scale (SGS) part → modeled 
by dynamic Smagorinsky model

Subgrid-scale eddy viscosity



Quadrupole noise source (1)Theory
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Lighthill's equation 
(1952):

De Havilland Comet (1949): 1st 
turbojet civil aircraft
→ much louder than

propeller-aircrafts, WHY?

Lighthill's 
tensor

Solution of Lighthill's equation in time domain:

radiated jet-induced 
acoustic pressure

G: Green 
function

in free field

viscous 
stress tensor

Incompressible 
isentropic flow

quadrupole noise source

No solid 
boundaries!



Quadrupole noise source (2)Theory
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Approximate solution in free field:

After some mathematical manipulations, and by taking the Fourier 
transform (F.T.) of T

ij
, one can obtain an approximate solution in 

frequency domain:

position
of receiver 

point

position
of source 

point
volume of source region

 F.T. of
pressure 

p

 F.T. of T
ij



Dipole noise sourceTheory
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Estimation of dipole noise source: 

Aeroacoustic analogy of Powell (1964):

Lamb vector

Vorticity

Lamb vector divergence

surface of 
source region



Outline

I. Introduction

II. Theory

III. Method
- Experiments
- Simulations

IV. Results

V. Conclusion
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Method: experiments In-vivo measurements (EVA)

Yo FUJISO - PhD Defense - 14/02/14 18

EVA* meas. station
Gipsa-lab Stendhal Univ.

1: oral airflowmeter
2: microphone
3: intra-oral pressure 
probe
4: electroglottograph 
(EGG)

In-vivo experiments:

* Subjects: two healthy adult 
males ('YF' & 'KN')

* Task: produced repeated 
sustained unvoiced /s/ & /f/ 
utterances

* Three intensity levels:
'soft'; 'medium'; 'loud'

Objective:

→ Obtain some reference in-
vivo aerodyn. data & spectral 
parameters

*Evaluation Vocale Assistée

S
1 S

2

A
d



Method: experiments Measurement of flow velocity
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Hot film meas. setup

Variable 
volume 

flow rate Q

10 ≤ Q ≤ 300 L/min

100 ≤ Re ≤ 3000

hot film 
probeflow

Variable
initial 

conditions

Objective:

→ Meas. of flow 
velocity field 
issued from a 
replica

→ Variation of
initial conditions
& geometry 



Method: experiments Measurement of flow noise
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Meas. of acoustic pressure

Meas. of acoustic directivity

Van Hirtum, A., & Fujiso, Y. (2012). Insulation room for aero-acoustic experiments at moderate Reynolds and low Mach numbers. App. Acoustics, 73(1), 72-77.

Objective:

→ Meas. of flow noise issued 
from a replica

→ Variation of
initial conditions & geometry

→Meas. of noise directivity

10 ≤ Q ≤ 300 L/min



Method: experiments Tooth-shaped obstacle replicas
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2
1

2
1

'Symmetric' 
config.

'Asymmetric' 
config.

10 ≤ AR ≤ 200
H

c
/H: 2.4; 10; 30; 100%

'Single obstacle' replica

'Dual obstacle' replica



Method: experiments Variation of exp. initial conditions
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t 
co
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Method: experiments Variation of exp. initial conditions
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In
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t 
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O
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co
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Method: experiments Other replicas
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'offset' replica

'centred' replica:
elliptic (E) or circular (C) cross-section



Method: simulations Numerical simulations
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1D

Flow simulations:
3 approaches considered

3D2D

(In)comp.
quasi-steady

1D mean flow 

Incomp.
inviscid
potential
2D flow

Incomp.
Large Eddy
Simulation

(LES)



3D model (LES)Method: simulations
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Supercomputer:
NEC SX9 (Osaka Univ.)

3D turbulent incomp. flow model: Large Eddy Simulation (LES)

Boundary conditions:
* Variable inlet velocity profile
* No-slip cond. on duct walls 
* No backflow at outlet
* 0Pa-static pressure at free field bound.

'Single obstacle' mesh:

≈7 millions hexahedral elements

2.2*10-5 < Δx < 6.7*10-5m
9.5*10-6 < Δy < 2.7*10-5m

* Simulated durations:
0.018s ≤ T

sim
 ≤ 0.54s

* Reynolds numbers:
Re = 402; 1079; 2084

* Constriction degrees:
H

c
/H = 2.4; 10; 30%

LES code:
FrontFlow Blue v6.1

Postprocessing:
ParaView

→ Dynamic Smagorinsky model



3D model (LES): synthetic turbulenceMethod: simulations
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PROBLEM: TURB. JET 
NOISE PREDICTION

→ How to obtain enough time 
steps for a large bandwidth 
acoustic prediction & for 
several geometries? (up to 

20kHz)

METHOD

→ Synthetic 
turbulence

→ Gaussian 
regeneration of all 
time steps using LES 
mean & RMS vel. 
fields



3D model (LES): jet noise predictionMethod: simulations
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Noise source region used for acoustic predictions using 
Lighthill's equation approx. solution in freq. domain

Combined use 
of

LES mean & 
RMS flow data

+
synthetic 

turbulence 
time steps

Receiver 
point

(virtual 
microphone, 
0.94m from 

outlet)

1cm-thick 
'buffer' layer 
around source 

region:

→ Smooth 
transition 

to surrounding 
flow field



Outline

I. Introduction

II. Theory

III. Method

IV. Results
- Experiments
- Simulations

V. Conclusion
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VARIED PARAMETERS

* Initial Conditions (IC)
* Reynolds number (Re)
* Geometry (Geo)

JET NOISE



Results: flow experiments Effects of varying IC & Geo & Re
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Single tooth-shaped obstacle replica

 (A) Upstream
of obstacle:

- transverse 
profile (0, y, 0)

 (B) Downstream
of obstacle:

- transverse profile (x
exit

, y, 0)
- longitudinal profile (x, H

c
/2, 0)

- horizontal profile (0, 0, z)

Influence of

IC
&

Geo
&
Re

on jet
development

x=0 x=x
exit

x

y

H
c

Shape of jet:
rectangular or 
rather 'hybrid'?



Results: flow experiments (A) Upst. of obstacle (1): effect of IC & Re
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Comparison of initial conditions:
×: no-duct
*: 31cm-duct
◊: 31cm-duct + straws
□: 31cm-duct + honeycomb
+: 62cm-duct
O: 62cm-duct + straws

center mean 
velocities
at (0, y, 0)

center turb. 
intensities
at (0, y, 0)

(empirical law)

(A)

Effect of IC 
& Re



Results: flow experiments (A) Upst. of obstacle (3): effect of IC & Re
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Re = 789 Re = 1167

E: power spectral density of 
center velocity

κ: wave number [m-1]

η=H=25mm

(duct lengths:
L

0
 = 31cm; 2L

0
 = 62cm)

Kolmogorov spectra (A)

Effect of IC 
& Re



Results: flow experiments (B) Downst. of obst. (2): effect of Geo & Re
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AR = aspect ratio = W/H
c

Jet longitudinal decay: comparison with literature 

Mi, J., Deo, R. C., & Nathan, G. J. (2005)

H
c

W

Re=O(104)

(B)

Deo's PhD 
(2005)

Effect of Geo & Re



Results: flow experiments (B) Downst. of obst. (4): effect of Geo & Re
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34

K
u

Constriction degree H
c
/H=10%

(B)'Square' decay law:
K

u
 = decay rate coef.

x
01

 = jet virtual origin

K
u
: effect of Geo & Re

34



Results: flow experiments (B) Downst. of obst. (5): effect of Geo & Re
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Vortex shedding freq. St* (Strouhal numbers)

literature

AR=42; H
c
/H=10% Re=2084AR=175; H

c
/H=2.4% Re=1079

Effect of 
Geo & Re



Results: acoustic experiments 'Single obstacle' replica: effect of Geo & Re
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Re = 1079

Re = 2084

Influence of Geo & Re

Flow
noise

Constriction degree
H

c
/H = 2.4; 10; 30%



Results: acoustic experiments 'Single obstacle' replica: effect of IC & Re
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Re=1079

Re=2084

Outlet section edges:
sharp vs soft

Constriction degree:
H

c
/H = 2.4%



Noise directivity
H

c
/H = 2.4%

Results: acoustic experiments 'Single obstacle' replica: effect of Re
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ka = 0.3 (×); ka = 0.35 (o);
ka = 0.40 (□); ka = 0.45 (◊); 
(corresp. freq. 1622; 1893; 2163; 
2433 Hz)

theoretical dipole directivity added 
for comparison ( )∗

Re = 402

Re = 2084



Results: acoustic experiments 'Offset' replica: effect of Geo & Re

Yo FUJISO - PhD Defense - 14/02/14 39

Re = 8300 & constriction 
degrees 4; 9; 16; 34%

Re = 8300; 11900 
& constriction 
degrees 9; 34%

Constriction-obstacle distance of 24mm
 

 Helmholtz number



'Single obstacle' mesh: visualizations (1)Results: 3D flow simulations
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Example: H
c
/H = 2.4% & Re = 2084



'Single obstacle' mesh: visualizations (2)Results: 3D flow simulations
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Example case:
* Re = 2084
* H

c
/H = 2.4%

* Uniform inlet vel. Profile
* Mean velocity field

Other example:
* Re = 2084
* H

c
/H = 30%

* Uniform inlet vel. 
Profile
* TOP: mean vel.
* MID: rms vel.
* BOT: vorticity



'Single obstacle' mesh: transverse profilesResults: 3D flow simulations
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Comparison of transverse mean velocity profiles simulated at several 
longitudinal positions downstream from the obstacle (H

c
/H = 30%; Re = 2084)

fluctuating turbulent 
inlet velocity profile

(Tu
e
 = 10%)



'Single obstacle' mesh: dipole noise sourceResults: 3D flow simulations
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vorticityvelocity

Lamb 
vector

Comparison of normalized Lamb 
vector divergences for different inlet 
conditions & Reynolds numbers

Longitudinal visualization of 
Lamb vector divergence field 
(H

c
/H = 30%; Re = 2084)



H
c
/H = 10%; Re = 2084

Random Gaussian
turbulent fluctuations

Quadrupole noise prediction (1)Results: 3D flow simulations
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S
2
'

Spectral parameters:

* dynamic amplitude A
d
 

* spectral slopes S
1
' & S

2
'

A
d

without

with

S
1
'



P%: constriction degree
Tu: with Gaussian turbulent
fluctuations
Ta: with 'buffer layer'

Spectral parameters:

* dynamic amplitude A
d
 

* spectral slopes S
1
' & S

2
'

Quadrupole noise prediction (2)Results: 3D flow simulations
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With turb. 
fluctuations

No turb. 
fluctuations



Outline

I. Introduction

II. Theory

III. Method

IV. Results

V. Conclusion
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Conclusion Objectives of this thesis
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Unvoiced
fricative

production

Previous studies:
* Reynolds number Re = 4000 (exp.+sim.) 
* Constriction degree (exp.+sim.)
* Uniform inlet velocity profile (sim.)

Flow initial
conditions?

Reynolds
numbers Re?

Aeroacoustic
analysis

* Experiments
* Simulations

Obstacle(s)
geometry?

This thesis



Conclusion Influence of flow initial conditions
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Unvoiced
fricative

production

* variation of initial
conditions

* contribution to dipole
& quadrupole noise
sources

Flow initial
conditions?

→'Memory' effect: strong influence on
flow development (exp.+LES) but

→ LES vs exp.: discrepancies

→'Sharp edge' effect: 
 major noise source (exp.+LES)

Aeroacoustic
Analysis

* rect. jets (exp.):
spatial/temporal
velocity distribution

* flow-downstream
obstacle interaction
(LES)

* moderate Reynolds
number flows & noise



Conclusion Influence of Reynolds number
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Unvoiced
fricative

production

* Noise level 

Reynolds number?

→Strong influence on jet properties 
e.g. symmetry (exp.+LES)

→Weak influence on noise spectral
properties (exp.)

→ Threshold to 'initiate'
flow noise (exp.)

Aeroacoustic
analysis

* 'Hybrid' jets (mixed
shear layers)

* Vortex shedding



Conclusion Influence of obstacle geometry
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Unvoiced
fricative

Production

* Noise generation 
mechanism

Obstacle geometry?

→Strong influence on jet properties
e.g. velocity decay rate, potential
core length (exp.)

Aeroacoustic
analysis

* Symmetry of velocity
field

* Vortex shedding



Conclusions and perspectives Some perspectives
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* Study of jet stability...

* Further development of turbulence simulation method, e.g. 
taking into account large coherent structures...

* Further development of aeroacoustic prediction methods
(e.g. Ffowcs Williams & Hawkings analogy taking into account 
solid boundaries)...

* Transverse modes...

* Other (potential) applications: 
- Oral/dental health care...
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Ducts with obstacle(s): in-vitro exp. Inlet flow data: mean transverse profiles
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L=31cm + nid 
d'abeille

L=31cmL=0cm

L=31cm + 
 pailles

L=62cm L=62cm + 
pailles



Ducts with obstacle(s): in-vitro exp. Inlet flow data: turbulence intensity profiles
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L=31cm + 
straws

L=31cmL=0cm

L=62cm + 
straws

L=62cmL=31cm + 
honeycomb



2D simulationsDucts with obstacle(s): num. simul.
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Ducts with obstacle(s): in-vitro exp. Inlet flow data: Kolmogorov spectra
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Re=789

Re=1167



3D simul. (LES): geometryDucts with obstacle(s): num. simul.
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(xy) plane

(xz) plane



In-vivo data & reconstr. oral cavity In-vivo EVA data: examples
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/f/ subject 'YF' 
'medium' level

/s/ subject 'KN' 
'medium' level



OutlineIn-vivo data & reconstr. oral cavity
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Sibilant /s/ as potential biomarker?

→ Production of sibilant /s/ severely affected by teeth!

→ How to quantitatively assess this?

→ A potential biomarker for dental/oral medical care?

→ Relevance of a dual approach? (in-vivo & in-vitro exp. data)

→ In-vitro reconstruction of in-vivo geometry?



In-vivo data & reconstr. oral cavity
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In-vivo EVA data



In-vivo data & reconstr. oral cavity Estimated constriction diameters
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With viscous lossesWithout viscous losses



In-vivo data & reconstr. oral cavity Reconstructed oral cavity
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CT* scan during a 30s sustained sibilant /s/

Reconstructed oral cavityMechanical replica (upstr. duct + reconstr. oral cavity)

Plaster cast

*CT Computerized Tomography



In-vivo data & reconstr. oral cavity Sibilant /s/ noise generators
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Acoustic experiment: comparison of human & reconstructed sibilant /s/ noises



In-vivo data & reconstr. oral cavity Comparison of noise spectra (0-20kHz)

17Yo FUJISO - PhD Defense - 14/02/14 67

medium

loud

Spectral parameters:
* spectral peak f

m

* spectral slopes S
1
 & S

2
 

* dynamic amplitude A
d

S
1

S
2

f
m

A
d



In-vivo data & reconstr. oral cavity Estimated spectral parameters
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spectral 
peak dynamic

amplitude

S
1
 & S

2
: spectral slopes



In-vivo data & reconstr. oral cavity Reconstr. oral cavity: Flow visualizations
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→ Complicated flow (bifurcating...)!

Focus on simplified duct + 
obstacle(s) geometries...

Transverse views [rajouter débits] Longitudinal view 
[36L/min]



Ducts with obstacle(s): in-vitro exp. Outlet flow: spanwise profiles
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Spanwise turb. intensity
Mean spanwise velocity

→ 2D flow hypothesis 
admitted!

x
z

W

Outlet 
flow

Outlet 
section



Ducts with obstacle(s): in-vitro exp. Potential core lengths
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Ducts with obstacle(s): in-vitro exp. Dual obstacle replica: results
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Symmetric 
configuration

Asymmetric 
configuration

Influence of obstacle configuration 
& aperture degree H

c
/H; Re = 2084



Ducts with obstacle(s): in-vitro exp. 'Centred' replica: acoustic spectra
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Re
0
 = 6700

Re
0
 = 8900

→ Measured spectra as function of 
constriction-obstacle distance (17 or 24mm); 
cross-section shape (E or C); cross-section 
Reynolds number Re

c
 (14100; 21200; 18800; 

28300)

'centred' replica

Helmholtz number:



Ducts with obstacle(s): in-vitro exp. 'Offset' replica: variation of parameters
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'offset' replica

* Re
c
 = 11900

* aperture degrees 9; 16; 34%
* constriction-obstacle distance 16 or 24mm



I. Introduction Turbulent airflows & noises
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- Various applications...
- Various Reynolds & 
Mach numbers...

TGV: Re=O(107), 
M<0.4

→ What about moderate Reynolds & low Mach numbers flows? i.e. Re=O(104) & M<0.3  

Hurricane: Re=O(109), 
M<0.3

* U: characteristic velocity [m/s]
* H: characteristic length [m]
* c: speed of sound in air [≈343m/s 
at 293K]
* ν: air kinematic viscosity 
[≈15*10-6m2/s at 293K]

Wind turbine: 
Re=O(107), M<0.2

Boeing 787: Re=O(108), 
M<0.9

Volvo V60: 
Re=O(106), M<0.2



Results: flow experiments (B) Downst. of obstacle (2): effect of Re 
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3D model (LES): inlet velocity profilesMethod: simulations
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Uniform inlet vel. profile 3D-parabolic inlet vel. 
profile

Static turbulent inlet 
vel. profile

Dynamic turbulent inlet vel. profile:
* gaussian fluctuations
* injected inlet turbulence intensity 
levels: Tu

e
 = 0; 10; 30%



1D modelMethod: simulations
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(In)comp. quasi-steady 1D mean flow through a semi-infinite pipe

Scattering matrix
M

u
: Mach number 

of pipe steady flow



2D modelMethod: simulations
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Potential (irrotational) incomp. 2D flow model

Continuity & 
irrotational flow:

Cauchy-Riemann 
conditions:

Laplace's equation: Ψ: stream 
function

Φ: velocity 
potential

Geometries:



Results: flow experiments (A) Upst. of obstacle (1): effect of IC & Re
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31cm-duct (empty) 31cm-duct + honeycomb

Reynolds numbers:

120 (×); 310 (+); 501 (o); 789 (*); 1167 (□); 1350 (◊)

(A)
Transverse mean velocity profiles at (0, y, 0)

Effect of IC & Re
x=0

y

u



Results: flow experiments (B) Downst. of obstacle (1): effect of Re
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(B)
Jet transverse profiles: H

c
/H = 10% + honeycomb

Effect of Re



Comparison of longitudinal mean center velocity profiles
for several inlet conditions & Reynolds numbers (aperture degree H

c
/H = 30%)

'Single obstacle' mesh: effect of IC & ReResults: 3D flow simulations

Yo FUJISO - PhD Defense - 14/02/14 82

mean velocity turbulence
intensity

× & +: measured data
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