PhD Thesis Defense Université de Grenoble

Etude aéroacoustique d'un canal avec obstacle(s) - Application à la production de fricatives

Yo FUJISO

GIPSA-lab, Département Parole & Cognition Equipe GAMA (Gestes phonatoires, Analyse & Modélisation Acoustique)

Supervisor: Annemie VAN HIRTUM

gipsa-lab ((**\$**8-)**)**

February 14th, 2014

Grenoble INP ENTREPRISE SA

AGENCE NATIONALE DE LA RECHERCHE

Introduction General problem: duct aeroacoustics

Duct aeroacoustics?

Introduction Moderate Reynolds numbers

Flow classification according to Reynolds number

Yo FUJISO - PhD Defense - 14/02/14

Introduction Human upper airways & speech sounds

Upper airways, vocal tract [Sataloff 1992]

Human speech production:

Airflow \rightarrow Re=O(10⁴) & M<0.3 (from *in-vivo* observations)

Various speech sounds:

* Voiced sounds e.g. vowels \rightarrow vibration of vocal folds

* Unvoiced (or voiceless) sounds e.g. unv. stops, unv. fricatives

- \rightarrow no vibration of vocal folds
- \rightarrow various sound sources

Introduction Unvoiced fricative noise

Unvoiced fricative consonants: /f/ ('fanfare'), /s/ ('scie'), /ʃ/ ('chat')

System: upstream duct + downstream obstacle

Source: turbulent jet interacting with **surface/obstacle**

Introduction Some previous works

Incisor & free field [Cisonni et al 2013]

Re=4000, uniform

inlet velocity profile

Tongue & incisor [Van Hirtum et al 2011]

Increasing geometrical complexity

Tongue & incisor [Van Hirtum et al 2009] Human oral cavity [Nozaki 2010]

Grandchamp 2009

 \rightarrow Influence of **initial conditions**? (IC)

Yo FUJISO - PhD Defense - 14/02/14

Introduction Objectives of this thesis

Previous studies:

* Reynolds number Re = 4000 (exp.+sim.)

- * Constriction degree (exp.+sim.)
- * Uniform inlet velocity profile (sim.)

Outline

I. Introduction

II. Theory

- Jet
- Obstacle
- Noise

III. Method

IV. Results

V. Conclusion

Theory Duct aeroacoustics

Theory Rectangular jets

Yo FUJISO - PhD Defense - 14/02/14

Theory 'Hybrid' jet parameters (obstacle)

Conservation of momentum → Navier-Stokes equation

Theory Large Eddy Simulation (LES)

Turbulent flow 3D modeling by LES

filtered pressure $p = \bar{p} + \tilde{p}$

$$\frac{\partial \bar{u}_i}{\partial t}(\bar{u}_i \bar{u}_j) = -\frac{1}{\rho_0} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial}{\partial x_j} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_j} \right) - \frac{\partial \tau_{ij}}{\partial x_j} \leftarrow \begin{array}{c} \text{filtered} \\ \text{momentum} \\ \text{equation} \end{array}$$

$$\frac{\partial u_i}{\partial x_i} = 0, \quad i = 1, 2, 3 -$$
filtered
continuit
equation

resolvable / part

filtered velocity

 $u_i = \bar{u}_i + \tilde{u}_i$

subgrid-scale (SGS) part \rightarrow modeled by <u>dynamic Smagorinsky model</u>

0

C_s: Smagorinsky constant

$$\begin{split} \tau_{ij} &= \bar{u}_i \bar{u}_j - \overline{u_i u_j} & \bar{S}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \\ \tau_{ij} &- \frac{1}{3} \tau_{kk} \delta_{ij} = -2\mu_t \bar{S}_{ij} & \mu_t = \rho (C_s \Delta)^2 \sqrt{2 \bar{S}_{ij} \bar{S}_{ij}} \end{split}$$

Theory Quadrupole noise source (1)

Theory Quadrupole noise source (2)

Approximate solution in free field:

$$p(\vec{x},t) = \frac{1}{4\pi} \frac{\partial^2}{\partial x_i \partial x_j} \iiint_V \frac{1}{d} T_{ij}(\vec{y},t) \mathrm{d}\vec{y}$$

volume of source region

F.T. of T_{ii}

After some mathematical manipulations, and by taking the Fourier transform (F.T.) of T_{ij} , one can obtain an approximate solution in frequency domain:

F.T. of pressure $P_{\omega}(\vec{x}) = -\frac{\omega^2}{4\pi c^2} \iiint_V \frac{d_i d_j}{d^3} e^{\frac{-i\omega d}{c}} \hat{T}_{ij}(\vec{y},\omega) dV$

Theory Dipole noise source

Aeroacoustic analogy of Powell (1964):

Vorticity $\vec{\omega} = \overrightarrow{rot} \ \vec{u}$

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)p = \rho\nabla\cdot\left(\vec{\omega}\times\vec{u}\right) + \nabla^2\left(\frac{1}{2}\rho\vec{u}^2\right)$$

Lamb vector $\vec{\mathcal{L}} = \vec{u} \times \vec{\omega}$

Estimation of dipole noise source:

surface of source region $\Phi_{\mathcal{D}} = \frac{1}{S_{\mathcal{D}}} \int_{\mathcal{D}} (\nabla \vec{\mathcal{L}}) dS$ Lamb vector divergence

Outline

I. Introduction

II. Theory

III. MethodExperimentsSimulations

IV. Results

V. Conclusion

Method: experiments In-vivo measurements (EVA)

EVA* meas. station Gipsa-lab Stendhal Univ.

- 1: oral airflowmeter
- 2: microphone
- 3: intra-oral pressure
- probe
- 4: electroglottograph (EGG)

*Evaluation Vocale Assistée

* **Subjects**: two healthy adult males ('YF' & 'KN')

- * Task: produced repeated sustained unvoiced /s/ & /f/ utterances
- * Three intensity levels: 'soft'; 'medium'; 'loud'

Objective:

→ Obtain some reference *invivo* aerodyn. data & spectral parameters

Method: experiments Measurement of flow velocity

Method: experiments Measurement of flow noise

 $10 \le Q \le 300 \text{ L/min}$

Meas. of acoustic pressure

Meas. of acoustic directivity

Objective:

 \rightarrow Meas. of flow noise issued from a replica

 \rightarrow Variation of initial conditions & geometry

 \rightarrow Meas. of noise directivity

Van Hirtum, A., & Fujiso, Y. (2012). Insulation room for aero-acoustic experiments at moderate Reynolds and low Mach numbers. App. Acoustics, 73(1), 72-77.

Yo FUJISO - PhD Defense - 14/02/14

Method: experiments Tooth-shaped obstacle replicas

Method: experiments Variation of exp. initial conditions

Inlet

Method: experiments Variation of exp. initial conditions

Method: experiments Other replicas

Method: simulations Numerical simulations

Flow simulations: 3 approaches considered

Method: simulations 3D model (LES)

3D turbulent incomp. flow model: Large Eddy Simulation (LES)

Yo FUJISO - PhD Defense - 14/02/14

Method: simulations 3D model (LES): synthetic turbulence

PROBLEM: TURB. JET NOISE PREDICTION

→ How to obtain enough time steps for a large bandwidth acoustic prediction & for several geometries? (up to 20kHz)

METHOD

→ Synthetic turbulence

→ Gaussian regeneration of all time steps using LES mean & RMS vel. fields

(b) Signal temporel de la vitesse longitudinale regénérée au niveau du point

(c) Fonction de densité de probabilité correspondante

0

(d) Densité spectrale de puissance correspondante

0.3

(n) 0.25 HOL 0.2

0.15

0.1

0.05

0L

Method: simulations 3D model (LES): jet noise prediction

Noise source region used for acoustic predictions using Lighthill's equation approx. solution in freq. domain

Outline

Results: flow experiments Effects of varying IC & Geo & Re

Results: flow experiments (A) Upst. of obstacle (1): effect of <u>IC & Re</u>

Results: flow experiments (A) Upst. of obstacle (3): effect of <u>IC & Re</u>

Results: flow experiments (B) Downst. of obst. (2): effect of Geo & Re

Results: flow experiments (B) Downst. of obst. (4): effect of Geo & Re

Yo FUJISO - PhD Defense - 14/02/14

Results: flow experiments (B) Downst. of obst. (5): effect of Geo & Re

Vortex shedding freq. St* (Strouhal numbers)

	literature	Étude	Géométrie	Re	AR	St^*	
Effect of Geo & Re		Beavers et Wilson [BW70]	plane	500 - 3000	-	0.43	
		Tsuchiya et al. [THTS89]	rectangulaire	3500	5	0.40	
		Sato [Sat60]	plane	1500 - 8000	$10 \ge 67$	0.23	
		Namer et Ötügen [NÖ88]	rectangulaire	1000 - 7000	56	0.27	
		Deo et al. [DMN07b]	plane	18000	-	0.24	

Results: acoustic experiments 'Single obstacle' replica: effect of Geo & Re

Yo FUJISO - PhD Defense - 14/02/14
Results: acoustic experiments 'Single obstacle' replica: effect of <u>IC & Re</u>

Results: acoustic experiments 'Single obstacle' replica: effect of <u>Re</u>

Results: acoustic experiments 'Offset' replica: effect of Geo & Re

Results: 3D flow simulations 'Single obstacle' mesh: visualizations (1)

Example: $H_c/H = 2.4\%$ & Re = 2084

Results: 3D flow simulations 'Single obstacle' mesh: visualizations (2)

Example case:

- * Re = 2084
- $H_{c}/H = 2.4\%$
- * Uniform inlet vel. Profile
- * Mean velocity field

Other example:

- * Re = 2084
- $* H_{c}/H = 30\%$
- * Uniform inlet vel. Profile
- * TOP: mean vel.
- * MID: rms vel.
- * BOT: vorticity

Results: 3D flow simulations 'Single obstacle' mesh: transverse profiles

Comparison of transverse mean velocity profiles simulated at several longitudinal positions downstream from the obstacle ($H_c/H = 30\%$; Re = 2084)

Results: **3D** flow simulations 'Single obstacle' mesh: dipole noise source

Results: **3D flow simulations** Quadrupole noise prediction (1)

Results: **3D flow simulations** Quadrupole noise prediction (2)

- I. Introduction
- II. Theory
- III. Method
- **IV.** Results
- V. Conclusion

Conclusion Objectives of this thesis

Previous studies:

* Reynolds number Re = 4000 (exp.+sim.)

- * Constriction degree (exp.+sim.)
- * Uniform inlet velocity profile (sim.)

Conclusion Influence of flow initial conditions

Unvoiced fricative production

* variation of initial conditions

* contribution to **dipole** & quadrupole noise sources

Flow initial conditions?

→'Memory' effect: strong influence on flow development (exp.+LES) but

 \rightarrow LES vs exp.: **discrepancies**

→'Sharp edge' effect: major noise source (exp.+LES)

Aeroacoustic Analysis

* rect. jets (exp.): spatial/temporal velocity distribution

* flow-downstream obstacle interaction (LES)

* moderate Reynolds number flows & noise

Conclusion Influence of Reynolds number

Unvoiced fricative production

* Noise level

Reynolds number?

→Strong influence on jet properties e.g. symmetry (exp.+LES)

→Weak influence on **noise spectral properties** (exp.)

 \rightarrow **Threshold** to 'initiate' flow noise (exp.)

Aeroacoustic analysis

* 'Hybrid' jets (mixed shear layers)

* Vortex shedding

Conclusion Influence of obstacle geometry

Unvoiced fricative Production

* Noise generation mechanism

Obstacle geometry?

→Strong influence on **jet properties** e.g. velocity decay rate, potential core length (exp.)

Aeroacoustic analysis

* **Symmetry** of velocity field

* Vortex shedding

Conclusions and perspectives Some perspectives

* Study of jet stability...

* Further development of **turbulence simulation method**, e.g. taking into account large coherent structures...

* Further development of **aeroacoustic prediction methods** (e.g. Ffowcs Williams & Hawkings analogy taking into account solid boundaries)...

* Transverse modes...

* Other (potential) applications: - Oral/dental health care...

Publications

JOURNAL PUBLICATIONS

Steady laminar axisymmetrical nozzle flow at moderate Reynolds numbers: modelling and experiment Grandchamp, Xavier and **Fujiso, Yo** and Wu, Bo and Van hirtum, Annemie. Journal of Fluids Engineering - T ASME 134 2012 011203

Insulation room for aero-acoustic experiments at moderate Reynolds and low Mach numbers. Van Hirtum, Annemie and **Fujiso, Yo**. Applied Acoustics 73 1 2012 72-77

CONFERENCES

Experimental and numerical characterization of aerodynamic noise applied to moderate Reynolds number airflow **Fujiso,Yo** and Van Hirtum, Annemie and Kazunori, Nozaki and Wada, Shigeo. ICA 2013 proceedings - Volume 19 of POMA (Proceedings of Meetings on Acoustics) - 21st International Congress on Acoustics (ICA 2013) - 165th Meeting of the Acoustical Society of America

Study of unvoiced fricative speech production: Influence of initial conditions on flow development. **Fujiso, Yo** and Van Hirtum, Annemie and Nozaki, Kazunori and Wada, Shigeo. ICA 2013 proceedings - Volume 19 of POMA (Proceedings of Meetings on Acoustics) - 21st International Congress on Acoustics (ICA 2013) - 165th Meeting of the Acoustical Society of America

Aeroacoustic characterisation of single and dual tooth-shaped obstacle replicas in relation to the study of unvoiced fricative speech production. **Fujiso, Yo** and Van Hirtum, Annemie. Acoustics 2012 Nantes - Acoustics 2012

Ecoulement laminaire axisymétrique stationnaire dans un convergent : modélisation et validation expérimentale **Fujiso, Yo** and Wu, Bo and Grandchamp, Xavier and Van Hirtum, Annemie. Actes du CFM 2011 - 20ème Congrès Français de Mécanique (CFM 2011)

Jet rond en aval d'une contraction brusque. Grandchamp, Xavier and **Fujiso, Yo** and Van Hirtum, Annemie. Actes du CFM 2011 - 20ème Congrès Français de Mécanique (CFM 2011)

Caractérisation d'un convergent axisymétrique destiné à la validation expérimentale de production de parole **Fujiso, Yo** and Wu, Bo and Grandchamp, Xavier and Van Hirtum, Annemie. Actes des 9ème RJCP 2011 - 9ème Rencontres des Jeunes Chercheurs en Parole 2011 (RJCP 2011)

Thank you for your attention!

Acknowledgements:

ANR Petaflow ANR-09-BLAN-0376-01 Rhône-Alpes region (CMIRA 2011) K. Nozaki & S. Wada Osaka Univ. / Cybermedia Center

Ducts with obstacle(s): *in-vitro* exp. Inlet flow data: mean transverse profiles

Ducts with obstacle(s): *in-vitro* exp. Inlet flow data: turbulence intensity profiles

Ducts with obstacle(s): num. simul. 2D simulations

Ducts with obstacle(s): *in-vitro* exp. Inlet flow data: Kolmogorov spectra

Ducts with obstacle(s): num. simul. 3D simul. (LES): geometry

In-vivo data & reconstr. oral cavity In-vivo EVA data: examples

In-vivo data & reconstr. oral cavity Sibilant /s/ as potential biomarker?

\rightarrow Production of sibilant /s/ severely affected by teeth!

 \rightarrow How to quantitatively assess this?

 \rightarrow *In-vitro* reconstruction of *in-vivo* geometry?

 \rightarrow Relevance of a dual approach? (*in-vivo* & *in-vitro* exp. data)

 \rightarrow A potential biomarker for dental/oral medical care?

In-vivo data & reconstr. oral cavity In-vivo EVA data

In-vivo data & reconstr. oral cavity Estimated constriction diameters

$$\Delta P = \frac{\rho Q^2}{2c_s^2} \left(\frac{1}{A_c^2} - \frac{1}{A_0^2}\right)$$

Without viscous losses

With viscous losses

$$A_c = \frac{Q}{\sqrt{\frac{2\Delta P}{\rho}}}$$

$$= \sqrt{\frac{Q^2 + 16\pi\nu QL}{\frac{2\Delta P}{\rho}}}$$

 A_c

 $D_C = 2\sqrt{A_c/\pi}$ 7 肉 6 lit. /f/ 5 lit. /s/ [mm] 幽 4 **∛** D ◆
平 3 ♦/s/ (YF) $\Box/s/(KN)$ 2 ○/f/ (YF) /s/ reconstruit (KN) × avec pertes visq. 10 10 20 30 40 50 60 Q [L/min]

In-vivo data & reconstr. oral cavity Reconstructed oral cavity

CT* scan during a 30s sustained sibilant /s/

*CT Computerized Tomography

Mechanical replica (upstr. duct + reconstr. oral cavity)

Reconstructed oral cavity

In-vivo data & reconstr. oral cavity Sibilant /s/ noise generators

Acoustic experiment: comparison of human & reconstructed sibilant /s/ noises

In-vivo data & reconstr. oral cavity Comparison of noise spectra (0-20kHz)

In-vivo data & reconstr. oral cavity Estimated spectral parameters

In-vivo data & reconstr. oral cavity Reconstr. oral cavity: Flow visualizations

Transverse views [rajouter débits]

Longitudinal view [36L/min]

 \rightarrow Complicated flow (bifurcating...)!

Focus on simplified duct + obstacle(s) geometries...

Ducts with obstacle(s): *in-vitro* exp. Outlet flow: spanwise profiles

Ducts with obstacle(s): *in-vitro* exp. Potential core lengths

Ducts with obstacle(s): *in-vitro* exp. Dual obstacle replica: results

Ducts with obstacle(s): in-vitro exp. 'Centred' replica: acoustic spectra

→ Measured spectra as function of **constriction-obstacle distance** (17 or 24mm); **cross-section shape** (E or C); **cross-section Reynolds number Re**_c (14100; 21200; 18800; 28300)

er:
$$H = \frac{fD_{h}^{a}}{c}$$

Helmholtz number:

Ducts with obstacle(s): *in-vitro* exp. 'Offset' replica: variation of parameters

 $* \text{Re}_{c} = 11900$

- * aperture degrees 9; 16; 34%
- * constriction-obstacle distance 16 or 24mm

Introduction Turbulent airflows & noises

Boeing 787: Re=O(10⁸), M<0.9

TGV: Re=O(10⁷), M<0.4 - Various applications...

- Various Reynolds & Mach numbers...

 $Re = \frac{UH}{\nu}$ $M = \frac{\frac{U}{\nu}}{\frac{U}{c}}$

Wind turbine: Re=O(10⁷), M<0.2

Hurricane: Re=O(10⁹), M<0.3

* U: characteristic velocity [m/s]
* H: characteristic length [m]
* c: speed of sound in air [≈343m/s at 293K]
* v: air kinematic viscosity
[≈15*10⁻⁶m²/s at 293K]

 \rightarrow What about moderate Reynolds & low Mach numbers flows? i.e. Re=O(10⁴) & M<0.3

Results: flow experiments (B) Downst. of obstacle (2): effect of <u>Re</u>

Method: simulations 3D model (LES): inlet velocity profiles

Uniform inlet vel. profile

3D-parabolic inlet vel. profile

Static turbulent inlet vel. profile

Dynamic turbulent inlet vel. profile: * gaussian fluctuations * injected inlet turbulence intensity levels: Tu_e = 0; 10; 30%

Method: simulations 1D model

(In)comp. quasi-steady 1D mean flow through a semi-infinite pipe

Contraction ratios : channel h_1/H and vena contracta jet $\mathcal{V} = h_j/h_1$.

M_u: Mach number of pipe steady flow

$$\begin{pmatrix} p_d^+ \\ p_u^- \end{pmatrix} = \begin{pmatrix} T^+ & R^- \\ R^+ & T^- \end{pmatrix} \begin{pmatrix} p_u^+ \\ p_d^- \end{pmatrix}, \qquad \beta = \begin{pmatrix} H \\ h_j - 1 \end{pmatrix}^2 \begin{pmatrix} p_d^+ \\ p_u^- \end{pmatrix} = \frac{1}{2 + M_u \beta} \begin{pmatrix} 2 & M_u \beta \\ M_u \beta & 2 \end{pmatrix} \begin{pmatrix} p_u^+ \\ p_d^- \end{pmatrix}, \qquad (1)$$

Scattering matrix

Method: simulations 2D model

Potential (irrotational) incomp. 2D flow model

 $\vec{u} = (u, v)$

Continuity & irrotational flow:

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x},$$
$$u = \frac{\partial \phi}{\partial x}, \quad v = \frac{\partial \phi}{\partial y},$$

Cauchy-Riemann conditions:

$$\frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}, \quad \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

Laplace's equation:

$$\nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

Geometries:

Ψ: stream function

Φ: velocity potential

Results: flow experiments (A) Upst. of obstacle (1): effect of <u>IC & Re</u>

Results: flow experiments (B) Downst. of obstacle (1): effect of <u>Re</u>

Results: **3D flow simulations** 'Single obstacle' mesh: effect of <u>IC & Re</u>

Comparison of longitudinal mean center velocity profiles for several inlet conditions & Reynolds numbers (aperture degree $H_c/H = 30\%$)

