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And then the man he steps right up to the microphone
And says at last just as the time bell rings

“Thank you goodnight now it’s time to go home”
And he makes it fast with one more thing

“We are the Sultans of Swing”

Dire Straits, Sultans of Swing, 1979
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Résumeé

Introduction

En 1995, I'observation de Bose-Einstein (CBE) dans des vapeurs atomiques
diluées a ouvert la voie a un vaste domaine de la physique atomique. Aux tres
basses températures, la longueur d’onde thermique des particules individuelles
et la distance entre particules sont comparables. La statistique quantique joue
alors un role essentiel dans leur comportement. A cet égard, la condensation de
Bose — Einstein constitue la manifestation macroscopique la plus spectaculaire
de la nature quantique de particules individuelles : pour un systéme de bosons
suffisamment froids, la statistique quantique des particules les conduit a s’ac-
cumuler dans un seul état quantique, formant une “onde de matiere géante”.
La prédiction théorique d'un tel comportement a été faite des 1925 par Einstein,
fondée sur un travail antérieur de Bose. Pendant longtemps, la seule manifes-
tation expérimentale de la CBE était 1’'hélium superfluide. Cependant, ’hélium
superfluide est un systéme en interaction forte, ce qui complique la fois les me-
sures et la comparaison avec la théorie. En effet, lors de la mesure de sa fraction
condensée en 1979, il a été constaté que seulement 10% des atomes occupent le
méme état quantique. A cet égard, bien que les propriétés de ’hélium super-
fluide découlent directement de sa nature bosonique, il ne se forme pas de fonc-
tion d’onde macroscopique prévue lors de la condensation de Bose-Einstein
d’un gaz parfait.

En revanche, les systemes dilués sont naturellement en interaction faible, et
se prétent a une description de champ moyen plus simple. Dans ce cas, le gaz
est décrit avec précision par une fonction d’onde unique, dont le comportement
est régi par une équation de Schrodinger non linéaire : I'équation de Gross—
Pitaevskii. Pendant les années qui ont suivi la réalisation expérimentale de la
CBE, la recherche a été principalement orientée vers ’exploration des phéno-
menes bien décrits dans ce cadre. La nature ondulatoire de la CBE a été dé-
montrée par l'interférence de deux CBE. La cohérence a longue distance de ce
systeme a été alors observée et a conduit a la réalisation expérimentale d'un
laser a atomes. Le caractere superfluide d'un CBE a été démontré par 'observa-
tion des tourbillons quantifiés, et de leur disposition dans des réseaux Abriko-
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sov. Notons que les réalisations expérimentales n’étaient pas limitées aux gaz
de Bose : dans les années qui ont suivi I'observation d'un CBE, le gaz de Fermi
a été amené a la dégénérescence quantique par des techniques expérimentales
similaires.

L'intérét continu apporté aux atomes froids est en grande partie dii au degré
élevé de controle que I'on peut exercer sur ces systémes. Ce contrdle repose sur
deux outils puissants : la variabilité des interactions, grace a 1'utilisation des
résonances de Feshbach, et la possibilité d’ajuster la géométrie du systeme, en
choisissant des potentiels de piégeage optique et magnétique adaptés.

La résonance de Feshbach est d'un intérét particulier, car non seulement la
force des interactions peut étre ajustée, mais aussi leur signe. Dans un gaz de
Fermi, de fortes interactions attractives conduisent a la formation de molécules
faiblement liés fermioniques, tandis que des interactions attractives faibles con-
duisent a la formation de paires de Cooper. A une température suffisamment
basse, les molécules peuvent alors former un CBE, tandis que les paires de Co-
oper peut former un superfluide, qui est bien décrit par la théorie BCS. En outre,
I’accordabilité des interactions a permis une étude d’un phénomene associé : le
passage d'un BCE a un superfluide décrit par la théorie BCS. En utilisant les
résonances de Feshbach, le régime fortement interaction peut étre atteint, tant
pour les gaz de Bose que pour les gaz de Fermi. Plus récemment, les mesures
de I'équation d’état de ces systemes ont révélé des contributions au-dela de la
théorie de champ moyen.

Le contrdle de la géométrie permet en outre la réalisation de gaz ultrafroids
en dimension réduite. En confinant un gaz de Bose ultrafroid en une géomé-
trie unidimensionnelle, il a été possible d’observer un gaz de Tonks-Girardeau,
ce qui constitue le premier exemple d'un liquide de Luttinger bosonique. La
réalisation d'un gaz de Bose a deux dimensions conduit a 1’observation de la
transition de phase entre un état normal et un état superfluide : c’est la transi-
tion Berezinskii — Kosterlitz — Thouless (BKT).

De nouvelles phases de la matiére peuvent également étre créés grace a 1'utili-
sation de réseaux optiques. Dans ce cas, l'utilisation des potentiels de piégeage
spatialement modulés force les atomes a se disposer périodiquement, de ma-
niére similaire aux électrons dans un solide. Ces systemes constituent une réa-
lisation trés pure d’'un modéle fondamental de la physique de l'état solide : le
hamiltonien de Hubbard. En général, I'utilisation des réseaux optiques permet
d’entrer dans le régime des interactions fortes, et d’observer des phénomenes
au-dela du champ moyen. En particulier, cette technique a conduit a 1'obser-
vation de la transition de phase quantique entre une phase superfluide et une
phase isolante de Mott, tant des systéemes bosoniques que fermioniques.



Cette correspondance particuliere entre les atomes ultrafroids dans des ré-
seaux optiques et les électrons dans le réseau cristallin d"un solide illustre la no-
tion de simulation quantique proposée par Feynman en 1982. Au lieu d’étudier un
systeme donné, on peut en reproduire les caractéristiques importantes, et mesu-
rer directement les propriétés de la copie. De cette maniére, les atomes dans un
réseau optique permettent de simuler des électrons dans un solide, dépouillés
de tous défauts ou de champs perturbateurs, permettant ainsi une meilleure
compréhension de la physique sous-jacente. Avec cette correspondance a l’es-
prit, on peut espérer gagner un nouvel éclairage sur de nombreux problémes
de la physique a N corps, tels que la supraconductivité a haute température ou
I'effet Hall quantique fractionnaire (EHQF). Pour cette raison, des efforts consi-
dérables ont été réalisés pour concevoir des hamiltoniens spécifiques dans des
expériences d’atomes froids, pour atteindre ces états fortement corrélés.

L'EHQF apparait lorsqu'un gaz bidimensionnel d’électrons en interactions
est soumis a un champ magnétique, a des températures suffisamment basses.
Puisque les atomes utilisés dans nos expériences sont neutres, nous avons be-
soin de générer un champ magnétique efficace pour étudier ces phases de la
matiere. Cela peut se faire par exemple en exploitant 1’équivalence de la force
de Lorentz et la force de Coriolis : la rotation du systeme agit comme un champ
magnétique artificiel. De maniere alternative, nous pouvons profiter de la si-
militude entre la phase d’Aharonov — Bohm et la phase de Berry, qui apparait
en présence d’'un état interne dépendant de 'espace. Une phase non-triviale de
Berry peut par exemple résulter de la création d’états habillés. Une technique
similaire peut étre mise en ceuvre dans les réseaux optiques, qui peuvent étre
congus de telle sorte qu'un atome acquiere une phase en passant d'un site de
réseau a I'autre par effet tunnel, et simuler ainsi un champ magnétique.

Le travail effectué pendant ma these a porté sur 1’étude du gaz de Bose a deux
dimensions. Ce systeme est particulierement intéressant pour plusieurs raisons.
Comme 1'a fait remarquer Peirls en 1934, la dimensionnalité d'un systéme af-
fecte fortement ses phases d’équilibre. En effet, les fluctuations thermiques sont
suffisantes pour empécher la formation d"un CBE a la limite thermodynamique
en deux dimensions, sauf a température nulle. Ceci constitue un cas particulier
du théoreme de Mermin — Wagner — Hohenberg, qui interdit toute sorte d’ordre
a longue distance a la limite thermodynamique, dans les systémes uni- et bi-
dimensionnels, avec des interactions a courte portée et une symétrie continue
du hamitonien. Toutefois, la limite thermodynamique n’est atteinte que pour
les systemes exponentiellement grands : en pratique, “ I’échantillon devrait étre
plus grand que I'Etat du Texas pour que le théoreme de Mermin — Wagner
théoreme soit pertinent”. En ce sens, la géométrie bidimensionnelle peut étre
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considéré comme marginale : les effets de taille finie jouent toujours un role im-
portant dans tout systéme réaliste. En outre, méme dans la limite thermodyna-
mique, la présence d’interactions est suffisante pour donner lieu a une transition
vers un état superfluide. La théorie associée a cette transition a été développé
par Berezinskii, Kosterlitz et Thouless, conduisant a la désignation usuelle de la
transition BKT.

Puisque le théoréme de Mermin — Wagner — Hohenberg empéche la brisure
des symétries continues, il n’y a pas de discontinuité de 1’équation d’état au
point de transition, la seule exception étant la densité superfluide. Pour cette
raison, la transition BKT est souvent dite d’ ordre infini. Bien qu’il n’y ait pas
d’ordre a longue portée dans la phase superfluide, la transition est néanmoins
marquée par un changement important dans la fonction de corrélation a un
corps. Dans la phase superfluide, la fonction de corrélation a un corps décroit
algébriquement avec la distance, au lieu de suivre une décroissance exponen-
tielle ou gaussienne dans la phase normale. La transition est également accom-
pagnée d'une réduction significative des fluctuations de densité, ce qui peut
s’expliquer par une simple analyse de Bogolioubov.

La transition BKT a d’abord été observée dans des films d’hélium superfluide,
et a fait ’objet d’'intenses recherches récentes dans le domaine des atomes ultra-
froids. En particulier, une expérience d’interférence entre plusieurs gaz de Bose
2D a révélé la présence de tourbillons, qui sont cruciaux pour le mécanisme mi-
croscopique associé a la transition BKT. D’autres études ont également révélé les
propriétés de cohérence du gaz de Bose a 2D, ainsi que son invariance d’échelle
approximative en présence d’interactions faibles. Le travail présenté dans cette
thése explore plusieurs propriétés associées a cette transition de phase, et est
décrit dans ce qui suit.

Corps de la thése

Elements de théorie

Nous commengons par présenter quelques résultats théoriques essentiels a la
compréhension du gaz de Bose bidimensionnel. La premiére partie se concentre
sur le gaz de Bose idéal a deux dimensions. Un critere suffisant pour montrer
'existence de la CBE repose sur la saturation des niveaux excités a une par-
ticule. En effet, a trois dimensions, le nombre d’atomes pouvant occuper les
niveaux excités a température non-nulle est fini, et les atomes excédentaires
doivent s’accumuler dans le niveau fondamental. En revanche, il n’existe pas
une telle saturation des niveaux excités a la limite thermodynamique, excepté a

Xii



température nulle. Ce résultat est en bon accord avec le théoréme de Mermin-—
Wagner-Hohenberg, qui interdit 'émergence d"un ordre a longue portée a tem-
pérature non-nulle a deux dimensions. Ce résultat doit cependant étre nuancé.
En effet, nos expériences ont lieu dans un systeme piégé de taille finie. Bien qu’il
n’existe pas d’ordre a longue portée, la longueur de corrélation croit néanmoins
exponentiellement avec la densité dans 1’espace des phases. Conséquemment,
il existe une température non-nulle telle que cette longueur de corrélation soit
de la taille du systéme. Ainsi, un CBE sera toujours présent a température non-
nulle dans un systéme bi-dimensionnel de taille finie. En particulier, nous pou-
vons calculer le nombre d’atome nécessaire pour obtenir un CBE dans un piege
harmonique.

Dans la deuxieme partie, nous considérons le gaz de Bose a deux dimen-
sions en interaction. Afin de présenter un traitement correct des interactions,
il importe de prendre en compte correctement l'existence d'une troisieme di-
mension dans toute réalisation expérimentale. Le fort confinement selon un axe
de I'espace permet de réaliser un gaz 2D, et définit également une épaisseur
caractéristique. Lorsque cette longueur est nettement plus grande que la por-
tée effective du potentiel d’interaction entre particules, les collisions sont dites
quasi-2D, et peuvent étre décrites par un potentiel de contact. De plus, si cette
épaisseur caractéristique est également grande devant la longueur de diffusion
tri-dimensionnelle, 'amplitude de diffusion est constante, de maniere analogue
au cas 3D. Ces propriétés collisionnelles ont pour importante conséquence 1'in-
variance d’échelle approchée de I'équation d’état du gaz de Bose 2D. Cette pro-
priété peut étre mise en évidence dans les deux régimes ou 'équation d’état
est connue : le gaz thermique est décrit par la théorie Hartree-Fock de champ
moyen, et le gaz fortement dégénéré est décrit par 1'équation de Thomas—Fermi.
Bien que la condensation de Bose—Einstein ne puisse pas avoir lieu dans un sys-
teme infini, il existe néanmoins une transition vers un état superfluide, appe-
lée transition BKT. Au voisinage du point critique, I’équation d’état n’est pas
connue analytiquement. En revanche, il existe une prédiction numérique, fon-
dée sur une simulation Monte—Carlo de champ classique. Lors de nos études
du gaz en interaction, I'invariance d’échelle est une propriété que nous utili-
sons dans toutes nos études du gaz de Bose 2D, tandis que la transition BKT
constitue 1'objectif principal de nos investigations.

Dispositif expérimental

Le chapitre suivant sert de complément au premier chapitre : il présente le
dispositif expérimental nécessaire pour la réalisation de gaz de Bose bidimen-
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sionnels ultrafroids. Puisque 'expérience a déja été décrite par les doctorants,
nous allons principalement détailler les modifications les plus récentes. La sé-
quence expérimentale se déroule de la maniere suivante. Un nuage atomique
est capturé par un piege magnéto-optique depuis la vapeur de rubidium am-
biante, puis transféré dans un piége quadrupolaire. Il est ensuite transporté
magnétiquement vers une partie de 'enceinte ot1 regne un vide plus poussé.
La, la température du nuage est abaissée par refroidissement évaporatif par
radio-fréquences. Une fois le nuage suffisamment froid, il est transféré dans
un piege hybride : le confinement est réalisé a deux dimensions par un fais-
ceau laser désaccordé vers le rouge de la transition atomique, et le piege ma-
gnétique réalise le confinement selon la troisieme dimension. Ce piege hybride
permet de conserver des taux de collisions élevés. De plus, un choix géomé-
trique judicieux permet d’éviter les pertes Majorana. Enfin, ce piege s’affranchit
des contraintes associées a un piege croisé (donc avec deux faisceaux), et faci-
lite 'alignement. Ainsi, il est possible de produire un CBE tri-dimensionnel en
36s depuis le chargement du PMO. Le confinement bi-dimensionnel est ensuite
assuré par un second piege dipolaire. Par une technique holographique, il est
possible de produire deux feuille de lumiére, tres proches 1'une de 1’autre. Pour
un faisceau laser choisi désaccordé vers le bleu de la transition, les atomes sont
repoussés par la lumiére, et occupent les régions de faible intensité. En particu-
lier, les atomes situés entre les deux plans lumineux constituent notre systéme
bi-dimensionnel. Les atomes résiduels situés de part et d’autre du plan central
sont éliminés en les éclairant sélectivement avec un faisceau laser résonant, qui
les dépompe vers un autre état hyperfin. Une fois le systeme 2D préparé, sa tem-
pérature peut étre controlée par une étape supplémentaire de refroidissement
évaporatif par radio-fréquences.

La deuxiéme partie de ce chapitre est consacrée a notre procédure d’acquisi-
tion de données. La méthode usuelle pour sonder les nuages ultrafroids consiste
a en réaliser 'image par absorption. Cependant, pour obtenir une détermina-
tion correcte de la densité atomique, il est nécessaire d’avoir une bonne connais-
sance de la relation entre densité atomique et intensité lumineuse. Dans nos
échantillons, la distance moyenne inter-particules peut étre plus petite que la
longueur d’onde d’imagerie, d’oti une section transversale dépendant de la
densité d’absorption lors de I'imagerie faiblement saturante traditionnelle. Ce
probleme est résolu par 1'utilisation de I'imagerie de haute intensité, qui vise
plutot a saturer la transition, afin de fournir une image fidéle de ’échantillon.
Dans ce cas, on peut considérer que chaque atome occupe son état fondamental
la moitié du temps, et son état excité I’autre moitié. Dans ce cas 1a, la densité ato-
mique est directement proportionnelle au nombre de photons manquant lors de
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la détection. Notons que cette méthode présente un niveau de bruit intrinséque-
ment plus élevé que I'imagerie par absorption usuelle, a cause de bruit de gre-
naille photonique. Pour cette raison, nous utiliserons les deux méthodes. L'ima-
gerie traditionnelle permet d’obtenir un bon rapport signal-sur-bruit dans les
régions de faible densité, tandis que I'imagerie a haute intensité permet d’obte-
nir une image fidéle de la distribution atomique. Expérimentalement, nous uti-
lisons deux axes d’imageries complémentaires, qui nous permettent non seule-
ment de diagnostiquer et d’ajuster notre expérience, mais aussi d’avoir un acces
direct a la densité atomique de nos échantillons 2D. Enfin, les images obtenues
de cette maniere peuvent subir un traitement statistique, visant a améliorer le
rapport signal-sur-bruit. A cette fin, nous avons mis en place un algorithme
de traitement d’image, I’analyse en composantes principales. En exploitant la
similarité entre différentes images expérimentales, il est possible d’augmenter
encore le rapport sigal-sur-bruit.

Equations d’état

Le chapitre suivant présente une mesure de 1’équation d’état du gaz de Bose
a deux dimensions, avec deux méthodes différentes. La premiére de ces mé-
thodes a fait 1'objet d’une publication dans une revue a comité de lecture, et
est résumée brievement ici. Nous sommes en mesure de préparer des CBE bi-
dimensionnels en suivant la procédure expérimentale décrite plus haut. Une
configuration donnée (nombre d’atomes et température) est préparée deux fois,
de facon a pouvoir prendre une image de la distribution atomique a basse et
haute intensité. Les images prises a basses intensité sont caractérisées par un
rapport signal-sur-bruit élevé dans les régions de basse densité. Nous les utili-
sons donc pour effectuer un ajustement de la théorie Hartree-Fock de champ
moyen, et mesurer ainsi la température et le potentiel chimique au centre du
piége. Par ailleurs, les images prises a haute intensité donnent une image fi-
dele de la densité atomique, et permettent de mesurer le nombre d’atomes total
contenu dans le systéme. Enfin, en combinant nombre d’atomes et tempéra-
tures, il est possible de déterminer la pression au centre du piege. En préparant
des échantillons atomiques de nombre d’atomes et des températures différents,
nous sommes en mesure d’explorer un large éventail de parametres et de re-
construire I'équation d’état du gaz de Bose 2D. Cela constitue la premiere déter-
mination d’une équation d’état du gaz de Bose a deux dimensions. De maniere
similaire, nous pouvons mesurer la densité atomique au centre du piege, et en
déduire la densité dans l'espace des phases au centre du piege en la combinant
avec la température, ce qui constitue une deuxiéme équation d’état. Finalement,
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la combinaison de la pression et de la densité dans I’espace des phases nous per-
met de déterminer 'entropie par particule au centre du piege. Tous ces résultats
sont en trés bon accord avec la prédiction numérique évoquée précédemment.

La seconde méthode conduit a des résultats similaires, mais suit une ap-
proche plus globale, inspirée par les expériences réalisées au MIT dans le groupe
de M. Zwierlein. Ainsi, la premiere méthode présentée repose sur un ajustement
de la théorie Hartree-Fock de champ moyen sur chaque image, et est ainsi sen-
sible aux erreurs systématiques, en particulier sur la calibration de 1'imagerie.
En combinant la dérivée et 'intégrale de la densité par rapport au potentiel
local, nous sommes en mesure de former deux quantités sans dimensions, qui
sont donc une forme de I'équation d’état. Cette procédure peut étre répétée pour
toutes les images, afin d’accroitre le rapport signal-sur-bruit des quantités ainsi
formées. Afin de revenir a une variable thermodynamique plus usuelle, telle
que la densité dans 'espace des phases, nous pouvons effectuer 1'intégration
d’une combinaison judicieuse de ces quantités. Enfin, la détectivité de notre
systéme d’imagerie est calibrée en effectuant un unique ajustement de 1'équa-
tion d’état ainsi formée avec la théorie Hartree-Fock de champ moyen. Cette
méthode peut ensuite étre affinée pour tenir compte de la population des états
excités dans la direction fortement confinée. Les deux méthodes présentées sont
en excellent accord entre elles, ainsi qu’avec la prédiction numérique.

Superfluidité du gaz de Bose a deux dimensions

Bien que les mesure d’équations d’état présentées ici soient en bon accord
avec les prédictions numériques, elles ne constituent cependant pas une preuve
directe de la présence ni de la transition BKT, ni d"un superfluide. La principale
caractéristique d’un superfluide est ’absence de dissipation lors de la pertur-
bation par un défaut en mouvement, lorsque la vitesse du défaut est en deca
d’une certaine vitesse critique. La détermination de cette vitesse critique a par-
tir des premiers principes est en général un probleme compliqué. En effet, le
mécanisme de dissipation mis en ceuvre dépend de la taille du défaut. Un dé-
faut de taille comparable a la longueur de cicatrisation conduit a une dissipation
portée par des phonons, tandis qu'un défaut significativement plus gros génere
des anneaux de vorticité a trois dimensions, ou des paires de tourbillons a deux
dimensions. Ainsi, la vitesse critique dépend de la taille du défaut.

Afin de mesurer le caractere superfluide du gaz de Bose a deux dimensions,
nous créons une perturbation locale de la densité, en focalisant un faisceau laser
désaccordé vers le bleu de la transition atomique sur le CBE bi-dimensionnel.
La haute qualité de notre systéme optique nous permet de générer des défauts
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de taille micrométrique. Avec un miroir monté sur cales piézo-électriques, nous
pouvons ensuite déplacer ce défaut a travers le CBE, selon une trajectoire et
une vitesse controlée. Nous mesurons ensuite 1’accroissement de température
du nuage selon la vitesse de déplacement du défaut, pour différentes trajec-
toires suivies. Nous pouvons ainsi mettre en évidence deux réponses du sys-
téme. Dans la partie normale du nuage, la température augmente continument
avec la vitesse, alors que dans la partie superfluide, il existe une vitesse critique
en deca de laquelle la température ne change pas. De plus, la réponse du nuage
suit la dépendance attendue par rapport a la densité dans 1’espace des phases :
seules les parties fortement dégénérées présentent une réponse superfluide. En-
fin, le taux d’accroissement de la température dans la partie normale est en bon
accord avec une description qualitative de la dissipation, et rend correctement
compte de la diminution de la densité normale au-dela de la transition BKT. Ce
travail a également été publié dans une revue a comité de lecture.

Fluctuations du gaz de Bose bi-dimensionnel

Ce chapitre présente une étude poussée des fluctuations liées a la transition
BKT. En relachant le gaz de Bose a deux dimensions le long de la direction
fortement confinée, les fluctuations de phases présentes dans la distribution
d’équilibre sont converties en fluctuations de densité, qui peuvent ensuite étre
révélées par I'imagerie par absorption. Dans un premier temps, nous nous inté-
ressons aux minima locaux de la densité. En effet, le mécanisme microscopique
associé a la transition BKT fait intervenir des tourbillons, soit des défauts lo-
caux de densité. Il est donc naturel d’en chercher une trace. L'étude des minima
montre que ceux-ci sont plus nombreux et plus prononcés apres une évolution
libre que dans la distribution d’équilibre. Ceci est en bon accord avec le com-
portement attendu : pour un gaz de Bose bi-dimensionnel dégénéré, seules les
fluctuations de phases jouent un rdle, alors que les fluctuations de densité sont
gelées. Ainsi, I'augmentation du nombre de minima apreés une évolution libre
est en bon accord avec cette propriété. Néanmoins, ces observations ne sont pas
suffisantes pour conclure a la présence de tourbillon. En effet, dans une image
simple, un unique tourbillon dans un nuage de densité uniforme conduit a une
déplétion locale de la densité, et brise donc explicitement la symétrie entre mi-
nima et maxima. Or, une analyse des maxima ne réveéle aucune différence avec
les minima : il est donc peu probable que les tourbillons soient responsables des
fluctuations de densité observées.

Dans un second temps, nous nous intéressons a la fonction de corrélation
a deux corps : ses propriétés apres évolution libre sont directement reliées a
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celles de la fonction de corrélation a un corps de la distribution d’équilibre.
Cette quantité révele également une augmentation de 'amplitude des fluctua-
tions apres une évolution libre, et confirme le role prépondérant joué par les
fluctuations de phase. De plus, la transformée de Fourier de cette fonction de
corrélation présente des pics marqués, qui peuvent étre interprétés simplement
en terme d’effet Talbot. Pour les parties fortement dégénérées du nuage, seul
un pic apparait, qui est attribué aux fluctuations de phase. En revanche, dans la
région critique et dans la partie normales, deux pics secondaires apparaissent,
qui sont directement liés aux fluctuations de densité. Ces résultats sont en ac-
cord quantitatif avec une étude théorique précédente, au moins dans la partie
dégénérée du nuage.

Gas de Bose 2D dans un piége uniforme

Dans ce chapitre, nous proposons d’étudier l'interaction entre les transitions
CBE et BKT. En effet, le mécanisme physique sous-jacent differe entre les deux.
Dans le cas de la CBE, la statistique bosonique conduit a 1’établissement d"une
onde de matiére macroscopique. En revanche, la transition BKT est directe-
ment induite par les interactions, et conduit a la formation d’un superfluide.
Le piege harmonique que nous avons utilisé dans nos expériences antérieures
n’est pas bien adapté a cette tache : la présence d’interactions modifie fortement
la distribution atomique par rapport au gaz idéal. Les deux transitions peuvent
étre plus facilement comparées par 1'étude d'un systeme dans un potentiel en
forme de boite. Considérons un tel systéme a une température fixe. Alors que
le nombre de particules est augmenté, une des deux transitions se produit en
premier : soit la densité de 'espace de phase atteint la valeur critique pour la
transition BKT, ou alors les états excités deviennent saturés, conduisant a la
formation d'un CBE. L'ordre dans lequel ces transitions ont lieu dépend de la
taille de la boite et de la température : dans un systéme infini, la transition BKT
aura lieu en premier (puisque la CBE ne se produit qu’a une température nulle),
alors que dans un systeme suffisamment petit, les niveaux excités vont saturer
premier. Ainsi, pour une taille de boite convenable, nous pouvons espérer ob-
server séparément 'effet des deux transitions, en fonction de la température du
systeme.

Un tel potentiel en forme de boite peut étre réalisé de deux fagons. Par holo-
graphie, il est possible de créer un faisceau de mode Laguerre-Gauss d’ordre
élevé. Cependant, cette méthode est assez sensible aux défauts présents dans la
lame de phase, et ne permet pas de générer une distribution d’intensité satis-
faisante. Une seconde méthode passe par la formation directe de 'image d’un
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masque sur les atomes. Ici, la qualité du piege ainsi créé est conditionnée par la
qualité du systeme d’imagerie utilisé, et en particulier par son ouverture numé-
rique. Une telle méthode conduit a des résultats plus satisfaisants, qui devraient
permettre d’observer un gaz 2D prochainement. Lors de I'écriture de ce manus-
crit, ce travail est encore cours et devrait bientot porter ses fruits.

Imagerie a atomes uniques

Enfin, le dernier chapitre présente un travail en cours : la réalisation d"un sys-
téme de détection d’atomes uniques. A cette fin, nous mettons en place un sys-
téme similaire a celui mis au point a Harvard et au MPQ a Munich. Dans cette
configuration, les atomes sont figés dans un réseau tridimensionnel de grande
profondeur, et refroidis simultanément par une mélasse optique. Les photons
diffusés a partir du faisceau de la mélasse sont ensuite détectées et utilisées
pour reconstruire le profil de densité de I’échantillon. Pour réaliser le réseau op-
tique de grande profondeur nécessaire a ce dispositif, nous avons choisi de nous
désaccorder faiblement de la transition atomique, afin de ne pas avoir besoin
de trop de puissance laser. Dans ce cas, il importe de choisir soigneusement le
désaccord du réseau, afin de ne pas perturber le fonctionnement de la mélasse.
Deux effets sont particulierement néfastes. D'une part, la structure hyperfine
de la transition atomique considérée donne lieu a une contribution vectorielle
a l'opérateur déplacement lumineux, qui leve la dégénérescence entre les états
Zeeman. Ainsi, si I’écart entre les états Zeeman est trop important, les méca-
nismes de refroidissement sub-Doppler dans la mélasse ne seront pas suffisam-
ment efficaces pour figer la distribution atomique. D’autre part, le dépompage
d’un atome dans l'autre niveau hyperfin fondamental peut lui communiquer
une énergie cinétique significative, qui peut étre trop importante pour étre dis-
sipée dans la mélasse. Afin d’éviter ces deux effets, le désaccord du réseau doit
étre suffisamment grand. Enfin, un effet de type “ mélasse grise ” peut se pro-
duire pour des faisceaux désaccordés vers le rouge de la transition, qui peuvent
conduire a un chauffage supplémentaire. Bien que nous n’ayons pas pu estimer
I’'amplitude de cet effet, nous avons néanmoins choisi de nous placer sur le bleu
de la transition, afin de prévenir cet éventuel probleme.

Une caractérisation préliminaire du systeme a montré que chaque élément
fonctionne correctement indépendamment. La profondeur du réseau a été ca-
ractérisée par diffraction de Raman—Nath, et le bon fonctionnement de la mé-
lasse a été mis en évidence par une mesure du coefficient de diffusion ato-
mique. En revanche, nous n’avons pas été en mesure de geler et d’'imager un
échantillon atomique. Nous sommes convaincus que la limitation principale est
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d’ordre technique : la puissance laser utilisée pour réaliser le réseau ne permet
pas d’atteindre les profondeurs requises. Une modification du systeme laser de-
vrait pallier le probleme. Par conséquent, nous espérons réaliser ce systéme de
détection dans les prochains mois.

Conclusion et perspectives

A partir du travail qui a été présenté ici, nous pouvons définir deux grandes
directions de recherche. Nous pouvons continuer a étudier le gaz de Bose a deux
dimensions, en réalisant un gaz de Bose uniforme. D’autre part, une fois que
notre systeme de détection d’atome unique sera opérationnel, nous pouvons
profiter de cela pour sonder les états fortement corrélés a peu de particules.
Dans ce qui suit, nous allons détailler ces deux points de vue. Une premiere
extension de notre travail serait bien stir de compléter ’étude en cours de 1'in-
teraction entre la CBE et la transition BKT. Une fois qu'un potentiel en forme de
boite approprié sera réalisé et caractérisé, nous proposons la mesure suivante.

Pour un nombre d’atome donné, nous mesurons la distribution d’impulsion,
que ce soit par des expériences de temps de vol, ou en effectuant une tomogra-
phie de l'état du systeme. Lorsque la température de I’échantillon est abaissée,
'apparition d"un pic dans la distribution d’impulsion caractérise I'émergence
de la condensation de Bose-Einstein. En effectuant cette mesure pour différents
nombres d’atomes, on peut obtenir une détermination de la température cri-
tique en fonction du nombre d’atomes. Cette expérience peut étre réalisé a la
fois dans un piege harmonique et dans une boite. L’effet de la différente densité
d’état serait alors révélé par la comparaison des deux mesures.

En outre, la réalisation d'un uniforme 2D gaz de Bose permettrait une étude
plus poussée de ses fluctuations, semblable a celle présentée précédemment.
Dans ce cas, nous ne serions pas limités par le manque d’homogénéité du po-
tentiel de piégeage, et nous pourrions sonder les propriétés de corrélation du
gaz a plus grande échelle. En outre, un rapport signal-bruit plus important dans
la détermination de la fonction de corrélation a deux corps apres le temps de vol
devrait nous permettre de démontrer la décroissance algébrique de la fonction
de corrélation a un corps, et a mesurer son exposant.

On peut également profiter de la densité uniforme pour réaliser des expé-
riences similaires a celles ayant permis de mettre en évidence les propriétés su-
perfluides du systéme. Dans ce cas, nous pourrions observer le sillage laissé
par ce faisceau, qui devrait dépendre du caractere superfluide du fluide et de
la vitesse du défaut. En particulier, au-dessus de la vitesse critique, on devrait
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observer un sillon similaire a celui apparaissant dans l'effet Cherenkov. Une
telle expérience a été réalisée avec des polaritons dans un semi-conducteur en
microcavité, mais dans un systeme hors équilibre.

Comme nous l'avons indiqué dans l'introduction, les atomes ultrafroids sont
particuliéerement bien adaptés a la simulation des phénomenes de la matiere
condensée. Dans ce contexte, nous voulons réaliser de grands champs magné-
tiques effectifs pour atteindre les états fortement caractéristiques de 1'effet Hall
quantique fractionnaire (EHQF), comme 1’état Laughlin pour les bosons. Plu-
sieurs possibilités pour créer un tel champ magnétique effectif ont été, telles que
la rotation du, ou l'utilisation de champs de jauge artificiels. Les deux méthodes
ont été réalisées avec succes, mais le champ magnétique généré de cette maniere
était trop petit pour entrer dans le régime fortement corrélés. Le champ magné-
tique maximal est limité par I’anisotropie statique résiduelle du piége dans le
cas de la rotation, tandis que 1’émission spontanée des faisceaux de couplage
limite le champ dans le cas de champs de jauge artificiels.

Pour atteindre le régime fortement corrélés, nous considérons donc deux op-
tions. Tout d’abord, au lieu d’essayer d’augmenter le champ magnétique, on
peut plutot réduire le nombre d’atomes. Nous visons donc a préparer de tres
petits échantillons, contenant entre 3 et 10 atomes. Le champ magnétique artifi-
ciel sera réalisé par injection de moment angulaire dans le systéme, en habillant
les états internes par couplage Raman, plutét que directement par la rotation
du piege. Une fois 1'état fortement corrélé atteint, la fonction d’onde peut étre
ensuite magnifiée en laissant le nuage s’étendre a deux dimensions. La distribu-
tion de densité sera alors par imagée par la détection a atomes uniques décrite
précédemment.

Une deuxieme fagon de produire un état fortement corrélé réside dans la réa-
lisation de réseaux de flux optique. Dans un tel réseau optique, la bande d’éner-
gie la plus basse est topologiquement équivalente au niveau de Landau le plus
bas, ce qui est essentiel a la formation d’états a N corps. Notons qu'un tel ré-
gime n’est pas conceptuellement limité a un petit nombre d’atomes. En effet, les
réseaux de flux optique génerent un grand flux magnétique par cellule unitaire
du réseau, ce qui permet de réaliser une telle expérience avec un grand nombre
d’atomes.
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Introduction

In 1995, the observation of Bose—Einstein condensation (BEC) in dilute atomic
vapors [1-3] opened the way to a wide domain in atomic physics. At very
low temperatures, the thermal wavelength of individual particles and the inter-
particle spacing are comparable, and quantum statistics play an essential role
in their behavior. In this respect, Bose-Einstein condensation constitutes the
most spectacular macroscopic manifestation of the quantum nature of individ-
ual particles: for a sufficiently cold bosonic system, the quantum statistics of the
particles leads them to accumulate in a single quantum state, forming a “giant
matter wave”. The initial prediction for this behavior was made as early as 1925
by Einstein [4], based on a previous work by Bose [5]. For a long time, the only
experimental manifestation of BEC was in superfluid 4He [6]. However, super-
fluid “He is a strongly interacting system, thus complicating both the measure-
ments and the comparison with theory. Indeed, when its condensed fraction
was measured in 1979 [7], it was found that only 10 % of the atoms occupy the
same quantum state. In this respect, though the properties of superfluid “*He
stem directly from its bosonic nature, it does not constitute the macroscopic
wave function expected in the Bose Einstein condensation of an ideal gas.

By contrast, dilute systems are naturally weakly interacting, and lend them-
selves to a simpler mean field description. In this picture, the gas is accurately
described by a single wave function, whose behaviour is governed by a non-
linear Schrodinger equation: the Gross—Pitaevskii equation [8, 9]. During the
years following the experimental realization of BEC, the research was mainly di-
rected towards the exploration of phenomena well described within this frame-
work. The ondulatory nature of the BEC was demonstrated by the interference
of two BECs [10]. The long range coherence of this system was then observed
[11], and led to the experimental realization of an atom laser [12-14]. The super-
fluid character of the BEC was demonstrated through the observation of quan-
tized vortices [15, 16], and of their arrangement in Abrikosov lattices [17]. Note
that experimental realizations were not limited to Bose gases: in the years fol-
lowing the observation of a BEC, the Fermi gas was brought to degeneracy with
similar experimental techniques [18-20].

The sustained interest in cold atoms is largely due to the high degree of con-
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trol that one can exert over these system (see [21] for a review). Such control
rests on two powerful tools: the tunability of interactions, through the use of
Feshbach resonances [22, 23], and the possibility to adjust the geometry of the
system, by choosing adapted optical and magnetic trapping potentials.

The Feshbach resonance is of special interest, since not only can the strength
of the interactions be tuned, but also their sign. In a Fermi gas, strong attrac-
tive interactions lead to the formation of weakly bound fermionic molecules
[24], while weak attractive interactions lead to the formation of Cooper pairs.
At sufficiently low temperature, the molecules can then undergo Bose-Einstein
condensation [25-27], whereas the Cooper pairs can form a superfluid, which
is well described by the BCS theory. Furthermore, the tunability of the interac-
tions allowed a study of the associated BEC-BCS crossover [28-31]. By using
Feshbach resonances, the strongly interacting regime can be reached, both for
Bose gases [32] and Fermi gases [33, 34]. More recently, measurements of the
equation of state of these systems revealed contributions beyond the mean—field
theory [35, 36].

The control over the geometry allows for example the realization of ultracold
gases of reduced dimensionality. By confining an ultracold Bose gas to a unidi-
mensional geometry, it was possible to observe a Tonks—Girardeau gas [37, 38],
which constituted the first example of a Bosonic Luttinger liquid. The realiza-
tion of a bidimensional Bose gas led to the observation of the phase transition
between a normal and a superfluid state: the Berezinskii-Kosterlitz-Thouless
(BKT) transition [39].

Novel phases of matter can also be created through the use of optical lattices
[40]. In this case, the use of spatially modulated trapping potentials forces the
atoms to arrange themselves periodically, much like the electrons in a solid.
These systems constitute a very pure realization of a fundamental model of
solid state physics: the Hubbard hamiltonian. In general, the use of optical
lattices allows one to enter the regime of strong interactions, and to observe
beyond mean-field phenomena. In particular, this technique led to the obser-
vation of the quantum phase transition between a superfluid phase and a Mott
insulating phase, both in bosonic [41-44] and fermionic [45] systems.

This particular correspondence between ultracold atoms in optical lattices
and electrons in the crystalline lattice of a solid illustrates the notion of guan-
tum simulation put forward by Feynman in 1982 [46]. Instead of studying a
given system, one can reproduce its important features, and directly measure
the properties of the copy. In this manner, atoms in an optical lattice simulate
electrons in a solid, stripped of any defects or perturbing fields, thus allowing
for a better understanding of the underlying physics. With this correspondence



in mind, one can hope to gain new insight on many-body problems, such as
the high temperature superconductivity and the fractional quantum Hall effect
(FQHE). For this reason, there have been considerable efforts to design spe-
cific hamiltonians in cold atoms experiments to reach these strongly correlated
states.

The FQHE arises when a bidimensional gas of interacting electrons is sub-
jected to a large magnetic field, at low enough temperatures. Since the atoms
used in our experiments are neutral, one needs to generate an effective mag-
netic field to study these phases of matter. This can be done for example by
exploiting the equivalence of the Lorentz force and the Coriolis force: the rota-
tion of the system acts as an artificial magnetic field [47]. This technique was
successfully used in [48, 49]. Alternately, one can take advantage of the similar-
ity between the Aharonov-Bohm phase and the Berry’s phase [50], which arises
in the presence of a space-dependent internal state. A non-trivial Berry’s phase
can for example result from the creation of optically dressed states, as proposed
in [51, 52], and later successfully implemented in the group of I. Spielman [53].
A similar technique can be implemented in optical lattices, which can be engi-
neered such that an atom acquires a phase when tunneling from one lattice site
to the next, and simulate as well a magnetic field [54, 55].

The work carried out during my thesis focused on the study of the two-
dimensional Bose gas. This system is of particular interest, for several reasons.
As was noticed by Peirls in 1934, the dimensionality of a system strongly af-
fects its equilibrium phases [56]. Indeed, thermal fluctuations are sufficient to
prevent the formation of a BEC at the thermodynamic limit in two dimensions,
except at zero temperature. This constitutes a particular case of the Mermin-
Wagner—-Hohenberg theorem [57, 58], which forbids any sort of long range or-
der at the thermodynamic limit in one- and two-dimensional systems with short
range interactions and a continuous hamitonian symmetry. However, the ther-
modynamic limit is only reached for exponentially large systems: in practice,
“the sample would need to be bigger than the state of Texas for the Mermin-
Wagner theorem to be relevant”.! In this sense, the bidimensional geometry
can be considered as marginal: the finite size effects always play an important
role in any realistic system. Furthermore, even in the thermodynamic limit, the
presence of interactions is sufficient to drive a transition to a superfluid state.
The theory associated with this transition was developed by Berezinskii [60]
and Kosterlitz and Thouless [61], leading to the usual name of BKT transition.

1. This statement was published in [59] in the context of 2D magnetism, but nevertheless
conveys the correct idea for the two-dimensional Bose gas.
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Since the Mermin-Wagner-Hohenberg theorem precludes the breaking of
continuous symmetries, there is no discontinuity of the equation of state at the
transition point, with the only exception being the superfluid density. For this
reason, the BKT transition is often said to be of infinite order. Though there is no
long-range order in the superfluid phase, the transition is nevertheless marked
by a significant change in the one-body correlation function. In the superfluid
phase, the one-body correlation function only decays algebraically with dis-
tance, instead of following an exponential or a gaussian decay in the normal
phase. The transition is also accompanied by a significant reduction of density
fluctuations, which can be explained by a simple Bogoliubov analysis.

The BKT transition was initially observed in superfluid helium films [62], and
has been the subject of intense recent research in the field of ultracold atoms. In
particular, an interference experiment between several 2D Bose gases revealed
the presence of vortices [39], which are crucial to the microscopic mechanism
associated with the BKT transition. Subsequent measurements revealed the co-
herent behaviour of the 2D Bose gas [63, 64], as well as its approximate scale-
invariance in the weakly interacting regime [65]. The work presented in this
thesis explores several properties associated with this phase transition, and is
outlined in the following.

Outline

— In chapter 1, we present a few theoretical results essential to the under-
standing of the two dimensional Bose gas. The first part focuses on the ideal
two-dimensional Bose gas. Though it does not Bose-condense in the ther-
modynamic limit except at zero temperature, the finite-size effects, which
are always present in a real experiment, are sufficient to drive the transi-
tion at a non-zero temperature. In the second part, we consider the inter-
acting two-dimensional Bose gas. After briefly introducing the interactions
between atoms in two dimensions, we present the two key features under-
lying the rest of the work presented in this manuscript. First, the weakly
interacting two-dimensional Bose gas is approximately scale invariant. Sec-
ond, the interactions drive a phase transition from a normal phase to a su-
perfluid, known as the BKT transition. Of these two features, the former is
a property we use in all our studies of the 2D Bose gas, while the latter is
the main focus of our investigations.

— Chapter 2 serves as a complement to chapter 1: it presents the experimen-
tal apparatus necessary for the realization of ultracold bidimensional Bose



gases. Since the experiment has already been described by previous PhD
students (see [66-68]), we will mainly detail the most recent modifications.
In particular, we describe in further detail the hybrid trap, which led to
a vast improvement in the duty cycle of our experiment by reducing the
evaporation time from 60s to 25s. We also detail the steps specific to the cre-
ation of a 2D Bose gas. The second half of this chapter is devoted to our data
acquisition procedure. In our samples, the mean inter-particle distance can
be smaller than the imaging wavelength, leading to a density-dependent
cross-section when performing traditional weakly saturating absorption.
This issue is resolved through the use of high intensity imaging, which aims
instead to saturate the transition, in order to provide a faithful image of the
sample. By combining both techniques, we are able to probe high density
regions of the cloud, while maintaining a satisfactory signal-to-noise ratio
in the low density regions. We also present an image processing algorithm,
the Principal Component Analysis, which enhances further this signal-to-
noise ratio.

In chapter 3, we present a measurement of the equation of state of the two-
dimensional Bose gas with different methods. For a single atomic sam-
ple, we can determine its temperature and chemical potential by fitting the
wings of the cloud by a mean—field equation of state. We can also measure
its pressure, phase-space density and entropy per particle. By preparing
atomic samples at different atom numbers and temperatures, we are able
to explore a wide range of parameters, and to reconstruct the equation of
state of the 2D Bose gas. In particular, we were able to experimentally con-
firm its scale invariance, as was also done in the group of C. Chin [65]. This
work was published in a refeered journal [69], and is reproduced without
modifications. We also develop an alternative method, inspired by experi-
ments performed at MIT in the group of M. Zwierlein [36]. By combining
the derivative and the integral of the density with respect to the local poten-
tial, we are able to measure the equation of state, with a single adjustable
parameter: the detectivity of our imaging system. This method can then
be further refined to account for the population of excited states along the
tightly confined direction.

In chapter 4, we start by giving a brief overview of the dissipation mecha-
nisms in a superfluid, both in a two- and three-dimensional fluid. We then
present a direct measurement of the superfluid character of the 2D Bose gas,
by locally probing the system with a moving defect. In particular, we show
evidence for both a normal and a superfluid behavior, depending on the
degree of degeneracy of the cloud. Furthermore, these results are in qual-
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itative agreement with the existence of a normal to superfluid transition.
This work was also published in a refereed journal [70], and is reproduced
without modifications.

— Chapter 5 focuses on the fluctuations associated with the BKT transition.
By releasing the two-dimensional Bose gas along the tightly confined di-
rection, we are able to reveal the phase fluctuations of the steady state dis-
tribution. An analysis of the extrema of the density after time of flight and
a study of the two-body correlation function are in good agreement with a
dynamics dominated by phonons in the degenerate part of our samples.
This behavior is further confirmed by a study the two-body correlation
function. In particular, we reach a quantitative agreement with the theo-
retical analysis presented in [71].

— In chapter 6, we propose to study the interplay between the BEC and the
BKT transition. Indeed, the underlying physical mechanism differs be-
tween the two. The harmonic trap we used in our previous experiments
is not well suited to this task: the presence of interactions strongly modify
the atomic distribution with respect to the ideal gas. By contrast, a box-
like potential should allow us to better disentangle the BEC and the BKT
transition. We then present two possible experimental techniques to real-
ize this type of potentials. At the time of writing, this constitutes a work in
progress, which will hopefully soon bear fruits.

— Finally, chapter 7 presents an ongoing work: the realization of a single-
atom detection scheme. To this end, we implement a similar scheme to the
one pioneered at Harvard [72] and at MPQ in Munich [73]. In this con-
figuration, atoms are frozen in a deep tri-dimensional lattice, and simulta-
neously cooled down by an optical molasses. The photons scattered from
the molasses beam are subsequently detected, and used to reconstruct the
density profile of the sample. In particular, we discuss the different con-
straints associated with the choice of the lattice detuning. Though we were
not able to freeze and image an atomic sample, we are confident that this is
mainly a technical limitation. Consequently, we hope to realize this detec-
tion scheme in the coming months.



1. Phase transitions with ultracold
two-dimensional Bose gases

The aim of this first chapter is to introduce the theoretical basis upon which
our experiments are built. The intention is to give an overview of the features
of the two-dimensional Bose gas, without aiming for exhaustivity. A more com-
plete picture can be found in recent reviews, such as [21, 74].

Already in 1934, Peierls noticed that the properties of system are strongly af-
fected by its dimensionality [56]. In particular, Bose-Einstein condensation
(BEC) occurs in the infinite ideal tri-dimensional Bose gas, but only takes place
at zero temperature in the bi-dimensional case. Indeed, this is a particular ex-
ample of a more general theorem: as noted by Mermin and Wagner [57] and
Hohenberg [58], spontaneous symmetry breaking and long-range order are im-
possible at non-zero temperature in 1D and 2D systems with short-range inter-
actions and a continuous Hamiltonian symmetry. However, there exists a dif-
ferent phase transition from a normal state to a superfluid state for an infinite
interacting 2D Bose gas: the Berezinskii-Kosterlitz—Thouless (BKT) transition
[60, 61].

In any experimental realization of the 2D Bose gas, the two transitions are rel-
evant: the finite size of the system restores the BEC transition at a non-zero
temperature. In the first section, we will review the properties of the ideal Bose
gas, both in an infinite system, and in a trapped geometry. We will then provide
a description of the interactions in two dimensions [75-77], and provide a mean
field description of the system. Finally, we will introduce the BKT transition,
and present numerical results directly relevant for our experiments [78, 79].

1.1. The ideal gas

In this section, we describe the way non-interacting bosons can arrange them-
selves among the available energy levels in a two-dimensional geometry. This
means that energy levels can only be accessed in a single plane: the particles are
considered to be confined to a single quantum state along the remaining direc-
tion, which we choose to be z. This is achieved as long as the energy necessary
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to reach the first excited state along z is large compared to the temperature T.

1.1.1. The infinite uniform two-dimensional Bose gas

The usual argument for the presence of a Bose-FEinstein condensate (BEC) in
a non-interacting system is the saturation of the excited single-particle states
at non-zero temperature, following Einstein’s standard argument [4, 5]. For a
given temperature, if such a maximal occupation of the excited states Nexc(T)
exists, all particles beyond this critical number must accumulate in the single-
particle ground state, leading to a macroscopically populated quantum state. It
is important to note that this is a sufficient condition for the presence of a BEC,
but not a necessary one.
A generalization of this phenomenon was proposed by Penrose and Onsager
[80], which associates Bose—Einstein condensation with the existence of a macro-
scopic eigenvalue in the one-body correlation function g1 (r). Finite size effects,
or the presence of interactions can lead to a BEC even in the absence of satu-
rated excited states (see for example [59]).
We place ourselves in the grand canonical ensemble, with chemical potential
u and temperature T. In a non-interacting case, the number of particles in the
excited states is given by:

> 1
Nexc - ; m (11)
_ [*__D(e)
Nexc —/O mde (12)

Eq. 1.1 describes a system with discrete energy levels E; and becomes Eq. 1.2
in the case of an infinite system. In this equation, D(e€) is the density of states
and B = 1/kg T. For the the non-interacting Bose gas, y is necessarily inferior to
the ground state energy, and the excited levels are maximally populated when u
reaches the ground state energy. For the homogeneous 2D Bose gas, the density
of states is uniform: D(e) = mS/(27h?) where S is the surface of the system,
and m is the mass of the particles. In this case, the occupation of the excited
states simplifies to:

New — —SksT (1 _ et/ kBT> . (1.3)

Taking the thermodynamic limit N — co, S — oo with N/S = n, we obtain the
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result in terms of phase-space density:

D=n)2=—1In (1 . eﬂ/kBT) ) (1.4)

where A1 = \/ 27th? / (mkg T) is the thermal wavelength. Contrarily to the three
dimensional case, the phase-space density can become arbitrarily large: this in-
dicates that there is no saturation of the excited levels in two dimensions, and
no BEC for the infinite 2D ideal Bose gas. Eq. 1.4 does not include the ground
state, but since the system never undergoes condensation, the population of the
ground state is always negligible. Therefore, it describes properly the whole
system, and it is the first equation of state that we can write: it connects directly
the phase space density to chemical potential and temperature. This result is
in accordance with the Mermin-Wagner theorem: since long-range order is for-
bidden in our system at non-zero temperature, no eigenstate can be macroscop-
ically populated.

The absence of long-range order can be seen more directly by looking at the
one-body correlation function:

g (r) = (¥ (r)¥(0))

T2l e 1" ‘

where k is the characteristic wave-vector of the plane wave of energy €, =
n?k?/(2m). This quantity always vanishes at r — co, again in accordance with
the Mermin-Wagner theorem. For a non-degenerate gas (D < 1), the one-
body correlations decays as a gaussian, and the correlation length is the thermal
wavelength. Even though there is no phase transition, in the degenerate regime
(D > 1), the correlation function decays exponentially for large distances:

gW () me ik, (1.6)
with the one body correlation length I = \;‘Tlnep/ 2 (see [74] for a full deriva-

tion).

1.1.2. Bose-Einstein condensation in a finite system

Even though no condensation occurs in an infinite system, it is known that
the finite size of a system can significantly affect its properties. In particular,
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we saw that the one-body correlation length /- grows exponentially with the
phase-space density in the degenerate regime (Eq. 1.6). For a homogeneous
system in a finite box of characteristic size L, there exists a non-zero tempera-
ture T such that the correlations span the entire system. In this case, there is a
significant phase correlation between any two points, and the system undergoes
Bose-Einstein condensation. This occurs when /¢ &~ L, or equivalently when the
phase space density reaches the critical value:

L2
D. ~In 47IA—2 . (1.7)

T

However, this criterion is not a quantitative definition for the critical atom num-
ber. This can be derived more accurately for a given geometry by calculating the
maximal population of the excited states following Eq. 1.1. This shall be done
in the following in three different geometries.

Square box In a square box, the eigenfunctions are of the form:

()i = %sin (%) sin (%) (1.8)

with i and j strictly positive integers. The eigenenergiesare E; ; = 2 h*/(2mL?)
(i + j* — 2), taking the energy of the ground state to be 0. In this case, the max-
imal population of the excited levels is given by:

1 12
NC = Z —e,BE,‘,]‘ — 1 = qu (A_%> . (19)

i>1,j>1

Circular box In a circular box of radius L, the eigenfunctions are of the form:

1
1 0)s,n = ]
¥(r,0)s, \/EL]‘nHl(]&W)

where 7 is an integer, ], is the Bessel function of order n of the first kind, and
jsu is its s-th zero. The eigenenergies are therefore E,, = h*/(2m L?)(j2, —
j(zw), taking the energy of the ground state to be 0. In this case, the maximal
population of the excited levels is given by:

Tin( Gis, 7/ L) €7° (1.10)

1 L2
NC e Zm = fcirc (A—%> . (1.11)

s,n
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Figure 1.1.: Critical atom number against $/A% for a square box (black squares) and a
circular box (red circles). The qualitative prediction from Eq. 1.7 is indi-
cated by the blue dashed line. The black (red) line represents a fit of the
critical atom number for a square (circular) box by the model from Eq.
1.12. Fit parameters are { = 0.9878(5), = 0.0313(1) for the square box
and ¢ = 0.9892(4), n = 0.0355(1) for the circular box.

The functions fsq and fir. can be evaluated numerically, and compared to the
functional form introduced in Eq. 1.7. We choose the following fitting function:

S S
NC,ﬁt = g A—% In <7’]4 7-[)\_%> (112)
where S is the surface of the box, and ¢ and # are the fitting parameters. The
results are shown in Fig. 1.1, along with the prediction from Eq. 1.7. The numer-
ical results are well described by the prediction from Eq. 1.12, with the shape of
the box influencing mainly the coefficient #.

Harmonic trap Experimentally, the most relevant geometry for the Bose gas is
the harmonically trapped system. In this case, owing to the different density of
states, the gas always undergoes a phase transition at a non-zero temperature,
even in the thermodynamic limit.!| We can assume without loss of generality

1. We will see later how this apparent contradiction with the Mermin-Wagner—-Hohenberg
theorem is resolved.

11
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that the trap is isotropic, with a trapping frequency w. The density of states for
a two-dimensional harmonic trap is D(¢) = €/(hw)?, and Eq. 1.2 yields the
following for the maximal population of the excited states:

72 (kg T\?
Nc,harm - ? <;_w) . (1~13)

It is also possible to derive the equation of state for the trapped 2D Bose gas,
by using the local density approximation (LDA). If the trapping potential is
varying smoothly enough, it can be considered as constant over a region in
which the particles are at the thermodynamic equilibrium. In this case, parti-
cles in this region will be described by the equation of state for a homogeneous
system, with a local potential (1) = po — V(r), where p is the chemical po-
tential at the center of the trap, and V (r) the trapping potential. In the case of a
harmonic trap, this substitution in Eq. 1.4 gives the density distribution for the
excited states:

_ mw? 2
n(r)A% = —In (1 T kT ) . (1.14)

The number of atoms occupying excited states in a harmonic trap can be ob-
tained by integrating the previous equation:

2
N(po, T) = Lis (e“()/kﬂ) <kB—T) (1.15)

hw

where Li; is the dilogarithm function. In particular, when 9 — 0, we re-
cover the critical atom number from Eq. 1.13. Note that Eq. 1.14 indicates
that the density in the center of the trap diverges when yp — 0, which is in
fact due to the integration: performing the calculation with Eq. 1.1 gives a
finite value. This divergence in the semi-classical limit resolves an apparent
paradox: in Eq. 1.13 when taking the thermodynamic limit N — oo, w — 0
with n = Nmw?/(2mkgT) kept constant, the critical temperature remains ap-
parently finite. However, in this case, the semi-classical limit applies, and the
density n has to diverge, indicating the critical temperature must be zero.
Contrarily to the uniform case, Eq. 1.15 does not always give the equation of
state for the whole system: when 9 — 0, the atoms in excess of Ngyc harm Will
occupy the ground state, and are not accounted for in Eq. 1.14.

12
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1.2. The interacting two-dimensional Bose gas

Up to this point, we did not take into account the existence of a third dimen-
sion, and assumed the problem was strictly two-dimensional. However, the
experimental realization of such a system relies on imposing a confining poten-
tial, which will freeze the excitations along one dimension. Let us suppose that
the confining potential is harmonic: U(z) = mw? z?/2. When the temperature
is low enough (typically hw, > kg T), the system occupies a single quantum
state along z and its wave function can be factorized:

)
Y¥(r,0,z) = ﬁ%m (r,0)e 2E. (1.16)
In this case, the dynamics of the system is contained in 1P(2D) (r,0), which con-
stitutes a realization of the 2D Bose gas. The third direction does not have a
direct effect on the dynamics of the 2D Bose gas, though it introduces a charac-
teristic thickness of the system: the spread of the ground state of the harmonic
oscillator I, = v/h/mw,. As we will see, the third dimension still has an influ-

ence on the collisional properties of the particles.

1.2.1. Interactions in two dimensions: the quasi 2D regime

Since experimental realizations of the 2D Bose gas with cold atoms are carried
out at low enough densities, we can restrain the interactions to binary collisions,
which are well characterized by a contact potential in three dimensions [81]:

V(r—rj) = gapd 0 (ri — ) = = a0 (r; — 1)) (1.17)

where a; is the scattering length (for 8Rb , a; = 5.1 nm). This describes a three
dimensional collision process, and cannot be directly transposed to the 2D case
[75]. In order to determine the collisional properties, we need to distinguish
two different regimes, depending on the thickness of the system I,:

— the true 2D regime, where the motion of the atoms is strictly confined to the
xy plane. This regime is reached when [, < R,, where R, is the effective
range of the interaction potential. In this case, the scattering amplitude
is energy-dependent, and cannot be characterized by a constant scattering
amplitude.

— the quasi 2D regime, where the microscopic motion of the atoms remains
three-dimensional, which corresponds to I, > R,. This condition is typi-
cally realized in our experiment, where /, ~ 180 nm and R, ~ 45 = 5.1 nm

13
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14

(see for example [82] for a derivation of R,). In this regime, the interactions
can be expressed by a contact potential as in Eq. 1.17, and a general expres-
sion for the two-dimensional coupling constant was given by Petrov et al.
[76,77]

V8mh? 1
m  1,/as —In(mg?12) /27

g= where q2 = 2mpt/h2. (1.18)

For our experimental parameters, the logarithmic contribution is negligi-
ble, and the 2D scattering amplitude remains constant, as in three dimen-

sions. In the case of a harmonic confinement along the z direction, it is
given by:

2
g = %g where ¢ = \/871% (1.19)

In this limit, the interaction energy of the 2D Bose gas is:

2~
Fue=5 [0 =28 [ (1.20)

Note that the same result can be obtained by a naive integration of the
three-dimensional interaction energy, assuming the gas is described by Eq.
1.16. However, the condition I, >> a5 remains hidden in this procedure.

One can also estimate the strength of the interactions by comparing the
interaction energy to the kinetic energy in a uniform gas of N particles. The
interaction energy can be estimated by neglecting the density fluctuations

((n?) = (n)?):

h?> N2
Ent~ —3—= .
t ng S (1.21)

Using the density of states in 2D D(e) = mS/(27h?), the kinetic energy
can be estimated :

EN Th? N2 En
Exin = /0 eD(e)de = —— where N = /0 D(e)de (1.22)
The strongly interacting regime is defined as Eint = Eyi,, which corre-

sponds to § = 271. This result does not depend on the density, as opposed
to the 3D case, where the strength of interactions depends explicitly on the
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density through the parameter n3pa2. According to Eq. 1.19, the strongly
interacting limit also corresponds to as; ~ [,. Consequently, the quasi 2D
regime is only an appropriate description for the weakly interacting 2D
Bose gas. Experimentally, values of § for cold atoms range from 0.01 to
3 [64, 65, 83-85], and can reach 1 in the more strongly interacting helium
films [86].

1.2.2. Scale invariance in 2D

One important consequence of Eq. 1.19 is the scale invariance of the equation
of state of the 2D Bose gas. To properly characterize the 2D Bose gas, we aim
to establish an equation of state (EoS), for example for the density. The general
form of such an EoS is:

F(n,u,T,§) =0 (1.23)

where F is the function to be determined. Using dimensional analysis, Eq. 1.23
must take the form:

G(D,u/kgT,§) =0 orequivalently D = f(u/kgT,3). (1.24)

Not only is § dimensionless, it is also independent of the density in the weakly
interacting regime. Therefore, contrarily to the three dimensional case, the in-
teractions do not introduce a characteristic energy scale. In this respect, the EoS
for the 2D Bose gas is said to be scale invariant: multiplying chemical potential
and temperature by the same amount will not change the phase space density
of the system. Note that this is only an approximate result, which breaks down
if the logarithm in Eq. 1.18 is large enough.

In particular, the EoS for the ideal gas (Eq. 1.4) has the correct functional form:
the phase-space density only depends on yt/kgT. More generally, all dimension-
less thermodynamic quantities characterizing the homogeneous gas can only
depend on ¢ and p/kgT.

1.2.3. The mean-field Hartree—Fock approximation

In the presence of interactions, the EoS is established by the mean-field Hartree—
Fock method. In this approach, the interactions are taken into account by replac-
ing u by u — 2g¢n in the equation of state of the ideal gas [87, 88]:

15
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Figure 1.2.: Equations of state for the ideal gas (dashed red line), for the interacting
gas (§ =0.1) in the Hartree-Fock mean field approximation (full black line)
and for the interacting gas in the Thomas—Fermi limit (blue dotted line)

D=—In <1 — eﬁ“_zﬁg”>

— _In (1 _ eH/ksT—3D/ ”) (1.25)

This self-consistent equation for the phase space density can be solved numeri-
cally for D. Remarkably, in the presence of interactions, the chemical potential
is unconstrained, and can take any value. In particular, the singularity at = 0
for the ideal gas vanishes. In the case of the harmonically trapped Bose gas,
using the LDA gives us:

H o me? 2 s
D(r) = —In (1 eFgT T gDW”) (1.26)

Since p is not constrained to negative values anymore, the number of atoms
derived from this equation can be made arbitrarily large. The condensation
phenomenon which occurred for the ideal gas disappears in the presence of
interactions in a harmonic trap.

However, the underlying assumption is that the density fluctuations are im-
portant, so that (n?) = 2(n)?. A Bogoliubov analysis shows that when the

16
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phase-space density reaches D > 2m/¢, density fluctuations decrease, until
the regime where (n%) = (n)? is reached [74]. In the zero temperature limit, the
gas is described by the Thomas-Fermi approximation : 4 = gn. From this ob-
servation, the Hartree-Fock approximation is only a good description for small
D.

1.2.4. The Berezinskii-Kosterlitz-Thouless (BKT) transition

Though it appears Bose-Einstein condensation does not occur in the pres-
ence of interactions, there exists a phase transition at low temperatures to a
superfluid state. This transition is unusual, since it cannot break any contin-
uous symmetry, in accordance with the Mermin—-Wagner-Hohenberg theorem.
For this reason, there is no long range order in the superfluid state. It is often
classified as a transition of infinite order, since most thermodynamics quantities
vary smoothly at the transition point: the only exception is the superfluid den-
sity, which jumps from 0 in the normal phase to 4/ A2 in the superfluid phase at
the transition point.

The microscopic theory of the transition was developed by Berezinskii [60] and
Kosterlitz and Thouless [61]. It is associated with the existence of vortices in the
gas. These are points around which the phase winds by a multiple of 27t. At the
center of vortices, the density drops to zero, over a typical length scale given by
the healing length: ¢ = 1/,/¢n. We can restrict our description to the single-
charged vortices with phase winding of +271, which are energetically stable.
Above the critical temperature, the vortices form a disordered gas, and each
vortex modifies the phase of the gas significantly, preventing the appearance
of a superfluid state. However, below the transition temperature, formation of
pairs of vortices of opposite circulation is energetically favorable. The total cir-
culation of the phase around such pairs is 0, which indicates that the pair only
perturbs locally the gas, thus allowing the existence of a superfluid state.

Even though the value of the superfluid density at the transition point is uni-
versal, the BKT theory does not tell us when this transition occurs. In general,
computing the transition parameters as a function of the total density n and
the interaction strength is a difficult problem. However, in the weakly inter-
acting limit, classical field Monte-Carlo calculations performed by Prokof’ev,
Ruebenacker and Svistunov [78] give a value for the phase space density and
the chemical potential at the transition point:

17
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27'[7;12 gD)
D:=n—— =In{| = 1.27
m kg Tk ( g (1.27)
&
pe =ksT< In ( 2 ) (1.28)

with {p = 380(3) and &, = 13.2(4). In our experiments, § ~ 0.1, so we expect
DC ~ 8.

In a following article, Prokof’ev and Svistunov [79] numerically calculated the
equation of state around the critical point for an infinite system. This allows us
to interpolate between the two known limits:

— for D < D¢, the Hartree—Fock analysis remains valid

— for D > Dc, the gas is well described by the Thomas—Fermi approximation

The resulting contributions to the equation of state for the phase space density
are shown in Fig. 1.3. From these three predictions, we can create a composite
equation of state, which we will later use to model our data.

Since this equation of state is calculated for a homogeneous system, one needs
to use the LDA to describe a weakly interacting trapped Bose gas. The validity
of this procedure was addressed by quantum Monte-Carlo calculations per-
formed by Holzmann and Krauth [89] and Holzmann, Chevallier and Krauth
[90], for harmonically trapped systems and for atom numbers similar to our
experimental observations.
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Figure 1.3.:
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Interpolation by the numerical prediction (full black line) between the
Hartree-Fock approximation (dashed red line) and the Thomas—Fermi
limit (dotted blue line). The black circle indicates the BKT transition for
=01
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2. Producing and imaging two—-dimensional Bose
gases

Since this experimental apparatus was built for a large part by previous PhD
students, a detailed description of it can be found in [66-68]. Therefore, in the
tirst half of this chapter, we provide a simple description of the experimental
sequence. We will detail further both the most recent modifications, and the
experimental steps specific to the preparation of a two-dimensional Bose gas.
In the second half, we will describe in detail our image acquisition process,
both in its theoretical and experimental aspects.

2.1. Experimental setup

2.1.1. Experimental sequence

Our experimental setup consists of a vacuum system composed of two cham-
bers: a steel “MOT chamber” and a glass “science cell”, linked by a differential
pumping stage. A scheme of the vacuum chamber with the magnetic coils is
presented in Fig. 2.1. Preparation and measurement of a BEC requires a com-
plex sequence of different computer-controlled events, with a precise timing.
To this end, we installed a program created at MIT by Aviv Keshet: the Cicero
Word generator [91]. Using this software, a series of different phases are de-
fined, and described below.

1. MOT phase (6 s)

We load a magneto-optical trap from the background 8 Rb gas: the load-
ing rate is typically 5 - 10° atoms/s. Eventually, the cloud contains ~ 7 - 10°
atoms. The cloud is then compressed during a cMOT phase [92], the atoms
are optically pumped into the internal state | F = 2, mp = 2) and trans-
ferred to a quadrupole trap with magnetic gradient b, = 140 G/cm. At
the end of this sequence, the quadrupole trap contains ~ 5 - 10° atoms, at
320 uK.

2. Magnetic transport (6 s)
We transport the atoms from the MOT chamber to the science cell, using a
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series of 9 pairs of coils, and load a quadrupole trap with b, = 90 G/cm.
The transport is nearly adiabatic: heating mainly comes from the collisions
with the background gas in the first stages of the transport. In the most
recent version of the experiment, we cannot readily estimate the number
of atoms in the science cell: in situ imaging fails because the magnetic field
is not homogeneous over the cloud, and time-of-flight imaging is strongly
perturbed by eddy currents. Measurements on a previous version of the
experiment indicated a transport efficiency of ~ 50 %. Alternatively, the
two-way transport can provide a lower bound for the one-way transport
efficiency.

3. Radio-frequency evaporation in the quadrupole trap (16 s)
The quadrupole trap gradient is increased to b, = 140 G/cm in order to
increase the collision rate. We apply a radio-frequency evaporation ramp
(on the transition between different Zeeman substates) from 30 MHz to 2
MHz, bringing the atom number down to 2.5 - 107 and the temperature
down to 25 uK.

4. Optical evaporation in the hybrid trap (9 s)
The hybrid trap (see 2.1.2) is loaded in 1 s. We then lower the dipole trap
power from 4.5 W to ~ 85 mW in 8 s to obtain a BEC: the end point of the
ramp can be adjusted to choose the final temperature of the atomic cloud.

5. Transfer into the Hermite—Gauss trap and final evaporation (4 s)
The Hermite-Gauss beam (see 2.1.3) is ramped up in 1 s, splitting the cloud
in three parts as shown in Fig. 2.5a. The atoms outside of the Hermite—
Gauss beam are removed, leaving us with a single two-dimensional plane
(see Fig. 2.5b). We then perform another stage of evaporative cooling to
achieve degeneracy in our samples.

2.1.2. A new setup: the hybrid trap

The first stage of evaporative cooling takes place in a quadrupole trap, which
is the easiest magnetic trap to build. It is also well suited for radio-frequency
evaporation: indeed, as opposed to the optical evaporation, lowering the trap
depth does not weaken the confinement. However, a quadrupole trap has a ma-
jor drawback: since the magnetic field cancels at its center, atoms crossing this
region can be lost through Majorana spin-flips. The loss rate is inversely propor-
tional to the temperature: hot clouds can be efficiently trapped and evaporated,
but Majorana losses put an upper bound on the phase space density obtained in
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this trap [93]. For realistic experimental parameters, it is not possible to create a
condensate in these conditions.

On the first version of our experimental setup, this problem was avoided by
applying a time-orbiting bias field, to realize a TOP trap [1]. In this setup, the
effective magnetic field seen by the atoms does not cancel at the center of the
trap, thus suppressing the spin-flip induced losses. However, this approach
led to weak confinement frequencies: 27t x (32,32,92) Hz in our experiment.
Consequently, the collision rate could not be made very large, thus evaporative
cooling in this trap was quite slow: our optimal condensation sequence took 80
s to complete. In order to shorten this duration, we chose instead to circum-
vent Majorana losses by adding an attractive optical trap to the quadrupole, as
demonstrated in [94] and [95].

The idea is superpose an attractive dipole trap of depth Uy with the quadru-
pole trap. When the cloud is sufficiently cold (kg T < Uyy) but before Majorana
losses start to be significant, the gradient of magnetic field is adiabatically low-
ered, which simultaneously cools down the atoms, and transfers them inside
the dipole trap. To prevent Majorana losses both during and after the transfer,

(top view)

50cm

MOT transport quadrupole trap
coil coils coil (side view)
o A z

MOT differential science
chamber vacuum tube cell

Figure 2.1.: Top and side view of the vacuum system, with the magnetic coils
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2. Producing and imaging two—dimensional Bose gases

the center of the dipole trap is offset from the center of the quadrupole. The
remaining magnetic field gradient provides a harmonic confinement along the
direction of propagation of the dipole trap. The total potential is then given by:

2 2 _ 2 _ 2
V(I‘) = VBb,/z xz + yz + 72 _ UH exp (_2 (y yO) a—)i_z(z ZO) + mgz
2.1)

Experimentally, we choose the following parameters:

— The dipole trap is generated with a 1560 nm laser beam, propagating along
the x axis (see Fig. 2.2). It is focused on the atoms with a waist of w =
50 ym, and the available laser power is 4.5 W. From these parameters, we
can expect a trap depth Uy = 52 uK. Its position (yo, zo) relative to the
center of the quadrupole trap (y = 0, z = 0) is adjusted by a mirror mount
with micrometric screws, and is chosen to maximize the number of atoms
transferred in the dipole trap. The optimum is found for zgp = —90 um,
with a transfer efficiency of 20 %. While the precise value of yy does not
influence strongly the loading of the dipole trap, it significantly affects the
properties of the trap for low depths, and we thus chose yp = 0. Along
the propagation direction, the Rayleigh range of the dipole trap is too large

Vertical
imaging

To CCD From magnetic
camera transport

-

-Horizontal imaging
-Hybrid trap
-Hermite-Gauss trap
-Cleaner beam

Magnetic
coils /

Microscope
objective

To CCD
camera y

Figure 2.2.: Directions of propagation of the different laser beams used during the se-
quence.
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2.1. Experimental setup

(Zr = 5 mm) for it to affect significantly the position of the cloud: it is
therefore imposed by the magnetic field.

— The magnetic gradient is initially b, = 140 G/cm and is lowered in 1 s to
b, = 12.5 G/cm, which corresponds to a gradient slightly lower than grav-
ity for atoms in the | F = 2, mp = 2) state. For the optimal value of z
presented above, this creates a field of 110 mG at the location of the atoms:
this is not sufficient to fully prevent Majorana losses. After the decompres-
sion of the quadrupole, the zero of magnetic field is therefore moved to
z1 = —150 pum to increase the field at the location of the atoms, and thus
increase the lifetime in the trap.

— In the final configuration, a linearization of the potential in Eq. 2.1 around
its minimum yields the following trap frequencies:

4U
wy:wzzy/m—;:anQle (2.2)
/
wr = 2B on 181y 2.3)
4mzq

and the bias field at the location of the atoms is

B = |b. z1| = 188 mG. (2.4)

2.1.3. Preparing two-dimensional Bose gases and reaching degeneracy

The Hermite—Gauss beam As we saw in Sec. 1.1, the experimental realiza-
tion of a two-dimensional Bose gas requires a strong confinement along one
direction of space, which is chosen to be the vertical z direction. The tempera-
ture of the cloud is typically 100 nK: this requires a confining harmonic potential
of characteristic angular frequency w, > kg/h100nK = 27t x 2 kHz. This har-
monic trapping is realized by a 532 nm laser beam (blue detuned with respect
to the atomic resonance). To achieve a suitable geometry for the optical trap,
we shine a collimated laser beam on a phase plate. This phase plate imprints a
phase of 7t on the upper half of the beam (z > 0) with respect to the other half
(z < 0). The beam then propagates, and is focused on the atoms by a converging
lens (see Fig. 2.2 for the geometrical arrangement).

At the focus of the lens, the electric field is the Fourier transform of the electric
tield after the phase plate in the paraxial approximation. The expected intensity
profile can then be calculated: the two halves of the beam interfere destruc-
tively, and the intensity distribution presents a minimum in the center (Fig.
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2. Producing and imaging two—dimensional Bose gases

2.3). In the nodal plane, the intensity distribution around the minimum can
be approximated by:

2
4 72 2%

Iy, z < w;) = IOEw_ge “y (2.5)
where w, is the waist of the beam in the z direction. Therefore, the smaller w,,
the tighter the confinement. However, we want the trap to have a significant ex-
tension in the xy plane, in order to have a uniform confinement over the whole
cloud. Along the propagation direction, the extension of the trap is given by the
Rayleigh range of the laser (Zr = 140 ym for w, = 5 um). Along the remaining
direction, the extension of the trap is given by the waist w,, so the aspect ratio
of the beam must be properly chosen. These constraints can be summed up as
follows:

— w, must be as small as possible to achieve a tight confinement

— w, is limited by the numerical aperture of the focusing lens. In our setup,

this means w, > 5uym

— wy must be larger than the size of the cloud. For a typical sample, this

means wy > 20 ym

— on the other hand, for a fixed laser power, increasing wy decreases the in-

tensity, and thus the confinement, so w, cannot be too large.
To satisfy all these conditions, we choose wy, = 150 ym and w, = 5um. The
trapping potential is given by U = al = mw?z?/2, with a = 6.5-107% uK
m?/W. For a laser power of 1W, we expect a confinement of w, = 27 x 4.2
kHz. This corresponds to a harmonic oscillator length scale [, = 165 nm, and a
coupling constant § = 0.15.

It must be noted that the previous result assumes a perfect optical setup, and
is only true at the focus of the Hermite-Gauss beam. In practice, the harmonic
oscillator frequency is closer to w, = 27 x 2 kHz. Indeed, when loading the
Hermite-Gauss trap, a balance must be found between achieving a strong con-
finement and loading a large number of atoms. As we saw, the confinement
increases with decreasing w,. However, the number of atoms loaded into the
Hermite—Gauss beam is given by the overlap between the trap and the atomic
distribution. In particular, it is directly proportional to the distance between the
two barriers, which is in turn proportional to w,. Consequently, the number of
loaded atoms increases with w,. Of course, if w, is too large, the height of the
barriers will not be sufficient to keep the atoms in the nodal plane of the beam.
For this reason, since we cannot dynamically control w,, a compromise must
then be found between a high atom number and a high harmonic oscillator fre-
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Figure 2.3.: Normalized intensity profile in the focal plane of the lens (red full line).
For comparison, the intensity profile without a phase plate is presented in
red dashed line

quency. Experimentally, the optimum was found when the atoms are trapped
between one and two Rayleigh ranges away from the focus, with the precise
value depending on the quality of the optical alignment.

Loading the two-dimensional trap Once the three-dimensional atomic sam-
ple is sufficiently cold, the power of the Hermite-Gauss beam is linearly in-
creased in 3 s. During this step, the Hermite-Gauss beam is superposed with
the weak optical and magnetic confinement. In particular, along the z direc-
tion, the potential has the form shown in Fig. 2.4. Atoms will therefore be
trapped in three different regions of space, and the cloud has the shape shown
in Fig. 2.5a: the central part of this cloud is inside the Hermite—Gauss beam, and
is two-dimensional, while the outer lobes are not necessary for the rest of the
experiment. However, since we want to image the two-dimensional plane per-
pendicularly to it, these outer lobes block our imaging and must be removed.

To this end, the top and bottom part of this cloud are selectively illuminated
with a linearly polarized laser beam resonant with the transition |F = 2) —
|F" = 2) during 40us (see Fig. 2.2 for the geometrical arrangement). The atoms
in these regions will then be depumped to the | F = 1) hyperfine state, which is
undetected by our imaging system. The spatial selection is done by projecting
the shadow of a thin wire over the cloud: the central plane of interest to us will
be shielded from the resonant photons, while atoms in the remaining side wells
will eventually be depumped (Fig. 2.4). At the end of this process, we are left
with a single plane, as shown in Fig. 2.5b.

The wire has a diameter of 100 m, and its image is created with a 1/5% mag-
nification, so the dark region is ~ 20 ym across. As one can expect, the contrast
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Figure 2.4.: Total trapping potential along the z direction. The central minimum is due
to the Hermite—Gauss beam, while the minima on the sides result from the
weak optical confinement. The blue hashed zone indicates the parts of the
trap exposed to resonant light during the cleaning phase

(a) Before removal (b) After removal

Figure 2.5.: Horizontal absorption images of the atomic distribution, before and after
removing atoms in the side wells.

between the dark shadow and the rest of the beam is not perfect, so atoms in
the central plane can still be depumped, or heated by the scattering of pho-
tons. Experimentally, we found that a contrast of 40 is needed to achieve a good
preparation of a single two-dimensional plane: all atoms in the side wells are
efficiently depumped, while atoms in the central plane are nearly not affected.

2.2. Imaging two-dimensional Bose gases and processing
the data

Once the preparation of the atomic cloud is complete, it must be probed and
analyzed to extract relevant physical parameters. For cold atoms experiments,
the most straightforward method is absorption imaging. The accurate deter-
mination of the atomic density thus relies both on a precise measurement of
the intensity distribution of the laser beam used to image the cloud, and on
the correct knowledge of the relation between the atomic density and the light
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2.2. Imaging two-dimensional Bose gases and processing the data

intensity. The data obtained in this manner can then be further processed to
improve the signal-to-noise ratio, and to finally determine quantities other than
the density by a fitting process, such as the chemical potential and the temper-
ature.

2.2.1. Using absorption images to determine the density

Standard absorption imaging and its limitations Once the intensity dis-
tribution is measured, both with and without atoms, it must be linked to the
atomic density. For most experiments, performing absorption imaging yields
the optical density (OD), which is sufficient to determine the density with the
Beer—Lambert law:

_ Ii(r)
OD=-In (Ii(r)) =n(r)o (2.6)
where 7 is the density integrated along the line of sight (simply the density for
two-dimensional samples), ¢ is the absorption cross-section, I is the intensity
of the probe beam without atoms, and I is the intensity with atoms. The cross-
section ¢ characterizes the interaction between the atom and the probe beam.
It can be determined from the properties of the electronic transition. The Beer—
Lambert law is only valid if o does not depend on the intensity and the density
is sufficiently low. The first condition is fulfilled when [; < I3t where Ig,¢ is the
saturation intensity. In this regime, the cross-section is given by:

373

70 —
= 1—}—4—A2/]_—'2 where oy = E (27)

and where A is the transition wavelength, I is its natural width and A is the
detuning of the probe beam from the transition.

However, this relation breaks down when the inter-atomic distance becomes on
the order of the wavelength (see for example [96] for an overview). In a two
dimensional sample, an optical density OD = 1 at resonance corresponds to a
mean inter-atomic distance 0.7 Ag. In such a dense medium, an emitted photon
can be re-absorbed by a neighbouring atom, giving rise to dipole-dipole inter-
actions between atoms. These interactions will in turn shift the energy levels
proportionally to iT'/(kor)® where kg = 27/ is the wavevector associated
with the transition and r is the distance between two atoms. From this pic-
ture, it appears that for inter-atomic distances r smaller than the wavelength,
the energy levels can be shifted by more than the natural linewidth of the tran-
sition, leading to a density dependent absorption cross—section. Consequently,

o
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the absorption cross—section is reduced at resonance when probing high atomic
densities.

This phenomenon was observed in our group when imaging dense bidimen-
sional ¥Rb gases [69, 84]. In actual systems, there are many more than two
atoms, and multiple scattering events can take place. A qualitative interpreta-
tion can then only be provided by modeling the interaction between one pho-
ton and N atoms. Such an analysis was carried out in our group by Lauriane
Chomaz and coworkers, and is presented in details in [97]. In this work, the
main features of our observations were qualitatively reproduced: the optical
density is significantly lower than predicted by the Beer-Lambert law (see Fig.
2.6). However, a full quantitative agreement could not be reached: modeling the
imaging transition in Rb (| F =2) — | F/ = 3)) is computationally difficult:
therefore, the calculations were performed on a simpler | ] =0) — | ]/ =1)
transition.

Figure 2.6.: Variation of the optical density as a function of the Beer-Lambert predic-
tion, for resonant probe light. The simulated sample has zero thickness
in the propagation direction of the beam. The red line is the straight
line of slope 1, and the black line is an empirical fit of the data: OD =
no(1 — pno) with p = 0.22.

High intensity absorption imaging Since the collective phenomenon render
the absorption cross-section dependent on the density, we instead choose to
work with high intensity imaging pulses, as was done in [98]. Instead of prob-
ing the atomic density with a weakly saturating laser pulse, we aim to fully sat-
urate the imaging transition. In this regime, each atom will scatter I' /2 photons
per second, independently of their environment, thus allowing us to deduce the
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density from the number of missing photons. Here, multiple scattering events
do not play a role in the number of scattered photons, but will merely change
the saturation intensity. Consequently, the effective saturation intensity for a
dense medium will be higher than for a single atom, but the transition will al-
ways be saturated for a high enough intensity. In the following, we detail the
calibration of this imaging scheme.

The following section was initially published as part of the supplemental material of
[69], and is reproduced without modifications

The calibration of absorption imaging consists in relating the number of miss-
ing photons on a pixel to the number of atoms on this pixel. The interaction be-
tween a probe beam and a single atom is characterized by the absorption cross
section ¢ defined by the relation y = oI/ (hwy), where 7 is the photon scatter-
ing rate, I the intensity of the beam on the atoms and wy /27 its frequency. In
the case of a monochromatic resonant beam probing a two-level atom:

T I
20+ Lat’

0% (2.8)
In the limit where | < I, the absorption cross section is 0y = I'fiwy, /214t

In practice one must take into account stray magnetic fields, non-zero line-
width of the probe laser, optical pumping effects, etc. To model this complex
situation, we heuristically replace Isat by an effective saturation intensity alsat
and I' by an effective linewidth pI'. We then write the number of photons N,
scattered during an imaging pulse of given duration

pr 1
= == _ - 2.
Np =77 > Tt a lsatT' (2.9)

or equivalently

B
oc=0)—"—"-—. 2.10
Oa‘f‘[/lsat ( )

At low intensity N, is proportional to I as in the two-level case, but with a mul-
tiplicative coefficient B/« due (for example) to the broadening of the resonance
line. At large intensity the number of scattered photons saturates at fI't/2 in-
stead of I't /2, which models a reduction that can be caused by optical pumping
effects, for instance.

We now turn to the description of absorption imaging of a 2D atomic cloud.
The imaging process consists in shining a resonant laser beam on an atomic
sample, and in imaging the transmission of the sample on a camera. In order
to relate the missing photon number to the atomic density n(x, y), we calculate
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the probability for a photon of the probe beam to reach a pixel of the camera.
We introduce the area A associated to this pixel in the atomic plane. In the limit
where 0 < A a photon has a probability c/.A to be absorbed by a given atom,
hence a probability P = (1 — ¢/ A)N to be transmitted, where N is the number
of atoms in the area A. Thus we find:

P~ e, (2.11)

where we have used n = N/ A, assuming that the atomic density varies smooth-
ly over the pixel size. The intensity of the beam at the output of the cloud is
I; = P;I; and we obtain:

—In (M) =on(x,y), (2.12)

where ¢ depends on the effective intensity I on the atoms [Eq. (2.10)]. If the
optical thickness of the cloud is large, i.e. if the intensity It just after the plane
of atoms is significantly lower than the intensity I; just before this plane, the ef-
fective intensity I must be determined in a self-consistent manner by imposing;:

=1 —no()L (2.13)
The elimination of the effective intensity I from Egs. (2.10)-(2.13) yields:

It

L—1
nog B = —aln (—> 42 (2.14)
Ii Isat

It is interesting to note that even though the derivation in a 2D system differs
from the 3D case, the result is similar to the one given in [98]. The first mem-
ber of the right-hand side of Eq. (2.14) is dominant in the weak intensity limit,
and corresponds to the 2D analog of the 3D Beer-Lambert law. In the high
intensity limit, the second member of the right-hand side dominates. We cali-
brated & = 2.6 (3) using the same method as in [98]: we performed absorption
imaging of clouds obtained in similar experimental conditions with various in-
tensities [; ranging from 0.1 It to 6 Isa¢, and imposed that these measurements
provide the same result for the left-hand side of Eq. (2.14). Here we restricted
ourselves to low atomic density regions, to ensure that collective effects in the
optical response of the gas were negligible. The calibration of f = 0.40 (2) was
performed as in [84], using the HFMF prediction as a fit to the low-density parts
of our atomic distributions, and using y, T and B as optimization parameters.
In [84] where only low intensity imaging was used, this calibration provided
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Figure 2.7.: Optical scheme for the horizontal imaging. The second lens can be chosen
to adjust the magnification: either M = 5 with f; = d; = 750 mm or
M =1 with fz = dp = 150 mm.

the detectivity factor ¢, which is related to the present parameters a and 8 by

¢=(15/7)B/u.

2.2.2. Imaging setup

Our experiment relies on the complementary use of two orthogonal imaging
directions: horizontal (along the x axis) and vertical (along the z axis) imaging.
Both directions are shown in Fig. 2.2.

Horizontal imaging The horizontal imaging beam is colinear with both the
dipole trap used in the hybrid trap and with the Hermite-Gauss beam. The in-
tensity distribution in the plane of the atoms is imaged onto a CCD camera by
two optical doublets forming a telescope, as shown in Fig. 2.7. The magnifica-
tion of this imaging system can be either M = 1 or M = 5, depending on the
second doublet used in the setup. This axis is primarily a diagnostic tool: since
it is colinear with two dipole traps, it is used to align them. For this reason, we
do not necessarily need a faithful picture of the density over the whole cloud:
imaging along this axis is performed in the weakly saturating regime, for an
exposure time Texp = 50 ps and an intensity I < Is.

Vertical imaging The vertical imaging beam is perpendicular to the two-di-
mensional atomic plane. This axis is used for precise measurements of the den-
sity. For this reason, it combines two high-performance elements.

The first of these is a custom made microscope objective (NA=0.45). Together
with a triplet, it forms an intermediate image of the atoms with magnification
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Figure 2.8.: Optical scheme for the vertical imaging. The mask for the frame transfer
is placed at the intermediate focus. The total magnification is M = 12.5

M = 25. This intermediate point also contains a razor blade, which is neces-
sary for the frame transfer mode of the CCD camera described below. This inter-
mediate image forms a source for a telescope of magnification M, = 0.5, finally
projecting the image on a CCD camera (Pixis 1024, Princeton Instruments) (Fig.
2.8). The total magnification of this system is M = 12.5, and its resolution is
mainly limited by the numerical aperture of the objective. The pixels of the
camera have a real size of 13 ym, which corresponds to an effective pixel size of
1.01 ym with our magnification. Tests of the microscope objective [68] showed a
resolution better than 1 ym on a test target. From an analysis of atomic images,
we deduced that the total imaging system had a resolution lower than 2 ym.
This corresponds to a depth of field on the order of 15 ym.

The CCD camera is the other critical element of our imaging setup: a high
quantum efficiency for our wavelength (>95%) and a low-noise readout lead to
shot-noise limited images. However, in order to fully exploit this feature, the
readout time of the chip must be quite slow: around 1 s for 1024 lines of 1024
pixels. This is not compatible with absorption imaging, where the reference
image must be taken as close as possible to the image with atoms, to reduce
the noise stemming from the intensity fluctuations. It is possible to combine
this constraint with a long readout time by using the frame transfer mode of the
camera. In this method, the chip is split between an acquisition region, and a
storage region. The storage region is defined both in the camera software, by
specifying its size, and in the optical setup, by physically masking the storage
region with the razor blade mentioned above, thus preventing photons from
reaching the storage region. An imaging sequence proceeds as follows: the ac-
quisition region is exposed, then its content is transferred to the storage region.
After this step, the process can start again, and the chip is read only once the
storage region is full. In our experiment, the transfer time is 650 us for 203 lines
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of 1024 pixels. This is sufficiently fast to filter most temporal variations of the
light intensity. At the end of the imaging process, the CCD chip contains five
stripes of 203 pixels. The first two are used to image the probe beam, both with
and without atoms. The remaining frames are not exposed, and can be used to
remove the contributions from background stray light.

As we saw earlier, full detectivity of a dense two-dimensional sample can only
be reached in the limit of high intensity imaging. In this regime, the higher
flux of photons can be sufficient to significantly accelerate the atoms during the
imaging phase. The imaging time must therefore be short enough to image a
static atomic distribution. Along the probe beam propagation direction, the dis-
placement of the atoms is givenby Az = (I'/2) (hko/m) (Tezxp /2). For Texp = 2.5
us, the displacement is A z = 0.3 ym, which is sufficiently small compared to the
depth of field of the imaging system. Furthermore, the minimal atomic signal
which can be detected by this method is quite high. From Eq. 2.14 by neglecting
the logarithmic contribution, we can deduce the variance of the atomic density,
assuming Poissonian fluctuations for the photon number:

1 how I+ I

on? =
2 2 4 2
ﬁ 70 Texp Isat

(2.15)

For [ ~ Iy = 40 Isat and A = 1 um?, we find 6n = 5.75 um~2, which gives an
effective lower bound on the densities we can detect on a single pixel. Typically,
the central density of our atomic samples is > 50 m~2, while the density in the
thermal wings of the cloud can be lower than 1 ym~2.

We can perform the same analysis for low intensity imaging. Starting from eq.
2.14, and keeping only the logarithmic contribution, we find:

a?  hw 1 1
= — (4= 2.16
For an exposure time Tex, = 50 ps and I =~ Iy = 0.7 sat, we find on =

0.45 ym~2. Consequently, we have two complementary imaging settings, which
will be chosen depending on the requirements of the experiment:

— low intensity imaging (Texp = 50 ps, Iy = 0.7 Isat), which has a high signal-
to-noise for low densities, but which fails for high densities due to collec-
tive effects

— high intensity imaging (Texp = 2.5 ps, Iy = 40 Isat), which can provide a
faithful image of high density regions, but is on the order of the noise for
densities smaller than 5.75 ym 2

For the data presented in [69], we chose to use a combination of the two settings.
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Each atomic sample was prepared twice, and probed with each imaging regime.

2.2.3. An algorithm for image processing: the Principal Component
Analysis (PCA)

The quality of our data processing is directly dependent on the signal-to-noise
ratio of our image acquisition. Our imaging process is mainly limited by the
photonic shot-noise, and we would like to resolve properly the thermal wings
of our atomic samples, down to optical densities of 0.05, or to spatial densities
of 0.2 ym_z. In the low-intensity configuration, the imaging beam illuminates
the CCD with Ny, = 600 photons, which means we hope to extract a signal
from 30 missing photons. In comparison, the photonic shot-noise has a stan-

dard deviation |, /5N§h = 25 photons. Thus, small signals are comparable with

the noise on a single-shot basis, but can easily be resolved by averaging, either
by exploiting the LDA and the symmetry of the trap, or by combining sev-
eral images of the same atomic sample. Another limitation is the presence of
inhomogeneities in the intensity profile of the imaging beam: if these inhomo-
geneities shift between the atomic image and the reference image, the density
profile will be affected. These defects will locally modify the density profiles,
but not necessarily in the same way on different images.

The first noise reduction process stems from the rotational symmetry of the
trap. For a harmonic trap of known frequencies wx and wy, the density should
be constant along contours defined by w% x*> + w?y?> = C. In the following,
we will assume the trap to be isotropic without loss of generality. For a point
located r pixels away from the center of the cloud, there are 27t X r pixels sam-
pling a region of identical trapping potential. For r = 10 pixels, an azimuthal
average will then increase the signal-to noise ratio, by reducing the standard
error introduced by the shot-noise to at most ~ 5 photons. Thus, low densities
can be efficiently probed as long as they are found far enough from the center
of the cloud.

While azimuthal averaging is a good way to reduce uncorrelated noise, such
as the photon shot-noise, it is less efficient in removing inhomogeneities in the
beam profile. To this end, we implemented a noise reduction algorithm: the
Principal Component Analysis (PCA), as was done in [99]. Let us briefly outline
the principle of this method.

Consider a series of N images of S pixels each, represented by Z,(s) where
1 < s < S is the index of the pixel, and 1 < n < N is the index of the ex-
perimental realization. In a typical experiment, we change the parameters of
the experiment for each image, and characterize the resulting density distribu-
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tion. Typically, the measured density distributions all “look alike”, for example
a bell shaped distribution in our case. Even though the underlying physics
differs from one image to the other, we can still use their similarity to remove
unwanted contributions to the signal. We start by removing the mean value of
each pixel:

0L, (s) = Zu(s) — (Zu(s)), (2.17)

01, is the deviation of image n from the common mean value. This mean value
does not have a physical meaning, since it stems from the average over different
configuration: its role is purely mathematical. We then build the correlation
matrix defined by

N
Cro = — Y 6T, (r)0Ta(s) 2.18)

, N n=1
with (r,s) € {1..S}. This matrix contains the variance associated with indi-
vidual pixels on its diagonal, and the covariance associated with two different
pixels elsewhere. For a shot-noise dominated image, all the pixels are uncorre-
lated, and the matrix C is diagonal. Contrarily, consider a series of images of
an atomic distribution. In this case, the density on the i-th pixel is strongly cor-
related to the density of its neighbours. Therefore, the correlation matrix will
have non-zero off-diagonal elements. It can then be diagonalized to yield its

eigenvalues and eigenvectors

Since C is a real symmetric matrix, its eigenvectors constitute a new basis for
the images. In this basis, we have

S
6Zu(s) = ) anpVip(s). (2.20)
p=1

Up to this point, there is no loss of information: we simply chose to represent
each image on a basis of uncorrelated vectors rather than on the single-pixel
basis. Furthermore, the eigenvalue ¢, is linked to the decomposition of the
images on this new basis by

1Y,
=N Y. an (2.21)
n=1

Consequently, the coefficients a,,, can only take a significant value for a large
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Figure 2.9.: Typical density profile from a cut in the two-dimensional image (black full
line), after azimuthal average over the cloud (dashed red line) and after
PCA on the series of profiles (dotted blue line)

eigenvalue 0. A small 0, indicates that the corresponding eigenvector is ir-
relevant to describe the data. We can then limit the sum in Eq. 2.20 to the s
eigenvectors corresponding to the highest ¢;,. This operation does not change
the overall appearance of the image, but removes contributions which are un-
correlated from one image to the other. Provided sy < S, this represents a gain
of v/S/s¢ in signal-to-noise ratio. Here, the more similar are the images, the less
eigenvectors are required to describe them. In practice, the choice of sy depends
on the variety of the images. Therefore, the truncated sum must be compared to
the initial image to ensure a minimal loss of information. Typically, we choose
so = 10, to compare with § = 22801. In Fig. 2.9, we demonstrate the effective-
ness of this method on a single image by comparing raw data, extracted from
a cut in the cloud, with an azimuthally averaged density profile, and the same
density profile processed by the method described above.
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3. The equation of state of the two-dimensional
Bose gas

During the presentation of the two—dimensional Bose gas in Ch. 1, we stressed
out its property of scale invariance. An experimental test of this feature relies on
the measurement of the equation of state (EoS) for a wide range of temperatures
and atom numbers, in order to show evidence for this property.

A first measurement of the EoS of the 2D Bose gas performed in our group
relies on the determination of the temperature T and chemical potential y in
the center of the trap [69], and is presented in the first half of this chapter. From
these measurements and using the local density approximation (LDA), it is pos-
sible to reconstruct the phase-space density (PSD) at any point in the trap, or the
pressure at the center of the trap. Furthermore, these quantities allow us to di-
rectly access the entropy per particle. We are also able disentangle the various
contributions (kinetic, potential, interaction) to the energy of the trapped gas
using a time-of-flight method, from which we infer the reduction of density
fluctuations in a non fully coherent cloud. The EoS can be measured in a dif-
ferent manner, inspired by a recent work in the group of M. Zwierlein for the
unitary Fermi gas [36]. This method can be easily transposed to the 2D Bose
gas, and allows for another determination of the EoS. It is presented along with
the resulting EoS in the second half of this chapter, and is shown to be in good
agreement with the first measurement.

3.1. Exploring the thermodynamics of a two-dimensional
Bose gas, Phys. Rev. Lett. 107, 130401 (2011)

The following section was initially published in [69], and is reproduced without mod-
ifications

Physical properties of homogeneous matter at thermal equilibrium are char-
acterized by an equation of state (EoS), i.e. a relationship between some relevant
state variables. For a fluid of particles, possible EoS’s consist in expressions of
pressure, density or entropy as functions of temperature T and chemical po-
tential y. In the ideal case the EoS is known in any dimension for a Bose or
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3. The equation of state of the two-dimensional Bose gas

Fermi gas. In the presence of interactions, one has to resort to approximations
or numerical calculations, and a comparison with experiments is crucial to test
their validity. Trapped atomic gases at thermal equilibrium provide a powerful
tool for this purpose [100]. Within local density approximation (LDA), intensive
state variables take at a point r in the trap the same value as in a homogenous
system with the same temperature and the shifted chemical potential u — V(r),
where V(r) is the confining potential.

The case of an interacting two-dimensional (2D) Bose fluid is particularly in-
teresting in this context. Firstly, at non-zero temperature the Mermin-Wagner
theorem precludes Bose-Einstein condensation [57, 58]. Therefore the EoS is ex-
pected to be continuous at any point, in spite of the existence of a superfluid,
infinite-order phase transition, which is of the Berezinskii-Kosterlitz-Thouless
(BKT) type [60, 61]. Secondly the EoS exhibits an approximate scale invariance
[79] in the regime of relatively weak atomic interactions which is of interest here.
It originates from the fact that the interaction strength is an energy-independent
dimensionless coefficient § (< 1), and thus provides no energy, nor length scale,
in contrast with the 1D or 3D cases. This implies in particular that dimension-
less thermodynamic variables such as the phase space density D or the entropy
per particle § are functions of the ratio y/kgT only, with § as a parameter.

Recent experiments with trapped 2D Bose gases have demonstrated the exis-
tence of a BKT-type transition. One line of investigation exploited matter-wave
interference to monitor the appearance of an extended coherence in the sample
[39, 63], and another approach used a time-of-flight (ToF) technique to measure
the momentum distribution of the gas [64]. The steady-state scale invariance
was verified in [65]. In this paper we present a detailed experimental inves-
tigation of several thermodynamic properties of a 2D Bose gas. We describe
measurements of the EoS for the pressure from a count of the total number
of trapped atoms, for a wide range of thermodynamic parameters. From the
same set of data we use the central spatial density to access the EoS for phase
space density. Combining these two EoS with the scale invariance we obtain
the EoS for the entropy per particle. We show that this quantity rapidly de-
creases around the superfluid transition and then approaches zero in the highly
degenerate regime. We also present an original method to extract from a ToF
the various contributions (kinetic, potential, interaction) to the total energy of
the trapped gas. This method is applicable to any low-dimensional fluid. Here
it shows that density fluctuations of our 2D Bose gas are essentially suppressed
even when its thermal, non coherent fraction is significant.
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3.1. Exploring the thermodynamics of a two-dimensional Bose gas

3.1.1. Experimental preparation of 2D samples

Our 2D Bose gases are prepared along the lines detailed in [84]. We start with
a 3D Bose-Einstein condensate of Rb atoms confined in a magnetic trap in
their F = mr = 2 internal ground state with an adjustable temperature. We
slice a horizontal sheet of atoms with an off-resonant, blue-detuned laser beam
with an intensity node in the plane z = 0. It provides a strong confinement
along the z axis with oscillation frequency w, /27t = 2.0 (2) kHz. The interac-
tion strength is § = v/87ta/{,; = 0.109 (5), where a is the 3D scattering length
and ¢, = /h/mw,. The energy hw, is similar to or larger than the thermal
energy kg1 and the interaction energy per particle. Our gas is thus in the so-
called quasi-2D regime [76], where most of the atoms occupy the ground state
of the vibrational motion along z, making it thermodynamically 2D, but where
collisions still keep their 3D character since 4 = 5.3nm < ¢, = 240nm. The
magnetic trap provides a quasi-isotropic confinement in the xy plane with fre-
quency w /27t = 20.6 (1) Hz .

After an equilibration time of 3 seconds in the combined magnetic+laser trap,
we measure the in situ density distribution of the gas by performing absorp-
tion imaging with a probe beam propagating along z. The conventional pro-
cedure where one uses a weak probe beam with an intensity I well below the
saturation intensity s, is problematic in this context [84]. Indeed for the rele-
vant range of temperatures (40-150 nK), the atomic thermal wavelength At =
(27th? /mkgT)'/? is comparable to the optical wavelength used for probing, Aopt
= 780 nm. Consequently in the highly degenerate region of the gas (D =
nA2 > 1), the average distance between neighboring atoms n~1/2 is much
smaller than Aqpt and the absorption of a weak probe is strongly perturbed by
collective effects. To circumvent this problem we probe the gas with a short
pulse (duration ~ 2 us) of an intense probe beam (typically I/Isa: = 40 to 100)
[98]. The interaction of any given atom with light is then nearly independent of
its neighbors.

High-intensity imaging, which was also used in [65], provides a faithful mea-
surement of the atomic distribution in the central region of the trap, where the
density is large. However the quality of the images suffers from a large photon
shot noise, which spoils the detection of the low-density regions of the cloud
(Fig. 3.1a). In order to probe reliably these regions on which we base our de-
termination of T and y, we complement the high-intensity imaging procedure

1. The residual anisotropy of the trap is |wy — wy|/w < 6% where w = (wxwy)l/ 2, it plays
no significant role in the subsequent analyses. Our procedure to handle slight deviations with
respect to harmonicity is described 3.2.2.
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Figure 3.1.: Absorption imaging of quasi-2D clouds of Rb atoms. (a) Image obtained
with a short pulse (~ 2us) of an intense probe beam (I/Issx = 40) . (b)
Image obtained with a longer pulse (50 us) of a weak probe beam (I/ Isat =
0.5). The processing of images (a) and (b) is detailed in the 2.2. (c) and (d)
Radial density profiles for image (a) (hollow circles o) and image (b) (filled
circles e) in linear (c) and logarithmic (d) scales. The solid line combines
the predictions of the HFMF theory, of [79] in the intermediate regime and
of the Thomas—Fermi approximation u = #2¢n/m in the central region
(T =133nK, p/kg = 47 nK).

by the conventional low-intensity one (Fig. 3.1b). In practice for each set of pa-
rameters, we perform one run of the experiment with high-intensity imaging,
and one with low-intensity imaging immediately after. The reproductibility is
checked by acquiring several pairs of images for a given set of experimental
parameters.

The procedure for image processing is detailed in the Auxiliary Material. In
short, for each pair of images it provides the temperature T, the chemical poten-
tial at center y and the density n(r) at any pixel of the image. We assume that
the atoms in the excited states of the z motion are well described by the Hartree—
Fock mean-field (HFMF) theory [64, 90, 101, 102]. We thus self-consistently cal-
culate the populations of these states, and subtract them from n(r) in order to
obtain the density distribution ny(r) in the ground state. The validity of this
procedure was checked by analyzing the results of a quantum Monte Carlo cal-
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3.1. Exploring the thermodynamics of a two-dimensional Bose gas

culation for parameters similar to ours [103].
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Figure 3.2.: Equations of state for (a) the reduced pressure P, (b) the phase space den-

sity D and (c) the entropy per particle S. The HFMF prediction is plotted
in black full line and extended in dotted line beyond the expected super-
fluid transition. The dashed red line is the Thomas-Fermi prediction. In
(a) the grey area indicates the region of parameter space accessible to an
ideal gas. In (b) the thick grey line indicates the prediction from [79]. For
u/ksT > 0.2, data obtained for the same control parameters (trap load-
ing time and evaporative cooling ramp) have been grouped and error bars
indicate standard deviation of the measurement. For u/kgT < 0.2, data
are displayed for individual images, thus with no error bar. The verti-
cal dash-dotted line (blue) indicates the prediction [78] for the superfluid
transition.
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3. The equation of state of the two-dimensional Bose gas

3.1.2. Thermodynamic analysis

We start our thermodynamic analysis by inferring the pressure P(u, T) of the
homogeneous gas from our measurements. Here we adapt to the 2D case the
technique presented in [100], which has been used successfully in 3D for Fermi
gases [35]. We show that P(y, T) is directly related to the atom number Ny =
[ no(r) dr in our harmonic trap. Indeed, the LDA relates no(r) to the density

of the homogenous gas ”1(12022 [t — V(7), T)%. For an isotropic harmonic potential
V(r) = mw?r?/2 the total atom number is

No = - /ﬂ (!, T dy!, 3.1)

=— n
me e hom

and using the thermodynamic relation n}(i)?g = (9P /ou)y, we find Ny = (271/ mw?)

P(u, T). Introducing the dimensionless quantity P = PA2/kgT, which we refer
to as the reduced pressure, we then obtain

B 2
P(u,T) = (kB—wT> No, (3.2)

where w is to be replaced by the geometrical mean of wy and wy for an non-
isotropic potential. Our results are summarized in Fig. 3.2a, where we plot P
deduced from Eq. (3.2) as function of y/kgT. The temperatures of the data
entering in this plot range from 40 nK to 150 nK. The fact that all data points
collapse on the same line show that P is a function of the ratio y /kgT only, as ex-
pected from the scale invariance of the system. The HFMF theory is represented
by a continuous line in the normal region and by a dotted line in the superfluid
region. The dashed line is the Thomas—Fermi prediction at zero temperature
P = n(u/kgT)?/§. The grey area is the parameter subspace accessible to an
ideal Bose gas. Interestingly, although the phase space density D can take arbi-
trarily large values, one can show in the ideal gas case that the reduced pressure
P = Liy(z) < %/6, where Li, is the dilogarithm function and z = exp(u/kgT)
(z <1 for an ideal Bose gas).

We show in Fig. 3.2b our measurements for the phase space density D, ob-
tained from the central density of each cloud. In wide gray line we plot the
prediction of [79], which is in good agreement with our results. A further con-
firmation of this agreement is shown in Fig. 3.1c, where we plot in full line the

2. The LDA holds for short range interactions when the spatial density is nearly constant
over the microscopic length scales set by At and by the healing length & = (gn) /2.
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3.1. Exploring the thermodynamics of a two-dimensional Bose gas

numerically generated profile using [79] for the fitted T and u. A measurement
of D(u/kpT, §) was also reported in [65] for a quasi-2D Cesium gas, for § rang-
ing from 0.05 to 0.26. Our results agree well with those measurements over the
covered range (D < 20 in [65] for § similar to ours).

From our measurements of P and D we also obtain the equation of state for
the entropy per particle S(p, T):

S P u

ks~ 2D kT’ (3.3)
which can be derived starting from the entropy per unitareas = (dP/dT) |, as-
suming the EoS for P to be scale invariant®. The corresponding result is shown
in Fig. 3.2c. As expected, S is large in the non-degenerate regime and rapidly
decreases around y/kgT ~ 0.17, where the superfluid transition is expected for
our value of ¢ [78]. Finally S tends to zero in the Thomas-Fermi regime. Our
data points with the largest phase-space density (u/kgT > 0.5) correspond to
S = 0.06 (1) kg only. For comparison the entropy per particle reported in [73]
for a 2D Mott insulator is ~ 0.3 kg. Note that since the BKT transition is of infi-
nite order, one does not expect any discontinuous change for P, D or S at the
superfluid transition for an infinite homogeneous fluid, although the superfluid
density jumps suddenly from 0 to 4/A% [104].

3.1.3. Measuring the interaction energy

We now turn to the last part of our study, where we illustrate how to mea-
sure the various contributions to the energy of our trapped 2D gases: poten-
tial energy E, in the external trapping potential, kinetic energy of the parti-
cles Ey, and interaction energy between atoms E;. We first point out the sim-
ple relation E, = Ey + E;j, obtained from virial theorem assuming 2D con-
tact interaction. We measure E, = [ng(r)V(r)d?r from an in situ image,
but we still need to disentangle the contributions of Ey and E; to the total en-
ergy. This can be done by abruptly switching off interactions at time ¢t = 0,
either via a Feshbach resonance or effectively by using a “one dimensional"
(1D) ToF described below. Each particle then undergoes a free harmonic mo-
tion r(t) = cos(wt) r(0) + sin(wt) v(0) /w. The potential energy after a time ¢

3. A similar method has been used for a 3D Fermi gas at unitarity, Martin Zwierlein, private
communication, February 2011.
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Figure 3.3.: (a) to (d) Side view of a cloud initially in the 2D regime and expanding
along z once the laser providing the confinement in this direction has been
switched off. (a) t = 1ms; (b) t = 2ms; (c) t = 3ms; (d) t = 4ms. (e)
Time evolution of the potential energy E,. The different lines represent a
fit to the data of a parabola (solid black line), the time evolution assuming
flattened density fluctuations (dashed red line) and the one expected for a
dilute non-condensed gas (dash-dotted green line).

following the switching off of the interactions is
Ep(t) = Ep(0) cos?(wt) + Ex(0) sin®(wt), (34)

where we used the fact that the correlation (r(0) - v(0)) is zero at thermal equi-
librium. Thus we can extract Ey(0) from the time evolution of Ep, which we
obtain from the density profiles at different times ¢.

In order to implement this procedure, we perform the 1D ToF mentioned
above by switching off abruptly the laser providing the confinement along z
while keeping the magnetic confinement in the xy plane. The gas then expands
very fast along the initially strongly confined direction z, as shown in figures
3.3a to 3.3d, and interactions between particles drop to a negligible value after
a time of a few w; !, where w; ! ~ 100 us. The subsequent evolution in the xy
plane occurs on a longer time scale given by w~! ~ 8 ms. From Eq. (3.4) and
E(0) < Ep(0), we expect the size of the gas to decrease for t < w ™!, which can
be understood in simple physical terms. The equilibrium state of the 2D gas
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3.1. Exploring the thermodynamics of a two-dimensional Bose gas

results from a balance between the trapping potential, which tends to compress
the gas, and the kinetic and interaction energies, which tend to increase its area.
When interaction energy drops to zero the equilibrium is broken and the gas
implodes in the xy plane. A similar 1D ToF technique was used recently in
Boulder with the value of t fixed at 77/2w [64]. For this particular choice the
initial momentum distribution is converted into position distribution and can
thus be measured accurately [105].

We show in figure 3.3e an example of measurement of E(t) for a gas with
No = 6.110% T = 72nK, and u/kgT = 0.59. From the contraction of the gas,
we infer Ey /E, = 0.56 (3), from which we deduce E;/E, = 0.44 (3) using virial
theorem. This configuration is thus neither completely in the very dilute regime
(E; < Ex ~ Ep) nor in the Thomas-Fermi regime (Ex < E; ~ Ep) and contains
comparable thermal and quasi-coherent fractions.

The measurement of E; is of particular interest in this case since it gives ac-
cess to the density fluctuations in the gas. Indeed, by definition E; = (#*§/2m)
[(n3(r)) d2r = (W*§/2m)F [(ng(r))? d?r [106], where we have introduced the
parameter F that characterizes the degree to which density fluctuation are re-
duced. In the limiting case of a dilute, non-condensed gas, one expects F = 2,
since (n3) = 2(np)?, while in the opposite limit of a ‘flattened” density profile
F=1. Since our measurement provides us with E;, we can infer the value of
F, from the comparison with the quantity (7%g/2m) [(ng(r))? d*r, calculated
using the in situ density profile ng. For the conditions of figure 3.3e, we find
F = 1.1(1), very close to the value 1 for flattened density fluctuations. Note
that this is obtained for a gas still far from the Thomas—Fermi limit since Ey ~ E;.
This “early” reduction of density fluctuations is an important ingredient for the
proper operation of the BKT mechanism. This presuperfluid phase, whose ex-
istence was also inferred by different methods in [63-65], constitutes a medium
that can support vortices, which pair at the superfluid threshold.

In conclusion we presented in this Letter various aspects of the thermody-
namics of a 2D Bose gas, investigating first the EoS’s for the pressure, the phase
space density and the entropy. Our results confirm the scale invariance that
was discussed theoretically in [79] and observed in [65] for D. We point out
that the entropy per particle drops notably below 0.1 kg beyond the transition
point. With such a low entropy a 2D Bose gas can constitue excellent coolants
for other quantum fluids such as a 2D Fermi gas [107]. We also presented a
method that allows one to extract the various contributions to the total energy
of the system. By applying it to a degenerate but not fully coherent 2D cloud,
we find that density fluctuation are nearly frozen, marking the presuperfluid
phase.
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3. The equation of state of the two-dimensional Bose gas

3.2. A fit-free equation of state: compressibility, density and
pressure

The measure of the EoS presented above is probably the most straightforward
one: using the LDA and the EoS for the non—-degenerate gas, one can make a
prediction for the spatial density in the wings of the cloud. This prediction can
then be fitted to the data to retrieve the chemical potential # and the temperature
T. In the rest of this chapter, this method will be referred to as the single image
analysis. However, any systematic error in the determination of the density,
particularly in the calibration of the detectivity of the imaging system, will lead
to inaccurate values of y and T, and thus will affect the measurement of the EoS.
This is further complicated by the mutual dependance of the fitting parameters
u, T and the detectivity g upon one another.

For this reason, we provide an alternate method, inspired by the measure-
ments done in Martin Zwierlein’s group. There, they present a study of the
superfluid transition in a unitary balanced Fermi gas [36], which has a scale
invariance, similarly to the 2D Bose gas. This method relies on a choice of suit-
able thermodynamics variables which remove the need to fit each image, and
provide an easy determination of the detectivity.

In the following, we consider a 2D Bose gas in a known radial trapping poten-
tial V, and with interaction strength §. The density n(V) is directly accessible by
absorption imaging. We start by introducing the new dimensionless variables,
then we describe how they can be used to reconstruct the usual EoS: phase-
space density as a function of p/kgT. We then apply this method to our data,
and present a low-noise determination of the EoS. Finally, we discuss the role
of the excited states along the third dimension.

3.2.1. Choosing the correct dimensionless variables

To characterize the homogeneous two-dimensional Bose gas, one can use sev-
eral different variables: the density 7, the temperature T, the chemical poten-
tial y, the compressibility x = 1/n29n/0u|r, the pressure P defined by n =
dP/ou|r, etc ... These quantities are linked together by the equation of state.
Owing to a dimensionality argument, any EoS must only link dimensionless
quantities together. Therefore, it is necessary to combine these variables to form
only dimensionless quantities. For example, the density n can be measured, and
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3.2. A fit-free equation of state: compressibility, density and pressure

be combined with the temperature T to form the phase space density

27th?

D
kaT

nAz =

n. (3.5)

An accurate experimental determination of the phase space density relies both
on a separate measurement of the temperature, and on a correct measurement of
the density. This in turn depends on a precise calibration of the detectivity of the
imaging process. All these measurements are done by fitting the Hartree—Fock
mean field theory to the density profile of the cloud, for each experimental im-
age. Such an approach was successfully pursued in [69], and presented above.
However, it is possible to circumvent a large part of the problem and to use as
few fits of the data as possible by choosing appropriate variables to describe the
system.

To form dimensionless quantities, we need to introduce an energy scale other
than the temperature T, since we do not wish to fit the data directly. Though
there are no other absolute energy scales readily accessible, a relative energy scale
is provided by the variation of the trapping potential dV. With this new energy
scale, we can create two dimensionless variables

72 Ony,
fm = —— =2 (3.6)
m m oV T
. =y (VHAV!
Pm = fv :2 5 (3.7)
m m

where 1y, is the measured density. We can also provide a physical interpretation
for Eqs. 3.6 and 3.7. The measured density is linked by a global multiplicative
factor B to the real density n,, = B n (see 2.2), and following the LDA, the change
in trapping potential is given by the negative change in local chemical potential,
du = —dV. We can therefore identify the compressibility x and the pressure P
in these equations:

_ n? dn n o,

Km = E@ . = ﬁan K (38)

1 ffon)dy 1 m

pmz—f ZV £ =23 P. (3.9)
B %nz B h*n?

Note that 8 is unknown at this stage: we can only access &y, and pr. Finally, in
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3. The equation of state of the two-dimensional Bose gas

order to facilitate the following discussion, we introduce

L 7% dn 1._
K= E@ - = EKm (310)
Foon(p)dp’
Pm = L2 2 = BPm. (3.11)
2
m

From these definitions, we can derive analytical expressions in two simple
limits: the ideal gas, and the zero temperature limit (Thomas-Fermi approxi-
mation).

— Ideal gas
For the ideal gas, nA2 = —In(1 — e#*/*8T) , which leads to
1 Liy (et/ksT
kid = —i— and ﬁid =27 12 ( ) 5 (312)
2711 — e~ 1/ksT (In(1 — er/ksT))
— Thomas—Fermi limit
In the Thomas—Fermi limit, y = i /m ¢ n, and we have
N 1 - g
KTE — =, and P1F = E (313)

As we saw in 1.2.3, the EoS for the density for an interacting non-degenerate
(D < 1) 2D Bose gas is given by the Hartree-Fock mean field theory. This
equation cannot be integrated analytically, but a numerical calculation of both
% and p can be carried out. Finally, an EoS for the degenerate 2D Bose gas was
calculated in [79] by Prokofev et al. and presented in 1.2.4. This EoS can be
combined with the Hartree-Fock prediction to yield ¥ and p for a degenerate
gas. All these limits are presented in Fig. 3.4.

Once the normalized pressure and compressibility have been determined, it
is possible to combine these variables to express the EoS in more familiar terms,
for example by constructing the phase-space density D and the ratioa = p/kgT.
Indeed, since the weakly interacting two-dimensional Bose gas is scale invari-
ant, for a fixed interaction strength ¢, two independent dimensionless quantities
are sufficient to express the EoS in any other dimensionless variables.

Starting from the pressure P, we can define a function P (this function was
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Figure 3.4.: Normalized pressure j (a) and normalized compressibility & (b) as a func-
tion of u/kpT, and as a function of each other (c). We show predictions
for the ideal gas (dotted black line), for the interacting gas (¢ =0.1) in the
Hartree-Fock mean field approximation (dash dotted red line), for the in-
teracting gas with the prediction from [79] (blue full line) and for the inter-
acting gas in the Thomas—Fermi limit (purple square and purple dashed
line). The black circle indicates the BKT transition. The irregularity in
the composite prediction stems from the differentiation of numerical data.
The degeneracy of the system increases with decreasing .
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3. The equation of state of the two-dimensional Bose gas

called the reduced pressure in [69]) which is linked to the pressure by
p(u,T) = B Lp (_H (3.14)
;’l/ - /\%‘ kB T 7 .
which allows us to derive expressions for the density and the compressibility

_ 9P| 1

n(, T) = !

v kgT A2

on
—_— — / 2_ —_
e /\%P and Kn- = 3

P (3.15)

Note that the first derivative of the reduced pressure is directly the phase-space
density P’ = D. Eq. 3.15 allows us to link the normalized pressure and com-
pressibility to the function P and its derivatives:

. 2P
e 1 pn
k= o—P". (3.17)

Finally, we can write a differential equation to determine the phase-space den-
sity

4 _dp da
dD  dadP’
— ol (1 2pR)
P PRionk
1 /1 3
and the phase-space density is deduced by integration:
. _ Prodp
D(py) = Dipiexp | [+ ). (319)
pi g 2P

Once the phase-space density is known, we can write a differential equation to
determine u /kgT

—izzn—41—2ﬁm (3.20)
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3.2. A fit-free equation of state: compressibility, density and pressure

which can be integrated to find

v De)

————dp. 21

5 21— 27p) (3:21)

To fully determine « and D, we take p; to be lying in the thermal regime, where

the value of D(p;) and a(p;) are known, where the Hartree—-Fock mean field
approximation is valid.

Note that this step constitutes the only reference to a theory, and must only
be used for a single value of ;. This must be contrasted with the single image
analysis, where the Hartree-Fock mean field approximation was needed to fit
each image over a wide range of pixels to determine the EoS.

A last difficulty stems from the incomplete knowledge of the imaging pro-
cess. Indeed, our imaging does not allow for a quantitative measurement of
the density and only provides an experimental determination of pm, and &m.
Therefore, we define two new functions:

Au) = ’ [(pm) dpm. (3.23)

o 277(1 — 28 mPm)

Since pm and &y, are linked to p and & by the detectivity p (see Egs. 3.6 and 3.7),
equations 3.22 and 3.23 can be rewritten

TI(u) = 12)) ((550)) (3.24)
_ La(Bu) —a(Buo)
AW) = 5= (3.25)

Therefore, the values of a and of the phase-space density can be inferred by lin-
ear transformations from the quantities IT and A. Furthermore, the coefficients
intervening in this transformation are strictly constrained by the value of the de-
tectivity f and the link between a(Bug) and D(Bug). By choosing a value of ug
such that the EoS around B ug is known, the value of B can then be determined
by performing a least-square fit of this EoS to the portion of the EoS described
by the Hartree-Fock mean field theory. Note that u plays the role of the vari-
able describing a parametric plot: though it is proportional to the normalized
pressure, its precise value is only relevant in ug. In the following, we will refer
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3. The equation of state of the two-dimensional Bose gas

to this determination of the EoS as the global method.

3.2.2. Characterizing the trapping potential

Though the method presented above does not rely on a fitting process, a pre-
cise knowledge of the trapping potential is required to integrate and differen-
tiate the data. We present in the following a determination of this trapping
potential. The following section was initially published as part of the supplemental
material of [69], and is reproduced without modifications

The confinement potential in the xy plane is essentially provided by our mag-
netic trap, but it may also be affected by some imperfections in the intensity pro-
file of the beam that freezes the z degree of freedom. These imperfections are
revealed by looking at the center of mass oscillations x¢m (t) and yem (), shown
in Fig. 3.5a,b. Whereas the oscillation along the direction of propagation of the
“freezing laser" (x) shows no deviation with respect to harmonic motion, the
oscillation along y is damped. This is likely caused by irregularities of the trans-
verse intensity profile of the freezing laser. In order to cope with these defects
we have abandoned the standard technique consisting in making angular aver-

c)
g a 430
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15 =
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g
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0 0.1 0.2 0.3 04 —10 0 10
Holdtime in s Yi

Figure 3.5.: (a) and (b) Center of mass oscillations (hollow circles o) along x (a) and y
(b). The red lines correspond to a fit with a sine (a) and a damped sine (b).
(c) Reconstructed potential along the y axis (filled circles #) and a harmonic
fit (red line).
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3.2. A fit-free equation of state: compressibility, density and pressure

age of the images to produce radial density profiles. Instead we take advantage
of the separability of the potential in the xy plane: V(x,y) = mw2x?/2 + U(y),
where U(y) accounts for the magnetic trapping potential and the irregularities
of the freezing laser. We consider cuts of the measured density profile along the
x direction, measured for various y;s withi =1, ..., 4. In practice, we consider
the g = 31 central lines of our images. We expect that two cuts corresponding
to y1 and y, coincide, provided we shift the second one by making the substitu-
tion mw?x? — mw2x? + U(y2) — U(y1). In practice we perform a least-square fit
to optimize the superposition of the various cuts, taking the numbers U (y;) as
parameters. We use a single set of U(y;) to fit a whole series of images taken at
a given temperature. The robustness of the procedure is excellent, as shown in
Fig. 3.5¢c, where we give the reconstructed potential U(y), with bars correspond-
ing to the statistical errors of the U(y;)’s for various series of images acquired
at different temperatures.

3.2.3. Measuring the equation of state with the global method

Once the trapping potential V is known, the data is processed in the following
manner:

1. Each experimental image is converted into a relation between the mea-
sured density and the potential 1, (V). In particular, the global detectivity
factor B introduced in 2.2 is not taken into account. A proper calibration
of this factor will only be done at the end of the analysis. The data can
be acquired either at low or high intensity imaging. In practice, the low
intensity images will not be used for the global method owing to the den-
sity dependent detectivity. Since the images must be differentiated after-
ward, we first increase the signal-to-noise ratio by performing the Princi-
pal Component Analysis (see 2.2.3) over a series of similar images (at least
50 images) (see Fig. 3.6a).The data is then smoothed by averaging over 70
consecutive values of the potential (see Fig. 3.6b). The binning window
used in this case is typically ~ 2 nK, which is on the order of 1 ym for our
trapping potential.

2. ®m and pn, are derived for each experimental image, for each value of the
potential, as introduced in Egs. 3.6 and 3.7. The resulting data may be fur-
ther averaged, this time around fixed values of pn, to produce a uniform
sampling of the EoS (see Fig. 3.6c). At this point, each experimental image
yields a single realization of the EoS & versus 7.

3. We can choose to use all the images to produce a low noise determination
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Figure 3.6.: (a) and (b) Experimental measurement of the optical density as a func-

tion of the trapping potential V. (a) shows the raw data, and (b) shows
the same data, after averaging over 70 consecutive values of the potential.
The error bars indicate the standard error resulting from this average. (c)
shows the EoS &, as a function of fip,, derived in the manner indicated in
3.8 and 3.9. The density n,, is determined as indicated in 2.2.

of fm and &%n,. The scale invariance of the 2D Bose gas allows us to aver-
age all the images together to produce the first EoS: & versus p.The result is
presented in Fig. 3.7. We find that both known limits (Thomas—Fermi limit
and non-degenerate Bose gas) are in reasonable agreement with the exper-
imental results. However, there is a noticeable discrepancy between the
numerical prediction and the data around the transition point p ~ 0.25.
Note that since both the numerical prediction and the experimental data
must be differentiated to allow for a direct comparison, this discrepancy
may very well be the noise introduced by this procedure.

. We can then turn back to the quantities IT and A introduced in Eqgs. 3.22

and 3.23 to derive the EoS in terms of phase-space density. We aggregate
all the images in single set of data. For both integrals, the noise on fim,
and &y can cause the denominator of the argument to cancel. For this
reason, we systematically remove data points responsible for these diver-
gences*. Finally, when choosing the initial point of the integration, we

4. Typically, we remove points such that d
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3.2. A fit-free equation of state: compressibility, density and pressure

a) —eo— Experimental data
N --- Composite prediction
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Figure 3.7.: EoS for &y, versus pm. To allow for a comparison between the numerical
prediction and the experimental results, we use the detectivity factor § =
0.4 which was determined in [69].

select Bug = 3: this corresponds to a phase-space density of 1.45, which
is properly described by the Hartree-Fock mean-field theory. For lower
values of B uy, the Hartree-Fock mean field theory will not be valid, while
higher experimental values of B 1 have a significantly higher noise level.
The resulting EoS is presented in Fig. 3.8. In particular, we find the opti-
mal value for the detectivity p = 0.46, in good agreement with the deter-
mination which was presented in [69], where we found 8 = 0.4.

3.2.4. Thermometry on single images
Once the EoS of the two-dimensional Bose gas has been determined using

the global method presented above and in Fig. 3.8, it can be used to determine
the chemical potential 4 and temperature T of individual images. Owing to the
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Figure 3.8.: D versus u/kgT (red points) and composite prediction from [79] (blue
line). The detectivity is adjusted by a least-square fit of the data to the
Hartree-Fock mean field theory, and is set at f = 0.46.

scale invariance, the atomic density must take the form

_ mkgT _ (u—V(r)
n(r) = Py D ( T ) . (3.26)

For a given image, it is therefore possible to determine u and T. This in turn
allows for an experimental test of the scale invariance. When properly rescaled,
all curves must collapse on top of each other. In Fig. 3.9a, we show a few result-
ing curves, for data covering a wide range of temperatures (40 nK < T < 200
nK). Furthermore, this provides another way to establish the EoS, albeit linked
to the global method, by averaging over several experimental images. Since this
new determination combines the global method to establish an EoS and the anal-
ysis of individual images, we will refer to it in the following as the hybrid method.
The resulting EoS is shown in Fig. 3.9b, along with the measurement with the
global method. This new measurement is in very good agreement with the global
method, except in the critical region.
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Figure 3.9.: (a) Typical density profiles, rescaled using Eq. 3.26, for a wide range of fit-
ted temperatures. (b) The average over all the rescaled profiles is shown in
blue crosses, where the size of the cross indicates the statistical error result-
ing from this average. The red line shows the EoS previously determined
following the global method presented in 3.2.1.

3.2.5. Excited levels in the transverse direction

In the preceding analysis, we implicitly assumed that the quasi-2D regime
was a correct description of our system. However, the harmonic oscillator
level spacing along the tightly confining direction is i1 w, = kg x 87 nK. Conse-
quently, for most of the data, a fraction of the atoms occupies the excited states.
In particular, this introduces a new energy scale, which breaks the scale invari-
ance introduced earlier. In particular, this can explain the slight discrepancy
between the two determinations of the EoS presented in Fig. 3.9.

In order to study this temperature dependance, we process the data in the
following manner:

1. We measure the temperature and the chemical potential of the atomic dis-
tribution of each individual image by fixing the detectivity 8 to the value
determined above, and by fitting with the EoS measured by the global
method. Since the EoS contains excited levels in its determination, we ex-
pect that the measured temperature will also be affected. Note that the
population of the excited states is only 10 % of the total population: we
therefore expect a similarly small shift of the temperature.

2. We use the method described in Appendix A to calculate the contribution
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3. The equation of state of the two-dimensional Bose gas

of the excited states to the total density, and subtract them to obtain an
estimate of the population of the ground state.

3. Since we now have a better estimate of the population of the ground state
for each image, we can generate a new EoS with the global method. We can
also determine a new value of the detectivity by fitting the low phase-
space density of the EoS to the mean—field theory.

4. In principle, we can iterate to obtain an even more accurate determination
of the temperature for each image. However, this does not lead to an
improved measurement.

Thus, we are able to self-consistently generate the EoS for the ground state, and
compare it to the numerical prediction from [79]. For our set of data, we mea-
sure in this way the detectivity p = 0.43. On average, the fitted temperatures
increase by ~ 5% between the start of the process and the final determination,
while the ratio 1/ kgT decreases by ~ 5%. Once the density of the ground state
has been determined, we can provide a new measurement of the EoS. We show
in Fig. 3.10 two different derivations of the EoS: either by the global method or
by the hybrid method.
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Figure 3.10.: D versus y/kgT for the ground state of the confining potential. The red
points show the integration over several images following the method
outlined in 3.2.1. The black points indicate the average over density pro-
files rescaled following Eq. 3.26. The blue line shows the composite pre-
diction from [79] (blue line). The detectivity is fixed at § = 0.43.
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4. Superfluidity in two dimensions

In the previous chapters, the measurements performed on the bidimensional
Bose gas only revealed indirect evidence for the BKT transition. Both the equa-
tion of state (see chapter 3) and the fluctuations of the 2D Bose gas (see chapter
5) are consistent with the existence of the BKT transition, but do not constitute
as such a direct measurement. To complement these measurements, we present
in this chapter a direct characterization of the superfluid behaviour of the two-
dimensional Bose gas. To this end, we study the response of an atomic sample to
a moving perturbation, formed by a micron-sized laser beam. In the past, this
method was successfully used in tri-dimensional Bose [108] and Fermi gases

[109],

In this chapter, we start by giving a short overview of the possible dissipa-
tion mechanisms in a superfluid. In particular, we provide a simple physical
argument linking the critical velocity to the superfluid density, both in two and
three dimensions. We then present an experimental determination of the critical
velocity in a two-dimensional Bose gas.

4.1. A brief theoretical overview

A superfluid is defined as a medium which can sustain a persistent flow of
matter. If the velocity of such a flow is non-zero, then the system is not in
its lowest energy configuration, and must be regarded as metastable. For a
given velocity of the flow, the system has a finite probability per unit time to
decay to a state of smaller superflow. It will therefore be considered a superfluid
if this decay is too long to be observed. The lifetime of this metastable state
depends on the height of the barrier separating it from the rest state, which in
turn depends itself on the velocity of the superflow. As was shown first by
Langer and Fisher [110], the primary mechanism responsible for the decay of
the superflow is the formation of either vorticity rings in three dimensions, or
of vortex dipoles in two dimensions.
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=< >

Figure 4.1.: Flow of a superfluid in a cylindrical geometry, with twisted boundary con-
ditions: the density must be identical in z = 0 and z = D, while the phase
must vary by multiples of 27t between these two points. The vorticity ring
of radius d is indicated in red.

4.1.1. The three-dimensional case

In the following, we consider a three-dimensional superfluid in a cylindrical
geometry, of radius R and length D, depicted in Fig. 4.1. The flow is directed
along the revolution axis of the cylinder, which we take to be the z axis. The ex-
istence of a superflow is dictated by the twisted boundary conditions: the phase
must jump by n 27t between z = 0 and z = D, with n an integer. Consequently,
the wavefunction must take the form

: 2
r) = ek where k= nerv
D

e. 4.1)

In this case, the velocity of the superflow with respect to the walls of the con-
tainer is given by vs = fik/m, which is quantized. In the following discussion,
the walls of the cylinder are at rest, and constitute the frame of reference. We
then consider a ring of vorticity centered on the z axis. Around this line, the
phase winds by £ 27t. Note that this object has the required topological prop-
erties to change the velocity: the particles crossing the inside of the ring have a
difference of one quantum of velocity with respect to the other particles. Con-
sequently, if such a vortex ring expands and reaches the edges of the cylinder,
the total velocity of the fluid is changed by one quantum. In order to give an
estimate of the barrier height separating two flow states, we can calculate the
total energy of a system containing a single ring of vorticity. It is given by

E= / &r 2 (v, + v,)? 4.2)
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4.1. A brief theoretical overview

where p3p is the superfluid density, vs is the velocity of the superflow and v, is
the velocity field associated with the vortex ring. Eq. 4.2 can be further decom-
posed in three contributions:

Ey = / d3r‘03—Dv2 (4.3)
v—/d3 p3D 2 (4.4)
Ef = / &r p; 20,0, (4.5)

Here, Ey is the initial energy of the superflow, which will not play a role in esti-
mating the height of the barrier. E; is the cost in kinetic energy associated with
the formation of a vortex ring, and Ey is the gain in kinetic energy stemming
from the reduction of the flow going through the ring. An analytical calculation
of these integrals is given in [110, 111] by

n? d
E, = an%dln (5> (4.6)
Ef = —27° p3p hid® v; 4.7)

where ¢ = 1/,/asp3p is the healing length, with a, the scattering length, and 4
is the radius of the vorticity ring (see Fig. 4.1). These two contributions to the
energy lead to a maximum at

h
dmax — m_’US (48)

within logarithmic accuracy, and the maximum is given by

2 3
7T pg,Dh
Emax = ? 2 s . (4-9)

Once we have determined the energy associated with the creation of the vortex
ring (see Fig. 4.2), we can then imagine two possible decay mechanisms for the
superflow.

— For sufficiently low barrier heights, the thermal fluctuations can be suffi-
cient to cause vortex rings to grow, and dissipate on the walls on the con-
tainer. In this case, the phase jump between z = 0 and z = D decreases
by 27t and the superflow decays. The stability of the flow can be written as
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4. Superfluidity in two dimensions

Yk T < Emax Where 7 is a numerical factor, or alternatively as

h3
US<U :L

<= T (4.10)

Experimentally, this situation is similar to the establishment of a persistent
current, for example in a toroidal trap as was done in [112-114]. In this
case, the flow can only persist on macroscopic time scales for velocities
lower than v.. In particular, note that the value of the critical velocity is
directly proportional to the superfluid density.

— There also exists an extrinsic dissipation mechanism. Let us suppose that
an external defect at rest of characteristic size dext is placed in the flow.
Any vortex rings nucleated in the superfluid must then have a size deyt as
well. If a vorticity ring generated in this manner is larger than dmay, it will
expand and subsequently reduce the flow (see Fig. 4.2). Equivalently, the
flow will decay if its velocity is larger than

Ve = M/ (mdext). (4.11)

This process is illustrated in Fig. 4.2. Note that in the limit of a point-
like defect, the characteristic size dext must then be replaced by the healing
length ¢. In that case, the result coincides with the well known Landau cri-
terion: for a point-like defect, the critical velocity is also the sound velocity
c = h/(m¢). However, the dissipation in this case is usually associated to
the generation of phonons, rather than vortex rings. Experimentally, this
configuration can be realized by a creating a stationary defect in a flow, as
was done in [115]. Furthermore, in the limit of large defects, the critical
velocity does not depend on the superfluid density.

4.1.2. The two—dimensional case

In two dimensions, the vortex ring is replaced by a pair of vortices of opposite
signs. The energy associated with such a pair is similar to the three-dimensional
case presented in Egs. 4.6 and 4.7. In two dimensions, we have

oo (d
E, = 2an; In (5) (4.12)

Ef =2mpophidos (4.13)
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Figure 4.2.: Total energy of a vorticity ring. Rings smaller than dmax vanish, and the
flow remains the same. However, rings larger than dmax expand, and van-
ish on the walls of the container, causing dissipation.

Again here, the total energy is maximal for

h

—. 4.14
—— (4.14)

dmax —

However, the change in the dimension of space strongly modifies the height of
the barrier, which is now given by

2
Eo = 2720207 1 ((x f ) (4.15)
m mos ¢

with « a numerical constant. As was the case in three dimensions, there can be
two different mechanisms causing a superflow to decay.

— An external defect can cause the vortex pairs to grow. The critical velocity
associated with such an effect is the same as in the 3D case (see Eq. 4.11).
This mechanism corresponds to the experiment presented in the next sec-
tion.

— The situation changes when considering the thermal activation of a vor-
tex pair. This phenomenon still occurs in two dimensions, but the critical
velocity is now given by

Ve = aC exp —'ymszT . (4.16)
h* pap
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4. Superfluidity in two dimensions

In particular, contrarily to the 3D case, the critical velocity is not propor-
tional to the superfluid density.

4.2. Superfluid character of a two-dimensional Bose gas,
Nature Physics 8, 645-648 (2012)

The following section was initially published in [70], and is reproduced without mod-
ifications

‘Flow without friction” is a hallmark of superfluidity [116]. It corresponds to
a metastable state in which the fluid has a non-zero relative velocity v with re-
spect to an external body such as the wall of the container or an impurity. This
metastable state is separated from the equilibrium state of the system (v = 0)
by a large energy barrier, so that the flow can persist for a macroscopic time.
The height of the barrier decreases as v increases, and eventually passes below
a threshold (proportional to the thermal energy) for a critical velocity v.. The
microscopic mechanism limiting the barrier height depends on the nature of
the defect and is associated to the creation of phonons and/or vortices [116].
While the quantitative comparison between experiments and theory is compli-
cated for liquid *He, cold atomic gases in the weakly interacting regime are
well suited for precise tests of many-body physics. In particular, superfluidity
was observed in 3D atomic gases by stirring a laser beam or an optical lattice
through bosonic [108, 117-120] or fermionic [109] fluids and by observing the
resulting heating or excitations. Here we transpose this search for dissipation-
less motion to a disc-shaped, non homogeneous 2D Bose gas. We use a small
obstacle to locally perturb the system. The obstacle moves at constant velocity
on a circle centered on the cloud, allowing us to probe the gas at a fixed density.
We repeat the experiment for various atom numbers, temperatures and stirring
radii and identify a critical point for superfluid behavior.

4.2.1. Experimental scheme

Our experiments are performed with 2D Bose gases of N = 35000 to 95000
87Rb atoms confined in a cylindrically symmetric harmonic potential V (r) +
W(z) (see [69]). The trap frequencies are w,/2m = 25.0(5)Hz in the hori-
zontal plane and w. /27t = 1.4 (1) kHz in the vertical direction. We use gases
with temperature T and central chemical potential y in the range 65-120nK and
kg x (35-60) nK, respectively. The interaction energy per particle is given by
U = (H*g/m)n, where n is the 2D spatial density (typically 100 atoms/ym?
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4.2. Superfluid character of a two-dimensional Bose gas

in the center), m the atomic mass and § the dimensionless interaction strength.
Here § = v/8ma/l, = 0.093, where 2 = 5.3nm is the 3D scattering length and
I, = vh/mw,. The energy hw, (kg x 70nK) is comparable to kgT and Ujnt
(~ kp x 40nK at the trap center). Thanks to Bose statistics, which limits to
typically 10% the fractional atomic density in the axially excited states at the
obstacle position, our gas is well described by the quasi-2D fluid model (see
Supplemental Material of [69]).

We stir the cloud with a laser beam which creates a repulsive potential with
height Vi, ~ kg x 80nK. This is at least twice the local chemical potential
Hioc(r) = u — V(r). The beam has a Gaussian profile with a waist of wy =
2.0 (5) ym, which is larger than the local healing length ¢ = 1/./3n (= 0.3 um
at the trap center), but small compared to the size of the cloud (full width at
half maximum ~ 25 ym) (see Fig.4.3). We stir for typically tgir = 0.2 at con-
stant velocity v in a circle of radius r centered on the cloud. The intensity of the
stirring beam is ramped on and off in ~ 5ms without any significant additional
heating. Once the stirring beam is switched off, we let the cloud relax for 0.1s
and measure the temperature T;.

For each configuration (N, T, r), we repeat this experiment for various v from
0 to 2mm/s and a fixed stirring time fg;,. We find two different regimes for the
response and we show an example of each in Fig. 4.4. In Fig. 4.4a, there is a clear
threshold behavior with no discernable dissipation below a critical velocity. In
contrast, in Fig. 4.4b, the temperature increases without a threshold. We identify
these behaviors as the superfluid and normal response, respectively. To model
these data we choose for a given configuration the fit function

T¢(v) = Tgo + & - tstir - max[(v? — v2),0], (4.17)

which describes the heating of a 2D superfluid in the presence of a moving
point-like defect [121]. In equation (4.17) the three fit parameters are the tem-
perature at zero velocity Tg, the heating coefficient x, and the critical velocity
Uc. In the normal state, the fit finds v. ~ 0 and the according quadratic heating
stems from the linear scaling of the drag force. In the absence of the stirring
beam, there is no significant heating and we measure the temperature T;. The
presence of the stirring beam at zero velocity leads to a ‘background heating’
Tt o — T; ~ 10nK, which we attribute to photon scattering. In the following, we
use the mean temperature T = (T; + Tt()/2 to characterize the cloud.
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Figure 4.3.: Stirring a 2D Bose gas. a, A trapped 2D gas of ¥ Rb atoms is perturbed
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by a focussed laser beam, which moves at constant velocity on a circle
centred on the cloud. The stirring beam has a frequency larger than the
8Rb resonance frequency (‘blue detuning’ of ~ 2nm) and thus creates
a repulsive potential which causes a dip in the density profile. b, The
stirring beam is focussed onto the 2D cloud via a microscope objective of
numerical aperture 0.45, which is also used for imaging. We overlap the
two beam paths with a polarizing beam splitter cube (PBS). The position of
the stirring beam is controlled by a two-axis piezo-driven mirror. ¢, in situ
false-color image of the 2D cloud in the presence of the laser beam (average
over six images). From the dip in the density we deduce the waist of the
laser beam as wy = 2.0(5) ym. In this image, the intensity of the beam is
chosen three times higher than in the stirring experiment to make the hole
well visible even in the center of the cloud. We use similar images, but
with the stirring beam switched off, to determine the temperature T and
the chemical potential y# from a fit of the Hartree-Fock prediction to the
wings of the cloud [69].
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4.2.2. Observation of a critical velocity

In Fig. 4.5, we summarize our data obtained for different configurations (N, T,
r). We show in Fig. 4.5a the fitted critical velocities versus the single parameter
t1oc(7) /kgT. The relevance of this parameter results from (i) the local character
of the excitation, so that the response of the fluid to the moving perturbation is
expected to be similar to that of a uniform gas with the same temperature and
the chemical potential y,,, (ii) the scale invariance of the weakly-interacting 2D
Bose gas, whose thermodynamical properties do not depend separately on u
and T, but only on the ratio p/kgT (see [65, 69, 79]). In particular, this ratio is
univocally related to the phase space density, and thus characterizes the degree
of degeneracy of the cloud.

Quite remarkably, the ensemble of our data for v. when plotted as a function
of ujoc/kpT shows a threshold between values compatible with zero and clearly
non-zero values. This threshold is located at po./kgT = 0.24, somewhat above
the prediction (y/kgT), = 0.15 for the superfluid phase transition in a uniform
system [79] with § = 0.093. If we assume that the stirrer must stand entirely in
the superfluid core in order to yield a non-zero critical velocity, then the devia-
tion can be attributed to the non-zero width of the stirring beam. The range of
o/ kT corresponding to the extent of this beam is indicated by the horizontal
error bars in Fig.4.5a. Note that the finite size of our trapped atomic clouds
might also shift the BKT transition, but the effect is expected to be small (a few
percent) and in the opposite direction [79].

We limit the presented stirring radii to » > 10 ym such that the stirring fre-
quencies w = v/r for the relevant velocities v ~ v, are well below w;,. Indeed,
smaller radii correspond to a larger centripetal acceleration. This could lead to
additional heating via the phonon analog of synchrotron radiation, as observed
in the formally similar context of capillary waves generated by a rotating object
[122].

4.2.3. Comparison with theory

For a homogeneous system, the value of the critical velocity is limited by
two dissipation mechanisms, the excitation of phonons or vortices. For a point-
like obstacle [121], phonon excitation dominates and v, is equal to the speed
of sound, given in the zero temperature limit by ¢s = 71\/$n/m (= 1.6 mm/s
for n = 50atoms/um?) (this situation is described by the celebrated Landau
criterion [116]). When the obstacle size wy increases and becomes comparable
to ¢, dissipation via the nucleation of vortex-antivortex pairs (vortex rings
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ter stirring the laser beam at varying velocities. a, In the superfluid regime,
we observe a critical velocity (here v. = 0.87(9) mm/s), below which there
is no dissipation. b, In the normal regime, the heating is quadratic in the
velocity. The fitted heating coefficients are x = 18(3)nK - s/mm? and
k = 26(3)nK - s/mm? in a and b, respectively. The experimental parame-
ters are (N, T, u, r)=(87000, 89 nK, kg x 59nK, 14.4 'm) and (38000, 67 nK,
kg x 39nK, 16.6 “m) for a and b, respectively, yielding p,./kgT = 0.36 and
tioc/kgT = 0.04. The data points are the average of typically ten shots.
The y error bars show the standard deviation. The x error bar denotes
the spread of velocities along the size of the stirring beam (1/+/e radius).
The solid line is a fit to the data according to equation (4.17). The stirring
time is 0.2s for all data points. Note that the three low-lying data points
in a correspond to the completion of an odd number of half turns. For
these data points, where we see a downshift of the temperature by ap-
proximately 1.5nK, we also observe a displacement of the center of mass
of the cloud by a few ym. ¢ and d, Calculated radial density distribu-
tion for the clouds in a and b, respectively. The dashed blue curve shows
the superfluid density, the solid red curve shows the normal density. The
stirring beam potential is indicated by the grey shaded area (in arbitrary
units). The densities are calculated via the local density approximation
from the prediction for an infinite uniform system [79]. The jump of the
superfluid density from zero to a universal value of 4/ }%B (where Agp is
the thermal de Broglie wavelength) is a prominent feature of the BKT tran-
sition. The normal density makes a corresponding jump to keep the total
density continuous.
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in 3D) becomes significant [110, 123, 124]. The corresponding v, is then notably
reduced with respect to ¢s. In the limit of very large obstacles (wg > ¢), an
analytical analysis of the superfluid flow stability yields v. ~ h/mwy < cs
(see [125, 126]). With an obstacle size wy 2 &, our experimental situation is
intermediate between these two asymptotic regimes. For a non-homogeneous
system like ours with the stirring obstacle close to the border of the expected
superfluid regime, one can also excite surface modes [95, 127], which constitute

an additional dissipation mechanism.

Our measured critical velocities are in the range 0.5-1.0mm/s, i.e., v./cs =
0.3 — 0.6. By contrast, previous experiments in 3D clouds found lower fractions
vc/cs ~ 0.1 (see [117]). The difference may be due to the larger size of the obsta-
cles that were used, and to the average along the axis of the stirring beam of the
density distribution in the 3D gas [128]. The dominant dissipation mechanism
could be revealed by e.g. directly observing the created vortex pairs as in [120]
or interferometrically detecting the Cerenkov-like wave pattern for v > ¢s as in
experiments with a non-equilibrium 2D superfluid of exciton-polariton quasi-
particles [115].

Fig.4.5b shows the fitted heating coefficients x for the normal (red circles)
and superfluid data (blue circles). In the normal region, we expect the heating
to scale linearly with the normal density np, (see [118]). Using the prediction
of [79] for 7in, (averaged over the size of the stirring beam) we fit x = ay - fino
and obtain a; ~ 3-107°nK - s. This value is in reasonable agreement with the
prediction of a model [118] of a single particle with a thermal velocity distri-
bution of mean o = /7tkgT/2m colliding with a moving hard wall of width
L = wp yielding a; = 16mL3/7tNkg ~ 6-107°nK -s (for N = 65000 and
T = 90 nK). In particular our data nicely reproduce the maximum of i, around
the expected superfluid transition point. In the superfluid case and v > v., we
empirically fit a quadratic scaling of the heating with density x = a, - n%; and
find a = 81077 nK - s - “m?. In principle, one could develop a more refined
model to describe the superfluid region, by taking into account the coexistence
of the normal and superfluid states via the sum of two heating terms. However,
within the accuracy of our data, we did not find any evidence for the need of
such a more refined description.

We have presented a direct proof of the superfluid character of a trapped 2D
Bose gas. An interesting extension of our work would be the study of superflu-
idity from the complementary point of view of persistent currents, by adapting
to 2D the pioneering experiments performed in 3D toroidal traps [112-114].
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Figure 4.5.: Superfluid behaviour across the BKT transition. a, The critical velocities
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v obtained from the curves as in Fig.(4.4) plotted versus the single param-
eter pyoc/kpT, which is the relevant quantity due to the scale invariance of
the weakly-interacting 2D Bose gas. Our data show a threshold between
critical velocities compatible with zero and clearly non-zero critical veloc-
ities. It is located at pyo./kpT =~ 0.24 (dashed line), somewhat above the
prediction (poc/kgT),. = 0.15 for the BKT transition in an infinite uniform
system [79] (the grey shaded area indicates the normal state by this pre-
diction). The x error bars indicate the region of yjo./kgT that is traced by
the stirring beam due to its size (using the 1/+/e width of the beam) and
due to the ‘background heating’. The y error bar is the fitting error. The
inset to a shows the critical velocity plotted versus the stirring radius r.
Due to the different atom numbers and temperatures of the clouds, we
can find superfluid or normal behaviour for the same radius. b, The heat-
ing coefficient « as a function of yj,./kgT for the normal data (red circles)
and the superfluid data (blue circles). The red solid line shows a fit of
linear in the normal density, as expected from a single-particle model. The
blue dashed line shows an empirical fit quadratic in the superfluid den-
sity. The calculation for the densities assumes T = 90nK and the densities
are averaged over the size of the stirring beam.



4.3. Closing remarks

4.3. Closing remarks

In the previous section, we measured the typical response of a superfluid to
an external perturbation, and found critical velocities between 0.5 and 1 mm/s.
Let us briefly compare these numbers to the qualitative predictions presented
in the first section.

Our samples have a typical density of 60 atoms /um 2 at the location of the
defect, and the speed of sound is then ¢; ~ 1.7 mm/s. As we pointed out in the
tirst section, the speed of sound is equal to the critical velocity only for point-
like defects. Here, the healing length ¢ is only 0.4 ym, while the defect size is
~ 2 um. Therefore, the speed of sound over estimates the critical velocity.

In order to provide a better prediction, we can use the critical velocity pre-
sented for a large obstacle in Eq. 4.11. In this case, for our defect size, the
predicted critical velocity is v, = 0.35 mm/s, below our experimental measure-
ments.

The measured critical velocities therefore lie between the predictions made
for two different dissipation mechanisms. It is likely that, for this intermediate
size of defect (wy = 5(), the dissipation cannot be simply described by either
vortex pairs or phonons, and is rather a mix of the two processes.
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5. Fluctuations of the two-dimensional Bose gas

In Ch. 1, we introduced the BKT transition and presented the associated mi-
croscopic mechanism, which we briefly recall here. As the degeneracy of the
system increases, the density fluctuations are gradually suppressed. The BKT
transition leads to a superfluid phase, in which vortices can only exist in the
form of bound pairs. Above the transition temperature, they proliferate and
destroy the superfluid character of the system.

Although bound vortices are a key ingredient for the BKT transition, the pair-
ing mechanism has not yet been observed directly in cold atoms experiments.
The existence of single vortices was inferred from the dislocations of the inter-
ference pattern between two 2D gases in [39], and later in a similar experiment
in [129]. Though these observations constituted clear evidence of the existence
of vortices in 2D, they were not sufficient to extract information about their spa-
tial distribution.

In this chapter, we present a detailed analysis of the density fluctuations of
a two-dimensional Bose gas, both in-situ and after a short time of flight (ToF).
Indeed, a short ToF allows for the study of in-situ phase fluctuations, by convert-
ing them into density fluctuations. We begin by introducing the experimental
procedure used to reveal the phase fluctuations. We then present a quantitative
analysis of the observed fluctuations, by studying two different features. First,
we focus on the local extrema of the density. We then shift our attention to the
two-body density correlations, and link their spatial dependance to the in-situ
phase fluctuations.

5.1. Experimental procedure

We prepare a two-dimensional Bose gas along the lines presented in Ch. 2,
and let it equilibrate for 3 s in the combined magnetic trap and light sheet. In the
following, we will denote by w the angular frequency of the harmonic confine-
ment in the xy plane, and by w, the angular frequency of the two-dimensional
confinement along z. In our experiment, w = 27t x 20 Hz, and w, = 27 x 2
kHz.

At t = 0, we switch off the light sheet which realizes the tight confinement,
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10 pm 10 pm
— —

Figure 5.1.: Density distribution in-situ (a) and after a 3 ms ToF (b). Both images are
acquired with high intensity imaging.

and monitor the subsequent ToF evolution. Owing the the zero-point energy
hw, /2 of the motion, the cloud rapidly expands in the vertical direction (it dou-
bles in ~ 0.1 ms). Thus, the interaction energy between atoms is divided by ~2
in w; !, and can essentially be neglected. We let the cloud expand for t,p = 3
ms, which is long compared to w, 1 but much shorter than the characteristic
time of motion in the xy plane. Thus the envelope of the density distribution
only undergoes minor changes (see 3.1.3 for a detailed description) which will
be neglected. After this evolution, we take an image of the atomic distribution,
using high intensity imaging.

We show in Fig. 5.1a an image of the atomic distribution in-situ, and in Fig.
5.1b after t1o,p = 3 ms. When comparing these two images, it is apparent that the
density distribution is much less regular on short length scales after ToF than
in-situ. Thus, the inhomogeneities in the density distribution shown in Fig. 5.1b
can be attributed to in-situ phase fluctuations, which were converted to density
fluctuations by the effective switching off of the interactions (see [130] for a sim-
ilar experiment in a one-dimensional Bose gas). This in good agreement with
a crucial aspect of the physics of the two-dimensional Bose gas: for degener-
ate samples, the density fluctuations are essentially frozen, and the dynamics is
dominated by phase fluctuations (see 1.2.3). !

1. This is also in agreement with the measurement of the interaction energy presented in
3.1.3, which confirmed the strong suppression of the density fluctuations.
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5.2. Local density fluctuations

From Fig. 5.1, a clear feature of the density distribution after ToF is the pres-
ence of pronounced density minima inside the cloud. As we presented in 1.2.4,
the BKT mechanism rests on the existence of vortices, either in the form of
bound pairs in the superfluid phase, or free in the normal phase. For the images
presented in Fig. 5.1, a fit of the in-situ density distribution yields T = 70 nK
and the phase-space density in the center of the trap is D(r = 0) = 37. Using
the Local Density Approximation (LDA), we find that the phase-space density
reaches its critical value? D, at rgxr = 19 pm. We show in Fig. 5.2 the varia-
tion of the local phase-space density with the radius, and define three regions.
The strongly degenerate region starts for D > 2D, and the thermal regions
ends at D < D./2. They are separated by the critical region, in which the BKT
transition takes place.

Thus, a significant part of the cloud is either strongly degenerate, or in the
critical region. It therefore seems natural to try and link the density holes ap-
pearing in our images to the vortices associated with the BKT transition. To this

2. We recall D, = In(380/3) (see Eq. 1.27)
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Figure 5.2.: Local phase-space density, determined with the LDA and the equation of

state from 1.2.4. We indicate the six radii of interest in this chapter, as well
as the location of the BKT transition.
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5. Fluctuations of the two-dimensional Bose gas

end, we present a quantitative study of the density minima appearing in the
cloud. This shall be done both for in-situ images, and for ToF images to allow
for a direct comparison.

5.2.1. Characterizing the density minima

The atomic density is measured by high intensity absorption imaging (see
2.2). As we are interested in local density minima, it is natural to consider the
number of atoms N(i,j) detected on a single pixel of coordinates (i,j). It is
given by

N = 2 (o (100 | el =i) gy

,BUO IWO(l/]) Lsat

where I (resp. Lyo) is the intensity with atoms (resp. without atoms), s, is the
saturation intensity of the atomic transition, oy is the absorption cross-section,
A is the area of the pixel and « and B are numerical factors. For high imaging
intensities, the logarithmic contribution can be neglected, and the detected atom
number can be written

Pwo(i,j) - Pwi(irj)
4

where Py;i(i,j) (resp. Puwo(i,j)) is the number of photo-electrons detected on
the CCD camera at pixel (i,j) with (resp. without) atoms, and ( is the mean
number of photo-electrons resulting from absorption by a single atom during
the imaging time. It is related to the parameters of Eq. 5.1 by

N(i, j) =

(5.2)

_ Boolsatt T

o =BT (5.3)

¢ 2

where T is the imaging time, w; is the angular frequency of the atomic transi-
tion, and I' is its natural linewidth. For our parameters § = 0.43 and T = 2.5 ys,
¢ ~ 20 photo-electrons/atom.

With this simple expression for N(i, j), we now propose the following method
to search for minima in the density. We first calculate the average (Pwo)n and
(Pwi)m of a series of M images PV(V'Z) and PV(VT) (m varies between 1 and M, with
typically M ~ 10). In principle, the minima of N (i, j)(") are directly given by
the maxima of PV(VT) / (Pwi)m. However, in order to reduce the effect of the fluc-
tuations of the imaging beam profile between each image, we choose to work
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instead with the relative fluctuations

(m) (m)
£ = Pwo Pui (5.4)
<P wo>m <P wi> m
With this definition, the local minima of the density distribution are also the
minima of f. A simple interpretation of f can be given in the limit of small
atom numbers. For N atoms on a given pixel, we have

f(m Pévnci)) Pv(vrg) - gN(m)
~ (Pwo)m  (Pwo)m — {(N)m
N — (N),

~ §—<Pw0>m (5.5)

if the fluctuations of the photon number can be neglected. Thus, f is directly
proportional to the number of “missing atoms” on a pixel.

In the following, we define a minimum in the simplest possible manner: a
pixel (i,) is a minimum if (") (i, ) is inferior to its 8 nearest neighbors. Thus,
we determine for each image the position of its local minima (i, j,) and define
their depth by

0= |f(m)(iprfp)|- (5.6)

We then split each image in annuli centered on the cloud. The k-th annulus is
delimited by its inner (resp. outer) radius Ryx_1 (resp. Ry), with Ry =245k
pum (these radii are shown in Fig. 5.2). For a given minimum, we record which
annulus it belongs to.

Finally, we define the cumulative distribution of minima F(4, k), which gives
the fraction of pixels with depth inferior to §, belonging to the k-th annulus. We
show this function in Fig. 5.3, both for an in-situ image and for a 3 ms ToF.

Note that the photonic shot-noise can induce spurious local minima, which
will also be detected by this method, and must be distinguished from the min-
ima of interest. To discriminate between the two effects, we can repeat the
search for minima on the quantity

(m) 1(m)
P, P,

1(m) WO i WO 5.7
f <PW0>m <P€V0>m ( )

where the image P‘/A%” ) is recorded right after P‘S\,Tg) , also in the absence of atoms.

In that way, the minima of /(") characterize the photonic shot-noise. The cor-
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Figure 5.3.: Distribution function for the minima, for in-situ images (a) and after a 3
ms ToF (b). We show here two annuli: the minima for 0 < r < 10 yum
are shown in black circles, while the minima for 17 ym < r < 22 ym
are shown in red squares. The distribution F’ for a shot-noise dominated
distribution is shown in blue line. The error bars on F show the statistical
error resulting from the averaging over different images. The statistical
error in the determination of F’ is negligible compared to the error in the
determination of F, and is not shown here.

responding distributions F ""are built in the same manner as above, and are also
shown in Fig. 5.3.

5.2.2. Quantifying the distribution of minima

From Fig. 5.3, we note that F’(0, k) > F(0, k) both for in-situ images and after
ToF: there are more minima of infinitesimal depth with photon shot-noise than
in the presence of atoms. This is attributed to the spatial extension of the density
minima: a depletion of the atomic density extends over several pixels, prevent-
ing the appearance of another local minimum in the vicinity. By contrast, the
photon shot-noise is uncorrelated between different pixels, and each individual
pixel has a probability equal to 1/9 of being a local minimum of infinitesimal
depth.

Furthermore, the typical depth of a minimum appears to be much larger in
the presence of atoms than with only photonic shot noise. To further character-
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ize this, we calculate the mean depth

F(6,k)dé [ F'(8,k)do

5(k) :/(P(é,k) —P'(5,k)) 5d6 = fF(O,k) B (5.8)
where 9F(5,k) /a6
P(5,k) = —% (5.9)

is the normalized probability distribution that a minimum in annulus k has a
depth ¢ (and similarly for P’, F'). Note that we removed the contribution from
the shot-noise induced minima in Eq. 5.8, in order to properly quantify the
density fluctuations.

Note as well that the depth J directly quantifies the number of missing atoms.
Thus, we cannot readily compare two minima occurring in regions of different
average intensity. For this reason, we define the contrast of a minimum by

3(k)
C(k) oK) (5.10)

where dp;(k) is the maximal depth of a minimum in annulus k (no atoms de-
tected). It is given by

Pia (r) PR (1)
omlre) = < Puibr~ (Puoln >k,m
_ (Pwo)im = (Pui)im
<PWi>k,m

where the average rests both on the different images, and over the pixels con-
tained in the k-th annulus. With this definition, C = 1 if all the detected minima
correspond to a full depletion of the atomic density. We show in Fig. 5.4 the
evolution of C(k), both in-situ and after a ToF against Ry.

(5.11)

5.2.3. Qualitative interpretation

From Fig. 5.4, it appears that the contrast of the density minima is approx-
imately multiplied by two between the in-situ images and the ToF data. This
supports the presence of phase fluctuations in the in-situ atomic distribution,
which are converted to density fluctuations by our short ToF.

Moreover, for the ToF data, the contrast of the minima increases with the
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Figure 5.4.: Average contrast of the minima (see Eq. 5.10 for the definition), for an
in-situ distribution (black circles), and for a 3 ms ToF (red squares).

radius, and is maximal around rpxt, where the phase-space density is on the
order of D, and where the BKT transition is expected to take place.

However, these two observations are not sufficient to identify these minima
with the microscopic vortices predicted by the BKT mechanism. Indeed, we can
perform a similar analysis to the one presented above, but this time on the den-
sity maxima. We present in Fig. 5.5 the resulting distribution function, along
with the previous results for the minima. The two distributions are identical,
within the limits of the statistical error. Consequently, it is difficult to conclude
with certainty that vortices are responsible for the observed density fluctua-
tions. Indeed, at least in a simple picture, a vortex forms a sharp density hole in
an otherwise flat density profile. In this limit, the symmetry between minima
and maxima of the density distribution is explicitly broken, contrarily to what
we observe.

Furthermore, a previous theoretical work by Giorgetti and colleagues [131]
showed that the free vortices are completely absent in the strongly degenerate
region (see Fig. 5.2): we only expect ~ 1 vortex for ~ 10° atoms. In a subsequent
analysis, Foster and colleagues [132] calculated that the pairs of vortices are also
strongly suppressed in this region: we expect at most ~ 1 pair for 10* atoms.

Consequently, it seems unlikely that all the fluctuations observed for D > 2D,
are due to vortices, and it is more probable that they are dominated by phonons.
Note that a recent experiment by Choi and colleagues [133] revealed the exis-
tence of loosely bound vortex pairs in the critical region, through similar tech-
niques. In this experiment, the suppression of phononic excitations followed
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Figure 5.5.: Distribution function for the minima and maxima, for in-situ images (a)
and (c) and after a 3 ms ToF (b) and (d). We show here two annuli: data
for 0 < r < 10 ym is shown in (a) and (b), and data for 17 ym < r < 12
pum is shown in (c) and (d). The minima are shown in black circles, and the
maxima are shown in red squares.

by a ToF similar to ours revealed vortices in the critical region, while no vor-
tices were observed in the degenerate part of the cloud. Thus, vortices also
contribute to the minima shown in Fig. 5.3, but their contribution is probably
hidden in the stronger phonon signal.

5.3. Density correlation function

In addition to the study of the distribution of local features such as the ex-
trema of the density, one can also construct the two-body correlation function
(n(r,t)n(r+7r,t))
(n(r, 1)) (n(r +1', 1))

where (-) denotes an ensemble average, which will be defined later.

gP (e r+1, 1) = (5.12)
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Figure 5.6.: Two-body correlation function g(z) (rq,7',t), for in-situ images (a,c,e) and
a 3 ms ToF (b,d,f). The correlation function is calculated for varying r 4.
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5.3.1. Correlation in real space

Experimentally, we can only access the density of inhomogeneous systems.
Note that this renders irrelevant the study of density correlations for distances
' comparable to the size of the cloud. In practice, we will limit ourselves to
r" < 10 um. However, we can exploit the rotational symmetry of our samples
to realize the averaging process. Thus, in our system, the two-body correlation
function takes the form

(N(r, ) N(x+ 1, 1)1 a
N(t, 1)) eca(N(x +1',t)) e

where A denotes an annulus of typical radius r 4. Note that the photonic shot-
noise contributes to the value g(z) (rq,7 = 0,t), and should be accounted for.
However, our signal-to-noise ratio was not sufficient to remove efficiently its
contribution. For this reason, the value of g(z) (rq,7 = 0,t) will not be taken
into account.

P (a1 1) = < (5.13)

We show this correlation function in Fig. 5.6, both for in-situ and ToF images,
for a few selected radii 7 4. The higher values taken by the ¢(?) function after ToF
confirm the conversion of initial phase fluctuations into density fluctuations.

5.3.2. Correlations in reciprocal space

The oscillatory behavior of ¢(?)(r 4,7/, t) around 1 after ToF can be further
studied by constructing its Fourier transform. We take advantage of the rota-
tional symmetry of g(2)(r4,7',t), and subtract its asymptotic value to focus on
the behavior of the Fourier transform at non-zero wavevectors. Thus, we define

§(2)(rA, g,t) = 27'(/dr’ ' Jo(r' q) <g(2)(rA, ', t) — 1) , (5.14)

which is shown in Fig. 5.7, both for in-situ images, and after a ToF.

As expected, the in-situ correlation function §?)(r 4,4, t = 0) does not show
any marked structure. However, after a 3 ms ToF, a peak appears at 4 ~ 1 ym ™!
for all radii 4. Two additional peaks are also present at ¢ = 0.6 yum ~! and
g = 1.5 yum ~!, for radii larger than 17 ym. The origin of these peaks can be
qualitatively explained by the following argument, which is fully detailed in
Annex B.

Let us consider a uniform system with average density ng, subject to small
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5. Fluctuations of the two-dimensional Bose gas
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Figure 5.7.: Fourier transform of the correlation function presented in Fig. 5.6, calcu-
lated following Eq. 5.14, both for in-situ images (a), and for a 3 ms ToF

(b).
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5.3. Density correlation function

density and phase fluctuations. The wavefuntion is therefore given by

P(r,t=0) = y/ng (1+e(r)e®V =~ /ng (1 + e(z_r) + igo(r)) (5.15)
where € (resp. @) characterizes the density (resp. phase) fluctuations. We let
this distribution evolve freely during a time ¢, as in our experiment. The Fourier
transform p(q, t) of the spatial density after this evolution is then given by

~ ; hit hit

Blq,t) = / d2reld Ty (r + 2—71‘11,0) Plr— 2—7;1,0). (5.16)
In particular, the expectation value of p(q, t) is directly related to the Fourier
transform of the ¢() function. By injecting 5.15 into the expression for p(q, t),
we arrive at

o(at) _ 2 htg*\ - . (tg?\

R (27t)~6(q) + cos T €(q) + 2sin T ?(q). (5.17)
where € and ¢ are the Fourier transforms of € and ¢. Finally, the Fourier trans-
form of the ¢(?) function can simply be expressed as

(g, t) = [ Prevrg@ir)
~lpla, )P
htg®\ ) htg®\ o\~ i
~cos? (51) @2 +asind (1) (9(0))* +28(0) 7l sin (257
(5.18)

where the é function was omitted. Thus, we expect the following behavior:

1. For a system dominated by phase fluctuations, the only contribution comes
from the term in ¢?, and we expect a peak at fitq? / (2m) = 71/2, which cor-
responds to g = 1.2 um ~!. This constitutes the exact analog of the Talbot
effect, where light passing through a phase grating exhibits an intensity
modulation after some propagation length (see Appendix B for a more
detailed discussion).

2. For a system which also contains density fluctuations, the terms in € - ¢
and €2 contribute as well, and we expect additional peaks at hitg*>/m =
7/2 and htq?/(2m) = 7r, which respectively correspond to g = 0.85 ym ™!

and g = 1.7 yum 1.
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5. Fluctuations of the two-dimensional Bose gas

Thus, we qualitatively identify the peak at g ~ 1 um ~! as resulting purely

from phase fluctuations. Indeed, it appears for each radius, and begins to decay
in the thermal region (see Fig. 5.2). By contrast, the peaks at g = 0.6 ym ~!
and g = 1.5 um ~! only appear in the critical and thermal regions, and they
result from the contribution of the density fluctuations. The absence of these
peaks for D > 16 is in good agreement with the expected behavior of the two-
dimensional Bose gas: the density fluctuations are strongly suppressed for D >
1.

A more refined analysis of the strongly degenerate region was provided by
Imambekov and colleagues [71], which accounted for the algebraic decay of the
one-body correlation function. In particular, the first maximum of §(2) (ra,q,t)
is predicted at 71g*t/m ~ 2 , which is in good agreement with our observation
g=1um 1op qzt/ m = 2.2. Thus, we confirm that the observed maximum is
a direct manifestation of the phononic excitations in the two-dimensional Bose
gas.

Furthermore, the same analysis showed that the height of this peak was di-
rectly related to 17, where 7 is the exponent characterizing the decay of the one-

F(n,y)

Local phase-space density D(r 4)

Figure 5.8.: (a) Figure taken from [71]. The function F is directly proportional to
§?q,t), for an argument y = % g% /m. Curves from top to bottom cor-
respond to 7 = 0.25 (solid, the Berezinskii-Kosterlitz-Thouless point),
n = 0.15 (dashed), and # = 0.10 (dotted). (b) Two-body correlation func-
tion ¢ (r4, 7 = 1um,t = 3ms), plotted against the local phase-space
density, for in-situ images (black circles) and for a 3 ms ToF (red squares).

88



5.4. Concluding remarks

body correlation function in the strongly degenerate regime:

& U

¢ (r) (;) for r>¢ (5.19)
where ¢ is the healing length. For a phase-space density D > D., we have
n = 1/D. We show in Fig. 5.8a the prediction from [71], for varying values of 7.
Though our signal-to-noise was not sufficient for a quantitative study, we feel
that a similar information can be obtained from the value of g(z) (rq, v =0,t =
3ms). Indeed, this quantity is directly the integral of 3(?)(q,t) over all wave-
vectors, and it should therefore increase with increasing 7, or equivalently with
decreasing D.

As we pointed out earlier, the photonic shot-noise introduces an uncertainty
on the value of ¢ at the origin: consequently, we choose instead to look at
g?(r4,r = 1um,t = 3ms). We show this quantity in Fig. 5.8b, plotted against
the local phase space density D(r4). As expected, this quantity increases for
decreasing phase-space density, and reaches its maximum for D ~ D..

5.4. Concluding remarks

While this analysis remains a work in progress, we can make a few comments

about our observations.

— The study of the extrema of density, both in-situ and after a ToF indicate that
the dynamics of the degenerate two-dimensional Bose gas is dominated by
phase fluctuations, while density fluctuations are essentially frozen. Fur-
thermore, our analysis suggests that phonons are the primary fluctuation
mechanism, at least in the degenerate region.

— This observation is consistent with the measurement of the Fourier trans-
form of the two-body correlation function. Indeed, after a ToF, a peak ap-
pears in this distribution at a wavevector ¢ = 1 ym ~!. This is in quanti-
tative agreement with the analysis of [71], which was performed for a two-
dimensional system dominated by phonons. Furthermore, the appearance
of additional peaks for less degenerate regionsatg = 0.6 yum ~land g = 1.5
pum ~1is in qualitative agreement with an increase of density fluctuations
in the thermal and critical regions.
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6. The uniform two-dimensional Bose gas

In the introduction of the two-dimensional Bose gas in Ch. 1, we presented
two phase transitions leading to a superfluid state. The BKT transition is interac-
tion—driven, and the transition temperature is always non-zero. By contrast, the
BEC transition is statistics—driven, and owing to the Mermin-Wagner theorem, it
can only take place at zero temperature in the thermodynamic limit. However,
in two dimensions, this limit is reached for exponentially large systems, which
can never be achieved for realistic experimental parameters. For this reason,
a statistics—driven transition to a BEC can exist at non-zero temperatures in a
trapped system.

In an interacting system of finite size, these two mechanisms coexist, leading
in principle to two separate phase transitions. Moreover, the comparison be-
tween the two transitions is further complicated in a spatially varying trapping
potential. Indeed, the criterion for the existence of a BEC is global, and rests on
the total atom number: it is associated with the saturation of the excited sates.
In contrast, the presence of the BKT transition is dictated by a local condition:
the phase-space density at the potential minima must be higher than the critical
phase-space density (see Eq. 1.27).

The two transitions can be more readily compared by studying a system in a
box-like potential. Let us consider such a system at a fixed temperature. As the
particle number is increased, one of the two transitions will happen first: either
the phase-space density reaches the critical value for the BKT transition, or the
excited states become saturated, leading to the formation of a BEC. The order
in which these transition take place depends on the size of the box and on the
temperature: in an infinite system, the BKT transition will occur first (since BEC
does not occur at a finite temperature), while in a sufficiently small system, the
excited levels will saturate first. Thus, for a suitable box size, one can hope to
observe separately the effect of both transitions, depending on the temperature
of the system.

While a true box-like potential is experimentally difficult to create, one can
generate similar geometries. By holographic techniques, it is feasible to create
potentials which follow a power law V(r) = Ar®. For « sufficiently large, such
a potential resembles the desired box-like potential. Alternately, one can project
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6. The uniform two-dimensional Bose gas

the shadow of a mask on the atoms, and create a suitable intensity distribu-
tion. In the following, we will refer to such a potential as a stadium potential,
irrespective of the method used to create it.

In the first section of this chapter, we present a theoretical study of both the
box-like potential, and of the stadium potential. In the second section, we com-
pare different experimental methods used to produce this stadium potential.

6.1. A brief theoretical analysis

In the absence of interactions, the transition occurs when the population of
the excited states saturates, as was presented in 1.1.2. The critical atom number
can either be calculated numerically if the energy spectrum is known, or it can
be calculated analytically with a semi-classical approach. In 1.1.2, we presented
a numerical calculation of the critical atom number inside a box of surface S,
either square or circular. We found that the critical atom number was well de-

scribed by
S S
Npgc = — In (77—) (6.1)
MM

where 77 =~ 0.38, with the precise value depending on the shape of the box. This
equation can be rewritten in terms of the phase—space density

S

T

This value can readily be compared to the critical phase-space density for the
BKT transition Dggt. We recall that Dt = In(380/g), where § is the interac-
tion parameter in two dimensions (see 1.2.4). Note that the critical phase—space
density Dpgc has been derived for the ideal gas: it is not sufficient to determine
the location of the BEC transition in an interacting system. Though we cannot
directly compare the two transitions in an interacting system with such an argu-
ment, this still leads to an interesting observation. For a given temperature, the
system undergoes a phase transition at a lower atom number in the presence of
interactions than in an ideal gas. In that sense, the interactions can facilitate the
transition to a superfluid state in two dimensions.

However, since a true box-like potential cannot be created experimentally, we
instead turn to the study of a realistic trap.
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6.1. A brief theoretical analysis

6.1.1. Ideal gas in a stadium potential

In this section, we take the trapping potential to be V(r) = A r*, with « a pos-
itive integer. This trapping potential allows us to define a characteristic length
scale Iy and a characteristic energy scale Ey by

1 o
12 B2 o\ " 2\
Ep=Alf = —— Iy = dEy=| — Atz
0 0 2ml3 = 0 <2mA> and £o 2m "
(6.3)

This length scale (resp. energy scale) corresponds within a numerical factor of
order unity to the typical size (resp. energy) of the ground state.

In the case of a harmonic potential, A = mw?/2, Iy = vhi/mw and Ey =
hw/2. For w = 2 x 20 Hz, Iy = 2.39 ym and Ey = 470 pK. Experimentally, we
are able to create a trap with « = 12 and A = 100 nK/ (10 um)'2. In this case,
we have [y = 5.56 ym and Ey = 87 pK.

Semi-classical approach We begin by calculating the density of states p(E)
in such a potential. In two dimensions, it is given by

[ rdrpdp _p_z_ I3 “
o= e 2

1 (E\+#
() o

This result is in agreement with two known cases: for a harmonic trap, the
density of states varies linearly with the energy, and for a box-like potential
(¢ — o0), the density of states becomes constant. In the following, we will
use the reduced temperature T = kgT/Ey, and we calculate the critical atom
number

2

E o

N dE/E, (E—O)
BECse ™ 4 Jo exp(E/kgT) —1

_1 o0 dees
4Jc exp(e/T)—1
1 o+ 2 o+ 2\ ~at2 aT 2

- T T« — « .
f () r(R)TE G e
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6. The uniform two-dimensional Bose gas

where  is the Riemann zeta function, I' is the gamma function, and C is a con-
stant on the order of unity. For the harmonic trap and C = 0, we recover the
well known result Ngpc s = (712/6) (kgT/hw)?. Note that the non-zero lower
bound C in the integral is necessary for & > 2. Indeed, though the integral
always converges, its argument diverges in 0, and can lead to non-physical re-
sults.

Furthermore, reaching the thermodynamic limit in two dimensions typically
require large system sizes. For this reason, we complement the semi-classical
approach with a numerical determination of the energy spectrum.

Numerical resolution The energy spectrum is given by the solutions of the
Schrodinger equation
72
———Ap+Ar?y =E :
SAp+Ar?y = Ey (6.6)

which we rewrite in dimensionless variables

—Af+p?f=¢f (6.7)

where p =1/1y, f(p,0) = lp(r,0),and € = E/Ey. A numerical resolution of Eq.
6.7 yields the eigenvalues €;, which in turn can be used to compute the maximal
occupation of the excited states. In Fig. 6.1a, we show the density of states ob-
tained by the numerical resolution, and compare it to the semi—classical result.
In Fig. 6.1b, we show the critical atom number derived from the semi-classical
approximation for C = 0 and C = 1.97 and from the numerical resolution.

In particular, it is clearly necessary to set C # 0 in Eq. 6.5 to reach a quanti-
tative agreement between the numerical and the semi—classical determinations.
Consequently, the semi—classical limit in the true sense (C = 0) only provides
an imperfect description of the r!2 potential in two dimensions.

6.1.2. Interacting gas in a stadium potential

Once the critical number of atoms needed to reach BEC in an ideal gas is
known, we turn to the system in the presence of interactions. There, we can use
the EoS of the 2D Bose gas to calculate the number of atoms needed to reach
the BKT transition in the center of the trap. In [78, 79], the authors provide a
numerical value for the critical phase—space density D, = In(380/¢) and for the
critical chemical potential y, = kgT §/mIn(13.2/§) at the BKT transition. We
can then use the Local Density Approximation (LDA) and the scale invariance
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Figure 6.1.: (a) Energy spectrum of the r'? potential. The semi—classical approach is
shown in blue line, and the numerical resolution of the Schrodinger equa-
tion is shown in dashed red line. The inset of Fig. (a) specifically shows the
first levels of the numerical resolution. (b) Atom number needed to reach
the BEC transition, determined semi—classically (see Eq. 6.5) with C = 0
(black dotted line) and C = 1.97 (blue line). The numerical determination

is indicated in red points.

of the two-dimensional Bose gas to calculate required the number of atoms for
a temperature T and a central chemical potential .
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Here, we use the prediction from [79] for D to compute the integral. We find
this atom number to be proportional to the critical atom number needed to reach
the BEC transition. The proportionality coefficient does not depend on the tem-

?%/D(

He
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Figure 6.2.: Comparison of the atom number needed to reach either the BKT transition
for § = 0.1 (black line) or the BEC transition in a harmonic trap (a), or in
a power trap with « = 12 (b). For the BEC transition, the semi—classical
approach is shown in dashed blue line, while the numerical resolution of
the Schrodinger equation for & = 12 is shown in full red line. (c) Evolution
of the ratio Npxr(§)/Npec,sc as a function of w for different interaction
strengths.
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6.1. A brief theoretical analysis

perature, but only on the geometry (through the exponent &) and the interaction
strength ¢. For the harmonic trap (see Fig. 6.2a), this number is always higher
than the critical atom number needed to reach a BEC in an ideal gas. In the case
of & = 12, (see Fig. 6.2b), this number lies between the semi-classical result and
the numerical estimation. Note that the EoS used to calculate this result already
contains a semi-classical approximation: it is therefore probably more consis-
tent to compare NpkT to Nppcsc. In this case, for a fixed temperature, the BKT
transition is reached first when increasing the atom number.

We can also use Eq. 6.8 to find the minimal value of a for which Npxr <
Npecse- In Fig. 6.2c, we plot the ratio Nt/ Npgc s for different interaction
strengths and different confinement. Oddly enough, the behaviour almost does
not depend on the interaction strength: for « < 10, the BEC transition occurs
with less atoms than the BKT transition, while this property is reversed a« > 10.
In particular, as was demonstrated in [74], the BEC transition always occurs first
in a harmonic trap, irrespective of the interaction strength.

6.1.3. Experimental perspectives

One must be careful when interpreting the previous results. Indeed, these
arguments are not sufficient to determine when the BEC transition takes place in
an interacting system in general. Note though that the BKT transition is always
accompanied by the appearance of a significant condensed fraction in a finite
system of realistic size (see [74]). Indeed, the algebraic decay of the g(!) function
in the superfluid phase leads is sufficiently slow for this function to retain a
significant value over the whole system. With this in mind, let us propose an
experiment to reveal the nature of the phase transition.

Let us suppose that we are able to consistently prepare a two-dimensional
Bose gas with interaction strength g, either in a harmonic trapping potential,
or in a stadium potential. The system is prepared such that its temperature is
tixed, and that it contains just NpxT atoms. As we pointed out earlier, the BKT
transition necessarily implies the presence of a finite condensed fraction, which
can be revealed by measuring the momentum distribution of the system. Let us
now suppose that we are able to remove the interactions, or at least significantly
reduce them. ! In the harmonic trap, Npkr is always larger than Npgc s.. Conse-
quently, even without interactions, the system should still contain a significant
condensed fraction. By contrast, Npkr is always smaller than Npgc ¢ in a sta-

1. The interaction strength in two dimensions can either be reduced by the use of a Feshbach
resonance, or by reducing the confinement strength along the tightly confined direction (see Eq.
1.19).
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6. The uniform two-dimensional Bose gas

dium trap. Thus, in the absence of interactions, the condensed fraction should
vanish. In this gedanken experiment, the condensed fraction in the harmonic
trap is statistics-induced, at least for weak interactions or in the ideal case, while
the condensed fraction in the stadium trap is interactions-induced.

6.2. Experimental realization: preliminary studies

Our aim is to create a stadium potential, which must fulfill two conditions: the
potential must be flat in a large region of space, and the “walls” of the potential
must be steep enough. We already saw in section 2.1.3 that steep potentials
can be created through the use of phase plates. Alternately, we can consider a
simpler solution: we directly form the image of a mask on the atoms, to create
a region with a flat potential. We will present both methods in the following,
along with preliminary observations.

6.2.1. Creating a box-like potential: a holographic method

Principle A suitable trapping potential can be created similarly to the Hermite—
Gauss beam, by a holographic method (see 2.1.3). To this end, we shine a col-
limated beam on a phase plate, then focus it on the atoms with a lens (see Fig.
6.3b). The phase plate imprints a six-fold vortex: a phase winding from 0 to
127t when completing a revolution around the plate (see Fig. 6.3a). Thus, in the

a) Imprinted phase b)
rinted Plane of
distribution Ph lat £ the atoms
. ase plate
\2;-[ )_' i
VL - f

Figure 6.3.: (a) Six-fold phase vortex imprinted by the phase plate. Though only four
phase sectors per 27t step are represented, our phase plates have 16 sectors
per 27t step. (b) Experimental setup required to create a stadium with a
phase plate.

98



6.2. Experimental realization: preliminary studies
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Figure 6.4.: Intensity distribution for a phase plate with a 1271 phase winding. Here,
Iy is the intensity in the center of the beam without the phase plate.

paraxial approximation, the electric field at the location of the atoms is given by

E(p,¢) = /rdrdGEo(r 0) ' Frp cos(0-¢) (6.9)

where Ej is the electric field distribution at the location of the phase plate, k =
27t/ A with A the wavelength the laser beam, f is the focal length of the lens,
and p the polar coordinate at the location of the atoms. For a gaussian beam,
this integral can be fully evaluated. Around the origin, and at the lowest order,
it can be approximated by

6
—1 [2P e ( 0
Elp—=0,¢9) = 120 Tw <w62 (6.10)

where P is the total power, and wj, is the waist at the focus of the lens. It is
related to the waist on the phase plate by the usual relation mwow, = A f. We
show in Fig. 6.4 the intensity profile generated with such a fhase plate. The
intensity maximum is approximately Imax =~ 0.01 x 2P/ (rtw;;’). We define the
radius of the stadium rg as

I(rg) = Imax/5 =  r¢=18w). (6.11)

When such an intensity distribution is created by a blue-detuned laser, the
trapping potential inside the beam then scales as 2, which is well suited to
study the connection between BEC and BKT transition presented above.

Our experiments will be performed on atomic samples at T ~ 200 nK: the
barrier height must therefore be at least 1 1K to prevent evaporation. The trap
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6. The uniform two-dimensional Bose gas

size is chosen to optimize the transfer from the hybrid trap (see 2.1.2) to this
stadium potential. At the end of the evaporation sequence, the radius of the
cloud is ~ 10 ym, which must match the stadium size rs. Consequently, the
waist of the beam at the location of the atoms must be w(, = 5.5 um (see Fig. 6.4).
The trapping potential is given by U(r) = a I(r) where a = 6.5- 1078 uKm? /W
for the dipole trap wavelength (A = 532 nm). For a stadium of radius rg, the

barrier height is
1 DCZPS

100 7z(rs/2)?
Therefore, the laser power must be at least 60 mW to obtain Uy, > 1 uK. For

a trap depth of 1 uK, the characteristic length and energy defined in Eq. 6.3 are
respectively [y = 3.8 ym and Ey = 180 pK.

Uppax ~ (6.12)

First results The preliminary tests were carried out by imaging the inten-
sity distribution in the focus of the beams, at the location of the atoms. The
measured intensity distribution is presented in Fig. 6.5a, along with its radial
average in Fig. 6.5b. The observations are in qualitative agreement with the
predicted profile: the potential is quite flat in the center of the beam, and is
surrounded by steep edges. We can determine the steepness of the barrier by
fitting the center of the profile (r < rs) by

fae = Io+ BrP (6.13)

and we find B = 8, instead of 12 as expected. Even though the potential is not
as steep as expected, this high exponent should still be sufficient to show clear
deviations in the behaviour of the two-dimensional Bose gas, with respect to a
harmonic trap.

However, a closer inspection of the intensity distribution in the center of the
trap reveals some irregularities. Indeed, as presented in Fig. 6.6a, the intensity
in the center of the beam is not strictly zero. Instead, we reveal the presence
of six intensity minima. This can be understood if we consider the phase plate
as imprinting six individual phase vortices, instead of a single six-fold vortex.
For an ideal phase plate, the center of each of the vortices coincide, and are
equivalent to the expected six-fold vortex. However, if the center of the vortices
are offset from one another, the total phase distribution is only equivalent to a
six-fold vortex in the wings of the intensity distribution. Close to the center, the
irregularities in the intensity distribution are directly linked to this imperfection
in the phase plate.

These irregularities constitute a serious obstacle in the realization of a sta-
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Figure 6.5.: (a) Intensity distribution created by a phase plate with a 127t winding. (b)
Radial average of the intensity distribution (black line), along with a fit of
the central region with the fitting function from Eq. 6.13 (red line). The fit
is performed for r < rg (see Eq. 6.11), and the fitted power is 7.3, instead
of 12 as expected from Eq. 6.10.
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Figure 6.6.: (a) Intensity distribution created by a phase plate. The intensity has been
rescaled to reveal the features in the center of the beam. (b) Two cuts of
the intensity distribution shown in (a).

dium potential. Indeed, if we want to realize a uniform gas, the variations of
the confining potential in the center of the trap must be small compared to the
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chemical potential of the gas.

In the degenerate regime of interest to us, the chemical potential is itself
smaller than the temperature. Indeed, at the BKT transition, we have uc =
0.15kgT for § = 0.1. Due to the evaporation in this trap, the temperature itself
must be small compared to the barrier height: usually, Unax = 10kgT. By com-
bining all these constraints, we find that the potential fluctuations must satisfy

SU < 0.015 Upnax (6.14)

where U characterizes the amplitude of the fluctuations.

For the potential shown in Fig. 6.6b, the barrier height is Umax ~ 0.7, while
the standard deviation of the intensity in the center is U = 0.05, which does
not satisfy Eq. 6.14. For this reason, we present in the following section an
alternative method to produce a uniform confinement.

6.2.2. Creating a box-like potential: by forming the image of a mask

Principle One can place a circular mask in the center of a blue-detuned laser
beam, and form its image on the atoms, much in the way we generated the
cleaning beam (see section 2.1.3). In this case, both the steepness of the barrier
and the flatness of the bottom of the potential will be determined by the nu-
merical aperture of the imaging system. Let us consider the following imaging
setup (see Fig. 6.7): a single lens, of finite radius R creates the image of the

Mask f Atoms

Mask profile d
(not to scale) 1

———————

Figure 6.7.: Optical setup for the creation of a stadium potential, by projecting the im-
age of a mask on the atoms. The distances are such that the plane of the
mask and the plane of the atoms are conjugate.
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Figure 6.8.: (a) Intensity profile in the object plane (red line) and in the image plane
(black points) calculated in the paraxial approximation. The fit of a power
law, following Eq. 6.13 is shown in blue line, and the fitted exponent is
20. (b) Detailed view of the bottom of the stadium potential. The intensity
fluctuations are due to the finite size of the imaging lens.

intensity distribution

2P 52,2 . )

Ii(r) = e 25T iy > g or Li(r)=0,ifr <rs (6.15)
where w is the waist of the laser at the position of the mask, P is the available
laser power, and rg is the radius of the mask. For a fixed laser power P, the
intensity at the edge of the mask is maximal for w = \/Erg. Therefore, for a
stadium of radius rg, the trap depth is

1 «a2P

umax -

where P is the laser power, and & = 6.5- 1078 uKm?/W. In particular, a stadium
with rg = 10 ym and a trap depth of 1 uK requires 13 mW of laser power.

We aim to create a stadium of radius rs = 10 ym. Thus, the waist of the
laser beam on the atoms must be w = 14 ym. It is created by focusing a gaus-
sian beam with an achromatic doublet of focal length f = 150 mm and radius
R = 15 mm. We show in Fig. 6.8 the intensity distribution in the image plane
calculated in the paraxial approximation with such an imaging setup.
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6. The uniform two-dimensional Bose gas
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Figure 6.9.: (a) Intensity distribution realized by projecting the image of a mask of ra-
dius rpy = 50 ym, with a magnification M = 1/5. (b) Two cuts of the
image shown in (a).

From this calculation, it appears that this method is a valid way of creating a
stadium potential. We summarize here its main features.

— In the center (r < rg, with rg), the intensity profile is well described by Eq.
6.13, and the intensity varies as r?° (see Fig. 6.8a).

— The intensity fluctuations caused by the finite resolution of the imaging
system are as low as 1 % of the potential depth (see Fig. 6.8b).

— Achieving a trap depth of 1 uK requires comparatively less power than
when using a phase plate (see Egs. 6.12 and 6.16).

Preliminary results We present in Fig. 6.9a the first observations of the inten-
sity distribution, following the optical setup detailed in Fig. 6.7. The mask is a
circular spot, of radius rj; = 50 ym, created by optical lithography. Its image is
projected on the atoms with a magnification M = 1/5.

The observations are in qualitative agreement with the predicted profile: the
potential is flat in the center of the beam, and is surrounded by steep edges.
In particular, the standard deviation of the intensity in the center of the trap is
oU =~ 4.3, which is comparable to the background noise of the measuring de-
vice, while the barrier height is Umax = 160. Consequently, a stadium potential
created in this manner should allow us to perform the experiment outlined in
6.1.3.
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7. Single atom imaging scheme

As stated in the introduction, ultracold systems provide a versatile tool for the
simulation of condensed matter phenomena, and the realization of many-body
strongly correlated states. Of particular interest are the integer and the frac-
tional quantum Hall effects (FQHE), which appear in two-dimensional systems
exposed to a large transverse magnetic field, i.e. perpendicular to the plane in
which the atoms move. Reaching such states rests on the formation of Landau
levels, in which the interactions between atoms constitute the dominant energy
scale. The FQH states arise when the atom number in the system is comparable
to the number of magnetic flux quanta. For neutral atoms, such as 8’ Rb , this re-
quires the creation of an effective magnetic field. This can be achieved either by
rotating the cloud (using the equivalence of the Lorentz and the Coriolis force)
[134] or by generating artificial gauge fields with optical potentials [53, 54]. Both
approaches have been demonstrated for a bulk fluid of bosonic atoms [16, 53],
though the number of flux quanta generated in this manner remained small
compared to the total atom number.

Consequently, an alternative path can be pursued: the number of atoms in
the system can be instead tailored to match the number of flux quanta. In our
experiment, we aim to prepare systems containing as few as three atoms, and
at least three quanta of angular momentum. Even if the preparation of strongly
correlated phases in this manner seems achievable, the detection of such phases
requires a high performance imaging setup. In the case of such few-atoms sys-
tems, the most accessible and relevant observables are the two- and three-body
correlation functions. Therefore, we need to be able to detect the positions of
single atoms in order to form these correlations.

To this end, we chose to combine a deep optical lattice with an optical mo-
lasses: the lattice pins the atoms at fixed positions in space, while the molasses
cools down the atoms. The fluorescence from the molasses is subsequently de-
tected, and provides an image of the atomic distribution. This method was suc-
cessfully used in the groups of D. Weiss [135] and D. Meschede [136] and more
recently in the groups of M. Greiner [72, 137] and I. Bloch [73, 138] for lattices in
the Bose-Hubbard regime.

In the first section, we present a model of this scheme, focusing first on the
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7. Single atom imaging scheme

molasses and then on the optical lattice. In particular, we discuss the choice
of the operating parameters. In our case, the optical lattice will be used solely
for the imaging system: our main concern will therefore be its depth, rather
than the heating it induces. In the second section, we present the experimental
realization, and the preliminary results obtained with this system.

7.1. Working principles

The single-atom detection scheme consists of a deep three-dimensional lat-
tice, combined with a molasses operating on |F = 2) — |F/ = 3). Since the
molasses also weakly couples to the transition |F = 2) — |F = 2), atoms can
be depumped to the other hyperfine state |F = 1), and then remain undetected.
For this reason, the atomic cloud is illuminated by a resonant repumping beam
saturating the |[F = 1) — |F/ = 2) transition. In the rest of this section, we will
assume that this beam is always present, and that it does not affect the problem
in any other way.

7.1.1. Optical molasses

We chose to implement a /in L lin molasses: this polarization configuration
leads both to the lowest diffusion coefficient [139], and to the lowest temper-
ature for a given laser power [140]. It was also found to be less sensitive to
magnetic fields than a ct—0~ configuration. The molasses consists of three or-
thogonal pairs of counter-propagating laser beams, with orthogonal linear po-
larizations within each pair. These beams are red-detuned with respect to the
|F =2) — |F' = 3) transition, with & the detuning. The interaction between
the electric field and the atoms is characterized by (), the Rabi frequency per
running wave, and the natural linewidth of the transition is I'.

In this section, we will briefly recall some characteristics of optical molasses,
in order to provide a basis for the experimental implementation. The follow-
ing theoretical results were derived for a simpler 1D molasses acting on a |] =
1/2) = |] =3/ 2) transition, and can be found in [141]. We will as well present
a few experimental results for a 3D molasses.

Equilibrium temperature In the limit of large detunings |dpr| > T, the equi-
librium temperature is given by

2
kT = <2 (7.1)
om

106



7.1. Working principles

where C is a dimensionless constant. For a 1D molasses, the calculation from
[141] yields C = 0.125. In [140], Salomon and colleagues measured C = 0.35 in
a 3D lin L lin molasses.

Optical pumping time In a lin L lin molasses, the existence of multiple
ground-state sub-levels and of a long optical pumping time among the sub-
levels is crucial to achieve sub-Doppler cooling. The pumping time is inversely
proportional to the scattering rate

N 6%, 1

p

where N is a numerical constant characterizing the efficiency of the optical
pumping process. Note that the precise value of this constant depends on the
dimensionality, and on the choice of polarization. In a properly adjusted mo-
lasses, the pumping time is typically 7p ~ 10 us. In particular, the pumping time
sets a lower bound for the other time scales of the problem. In the following,
we give two examples of such limitations.

Capture velocity The velocity of the atoms in the molasses must be such that
the distance covered during a pumping cycle is lower than the spatial period of
the modulation of the light shift

vtp < A/4 = v<0v,= (7.3)

A
o
where A is the wavelength the atomic transition. Though Eq. 7.1 suggests low-
ering the laser power leads to arbitrarily low temperatures, this also lowers the
capture velocity. Note that the term “capture velocity” is slightly misleading: it
corresponds to the temperature range over which the friction force is linear in
velocity, and the sub-Doppler mechanisms operate. In particular, atoms going
taster than v, will still be slowed down, though less efficiently.

Effect of magnetic fields In the previous discussion, we implicitly assumed
the absence of magnetic fields. Let us relax this restriction, and consider an ex-
ternal magnetic field B. Even if it is not large enough to shift the energy levels of
the atoms significantly compared to the AC Stark shift induced by the molasses,
it will still couple its internal states together, and lead to Larmor precession. For
large enough fields, the Larmor precession will compete with the optical pump-
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7. Single atom imaging scheme

ing phenomena, and interfere with the sub-Doppler cooling. For 8’Rb, the pre-
cession frequency is on the order of 1.4 MHz/G. Consequently, stray magnetic
fields larger than 70 mG lead to Larmor precession rates comparable with the
optical pumping rate, and degrade the efficiency of the sub-Doppler cooling
[142]. In general, an external perturbation coupling the internal states of the
atom can be neglected, provided that

Aext K h’YM (7-4)

where Ay is the coupling amplitude of the perturbation. In particular, we will
evaluate in this manner the influence of the effective field generated by the op-
tical lattice in the next section.

7.1.2. The pinning lattice

The purpose of the lattice is to pin the atoms at fixed positions in space. In
order to efficiently suppress tunneling between sites, the depth of the lattice
Vo must be large compared to the temperature of the atoms. In our case, the
temperature is fixed by the parameters of the molasses.

In general, choosing the best wavelength for an optical trap requires a trade
off between the depth of the potential and the heating induced by spontaneous
emission of photons from the beam. Here, this lattice is combined with an op-
tical molasses, which cools down the atoms. Therefore, we can tolerate a mod-
erate amount of heating by spontaneous emission. For a given amount of laser
power, the depth of the lattice can be increased by choosing the frequency of the
laser beams to be close to resonance.

In order to be able to control the lattice beams independently of the molasses
beams, we choose to operate the lattice around the Dy line (A = 795 nm), and
the molasses on the cycling transition in the D; line (A = 780 nm). The different
beams can therefore be combined or separated through dichroic optic elements.

7.1.2.1. Influence of the hyperfine structure of the excited states

One must be careful when choosing the parameters of the lattice beams: when
the lattice detuning is comparable to the hyperfine splitting of the excited states,
the hyperfine structure of the atomic transition cannot be neglected. In general,
the dipole potential generated in this manner depends on the internal state of
the atom, and couples the different the Zeeman sub-levels. If the precession rate
resulting from this coupling is comparable to the optical pumping rate induced
by the molasses beam, the Sisyphus mechanism will not operate anymore. To
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7.1. Working principles

estimate the magnitude of this effect, we consider in the following the interac-
tion of a ¥Rb atom in the |F = 2) internal state with a linearly polarized laser
beams of intensity Iy, and of angular frequency w. We take the polarization to
be along the quantization axis, which we call z. Since the laser is operated close
to the Dy line, the ground state can couple to the two hyperfine excited states
|F' = 1) and |F' = 2). We write w,_ .1/ (resp. wy_,») the angular frequency
associated with the transition |[F =2) — |F' = 1) (resp. |F =2) — |[F' =2))
excited hyperfine state, and w; = (wp_,1 + wy_,or) /2 their mean. Using the
appropriate Clebsch—Gordan coefficients, we find the resulting dipole potential

37rc2FI< 1 P2 1 4—1?3)

V= =
30N\ w—wy w12 T W—wy .y 12

7.5
s (7.5)
where c is the speed of light, T is the decay rate from the excited levels and F; is
the projection of the angular momentum operator along the quantization axis.
This equation can be linearized in the limit of large laser detuning;:

- 5 B2 2 2y
Vv [1+L="2) with V=
26()2 (SL

5 I (7.6)

where ) = w — w; is the detuning of the lattice for the considered line, and
(5,5?,) = wy_,p — wy_,1 is the hyperfine splitting of the excited levels. As indicated
by Eq. 7.6, the light shift operator lifts the degeneracy between the Zeeman
sub-levels. During the operation of the molasses, this will in turn couple the
different sub-levels necessary for the Sisyphus mechanism, and can inhibit the
sub-Doppler cooling.

Let us now consider the combination of three linearly polarized laser beams,
of equal intensities and arbitrary polarizations. We take each beam to be slightly
detuned with respect to each other, and therefore neglect the interferences be-
tween them. The total dipole potential is then

(e)
5y F2
g o Liki =6

Vr =V,
T s 5L 4

(7.7)

where F; is the projection of the angular momentum operator along the polar-
ization direction of the beam i. If we choose the polarizations such that they
are all orthogonal, the sum over the operators simplifies to F2, and the potential
becomes scalar again. Consequently, the ground state remains degenerate, and
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7. Single atom imaging scheme

the Sisyphus mechanism can operate effectively.

Spatial modulation of the intensity As we saw above, the combination of
three beams with equal intensities and orthogonal polarization allows us to can-
cel the vector part of the potential. However, in the optical lattice, the intensity
is modulated:

(e)
5 o
Vr(x,y,z) =W ((sinz(kx) + sin?(ky) + sin?(kz)) ( _ %)
L
5© (7.8)
+- (simz(kx)l?2 + sin® (ky)E? + sinz(kz)E%)
45, y

where Vy = 4V;, k = 2t/Ap and Ap is the wavelength of the lattice beams.
Without loss of generality, we assume the beam propagating along the x di-
rection (respectively y and z) to be polarized along the y axis (respectively z
and x). In general, this operator lifts the degneracy between the Zeeman sub-
levels, except in locations where the intensity is equal for each beam. From
Eq. 7.8, it appears that the maximal splitting between these levels is on the or-
der of VO(SP(Z;) /0. This configuration is reached for example when x = y = 0
and z = Ap/4. At first glance, it appears that we need in general to satisfy
Vod;(:}) /0p < hypm (see Eq. 7.4). Note though that this constitutes a pessimistic
estimation, which assumes the atoms to be free to explore the whole potential
landscape.

In this pinning lattice, we instead expect the atoms to remain on a single site,
and only probe the trapping potential around its minima. To estimate the split-
ting between energy levels in this limit, we approximate the spatial variation of
the laser intensity by a parabola

R (5(@) 5(3)

Vr(x,y,2) = Vo k? ((x2 +y? 4+ 2%) (1 - %) + % (le?y2 +y2F2 + 221?3)) :
(7.9)

The scalar part of this operator will not affect the efficiency of the molasses. To

evaluate the effect of the vectorial part, we use a Born-Oppenheimer approx-

imation, and diagonalize it at a fixed position x,y,z. The detailed calculation

is presented in Appendix C. We then obtain five spatially varying sublevels
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Ei(x,y, z), with their average energy is given by

_ JEi(r)n(r)dr
(Ei) = [n(r)d3r

(7.10)

where n(r) is the density distribution of the atoms in the lattice site. Here, we
approximate this density by the Boltzmann distribution

2,2
n(r) = Nexp (— VzI;Tr ) : (7.11)
With this density distribution, a numerical integration of Eq. 7.10 leads to
3 3 5553
(Eg) = =kgT  and (E+) = =kpT £1.78 —kgT (7.12)
2 2 461,

where the first value is obtained for three of the energy levels. The maximal
splitting between the mean energy in the different sublevels is therefore given
by

5(3)

AE; = hwy = 1.78—L kT (7.13)
20,

The molasses will therefore operate properly provided that wz < p;, which
constitutes a much more favorable case than our initial estimate.

7.1.2.2. Influence of the hyperfine structure of the ground state

When choosing the parameters of the lattice, one must also take into account
the potential in the other hyperfine ground state |F = 1). During the operation
of the molasses, an atom can be depumped to the |F = 1) state. For this atom,
the light shift is approximately given by

37'5021“1 1
2003 Cars )
1 3(5L (Shf)

Vil = (7.14)

where w1 = (w11 + w1)/2, (5]%;) = w) — w; is the hyperfine splitting of the
ground state, and the vector contribution to the potential is neglected. We can
divide our study into two configurations:

— the lattice frequency is chosen such that ; > 0 and J; < (5}%’). In that case,
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Figure 7.1.: Decomposition of the internal process during a depumping/repumping
cycle, for &, > 0and 6, < 6% (@) and 6, > 0and &, > &% (b). The
atom starts on a lattice site in (1) with an initial velocity v;. It is coupled
to the excited states by the molasses, and it eventually decays to |F = 1),
with the same velocity in (2). It is subsequently accelerated, and reaches
the velocity vf when it is repumped in (3). Finally, the atom returns to
|F = 2), but keeps its velocity vy in (4).

the nodes in the optical lattice are local minima of the potential for |F = 2),
while they are local maxima for |F = 1) (see Fig. 7.1a).

— the lattice frequency is chosen such that ; > 0 and J; > (5}(5,)

the nodes in the optical lattice are local minima of the potential for both
hyperfine states. However, the curvature of the potential depends on the
hyperfine state (see Fig. 7.1b).

. In that case,

First case: /) < 5}(1‘;’1) Let us consider an atomic cloud in |F = 2), with a
temperature T, coupled both to the lattice beams and to the molasses, with 0 <

o < (5,(5). The lattice potential pins the atoms around a minimum of intensity.
Whenever an atom is depumped to the |F = 1) hyperfine ground state, it sits
at a potential maximum. It will therefore be accelerated to the final velocity vy,

before being repumped back into the F = 2 state (see Fig. 7.1). Close to the
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maximum, the potential for |F = 1) can be linerarized:

2y2 2Vok2 ¢
Vi ~ —mé; 4 where ¢ = J n(i © L. (7.15)
o or

hf
The repumping beam saturates the transition, so the atom will spend on average
Tk = 2/T in the |F = 1) state before being repumped. During that time, it is
accelerated, and its final velocity is

vf = v;cosh(Tr{) + 7; ¢ sinh(Tr{) (7.16)

where v; is the initial velocity of the atom and r; its initial position. Both are
given by the thermal distribution in the |F = 2) state. This in turn leads to a
mean final kinetic energy

2
mo
Eif = (o) _ keT cosh?(Tr¢) +(5—Lsinh2(TR§) . (7.17)
, 2 2 58 5
hf L

A necessary condition for the atom to be recaptured by the molasses is that the
final velocity vy must be lower than the capture velocity v, (see Eq. 7.3). How-
ever, if the final velocity is on the same order as the capture velocity, this rep-
resents an increase in energy much larger than the initial kinetic energy. Thus,
such events must be rare enough in order for the excess energy to be dissipated.
We therefore impose a stricter condition, which is sufficient to keep the atom on
the same site: the kinetic energy gain should be at most kgT

(8)

)

Exf— kBTT < kgT = (S(g)h—fsinhz(TR ¢) <2. (7.18)
nf — L

Second case: /) > (5,5}%) Alternately, let us consider the case where the lattice
potential is blue detuned for both hyperfine ground states. In this configuration,
if an atom in |F = 2) sits exactly at the center of the trap, it will not gain any
energy if it is depumped to the |F = 1) hyperfine ground state. However, if
the atom is located away from the center and is depumped to |F = 1), it will
convert its potential energy into kinetic energy, until it is repumped. Since the
potential in |F = 1) is much steeper, the atom can gain a substantial energy
before being repumped. Close to the minimum, the potential for |F = 1) can be
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linerarized:

mo? r? 2Vok?2 6

Vi = where o= (7.19)

m (8)°
A calculation similar to the one performed in the previous case allows us to

determine the mean kinetic energy after such a process. In this case as well, the
energy gain must be at most kgT

5(8)
B kg_T kT = L sind(mo) <2 (7.20)
5 — o8

7.1.2.3. Heating by spontaneous emission of photons

Since the lattice is operated so close to resonance, it will necessarily heat the
atoms by spontaneous emission of photons. As a first estimate, this heating can
be neglected as long as scattering from the lattice is much less frequent than the
photon scattering from the molasses. The scattering rate due to the lattice is

r

h’)/L = —VO (721)
|01
and it can be neglected provided that
YL < M. (7.22)

7.1.2.4. “Gray molasses” effect from the lattice

Before choosing the lattice detuning, a final effect must be considered. When
a laser is operated so close to the Dj line, it can act as a gray molasses. This
effect was initially proposed by Grynberg and Courtois [143], and successfully
implemented in [144], and more recently in [145]. Contrarily to the usual case of
a bright molasses, gray molasses act as a cooling source for blue-detuned beams,
and heat the atoms for red-detuned beams. Since this phenomenon depends on
the shelving of atoms in quasi-dark states, its magnitude is harder to link to the
number of scattered photons than in the usual case of a bright molasses. For
this reason, even when the lattice beams scatter less photons than the molasses
beams, this effect may play a significant role. We will therefore choose a blue-
detuned lattice, in order to minimize any spurious effect stemming from this
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phenomenon.

7.1.3. Choosing the parameters

For the lattice For the pinning lattice to prevent the atoms from hopping from
one site to the next, we require at least Vj = 10kgT [135]. In optical molasses in
free space, temperatures as low as 2.5 K have been measured with Cs atoms

40 .
=z T
5 30 2
& P
)] ©
s 20 =
o )
=
v 10 )
Q

< D
- &
O VS

T

4 2

Q

|- -ES‘
dle "
(e

-8

Q

s

]

Q

wn

0'01—5 0 5 10 15

Figure 7.2.: (a) Required laser power in each lattice beam to obtain Vj = 2000Eg. The
calculation is performed for gaussian beams with a waist wy = 280 ym.
(b) Precession rate stemming from the vector contribution to the light
shift, following Eq. 7.13. (c) Kinetic energy gained after a depump-
ing/repumping cycle, in units of kgT, following Eqs. 7.18 and 7.20. The
limit AE; = 1 is indicated in magenta dashed line. (d) Lattice scattering
rate, following Eq. 7.22. In Figs. (b) and (d), we indicate the optical pump-
ing rate in the molasses, for y1 = 5T and é) = 10T in magenta dashed
line. The transitions from F = 1 and F = 2 to the excited states are indi-
cated in black dash-dotted line. All the calculations assume V;; = 2000 Eg
and T = 20 uK, as was found in [73]
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[140]. However, in previous single-atom imaging experiments (see [72, 73]), the
equilibrium temperature was closer to 20 K, and the lattice depth was chosen
at Vo = 300 uK. In the following, we will set Vj = 2000Egr = kg x 340 uK =
I x 27t x 7.2 MHz as our requirement, though it might be possible to relax this
constraint.

In Fig. 7.2a, we present the required laser power generate such a deep lattice.
The numerical calculations are performed assuming the lattice beams are gaus-

sian, with a waist wp = 280 ym. The hyperfine splittings are (5}(5) = 27 X 6.83

GHz for the ground state, and (515? = 271 x 814 MHz for the excited state [146].
From this calculation, it appears that large potential depths are achievable with
comparatively little laser power. We also present in Fig. 7.2b, ¢ and d the limits
determined in the previous section, for a lattice depth 2000Eg and a temperature
T =20 uK.

We finally present in Fig. 7.3 a qualitative summary of the different limits on
the lattice detuning. In particular, the choice of J;, is influenced by the molasses
detuning éy1. For 0y = 10T, the lattice detuning must be at least 277 x 14 Ghz,
while 6; > 27t x 7 GHz is sufficient for d5; = 5I'. Indeed, a smaller molasses
detuning allows for a higher scattering rate at a given molasses temperature,
and is therefore more robust. In order to satisfy all these constraints, we will
choose 6; = 27t x 10 GHz, and each lattice beam must therefore contain at least
20 mW of laser power.

It has come to our attention that the vectorial contribution to the light shift

Gray molasses
from the lattice

Vectorial light shift

Depumping to

the F=1 state
Photon scattering

from the lattice

F=2 F=1

Figure 7.3.: Qualitative summary of the different limits which must be satisfied by the
lattice beam detuning. The red areas indicate a range where the corre-
sponding perturbation dominates the sub-Doppler cooling mechanisms.
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was initially a limiting factor in I. Bloch’s group [147]. There, the lattice was far
detuned, with A; = 1064 nm. However, the polarization of one of their lattice
beam initially had a circular component. In this case, the vectorial contribution
to the light shift comes from the fine structure of 8Rb , rather than from the
hyperfine structure of the excited state. By replacing the hyperfine splitting by
the fine splitting in Eq. 7.13, we find a precession frequency wz ~ 100 kHz,
while the molasses scattering rate was measured at y; = 150 ms~!. Indeed,
such a configuration was not satisfactory to image single atoms. By contrast,
when all the beams were linearly polarized, the vectorial contribution to the
light shift vanished, and single atoms could be imaged.

Note that in the experiment performed in M. Greiner’s group, a near-resonant
pinning lattice was used, with d;/(27r) = 30 — 50 GHz [72, 137]. Our detailed
analysis shows this detuning was clearly sufficient to avoid the discussed prob-
lems.

For the molasses The molasses must fulfill two roles: cool down the atoms
and scatter a large number of photons. For molasses detunings larger than the
natural linewidth, the minimal temperature in the molasses is nearly indepen-
dent of its detuning. However, this temperature will be reached at different
scattering rates.

Note that the light shift caused by the lattice must be taken into account when
choosing the molasses detuning. Since the lattice is blue-detuned, atoms strictly
located at a potential minimum will not experience any light-shift. However, if
an atom is momentarily located at an intensity maximum, its resonance will be
red-shifted. Consequently, the molasses detuning must be chosen such that it is
always red-detuned, even in the limiting case of an atom sitting at a potential
maximum. For our choice of the lattice parameters, the main effect comes from
the light shift of the ground state: the lattice is too far detuned from the D, line
to have a significant effect on the excited states. For Vy = 2000ER, the resonance
is at most shifted by 27t x 7.2 MHz.

However, the molasses detuning cannot be chosen too large either. For in-
creasing molasses detuning, the depumping rate to |F = 1) increases as well.
Indeed, the molasses beam also couple to the hyperfine |F’ = 2) state, which
can decay into the |[F = 1) state. As we presented above, this can in turn lead to
additional heating of the cloud.

Note that increasing the molasses detuning also reduces its scattering rate,
thus reducing the fluorescence signal of the atoms on the CCD camera. How-
ever, as we present in Appendix D, an atom can be unambiguously detected in
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7. Single atom imaging scheme

only 200 us, for 6py = 5T and T = 20 uK. Thus, even if the detuning was much
larger than d); = 5T, the required exposure time would remain well within the
capabilities of our system. Consequently, the choice of the molasses detuning
does not affect our ability to detect single atoms.

While none of these criteria impose a strict limit on the molasses detuning,
we clearly benefit from small values. Closer to the resonance, the scattering
rate increases, which suppresses the effect from the vector contribution to the
light shift. At the same time, the depumping rate to |[F = 1) decreases. In
previous realizations of this setup ([72, 73]), the molasses was detuned by 271 x
80 MHz, though it was found smaller molasses detunings did not compromise
the efficiency of the scheme [147].

7.2. Characterizing our implementation

7.2.1. Experimental setup

The pinning lattice The light for the pinning lattice is produced by a laser
diode emitting at 795 nm, amplified with a tapered amplifier (TA Pro, Toptica).
The lattice is then generated in the conventional manner: in each direction, a
laser beam is retro-reflected on a mirror, thus creating a standing wave. Each
beam is slightly detuned (~ 10 MHz) with respect to each other, in order to
avoid interference between the different lattice directions. The geometry of the
laser beam is chosen such that its minimal waist lies on the retro-reflection mir-
ror, in order to maximize the contrast of the interference at the location of the
atoms. The retro-reflecting mirrors are located 125 mm away from the atoms,
and the waist of the lattice beams on the mirrors is 250 ym, leading to a waist of
280 um at the location of the atoms.

The spatial arrangement of the two lattice beams is shown in Fig. 7.4. Owing
to geometrical constraints, it is not possible to send three orthogonal beams on
the atoms. For this reason, the angle between two of the beams is 72°, and
they are both orthogonal to the third one. The third lattice beam propagates
along the same axis as the horizontal imaging beam and the dipole traps. It is
superposed with the path of the imaging beam by a polarizing beam splitter,
and is retro-reflected on an interferometric filter, which is reflective at 795 nm
and transparent at 780 nm (see Fig. 7.5). As we showed in 7.1.2, each lattice
beam should be linearly polarized, and the polarizations should be orthogonal.
A possible choice is depicted in Fig. 7.4.
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Figure 7.4.: Spatial arrangement of the three lattice beams, along with their polariza-
tion, respective to the glass cell. The atoms are located at the intersection
of the three beams.

The molasses beam The molasses beams propagate along the same direc-
tions as the lattice beams. Each direction contains a pair of counter-propagating
beams, with orthogonal linear polarizations. For this reason, the lattice beams
are retro-reflected on interferometric filters, which are transparent at the mo-
lasses wavelength (780 nm). The beam balance is controlled within each pair by
a retardation wave-plate, as well as between separate pairs. Since the molasses
beams propagate in the same fiber, the beam waist on the atoms is also 280 ym.

Note that for a 3D molasses, the intensity is necessarily spatially modulated,
which can in turn lead to inhomogeneities in the cooling efficiency and the scat-
tering rate. To circumvent this problem, we introduce a temporal modulation of
the phase of the molasses. This modulation must be slow compared to the cool-
ing and scattering processes in the molasses, but fast compared to the imaging
time. Experimentally, we chose to modulate at 1 kHz. For each of the directions,
the position of a mirror is modulated by a piezo-electric crystal, thus modulat-
ing the phase of the interference pattern (see Fig. 7.5).
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Figure 7.5.: Optical scheme in the xy plane. The hybrid trap and the Hermite-Gauss
trap are indicated in dark red and green respectively (see Ch. 2.1). The
imaging beam is indicated in blue. The molasses beams and the lattice
are indicated in bright red. The two dipole traps are superposed and sep-
arated from the the other beams with dichroic mirrors, while the lattice
beam is retro-reflected on an interferometric filter. A non-polarizing beam
splitter must be used to add the second molasses beam orthogonally po-
larized to the first one.

7.2.2. Preliminary results

At the time of the writing, this experiment constitutes a work in progress.
Consequently, we can only present preliminary results. When assembling this
setup, we were able to test separately the lattice and the molasses.

Testing the molasses In our system, testing the molasses requires a specific
preparation. Indeed, due to the re-scattering of photons, the atomic density
in a molasses cannot exceed 71,5, = 10'% atoms/cm? (see [148] for example .
Consequently, should one attempt to operate a molasses on a denser cloud, the
excess density will lead to a fast expansion of the cloud, until it becomes suffi-
ciently dilute. This is not an issue in most cold atoms experiments, where sub-
Doppler cooling mechanisms only intervene in a Magneto-Optical Trap. How-
ever, this can constitute a limitation for these tests, and must be accounted for.
Furthermore, the region where the molasses beams intersect is quite small: each
beam has a waist wy; = 280 ym, and the atoms must therefore be contained in a

1. This value was the highest density observed in a Magneto-Optical Trap, and over-
estimates the maximal density at which the sub-Doppler mechanisms can operate efficiently.
However, this provides an indicative upper bound on the atomic density for our tests.
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7.2. Characterizing our implementation

volume Vj; = 2-107° cm?. The finite size of the beams puts another limitation
on our experiments: during the operation of the molasses, the expansion of the
atomic cloud must remain contained within Vj;. Consequently, if we require an
order of magnitude between the size of the cloud and the waist of the beams,
this means the cloud can contain at most 7yax (wp/10)% = 2 - 10* atoms.

The efficiency of the molasses can be characterized in two ways: by mea-
suring the equilibrium temperature, or the spatial diffusion coefficient, which
should be optimal for the same molasses parameters. The former requires to
perform a time of flight experiment, in which the size of the cloud is doubled.
However, the latter can be performed in situ, and yields a larger signal. Con-
sequently, we monitor the size of the cloud, as a function of the time spent in
the molasses beams. In an optical molasses, the motion of the atoms is well
described by a diffusion equation

d (x?)
dt

=2D (7.23)

where x is the position of an atom and D is the spatial diffusion coefficient.
Therefore, we choose the following fitting function to describe our data:

o?(t) = c?(0) +2Dt (7.24)

where o (t) is the size of the cloud as a function of time in the molasses, and ¢(0)
and D are the adjustable parameters.

Note that the hybrid trap (see 2.1.2) is not suited to this measurement: the
magnetic field at the location of the atoms is much too large to allow for a proper
operation of the molasses (B ~ 200 mG). The atoms are therefore transferred in
an all-optical trap, and the magnetic fields extinguished. At the time t = 0, we
switch off the optical confinement, and switch on the molasses beams. We then
measure the size of the cloud as a function of time.

The density limitation discussed above can be circumvented in two manners.
One can prepare a sufficiently dilute cloud by carefully decompressing the trap.
Alternately, one can prepare a dense cloud, and let it expand until its density
is sufficiently low. When the molasses is switched on, the first phase of the
expansion is driven by the rescattered photons. After some time, the density
becomes low enough for the molasses to operate properly, and the expansion
slows down significantly. Therefore, the initial fast expansion can be discarded,
and the second phase can be used to measure a diffusion coefficient. In practice,
there will always be a fast initial expansion. We show such a measurement in
Fig. 7.6, along with a fit by Eq. 7.24, and we measure D = 75(4) um?/ms.
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Figure 7.6.: Typical expansion of a dilute cloud in the molasses. The average cloud
size is shown in (a), and presents the expected diffusive behaviour. The
square of the size is shown in (b), along with a fit by Eq. 7.24 for hold
times larger than 1.5 ms, and we find D = 75(4) um?/ms. The initial fast
expansion is most likely due to a high initial density.

By comparison, the authors measured D = 60 um?/ms in a three-dimensional
lin L lin molasses in [139].

The experiment presented in Fig. 7.6 was performed on atomic samples con-
taining typically 10* atoms. The size of the cloud was determined by fitting a
gaussian to the density distribution. In particular, it appears the diffusive ex-
pansion sets in for sizes superior to 30 ym, which corresponds to densities lower
than 10! atoms/cm?.

Loading the optical lattice Each lattice beam is separately aligned, and the
depth of the resulting standing wave is measured by Raman-Nath diffraction at
low lattice powers [149, 150]. To this end, we prepare a three dimensional BEC.
The lattice beam is successively switched on, and extinguished after a interac-
tion time T;,;. When the lattice beam is turned off, we simultaneously release
the BEC from the trap, and let it expand for 4 ms. We then image the different
momentum states resulting from the interaction with the lattice (see Fig. 7.7a).
For shallow potentials (Vp < 4 Eg), we only populate the zeroth and first orders

122



7.2. Characterizing our implementation

b)
0.6 o 8
[ ] ° [ )
m 0.4 [ ° n
Z,
°
0.2} °
2'0_;11‘11 . °®
O | | | |

0O 20 40 60 80 100
Interaction time T, (us)

Figure 7.7.: (a) Zero-th and first orders, after diffraction of a BEC on the optical lattice,
and subsequent time-of-flight. (b) Typical Rabi oscillations in the fraction
of diffracted atoms. The fit from Eq. 7.25 is indicated in black line, and
yields Vy = 6.71 Eg.

of the diffraction pattern, and the fraction of atoms in the first order is given by

V2 T E V2
Niq(t) = — 0 2| Jmt=R J1g4 70 ) 705
=) = vy ez " ( 2 T 2E2 7.5)

For V) = 6Eg, the period of these Rabi oscillations is 45 us, well within the
temporal resolution of our experimental sequence (see Fig. 7.7b). We then use
these results to extrapolate the depth of the lattice at full power.

For a blue detuned lattice, with §; = 271 x 7 GHz, we are able to achieve
lattice depths of ~ 800 Er in each arm, with a total power of 80 mW at the
output of the fibers. However, the situation is quite different between the two
vertical beams and the horizontal beam. In the two vertical beams, the depth is
~ 45 E,/mW, while it is only 15 Eg/mW in the horizontal beam. By compari-
son, we ideally expect a lattice depth of 110 Eg /mW at this lattice detuning (see
Fig. 7.2a).

Note that this theoretical value assumes perfect transmission of all optical el-
ements used to create the lattice. However, we measure non-negligible losses
along the lattice path, thus decreasing the contrast of the interference pattern.
For example, the vacuum windows do not have an anti-reflection coating. Con-
sequently, the retro-reflected beam will attenuated, and the contrast of the inter-
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7. Single atom imaging scheme

ference pattern will decrease. For approximate losses of 4 % per interface, ? this
can reduce the lattice depth by 15 %, explaining a large part of the difference
between the experiment and the prediction. Furthermore, the horizontal lattice
beam is transmitted by several dichroic elements (see Fig. 7.5), which each fur-
ther attenuate the beam, thus explaining the difference between this direction
and the two vertical beams.

From these preliminary results, it is clear we are limited by the amount of
available laser power. At the moment, the depth of the lattice is only 800 Eg =
136 uK, which is probably not sufficient to prevent thermal hopping between
sites: in L. Bloch’s group, it was found that a lattice depth of 200 uK was nec-
essary to fully suppress thermal hopping. To remedy this problem, we have
planned to replace the source laser, which will multiply the available laser power
by 4. In this configuration, we will be able to generate a sufficiently deep lattice,
while maintaining a large enough detuning to suppress all the effects discussed
in7.1.2.

2. Note that this is the reflectivity of glass at normal incidence, while the two vertical beams
form an angle of 54° with the surface. Thus, the actual reflectivity can be higher than 4 %.
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Concluding remarks

Summary

In this thesis, we studied experimentally the two dimensional Bose gas. We
measured the equation of state around the critical point, characterized the fluc-
tuations, and measured the superfluid behavior of the system.

In chapter 3, we measured experimentally the equation of state (EoS) of the
two-dimensional Bose gas, with two different methods. For a single atomic
sample, we determined its temperature and central chemical potential by fit-
ting the wings of the cloud by a mean—field equation of state. We could then
deduce the EoS of the infinite 2D Bose gas by making use of the local density
approximation (LDA). We also developed an alternative measurement of the
EoS, inspired by a method developped at MIT [36]. We started by calculating
the derivative and the integral of the density with respect to the local poten-
tial. From these quantities, we were able to measure the EoS of the 2D Bose gas
with a single adjustable parameter: the detectivity of our imaging system. The
EoS produced with these methods are both in very good agreement with the
numerical prediction by Prokof’ev and Svistunov presented in [79].

We pursued our studies of the 2D Bose gas in chapter 4 by locally probing
its superfluid behavior. Indeed, the measurements presented in the previous
chapter only provided an indirect characterization of the BKT transition. By
contrast, we were able to show evidence for both normal and superfluid regions
in the phase diagram by looking at the response of the system to a moving
defect. Furthermore, these results are in good agreement with the existence of a
normal to superfluid transition.

In chapter 5, we presented a quantitative analysis of the fluctuations, both
in-situ and after a short ToF. We observed a significant enhancement of the den-
sity fluctuations after ToF, indicating that the dynamics of the degenerate 2D
Bose gas is dominated by phase fluctuations, and that density fluctuations are
essentially frozen. Through analysis of the extrema of the atomic density, we
identified phonons as being the primary fluctuation mechanism, rather than
vortices, at least in the degenerate region. This picture was confirmed by a
study of the two-body correlation function, which was in good agreement with
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7. Single atom imaging scheme

the prediction presented in [71].

Perspectives

From the work which has been presented here, we can define two broad re-
search directions. We can further study the two-dimensional Bose gas, by real-
izing a uniform Bose gas as was described in Ch. 6. Alternately, once our sin-
gle atom detection scheme is operational, we can take advantage of it to probe
strongly correlated states with few particles. In the following, we will detail
both of these perspectives.

On the uniform two dimensional Bose gas

A first extension of our work would be of course to complete the ongoing
study of the interplay between BEC and BKT transition. Once a suitable box-
like potential has been realized and characterized, we propose the following
measurement.

For a given atom number, we measure the momentum distribution, either
by time-of-flight experiments, or by performing state tomography (see [64] for
such a measurement). As the sample temperature is lowered, the appearance of
a sharp peak in the momentum distribution characterizes the onset of Bose-
Einstein condensation. By performing this measurement for different atom
numbers, we can obtain a determination of the critical temperature as a function
of the atom number. This experiment can be performed both in a harmonic trap
and in a box like potential. The effect of the different density of states would
then be revealed by comparing the two measurements.

Furthermore, the realization of a uniform 2D Bose gas would allow for a more
refined study of its fluctuations, similar to the one presented in chapter 5. In this
case, we would not be limited by the inhomogeneity of the trapping potential,
and we could probe the correlation properties of the gas on a larger scale. More-
over, a larger signal-to-noise ratio in the determination of the two-body corre-
lation function after time of flight should allow us to demonstrate the algebraic
decay of the in-situ one-body correlation function, and to measure its exponent.

One can as well take advantage of the uniform density to perform experi-
ments with the stirring beam described in chapter 4. In this case, we would
observe the wake left by the stirring beam, which should depend on the super-
fluid character of the fluid, and the velocity of the defect. In particular, above
the critical velocity, one should observe a Cerenkov-like wave pattern. Such
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an experiment was performed with polaritons in a semi-conductor microcavity
[115], albeit in a non-equilibrium system.

On strongly correlated states

As we discussed in the introduction, ultracold atoms are particularly well
suited to the simulation of condensed matter phenomena. In this context, we
want to realize large effective magnetic fields, to reach the strongly-correlated
states typical of fractional quantum Hall effect (FQHE), such as the Bosonic
Laughlin state. Several possibilities to create such an effective magnetic field
have been mentioned in chapter 7, such as the rotation of the trap [134], or the
use of artificial gauge fields [54]. Both methods have been successfully realized
[16, 53], though the magnetic field generated in this manner was too small to
enter the strongly correlated regime. The maximal magnetic field is limited by
the residual static anisotropy of the trap in the case of the rotation, while the
spontaneous emission from the dressing beams limited the field in the case of
artificial gauge fields.

To reach the strongly correlated regime, we therefore consider two options.
First, instead of trying to increase the magnetic field, one can instead decrease
the atom number. We therefore aim to prepare very small samples, containing
between 3 and 10 atoms. The artificial magnetic field will be realized by inject-
ing angular momentum in the system via optical dressing of the internal states,
rather than by directly rotating the trap. Once the strongly correlated state has
been reached, the wavefunction can be subsequently magnified by letting the
cloud expand in two dimensions [151]. The density distribution will then by
imaged by the single atom detection described in chapter 7.

A second way to produce a strongly correlated state lies in the realization of
optical flux lattices [55, 152]. In such an optical lattice, the lower energy band
is topologically equivalent to the lowest Landau level, which is crucial to the
formation of many-body states. Note that such a scheme is not conceptually
limited to small atom numbers. Indeed, the optical flux lattices generate a large
magnetic flux per unit cell of the lattice, allowing for realization with large atom
numbers.
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A. Contribution of the excited states to the EoS,
supplemental material of Phys. Rev. Lett. 107,
130401 (2011)

The following section was initially published in [69], and is reproduced without mod-
ifications

For a given T and u, we self-consistently determine the population of the
excited states using the method described in [64, 101], assuming the atoms in
the excited states j > 1 of the z motion to be in the HFMF regime. In practice
we restrict the analysis to the first ten levels. In order to give an estimation
of the contribution of the various levels j > 1 to the total density, we show
in Fig. A.1la numerical results obtained by applying this procedure to a numeri-
cally generated profile, produced using the prediction [79] with T = 100nK and
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Figure A.l.: (a) Phase space density of the ground (solid red line) and excited state(s)
of the z-motion, for kg T = hw,. The n-th line from the bottom corre-
sponds to the contributions of excited levels 1 to n. (b) Comparison of
the trapping potential (red solid line) and the repulsive potential created
by the excited atoms on the population in the ground state (blue dashed
line).
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A. Contribution of the excited states to the EoS

1/kpgT = 0.45. This temperature is on the high side of our experimental range,
where the influence of the atoms in the excited states along z is expected to be
the most important. We plot in Fig. A.1a the phase space density of the excited
states D(exc) distinguishing the contribution of the state(s) j = 1, j = (1,2),
j = (1,2,3), etc. For comparison we also plot the profile D¥) obtained from
[79], associated to the atoms in the ground state. Note that the contribution of
the states j > 4 is already negligible. The phase space density associated to each
excited state is lower than 0.5, which justifies to treat the atoms in these states
within the HFMF approximation. The flattened shape of the density distribu-
tions in the central region is due to the repulsive interaction with the atoms in
the ground state of the z motion.

This procedure also allows us to calculate the effective potential felt by the
atoms in j = 0, when the repulsive potential W(r) created by the atomsinj > 1
is taken into account. Plotting together W(r) and the trapping potential V(r)
(Fig. A.1b) we see that W(r) is essentially negligible (< 1nK) and one can thus
consider the density ny(r) to be insensitive to the presence of the atomsin j > 1.
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B. Conversion of phase fluctuations into density
fluctuations

B.1. Density distribution, in real and reciprocal space

The aim of this appendic is to link the spatial fluctuations of the two-body
correlation function g(?)(7,t) to the initial dynamics of the system. We assume
a free expansion: the wavefunction at time ¢ is therefore directly deduced from
the initial wavefunction by the Schrédinger propagator

m m(r—1p)?
w(rl t) = (271.17,”) /exp <l%) 1P(1'1/0) dZTl (Bl)
and the spatial density is given by

p(r,t) = [(x, 1)

2 _ 2 o
(mm—/ﬁﬁﬁwm(m%ﬁﬁ»eWGﬂEWQJ>WMﬂWMﬁ)
(B.2)

In the following, we choose to express rather the Fourier transform of the den-
sity

Nmzj&wﬂww
= /dzr d?r; ex M ) _mn—r *(r1,0) ¥(rp,0)
zht L2 exp 2t 1 ht §in, 0) gle,
(B.3)
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B. Conversion of phase fluctuations into density fluctuations

We introduce the center of mass and relative motion variables R = (r; 4+ 1) /2
and r = r; — ry. With these definitions, we obtain

_ R hqt\ .
p(q,t) /dszzr exp( 17;115 ) 5(1‘—%)1{) (R—F%,O)lp(R—%,O)
: h
- / d2R el Ryp* (R + th 0) P ( - 2%1,0) (B.4)

Similarly, we can derive a similar expression for the g(z) correlation function. In
a homogeneous system of average density py, it is given by

<p(l', t)P(r‘{’rlrt))r. (BS)

(2) _
g (r,t) =
0%

Thus, its Fourier transform is given by

/dzre aTe(2)(r,t)
(zﬂ) <|p<q, 2l >. (B6)

Consequently;, it is equivalent to know the power spectrum of the Fourier trans-
form of the density, or the two-body correlation function.

B.2. Case of a small perturbation

Since ¢ is a fluctuating quantity, we cannot assign a deterministic value to p.
However, we can perform the calculation for a given realization of 1, and see
which Fourier components emerge. We start with a weakly perturbed distribu-
tion

P(r,t =0) = /no(1+ e(r)e®™ ~ /ng (1 + (2) +ig(r )) (B.7)

where € and ¢ are small perturbations of the density and phase respectively.
From Eq. B.3, we find

~ 2
p(at) ~ (27-()2 5(q) + cos (hz—q> €(q) +2sin (h;Zq ) ¢(q). (B.3)

no
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B.3. Interpretation in terms of Talbot effect

As we pointed out above, the quantity of interest is the Fourier transform of
g, given by

hitg? hitg? htg?
@ 1)~ cos? (M) @2+ asin? (M) (5001 +28(0) 3(a) sin (210
30,0 ~ ot (50) @@+ asin (50 @00) +2800) gl sin (251
(B.9)
Thus, Fourier components at htq2 /m = 7/2,7,27m... can contribute to the

power spectrum, depending on the value of €(q) and ¢(q) at these wavectors.

B.3. Interpretation in terms of Talbot effect

This calculation was also presented in [71], where the authors interpret it in
terms of Talbot effect. Indeed, let us consider a 1D problem for simplicity, in the
configuration described in Eq. B.7. Furthermore, we suppose that only small
phase fluctuations are present, with a spatial modulation

e(x)
p(x) =

0
wcos(qox)  with a1 (B.10)

Thus, it is easy to calculate ¢ (x, t), which is given by

g}
P(x, t) ~ \/po (1 +in cos(qox)e’zqn?t) (B.11)
and the density is finally given by
[ Iitgp
p(x,t) =np | 1+ 2acos(gox) sin o | ] (B.12)

Thus, an initial phase modulation leads to a density modulation after propaga-
tion. This is the exact analog in the time domain of the Talbot effect, where light
passing through a phase grating exhibits an intensity modulation after some
propagation length.
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C. Diagonalization of the vectorial light shift in a
lattice

This appendix details the calculation of the average energy levels explored by
an atomic ensemble pinned on a lattice site.

We start by obtaining the exact eigenenergies in the potential created by the
lattice

R (5(3) 5(3)
Vr(x,y,2) = Vo k2 (<x2 +2 +22) (1 - %) t g5 (PE+VE+7R)

(C.1)
which was introduced in Eq. 7.9. Here, we apply a Born-Oppenheimer ap-
proximation to decouple the center of mass motion, and the internal degrees of
freedom. The motion of the center of mass is treated classically, while we diag-
onalize the vector part of this operator for a fixed position (x, y,z). The vector
part of this operator is

x? + 4y? + 22 0 \/g(z2 — x?) 0 0
0 S5 0 322 4 322 0
\/g(zz — x?) 0 3x? + 322 0 \/g(zz —x?)
—3x2 + 322 0 w 0
0 (22— x2)2 0 x? 4 4y? + 22

which can then be diagonalized to yield the eigenenergies
5(3) 5(@)
Eox = Vo k2 [ (2% + y* + 22) 1- L —1—h—f(4x2+y2—{—zz) (C.3)
’ 261, 461

5]58) 5]56)
Eoy = Vok? | (P42 +2%) [ 1- ﬁ + é(x2 + 4+ 2) (C4)
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5}(1‘3) (5(3)
Eo.=Vok* [ (P +y*+2%) [1— 2(;; + (;; (x® + % + 42%) (C.5)

5@
Er =Vok? | (P +y>+22)+ L f xt oyt 4zt — x2y2 — Y222 — Z2x2 | (C.6)
y y y-—y

201

s
E-=Vok* [ (2P +y*+22) — f xt 4yt 24— 2yzyzzzzzxz) .

26,
(C.7)

Finally, we calculate the mean energy of an atomic ensemble in each of these
sub-levels. We approximate the density by the Boltzmann distribution

2,2
n(r) = Nexp (—VZl;Tr ) : (C.8)
The mean values are then evaluated numerically, and we find

3
(Eox) = (Eoy) = (Eoz) = SksT (C.9)

(6)
(Ex) = —kBTi 1780 ksT (C.10)

401,
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D. Collection efficiency of the imaging system

This appendix details the estimation of photon detection rate during the single-
atom imaging sequence. In this scheme, the atoms are pinned at fixed positions
by the optical lattice, and simultaneously cooled down by the molasses. Fur-
thermore, the molasses also plays a crucial role in the imaging process: it is
responsible for the scattering of photons, which are then collected on the CCD
camera.

However, only a small fraction of these scattered photons will reach the de-
tector, owing the the finite collection efficiency of the imaging system, which is
limited by the following factors.

— The numerical aperture of the imaging system is limited by the microscope
objective (see 2.2.2), and is NA = 0.45. The solid angle of the objective is
therefore 0.053 x 47, and only 5.3 % of the scattered photons can reach the
CCD camera.

— The vacuum window does not have an anti-reflection coating: it reflects 4
% of the incoming light at both interfaces, and its transmission is 92 %.

— The quantum efficiency of the CCD camera is 95 %.

— All the optics placed between the vacuum chamber and the CCD camera
may contribute as well. However, all the surfaces are anti-reflection coated,
so this effect should be negligible.

Overall, we expect a collection efficiency of 4.6 % of scattered photons at most.

In order to detect an atom without ambiguity, we require the number of de-
tected photons to be larger than the read—out noise, which is specified at 3
counts per pixel. Note that we assume here that no stray light reaches the CCD
camera. To fulfill this condition, it is sufficient to scatter 200 photons on aver-
age. In this case, 9 photons are detected on the CCD camera. Furthermore, the
probability to detect less than 9 photons is inferior to 1 %. Thus, an atom has a
probability inferior to 1% to remain undetected.

Finally, for a molasses with dy; = 5T and T = 20 uK, an atom scatters yy; ~ 1
photons/us (see Egs. 7.1 and 7.2). Thus, an atom can be detected with as little
as 200 us exposure time.
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Résumeé

Les propriétés physiques d'un systeme homogene a I'équilibre thermodynamique sont for-
tement contraintes par sa dimensionnalité. Le gaz de Bose a deux dimensions est un systeme
particulier de ce point de vue : bien que l'établissement d’un ordre a longue portée soit impos-
sible a température non-nulle, il existe néanmoins une transition de phase vers un état super-
fluide & basse température. De plus, la dimensionalité réduite du systéme rend son équation
d’état invariante par changement d’échalle pour de faibles interactions atomiques répulsives.

Dans ce manuscrit de theése, nous présentons une étude expérimentale du gaz de Bose a deux
dimensions. Nous mesurons son équation d’état de deux methodes différentes, et trouvons un
résultat en bon accord avec les prédictions analytiques et numériques. Ces résultats ont éga-
lement permis de confirmer 'invariance d’échelle du systeme. De plus, l'une des méthodes
ne nécessite qu'un seul parameétre ajustable pour la mesure de I'équation d’état. Nous présen-
tons ensuite une mesure locale du caractere superfluide du gaz. A cet effet, nous avons mis en
évidence 1’absence de dissipation lors de la perturbation du systéme par un obstacle en mou-
vement. Enfin, nous effectuons une analyse des fluctuations du gaz de Bose 2D, qui a permis
de confirmer la suppression des fluctuations de densité dans la phase superfluide, ainsi que le
role dominant joué par les phonons dans les fluctuations de phase.

Mots-clés : Condensation de Bose-Einstein, basse dimension, équation d’état, invariance
d’échelle, superfluidité, transition de phase

Abstract

The physical properties of a homogeneous system at the thermodynamic equilibrium are
strongly constrained by its dimensionality. In this respect, the two dimensional Bose gas con-
stitutes a particularly interesting system: while it is impossible to observe a long range order at
non-zero temperatures, there exists nevertheless a phase transition to a superfluid state at low
temperatures. Furthermore, owing to the reduced dimensionality, the equation of state of the
weakly interacting two-dimensional Bose gas is scale invariant.

In this thesis, we present an experimental study of the two-dimensional Bose gas. We mea-
sure its equation of state with two different methods, and find a good agreement with analytic
and numerical predictions. These results confirm as well the scale invariance of the system.
Furthermore, one of the methods allows for a determination of the equation of state with a
single adjustable parameter. We then characterize the superfluid response of the system., by
showing evidence for a dissipationless response of the system to a moving perturbation. Fi-
nally, we analyze the fluctuations dynamics of the 2D Bose gas, which confirms both the sup-
pression of density fluctuations in the superfluid phase, and the dominating contribution of
phonons to the phase fluctuations.

Key words: Bose-Eisntein condensation, low dimension, equation of state, scale invariance,
superfluidity, phase transition
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