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Glossary 

PTW: Powered Two Wheelers 

LV: Light Vehicle 

HV: Heavy Vehicle 

ANR: National Research Agency (In French: Agence Nationale de la Recherche) 

METRAMoto: Powered Two Wheeler traffic measurement for road safety and risk assessment (In 

French: MEsure du TRAfic de deux roues MOTOrisés) website: www.project-metromoto.fr 

ONISR: National Joint Ministerial Road Safety Observatory, (In French: Observatoire National 

Interministériel de la Sécurité Routière) 

CERTU: Centre d'Etudes sur les Réseaux, les Transports, l'Urbanisme et les constructions 

CETE: Public Works Centre for Technical Studies (In French: Centre d’étude techniques et 

l’équipement)   

SETRA: Study Center for Transports and Roads (In French: Service d'Etudes sur les Transports, les 

Routes et leurs Aménagements) 

ALS: Airborne Laser Scanning  

SLAM: Simultaneous Localisation and Mapping  

LMS: Laser Measurement System 

SVM: Support Vector Machine 

LLC: Last Line Check 

a: All symbols in italics are the variables used in the equations  

[#]: Reference to bibliography 

(#): Reference to equation 
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Detection and counting of Powered two 

wheelers in traffic using a single-plane 

Laser Scanner 

By 

Yadu PRABHAKAR 
Abstract:  

The safety of Powered Two Wheelers (PTWs) is important for public authorities and road 

administrators around the world. Recent official figures show that PTWs are estimated to represent 

only 2% of the total traffic but represent 30% of total deaths on French roads. However, as these 

estimated figures are obtained by simply counting the number plates registered, they do not give a true 

picture of the PTWs on the road at any given moment. To date, there is no overall solution to this 

problem that uses a single sensor capable of detecting PTWs and taking into consideration their 

interaction with the other vehicles on the road (for example: Inter-lane traffic, when PTWs travel 

between two lanes on a highway), and no state-of-the-art technical solutions can be adapted to 

measure this category of vehicle in traffic (unlike Light Vehicles (LVs) and Heavy Vehicles (HVs)). 

The research work in this domain has not, therefore, been greatly developed.  

This is an issue of concern and gave rise to the launch of the ANR Project METRAMOTO (MEsure 

du TRAfic des deux roues MOTOrisés pour la sécurité routière et l’évaluation des risques / Powered 

Two Wheeler traffic measurement for road safety and risk assessment). This project started in 

November 2010 and explores four technologies to measure the PTW traffic: Intrusive technology with 

piezo-electric sensors and magnetometers and Non Intrusive technology with a vision camera and a 

laser scanner. For this research work, a non-intrusive technology, particularly a laser scanner has been 

chosen. Hence the title “Detection and counting of PTWs in real time traffic using a single-plane laser 

scanner”.   

This dissertation is a technical applied research work and deals with two problems: detection of PTWs 

and the use of a laser scanner to count PTWs in the traffic. These two problems have not often been 

explored. Traffic generally contains random vehicles of unknown nature and behaviour such as speed, 

vehicle interaction with other users on the road etc. Even though there are several technologies that 

can measure traffic, for example radars, cameras, magnetometers etc, as the PTWs are small-sized 

vehicles, they often move in between lanes and at quite a high speed compared to the vehicles moving 

in the adjacent lanes. This makes them difficult to detect. 

The main objective of this technical research work is to propose a prototype that can detect and count 

the PTWs in the traffic. This prototype is meant to be integrated into a system that can be easily 

installed on a highway and is able to detect and count PTWs in real-time. Ideally the system should be 

self-calibrating with respect to the installation site and be able to work autonomously on road for a 

long duration of time.     

Moreover, laser scanner technology has not often been explored independently for the detection and 

counting of traffic on a highway.  Usually this technology is used at automatic toll plazas to classify 

vehicles that are travelling slowly. At each lane, one laser scanner is installed and to make this 

technology more effective, it is combined with another technology such as cameras or other laser 
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scanners. Our goal is to detect PTWs from a single-plane laser scanner placed on a pole or a gantry at 

a certain height, with the vehicles passing at various speeds on the road below it.   

In the framework of METRAMOTO, the proposed solution in this research work is intended to be 

installed on a highway to detect, extract, classify and count PTWs in real time under all traffic 

conditions (traffic at normal speeds, dense traffic and even traffic jams). Hence, the final system must 

be as automatic as possible so that the road administrators can simply install it on any road (motorway, 

expressway) with a very little intervention.   

The developed method is composed of the following parts: a configuration to install the laser scanner 

on the road is chosen and a data coherence method is introduced so that the system is able to detect the 

road verges and its own height above the road surface. This is validated by simulator. Then the raw 

data obtained is pre-processed and is transform into the spatial temporal domain. Following this, an 

extraction algorithm called the Last Line Check (LLC) method is proposed. Once extracted, the object 

is classified using one of the two classifiers either the Support Vector Machine (SVM) or the k- 

Nearest Neighbour (KNN). At the end, the results given by each of the two classifiers are compared 

and presented in this research work. For the present research work a prototype has been developed and 

tested on real traffic of unknown behaviour.  
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Détection des deux roues motorisés par 

télémétrie laser à balayage 

Auteur: 

Yadu PRABHAKAR 

Résumé:  

La sécurité des deux-roues motorisés (2RM) constitue un enjeu essentiel pour les pouvoirs publics et 

les gestionnaires routiers. Si globalement, l’insécurité routière diminue sensiblement depuis 2002, la 

part relative des accidents impliquant les 2RM a tendance à augmenter. Ce constat est résumé par les 

chiffres suivants : les 2RM représentent environ 2 % du trafic et 30 % des tués sur les routes. Le risque 

d’être tué en moto est 24 fois supérieur à celui des automobilistes. On observe depuis plusieurs années 

une augmentation du parc des 2RM et pourtant il manque des données et des informations sur ce mode 

de transport, ainsi que sur les interactions des 2RM avec les autres usagers et l'infrastructure routière. 

Un état de l'art effectué en 2009 a montré qu'il n'existe pas de solution technique adaptée à la mesure 

du trafic de cette catégorie de véhicule (contrairement aux véhicules légers et aux poids lourds) et la 

recherche/développement dans ce domaine est peu active.  

A partir des données précédentes, le projet ANR METRAMOTO (MEsure des TRAfics des deux 

roues MOTOrisés) qui est labellisé Move’o a été lancé en Novembre 2010. Ce projet explore quatre 

technologies : la technologie intrusive avec les capteurs hybride et magnétomètres ; la technologie 

non-intrusive avec les capteurs vidéo et un scanner laser. Le but de ce projet est d’une part, de 

développer des outils pour détecter et compter les 2RM dans le trafic afin de produire des mesures 

pouvant être utilisées pour établir des statistiques relatives à la circulation des 2RM et d’autre part 

d’identifier les trajectoires des 2RM pour analyser les interactions avec les autres véhicules. Ces 

objectifs concernent à la fois la mobilité, l’exploitation de la route et la sécurité routière. Pour ces 

travaux de thèse, j’ai choisi un télémètre laser à balayage (scanner laser). Donc l’intitulé de cette 

recherche est «  La détection des deux roues motorisés par télémétrie laser à balayage ». 

Ce travail de recherche effectué dans cette thèse appliquée est divisé en deux parties : la détection des 

2RM et la détection des objets routiers par scanner laser. Le trafic routier en général contient des 

véhicules de nature et comportement inconnus, par exemple leurs vitesses, leurs trajectoires et leurs 

interactions avec les autres usagers de la route. Malgré plusieurs technologies pour mesurer le trafic, 

par exemple les radars ou les boucles électromagnétiques, on est incapable de détecter les 2RM à 

cause de leurs petits gabarits leur permettant de circuler à vitesse élevée et ce même en interfile.  

De plus, la technologie scanner laser n’est pas beaucoup explorée indépendamment pour détecter et 

compter les véhicules sur les routes urbaines ou autoroutes. On peut souvent trouver cette technologie 

sur les péages automatiques, lieu où la vitesse des véhicules n’est pas élevée. La plupart du temps, un 

scanner laser est fusionné avec une camera (ou un autre scanner laser) et le système est installé sur 

chaque voie de circulation, ce qui rend l’ensemble très cher. Notre but est de détecter et compter les 

2RM en utilisant un scanner laser mono nappe qui peut être installé sur un poteau ou sous un pont 

d’une hauteur quelconque.        

Dans le cadre du projet METRAMOTO, la solution proposée peut être intégrée dans un système qui 

serait installé sur une route au trafic aléatoire (dense, fluide, bouchons) pour détecter et compter des 
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2RM en temps réel. Donc le système doit être le plus autonome possible pour que les gestionnaires de 

route puissent le poser en toute simplicité sur la route.  

La méthode développée est composée de plusieurs sous-parties: Choisir une configuration optimale du 

scanner laser afin de l’installer sur la route. Ensuite une méthode de mise en correspondance est 

proposée pour trouver la hauteur et les bords de la route. Le choix d’installation est validé par un 

simulateur. A ces données brutes, la méthode de prétraitement est implémentée et une transformation 

de ces données dans le domaine spatio-temporel est faite. Après cette étape de prétraitement, la 

méthode d’extraction nommée ‘Last Line Check (LLC)’ est appliquée. Une fois que le véhicule est 

extrait, il est classifié avec un SVM et un KNN. Ensuite un compteur est mis en œuvre pour compter 

les véhicules classifiés. A la fin, une comparaison de la performance de chacun de ces deux 

classifieurs est réalisée. La méthode proposée reste un prototype et est testée sur les données 

télématiques du trafic réel.         
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General Introduction  
 

The safety of Powered Two Wheelers (PTWs) is important for public authorities and road 

administrators around the world. Official figures show that PTWs represent only 2% of the total traffic 

on French roads (2011), but as these figures are obtained by simply counting the number plates 

registered, they do not give a true picture of the PTWs on the road at any given moment. To date, there 

is no overall solution to this problem that uses a sensor capable of detecting PTWs and taking into 

consideration their interaction with other vehicles on the road (for example: Inter-lane traffic, when 

PTWs move in between two lanes on a highway), and no state-of-the-art technical solutions can be 

adapted to measure this category of vehicle in traffic (unlike Light Vehicles and Heavy Vehicles). The 

research in this domain has not therefore been greatly developed. This is an issue of concern. For this 

reason, the project METRAMOTO
1
 (Traffic Measurement of PTWs) was launched in November 

2010, which is a French ANR² Project and is certified by the research pole Mov’eo
3
. [w4][BURA13]. 

This PhD comes under the project ANR METRAMOTO and was carried out in collaboration with 

CETE Normandie Centre (Public Works Centre for Technical Studies: ERA 34), IFSTTAR (The 

French institute of science and technology for transport, development and networks) and LITIS 

(Computer Science, Information Processing and Systems Laboratory: Intelligent Transportation 

Systems EA 4108) and is financed by IFSTTAR and the Upper Normandy Region, France. This PhD 

officially started on 1
st
 October 2010. 

Our goal is to detect PTWs using a single plane laser scanner placed on a pole at a certain height, with 

the vehicles passing at various speeds on the road below it. The laser scanner provides information 

about the scanned area over a certain period of time.  

The main objective of this technical research work is to propose a prototype that is able to detect and 

count the PTWs in traffic. This prototype is meant to be integrated into a system that can be easily 

installed on a highway and can detect and count PTWs in real-time. Ideally the system should be self-

calibrating with respect to the installation site and be able to work autonomously for a long-term.     

To solve the problem stated above; this research work has been subdivided into several sub-problems. 

First and fore-most in order to detect the PTW, the characteristics of this category of vehicle that may 

help to distinguish it from other vehicles are determined. There are several technologies that count 

vehicles on the road. Using a single laser scanner was a predefined constraint, but using this 

technology to detect, extract, classify and count PTWs is an original task. This leads us to the second 

problem, which is the detection of vehicles using a single laser scanner. So, this dissertation is divided 

as follows: 
1
 

1. Motivation and Overview 

This part focuses on the general question of why there are so many accidents involving PTWs and 

gives some recent figures. Then the state of research focusing on PTWs is presented. After that we 

introduce the METRAMOTO project and the different technologies involved. This part also justifies 

our choice of a laser scanner over other technologies for the detection of PTWs. After that we define 

                                                      

1
 Agence Nationale de Recherche : www.agence-nationale-recherche.fr 

2
 METRAMOTO : www. projet-metramoto.fr 

3
 Mov’eo : Pôle de compétitivité : www.pole-moveo.org  
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the PTW and present the research work done to date for the detection of this category of vehicle. As 

we detect the PTW using a laser scanner, we present the state-of-the-art for the detection of objects on 

the road using a laser scanner. Once the object is extracted it must be classified by the different types 

of methods used. At the end, the technical and theoretical state-of-the-art for counting objects is 

presented.    

2. Data acquisition  

In this chapter all the steps followed to acquire the laser scanner data are described. To begin with, a 

justification is given for the choice of the laser scanner used for this research work. Then different 

ways to mount a laser scanner are presented and an optimal installation position is chosen taking into 

consideration the traffic of PTWs.  

To theoretically justify this choice of installation, a simulator has been implemented that shows the 

possible cases of occlusion of PTW in different traffic scenes.  

Once a laser scanner is chosen and an optimal position for its installation is determined, a method is 

applied, enabling the system to find the road verges and find its own height.  

For the data acquisition, the first database was constructed on a controlled site (controlled traffic 

behaviour). The main aim of this database was to understand the laser scanner data and validate our 

first approach. Then, the other database sets were constructed on different uncontrolled sites 

(expressway and motorway).  

3. Extraction and classification  

In this part, the procedure to extract information from the data is explained as follows:   

· Extraction: In this part a filter is created that is capable of minimizing noise linked to the 

artefacts and filling up the non measured data. Then a general pre-processing is done, i.e. 

changing the coordinate system and introducing an angle that compensates the possible slope 

of the road. The data obtained is then concatenated during a certain period of time in order to 

transform it into a spatial temporal domain. To this accumulated information a new extraction 

method is applied. This method is rapid and is made for the detection of PTWs in real-time 

and is adaptable to any situation present in the scene.   

· Classification: Once the object is extracted, the next step is to classify it. All the possible 

features of the object are calculated and then the invariant features are chosen as the 

parameters of the classifier. Once classified, we can count the vehicle according to the 

category found.    

4. Results and perspectives 

The method described in the previous part is applied to the databases (one controlled and two real). 

The results obtained are analysed, discussed and the perspectives of the research work are given.  

An overview of this research work in presented in the Figure 1.  
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Introduction  

In this chapter, an overview of the problem is given, highlighting the necessity for this research work 

and the work done to date for the Powered Two Wheelers (PTWs). As PTWs will be detected using a 

laser scanner, a brief introduction of this category of vehicle and the laser scanner will be given. This 

part also justifies certain choices such as the choice of the technology for this research work and the 

type of laser scanner chosen. The research work done to date for the detection of PTWs in traffic and 

the existing methods that use the laser scanner for the detection of objects on the road are presented.      

1.1. Problem statement 

The safety of Powered Two Wheelers (PTWs) is an important issue for public authorities and road 

managers around the world. Official figures show that PTWs are estimated to be only 2% of the total 

traffic on French roads, but represent 30% of deaths in road accidents [ONSIR11]. Over the past 10 

years there has been a constant increase in the number of PTWs on the road.  

1.1.1. Evolution in the number of PTWs 

For PTWs having a capacity of more than 50cm
3
, there is an estimated increase in their traffic by a 

factor of 6.7. Official figures show that the death rate of riders has increased to nearly 30% in 

2011[ONSIR11] in the past 10 years.  

 
Figure 2: Increase in the number of PTWs (>50cm3) [ONSIR11] 

Figure 2 shows a constant increase in the number of PTWs registered since 1970. The estimated 

figures cited above are obtained by simply counting the number plates registered. They do not give a 

true picture of the PTWs on the road at any given moment. 

With an increase in the traffic of PTWs, there is an increase in the number of accidents involving this 

category of vehicle. The main reason is that the PTW accidents do not share the same profile as other 

classes of vehicles. There are many factors that provoke these PTW accidents, such as loss of control 

on bends, more frequent overtaking, and due to its small size, possibility to weave in and out of lanes 

at high speed.  
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1.1.2. PTW Accidents   

 

 
Figure 3: The death rate and the traffic of each category of vehicle [ONSIR11] 

Figure 3 shows the death rate of motorcyclists when they are interacting with other categories of 

vehicles [ONISR11]. Here is a table that gives an overview of the accidents per category of vehicle 

depending where they occur during the years 2010 and 2011. 

 Total Rural Area Urban Area 

2010 2011 % 2010 2011 % 2010 2011 % 

Pedestrians 485 519 13 139 169 6 346 350 32 

Cycle 147 141 3 88 83 3 59 58 5 

PTW 952 980 25 557 599 20 395 381 35 

Light Vehicles 2117 2062 52 1829 1785 63 288 277 25 

Utility Vehicles 146 134 3 127 124 4 19 19 1 

Heavy Vehicles 69 67 2 68 64 2 1 3 0 

Others 76 60 2 51 43 2 25 17 2 

Total 3992 3963 100 2859 2867 100 1133 1096 100 

Table 1: Accident overview in past 2 years (2010-11) depending upon areas. [Source Sécurité Routiere France: Bilan 

2011] 

Table 1 demonstrates that in rural areas, PTW accidents represent 20% of all fatal accidents even 

though the number of accidents, since the past two years (2010 and 2011) has been quite stable. In 

urban areas this figure is even higher at 35% of the total fatal accidents. A study by ONISR in 2011 

shows that the PTW fatal accident rate depends on the weather conditions and the time of day. If it is 

sunny, people prefer to ride a PTW. At certain times of the day, the probability of encountering a PTW 

is higher i.e. more probability of PTW interaction with other categories of vehicles and hence more 

accident risks.  

This is demonstrated in Figure 4, which shows that accidents are more likely to occur during 

favourable weather conditions that provide good visibility and a better grip on the road, thus 

encouraging more motorcyclists to use the PTW. During the period from spring to autumn, a large 

number of convoys of PTWs can be easily seen on the highways. The higher number of interactions 

leads to more accidents. The graph shown in Figure 4 demonstrates the seriousness of the problem; it 

shows 0.09 PTW deaths/ hour, i.e. one death every 11 hours.  
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Figure 4: PTW mortality rate: relation with the climate and accident rate 

[GUYO08] presented a report in 2008 indicating that the existing data for the PTW are based merely 

on estimations, but have nothing to do with the real world. In other words there is a lack of 

information about this category of vehicle.   

1.1.3. Difficulties in detecting PTWs 

PTWs are not easy to detect as they are smaller than any other category of vehicle on the road. This 

smaller size helps them to travel anywhere in the traffic especially in the inter-lanes. This inter-lane 

practice results in PTWs being hidden from the sensor by another vehicle of relatively bigger size. 

Moreover, due to its small size, this category of vehicle can weave in and out of lanes at high speed, 

thus making its detection very difficult.  

The detection of PTWs in traffic would aid the road administrators to find the indicators relating to the 

use and circulation of this category of users. To our knowledge, there is no operational system that can 

collect accurate traffic data for PTWs although several solutions exist for other categories of vehicle 

(Light Vehicle (LV) and Heavy Vehicle (HV)). These indicators would help attain the following 

objectives: 

· Obtaining the statistics (number of PTWs in traffic). 

· Establishing the different routes frequented by the PTWs.  

· Adapting safety measures for PTWs. 

· Calculating the accident risk exposure of PTWs.  

 

In addition to detection, the trajectory tracking of the PTW would enrich our knowledge in:  

· Identifying and understanding the interaction of PTWs with other users on the road. 

· Evaluation of experimental impacts or safety measures taken by road administrators. 

 

There are many techniques used to detect or count the vehicles moving on the road, for example 

radars, magnetic loops, manual counting etc. These “classical” traffic sensors are unable to give the 

exact figures for the PTWs as they often travel in inter-lanes. Hence sensors such as magnetic loops 

installed on the road are able to detect the PTWs if and only if they pass over them. Moreover, the 

practice of inter-lane driving hides the two wheelers from sensors such as radars or vision cameras.  
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So, there is a lack of information for the traffic, mobility and the trajectory of the PTW. Moreover, 

there is not yet any solid industrial solution (except prototypes in the process of validation) to solve 

this problem, as is explained later in the chapter. So this research domain remains challenging and 

hence not often investigated [ONSIR11]. 

To date, there is no overall solution to this problem that uses a single sensor capable of detecting and 

counting PTWs in traffic. It is thus difficult to understand the interaction of PTWs with the other 

vehicles on the road and no state-of-the-art technical solutions can be adapted to measure this category 

of vehicle in traffic (unlike LVs and HVs) and so this is an issue of concern. 

1.2. Projects related to PTW safety  

The problem of PTW detection is not limited to France but concerns nearly all the countries around 

the world. This can be seen through the fact that countries like the US, Australia, China and many 

other European countries have built projects to find a solution to this serious problem.  

Here are a few projects that concern PTW security (terminated or in phase).     

Road safety / accidentology RIDER, Surmotori, 2RM, 2besafe 

Road safety / interaction – behaviour Simacom, SafeRider, Damoto, CSC-2RM, 

2beSafe, Watch-Over; NCHRP 08-81 

Road safety/ Motorcyclist safety Proteus, Biocasq, Damoto, PISa, counting 

motorcycles [VAND10], RIDERSAFE 

Table 2: Different PTW safety projects [w3] 

Table 2 shows different projects that concern PTWs especially in Europe. Most of these projects focus 

on the safety of PTWs, their behaviour in traffic and their onboard systems in case of accident but 

none of these projects uses a single sensor for the detection and counting of PTWs on highways. Here 

are the details of a few recent projects in Table 3. 

Project Name Objective Domain 

2besafe Enhance PTW safety including 

crash causes and human errors 

Road Safety, Rider safety 

SafeRider Study the potential of Advanced 

driver assistance information 

(ADAS)/ In-vehicle information 

systems (VIS) which are 

integrated in the PTW for the 

rider’s safety and comfort.   

Road Safety, Rider safety 

CSC-2RM Study the spontaneous driving 

behaviour of PTW riders in urban 

and suburban areas 

Road Safety, rider behaviour 

Damoto Develop robust and effective 

algorithms to trigger riders’ 

protective devices.  

Road safety, Rider safety 

Table 3 : Recent Projects concerning PTWs 

Table 3 shows all the recent projects that focus on the safety of PTWs, their on-road behaviour with 

respect to other categories of vehicles and the protective measures to be taken to improve the rider’s 

safety on the road. But none of the projects focus on counting this category of vehicle in traffic, 
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especially on the highways where the traffic is random and dense, hence the launch of the ANR 

METRAMOTO project.  

1.3. METRAMOTO  

For the reasons cited above, the French ANR METRAMOTO (MEasure de TRAffic des deux roues 

MOTOrisés) project was launched in November 2010 with the goals of finding the technological 

solutions for better integration of these vulnerable road users. These goals are as follows:  [BURA13] 

· To develop technical solutions to detect PTWs in traffic or to track and explore their 

trajectories. 

· To explore the statistical indicators for measuring traffic and the trajectory parameters.  

 

These goals will help to understand:  

· Traffic behaviour and PTW mobility.  

· The risks and interaction of PTWs with other road users.   

 

To study traffic, there are two big classes of sensors:  intrusive technologies also known as in-road 

sensors and non-intrusive technologies also called over-road sensors.     

· Intrusive technology: The sensors using this technology have to be embedded in the road, 

integrated by the road-side or attached to the surface of the road. There are several types of 

intrusive sensors, some of which are listed below:  

o Electromagnetic loops: They are one of the most commonly used sensors that are used 

to study traffic. An electric current is induced in the system and is transmitted as a 

signal when a vehicle moves on the loops installed on the road.  

o Passive magnetic or magnetometer sensors: They are installed by either permanently 

mounting them in narrow holes dug in the road or they are fixed to the road surface in 

some manner. The wires are buried under the road and connect to the base station 

processing unit which reads the electromagnetic data sent by the loop.  

o Pneumatic tubes: They are stretched across the road and are fixed at both sides. These 

sensors are very fragile in nature and hence are only installed temporarily as they can 

easily be damaged by heavy or fast moving vehicles.   

o Piezoelectric sensors: This category of sensor converts kinetic energy to electric en-

ergy. A voltage is generated when a mechanical impact or vibration occurs. This im-

pact causes the electrical charges of opposite polarity that appear in the inner and 

outer surface of the material to induce a voltage.  

 

· Non intrusive technology: This technology measures the data from a distance i.e. we do not 

need to interrupt the traffic to integrate the system on the road. In other words, these sensors 

are mounted either above the roadway or alongside the roadway. They include video data 

collection, infrared detectors, microwave radar detectors, ultrasonic detectors, passive acoustic 

detectors, laser detectors and aerial photography.  Some of these technologies are explained 

below:  
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o Video image detection: The video is captured by a camera installed by the roadside or 

overhead. This video is basically an accumulation of several pictures. There are 

several processing methodologies that allow the extraction of traffic parameters and 

also the analysis of the video data. 

o Infrared sensors: these sensors can be mounted overhead to view the approaching 

traffic or to view the vehicles from the road side. These sensors are light-sensitive and 

hence convert the reflected or emitted energy into electrical signals.       

o Microwave radar detectors: Low microwave radiation is projected into a detection 

zone. When a vehicle passes in this zone, part of these radiations are reflected back to 

the receiver. 

o Laser detectors: These sensors can be installed overhead or along the roadside and are 

often used to classify different vehicles passing underneath. They project the laser 

rays onto an object which reflects them back, fully or partially. Hence the distance of 

the object from the laser scanner can be calculated.    

o Acoustic array sensors: these sensors measure the vehicles passing at a certain speed 

by detecting their acoustic energy. A signal processing algorithm can be used to rec-

ognize the vehicular traffic in the detection zone through an increase in noise. When 

the vehicle leaves the detection zone, the sound energy level drops and the vehicle’s 

presence is validated. [GIBS10]. 

 

Out of these all technologies, four were chosen for the METRAMOTO project,   

· Intrusive  

o Magnetometer sensor  

o Hybrid sensor (Piezoelectric sensor + electromagnetic loops) 

· Non intrusive  

o Image Processing  

o Laser Scanner 

 

 

 

 

 

 



  Doctorate dissertation 2013 

 

 

 | CHAPTER 1: Motivation and Overview 13 

 

1.3.1. Comparison of technologies 

All these four technologies explored in METRAMOTO are commonly used today for vehicle 

classification, but none are used specifically to detect and count PTWs. However, each of these 

technologies has advantages and disadvantages. Table 4 shows a comparison:   

 Intrusive Non Intrusive 

Magnetometer Piezoelectric Image Processing Laser Scanner 

Strengths -Cheap 

technology to 

install 

- Insensitive to 

harsh weather 

conditions 

(snow, fog, etc)  

-Least expensive 

system in terms of 

capital cost and 

maintenance cost.  

-Can be used for 

higher speed 

ranges 

- Can monitor up 

to four lanes 

-Captures all traffic 

information that 

can then be 

verified by a 

human operator. 

- Enables the study 

of colour. 

- Textures can be 

studied. 

-Information 

available for longer 

period of time 

-Multiple detection 

and tracking 

possible 

Easy to add or 

modify the 

detection zone 

 

- Accuracy 

- Easy to install 

- Long range 

-Multiple detection zone 

possible  

- Day or night 

Operation  

- Cheap to use 

- Portability  

Weaknesses -Traffic must be 

stopped to 

install the loop  

-Unable to 

detect vehicles 

below a certain 

threshold 

-Not suitable for 

vehicles with 

relatively low 

metal content 

(PTW) 

-Not suitable for 

magnetic bridge 

decks 

-Traffic must be 

interrupted to 

install the system 

-Low life span (3 

years) 

-Cannot detect 

immobile vehicles 

 

 

- Shadows  

- Installation and 

maintenance, i.e. 

periodic lens 

cleaning, require 

lane closure when 

camera is mounted 

over roadway. 

-Performance 

affected by 

weather such as 

fog, rain, and 

snow; vehicle 

shadow projection 

into adjacent lanes; 

occlusion; day-to-

night transition; 

vehicle/road 

contrast; and 

water, salt grime 

and cobwebs on 

camera lens. 
-Affected by strong 

winds or vibration 

of the mounting 

structure. 

-Electromagnetic 

interference with other 

electronics  

- Reflected values not 

high enough with dark 

objects  

- Refraction by 

windshields  

- Sensitive to harsh 

weather factors (fog, 

snow)  

- Blind sensor. Needs a 

camera to verify the 

data 

- Maintenance, cleaning 

of lens     

-affected by strong 

winds or vibration of 

the mounting structure 

Table 4: Comparison of Intrusive and Non intrusive technology 
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  1.3.2. Choice of the technology  

For this research work a laser scanner was chosen because it gives very accurate measurements within 

the order of a few millimetres. As the laser scanner is small it is very portable and easy to install, 

unlike video cameras. The laser scanner has a long range (20 to 100 metres) and can scan easily at 

wide angles making it possible to scan multiple lanes at the same time. This technology is not light-

dependent i.e. it can scan as easily in day time as at night. With the laser scanner, there are no 

problems of shadows (cast shadows and self shadow) as in image processing techniques.   

As there is a great variety of laser scanner available on the market, we can have this technology at an 

affordable price. As the sensor is meant to be placed above the road, with this non intrusive 

technology, an interruption of traffic is not necessary to install the system.    

Moreover the laser scanner data is ideally based on a ‘lane-fit model’ which represents a road data; 

this model is updated at each instance of time t with a laser scan data containing the road conditions at 

time t. 

 

To understand the research work, we have to understand the object of interest. i.e. Powered Two 

Wheelers (PTWs). To begin with, a brief introduction to PTWs is given, the type of PTWs and the 

research work done to date for the detection of PTWs. Then an explanation of different types of laser 

scanners and different scanners on the market today is given. Finally, the state-of- the-art for the 

detection of objects using laser scanners is explained.  

1.4. Research work done for the detection of PTWs 

The main goal is to detect and count PTWs in traffic. The first step is to define the object of interest, 

which is the PTW in our case which comes in different shape and size and is easily seen on the road.  

After that, a literature search is carried out and the scientific and industrial methods found to date to 

detect this category of vehicle are presented.  

1.4.1. Definition of a PTW 

A Powered Two Wheeler (PTW) may be described as a mode of transport with two wheels and a 

motor. Administratively, the term PTW may be used to refer mopeds, scooters, and motorcycles; and 

commonly includes similar three-wheelers as well [ONSIR11], [SUBI09], [GUYO08], [GOUD11]. 

According to the registration, there are different subclasses of PTW:  

· Mopeds  

Mopeds and scooters are PTWs with a ‘stepthrough’ design, usually with an automatic transmission. 

The use of mopeds is generally restricted to low speed zones in urban areas as they have a maximum 

engine capacity of 50cc and a top speed of 45km/h.  

· Motorcycles   

Motorcycles in general are subdivided into two sub classes depending on their engine power.  
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o Light motorcycles  

This type does not exceed 125cm
3
 and has a power of 11 kW (15 Hp). This category 

contains bikes smaller in size and scooters 

o Heavy motorcycles 

This class of motorcycles exceeds 125 cm
3
 and can have a maximum power of 73kW 

(100Hp).  

They can be further subdivided into subcategories according to their use such as utility 

bikes, roadsters, sport bikes, trails, customs, road bikes and Grand Tourism (GT). 

However, there are a few exceptions that we also consider as PTWs or the derivatives 

of PTWs:  

- The side-car: As the name says, this category contains a side car next to the 

PTW. 

- The trike: This is a tricycle (3 wheels) with a huge cylinder and has a the back 

wheel larger than the front wheel.  

- The spyder: This is a three-wheeler which resembles a quad, but is not classed 

as a quad. It has a powerful engine and stable driving that makes it popular in 

the market.  

- The quad: The All Terrain Vehicle (ATV) or quad, is a four-wheeler that is 

used often for sport activities especially for racing in the muddy regions.  

With the variety of PTWs that come in variable dimensions, the order of difficulty for the detection of 

this category of vehicle increases. However, a few solutions for the detection of PTWs were found.  

1.4.2. Existing solutions  

Since most PTWs have a small number plate and the riders in many countries always wear helmets, 

the identification of a PTW or its rider becomes difficult. A few riders even remove their number plate 

and ride at a very high speed to avoid being caught and identified by the authorities. Hence for this 

category of vehicle not much research work has been done. However, a very few research papers 

proposing a solution to this problem were found. The research work found is divided in four parts 

based on the type of sensor employed: laser scanner alone, video alone, laser scanner fusion with a 

video camera and multiple sensors. 

1.4.2.1. Laser scanner 

[RIPO12] presented a method with a similar objective to our research work. The author used a laser 

scanner to classify and count different categories of vehicles (PTWs included). The data read by the 

laser scanner is processed by first correcting the geometric features measured by the sensor and then 

the static objects are eliminated. The non measured values are filled by taking into consideration the 

size of the cluster of these values. If it is a single value, then it is filled with the neighbourhood values. 

If the whole set of values is missing, then the author suggests leaving it like this. The extraction is 

done by a depth data normalization process. The information gathered by the laser scanner is isolated 

in a matrix. The extracted vehicle is contained in this matrix and is classified using a decision tree. 
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This method was used on real traffic with laser scanner placed on a traffic light pole. So all the 

vehicles were moving at a very slow speed thereby increasing the chances of detection. The laser 

scanner was installed for 6 hours and the result is presented with a total of 972 vehicles: 51 PTWs, 675 

LVs, 178 Vans, 44 trucks and 24 buses.  

The research work proposed by [RIPO12] is a general counter and does not target only PTWs. The 

method needs a minimum of 20 consecutive scans to validate the presence of a vehicle. The author did 

not explain the method (pre-processing, processing and classification) in detail and hence it cannot be 

reproduced easily. The problem of occlusion is discussed but no solution is proposed to overcome this 

problem. No information is given about the autonomy and the calibration of the system.   

What differentiates this work from ours is that in our case, the laser scanner is mounted on a highway 

where the traffic density and the traffic speed is very high (around 100 km/h).On a highway most of 

the time, PTWs do not respect the speed limitations and often move in a random way. On the other 

hand, [RIPO12] proposed to install the laser scanner on a road around a traffic light thereby limiting 

the PTWs’ trajectory and speed thanks to the traffic lights.  

1.4.2.2. Video 

[KANH10] proposed a background subtraction method and a simultaneous tracking through a Kanade-

Lucas-Tomasi feature tracker (KLT). These two results are then combined and used into a foreground 

mask, thus extracting the data from the video. The method detects PTWs with an error of around 6% 

which is due to semi or full occlusions caused by heavy traffic situation.  

[KU08] connected the components present in the image sequence and then calculated the length/width 

and pixel ratio of the vehicles present in the scene to detect PTWs. The results were presented with 

different climatic and luminosity conditions. The authors showed the detection of PTWs in heavy 

traffic with an overall rate of 85%.  

[PAUN10] proposed a method for the detection of license plates of vehicles on the Indian roads. The 

traffic in India is well known to be quite random and the license plates do not follow a particular 

format of presentation. The authors used an RGB camera for the data acquisition. First of all the 

variance of the input image is determined; if it is more than a certain threshold, then edge detection 

and region extraction are done. Then processing is done by Gaussian analysis which is followed by 

connected components analysis. Once the connected region is extracted, a number plate extraction 

filter is used. This method was tested on static traffic and on several vehicles, but does not give exact 

figures about the PTWs’ number plates. The problem is not the same when the traffic is dynamic as 

the complexity increases.      

[PHAT09] used multiple cameras (vertical and horizontal) to extract multiple geometrical features for 

the neural networks. Then multi-filtering is carried-out to approximately locate the PTW (present in 

the scene) and confirm its number plate. This method was tested on real city traffic and gave an 

overall correct detection rate of 93.2% for PTWs, 93.33 % for the PTWs with license plates and 87.23 

% for the PTWs without license plates.    

1.4.2.3. Video and a laser scanner 

[NIKN11] proposed an embedded real time system for detecting and tracking all types of objects on 

the road by a combination of laser scanner and camera. A laser scanner is used to calculate the 

distance between the object and the sensor, thus generating a 3D laser-map which is used as a priority 
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to generate objects. A particle filter is used on this laser-map to track the vehicle. Once the vehicle is 

tracked, a combination of a latent support vector machine (LSVM) and histograms of oriented 

gradients (HOG) is done for the classification. The system is mounted on a moving vehicle. The 

authors gave an overall detection rate of 96.7% but did not give a separate detection rate for PTWs.  

1.4.2.4. Multiple sensors 

[COIF10] installed multiple laser scanners on the side of a vehicle that was parked on the highway 

side. The side profiles of the vehicles were studied. Factors such as length and the number of laser 

points representing vehicles were used as criteria to classify vehicles.  

As noted earlier, PTWs move most of the time in between the lanes, hence occlusion is observed and 

in this paper, the authors have discussed the problem. The PTWs were detected in traffic but at a very 

low detection rate of 77% due to the occlusion.  

A prototype of a PTW classifier is presented by [GIBS10] that uses a multi-instrument sensor 

designed to detect cyclists at intersections. The sensors are mounted on the road side and include an 

infrared visible light stereo camera, an infrared thermal camera, and an acoustic sensor. The system is 

installed at the intersections. The infrared thermal camera first tries to detect a bicycle. If it is not a 

bicycle, then a stereo vision camera is used to verify whether it is a PTW or a light vehicle. If it is a 

motorcycle, then an acoustic sensor is used to classify the type of motorcycle (Light Motorcycle, 

Heavy Motorcycle, Scooter, Moped). This method was tested on a database of 45 vehicles which is 

very low to obtain a correct efficiency of the system. Moreover mounting a system at an intersection 

on the road side may create occlusion and this problem is not even discussed in the publication. In a 

recent publication, [LING13] used the previous work proposed by [LING12] and applied it on a larger 

database, hence achieving a detection rate of 90% with 3% of false alarms.  

[SCHL11] installed a sensor on the PTW. A roll angle (angle between the road and the slanted 

vehicle) is calculated by using gradient orientation histograms. This could be helpful in estimating the 

riders’ behaviour in traffic. 

[MIDD12] did a global comparison of different technologies for the detection of PTWs. The author 

presented the following technologies: 

· Loop/Piezoelectric  

· Magnetometers  

· Multi-technology system  

· The Infrared Traffic Logger (TIRTL)  

· Traffic vision video system  

These technologies were not all treated on the same database and the results presented were 

incomplete with no scientific explanation of any technology. What makes this publication important 

for us is the fact that the author did not discuss about the laser scanner amongst all these technologies 

presented in his work thus giving another proof about the originality of our work.  

[YU10] presented a report on the evaluation of different non intrusive technologies for the 

classification of different categories of vehicles (including PTW) at the freeways. The author 
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compared three different sensors such as Autoscope which is a length-based classification sensor with 

video imaging technology, a TIRTL which is a 15 class axle-based classification sensor with active 

infrared technology and a HD SmartSensor which is a length-based classification sensor with 

microwave radar technology. The results were presented lane by lane for each technology. However 

the number of PTW in the database is not significantly high to show interesting results. 

[MING10] did a similar approach as [YU10] using different sensors to evaluate a variety of traffic and 

environmental conditions on the freeway. Urban traffic conditions were taken into consideration such 

as heavy congestion with varying weather and lighting conditions. Five different sensors were used 

such as Wavetronix SmartSensor HD (Radar), AxleLight (lidar), GTT Canoga Microloops 

(Magnetometer), TIRTL (Infrared) and Miovision (Camera). No official figures were given for the 

PTWs in the report but they state that the PTWs were detected.  

1.5. Research work done to date for laser scanners 

 

The first use of the laser scanner for the detection of obstacles was around 25 years ago [HOFF86], 

[OLIV87]. Since then, several articles have been published, each of them presenting their own ideas 

and new approaches to get the best possible results. At the beginning of the millennium this laser 

scanner presented a problem of calculation time, but in recent years the technology of laser scanner 

has developed and this problem of calculation time has been overcome.  

 

Today, different laser scanners are used in many domains such as aeronautics, road safety, robotics, 

medicine, sports etc. For this section, we shall be focusing on the road safety domain as it is in the 

field of our research work (detection of PTWs). 

 

This subchapter is divided into several parts: To start with, a brief introduction to the laser scanner is 

given. Its principles and techniques are described, along with the different technologies used by laser 

scanners, and a few existing laser scanners in the European market are listed. Then in the second part 

different technical and scientific applications are presented. The technical applications signify the 

applications that have been employed on the road to classify vehicles while the scientific applications 

are those used in research laboratory (not necessarily employed in real time) dealing with road safety. 

  1.5.1. Principles and techniques 

A laser scanner uses infrared light source to read objects and can be used on a wide variety of target 

(plants, fields, aerosols, clouds, non-metallic objects or even targets as small as a single molecule). 

This technology has been extensively used in atmospheric research or in meteorology such as NASA’s 

projects, or on an airplane or a satellite to map an environment. Before going into detail, it is important 

to know the definition of a laser scanner. 

1.5.1.1. Principles of the laser scanner 

A laser scanner uses an infrared light with wavelengths ranging from 0.25 to 10 micrometers. The 

reflections can be read from non-metallic objects and surfaces, all the way through aerosol mists, and 

clouds. Due to a high precision, this technology has been used in meteorology research, traffic analysis 

and satellite mapping applications [COLV11]. 
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Figure 5: Time of Flight principle. d is the distance [COLV11] 

Table 5 shows an example of different technologies that use an active (optical) laser scanner. 

Application Technology explored 

Triangulation Nautical industry, dentistry 

Interferometers Shape measurement system (symmetry check), 

Terrestrial laser scanner (monitor snow covered 

peaks) 

Time of flight (Tof) Traffic (barriers, parking), security system 

Structured lightening Facial detection, automotive industry 

Stereo analysis Medical field, Space 

Table 5: Different technologies using various laser scanner applications 

Table 5 resumes all the techniques that laser scanners use and the corresponding technologies 

explored. Using different principles, laser scanners can be distinguished as follows:   

· Rotating beam projection device: This category of laser scanners projects rays to the 

environment with a certain angular frequency and a certain range. They can have a single laser 

beam or multiple laser beams. If the rays find any limit (obstacle), they are reflected back to 

the laser scanner, thus giving the coordinates of the obstacle. Two examples of this type of 

laser scanner are SICK LMS1xx (Single beam) and SICK LMS5xx (Multiple beams). 

· Light curtain and multiple light beam device: There are two rod type sensors placed parallel to 

each other projecting multiple beams to each other. If an obstacle passes in between these 

rays, the silhouette of the obstacle is formed and noted. An example of such a laser scanner is 

SICK IP69K.  

· Fusion of multiple single-layered laser scanners: They have the same principle as that of a 

single light beam device, but in this case, multiple laser scanners are combined with each 

other to produce multiple planes and multiple visions. An example of such a device is SICK 

TIC102 which is a combination of two LMS111.  

One of the objectives of this research work is to find a solution that is simple, robust and the cheapest 

possible. Combining multiple sensors might prove interesting, but a laser scanner like TIC102 is 

designed to obtain information for one lane at a time. This means that for a four-lane highway, four 

TIC102 sensors are needed which lead to a very expensive solution. Whereas the light curtain device 

is suitable for a single-lane highway as in case of multiple lanes, if more than one vehicle passes 

through the curtain at the same time, then occlusion can be observed. As PTWs often weave in and out 

of the lanes, so they will not be visible to the sensor. Hence this type of sensor will not be useful to our 

case. 
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Today, the laser scanner is applied in many systems used in the field of geology, road surveys, for 3D 

measurements (mining, robotics), sports, construction, the army etc. These devices are very compact 

and are operational either indoor or outdoor. Many manufacturers have developed systems allowing 

new applications easily available. Here are a few working principles of the laser scanner. 

1.5.1.3. Different working principles 

In today’s world, laser scanners are based on several working principles. Each principle is used in 

different technologies as follows: 

Laser scanners have numerous advantages such a high angular resolution because of their short 

wavelengths, a higher signal to noise ratio that helps measure long distances with precision at an 

affordable price, light weight and mobility. Laser scanners acquire data in different ways, as shown in 

the chart below in Figure 6. 

 
Figure 6: Different acquisition applications [BERG04][FUMA11] 

The basic goal of this part is to choose the right type of laser scanner that can be mounted easily above 

the road and will not be easily affected by climatic conditions such as change in temperature, rain, fog, 

etc. Some of the different techniques for calculating distance, depending on the applications 

[BERG04][OHTA04][FUMA11] are: Phase Difference, Doppler, Interferometry, Triangulation and 

Pulse Timing or Time of flight (Tof). 

· Phase Difference uses a carrier wave that is modulated at different wavelengths. As the name 

suggests, the phase between the transmitted signal and the received signal is determined and 

the distance can be calculated in terms of an integer number of wavelengths and a fraction of a 

wavelength which is determined by the comparison of phase. This technique helps to calculate 

distance with a high precision, but is very sensitive to a sudden change in environment such as 

luminosity and of course in the real-time traffic scene, PTWs travel with random and fast 

speed, the environment is prone to random noises linked to the environment. Moreover this 

type of laser scanner returns non defined values (error values) if the laser beams does not find 

any object in its range.    

One of the prominent manufacturers using this technology is Lecia [w6] and for traffic 

measurement, such laser scanners are very expensive. They are not very suitable for our 

research work, however, firstly because we are working on the reconstruction of traffic which 

is very random and prone to noise. |NEJA06][PFEI07], secondly because we need a system 
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which is not expensive to use and thirdly we needed a scanner very commonly used for the 

traffic classification.  

· The Doppler technique compares the received frequency with the transmitted signal as a 

function of time. This change of frequency helps to calculate the range between the receiver 

and the observer. The technique is used in some of the earlier satellite positioning systems. 

However, it measures relative positions and does not give the absolute measurement. Hence, it 

is not very adaptable for our research work. 

· The Interferometry method measures small distances with a high accuracy in micrometres. 

The measurement area, however, is relatively small and it is necessary to strongly stabilise the 

laser frequency, so this type of laser scanner is best used for indoor purposes only. 

· The Triangulation method is used by the sensors having a laser, a detector and a lens placed 

before the detector. The laser beam is emitted onto the surface of an object and is then 

reflected back to the detector through the lens. Depending on the position of the reflected 

beam on the detector, the angle is calculated and therefore the height of the object from the 

sensor can be known. This method can measure distances with a high accuracy, resolution and 

speed. However, it can be affected if the target surface is irregular or susceptible to 

interference and also the laser beam can be dangerous. In a traffic scene, the vehicles present 

(PTWs, LVs, HVs, etc) may have irregular shapes with shiny surfaces and thus may generate 

false values. Triangulation therefore may not be adaptable to our research work 

[FRAN05][NEJA06][PFEI07]. 

· The Pulse timing method is based on the principle of measuring the time that the signal takes 

to do a round trip from a laser scanner to a reflective surface. When the system emits a laser 

pulse towards a fixed target, it triggers a chronometer at the same time. The pulse reflected by 

the target, reaches the laser scanner, and hence stops the chronometer. As the speed of light is 

constant and the time of the journey to and fro is known, the distance d is finally given by the 

simple relationship:  

        d =                                                           (1.1) 

where c is the speed of light and ∆T is the time taken by the rays to do the round trip. The 

value is divided by 2 to get the distance between the sensor and object.  

A laser scanner using the Tof technology was chosen due to its numerous advantages. The 

computation time is the shortest since this system only requires a single measurement to determine the 

distance. The value measured is very precise. The technology is used in Radars, Loran, Satellite 

Altimetry, Airborne Radar Altimetry, Lunar Laser Ranging, Lidars, etc. and is the most suitable for 

our case.  

Before discussing the methods proposed in different research studies on the sensor, a brief summary of 

the different brands of laser scanner existing in the European market and used for traffic measurement 

is given below in Table 6. Scan rate is the number of scan points obtained per second. Scan angle is 

the maximum angle of scan. Max range is the maximum range till which the scanner can scan.  

 

 

 



Doctorate dissertation 2013 

22 CHAPTER 1: Motivation and Overview |  

 

Brand Model  Angular 

resolution  

Scan rate 

(pts/sec) 

Scan angle 

(°) 

Min Range 

(m) 

Max Range 

(m)  

Lecia Scan station C5 0.5° to 1.5° 25000-50000 360 Hori. 

270 Vert. 

0.006 300 

 HDS 7000 NA >10000 360  180 

 HDS 8800 NA 8800 360 0.1 2000 

Hokuyo UTM 30 LX 0.25° 1000 270 0.01 30 

SICK LMS 1xx 0.5° to 1° 2500-5000 270 0.5 20 

 LMS 2xx 0.25° to 1° 500-2000 180 0.5 80 

 LMS 5xx 0.25° to 1° 2000 190 0.7 65 

Table 6: Comparison of laser scanners. *Scans in a straight line 

1.5.2. Applications  

When it comes to the detection of moving objects using a laser scanner, the main problem is that the 

detection and classification depend on the type of object and the environment in which the laser 

scanner is placed. The main difficulty is dealing simultaneously in the scene with both static and 

dynamic objects having variable speeds. This is a general problem in our case as well. For example, in 

the city of Paris, traffic jams are a regular problem but these jams do not affect the circulation of 

PTWs as they move in between the immobile vehicles.  

A lot of work has been done in detecting objects with a laser scanner. Our research work focuses on 

both the technical and the scientific aspects of the road safety applications of these laser scanners. This 

section is subdivided into two parts: technical applications and scientific applications.    

The technical applications section details different systems using laser scanners that are functional, 

working in real-time and are deployed on roads, while the scientific applications section explains the 

research (conference / journal) publications or laboratory prototypes for vehicle detection, pedestrian 

detection and 3D road reconstruction.  

1.5.2.1. Applied applications 

Here are a few applications that are employed today on the road for the detection of vehicles with the 

aim of improving road safety:  

· Electronic toll plazas: Laser scanners are mostly installed above each lane of the toll plaza and 

activate an automated vehicle identification system. This type of toll plaza can be seen on 

most of the motorways in France.  

· Dimension detectors:  For safety reasons, laser scanners are used to detect the dimensions of 

vehicles passing through tunnels. Some examples can be seen at the entrances to the Fréjus 

tunnel in the south of France, to the A13 tunnel near Paris and usually at the entrances to car 

parks.     

· Speed monitoring and inter-vehicular distance calculators: This system consists of a laser 

scanner at the side of the road that scans the passing vehicles’ profiles. This helps the system 

to estimate the speed and to find inter-vehicular distances [w5]. 

· Counters: Laser scanners are also used as counters on the road, for counting vehicles and 

pedestrians [Tana10][Furs00][NIPO12][w5].  
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· Heavy vehicle eco-tax calculator: This is an association of multi-sensors which is used in 

France for detecting and taxing heavy vehicles.  

Here are a few industries and industrial products that use laser scanners to count different vehicles and 

are quite well known in the European market.  

· ECTN proposes two SICK single-laser scanners (LMS111) for each lane. One is 

perpendicular to the road, the other at 45° to the normal.  The 45° position widens the laser 

beam projection, thus increasing the scanning region. This combination of two laser scanners 

is named Traffic Information Collector (TIC102). The technology is said to classify up to 28 

different classes of vehicles.  

· OSI optoelectronics propose automatic traffic detection sensors used mainly in tolling and 

traffic management. The system placed alongside the roadway scans the side profile of the 

vehicles, as they pass through the laser field. The system detects, classifies and provides an 

axle count for each vehicle.   

· TagMaser manufactures a Load Volume Scanner (LVS) to measure load volume without the 

need for weight to volume conversion. This helps to count heavy vehicles.  

· Sensorio is a Belgium-based company, specialised in Doppler-effect laser technologies. They 

offer solutions for detecting height, width, speed and occupancy of vehicles at toll plazas.  

· ADEC Technologies is a Swiss-based company offering several traffic detectors for better 

traffic management [ADEC12]. 

· At the end of 2012 in Vancouver, Canada, Egis and Sanef opened the world’s largest toll plaza 

without any barrier, called the free flow [LEMONITEUR13]. This plaza uses a combination 

of several sensors and is said to have just 3% of detection error.   

o When a vehicle passes under the system, it is recorded by infrared cameras and laser 

scanner analyzes the vehicle’s geometry (length, width and height).  

o Then the magnetic loops confirm the class of the vehicle (LV, HV etc). The vehicles 

are taxed according to their category by an automated vehicle card reader.  

o At the end, the rear number plate is recorded by the cameras to confirm the presence.  

· AutoSense offers several traffic solutions such as AutoSense 600, AutoSense 700, AutoSense 

815 which are overhead detection and classification systems using a sensor with a class 1 (safe 

to human eye) laser scanner and are often found on toll plazas. A single sensor uses a two-

beam infrared scanning laser with a beam separation of 10 degrees.  

· The Sherlock sensor: This laser radar is an overhead traffic profiler that detects, classifies, 

counts and gives statistical information about the vehicles passing underneath. The laser 

scanner scans up to 500 times per second and the system uses a six-beam sensor that covers 

the entire lane width. 

· The 842-Overhead Vehicle Presence (842-OVP) sensor is an infrared passive sensor installed 

at a certain height of 4 to 6 metres above the highway. 
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· ClassGard is an Automatic Vehicle Classification (AVC) system proposed by a San-Diego 

based company named TDS. The system uses a combination of laser scanner, Doppler radar, 

axle detector and cameras. 

· EFKON AG has proposed an Electronic Toll Collection (ETC) for the enforcement of non-

intrusive payment solutions. This Austria-based company proposes several traffic solutions 

that are used by many Asian and European countries.  

1.5.2.2. Research applications: Vehicle detection 

 

On a highway, several categories of objects can be seen such as Light Vehicles (LV), Heavy Vehicles 

(HV), Powered Two Wheelers (PTWs), and non-vehicular objects such as pedestrians but at the same 

time we come across different lanes, footpaths, poles, trees etc. To make roads safer, much research 

work is done on the detection of vehicles, of pedestrians as well as of lanes (lane borders, white lines, 

etc) and on the 3D route reconstruction, etc.    

One of the first articles found for our research, was published in the 1980’s [HOFF86]. Since then, 

there has been an immense change in technology; the demand and the approaches are no longer the 

same anymore.  

Laser scanners can be used in several ways. They can either be mounted on a moving vehicle (thereby 

becoming dynamic sensors) or can be static (at the side of the road or on a pole). Dynamic laser 

scanners are most commonly used in the research for the detection of obstacles in front of the vehicle. 

Usually, multiple laser scanners are combined with a camera and the system is mounted on a vehicle 

[MICK10][BARG08][IZRI04][STRE04][TYPI08][WU96]. Static laser scanners are used when the 

environment must be studied from a fixed point [MEND04b][SPAR01][SALO11][DIEW11].       

   

The scanned information about the environment is represented in the form of a laser data map, from 

which the data must be extracted. There are four approaches to this data extraction: The cluster based 

approach, the signal analysis method, the motion based approach and the map based method. 

 

· Cluster based approach 

 

The cluster based approach involves the use of clusters of points representing the environment. 

[BARG08] used a vehicle mounted with several laser scanners working independently on highways 

and in urban centres. The authors studied the geometrical configuration of objects and also occlusion, 

in order to distinguish the vehicles present in the scene. [IZRI04] used an omni-directional vision 

sensor together with a laser scanner mounted on a vehicle. The authors aligned the laser scanner points 

with a closest to each other (Algorithm of Duda-Hart) and created several clusters. These clusters were 

then filtered by eliminating the segments of small length but the method is time-consuming and cannot 

distinguish multiple objects. The idea of introducing boundary boxes [DIET01][FUER02][STRE01] 

proved to be quite useful to gather the pixels belonging to the same class (clustering) of object. These 

boundary boxes were calculated by the using the inter distance between the clusters present in the laser 

scanner image. [ABDE01] gave the idea of calculating the width and height of the vehicle while it is 

passing under the double rayed beam scanner but this method fails in variant climatic conditions. 

[XIAN01] proposes to process the laser scanner data by thresholding and clustering and then merging 

the current laser scanner image with the previous one. To avoid collisions, [MEND04b] integrated an 

algorithm into a cybercar by using a voting scheme involving several properties of objects to 

distinguish objects; and a Kalman filter was used to increase the tracking performance. 
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· Signal analysis method 

 

The signal analysis method uses only signal processing techniques to study different signal output 

obtained after applying different filters. In a collision avoidance system, [DIEW11] used automotive 

radar sensors to identify near-collision situation. The author presented a signal processing method 

(Shannon’s theorem, filters such as Chebychev Filters, FFT) to extract information about the driving 

environment. 

 

· Motion based approach 

 

This approach involves detecting and studying moving objects whose positions vary in time. 

[HIRA03] presented the line-scan method which is quite robust for light sensitivity but is not efficient 

when it comes to occlusion. [MONT07] proposed a linear Kalman filter method to segment objects 

which are then associated with other segments in order to extract objects from the scene. [LEFA02] 

used the quadratic motion models to define the environment, and then estimated the probable motion 

between two successive images with a gradient-based multi-resolution robust estimation method. 

[KAST11] presented a novel way to detect moving objects using a laser scanner to provide the 

direction and speed of the objects with 3D-measurements of the current surrounding environment, 

called 3D-Warping. The overall system can be divided into four main parts. The first one handles the 

raw data, where noise and systematically inaccurate measurements are eliminated. In the second part 

segmentation clusters the relevant segments in order to satisfy the global and local conditions that 

correspond to specific features. Then, the feature extraction is carried out.  In the third part, 3D-

Warping is applied through an intersection analysis to combine the same segments between the two 

consecutive time-steps t and t − 1. Finally, in the fourth part a temporal stabilization is carried out. 

 

· Map based method 

This method involves a study of 3D maps using information directly from them. [ROBE00] performed 

map-matching on the terrain map and then found the group of obstacles by calculating the slope of the 

terrain. [AYCA11] described an approach for intersection safety. The laser scanner data was extracted 

by using a local grid map and then the vehicle present in the map was localized by using each 

individual laser beam. [ZHAO11] used a multi-laser sensing method to process tracking with a 

trajectory association algorithm. This method used the relationship between a graph-based trajectory 

labelling algorithm and an EM-based trajectory parameter optimization algorithm. [GOYA08] 

combined the laser scanner data and a camera image in order to study the data histogram and then used 

a geometric tri-dimensional model to define the vehicles. [PAGO11] recreated a motor vehicle 

collision scene from a 3D traffic data using the laser scanner to analyse the dynamics of such events. 

[WU96] combined a camera with a laser scanner to obtain the information given by both sensors using 

Dempster-shafar rule of combination.  

1.5.2.3. Scientific applications: Pedestrians 

 

Pedestrians have certain features in common that are similar yet distinctive such as legs, hands, faces 

etc. For a laser scanner, pedestrians on the road are obstacles sometimes static sometimes dynamic. In 

this literature, the detection of pedestrians is divided into two main approaches: signature based and 

motion based. 
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· Signature based approach 

 

This approach involves a study of the distinctive features that describe pedestrians. [CHEC08] 

detected pedestrians through a four-plane laser scanner mounted on a car. The authors defined a 

signature for the pedestrians which helped them to distinguish a pedestrian in the environment. The 

segmentation was done with a Parzen window. [XAVI05] used the legs as a distinctive feature 

detected with a single laser scanner. Legs were detected by geometrical relations and the pedestrian 

profiles were detected with a recursive line-fitting method. The system was mounted on a robot and 

the tests were conducted in an indoor environment. [FAYA08] used a multisensory system and 

proposed to exploit geometric features in order to quantify the confidence in the detection process. 

This confidence was updated by a transferable belief model framework. [MEND04a] suggested 

aligning the bounding box in the estimated direction of a travelling object. Due to occlusion people’s 

legs or walls were seen in the form of broken segments which were merged by using an inter-distance 

threshold.      

 

· Motion based approach 

Pedestrians may be defined as objects with random movement. This approach involves those methods 

that either use motion as criteria or use spatial-temporal information. [GATE08a] proposed a recursive 

method to estimate the true outlines of every tracked target using a set of segments defining the 

moving obstacle. A Parzen kernel isolates the pedestrians and then a decentralized fusion was carried 

out. [FURS00] thought of using a high resolution multilayer laser scanner with a 180° horizontal field 

of view. Based upon the new data, an ego motion is estimated to detect the pedestrians. [GEIG11] 

built 3D maps from high-resolution sequences in real-time. A sparse feature matcher in conjunction 

with an efficient and robust visual odometry algorithm is used by combining efficient stereo matching 

and a multi-view linking scheme to generate consistent 3D point clouds from a laser scanner.  

1.5.2.4. Scientific applications: 3D Route Construction 

The construction of route in three dimensions is one of the important road safety applications of laser 

scanners.  

[GOUL06] reconstructed a route by using a laser scanner and a GPS. The laser scanner which gives 

the raw data is mounted on the vehicle whose position is known through the GPS. The fusion of these 

two information sources helps to construct road models.   

In a similar research work [BRUN07] used a combination of a laser scanner and a fish-eye camera to 

reconstruct an outdoor environment. The camera adds the notion of colour to the environment scanned 

by the laser scanner, thus generating a 3D colour textured model of the environment around the 

vehicle on which the system is mounted.  

[HERN09] proposed an automatic method of filtering and segmenting a 3D cloud obtained by a laser 

scanner. The filtering helps to remove the artefacts while the segmentation helps to extract the contour 

between the road corner and the route.  

[TARE12] compared two methods to calculate the inter-vehicular distance using a 3D generated map. 

The first approach used a terrestrial mobile mapping laser scanner, while the second used the views 

taken by the two digital cameras mounted on a vehicle.  
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Conclusion  

In this chapter a general problem is stated. The number of fatal accidents for this category of vehicles 

(PTWs) is high and needs attention. It is not easy to directly employ different measures to increase the 

safety of PTWs unless these vehicles are first detected. Although there are several projects around the 

world trying to find a concrete solution to this problem, no valid technical solution has been found to 

date.  

Even the different method and state-of-the-art techniques using a laser scanner for the detection of 

vehicles do not meet requirements. Although, a few solutions have been proposed by industrial actors, 

they are very expensive and have not proved to be sufficiently robust for the detection of these small 

vehicles on a large database. However, one study [RIPO12] has been found that does count all types of 

vehicles (PTWs, LVs and HVs) but in very slow-moving traffic and without provide detailed 

statistical validation for the different categories of detected and non-detected vehicles. Hence there is 

still an urgent need to implement a robust method for detecting and counting PTWs in different traffic 

conditions.  

This justifies the report by CERTU [ONSIR11] stating “No concrete research work is has been carried 

out for the detection of PTWs on urban highways”. Moreover to our knowledge, there is no research 

project, that solely concentrates on this problem, which is why the METRAMOTO project was 

launched in 2010.  

The main objective of METRAMOTO is to detect and count PTWs on a highway. The proposed 

solution for this project is intended for use by road administrators. The solution should therefore be 

cheap, easily deployable on the road, should be as autonomous as possible and should be robust to all 

the artefacts such as climatic conditions, air turbulences generated by fast moving vehicles, etc. For 

this research work a laser scanner was chosen out from the four technologies proposed by the ANR 

METRAMOTO project.  

The originality of our work is to detect and count PTWs moving at all the speeds likely to be 

encountered on an urban highway.  

The next chapter will describe the laser scanner that was chosen to meet all the objectives of 

METRAMOTO. Before installing the scanner, an optimal position for it was chosen by a simulator. 

Using this scanner, different databases were constructed with real traffic to help us understand the 

laser scanner data and the different challenges presented by the traffic passing under the system.  
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Introduction 

To construct the database, it is important to understand the difficulties that exist for the detection of 

PTWs. Figure 7 shows an example of classical PTW behaviour on the road. We can see that the PTWs 

are riding between lanes, a common practice with this category of vehicles. 

 
Figure 7: Example of classical PTW inter-lane traffic 

It must be noted that for several reasons PTWs are not easy to detect: 

· Small size: This category of vehicle is smaller than any other category of vehicle enabling 

them to move in between two other vehicles (inter-lane) and at a high speed. 

· Inter-lane practice: A study conducted by IFSTTAR showed that PTWs travelled on average 

85% of their total trajectories on inter-lanes in Paris [AUPE11].   

· Occlusion: As they are small and are often between lanes, they are often occluded by the 

vehicles around them.  

The database was created on a controlled site and a real site. By controlled site, we mean that the 

traffic was controlled, with controlled speed profiles and all the safety norms were taken into account. 

The real site consists of a highway on which several vehicles of different categories move with 

variable speeds. Before discussing the database, it is very important to justify the choice of the laser 

scanner along with the properties of the scanner chosen. In the second part, the profile of the road on 

which we want install the system is discussed. There are several ways to install a laser scanner. To 

make a choice of installation, several factors such as road profile, the type of traffic and the behaviour 

of the vehicles of interest have to be taken into consideration. Hence, the third part justifies this 

choice. Once the system is installed, data coherence is done which is detailed in the fourth part. The 

fifth part then gives details about how the database was constructed on a controlled site and on the real 

site. Before constructing the database, an optimal position of the laser scanner is chosen by the means 

of a simulator.   

2.1. Simulator  

The main objective of the simulator is to find the position where the laser scanner should be placed, on 

a gantry, in order to scan as much information about the traffic as possible. This optimal position 

corresponds to the position where the probability of encountering occlusion on the real site is minimal. 

This step will help the road administrators to choose the laser scanner position before going to the real 

site, hence saving time.   
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To better explain the simulator, this part is sub-divided into several subsections. The first subsection 

states the problem. The second subsection details the situations (number of lanes and possible 

positions of the laser scanner) that are taken into account. The third subsection presents the generation 

of laser scanner data through the simulator. The fourth subsection focuses on the type of traffic that is 

observed for the simulator. The last subsection explains the results and gives different propositions to 

get the best possible occlusion-less data.    

2.1.1. Problem statement 

Before defining the problem, it is important to understand the site which has been modelled for the 

simulator. It is considered that this site can either be a rural road with 1 or 2 lanes or a motorway up to 

3 lanes in each direction. Theoretically, each lane is 3.5m vide with a 1-meter wide hard shoulder 

placed at the side of highways or expressways.  

It is important to know that the position of the sensor depends on the nature of object to be detected. 

PTWs move quite often in the inter-lanes, so, the best possibility to detect this category of vehicle is to 

mount the laser scanner on a gantry and position it to get the maximum occlusion-free PTW data.  

The first and the foremost step is to define occlusion. An occlusion may be defined as the missing data 

that cannot be observed when the laser scanner rays touch an object which is dense enough to prevent 

the rays from passing through it, hence shadowing the objects behind it. In simple terms, occlusion is 

observed when an object blocks the laser scanner rays thus making other objects behind it invisible. 

This can be seen in Figure 8.  

 
Figure 8: Occlusion of a PTW by an HV 

Figure 8 shows an example of typical occlusion. The system is placed at the left side of the gantry, the 

HV occludes the PTW. The occluded region is represented in pink.  

The occlusion depends on several factors:  

· Height of the laser scanner above the road 

· Displacement of the vehicle with respect to the position of the laser scanner  

· Height of the vehicle that creates the occlusion  

· Density of traffic is an important factor. This factor is directly proportional to the probability 

of observing occlusion. In other words, when the traffic is dense, large vehicles tend to 

overlap the small vehicles, hence creating the effect of occlusion.  

This occlusion can be calculated theoretically by taking into account all the factors cited above. This is 

shown in Figure 9.  
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Figure 9: Calculation of shadow 

Figure 9 shows the process of occlusion where h is the height of the vehicle, λ is the angle of 

projection of the laser that touches the border of the vehicle and x is the length of the region where the 

laser beam does not fall and thus cast shadow. This occluded area is directly proportional to the height 

of the vehicle and the tangent of the angle λ. This relation is given by the following equation:  

                                                  (2.1) 

Another factor that affects the non-observed area is the position of the laser scanner. The position has 

to be chosen with respect to the number of lanes that we intend to scan, the nature of the object of 

interest and the power of the laser scanner. The nature of the object of interest is especially important. 

In our case, the goal is to detect and count PTWs which are most often found in the inter-lanes.  

Taking all these factors into consideration, a simulator is proposed that studies different positions of 

laser scanner that is mounted on different road profiles (2-lane or 3-lane carriageway) with an aim to 

find an optimal position that generates minimum occlusion.  

2.1.2. Different configurations 

In this simulator, two different situations have been presented; the first situation consists of 2 lanes 

and the second of 3 lanes.  

A standard theoretical value of 3.5 metres for each lane is taken and it is presumed that the laser 

scanner is placed at a variable user-defined height between 5 and 6 meters. These heights correspond 

to the height of gantries, bridges or poles where the laser scanner is installed in real life.  

Figure 10 shows the simulated 2-lane and 3-lane carriageways. A 2-lane case is represented with a 

total width of 8 metres where 3.5 metres is the width of each lane and 1 meter as the width of the hard 

shoulder. A 3-lane case is represented with a total width of 13.5 metres with each lane of 3.5 meters 

each and 2 hard shoulders of 1 metre each.     

 
Figure 10: Simulated carriageway (Left) 2-lane and (Right) 3-lane 
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A reconstruction of different possible laser scanner positions is done in Figure 10. In a 3-lane problem, 

the lanes are numbered 1 to 3 starting from the extreme left lane, Lane 1 with the fastest traffic. 

· Situation 1  

o Above the centre point between the two lanes (Inter-lane). 

o Above the far left edge.  

o Above the far right edge.  

 

· Situation 2 

o Above the far left edge.  

o Above the far right edge. 

o Above the inter-lane of Lane 1 and Lane 2. 

o Above the inter-lane of Lane 2 and Lane 3 

o Above the centre point of the three lanes (middle of Lane2).  

 

 
Figure 11: Example of different possible ways to mount a single laser scanner on a gantry when we have 3 lanes 

Figure 11 shows an example of all the possible ways of mounting a laser scanner above three lanes. 

For the simulator, the lane next to the hard shoulder is considered as Lane 1 and the furthest away as 

the Lane 3.  

2.1.3. Description 

Once the situations and the ways of mounting the laser scanner are defined, we must define the 

projection angle of the laser scanner installed on the road.  

As soon as the laser scanner is positioned, its height is registered. As the goal of simulator is not to 

study the effect of high speed of vehicle on the laser data, an angular resolution of 1° and the scanning 

angle of [-45° to 225°] are taken. The distance ρ is calculated by estimating the interaction of the laser 

scanner beams with the road.  

The following notation is defined:  



  Doctorate dissertation 2013 

 

 

 | CHAPTER 2:  Data Acquisition 35 

 

Vehicle: For each vehicle, a length (VL), Width (VW), height (VH), Speed (VS) and position (VP) is 

defined.   

Road: Let the two extremities of the road be extL (extreme left) and extR (extreme right), respectively. 

For two lanes in this simulator the middle of the two lanes (inter-lane) is indexed as 0 and the width of 

each lane is 3.5 metres.   

Laser scanner: Let, h be the height of the laser scanner above the road and LRp be the position of the 

laser scanner placed on the gantry. The scans are registered as segments. Each segment contains the 

coordinates of the object scanned and the corresponding height. A point ‘A’ is defined as:                                     

                                                   (2.2) 

where xA is the xcoordiante at point A and hA is the corresponding height. 

The general format of this segment AB is:    Segment =                                              (2.3) 

This segment estimation is carried out as follows:  

· If there is no vehicle: Only the extremes of the road i.e. extL and extR are taken into 

consideration. In this case, as there is no object, no height will be registered. The segment will 

be as follows:  

  
0 0

                                                         (2.4) 

· If there is a vehicle: The two extremes of the road, the left extreme and the right extreme of 

the vehicle are also taken into consideration. So, the segment will be as follows:  

                                            (2.5) 

where and are the vehicle’s extreme left and extreme right coordinates and 

 and  are the vehicle’s height at the extreme left and the extreme right. It is to 

be noted that and have two heights, 0 (for base values) and  and 

(for the points representing the top of the vehicle), respectively. This can be seen in 

Figure 12.  
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Figure 12: Simulated example of the segment 

Figure 12 shows a simulated scene where a laser scanner placed on a gantry at a height h. The two 

extremes of the road are extL and extR. The coordinates of the vehicle in the simulator are given in 

yellow and are presented in equation (2.5). This box is placed at the coordinates and and 

the two corresponding extreme heights of the box are  and  .  

For each beam angle [-45°…225°] we find the intersection of each segment by a linear system.  

The value of Rho can be estimated by:  

2
2

             (2.6) 

where IpXcooridinates are the coordinates of X  for a scan and IpHeight is the corresponding height for each  

Xcoordinate.  

For the simulator, three types of vehicles were defined: a PTW, an LV and an HV. Each of these 

vehicles is represented by a box having the dimensions of the vehicle (taken from the constructor, 

Suzuki (PTW) and Renault (LV and HV)). These makes were used because they were already used in 

the CETE NC test vehicle fleet. Thus the data estimated by our simulator can be easily verified in real 

life. The size of each vehicle in metres is given in table 7.  

Type of vehicle PTW LV HV 

Length (m) 2.0 3.8 13.6 

Width (m) 0.7 1.8 2.2 

Height (m) 1.8 1.5 2.6 

Table 7: Simulator vehicle dimensions  

Using boxes having the above described dimensions, a simulated traffic was created consisting of two 

HVs, two LVs and one PTW and representing the most commonly found situations on the road.  

For Situation 1, where there are 2 lanes, two cases are discussed:  

· Case1: A PTW followed by an LV in Lane1, an HV in Lane2 moving side by side to the 

PTW. 

· Case2: A PTW in between 2 HVs (Inter-lane case). 
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Situation 2 corresponds to the three-lane problem and only one situation is discussed: 

· Case3: A PTW followed by an LV in Lane1, an HV in Lane2 and an LV in Lane 3. 

 

 
Figure 13: An example of the cases simulated. (Above) Laser scanner position represented in red box. (Below) 

corresponding simulator scenes. 

For each of these cases, the laser scanner was placed in different positions as explained earlier. An 

example of the three cases described above is shown in Figure 13. The red boxes correspond to the 

positions of the laser scanner. 

 

2.1.4. Discussion 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

Figure 14 shows the graphic interface of the simulator. On the left, is given a choice of either 5m or 

6m for the height of the laser scanner.  

 

In a 2-lane problem, for each height, the laser scanner can be placed in 3 different positions on the 

gantry, above the inter-lane, above the far right edge of the carriageway and above the far left edge. 

 

In a 3-lane problem, the lanes are numbered 1 to 3 starting from the extreme left lane, Lane 1 with the 

fastest traffic. For each height, the laser scanner can be placed in 5 different positions on the gantry, 

Figure 14: Simulator 
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above the inter-lane of Lane 1 and Lane 2, above the inter-lane of Lane 2 and Lane 3, above the centre 

point of the three lanes (middle of Lane2), above the far right edge of the carriageway and above the 

far left edge.  

 

Before demonstrating the simulator it is necessary to understand the shadows cast by the vehicles that 

may occlude the PTW. It is to be noted that only the shadow cast by a higher or wider vehicle may 

occlude the smaller vehicle. For an HV with a height of 2.4 m the shadow cast can be estimated by 

using equation 2.1.  

 

x= 2400  tan (λ) 

Let us consider that a PTW with a height of 1.8m, width of 0.7m, is moving with an inter-lane distance 

of 1m with this HV of 2.4m. It means that if the value of x (cast shadow) is superior that 1.7m (1m 

inter-distance + 0.7m PTW’s width), the PTW will be completely occluded. So, for x < 1700, the value 

of λ must be less than 35°. This means that if a beam falls at an angle of 35° from the normal on a 

2.4m high vehicle it will cast a shadow capable of occluding a PTW.  

 

This occlusion can be calculated using equation 2.1, thus obtaining x=1680mm < 1700mm. Therefore 

partial occlusion can be observed.  

 

2.1.5. Demonstration 

For the simulator, several cases were created. These cases were created for either two or three lane 

traffic.  

2.1.5.1. Two lane traffic 

Here two cases have been implemented:  

Case1: A PTW is followed by an LV, and in the adjacent lane, an HV travels parallel to the PTW. In 

this traffic condition, the laser scanner is mounted at different positions. When laser scanner is 

mounted above the extreme right of the gantry and the HV blocks the laser beams, thereby creating 

semi or complete occlusion.  

Case2: An HV is travelling on each lane with a PTW moving in between them (on the inter-lane). This 

is a classical case which can be seen on Parisian roads. It is to be noted that the PTW passes under the 

scanner at the same time as the 2 HVs. An inter-vehicle distance of 0.8m between the PTW and the 

HV is taken. Different scenes can be discussed as follows (Figure 15). The images below are shown 

between scan points (index of laser beams) and accumulation of scans (concatenation of scans during 

time t). 

 

· If the laser scanner is mounted on a gantry above the edge of the left lane, the length of the 

shadow cast by the HV is higher than the sum of the PTW’s width and the inter-distance of the 

PTW and the HV. Hence it gives an impression as both the HVs are combined as the inter 

distance between the HVs is inferior than the shadow cast. This can be seen in Figure 15 that 

is given by the simulator. 
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Figure 15: Two lanes simulation with inter-lane traffic 

· If the laser scanner is mounted on a gantry above the centre point between two lanes, the 

shadows are not cast on other vehicles, hence no occlusion is observed. It is to be noted, 

however, that if any vehicle travels on the hard shoulder, parallel to an HV, it will be invisible 

to the system. 

 

· The visibility of vehicles moving in the inter-lane could be improved by placing the unit at a 

height of 6 metres, but it would not be enough to separate the vehicles, thereby generating 

indistinguishable combined vehicle forms. 

 

In both of these cases (1 and 2) discussed above, in order to detect all the vehicles travelling in two 

lanes, the best possible solution is to install the laser scanner above on a gantry at the centre point of 

two lanes. The difficulty level increases with a 3-lane traffic.  

2.1.5.2. Three lane traffic 

In a 3-lane traffic case, only one situation has been implemented. (Figure 16) 

As explained above, there are many possible positions for the laser scanner, but the complexity 

increases with three lanes. The traffic chosen for the 3-lane carriageway is: a PTW with an LV moving 

behind in the first lane, an HV in the second lane and an LV in the third lane.  

 

From the information shown by the images in Figure 16: 

 

· If the laser scanner is mounted at the extreme left of the gantry, the PTW travelling on the 

extreme right lane will get occluded by the HV travelling in the second (middle) lane.   

 

· If the laser scanner is mounted above the centre point of two lanes (Lane 1 and 2), part of the 

PTW can be seen but combined with HV (effect of occlusion). This position will cover all the 

vehicles travelling on and between the Lane 1 and Lane 2.  
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· When the laser scanner placed above the middle of three lanes, i.e. above the centre point of 

Lane 2, an effect of combined vehicles is observed i.e. several vehicles form a single vehicle 

due to the laser scanner beams blocked by the HV.   

 

Figure 16: Case 3 simulated data 
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2.1.6. Solution proposed 

Figure 17 shows the best suitable laser scanner positions for 2-lane and 3-lane carriageways. When 

there are 2 lanes, placing the laser scanner above the centre point between them seems to be an 

optimal solution to have a minimum chance of occlusion. Taking a scanner with a higher angular 

resolution can be a solution but in all cases no sensor can see through objects, thus this problem of 

occlusion cannot be overcome with a single laser scanner.   

With the 3 lanes, using two laser scanners is an optimal solution. One scanner must be placed above 

the middle of Lane 1 and Lane 2 while the second above the centre between the Lane 2 and 3.  

 

For a 3 lane carriageway, the proposed solution remains expensive as two laser scanners instead of one 

are needed, but there is always a compromise needed either with cost or the quality of result desired. 

However, for this research work, we are restricted to one scanner laser.   

2.2. Choice of a laser scanner 

For this research work, a system able to detect, classify and count vehicles is needed. This system is to 

be mounted above the highway either on a bridge, a gantry or a pole having a height of 5 metres to 6 

metres that could cover at least 2 lanes. As we are short in terms of budget in this research work, we 

opted for a single laser scanner to obtain all the two-lane traffic data.  

For a vehicle to be really detected by a scanner, at least 2 consecutive scans are needed, meaning that a 

minimum time of contact is required for the scanner to read these 2 scans. This time corresponds to t 

ms which may vary with the type of laser scanner used.  

The reason of setting two consecutive scans as a threshold is that one single scan may correspond to a 

noise. But having two consecutive scans, with a minimum threshold height (0.4m), validates the 

presence of a vehicle. This threshold of 0.4m corresponds to the height of the LV’s bumper.  

In our case the length of the PTW is presumed to be 2 m. 

Let Fc be the frequency of the laser scanner and Tc be the time taken by the scanner to complete a scan 

(to and fro). Hence,                                            

                                              (2.7) 

Figure 17:  Optimal solution for two and three lanes 
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Lptw is the length of the PTW and Vptw the speed of the PTW. Time for the PTW to pass entirely under 

the laser scanner (considering that the first beam of the scanner falls at the start of the PTW)  

                                            (2.8) 

Hence the number of scans is:  

                                  (2.9) 

Figure 18 shows a graph of the relationship between the number of scans and the speed of the PTW 

when passes below a laser scanner scanning at different frequencies. 

 
Figure 18: Relationship between speed (0km/h to 150 km/h) of PTW and number of scans. Red line corresponds to the 

limit of the data acquisition (2 scans) for a PTW with a length of 2m. 

Figure 18 shows that at 25 Hz, the laser scanner has less time to obtain sufficient number of scans 

when the PTW is travelling at more than 80 km/h the PTW will not be visible to the laser scanner. At 

50 Hz, however, the PTW remains visible up to 144 km/h. When the scanning frequency is at 100 Hz, 

the PTW is visible even at 180 km/h.   

If a vehicle of 2m long is moving at a speed of 40m/s (144km/h) under the laser curtain, it will take 

1/20s to pass under the laser scanner. A laser scanner at 50Hz will take 20ms to complete one scan. 

Hence, the laser scanner can scan up to a maximum of 2 scans in this time. This information might be 

sufficient to extract a vehicle from the scene but not to classify correctly. This remains one of the 

limitations that has to be taken into account while choosing a laser scanner. One of the solutions is to 

upgrade the type of laser scanner (100Hz) or use multiple laser scanners. 

The laser scanners with a scanning frequency of 100 Hz or more are usually quite expensive and one 

of the most important considerations when choosing a system will probably be the price of the sensor. 

The system is meant to be simple and affordable to any sector (public, private or any other). Hence 

although the Velodyne, Lecia, Hukoyu or Adec laser measurement devices may provide greater 

coverage or accuracy, they are priced well above the products of SICK. A list of sensors is shown in 

ANNEX 1.          

Hence, the SICK Laser Measurement System (LMS) 111 [SICK08] was pre-selected for this research 

work. It is one of the simplest and cheapest laser scanners that exist on the market with a price tag of 

6000€. The laser scanner can be placed above the centre points between two lanes, hereafter called the 
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inter-lane and at a certain height (usually 5 to 6 metres) on a gantry or the underside of a bridge with 

unknown environments and climate conditions. The reason for installing laser scanner above an inter-

lane is that most of the time this is where PTWs travel. Hence, with a range of 20m, this scanner can 

easily scan both lanes correctly.  

The LMS111 laser scanner is a non-contact measurement system (NCSDs) that scans its surrounding 

in two-dimensions (distance and angle). The specification of the LMS 111 (Figure 19) is as follows: 

· Scanning angle : from -45° till 225° (i.e. 270°) 

· Angular resolution : 0.25° or 0.5° 

· Scanning frequency : 25 Hz or 50 Hz 

· Distance measuring range : up to 20 m 

 

 
Figure 19: LMS SICK 111(Left). Installation of the laser scanner on the experimental site (Right) 

To correctly detect an object, the laser beam must be fully incident on it. For information to be 

correctly retrieved, the reflected ray should have a minimum amount of energy. If the beam falls 

partially incident to the plane, the reflected ray may have less energy than the minimum energy 

necessary for the information to be retrieved. Figure 19 shows the LMS SICK 111 and its installation 

on our experimental site.  

The information given by the laser scanner varies as a function of the following parameters: 

· Height of the laser scanner: the higher the position of the laser scanner, the less reliable the 

information gathered becomes. While placing the sensor on a road, this parameter must be 

taken into account, as the road is shared by many categories of vehicles with variable heights, 

such as motorbikes (usual PTW height ~1m80),  and Heavy Vehicles (usual HV height 4m). 

There is, therefore, a compromise between the height of the laser scanner and the intensity of 

information to be retrieved.   

· Beam diameter: As the distance of the laser scanner from the objects increases, the beam 

diameter of the scanner increases. The height-dependent beam diameter R is given by: 

                                              (2.10) 

The value 8 is the beam diameter at the optical cover in millimetres and 0.015 rad is the expansion 

angle of the laser rays per millimetre. The height-dependent beam diameter is given in table 8. 

Distance (mm) 2000 3000 4000 5000 6000 7000 

R (mm) 38 53 68 83 98 113 

Table 8: LMS 111 Laser beam expansion 

· Distance between each laser point: The distance between individual measured points increases 

when the distance of the object from the laser scanner increases. The distance between the 

measured points is also dependent on the configured angular resolution. The distance-



Doctorate dissertation 2013 

44 CHAPTER 2:  Data Acquisition |  

 

dependent spacing between the measured points is defined by the tangent of the angular 

resolution multiplied by the distance (Figure 20).  

 
Figure 20: Distance between measured points [SICK08] 

This single-planer laser scanner gives data in ρ and θ, where, ρ is the distance in millimetres between 

the laser scanner and the object and θ is the angle in degrees of the laser scanner. So, in a scan, for 

each 541 value of θ there is a corresponding value of ρ.   

2.3. Road profile 

One of the major problems for the detection of PTWs is the behaviour of the rider during difficult 

traffic conditions such as traffic congestion or jams. So, it is important to study the site or the type of 

road on which we want to install the sensor in order to find an optimal configuration for easy retrieval 

of information irrespective of traffic conditions.   

As explained in the section simulator, the site has a certain profile, from a rural road with 1 or 2 lanes 

to a motorway up to 3 lanes in each direction. These lanes have different speed limits according to the 

safety norms. Classically each lane is 3.5m vide but this value may vary from 3.2m to 3.6m depending 

on the terrain. A 1-meter wide hard shoulder is often placed at the side of highways or expressways 

(Figure 21). In France, expressways generally have two lanes with a maximum allowed speed of 

90km/h to 110km/h while motorways have two to four lanes with a maximum authorised speed of 130 

km/h. An example of a simulated scene is shown in the Figure 21.  
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Figure 21: A simulated scene. Laser scanner installed at height h and above the centre point between two lanes. 

Each lane measures L metres. 
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Figure 21 shows a laser scanner (in black) 

installed at a certain height h and above the centre 

point between two lanes. Each lane has a width of 

L metres, which depends on the profile of the 

road. The road is not exactly flat, but has a certain 

camber to allow proper drainage.  

Figure 22 shows an example of an empty scan 

corresponding to the laser scanner reading when 

no vehicle is passing under the sensor.  

The road is represented by the signal (laser 

scanner return values) in the form of an arc. This 

arc is our Region of Interest (ROI) where the probability of finding vehicles (PTWs) is maximum, i.e. 

road.  

2.4. Different positions for the laser scanner 

There are several configurations for a laser scanner. As indicated earlier, each configuration depends 

upon the type of object to be detected, the problems that might be encountered (occlusion, artefacts) 

and also the zone to be covered.  

Roadside mast-mounted: The first possibility is a roadside mast-mounted configuration (Figure 23). A 

sensor processes a field of view covering an oblique area that can be upstream or downstream of the 

unit. This configuration will cover the vehicle directly in front of the system, but other vehicles can be 

occluded. This might occur when a high-sided vehicle in the nearest lane occludes a smaller in one of 

the other lanes. 

Gantry: The second option is a laser scanner mounted under a bridge or on a gantry, thus giving a field 

of view directly below or slightly oblique to the system. We can also call it the face configuration.   

Cross-fire: The third possibility is a cross-fire configuration, when the system is installed on the 

roadside at ground level and the beam is fired across the road. Such a configuration may encounter 

side-by-side masking and hence is suitable only for only single lane roads.  

 
Figure 23: Possible configuration: 1. Roadside mast-mounted 2. Gantry or under the bridge 3. Cross-fire 

In the start of the project, a test was conducted at the site of IFSTTAR Nantes. The aim was to check 

which configuration is best suited to obtaining the data with maximum of precision. 

Figure 22: Empty scan 
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The site where the first experiments were conducted is shown in Figure 24 (site IFSTTAR Nantes). 

Only the first two configurations shown in Figure 23 (roadside mast-mounted and gantry) were 

studied. The aim was to analyse the very first data of the laser scanner as can be seen in Figure 24.  

 
Figure 24: (Left) System installed on the site of IFSTTAR Nantes. (Right) A close up of the system (Gantry 

configuration)   

In Figure 25, two images of the site with different configurations can be seen. As discussed before, 

when the laser scanner is roadside mast-mounted, the PTW tends to be occluded behind the larger 

vehicles. Hence in dense traffic, especially in big cities where PTWs remain most of the time in inter-

lanes, this configuration would fail to count the PTWs correctly. 

  

Figure 25: Configured images. (Left) Roadside mast-mounted: Laser scanner installed at the roadside. (Right) 

Gantry: Laser scanner placed above the traffic. 

Table 9 compares and summarizes the two configurations 

Roadside mast-mounted  Gantry 

Advantages Drawbacks Advantages Drawbacks 

Easy to install Inter-lane vehicles tend 

to be occluded by 

larger vehicles 

Vehicles can be seen 

from above even in 

inter-lanes 

Must be installed with 

precision (unit 

installation angle) 

 Artefacts  Artefacts 

Table 9: Comparison between roadside mast-mounted and gantry configuration 

Table 9 compares both configurations. When the laser scanner is installed vertically above the lane, it 

gives a complete vision of the vehicles that pass below. The field of vision is directly proportional to 

the height of the laser scanner above the ground, but as the height increases, the accuracy of the values 

read by the laser scanner decreases. So, a compromise is necessary when choosing a suitable 

installation configuration of the laser scanner.  

As PTWs move in between lanes, they are subjected to occlusion in dense traffic, so a gantry-mounted 

configuration is the best suited to our case (Figure 25; configuration 2). The laser scanner can either be 
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installed directly above the road structure (on gantries or on the underside of bridges) or at a slight 

angle. To choose the appropriate position, during the very first tests, the laser scanner was placed at 

different angles to the unit (0°,60° and 77°) as shown in Figure 26. These angles were chosen by 

IFSTTAR Nantes while experimentations. 

 
Figure 26: Three different projection angles. From left to right: 0°, 60° and 77°. 

The main variables to consider are as follows: 

· The position of the laser scanner: This is a very important factor. As shown in the simulator 

part, for a 2 lane carriageway, it is easier to detect vehicles if we place the laser scanner above 

the centre point between the 2 lanes of interest (inter-lane).  

· Height: With an increase in height, the field of vision increases, but measurement precision 

decreases. [JEAN13] explained in his research work the relationship between the distance of 

the laser scanner from the object and the precision. At various distance 10,000 measures were 

taken and then the mean distance and the variance was calculated. The author showed that for 

5 metres to 6 metres distance there can be a measurement error of as much as 20 to 30 mm.  In 

our case, the system is installed on a bridge or a gantry above the highway where the height is 

predefined but unknown, so we need to adapt our system accordingly. Bridges and gantries 

usually have a height around 5 metres to 6 metres but are not always orthogonal to the road. 

· Angle of projection: The field of view is depends on the distance of the scanner from the 

object and the beam projection angle; the more the projection tends towards the normal (0°), 

the greater the influence of the speed of the vehicle, and thus, the shorter the time of contact.  

If the lens is angled at 77° from the normal, it will give a view of the environment including for 

example trees, poles and surrounding buildings (Figure 27: Right). At an angle of 60°, the field of 

view will decrease and thus include fewer artefacts. This can be seen in Figure 27 (at the left).  

At both of these angles, if an HV passes under the beam first and is followed by a PTW, the PTW will 

not be completely visible. When the laser scanner is placed perpendicular to the road, however (0° 

from the normal), only the events occurring immediately under the scanner are visible and so fewer 

artefacts will interfere in the data. The explanation is given below. 

An example of the two configurations 60° and 77° from the normal is shown in Figure 27. The 

corresponding images show the views that will be read by the laser scanner (LMS 211); they contain 

uninteresting information. Below are the corresponding scan data with angles on the X axis (-90° to 

+90°) and distance in metres on the Y axis (80m).  
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Figure 27: Configuration 60° (Left). Configuration 77° (Right). 

In the first image at the left, the system is angled at 60° from the normal. Three vehicles can be 

observed, but at the same time some environmental artefacts can be seen and are included in the laser 

data above. The straight line in the middle is the road, the three points just below correspond to the 

vehicles. A large number of cloud points can be seen around -10° and +10°, corresponding to the trees 

around the gantry. A faint arc shows the range of scanner, which is around 80m. 

When the system is angled at 77° from the normal (right), along with the vehicles we can see several  

artefacts such as the light poles on the left, the metal debris and a metal cabin in the top right corner. 

These can also be seen in the corresponding laser data above. Cloud points can be seen around -10° 

and +10°, corresponding to the artefacts, with the metal cabin at a distance of 35m and an angle of 

+2°.  

In these two cases the probability of interference of the environment (artefacts) is very high. Even 

after a dynamic or static background subtraction, the risk of encountering noise is very high. For 

example, with wind, the trees will move and so will their leaves. This may disturb the reading of the 

laser scanner by creating an important noise. Moreover, these two configurations may face a classical 

problem in the laser scanner data which is a noise mostly described as “mixed” pixels [DIET01] 

(Figure 28). These pixels may be generated when the beams refract (bend to a certain angle) from the 

vehicle instead of reflecting (returning towards the laser scanner) and hence generate noise.    

 
Figure 28: Mixed pixels [DIET01] 
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There is another case which is not described in Figure 27. When the laser scanner is completely 

perpendicular or is angled at 0° from the normal on a gantry, the beams focus towards the road and 

hence minimizes the risk of encountering artefacts. But, at the same time, as this curtain is just a few 

millimetres wide, the time of contact of the beams with the vehicle is decreased.  

Table 10 compares of the three different angles: 

Comparison 

0° 60° 77° 

 

- Less artefact interference. 

- Information retrieved directly 

proportional to height the of the 

laser scanner. 

- Information retrieved directly 

proportional to the angle of 

incidence. 

- Information retrieved directly 

proportional to the speed. 

 

- Huge interference of artefacts 

- Mixed pixels 

- Omnipresence of environmental 

factors 

  

- Huge interference of artefacts 

- Mixed pixels 

- Omnipresence of 

environmental factors 

Table 10: Comparison between three vertical configurations 

2.5. Data coherence method  

This is a very important step for the unit to work correctly. As it can be installed either on a bridge or 

on a gantry, of unknown height, unknown type and unknown number of lanes below it, the system 

should be able to recognize the parameters (height, road verges) and initialize the data automatically 

by finding the Region of Interest (ROI).  

As a prerequisite, an empty scan is needed which is a scan of the environment with no vehicle present. 

This prerequisite is necessary because the installation site is not known beforehand nor is the type of 

traffic to be measured. The data coherence is carried out as follows:  

2.5.1. Height 

In a scan, the road corresponds to an arc of a certain 

length that depends on the width of the road. Figure 

29 shows an example of an empty scan where the 

road is represented by inverted values in the form of 

an arc.  

The height of the laser scanner above the road is the 

minimum value in this arc. The height corresponds 

to the value read by the system when a ray is 

projected perpendicularly. In a scan of 541 points, 

this height will be found by searching for the 

middle value of the scan i.e. 270. During the 
Figure 29: Empty scan 
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installation, the scanner may be put at 88° or 92° instead of 90°, so, taking this margin into account, an 

interval of values (int) is defined where the probability of finding this minimum value is highest. The 

basic equation of laser scanner is given by [PFEI08]   

                                                   (2.11)                                             

where PR is the received power, PE is the emitted power, σ is the backscattering cross section and is a 

product of the directional reflection strength (ρ) and area of the object. βE is the beam divergence r the 

range, DR the receiving aperture diameter, and the η-terms describes atmospheric and system 

transmission. A scan I contains 541 values of PR (for LMS111). Hence, the height h is given by:  

            h = min {I(270± int)}                                   (2.12) 

where I is the scan, int is taken as 10 i.e. a tolerance of 5 degrees is allowed. So the height (h) 

corresponds to the minimum value between the 260
th
 scan point and 280

th
 scan point. The index of the 

scan measurement is defined as O (the point of origin) where the value of h 

is found.   

2.5.2. Road verges 

As given in the equation (2.10), the height-dependent beam diameter is 

given by  

 

Figure 30 shows the distance (d) dependent beam diameter (R).   

Imagine that two consecutive beams have been projected on the road by the 

laser scanner. Figure 31 shows the case. The distance between two 

measured points is equal to half the diameter of the beam projected 

[BENJ08].  

From Figure 31, the distance between two measured points (m) 

can be given by  

                            (2.13) 

So, for one scan point, the inter distance is m. Hence, for L metres 

(one lane), the number of measured points is given by:  

                                               (2.14) 

where mi is the distance between i
th
 and i+1

th
 beams. Knowing the 

index of the scan measurement (O), the number of points defining the verge of the road can be 

defined.  

                                                                                                          

               

                                                            

Figure 31: Beam diameter and 

distance between two measured points 

[BENJ08] 

Figure 30: Beam projection 
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                               (2.15) 

and  

Bl                    (2.16) 

where Br and Bl are the right and left verges respectively. Nbr is the number of lanes to the right of the 

scanner and Nbl is the number to the left.  are the respective errors that can occur at either 

side while installing the system i.e. the system is not exactly above the centre point of the two lane 

carriageway. di is the distance between two consecutive measurements until the length ‘L’ is attained.     

The road verges are given by  

B= {Bl, Br} = {  } (2.17) 

This will give the scan point index that will be used to extract ROI (which will be the road) and for 

processing the signal.   

To sum up, here are the conditions for the system to work correctly:  

· At least one empty scan to find the parameters (Height, road verges). 

· The unit must be installed above the inter-lane.  

· The exact number of lanes should be known a priori to the user. For example, in the case of a 

three lane carriageway, number of lanes at the left and at the right.   

Theoretically, the width of a lane is 3.5m, but in situ this value may not be accurate and can vary from 

one road profile to another. A value of L is thus kept as a user-defined variable.  

2.6. Databases 

Once the system is able to find its parameters, the database is created with the laser scanner traffic 

data.  The first database was constructed at the controlled site with regulated traffic consisting of pre-

defined scenarios, speed and inter-vehicle distance.   

After testing and validating the laser scanner on the controlled site, the second database sets were 

constructed at real sites where none of the conditions (traffic, speed, scenarios) were regulated or 

known in advance. 

2.6.1. Controlled site 

Our database was created by getting a certain number of vehicles to pass under the laser scanner on an 

experimental site with the regulated conditions. Figure 32 shows the experimental controlled site of 

CETE Normandie Centre. 
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Figure 32: Our controlled experimental site 

In Figure 32, the laser scanner was placed 0° from the normal, at a height of 5m to 6m from the 

ground and at a distance of 3m from the left side of the lane. A camera was placed next to the laser 

scanner to verify the ground truth. The road at this experimental site was as wide as a double lane, 

with a width of 7.5m and a length of 400m.  

Two categories of vehicles were involved (a PTW and LVs). For this controlled site, only one PTW 

was used and the database was limited to a few classes of LVs: three super minis, one compact 

multipurpose vehicle, one panel van and one van. All these LVs were white. The database was 

inspired from real traffic scenarios. (Figure 33) 

The PTW passed with either a rider alone or with a rider and a passenger. Taking safety measures into 

account all these scenarios were conducted with speeds varying from 20km/h to 120km/h giving a 

total of 100 laser scanner sequences. Each sequence was registered for a duration of 5 seconds to 10 

seconds maximum. Figure 33 gives a description of all the cases defined by the team in charge of 

auditing all the information linked with the database construction, test and validation of the methods 

developed.  

 
Figure 33: A visual example of the cases discussed above and used create the database. 
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All the situations shown in Figure 33 were reconstructed using the same vehicles on the same site. 

Hence the information was rich in vehicles with varying speeds, but limited for different possible 

shapes and colours. Table 11 shows the number of different vehicles that passed under the laser 

scanner when it was installed at different heights.  

 h=5m h=6m Total 

PTW 52 25 77 

LV 61 30 91 

HV 0 0 0 

Total 113 55 168 

Table 11: Different categories of vehicles passing under the laser scanner at different heights 

2.6.2. Real sites 

Two different sites were chosen for the experimentations in situ. The first experiments were conducted 

on an expressway (SUDIII or RN338) to enable us to understand the differences between a regulated 

site and a real site. The second site was on the A13 motorway near Paris. This site was chosen within 

the framework of the ANR METRAMOTO project as the Parisian traffic usually consists of a higher 

percentage of PTWs and is notorious for the behaviour of the motorists, thus increasing the level of 

difficulty. 

2.6.2.1. Expressway SUDIII 

This database was constructed on an urban highway (SUDIII) which is also known as the RN338. This 

highway links the region of Rouen to the A13 motorway. Figure 34 shows the SUDIII site where the 

system was installed.  

 

This site has a speed limit that varies from 90km/h to 110km/h, with 2 and 3 lanes. The point where 

the laser scanner is placed is limited at 90km/h with 3 lanes. Figure 34 shows both types of 

carriageway, 2 lanes in one direction (on the left) and 3 lanes in the other direction (on the right). This 

expressway carries 60.000 to 75.000 vehicles per day (2011) in both directions with many types of 

vehicles such as heavy vehicles (trucks, buses), mini trucks, vans, light vehicles (SUVs, cars, quads) 

and PTWs.   

 

 
Figure 34: SUDIII: A view of the Highway. 

The highway consists of 3 lanes out of which the first 2 lanes are the principle lanes while the third 

lane serves as an insertion path and also as a deceleration lane. In this 3-lane expressway, the lanes are 
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numbered 1 to 3 starting from the extreme left lane, Lane 1 with the fastest traffic.  The traffic on Lane 

2 is influenced by Lane 3 as most vehicles, after entering and before leaving on the highway, will 

travel in Lane 2. The bridge, under which the laser scanner was mounted, is not at a right angle with 

the road (Figure 35).  

 

Figure 35: The installation site. Pink arrow, the insertion path; Blue arrow, the deceleration lane. Zoom: Green line, 

at a right angle to the road; Red line, the bridge. (Google Maps). 

Figure 35, an overhead view of the site is shown. In the controlled site, it was presumed that the laser 

scanner would be installed orthogonally to the road (green line). But in reality, the bridge was not 

exactly at a right angle to the road. The data were corrected as shown in the next chapter. 

 
Figure 36: Reconstructed scene of the site. The laser scanner is installed at 6.3m above the second lane . 

Figure 36 represents a reconstructed scene of the real site. The laser scanner was placed above Lane 2 

at a height of 6.3 metres. There are 3-lanes, each approximately 3.5 metres wide.  

For this database, the system recorded 3 ½ hours of data with a total of 6874 vehicles in Lanes 1 and 2, 

as shown in Table 12.   

Category of Vehicle Lane1+ Lane 2 

PTW 30 

Non PTW (LV and HV) 6844 

Total 6874 

Table 12: Database table (Ground Truth) 
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In Table 13, the traffic distribution per lane is shown in more detail.  

 

Category of Vehicle  Lane 2 Lane 1 Total per category Distribution/ category % 

PTW 21 9 30 0.4% 

Other LV 3190 1749 4939 71.9% 

HV 1104 801 1905 27.7% 

Total  4315 2559 6874 100.0% 

Distribution / Lane % 62.8% 37.2% 100.0%  

Table 13: Different categories of vehicles per lanes (Ground truth) 

Table 13 shows the number of vehicles per category travelling in each lane, under the unit. Lane 2 has 

the highest number of vehicles with 62.8% of the total traffic. The HVs present in Lane 2 are greater 

in number than in other lanes. This highlights the fact that on a 2-lane carriageway, the HVs mostly 

remain in Lane 2, where they usually travel more slowly than other categories of vehicles.  

The data read by a laser scanner depends on the shape and colour of the objects present. A light- 

coloured vehicle, for example, will produce a better return signal than a dark-coloured one. This return 

signal and object colour relation is discussed in detail by [JEAN13]. Figure 37 shows the number of 

vehicles of different colours travelling during the first 10 minutes of the recording on this real site for 

all the three lanes.  

 
Figure 37: Distribution of vehicles of different colour present in the scene. Others corresponds to orange, green, yellow 

etc 

2.6.2.2. A13 motorway 

The second part of the experiments was conducted on the A13 motorway. This site differs from the 

previous sites (controlled and SUDIII) as the traffic observed is much denser and most of the time the 

inter-lane practice of the PTWs can be observed. This 3-lane site has a speed limit that varies from 110 

km/h to 130 km/h. The site can be seen in Figure 38. This motorway carries 100,000 vehicles per day 

(2011) in both directions with many types of vehicles such as HVs (Trucks, Buses), lorries, vans, LVs 

(SUVs, cars) and PTWs.   
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Figure 38: Experimental Site A13 

 

For this database, the first 6 minutes of the recording is used (from 7:00 am till 7:06 am) with a total of 

584 vehicles on 3 lanes.  Here are the tables with details of vehicles with respect to the lanes; Table 14 

and Table 15 (Ground Truth).  

PTWs/  

Lane 

Lane 3 Inter-lane  

(3-2) 

Lane 2 Inter-lane  

(2-1) 

Lane1 Total 

PTW 0 0 3 43 8 54 

Percentage 0% 0% 5.5% 79.6% 14.8% 100% 

Table 14: PTW traffic on the A13 motorway 

Table 14 shows the PTWs per lane. It can be seen that nearly 80% of the time, PTWs were found on 

the inter-lane between Lane 1 and Lane 2. This shows how common the inter-lane practice is amongst 

PTWs. A detailed overall traffic distribution per lane is shown in the table below.  

Overall 

traffic/ 

Lane 

Lane 3 Inter-lane  

(3-2) 

Lane 2 Inter-lane  

(2-1) 

Lane1 Total 

PTW 0 0 3 43 8 54 

Other 177 1 163 2 187 530 

Total 177 1 166 45 195 584 

Percentage 30.3% 0.1% 28.4% 7.7% 33.4% 100% 

Table 15: Overall distribution per category of vehicle on the A13 

Table 15 details the overall traffic distribution per lane. The traffic on the whole was fairly well 

divided between each lane, but the greatest percentage of vehicles was found in Lane 1 with 33.4% of 

the total traffic.  
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Conclusion 

In this chapter, a simulator is presented with different possible positions for a laser scanner mounted 

above the different carriageway profiles. This simulation helped to choose the correct position for an 

overhead laser scanner.  

A data coherence method is proposed that helps to find the site parameters such as the unit’s height 

and the road verges.   

Using this suitable position the database was constructed on the controlled site at CETE Normandie 

Centre, following the norms defined by Ms.Christina BURAGA of CETE Méditerrané. Defining a 

norm means that all the non-intrusive technologies explored in the project ANR METRAMOTO have 

the same database and hence may be compared. The main objective of this database was to test the 

feasibility of the technology in the regulated environment.  

A second database is constructed on the operational site, expressway SUDIII with an aim to study the 

difference and the different challenges that may occur while switching from a regulated to an 

uncontrolled environment. 

Finally, a third database was constructed within the framework of project ANR METRAMOTO, on 

the A13 motorway where the traffic conditions were much more challenging and complex.  

All this raw data contains a lot of information. The data coherence method helps to extract the Region 

Of Interest (ROI), thus only the carriageway is studied and hence fewer artefacts need to be treated. 

Before the processing, the raw data needs to be pre-processed and then an extraction algorithm 

applied. These extracted objects have many distinctive properties. These properties are extracted and 

are used as parameters in order to classify and distinguish between PTWs and other category of 

vehicles which will be discussed in the next chapter.  
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Introduction  

This chapter presents the method developed for the detection, classification and counting of PTWs 

using the raw data in polar coordinates given by the laser scanner. The data contains important 

information that has to be extracted. This information also comprises noise that can be either 

represented in 2D or in 3D.  

Our goal is to single out PTWs from the rest of the traffic using a single plane laser scanner which is 

placed on a lamp post, bridge or gantry at a certain height. Each scan contains information of the scene 

scanned by the laser scanner. The idea is to accumulate this information (space) during a certain 

period of time (Temporal) and then generate the data in a spatio-temporal domain. This accumulated 

data is processed by studying a single piece of information (scan) at a time.  

This idea is presented in the form of a chart below (Figure 39).  

 
Figure 39: An overview of our system 

Figure 39 presents an overview of the system. The laser scanner shown above is placed on a light pole. 

First, the pre-processing is carried out in order to rectify the laser scanner information. This 

information is then accumulated and transformed to obtain information in the spatio-temporal domain 

that is in 3D (2D in space and 1D in time). The processing part consists of extraction and 

classification. The extraction step is done by applying our Last Line Check (LLC) method, which 

compares the variation of height and the width of the vehicles that pass under the unit.  

The accumulation of scans helps to compare the groups of scans (1…t-1 time instants) with a scan of 

reference (t
th
 instant) in order to find the variation of height for the vehicle. This scan of reference is an 

empty scan of the environment. When a vehicle passes under the scanner, the method checks the 

variation of the height of the last intensity read by the unit, hence the method has been named the ‘Last 

Line Check’ (LLC). Once the data is completely extracted, the vehicle is classified and counted.  
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A brief reminder: before applying any type of processing, it is important to choose a correct set-up for 

the installation of the laser scanner on the road. In our case, a mast-mounted configuration is chosen. 

For more information please refer to Chapter 2; Data acquisition, where the data coherence method 

and the construction of a database are discussed.  

3.1. Pre-processing 

In this step, the laser scanner signal is first pre-processed, as explained in the section below, 

subdivided into two parts.   

· Signal rectification: Elimination of the maximum possible noise and extraction of the Region 

of Interest (ROI) to obtain a signal that contains exploitable and useful information.   

· Transformation into the spatio-temporal domain: Accumulating the information representing 

space during a certain period of time in order to obtain the spatio-temporal domain. 

3.1.1. Signal rectification 

There are two main types of noise contained in the laser scanner data. The first type may be generated 

by several external factors, such as trees, vehicle windscreens, etc. that bend the laser beams towards 

environment (diffract or refract) instead of reflecting them back to the sensor. This phenomenon 

creates what is known as ‘mixed pixels’ [GATE08b].  

The second type of noise is Gaussian white noise. This is a typical noise that may deform the 

information given by the laser scanner. Such noise can be generated by certain unavoidable factors 

such as wind, dust etc. Figure 40 shows the laser scanner installed on our controlled experimental site 

at CETE NC where the experiments were conducted in a regulated environment.  

The Figure 40 shows the laser scanner mounted at a certain height on a rod that had one loose 

unsupported end, which led to an oscillatory motion in strong winds or when a vehicle passed at high 

speed and close to the unit. This motion creates noisy laser scanner data, an example of which can be 

seen below (Figure 40). 

 
Figure 40: (Left) An example of the scene when a vehicle passes below the laser scanner. (Right).The raw data in polar 

coordinates with the vehicle shown in green and the environment (trees, pole etc.) in red  

Figure 40 represents the laser scanner data, on the right hand side, with the angle in degrees on the 

abscises (Xaxis) and the distance of the laser scanner from the object in metres on the ordinates (Yaxis). 

The graph gives the environment information that shows the distance of the laser scanner from the 

moving vehicle on the road.  
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As discussed in Chapter 2, a 270° angle of the LMS111 is scanned from -45° to 225° with an angular 

resolution of 0.5°, thus giving 541 points at 50Hz. This laser scanner has a range of 20 m, represented 

on the Yaxis. This scanning angle was chosen because 270° is a larger angle and thus gives us a larger 

field of view; the laser scanner motor rotates at a fixed speed (20ms for a scan) and so is independent 

of the choice of angle. For the angular resolution, more detailed values of the vehicles passing under 

the laser scanner are obtained if 0.25° is chosen. However, this configuration however takes longer to 

scan, so if a PTW is moving at a very high speed, the laser scanner would not have enough time to 

retrieve the minimum amount of information required to detect it correctly. Hence an angular 

resolution of 0.5° was chosen.  

In Figure 40, the signal boxed in green is a vehicle with white noise, and the information boxed in red 

corresponds to irrelevant data representing environmental artefacts which are not on the road, but in 

the surrounding. The raw point clouds cannot be used directly because: 

· They contain noise (environmental factors, etc.) that should be eliminated first to applying any 

method to avoid false detection. 

· Some of the data in the scan contains uninteresting information (trees, poles, etc.) and should 

be removed. 

The first and the foremost step of pre-processing is the application of a pass band filter to minimize the 

artefact noise and to eliminate the maximum of the Gaussian noise that exists at ground level and the 

noise due to the reflection of laser rays towards the environment, this reflection generates values 

higher than the height of the laser scanner. To obtain useful information, the following steps are 

proposed: 

· Region of Interest (ROI): This is the region representing the road. The extraction part depends 

upon the type of road (motorway, main roads with single or even dual carriageways) and the 

height of the support on which the laser scanner is placed. This region can be extracted using 

the data coherence method discussed in the previous chapter.    

· Accumulation of scans post ROI:  A single scan may be defined as  

I 
t 
= [h1, h2, ….., hn]                                           (3.1) 

where I
t
 contains the total height (difference between the height of the scanner and the 

distance between the scanner and the object) values scanned at an instant t and h is the height 

of the objects passing under the unit. Each element of the signal (array) contains a value that 

gives information about the height of the object that passes under the scanner. (Figure 41)  

 

 

Figure 41: Example of a data array (scan)  



Doctorate dissertation 2013 

64 CHAPTER 3:  Extraction and classification |  

 

Figure 41 shows an example of a single scan (information) representing the height of the vehicle 

passing at an instant t. This height can be obtained by subtracting the distance of the laser scanner 

from the ground and the distance of the object from the scanner. This information is stored in the form 

of an array shown in the equation 3.1.  

During the total time period (T), it is supposed that a total of nb scans are performed by the scanner. 

Each scan is independent of the others. If these independent consecutive scans are concatenated or 

accumulated, the 3D information of the object that passed under the scanner can be obtained.      

S=                                                              (3.2) 

 S contains an accumulated independent consecutive scans by the laser scanner during time T. Figure 

42 shows an example of S showing a PTW obtained after an accumulation of scans. The PTW shown 

at the extreme right is a representation in 2D with the third hidden axis showing the scan points 

representing the road (Zaxis).  

 
Figure 42: (Left) Image representing a motorbike passing below a unit (Middle) An example of accumulation of data. 

in 2D. (Right) The reconstructed data in 3D; X_axis: Accumulation of scans, Y_axis: height of the vehicle and  Z_axis: 

Scan points representing the road (Hidden) 

Post pre-processing, nb scans are accumulated thus giving a complete profile of the vehicle in 3D as 

represented in Figure 42. On the far right the silhouette of a Powered Two Wheeler (PTW), obtained 

after the accumulation of all the scans, can be seen. When we accumulate the scans, the information 

retrieved is independent of the direction of the vehicle passing under the scanner. In other words, two 

vehicles going under the scanner in the same direction and two vehicles passing each other in opposite 

directions cannot be distinguished.   

· Application of a ‘fill’ filter: Before applying other steps of rectification, a ‘fill’ filter is 

applied. Some values are non-observed and thus are returned as perfect zero values. The exact 

shape of these non-observed values can be seen by the spatio-temporal transformation. They 

usually exist around windscreens, for example. The problem increases when the vehicles are 

black as darker colours have a very low remission. A light-coloured vehicle will produce a 

better return signal than a dark-coloured vehicle. This fact has also been demonstrated in a 

research work [JEAN13]. This is why the ‘fill’ filter is applied and the principle is as follows: 

o A non-observed value in the data corresponds to a perfect zero value while other 

values that represent a road or surface have non-zero values. As the prototype is meant 

to be integrated in a real-time system, each scan is treated independently.  

o All the zero values in each scan are put together by proximity. 

o These group of zeros values are compared to a model M that represents an empty 

scan. 
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o If the neighbourhood values of the group correspond to other values than those 

present in M, they are filled with the values corresponding to the neighbourhood (non-

zero) values.  

o If the neighbourhood values of the cluster correspond to the values present in M, then 

an injection process is triggered. This model M is explained below  

- A model M is defined, taken from an empty scan (with no vehicles) which is 

the reference scan. An empty scan containing the road is in a form of a 

parabola with a Gaussian white noise. This hence can be represented as:  

M=  ,   N~N(0,σ)            (3.3) 

where, h corresponds to the height of the laser scanner above the ground. As 

we know, the slope of a parabola changes constantly as we move across the 

graph. Rmul is therefore defined such that it corresponds to the reference scan, 

θ is the angle (-135° to 135°) and N is the Gaussian white noise with σ² as the 

variance.   

- Neighbourhood check: For each extreme point in the cluster, the 

neighbourhood values of the signal are checked and compared with the values 

of M. The comparison helps to decide whether there is a value that can be 

associated to a vehicle present in the neighbourhood. 

- If the point at the extreme position has neighbourhood values different from 

the value of M, we consider that an object is present around this void value. 

This void value is usually a windshield. These missing set of values are filled 

with the neighbouring values. (Figure 43) 

 
Figure 43: Principle of checking the neighbourhood. In blue are the values representing a vehicle while in grey are the 

non-observed values. Extreme points in black. 

o If the extreme points of the non-observed values (Figure 43, in black) have 

neighbourhood values that are the same as those of M (with a margin of 2% Gaussian 

noise), we consider them to indicate a non-observed vehicle and the following process 

is carried out:    

- The index values of the zero values are known and are compared with the 

values present in M. 

I
t
i= Mi-v                                        (3.4) 
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where I
t
i is the scan at instant t with i the index of non-zero values, v is the 

value filled in the non-observed zone.  

In our research, a value of 1500mm is taken as the value of v, which 

corresponds to the height in mm of a typical LV and thus would help our 

method to classify the vehicle, as will be discussed later. The threshold value 

below which all the values shall are considered as noise is taken as 400mm.  

- Inducing values means adding noise or unknown values to the system. A 

counter is therefore introduced to help us track how many times the artificial 

value was injected. Each time v is injected in a cluster, the value of the 

counter is incremented. 

 
Figure 44: ‘fill’ filter (w.r.t : with respect to) 

To explain the concept better, the flowchart of the ‘fill’ filter is given in Figure 44. 

· Changing the coordinate system representation of the data: The raw data contains information 

in polar coordinates. In the start of our research work, the data was transformed in to semi-

Cartesian coordinates system i.e. converting height into metres and then keeping the angles 

(semi-polar). The problem with such a coordinate system is that the information read is 

deformed at the corners of the object. Here is an example in Figure 45.  
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Figure 45: Deformed information at the corner. α is the transversal inclination angle of the road 

Figure 45 gives an example of the deformed information that can be observed in the right 

image. α is the transversal inclination angle of the road is shown in equation 3.6. The edge of 

the reconstructed vehicle is the form of a slope. This can be explained by the simulated image 

on the left. The second to the fifth rays from the bottom, fall on the profile of the car, hence 

giving different height values for each corresponding scan point. This variable height when 

plotted with respect to the scan points, gives the ‘slope’ effect.  

With this coordinate system, the blind spots, where the laser beams do not fall, cannot be 

observed, giving a deformed shape. In the next chapter we will see in detail the results 

obtained and the problems encountered while using the semi-polar coordinate system that led 

us to transform the data into the Cartesian coordinate system.     

The data thus has the height in metres on the Yaxis and the distance in metres on the Xaxis. 

Figure 46 shows a general notation for the data representation. Here the Yaxis represents the 

height in metres and the Xaxis the distance of the object from the normal angle. In France, we 

have certain roads which are built with a certain slope. To obtain a precise rectified data, this 

slope, which is the transversal inclination angle α, is taken in consideration.  

It is to be noted that in this step a single scan at a time is processed. 

            The transformation from polar to Cartesian coordinates is as follows:  

                                       (3.5) 

β= α+θ                                             (3.6) 

               and  

θ=90-θh                                           (3.7) 

where β is the angle calculated from the transversal inclination angle α and the angle θh that the laser 

scanner ray makes with the normal angle (height). This step is necessary in order to compensate the 

probable inclinations that may occur either while installing the scanner or either the road structure 

above which the unit is installed is not straight.      

This step gives us the rectified values (Y axis and X axis) in metres. 

A background subtraction is done at every instant of time t. Only static subtraction is taken into 

account, as the system is meant to be installed on unknown sites with random factors (wind, fast 

moving objects, etc). Dynamic subtraction might generate false alarms.    
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Figure 46 shows the process explained above. Top left is the raw data representing information in 

terms of angles in degrees and the distance of the laser scanner in m from the road. A vehicle is 

surpassingly moving on a road that makes a certain angle. Top middle: the vehicle in the ROI (road). 

Top right, application of the ‘fill’ filter to each scan. Bottom-right, transformation spatial temporal: 

accumulation of scans to get the shape of the values the non-observed values  Then the convertor from 

polar to Cartesian coordinates is applied taking into consideration a probable angle of inclination. 

Bottom- middle, the result after rectifying one signal at a time by using a geometrical concept 

(Cartesian transformation- single scan).Bottom left, we can invert the image by data normalisation 

through background subtraction and by establishing a threshold to eliminate the absurd values 

(reflected beams towards environment).  

The information obtained is an example of information retrieved by the laser scanner during one scan 

at an instant of time when a vehicle passes under the unit.  

 
Figure 46: Pre-processing of the raw data. 

3.1.2. Transformation into a spatio-temporal domain  

 

Figure 46 explains the process of retrieving relevant information from a single scan.  

Let us consider, {card (p) < nb and p ϵ {I
t
1,I

t
2,…,I

t
nb }}. The value of p is calculated by estimating the 

maximum number of possible scans for a Heavy Vehicle (HV) of classical dimension moving under 

the scanner with a minimum speed (20km/h). For example, for nb=76 and p ϵ {I
t
1,I

t
2,…,I

t
76 }, 

card(p)=76-1=74 < nb. S is the space that contains the independent consecutive scans (I
t
) and nb is the 

total number of scans during the total time T. The value of I
t
 at an instant t gives the information about 

space at time t. Once this information in space is known, the notion of time is added by accumulating 

scans to get the data in a spatio-temporal domain. This is explained in Figure 47.  

 
Figure 47: Spatio-temporal domain: accumulation of p scans, a 2D reconstruction and the view from above. 
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In Figure 47, on the left, we can see a set of accumulated scans. In the middle a reconstructed 3D laser 

scanner image is shown. On the right, a 2D scanner image is shown with the distance in metres at 

Xaxis, with p scans accumulated on the Yaxis. The laser scanner measurements are shown in the form of 

an image representing the height of the vehicle. At instant of time k, the value of the image (Img) 

representing this spatio-temporal domain is given by   

Img
k
=U

i
 [I

i
]                       (3.8) 

or 

Img
k
=[I

k
,I

k+1
,….,I

k+p
]                                         (3.9) 

with Img
k
 containing all the p scans at instant of time k. 

3.1.2.1. Shadows or the non-observed zones 

Before applying the extraction algorithm, the nature of the data obtained after pre-processing has to be 

studied. The blind spot information is now represented as the shadows. An example of such shadows 

obtained after accumulation of scans is shown in Figure 48. The image contains inverted values and 

this explains why the road (in red) has values around 5 metres while vehicle tops are around 1 to 3 

metres. This non-processed image is inverted in order to clearly show the shadows.  

 
Figure 48: Inverted image, Shadows (non observed zones) in dark red around the vehicles. 

The position of the unit installed on the site can be estimated by looking at the projection of the cast 

shadows in Figure 48. In the scene explained above, three vehicles can be seen, two cars on the left 

with their shadows falling on the left, and, one car on the right with its shadow falling on the right. 

This shows that the unit might be placed in between the two cars on the left and one car on right, i.e. 

around 60
th
 scan point.  

The darker region (in dark red), corresponds to the blind spot values projected as shadows. They are 

formed when the laser beams are not able to reach the area occluded behind the vehicle.  

As explained in Chapter 2, the shadows can be calculated theoretically (Figure 49) by using the 

formula (3.10) 

x= h tan (λ)                                                       (3.10) 
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There are certain cases, when the ‘shadowy’ zone cannot be easily estimated. The first case on the left 

in Figure 50, shows the ‘shadowy’ zones perfectly estimated at each side, while on the right, the exact 

length of the shadow cannot be precisely estimated. 

 

 

Figure 50: When the object is exactly below the laser scanner (Left). Zone 1 and Zone 2 correspond to the ‘shadowy’ 

zones. When the objects are at border of the region of interest (Right), complete shadow or partial shadow is cast 

outside this zone. Hence the exact length of the non-observed zone cannot be estimated. 

3.1.2.2. Precision  

The precision of the values helps to distinguish different categories of vehicles. It helps to compare the 

values read from the laser scanner with the ground truth and know to what extent our data after pre-

processing is reliable. The scanned width of the vehicle is estimated by subtracting the distance of the 

unit from the two extreme corners of the vehicle passing under the laser scanner image (the first and 

the end point of the Xaxis). θ is the beam projection angle. E is the footprint of the laser beam. The box 

in black is the vehicle with true values while the box in orange is the estimated value of the vehicle 

calculated by the laser scanner. The precision is obtained by comparing this scanned width to the 

ground truth. 

 

 

 

 

 

 

 

Figure 49: Shadows  

Laser scanner 

       Object E 

B 

C 

θ 

Figure 51: Laser scanner partially falling on the object. E is the error. 

     Left limit           ROI          Right limit 
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As shown in Figure 51, the footprint E can be estimated by assuming that the rays fall at the extreme 

corner of the object. On contact with the object, the ray touching the object will bounce back to the 

laser scanner. This can be partial or complete contact. By partial contact we mean that half or less than 

half of a conical ray falls on the object, but when it reaches the laser scanner again, it returns the value 

as if there was a total contact with the object.    

Using trigonometric formulas, E can be calculated as:  E= C cos(θ), where θ is the angle of projection 

of the laser beam and C, is the hypotenuse of the right angle triangle formed. C is equal to R, which 

has a value of 8+ d x 0.015 (Equation 2.10). The error is therefore given by:  

E= (8 + d x 0.015) cos(θ)                                (3.11) 

From the equation 3.11, it can be seen that E is directly proportional to the distance between the laser 

scanner and the object (d): the higher the laser scanner, the higher the error. The precision values help 

to show the robustness of the values measured by the laser scanner, to validate the coordinate system 

chosen and thus the ground truth values of the vehicles can then be used to construct the learning base 

of the dataset for classification.   

3.2. Extraction process 

After the laser scanner signal processing, the next step is the extraction of the relevant data from the 

processed signal. A new approach called Last Line Check (LLC) has been applied to extract the 

information. Once an object is extracted it is then classified.  

3.2.1. Last Line Check  

This new approach is based on the variation in the height (beam intensity returned to the sensor) as an 

object passes under the laser scanner. Therefore, the height of the last scan ( scan) is checked at each 

instant of time t (Figure 52). As shown in equation (3.1), a scan at an instant t can be written 

                                                                    I 
t 
= [h1, h2, ….., hn]                                       

Where I
t
 is the value of the distance measured by the laser beam during a scan. This distance is given 

by: 

                                        (3.12)                                       

where c is the speed of light and Tof is the time that the beam takes to arrive at the vehicle travelling 

below and return.  

Figure 52 shows the last scan (or the most recent appearing in the scene) on the left, with a vehicle 

entering the scene. On the right, a corresponding intensity values representation of the scan is shown. 
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Figure 52: (Left) Vehicle entering the scene. (Right) Intensity (height) representation of the scan. 

I
t
 is the value of the height observed in the laser scan at instant t and n is the number of scan points.  

When a vehicle passes under the system, the variation of height is noticed by the laser scanner. To 

determine when one or more vehicles enter the scene, we consider the change in intensity (height) and 

the area of occurrence. In other words, a change is said to have occurred when,  

Th <                                                          (3.13) 

where:                                                                                                               (3.14) 

Th is the minimum threshold above which the intensity is considered to contain information that can 

be explored. This threshold is calculated by using experimental facts. In our case it is chosen as 0.4m 

as there is no vehicle with a height below this chosen value.  

 is calculated by taking into account the difference between two scans, one representing the height 

read in a empty scan ( ) and the other, the scan at instant of time t ( ).    

When a change in height occurs, it is registered and a counter is triggered to count the number of 

consecutive changes in the same zone. Once the height of the vehicle passing below the unit falls 

below Th, the counter is stopped, and the total number of scans containing a vehicle is recorded, along 

with the region where the change occurred (width of the vehicle).  

For example, in equation 3.15, the values in red correspond to the values of height that are above the 

threshold at two consecutive instants A and B.  Each of these scan is of size n. The equation below 

shows an example of a multiple entry of vehicles at the same time and in different regions.  

                              (3.15) 

 
Figure 53: Illustration of the LLC method: (Left): 2 vehicles entering the scene. (Right) One vehicle completely 

entered and extracted boxed in red. 
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Once the vehicle has completely entered the scene, we extract it. Figure 53 shows an illustration of the 

LLC method. On the left: a vehicle enters the scene and the counter is activated. On the right: when 

the vehicle has completely entered the scene, the counter stops as soon as the intensity becomes 

normal and the vehicle concerned is extracted. The algorithm is as follows:  

Algorithm: Last Line Check ( LLC ) 

Data: laser scanner data sequences 

Result: Vehicle extracted 

 

Compare the change in height of the last scan with the threshold 

If the change in height is more than Th; 

Register the scan point position where the height change is noticed 

(register_vehicle) 

Count the number of times the change is noticed consecutively 

(update_vehicle) 

When the intensity becomes less than Th, extract the vehicle with the 

maximum zone (width) and number of times (length). (extract_vehicle) 

Close the completed registration (close_registry) 

 

In the algorithm above, register_vehicle corresponds to the creation of an array with a unique ID that 

is allotted to each newly noticed vehicle. A flag is opened at the same time when the intensity is higher 

than the threshold. This flag authorises the update_vehicle to update the length of the vehicle each 

time an intensity change is found in the same area and to register the maximum size of the 

corresponding zone (width). extract_vehicle draws the boundary box using the length and width of the 

vehicle with a given ID. close_registry closes the flag, and thus the registry containing this closed flag 

will not be accessible to any further change.   

The flowchart below explains the overall concept idea of our method.    

 
Figure 54: Flowchart describing the LLC method's working principle at an instant t 

Figure 54 gives a detail of the LLC method. It is to be noted that this method can be applied to 

simultaneous multiple entries.  

3.2.2. Vehicle counter 

Vehicle counting methods are not only proposed by industry but also by many research laboratories 

that are contributing their knowhow. Hence in this section, a few counting methods used by several 

research laboratories are presented. Then our vehicle counter method is presented.  
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· Laboratories: existing approaches 

[FURS00] proposed a double light curtain to extract the number of objects crossing this curtain. The 

double curtain is used to estimate a rough differentiation of length between the passing objects. 

[TANA10] used multiple laser scanner placed horizontally to count either pedestrians or vehicles. The 

direction of cars is estimated from the position of the target. This method cannot be used where cars 

and pedestrians co-exist. [VEIC11] proposed to install a laser scanner per lane and the pre-process the 

laser scanner data for each lane. After this step, the vehicles were identified by using a threshold. They 

were then counted on each lane and the information from each lane was finally combined.  

· Our approach 

A vehicle can only be counted once it has completely entered the scene. This vehicle is firstly 

extracted and then classified. Our extraction method, the LLC method, contains a counter. It keeps in 

memory information from the very instant a vehicle begins to enter the scene. The information is 

contained in an array with a unique ID, a flag, the region where the intensity change is noticed and an 

up-dater that counts the number of times the change is noticed consecutively in the same region. Each 

state of vehicle at instant t is modelled using a 4-dimensional state vector (ID, Flag , Up-dater and 

Region of occurrence) into a state model which is given in the Table 16. 

ID Flag Up-dater Region 

Table 16: State model: Registering a vehicle 

Each time a vehicle is registered, a flag is associated with that vehicle. This flag opens when there is a 

change in intensity and closes when the intensity goes below the threshold. The closed flag triggers the 

classification and then triggers the counter. The matrix area where the vehicle’s information is filled is 

reinitialised. The reason for doing this is to avoid the saturation of the memory if the system is 

installed on a highway with heavy traffic where the number of vehicles present can be high.  

3.3. Classification 

The objective of classification is to identify various objects that belong to different classes present in a 

scene. The classes are formed by defining certain object characteristics that help to distinguish one 

object from another.  

This section briefly describes various classification methods used in order to categorize different types 

of data. There are two different broad categories of classification: [FLAM11] 

· Supervised classification: This is an essential tool to extract quantitative information when the 

classes are already known as in the following examples:   

o Naïve Bayes classifier: a simple probabilistic classifier based on applying Bayes 

theorem with strong independence assumptions.  

o Linear discriminate of Fisher: the objective is to find a hyperplan that could separate 

the classes of data. 

o K nearest neighbours: this is a very simple approach which looks for the k number of 

nearest neighbours (KNN). In this classification, a k number of neighbourhood values 
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is attributed and the points having a minimum of distance with respect to these chosen 

points are clustered.  

o Neural networks (ANN):  a mathematical model inspired by the structure or functional 

aspects of biological neural networks. A neural network consists of an interconnected 

group of nodes (artificial neurons). The key in the neural network is the hidden unit 

which makes it possible for the network to learn functions where the outputs are not 

linearly separable. The advantages of neural networks are that they are very good at 

handling numerical inputs and they can be taught learning functions from examples. 

They have been successful in learning to recognize handwritten characters, spoken 

words and human faces. Their advantages make them useful for a wide variety of 

other tasks, in addition to classification. 

o Support Vector Machine (SVM): a binary classifier to separate classes with a 

hyperplan.  This hyperplan can range from a simple linearly-separable problem to 

complex problems. An SVM using the linearly-separable parameters can be 

considered as a linear classifier for binary classification problem with labels y and 

features x. We use y ϵ [-1,1] instead of [0; 1] to denote the class labels, rather than 

parametering the linear classifier with the vector, using parameters w; b, and hence the 

classifier is written as 

                                                    (3.16) 

where g(z) =1 if z > -1 and g(z) =-1 otherwise.  This {w, b} notation explicitly treats 

the intercept term b separately from the other parameters. The classifier hence directly 

predicts either 1 or -1, without first going through the intermediate step of estimating 

the probability of y being 1. 

· Unsupervised classification: here the main idea is to partition the data into the most probable 

classes. In other words we look for a distribution of individual classes or categories. Fusion of 

elementary calculations shows that the number of possible partitions is of a very high order. 

The methods using such types of classification are limited when it comes to the execution time 

of an iterative algorithm that converges toward a partition that corresponds to a local 

optimum.   

 
Figure 55: Example of a decision tree over five objects a,b,c,d,e. The points m,n,p,q are the nodes of the tree. The 

discontinuous line indicated the level below which we can define three classes [FLAM11] 

The types of classification that follow unsupervised learning are: 

o Hierarchical clustering: the regrouping of the individuals in an iterative manner by 

starting from the base and progressively constructing an inverted tree. At each step or 
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grouping, a user-defined distance is calculated between the groups and an individual, 

and the group is the reformed. Figure 55 shows an example of a decision tree. 

o Classification by dynamic reallocation (Kmeans): the number of classes, k, is 

predefined. The classifier is initialized with k cluster centres by random selection, all 

individuals are assigned to the class whose centre is closest to the chosen distance. In 

the second step the algorithm computes the centroids of the newly-formed classes. 

This process iterates until the convergence to a local minimum is found or the 

maximum number of iterations set is achieved.  

Here is a bibliography of different methods used in traffic classification problems. Mathematically 

expressed, when an object moving on the road is detected, a probability is established that the object 

considered may belong to either a vehicle class or a non-vehicle class. This can further be segmented 

depending upon the dimension, shape etc of the object. Classification methods employing the 

dimensions of objects, line segments, or bounding boxes as the parameters are the most commonly 

used.  

However, one of the problems when using a laser scanner is that the detected shape of an object varies 

depending on the position of the object relative to the laser scanner [TYPI08]. Also, the effects of 

speed, occlusion or even natural conditions (climate) play an important role in affecting the shape of 

the object (vehicle).  

A formal probability equation for this general approach is given by [FAYA08]. [MEND04b] used a 

Gaussian Mixture Model (GMM) classifier for the laser scanner data.  

As mentioned earlier, there are not many studies dealing with the detection of PTWs in traffic. 

[GIDE08a] proposed to study different geometrical classes to classify vehicles in traffic. [MONT06] 

used a GMM to model each class of vehicle and then an MAP to classify them. [IZRI04] used the 

algorithm of Duda-Hurt to get the classification results. [HIRA03] presented the method of inter-

clustering to create different object clusters and then classify objects. [ARRA07] and [MONT07] used 

the adaboost algorithm for the classification problem. [DIET01] and [FURS00] used a pre-defined 

model to distinguish different vehicles. A prior knowledge about the road users was used to classify 

the detected objects. The length and width values were compared against the predefined bounding 

boxes to choose an object class. A similar approach was taken in [MEND04a] except that additional 

features were considered during classification. Each feature detected contributed a weighted “vote” 

towards a class and the highest scoring class was assigned to the object. One major problem when 

using the object dimensions during classification is the effect of occlusion. If an object is partially 

occluded, the object dimensions will be affected and could lead to a misclassification. This problem is 

addressed in by [BARG08]. The author considered the occlusion of the object during the voting 

process. However, this does not consider object dynamics during the verification phase. [MEND04] 

and [GATE08a] came up with KNN, whereas [HOSS01] proposed an automatic vehicle classification 

system on highways with the help of double scan by a laser scanner. [DAHL06] suggested using a 

Kmeans classifier. [WONG04] classified the vehicle by matching point clouds and hence getting the 

physical characteristics. [MAAT93] proposed using an SVM, taking into consideration the length and 

the width of the vehicles in the scene. This distinctive parameter helped to distinguish between the 

PTW and the other categories of vehicles.  [FURS00] used a laser scanner to study the outline of 

different kinds of vehicles. All the classification methods employed above were used specific 

parameters to identify this category of vehicle in the traffic. So, before going into details about the 

classifier, the different parameters that we shall be using for classification are presented. 
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3.3.1. Choice of parameters 

One of the major difficulties for classification is the correct choice of parameters.  For this research 

work, the exploitable parameters extracted from the vehicles are as follows:   

· Width (W):  The shape of a vehicle is often defined in terms of length and width. It is to be 

noted that the shape of the vehicle captured by the laser scanner changes with the speed of the 

vehicle.  

 
Figure 56: A PTW at different speeds varying from 20km/h up to 90 km/h 

Figure 56 shows an example of the laser scanner images of a PTW from 20km/h up to 90km/h. 

This demonstrates the difficulty of the problem, when with the same PTW at different speeds 

we have different corresponding data for the shape. The global area of the vehicle decreases 

with the speed, but we can still see that the width (W) of the PTW remains nearly the same. 

The width is one of the factors that are independent of the speed of the vehicle. This parameter 

can be defined as the maximum number of the scan points registered during the LLC method 

extraction process.  

· Scanned length: This is one of the most variable parameters that can see during the detection 

of a vehicle. As seen in Figure 56, the scanned length of the vehicle decreases gradually with 

increasing speed. This is due to the fact that the faster the vehicle; the shorter the time the 

laser scanner has to scan it. The scanned length is inversely proportional to the time of contact 

between the vehicle and the laser beam. This fact is also explained in the chapter Motivation 

and Overview, where the performance of the laser scanner with respect to the speed is 

explained.  

· Height: This parameter can be measured by using the distance between the laser scanner and 

the vehicle (d) and the angle of beam projection θ:   

h= d cosθ                                                          (3.17) 

where h is the height of the vehicle and d is the distance between the laser scanner and the 

vehicle. This parameter may be very effective if we want to distinguish between LV and HV. 

But the height might not prove to be very effective when it comes to distinguishing between a 

PTW and an LV for the following reasons:  
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o The height of a PTW depends on the category of PTW and also the height of the rider. 

This value is usually around 1700mm and this may also correspond to the height of an LV.    

o The correct height of a PTW on the road can only be registered if the laser rays fall on the 

helmet or the shoulders of the rider. This is not a very probable case as it depends upon the 

speed of the PTW or the time of contact between the laser scanner and the PTW.  

· Height sum: This is the sum of the image pixels representing the height of the vehicle that is 

extracted and put into the boundary box by the LLC method. The image shown in Figure 57 

was formed by accumulating a certain number of laser scans.  

  

Figure 57: Left: LV at 50 km/h with a Height sum of 8.89e5. Right: PTW with a Height sum of 1.92e5. 

Figure 57 shows an example of the sum of the pixels (height) of the vehicle extracted by our algorithm 

and put in the boundary box. As the LV is larger in area, with an evenly divided height, it has higher 

value than the height sum of the PTW, which is small and of uneven height. The problem with this 

parameter is that it is directly proportional to the length of the vehicle. In other words, the faster the 

vehicle, the less time available for the laser scanner to scan it and hence the lower of this parameter. 

· Height sum to scanned length ratio: With the increase in the speed of the vehicle, the scanned 

length gradually decreases. If we take the ratio of the height sum to the scanned length of the 

vehicle at variable speeds, we may create a significant descriptor that is independent of the 

scanned length. This parameter can be defined as: 

                                                                (3.18) 

· Number of pixels representing the height (Nbx): This is the maximum number of pixels that 

represent the height of the vehicle. For example, the highest point representing the height of 

the PTW will be the rider’s helmet, whereas for an LV it will be the roof. A filter is 

implemented to eliminate any value corresponding to the height of the laser scanner (total 

reflection or beam projection towards environment). Then, we take the maximum value 

present for the vehicle and hence use the algorithm of region growing, clustering all the values 

within a margin of 5% of this maximal value. 

Let h be the value of the pixel. The cluster C is then given by: 

                                          

                                                   (3.19) 

Nbx is thus the sum of the number of points in the cluster. 
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Figure 58: Left: An LV raw image, after filtering and the region growing. Right: a PTW: similar processing. 

 

In Figure 58 the processing is shown through three images for an LV and a PTW. The first 

image corresponds to the extracted vehicle. Then a filter is applied to eliminate any reflection 

(if any) is applied. After that, a region growing algorithm is used on the values within 5% of 

the maximum height value. The number of pixels in red can be counted at the end.  

 

· Height to the Nbx ratio (H_Nbx): Nbx may fail when the laser rays do not actually fall on the 

helmet of the rider but on the rest of the PTW, thus giving a larger set of values that may even 

correspond to the size of the set of values representing a fast moving car. To normalize the 

data, the height is divided by the Nbx. (Figure 59). 

 
Figure 59: Height normalized by Nbx  

Figure 59 shows the values of H_Nbx are much more distinctive than Nbx.  

To better represent all the parameters explained above, a sample of 40 vehicles is taken consisting of 

20 PTWs and 20 other categories (LVs). All these vehicles passed at variable speeds between 20km/h 

and 120 km/h. The values obtained for each parameter were then plotted on the graph. This graph 

helped us to compare and choose the right parameter(s) that can give the best solution to optimally 

separate two classes: PTW and non PTW (LV, HV).  

Figure 60 shows a comparison of plots of different parameters. Beginning from the top left to right and 

then going down, parameters such as width (W), Heightsum over length, Number of points 

representing maximum height of the object (Nbx) and Height over Nbx can be used to linearly separate 

PTW and other classes of vehicles. However, Heightsum over length and Nbx fail to linearly separate 

the two classes when the vehicle is moving very slowly, in a traffic jam for example. In such cases a 

vehicle may be read as a limousine and therefore, can confuse the classifier. Nevertheless, the H_Nbx 

is a very strong parameter when the traffic is fluid as it shows its robustness to the cases having speed 

to length interdependences.          
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Figure 60: Comparison plots of different parameters 

Once the parameters are selected, they can be applied to the classifier. For this research work, two 

different classifiers, a Support Vector Machine (SVM) and a K nearest neighbourhood (KNN) are 

chosen.  
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The goal of this research work is to distinguish PTWs from the other categories to vehicle. A Support 

Vector Machine (SVM) is a binary classifier, so can help to classify the data in to PTW and non PTW 

traffic. KNN is a clustering algorithm, so a sample is classified based on how far it is from the centroid 

of the cluster while the SVM uses the clusters chosen, not by the centroid but rather by a hyperplane 

that segregates one region from another region. However, both classifiers have been implemented in 

order to decide, by comparison, which one is the best to solve our problem. To sum up, here is a table 

that gives the difference between the two methods of classification explained in Table 17. 

 

SVM KNN 

Binary Multiclass  

Rapid  Time consuming if K is large 

Decision with the help of support vectors Decision based on entire training set 

Table 17: Difference between SVM and KNN 

 

3.3.2. Support Vector Machine (SVM) 

A SVM is based on supervised learning of Q training points, where each input  is of D dimension 

and is in one of two classes  i.e. the training data is in the form:  

 Where                                         (3.20) 

A problem is said to be separable linearly, when a function is of the form: 

D(x)= sign(f(x))                                                          (3.21) 

where,  f(x)=                                              (3.22)  

where D is the dimensionality of the feature vector x, w is an optimal weight vector and b is a constant.  

A hyperplane separates two different classes of data from each other whose decision function being 

given by the formula: 

                                          (3.23) 

This classifier is one of the most widely used (like Neural Networks) as it is very robust, and we chose 

it because SVM is a binary classifier well suited to our application of differentiating either PTWs or 

other vehicles (LV, HV) in a traffic scene.  

3.3.3. K Nearest Neighbour (KNN)  

A KNN may be defined as a non-parametric lazy learning algorithm. By non-parametric, we mean that 

no assumptions are made on the data distribution, whereas ‘lazy algorithm’ means that no training data 

points are used, so there is no explicit or only a minimal training phase. Due to the lack of 

generalization, KNN needs most of the training data during the testing phase. In the worst case, where 

all the data points may be used to take a decision, more time and more memory will be needed to 

compute a solution.   

KNN data points can be scalar or multidimensional vectors that are presented in a metric space. Since 

these points are in feature space, they can be presented in distance. The distance most commonly used 

is the Euclidean distance.  Each set of training data consists of vectors and to each of these vectors 



Doctorate dissertation 2013 

82 CHAPTER 3:  Extraction and classification |  

 

there are associated class labels. A simple example of these class labels can be a binary output (PTW 

or non-PTW in our case). But KNN is equally efficient with the arbitrary number of classes.   

KNN consists of a number ‘k’ which decides how many neighbours i.e. distance metrics should 

influence the decision. The algorithm behaves differently with respect to the value of k chosen, so 

there are two global classes.  If the number of classes is even, then it is preferable to give k an odd 

number. If k=1, then the algorithm is very simple to compute as no factor of k is used in the KNN 

algorithm.    

· Case 1 when k = 1 or Nearest Neighbour Rule 

This is the simplest case. Let x be the point to be labelled and the point closest to x, say y is to be 

found. According to the nearest neighbour rule, the labels of y are assigned to x. The method is quite 

simple and sometimes even counter-intuitive. It may result in a huge error if the number of data points 

is not very large.   

A simple way to explain the principle is to consider that we have a large dimensional plane with a 

large number of points. Consider a point x with a lot of neighbours and let y be the nearest neighbour. 

If x and y are sufficiently close, then there is a high probability that x and y belong to the same class.   

· Case2 when k= K  

This is just an extension of the earlier case. We now try to find the k nearest neighbour and then 

implement majority voting. Imagine   a new point to be classified for 2 classes C1 and C2 and with 

k=7. There are 4 instances of C1 and 3 of C2. By majority voting, the new point will be labelled as C1.  

Another solution is to add weight to each point and this may be calculated using its distance. For 

example, under inverse distance weighting, each point has a weight equal to the inverse of its distance 

to the point to be classified. This means that neighbouring points have a higher vote than the furthest 

points. 

It is to be noted that the accuracy increases when the value of k is increased but the computation cost 

also increases. A simple approach to calculate the value of k is using the rule of thumb  

                                                              (3.24) 

where n is the size of the training set [w8].  

3.3.4. Learning data set 

The learning data set was made by taking into account all the possible conditions that we have in our 

base.  This consists of a mixture of the vehicles taken from the data set of controlled site and the data 

set of a real site. Here is a recapitulation of the data sets: 

At the controlled site, the database was constructed using one PTW, five different types of light 

vehicles and one van (which is also considered as a Light vehicle). All these vehicles are white in 

colour and passed at different speed varying from 20km/h to 120km/h in a straight line and respecting 

all the rules of road security. The height of the laser scanner with respect to the road was either at 5 

meters or 6 meters. 

For the real conditions, however, the road had a maximum authorised speed of 90km/h, but there was 

the likelihood of motorists travelling above this limit. There was a greater variety of vehicles (different 
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colours and makes, sizes, some with side-cars). Motorists do not always respect the road safety rules 

and the vehicles do not always move in a straight line (overtaking, changing lanes etc).  

For the training data set all the cases from the controlled site with different speeds were used, together 

with the first 2 minutes of the laser sequences from the real site data. The values are shown in Table 

18.  

  PTW LV HV Total 

Controlled Site 28 24 0 52 

Real Site 4 70 6 80 

Total 32 94 6 132 

Table 18: Training set 

3.4. Implementation of the method 

The previous sections explained the theoretical aspect of the method. This section focuses on the 

experimental results obtained at each step of the method to demonstrate, how the algorithm works. A 

general flowchart of the system is as follows (Figure 61):  

 
Figure 61: Final overview of the system 

To explain the demonstration, a sequence of 200 scans is taken, corresponding to 4 seconds of laser 

scanner data. During these 4 seconds there are 4 vehicles: 1 PTW, 2 LVs and 1 HV. These vehicles 

have unknown speeds, the laser scanner is placed at an unknown height and at an unknown position 

(above the centre point of two lanes or not). The only thing known by default is that the system is 

installed on a three-lane highway.  

As none of the information about the site is known in advance, the first and foremost step is the data 

coherence step. For that, an empty scan is taken with 541 scan points (Figure 62). First, we will 

assume that the true value of the height is found in an interval of {270 int}, where int is 10, hence 

allowing an error of 5 degrees while installing the unit on the road. So, we look in the interval at points 

{260, 280} to find the minimum value corresponding to the height of the system.  
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Figure 62: Empty scan on the left and the corresponding image on the right 

In Figure 62, the left image corresponds to an empty scan with 541 scan points. By a brief visual 

examination, we can estimate the minima of the arc around the 270
th
 scan point. A bend can be noticed 

around the 350
th
 point, which by correlating with the image (on the right) can be estimated as the road 

divider. The points after the road divider correspond to the road in the opposite direction.   

Therefore an interval of {260,280} is taken and the minimum value in this interval corresponds to the 

height of the laser scanner. In our case, the minimum value of the height is 6.38 metres and the 

corresponding index value of the scan is 272.  

 
Figure 63: Empty scan with the interval of values were probability to find the correct height is maximum. 

In Figure 63 shows the corresponding result. The height of laser scanner is now known, to be 6.38 

metres. Once the height is known, the diameter of the laser beam, R, at the point of origin, which is 

272th scan point can be calculated by using the equation 2.10:  

R=  = 103.68mm 

In this demonstration, we have chosen 2 lanes on the left of the laser scanner and 1 lane on the right of 

the laser scanner. With all parameters known, the road verges (interval B) can be calculated using the 

equation 2.10.  
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So, Border2 ={208,342} for two lanes (1 on the right and 1 on the left) while Border3={160,342} for 

three lanes . By comparing this with the ground truth, the actual points are, BorderGT_2={215,345} for 

two lanes and BorderGT_3={170, 345} for three lanes. The delta of error increases the further we are 

from the laser scanner.  

Once the parameters are determined, all the 250 scans are accumulated and the following result is 

obtained (Figure 64). 

 
Figure 64: Image formed by the accumulation of scans 

In Figure 64, four vehicles are present in the scene. By visual contact, we can estimate that there is one 

HV, two LVs and one PTW. In this primary accumulation of scans, the information is missing; for 

example, the black car has a near-zero value. This demonstrates that the laser scanner returns a near 

zero value when the vehicle has a dark or black colour. For the second car, however, the rays are 

reflected back, so it can easily be seen in Figure 64. The PTW is moving at the leftmost corner. As it is 

moving fast and is smaller in size, it is represented by a very small number of scans. The shape of the 

HV is stretched as it is represented in the semi-Cartesian coordinates. 

After the application of ‘fill’ filter and changing the coordinate system (accumulation of scans i.e. time 

and distance in m), Figure 65:  

  

Figure 65: Before and after: (Left) semi-Cartesian coordinates system (Right) After changing the coordinate system. 

On the left of Figure 65 the case after the application of the ‘fill’ filter is shown. All the missing values 

have been filled up. The windshields of the cars have also been filled up. On the right, when the 

coordinate system is completely changed, the information is given in terms of accumulation of scans 

and the distance in metres. The non-observed zone (shadows) can be easily retrieved by the naked eye. 
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Once the information is obtained after signal processing, the extraction is done by the LLC method. 

Here is the result after the processing:  

 
Figure 66: Vehicles extracted through LLC and their corresponding real images 

Figure 66 shows the vehicles extracted, with their corresponding real images. All the detected vehicles 

are boxed in orange; it means that they are just extracted and not yet classified. As the system is at a 

height of 6.3 metres, we have an error of 194mm in the measurement. If the difference of estimated 

and ground truth value falls in the interval of 3σ, this means that we are 99% certain of the values 

calculated by our method.  

Here is the table of W measured by our method and the ground truth.  

Vehicle VW Golf Opel Omega PTW Volvo mini truck 

Width found (mm) 1608 1680 776 2095 

Ground Truth (mm) 1786 1776 790 2140 

Table 19: Comparison of the ground truth with the width found 

Table 19 shows that all the calculated values are in the margin of 3σ when we compare the values with 

the ground truth values. This shows that we are 99% certain of the precision of the calculated values. 

Once the vehicles are extracted, they are classified. Here we have used SVM using two parameters W 

and H_Nbx.  

Conclusion  

This chapter presents the detection, extraction and classification process from the laser scanner data 

obtained after the application of data coherence method.  

To process the data in order to extract and classify vehicles, this chapter is divided into three main 

parts:  

The raw signal contains noise and missing values. These missing values are due to dark objects 

present in the scene or to the windshields of the vehicles. Pre-processing is carried out and consists in 

rectifying the signal and accumulating scans.  The following steps are proposed:  
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· The raw signal is taken and a filter pass band is applied to eliminate all the low values linked 

with the artefacts i.e. (Gaussian noise mostly) and high values (reflection towards the 

environment).  

· A model M is defined. This model is the representation of an empty scan which is used as the 

scan of reference.  

· Then the fill filter is applied. This filter fills the missing values depending upon the size of the 

group of missing values. 

· For this filtered signal, the coordinates are changed from polar to Cartesian, thus, giving the 

transformed signal.  

· This signal contains information in space at an instant of time t. So, the accumulation of space 

is carried out during the time period T, giving us the data in the spatio-temporal domain.   

The accumulated data contains information about the vehicles on the road. Once the signal is 

rectified and all the missing values are filled, the extraction and classification steps are applied: 

· Last Line Check Method:  This method notices the variation in the height of the vehicle 

passing under the scanner. Once the object has completely passed through, the height drops 

below a threshold and the object is segmented.  

· Two different classifiers are applied to the extracted object: an SVM and a KNN. An SVM is 

used because it is a binary classifier and is the most suitable for classification when the 

learning data base is not large. A KNN is one of the simplest classifiers, efficient if the value 

of K is high. As soon as the object is extracted and classified, it is counted. The counter takes 

the unique id of the classified vehicles.  

At the end of this chapter, a demonstration was given to explain the results obtained after each step 

from processing the raw data until the vehicle was extracted and classified. In the next chapter the 

global results are shown after this proposed method has been applied on the entire database. These 

results are given along with explanations and interpretations.  
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Introduction 

The system processes the laser scanner’s raw signal to detect, extract and count the vehicles that travel 

under the unit. Before presenting the results, here is a summary of the procedure: 

The laser scanner is mounted on a gantry of a certain height above the inter-lane to cover a certain 

number of lanes (maximum 3 and ideally 2). The optimal position of the laser scanner with respect to 

the road profile is estimated and validated through the simulator. Once the position is defined, the site 

parameters i.e. the road verges and the height of the unit from the ground are calculated by data 

coherence method. The system is now ready for the laser scanner data processing.  

For the pre-processing step, the data is in polar coordinates. There are some missing values (or non-

observed values), usually due to the absorption of laser rays by dark or black objects. Similar   

behaviour is observed for the windshields. The ‘fill’ filter is applied to fill these non-observed values 

found in the scan. Once filled, the polar coordinates are converted to Cartesian coordinates and then 

these scans are accumulated (spatial information) during a certain period of time (temporal) to obtain 

the information in the spatio-temporal domain.  

An extraction method; the Last Line Check (LLC) method, is applied to this information. Once the 

object is extracted, it is classified using either an SVM or a KNN. For the data collected at the 

controlled site just a SVM is applied, while on the real site both SVM and KNN are applied in order to 

compare their performances. Once the vehicle is classified, it can be counted.  

The process summarized above has been applied to two different sites with two completely different 

conditions (Controlled and Real site) as discussed in Chapter Data Acquisition. The results are 

presented below. 

4.1. Controlled site 

Two different types of database were constructed by varying height of the laser scanner between 5 to 6 

metres from the ground and at a distance of 3 metres perpendicular from the left edge of the road.    

Different categories of vehicles passed at speeds varying from 20km/h to 120km/h, following all the 

safety standards. Here are a few cases presented constructed:  A PTW passing alone, an LV passing 

alone, a PTW travelling in front of an LV, a PTW travelling behind an LV, a PTW travelling in 

between two LVs, an LV overtaking 2 LVs at the same time, a PTW travelling alone with a rider and a 

passenger; a PTW with a rider and a passenger overtaking an LV.  

Figures 67 and 68 present the results with colour maps representing height.  

Two types of vehicles are represented in terms of scans points on the Xaxis and number of scans on the 

Yaxis. All this information is shown in semi-Cartesian coordinates. 

The road is represented in blue while the PTW helmet and car roof are in red. A PTW correctly 

detected is put in a green boundary box, while the other categories of vehicles are in red.  

It is to be noted that in the following Figures (67 and 68), the webcam was placed with a slight angle 

towards the environment, while the laser scanner was placed completely vertically to the ground. This 

slight angle of the webcam gave a larger field of view for the environment i.e. the passing vehicles.  
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Figure 67: Scenes recorded with a camera installed next to the laser scanner, and results obtained after application of 

our method to these different scenes. 
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Figure 68: Scenes recorded with a camera installed next to the laser scanner, and results obtained after application of 

our method to these different scenes 

A few examples of reconstructed traffic scenes are shown in Figures 67 and 68. On the left are the 

images of the scenes and on the right are the corresponding laser scanner images. The first image in 

Figure 68 shows a PTW with two passengers. The method was tested on the controlled site, with data 

represented in two different coordinate systems: semi-Cartesian coordinates and Cartesian coordinates. 

The results obtained after the application of the LLC method were more interesting with the Cartesian 

coordinates.   

In the semi-Cartesian coordinate system, the distance (ρ) was transformed into the height of the 

vehicle in metres and is plotted against the angle in degrees (θ), thus giving a semi-Cartesian 

coordinate system. Below is a table of the laser data acquired at the controlled site (Table 20). 
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 h=5m h=6m Total 

PTW 52 25 77 

LV 61 30 91 

Van 0 0 0 

Total 113 55 168 

Table 20: Controlled site database 

Of these 168 vehicles, 52 vehicles (28 PTWs and 24 LVs), were used in the training base. Table 21 

shows the results when the LLC was applied with SVM.   

LLC Method Global  PTW  

Correct detection rate 99.0% 98.6% 

False detection rate 0.0% 0.0% 

Non detected 1.0% 1.4% 

Table 21:  Results of our method: semi-Cartesian coordinate system [120 samples] 

Table 21 presents the results applied to the controlled traffic for the LLC method developed. The 

result shows the detection rate for the global traffic and uniquely of PTWs in the semi-Cartesian 

coordinates.  

The LLC method has a high overall detection rate of 99%; for PTWs the detection rate is 98.6%. This 

method is rapid as it is based on the intensity change of the last scan at each instant. Once the vehicle 

is detected and classified, it is counted.  

In the results presented above (Table 21); there is no false detection as the conditions were controlled 

in terms of site and traffic i.e. a fixed number of vehicles (all white) in the constructed traffic. We do 

have one case where 1 PTW was not detected (which corresponds to 1% and 1.4% of non detected in 

table 21). This was when a van and a PTW were moving parallel to each other, with the van towards 

the laser scanner as shown in Figure 69.  

 
Figure 69: 3D and 2D views of the semi-Cartesian coordinates 

Figure 69 represents a PTW travelling next to an HV. In the reconstructed 3D scene the ‘combination 

effect’ of the PTW and HV can be observed and hence, they are read as one vehicle by the system. 

This corresponds to the non-detected PTW. 

The same type of problem was reported by [RIPO12] during the processing of traffic data in the city. 

But no solution was proposed for the problem.  
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So, to rectify this problem, the coordinates were completely changed to a Cartesian coordinate system 

thus giving a complete 3D view of the vehicle. This coordinate system change also takes into 

consideration the ‘slope’ effect. All these values that corresponded to blind spots are defined to zero in 

order to get a separate the combined vehicle as discussed in the previous chapter. So, after changing 

the coordinates the resulting image is shown in Figure 70.  

 
Figure 70: Cartesian coordinates 

In Figure 70 the vehicles above are separated completely. The scene above is displayed with 

accumulation of scans on the Yaxis and distance in metres on the X axis. The value of width calculated in 

the metric system helps us to validate our calculations by comparing them with the ground truth.   

After processing, the results are as follows: 

PTW detection rate LLC  

Correct detection rate 100.0% 

False detection rate 0.0% 

Non detected 0.0% 

Table 22: Cartesian: Result of PTW detection 

Table 22 shows a very encouraging result. It is to be noted, however, in the testing database, only one 

PTW was driven with different speeds and the learning set was constructed by taking a few samples 

from the database. This work was demonstrated at the mid-term METRAMOTO seminar   organized 

on   May 11
th
 2012 at CETE NC. For one scan, the average calculation time of the method, 

(conversion spatio temporal, LLC algorithm and classification) run with Matlab and on a normal 

machine, is 36ms. The method can thus work correctly in real-time if integrated in a real-time system 

deployed on a road. The seminar was open to the public and all the road administrators.  This step 

validated our method and hence encouraged us to move to a real site.  
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4.2. Real Site SUDIII 

Experimentations were conducted in the month of December 2012 on the site of SUDIII also known as 

RN338 consisting three lanes as shown below:  

 
Figure 71: Site SUDIII 

As shown in Figure 71, the third lane is an acceleration or insertion lane. This third lane must, 

therefore, share the traffic of the second lane (middle). The main problem in such a set-up is that one 

cannot just take two lanes and forget the third lane. Many vehicles move in between the second and 

the third lane, thus creating great confusion.  

The laser scanner is placed at a height of 6.3 metres and not far from the exact middle of the first two 

lanes. As the three-lane traffic cannot be completely cut into two-lane traffic, a confidence range is 

defined.  It corresponds to a width of 1m that is added to the second lane from the third lane so that a 

possible inter-lane vehicle case will be taken into account.   

The learning database consists of 132 vehicles by taking the values of the base constructed from the 

controlled site at CETE NC and the first 2 minutes of the laser scanner data of the SUDIII. (Chapter: 

Data Acquisition). All these data were tested with two classifiers: SVM and KNN.  

To make our system more precise, we add the notion of height of the vehicles classified as non PTW. 

The only way to distinguish between an HV and an LV is the height of the vehicle. An HV has a 

height of more than 4 metres, while an LV has an average height of nearly 2 metres. In other words, an 

HV is an LV with a height of more than 4 metres and a width more than 2m. Table 23 below gives the 

number of vehicles in the training database.  

 PTW LV HV Total 

Controlled Site 28 24 0 52 

Real Site 4 70 6 80 

Total 32 94 6 132 

Table 23: Training database (Controlled site + Real site) 

4.2.1. SVM Results 

As SVM is a linear and binary classifier, it is suited to our classification problem (PTW or non PTW). 

This three-lane data registered   one hour of traffic (63 minutes) with a total of 2135 vehicles on 3 

lanes. The traffic contained PTWs, LVs (cars, SUVs, etc), HVs (Trucks, Lorries, Busses, etc). 

For a three lane classification problem, two parameters are used: W and the H_Nbx.  
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                                             What the system detected 

Category 

of 

vehicle 

(GT) 

 PTW LV HV Missed 

PTW 12 0 0 1 

LV 23 1878 0 7 

HV 0 0 214 0 

Table 24: Confusion matrix of vehicles: Real site 

Table 24 above presents the detection rate for the 63 minutes of traffic registered on SUDIII. There are 

23 LVs that are misclassified as PTWs and there are 8 missed vehicles (1 PTW and 7 LVs). The 

number of vehicles misclassified as PTWs is nearly twice the number of PTWs classified correctly. 

Here are the explanations for the cases where the algorithm failed.   

Missing vehicles: All the 7 missing LVs were observed in the third lane. These missing vehicles were 

due to the occlusion created by the HVs travelling in the second lane. The only missing PTW was not 

read by the system due to its high speed (145km/h or above). The exact value of this speed is unknown 

as no radar was installed next to the unit to calculate the speed of the passing vehicles. Figure 72 

shows the example. Here are a few examples of occlusion.  

 

Figure 72: Missed LVs due to occlusion 
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The Figure 72 shows a few examples of occlusion observed on the RN338. The case where semi 

occlusion was observed, the classifier got confused and classified an LV as a PTW. Here are the 

detailed results for the 63 minutes data:   

Lane number Lane3 Lane2 Lane1 

PTW 5 5 2 

Others 390 997 705 

Global classification % 95.1% 99.5% 99.1% 

Table 25: Vehicles detected on real site (1 hour data) 

Table 25 shows the correct classification rate of the overall traffic per lane. For 63 minutes an overall 

98.5% correct classification rate was obtained, while for PTWs the correct classification rate was   

91.7%. The detection rate is the least for the third lane which is explained by the missed vehicles and 

the LVs misclassified as PTWs. The first two lanes, however, have a higher detection rate. This is the 

detail of the result:   

All vehicles (Others 

+PTW) 

Lane2 Lane1 Total Percentage  

Correctly 

detected  

ALL 979 699 1678 98.5% 

PTW 5 2 7 

Wrongly 

detected 

ALL 17 6 23 1.3% 

PTW 0 0 0 

False Alarm 8 3 11 0.6% 

Missed ALL 1 0 1 0.1% 

PTW 1 0 1 

Total 997 705 1702 100 

Table 26: All vehicles detected on real site (2 lanes) 

Table 26 shows the global traffic of the first two lanes. It can be clearly seen that if only 2 lanes are 

taken, the risk of occlusion becomes minimum. Seven PTWs out of 8 were detected and correctly 

classified, thus giving a correct classification rate of 87.5% for the PTWs. This justifies the choice of 

scanning two lanes instead of three when using a single laser scanner. The proposition done has been 

explained in detail and is presented in Chapter 2 (Data Acquisition).  

For the three-lane data, choosing two lanes increases the difficulty of the situation. In Table 26, 

several false alarms and wrong detection cases can be noticed for Lane 2. Taking just two lanes 

increases the wrong detection rate, as sometimes a vehicle changing lanes might just be cut into two, 

thus leading the extractor and classifier to treat the passing vehicle as a PTW. Hence the line of a line 

of tolerance has been introduced on the Lane 3 at a distance of 1 metre from the inter-lane of Lane 2 

and Lane 3. The zone inside this line of tolerance is hereby called zone of confidence. 

In order to verify the results obtained with the ground truth, it takes a lot a time as the verification has 

to be done manually to validate the presence of vehicles in the inter-lane.  
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Figure 73: The original scene and the vehicle passed under the scanner. The red dot is where the laser scanner is 

placed. Yellow line is the line of tolerance. 

On the right in Figure 73, the yellow line corresponds to the line of tolerance. As the vehicles were 

coming in and getting out of the third lane, so many times the vehicles were found at the inter-lane of 

second and third lane under the laser scanner. Brutally cutting three lanes into two may cut all these 

vehicles as well. To avoid this loss at maximum, a line of tolerance has been introduced on the Lane 3 

at a distance of 1 metre from the inter-lane of Lane 2 and Lane 3. This distance of 1 metre corresponds 

to the width of the hard shoulder. For this two-lane problem, two SVMs and KNN are used with 

different parameters. To each of these classifiers, a mono parameter (W) and the double parameters (W 

and H_Nbx) are used. This would help to see if a single classification parameter is able to classify this 

complex problem. Table 27 shows the traffic per category of vehicle per lane.   

Type of Vehicle  Lane 2 Lane 1 Total per category 

PTW 21 9 30 

Others LV 3190 1749 4939 

HV 1104 801 1905 

Total 4315 2559 6874 

Share / Lane % 62.8 37.2 100.0 

Table 27: Traffic per lane (per category). 

4.2.1.1. SVM1 

As the title suggests, here only one parameter is used to classify a vehicle i.e. W. This parameter was 

chosen as the width normally remains the same irrespective of the speed of the vehicle (except when 

the laser scanner rays fall on a PTW travelling at a very high speed). This was explained previously in 

detail in chapter 3 Extraction and Classification. Figure 74 shows the plot of different widths for 

different categories of vehicle (PTW and Non-PTW). 

 
Figure 74: Width 
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Here is the classification result using W as the only parameter for the SVM: 

 What is detected 

Ground 

Truth 

 PTW LV HV Missed 

PTW 28  0 0 2 

LV 69 4870 0 0 

HV 0 0 1905 0 

Table 28: SVM single parameter results 

Table 28 above presents the classification results with the W as the only feature used to separate three 

classes. The table shows three classes PTW, LV and HV. It is to be noted that 69 LVs are 

misclassified as PTWs, which is due to the introduction of the line of tolerance. A total of 98.9% 

correct detection rate is obtained. Below is a table with more detailed results showing the detection 

rate per lane. 

All Vehicles Lane2 Lane1 Total Percentage  

Correctly detected  4260 2543 6803 98.9% 

Wrongly detected 54 15 69 1.0% 

Missed 1 1 2 0.0% 

Total 4315 2559 6874 100% 

Percentage/ lane 98.7% 99.3% 98.9%  

False alarm 61 3 64 0.9% 

Table 29: Per lane detection rate using SVM (Width) 

In table 29, a lower detection rate is observed for the second lane. This is due to the fact that the 

second lane carries traffic that depends upon the third lane traffic. All the vehicles entering and exiting 

the expressway are somehow at the middle of second and third lane. So most of the time, the vehicles 

taken into account are not completely in the zone of confidence as shown in Figure 75. So, W is 

sometimes a non-robust parameter for the correct classification of vehicles.  

 
Figure 75: Vehicles passing through the zone of confidence (SVM (width)). 

Figure 75 shows different cases when different vehicles are changing lanes, so they are cut by the line 

of tolerance. At the extreme left, a vehicle is observed which is correctly classified by the method, 

whereas in the other two cases, we have vehicles confused as PTWs. The   vehicle inside the zone of 

confidence is not wide enough, hence confusing the classifier.  

Tables 28 and 29 show the result. A total of 69 LVs were detected as PTWs:  As many as 54 out of 69 

LVs were misclassified in the second lane. These were mostly cut by the margin created that 

corresponds to the zone of confidence as can be seen in Figure 76. The first lane had fifteen LVs 

misclassified as PTWs. These cases correspond to small LVs travelling at high speed. 
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False alarms: There are nearly as many false alarms as there are misclassified PTWs. This number is 

twice the number of PTWs present in the database. The false alarms are explained in the general 

explanation section at the end of all the results (Figure 79).   

Missed vehicles: The two PTWs that were not detected passed at a very high speed and the laser 

scanner did not have enough time to retrieve the information. 

4.2.1.2. SVM2 

This SVM uses two parameters, W and H_Nbx, in order to separate PTW class and non PTW class by 

a hyperplane. A combination of these two parameters might result in a classifier robust enough for the 

maximum real-time urban traffic classification problems.  

 
Figure 76: Linear separation: Width to Height to number of scans. PTW in green and others in Red. 

The classification results are shown in the Table 30. 

 What is detected 

Ground 

Truth 

 PTW LV HV Missed 

PTW 28  0 0 2 

LV 42 4897 0 0 

HV 0 0 1905 0 

Table 30: Confusion matrix SVM2 

By using two features, the results have improved with a correct classification rate of 99.3% for global 

traffic and 93% for the PTWs. The results are better than SVM1 but still we have 42 LVs misclassified 

as PTWs.   

Global  Lane2 Lane1 Total Percentage  

Correctly 

detected  

ALL 4279 2551 6830 99.3% 

PTW 22 6 28 93.3% 

Wrongly 

detected 

ALL 35 7 42 0.6% 

PTW 0 0 0 0% 

Missed ALL 1 1 2 0.0% 

PTW 1 1 2 0.0% 

Total 4315 2559 6874 100% 

Percentage/ lane 99.1% 99.6% 99.3%  

False alarm 61 3 64 0.9% 

Table 31: Per lane detection rate using SVM2 (W + H_Nbx) 
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Table 31 presents the global results for all vehicles (including PTWs) and PTWs alone using two 

features, thus demonstrating that the classifier becomes more robust. For cases where the W alone fails 

to classify; the feature H_Nbx helps by adding the notion of density to most of the vehicles half cut 

while passing through the zone of confidence. This can be seen in Figure 77.  

 
Figure 77: Vehicles passing through the zone of confidence (SVM2 (W+H_Nbx)). 

The Figure 77 shows relatively better results than the results for SVM1. For the first two cases, the 

vehicles are correctly classified. In the third case, the height representing the vehicle in the zone of 

confidence is too low for the classifier to correctly classify the vehicle.  

A total of 42 LVs were detected as PTWs. In the second lane 35 out of 42 LVs were misclassified as 

PTWs. These were mostly cut by the margin created that corresponds to the line of tolerance (Figure 

77). This number of misclassified vehicles is relatively lower than in SVM1.The improved detection 

rate is thanks to the addition of the notion of H_Nbx.  

4.2.2. KNN Results  

For this part three different values of K have been chosen, K=5, K=10 and K=20 in order to 

understand, how the classification results evolve with the increase in the value of K. Two classification 

cases have been defined, KNN1 uses W as the only parameter of classification while W + H_Nbx are 

taken as the parameters for KNN2. The KNN results for K=5 are shown in the Table 32.  

K=5 KNN1 KNN2 Missed 

 PTW LV HV PTW LV HV  

PTW 28 0 0 28 0 0 2 

LV 105 4834 0 74 4865 0 0 

HV 0 0 1905 0 0 1905 0 

Table 32: KNN results (K=5) 

With five neighbours, when W is used as a single feature for the classifier, a global classification rate 

of 98.4% is obtained whereas the classification performance increases to 98.8% for KNN2 for all 

vehicles. The reason behind this low detection rate is lower number of neighbours (K). As this 

classifier is biased by the value of K, it does not have enough neighbours to compare the testing base. 

Thus the risk of false detection increases. The KNN results for K=10 are shown in the Table 33.     

K=10 KNN1 KNN2 Missed 

 PTW LV HV PTW LV HV  

PTW 28 0 0 28 0 0 2 

LV 56 4883 0 46 4893 0 0 

HV 0 0 1905 0 0 1905 0 

Table 33: KNN results K=10 
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When the number of neighbours is increased to 10, a relatively higher classification rate of 99% is 

obtained for a single feature (W: KNN1), while for the two features; KNN2, this rate increases to 

99.3%. It must be noted that the percentage of misclassification decreases almost by a factor of 2.  

The misclassified vehicles correspond to the LVs that are smaller in size and travel at a high speed. As 

discussed in Chapter 3, the value of K can be calculated using the rule of thumb, i.e. by taking the 

square root value of the size of the learning set which is 132 vehicles in our case. So, taking 12 as the 

value of K may give us a reliable classification result. The KNN results for K=20 are shown in the 

Table 34.    

K=20 KNN1 KNN2 Missed 

 PTW LV HV PTW LV HV  

PTW 28 0 0 28 0 0 2 

LV 42 4897 0 36 4903 0 0 

HV 0 0 1905 0 0 1905 0 

Table 34: KNN results K=20 

At K =20, a global classification rate of 99.3% is obtained for KNN1 which is very encouraging result 

whereas with two features the correct global classification rate increases to 99.4% for all vehicles. No 

significant improvement in the results can be seen when the value of K exceeds 20 neighbourhoods. 

The overall results obtained are nearly the same as were obtained applying SVM2.   

The PTWs were detected at a rate of 93.3% for the nearest neighbour value at 20. The 2 non-detected 

PTWs were travelling high speed and so the laser scanner did not have enough time to read them. An 

analysis of the rate of misclassification of LVs as PTWs shows that for K=5 to K=20, the 

misclassification rate decreased by a factor of 3 for KNN1 and 2 for KNN2. This demonstrates that 

when the number of neighbourhood members increases, the classification results become more 

reliable. There are twice as many false detections as the number of PTWs detected. This can be 

explained by the reflections generated by windshields, oil tankers, trailers and by the fact that cutting 

the road sections in two cuts the vehicles as well.     

KNN is a simple classifier but its processing speed is directly proportional to the size of database 

(number of calculations) and the value of K chosen.  

Overall, a correct detection rate of 99.4% is obtained for the global traffic. The remaining 0.6% is 

shared by the wrongly detected vehicles and the missed vehicles. In the traffic of 6874 vehicles, there 

were 30 PTWs of which 28 were detected and correctly classified. The other two were among the 

missed vehicles. Figure 78 shows the two cases where the PTWs were not detected.   

 
Figure 78: Case when the PTW is not detected 

Figure 78 presents the case where our method was not able to detect the PTWs in the traffic. In both    

cases the speed of the PTW was high (145km/h or more) and hence the number of scans i.e. 

information that the system was able to retrieve, was insufficient for the algorithm to process. One of 
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the most important parts in the results is the false alarm case. In our case there are around 1.0 % of 

cases where a false alarm occurs.  

 

Figure 79: False alarm cases 

Figure 79 shows all the false alarm cases, not all of which are for PTWs; sometimes they are for an 

LV. The problem is mostly due to the refraction or high scattering of the laser scanner beams caused 

by different materials, trailers, etc. Here are a few examples of such cases:  

The first case, top left, is quite common and can be seen often on the highways. There is a trailer 

behind an LV and it is detected as a separate vehicle. This does not happen every time. When the 

speed of the vehicle is high, the system may not have enough time to read the connector between the 

LV and trailer so the system detects two different vehicles.  

The second case, top right, is the metallic bordered truck covered with a piece of leather / fabric. The 

front part of the truck is detected whereas the system is able to read just its metallic border and not the 

rest of the structure, so scattered data is observed and detected as a PTW. This might be similar to   

when the PTW is moving very slowly below the laser scanner.  

The third case, bottom left, is when the laser scanner beams hit the window of the bus which are quite 

large in size. A refraction effect is observed and the beam is scattered, thus creating several small 

scattered information. The system takes these reflected parts as independent bodies and classifies them 

separately. 

The fourth case, bottom right, involves an oil tanker. The laser beam tends to scatter when it touches 

the tanker, hence projecting a false alarm for the system.     

There are a very few exceptions, which may be metallic objects of unknown shapes. Figure 80 shows 

the case where a ‘racing car’ shaped vehicle can be seen. These types of cars are not common but 

might sometimes generate false detections. 
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Figure 80: Exceptions 

There are a few problems with that hinder the fair detection of the PTWs. For example, the air 

turbulence caused by an HV passing with a high speed next to the sensor, thereby oscillating or 

creating a lateral moment of the system. Hence it creates an effect of a curtain like noise that appears 

in the scene. This is shown in Figure 81. This curtain like noise is not important below the sensor (in 

light blue) and becomes significant as it moves away from the sensor (like an arc).  

 
Figure 81: Sensor noise 

A working example of our method is shown at the beginning of the section 4.2, that gives a practical 

validation to the choice of reading 2 lanes instead of 3 lanes. With 3 lanes, the problem of occlusion is 

often noticed. This can be more easily observed with very heavy traffic when most of the LVs or 

PTWs are occluded by the HVs. However, with 2 lanes, all the vehicles at the inter-lane of the second 

and   third lane will be cut, and will thus generate false alarms and false detection.   

All the results above show only 30 PTWs out of 6874 vehicles (LV+HV+PTW). The traffic of PTWs 

in this database represent around 0.4% of the total traffic which is a very low share and hence cannot 

be presented separately in a table.  

A few examples of the PTWs detected are shown in Figure 82. 
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Figure 82: Different PTWs detected 

Table 35 compares SVM and KNN performance on RN338 data:   

Comparative table of 

classifiers (All vehicles) 

KNN  SVM 

K=5 K=10 K=20 SVM1 SVM2 

KNN1 KNN2 KNN1 KNN2 KNN1 KNN2 

Correct detection rate (%) 98.4 98.8 99.0 99.3 99.3 99.4 98.9 99.3 

False detection (%) 1.5 1.1 0.8 0.7 0.6 0.5 1.0 0.6 

Missed (%) 0 0 0 0 0 0 0 0 

Table 35: Comparative KNN and SVM performance table P1: single parameter and P2: two parameters 
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Table 35 compares the performance of both the classifiers KNN and SVM. KNN gives nearly the 

same performance as SVM2. A KNN becomes slower with the increase in the number of K. Here is a 

table with the confusion matrix for the KNN and SVM 

  What is detected 

Ground 

truth 

KNN K=5 K=10 K=20 

PTW 

Alone 

KNN1 KNN2 KNN1 KNN2 KNN1 KNN2 

PTW Other PTW Other PTW Other PTW Other PTW Other PTW Other 

PTW 28 0 28 0 28 0 28 0 28 0 28 0 

Other 105 6739 74 6770 56 6788 46 6898 42 6802 36 6808 

Table 36: KNN: Confusion matrix for PTW 

Table 36 shows a comparison of the confusion matrices obtained by varying different values of K and 

with a single parameter (KNN1) and two parameters (KNN2).  

Ground 

truth 

SVM What is detected 

PTW 

Alone 

SVM1 SVM2 

PTW Other PTW Other 

PTW 28 0 28 0 

Other 69 6775 42 6802 

Table 37: SVM: Confusion matrix for PTW 

The two comparative tables 36 and 37, show the results of each classifier. The method was able to 

attain a detection rate as high as 93% for the PTWs. The two non-detected PTWs were travelling at 

high speed (>144km/h).  

If the evolution of the misclassification rate of LVs as PTWs is seen, for K=5 to K=20, the rate 

decreased by a factor of 3 for KNN1 and by a factor of 2 for KNN2. This shows that if the number of 

neighbourhood members increase; the classification results become more reliable. There is twice as 

much false detections as the number PTWs detected. This can be explained by the reflections 

generated by the windshields, the oil tankers, the trailers and fact of cutting a 3 lane carriageway in a 2 

lane carriageway thereby cutting the vehicles present on them as well.         

However, the number of PTWs present in the testing database, i.e. 30 are not sufficient to judge a true 

performance of our method and hence it would not be legitimate to compare the performance with 

SVM and KNN as they both are giving the same results for PTW i.e. 28 PTWs out of 30. This 

conclusion led us to test our algorithm on the site of A13 where the number of PTWs is relatively 

higher and they share a higher percentage of traffic as well. 

4.3. Real Site Motor way A13 

The experiment was conducted in   June 2013. The laser scanner is 6.5 metres above the centre point 

between the first two lanes. For this experimentation, the same learning data base is used as in the 

previous part (SUDIII). Table 38 details the global traffic on the Parisian motor way (A13) which is a 

3-lane problem.  
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Overall traffic/ 

Lane 

Lane 3 Interlane  

(3-2) 

Lane 2 Interlane  

(2-1) 

Lane1 Total 

PTW 0 0 3 43 8 54 

Others 177 1 163 2 187 530 

Total 177 1 166 45 195 584 

Percentage 30.3% 0.1% 28.4% 7.7% 33.4% 100% 

Table 38: Parisian traffic (Motorway A13) 

 As shown in the previous section, SVM and KNN classifiers were also applied to this database.  

4.3.1. SVM 

As discussed in the last section, two different types of parameters are used for the SVM classification. 

In the first case, the W of the vehicle is used as the only parameter to separate classes. This is called as 

svm1 whereas in the second case, W and H_Nbx are used as the parameter of separation. This second 

case is called SVM2. 

Table 39 shows the comparative results obtained on the A13 data after applying SVM1 and SVM2:  

SVM SVM1 SVM2 Missed 

PTW LV PTW LV 

PTW 54 0 54 0 0 

LV 12 514 4 520 6 

Table 39: SVM classification results on A13 

A global detection rate of 97.2% is obtained for SVM1 while for SVM2 this rate increases to 98.2%. 

A rate of 100% was obtained for the PTWs and only 2 false alarms were registered. Out of these false 

alarms, there was only one false alarm for a PTW. These two cases are presented at the end of the 

KNN section (Figure 84). 

The number of false detections has decreased by a factor of 3 for SVM2. These false detections were 

most commonly observed in the third lane where the W of vehicle is not always significant due to 

partial occlusions by the vehicles travelling in the middle lane. The six non-detected or missed 

vehicles correspond to the LVs that were occluded by HVs in the third lane.  

4.3.2. KNN 

For this part three different values of K have been taken, as in the previous section, K=5, K=10 and 

K=20. The classification part has been sub divided into two cases. The first case uses W as the unique 

parameter and is called KNN1, whereas for the other case, the parameters taken are W and H_Nbx and 

is called KNN2. Table 40 compares the performances of KNN1 and KNN2 for K=5.  

K=5 KNN1 KNN2 Missed 

 PTW LV PTW LV  

PTW 54 0 54 0 0 

LV 14 510 11 513 6 

Table 40: KNN results for Paris A13 (K=5) 

With five nearest neighbours, the global classification rate using the W alone (KNN1) is 96.5% while 

the global classification performance increases to 97.1% for KNN2. The reason for this low detection 

rate is a low value of the nearest neighbour, as in the previous section. The classifier becomes less 

efficient if the number of nearest neighbours is low. However, the detection rate for PTWs remains at 

100% with two false alarms.  
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When the value of K is doubled, i.e. K=10; the results are shown in table 41.     

 K=10 K1 K2 Missed 

 PTW LV PTW LV  

PTW 54 0 54 0 0 

LV 12 512 7 517 6 

Table 41: KNN results for Paris A13 (K=10) 

When the number of neighbours is increased to 10, a relatively higher classification rate of 97% is 

obtained for a single feature (W) while for the two features, this rate increases to 97.7% for KNN2. 

Table 42 shows the classification results for the value of K as 20. 

K=20 K1 K2 Missed 

 PTW LV PTW LV  

PTW 54 0 54 0 0 

LV 11 513 3 521 6 

Table 42: KNN results for Paris A13 (K=20) 

At K =20, the encouraging results at 97.1% for all vehicles were obtained by using W (KNN1) as the 

only parameter whereas with two features (KNN2) the correct classification rate increased to 98.5% 

for all vehicles. The classification performance starts to stabilize when the value of K exceeds 20 

neighbourhoods. The results obtained are nearly the same as were obtained by applying SVM2.  

Discussion: For all these cases, there were 6 missed vehicles. All these vehicles were travelling in the 

right-most lane (third lane) and were occluded by the heavy vehicles. All 54 PTWs were detected and 

only 3 LVs were misclassified as PTWs. These three misclassified vehicles correspond to either small 

cars that moved at high speed in the left-most lane or the vehicles that were semi occluded   by the 

heavy vehicles. 

However, there were just two false alarms. One false alarm corresponded to a trailer car while the 

second one corresponded to the reflection of an HV. The number of false alarms found in this 

experimentation is not as high as in the experimentation carried out on SUDIII. This can be explained 

by understanding the difference between the two sites, the type of traffic present and the density of the 

traffic. 

Here are a few differences between the nature of data obtained from the two real experimental sites 

(SUDIII and A13): 

· Traffic on SUDIII was free flowing traffic, whereas on the Paris A13 it was congested.  

· Most of reflections that generated the false alarms were due to oil tankers. For the Paris A13 

data, no oil tankers passed through.        

· The laser scanner was placed on a bridge which was not perpendicular to the SUDIII road. 

This gave a deformed shape of LVs and PTWs passing under the laser scanner.  
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Figure 83: Inter-lane practice A13 

Figure 83 shows an example of the practice of inter-lane riding, which can be easily seen in Parisian 

traffic. Our algorithm is able to correctly extract and classify PTWs moving close to LVs even in   

congested traffic. The only two cases where a false alarm was generated are shown in Figure 84.  

 
Figure 84: The false alarm cases (A13) 

In the first case, in the presence of a trailer, our algorithm got confused and took it as another vehicle. 

In the second case, the reflection caused by the windshield of an HV created this confusion.   

Conclusion 

In this chapter the overall results of the solution proposed for detecting and counting PTWs in traffic 

are given. Our method was first tested on the data constructed at the controlled site where the traffic, 

speed, behaviour, inter vehicle distance etc were respected. For the classification an SVM was used as 

it is a binary classifier and we have either a PTW or a non-PTW in the traffic, since PTW is the 



  Doctorate dissertation 2013 

 

 

 | CHAPTER 4: Results and discussions 111 

 

category of vehicle that interests us. The experimental results gave us a 96.8% correct detection rate 

for PTWs at the controlled site. The non-detection was due to the fact that semi-Cartesian coordinates 

were used i.e. the values were plotted with height in metres and angles in degrees. The data was 

therefore converted into Cartesian coordinates keeping the inclination angle in mind. This gave a full 

detection score for the controlled site thus validating our method on the controlled site. 

After validating the method on the controlled site, we moved further on the real sites. The data was 

acquired in December 2012 for a period of 3.5 hours with a total of 6874 vehicles including 30 PTWs. 

Two classifiers, SVM and KNN, were applied to the database. An encouraging result of 99% of 

correct classifications for all vehicles on RN338 (SUDIII) was obtained. For the A13, where   traffic is 

heavier, 98.5% of the total vehicles were correctly classified. But at the same time there was nearly 

1.0% of false alarms, caused by various factors such as refractions or reflection of laser rays. 

For PTWs, on RN338, 28 PTWs out of 30 were correctly detected and classified. This gave a correct 

classification rate of 93%. However, the algorithm was used on a database with a higher percentage of 

PTWs on the A13, where the conditions are more challenging; all the PTWs were correctly detected 

and classified. 

The reason for using only SVM on the data of the controlled site is that the database at the time of 

construction on this site was not big and SVM can be used begin such cases. This classifier helped us 

to validate our method on the controlled site, which encouraged us to move to the real site. On the real 

site a larger database was constructed, which gave us an opportunity to apply KNN as well on the laser 

scanner data.     

· The system is capable of classifying several vehicles entering in the scene at the same time 

and is invariant to the direction of traffic.  

What makes the proposed method different from the one proposed by [RIPO12]:  

· [RIPO12] presented a general traffic counter and the focus was not put on the PTWs in traffic 

whereas our aim is to classify the PTWs in urban, suburban or motorways.    

· The laser scanner of [RIPO12] is installed mast-mounted on a traffic light. The traffic lights 

helped to decrease the speed of vehicles present in the scene. The threshold to validate the 

presence of vehicles is a minimum of 20 scans whereas our method needs a minimum of 2 

scans to validate the presence of a vehicle.  

· [RIPO12] presented the problem of occlusion. This problem corresponds to a ‘combined 

vehicle’ effect but no solution is proposed to overcome the problem. We also encountered this 

problem [Figure 69]. Our method proposes a solution that is able to separate vehicles correctly 

to overcome the combined effect.  

· Our system is able to find its height and road verges by itself just by knowing the number of 

lanes to be scanned.  

All information were not specified in detail by [RIPO12] in order to reproduce the method and 

compare it with our in on the same database.    

For a scan containing vehicle information, in order to pre-process and process on Matlab with a 

machine at 2.27 Ghz, our method takes an average of 36ms. As the time taken by the laser scanner for 

a scan is 20 ms, so the proposed method can work in real time with a slight delay if installed on a road.     
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For better efficiency of the system:  

· It should be deployed on a single or double lane and not on three or more lanes. 

· The system should be placed above the centre point of the two lanes to be scanned.   

However, the program may fail when  

· A PTW travels above 144km/h. A PTW that is 2m long and moving at 144 km/h (40m/s),   

will take 1/20 second to pass under the laser scanner. At 50Hz, the laser scanner will have just 

enough time for two scans i.e. to attain the threshold condition. This will lead the algorithm to 

successfully extract the vehicle present in the scene. However, the classifier may not be able 

to correctly classify the vehicle extracted due to lack of information.   

· The climatic conditions are not ideal. It means that during rain, the process of reflections and 

refractions can be more easily seen and thus may confuse the algorithm.  
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Conclusion and Perspectives 

The safety of Powered Two Wheelers (PTWs) is an issue of concern for public authorities and road 

administrators around the world. In 2011, the official figures show that the PTW is estimated to repre-

sent only 2% of the total traffic, but represents 30% of the deaths on the roads in France [ONSIR11]. 

The ambiguity in values is due to the fact that the PTWs are particularly difficult to detect because of 

their unknown interactions with the other vehicles on the road. To date, there is no overall definite 

solution to this problem that uses a single sensor to detect and count this category of vehicle on a 

highway. Hence the project ANR METRAMOTO was launched. This project aims not only to detect 

PTWs in traffic but also to identify the trajectory of PTWs. This would help the road administrators to 

understand the behaviour and interaction of this category of vehicle with other road users.  

 

In this applied and technical research work a single plane laser scanner was used to detect and count 

PTWs in traffic. Our research statement is: Detection and counting of PTWs in traffic using a single-

plane scanner. In other words, a solution is needed that uses a single-laser scanner, has an affordable 

price and is robust to a maximum of artefacts such as climatic conditions etc. This research work is 

aimed to be integrated in the near future into a system that can be easily installed on a highway and 

can count PTWs in real time with a good autonomy.  

During these three years (October 2010 till September 2013) of research work, the solution was at-

tained by the following steps:  

The state-of-the-art in the detection and counting of PTWs on the road was investigated, but very little 

research work was found in this domain. The existing solutions are either expensive to deploy on the 

road or are limited to certain traffic conditions. In Europe there are several recent projects that deal 

with  PTW safety but none of the projects involve the detection and counting of PTWs. This shows the 

originality of the present research work, which has been carried out as follows: 

 

A simulator has been developed to find how the laser scanner can be installed on the road so that the 

risk of occlusion is minimised. Installing a laser scanner on a real site in order to analyse different 

traffic scenes is not easy, but thanks to this simulator, different scenarios with different possible laser 

scanner positions are simulated to visualise the effects of occlusion, thus giving the road 

administrators an idea about the position to opt for before going to the site.  

Once the position of the scanner was found, it was installed on the real site. It is important to under-

stand the problems that can be encountered while installing the sensor on the road. The place where 

the laser scanner will be installed is not pre-defined. Hence no information, such as the height of the 

laser scanner, its exact position with respect to the gantry or pole on which it is installed; the profile of 

the road (inclination angle of the road, number of lanes, etc) can be known beforehand. Moreover, the 

laser scanner may also have an error of inclination due to human error while installing it. 

To minimise these problems; a data coherence method is proposed. This means that once the laser 

scanner is installed on the road, it should be capable of finding its own height above the road and the 

verges of the road. The user only needs to place the system on the gantry at a given position and 

indicate the exact number of lanes to be scanned. Once these basic parameters are found, the method is 

able to automatically correct the transversal inclination error and eliminate a maximum number of 

artefacts. 
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A ‘fill’ filter is introduced in order to increase the quality of the data. This filter is able to adapt itself 

according to the nature of the missing values, which can be due to the vehicles with dark colours 

(Black) or due to high reflection (windshield). 

An extraction method, called the Last Line Check (LLC) method, is applied to the rectified data. This 

method estimates the presence of the vehicle by verifying the presence of a height above the threshold 

value in the very last scan done. This variation is taken into consideration with the help of a threshold. 

Once noted, it is kept in memory along with the area where the change occurs. As soon as the value 

becomes normal (less than the threshold), the object is extracted. 

Once the objects are extracted, they are classified using two different classifiers: a linear SVM and a 

KNN. For both classifiers, two different parameters were chosen; Width (W) and ratio of the Height of 

vehicle (H_Nbx) with respect to the number of points representing this value. 

The scanned length of the vehicle was not taken into account as it depends on the speed of the vehicle 

and hence varies as the speed varies. Our basic goal is to single out the PTW from the traffic, and both 

of the classifiers gave an optimal result. 

When compared with the corresponding Ground Truth (GT), the width values of the extracted vehicles 

showed an accuracy of 99%. This demonstrates the precision with which our method can calculate 

values. 

The method was first employed and tested in  real-time conditions in controlled traffic, which helped 

in the construction of the first learning database set  where the traffic was limited (just one PTW 

moving under the scanner at different speeds). All the conditions created during the construction of 

this database were audited by Ms. Christina BURAGA of CETE Mediterranean. These conditions 

were all inspired from the real-time traffic seen in typical Parisian traffic. 

The proposed method can achieve a correct detection rate of 99% for all vehicles in normal traffic on a 

real site where the traffic conditions are very random. This loss of 1% is due to the occlusion that 

occurred when an HV hides the LVs or PTWs to the sensor eye. This loss cannot be recovered by 

means of any sensor.   

On 11
th
 May 2012, this method was demonstrated in front of the public and road administrators, when 

it was able to correctly detect, classify and count the vehicles in quasi real time.   

For future work, we need to: 

· implement our method on a database with several PTWs (both two-wheelers and three-

wheelers) in the same scene under the laser scanner. This would give us a very rich database 

and hence help to increase the number of detectable classes (PTW, mopeds etc). 

· construct a richer database with significantly larger data base that has a high number of PTWs. 

At present, there are only a few PTWs in the database (SUDIII). For this reason the system 

was installed in Paris on the A13. The database is 6 minutes long and has 10% of the PTWs 

traffic in the total traffic. This higher number of PTWs in traffic helped us to validate the 

proposed method. 

· test this method on the 3 week long database constructed on the A13 which contains many 

challenging traffic situations such as congested traffic, free flow traffic, traffic jam, accident 

scene, etc. 
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· test this method in different types of weather conditions (fog, rain, smog etc), as the laser 

reacts differently according to the density of water droplets  , the size of the water droplets etc. 

[DAHL06][TOTH03][GEBH05][BENJ08]. This is a major aspect which needs an in-depth 

study on the behaviour of the laser in fog when the water droplets are uniformly distributed 

and in rain when the droplets may be of variable size and direction (wind). As the method is 

intended to be used in real-time traffic, it should be robust to all these weather conditions. 

· use multi layered laser scanners to obtain a result robust to reflections. One example of such a 

laser scanner is the LMS SICK 5xx. With its higher angular frequency, the performance of the 

method can increase.  

· use several planer laser scanner which could help to estimate the speed and acceleration of the 

PTW can be estimated. This parameter of estimated speed can be used to find an invariant 

length and hence can be used as parameter for classification, thus obtaining results with a 

better precision. 

· compare the results with a 3D camera or a stereo camera. This comparison can help to 

determine the point at which the laser scanner becomes less efficient than a camera. This 

would help to fusion the technologies of the laser scanner and the camera in order to obtain a 

robust solution. 

· add the notion of time delay in the temporal domain to the traffic in order to correctly detect 

all the trailers. To the laser scanner eye, trailers sometimes are separated by a gap from the 

vehicle. Adding a time delay, that is making the algorithm wait for a few more scans before 

extracting which may help to solve this problem.   

· improve the LLC method by using the Temporal Occupancy Grids (TOGs). By defining the 

sensor model, the probability of finding an activity in the region of interest could be 

interesting. This method can equally be interesting to study the regions non-read (shadow or 

can also be called hidden space).   
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ANNEX 1 
 

Different types of laser scanners that exist in the market. Source: [w7]  

 
Figure 85: Different types of laser scanner in the market 
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