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Abstract

Soil organic carbon (SOC) concentrations and greenhouse gas (GHG) emissions are not
uniform across the landscape, but assemble in “hotspots” in specific areas. These differ-
ences are mainly driven by human-induced activities such as agricultural management.
40-50% of the Earth’s land surface is under agricultural land-use, for instance cropland,
managed grassland and permanent crops including agro-forestry and bio-energy crops.
Furthermore, 62% of the global soil C stock is SOC and the soil stores more than 3 times
more C than the atmosphere. Thus, C sequestration in agricultural soil has a potentially
important role in increasing SOC storage and GHG mitigation, and there is consider-
able interest in understanding the effects of agricultural management on SOC and GHG
fluxes in both grasslands and croplands, in order to better assess the uncertainty and
vulnerability of terrestrial SOC reservoirs.

For the sake of discovering the agricultural management practices relating to the ef-
fective and sustainable C sequestration in agricultural lands in Europe, simulating future
terrestrial C stocks and GHG budgets under varied agricultural management systems in
major European ecosystems is essential. Using models is a useful method with the
purpose of this and abundant studies have carried out. However, many model results
have not been validated with reliable observed long-term data, while other studies have
reported a strong impact of model initialisation on model result. Nevertheless, predic-
tions of annual to decadal variability in the European terrestrial C and GHG resources
largely rely on model results. Consequently, finding the most appropriate and compre-
hensive model initialisation method for obtaining reliable model simulations became
important, especially for process-based ecosystem models. In recent years, Zimmer-
mann et al. (2007) have succeed in initialising the Rothamsted Carbon model (RothC)
using a physical and chemical soil fractionation method. For that reason, we hypothe-
sised that measured detailed SOC data would be useful to initialise ecosystem models,
and this hypothesis should be tested for different process-based models and agricultural
land-use and management.

The objectives of this PhD thesis are: 1) to evaluate how agricultural management
influences SOC stocks using an experimental and a modelling approach and ii) to de-
termine an effective model initialisation scheme. The PhD project involved : 1) five
European paired-sites, each comprising long term (i.e. 10 to 25yrs) contrasting agri-
cultural management practices on mineral and organic soil (grassland : FR-Laqueuille,
extensive vs. intensive grazing; CH-Oensingen, high vs. low nitrogen input and cut;
NL-Reeuwijk, intensive vs. extensive cut and grazing; cropland: UK-Hertfordshire, in-
verted vs. non-inverted soil tillage; and IE-Carlow, conventional vs. reduced tillage),
i1) a simple SOC model (RothC) and three processed-base ecosystem models (grassland
PaSim and varied land-use DayCent and DNDC) and iii) different initialisation meth-
ods referring to the measured SOC pools values, to find an initialisation scheme which
allows model simulation results to be close to measured values.

Firstly, in order to examine how agricultural management influences SOC, soil sam-
pling campaigns were carried out, in winter 2011/2012, for the four European sites



(UK-Hertforsdhire was sampled in November 2003 0-20 cm soil depth). Each site com-
prises a pair of contrasting agricultural managements. The sampled soil was analysed
according to the soil fractionation method described by Zimmermann et al. (2007) for
five soil depth layers (0-5, 5-10, 10-20, 20-40, 40-60 cm). Results show that, for a
given depth and soil organic matter fraction, no significant differences were found in
SOC stocks between contrasting practices concerning mineral soil. For mineral soils,
the soil fractions derived from silt and clay exerted the greatest contribution to total
SOC, especially in the topsoil (0-10 cm), compared to the deeper soil layers (> 10 cm
depth). For organic soils (25 years under current management), the particulate organic
matter (POM) had the greatest contribution to total SOC, and a significant difference in
SOC distribution was observed between contrasting management practices. This shows
that management practices influence SOC more rapidly in organic soils compared to
mineral soils, which may be due to the larger quantity of POM in organic soils, being
sensitive to land management change. Concerning the mineral soil sites (up to 10 years
of contrasting management), it appeared that not enough time has elapsed since the
onset management practices to detect statistically significant differences in SOC stocks.

With comparing RothC model spin-up run result, most of the site’s current SOC
were not at the equilibrium status except Oensingen (CH) site. Concerning the Oensin-
gen (CH) site, plant residue C input which was used in this study was estimated value
by another model in De Bruijn et al. (2012), and I assume this plant residue C input may
already have been optimised for modelling. Furthermore, SOC in the extensive plot
was closer to the equilibrium SOC than the intensive plot. Perhaps this is because only
estimated plant input data was applied for the extensive plot while estimated plant input
value and real manure application data were applied for the intensive plot in the equi-
librium simulation. These results implied the difficulties for initialising models with
spin-up run considering the current SOC is at the equilibrium status, especially with
mineral soils.

Then we tested different initialisation methods using measured detailed SOC data
with RothC regarding SOC model output and also with PaSim, DayCent and DNDC
regarding model flux (GPP, NEE and Reco) results.

RothC model SOC results showed significant difference due to initialisation meth-
ods, and we found adjusting the total equilibrium SOC to the measured total SOC values
during the spin-up run is the most user friendly and effective RothC model initialisation.
In spite of the limited compatibility of Zimmermann et al. (2007)’s model SOC pools es-
timation from soil fraction data, other process-based ecosystem models such as PaSim,
DayCent and DNDC did not show a significant difference in model flux results between
spin-up run initialisation and initialisation methods using estimate Zimmermann et al.
(2007) SOC pools data, suggesting model initialisation using SOC pools data largely
affect SOC model output although not the model flux output.

Keywords
Soil organic carbon (SOC), process-based models, paired-sites, carbon fluxes, model
initialisation



Résumé

La concentration de Carbone organique de sol (COS) et les émissions de gaz a
effet de serre (GES) ne sont pas uniformes a travers I’espace, mais se regroupent en
“hotspots” dans des endroits spécifiques. Ces differences s’expliquent principalement
par les activités anthropiques telles que la gestion agricole. 40-50% de la surface de la
Terre est utilisé par 1’agriculture, par exemple les terres cultivées, les prairies gérées et
cultures permanentes, y compris I’agro-foresterie et de bio-cultures énergétiques. En
outre, 62% du carbone globale est COS, et le sol conserve plus que 3 fois plus de C
que I’atmosphére. Ainsi, la séquestration du carbone dans les sols agricoles joue un rdle
potentiellement important dans 1I’augmentation de stockage de COS et I’atténuation des
GES, et il y a un intérét considérable pour comprendre les effets de la gestion agri-
cole sur le COS et les flux de GES aux prairies et terres cultivées, afin de mieux évaluer
I’incertitude et la vulnérabilité des réservoirs de COS. Afin de découvrir les pratiques de
gestion agricole qui contribuent a la séquestration efficace et durable du carbone aux ter-
res agricoles en Europe, il est essentiel de simuler les stocks futurs de carbone terrestriel
et les budgets de GES par rapport aux systemes de gestion agricole variées sur les grands
écosystemes européens. Dans ce contexte, la modélisation est une méthode utile, et la
modélisation a déja été utilisé dans beaucoup d’études. Cependant beaucoup de résultats
de la modélisation n’ont pas encore été validés avec les données mesurées sur 1’horizon
long-terme, et d’ailleurs d’autres études ont constatés un fort impact de I’initialisation
du modele sur le résultat du modele. Néanmoins, la variabilité des prévisions annuelles
et décennales concernant le C et le GES en Europe dependent des résultats du modele.
Par conséquence, il est important de trouver la meilleure méthode d’initialisation des
modéles pour obtenir des résultats des modeles fiables, notamment pour les modeles
d’écosystemes dits “process-based.” Au cours des dernieres années, Zimmermann et al.
(2007) a réussit a initialiser le modele de Rothamsted carbone (RothC) en utilisant une
méthode (physique et chimique) de fractionation des sols. Pour cette raison, j’ai fait
I’hypothese que les données COS détaillées seraient utiles pour initialiser des modeles
d’écosysteme, et que cette hypothese doit étre testée avec les modeles différents par
rapport aux gestions agricoles différentes. Les buts de cette theése sont les suivants: 1)
évaluation des influences des gestions agricoles sur le stockage de COS, en utilisant des
approches expérimentales et des approches de modélisation; et ii) déterminer le meilleur
méthode d’initialisation des modeles.

Le project de these inclut: 1) cinq sites jumelés en Europe en composant les ges-
tions agricoles contraires a long terme (c’est-a-dire 10 a 25 ans) dans le sol minéral et le
sol organique (prairies: FR-Laqueuille, paturage intensif vs. extensif; CH-Oensingen,
application d’azote et fauchage intensive vs. extensive ; NL-Reeuwijk, fauchage et pa-
turage intensif vs. extensif ; cultivation: UK-Hertfordshire, labour (‘tillage’) inversé
vs. non-inversé; et IE-Carlow, labour (‘tillage’) conventionnel vs. réduit), ii) un mod-
¢le simple de COS (RothC) et trois modeles complexes d’écosysteme (par exemple
PaSim, DayCent et DNDC) et iii) méthodes d’initialisation des modeles concernant les
données mesurées de bassins COS, pour trouver la meilleur méthode d’initialisation
des modeles qui permet aux résultats des modeles d’€tre proches des valeurs mesurées.
Tout d’abord, afin d’examiner comment la gestion agricole influence le COS, la cam-
pagne d’echantillonnage de sol a eu lieu en hiver 2011/2012 dans quatre sites européens



(Royaume-Uni-Hertforsdhire a été échantillonnée en novembre 2003, avec 0-20cm de
profondeur du sol). Chaque site a compris un paire de gestions agricoles contrastées.
Les sols échantillonnés ont été analysée selon la méthode de fractionation des sols décrit
par Zimmermann et al. (2007) concernant cinq profondeurs de sol (0-5, 5-10, 10-20,
20-40, et 40-60 cm). Les résultats montrent qu’aucune différence significative n’a été
observée dans les stockages de COS entre les pratiques contrastées, a propos de chaque
profondeur du sol et chaque fraction du sol concernant le sol minéral. En ce qui con-
cerne le sol minéral, les fractions de sol provenant de limon et d’argile ont contribuées
largement au COS total, particulierement dans la couche arable (0-10 cm), en comparant
les couches plus profondes du sol (> 10 cm depth). En revanche, dans le sol organique,
la matiere organique particulaire (MOP) a contribué largement au COS total, si bien
qu’une différence significative dans la distribution de COS a été obervé entre les ges-
tions contrastées. Ce résultat suggere que les gestions agricoles influent le COS plus
rapidement dans le sol organique que dans le sol minéral, probablement parce que la
plus grande quantité de MOP est inclue dans le sol organique, et le MOP est sensible
aux changements de gestions agricoles. Dans les sites de sol minérals (controlés depuis
jusqu’a 10 ans de gestion contrastée), il semblerait qu’ils ont besoin de plus de temps
(plus que 10 ans) pour détecter des différences significatives dans le COS. Lorsque I’on
le met en comparaison avec les résultats de “spin-up run” obtenus par le modele RothC,
les COSs ne sont pas a I’equilibre (sauf le site Oensingen (CH)). Au site Oensingen
(CH), on a utilisé les données de “plant residue C input” qui a été estimé par un autre
étude (De Bruijn et al. (2012)). On suppose que ces données de “plant residue C input”
ont probablement déja été optimisés pour utiliser dans les modéles, ce qui implique que
les résultats de modeles seront probablement proches des donées mesurées. En outre,
comparant les ‘plots’ extensifs et intensifs, le résultat de SOC a I’equilibre était plus
proche au donée mesuré dans le ‘plot’ extensif. Les donées mesurées (concernant la
quantité réel du fumier) et les donées estimées (concernant le “plant input”) ont été
utilisées pour obtenir le COS a I’equilibre intensif, tandis que la seule donnée estimée
(concernant le “plant input”) a été utilisée pour obtenir le COS a I’equilibre extensif
(c’est-a-dire, il s’agit de la donnée mesurée, la quantité réelle du fumier, était le cause
de cette déviation entre le résultat de modele et la valeur observée). Ces résultats im-
pliquent qu’il existe des difficultés d’initialiser les modeles par hypotheése que le COS
présent est a I’equilibre, notamment avec le sol minéral. Ainsi, nous avons examiné
les differénts méthodes d’initialisation utilisant les données detailées de COS, en com-
parant le résultat de COS de RothC avec les résultats de flux de carbone (GPP, NEE et
Reco) par PaSim, DayCent et DNDC. Les resultats de COS de RothC ont montrés une
différence significative par rapport aux méthodes d’initialisation, et le meuilleur méth-
ode d’initialiser les modeles est de régler la quantite d’entrée de carbone pendant le
“spin-up run” jusqu’a ce que le total du COS a I’equilibre sera égale au total de COS
observé. Malgre les difficultés de compatibilité de Zimmermann et al. (2007) avec les
autres modeles, PaSim, DayCent et DNDC n’ont pas montré de différence significa-
tive par rapport aux méthodes d’initialisation des modeles en utilisant 1’estimation des
bassins COS. Ceci suggere que I'initialisation des modeles avec les donées de COS in-
flue largement les résultats de COS, mais pas les résultats de flux de carbones.
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Introduction




1.1 General Introduction

The world is facing a serious environmental, social and economic challenge: climate change.
Anthropogenic greenhouse gas (GHG) emissions are exacerbating the natural “greenhouse ef-
fect.” Sequestration of carbon in agricultural soils has been recognised as a potentially important
tool for mitigating climate change, as soil stores more than 75% of the Earth’s terrestrial organic
carbon (C) and contains 4-5 times the amount of C in living vegetation (Lal (2004a); Breuning-
Madsen et al. (2008)). 62% of the global soil C stock is soil organic carbon (SOC), and the soil
stores more than 3 times more C than the atmosphere (Jobbdgy and Jackson (2000); Lal (2002)).

Moreover, 40-50% of the Earth’s land surface is under agricultural land-use, such as crop-
land, managed grassland and permanent crops including agro-forestry and bio-energy crops
(Smith et al. (2007a)). Thus, C sequestration in agricultural soil has a potentially important
role in increasing SOC storage and GHG mitigation (around 90% contribution to the technical
potential, Paustian et al. (1998); Foereid and Hggh-Jensen (2004); Smith et al. (2007a)). Fur-
thermore, C sequestration in agricultural land may also contribute to increases in soil fertility
(i.e. mineralisation of N), soil water retention and crop productivity (Drinkwater et al. (1998);
Alvaro-Fuentes et al. (2009)). Realistic C sequestration of agricultural soils in Europe (EU-15)
was estimated to be 16-19 Mt C/year during the period 2008-2012. This corresponds to 2%
of European anthropogenic C emissions (Freibauer et al. (2004); Smith (2004a)), and agricul-
tural management systems play an important role (Van Wesemael et al. (2010); Powlson et al.
(2012)). Accordingly, there is considerable interest in understanding the effects of agricultural
management on SOC and GHG fluxes in both grasslands and croplands, in order to better assess
the uncertainty and vulnerability of terrestrial SOC reservoirs (Hassink (1994); De Bruijn et al.
(2012); Schulp et al. (2008); Leifeld et al. (2009a); Xu et al. (2011); Zhao et al. (2013); Senapati
et al. (2013); McSherry and Ritchie (2013)).

In Europe, grassland represents one of the dominant land uses, covering 22% of the EU-25
land area (EEA, 2005). Most grassland in Europe are managed for feeding domestic herbi-
vores, either directly through grazing or through forage production which is stored as hay or
silage. Thus, although grassland soils have a large potential as a terrestrial C reservoir, there
are significant uncertainties regarding how management influences SOC stocks (McSherry and
Ritchie (2013); Soussana et al. (2007)). For grasslands, the nature, frequency and intensity of
disturbance plays a key role in the C balance, because SOC in these environments is mainly
sequestered through the root system (e.g. rhizodeposition, root decomposition). Those manage-
ment activities also influence plant litter and organic fertiliser inputs, which increase or reduce
the natural capacity of soil to act as a C sink. Multi-decadal studies indicate that grassland prac-
tices can influence the rate of SOC sequestration for up to 20 years after conversion to grassland
(De Bruijn et al. (2012); Poeplau et al. (2011)), with gains and losses of SOC mainly depending
on the vertical distribution of C.

Cropland management activities (such as tillage, crop rotation and harvest) also have the
potential to store terrestrial C by influencing soil C gain or loss. For example, tillage has been
reported to increase the breakdown of organic residues, leading to soil erosion, losses of soil
moisture and degradation of soil structure. Accordingly, conventional long-term tillage can re-
duce soil C stocks by as much as 20-50% (Murty et al. (2002); Ogle et al. (2003)). Conservation
tillage reduces the negative impacts of tillage, preserves soil resources and can lead to an build-
up soil C lost during tillage (Conant et al. (2007)).

The input of organic matter, whether as organic fertilisers or plant residues, may also en-
hance SOC stocks (Zhang et al. (2007); Chivenge et al. (2007); Van Groenigen et al. (2010a,b);
Jagadamma and Lal (2010)). Some previous studies on organic fertiliser inputs suggest that
organic systems may store more C in soil than conventional systems (Gattinger et al. (2012)).
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However, others have suggested otherwise, showing no difference between the benefit of organic
farming on SOC content and conventional management with manure and plant residue manage-
ment (Leifeld et al. (2009a)). Consequently, detailed long-term land management data is needed
to fully understand SOC changes in those managed systems (Van Wesemael et al. (2010)).

In addition to management and C inputs, land-use change (LUC) is considered as an impor-
tant factor which influences SOC change (Post and Kwon (2008); Poeplau et al. (2011); Leifeld
et al. (2011)). A review, using a number of LUC sites, showed that grassland conversion to
cropland may attain the SOC equilibrium state 17 years after conversion (Poeplau et al. (2011))
and subsoil SOC changes are followed by changes observed in the topsoil. In contrast, after
a conversion from cropland to grassland, no new equilibrium was reached within 120 years.
However, these results have high uncertainty, due to limited sample size. In Europe, significant
land-use change has occurred until now, and long-term agricultural sites with fixed land-use and
management are rare (Smith et al. (2008, 2012)).

Thus, determining the agricultural management practices, which relate to an effective and
sustainable C sequestration in agricultural lands in Europe, has become essential. Studies as-
sessing the impact of a changing agricultural management are mainly undertaken to determine
appropriate management strategies to optimise land use for production and C sequestration.
However, climate also plays an important role for this purpose.

Using model approaches to assess the impact of natural and anthropogenic drivers on terres-
trial C sequestration has become a useful method, and abundant studies have been carried out
(Jenkinson and Rayner (1977); Jenkinson (1990); Parton and Rasmussen (1994); Parton et al.
(1998); Del Grosso et al. (2000, 2001); Leifeld et al. (2009a); Senapati et al. (2013); Poeplau
etal. (2013)). Nonetheless, these model results have not been validated against the large quantity
of observational data, and they often struggle with considerable uncertainties and inconsistencies
in the time horizons. Furthermore, many studies have reported that model initialisation methods
have a large effect on the model simulation results.

Although many studies have been carried out recently, no common model initialisation
method has been validated for process-based ecosystem models (Bruun and Jensen (2002);
Smith et al. (2002a); Wutzler and Reichstein (2007); Carvalhais et al. (2008); Hashimoto et al.
(2011); Xuetal. (2011)). In spite of this, the recent annual-to-decadal variability in the European
terrestrial C and GHG resources largely relies on these model results.

Consequently, in order to determine the most effective agricultural management practices
to sequester C, two major points became compelling areas of research: validating model results
through long term data, and finding the most appropriate and comprehensive model initialisation
method for obtaining reliable model simulation results.

1.2 Background

Soil organic carbon (SOC) studies

Jenkinson (1965) pointed out the importance of the soil C decomposition with regard to agri-
cultural management. In order to better understand SOC turnover, several methods have been
considered.

Radio carbon dating is one method to understand soil carbon turnover (Jenkinson (1965,
1966); Martel and Paul (1974); Jenkinson and Ayanaba (1977); Jenkinson (1976); Jenkinson and
Powlson (1976); Anderson and Paul (1984); Trumbore et al. (1989); Hsieh (1992); Wang et al.
(1996); Paul et al. (1997); Trumbore (2000); Bruun et al. (2008); Leifeld and Fuhrer (2009)).
Jenkinson (1965) used a '“C labelling method to determine plant material decomposition, and
he found that the plant material decomposition rate was not influenced by small changes of plant
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material input, and that plant material was decomposed quickly during the initial 6 months after
carbon input, although large decomposition was not further observed after the initial 6 months.
Jenkinson (1966) suggested that the size of soil biomass could be estimated by the size of CO,
emission after CHCI3 vapour treatment. He continued this study series until Jenkinson (1976),
which studied how labelled '*C and unlabelled C decompose for 10 years under plant residue
input and field conditions (Jenkinson (1965, 1966, 1976); Jenkinson and Powlson (1976)). Ra-
diocarbon dating in Jenkinson and Ayanaba (1977) showed that soil organic matter (SOM) con-
tained fractions decomposed much more slowly than the slow pool in SOC models. Anderson
and Paul (1984) discovered, using the radiocarbon dating method, that clay protects SOC, and
this protection would be for the long-term (months, years or decades) rather than the short-term
(days). Paul et al. (1997) reported that '“C ages strongly influenced the total soil organic matter
(SOM) content. Cultivation resulted in a lower amount of C in the soil, and the topsoil C age was
1200 years younger than that in the subsoil (Paul et al. (1997)). However, radiocarbon dating is
expensive, so it is used sparingly by researchers.

The nuclear magnetic resonance (NMR) spectroscopy method is also used to investigate
soil carbon turnover. This method is much less expensive than the radiocarbon dating method.
The first experiment for understanding the structural characterisation of soil humic substances
using NMR spectroscopy was published in Barton and Schnitzer (1963) (Preston (1996); Kogel-
Knabner (1997)). At that time, *C NMR spectroscopy became a major method for studying
soil organic matter structure as an improved method (Preston et al. (1994); Leifeld and Kogel-
Knabner (2001); Golchin et al. (1994); Rumpel et al. (2002); Schoning and Kogel-Knabner
(2006); Fontaine et al. (2007)), using 'H, 13C, 3'P and >N NMR on both solution and solid-
state samples. This method increased our understanding of the characterisation of SOM and
SOM turnover process, the effects of cultivation on SOM, characterisation of organic forms of
N and P and interactions of SOM with other substances (Preston (1996)).

Due to the heterogeneous characteristics of soil, isolating biologically meaningful SOC com-
partments has been an active area of research (Sollins et al. (1999)). Chemical extraction and
physical protection approaches have been considered for this purpose. The degree of physi-
cal protection of soil, soil particle size and soil particle density have been widely investigated.
Chemical soil fractionation is based on the solubility in acid and base, providing humic acid,
fulvic acid and humin fractions (Sollins et al. (1999)). For determining soil carbon vulnerability,
Blair et al. (1995) used potassium permanganate (KMnQOy4) oxidation and Kleber et al. (2005)
used NaOCl oxidation. Siregar et al. (2005) improved the chemical method, isolating stable soil
organic matter by using NaOCI oxidation at pH 8. These methods provide a dissolved organic
carbon (DOC) fraction, while chemical soil fractionation methods do not provide SOC compart-
ments which differ in biological properties (Sollins et al. (1999)). Particle size soil fractionation
was conducted in Preston et al. (1994), using ultrasonic dispersion ((Field and Minasny (1999);
Amelung and Zech (1999); Zimmermann et al. (2007)), wet sieving (Six et al. (1998); Zim-
mermann et al. (2007); Alvaro-Fuentes et al. (2009)), centrifugation and gravity sedimentation
(Sollins et al. (2006); Zimmermann et al. (2007); Alvaro-Fuentes et al. (2009)). Preston et al.
(1994) analysed the carbon in these soil fractions using '3C CPMAS (cross polarization and
magic angle spinning) NMR.

Six et al. (1998) subsequently established an extensive and complex physical soil fraction-
ation method, using aggregate separation and particle density separation (see Figure 1.1); this
method has been cited by a large number of studies (e.g. Schlesinger and Andrews (2000);
Paustian et al. (2000); Six et al. (2001); Christensen (2002); John et al. (2005); Liitzow et al.
(2006); Alvaro-Fuentes et al. (2009)). Bol et al. (2009) discovered the importance of partic-
ulate organic matter (POM) fractions in the SOC of arable soil. Nonetheless, the application
of ultrasonic dispersion and particle size fractionation methods to soil was questioned, as some
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soils contain considerable quantities of coal particles (Schmidt et al. (1999)). Skjemstad et al.
(2004) proposed a method for matching measured soil fractions to each Rothamsted Carbon
(RothC) model SOC pool. However, this method is specific to Australian soils which includes
large proportions of charcoal carbon. Consequently, Zimmermann et al. (2007) proposed a soil
fractionation method which produced measured fractions that were equivalent to the conceptual
SOC pools in the RothC model, and this method has now been tested by several studies (Leifeld
et al. (2009a); Leifeld and Fuhrer (2009); Dondini et al. (2009a); Senapati et al. (2013); Shirato
et al. (2013); Poeplau et al. (2013)).
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Figure 1.1: Physical soil fractionation scheme (Six et al. (1998))

Climate Change studies

In an objective way, climate change and agriculture are inter-related processes, both of which
take place on a global scale. On the one hand, global warming is projected to have significant
impacts on conditions affecting agriculture, including temperature, carbon dioxide, precipitation
and the interaction of these elements. On the other hand, agriculture has been shown to produce
significant effects on climate change, primarily through the production and release of greenhouse
gases such as carbon dioxide, methane, and nitrous oxide (Cole et al. (1997)). Also, land use
change such as deforestation and desertification, together with the use of fossil fuels, are the
major anthropogenic sources of carbon dioxide; which contribute to climate change.

To separate the effects of natural and anthropogenic origin on climate change, first studies
have been reported in 1827 by Jean Baptiste Joseph Fourier (1768-1830), in “Mémoire sur les
températures du globe terrestre et des espaces planétaires” (Fleming (1999)). Years later, Tyndall
(1861) was the first researcher who showed the scientific evidence that absorption and radiation
of heat by gases (N,O, CO,, CHy) and water vapours could absorb heat. By quantifying the
contribution of carbon dioxide (carbonic acid) to the greenhouse effect, Arrhenius (1896) first
mentioned the high potential impact of fossil fuel combustion to climate. However, this theory
aroused a large scientific discussion, and only in 1938 Callendar (1938) attempted to revitalise
the greenhouse effect theory of Arrhenius (1896), by showing that world temperatures have
increased at an average rate of 0.005 °C each year during the past half century (according to 200
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meteorological stations in northern temperate regions, tropical regions and southern temperate
regions).

The rising level of CO; in the atmosphere was demonstrated through a collection of mul-
tiple dry air CO; analyses (in Antarctica, Hawaii, California, South Pole, and North Pole), re-
vealing non-equilibrated CO, emissions (i.e. combustion of fossil fuels) and absorption by the
ocean Keeling (1960). In 1975, a first global circulation model was developed showing that the
doubling the CO, concentration may affect the distribution of temperature in the atmosphere
(Manabe and Wetherald (1975)). Furthermore, analysing global surface air temperature data
(1880-1985) from a number of available meteorological stations indicated that the surface air
temperature increased by 0.5-0.7 °C in the past century in both hemispheres (Hansen and Lebe-
deff (1987)).

In 1990, the IPCC First Assessment Report (FAR) brought attention to the human influence
on climate change. The IPCC assessment reports have been published every 7 years since 1990.
The IPCC Fourth Assessment Report (4AR) was publish in 2007, underlining the doubtless
existence of climate change, and the evidence that these changes are driven largely by human
activities. The latest IPCC Fifth Assessment Report (SAR) was published by Working Group I
in September 2013, mentioning that CO, concentrations have increased by 40% since the pre-
industrial era, due to fossil fuel combustion and net land use change emissions.

In order to assess this critical point, climate reconstructions have been conducted and many
studies have shown that the recent warming is doubtlessly larger than at any time during at least
the past 500 years (Luterbacher et al. (2001, 2004)). Nevertheless, some researchers remain
skeptical, suggesting that these changes are driven by natural forces with minimal influence of
human activity (Chylek and Lesins (2008)).

Climate Change and SOC studies in agricultural lands

The positive feedback of the effect of global warming, and the decomposition of SOM releasing
CO» to the atmosphere and enhancing the warming trend, was suggested by Jenkinson et al.
(1991). Many researchers have presented evidence that increasing CO, emissions are mostly due
to human-induced activities (Post et al. (1990); Jenkinson et al. (1991); Paustian et al. (2000);
Smith (2008)).

The soil was recognised as one of the largest CO, sources in the global C cycle, and
small soil respiration changes would greatly affect the CO, concentration in the atmosphere
(Schlesinger and Andrews (2000)). Moreover, C storage in the soil is more than 3 times big-
ger than that of the atmosphere (Lal (2004a); Davidson et al. (2000); Davidson and Janssens
(2006)). C sequestration transfers atmospheric CO; or other forms of C into long-lived SOC
compartments, and removes C to pools, that are not diffused easily into the atmosphere, increas-
ing SOC and soil inorganic carbon (SIC) stock by appropriate land use management (Smith et al.
(1997); Lal (2004a)). The amount of the potential SOC sequestration of managed ecosystems
is approximately equal to the amount of historical C loss (Lal (2004a,b)). Furthermore, 40-50%
of the Earth’s land surface is under agricultural land-use(Smith et al. (2007a)), and Smith et al.
(2008) reported soil C sequestration could contribute about 90% of the total global agricutural
mitigation potential by 2030. Thus, C sequestration in agricultural soil has a potentially impor-
tant role in increasing SOC storage and GHG mitigation (Paustian et al. (1998); Foereid and
Hggh-Jensen (2004); Lal (2004a,b); Smith et al. (2007a)).

In grasslands, management systems (i.e. fertilisation, grazing, mowing, conversion from
other land-use, sowing legumes or grasses and irrigation) play an important role in sustainable
production and SOC sequestration. Many studies have been conducted regarding the relationship
between SOC and grassland management (Parton et al. (1987); Burke et al. (1989); Cambardella
and Elliott (1992); Frank et al. (1995); Fearnside and Imbrozio Barbosa (1998); Conant et al.
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(2001); Smith et al. (2008); Maia et al. (2009)). Burke et al. (1989) found that C losses due
to land management were enhanced along with precipitation, while relative organic C losses
were lower in clay soils, suggesting a close relationship between the management system, SOC
stock, climate and soil texture. Frank et al. (1995) reported intensive grazing did not affect
the SOC stock, although conversion from mixed species to single-species-dominant grassland
reduced the SOC stock. Intensive grazing management effects relate closely to the soil mois-
ture (Holechek et al. (1999)), and Conant et al. (2001) proposed that improved management
systems, introduction of earthworms and irrigation resulted in considerable SOC accumulation.
Conant et al. (2001) also mentioned that the intensity and timing of grazing management affect
SOC accumulation by enhancing grass growth. Budge et al. (2011) discovered that Swiss alpine
grasslands contain a large amount of labile SOC in the topsoil and stable SOC in the subsoil.
Introducing grass species, which have high productivity or C allocation to deeper soil, could
enhance SOC content (Smith et al. (2008)). Deep-rooted grasses could greatly increase SOC
content (Smith et al. (2008)), and introducing legumes in grassland could enhance SOC amount
by increasing N input to the soil (Soussana et al. (2004)). From grazed grassland, CH4 emissions
from ruminants and their dung are also significant (Smith et al. (2008)). Improving animal per-
formance and vaccines against methanogenic bacteria are technologies that are currently under
development to reduce CH4 emissions.

Croplands management practices can be categorised as tillage (depth, timing), sowing, fertil-
isation, crop rotation, irrigation, harvesting, and use of fallow periods. The influence of cropland
management on stable and active SOC pools, using radiocarbon dating at 0-20 cm, was studied
in Hsieh (1992), finding that the stable SOC fraction is very resistant to biodegradation. Jenk-
inson et al. (2008) found that converting from conventional tillage to a non-tillage system could
sequester C, but that the amount depended largely on crop rotation compared to monoculture.
Alvaro-Fuentes et al. (2009) found that non tillage management with a long-fallowing period
increased the amount of SOC and improved soil structure and aggregation. Appropriate levels
of application of nitrogen and carbon by mineral fertilisers and manures, calculating the exact
amount of nitrogen (N) and C required by the crop, is important to avoid unnecessary GHG
emissions from agricultural lands (Cassman et al. (2003); Smith et al. (2008)). N and C input
timing should also be considered carefully. However, Leifeld et al. (2009a) reported that there
is no significant benefit of organic farming on SOC sequestration compared with management
combining conventional mineral fertiliser and organic manure application, while Gattinger et al.
(2012) show that SOC can be enhanced under organic systems.

Land-use change (LUC) is also considered to be an important factor which influences SOC
change and CO; emissions to the atmosphere (Houghton et al. (1999); Caspersen et al. (2000);
Conant et al. (2001); Guo and Gifford (2002); Post and Kwon (2008); Smith (2008); Poeplau
et al. (2011); Leifeld et al. (2011); Smith et al. (2012)). 40-90 PgC are lost from the soil by
cultivation and disturbance (Houghton et al. (1999); Smith (2008)). Most SOC loss occurs within
the first few years following initial cultivation in Davidson and Ackerman (1993). Guo and
Gifford (2002), in a meta-analysis, found that SOC decreases if land use changes from pasture
to plantation (-10%), native forest to plantation or crop (-13% or -42% respectively), pasture to
crop (-59%), although SOC increases if land use changes from native forest to pasture (+8%),
crop to pasture or plantation (+19%, +18% respectively) and crop to secondary forest (+53%).
C inputs are relatively small in croplands due to biomass removal in the harvested products and
also due to tillage, which enhances SOC decomposition by disturbing soil aggregates (Smith
(2008)). Poeplau et al. (2011) showed that grassland conversion to cropland may attain the SOC
equilibrium state 17 years after conversion, and subsoil SOC changes are followed by changes
observed in the topsoil. However, these results have high uncertainty, due to limited sample
numbers. In Europe, significant land-use change has occurred over many centuries, and long-
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term agricultural sites with fixed land-use and management are rare (Smith et al. (2008, 2012)).
While many studies have been conducted regarding SOC changes due to managements and land-
use changes, most researchers have used only topsoil samples (0-20 cm), and subsoil samples
have rarely been studied until recently (Fontaine et al. (2007)).

SOC and litter decomposition

Decomposition has been described as a key process in carbon and nutrient cycling, as litter
decomposition is the major pathway of C release and inputs from and to soils, respectively. The
most important controls over the rate of decomposition are climate, moisture and temperature,
litter quality and soil microbial community composition (Melillo et al. (1982); Meentemeyer
(1978)). Moreover, the chemical composition of decomposing material, such as C:N ratios
and lignin content, are important for determining the decomposition rate (Melillo et al. (1982);
Meentemeyer (1978)). In general, litter decomposition is negatively related to C:N ratios, lignin
content and lignin:N ratios, and positively related to N concentrations (Melillo et al. (1989,
1982)). Some organic materials such as woods may take more time to decompose than others
such as leaves (Melillo et al. (1982); Meentemeyer (1978)). The rapid plant residue decomposi-
tion rate by microbes and fungi mostly influences the SOM stability. Furthermore, some organic
matter fractions consist of molecular aggregates of different degradation steps, which are hold
together by organo-mineral interactions (Bol et al. (2009)). Such recalcitrant substances are a
part of SOM, which made it necessary to apply chemical (alkaline/acid) extractions methods
(e.g. Zimmermann et al. (2007)). The C turnover times largely depend on its form and geogra-
phy. Some humus substances, covered with cellulose and lignin, are very stable, especially if
lignin is complexed with amino acids (Schlesinger (1977)). According to Figure 1.2, non-living
SOM is divided into at least three C pools: (1) the active pool with turnover rates of several
years (root exudates, rapidly decomposed components of fresh plant litter); (2) the intermediate
or slow pool with turnover rates of centuries; and (3) the passive pool with turnover rates of mil-
lennia (stabilized organic matter due to chemical or physical mechanisms) (Trumbore (1997)).
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Figure 1.2: Conceptual model of SOM dynamics (Figure from Trumbore (1997), used with
permission, Copyright (1997) National Academy of Sciences, U.S.A.)

Modelling of SOC in agricultural lands
Whereas agriculture has a large greenhouse gas mitigation potential via SOC sequestration, the
quantification of SOC stock changes from the regional to national scale has been shown to be
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understudied (Van Wesemael et al. (2010)). For this purpose, biogeochemical models are very
useful tools for finding the drivers of SOC distribution change (Van Wesemael et al. (2010)).
There are a number of reasons for this. The carbon cycle is very complex and dispatched in many
pools, which therefore make it very difficult to measure experimentally all of the components
on temporal and spatial scales. For example, measuring changes in SOC stocks is extremely
difficult due to the high spatial variability. Models are frequently used to estimate current and
future stock changes. While models can be a substitute for measurements, they allow to inte-
grate processes and advance our understanding of stock changes. In addition, once models are
adequately calibrated, they can be used to investigate the effect of changes in management and
climate. Several process-based ecosystem models have been considered since the 1900’s. In
this section, ecosystem models which are used in this thesis are introduced in order to review
the relevant literature in relation to the existing models (RothC, DayCent, DNDC and PaSim),
and to look back at the development of each model. For details on model structure and for a
description of the submodels, see “Materials and methods”.

Rothamsted Carbon (RothC)-26.3 model

The Rothamsted Carbon model (RothC) is a process-based model of carbon turnover in non-
waterlogged soils depending on soil type. It was developed at Rothamsted Research in the
UK using data from the Rothamsted long-term experiments (Jenkinson et al. (1987); Jenkinson
(1990); Coleman and Jenkinson (1996)). It was originally developed for and parametrised to
model the turnover of organic carbon in arable soils at the plot level, under a range of soil and
climatic conditions. The model calculates total organic carbon (t ha!) at a monthly frequency.
The model calculates the SOC stock on an annual basis, from which the rate of change can be
inferred. The current version is the Rothamsted Carbon (RothC)-26.3 model, which is accessible
at http://www.rothamsted.bbsrc.ac.uk/aen/ carbon/rothc.htm.

In the model, SOC (t C ha™!) is divided into decomposable plant material (DPM) and resis-
tant plant material (RPM), both of which subsequently decompose into: CO, which leaves the
system; microbial biomass (BIO); humified organic matter (HUM); and chemically stabilised
organic matter (COM). The COM compartment becomes the inert organic matter (IOM) com-
partment afterwards (Jenkinson (1990)). Incoming plant carbon is split between DPM and RPM,
depending on the DPM/RPM ratio of the particular incoming plant material.

Jenkinson (1990) used the RothC-26.3 model to study the release of CO, to the atmosphere
due to SOC decomposition, which further enlarges the warming trend, due to global warming.
The RothC model can simulate 0-23 cm as a bulk soil. Nitrogen and C dynamics in the soil
are not intercorrelated in the RothC-26.3 model (McGill (1996)). The RothC-26.3 model can be
used to calculate the organic C input rate for a specified stock of soil organic C and net primary
production (McGill (1996); Jenkinson et al. (1999)). One advantage of the RothC-26.3 model
is lower requirements for input data. RothC was originally developed for arable soils, but it
has been extended to other site types and successfully applied to long-term, plot-level experi-
ments across a range of soil and climatic conditions, including grassland, cropland and forest
soils in the UK, Germany, England, USA, Czech Republic, China and Australia (Coleman et al.
(1997); Guo et al. (2007); Yang et al. (2003)). RothC has also been successfully applied to the
simulation of changes in SOC stocks due to land-use change. Romanya et al. (2000) used a
chronosequence approach to study changes in SOC after afforestation of Mediterranean agricul-
tural soils, and found that the changes in SOC were accurately simulated by RothC. Jenkinson
and Coleman (2008) first published a model version (RothPC-1) allowing to simulate subsoil
(0-23, 23-46, 46-69 and 69-92 cm).
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CENTURY model
CENTURY was developed to simulate long-term (decades to centuries) SOM dynamics, plant
growth, nitrogen (N), phosphorus (P) and sulphur (S) for different plant-soil systems (McGill
(1996)). The CENTURY model was originally developed for grassland soils (Parton et al.
(1987)) but has since then been widely used for arable (e.g. Falloon and Smith (2002)) and for-
est soils (e.g. Kirschbaum and Paul (2002)). The model can simulate the dynamics of grassland
systems (i.e. plant productivity and decomposition), agricultural crop systems, forest systems
and savannah systems, by taking into account climate, human management and soil properties
(Parton et al. (1987, 1993)). Similar to RothC, it operates on a monthly time step, and its major
input variables are soil texture and weather data. Similar to other models of SOM dynamics, the
soil organic matter submodel is based on multiple compartments for SOM (Jenkinson (1990);
Jenkinson and Rayner (1977)): structural, metabolic, active, slow and passive SOC pools, as-
suming that the lignin-to-N ratio controls the split of plant residue into structural and metabolic
material SOC pools. The nitrogen submodel has the same structure as the carbon submodel,
estimating that most N is bonded to C (Parton et al. (1987)). Paustian et al. (1992) investigated
the influence of the amount and quality of organic C and N fertiliser on C and N soil dynamics.
CENTURY has been successfully applied to long-term, plot-level experiments across a
range of soil and climatic conditions including grassland, cropland and forest soils in the UK,
Germany, Czech Republic (Kelly et al. (1997)), Denmark (Foereid and Hggh-Jensen (2004)),
Australia (Kelly et al. (1997)), Brazil (Cerri et al. (2007)) and grassland soils in Germany. In
order to improve phenological development of vegetation, nitrogen (N,O, NO,) and CHy4 dy-
namics in varied grasslands, a daily version of CENTURY (DAYCENT) was developed in 1998
(Parton et al. (1998)). Since then, DAYCENT has been tested in many studies (Parton et al.
(2001); Del Grosso et al. (2001, 2005); Li et al. (2006); Del Grosso et al. (2006); Stehfest et al.
(2007); Del Grosso et al. (2009); Yeluripati et al. (2009)).

Pasture Simulation Model (PaSim) model

Pasture Simulation Model (PaSim) is a process-based grassland biogeochemical model, sim-
ulating dry matter production, the CO, fluxes, NEE (Net ecosystem exchange), GPP (Global
primary production), Reco (Ecosystem respiration), SOC pools dynamics, soil N,O emissions
from nitrification and denitrification at grasslands, and CH4 emissions from grazing livestock
and water in productive pastures (Riedo et al. (1998, 2000); Calanca et al. (2007); Vuichard
et al. (2007a); Graux et al. (2012b,a)). The PaSim model was developed from the Hurley Pas-
ture Model (HP-model) of Thornley (1998) by Riedo et al. (1998), who expanded the plant
submodel for a reproductive developmental stage of a grass sward, allowing for dynamic effects
in the fractional nitrogen content of plant structural dry matter, simulating leaf stomatal resis-
tance, and altering the temperature dependence of processes which is linear in the HP-model.
Further extensions to the model have been carried out by Schmid et al. (2001) in relation to the
production and emission of N,O from grassland, and by Riedo et al. (2000) in relation to the
exchange of ammonia with the atmosphere. More recently, Vuichard et al. (2007a) have adapted
the model in relation to water stress, senescence and the effects of diet quality on the emissions
of CHy from grazing animals, as well as the performance (i.e. milk and meat production) of
grazing animals (Graux et al. (2012a,b)). The PaSim model operates on an hourly time step, and
its major input variables are soil texture and weather data.

The model consists of five interacting modules: microclimate, soil, vegetation, herbivores
and management. The soil module is based on the CENTURY soil decomposition approach,
where litter decomposes over the total soil depth into structural and substrate components, sup-
plying SOC into the structural and metabolic soil pools.
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The model has been tested for a number of sites in Switzerland: Bern, Sion, Davos, Ober-
buetschel and Kerzersmoos. Calanca et al. (2007) tested the PaSim model in various sites in
Europe: Bugac-Puszta (Hungary), Easter-Bush (UK), Carlow (Ireland), Laqueuille (France) and
Oensingen (Switzerland) (Riedo et al. (2000); Schmid et al. (2001); Vuichard et al. (2007a,b)),
as well as climate-change impact studies (Graux et al. (2012a)), including an assessment of the
contribution of forage-based systems on global warming (Graux et al. (2012b)).

DNDC model

The denitrification-decomposition (DNDC) model is a process-based computer simulation model
of soil C and N biogeochemistry in agricultural ecosystems (Li et al. (1992, 1994)). This model
predicts crop yield, soil carbon sequestration, nitrogen leaching, and trace gas emissions in agro-
ecosystems, on a scale that ranges from site to region. The model operates at a daily time step
and consists of two components. The first component consists of the soil climate, crop growth
and decomposition submodels (e.g. soil temperature, moisture, pH, substrate concentration),
which is driven by ecological drivers (e.g. climate, soil, vegetation and anthropogenic activity).
The second component, consisting of the nitrification, denitrification and fermentation submod-
els, predicts NO, N,O, N, , CH4 and NH;3 fluxes based on the modelled soil environmental
factors. Plant growth is modelled using a daily crop growth curve (specific to the plant type) to
calculate the daily N-uptake, which was extracted from the available soil NO3 and NH} pools
down to the root depth (Giltrap et al. (2010)). Zhang et al. (2002) developed a more detailed
physiological/phenological model of crop growth (crop-DNDC).

The SOC component is divided into four major pools: plant residue (i.e. litter), microbial
biomass, humads (i.e. active humus) and passive humus. Each pool consists of two or three sub-
pools with different specific decomposition rates. Daily decomposition rates for each sub-pool
are determined by the pool size, the specific decomposition rate, soil clay content, N availability,
soil temperature and soil moisture (Li et al. (1994, 1992); Li (2000)). During SOC decompo-
sition, the decomposed carbon and nitrogen is allocated into other SOC pools and partially lost
as CO,. Dissolved organic carbon (DOC) is produced as an intermediate during decomposition.
However, DOC may be immediately consumed by the soil microbes.

Several modifications and improvements of DNDC have been carried out. Xu-Ri et al.
(2003) improved the DNDC nitrification submodel with regards to the impact of soil frost and
snow cover on N>O fluxes. Greenhouse gas fluxes from cropping lands in Japan, China and
Thailand were used to validate DNDC performance in Cai et al. (2003). Pathak et al. (2005)
modified DNDC crop physiological and phenological parameters for Indian rice fields. Sleutel
et al. (2006) validated DNDC with detailed and large-scale data, and DNDC has been used in
many studies so far (Smith et al. (2002b); Tang et al. (2006); Babu et al. (2006); Levy et al.
(2007); Tonitto et al. (2007); Abdalla et al. (2009); Grote et al. (2009); Giltrap et al. (2010);
Smith et al. (2010)) with field data from around the world.

Since then several relevant side-models have been developed such as Manure-DNDC (Li
et al. (2012)), Forest-DNDC (Miehle et al. (2006); Lamers et al. (2007); Butterbach-Bahl et al.
(2009)), ForestDNDC-tropica, PnET-N-DNDC (Photosynthesis and Evapotranspiration-Nitrification-
DNDC, Stange et al. (2000); Li et al. (2000); Butterbach-Bahl et al. (2001); Kiese et al. (2005)),
MoBiLE (Modular Biosphere Simulation Environment)-DNDC (Chirinda et al. (2011)), US
Cropland Greenhouse Gas Calculator, etc.

Model initialisation

In order to apply a model to the simulation of specific periods, initialisation is essential. To
do so, most model initialisation techniques are based on the underlying assumption that the
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observed carbon stocks represent equilibrium stocks, which allows to determine the initial state
of a model for given constant average input and parameter set. To achieve this equilibrium
state or steady state, the most common model initialisation method is to run the model over a
few thousand years, repeatedly using recent management and weather data, until an equilibrium
state is attained (spin-up-runs) (e.g. Smith et al. (2005)). However, observed soils might be
far from equilibrium due to very long turnover times of stable compounds (i.e. passive pool)
and disturbances such as fire, erosion, land management or land use change. Accordingly, the
equilibrium assumption is only valid for steadily increasing carbon stocks of very old soils,
which explains the reported mismatch between model simulation and observation data (Bruun
and Jensen (2002); Pietsch and Hasenauer (2006); Wutzler and Reichstein (2007); Basso et al.
(2010); Hashimoto et al. (2011)). Moreover, due to land management changes, the management
and weather data that is used might not be representative for the purposes of setting the model to
steady state conditions (Bruun and Jensen (2002)). Not surprisingly, model initialisation became
an important research subject, as model simulation is largely affected by the initial SOC values,
management and weather data.

Initialisation with measured SOC data, however, showed that model SOC pools cannot be
initialised by a simple measurement (without soil fractionation or dividing soil depth into differ-
ent strata etc), and using detailed pre-experimental data will improve model initialisation (Bruun
and Jensen (2002); Smith et al. (2002a); Yeluripati et al. (2009)). However, reliable long-term
management and weather data is difficult to collect. At the same time, Zimmermann et al.
(2007); Skjemstad et al. (2004) succeed in initialising the Rothamsted carbon (RothC) model,
using a complex physical and chemical soil fractionation method. Although RothC has also
been applied with success in a number of studies, this method has not been tested for other soil
models yet. Furthermore the fractionation method is quite labour intensive.

Assuming that the most useful initialisation method would include a precise estimate of
carbon inputs (i.e. Bruun and Jensen (2002); Smith et al. (2002a)), a number of studies intro-
duced “relaxed carbon cycle assumptions” to initialise given SOC pools (Wutzler and Reichstein
(2007); Carvalhais et al. (2008); Hashimoto et al. (2011)).

For example, Wutzler and Reichstein (2007) assumed all pools are in equilibrium except
the slowest pool. A transient correction method was applied during the spin up run, where
the amount of the slowest SOC pool was reduced until the sum of total SOC (i.e. bulk soil) at
the steady state would be equal to the observed SOC. However, this method was only applied
to study sites which have not been disturbed for more than a century. As land use change is
becoming a force of global importance and global croplands, pastures, plantations, and urban
areas have expanded in recent decades (Foley et al. (2005); Yeluripati et al. (2009)), European
land-use has also changed considerably in recent times. Thus, this assumption may not be
realistic.

Carvalhais et al. (2008) used the “relaxed assumption” in a simple Net Ecosystem Pro-
duction (NEP) prediction model comprising parameters, related to primary production and soil
heterotrophic respiration (i.e. light use, temperature, water storage and C turnover rates). Car-
valhais et al. (2008) results show that the use of relaxed assumptions on scaling soil carbon pools
such as microbial and the slow turnover rates’ pools improve NEP efficiency by 21% and reduce
the normalised average error in the model results by 92%. As a consequence, this initialisation
method has been shown to be very useful, although uncertainty remains whether this method
can be adapted to more complex process-based ecosystem models.

Further studies have adapted the Carvalhais et al. (2008) ‘relaxed assumption’ to the passive
SOC pools of version 4 of the CENTURY model (Hashimoto et al. (2011)). In the adapted ver-
sion, in addition to the relaxed assumption of the active and slow pools (Carvalhais et al. (2008)),
Hashimoto et al. (2011) conducted three SOC scaling schemes (active+slow, slow+passive and
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all SOC pools), to the adjusted microbial pool and the slowest C pool (that is, the pool with
the slowest turnover rate). Results show that a more stable model prediction is obtained in the
slow relaxed assumption scenario by either scaling slow+passive SOC pools, or else by scal-
ing all SOC pools proportionally, compared to an initialisation that adjusts the active and slow
SOC pools only (Hashimoto et al. (2011)). According to the SOC scaling schemes reported by
(Hashimoto et al. (2011)), an initialisation of the slow and passive SOC pool improves model
results considerably. However, it is uncertain whether these methods could apply to all of the
ecosystem models and users (e.g. scaling several SOC pools simultaneously during the same
spin-up run, beginning from the middle of the spin-up run, changing equations within the model
program). Therefore, the objective in this study is to propose a simple and user friendly model
initialisation method.

1.3 Objective and outline of the thesis

Though agricultural sector has a large potential for GHG mitigation by SOC sequestration, the
accurate quantification of SOC stock changes from regional to national scale still remains a
challenge (Van Wesemael et al. (2010)). For this reason, accurate model simulation results are
essential. In past decades, the absence of long term data made it difficult to validate models with
reliable observed long-term data. Nowadays, detailed weather data (e.g. wind speed, relative
humidity, radiation) and land management data (mowing or grazing date, animal stocking rate,
fertilisation dates and amount, sowing date, standing biomass, tillage depth and date), are avail-
able for a number of sites and years. Even though, information on different SOC fractions and
soil properties (soil pH, bulk density, soil texture) regarding each soil depth are still scarce for
verification and initialisation.

To overcome this problem, in this PhD study, I carried out a soil re-sampling in 2011/2012
and I conducted the detailed soil fractionation (Zimmermann et al. (2007)) in each soil profile. In
order to separate anthropogenic agricultural management induced changes from those induced
by natural forces on GHG emissions and SOC distribution, we chose five paired plot experimen-
tal sites which comprise adjacent contrasting agricultural management regimes (2 grasslands, 1
grassland with organic soil, 2 croplands). These sites possess detailed weather data (including
wind speed, relative humidity, radiation) and land management data which are essential to run
ecosystem models. These sites possess also C flux data (GPP, NEE and Reco) for a period of
~10 years, allowing to validate model simulations and to give sufficient confidence in model
results for the future.

Model initialisation remains an is , as detailed long term data on soil properties and SOC
are still missing. This PhD thesis further aimed to assess different model initialisation methods,
in order to determine the most appropriate initialisation method for process-based ecosystem
models.

The PhD report is constructed in following structure. Chapter 1 introduces the main topic of
the thesis: Section 1.1 contains the general introduction. Section 1.2 demonstrates the existing
knowledge in the relationship among SOM, GHG emissions in agricultural lands (grassland
and cropland), as well as the recent agricultural ecosystem process-based model initialisation
studies, to provide background on the issue. The outline (main objectives) of the thesis is given
in section 1.3. Chapter 2 (Material & Methods), provides a detailed description of the study
sites, soil sampling method, soil fractionation method and process-based ecosystem models.

In Chapter 3 (1st manuscript), comprises an analysis of soil data with regard to SOC dis-
tribution changes due to land management systems, using the soil fractionation method (Zim-
mermann et al. (2007); Wurster et al. (2010)) for four different agricultural lands (grassland and
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cropland) in Europe. Results of study sites involve SOC distribution in different soil fractions,
regarding each soil profile for four contrasting management regimes. This study may suggest
that management practices influence SOC more rapidly in organic soils compared to mineral
soils, presumably due to a larger quantity of particulate organic matter (POM) in organic soils,
being sensitive to land management change.

Chapter 4 (2nd manuscript), takes the results of Chapter 3 and analyses the current status of
SOC whether they are at the steady state and how many years are required to attain the steady
state, using the Rothamsted Carbon (RothC) model. This investigation was adopted to find a
appropriate initialisation method for RothC model. After 10 years of continuous management,
SOC was had not attained steady state at any site except Reeuwijk (NL) organic soil site, sug-
gesting the common initialisation method of spin-up run (i.e. repeating recent management and
meteo data) is not the appropriate model initialisation method in mineral soil sites. This study
examined other initialisation schemes, whereby the total and SOC fractions (i.e. active, slow, in-
ert, etc.) were adjusted to be equal to the measured total SOC and SOC fractions, by reducing or
raising C input during spin-up run RothC model. Analyses reveal the adjusting the equilibrium
total SOC to the measured total SOC value as the most appropriate method for RothC initiali-
sation. As the total SOC includes all of the SOC pools data and total SOC data is available at
many experimental sites, this initialisation method is accessible for more researchers.

The proposed model initialisation method for the RothC model (Chapter 4), were further
tested for three process-based ecosystem models (Pasim, DNDC and DayCent) in order to anal-
yse the impact of different model initialisations on model outputs; C fluxes such as GPP, NEE
and Reco (Chapter 5, 3rd manuscript).

Chapter 6 synthesises, methods and findings of the thesis, and provides a critical analyses
on lessons learned and general conclusions.
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Chapter 2

Material and Methods




2.1 Site description

In this study, we chose five long-term (up to 10 years) European experimental sites from the
CarboEurope Integrated Project (CEIP) ecosystem flux tower network, which have two adjacent
contrasting management system plots (a paired-site): Laqueuille (Intensive/extensive grazing
and high/no N input grassland, France) sampled in November 2008 and March 2011, Oensingen
(high/low N&manure input and cut/no-cut grassland, Switzerland) sampled at the end of August
2012, Reeuwijk (Grazing peat grassland with fertilizer&manure input/ no-input, Netherlands)
sampled in January 2011, Hertfordshire (ploughed/non-inverted and high/no N input cropland,
United Kingdom) sampled in November 2003 and Carlow (Conventional & N input and reduced
tillage & no N cropland, Ireland) sampled in January 2011. At these five sites, paired-plot
experiments have been carried out for between 10 and 25 years. For reasonable sample sizes
and statistical power, it may take >10 years for significant differences in SOC due to contrasting
management to be observed (Smith, 2005).

2.1.1 Grassland

Laqueuille, France

Laqueuille (France) site is situated at 45° 38’N, 2° 44’E. Soil type is an Andosol (Klumpp et al.
(2011)). Mean annual temperature is 7.68 °C, mean annual precipitation is 928.5 mm and ele-
vation is 1040 m a.s.l. This grassland site is managed by INRA Clermont-Ferrand, UREP since
2002 until the present. Previously, this site was cultivated as a cropland from the beginning
of 20th century to the 1950s. Sometime around 1950s, this site was converted to permanent
grassland. This site was managed until 1980 by mowing, grazing, cattle manure and slurry ap-
plication. Since the paired plot experiment started in 2002, the site was split into two contrasting
management plots (intensive management and extensive management systems). These two man-
agement systems have been maintained until today. The intensive management system plot is
grazed from spring until the summer by livestock (0.9-1.2 livestock unit (LSU)/ha). Ammonium
nitrate was applied three times (191.5 kg N ha~!year™!) each year. The extensive plot is also
grazed during the same period as the intensive plot by livestock (0.5-0.6 LSU/ha), though it has
not been mown. No fertilizers were applied to the extensive plot. The mean soil pH was 5.13
(£0.23) for the intensive plot and 5.25 (+0.1) for the extensive plot in 2008, and 5.46 (+0.24)
for intensive plot and 5.40 (+0.2) for extensive plot in 2011. For more detail, see Table 3.1 and
Table 3.2 in Section 3.2.1 or Klumpp et al. (2011); Soussana et al. (2007); Allard et al. (2007).

Oensingen, Switzerland

The Oensingen site is situated in central Switzerland at 47°17° N, 7°44’ E. The soil type is a
Eutric-stagnic cambisol and the climate is temperate continental. The mean annual temperature
is 9 °C, mean annual precipitation is 1100 mm and elevation is 450 m a.s.l. (Flechard et al.
(2007)). This grassland is managed by Agroscope Reckenholz-Tdnikon Research Station ART.
The previous management of this site was a ley-arable rotation with an 8 year rotation (sum-
mer/winter wheat, rape, maize and bi-/tri-annual grass-clover mixture). Annual mean Nitrogen
(N) input was 110 N ha~'year™!. The last ploughing took place in November 2000 and the grass
was sown after ploughing. The site was split into two contrasting management plots in Novem-
ber 2000: intensive and extensive management. Until the present, the site is maintained as a
paired plot experiment. The intensive management plot consists of 7 species of sown grassland
(Ammann et al. (2009)) which is mown 4 times/year. No animal grazing is applied. The mean N
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input over a 5 year period is 230 kg N ha~! year™! divided into 2-3 applications each year. The
mean carbon (C) input from 2002 to 2004 was 47 g C m~2year™! dividing into 1-2 applications
each year. The intensive plot was ploughed and the same 7 species were re-sown. The extensive
management plot is a mixture of over 30 species of sown grassland and is mown 3 times each
year (1st mowing is never before Ist June). There is no grazing by livestock and no fertiliser
was applied. The mean soil pH is 6.85 (+£0.49) for the intensive plot and 5.81 (+£0.65) for the
extensive plot. The soil contains carbonate. For more detail, see Table 3.1 and Table 3.2 in Sec-
tion 3.2.1 or Ammann et al. (2007, 2009); Flechard et al. (2005); Leifeld et al. (2011); Flechard
et al. (2007).

Reeuwijk, Netherlands

Reeuwijk (Netherlands) site is situated at an altitude -1.7 to -1.6 m a.s.l., 52° 2’N and 4° 47’E
(intensive plot) and 52° 1’N and 4° 46’E (extensive plot). The soil type is a Fibric Eutric Histosol.
The topsoil is peaty and clayey, and the subsoil is Eutrophic peat (Stolk et al. (2011)). The
paired plots are located on the polder in the west of the Netherlands. Mean annual temperature
15 9.80 °C and mean annual precipitation is 800 m (Jacobs et al. (2007); Veenendaal et al. (2007);
Schrier-Uijl et al. (2008, 2010)). This site also has two contrasting management plots, though
these plots are further apart than for the other sites (See Figure 2.1).
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Figure 2.1: Reeuwijk INT (Oukoop) and EXT (Stein) sites (From Veenendaal et al. (2007))

This site was managed by University of Wageningen, Nature Conservation and the Plant
Ecology Group, Wageningen, Netherlands between 2000 and 2004. The intensively managed
site is called Oukoop and the extensively managed site is called Stein. Each management plot
had an independent eddy-covariance tower. Both plots in Reeuwijk had been under intensive
management (deep drainage, application of manure and fertiliser and grazing and harvesting
of grass) for 30+ years before the start of the measurement period. About 25 years ago, the
extensive plot was taken out of intensive management, and gradually become a meadow bird
reserve which was established about 14 years ago (higher water table, no inputs of manure and
fertiliser, low grazing, lower harvest rate of grass (see Veenendaal et al. (2007); Schrier-Uijl et al.
(2008, 2010)). The paired plot experiment was started in the 1980’s. The intensive management
system was dairy farming and mowing, with grazing between the middle of May to the middle
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of September each year. Mowing occurred 3 times per year, as did 2-3 short periods of grazing
by livestock. The mean annual manure application level was 1.67 kgC ha~'year™! and 309.67
kg N ha~!year™!. The mean annual fertiliser application rate was 88 kg ha~!year™! divided into
2-3 applications per year. Manure and fertiliser were not applied in winter. Dominant grass
species were rye grass and bluegrass and clover occupied less than 1% of the plot. The extensive
management plot was a meadow bird reserve. This plot was mown twice after 15th June each
year, with a short period of grazing by livestock on most of the plot, with a few areas grazed
over the whole summer. This plot was gradually taken out of intensive grassland management
after more than 20 years (Schrier-Uijl et al. (2008, 2010)). No manure and no fertilizer were
applied to this plot. The mean soil pH is 6.01 (+£0.08) for the intensive plot and 5.34 (+£0.21) for
the extensive plot. For more detail, see Table 3.1 and Table 3.2 in Section 3.2.1 or Jacobs et al.
(2007); Veenendaal et al. (2007); Schrier-Uijl et al. (2008, 2010).

2.1.2 Cropland
Hertfordshire, United Kingdom

Hertfordshire (UK) arable site is situated at an altitude 140 m a.s.l. and 51° 47°N, 0° 28 W. The
mean annual temperature is 9.46 °C and the mean annual precipitation is 703.5 mm. Soil type is
Chromic Luvisols and Orthic Acrisols (silt and clay loam) from FAO soil classification (Berthe-
lin (1999)). The clay constitutes about 25% of the top soil and silt about 50%. Stones (flints)
occupy about 10.8% of the top soil volume. The site is owned by W. Hill & Sons, Wood Farm in
Hertfordshire UK. Soil sampling and eddy-covariance measurements were performed by the De-
partment of Sustainable Soils and Grassland Systems, Rothamsted Research, Hertfordshire, UK
in a research project funded by the UK Biotechnology and Biological Sciences Research Coun-
cil, grant number D16053. This site is also a paired plot site. The experiment was conducted
from 2001 to 2008. Dried soil samples were taken in November 2003. One management plot
is ploughed and the other is minimum tillage. The site was grassland in the 1940s. Regarding
the ploughed plot, the plot was grassland until the late 1960s, then it was converted to cropland
(except 1972-1973 and 1976-1978, the plot was ley grassland). From 1980 to 1995, the mean
average NPK input was 217.71 kg ha~'year™! (mostly N:P:K=5:24:24) and mean annual nitro-
gen fertiliser input was 193 kg N ha~!year™!. The mean annual yield was 5.77 tha~'year™!. The
crop rotation was around 4 years rotation with winter wheat, winter oilseed rape and spring peas.
From 2003 to 2008, in the ploughed plot, the mean annual NPK input was 49.27 kg ha~!year™!
and the NHj input was 152.79 kg ha~'year~!. The crop rotation was around 5 years with win-
ter wheat, winter oilseed rape and spring peas (as before). The mean annual yield (2003-2008)
was 5.9 t ha~'year™!. Concerning to minimum tillage plot, 50% of the plot was converted to
arable land. Early to late 1960, all of the plot was converted to arable land (except 1977-1979:
ley grassland). From 1980 to 1995, the plot was ploughed and the mean annual NPK input was
211.48 kg ha~'year™! (mostly N:P:K=5:24:24 or 0:24:24) and the mean annual N fertiliser input
was 195.29 kg N ha~!year™!. The Mean annual yield was 5.89 t ha~'year~!. In 1986, the plot
was split into two and in 2000 the plot was set-a-side for a year. The crop rotation was around
a 5 years rotation with the same crops as the ploughed plot. Minimum tillage management has
started from 2001. Annual average (2003-2008) NPK input was 43.50 kg ha~'year™! and the
NHj input was 57.63 kg ha~!year™!. The crop rotation was the same as the ploughed plot. The
mean annual yield (2003-2008) was 6.28 t ha~'year™!. This soil contains carbonate. Mean soil
pH values are 6.94 (+£0.23) for the intensive plot and 6.56 (+0.31) for the extensive plot. For
more detail, see Table 4.1 and Table 4.2 in Section 4.2.1.
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Carlow, Ireland

Carlow (Ireland) site situates at altitude 57 m a.s.l., 52° 52’ N and 6° 54’W. The mean annual tem-
perature is 9.40 °C and the mean annual precipitation is 824 mm (Van Groenigen et al. (2010a,b);
Walmsley et al. (2011)). Soil type is Eutric Cambisol (Osborne et al. (2010)). The site’s land
history is described in Van Groenigen et al. (2010a,b). Prior to 1847, the site was pasture, then
from 1847 to 1977 the land was used as a school playing field under grassland. From 1977 to
1992, the site was mainly improved grassland with grazing and silage. In 1993, the site was
converted to cropland with ploughing and crop rotation. From 2000, the site was cultivated
mainly for spring barley for 3 consecutive years. From 2003, the paired plot experiment started.
One management is the conventional tillage plot (20-25 cm depth ploughing) and the other is
no-tillage plot. Since 2003, the site has been cultivated for spring barley. Regarding the con-
ventional tillage plot, the plot is ploughed in March each year. After ploughing, spring barley
was sown. The mean annual fertiliser input was 140 kg N ha~!'year™!. The annual average grain
harvest (2003-2010) was 6.34 t ha~'year~!. Regarding the no-tillage plot, harrowing (10-15 cm
depth) was performed once per year in each August or September. Spring barley is sown in
March each year. The mean annual fertilizer input is 140 kg ha~'year™!. The mean annual grain
harvest (2003-2010) was 5.99 t ha~'year™'. Mean soil pH is 7.40 for the conventional tillage
plot and 6.83 for no-tillage plot. For more detail, see Table 3.1 and Table 3.2 in Section 3.2.1 or
Walmsley et al. (2011); Osborne et al. (2010); Davis et al. (2010).

2.2 Soil sampling and soil organic carbon (SOC) analy-
sis method

2.2.1 Soil sampling method

In autumn/winter 2011/2012 soil sampling campaigns were carried out for the four agricultural
paired-sites (8 plots in total). In each plot, 6 soil cores (60 cm depth for Laqueuille (FR) and
Reeuwijk (NL) and 40cm depth for Oensingen (CH) and Carlow (IE)). At the intensive plot in
Reeuwijk (NL), 4 soil cores were sampled at equal intervals (10m) along 60cm transect. Each
soil core was separated into 0-5 cm, 5-10 cm, 10-20 cm, 20-40 cm and 40-60 cm depth layers
that were air dried under laboratory conditions. Regarding Hertfordshire (UK), soil sampling
(down to 20 cm soil depth, 8 soil cores each plot) was carried out in November 2003. UK site
soil cores were not cut into any strata.

We have to mention that one of the limits of this experimental design using eddy covariance
flux tower sites is the absence of replicates, thus a possible pseudo replication of soil samples
(i.e. 6 soil cores per field). To overcome this problem, we have chosen a sampling design which
covers foot-print area for comparing with flux measurement and model flux output (see Chapter
5). For sampling at Laqueuille (FR), Carlow (IE) and Reeuwijk (NL) sites, we followed to
the sampling protocol (See Figure 2.2). For each adjacent field, soil within the footprint of the
eddy-flux tower were sampled (i.e. about a soil core every 10m).

Sampled soils were immediately stored in a refrigerator at 4 °C. They processed this on the
sampling date. They were thoroughly mixed. After weighing the wet soil weight, they placed
soil samples into at 60 °C oven for 24 hours to dry.
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Figure 2.2: The soil sampling protocol

2.2.2 Soil pH measurement

We measured soil pH concerning Laqueuille (FR), Oensingen (CH), Reeuwijk (NL) and Carlow
(IE) soil samples. Hertfordshire (UK) soil sample’s soil pH have already measured at Depart-
ment of Sustainable Soils and Grassland Systems, Rothamsted Research. For soil pH measure-
ment, we followed to Soon and Hendershot (1993). We weighted 10g of air-dried mineral soil
which was sieved at 2mm. Place them in a small beaker and added 20 mL of ultra pure water.
Concerning organic soils (Reeuwijk, NL), we weighted 2g in 20 mL of ultra pure water. We
stirred these samples for 1 hour, then we let them stand for 1 hour. We agitated the bottom of
samples during this measurement. Hertfordshire (UK) soil sample’s soil pH was measured in
water with following to Jones Jr (1999).

2.2.3 Soil fractionation method

We used the method which was improved from Zimmermann et al. (2007) (See Figure2.3) soil
fractionation method (Wurster et al. (2010)) concerning the step of separating heavy fraction
(S+A) and light fraction (POM) from the >63 um soil fraction.

For separating S+A and POM, sodium ploytungustate (SPT) at p=1.85g/cm?) is used in
Zimmermann et al. (2007) method, as SPT salt is non-toxic and can be mixed with deionised
water (DI-H,0O). We took 30g dry soil for starting soil fractionation. Then, we disrupted the soil
in 160mL DI-H,O with using ultrasonic probe (SONICS, vibracell, VCX500) at 34% amplitude
and 22J/mL. After the disruption, wet sieving at 63 um was done.

The fraction <63um was centrifuged at 1800 rpm for 4 minutes, and the fraction between
63 um and 0.45 um was classified as silt and clay, and the <0.45 um fraction was classified as
Dissolved Organic Carbon (DOC).

Silt and clay fraction was oxidised by Sodium Hypochlorite (NaOCI), and the rest fraction
after the oxidation is classified as resistant soil organic carbon (rSOC).

The fraction >63 um was dried in the oven then SPT was added from 20 to 30mL with
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Figure 2.3: The Zimmermann Soil Fractionation method (based on Zimmermann et al. (2007))

using a wash bottle for each centrifuge tube in this study. The solution is mixed by turning the
centrifuge tube slowly and gently from side to side, until well mixed with enough SPT solution
and the >63 um soil fraction. This process enables the organic material to float on the surface in a
centrifuge tube. Separation usually takes place with using light centrifugation. In Zimmermann
et al. (2007) method, the centrifugation was taken place at 1800 rpm for 15 minutes then they
put the centrifuge tube at stable place for overnight. Then, usually floating light fraction (POM:
Particulate Organic Matter) is either poured off or aspirated. However, it is difficult to separate
POM and heavy fraction (S+A: Sand and Aggregates) with this method because POM tends to
stick to the centrifuge tube walls. Furthermore, this method may remix the separated POM and
S+A while pouring POM off or aspirating it (Wurster et al. (2010)). In Wurster et al. (2010),
after separating process of >63 um soil fraction into S+A and POM with SPT, the centrifuge
tube was carefully placed in a freezer as upright position. The frozen sample was removed
from the freezer and the surface material is immediately thawed off with using DI-H,O from a
wash bottle and poured into a beaker. This process should be continued until seeing the frozen
surface of S+A in the centrifuge tube. Frozen SPT solution and surface material can be readily
recovered with washing off with DI-H,O. S+A was also thawed S+A off with using DI-H20 and
washing off for removing SPT by DI-H,O with aspirating. In this study, we used SPT at p=1.85
g/cm?. At the end of this method, we got 5 fractions: Silt and Clay (s+c), Particulate Organic
Matter (POM), Sand and aggregates (S+A), Dissolved Organic Carbon (DOC) and Resistant
Soil Organic carbon (rSOC).

2.2.4 Carbon and Nitrogen analysis

SOC and nitrogen analysis have done in INRA Clermont-Ferrand with Thermo Electron Co-
operation, NC analyser, Flash EA 1112 series, except total SOC and nitrogen of Oensingen
site samples were analysed at Agroscope Reckenholz-Tinikon Research Station ART, Ziirich,
Switzerland.

Before the analysis, we did decarbonation regarding s+c, S+A, DOC and rSOC fractions
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because we are interested in analysing soil organic carbon (SOC), and carbonates are inorganic
carbon. With regard to soil pH in the Table 3.1 and 4.1, we had several sites’ soil samples which
contain carbonate. We also decarbonated to analyse total SOC and soil nitrogen amount. We
did not decarbonate POM fraction for avoiding to damage plant materials which are contained
a lot in POM fraction. Furthermore, SPT’s density which we use in the soil fractionation is
1.85 g cm™3. Carbonates, principally, consisted by CaCOj3 (Calcite) and CaMgCO3 (Dolomite).
These two carbonate minerals’ (Calcite and Dolomite) densities are 2.71 g cm™ and 2.83 g cm ™
respectively. Therefore, S+A, s+c, rSOC and DOC contain carbonates but not POM. They are
not in the POM which is lighter than 1.85 g cm™>. Decarbonate process have done by reference
to Harris et al. (2001) but with some modification by ourselves. We placed soil fractions in
Ag-foil capsules (8 x5 mm). The capsules were placed in the wells of a microtiter plate. We
added 40 uL ultra pure water for each capsule. Then we placed a small beaker with 100 mL of
concentrated 12M Hydrochloric acid (HCl) inside the vacuum 5L desiccator. Then we placed
the wells of a microtiter plate in the desiccator to expose to HCI vapour. Under the desiccator,
we placed hot heater at 40 °C to warm up the desiccator. We left these for 6 hours, then added
25 uL ultra pure water each 2 hours during 4 hours. Then, dry the microtiter at 60 °C for 48
hours'. All of the processes were done under hood. Agroscope Reckenholz-Tinikon Research
Station ART treated with HCI in a desiccator to remove carbonate and by elemental analysis
(combustion at 1000 °C, released CO, measured by GC-TCD). The difference between these
two methods was between -0.27 and 1.14%. So we can confirm that out HCI vapour method was
correct enough to remove decarbonate and to analyse only SOC.

2.2.5 Eddy-covariance flux data

Briefly, Gross Primary Production (GPP) is C fixation by plants and Ecosystem respiration
(Reco) is C flow due to respiration by plants, soil and animals. Net ecosystem exchange (NEE)
is the difference between GPP and Reco, which includes plant, soil and animal influence on C
flow. Each plot was equipped with a meteo station and eddy covariance flux tower, registering
half hourly data on meteorological variables (e.g. temperature, radiation, precipitation) and C
fluxes. Fluxes data were processed according to EU guidelines (Aubinet et al. (2012)) to obtain
NEE, where NEE was further partitioned according to European flux guidelines into GPP and
Reco (Reichstein et al. (2005)).

2.3 Process-based models

We used four process-based models in this study: Rothamsted Carbon (RothC) model, Pasture
Simulation Model (PaSim) and Denitrification / Decomposition Model (DNDC) and DailyCEN-
TURY (DayCent).

The RothC model is the earliest and simplest SOC model for agricultural land. In this
study, the Zimmermann et al. (2007) soil fractionation method was used, which has been tested
as a compatible method for estimating model SOC pool sizes in several studies (Leifeld et al.
(2009a); Dondini et al. (2009a); Senapati et al. (2013)). We tested several initialisation methods
with the RothC model firstly, using our measured SOC fraction data. We then tested several
initialisation methods with PaSim, DNDC and DayCent regarding flux outputs such as GPP,
NEE and Reco.

THCI removing carbonates reaction is as following (Ramnarine et al. (2011)):CaCO3+2HC] —
CaCl,+CO,+H,0 and CaMg(CO3),+4HCI — CaCl,+MgCl,+2C0O,+2H,0
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PaSim model is a process-based grassland biogeochemical model which includes mowing
and animal grazing modules specific to grassland management regimes. Since the RothC model
was constructed as a process-based cropland model, verification with a process-based grassland
model was necessary. PaSim was used for validating grassland simulation results. Furthermore,
as RothC is a simple SOC model without any other submodels, validation with a more sophisti-
cated process-based model containing several submodels was desirable, for its ability to simulate
cropland and grasslands. The DayCent model’s carbon and nitrogen submodels are the same as
those of PaSim (both based on CENTRY) although DayCent can simulate grassland, cropland,
forest and savannah systems. We also tested our initialisation methods using the DayCent model.
We also ran the DNDC model due to its ability to simulate varied agricultural land uses. Table
2.1 shows the characteristics of each process-based model.

2.3.1 Rothamsted Carbon (RothC) -26.3 model

The RothC-26.3 model simulates agricultural topsoil processes (0-23 cm), and it does not con-
tain a plant production submodel (Coleman and Jenkinson (1996, 1999); Coleman et al. (1997)).
The model requires weather data (mean monthly air temperature (°C), monthly precipitation
(mm) and monthly open pan evaporation (mm)). As site specific data, the model requires clay
content of the soil (%), soil cover (vegetated or bare) and depth of soil layer sampled (cm).
As site management data, it requires monthly plant residue input (tC/ha) and monthly farmy-
fard manure input (tC/ha). The model is constructed with five SOC pools (Decomposable Plant
Material (DPM), Resistant Plant Material (RPM), Microbial Biomass (BIO), Humified Organic
Matter (HUM) and Inert Organic Matter (IOM). In this model, SOC input is divided into two
SOC pools: DPM and RPM. Then, from these two SOC pools, SOC flows to BIO, HUM and
CO». From these BIO and HUM SOC pools, SOC is further divided into BIO, HUM and CO»,
(see Figure 2.4). Each SOC pool’s turnover time is DPM (0.165 years), RPM (2.31 years), BIO
(1.69 years), HUM (49.5 years) and IOM (50,000 years)(Jenkinson and Rayner (1977); Cole-
man and Jenkinson (1999)). RothC model anticipate soil respiration as a flux output. For more
detail of this model, see Coleman and Jenkinson (1999); Jenkinson and Coleman (2008).

—£
Organic_< co
Inputs Decay 2
— -

RPM : Resistant Plant Material
DPM : Decomposable Plant Material HUM : Humified OM
BlO : Microbial Biomass IOM : Inert Organic Matter

Figure 2.4: RothC model (Coleman and Jenkinson (1996, 1999); Coleman et al. (1997))
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Table 2.1: Comparison among models in this study

Model name
RothC Pasim DNDC DayCent
Cropland Cropland Cropland
Grassland Grassland Mois/Dry Grassland Grassland
Land-use type . Scrgb . Savannah
Deciduous/tropical woodland Tree plantation Forest
Rice paddy
Wetland
Carbon Soil physics (Soil C and N) Carbon (Decomposition) Soil Organic Matter
Climate Soil biology (soil water content, soil temperature) Nitrogen (Denitrification, Nitrification) Phosphorus
Submodel Microclimate Fermentation Water flow
Plant Plant growth Grass/Crop
Animal Soil climate Tree growth
Daily maximum air temperature (°C)

Daily air temperature (°C)

Daily minimum air temperature (°C)

Monthly air temperature (°C)
Monthly precipitation (mm)
Evaporation (mm)

weather data

Hourly air temperature (K)
Daily precipitation (mm/day)
Hourly water vapour pressure (kPa)
Hourly wind speed (m/s)
Hourly radiation (W/mz)

CO; concentration
NHj3 concentration

Daily precipitation (cm)
*If available
Daily maximum air temperature
Daily minimum air temperature
Duaily precipitation (cm)
Daily Radiation (MJjm?)
Daily wind speed (m/s)
Daily relative humidity (%)
Latitude and Longitude

Daily precipitation (cm)
*If available
Solar radiation (langleys/day)
Relative humidity (%)
Wind speed (miles/h)

1
Latitude and Longitude

% Clay
Depth soil sample was taken (cm)

Site data

Input

Latitude and longitude
Altitude
Number of soil layers
%Sand, Clay and Silt
Saturated soil water content (m:‘/m3 )
Soil pH
Field capacity
Saturated hydrautic conductivity (mm/d)
Main rooting depth (m)
Relative root dry matter in different soil layers (%)
Bulk density (kg/L)
Air entry potential (mm)
a

Soil texture (%)
Bulk density (g/cm?)
Soil pH
Clay fraction (%)
SOC at the surface (kgC/kg soil)

Tillage date (day/month)

%Sand, Clay, Silt, Rock
Bulk density (kg/L)
Wilting point
Field capacity
Soil pH
SOC content (gC/mz)
C/N, C/P, C/S ratio
Mineral N content (gN/mz)

b

Crop type
Tillage date (Day of the year)

Monthly plant residue (tC/ha)
Farmyard (tC/ha)
Soil cover (bare or vegetated)

Management data

Date of a cutting event (Day of the year)
Date of fertilisation event (Day of the year)
Amount of N-ammonium of mineral fertiliser (ng/mz)
Amount of N-nitrate of mineral fertiliser (ng/mz)
Animal stocking rate (head/mz)
Starting date of grazing (Day of the year)
Amount of N of liquid manure (ng/mz)
Amount of N of slurry (ng/mz)
Amount of solid manure (ng/m2)
Live weight of young cows (kg/animal)
Live weight of matured cows (kg/animal)
Body condition score of young cows at the beginning of grazing
Body condition score of mature cows at the beginning of grazing
a

Tillage depth (cm)
Planting/Harvest date (day/month)
N amount of mineral fertiliser (kg N/ha)
N fertiliser application depth (cm)

C, N amount of manure (kgC/ha)
Irrigation date (day/month) and water depth (cm)
Irrigation method
Plastic application date (day/month)
Grazing and mowing date (day/month)
Animal stocking rate during grazing (head/ha)
Mowing fraction (%)

Grazing, mowing, fire date
Amount of N,PS to be added (gN/m?)

Fraction of N fertilizer that is NHI, NOg (0.0-1.0)
Fraction of live shoots removed by a grazing, mowing and fire event
Amount of C of organic matter (gC/mz)

Lignin fraction content of organic matter

b

“For more detail, please refer to Pasim USer’s guide
bFor more detail, please refer to CENTURY Tutorial



2.3.2 Denitrification / Decomposition Model (DNDC)

The DNDC model is a general model of C and N biogeochemistry in agricultural ecosystems
(Li et al. (1994)). This model predicts crop yield, soil carbon sequestration, nitrogen leaching,
and trace gas emissions in agro-ecosystems. DNDC, can run at site or regional scale. The model
consists of two components (See Figure 2.5).

The DNDC Model

Figure 2.5: Description of DNDC
User’s Guide for the DNDC Model Version 9.1 (Institute for the Study of Earth, Oceans and Space (2007))

The first component consists of the soil climate, crop growth and decomposition sub-models,
predicting soil temperature, moisture, pH, redox potential (Eh) and substrate concentration pro-
files, driven by ecological drivers (e.g. climate, soil, vegetation and anthropogenic activity).
The second component consists of the nitrification, denitrification and fermentation sub-models,
predicting NO, nitrous oxide (N,O), N», CH4 and NHj3 fluxes based on the modelled soil en-
vironmental factors (User’s Guide for the DNDC Model Version 9.1 Institute for the Study of
Earth, Oceans and Space (2007)). The entire model is driven by four major ecological drivers:
climate, soil physical properties, vegetation, and anthropogenic activities. Accurate input data
will provide accurate simulation results at either site or regional scale (Li et al. (1994, 1992); Li
(2000)). For more detail on this model, see Li et al. (1994, 1992); Li (2000).

In DNDC, SOC is divided into four major pools: plant residue (i.e. litter), microbial biomass,
humads (i.e. active humus) and passive humus. Each pool consists of two or three sub-pools
with different specific decomposition rates (Figure 2.5). The daily decomposition rate for each
sub-pool is regulated by the pool size, the specific decomposition rate, soil clay content, N
availability, soil temperature and soil moisture (Li et al. (1994, 1992); Li (2000)). If SOC de-
composes, the decomposed C is partially allocated into other SOC pools and partially lost as

38



CO;. Dissolved organic carbon (DOC) is produced as an intermediate during decomposition.
However, DOC may be immediately consumed by the soil microbes. During the processes of
SOC decomposition, the decomposed organic nitrogen partially transfers to the next organic
matter pool.

The organic nitrogen is also partially mineralised to ammonium (NH), simulating nitrifi-
cation (Li et al. (1994, 1992); Li (2000)). The ammonium concentration is controlled by clay-
adsorbed NH:lr and dissolved ammonia (NH3) (Figure 2.5). NH3 emission is controlled by NH3
concentration in the soil water phase and soil environmental factors (e.g. temperature, mois-
ture and pH)(User’s Guide for the DNDC Model Version 9.1 Institute for the Study of Earth,
Oceans and Space (2007)). The denitrification sub-model of DNDC calculates N,O and NO
production, consumption and diffusion, during rainfall, irrigation and flooding events. DNDC
simulates relative growth rates of nitrate, nitrite, NO, and N,O denitrificator based on soil het-
erotrophic respiration, and concentration of Dissolved Organic Carbon (DOC) and N oxides
(Smith et al. (2007c)). DNDC predicts nitrification rates by tracking nitrification activity and
NH4* concentration. Growth and death rates of nitrificating bacteria are calculated as a func-
tion of DOC concentration, temperature and moisture, based on Blagodatsky and Richter (1998)
and Blagodatsky et al. (1998) (Smith et al. (2007c)). DNDC calculates CH4 production as a
function of DOC concentration and temperature, under anaerobic conditions. In DNDC, CHy
oxidation is calculated as a function of soil CH4 and Eh (soil redo potential (mV)). CH4 moves
from anaerobic production zones to aerobic oxidation zones via diffusion, which is modelled
using concentration gradients between soil layers, temperature and soil porosity (Li et al. (1994,
1992); Li (2000)). DNDC predicts NEE and Reco. Regarding GPP, we calculated using model
NEE and Reco results.

2.3.3 DayCent

CENTURY is available for monthly time step simulations, and DayCent is the daily time step
version of CENTURY. CENTURY and DayCent were developed to deal with a wide range of
cropping system rotations, tillage practices for systems analysis of the effects of management,
global change on productivity and sustainability of agroecosystems. The daily time-step version
of the CENTURY model, DayCent5, provides enhanced resolution of all the processes simu-
lated by CENTURYS: plant production, decomposition, soil hydrology and temperature. Daily
weather data is used in the DayCent, although monthly weather or the site parameter’s statis-
tical monthly weather can be used. The big difference between CENTURY and DayCent is,
DayCent is driven by daily weather data which is better to predict N,O emission. The DayCent
model structure is the same as that of CENTURY, although there are additional site parameters
in DayCent 5: site parameters for Hydrology and Biophysical Controls and Soil Temperature
(see Table 2.2). DayCent predicts only NEE (neither GPP nor Reco) as a C flux output.

DayCent comprises six different submodels: Carbon (C), Nitrogen (N), Phosphorus (P),
Sulfur (S), soil water & temperature and plant production (Parton et al. (1987); Parton and Ras-
mussen (1994), CENTURY User’s guide and References). The plant production submodel may
be a grassland, cropland, forest and savannah systems. The grassland, cropland and forest sys-
tem have different plant production submodels, linking to a common SOM submodel (Parton
(1996)). Multiple agricultural management systems, including crop rotations, tillage practices,
fertilisation, organic matter addition, irrigation, grazing and harvest methods, are simulated by
DayCent.

Paustian et al. (1992) tested the CENTURY model with long-term SOM experiment data
from Sweden. Parton et al. (1987) tested the CENTURY model with SOC and N plant produc-
tion data from grassland soils in the United States Great Plains. Del Grosso et al. (2005, 2006)
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Table 2.2: Additional input data in DayCent 5

Soil Temperature

Site parameters

Hydrology and Biophysical Controls

Average Thermal Diffusivity of unfrozen soil?

Average Thermal Diffusivity of frozen soil”

Depth interval for soil temperature calculations (cm)?

Time step correction factor for soil temperature model®
Minimum soil temperature at bottom of soil profile for year (°C)
Maximum soil temperature at bottom of soil profile for year (°C)
Time lag from beginning of year to coldest time period (days)
Initial soil temperature, each soil layer (°C)

Saturated Hydraulic Conductivity for each soil layer (cm)
Minimum soil water content? for each soil layer
Duration of rain event (hours)

Multiplier on sublimation amount®

Shortwave albedo of snow®

Shortwave albedo of vegetation®

“:Valid Values = 0.001-0.005
b:Valid Values = 1.0-5.0
“:Valid Values = 0.001-0.009
4 Fraction below wilting point
¢:Valid Values = 0-1

tested DayCent for GHG fluxes (nitrous oxide (N>O), CO, and CHy) for major crops in the
USA. A simple description of the DayCent model (Parton and Rasmussen (1994)) is shown in

the Figure 2.6 (Parton (1996)).
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Figure 2.6: Simple description of DayCent model (Based on CENTURY tutorial)

DayCent 5 is the latest version of CENTURY, including a layered soil physical structure,

and new erosion and deposition submodels.
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Figure 2.7: Carbon submodel in DayCent (CENTURY Tutorial)

In the model, all carbon decomposition is derived from microbial activity and microbial res-
piration, and is correlated with each carbon flow (Parton et al. (1987)). Figure 2.7 (CENTURY
Tutorial) shows the detail of the carbon submodel in the latest version of DayCent 5. In the
DayCent model, plant residue is divided into structural C pools (difficult to decompose) and
metabolic C pool (readily decomposable), according to the lignin to N ratio (L/N) of the litter
(more structural, higher L/N ratio). Aboveground and belowground C subpools are comprised in
the structural and metabolic C pools. The structural C pool comprises cellulose, hemi-cellulose
and lignin of plant material, although the metabolic C pool is easily decomposable. The active
C pool includes live microbes and microbial products, sharing up to 2% of the toal soil carbon
with short turnover time period (1-3 months). The slow C pool, sharing 45-60% of total SOC,
represents resistant plant materials originating from strucutural plant materials and physically
protected soil microbial products, with turnover times of between 10 and 50 years, depending
on the climate. The passive C pool (45-50% of total SOC) contains physically and chemi-
cally stabilised C, being resistant to decomposition (Parton et al. (1987); Parton and Rasmussen
(1994)) and its turnover time is between 400 and 4000 years. In the CENTURY model, the
turnover time of bulk SOC is as a function of turnover time in specific C pools, soil moisture
and soil temperature. This factor is calculated multiplying the soil moisture factor (function
of precipitation and stored soil water) and soil temperature factor (function of average monthly
soil surface temperature) (Parton et al. (1987); Parton and Rasmussen (1994)). Regarding the
active C pool’s turnover time, the rate varies according to the soil texture: more rapid for sandy
soil texture, while the stabilisation of the active C into slow C is a function of the silt and clay
content. This means that higher stabilisation is derived from higher silt and clay content.

The basic N submodel structure is the same as that of the carbon submodel in DayCent (see
Figure 2.8, Parton and Rasmussen (1994)). The N flow is calculated from the C/N ratio. The
C/N ratio of the different N pools changes according to the soil mineral N. The detailed N flow
in the model is explained in section 2.3.4 in the PaSim model. Turnover of active SOC creates
most of the soil mineral N (Parton et al. (1987); Parton and Rasmussen (1994), see Figure 2.8).
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Figure 2.8: Flow diagram for the N submodel in CENTURY model version 5 (CENTURY User’s
guide and References)

For more detail of this model, see CENTURY tutorial or Parton et al. (1987); Paustian et al.
(1992); Parton and Rasmussen (1994); Parton (1996); Del Grosso et al. (2000, 2001, 2002).

2.3.4 Pasture Simulation Model (PaSim)

The Pasture Simulation Model (PaSim) is a process-based grassland biogeochemical model,
simulating dry matter production, CO, fluxes, NEE (Net ecosystem exchange), GPP (Global
primary production), Reco (Ecosystem respiration), SOC pool dynamics, soil N,O emissions
from nitrification and denitrification at grasslands, CHy emissions from grazing livestock and
water in productive pastures (Riedo et al. (1998, 2000); Calanca et al. (2007); Vuichard et al.
(2007a); Graux et al. (2012b,a)). The model is derived from the Hurley Pasture Model (HP-
model) of Thornley (1998). Description of the Hurley Pasture Model is shown in Figure 2.9.
The vegetation submodel of the HP-model Thornley (1998) simulates the vegetative growth
of grasses with depending on light, temperature and N, though reproductive growth is not con-
sidered (Riedo et al. (1998)). The HP submodel cannot, therefore, reproduce the asymmetric
seasonal pattern of production, which is seen in infrequently cut swards. However, this seasonal
production pattern relates with several physiological processes: photosynthesis and turnover of
shoot/root to biomass. Hence, the HP-model needed to be modified to simulate both repro-
ductive and vegetative growth in the course of a growing season (Riedo et al. (1998)). These
developments were made by Riedo et al. (1998) when developing PaSim model from the HP-
model by development of a new plant submodel (Figure 2.10). Riedo et al. (1998) expanded the
plant submodel to (1) include the reproductive developmental stage of a grass sward, (2) allow
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Figure 2.9: Description of the Hurley Pasture Model (Thornley (1998))

for a dynamic change in the fractional N content of plant structural dry matter, (3) simulate leaf
stomatal resistance and (4) alter the temperature dependence of processes, which were linear in
the HP-model.

PaSim is driven by hourly weather input data for radiation, temperature, vapour pressure,
wind speed and precipitation (Riedo et al. (1998); Schmid et al. (2001)), simulating the annual
production of plant biomass and the N balance, seasonal patterns of growth, seasonal latent,
sensible and soil heat fluxes, C fluxes and water in permanent grassland ecosystems with a high
time resolution (Riedo et al. (1998, 2000)). The original version of PaSim (Pasim ver. 1.0) is
described in Riedo et al. (1998). The Pasim model comprises plant growth, microclimate, soil
biology, soil biology and soil physic submodels (Riedo et al. (1998)). Site-specific model inputs
include N input from mineral and/or organic fertilisers and atmospheric deposition, a constant
fractional clover content of the grass/clover-mixture, the depth of the main rooting zone, and
several soil physical parameters, including soil texture and bulk density. Schmid et al. (2001) has
extended the PaSim 2.5 model to simulate N> O production from denitrification and nitrification,
N, O concentration in the soil air and NoO emissions to the atmosphere from grassland caused
by N inputs from different sources.

Riedo et al. (2000) and Schmid et al. (2001) tested the PaSim model with data from different
sites in Switzerland: Bern, Sion, Davos, Oberbuetschel and Kerzersmoos. Calanca et al. (2007)
tested the PaSim model in various sites in Europe: Bugac-Puszta (Hungary), Easter-Bush (UK),
Carlow (Ireland), Laqueuille (France) and Oensingen (Switzerland).

Vuichard et al. (2007a,b) pointed out that a process-based modelling approach takes into
account less socio-economic constraints on grassland management, suggesting process-based
models cannot provide more realistic estimates of grasslands GHG emissions than empirical-
based ones. Then, Vuichard et al. (2007a) investigated the impact of mowing vs. animal grazing
practices on the GHG sources and sink function of grasslands, and tested whether European
grasslands CO; sinks offset the sources of non-CO, gases in terms of greenhouse warming po-
tential. Vuichard et al. (2007a,b) improved the calculation of aboveground vegetation dynamics
for obtaining the realistic Leaf Area Index (LAI) decrease at the end of the growing season espe-
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Figure 2.10: Description of the PaSim model (Riedo et al. (1998, 2000))

cially under conditions of water stress, senescence and the effects if diet quality on the emissions
of CHy from grazing animals.

In previous version of the PaSim model, water stress was considered as limiting photosyn-
thesis but not other plant processes (Calanca et al. (2007)). PaSim does not keep track of the
plant-water status and defines water stress with respect to the soil water potential. Vuichard
et al. (2007b) reduced shoot and root growth and enhanced shoot and root turnover in response
to water stress. Graux et al. (2012a,b) have tested the PaSim model, using data from several sites
in France. However, in order to make the simulation more realistic, it is necessary to construct
management data for each major type of management in each region due to the diverse nature
of European countries (Vuichard et al. (2007a)).

Carbon and nitrogen submodels in Pasim are based on those in the CENTURY model (Parton
et al. (1988)). The carbon submodel is constructed with five SOC pools: structural, metabolic,
active, slow and passive. In this model, plant residue (carbon input) is divided into two SOC
pools: structural and metabolic. Structural and metabolic C pools do not interact. Then, from
these SOC pools, SOC is divided into active, slow and CO;. From these active and slow C pools,
SOC is divided into active, slow, passive C pools and CO, again (see Figure 2.11). Lignin to
nitrogen ratio controls the split of plant residue into structural and metabolic pools, and all of the
plant residual lignin flows into the structural compartment (Parton et al. (1987)). Structural and
metabolic C pools do not interact, while active and passive interact with each other. Metabolic C
is decomposed as active C or CO,. All carbon pools have access to the active pool. Parton et al.
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Figure 2.11: Carbon flow in soil biology submondel in PaSim model (Based on Parton et al.
(1987); Riedo et al. (1998); Graux and Lardy (2010))

(1987) also assumed that the decay rate of structural material is a function of its lignin content
and the lignin fraction is incorporated into the slow soil pool. The direct lignin flow into slow
soil organic matter is based on data from laboratory incubation of labelled lignin-type material
(Parton et al. (1987)). Only soil C and N in the main rooting zone is considered.
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Figure 2.12: Nitrogen flow in soil biology submondel in PaSim model (Based on Parton et al.
(1987); Riedo et al. (1998); Graux and Lardy (2010))

Figure 2.12 shows N flow in the soil biology submodel of PaSim (Parton et al. (1987); Riedo
et al. (1998); Graux and Lardy (2010)). Minimum and maximum values of C/N ratio in active,
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slow and passive SOC pool ? are shown in Riedo et al. (1998). There is no limitation of C/N ratio
in the metabolic plant residue pool (Riedo et al. (1998)). The nitrogen submodel is constructed
with six SOC pools: structural, metabolic, active, slow, passive and mineral (see Figure 2.12).
Plant residue is split into structural, metabolic and mineral pools. The mineral N pool is split
into components for ammonium (N, (ng/mz)) and nitrate (N,;;; (ng/mz)) and immobilised
with the structural N pool. Metabolic N pool is split into mineral or active pools. Structural and
metabolic N pools do not interact each other, while active and slow N pools interact between
the two. Structural N is decomposed into active and slow N pools (see Figure 2.12). For more
detail, see Riedo et al. (1998, 1999, 2000).

2.3.5 Model initialisation
Applying measured SOC fractions to the model SOC pools

Each of the soil fractions which were derived from the Zimmermann et al. (2007) soil fractiona-
tion scheme were measured for organic carbon and nitrogen content. These data were converted
to five different soil organic carbon pools: Decomposable Plant Material (DPM) and Resistant
Plant Material (RPM), Microbial Biomass (BIO), Humified Organic Matter (HUM) and Inert Or-
ganic Matter (IOM), which are correspond to RothC model SOC pools (Coleman and Jenkinson
(1999)). Zimmermann et al. (2007)’s equation was applied to calculate the size of each model
SOC pools from our measurements (see Figure 2.13). The equation which calculates DPM/RPM
splitting ratio depends on land-use type, temperate grassland:y=0.048+0.011x MAT and arable
land: y=0.035-0.003xMAT, where MAT is mean annual temperature. Regarding the BIO/HUM
split ratio, we did a spin-up run of RothC, then took the BIO/HUM ratio at steady state. This
BIO/HUM steady state ratio was used to split from (S+A)+(s+c) into BIO and HUM pools. The
detail of the splitting ratios used are shown in Table 2.3.

DPM+

PM Splitting DPM/RPM ratio
calculated by equilibrium
scenario

P

{

HUM
+BIO
i & Microbial
SHC- oy S#A Splitting BIO/HUM ratio Biomass (BIO)
TSOC o calculated by equilibrium
scenario
Physically protected against
\ I fastdecomposition ’ g;“ai::dmm

' =]

Figure 2.13: Calculation scheme from SOC fractions to SOC pools (Based on Zimmermann
et al. (2007))

2Active: C/N 3.0 - 14.0 (kgC/kgN), Slow: C/N 12.0 - 20.0 (kgC/kgN), Passive: C/N 11.0 - 12.0
(kgC/kgN)
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Table 2.3: Splitting ratio of measured fractions with Zimmermann et al. (2007) method

split ratio

Site name MAT (°C) DPM/RPM _ BIO/HUM
Laqueille* (grass, FR) 7.68 0.132 0.027
Oensingen (grass, CH) 9 0.147 0.026
Reeuwijk (grass, NL) 9.8 0.156 0.026

Hertfordshire (crop, UK) 9.46 0.007 0.027
Carlow (crop, IE) 94 0.007 0.026

As shown in the Figure 2.11 (Carbon submodel in PaSim), in the Pasim model, carbon
input is divided into two SOC pools: Structural C Pool (2.5 years) and Metabolic C Pool (0.5
years). Then, from these SOC pools, carbon is distributed into an Active C pool (1.5 years), a
Slow C pool (50 years) and a Passive C Pool (1500 years). In the RothC model, SOC input is
split into two SOC pools: DPM and RPM. Then, from these two SOC pools, SOC is split into
BIO,HUM and CO;. From these BIO and HUM SOC pools, SOC is separate into BIO, HUM
and CO; again. Each SOC pool’s mean turnover time is DPM (0.165 years), RPM (2.31 years),
BIO (1.69 years), HUM (49.5 years) and IOM (50,000 years)(Figure 2.4, Jenkinson and Rayner
(1977)).

Table 2.4: SOC compartments included in earlier simulation models of SOM turnover (Chris-
tensen (1996))

Main module Reference Nr Compartment

[

Decomposable&resistant

Labile & resistant (above- & belowground; different depths)
Decomposable, structural & ligniferous (above- & belowground)
Residue

Metabolic, structural & lignin

Input

Microbial biomass

Active & inactivedecomposers
Protected & non-protected biomass
Zymogenous & autochthonous biomass
Labile & resistant

Decomposers

Physically & chemically stabilised

Decomposable & recalcitrant (+/- physical protection)
Humic material (different soil depths)

Humads (labile & resistant) & stable humus
Decomposable, recalcitrant, active protected & old
Humified & Inert

Active, slow and passive

SOM

N RN WA AN =R W

9]

1: Jenkinson and Rayner (1977), 2: Hunt (1977), 3: Veen and Paul (1981), 4: Molina et al. (1983),
5: Parton et al. (1987, 1988), 6: Van Veen et al. (1984), 7: Jenkinson et al. (1987)

Christensen (1996) compared earlier SOM turnover models with regard to the Carbon sub-
model. DNDC model’s carbon submodel is based on the Molina et al. (1983) (reference number
4) and RothC model is reference number 1 or 7 in the Table 2.4

Christensen (1996) compared earlier SOM turnover models with regard to the Carbon sub-
model. DNDC model’s carbon submodel is based on the Molina et al. (1983) (reference number
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4) and RothC model is reference number 1 or 7 in the Table 2.4. Initialising different models
SOC pools using detailed SOC measurement by Zimmermann et al. (2007) soil fractionation
was one of the barricade in this study. Certainly, it is impossible to map conceptual SOC pools
across from one model to another as all C submodel in different models have different pool
sizes, turnover times, dependencies and inter-relationships. To overcome this problem, I learned
each model’s SOC pools turnover time and the C submodel construction referring to Christensen
(1996). Considering all of the SOC pools difference in each models, I estimated there are certain
SOC pools in each model which correspond to each certain RothC SOC pool, excluding DNDC
litter C pool which correspond to the sum of DPM and RPM in RothC. I consider that these SOC
data would give some idea for models regarding SOC distribution among SOC pools as the ini-
tial values. Estimated RothC DPM was applied to Metabolic SOC pool in (Pasim and DayCent),
RPM was applied to Structural SOC pool (PaSim and DayCent). DPM+RPM were applied to
Litter SOC pool in DNDC. BIO was applied to Active SOC pool (PaSim and DayCent) and
Microbe SOC pool (DNDC). HUM was applied to Slow SOC pool (Pasim and DayCent) and
Humads SOC pool (DNDC). IOM was applied to Passive SOC pool (Pasim and DayCen) and
Passive Humus SOC pool (DNDC).

Model initialisation methods

Prior to the model simulation, we applied roughly three different initialisation methods: (1)
General spin-up initialisation (Control), (2) Adjusted spin-up initialisatio,n reducing or increas-
ing C input, during the spin-up run period (Ad) and (3) Initialisation with measured SOC data
(ObSOC).

The monthly average weather data was calculated combining weather data from the Car-
boExtreme project (1901 to the year which the measured weather data is available) and more
recent measured weather data.

Spin-up run initialisation repeating average recent management data and 1901-
2010 weather data (Control) The model was run to the equilibrium status by repeating
monthly average of recent (around 10 years) management regimes and weather data (1901-
2010), except for the Pasim model which were repeated recent 20 year weather data was used.
We compared our SOC measurement data with model equilibrium results. After the spin-up
run, we continued the simulation with each site’s recorded weather and management data for the
available period (see Figure 2.14 (a)). The slowest SOC pool was calibrated (i.e. set to be the
same as) the measured resistant soil organic carbon (rSOC) value.

Spin-up initialisation reducing or increasing C input (plant litter and organic car-
bon manure input) We adjusted the C input during the spin-up run period until the equi-
librium SOC became equal to the measured SOC value. The slowest SOC pool was set up as
the measured resistant soil organic carbon (rSOC) value. We call this spin-up run the adjusted
spin-up run. We adjusted each equilibrium SOC pool to be equal to the each of the observed
SOC pools, which was calculated from Zimmermann et al. (2007) soil fraction data, or the equi-
librium total SOC to be equal to the total SOC value. Then, we continued simulation with each
site’s recorded weather and management data for each site’s available period (see Figure 2.14

(b)).

The observed SOC fraction data initialisation (ObSOC) We initialised the model with
our measured SOC pools value which was calculated from Zimmermann et al. (2007) soil frac-
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tion data, then we immediately ran the model forward using recent data for available years with
recorded management and weather data (see Figure 2.14 (c)).
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Chapter 3
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Abstract

Soil organic carbon (SOC) concentrations and greenhouse gas (GHG) emission are not uniform
across landscape with hotspots in specific areas. These differences are mainly driven by human-
induced activities such as agricultural management. Hence, there is considerable interest in the

effect of past and present agricultural management on SOC and GHG fluxes in different ecosys-
tems. In this study, we examined how agricultural management influences SOC, using four
European sites, each representing a pair of contrasting agricultural managements by soil sam-
pling campaigns and analysis. The sampled soil was analysed according to the soil fractionation
method described by Zimmermann et al. (2007) for four soil depth layers (0-5, 5-10, 10-20,
20-40 cm). For mineral soils, the soil fractions derived from silt and clay exerted the greatest
contribution to total SOC, especially in the topsoil (0-10 cm), compared to the deeper soil layers
(> 10 cm depth). For a given depth and fraction, no significant differences were found in SOC
stocks between contrasting practices. For organic soils (Reeuwijk, NL, 25 years under current
management), the particulate organic matter (POM) had the greatest contribution to total SOC,
and a significant difference in SOC distribution was observed between contrasting management
practices. This may suggest that management practices influence SOC more rapidly in organic
soils compared to mineral soils, which may be due to the larger quantity of POM in organic
soils, being sensitive to land management change. For the mineral soil sites, it appeared that
not enough time has elapsed since the onset management practices to detect statistically signifi-
cant differences in SOC stocks. However, more organic soil and volcanic soil (andosol) data are
necessary to confirm these findings.
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3.1 Introduction

The soil stores more than 75 % of the Earth’s terrestrial oragnic carbon (C) with more than 4-5
times the amount of C in living vegetation (Lal (2004a); Breuning-Madsen et al. (2008)) and >
3 times more C than the atmosphere (Jobbagy and Jackson (2000); Lal (2002)). Approximately
60 % of the global soil C is contained within SOC. Given that 40-50 % of the Earth’s land
surface is under agricultural land-use (Smith et al. (2007b)), C sequestration in agricultural soil
has a potentially important role in increasing SOC storage and GHG mitigation (Paustian et al.
(1998); Foereid and Hpgh-Jensen (2004)). At the same time, C sequestration in agricultural land
may also contribute to increase in soil fertility through increased nitrification and denitrification,
soil N reservoirs, greater soil water retention and enhanced crop productivity (Drinkwater et al.
(1998); Alvaro-Fuentes et al. (2009)). The rate of C sequestration of agricultural soils in Europe
(EU-15) has been estimated to be 16-19 Mt C/year between 2008-2012 (Freibauer et al. (2004);
Smith (2004a)). This corresponds to 2% of European anthropogenic C emissions (Freibauer
et al. (2004); Smith (2004a)) with agricultural mangement practices having an important role
in controlling sequestration rates (Van Wesemael et al. (2010); Powlson et al. (2012)). There is
considerable interest in understanding the effects of agricultural management on SOC and GHG
fluxes in both grasslands and croplands in order to better assess the uncertainty and vulnerabil-
ity of terrestrial SOC reservoirs (Hassink (1994); De Bruijn et al. (2012); Schulp et al. (2008);
Leifeld et al. (2009a); Zhao et al. (2013); McSherry and Ritchie (2013)). Although grassland
soils are a large potential CO; reservoir, significant uncertainty exists concerning how manage-
ment influences SOC stocks, including common practices such as grazing, mowing, organic or
mineral fertilizer addition (McSherry and Ritchie (2013)). SOC in these environments are se-
questered through the root system, as well as litter carbon and nitrogen inputs to the soil. The
effects of management activities on root (e.g. rhizo-deposition, root decomposition), litter and
organic fertilizer inputs can enhance or diminish the natural capacity of soil to act as a C sink
(Bottner et al. (1999)). Data from multi-decadal studies indicate that grassland management
practices can influence SOC sequestration rates for up to 20 years after conversion to grass-
land (De Bruijn et al. (2012)), with gains and losses of SOC mainly dependent on the vertical
distribution of root senescence. Croplands also have the potential to store terrestrial C, with
management activities such as tillage, crop rotation and harvesting influencing soil C gain or
loss. Input of organic matter, whether as organic fertilisers or plant residues, may also enhance
SOC stocks (Zhang et al. (2007); Chivenge et al. (2007); Van Groenigen et al. (2010a,b); Ja-
gadamma and Lal (2010)). Accordingly, detailed long-term land management data is needed to
fully understand SOC changes and the impact of difference management practices in grassland
and cropland (Van Wesemael et al. (2010)). SOC storage is also strongly influenced by soil
texture, and it is uncertain to what extent this intrinsic soil property is affected by, or interacts
with, human intervention to modulate the size of SOC stocks. Many studies have shown that the
amount of SOC is texture-dependent and is highly correlated with the amount of fine particles,
such as clay (Nichols (1984); Chivenge et al. (2007); Jagadamma and Lal (2010)). Chivenge
et al. (2007) reported that tillage disturbance is an important factor reducing C stabilisation in
a fine particle textured soil and Gosling et al. (2013) concluded that POM and light fraction or-
ganic matter (LFOM) are good variables which determinate long-term total SOC changes in both
croplands and grasslands. Predicting changes in SOC stocks in response to management would,
thus, need complete information on physical and chemical stabilisation of C; impacts of human
activity on SOC at different soil depths: and the role of soil texture in controlling SOC fractions,
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such as plant-derived POM (Zimmermann et al. (2007)). Soil physical an chemical fractiona-
tion is a useful method to investigate whether management practices influence SOC stocks, and
which soil fractions are most sensitive to the influence of management practices (Gosling et al.
(2013)). So far, only a few studies have investigated how contrasting management practices and
variations in key soil properties (e.g. soil texture) influence SOC fractions and underlying C sta-
bilisation mechanisms in Europe (Leifeld et al. (2009a); Dondini et al. (2009a); Senapati et al.
(2013)). In this study, four European long-term grassland and cropland experiments, associated
with contrasting management regimes, have been examined. The objective of this study was to
evaluate the effect of agricultural management and key soil characteristics on SOC sequestration
in European grasslands and croplands. Soil sampling campaigns were carried out in 2011/2012.
The entire soil profile down to the bedrock was sampled where possible, and then sub-divided
into specific layers (0-5, 5-10, 10-20, 20-40 cm). For deriving accurate data on different SOC
fractions, the Zimmermann et al. (2007) soil fractionation method was used. This soil fractiona-
tion method has already been tested by several studies , and since the fractions have been shown
to map onto model pools (Leifeld et al. (2009a); Dondini et al. (2009a); Senapati et al. (2013)),
it allows the findings to be used in future model simulations.

3.2 Materials and Methods

3.2.1 Site description

In this study we chose four long-term (up to 10 years) European experimental sites from the
CarboEurope Integrated Project (CEIP) ecosystem flux tower network. The sites are all located
in the same bioclimatic region (the oceanic temperature climate zone (Lindner et al. (2010)))
with mean annual temperatures ranging between 7.7 and 9.80 °C and mean annual precipitation
ranging between 800 to 1100 mm (see Table 3.1). Each site comprised two adjacent plots of
contrasting management: (1) Laqueuille (FR), intensively (high animal stocking rate and N fer-
tiliser input) and extensively (low animal stocking rate and no fertiliser input) grazed grassland,
(2) Oensingen (CH), intensively and extensively cut grassland with high and low N fertiliser
input (intensive plot was ploughed and re-sown in 2008), (3) Reeuwijk (NL), a grazed peat-
based grassland subject to field rate with high and no organic and mineral fertiliser input and (4)
Carlow (IE), a spring barley cropping system subject to conventional and non-inversion tillage
management and a cover crop on the non-inversion tillage plot during the fallow season. A
summary of site detail can be found in Table 3.1 and 3.2.
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Table 3.1: Site description and soil detail of sites in this study

¢S

e Site name, - Depth Clay Silt Sand . Bulk Density C MAT** MAP##* Elevation - . .
Land-use Country Management (cm) (%) (%) (%) Soil pH (g/em3) %) 0 (mm) (masl) Latitude Longitude Soil type
05 26 55 g 5.09 0.46 14482074
INT 5-10 23 54 23 536 0.67 10.19+0.89
10-20 20 55 25 556 0.79 7.17£0.23
20-40 21 54.5 245 5.60 0.80 5.16+0.25
o : g oan !
Laqueuille?, FR = = = . =5 o P 7.68 857-1000 1040 45°38'N 2°44°E Andosol
EXT 5-10 23 54 23 522 0.81 9.44+0.52
10-20 20 55 25 539 0.77 7.85+0.84
20-40 21 545 245 547 091 6.65+1.85
05 638 0.8 332501
5-10 6.79 112 2.97+0.1
INT lo20 3235 252 6.77 1.10 3.09£0.12
) 20-40 7.56 112 2.12+0.08 Eutri-Stagnic Cambisol
a o ) ° 5
Oensingen*, CH 05 673 0.64 7162027 9.00 1100 450 ATTITN. 077 44TE (developed on clayey
5-10 528 1.04 331x0.19 alluvial deposits)
Grassland EXT o0 4405 381 1785 o 120 38020.09
20-40 5.79 122 1.87+0.07
05 B 9 6.00 0.26 24.06=1.89
5-10 - 10 593 031 21.01+0.37 . i
INT 10-20 - 15 6.00 0.38 18.63£0.01 YN 446E
20-40 - 14 6.15 0.31 16.84+0.18 Fibric Eutric Histosol
. i
Reeuwijic’, NL 05 a1 70 9 522 042 T6o6:1s6 %0 800 1.60 Subsoil: Hydric Haplofibrist
5-10 31 40 29 518 0.63 10.92+1.15 o .
EXT 1020 33 37 30 5.39 0.50 8.35+0.54 2PN 4T46°E
20-40 46 50 4 555 043 8.63+0.81
05 7.06 0.64 236%0.13
5-10 745 0.81 211024
CON 10-20 17 26 36 7.46 0.93 2.31+0.11 Eutric Cambisol
. 20-40 7.64 1.00 1.46+0.27 o cn» o c s Topsoil: peaty clayey
c
Cropland Carlow®, IE 05 667 071 3261005 9:40 824 37 SPIUN. L 6THW Subsoil: clay loam
5-10 6.66 0.75 1.9420.06
NIT 020 7 2 38 6.85 0.98 1.790.06
20-40 7.15 1.06 1.0020.11

4. Ammann et al. (2009)

: Extensive: Stolk et al. (2011). Intensive: soil texture was estimated from this study. Weather data averaged over 11 years (Jacobs et al. (2006))
€: Van Groenigen et al. (2010a,b); Osborne et al. (2010); Walmsley et al. (2011) and Davis et al. (2010),weather data averaged over 30 years

d. Klumpp et al. (2011),Soussana et al. (2007) and Allard et al. (2007), weather data averaged over 22 years (1972[/319844, 1995ﬁ2004)

*:% of weight in minerals

##: Mean annual temperature

##%: Mean annual precipitation
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Table 3.2: Each site’s present and past management information

Present Site,
land-use Country

Present
Management

Experiment

. Present management (detail)
starting year

Previous land-use history

Laqueuille?, FR

INT

EXT

- Semi-natural grassland

- No Mowing (except 2010, 3 times mowing)

- Grazing: May- October, 0.9-1.2 (LUS), LW gain: 102.3 kg/animal

- mean mineral N fertilizer input (6 years): 191.5 kg N/ha-year,
Spring 2002 - No manure input

- Semi-natural grassland

- No mowing

- Grazing: May- October, 0.5-0.6 (LUS), LW gain: 106.3 kg/animal
- No mineral N fertilizer and no manure input

- Beginning of 20th century: arable crop
- Converted to permanent grassland since around 1950
- 1950-1980: Mowing, cattle grazing, cattle slurry and manure

P b
Grassland Oensingen”, CH

INT

EXT

- 7 species, sown grassland

- Grass mowing: 4 times/year

- No grazing

- mean (7 years) mineral N fertiliser: 109.7 kg N ha™! yea.r’] (3-4 times/year)
May 2001 - manure: 46.89 kg N ha™! year’1 (2 times/year)

- mean C input (2002-2004): 47 g C m’zyear’] (1-2 times/year)

- In 2008: Ploughed and the same 7 species were re-sown

- Mixture of over 30 grass, clover and herb species, sown grassland
- Mowing: 3 times/year (1st mowing not before 1st Jun)

- No grazing

- No fertilization

- Ley-arable rotation management with 8 years period rotation*
- N input mean: 110 kg N ha’lyear’1
- Nov 2000: Last ploughing

Reeuwijk, NL

INT

- intensive dairy farm
- Mowing and grazing: mid-May to mid-Sep

- (x3 mowing, 2-3 period of grazing)
- mean FYM: 1.67 tC ha’lyear’l and 309.67 kg N ha’lyear’l,
Fertiliser: 88 kg N ha’]year’l (applied 2-3 times/year, not in winter)
- Rye grass, bluegrass: dominant, clover: <1%

-Since 1970, Deep drainage, application of manure and fertilizer, grazing and mowing

EXT

- Meadow bird reserve (Established about 14 years ago)
- Mowing twice after 15th June

1980 - Short time period grazing by livestock/ few parcels whole summer
- No fertilization/manure application

- Gradually taking out from intensive management since around 25 years ago

Carlow?, IE

CON

NIT

- Conventional tillage (20-25cm depth ploughing) in March 1time/year
- Spring barley (Sown in March)

- mineral N fertiliser: 140 kg N ha‘lyear‘] , No manure input

- mean (2003-2010) grain harvest: 6.34 t ha~!year™! DM

2003 - No ploughing
- Harrowing (10-15 cm depth) in August/September 1 time/year
- Spring barley (Sown in March)
- mineral N fertiliser: 140 kg N ha~! year’l, No manure input
- mean (2003-2010) grain harvest: 5.99 t ha'lyear'] DM
- a cover crop during the fallow period since September 2005 to the present

- 1960-1989: Under rotations of sugar beet, spring barley, maize and oil seed rape
- 1989-1990: A short period of pasture
- 1990-2000: Under rotations of sugar beet, spring barley and oilseed rape

*: Summer- and winter wheat, rape, maize and bi- and tri-annual grass-clover mixture

*#: Winter wheat, Winter oilseed rape, Spring peas

@: From Klumpp et al. (2011),Soussana et al. (2007) and Allard et al. (2007)

b: From Ammann et al. (2007, 2009); Flechard et al. (2005); Leifeld et al. (2011) and Flechard et al. (2007)

¢: From Stolk et al. (2011); Jacobs et al. (2007); Veenendaal et al. (2007); Schrier-Uijl et al. (2008) and Schrier-Uijl et al. (2010)
d: From Van Groenigen et al. (2010a,b); Osborne et al. (2010); Walmsley et al. (2011) and Davis et al. (2010)



3.2.2 Soil sampling and analysis method

In autumn/winter 2011/2012 soil sampling campaigns were carried out for the four agricultural
paired-sites (8 plots in total). In each plot, 6 soil cores (40 cm depth) were sampled at equal
intervals (10m) along 60 m transect. Each soil core was separated into 0-5 cm, 5-10 cm, 10-20
cm and 20-40 cm depth layers, that were air dried under laboratory conditions.

Dried soil samples were then passed through a 2 mm sieve to remove larger particles and
debris. A sub-sample was dried for 48h at 60 °C to determine residual humidity, bulk density
and total C and N content. soil pH was measured following the method of Soon and Hendershot
(1993).

Soil fractionation

Zimmermann et al. (2007) fractionation method was used to separate SOC into five different
fractions: Sand and Aggregate (S+A), POM, silt and clay (s+c), Dissolved Organic Carbon
(DOC) and Resistant SOC (rSOC). Soil fractionation was undertaken using a 30 g sample of
dry 2mm sieved soil. Briefly, soil fractionation is achieved through ultrasonic dispersion, wet
sieving (63um), density separation and NaOCl (6%) oxidation. To separate the heavy fraction
(S+A) and POM from > 63um soil fraction, the fraction was mixed with sodium polytungustate
(SPT) and frozen over night (see Wurster et al. (2010)). This freezing method avoids mixing up
heavy and POM fractions physically when we extract these fractions. For extracting the light
fraction, we used distilled water to thaw the frozen POM. For more detail, see Zimmermann
et al. (2007) and Wurster et al. (2010).

Carbon and Nitrogen analysis

Soil fractions and 2 mm sieved bulk soil was analysed for C and N content using NC analyser
(Thermo Electron Cooperation, Flash EA 1112 series). Prior to analysis, all fraction (s+c, S+A,
DOC and bulk soil), except the POM fraction (which contain certain amount of plant-derived
carbon that could be degraded by HCI), were decarbonated following the methodology of Harris
et al. (2001); Dondini et al. (2009a).

3.2.3 Statistical analysis

Linear regression models with 95 % confidence intervals were used to analyse differences be-
tween managements and soil layers. Differences were further tested with a Tukey HSD (hon-
estly significant difference) test in conjunction with an ANOVA to find means. For analysing
the influence of soil properties and land management on SOC (tC/ha), we applied a stepwise
regression procedure investigating the following explanatory variables, soil texture (sand, silt
and clay), soil pH, bulk density, mineral nitrogen fertiliser amount (kg N ha~!year~!), manure
carbon input (kgC ha~'year™!), manure nitrogen input (kg N ha~!year™!) and their interactions
with using the R system for statistical computing R 2.14.2. We tested 5 linear regression models:
(1) SOC content = fi(silt + sand + clay) + €, (2) SOC content = f>(silt + sand + clay +soil
pH) + &, (3) SOC content = f3(silt + sand + clay + soil pH+ Bulk density) + €3, (4) SOC
content = f3(Mineral nitrogen fertiliser (kg N ha~'year~!) + Manure applied (kg N ha~'year™')
+ Manure applied ( kgC ha~'year™!) + tillage depth (cm) + &, (5) SOC content = f5(Mineral
nitrogen fertiliser (kg N ha~'year™!) + Manure applied (kg N ha~!'year~!) + Manure applied (
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kgC ha~!year™!) + tillage depth (cm) + silt + sand + clay + soil pH + bulk density) + €5. Be-
fore all statistical analysis, Shapiro-Wilk’s test of normality was undertaken to confirm normal
distribution (true in all cases).

3.3 Results
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Figure 3.1: Comparison of the sum of SOC fractions (tC/ha) 0-40 cm between contrasting man-
agements: a-d here: (a) Laqueuille (grassland, FR) 2011, (b) Oensingen (grassland, CH) 2012,
(c) Reeuwijk (grassland, peat soil, NL) 2011, (d) Carlow (cropland, IE) 2011

Table 3.3: Test of significant difference between management with regard to a bulk SOC (tC/ha)
0-40 cm; Estimates (tvalue) o ,\ing for significant difference

R2
Site name Fraction
Country S+A POM s+c rSOC DOC Total
Laq2011 -6.73 (-1.55) -5.56 (-1.63) -4.64 (-0.97) -17.46 (-2.08) -0.47 (-3.19) -3.82 (0.25)
FR 0.15 0.13 0.35 0.07 0.01 0.81
Oen2012 -5.52 (-2.09) -0.73 (-0.65) 19.16 (3.56) -5.46 (-0.92) 0.07 (0.43) 17.11 (2.14)
CH 0.30 0.04 0.56 0.08 0.02 0.31
Ree2011 -68.63 (-6.05)***  206.64 (8.33)***  -8.01 (-3.39)** -3.56 (-0.91) -0.14 (-3.65)**  68.54 (4.16)**
NL 0.82 0.9 0.59 0.09 0.63 0.68
Car2011 0.04 (0.03) -0.22 (-0.23) -9.64 (-1.53) -3.28 (-2.26) -0.06 (-0.61) -14.68 (-1.74)
1IE 0.00 0.01 0.19 0.34 0.04 0.23

Key to significance stars: 0 “***>(0.001 “*** 0.01 “** 0.05 > 0.1

The result of the soil organic carbon fractions for the entire soil profile (0-40 cm depth) for
each of the sites and management treatments are shown in Figure 3.1. The statistical analysis
of differences between management regimes are shown in Table 3.3. For the sum of total SOC
across the whole soil profile sampled, only the Reeuwijk (NL) site showed a significant differ-
ence between management practices, where total SOC for the intensive and extensive treatments
were found for all fractions, with the exception of rSOC. For all other sites (i.e. mineral soil

58



sites), there were only small differences in SOC (Figure 3.1 and Table 3.3) due to management,
however, slight but not significant differences were observed in the s+c fraction.

Table 3.4: Test of significant difference between management with regard to total SOC (tC
ha~'cm™!) for each depth: Estimates (tvalue) o \ing for significant difference

R2
Land-us Site name Total SOC (tC ha Tem™)
ANEUSE Country 05cm 510 cm 1020 cm 2040 cm

Lag 03(-:04)  -084(-1.41)  -0.3(-0.66)  -1.93(-1.02)
FR 0.02 0.17 0.04 0.09
Oen 0.6(1.75) _-0.06(-025 _ 0.04(02D) _ 0.1(0.82)

Grassland CH 0.23 0.01 0 0.06
Ree 075(093) 152(1.93). 294470 158 (2.12).
NL 0.1 0.32 0.73 0.36
Car 0.09(046)  -0.31(-1.09)  -0.36 (-2.73)* 05 (-1.13)

Cropland IE 0.02 0.11 0.43 0.11

Key to significance stars: 0 “**** 0.001 “*** 0.01 “** 0.05 *.” 0.1

When examining each soil depth separately, we found no significant difference due to man-
agement practices in total SOC concentration (tC ha~'em™) (Table 3.4). Total SOC concentra-
tion (tC ha~'ecm™") decreased below 20 cm soil depth except for the Laqueuille (FR) extensive
plot (Figure 3.2 (b)). Total SOC concentration among all of the soil depths was similar in Laque-
uille (FR) extensive plot (Figure 3.2 (b)), although the Laqueuille (FR) intensive plot showed a
gradual decrease in total SOC concentration down the soil profile, with a similar trend seen in the
Reeuwijk (NL) intensive plot (Figure 3.2(a) and (e)). In the Oensingen (CH) intensive grassland
plot, total SOC was similar across the shallow soil depth up to 20 cm depth, probably indicat-
ing the influence of ploughing and re-sowing in the upper 20 cm layers (Figure 3.2 (c)). The
Oensingen (CH) extensive plot shows that the very top soil layer (0-5cm) has lost SOC (Figure
3.2 (d)). The result for the Carlow conventional tillage plot reflects the influence of ploughing
depth and soil aggregate disturbance on SOC, showing homogenised total SOC concentration
among all of the soil depths layers (Figure 3.2 (g)). For the non inversion treatment (Carlow,
IE), the total SOC concentration in the 20-40 cm layer was significantly different from the other
soil layers (Figure 3.2 (h)). For the extensive grassland plot in Reeuwijk (NL), the SOC concen-
tration changed significantly, up to 2 tC ha~'cm™!, in the 10-20 cm soil depth (Figure 3.2 ().
The Reeuwijk (NL) intensive grassland plot shows a gradual loss of SOC down the soil profile
at depths below 5 cm (Figure 3.2 (e)).

To better understand which of the soil fractions had the greatest influence on total SOC,
we analysed the difference in SOC content for each soil fraction at each sample depth for each
study site (Figure 3.3). For the mineral soil sites (i.e. all sites except Reeuwijk (NL) site),
the soluble organic C (DOC fraction) did not have a major influence on total SOC (Figure 3.3
and 3.4 (a)-(d), (g)-(h)). Our analysis indicated the at the s+c and rSOC fractions (i.e. those
fractions derived from finer-textured silt and clay sized particles) contained more SOC than any
of the other fractions across all the soil profiles as a whole, with the greatest contribution to total
SOC storage in the upper 10 cm of soil (Figure 3.3 and 3.4 (a)-(d), (g)-(h)). This implies that soil
texture exerted a strong influence on total SOC. For individual depth increments (e.g. 0-5 cm,
5-10 cm etc), the relative proportion of total SOC stored in each fraction varied among sites and
management regimes (Figure 3.3). The overall trend for mineral soils was for POM to account
for a significantly larger proportion of total SOC in the upper most 0-5 cm depth than else where
in each soil profile; in some case equal to the SOC stored in the s+c and rSOC fractions (Figure
3.3 (a)-(d) and (g)-(h)). At other depths, finer-textured fractions (i.e. s+c and rSOC) accounted
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Figure 3.2: Total SOC (tC ha~'cm™!) comparison among each soil depth: a-h here (a) Laqueuille
(grassland, FR) 2011 INT,(b) Laqueuille (grassland, FR) 2011 EXT, (c) Oensingen (grassland,
CH) 2011 INT, (d) Oensingen (grassland, CH) 2011 EXT, (e) Reeuwijk (grassland, peatland,
NL) 2011 EXT, (f) Reeuwijk (grassland, peatland, NL) 2011 EXT, (g) Carlow (cropland, IE)
2011 Conventional Tillage, (h) Carlow (cropland, IE) 2011 Non inversion. Data was normalized
to the same thickness, accordingly stock was expressed in tC ha~'cm~!. The same letter, in the
same site and management, represents that there is no significant differences between soil strata.
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for the bulk of total SOC storage in mineral soils (e.g. at deeper than 10 cm depth, Laqueuille
(FR): 73.84 ~ 78.21 %; Oensingen (CH): 79.67 ~ 84.88 %; Carlow (IE): 75.94 ~ 78.12 %). For
the organic soils (Reeuwijk (NL)), the POM fraction made the greatest contribution to total SOC.
rSOC shows a similar contribution at all soil profile depths (Figure 3.3 (e) and (f)). However,
apparent differences were found due to management: the POM fraction contributed 81.48 ~
89.85 % to SOC in the intensive plot, while the extensive plot, POM dominated the total SOC,
with 43.77 % in the top 0-5 cm and 23.25 ~ 35 % in the > 5 cm soil depths (Figure 3.3 (e) and
(f)). Extensive plot in Reeuwijk (NL), the S+A fraction accounted for a large part of the total
SOC in all of the soil depth profiles (Figure 3.3 (f)).
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Figure 3.3: Each fraction SOC (tC/ha) occupancies in Total SOC: a-h here (a) Laqueuille (grass-
land, FR) 2011 INT,(b) Laqueuille (grassland, FR) 2011 EXT, (c) Oensingen (grassland, CH)
2011 INT, (d) Oensingen (grassland, CH) 2011 EXT, (e) Reeuwijk (grassland, peatland, NL)
2011 EXT, (f) Reeuwijk (grassland, peatland, NL) 2011 EXT, (g) Carlow (cropland, IE) 2011
Conventional Tillage, (h) Carlow (cropland, IE) 2011 Non inversion.
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For mineral soils, significant differences were found in SOC content for different study sites
and also among different depth increments in each study sites (Figure 3.4 (a)-(d) and (g)-(h)).
Both bivariate linear regression and multivariate stepwise linear regression indicates that man-
agement practices did not have a significant impact on SOC (Table 3.5 and Table 3.6). Instead
we found that stepwise models that included only soil characteristics (e.g. soil texture, soil pH
and bulk density; see models 1-3 in Table 3.6) better predicted SOC content than a separate
model that only included management (model 4 in Table 3.6). In terms of soil characteristics,
the estimate of each variables was in general, in the order bulk density >soil pH> soil texture.
Average changes in bulk density and soil pH between contrasting managements were 0 ~ 0.44
and 0 ~ 0.25 respectively (Table 3.1), then these variables did not dramatically influence SOC
concentration. On the other hand, soil texture differences between contrasting management were
more than 1 for each soil texture (Table 3.1), and had a greater influence on SOC were than bulk
density or soil pH. A model incorporating both soil characteristics and management best pre-
dicted SOC (model 5 in Table 3.6); although the effect of management were small relative to
inherent soil characteristics (p-values: management 0.034 ~ 0.87, soil characteristics 2.00E-16
~ 0.36). Of all soil characteristics, soil texture was the most important factor determining total
SOC storage, both for the soil profile as a whole and for each individual depth increment. This
influence is supported by earlier analysis, indicating that s+c and rSOC fractions (derived from
silt and clay content) exert the greatest influence on total SOC storage (Figure 3.3 and Figure
3.4), with a higher contribution in the topsoil (0-10cm) compared to the deeper soil layers (>10
cm depth). Tillage depth does not influence SOC distribution in our mineral soil sites. In or-
ganic soils, SOC did not vary significantly with depth when under the same management regime.
However, SOC did vary significantly between the two plots, suggesting that management may
have altered total SOC and SOC in each fraction (Figure 3.4 (e) and (f)). The exception to this
pattern was the rSOC fraction, which did not vary between management regimes. Because of
differences in underlying soil characteristics between the two Reeuwijk (NL) sites (Table 3.1),
we used a multivariate stepwise linear regression to assess the relative influence of management
and intrinsic soil characteristics on SOC storage. Soil texture (sand, silt and clay content), soil
pH, bulk density, N supply (kg N ha~'year~!), C supply (kgC ha~'year~!) and tillage depth (cm)
(See Table 3.7) were regressed against total SOC. We also found that bulk density was weakly
correlated with SOC storage in topsoil (0-10 cm), while bulk density sand mineral nitrogen fer-
tiliser application strongly influenced SOC in the deeper soil layers (deeper than 10 cm depth)
(Table 3.7).

3.4 Discussion

After 10 years of contrasting management regimes, the results of this study show no significant
difference in total SOC concentration due to management practices in mineral soils. In study of
Torn et al. (1997), soil mineralogy was found to be the main determinate of the quantity of SOC
and SOC turn over with time. Qian et al. (2003) also found soil type exerts a significant impact
on the dynamics of SOC. We have to mention that one of the limits of this experimental design
using eddy covariance flux tower sites is the absence of replicates and thus a possible pseudo
replication of soil samples (i.e. 6 soil cores per field). To overcome this problem we have cho-
sen a sampling design which covers foot-print area for comparing with flux measurement and
model flux output (see Chapter 5). However, performing soil fractionation at different depth soil
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Table 3.5: Tests of significant differences between land management systems:

Estimate (t value)

with highlight for significant difference

R2
Site name  Depth (cm) Fraction
S+A POM S+cC rSOC DOC Total
0-05 -0.8972 (-1.062) -1.497 (-0.734) -1.698 (-1.197) -1.34 (-0.687) -0.06973 ( -1.317) -1.504 (-0.402)
0.101 0.051 0.125 0.045 0.148 0.016
05-10 -0.577 (-0.367) -4.2619 (-3.41)**  -2.6357 (-2.317)* 0.5402 (0.329) -0.12136 (-3.343)** -4.204 (-1.41)
Laq2011 0.013 0.538 0.349 0.011 0.528 0.166
10-20 -1.796 (-1.149) -0.2467 (-0.191) -1.699 (-1.003) 4.536 (2.108). -0.1179 (-2.236)* -3.024 (-0.657)
0.117 0.004 0.091 0.308 0.333 0.041
20-40 -0.660 (-0.252) 0.904 (1.12) -15.41 (-1.514) -0.4225 (-0.093) -0.16352 (-2.991)* -38.68 (-1.023)
0.006 0.111 0.186 0.001 0.472 0.095
0-05 -0.491 (-0.511) -1.117 (-1.826). 1.3093 (1.233) 3.0755 (3.388)** 0.169 (2.346)* 3.010 (1.748)
0.025 0.25 0.132 0.534 0.355 0.234
05-10 -1.490 (-1.699) -0.333 (-3.70)** 1.347 (1.685) 0.933 (1.043) 0.073 (1.845). -0.275 (-0.253)
Oen2012 0.224 0.578 0.221 0.098 0.254 0.006
10-20 -2.129 (-1.64) 0.333 (1.042) 1.284 (1.156) 4.536 (2.108). -0.034 (-0.743) 0.388 (0.208)
0.212 0.098 0.118 0.01 0.052 0.004
20-40 -5.501 (-1.698) 0.945 (1.269) 10.4 (1.737) -7.945 (-2.064) -0.14109 (-1.701) 1.94 (0.822)
0.224 0.139 0.232 0.299 0.224 0.063
0-05 -6.039 (-2.07). 14.516 (3.117)* -1.5346 (-2.585)*  -0.5576 (-0.548) -0.021239 (-3.671)**  -3.763 (-0.934)
0.349 0.548 0.455 0.036 0.627 0.098
05-10 -12.418 (-2.904)* 28.375 (6.074)***  -1.6655 (-4.013)**  -0.647 (-1.624) -0.0363 ( -2.743)* 7.611 (1.93).
Ree2011 0.513 0.822 0.668 0.248 0.485 0.318
10-20 -19.266 (-3.298)* 62.788 (9.628)***  -2.2502 (-3.126)* -0.978 (-0.962) -0.0134 (-1.038) 29.364 (4.706)**
0.576 0.921 0.55 0.104 0.119 0.735
20-40 -30.909 (-8.504)*** 85.47 (3.748)** -3.345 (-2.574)* -2.017 (-0.816) -0.0680 (-2.227). 31.59 (2.116).
0.9 0.637 0.453 0.077 0.383 0.359
0-05 0.411 (2.206). 0.374 (2.773)* -0.524 (-1.310) 0.009 (0.025) 0.007 (0.843) 0.440 (0.458)
0.3273 0.4346 0.1465 0.0001 0.0663 0.0206
05-10 -0.324 (-0.688) 0.167 (0.741) -0.782 (-2.7)* -1.044 (-2.176). -0.007 (-0.809) -1.562 (-1.088)
Car2011 0.045 0.052 0.422 0.321 0.062 0.106
10-20 -0.371 (-1.071) -0.243 (-0.642) -7.613 (-1.364) -0.965 (-1.646) -0.011(-1.003) -3.63 (-2.728)*
0.103 0.04 0.171 0.213 0.091 0.427
20-40 0.324 (0.334) -0.618 (-1.24) -4.383 (-7.057)** -1.283 (-1.07) -0.048 (-0.548) -9.932 (-1.131)
0.011 0.161 0.833 0.103 0.029 0.113

Key to significance stars: 0 “***° (0.001 “*** 0.01 “** 0.05 *” 0.1



Table 3.6: Mineral soils: stepwise linear model results regarding soil texture, soil characteristics
and management systems for total SO

C: Estimate (t value)

R2
Model name
(@] (2) 3) ) (5)
Management Management
Depth Fraction Variables Soil texture Soil texture Soil texture Soil texture
(cm) Soil pH Soil pH Soil pH
Bulk Density Bulk Density
Clay 20.12 (2.19)% 0.22(0.68) 2048 (-1.73). 20.33 (-5.26)7
Silt 0.7 (17.04)%55 0.79 (8.26)%%  0.677 (9.2)%** 0.67 (15.77)%*
Sand -0.14 (-5.06)% 0.18 (0.58) -0.38 (-1.49) -0.31 (-6.08)%
Soil pH -3.87 (-1.04) 1.28 (0.44) NA
05 Total Bulk DSnsily 16.71 (5.31)%#% 20.04 (5.49)%#%
Mineral kgN ha~!year™! 0.13 (44775 0.004 (0.42)
Manure kgN ha~!year™! 0.09 (0.57) -0.09 (-1.63)
Manure kgC ha’lyear’1 NA NA
Tillage depth (cm) -0.42 (-1.33) -0.02 (-0.28)
R2 (DF*) 0.97 (33) 0.97 (32) 0.98 (31) 0.45 (33) 0.98 (29)
Clay 2012 (-2.81)%* 0.1 (-1.21) 029 (-2.78)%* 0.33 (-3.44)%F
Silt 0.79 (23.25)%%% 0.8 (15.67)%%F  0.79 (16.92)%** 0.79 (17.16)%*
Sand 018 (-7.11yw -0.16 (-1.5) -0.18 (-1.83). -0.21 (-3.85)%
) Soil pH -0.19 (-0.17) -0.89 (-0.81) NA
510 Total Bulk Density 12.07 2.73)* 9.85 (2.08 )*
Mineral kgN ha~!year™! 0.13 (4.06)*#% -0.01 (-1.4)
Manure kgN ha~!year~! 0.08 (0.47) 0.01 (0.24)
Manure kgC ha™! year™! NA NA
Tillage depth (cm) -0.39 (-1.09) -0.01 (-0.17)
R2 (DF*) 0.98 (33) 0.98 (32) 0.98 31) 0.40 (33) 0.98 (29)
Clay ~0.04 (-0.69) -0.06 (-0.42) 2043 (-1.7). -0.53 (-2.58)*
Silt 1.21 (32.27)% 1.2 (14.6)%%* 1.09 (10.84) 1.17 (21.98)#
Sand -0.19 (-4.78)% 022 (-1.12) -0.46 (-1.99). 035 (-3.47)%x
Soil pH 0.31(0.15) 1.33(0.63) NA
10-20 Total Bulk Dgnsity 16.59 (1.78). 21.46 (2.33)*
Mineral kgN ha~!year™! 0.27 (5.6)%%% -0.03 (-2.20)*
Manure kgN ha~!year~! 0.16 (0.48) 0.1 (1.34)
Manure kgC ha! year’1 NA NA
Tillage depth (cm) -0.66 (-1.02) 0.12(0.98)
R2 (DF*) 0.9 (45) 0.99 (44) 0.99 (43) 0.46 (45) 0.99 (41)
Clay -0.22 (-0.58) 026 (-0.26) 20.72 (-:0.57) 078 (-0.93)
Silt 1.96 (7.87)%%* 1.95 (4.83)%* 1.81 (3.9)%* 2.17 (6.1)%**
Sand -0.36 (-1.46) 0.4 (-0.38) -0.74 (-0.62) -0.24 (-0.42)
Soil pH 0.42 (0.04) 1.69 (0.15) NA
20-40 Total Bulk Dgnsity 20.43 (0.6) 10.78 (0.31)
Mineral kgN ha~!year! 0.36 (3.99)# -0.13 (-1.64)
Manure kgN ha~! year_I 0.25 (0.40) 0.33 (0.68)
Manure kgC ha’lyear’1 NA NA
Tillage depth (cm) -0.81 (-0.67) 0.32 (0.39)
R2 (DF*) 0.81 (45) 0.8 (44) 0.81 (43) 0.31 (45) 0.82 (41)

Key to significance stars: 0 “*## 0.001 “*#* 0.01 “* 0.05 . 0.1
“: DF=Degree of freedom
. NA=lack of the number of data to get accurate statistical result

samples and analysing SOC is labour intensive and it is not feasible for a large number of soil
samples. Other studies have reported lower number of sampling: four and six soil cores from a
15%30m and 14x21 m sampling area at 0-15 and 15-30 cm and down to a depth of 80 cm soil
depth (Dondini et al. (2009b); Poeplau and Don (2013b)). In this study, we sampled 6 to 8 soil
cores from around along a representative transect of the soil inventory and foot-print area. The
soil sampling areas were covered with eddy-covariance measurement, then it is scientifically
attractive to compare SOC distribution among SOC fraction and flux measurement such as GPP,
NEE and Reco which are affected by plant growth and soil respiration mechanisms. Another
limit of the experimental design in this study is most of the experimental sites might not have
enough time to arrive at the SOC equilibrium after the land-use change. Laqueuille (FR) site
was converted from cropland to grassland around 1950. Reeuwijk (NL) grassland has been a
permanent grassland. Carlow (IE) site has been cropland since at least 1960 and Hertfordshire
(UK) cropland was converted from grassland in 1960. Oensingen (CH) was converted from
cropland to grassland in 2000. Poeplau et al. (2011) have reported using a number of LUC sites
that grassland conversion to cropland may arrive the SOC equilibrium after 17 years. On the
other hand, a conversion from cropland to grassland took around 120 years. We agree that 50-
40 years after conversion may not be enough to arrive at the SOC equilibrium due to land-use.

65



Table 3.7: Organic soils: stepwise linear model results regarding soil texture, soil characteristics
and management systems for total SOC: Estimate (¢ value)

R2
Model name
(1) 2) 3) “) )
Management Management
Depth Fraction Variables Soil texture Soil texture Soil texture Soil texture
(cm) Soil pH Soil pH Soil pH
Bulk Density Bulk Density
Silt+Clay 0.28 (5.56)*** 0.21 (3.69)** 0.23 (1.74)
Sand 0.47 (2.82)* 0.05 (0.18) NA
Soil pH NA NA
. Bulk Density 40.6 (1.92). 40.6 (1.92).
05 Total Mineral keN/ha-year 20.01 (-0.18)
Manure kgN/ha-year NA
Manure kgC/ha-year NA
R2 (DF*) 0.97 (8) 0.98 (7) 0.98 (7)
Silt+Clay 0.46 (9.41)*** 0.53 (3.64)** 0.72 (1.62)
Sand 0.06 (0.34) 0.47 (0.60) NA
Soil pH NA NA
. Bulk Density -27.3 (-0.55) -27.3 (-0.55)
510 Total Mineral kgN ha™!year™! -0.14 (-0.6)
Manure kgN ha~! yeau"l NA
Manure kgC ha™ ! year'] NA
R2 (DF*) 0.98 (8) 0.98 (7) 0.98 (7)
Silt+Clay 1.01 (9.64)%%* 0.71 (6.3)%** -0.20 (-0.82)
Sand -0.95 (-3.00)* -2.14 (-5.1)** NA
Soil pH NA NA
. Bulk Density 111.62 (3.29)* 111.62 (3.29)*
10-20 Total Mineral kgN ha~!year™! 0.52 (5.1y%*
Manure kgN ha~! yeal"l NA
Manure kgC ha™! year™! NA
R2 (DF*) 0.98 (8) 0.99 (7) 0.99 (7)
Silt+Clay 0.62 (4.43)%* -0.60 (-1.9). -0.38 (-1.27)
Sand 3.78 (2.75)* 5.45 (5.96)%%* NA
Soil pH NA NA
Bulk Density 259.84 (3.98)%* 259.84 (3.98)%*
20-40 Total Mineral kgN ha~!year™! 0.65 (5.96)%**
Manure kgN ha™! year'l NA
Manure kgC ha~! year’] NA
R2 (DF*) 0.95 (8) 0.98 (7) 0.98 (7)

Key to significance stars: 0 “*## 0.001 “*#* 0.01 *** 0.05 . 0.1
“: DF=Degree of freedom
b: NA=lack of the number of data to get accurate statistical result

However, several studies have also found SOC distribution difference in different SOC fractions
due to management regimes even after land-use conversion at 1950s-1970s (Conant et al. (2003);
Leifeld et al. (2009a)). Additionally, Poeplau et al. (2011) mentioned that these number of years
are uncertain due to inadequate number of samples for the study. Furthermore, in this study, we
excluded several natural induced impacts such as soil texture, climate and geographical condi-
tions so we hypothesised SOC distribution difference due to management regimes might allow
detection of changes in detailed SOC fractions over shorter periods (Smith (2004b)). We also
choose varied contrasting agricultural lands: two croplands in UK and Ireland and one per-
manent grazing grassland with Nitrogen fertiliser application (France), mowing grassland with
mineral soil converted from cropland with Nitrogen and manure application (Switzerland) and
mowing and manure applying grassland with organic soil (Netherlands). As each sampling sites
possess adjacent contrasting management regimes, this let us to compare the absolute manage-
ment impact on SOC distribution. Hence, we sampled 6-8 soil cores from our five paired-sites
which possess two adjacent contrasting management regimes and eddy-covariance flux mea-
surement towers for each management regimes. Our analysis also indicates, in mineral soils, the
s+c and rSOC fractions, which were derived from silt and clay, contributed the greatest amount
to total SOC (Figure 3.3 and Figure 3.4 (a)-(d) and (g)-(h)), especially in the topsoil (0-10cm).
For the organic soil, POM contributed the greatest amount to total SOC (Figure 3.3 and Figure
3.4 (e) and (f)). Accordingly, the organic soil results were not easily compared to the mineral
soils examined here, as very different fractions dominated in these soils compared to the mineral
ones. Notably, our data suggest that applying a density-based soil fractionation (Zimmermann
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et al. (2007)) to organic grassland soils improved our understanding of soil composition. The
analyses confirmed that the soil fractionation scheme seems to be effective for organic soils
which contain up to 16% of OC. The soil characteristics of the Reeuwijk (NL) site were differ-
ent to all other sites, and even between contrasting plots within Reeuwijk (NL) site (See Table
3.1). Contrasting management did not have a significant impact on total SOC across each of the
soil fractions and sample depths within the soil profile, except at the Reeuwijk (NL) site (Ta-
ble 3.3). However, it was unclear whether the significant differences were due to management
or different soil characteristics between the plots. Soil composition data (Table 3.1) indicates
the possibility that two contrasting plots in Reeuwijk (NL) have already significant difference
in soil types at the beginning of the experiment and this may cause the significant difference in
SOC between two contrasting plots in Reeuwijk (NL). In mineral soils, soil texture is especially
influential in determining the total SOC for all soil depths (Table 3.6), supporting our proposal
that the s+c and rSOC fractions, which were derived from silt and clay (soil texture), exerted
the greatest contribution to total SOC (Figure 3.3 and Figure 3.4), with a higher contribution
in the topsoil (0-10cm) compared to the deeper soil layers (deeper than 10 cm depth). This
could be because less disturbance in deeper soil layers helps to produce aggregates comprising
silt and clay, while this mechanism can be easily disturbed in the topsoil. Tillage depth does
not influence SOC distribution in our mineral soil sites, which in contrast to other studies (Six
et al. (2000); Van Groenigen et al. (2010a,b)). although we might need more time to detect
significant influence of tillage on SOC. In organic soils, bulk density slightly influences topsoil
(0-10cm) SOC stock (Table 3.7). However, bulk density and the amount of mineral nitrogen fer-
tilizer applied (Nkg ha~'year™!) had a stronger influence in deeper soil layers (>10 cm depth).
Perhaps this is because mineral soil is more compacted than organic soil, then changes in bulk
density being proportional to soil depths may influence SOC more significantly than mineral
soil. Organic soil bulk density is much smaller than that of mineral soil, then deeper soil layers
in organic soil may receive easily the effect of mineral nitrogen fertiliser. Furthermore, inflexi-
bility in mineral soil requires longer times before detection can occur than in organic soil (e.g.
C decomposition, nitrification, microbial activities). This suggests that management practices
could exert easily more of a contribution to total SOC in organic soils than in mineral soils (Table
3.3). POM and light fraction organic matter (LFOM) are good indicators of long-term total SOC
change in both cropland and grasslands (Gosling et al. (2013)) and low-density fractions are
more sensitive to alterations in management practice (Zhang et al. (2007)). Figure 3.3 (e) and (f)
(organic soil result) show that POM in the organic soils contribute the greatest amount to total
SOC, and the significant difference due to management practices were found in only organic
soils (Table 3.3), suggesting that management practices influence total SOC via their impact on
POM. Smith (2004b) found that the time required to detect a significant change in SOC pools
due to management in agricultural systems is dependent on both soil characteristics and the rate
of change in C input to the soil, but could take many years. Many studies have already found
that tillage practices disturb soil aggregates and reduce SOC stocks (Six et al. (2000); Chan et al.
(2002); Van Groenigen et al. (2010a,b)), suggesting that we need longer term studies (more than
10 years) in mineral soils for assessing these changes. Furthermore, Chevallier et al. (2008)
reported C correlated positively to the allophanic clay amount and C decomposition is lower if
soil contain more allophaneic clay. Andosol contains significant allophanic clay and this effect
should be considered in French soil data result.
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3.5 Conclusion

Our study indicates that management impacts on SOC in mineral soils cannot be detected for
any soil profile depth (0-40 cm) after 10 years if consistent land management. Furthermore,
we found that the fine particle size soil fraction (s+c and rSOC: <63 ym) makes an important
contribution to the total SOC distribution at soil depths greater than 10 cm in mineral soils.
In organic soils (16 ~ 24% OC), management apparently drove significantly changes in SOC
for all of the soil profile depths examined, soil in which POM, which is known to be more
sensitive to management change than high density fractions, domainte. The linear regression
results indicates that the amount of mineral fertiliser applied influences total SOC in organic
soils. However, two contrasting plots’ soil types in Reeuwijk (NL) may have been different
significantly at the beginning of the experiment (which is difficult to examine). This may cause
the significant difference in the SOC between two contrasting plots in Reeuwijk (NL). As we
found no significant difference due to management in the mineral soils, our findings suggest
that we need longer term studies than those utilised in this study (more than 10 years) to detect
the impacts of land management practice on SOC pools in mineral soils. Furthermore, more
research is required to better understand the role of land management and soil characteristics on
SOC changes within organic soil and andosol systems. Physical and chemical soil fractionation
was applied to organic grassland soils for the first time in this study, confirming its utility for use
in organic rich soils (8-16% OC).
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Abstract
Improved initialisation of process-based ecosystem models is required in order to provide accu-
rate assessments of soil organic carbon (SOC) in agricultural management research. The most
common initialisation approach is to run the model until equilibrium, when the pools of SOC
stabilise. However, this method does not always produce results that are consistent with mea-
sured values, either because the SOC is not in equilibrium or because of inaccuracies in the
ription of model processes. At our experimental sites, which include contrasting adjacent
s not at equilibrium after 10 years of continuous management, suggesting
initialisation method, using repeated recent management data,
is not the most appropriate is study we propose another spin-up initialisa-
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4.1 Introduction

The terrestrial C stock is more than 3 times of that in the atmosphere and Smith et al. (2007a) re-
port that 40-50% of the Earth’s land surface is occupied by agricultural lands (e.g. cropland,
managed grassland and agro-forestry). Furthermore, anthropogenic greenhouse gas (GHG)
emissions are enhancing the natural “greenhouse effect” (Intergovernmental Panel on Climate
Change (IPCC) (2007); Alexander et al. (2013)). In 2005, 10-12% of total global anthropogenic
emissions of GHG were due to agricultural activities (Smith et al. (2007a)). Hence, the contri-
bution of modifications to current agricultural management practices has significant potential to
mitigate climate change through a reduction in GHG emissions.

There are several ways to mitigate GHG emissions in agriculture, and one of the most effec-
tive options is to increase SOC sequestration (Smith et al. (2007a)). Process-based ecosystem
models, such as the CENTURY model, the DNDC model and the RothC model, represent useful
tools to evaluate the mitigation impacts of appropriate agricultural management practices, as it is
often difficult to conduct appropriate field trials. Moreover, these models allow us to project the
impacts of future climatic variability on the interaction between the terrestrial and atmospheric
carbon cycle, which is difficult to achieve through experimentation alone (Hashimoto et al.
(2011)). The results of model simulations are greatly influenced by initial parameter/variable
values and management regimes (Bruun and Jensen (2002)), therefore initialisation is critical
for accurate ecosystem modelling. However, the most common model initialisation method
(i.e. running a model until the equilibrium is achieved using recent management and weather
conditions) often fails to replicate observed values (Bruun and Jensen (2002); Pietsch and Hase-
nauer (2006); Wutzler and Reichstein (2007); Basso et al. (2010); Hashimoto et al. (2011)). This
is because the observed SOC may not be at steady state, given that even old soils (more than
a century old) can still accumulate SOC and also because many agricultural ecosystems may
be in disequilibrium due to frequent management interventions (Wutzler and Reichstein (2007);
Basso et al. (2010); Hashimoto et al. (2011)).

Furthermore, a number of studies have mentioned that theoretical SOC pools do not corre-
spond well with the measured fractions, and these theoretical SOC pools cannot be initialised
easily based on experimental measurements (Bruun and Jensen (2002); Smith et al. (2002a)). Al-
though, Zimmermann et al. (2007) have succeeded in initialising the Rothamsted Carbon model
(RothC) using a physical and chemical soil fractionation method. Accordingly, we hypothesised
that although measured SOC data can be useful for initialising ecosystem models, simple SOC
measurements may not correspond to model derived SOC pools.

Bruun and Jensen (2002) concluded that the only appropriate SOC initialisation method is to
correctly simulate the pre-experimental period. However, the lack of long-term management and
weather information is often a limitation to this type of model initialisation. Thus, it is necessary
to find an initialisation scheme that enables model simulation results to match measured values.
Assuming that the most useful initialisation method should include estimates of plant litter and
manure inputs, which should be varied depending on the management system (e.g. intensively
or extensively applying organic manure or nitrogen fertiliser, grazing, mowing), the equilibrium
assumptions, reducing or increasing plant litter or manure input to the terrestrial system during
the spin-up run period, have been proposed (Bruun and Jensen (2002); Pietsch and Hasenauer
(2006); Wutzler and Reichstein (2007); Basso et al. (2010); Hashimoto et al. (2011)). The slow-
est SOM pool continues to accumulate C over a long time and a small amount of C accumulation
could cause a significant change in the theoretical equilibrium C state (Wutzler and Reichstein
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(2007)). To overcome this problem, SOC distribution in the slowest SOC pool can be analysed
by means of '3C and '“C analysis (Bruun and Jensen (2002); Wutzler and Reichstein (2007)),
although this may not be accessible for many experimental studies.

Watzler and Reichstein (2007) proposed the relaxed equilibrium assumption, which assumes
that all SOC pools are in equilibrium, with the exception of the slowest pool, and a transient cor-
rection method was applied that reduced decomposition rate in the slowest C pool until the sum
of SOC at equilibrium matches an independently observed sum of SOC. However, this method
could not be applied to study sites that have not been disturbed for more than a century. As land
use change can result in significant soil derived carbon losses, changing land cover is becoming
a topic of global importance, in particular as the global extent of croplands, pastures, plantations
and urban areas which have expanded in recent decades (Foley et al. (2005)). Based on such
patterns of land use change, it is difficult to find an experimental site that has not been disturbed
in recent times (<100 years), suggesting that the model initialisation approach as suggested by
Wautzler and Reichstein (2007) is not widely applicable.

Carvalhais et al. (2008) also used a relaxed assumption approach with regard to several
different parameters including light use efficiency, temperature, water storage, soil pools and
turnover rates of SOC in soil pools in a simple Net Ecosystem Production (NEP) prediction
Carnegie Ames Stanford Approach (CASA) model. All of these parameters are included in the
model, which relate directly to net primary production (NPP) or soil heterotrophic respiration
submodels, that act to determine the net carbon gain or loss from an ecosystem. During the
spin-up run to initialise the model, optimisation was firstly applied to alternative parameters
for scaling soil carbon pools parameter individually. Then, they removed one of the alternative
parameters at the time as well for seeing the impact of each parameter to the model outputs.
By applying the relaxed assumption method on a parameter scaling soil carbon pools (microbial
and the slow turnover rates’ pools) before the model simulation starts, Carvalhais et al. (2008)
improved the NEP model output accuracy by 21%, and reduced the normalised average error
by 92%, in their model results. While this initialisation method may be useful, there is still
uncertainty whether this method works even in complex process-based ecosystem models where
several sub-models interact. Carvalhais et al. (2008) applied a relaxed assumption on a scaling
soil carbon parameter at the initial point of model prediction, scaling the microbial and the slow
SOC pools turnover rates in the model, which correspond to the active and slow SOC pools in
the CENTURY model.

Based on the work of Carvalhais et al. (2008), Hashimoto et al. (2011) have tested the slow-
scaling-SOC-pools approach to initialise the CENTURY model (version 4) from 600 to 1999
years, where the total spin-up run was set for 2000 years.

Several SOC pools within the main SOC pools of the CENTURY model (the active, slow
and passive pools) were adjusted during the spin-up period in the work of Hashimoto et al.
(2011). Hashimoto et al. (2011) conducted three SOC scaling schemes: the active + slow, slow
+ passive and all SOC pools. More stable model predictions were obtained with the slow relaxed
assumption and adjusting only active and slow SOC pools were less stable than other scaling
schemes Hashimoto et al. (2011). However, it is uncertain whether the scaling of several SOC
pools simultaneously from middle of spin-up run period (e.g. from 600 to 1999 years, where the
total spin-up run was set to 2000 years (Hashimoto et al. (2011)) or modifying equations within
the model program (Wutzler and Reichstein (2007); Carvalhais et al. (2008)) are applicable for
all process-based ecosystem models.

In light of these uncertainties and knowledge gaps, we developed a simple and accessible
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initialisation approach that could be applied to different process-based models for accurately
predicting SOC stocks in agro-ecosystems. In order to do this, we firstly tested the effect of
reducing or increasing C input during the spin-up simulation, using the RothC model, in order
to achieve comparable modelled and measured SOC stocks. The RothC model initialisation
procedure was tested using three different methods: (1) A spin-up run using monthly average 100
year weather data and recent 10 year management data (Control), (2) As spin-up initialisation
where C input was increased or reduced (through varying plant litter and manure input) during
the spin-up run period to adjust the equilibrium SOC (one SOC pool at a time individually, or
the total SOC) and (3) An initialisation with the measured SOC pool data.

The input of C through plant litter, and organic manure-derived carbon is largely influenced
by the management system (e.g. intensive or extensive mowing, grazing, organic manure or
nitrogen fertilizer application to enhance plant growth). In this study, as we focused on find-
ing an appropriate model initialisation method by changing the C input during the spin-up run,
and repeating recent monthly averaged management and weather data, we tested these initiali-
sation method with varied management systems. Furthermore, we also explored the influence of
management system on SOC stock changes for each SOC pool and for the total SOC.

For this study we used SOC fraction data from four European long-term (up to 10 years)
grassland and cropland experiments, with associated contrasting management regimes to de-
termine an effective model initialisation scheme and, ultimately, to test the performance of the
RothC model. In order to derive accurate data on different modelled SOC pools, the Zimmer-
mann et al. (2007) soil fractionation method was used. This soil fractionation method has already
been tested in several studies, and since the fractions have been applied to RothC model pools
(Leifeld et al. (2009a); Dondini et al. (2009a); Senapati et al. (2013); Shirato et al. (2013)), it
allows the findings to be used in future RothC model simulations.

4.2 Materials and Methods

4.2.1 Site description

In this study, four long-term (up to 10 years) experimental sites from the CarboEurope Integrated
Project (CEIP) ecosystem flux tower network were selected. The sites are all located in the tem-
perate oceanic climatic zone (Lindner et al. (2010)) with mean annual temperatures ranging
between 7.7 and 9.80 °C and mean annual precipitation ranging between 703 to 1100 mm (see
Table 4.1). At each site contrasting management were applied: (1) Laqueuille (FR), intensively
(high animal stocking rate and N fertiliser input) and extensively (low animal stocking rate and
no fertiliser input) grazed grassland, (2) Oensingen (CH), intensively and extensively cut grass-
land with high and low N fertiliser input (intensive plot was ploughed and re-sown in 2008), (3)
Carlow (IE), a spring barley cropping system subject to conventional and non-inversion tillage
management with residue incorporation and a cover crop on the non-inversion tillage plot during
the fallow season and (4) Hertfordshire (UK), a rotating cropping system subject to conventional
and reduced tillage management. A summary of all management related site details can be found
in Table 4.2. These sites, which contain two adjacent and contrasting management systems, were
chosen to investigate SOC changes in individual SOC pools and in the total SOC pool due to
management.
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Table 4.1: Site description and soil detail of sites in this study

Site name,

Depth

Clay

Silt

Sand

Bulk Density

C

MAT**

MAP#+

Elevation

Land-use Country Management (cm) (%) (%) (%) Soil pH (g/em3) %) ¢0) (mm) (masl) Latitude Longitude Soil type
0-5 26 55 19 5.09 0.46 14.48+0.74
INT 5-10 23 54 23 5.36 0.67 10.19+0.89
Laqueuille®, FR T 2 = 20 ks TR0 — 768 8571000 1040 43N 24 Andosol
EXT 5-10 23 54 23 522 0.81 9.44+0.52
10-20 20 55 25 5.39 0.77 7.85+0.84
0-5 6.38 0.98 3.32+0.1
Grassland INT 15(;12% 42.45 32.35 252 g;;) 11(2) 32&;9974;(;)112 Eunis < Cambisol
. - . . .09+0. o N o N utri-Stagnic Cambiso!
Oensingen’, CH 05 673 0.64 7.16:027 9.00 1100 450 ATTITN. 07744 E (developed on clayey
EXT 5-10 44.05 38.1 17.85 528 1.04 3.31+0.19 alluvial deposits)
10-20 542 1.20 2.80+0.09
0-5 7.06 0.64 2.36+0.13
CON 5-10 17 26 56 7.45 0.81 2.11£0.24 Eutric Cambisol
b 10-20 7.46 0.93 2.31+0.11 o cns o cys Topsoil: peaty clayey
Cropland Carlow”, IE 05 667 0.71 3.260.05 9:40 824 37 S2SUN.6TSHW Subsoil: clay loam
NIT 5-10 17 25 58 6.66 0.75 1.94+0.06
10-20 6.85 0.98 1.79+0.06
Hertfordshire?, UK (1:\%\' gig 25 50 25 2:22 }:?;‘ ig;iggﬁ 9.46 703.5 142 SIc4aT N geogrw  Chromic L(:‘l"';"gl“d‘s‘lgﬂf Acrisols
4. Ammann et al. (2009)
b: Van Groenigen et al. (2010a,b); Osborne et al. (2010); Walmsley et al. (2011) and Davis et al. (2010),weather data averaged over 30 years
c

d
*
s
s

“: Klumpp et al. (2011),Soussana et al. (2007) and Allard et al. (2007), weather data averaged over 22 years (197201984, 199502004)

: Hertfordshire pH were measured at Rothamsted Institute by KC1 method, , weather data averaged over recent 4 years (2003-2006)

:% of weight in minerals
*: Mean annual temperature
#*: Mean annual precipitation
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Table 4.2: Each site’s present and past management information

Present Site,
land-use Country

M

Present Experiment
starting year

Present management (detail)

Previous land-use history

- Semi-natural grassland
- No Mowing (except 2010, 3 times mowing)

INT - Grazing: May- October, 0.9-1.2 (LUS), LW gain: 102.3 kg/animal
- mean mineral N fertilizer input (6 years): 191.5 kgN ha™!year™!, - Beginning of 20th century: arable crop
Laqueuille’, FR Spring 2002 - No manure input - Converted to permanent grassland since around 1950
- Semi-natural grassland - 1950-1980: Mowing, cattle grazing, cattle slurry and manure
EXT - No mowing
- Grazing: May- October, 0.5-0.6 (LUS), LW gain: 106.3 kg/animal
- No mineral N fertilizer and no manure input
Grassland - 7 species, sown grz_lssland
- Grass mowing: 4 times/year
- No grazing
INT - mean (7 years) mineral N fertiliser: 109.7 kg N ha~'year™! (3-4 times/ycar)
) P May 2001 - manure: 46.89 kgN ha’lyear’l (2 times/year) - Ley-arable rotation management with 8 years period rotation*
Oensingen”, CH - mean C input (2002-2004): 47 g C m’zyear’] (1-2 times/ year) - N input mean: 110 kg N ha~'year™!
- In 2008: Ploughed and the same 7 species were re-sown - Nov 2000: Last ploughing
- Mixture of over 30 grass, clover and herb species, sown grassland
- Mowing: 3 times/year (1st mowing not before Ist Jun)
EXT !
- No grazing
- No fertilization
- 1940 to 1960’s: Grassland
- Ploughed - Late 1960: Converted to cropland
Plough 1980 - mean (2003-2008): NO3 49.27 kg ha™'year™!, NH, 152.79 kg ha~'year™! (Except 1972-1973, 1976-1978: grass Ley)
- Crop rotation: around 5 years rotation** - 1980-1995: annual mean NPK: 217.71 kg ha’lyear’] (N:P:K=5:24:24)+
- mean yield 5.9 t ha™! year™! 193 kg N ha_lyear'I , Yield mean 5.776 t ha™! year™!
- Crop rotation: around 4 years rotation™*
. - 1940 to late 1940: Grassland
Hertfordshire, UK - 1940: 50% converted to arable
- Minimum tillage - Early to Late 1960 : 100% converted to arable (Except 1977-1978: grass Ley)
- mean (2003-2008): NO3 43.50 kg ha’lyear’] . NHy 57.63 kg ha’lyear’] - 1980-1985: Ploughed/ Disced and Direct Drilled/McConnel Shakerator
Min Till 2001 - Crop rotation: around 5 years rotation** - 1980-1995: Ploughed, mean fertilisation: NPK:211.48 kg ha~! yea.r’]
Cropland - mean yield 6.28 t ha™!year™! (N:P:K=5:24:24 or 0:24:24)+195.29 kg N ha~ ! year™!,
2times FYM 24.71 kg ha™! yeur’l, Yield: 5.89 t ha™!year™!
- The field was split into two in 1986 and the plot was set-a side in 2000.
- Crop rotation: around 5 years rotation**
- Conventional tillage (20-25cm depth ploughing) in March Itime/year
CON - Spring barley (Sown in March)
- minral N fertiliser: 140 kg N ha~! year’1 , No manure input
- mean (2003-2010) grain harvest: 6.34 t ha_]year'l DM
Carlow®, IE 2003 - No ploughing - 1960-1989: Under rotations of sugar beet, spring barley, maize and oil seed rape
- Harrowing (10-15 cm depth) in August/September 1 time/year - 1989-1990: A short period of pasture
NIT - Spring barley (Sown in March) - 1990-2000: Under rotations of sugar beet, spring barley and oilseed rape

- mineral N fertiliser: 140 kg N ha‘]ycar‘I , No manure input
- mean (2003-2010) grain harvest: 5.99 t ha~lyear"! DM
- a cover crop during the fallow period since September 2005 to the present

*: Summer- and winter wheat, rape, maize and bi- and tri-annual grass-clover mixture
*#: Winter wheat, Winter oilseed rape, Spring peas
@: From Klumpp et al. (2011),Soussana et al. (2007) and Allard et al. (2007)

. From Ammann et al. (2007, 2009); Flechard et al. (2005); Leifeld et al. (2011) and Flechard et al. (2007)
©: From Van Groenigen et al. (2010a,b); Osborne et al. (2010); Walmsley et al. (2011) and Davis et al. (2010)



4.2.2 Soil sampling and analysis method

The soil sampling campaigns at the Laqueuille (FR), Oensingen (CH) and Carlow (IE) sites
were carried out in the autumn/winter of 2011/2012, when each of the paired treatment plots
was sampled. In each plot, 6 soil cores (40 cm depth) were sampled at 10 metre intervals along a
60 metre transect. Each soil core was separated into 0-5 cm, 5-10 cm, and 10-20 cm depth layers.
At the Hertfordshire (UK) site, the soil was sampled in November of 2003 where 8 soil cores of
up to 20 cm in depth were sampled from each plot. The cores taken from the Hertfordshire site
were not separated into different soil depths after sampling and the soil analysed from this site
were from homogenised samples. At all sites, the soil samples were air dried under laboratory
conditions and then passed through a 2 mm sieve to remove larger particles and debris. A sub-
sample was dried for 48h at 60 °C to determine residual humidity, bulk density and total C and
N content. Soil pH was measured following the method of Soon and Hendershot (1993).

Soil fractionation The Zimmermann et al. (2007) fractionation method was used to sepa-
rate SOC into five different fractions: Sand and Aggregate (S+A), Particulate Organic Matter
(POM), silt and clay (s+c), Dissolved Organic Carbon (DOC) and Resistant SOC (rSOC). Soil
fractionation was undertaken using a 30 g sample of dry <2mm sieved soil. Briefly, soil frac-
tionation is achieved through ultrasonic dispersion, wet sieving (63 um), density separation and
NaOCl (6 %) oxidation techniques. In order to separate the heavy fraction (S+A) and POM, the
fraction> 63 um was fractionated by density separation using sodium polytungustate (SPT) and
frozen over night based on the methodology of Wurster et al. (2010). By freezing the samples
the heavy and POM fractions can be easily extracted with lower risk of contamination. The light
fraction was extracted from the frozen samples using distilled water to thaw the frozen POM.
Further details on the fractionation and sampling techniques can be found in Zimmermann et al.
(2007) and Wurster et al. (2010).

Carbon and Nitrogen analysis Soil fractions and <2 mm sieved bulk soil were analysed
for C and N concentration using an CN analyser (Thermo Electron Cooperation, Flash EA 1112
series). Prior to analysis, all fractions (S+C, S+A, DOC and bulk soil), except the POM fraction
(which contains a certain amount of plant-derived carbon that could be degraded by HCI), were
decarbonated following the methodology of Harris et al. (2001) as proposed by Dondini et al.
(2009a).

4.2.3 Measurement data application to model

The RothC-26.3 model (Jenkinson and Rayner (1977); Coleman and Jenkinson (1999)) was used
to estimate SOC pool distribution under equilibrium conditions. This model was developed to
simulate the carbon cycle processes that occur in the upper layers of agricultural soils (0-23
cm), but it does not contain a plant productivity sub-model (Coleman and Jenkinson (1999);
Coleman et al. (1997)). The model requires particular input data, including weather data (mean
monthly air temperature (°C), monthly precipitation (mm) and monthly open pan evaporation
(mm)), as well as site specific data, including clay content (%), soil cover (vegetated or bare)
and depth of soil layer sampled (cm). The site management data requirements include monthly
plant residue input (tC/ha) and monthly inputs of organic manure (tC/ha). SOC is partitioned
into 5 pools: Decomposable Plant Material (DPM), Resistant Plant Material (RPM), Microbial
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Biomass (BIO), Humified Organic Matter (HUM) and Inert Organic Matter (IOM). In this model
, the monthly carbon input is divided into two SOC pools: DPM and RPM, and from these pools
SOC is further be decomposed into BIO, HUM and the emission of CO, to the atmosphere.
From the BIO and HUM SOC pools, SOC was further divided into BIO, HUM and CO,. For
further details on this model and its application, see Jenkinson and Rayner (1977); Coleman and
Jenkinson (1999).

Soil Organic Carbon Pools calculation For each soil fraction the organic carbon and
nitrogen content (0-20 cm depth) was determined. These estimates were converted in to five
different soil organic carbon pools: Decomposable Plant Material (DPM) and Resistant Plant
Material (RPM), Microbial Biomass (BIO), Humified Organic Matter (HUM) and Inert Or-
ganic Matter (IOM) which corresponding to the RothC model SOC pools (Coleman and Jenk-
inson (1999)). The value for each model SOC pool was determined from the measured frac-
tions using the methodology of Zimmermann et al. (2007). The equation that was used to
calculate the DPM/RPM splitting ratio depends on land-use type. For temperate grassland,
y=0.048+0.011x MAT and arable land: y=0.035—0.003xMAT, where MAT is mean annual
temperature. The BIO/HUM split ratio was estimated by performing a spin-up with RothC, then
taking the BIO/HUM ratio at equilibrium. This equilibrium BIO/HUM ratio was used to split
S+A)+(s+c) into BIO and HUM pools. The details of the splitting ratios used are shown in
Table 4.3.

Table 4.3: Splitting ratio of measured fractions with Zimmermann et al. (2007) method

split ratio (Unitless)

Site name MAT (°C) DPM/RPM_ BIO/HUM
Laqueuille* (grass, FR) 7.68 0.132 0.027
Oensingen (grass, CH) 9 0.147 0.026

Hertfordshire (crop, UK) 9.46 0.007 0.027
Carlow (crop, IE) 94 0.007 0.026

RothC-26.3 model input data preparation The RothC model was used to estimate the
equilibrium SOC value at each site. Only limited data on plant residue input (tC/ha) was avail-
able, and so this was estimated from harvest or standing biomass (tC/ha) data and also the obser-
vation date. For the Laqueuille (FR) site, above-ground litter data were available for each plot
from April to September, 2003-2010. Plant residue at the Oensingen (CH) site was estimated by
De Bruijn et al. (2012) to be: 527 DW g m~2 y~! for the intensive plot and 585 DW g m~2 y~!
for the extensive plot. For the distribution of grass litter during the year at the Oensingen (CH)
site, we used the same grass litter distribution ratio as Laqueuille (FR) site. The C concentration
of grass residue was assumed to be 40 % for grasslands (Van Groenigen et al. (2010a, 2011)).
For the Carlow (IE) site, we used grain harvest data to estimate plant litter inputs. To estimate
plant residue from grain harvest, we followed the estimates of Van Groenigen et al. (2011) using
the DNDC model defaults for C partitioning in crops (Li et al. (1994)). The carbon partition for
barley was estimated as 40 % grain, 47 % root and 23 % shoot. For the Hertfordshire site, we
used dead plant weight data to estimate plant residues for the RothC model. We used a 110 year
(1901-2010) average for the monthly weather data, which was taken from the CARBO Extreme
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project database for spin-up runs at all sites. Potential evapotranspiration was calculated fol-
lowing Mdaghri-Alaoui and Eugster (2001). Management data (i.e. fertiliser application date,
applied fertiliser amount) were available at Laqueuille (FR) from 2003 to 2011, Oensingen (CH)
from 2002 to 2008, Carlow (IE) from 2004 to 2007, and Hertfordshire (UK) from 2003 to 2006.
We took monthly mean values for management data during these periods for each site for the
spin-up run.

RothC-26.3 model run

Prior to the model simulation, we applied three different initialisation methods: (1) Spin-up run
initialisation repeating average recent management data and 1901-2010 weather data (Control),
(2) Spin-up initialisation involving reducing or increasing C input (plant litter and organic car-
bon manure input) to adjust the equilibrium SOC (individual SOC pools or total SOC) to the
measured values and (3) initialisation with measured SOC data. The RothC spin-up consists of
an initialisation run equivalent of 10,000 years, to attain the SOC equilibrium state, repeating
monthly average management regimes (plant residues, manure and vegetation) and weather data
(temperature, precipitation and evapotranspiration). The monthly average weather data was cal-
culated by combining CARBO Extreme weather data from 1901 to the year where the measured
weather data was available, and to the recent weather data from each site.

(a)
soc (b) (c)
soc soC
Adjuste C input until
\ ‘[h Equilibrium SOC |
100 past ‘) " \ u ‘\ \‘ | =measured SOC A \ ﬂ r \
i weather data (1] I\ / ‘ /
\ ‘[“ AR 100 past I \\
\ N\ ‘J \M\ Ik J | \_ weather data \N W | “ | | \( {\ W
\\\;\’\ \ v\ v | \\\~ —— Slevr‘l'ﬁlgg:r::on ‘ \ }
v |
| *’% ‘“\ measured values | 4 | '
| 1
v | |
Repeat .
pree'::?ﬂ | Repeat A Observation 1
management i present |
+ Time management | | ;
; ;
Spin-u| Simulation = 4 ‘ ‘
e

Figure 4.1: Different initialisation methods : (a) Control, (b) Adjusted spin-up initialisation and
(c) Initialisation with measured SOC data

Spin-up run initialisation using the recent management and 1901-2010 weather
data (Control) The model was run to equilibrium by repeating an average monthly man-
agement regime (around 10 years) and monthly average weather data (1901-2010). After this
spin-up run initialisation period, we simulated SOC using each site’s recorded weather and man-
agement data for the available periods (see Figure 4.1 (a)). The IOM was set as the value ob-
tained from the Zimmerman fractionation. This model initialisation method is quite common
and we set up this method as the control for comparing the model outputs with those derived by
other initialisation methods.

Spin-up initialisation involving a reduction or an increase in C input (plant litter
and organic carbon manure input) We reduced or increased C input until the equilibrium
SOC amount of total SOC, DPM, RPM, BIO or HUM pools individually one at the time matched
each measured SOC amount during the spin-up run. The IOM was set as the value obtained from
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the Zimmerman fractionation. We call this spin-up run “the adjusted spin-up run initialisation”.
After this “adjusted spin-up run initialisation”, we simulated SOC using the weather and man-
agement data for each site for the available periods (see Figure 4.1 (b)). Adjusting DPM pool to
the measured value during the spin-up run is called as AADPM. The same as AdDPM, the other
adjusting spin-up run initialisation methods are called AARPM, AdBIO, AJHUM and AdTot
depending on which SOC was adjusted during the spin-up run.

The observed SOC fraction data initialisation (ObSOC) We initialised the model with
the measured SOC fraction data, and then simulated values for SOC using the recorded weather
and management data for each site (see Figure 4.1 (c¢)). This initialisation method is called
ObSOC in this study.

4.2.4 Statistical analysis

Linear regression models with 95 % confidence intervals were used to analyse differences be-
tween management practices and soil layers, using the R system for statistical computing R
2.14.2. For comparing the model output results and the experimental data, we analysed the
root mean square error (RMSE). Differences were further tested with Tukey HSD (honestly sig-
nificant difference) test in conjunction with and ANOVA to find means. Before all statistical
analysis, Shapiro-Wilk’s test of normality was undertaken to confirm the normal distribution of
the data (true in all cases).

4.3 Result

SOC
(t C/ha) 80

(b) Oen 12
(@) Laq 11
120 o S+A
= PBM .
1001 m s+c
O rsoC
80 O DOC
W Total A
60
40 20
20
0 0 L
INT EXT INT EXT
“ (© carn 7 (d) Hert03
40
30
30
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20
10
10
0 0
CON NIT Ploughed Minimum tillage

Figure 4.2: SOC (tC/ha) for each fraction 0-20 cm: a-d here (a) Laqueuille (grassland, FR) 2011,
(b) Oensingen (grassland, CH) 2011, (c) Carlow (cropland, IE) 2011 and (d) Carlow (cropland,
IE) 2011
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Table 4.4: Test of significant difference between management with regard to each SOC fraction
and total SOC (tC/ha) 0-20 cm: Estimates (tvalue) o1, ,\ing for significant difference

R2
Site POM S+A s+c rSOC DOC Total
Laq 2011 -6.01 (1.82)  -3.27(-1.11) -6.03 (-1.71) 3.74(0.94)  -0.31(-2.86) -8.73 (-1.52)
0.25 0.11 0.23 0.08 0.45 0.19
Oen 2011 112 (-1.7)  -4.11 (-1.89) 3.94 (1.65) 3.44 (1.24) 0.21 (2.1) 3.12 (1.24)
0.22 0.26 0.21 0.13 0.31 0.13
Car 2011 0.3 (0.46) -0.28 (0.32) -6.75 (-1.24) -2 (-2.2) -0.01 (-0.73) -4.75 (-2.26)*
0.02 0.01 0.13 0.33 0.05 0.34
Hert 2003 -0.2 (-0.39)  -0.58 (-1.73)  -7.79 (-3.27)**  -1.2 (-0.92) 0 (-0.23) -5.46 (-3.45)**
0.01 0.18 0.43 0.06 0 0.46

Key to significance stars: 0 “**** 0.001 “*** 0.01 “** 0.05 *.” 0.1

The result of the soil organic carbon fractions and the total SOC across the 0-20 cm layer
for each of the sites and management regimes, and statistical analysis of differences between
management, are shown in Figure 4.2 and Table 4.4. Laqueuille (FR) showed a very similar SOC
distribution among SOC fractions (Figure 4.2 (a)), and the management system did not influence
the SOC distribution (Table 4.4). At the Oensingen (CH) site, the extensive plot tended to show
slightly more SOC in the S+A fraction and less SOC in the s+c fraction than the intensive plot
(Figure 4.2 (b)), but this difference was not statistically significant (Table 4.4). All of the other
fractions and the total SOC across the 0-20 cm layers were not significantly different between
contrasting management regimes (Figure 4.2 (b) and Table 4.4). The Carlow (IE) conventional
tillage plot showed significant differences due to management regimes in the total SOC 0-20
cm soil depth (Table 4.4) and the s+c fraction in the non-inversion-tilled plot, which contained
more SOC than the conventional tillage plot (Figure 4.2 (c)), although these were not significant
(Table 4.4). For the Hertfordshire (UK) site, significant differences due to management among
the four experimental sites were found (Table 4.4). These differences were specific to the s+c
fraction of SOC and the total SOC (0-20 cm) between contrasting managements (Figure 4.2 (d)
and Table 4.4).

In general, the equilibrium SOC pools and total SOC by spin-up repeating an average
monthly management regime (around 10 years) and monthly average weather data (1901-2010),
which is called Control in this study, showed a distinct difference between contrasting manage-
ments at each site (Figure 4.3). The equilibrium total SOC was significantly different between
contrasting management plots within each site (Figure 4.3). For both plots at Laqueuille (FR),
the SOC distribution in each SOC compartment and the total SOC across the 0-20 cm soil profile
were far from the equilibrium point (Figure 4.3 (a) and (b)). The SOC in the intensive plot at
Oensingen (CH) was further from the equilibrium SOC value than the extensive plot (Figure 4.3
(c) and (d)). The same pattern was found in Carlow (IE) comparing the conventional tillage and
non-inversion plots (Figure 4.3 (e) and (f)). At the Hertfordshire (UK) site, SOC for both plots
was different to the estimated equilibrium SOC point estimated by the RothC model (Figure 4.3
(g) and (h)).

Depending on management regime, soil organic C pools required different time spans to
achieve equilibrium, as would be expected from their differing turnover rates, with pools with
longer turnover times taking longer to equilibrate. Decomposable plant material (DPM) arrived
very quickly at the equilibrium point (1-9 years). Resistant plant material (RPM) required 20-40
years, except for the conventional tillage plot in Carlow (IE) that required 200 years to reach the
equilibrium point (Figure 4.4). With regard to microbial biomass (BIO), in the permanent grass-
land at Laqueuille (FR), both plots required 30 years, while for the sown grassland at Oensingen
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Figure 4.3: Measured SOC (tC/ha) for each fraction 0-20 cm and Equilibrium SOC by spin-up
run with average recent management/weather data: a-h here (a) Laqueuille (grassland, FR) 2011
INT, (b) Laqueuille (grassland, FR) 2011 EXT, (c) Oensingen (grassland, CH) 2011 INT, (d)
Oensingen (grassland, CH) 2011 EXT, (e) Carlow (cropland, IE) 2011 Conventional Tillage, (f)
Carlow (cropland, IE) 2011 Non inversion, (g) Hertfordshire (cropland, UK) 2003 Plough and
(h) Hertfordshire (cropland, UK) 2003 Minimum Tillage.
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Figure 4.4: Required number of years to attain the equilibrium state with average recent man-
agement/weather data for each site. Equilibrium point is SOC changes become <0.0001 tC/ha.

(CH) the extensive plot needed only 8 years, compared to 60 years in the intensive plot. The Car-
low (IE) non-inversion cropland plot needed 8 years, but the conventional tillage plot required
70 years. The Hertfordshire (UK) ploughed plot did not reach equilibrium for 300 years, while
the minimum tillage plot required 20 years at this site. Humified organic matter (HUM), which
is the largest SOC compartment, required 300-700 years to arrive at the equilibrium state (Figure
4.4). As the HUM is the largest SOC compartment in the RothC model, when HUM reaches the
equilibrium, the total SOC across the 0-20 cm layer also reached its equilibrium state. The total
SOC across the 0-20 cm layer reached the equilibrium point after 300-900 years (Figure 4.4).
Except for the Carlow (IE) site, the required time span to reach equilibrium was not significantly
different between contrasting management regimes (Figure 4.4).

As shown by the RothC model results, 10 years of continuous land management is not
sufficient to attain the equilibrium state of SOC as there was no significant SOC stock difference
between two adjacent contrasting management systems in the same site (Figure 4.3 and Figure
4.4). Accordingly, model initialisation, which assumes the actual SOC is at the equilibrium state,
could lead to model outputs that do not correspond with measured values. We tested different
spin-up run methods to initialise the RothC model in order to analyse the initialisation that was
the most suitable. We have run the RothC model for 10,000 years reducing or raising monthly
plant residue input, until the equilibrium SOC fits the observed values (see Figure 4.5).

In all sites, DPM was not affected by the different initialisation methods, showing only small
differences in root mean square error (RMSE), 0-0.02, between modelled and measured SOC.
Regarding the RPM pool, adjusting the equilibrium DPM to the measured DPM initialisation
method showed mostly swerving model output from the observation values in Oensingen (CH)
and Hertfordshire (UK) among different initialisation methods, RMSE 2.76-4.37 and 4.73-5.27
respectively (Figure 4.6 (c)-(d), (g)-(h)). In the Laqueuille (FR) site and in the conventional
tillage plot in the Carlow (IE) site, Control initialisation method resulted in the most deviated
model output in the RPM pool, RMSE 19.43-23.22 and 1.33 respectively (Figure 4.6 (a)-(b) and
(e)). Only the Carlow (IE) non-inverted plot showed the most variable model output (RMSE:
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Figure 4.5: Changes in C input (tC/ha) according to initialisation method

1.46) by AdBIO or AJHUM (Figure 4.6 (f)). For the BIO pool, the RMSE between the sim-
ulated SOC and the measured SOC was in the range of 0.08-0.95, except for the intensive and
extensive plots at the Laqueuille (FR) site, where these were 0.14-1.79, and 0.15-6.97, respec-
tively, because AdDPM initialisation estimated large deviation in Laqueuille (FR) site (Figure
4.6 (a)-(b)). Using the initialisation method where AdDPM resulted in large deviations from
the observed values in the HUM and total SOC pools in all of the sites except Carlow (IE) site
(Figure 4.6 (a)-(d), (g)-(h)). In the Carlow (IE) site, the method adjusting the equilibrium BIO
or HUM to the observed values estimated mostly deviated from the measured values, RMSE:
23.31-28.27 (Figure 4.6 (e)-(f)). In a comparison of the different initialisation methods all sites
together (Figure 4.7 (a)-(g)), while the initialisation method involved AADPM and AdRPM re-
sulted in large deviations, especially in the HUM and total SOC pools. All initialisation methods
regarding each SOC pools were tested with Tukey HSD test (Figure 4.6 (a)-(g)). Significant dif-
ference in the model result accuracy due to initialisation methods were not found regarding
DPM RPM, HUM pools and total SOC. Significant difference regarding model result accuracy
was found in BIO pool, showing the initialisation method that involved AdTot (Figure 4.7 (b))
gave the closest model output to the measured values in all of the SOC pools and the total SOC
compared the other initialisation methods (Figure 4.7 (a)-(g)). For contrasting management plots
in the same site, the RMSE variability was quite similar.

4.4 Discussion

In general, there was no significant difference due to management systems in Table 4. However,
total SOC in Carlow (IE) and s+c and total SOC in Hertfordshire (UK) showed significant dif-
ferences (Table 4.4). At both sites, these differences were apparently due to soil texture SOC
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(s+c), as this fraction forms the largest component of these soils (Figure 4.2). Soil mineralogy
determines the quantity of SOC and SOC turn over time (Torn et al. (1997); Qian et al. (2003);
Hassink et al. (1997); Hassink and Whitmore (1997)) and the required time span to detect SOC
changes due to management largely depend on soil type and land use type (Smith (2004b)). Poe-
plau et al. (2011) showed that grassland conversion to cropland may attain the SOC equilibrium
state 17 years after conversion, and subsoil SOC changes are followed by changes observed in
the topsoil. Since Carlow (IE) and Hertfordshire (UK) are croplands (the other sites are grass-
lands), SOC might more rapidly reaches an equilibrium state under croplands than grasslands.

The comparison between modelled SOC at equilibrium and measured SOC showed that most
of the mineral soils at the study sites have not reached an equilibrium state (Figure 4.3 (a)-(b),
(e)-(h)), suggesting that a potential “minimal time” of 10 years is not sufficient for steady state
conditions (Smith (2004b)). Additionally, the equilibrium total SOC were significantly different
between contrasting management plots, indicating SOC sequestration difference management
difference would appear after longer term (more than 10 years) continuous experiment (Figure
4.3). On the other hand, at the Oensingen (CH) site, the current SOC content of both plots was
close to the equilibrium state (Figure 4.3 (c) and (d)). This outcome could be explained by the
amount of plant input. In fact, the estimated plant residue in Oensingen (CH) were referred to
the model estimating aboveground biomass in (De Bruijn et al. (2012)) and these values may not
be realistic (De Bruijn et al. (2012)) and supposedly calibrated to the SOC equilibrium would be
close to the measured SOC value. The extensive plot in Oensingen (CH) showed larger deviation
between model output and measured value than the intensive one, perhaps because the extensive
plot received only estimated plant input data while the intensive plot was parameterised with
estimated plant input data and also measured input manure data. There are also several limi-
tations in RothC model. For instance, RothC model does not require mowing, grazing, tillage,
harvesting, nitrogen fertiliser data. All of these management data should be taken into account
as plant input data, although it is difficult to find appropriate data on this issue. On the other
hand, RothC model has been tested widely and several studies reported that RothC model is
an appropriate tool for estimating SOC (Senapati et al. (2013); Poeplau et al. (2013)). In this
study, we take into account the RothC’s limitations although we still use RothC SOC equilib-
rium assumption as reliable result. The required number of years to attain the SOC equilibrium
state (Figure 4.4) was 900-2000 years, while the DPM pool reached the equilibrium state very
quickly (1-9 years). This also suggests that more than 10 years of continuous management are
required to observe significant changes in SOC distribution in the DPM pool. At Carlow (IE) the
conventional tillage plot required a much longer time to attain equilibrium compared to the other
sites, which might suggest that the plant residue estimation was incorrect as we estimated this
from the harvested grain record (Figure 4.4). In addition, our results suggest that the equilibrium
assumption may not be appropriate for disturbed agricultural sites, explaining the difficulties of
model initialisation using a general spin-up run methodology as reported elsewhere (Pietsch and
Hasenauer (2006); Wutzler and Reichstein (2007); Carvalhais et al. (2008)).

Indeed, in this study, the comparison of the general spin-up run and the measured SOC data
showed significant differences in the estimation of SOC equilibrium. This may be because the
slowest SOM pool continues to accumulate C over a long time and a small amount of C accu-
mulation could result in a significant change in the theoretical equilibrium C state (Wutzler and
Reichstein (2007)). Initialising models by accurately simulating the pre-experimental period us-
ing detailed information, especially long-term land use management history of the site may be a
useful method (Bruun and Jensen (2002)). However, site history data for pre-experimental peri-
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ods is often difficult to acquire and long term studies (greater than 20 years) providing detailed
and reliable management and weather (i.e. wind speed, relative humidity) data are insufficient.
An alternative option is to identify a site that has not been disturbed for over a century to ini-
tialise models using spin-up run assumptions (Wutzler and Reichstein (2007)), although this is
not very realistic due to the fact that few sites are truly undisturbed. Scaling several SOC pools
simultaneously during the spin-up run and changing the equations within the model is another
option, though this method may not be easy to achieve for all model users and for all ecosystem
models (Hashimoto et al. (2011)). However, it is feasible that a detailed 10 year dataset of reli-
able management and weather data could be available at many sites. Therefore, we hypothesised
that, where this data is available, the most realistic and appropriate model initialisation method
would be to initialise the total SOC content as close as possible to the current total SOC content,
as the soil C stock will not change greatly over such a relatively short time period. We initialised
the model by increasing or decreasing C input until the equilibrium SOC matched the measured
SOC during the whole of the spin-up run repeating monthly average recent management and
weather data, and analysed which C pools were most important for accurately initialising the
RothC model (see Figure 4.5 and Figure 4.6). The measured SOC used for comparison with
model results was measured independently with a removing soil inorganic carbon process. The
fraction of total SOC held within the POM fraction was measured without the removing soil in-
organic carbon process due to the sensitivity of plant residue to HCL. Moreover, there were slight
SOC losses during soil fractionation process. We expect these may have caused a slight differ-
ence between the measured total SOC independently and the sum of all of the SOC fractions in
Figure 4.6.

Initialising the equilibrium SOC to the measured SOC values with quick turning SOC pools
such as DPM and RPM resulted in large over/under estimations (Figure 4.6). The DPM and
RPM pools have been shown to have a fast turnover time of between 0.165 years and 2.31 years
respectively (Jenkinson and Rayner (1977)) and the potential stock rate is relatively smaller than
the HUM pool. Accordingly, adjusting the DPM or RPM either through a large increase or
decrease in the amount the amount of carbon in the HUM pool resulted in total SOC contents
that were significantly different to the observed values. Therefore, this method is not expected to
be the ideal model initialisation method. AdBIO (adjusting equilibrium BIO pool which had a
turnover time of 1.69 years) did not have a major impact on the other SOC pools in the same way
as the DPM and RPM adjustment methods. However, we observed significant over and under-
estimations of total SOC compared to the measurement values (Figure 4.6 (a)-(h)). Except
for the Carlow (IE) site, the same tendency for under/over estimation was found in comparisons
with the total SOC. In the Carlow (IE) site, RPM, BIO and HUM were under estimated, although
the total SOC was over estimated in both plots. This may be because the measured total SOC
data is not the sum of each SOC fraction but measured independently after decarbonation. In
the Carlow site, we expect these differences were more evident than in the other sites. For
contrasting management plots in the same site there was a similar tendency (Figure 4.4, 4.5
and 4.6), suggesting appearing the SOC changes due to the management regimes may need the
same time span after starting the new management system. The required time span to show
significant SOC change due to management largely depends on the soil characteristics such as
soil texture, soil pH etc. Since HUM and the sum of SOC showed large variations due to different
initialisation methods, the best initialisation method should reproduce HUM and the sum of SOC
accurately. AdHUM led the HUM simulation result certainly close from the actual HUM SOC
value (Figure 4.6 (a)-(d), (g)-(h), RMSE: 2.75-16.03). However, this initialisation method over-
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as well as under-estimated the sum of SOC. For example RMSE was 43.84 in the Laqueuille
(FR) intensive plot (Figure 4.6 (a)-(h)). By AdTot, we found much less deviation between
model results and observation for each SOC pool especially in BIO pool (RMSE: RPM 0.58-
21.42, BIO 0.08-0.3, HUM 3.55-30.78) and the total SOC pool (RMSE: 2.11-15.23) compared
to the other methods (Figure 4.7 (a)-(g)). Furthermore Tukey HSD test showed that AdTot
initialisation method show the most accurate model fit among different methods. (Figure 4.7
(a)-(g)) Hence, the spin-up initialisation involving adjustments in the total SOC was the best
initialisation method when using the RothC model. In particular, the SOC adjustment method
showed a good match with observations even in agricultural lands that have been disturbed in
the recent past.

4.5 Conclusion

This study indicates that soil texture largely governs total SOC and that 10 years of continu-
ous land management is not sufficient to bring SOC to an equilibrium state. The time span for
significant SOC changes due to a particular management regime largely depends on soil char-
acteristics. Assessment of three modified spin-up initialisation methods showed that repeating
recent management and weather data is not the best method to use and the most effective ef-
fective using the RothC model was the adjusting total SOC initialisation method both over and
under-estimated the sum of SOC in European crop and grass study sites. We also confirm that
plant inputs are a key variable in the RothC model and these need to be assessed with particular
accuracy.
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Short communication

5.1 Introduction

Process-based ecosystem models represent a useful tool to evaluate the mitigation potentials of
agricultural management practices, allowing us to overcome financial, time and land constraints
(which are often difficult to study in field trials). Moreover, model simulations allow the impacts
of future climatic variability on interactions between the terrestrial and atmospheric carbon cy-
cle to be analysed, which is difficult to achieve through experimentation. The output/results of
model simulations can be greatly influenced by initial parameter/variable values and manage-
ment regimes (Bruun and Jensen (2002)); therefore, model initialisation is critical for accurate
ecosystem modelling. However, the most common model initialisation method (spin-up run),
whereby the models runs for many years with repeated recent management and weather data
until the total soil organic carbon (SOC) content reaches equilibrium, often cannot replicate
current observed values of SOC (Bruun and Jensen (2002); Pietsch and Hasenauer (2006); Wut-
zler and Reichstein (2007); Hashimoto et al. (2011)). Many agricultural ecosystems may not
be in equilibrium due to frequent management interventions (Wutzler and Reichstein (2007);
Basso et al. (2010); Hashimoto et al. (2011)). Furthermore, a number of studies have shown
that modelled SOC pools often do not correspond closely to the measured fractions, and these
model SOC pools often cannot be initialised easily from experimental measurements (Bruun
and Jensen (2002); Smith et al. (2002a)). Bruun and Jensen (2002) concluded that the only
appropriate SOC initialisation method is to correctly simulate the pre-experimental period, al-
though the lack of long-term management and weather information is often a limitation to this
type of model initialisation. Methods for initialisation of models using SOC fractions were pro-
posed and tested by Zimmermann et al. (2007) and Skjemstad et al. (2004), who both succeeded
in initialising the Rothamsted Carbon model (RothC), using a combined physico-chemical soil
fractionation method. Other researchers have proposed equilibrium assumptions scaling the size
of SOC pools during the spin-up run, assuming that the most useful initialisation method should
include a precise estimate of plant litter and organic manure inputs to soil, which should be var-
ied depending on the management type (Wutzler and Reichstein, 2007; Carvalhais et al., 2008;
Hashimoto et al., 2011). However, these tests have only been carried out with a specific model
and not with several different models, as we do here.

5.2 Materials and Methods

In this study, Pasture Simulation (PaSim), Daily Century (DayCent) and Denitrification / De-
composition (DNDC) models were used due to their additional sub-models, simulating aspects
of ecosystem functioning other than soils (RothC is a soil only model). For example, the PaSim
grassland model contains detailed animal sub-models compared to the DayCent model. The
DNDC model is constructed using very different soil sub-models compared to the Pasim and
DayCent models, but it is able to simulate various agricultural land uses. Due to individual
model constraints, the Pasim model was initialised for SOC pools for a depth of 0-60cm, while
DNDC and DayCent were initialised for the 0-10 cm and 0-20 cm soil depths respectively. Two
long-term (up to 10 years) European grassland sites from the CarboEurope Integrated Project
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(CEIP) ecosystem flux tower network were analysed in this study. The sites are all located
in the same bioclimatic region (the oceanic temperature climate zone (Lindner et al. (2010)),
with mean annual temperatures ranging between 7.7 and 9.0 °C and mean annual precipitation
ranging between 857 and 1100 mm. Each site comprised two adjacent plots with contrasting
management types: (1) Laqueuille (FR), intensively (high animal stocking rate and N fertiliser
input) and extensively (low animal stocking rate and no fertiliser input) grazed grassland, and
(2) Oensingen (CH), intensively and extensively cut grassland with high and low N fertiliser in-
put (intensive plot was ploughed and re-sown in 2008). A summary of site details can be found
in Chapter 3, Tables 3.1 and 3.2. In autumn/winter 2011/2012, soil sampling campaigns were
carried out for the two grassland paired-sites (4 plots in total) within the measured area of the
eddy-covariance flux tower (foot-print). In each plot, 6 soil cores (60 cm depth in Laqueuille and
40 cm depth in Oensingen) were sampled at equal intervals (10m) along a 60m transect. Each
soil core was separated into 0-5 cm, 5-10 cm, 10-20 cm, 20-40 cm and 40-60 cm depth layers.
At all sites, all of the soil samples were air dried under laboratory conditions. Dried soil samples
were then passed through a 2 mm sieve to remove larger particles and debris. A sub-sample was
dried for 48h at 60 °C to determine residual humidity, bulk density and total C and N content.
The Zimmermann et al. (2007) fractionation method was used to separate SOC into five differ-
ent fractions: Sand and Aggregate (S+A), POM, silt and clay (s+c), Dissolved Organic Carbon
(DOC) and Resistant SOC (rSOC). Soil fractionation was undertaken using a 30g sample of
dry <2mm sieved soil. Briefly, soil fractionation is achieved through ultrasonic dispersion, wet
sieving (63 pum), density separation and NaOCl (6%) oxidation. To separate the heavy fraction
(S+A) and POM from the > 63 um soil fraction, the fraction was mixed with sodium poly-
tungstate (SPT) and frozen overnight (see Wurster et al. (2010)). This freezing method avoids
mixing up heavy and light fractions. For extracting the light fraction, we used distilled water
to thaw the frozen sample. For more details, see Zimmermann et al. (2007) and Wurster et al.
(2010). After fractionation, soil fractions and <2 mm sieved bulk soil were analysed for C and
N content using the NC analyser (Thermo Electron Cooperation, Flash EA 1112 series). Prior to
analysis, all fractions (s+c, S+A, DOC and bulk soil), except the POM fraction (which contains
a certain amount of plant-derived carbon that could be degraded by HCI), were decarbonated
following the methodology of Harris et al. (2001). (For more details regarding the soil sampling
and soil analysis, please refer to Chapter 2 Section 2.2.) Soil fractionation results were converted
to five different soil organic carbon pools: Decomposable Plant Material (DPM) and Resistant
Plant Material (RPM), Microbial Biomass (BIO), Humified Organic Matter (HUM) and Inert
Organic Matter (IOM), according to the RothC model (Coleman and Jenkinson, 1999). To sepa-
rate (S+A)+(s+c) into a microbial pool (BIO) and humus (HUM) a splitting ratio was estimated
by RothC spin-up. For further details of the splitting ratios used, see Chapter 2, Section 2.3.5.
Each plot was equipped with a meteorological station and an eddy covariance flux tower, reg-
istering half-hourly data of meteorological variables (e.g. temperature, radiation, precipitation)
and C fluxes. Flux data were processed according to CarboEurope-IP guidelines (Aubinet et al.
(2012)) to obtain NEE. NEE was further partitioned according to CarboEurope-IP guidelines
into Gross Primary Productivity (GPP) and Ecosystem Respiration (Reco) (see Reichstein et al.
(2005)). We aimed to examine the use of estimated RothC pools (DPM (0.165 year, turnover
time), RPM (2.31 year), BIO (1.69 year), HUM (49.5 year) and IOM (50.000 year)) from the
Zimmermann et al. (2007) SOC fractions to test whether this simple and accessible model ini-
tialisation approach could be created to be applied across different process-based models, to
allow them to accurately predict GPP, NEE and Reco in agro-ecosystems. The Zimmermann
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et al. (2007) soil fractionation method was developed specifically to match RothC model pools.
We know that the theoretical SOC model pools are not precisely compatible to each measured
fraction and estimated SOC pool from the Zimmermann et al. (2007) method. However, we use
it to assess its utility for estimating SOC distribution among SOC pools as the initial point of
model runs for the Pasture Simulation (PaSim), Daily Century (DayCent) and Denitrification /
Decomposition (DNDC) models. According to Christensen (1996), estimated RothC DPM was
used to set the Metabolic SOC pool in (Pasim and DayCent), and estimated RothC RPM was
used to set the Structural SOC pool (PaSim and DayCent). Estimated RothC DPM+RPM was
used to set the Litter SOC pool in DNDC. Estimated RothC BIO was used to set the Active SOC
pool (PaSim and DayCent) and the Microbe SOC pool (DNDC). Estimated RothC HUM was
used to set the Slow SOC pool (Pasim and DayCent) and the Humads SOC pool (DNDC). Esti-
mated RothC IOM was used to set the Passive SOC pool (Pasim and DayCent) and the Passive
Humus SOC pool (DNDC). Effects of model initialisation on C fluxes were tested by applying
five model initialisation methods: (1) Spin-up run using up to 100 years of recent weather data
and 10 years recent management data initialisation (Control); (2) initialisation of model pools
with measured SOC fraction data (ObSOC); (3) Spin-up initialisation while reducing or increas-
ing C input (plant litter and organic carbon manure input) during the spin-up run to adjust the
slowest SOC pool to be equal to the measured IOM SOC fraction (AdIOM); (4) The same as 3,
except the largest SOC pool was adjusted to be equal to the measured HUM SOC fraction (Ad-
HUM); and (5) The same as 3, except the total SOC was adjusted to be equal to the measured
total SOC (AdTot). For analysing model fit, we focused on Model Efficiency (ME) and Relative
root mean square error (RRMSE) (Bennett et al. (2012); Carvalhais et al. (2010); Jgrgensen et al.
(1986)).

5.3 Results
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Figure 5.1: Each year’s Model efficiency (ME) and Relative Root mean square error (RRMSE) for Pasim. Here: (a-1) ME Laqueuille (FR) intensive and extensive plots, (a-2)
RRMSE Laqueuille (FR) intensive and extensive plots, (b-1) ME Oensingen (CH) intensive and extensive plots and (b-2) RRMSE Oensingen (CH) intensive and extensive plots.
The y axis of AJHUM in Laqueuille (FR) extensive plot is different from the others.
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Figure 5.2: Each year’s Model efficiency (ME) and Relative Root mean square error (RRMSE) for DayCent. Here: (c-1) ME Laqueuille (FR) intensive and extensive plots, (c-2)
RRMSE Laqueuille (FR) intensive and extensive plots, (d-1) ME Oensingen (CH) intensive and extensive plots and (d-2) RRMSE Oensingen (CH) intensive and extensive plots.

2004

2006 2007 2002

2004

2006 20072002

2004 2006 2007 2002

2004 2006 2007 2002 2004 2006 2007

3.75-
3.50-
3.25-
3.00-
2.75-

w
2, 50-

e .

NEE ¥ 3.75.

x
3.50-
3.25-
3.00-

2.75-

2.50

(c-2)DayCent: Lag: RRMSE

AdHUM

AdIOM

AdTot

Control

ObsOC

Xagbeq

VN
A

A
/

N
/\

V)
N

2004 2006 2008 20102004 2006 2008 201

(d-2) DayCent: Oen: RRMSE

02004 2006 2008 20102004 2006 2008 20102004 2006 2008 2010

AdHUM

Adiom

AdTot

Control

ObsSOC

1.0+

0.9-

0.8-

0.7

ikl

N

2

wguso

RRMSE
=3
n

-
o

0.8+

0.7-

0.6+

0.5+

.

juRQ

== NEE



(e-1) DNDC: Laq: ME (e-2) DNDC: Laqg: RRMSE

AdHUM AdIOM AdTot Control ObsSOC
AdHUM AdIOM AdTot Control Ob SOC A
1‘ 5, ».l
e AT A i & B 2 \
0- . i I ! “ .
-~ . P ? Wi K- \
’ y Fui 3 pi, |a c 3- ' ’ N7 ~ . . ).B
g L . i 9 . N pR v m
A4 'y 3 - - @ . -3
5 2- A
29
N i 1- —— S
== GPP O
w-3- =~
1- wts NEE g5, |
(:\/\_/ P e /w Py - Reco 4 X : Lo es | ' & | et Pl
. ~ S / o 5 ' . 3 . 5
Ao ‘ . s ’ = ' =
, | . g 3 -
A- o ' ' . S RaEll 3
! ’ ) . 27
2, : vr i
wou 1~ S—e
4 T ety || St e
-31 2004 2006 2008 20102004 2006 2008 201020042006 2008 2010 20042006 2008 201020042006 2008 2010

2004 2006 2008 20102004 2006 2008 201020042006 2008 2010 2004 2006 2008 20102004 2006 2008 2010

(f-1) DNDC: Oen: ME (f-2) DNDC: Oen: RRMSE

AdHUM AdiOM AdTot Control Ob sOC AdHU B0 Lo Sontie]
1.0- & —_
£ ’ 4 - pe -
a5
s 4- o
0.0- e 3
: g
o 2
-0.5- 24
factor{Flux)
””””” e [N i [ ST e |y | St T N =
4.0 I a1 o cong ] 5om i o s ey T A ~ tee
w = “a S 3 o bl e = Reco
E 1 0’ 24 6— Flux
! 14 - GPP
s P e X - NEE
'), ’ - ki u‘; »’ *‘ ‘ = Reco
0.5, A v NeR . ."“"" s J
' ' oot N i
AL AF; 4 L
0.0- ¢ : 3 o s
AR 2 £l
i /\/\ /\/\ -
.0.5'_y\J 2-
Py PN Y, S e py Yo =
-1.0- N s "““-,,_4.._Y\M - .
Zmi 1 ZOUA ' Z(X)é 100‘7 2“‘)2 ' 2@ : 200‘6 2(‘]'710‘02 ' 1@ ; 200‘6 2067 2&2 ' 20(‘)4 y 200‘5 2“57 Z‘MZ ' ZO‘O@ ' 20‘06 2607 0022009 0032004 2906 2006 200002 200 %gfoszooazmzmszoo‘zmszm AR R T

Figure 5.3: Each year’s Model efficiency (ME) and Relative Root mean square error (RRMSE) for DNDC. Here: (e-1) ME Laqueuille (FR) intensive and extensive plots, (e-2)
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Table 5.1: The percentage of time for which ME was greater than 0.5 during the simulation
period (for example, if a five year simulation had three years for which ME was greater than 0.5,
then this corresponds to 60% of the time)

Site Management Model Method GPP NEE Reco

AdHum - -—- —
AdIOM - -—- -
INT AdTot - - ——=
Control R ++
Laa () A
AdIOM + -——— ——-
EXT AdTot + -——— ===
Control + —_——— ===
Pasim ObSOC - S
AdHum  +++ +++ +++
AdIOM +++ +++ +++
INT AdTot +++ +++ +++
Control +++ +++ +++
ObSOC +++ +++ +++
Oen(CH) AdHum  +++ +++ +++
AdIOM +++ +++ +++
EXT AdTot +++ +++ +++
Control +++ +++ +++
ObSOC  +++ +++ +++
AdHum -—-
AdIOM —-——-
INT AdTot -—-
Control -
Laa GR) Adrion
AdIOM —-—-
EXT AdTot -—=
Control -——-
ObSOC —-——
DayCent AdHum +++
AdIOM +++
INT AdTot +++
Control +++
ObSOC +++
Oen(CH) AdHum +++
AdIOM +++
EXT AdTot +++
Control +++
ObSOC +++
AdHum --- —-—-— +
AdIOM --- -—-—-— ++
INT AdTot - == ++
Control --- —--- ++
Laa GR) A
AdIOM --- ——--— +
EXT AdTot -—-- —-—-— ++
Control --- —--- ++
ObSOC - —--  ——— ——
DNDC AdHum --- ———  +++
AdIOM - -- + +++
INT AdTot —— = 4+ +++
Control - —-— + +++
ObSOC - — - + +++
Oen(CH) AdHum - --— — +++
AdIOM - -- +++ +++
EXT AdTot —— = 4+ +++
Control - - — +++ +++
OobSOC - —— +++ +++

Indicators show the percentage of ME higher than 0.5 (moderate correlation
Hinkle et al. (2003)): 0-10%:(— — —), 10-30% (—-), 30-50% (-), 50-70% (+),
70-80% (++), 80-100%(+++)
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PaSim model

For the grazed Laqueuille site, independent of initialisation method, the model performed
poorly in estimating the annual variations and flux fluctuations of NEE (i.e. RRMSE, normal-
ized deviation between individual model result and observation), while this was accurate for
Reco and GPP (Figure 5.1 (a-2)). The efficiency of model estimation (ME, simulation vs obser-
vation with respect to annual mean) was satisfactory concerning GPP for both treatments, while
NEE was poorly estimated (Figure 5.1 (a-1)). Reco was adequately predicted in the intensively
grazed plot except for the AJHUM initialisation method. In the extensive grazing plot, Reco
was poorly estimated (Figure 5.1 (a-1)). For the mown Oensingen site, independent of initial-
isation method, a high inter-annual variability was observed (i.e. RRMSE) in the Reco model
simulation compared to GPP and NEE (Figure 5.1 (b-2)). This was more obvious for the ex-
tensive than the intensive mowing. PaSim anticipated fairly accurately all fluxes (ME>0.5) in
Oensingen (Figure 5.1 (b-1)), though a high inter annual variability was observed for GPP and
NEE of the intensively mown treatment. Across years, independent of initialisation methods,
PaSim simulated well GPP for both sites and treatments respectively (RRMSE, Figure 5.4 (a)).
Predicted Reco fitted well with observed values for the Laqueuille site compared to the Oensin-
gen site, and vice versa for the NEE. Independent of initialisation methods, PaSim reproduces
all fluxes efficiently for the mown Oensingen site, while for the grazed grassland (Laqueuille)
only GPP was well represented (i.e. ME, Figure 5.5 (a)). Notably, differences have been found
between the two grazing intensities (see also Table 5.1). Compared to the control group, no
noticeable difference was observed among initialisation methods for Oensingen. Model initial-
isation methods slightly affect the Laqueuille extensive plot. Compared to Control, Adtot and
ObSOC resulted in negative model efficiency in NEE and Reco (Figure 5.5 (a)), and seemed to
increase the discrepancy between simulated and observed data. In the Laqueuille (FR) intensive
plot, the AJHUM method could not estimate NEE correctly. PaSim performed an efficient sim-
ulation of C fluxes in the following order: NEE > GPP > Reco (in mowing grassland) and GPP
> Reco > NEE (in grazing grassland), referring to Figure 4 and 5 (a). Taking all sites and years
together, the ability of PaSim to estimate well takes the following order: GPP > Reco > NEE
(Figure 5.6 and 5.7 (a)). Pasim does not show an outstanding difference in model simulations
due to model initialisation methods.

DayCent

The daily version of Century, DayCent only offers the possibility to simulate net ecosys-
tem exchange (NEE). Comparison of model simulation with observed values shows a high inter
annual variability for the Laqueuille site, where especially 2008 shows the most difficulties in
both plots for simulating the fluctuation of fluxes (RRMSE, Figure 5.2 (c-2). In the extensive
plot, DayCent could predict well in 2005 although poorly in 2008. However, this difference
should not be significant (see Appendix A). Model efficiency confirms both grazing manage-
ments are not correctly predicted (Figure 5.2 (c-1) and Table 5.1). Compared to the Laqueuille
site, DayCent showed better (smaller RRMSE) model results for the Oensingen site, whereas the
extensive mowing plot was estimated more precisely than the intensive plot (Figure 5.2 (d-2)).
This was confirmed by model efficiency, showing higher ME values for the extensive than for
the intensive plot (Figure 5.2 (d-1)). DayCent predicted accurately NEE in the intensive plot
independent to different methods. For the extensive plot, AAIOM, AdHUM and AdTot were
less precise than the Control. Only ObSOC predicted NEE in the same manner of Control.
Across years, independent of initialisation methods, DayCent simulated well NEE in Oensingen
both plots. Extensive plot tended to be predicted better (i.e. lower RRMSE) than the extensive
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management (Figure 5.4 (b)). However, ME shows that DayCent predicts less efficiently (nega-
tive ME: difference between observed and measured data is higher than inter-annual variability
of observed data) in grazing grassland (Laqueuille site) compared to the mown Oensingen site
(Figure 5.5 (b)). This result is distinct in the Table 5.1. Taking together all sites and years, Day-
Cent does not show an outstanding difference in model simulations due to model initialisation
methods (Figure 5.6 (b) and Figure 5.7 (b)).

DNDC

In the Laqueuille site, NEE showed high inter annual variability although DNDC could
not estimate precisely enough NEE in both management regimes with all initialisation methods
(Figure 5.3 (e-2)). GPP and Reco fluctuation were accurately predicted with DNDC. There is
no significant difference of model result accuracy among initialisation methods (Figure 5.3 (e-
2)). ME shows in both management regimes, Reco was well predicted with DNDC except the
intensive plot with AJHUM method (Figure 5.3 (e-1)). GPP was not accurately predicted espe-
cially in AAHUM and ObSOC in both managements. DNDC could not estimate NEE correctly
in intensive and extensive regimes. In the Oensingen site, the fluctuation of GPP and NEE was
adequately predicted in both managements (Figure 5.3 (f-2)). In the intensive plot, Reco was
better estimated than in the extensive plot. In the extensive plot, Reco was poorly estimated.
Model efficiency (ME) showed that AHUM tended to exacerbate model result in the extensive
plot among initialisation methods (Table 5.1). Taking together all years, independent of initial-
isation methods, DNDC simulated well GPP for both sites and treatments (RRMSE, Figure 5.4
(c)), where for other fluxes, Reco was well fitted for the Laqueuille site (grazing grassland) com-
pared to the Oensingen site (mowing grassland), and vice versa for the NEE. DNDC simulated
C fluxes in the following order (better to worse): NEE > GPP > Reco in mowing grassland
and Reco > GPP > NEE in grazing grassland. Model initialisation seemed not to affect model
simulation at that level. Taking all sites and years together, DNDC predicted C fluxes efficiently
in the following order: GPP > Reco > NEE (RRMSE, Figure 5.6 and 5.7(c)). However, this was
not confirmed by model efficiency, which revealed a better prediction of Reco than for GPP (i.e.
Reco > GPP > NEE) (Figure 5.7 (c¢)). Compared to control, initialisation with AJHUM reduced
model efficiency for GPP and NEE, so did the initialisation with Ob SOC for GPP (Figure 5.7

().
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Model comparison

RRMSE shows Pasim and DNDC can predict well GPP independent of initialisation meth-
ods. DNDC model seemed to have more difficulties to predict the fluctuation of Reco. From
RRMSE results, independent of initialisation methods, the fluctuation of GPP and Reco was
predicted well in the following order: PaSim > DNDC (Figure 5.6 (a) and (c)). ME results pro-
vided evidence that GPP was correctly estimated in the following order: Pasim > DNDC, where
Reco was predicted better with DNDC (Figure 5.7 (a) and (c)). NEE prediction accuracy was
similar among all of the models independent of initialisation methods except AAHUM method
with DNDC (Figure 5.6 (a)-(c)). NEE in grazing grassland was the most difficult flux to estimate
in all of three ecosystem models in this study (Figure 5.6 and 5.7). Except AdTot method, Pasim
generally predicted better NEE than DNDC and DayCent. DayCent estimated NEE similarly to
DNDC except AHUM method (Figure 5.7 (b) and (c)). The accuracy of NEE prediction was
similar in PaSim and DNDC (Figure 5.6 (a) and (c)). The impact of initialisation methods on
NEE anticipation is small in DayCent.

5.4 Discussion and conclusion

Compared to DNDC, PaSim and DayCent are the models which contain the detailed plant
growth submodel. PaSim considers the variables light, temperature, nitrogen, dead shoot/root
materials, leaf photosynthesis, stomatal conductance, leaf temperature and canopy development,
as taken from Riedo et al. (1998, 2000)). The DayCent model considers information relating to
plant canopy, leafy and root compartments, dead plant residues, plant type, etc. The DNDC
model is the ecosystem model which developed from the soil carbon decomposition and deni-
trification model (Li et al. (1992)). DNDC started out as cropland model although in this study
we also applied the DNDC model to the grassland ecosystems, which led to some difficulties.
DNDC accurately predicted Reco flux tendency (ME), which relates largely to soil respiration,
although GPP related to plant growth. DNDC model tightly couples plant growth with soil
biogeochemical and climatic components, and simulates C, N and water cycles in agroecosys-
tems (Zhang et al. (2002)). In Oensingen (mowing grassland), DNDC could correctly predict
(RRMSE) the GPP inter annual variations and flux fluctuation, while Reco ones were much
more difficult to be predicted (Figure 5.6 (c)). This may be because DNDC could estimate de-
tailed soil data on the basis of soil texture, bulk density and total SOC data. This detailed soil
estimation would be useful for predicting the general flux fluctuation tendency (Figure 5.7 (c))
although this may not be enough to accurately estimate flux data (Figure 5.6 (¢)).

PaSim, was originally developed to estimate mowing grassland, which explains the fact that
PaSim produced more accurately C fluxes of the Oensingen (CH) site compared to the Laqueille
(FR) site. DayCent, does not provide the possibility to adjust the number of grazing cows,
compared to Pasim which comprises a highly developed animal submodel requiring type of
grazing ruminant (i.e. suckling cow, heifers, sheep etc), animal stocking rate and live weight.
We consider due to these differences more efficient model fit was observed with Pasim than with
DayCent regarding grazing grassland (Laqueuille).

These three process-based models (PaSim, DNDC, DayCent) are quite representative of ex-
isting process-based models (Manzoni and Porporato (2009)). Very few models include nitrogen
inhabitation and carbon over flow mechanisms, although these are included in DNDC which is
based on NCSOIL model(Manzoni and Porporato (2009)). This may indicate that the other
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process-based models would show similar results which I found in this study, as Manzoni and
Porporato (2009) reported a few concepts are behind large number of different process-based
models.

We conclude that over all, model initialisation using SOC data does not have a large effect
on the prediction of C fluxes. Among the different methods, AHUM method does not offer an
improved model fit. For most of the model fit is due to model estimating capability regarding
flux but not due to the initialisation of SOC pools. On the other hand, we need to test whether
model initialisation adjusting model results to the measured flux data would improve model fit,
as we found SOC initialisation methods greatly affect SOC model fit in Chapter 4. Furthermore,
we need to consider theoretical SOC pools calculation for each ecosystem models using detailed
soil organic matter data. Also, combining other model calibration methods such as Bayesian
calibration (Yeluripati et al. (2009); Ben Touhami et al. (2013)) may improve model fit regarding
flux outputs.
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Projected changes in the global climate system are likely to have significant implications
for agriculture. Agricultural land covers almost half of the Earth’s land surface and globally
contribute between 14-24% to atmospheric concentrations of key greenhouse gases (GHG) such
as methane, nitrous oxide and emissions/sequestration of carbon dioxide. Regarding C seques-
tration, the terrestrial biosphere currently acts as a net C sink, absorbing about 30% of anthro-
pogenic CO, emissions in the past decade (Canadell et al. (2007)). Globally 62 % of C is stored
as SOC, where the soil stores more than 3 times more C than the atmosphere (Smith et al.
(2007a); Jobbagy and Jackson (2000); Lal (2002)). Studying the SOC stock in agricultural lands
and measuring fluxes from these areas help to understand which agricultural management sys-
tems and practices release less GHG and sequester more C. Over the last 40 years, impacts of
singular land management (apart from natural induced drivers such as soil texture, climate, geo-
graphical conditions) on SOC stock and C cycling have largely been studied by soil inventories,
litter decomposition experiments and GHG chamber measurements. However, due to individual
site conditions, those studies often consist of different soil types and climates, allowing few gen-
eral conclusions on management and climate impacts to be drawn (Lal (2002); Franzluebbers
(2005, 2010)).

Nowadays, the eddy covariance technique offers a useful tool to analyse detailed multi-site
time-series of C fluxes (Kutsch et al. (2010); Soussana et al. (2007)). However, for assess-
ing management impacts under comparable climate and soil conditions, adjacent contrasting
management systems with two individual eddy-covariance flux measurement towers (paired-
plots) have been shown to be very useful (Klumpp et al. (2011); Ammann et al. (2007); Jacobs
et al. (2007)). In spite of this, these paired-plot sites do not exist in great numbers and only
a small number of studies have been conducted regarding exclusive land management impacts
on SOC stock and fluxes in agricultural lands. The other way of analysing effects of manage-
ment regimes on fluxes and the amount of C sequestration is the use of process-based ecosystem
models, and numerous studies have shown that modelling is useful for this purpose. However,
numerous studies have shown that model predictions can be greatly affected by model initiali-
sation. Recently, a number of model initialisation methods have been suggested (for details see
Introduction “Model initialisation”: Bruun and Jensen (2002); Hashimoto et al. (2011); Wutzler
and Reichstein (2007); Yeluripati et al. (2009); Carvalhais et al. (2008)). Though, a common
and easily accessible model initialisation method has not been found.

In view of this, the objectives of this PhD thesis were to analyse SOC pools and C fluxes
of long term paired-plot agricultural sites in order to asses the most appropriate and compatible
initialisation method for process-based ecosystem models. To asses if model initialisation using
detailed SOC data (e.g. SOC fractions and SOC pools) would improve model results, I analysed
the SOC distribution among different SOC fractions in each of the management regimes (Chapter
3) for five long term (10 years) paired-plot sites.

Each of this five paired-plot sites possesses two plots of adjacent contrasting management
regimes and an individual eddy-covariance flux measurement system to follow C fluxes for each
regime. The studied paired-plot -sites involve two cropland and three grassland sites, where one
of the grasslands was composed of organic soil. Within the eddy covariance tower measuring
area (foot-print area), I sampled 6 to 8 soil cores (0-5cm, 5-10cm, 10-20cm, 20-40cm and 40-
60cm) per management plot and performed the Zimmermann et al. (2007) soil fractionation,
to determine distinct SOC pools for initialising process-based ecosystem model SOC pools. 1
have applied Zimmermann et al. (2007) soil fractionation to organic soil which include 16-24
% organic carbon and I found organic soil which contain 8-16 % carbon can be applied this
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soil fractionation. However, I agree that we cannot apply this fractionation method for all of
the organic soils. One of the limitations of this experimental design of using eddy covariance
flux tower sites is the absence of replicates, and thus a possibility of pseudo replication of soil
samples (i.e, 6 soil cores per field). To overcome this problem, I have chosen a sampling design
which covers foot-print area for comparing with flux measurement and model flux output (see
Chapter 5). Performing soil fractionation at different soil depths and analysing SOC is labour
intensive and is not feasible for a large number of soil samples. Besides, other studies have used
a lower number of replicates to provide evidence of SOC changes after land use change: four
and six soil cores from a 15x30m and 14x21 m sampling area at 0-15 and 15-30 cm and down
to a depth of 80 cm soil depth respectively (Dondini et al. (2009b); Poeplau and Don (2013b)).
In this study, we sampled 6 to 8 soil cores from a representative transect of the soil inventory
and foot-print area. Since the soil sampling areas were covered by eddy-covariance measure-
ments, it is scientifically attractive to compare SOC distribution among SOC fractions and flux
measurements such as GPP, NEE and Reco, which are affected by plant growth and soil respira-
tion mechanisms. Another limitation of the experimental design in this study is that most of the
experimental sites are relatively young and might not have had enough time to arrive at the SOC
equilibrium after the land-use change. The Laqueuille (FR) site was converted from cropland to
grassland around 1950 and was under constant management from over 10 years ago. The Dutch
Reeuwijk (NL) grassland has been a permanent grassland for many years and was drained about
20 years ago. The Carlow (IE) site has been a cropland since at least 1960 and Hertfordshire
(UK) cropland was converted from grassland in 1960. The Oensingen (CH) was converted from
cropland to grassland in 2000. Analysing a number of LUC sites where grassland were con-
verted to cropland, Poeplau et al. (2011) showed that a new SOC equilibrium can be attained
after 17 years. On the other hand, a LUC site converted from cropland to grassland will take
around 120 years for SOC changes appear. However, other studies have reported a difference
in SOC distribution in different SOC fractions due to management regimes, even after land-use
conversion during the 1950s-1970s (Conant et al. (2003); Leifeld et al. (2009a)). In this study,
due to the paired-plot site design, we may exclude other natural induced impacts on SOC equi-
librium such as soil texture, climate and geographical conditions, which allows us to isolate the
cause of any observed differences in SOC pools to differences in management regime. Results
of soil fractionation demonstrated that the soil fractionation method could be used for organic
soil containing 8-16% organic caarbon. Compared to organic soils, mineral soils showed no sig-
nificant difference regarding SOC distribution among different SOC fractions due to contrasting
management. Moreover, in the organic soil, we observed marked differences between topsoil
and subsoil, indicating that topsoil SOC acquires more impact from management systems, while
subsoil SOC seemed to reflect the effect of soil texture. This effect has already been reported
by several studies (Poeplau et al. (2011)). We conclude that not enough time may have elapsed
since the onset of current management practices to generate statistically significant differences in
SOC stocks in the mineral soils given the sampling intensity. Results also provide evidence that
soils containing more particulate organic matter (POM) may react faster management changes
than the soil containing less POM. Budge et al. (2011) mentioned that the high proportion of
labile C may be more sensitive to external changes than the other fractions. For mineral soils,
the absence of differences between management regime, indicated that those soils need a longer
time to arrive at the equilibrium point after management systems have changed, and that 10 years
of continuous land management is not sufficient to reach this state even if land use conversion
has taken place 50-60 years ago.
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To test the current SOC status at each site, I compared the measured SOC with SOC at
equilibrium using RothC model. To do so, I carried out different initialisation methods using
detailed measured SOC data with the RothC model (see Chapter 4): (1) General spin-up run:
repeating the average monthly weather data 1901-2010, and using the average monthly recent
10 years management data (control), (2) Adjusting the SOC spin-up by increasing or decreas-
ing C input during the spin-up run until the individual SOC pools or total SOC arrive at the
equilibrium point and (3) Initialising with measured SOC fraction data. Assessment of differ-
ent initialisation methods by comparing measured SOC and different SOC pools and total SOC
model results, confirmed that a general spin-up run is not suitable for sites where soils are not
in the equilibrium. Other initialisation methods involving adjustments of C inputs until a given
SOC pool size reached the measured SOC values, showed that initialising with quickly turning-
over SOC pools, such as DPM and RPM, largely over/under estimation total SOC compared to
measurements. This was also true for the passive SOC pool (HUM), and only adjustment of
total SOC revealed a good agreement with measured values, so this method was shown to be the
best initialisation method for the RothC model under these circumstances.

To further investigate a common model initialisation method, four model initialisation meth-
ods were tested for three ecosystem models based on other SOC pools than RothC: CENTURY
(Pasim, DayCent), and N driven decomposition (DNDC) (see Chapter 5). Though soil fraction-
ation was done thoroughly, this approach is important as the Zimmermann et al. (2007) soil frac-
tionation method has only been tested with the RothC model, but not other ecosystem models.
To overcome this problem, referring to Christensen (1996), I examined C submodel construction
and turnover time of SOC pools of each model and considering all particularities of the differ-
ent SOC pools in each models, indicated that that certain SOC pools may corresponded well to
some of those used by the RothC model (see Material and Method). Accordingly, I assessed
initialisation methods for models other than RothC, though comparing the modelled SOC pools
with measured SOC fractions determined by Zimmermann et al. (2007) fractionation proved dif-
ficult, but it was important to test its feasibility. (see Appendices B *omitted DayCent result as
PaSim has the same C submodel). Another way to compare efficiency of initialisation methods
in other models is to compare model flux outputs with measured flux data. I compared predicted
carbon flux data (GPP, NEE and Reco) with C fluxes measured by the eddy-covariance flux tow-
ers. Through analysing two grassland sites (Laqueille (FR) and Oensingen (CH)), results did
not indicate a significant pattern concerning model outputs and model initialisation methods.
With regard to general spin up runs (control), DNDC (Li et al. (1992)) predicted Reco better
than it predicted GPP at both sites (see Chapter 5, Figure 5.3 (e-1) and (f-1)), where Reco re-
lates largely to the soil respiration and GPP to plant growth. Pasim and DayCent are models
that contain detailed plant growth submodels and provided a better fit for GPP in Laqueuille
(FR), which relates to plant growth, than for NEE and Reco, which are partly affected by soil
respiration. Notably, at the Oensingen (CH) site, all fluxes (GPP, NEE and Reco) were predicted
accurately. Compared to PaSim, DayCent does not require the number and weight of grazing
cows to simulate grazed grasslands, which might be the reason that a more efficient model fit was
observed with Pasim than with DayCent at the Laqueuille (FR) site. Relating to other initialisa-
tion methods, except “adjusting with HUM”, which resulted C fluxes far from observations, the
three ecosystem models seem relatively insensitive to initialisation compared to regular spin up
run (control). Contrary to expectation, results suggested the model initialisation using SOC data
has small effects on the prediction of C fluxes, while other initialisation methods, which improve
the plant component have shown contrary findings (i.e. Bayesian calibration). This may be ex-
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plained by the fact that model outputs are relatively insensitive to initial soil conditions; rather
they are more sensitive to management and meteorological data. Accordingly, initial conditions
have their greatest influence on C fluxes during the first years of simulation. On the other hand,
we need to test whether model initialisation using flux data would improve model fit, as I found
SOC initialisation methods could influence SOC model fit in Chapter 4.

I have learned much during the course of this PhD and have reflected on how I might do
things differently next time, or additional measures I would take if I were to be advising another
PhD student following me doing similar work.

Below, I summarise some of these reflections:

1. Taking >4 soil cores within contrasting management plots, but outside of EC foot print in
parallel for showing whether soils are homogeneous inside of plots. However this would
increase the number of soil samples to take and the soil fractionation and CN analysis.
This requires more time for analysis.If I focused on model initialisation, I could take
more soil samples but only to a depth of 30 cm, as some models did not require subsoil
information.

2. Choosing several organic soil sites which possess adjacent contrasting management regimes.
In this study, we had just only one organic soil site and this made firm conclusions diffi-
cult.

3. Radio carbon analysis. This is expensive although this would provide a better understand-
ing of SOC decomposition processes due to management.

4. Time series analysis. Numerous soil samples and frequent sampling is essential in the
SOC studies. SOC fraction data taken in different years would help us to understand SOC
distribution changes among different soil fractions over time.

5. Nitrogen (N) relates closely to C. Therefore analysing C and N distribution in different
soil organic fractions, and analysing whether N is closer to equilibrium compared to C
would be interesting.

6. For confirming whether organic soil is easy to be influenced by management changes, it
would be interesting to convert a part of Reeuwijk (NL) intensive plot to an extensive one,
and a part of the extensive plot to an intensive one. Then analysis of soil fractions in 2
years (DPM arrived at the equilibrium by RothC spin-up run), 5 years and 10 years (BIO
arrived at the equilibrium in some sites by RothC spin-up run).

7. Improve the soil fractionation method for organic soils, as organic soils contain abundant
humus which was easy to loose during the soil fractionation process. However this might
not change the results significantly, as the total SOC without soil fractionation and the
sum of all of the fractions” SOC were not greatly different.

8. Combine other model calibration methods such as Bayesian (Yeluripati et al. (2009);
Ben Touhami et al. (2013)) calibration. One of the limits of the Bayesian model calibra-
tion method is the necessity for precise and detailed data for best model fit. However,
detailed, precise and abundant data are difficult to come by. As modelling is useful to
predict future conditions and understand observed data where detailed data is missing,
we need to improve this method. Combining my modified model initialisation spin-up
run (adjusting equilibrium total SOC to be equal to the measured total SOC during the
spin-up run each site) and Bayesian model calibration may significantly improve model
fit.

Despite identifying things I would do differently with hindsight (which is part of the research

process), I have discovered new things about SOC and SOC modelling. To summarise, I have
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shown that 10 years of a continuous management system is not long enough to show significant
difference in SOC distribution among SOC pools with the given sampling regime, due to man-
agement even if grassland conversion has taken place 50-60 years ago. This questions the use of
general spin up runs for model initialisation and provides a reason to initialise with SOC data.
However, so far there is not a common soil fractionation method which could estimate correctly
SOC distribution among SOC pools for different ecosystem models, indicating another difficulty
for model initialisation. For the RothC model, where a soil fractionation method was developed
by Zimmermann et al. (2007), adjusting the total SOC equilibrium to the measured total SOC
has been shown to be the most useful model initialisation method, although this method did
not show significant efficiency in the flux estimation. The model initialisation using SOC data
does not greatly affect model flux results if the model predicts fluxes accurately in several dif-
ferent ecosystem models. Model accuracy is more important than SOC pool initialisation for
predicting fluxes.
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Appendix A

Supplementary figures
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Figure A.1: DayCent output and observation of NEE in Laqueuille (FR)
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Appendix B

Supplementary information for the
summary

Q
il . -
Sl (a) Laq11-INT -Pasim 8. .
W Te i 87 () Laq11-EXT -Pasim
B Normal Equilibrium
§ +| B Equilibrium RPM = measured RPM in 2012 &
B Equilibrium HUM= measured HUM in 2012 21
@ Equilibrium total SOC=measured total SOC
o O Equilibrium IOM = measured IOM
P O Replace all SOC by measurement Q
£7 | O Measured SOC in 2011 &1
2g | g
- N
] ﬂm ‘CO_) |
ol iﬂ] —— lll o J]:ED ——
DPM RPM BIO HUM IOM Total DPM RPM BIO HUM
SOC pools SOC pools
8-
&1 (¢) Laq 11-INT - DNDC
B Normal spin-up: 2010 Dec (d) Laq 11-EXT - DNDC
o | B Total SOC equilibrium = measured total SOC: 2010 Dec
81 E |OM equilibrium = measured IOM: 2010 Dec S
O Start measured SOC fractions: 2010 Dec 154
[ Land-use change history: 2010 Dec
o | B Observation: 2011 Feb
B 8
g g
8 8
. well —_—
DPM+RPM BIO HUM DPM+RPM BIO HUM
SOC pools SOC pools
(e) Lag-Int-RothC (f) Lag-Ext-RothC
2007 w General spin-up initialisation 8007 w General spin-up initialisation
- Adj:usted Total Spi_n<up Ini_ti_ali_sati_on n AdJ:USted Total Spi_n-up ‘ﬂi_'i_a"_saﬁ_ﬂn
150 ® Adjusted DPM Spin-up Initialisation ; :gj_us:eg ggm :p!n-up :n!:!a:!sa:!on
| ji i itialisati fjuste pin-up Initialisation
& Adjusted BIO Spin-up Initialisation L O Adjusted BIO Spin-up Initialisation
100 O Adjusted HUM Spin-up Initialisation O Adjusted HUM Spin-up Initialisation
I Initialise with measured SOC in 2011 T Initialise with measured SOC in 2011
400
50
M 7 200
- 0! ——
DPM RPM BIO HUM Total DPM RPM BIO HUM Total

Figure B.1: Equilibrium SOC by different model initialisation and measured SOC
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Appendix C

Reproducibility of a soil organic
carbon fractionation method to derive
RothC carbon pools

Accepted to the European Journal of Soil Science on 30th July 2013
Abstract

Fractionation of soil is performed to isolate organic carbon with distinct functional properties,
such as stability and turnover times. Soil organic carbon (SOC) fractionation helps to better
understand the response of SOC to changes in land use, management or climate. However,
fractionation procedures are often poorly defined and there is little information available on its
reproducibility in different laboratories. In a ring trial, the fractionation method introduced by
Zimmermann et al. (2007) is assessed regarding its reproducibility. The isolated fractions can
be linked to the model pools of the Rothamsted carbon model (RothC). We found significant
differences between six laboratories for all five fractions in three different soils with coefficients
of variation ranging from 14 to 138%. During ultrasonic dispersion, the output power (energy
per time) has been identified as an important factor controlling the distribution of SOC in the
five fractions, while only the output energy has been standardized. The amount of water to flush
the sample during wet sieving significantly influenced the amount of extracted dissolved organic
carbon (DOC). We therefore suggest using a fixed amount of power for ultrasonic dispersion
(20 W) in addition to the total amount of energy as well as a minimum amount of water for
wet sieving (2000 ml).. RothC pools were derived from the measured fractions and compared
with RothC equilibriums pool size distributions. Under a virtual bare fallow model simulation,
soil carbon stocks derived from model initialization with measured fractions were found to be
more stable than those derived from the pool size distribution of RothC equilibrium runs. To
increase the amount of isolated particulate organic matter (POM) as a labile carbon fraction,
we suggest increasing the density of polytungstate to 2.0.g cm~>. The modified fractionation
procedure introduced as a result of this ring trial aims to increase the reproducibility across
different/laboratories and to gain a better match with the RothC pools.
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C.1 Introduction

Soil organic carbon (SOC) consists of several components, which differ in their physicochemical
properties and hence their degree of stabilization and turnover time (Bol et al. (2009)). Active
SOC fractions are considered to respond relatively fast to changes in land use, climate or man-
agement (Purakayastha et al. (2007)), while other fractions are hypothesized to be more stable
or even inert (Krull and Skjemstad (2003)). The distinct turnover times range from less than
one year to thousands of years. The composition of SOC with its individual fraction size dis-
tribution thus determines its sensitivity towards any kind of disturbance (Conant et al. (2003)).
Modelling of SOC dynamics plays a key role for large scale estimates and predictions of SOC
stock changes by accounting for the variability of soils, climate and land-use (Paustian (2001)).
Starting in the late 1970s, several multi-compartment models have been developed (Jenkinson
and Rayner (1977)). The majority of these models are based on the partition of SOC in dif-
ferent functional pools with distinct first-order kinetics and climatic and edaphic rate modifiers
(Paustian (2001)). Since almost two decades many attempts have been made to develop SOC
fractionation methods to correlate laboratory derived carbon fractions with functional model
pools in order to initialize the models or to validate the model outputs (Motavalli et al. (1994)).
Elliott et al. (1996) stated that only models that can be validated by measurements are reliable
enough to predict SOC changes. However, it is challenging to achieve a good match of op-
erationally defined SOC fractions with the conceptional model pools, since the turnover of a
specific fraction depends on its chemical and physical properties. Smith et al. (2002a) state that
a measured fraction is only equivalent to a model pool if its unique and does not contain “sub-
fractions” with contrasting properties. Existing fractionation methods can be divided into two
major groups: physical and chemical fractionation, which are based on different scopes regard-
ing the mechanisms of SOC stabilisation. Physical fractionation is based on the assumption that
the association to soil particles and in aggregates plays the key role in SOC stabilization and thus
different SOC fractions are isolated by different degrees of disaggregation, dispersion, density
fractionation and particle size separation (Amelung and Zech (1999); Christensen (2002); Elliott
and Cambardella (1991); Six et al. (2001). In contrast, chemical fractionation methods are based
on the assumption that the chemical composition of each fraction determines its stability and
thus its turnover time (Blair et al. (1995); Helfrich et al. (2007); Lefroy et al. (1995)). Chemical
fractions are obtained by the extraction of SOC in different solutions, the hydrolysability of SOC
with water or acid and the resistance to oxidation. In several studies a combination of physical
and chemical fractionation has been used (Kaiser and Ellerbrock (2005); Leifeld and Kogel-
Knabner (2001); Mikutta et al. (2005); Trumbore et al. (1989)). The idea is to separate rather
fresh SOC from mineral bound SOC by density or particle size fractionation and these physi-
cal fractions are chemically treated to further separate fractions of different stabilization degree
and turnover times. However, the use of loose terms, such as ‘recalcitrance’ or the vague defini-
tions for fractions such as particulate organic matter (POM) or mineral associated organic matter
(MOM) confused the discussion and hampered direct comparisons of obtained results (Schmidt
et al. (2011)). Additionally, fractionation procedures are often poorly defined and there is little
information available on their reproducibility in different laboratories. Therefore, there is a need
for more standardized methods. A new attempt to combine physical and chemical fractionation
has been made by Zimmermann et al. (2007). They isolated fractions which were related to the
modelled pools of the Rothamsted carbon model (RothC) (Jenkinson and Rayner (1977)). Two
active, two slowly cycling and one passive fraction are isolated. Meanwhile the method has been
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used in different studies and has a potential to become a new widely used fractionation method
due to its simplicity and its good match with the RothC pools when applied to low elevation
agricultural and grassland soils (Dondini et al. (2009a); Leifeld et al. (2009b); Poeplau and Don
(2013a,b); Xu et al. (2011)). However, not all steps of the fractionation procedure are described
in detail (Zimmermann et al. (2007)). It is therefore likely that each laboratory thus finds its own
set up and optimization, which might in turn lead to significantly different results. Therefore,
we set up a ring trial to compare the measured SOC fractions of six different laboratories among
each other and relate them to the RothC modelled carbon pools. Primarily, the aim of this work
is to identify the most bias-sensitive work steps. As a second step we aim to suggest a more
standardized fractionation protocol for this method.

C.2 Materials and methods

C.2.1 Soils, sample preparation and experimental setting

Three different cropland soils (0-20 cm) with contrasting properties have been selected for a
ring trial. Soil “A” is a loamy clay from the experimental farm Kungsidngen (University of
Uppsala, Sweden), soil “B” a loamy sand from the agricultural research station Reckenholz
(ART, Switzerland) and soil “C” a coarse sand from the experimental farm Jyndevad (University
of Aarhus, Denmark) (Table C.1).

Table C.1: Characteristics of the three soils and site characteristics at the sampling sites, Corg
concentration, SOC stock (0-20 cm depth), pH (KCl), and clay, silt and sand contents

Cor¢ Bulk Density  SOC stock Clay Silt Sand

Soil Site Country 1% /g cm3 /Mg ha"! pH (KCI) % % %
A Kungsidngen Sweden 2.9 1.01 58.3 4.4 38.1 544 7.6
B Rekenholz ~ Germany 0.95 1.32 25 4.6 149 357 495
C Jyndevad Denmark 1.19 1.27 30.3 5.6 4.7 5.7 89.6

A further description of the sites can be found in Poeplau and Don (2013a). The soils have
been under permanent crop cultivation since more than 100 years (Soils A and C) and 60 years
(site B). The main crops in Kungsidngen (site A) were spring barley, spring wheat, winter wheat,
ley and oats in Reckenholz (site B) were winter wheat, maize, potatoes, spring barley and ley
and in Jyndevad (site C) spring barley, winter barley, winter rye and oats. Only in Kungsingen
the field received farmyard manure with an average carbon input of 0.4 Mg C ha™!' yr~!. All
three soils were free of carbonate. The soils were dried at 40 °C, sieved to 2 mm and cleared
from visually detectable fine roots. Soil sampling, sample preparation and SOC stock calculation
are described in detail in (Poeplau and Don (2013a)). To obtain homogenized and reproducible
subsamples of 30 grams, which is the required amount for the fractionation, we used a sample
splitter (RT, Retsch, Haan, Germany). The reproducibility was tested on five randomly selected
subsamples for each soil. For soils A and B the coefficient of variation (CV) of the carbon con-
tent accounted for 2 and 3% among the subsamples. For site C, which is characterized by a high
content of particulate organic matter (POM), but a relatively low content of total SOC (1.2%) we
only achieved a CV of 5%, which was however considered sufficient. Three randomly selected
subsamples of each soil (total n=9) were sent to each of the participants of the ring trial. A total
of six laboratories joined the ring trial, situated at the following institutes: Thiinen Institute of
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Climate Smart Agriculture (Germany), Agroscope Reckenholz (Switzerland), INRA Clermont-
Ferrand (France) in cooperation with University of St Andrews (United Kingdom), Technical
University Munich (Germany), University of New England (Australia), and University of Ab-
erdeen in cooperation with the Centre for Ecology and Hydrology (CEH) (United Kingdom).
The participants were asked to conduct the fractionation as described in Zimmermann et al.
(2007) and to document every fractionation step in detail. The participating institutes have been
made anonymous by randomly numbering (1-6). To avoid an additional instrumental-bias, the
participants were asked to send the dried fractionated samples back to the Thiinen Institute were
all solid fraction samples were analysed for total carbon and nitrogen via dry combustion in an
elemental analyser (LECO TruMac, Michigan, USA). Only the dissolved organic carbon fraction
(DOC) was analysed by each laboratory due to the difficulties of sending frozen soil extracts.

C.2.2 SOC fractionation

The fractionation (Zimmermann et al. (2007)) comprised the following steps: (i) ultrasonic dis-
persion with 22 JmL ™! to disperse labile macroaggregates, (ii) wet-sieving over a 63um sieve to
separate the coarse, the fine and the dissolved fraction, (iii) density fractionation with a sodium
polytungstate solution with a density of 1.8 g cm™ to separate a light and a heavy fraction within
the coarse fraction; and (iv) a sodium hypochlorite (NaOCI) oxidation with a 1-g subsample of
the fine fraction to simulate aggressive decomposition. The method isolates the following five
fractions: particulate organic matter (POM), dissolved organic carbon (DOC) (both considered
to be active C pools), SOC attached to sand grains and in stable aggregates (S+A), SOC attached
to silt and clay particles without being chemically resistant (both considered to be slow cycling)
and a chemically resistant fraction (rSOC) (Figure C.1)

Disruption with 22 J mL 1
Wet sigving to 63 pm

AN

| 0.45 pm < fraction < 63 pm | I Suspension < 0.45 um I [ Fraction =63 pm ]
l Density-separation
at 1.8gem>

(red

6 % NaOC! oxidation
l [ Heavy fraction J ] Light fraction j

Residual fraction

Figure C.1: Soil carbon fractionation scheme after Zimmermann et al. (2007).
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C.2.3 Modelling the pool sizes with RothC and converting fractions
to pools

To estimate the SOC pool size distributions for the three soils with RothC, we used the modelSs
inverse approach, which calculates the plant carbon input to achieve the measured total SOC
stock at equilibrium. The required input data were thus reduced to the following: precipitation,
temperature, open-pan evaporation and plant cover on a monthly basis, clay content and amount
and time of organic manure application. From these data the monthly C input was estimated with
RothC and the pool of inert organic matter (IOM) was calculated by the model and using the
equation proposed by Falloon et al. (1998). Both sets of information are required to initialize an
equilibrium run, which we subsequently conducted. The assumption that all three soils were in
an approximate equilibrium at the time of sampling could be made because they have been under
cultivation without major management changes for 60 (site B) or more than 100 (sites A and C)
years. To compare the effect of pool size distribution, either derived from the equilibrium runs
or from soil fractionation, on the long-term fate of simulated SOC we converted the measured
SOC fractions into pools according to the procedure described by Zimmermann et al. (2007)
(Figure C.2). The splitting ratios for decomposable plant material (DPM) and resistant plant
material (RPM) (DPM/RPM) as well as microbial biomass (BIO) and humified organic matter
(HUM) (BIO/HUM) were derived from the modelled equilibrium situation at each site, in which
the size of each pool was predicted. We also used the measured pools from the six laboratories
and the RothC modelled pools to initialize a short model run in RothC to predict the effect of the
individual pool size distributions on relative SOC stock depletion. The sensitivity of the total
SOC stock, as determined by the different pool size distributions, is thus assessed. To do so, an
unrealistic scenario of 40 years bare fallow without any C input was assumed. In the following
this modelling exercise will be referred to as the ‘bare fallow simulation’.

Plant inputs

RPM Soitiing ratio DPM/RPM
calculated by equilibrium

scenario

TS [

HUM +

— BIO Splitting ratio BIO/HUM %
caleulated by equilibrium
p— scenario \

Physically protected

oM

. =
Chemically resistant

Figure C.2: Concept of converting measured carbon fractions to RothC pools Zimmermann et al.
(2007).
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C.2.4 A posteriori fractionation experiments

We found a large variability in quantified fractions among laboratories, as well as systematic
deviations from the RothC modelled pool size distributions, and therefore we conducted several
a posteriori fractionation experiments in order to improve the protocol and to verify identified
sources of laboratory bias.

Wet sieving and density fractionation As the amount of extracted DOC was correlated
with the amount of water used for wet sieving with a saturation occurring at 2000-3000 ml,
we a posteriori conducted the wet sieving for all three soils with 3000 ml water. Zimmermann
et al. (2007) isolated only small amounts of DOC and POM, which resulted in a misfit with the
RPM+DPM pools. They proposed that the density of sodium polytungstate (SPT) solution used
for density fractionation should be increased to 2.0-2.2. We tested the effect of this increase by
conducting additional density fractionation with an SPT solution density of 2.0-2.2. To calculate
the amount of POM needed to match the modelled RPM and DPM pools, we used the amount
of DOC that was a posteriori isolated with 3000 ml water and subtracted this amount from the
RPM and DPM pools. We also checked whether the amount of isolated DOC could be increased
by hot-water extraction of the suspension after ultrasonic dispersion. After a pretest, in which a
sample was extracted for 5, 10, 15, 30 and 60minutes, we decided to extract the samples for 60
minutes in a water bath.

NaOCl oxidation. Chlorine in NaOClI solution is easily lost, so we varied the concentrations
of NaOCl to test this as a potential source of bias and used 3, 4, 5, 6 and 7% NaOClI solutions.

C.2.5 Statistical analysis

To assess whether the size of each fraction is significantly influenced by the laboratory that con-
ducted the analysis and to quantify differences regarding the inter-laboratory variability between
the three soils, we conducted linear mixed effect model analyses with crossed random effects.
There were obvious differences in carbon content between the three soils, which were therefore
accounted for by a fixed site effect. The six laboratories were considered as a random selection
of a larger number of possible laboratories and therefore treated as random effects. Similarly,
the analysed soil samples constituted a random selection of all possible soil samples. As they
were split before sending them to the different laboratories, the samples themselves had to be
treated as a random effect in the statistical analysis. Two modifications of this basic model were
made: first, the differences in carbon content between the different soils were associated with
differences in the within-laboratory variability (variance heterogeneity). The residual variance
was therefore chosen to be sample-type specific. Second, we had to assume that the differences
between laboratories were sample-type specific, demanding an additional random laboratory x
sample interaction to be included in the model. Variance components in this model were esti-
mated with the restricted maximum likelihood method as implemented in the nlme-package of
the statistical environment R. Model selection was made by using the Akaike Information Crite-
rion (AIC). The level of significance was set to P =0.05. To quantify in which soil and fraction
the laboratory effect was most evident, we calculated the coefficient of variation (CV) for each
soil and fraction, as well as a ratio of this CV and the residual error (standard deviation) as re-
vealed by the model, which was recalculated into a ‘residual CV’ (intra-laboratory variability).
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The larger this ratio, the larger was the difference between laboratories. A ratio <1 thus indicates
that the intra-laboratory variability exceeded the inter-laboratory variability. In addition to the
five fractions, we conducted this analysis for the ratio of carbon in the fine fraction (<63 um)
(s+c, DOC) and carbon in the coarse fraction (>63 ym) (POM, S+A).

C.3 Results and discussion

Inter-laboratory variability of SOC fractions We found a significant difference be-
tween laboratories for all fractions and the C(<63 um):C(>63 um) ratio (Figure C.3).
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Figure C.3: Isolated carbon in each measured fraction and the ratio C(<63 um):C(>63 yum) with
standard deviations for sites A, B and C and laboratories 1-6.

The POM fraction had the least variability between laboratories and thus the best repro-
ducibility with a CV of 12.9% for site A, 17.6% for site B and 13.1% for site C (Table C.2).

Density fractionation, which isolates the POM fraction, can thus be classified as the most
robust fractionation step regarding the reproducibility between laboratories. The residual CV of
the POM fraction was of the same order of magnitude as the CV between laboratories. For site
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C it was even larger, resulting in a CV:residual CV ratio of 0.7. This was surprising because we
expected the POM fraction to be variably distributed in the different soil samples. However, the
largest variability between laboratories was observed for the S+A fraction, with a CV of 126.7%
for site A, 86% for site B and 58.3% for site C, which is reflected by the large variability of the
C(<63 um):C(>63 um) ratio and indicates that the first fractionation steps (ultrasonic dispersion
and wet sieving) were very sensitive to a laboratory bias (Figure C.3, Table C.2).

Table C.2: Coefficients of variation (%) (inter-laboratory error), residual coeflicients of variation
(%) (intra-laboratory error after fractionating three replicate samples) and their ratio for the
fractionation results of all sites and the fractions particulate organic matter (POM), dissolved
organic carbon (DOC), organic carbon in sand and stable aggregates (S+A), organic carbon in
silt and clay (s+c) and resistant soil organic carbon (rSOC) plus the ratio of carbon in the fine
fraction (<63 pum) and carbon in the coarse fraction (>63 um)

Cv Residual CV CVv:

(inter-laboratory error) (inter-laboratory error) residual CV
ractions A B C A B C A B C
FPOM 12.9 17.6  13.1 104 13.7 175 1.2 1.3 07
DOC 17.2 337 4409 25.7 145 197 0.7 23 23
S+A 126.7 86 58.3 13.1 69.7 112 9.6 12 52
s+c 21.2 17.7 158 2.5 2.1 5.7 8.4 83 28
rSOC 1g 29.1 415 311 11 10.8  37.6 2.6 38 08
C(<63 um) 48.1 294 539 7.6 18 8 6.4 1.6 638

:C(>63um)

The largest reproducibility within laboratories was found for the s+c fraction, with a residual
CV of 2.5 for site A, 2.1 for site B and 5.7 for site C. This can be explained by the fact that this
fraction contains the largest proportion of the total SOC and is thus more robust against losses
during fractionation than smaller fractions. Even at site C, which contained only 10.4% clay and
silt, 69+17% of the total SOC was found in the s+c fraction (data not shown). Laboratories 1-5
isolated an s+c fraction of similar size (mg C), whilst laboratory 6 found a significantly smaller
s+c fraction for all three soils (Figure C.3). This was different for the rSOC fraction,which was
obtained by NaOClI oxidation of 1 g of the s+c fraction. The variability between laboratories was
much larger for the rSOC than for the s+c fraction, which indicates that the NaOCI oxidation
was more sensitive to bias.

Modelled and measured SOC pools The variability of the SOC pool size distributions
among the six laboratories and the deviations from the corresponding modelled SOC pool size
distribution were large for all three soils (Tables C.3, C.4).

Table C.3: Coefficients of variations (%) among the six laboratories for each pool and site after
the mean fractionation results of each laboratory have been converted into RothC pools

Pool Site A Site B Site C
RPM+DPM 104 23.5 17.8
HUM+BIO 134 14.4 24.2

IOM 48.6 54.7 59.7

Total C 2.6 8.5 21.8

The soil with the smallest variability in the total determined SOC stock with a coefficient of
variation of 2.6% was the fine textured, carbon-rich soil from Kungséngen (A). Three of the six
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Table C.4: Deviation of each laboratory from the bare fallow simulation initialized with the
RothC equilibrium pools for all three soils (% SOC change RothC - % SOC changemeasured
pool) and the residual sum of squares (RSS) for each laboratory and soil

Laboratory Site A Site B Site C RSS.
(laboratoires)
1 -6.8 94 -13.7 322
2 -3.9 -4.8 5.2 65
3 9.2 93 -21.8 646
4 3.1 -4.5 -13.7 218
5 -10.4 9.1 -6.8 472
6 -1.3 -5.1 1.3 29

RSS (soils) 264 327 1163 -

laboratories (2, 4 and 6) measured a similar pool size distribution to that modelled by RothC for
site A (Figure C.4a, Table C.4), which is reflected in the bare fallow simulation (Figure C.4b).
Site A lost 40.6% SOC in 40 years with the RothC equilibrium pool size distribution and
36.7, 37.6 and 39.4% SOC using the measured SOC pool size distribution from laboratories 2,
4 and 6. In contrast, with the fractionation data from laboratories 1, 3 and 5, SOC depletions
of only 33.8, 31.4 and 30.2% were computed. The greatest variability in the total measured
SOC stock among laboratories (21.8%) was observed in the sandy soil at site C (Table C.3).
The results of the bare fallow simulation ranged from relative SOC losses of 27.5-50.7%. The
average deviation from the bare fallow simulation with the RothC equilibrium pools was also
greatest for site C, as revealed by the residual sum of squares, which increased from site A
(264) to site B (327) to site C (1163) (Table C.4). The loamy sand (site B) had an intermediate
variability in pool size distribution and SOC stock depletion after the bare fallow simulation
(Figure C.4, Table C.3). The IOM pool had the largest variability among all pools and in all
soils with coeflicients of variation of 48.6% (site A), 54.7% (site B) and 59.7% (site C) (Table
C.3). Laboratories 1, 3 and 5 measured an up to four times larger IOM pool than predicted
by RothC; laboratories 3 and 5 quantified an up to seven times larger IOM pool than predicted
by RothC. However, laboratories 2, 4 and 6 were able to match the IOM pool at least for sites
A and B (Figure C.4). Laboratory 4 isolated only half of the RothC predicted IOM pool for
site B. A systematic deviation from the RothC-predicted pool sizes was found in the RPM and
DPM pools, for which all laboratories found smaller pool sizes in all three soils (Figure 4), with
laboratory 6 being an exception with site C. This might be explained by the fact that laboratory
6 had a recovery rate of only 57% and that not all fractions were equally affected by C loss. On
average, the quantified RPM+DPM pools together were 37% (site A), 45% (site B) and 35%
(site C) smaller than the RothC equilibrium pools. This indicates that insufficient POM or DOC
was isolated with the existing procedure in order to match the RPM and DPM pools as predicted
by RothC (Figure C.4). As a result, all measured pool size distributions, with the exception of
laboratory 6 for site C, led to smaller SOC losses with the simulated 40 years of bare fallow than
the RothC-derived equilibrium pool size distribution. This was because the amounts of isolated
POM or DOC (RPM, DPM) were too small and, the rSOC fraction was mostly too large (IOM).
Laboratory 6 was able to match the RothC pools most closely but had a poor carbon recovery
rate during the fractionation procedure and in particular for site C (64+9%). Poor recovery rates
are indicators of C losses during the fractionation that may lead to strong biases in the results.
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Figure C.4: Modelled and measured pool sizes (a, c, €) and relative SOC stock change after
using each pool size distribution to initialize the 40-year bare fallow simulation in RothC (b, d,
f) for sites A, B and C.

The mean carbon recovery rate for all laboratories was 94+10% and ranged from 93.9 to 102.7%
for site A, from 81.3 to 97.4% for site B and from 54.3 to 113.1% for site C.

Critical work steps Ultrasonic dispersion.

Ultrasonic dispersion and wet sieving are the first steps in the fractionation procedure and have
thus a major influence on the overall SOC fraction distribution. The ultrasonic dispersion deter-
mines the amount of destroyed macroaggregates and thus the quantity of carbon washed into the
<63 um fractions. The ratio between the quantified s+c and DOC fractions (<63 um) and the
S+A and POM fraction together (>63 um) describes the effect of ultrasonic dispersion and wet
sieving. We found significant differences in C(<63 pum):C(>63 um) between laboratories for
all three soils (Figure C.3), which identifies the first fractionation steps as being bias-sensitive.
The amount of applied ultrasonic power (energy per unit time) varied considerably among lab-
oratories and ranged from 22 to 90W. In the current fractionation protocol, only the amount of

129



energy was standardized, which allowed each laboratory to modify the amount of power and
time. We found significant exponential relationships between the ratio C(<63 pum):C(>63 um)
and the amount of ultrasonic power used for all three soils (R* =0.43, R? =0.61 and R? =0.74
for soils A, B and C, respectively). The <63 um fractions increased with increasing ultrasonic

power (Figure C.5).
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Figure C.5: Ratio of C(<63 um):C(>63 um) as a function of applied ultrasonic power with
exponential fits and R? values for each soil.

This was surprising because standardization of ultrasonic dispersion in almost all SOC frac-
tionation protocols is done by means of the applied energy with little attention being paid to the
power of the ultrasonic dispenser. However, the importance of the power used is in line with
the findings of Raine and So (1997), who quantified significantly more dispersion when greater
power was applied but the output energy was kept constant. Aggregate breakdown during ultra-
sonic dispersion is mainly driven by the stresses caused by cavitation of the fluid (Mayer et al.
(2002)). The main factor driving cavitation during ultrasonic dispersion is the acoustic pressure
of the ultrasound, which depends on the density of the fluid, the sound velocity in the fluid and
the sound vibration velocity amplitude (Kuttruftf (1988)). As the amount of water and soil were
the same in each laboratory, the acoustic pressure varied as a function of the sound vibration
velocity amplitude, which is proportional to the applied power (Mayer et al. (2002)). We sug-
gest that a standardized amount of power should be specified in the protocol to achieve more
comparable results. As the laboratory which used the smallest amount of power achieved the
best overall fit with the RothC pools (laboratory 6: 22W), we propose that 20W should be used.
To obtain the output energy of 22 Jml~!, the dispersion time would be 177 s for a volume of 161
ml (150 ml water and 30 g of soil with an assumed density of 2.65 g cm™).

Wet sieving.

In the original protocol, Zimmermann et al. (2007) proposed that the samples should be flushed
during wet sieving until the rinse water is clear. This, however, led to very different amounts of
water that were used in our ring trial, ranging from 533 to 8500 ml to flush the same sample.
The amount of water used was exponentially correlated with the size of the DOC fraction, with
the greatest increase occurring at less than 2000 ml (Figure C.6).
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Figure C.6: Mean amount of DOC extracted as a function of the amount of water used during
wet sieving.

The a posteriori test, which was conducted with 3000 ml of water, confirmed that the fitted
exponential model is a valid predictor of the amount of DOC. When more than 2000 ml of water
was used to flush the samples no significant influence of the amount of water on the amount of
DOC could be observed. To exclude this source of variation, we therefore suggest using 2000
ml as a minimum amount of water to flush the sample. Zimmermann et al. (2007) filtered the
suspension through a 0.45 um membrane filter to obtain the DOC fraction. We observed that
filtering the suspension is, however, very time consuming, which led to the widespread use of
centrifuging and decanting of the liquid before filtering. When 3000 ml of water was used for
wet sieving, 10 minutes of centrifugation at 2000 g apparently sufficed to separate the solid and
the liquid phase.

Density fractionation.

The comparison of modelled and laboratory-derived pool size distributions revealed that the
RPM and DPM pools, which are calculated from the DOC and POM fractions, were under-
estimated by all laboratories (Figure C.4). This is in line with the finding of Zimmermann et al.
(2007), who found the quantified pools to be systematically smaller than the modelled ones.
They proposed that the density of SPT be increased to 2.0-2.2 g cm™>; however, this is not yet in
widespread practice. To our best knowledge in both published (Dondini et al. (2009a); Leifeld
et al. (2009a); Xu et al. (2011); Poeplau and Don (2013a)) and unpublished work, the density
of 1.8 g cm™ has been used. Additionally, Xu et al. (2011) could not confirm this systematic
deviation, but found a large scatter of modelled compared with measured DPM and RPM pools.
We therefore decided to maintain this density for the ring trial. However, a posteriori we tested
whether an increased density of the SPT solution would lead to a better match of modelled and
laboratory-determined RPM and DPM pools. Even with a density of 2.2 g cm™ we isolated
only 15% (A), 49% (B) and 20% (C) more POM than with a density of 1.8 cm™; an increase of
84% (A), 144% (B) and 69% (C) would have been needed to match the labile modelled pools
(Figure C.7).

We therefore tested whether the amount of DOC could be increased by hot water extraction
(Landgraf et al. (2006)) of the suspended sample before wet sieving: this increased the amount
of DOC by a factor of 1.6, 1.8 and 1.9 for soils A, B and C, respectively. Summing the increased
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amount of POM achieved with an SPT density of 2.2 g cm™ and the hot-water extracted amount
of DOC, leads to a total proportion of 88% (A), 85% (B) and 90% (C) of the modelled RPM
and DPM pools. It is likely that the hot water extraction would have decreased the amount of
isolated POM if both steps had been conducted on the same set of samples. Therefore, we do
not see a possibility of adjusting the protocol in order to match the RPM and DPM pools with
POM and DOC. Moreover, Shaymukhametov et al. (1984) characterized the SOC in different
density fractions and found that the SOC (density below 1.8-2.0 g cm™) consisted of slightly
decomposed macro-organic matter of plant and animal origins with little mineral content, the
SOC (density between 2.0 and 2.4 g cm™) consisted of organo-clay complexes and the heavy
fraction (density <2.4 g cm™) consisted of sand grains coated with SOC. Sollins et al. (2006)
determined a mean residence time of 210 years for SOC separated with a density of 2.0-2.28
g cm™ in a forest soil. Thus, even though an increased density does increase the amount of
isolated POM and therefore comes empirically closer to the RPM and DPM pools of RothC, it
is doubtful whether a fraction obtained with a density of 2.2 g cm™ or greater would resemble
the functional role of the labile RPM and DPM pools. We suggest that a density of 2.0 g cm™>
should be used and that the sample should not be hot-water extracted.
NaOCl oxidation.

The IOM pool had the largest variability between laboratories among all quantified pools and
only three out of six laboratories were able to isolate a fraction size that was comparable to the
RothC-predicted pool (Figure C.4, Table C.3). As chloride in the NaOCI solution is volatile, the
oxidation efficiency decreases with time and is dependent on temperature during storage. We
therefore recommend that fresh NaOCl solution in which the Cl concentration is known is used
or that the Cl concentration is determined immediately before the solution is used for oxidation.
We tested a posteriori whether the differences between laboratories could be explained by dif-
ferent concentrations of Cl in the NaOCI solution (Figure C.8). All three soils had a relatively
smaller sensitivity to different Cl concentrations than the variability between laboratories, indi-
cating that differences in CI can only partly explain the observed variability. Moreover, we found
a significant positive correlation between the C(<63 pm):C(>63 yum) ratio and the proportion of
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Figure C.8: Carbon loss after oxidation as a function of NaOCI concentration and the results
from the laboratories using a NaOCI concentration at 6% as a comparison.

oxidizable carbon in the s+c fraction (r=0.43, data not shown). This indicates that quality and
quantity of SOC in the s+c fraction is again determined by ultrasonic dispersion through the
breakdown of macroaggregates and thus the release of occluded carbon. The better the disper-
sion efficiency of the ultrasonic dispersion, the more potentially labile SOC is found in the s+c
fraction and thus the more oxidizing agent is needed to isolate the same amount of rSOC. This
hypothesis is in line with the findings of Siregar et al. (2005), who treated 12 different soils with
NaOCl and determined an oxidation efficiency range from 12 to 72%, which was negatively
correlated with the clay content of the soils (r =0.45). Similarly, Kleber et al. (2005) explain
the same results with either a varying degree of recalcitrance of SOM or a different degree of
protection exerted by the soil matrix. Thus, the oxidation efficiency is strongly dependent on the
quality of the organic matter present. Furthermore, the differences among laboratories in the size
of the s+c fraction, which is again determined by ultrasonic dispersion, potentially contribute
to explaining the variability in the size of the rSOC fraction. The oxidation is conducted with
1 g of the sample but the fraction size is determined by multiplying the resistant C in 1 g with
the total amount (g) of s+c. The variability of the total amount of s+c material thus contributed
about one-third of the coefficient of variation for the rSOC fraction. This stresses the need for
an improved standardized ultrasonic procedure. Another possible source of the large laboratory
bias could be the different intensities of shaking the sample after the addition of fresh NaOCI.
To ensure a complete oxidation of the oxidizable C in the soil sample, the sedimented soil a
posteriori in the vessel must be brought fully in suspension; ideally, a vortex mixer should be
used. We did not test this in the current study.
The role of the S+A fraction.

The SOC in the S+A fraction is probably the most heterogeneous SOC fraction in terms of com-
position and stability. It comprises POM >0.63 um, which is visually detectable, occluded POM
in aggregates with different cohesive strength, and also SOC in clay-sized organo-mineral parti-
cles within these aggregates and as coatings on sand grains (which might have a long turnover
time) (Shaymukhametov et al. (1984)). This, however, contradicts the perception that SOC frac-
tions should ideally be unique and non-composite in order to match model pools (Smith et al.
(2002a)). Zimmermann et al. (2007) considered the S+A fraction to be physically stabilized
and thus slower cycling than the labile fractions of DOC and POM. However, recent work has
shown that the S+A fraction had a larger or only slightly smaller sensitivity to land-use change
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than DOC (Poeplau and Don (2013a)). Dondini et al. (2009a) observed a larger proportion of
C4-derived carbon in the S+A fraction than in the POM fraction 14 years after a C3-C4 vegeta-
tion change. This indicates that this fraction would contain a larger proportion of ‘fresh® SOC
than of stabilized SOC. In contrast, Leifeld and Fuhrer (2009) calculated mean residence times
(MRTsSs) of >100 years for the S+A fraction, while the POM fraction was not older than 5 and 7
years in the upper 4 cm of a subalpine pasture and meadow, respectively. This, however, does not
exclude the possibility that the S+A fraction consists of old SOC, but also a substantial amount
of fresh SOC. We therefore calculated the RPM and DPM pools by adding S+A to the POM and
DOC fractions to test this. Thirteen of 18 recalculated measurements (six laboratories and three
soils) achieved a better match with the RPM and DPM pools than with the proposed calculation
with only POM and DOC (Table C.5).

Table C.5: Mean deviations of the quantified POM+DOC and POM+DOC+S+A fractions from
the RothC equilibrium RPM+DPM pools (MgC ha~!) for all three soils

A B C
Laboratory POM+ POM+ POM+
POM+ DOC+ POM+ DOC+ POM+ DOC+
DOC S+A DOC S+A DOC S+A
1 -2.98 -0.35 -2.05 0.32 -2.04 -0.97
2 -2.44 1.2 -1.01 524 -1.53 -0.21
3 -2.09 0.38 -2.06 522 -1.37 -0.14
4 -2.83 -0.72 -2.83 -0.39 -2.61 -1.73
5 -3.31 3.28 -1.45 0.56 -1.55 -0.67
6 -3.2 27 -1.94 55 -1.68 2

Eight of these 13 recalculated measurements with POM, DOC and S+A were still less than
the RPM and DPM pools from RothC. Laboratory 6, which used the smallest amount of ultra-
sonic power and thus isolated the largest S+A fraction, would over-estimate the RPM+DPM
fractions when S+A is included. In contrast, laboratory 1, which used the greatest amount of
ultrasonic power, would achieve a better match with the RPM+DPM pools for all three soils if
the S+A fraction was included (Table C.5). To maintain the current concept of the fractionation
method, we therefore suggest that a small amount of ultrasonic power (20W) is used. However,
to identify the functional role of the S+A fraction, as well as that of all other fractions, the mean
residence time (MRT) of each fraction should be investigated by using repeated 14C measure-
ments (Baisden et al. (2012)). Only this information would permit us to validate a mechanistic
framework for the existing fractionation procedure, which is currently based only on conceptual
considerations and empirical relations of measured fraction sizes and the modelled pools. Even
so, a perfect fit of fractions and conceptual pools will not be achievable because the nature of
SOC is a continuum rather than consisting of distinct pools. In the specific case of RothC this is
especially true for the IOM pool, which is estimated using the Falloon equation (Falloon et al.
(1998)), while the actual size of IOM in a specific soil or even the existence of such a pool re-
mains very uncertain. Fractionation, as well as modelling with different functional pools, will
thus remain an approximation.

C.4 Conclusion

The conducted ring trial revealed that the fraction procedure described by Zimmermann et al.
(2007) was not described precisely enough and led to individual laboratory-specific adjustments
and thus significantly different results for three different soils and all fractions. The amount
of applied ultrasonic power during ultrasonic dispersion as the first step of the fractionation
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scheme strongly drives the disruption of aggregates and thus influences the quality and size of
all fractions. We thus suggest standardizing not only the ultrasonic energy, but also the ultra-
sonic power (20W). The amount of isolated DOC is a function of the amount of water used for
wet sieving, which demands a minimum amount of water (2000 mL) to be used. Calculating
the distribution of SOC over pools of the RothC biogeochemical model led systematically to a
stronger allocation of SOC to stable model pools than with the RothC modelSs equilibrium pool
size distributions. Neither increasing the density of the SPT solution for density fractionation,
nor increasing the concentration of NaOCI for isolating the rSOC fraction, could solve this en-
tirely. Moreover, a substantial part of the S+A fraction might be young and fast cycling material,
contrary to the original concept that this fraction coincides with a relatively stable SOM pool.
This hypothesis needs to be further tested and possibly an additional fractionation step would be
required to split the S+A fraction into a young component, which adds to the RPM and DPM
pools in the RothC model, and an old part, which would actually relate to the turnover of the
HUM pool. However, to achieve more comparable results between laboratories and to achieve
a better fit with RothC-predicted pools by maintaining the current conceptual framework of this
soil carbon fractionation method, we suggest an improved fraction protocol (see File S1).
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