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Filtering and reduction techniques of combinatorial tests

Abstract: The main objective of this thesis is to provide solutions to some

combinatorial testing issues. The combinatorial testing consists in generating

tests that cover all combinations of defined input values.

The first issue of this thesis is that combinatorial testing can generate a large

number of tests that are invalid according to the specification of the System

Under Test (SUT). These invalid tests are typically those which fail the pre-

condition of system operation. These invalid tests must be discarded from the

set of tests used to evaluate the SUT, because they lead to inconclusive ver-

dicts. As a solution, we propose to couple the combinatorial testing technique

to an animation technique that relies on a specification to filter out invalid

tests.

In our work, combinatorial tests are generated from a test pattern. It is mainly

defined as a sequence of operation calls, using a set of values for their param-

eters. The unfolding of a complex test pattern, where many operation calls

and/or input values are used, may be subject to combinatorial explosion, and

it is impossible to provide valid tests from the test pattern. This is a second

issue of this thesis. As a solution, we propose an incremental unfolding and

animation process that allows to filter out at early stage (in the operation

sequence) invalid tests, and therefore to master the combinatorial explosion.

Other mechanisms of filtering are proposed to filter out tests which do not

cover some operation behaviors or do not fulfill a given property.

The test suites generated from a test pattern can be very large to execute on

the SUT due the limited memory or CPU resources. This problem is defined

as the test suite reduction problem, and it is the third issue of this thesis. As

a solution, we propose a new test suite reduction technique based on annota-

tions (called tags) inserted in the source code or the specification of the SUT.

The execution/animation of tests generates a trace of the covered annotations.

Based on the trace, a family of equivalence relations is proposed, to reduce a

test suite, using the criteria of order and number of repetition of covered tags.

Keywords: Combinatorial testing, Test suite reduction
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Chapter 1

Introduction

Contents
1.1 Introduction to Software testing . . . . . . . . . . . . 1

1.2 Combinatorial testing . . . . . . . . . . . . . . . . . . . 3

1.3 Model-based filtering . . . . . . . . . . . . . . . . . . . 6

1.4 Trace based reduction . . . . . . . . . . . . . . . . . . . 9

1.1 Introduction to Software testing

Software is a crucial component in all modern systems such as computers, cars,

planes or aircrafts. It is the spirit that gives life to the devices to provide

their functions as specified by the system designer. The users assume that

a system will always behave as they expect; nevertheless it is not the case.

The system can present to the user unexpected outputs with respect to the

software requirements. These unexpected outputs arise from faults in the

source code. A fault is defined as a static defect in the software, committed

by systems developers. Executing the software, the fault is manifested to

produce in incorrect internal state called an error. This error generates an

external incorrect behavior, with respect to the requirements or some other

description of the expected behavior, called a failure [Laprie 1992].

The manifestation of faults in critical systems can cause huge loss and

sometimes causes death. As examples of world-known problems caused by

software failures, we mention:

• The Ariane 5 rocket explosion in 1995 due to a failure in the inertial

reference system. Specifically, it consists in a failed conversion of floating

number from 64 bits to 16 bits. This failure caused a loss of more than

US$370 million1.

1http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
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• The Toyota brakes problem of 2010 due to a fault in the anti-lock braking

(ABS) software2.

• The THERAC-25 radiation machine software failure. Six accidents hap-

pened causing three different injuries and three dead 3.

• A fault in the Airbus 319 Safety Critical Software Control. It caused

a loss of the autopilot, the navigation displays, and the radio for two

minutes4.

• The US Northeast Blackout of 2003, affected an estimated 10 million

people in Ontario and 45 million people in eight U.S. states. It caused

financial losses of $6 Billion USD. This is caused because the alarm

system in the energy management system failed due to a software error5.

Given the danger that can cause these faults in modern systems, finding

all of them becomes a real challenge. To find faults in a developed soft-

ware, one technique used by software engineers is testing. It is the primary

technique used in industry to evaluate a software by observing its execution

[Ammann 2008]. It becomes an important activity in software development

cycle to evaluate a developed artifact and to assess its reliability. It can reach

50% of the total development budget [Yang 2008].

Before presenting our research work in testing, we begin by presenting the

testing activity.

We call the evaluated system a System Under Test (SUT ). The testing

activity as defined by Ammann and Offutt consists in four sub-activities per-

formed by a test engineer [Ammann 2008, Ammann 2010]:

1. Designing a test (or a test case): “A test case is defined as a set of

conditions or variables under which a tester will determine whether a

system under test satisfies requirements or works correctly”6. Designing

a test case consists in designing test values used to evaluate the SUT.

It can be human-based designing, by using domain knowledge of the

program and human knowledge of testing. It can be criteria-based by

designing values aiming to satisfy coverage criteria or other engineer

goals. The coverage criteria can be used as stopping rule to tell whether

the set of test cases is adequate for testing, and whether we need to

design other test cases.

2http://en.wikipedia.org/wiki/2009%E2%80%9311 Toyota vehicle recalls#Anti-

lock brake software recall
3http://sunnyday.mit.edu/papers/therac.pdf
4http://www.therazor.org/?p=979
5http://en.wikipedia.org/wiki/Northeast blackout of 2003
6http://softwaretestingfundamentals.com/test-case/
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2. Test automation: The tests designed are translated in a computer-

language to executable test cases by defining the platform and tech-

nologies needed to execute them. In some cases, the test automation is

not necessary to evaluate an SUT. After designing a test we can exe-

cute it manually by entering to the system the input values needed to

perform some functionalities, and observe the behavior of the system.

3. Test execution: It consists in running the executable tests and recording

their results.

4. Test evaluation: It consists in evaluating the results of testing and es-

tablishing a report for developers. To decide whether a test fails or not,

we have to know what we expect after its execution. We can expect

for example that the test should not trigger any system exception. A

test can also be considered as failing if it does not provide the expected

results or outputs. These can be related to some test requirements or to

the specification of the SUT. We call the mechanism that tells whether

a test fails or not a test oracle.

In this thesis, test design and automation are based on combinatorial gen-

eration. Test evaluation uses assertion based specification, expressed in OCL

or JML to decide on the success/failure of test execution. Test execution cor-

responds to the execution of Java programs or the animation of UML/OCL

specification.

In next section we introduce the main testing technique used in our re-

search work: the combinatorial test generation. We present the motivation of

using it, its principle and a small example to illustrate the technique.

1.2 Combinatorial testing

The exhaustive testing is the only testing technique that detects all the failures

in software with respect to a given test oracle. It consists in executing the

system by trying all possible combinations of input values in every possible

system state. However, this technique is not used in practice because it is

either very expensive or impossible to implement, due to the infinite or the

large number of values of the input domain or of the system states.

Therefore, to test a system, relevant values are chosen that are likely to

detect errors. These values can be selected by a human (test engineer) that

has a knowledge about the specification of the system. The selection of values

can be performed using some techniques such as boundary value analysis

technique [Jeng 1994]. This technique consists in selecting boundary values
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from partitions of values as representative ones. The values can also be chosen

randomly.

A test under design may contain many inputs. For instance, let us consider

that we aim to design a test that performs a single call to an operation having

several parameters. For every parameter, a set of relevant values can be

considered to test the operation. Designing one test consists in choosing a

single value for every parameter.

Designing a set of test cases that covers all combinations of (some) input

values is called combinatorial testing [Kuhn 2010]. In our research work we

have been interested in such testing technique to evaluate a SUT. The advan-

tage of using this technique is that it allows to generate a large number of

tests with minimum manual effort (by using a combinatorial tool). It requires

for the test engineer a minimum knowledge about the specification, for exam-

ple knowledge about the interfaces of operations. Moreover it is intended to

explore systematically system behaviors by combining different input values.

One can see how the system will behave with interaction of some input values,

for which the test may be invalid according to the specification.

Exhaustive combinatorial testing allows to generate all combinations of

input values. Other researches consider that exhaustive combinatorial test-

ing can be expensive and it has been shown that most failures are caused

by interactions between few parameters [Kuhn 2010]. Therefore, it has been

proposed that generating tests that cover all pairs of parameters values is suffi-

cient. The generalization of the technique is the generation of n-combinations

of parameter values. It aims at finding failures caused by interaction of n

input parameters. The mentioned combinatorial testing techniques are imple-

mented in combinatorial tools. For example the AETG is a tool that generates

a test set that covers the n-combinations of input values defined by the user.

Let us illustrate the combinatorial testing by an example. Con-

sider that our SUT is a container manager. It has 4 containers

lo1, lo2, lo3, lo4 initialized as empty. The system has a method

load (int c1, int c2, int c3, int c4) that loads the containers by

number of kilograms (defined as integer). It adds the load value (positive

value) given in ci to conti (with i=1 to 4). We suppose that every container

has a limit of load, lo1 can be loaded by maximum 1000 kg, lo2 by 3000 kg,

lo3 by 5000 kg and lo4 by 7000 kg.

Let now consider that we aim to create tests to evaluate the load method.

The exhaustive testing is not possible due the large number of values for the

input domain (4-tuple of integers = (2 ∗ Maxint)4). Therefore, we select 2

representative values for each parameter. One value less than the maximum

load and another one greater than the maximum load, such as using 1000 and

1001 for c1. We get c1=[1000,1001], c2=[3000,3001] ,c3=[5000,5001] and
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c4=[7000,7001]. Performing one call to the load method using the values

selected can be represented by the following test pattern:

load ([1000,1001], [3000,3001], [5000,5001], [7000,7001])

This test pattern defines abstractly the set of test cases that can be generated

to test the load method.

Using exhaustive combinatorial technique, this pattern generates 16

(2*2*2*2) test cases:

TC1: load (1000, 3000, 5000, 7000)

TC2: load (1000, 3000, 5000, 7001)

TC3: load (1000, 3000, 5001, 7000)

...

TC16: load (1001, 3001, 5001, 7001)

The pairwise testing7 (2-way combinations) generates a reduced test set

compared to exhaustive combinatorial testing. It generates a subset of tests

that covers all pairs of parameter values. The result can be:

TC1: load (1000, 3000, 5000, 7000)

TC2: load (1000, 3000, 5000, 7001)

TC3: load (1000, 3001, 5001, 7000)

TC4: load (1001, 3000, 5000, 7000)

TC5: load (1001, 3000, 5001, 7001)

TC6: load (1001, 3001, 5000, 7001)

In our research work, we have used the Tobias tool [Ledru 2004] that is

an exhaustive combinatorial testing tool developed by our research team. It

takes as input a test pattern and unfolds it combinatorially into a possibly

large set of test cases. The test pattern describes abstractly a test case using

many constructs. For example we can define a test pattern that performs a

sequence of operation calls using a set of values for their parameters. Such

as using a set of values for an operation parameter, we can also define a set

of operation calls at some point in the test pattern. Other constructs can be

used in the Tobias test pattern as iterating an operation call. To illustrate the

definition of test pattern in Tobias let us consider that the SUT (container

manager) has another operation unload (int num, int lo) to unload

the containers. The num parameter specifies the number of the container

7We used the website http://alarcosj.esi.uclm.es/CombTestWeb/combinatorial.jsp to

generate the exhaustive combinations and the pairwise combinations (using AETG algo-

rithm).
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to unload (must be from 1 to 4). The lo parameter takes the number of

kilograms to unload (positive value, less then or equal to the load of the

corresponding container). Let us consider the following Load1To2ThenUnload

Tobias test pattern:

Load1To2ThenUnload:

ContainerManager contManag = new ContainerManager();

contManag.load ([500,300], [3000,1], [3000,3500], [7000,0]){1,2};

contManag.unload([1,2,3],4000) | unload ([4,5], 8000);

It creates an instance of the SUT (ContainerManager), loads into containers

valid numbers of kilograms and iterating the load operation call from one to

two times ({1,2}). It means that the test will begin by either one call or

two calls to load operation. Next, the test pattern performs either a call to

unload using the set of values 1, 2 and 3 for the num parameter and 4000 for

the lo parameter, or a call to unload using the set of values 4 and 5 for the

num parameter and 8000 for the lo parameter.

The test pattern Load1To2ThenUnload generates 1360 tests =

(161 + 162) ∗ (3 + 2). We present the first and the last ones in the fol-

lowing:

TC1: ContainerManager contManag = new ContainerManager();

contManag.load(500,3000,3000,7000) ;

contManag.unload(1,4000) ;

...

TC1360: ContainerManager contManag = new ContainerManager() ;

contManag.load(300,1,3500,0) ;

contManag.load(300,1,3500,0) ;

contManag.unload(5,8000) ;

These combinations of values allow to test the system using diverse inter-

esting scenarios. In next sections we present the issues of this thesis related

to combinatorial testing for which solutions have been proposed.

1.3 Model-based filtering

The combinatorial testing technique can generate a very large number of tests

from few lines of pattern definition. However, they do not rely on a specifica-

tion to perform this generation. Therefore, a large number of generated tests

will be illegal according to the specification and their execution will result in
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inconclusive verdict. We call this kind of test an invalid test. For example a

test that contains an operation call that fails the operation precondition is an

invalid test. These invalid tests lead to an inconclusive verdicts and do not

tell any useful information about the SUT. They have to be discarded from

the generated test set used to evaluate the system.

For example, in the 1360 tests generated from Load1To2ThenUnload test

pattern there are only 48 tests that are valid according to the specification

of the container manager8. The other 1312 tests are invalid because the test

tries to

• load a number of kilograms that exceeds the limit of a container or/and

• unload a number of kilograms from a container greater than the available

one or/and

• unload a number of kilograms from an inexistent container

The 1312 invalid tests have to be discarded from the generated test set because

they do not satisfy the specification and can not be candidate to test the SUT.

The first issue of this thesis for which we propose a solution is the problem

of invalid tests generated from a combinatorial unfolding. The solution we

propose consists in using an animatable or executable specification when ex-

ecuting the test cases. The execution of the specification detects invalid test

cases.

However, for complex test patterns where, for example, many input values

are defined, the test generation is subject to combinatorial explosion. It con-

sists in generating from a test pattern a huge number of tests. The complete

test pattern unfolding or the animation of all generated tests is impossible to

perform in such case due the limited computer resources. For example, the

following pattern uses larger sets of input values:

LoadmThenUnloadn:

ContainerManager contManag = new ContainerManager();

contManag.load([58,302,450,605],

[3210,1000,40,0],

[3000,2500,4123],

[3501,0]){2};

contManag.unload([1,2,3,4,5],[1523,8542,321,789,672,259]){3};

Unfolding the test pattern LoadmThenUnloadn results in 2.48832 ∗ 108 tests

which exceeds the capability of the Tobias tool (about 106 test cases).

8The specification is defined using JML language embedded in the Java implementation

of the SUT intended to be checked at runtime (see Appendix A).
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Therefore, the second problem addressed by our model based filtering pro-

poses a solution to deal with the problem of combinatorial explosion. In a

test pattern, two cases contribute in the combinatorial explosion of the test

pattern:

• The combination of values used in one instruction. For example for the

schema LoadmThenUnloadn, let us consider that the first instruction is

to load the container one time using some values. The combination of

values consists in combining the values used in the parameters of load

method (4*4*3*2=96).

• The combination of values between instructions. The repetition of the

load operation 2 times is a combination of values between two instruc-

tions (two calls to the load operation). The 2.48832 ∗ 108 tests gen-

erated from LoadmThenUnloadn pattern are computed by multiplying

the number of elements unfolded from the two calls to load operation

(962=9216) by the number of elements unfolded from the three calls to

unload operation (303=27 000).

To reduce the number of combinations in the first case, the test engineer can

reduce the number of combinations by reducing the number of values used in

the parameters of the load operation call.

We consider the second case an important factor making the test pattern

explosive and is a main issue of our thesis. The solution proposed for this

issue is to incrementally unfold the test pattern. It means that test pattern

will be processed instruction by instruction. We consider the first instruction

of the test pattern, we unfold it and we animate the generated tests to get

the valid ones. We use then the valid ones as prefixes to be combined with

the next instruction. This incremental process is done until all instructions

are processed. The advantage of performing this is the deletion of the invalid

prefixes at early stage, and the number of combinations between two instruc-

tions will decrease. It becomes possible to process a test pattern with billions

of tests and to get final valid tests.

The test pattern can be rewritten as:

LoadmThenUnloadn:

1 ContainerManager contManag = new ContainerManager();

contManag.load ([58,302,450,605],

[3210,1000,40,0],

[3000,2500,4123],

[3501,0]);

2 contManag.load ([58,302,450,605],
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[3210,1000,40,0],

[3000,2500,4123],

[3501,0]);

3 contManag.unload([1,2,3,4,5],[1523,8542,321,789,672,259]);

4 contManag.unload([1,2,3,4,5],[1523,8542,321,789,672,259]);

5 contManag.unload([1,2,3,4,5],[1523,8542,321,789,672,259]);

The first unfolding iteration consists in unfolding the load method in 96

calls. Only 72 calls are reported as valid. The second iteration consists in

combining the 72 valid prefixes with 96 elements of the second instruction.

This unfolds in 6912 elements. We report that only 351 tests are valid and

they are combined with the third iteration to be unfolded in 10 530 (351*30)

test cases. The incremental process continues until treating all instructions

in the schema mechanisms. When the number of remaining valid test cases

is too large, we propose additional filtering to keep a proportion of the valid

tests, or those which satisfy a given property. Using our filtering approach

for LoadmThenUnloadn test pattern, we finally get 6690 valid test cases out of

2.48832 ∗ 108.
We call this first contribution model-based filtering of combinatorial tests.

It was published in the FASE (Fundamental Approaches to Software Engi-

neering) international conference of 2012.

In next section we present the second contribution of this thesis.

1.4 Trace based reduction

The tests unfolded from test patterns and reported as valid according to the

specification are used to evaluate the implementation of the SUT. However,

The number of valid tests can also be too large or difficult to execute due the

limited memory or CPU resources of the SUT. Moreover, in our research work,

tests generated can be used to evaluate applications embedded in smart cards

that have very limited resources. Additionally, in the context of regression

testing, many tests are added to the test suite (a suite/sequence of test cases)

to evaluate new or modified requirements and thus the test suite becomes

large and the cost of executing it becomes expensive. A second issue of this

thesis is to study the reduction of these large test suites.

The objective is to run a subset of tests rather than the original test suite.

The challenge here is to generate a reduced test suite that is representative of

the original one in terms of fault detection capability.

The test suite reduction problem was originally studied by Harrold et

al [Harrold 1993], and was later addressed by numerous authors [Lin 2009,

Sprenkle 2005, Parsa 2009]. Two big families of approaches are reported in
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literature performing the test reduction: the coverage based approaches and

the similarity based approaches. The coverage based techniques use the struc-

tural coverage information result from test execution to reduce the test suite.

For example, if a test suite contains 3 tests ta, tb and tc. Assume that test

ta covers a method branch mb1, test tb covers a method branch mb2 and

test tc covers both branches mb1 and mb2. In the reduced test suite we

keep only tc because it covers all branches covered by ta and tb. This was

the idea of Harrold, she developed an heuristic called HGS to reduce a test

suite based on their coverage information (e.g. branch coverage, statement

coverage). The similarity based techniques use a similarity function or an

equivalence relation to state equivalence between tests and reduce the test

suite. When several tests of the test suite are equivalent, only one of them is

kept in the reduced suite. For example, in [Masri 2007], the authors propose

a similarity-based approach to select test cases based on their execution trace.

In our research work, we proposed a new test reduction technique that

reduces a test suite using an equivalence relation, based on traces generated

from test execution. Our approach relies on annotations (called tags) inserted

in the source code or in the specification of the SUT. They are intended to trace

user requirements or to instrument the code. These tags are covered during

the execution/animation of tests. Using the criteria of order and repetition

of tags in the execution of the test case, a family of equivalence relations are

defined. The weakest relation does not take into account the order and the

number of repetition of tags covered to compare two test cases. The strongest

relation requires that the traces of equivalent test cases have the same sequence

of tags.

Let us illustrate our test reduction solution on the SUT container manager.

We suppose that the SUT has another loadC4 method that loads container

cont4 (cont) using an array of values (int [] vals). It accepts positive

and negative integers and loads the absolute value. We suppose also that the

container cont4 has no more a limit of load. The Java code of the loadC4

method is presented as follows:

public class ContainerManager {

private int cont1=0;

private int cont2=0;

private int cont3=0;

private int cont4=0;

...// code of load and unload methods

public void loadC4(int [] vals){
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for (int i = 0; i < vals.length; i++) {

int x = vals[i];

if (x > 0) {

cont4 = cont4 + x;

log("load-gt0");

}

else if (x < 0) {

cont4 = cont4 - x;

log("load-lt0");

}

else {

log("noload");

}

}

}

}

The tags are inserted in the loadC4 method branches in the form of

log("tag"). The method log allows to trace a tag and its execution or-

der in the operation and in the test. Now, let us consider the following test

suite TS used to evaluate the IUT cm:

T1: cm.loadC4(new int{}[0,5000,-1500]);

T2: cm.loadC4(new int{}[1500,-200]); cm.loadC4(new int{}[0]);

T3: cm.loadC4(new int{}[1400,-900]); cm.loadC4(new int{}[0]);

The weakest equivalence relation considers that all tests in TS are equivalent

because all of them cover the set of tags: load-gt0, load-lt0 and noload,

even if they have for example different size (number of operation calls) such as

T1 and T2. If we reduce TS according to this relation we will have a reduced

test suite with one test (selected randomly), for example T1. The strongest

equivalence relation considers that two equivalent tests have to trace the same

sequence of tags. For example T2 and T3 cover exactly the same sequence of

tags: load-gt0, next load-lt0 and next noload. TS is reduced using this

equivalence relation into two tests, for example T1 and T3. We give only 2

equivalence relations to illustrate the principle of our test reduction, but we

proposed 2 others that will be detailed in this thesis.

We called this second contribution test suite reduction using equivalence

relations based on code annotations. It was published in the AFADL (Ap-

proches Formelles dans l’Assistance au Développement de Logiciels) French

conference of 2011 .
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Our research work was part of the ANR TASCCC project oriented to test

applications embedded in smart cards. The two contributions were exper-

imented on two case studies provided by our project partners: the Global

Platform case study a last generation operating system for smart cards, and

on-line vending system of cinema tickets. In these case studies, these test pat-

terns are generated automatically from test properties [Castillos 2011]. We

also used our contribution in other applications such as the electronic purse

application, a case study used in our team. Using our contributions in these

case studies and examples show how they can efficiently resolve reduction and

filtering problems.

This thesis is organized as follows:

• The first part of this thesis presents the: model-based filtering of com-

binatorial tests.

• The second part presents the: test suite reduction using equivalence

relations based on code annotations.

• Finally we present a conclusion to this thesis.



Model-based filtering of

combinatorial tests
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2.1 Motivation

In our research work we have been interested by combinatorial test generation

techniques and especially by the combinatorial testing tool Tobias developed

by our research team. The use of a combinatorial testing technique for test

generation is motivated by the fact that it generates a large number of test

inputs with minimum effort. The generated tests are similar according to

some pattern, for example the operation name or the operation sequence, but

diverse in terms of the parameters values. These defined values are generally

chosen by a human or an automatic system, that considers them relevant to

observe a large number of system behaviors.

However, combinatorial test suites may lead to a large proportion of in-

valid test cases, i.e. test cases which will not conform to the specification.

These invalid test cases should be removed from the test suite because they

correspond to illegal inputs or sequence of calls. Their executions result in

inconclusive verdicts. Removing invalid test cases is especially interesting if

the test pattern is complex or if many input values are used. The number of

combinations can increase rapidly up to billions of test cases. It is impossible

to consider so large test suites because they require intractable resources. A

very large test suite might be impossible to compile and execute using the

standard compilers, test drivers and computer resources.

An idea is to rely on a specification to filter out invalid test cases at early

stages in the unfolding process. Doing that will help fighting the combinatorial

explosion.
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2.2 Contribution

In order to discard invalid test cases during the combinatorial unfolding, we

have implemented a model-based testing approach where Tobias test cases

are first run on an executable specification. This animation of test cases on

a model allows filtering out invalid test sequences produced by blind enumer-

ation, typically the ones which violate the pre-conditions of operations. To

do that, we introduce extensions in Tobias tool which support an incremental

unfolding and filtering process. Moreover, we added several constructs which

help the test engineer expressing more precise test patterns and allow to filter

out valid test cases which do not meet the intent of the test pattern. These

new constructs could mandate test cases to satisfy a given predicate at some

point or to feature a given behavior.

The early detection of invalid or unintended test cases improves the calcu-

lation time of the whole generation and execution process, and helps fighting

combinatorial explosion.

This part of the thesis is composed of 4 chapters:

• Chapter 3 presents the combinatorial testing principle, the different com-

binatorial techniques and tools reported in literature especially the com-

binatorial testing tool Tobias a main tool in our research work.

• Chapter 4 details our approach to filter combinatorial test cases based

on specification, and related research works.

• Chapter 5 presents illustrations and limitations of our approach using

some case studies.

• Chapter 6 gives solutions to deal with the problems found in our ap-

proach, and gives illustrations of these solutions using the case studies.

• Chapter 7 presents a summary of our contribution.
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3.1 Motivation

Exhaustive testing is a technique that executes the system with all possible

combinations of input values [Marinov 2003]. Using this technique, it is in-

tended to observe all possible behaviors of a system, and thus to detect all

the implementation failures, with respect to a given test oracle. This tech-

nique can be applied when the state space of the SUT is relatively small. For

example, consider a stateless web page with a choice list and two buttons.

Exhaustive testing of this web page consists in observing the behavior of the

system after clicking on each button for each element in the list, i.e. if we

have 3 elements in the list we have to try 6 combinations.

In practice, exhaustive testing is infeasible because systems are often much

more complex than the example previously presented. For instance, there can

be an infinite or huge number of input parameters values or internal system

states.

Therefore, one solution consists to select relevant values for testing based

on the specification or on the source code of the SUT. The selection can

be performed manually by a human that has a knowledge about the system
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specification. Some techniques can be used to select relevant values such as

boundary testing. The boundary testing or the boundary value analysis is

a selection technique based on three steps [Jeng 1994]. First, a technique of

equivalence partitioning is applied to classify the inputs into different equiva-

lence classes. Second, the neighborhood, a mathematical technique is applied

to detect the boundaries between the equivalence classes. Third, the bound-

ary values on the boundaries of the equivalence classes are selected. This

technique considers these boundary values as representative test inputs of the

original set of inputs.

After selecting values for each test input, one can create test cases by

choosing for each test case a single value for each test input. Covering all

combinations of input values is called combinatorial testing. It generates these

combinations in different test cases. The advantages of this technique is that

it allows to explore systematically system behavior by combining different

input values. Moreover, a large number of tests can be generated with a

simple-written line.

Different types of combinatorial techniques can be considered and detailed

hereafter [Grindal 2005].

3.2 Pairwise and n-way testing

The basic form of combinatorial testing is to identify sets of relevant values

for system operation parameters, and the generation technique computes all

combinations resulting in different operation calls. In this case a test case is

considered as a single operation call.

Let’s take an example of a booking system of a cinema ticket. The booking

is allowed depending on the age of the person and the film type. It is performed

by the method book, which has five parameters. The filmType parameter

specifies whether the film is restricted by the person age or not. The 3D

parameter tells if the film is projected using the three dimensions technology

or not. The filmName parameter gives the name of the film to watch. The

age and personName parameters define respectively the age and the name of

the film viewer. The signature of the method book is defined in Fig. 3.1.

public void book (String filmType, boolean 3d, String filmName,

int viewerAge, String viewerName){...}

Figure 3.1: The signature of the method book

We associate for each parameter a set of values intended for testing:
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• filmType: "-12" ,"-16" or "public"

• 3D: true or false

• filmName: "Die Hard", "Jappeloup"

• viewerAge: 11, 15 or 22

• viewerName: "François", "Nicolas"

Generating an exhaustive test suite from these defined values results in 72

test cases.

In practice, generating all combinations of parameter values to test a sin-

gle method could be time and resource-consuming. Moreover, it has been

suggested that it may be useless to consider all the combinations, since most

failures are caused by interaction of relatively few parameters [Kuhn 2010].

For this reason, to reduce the number of generated tests, it has been sug-

gested to consider a subset of tests that covers all pairs of parameter values.

It means that every pair of values for two parameters is covered at least one

time by a test case. This technique is called the pairwise testing or the 2-

way combinatorial testing. Fig. 3.2 presents an example of test set achieving

pairwise coverage. They were generated using the AETG on line tool1. The

number of generated test cases by this tool for this example is 9. The number

of tests generated is greater than or equal to m ∗ n where m and n are the

numbers of values for each of the two parameters with the largest number of

choices (in our example m=n=3).

filmType 3D filmName viewerAge viewerName

-12 true Die Hard 11 François

-12 false Die Hard 22 Nicolas

-12 false Jappeloup 15 Nicolas

-16 true Die Hard 15 Nicolas

-16 true Jappeloup 22 François

-16 false Die Hard 11 Nicolas

public true Die Hard 15 Nicolas

public true Die Hard 22 François

public false Jappeloup 11 François

Figure 3.2: Pairwise test cases for the cinema ticket booking system

1http://alarcosj.esi.uclm.es/CombTestWeb/combinatorial.jsp
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The n-way testing is the generalization of the pairwise testing concept(n

is the interaction strength). A n-way generation algorithm produces a test set

that covers all the n-combinations of parameter values. It aims at capturing

failures caused by interaction of n (or less) input parameters [Kuhn 2010].

Some experimentations show that n-way testing decreases the number of re-

quired tests (with respect to the exhaustive combinations), while conserving

the same fault detection capability [Kuhn 2010].

It is shown by Williams and Probert, that finding the test cases set that

achieve n-way coverage can be NP-complete problem [Williams 2001]. Multi-

ple algorithms have been proposed by researchers to generate near-minimum

test sets. Cohen et al. [Cohen 2007] classify these algorithms in 3 classes:

Algebraic, Greedy and Heuristic search. Algebraic solutions use mathematical

techniques to ensure a fast production of small covering set. Greedy algorithms

select new tests in order to cover as many as possible uncovered requirements.

Heuristic search algorithms apply transformation techniques on a pre-selected

set of tests until all combinations are covered.

We can find on-line many other tools2 performing the pairwise or the

n-way combinations generation. For instance, AETG [Cohen 1997], ACTS

[Borazjany 2012] and PICT are tools that generate a test set that covers the

n-way combinations of the input values defined by the user. These tools use the

Greedy algorithm for test generation. Test Cover3 is example of tool that uses

mathematical techniques to generate all-pairs covering array of user defined

test parameters. For the example of booking of cinema ticket, PICT generates

21 tests for 3-way interactions and 43 tests for the 4-way interactions. We

can see that the number of generated tests increases with the increase of

interaction strength.

3.3 Extended forms of combinatorial testing

The combinatorial approaches, especially the n-way testing approaches, are

intended to generate combinatorial tests considering a single method call.

Testing a method in isolation of the remaining system methods is not always

possible. For instance, let us consider a class under test (in Object Oriented

context). A test case includes at least a call to a constructor before being able

to call one of its methods.

JMLUnit is an example of tool that takes into consideration this problem

[Cheon 2002]. It generates tests that instantiate a Java class by calling the

constructor and then call a single method. It allows the user to specify the

2http://www.pairwise.org/tools.asp
3http://www.testcover.com/
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values for the method parameters and generates all combinations in different

JUnit tests.

Extended forms of combinatorial testing allow to sequence sets of opera-

tions, each operation being associated with a set of relevant parameters values.

This produces more elaborate test cases, which are appropriate to test systems

with internal memory, whose behaviors depend on previous interactions.

Tobias is one of these combinatorial test generators [Maury 2002,

Ledru 2004, Ledru 2007]. It is developed by the VASCO team of the Grenoble

Informatics Laboratory. It generates combinatorial tests based on scenarios

expressed using regular expressions and a set of operators. It has inspired

other combinatorial testing tools, such as the combinatorial facility of the

Overture toolset for VDM++ [Larsen 2009] or jSynoPSys [Dadeau 2009].

The next section details the Tobias combinatorial tool.

3.4 Tobias tool

3.4.1 Principle

Tobias is a combinatorial testing tool developed since 2002 [Maury 2002,

Ledru 2004, Ledru 2007]. To generate a test suite, Tobias unfolds a test pat-

tern (also called “test schema”). A test pattern describes abstractly a set of

test cases, by using a set or sequence of instructions and values.

Figure 3.3: Tobias tool principle

Several types of constructs allow the definition of a test pattern in the

Tobias input language. The key construct is the group construct that is
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subject to combinatorial unfolding. It is possible to define a group of operation

calls, a group of values, a group of objects, a group of groups etc. Some

other constructs can be applied to instructions like iteration or choice. A

test schema is unfolded by Tobias in a suite of test cases by computing all

possible combinations of elements defined in the groups. Fig. 3.3 gives an

overview of the principles of Tobias tool. The process begins by writing a

test pattern in the Tobias input language. The test schema is then unfolded

into an abstract test suite in a Tobias output language. A file translator tool

allows to transform the abstract test suite to an executable one by choosing

the target technology (e.g. JUnit test suite). The executable test suite is run

on the test driver (e.g. JUnit) using the SUT source code. An additional

oracle technology (e.g. JML) might be used with the source code to predict

the expected behavior of the system. The test driver provides the verdicts

after the execution of tests.

Fig. 3.4 presents an example of a test pattern. The SUT is an electronic

purse application that allows the user to manage his bank account (iut is

the instance under test). An extended version of the electronic purse ap-

plication will be presented later in Sect. 4.3.1. The abstract test pattern

group CreditOrDebitCard [us=true] {

@checkPinGroup;

@TransactionGroup{1,2};

}

group checkPinGroup {

iut.checkPin ([1234,5678]);

}

group TransactionGroup {

(iut.credit ([0,100]) | iut.debit([50,150]));

}

Figure 3.4: Tobias test pattern example

CreditOrDebitCard describes a set of test cases that debit or credit a purse

(one or two times) after the user authentication. The us=true expression indi-

cates that the corresponding group will be unfolded by Tobias into test suite.

The user authentication is carried out with checkPin operation (checkPin

(int pin)) called with correct and incorrect pin values (resp. 1234 and 5678).

debit (debit (int val)) and credit (credit (int val)) operations are performed

each with a group of values (resp. {50, 150} and {0, 100}). These opera-
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1: iut.checkPin(1234); iut.credit(0);

2: iut.checkPin(1234); iut.credit(100);

3: iut.checkPin(1234); iut.debit(50);

...

12: iut.checkPin(1234); iut.credit(100); iut.debit(150)

...

39: iut.checkPin(5678); iut.debit(150); iut.debit(50);

40: iut.checkPin(5678); iut.debit(150); iut.debit(150);

Figure 3.5: Abstract tests generated from Tobias test pattern

public class TS_testSchema{

@Test

public void testSequence_1(){

iut.checkPin(1234) ;

iut.credit(0) ;

}

@Test

public void testSequence_40(){

iut.checkPin(5678) ;

iut.debit(150) ;

iut.debit(150) ;

}

}

Figure 3.6: JUnit tests generated from Tobias test pattern

tions are defined as choices denoted by "|" in TransactionGroup. Unfolding

the test schema using Tobias results in an abstract test suite given in Fig. 3.5.

The actual syntax of these test cases is XML. For readability reasons, we give

them in a textual form. It contains 40 test cases: 2 * ((2*2)+ (2*2)2). 8 test

cases correspond to an authentication followed by one call to debit or credit

operation. 32 test cases correspond to an authentication followed by two calls

to debit or credit operations. This test suite is translated to JUnit test suites

(given in Fig. 3.6 in JUnit 4 format).
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Figure 3.7: Graphical user interface of the first version of Tobias

3.4.2 Advantages and Drawbacks of Tobias

Tobias tool ensures a quick generation of large sets of tests and therefore im-

proves the productivity of the test engineer. A 10 line textual description of a

schema can be unfolded into thousands of executable tests in less than 5 min-

utes. Tobias tool is implemented to support the generation of more than one

million of test cases from an input test pattern. Moreover, Tobias generates

abstract tests, possibly to translate them with multiple target technologies

(as Java/JML, C++, VDM, B, UML/OCL). Additionally, many constructs

are offered for the test engineer to create complex test scenarios.

Nevertheless, combinatorial testing naturally leads to combinatorial ex-

plosion. This is initially perceived as a strength of such tools: large numbers

of tests are produced from a test pattern. The size of generated test suites

may be a problem when their translation into a target technology such as JU-

nit, the compilation of the resulting files and their execution need too much

computing resources. In practice, the size of the test suite must be limited

between 10 000 and 100 000 test cases.

3.4.3 A textual language for Tobias

A first version of Tobias was available in 2002 (graphical user interface pre-

sented in Fig. 3.7). The constructs available to define a pattern were limited

but the test tool was easy to use thanks to a simple textual language and an
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Figure 3.8: Graphical user interface of the second version of Tobias

intuitive interface.

A second version of Tobias was available in 2007 (graphical user interface

presented in Fig. 3.8). More constructs were available, but the test pattern

should be defined in XML or with the help of a graphical interface. In both

cases, it was not a user-friendly task.

This problem was resolved by creating a text input language for Tobias

called TSLT (Test Schema Language for Tobias). TSLT is based on the sce-

nario language of the jSynoPSys tool [Dadeau 2009], developed by the LIFC

laboratory in Besançon. It has a syntax similar to the syntax of object lan-

guages. To be unfolded, a schema defined in TSLT is first translated into a

schema in the input language of Tobias thanks to the TSLT compiler. The

TSLT is at present the most convenient language to write Tobias test patterns.

The group construct

A test pattern in TSLT contains a set of group definitions. As we said pre-

viously, the group construct is the main construct in Tobias. The group

definition in TSLT has the form presented in Fig. 3.9.

The group name (GroupName) must be unique. It can be used to refer to the

group in other group definitions. It can also be used to name the resulting

test suite file (e.g. for JUnit). A group has several attributes among which

us (unfolding status). It indicates that the corresponding group will be un-

folded by Tobias into a test suite, in this case us is equal to true. In the case
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group GroupName [ attribute = value , ...] {

Sequence of instructions

OR Set of instructions

OR Set of values

}

Figure 3.9: Form of TSLT test pattern

where us is equal to false (default value), the group is intended to be used

in other group definitions. The group definition (body) can be a sequence of

instructions, a set of instructions, or a set of values. The body of the group

uses a syntax similar to Java. In the following, we present the different types

of group body.

Group of instructions sequence

In the body of this group we define a sequence of instructions separated by a

semicolon.

Fig. 3.10 presents a group of instructions sequence. The pattern begins

by creating an IUT from the EPurse class. It next credits the purse with the

amount of 100 and debits it with the amount of 50. Afterwards, it assigns

to a variable x the balance value. It checks in final whether the value of the

balance is positive.

group PurseSchema [us=true] {

EPurse ep = new EPurse();

ep.credit(100);

ep.debit(50);

int x = ep.getBalance();

assertTrue(x >= 0);

}

Figure 3.10: Group of instructions sequence in TSLT

Tobias unfolds the test pattern PurseSchema into one test case. The com-

bination is performed only when the pattern contains a set of values or a set

of instructions.
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Group of values

The group of values is used to define a set of values for an operation parameter

that is subject to combinatorial unfolding. Fig. 3.11 presents two possible

group PurseSchema1 [us=true] {

EPurse ep = new EPurse();

ep.credit(@CreditValues);

ep.debit([20, 50]);

assertTrue(x >= 0);

}

group CreditValues {

values = [50, 60];

}

Figure 3.11: Group of values in TSLT

ways to define a group of values in TSLT. The first way is to define a named

group of values. For instance, the credit parameter refers to a group of values

(named CreditValues) containing values 50 and 60. The second way is to

define an unnamed group of values. In this case, the set of values is defined

directly in the parameter (as for the debit parameter we defined 20 and 50

values). The PurseSchema1 schema is unfolded to 4 test cases representing

the combinations of the two group of values.

Group of instructions set

The group of instructions set is used to define at a specific point in the schema

a disjunction (or choice) between several instructions. In Fig. 3.12, a group of

group PurseSchema2 [us=true] {

EPurse ep = new EPurse();

@Transaction;

assertTrue(x >= 0);

}

group Transaction {

ep.credit(50) | ep.debit(20)

}

Figure 3.12: Group of instructions set in TSLT

instructions (named Transaction) defines a choice between a call to credit with
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the amount of 50 or a call to debit with the amount of 20. The PurseSchema2

schema is unfolded into 2 test cases, one test case calls the credit operation

and the other one calls the debit operation. Similar to the group of values,

the group of instructions can be used directly in the schema without name.

Iteration

An iteration construct can be used to repeat a set of instructions a specified

number of times. In Fig. 3.13, the credit operation call is repeated from 1 to

4 times. The iteration construct is denoted in this case by enclosing the lower

bound and the upper bound into braces separated by a comma. The debit

operation call is repeated exactly 5 times. In this case, the iteration construct

is denoted by enclosing a fix number into braces.

group PurseSchema3 [us=true] {

EPurse ep = new EPurse();

ep.credit(100){1,4};

ep.debit(30){5};

assertTrue(x >= 0);

}

group Transaction {

credit(50) | debit(20)

}

Figure 3.13: Iteration construct in TSLT

Summary for TSLT language

Writing a test pattern in the TSLT syntax is easier compared to the XML

syntax. It does not require a lot of time to be unlearned. It has been used

successfully by master students, and many of our industrial and academic

project partners and they found it an easier language for test pattern defini-

tion.

The TSLT language was developed during our master thesis [Triki 2010].

In the following, all test pattern examples are written in the TSLT syntax.

In the next section, we present the principle of other techniques used in

Tobias called selectors and filters, the motivation of their application, and

examples of their definition in TSLT test pattern.
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3.4.4 Selectors and filters

Some defined test patterns can be unfolded into a huge number of tests. This

large unfolding occurs for example when the test pattern contains large sets

of input values. The large number of generated tests are impossible to save

or to execute due the limited memory or CPU resources. To reduce the size

of the generated test suite, Tobias offers to the test engineer the possibility to

define filtering and selection mechanisms.

A filter is a property defined by the test engineer that must be fulfilled by

a test case. It is expressed as a boolean function over the text of the test case,

or over its syntax tree. Filters provide a simple way to reduce a test suite by

keeping only the required tests. It is up to the engineer to develop a good

filter to not eliminate relevant tests. Filters are not supported by TSLT, but

they can be expressed using selectors.

The selector mechanism is another mechanism of Tobias to reduce the size

of a test suite. While a filter applies to a single test case, a selector is applied

to the test suite and gives a subset of tests that satisfies a given criterion. For

example, standard selectors offered by Tobias, perform random reduction over

the test suite. They select randomly a specified number of tests from the test

suite. Using TSLT syntax we are able to define selectors in test patterns.

In Fig. 3.14 we present an example of test pattern

PurseSchemaWithoutSelector that is a sequence of two group calls

checkPinGroup and TransactionGroup1To6. checkPinGroup performs an

authentication using the checkPin operation using 7 values for its parameter.

TransactionGroup1To6 group performs 1 to 6 calls to credit or debit oper-

ations using 4 values for their parameters. PurseSchemaWithoutSelector is

unfolded into 2 097 144 test cases = 7 (Unfolding of checkPinGroup group)

* 299 592 (Unfolding of TransactionGroup1To6 group). We redefine the test

pattern in PurseSchemaWithSelector by introducing selector mechanism to

reduce the number of tests.

We specify the selector in TSLT using the selector key. For example, the

selector randomSelection100 is a Java random selector, it selects randomly

100 tests from a group unfolding. Its code is defined in the SelectorRandom

Java class. To associate a selector to a group we use the selectorgroup key.

For example randomSelection_TransactionGroup1To6 is a selector applied

to the group TransactionGroup1To6. It is called instead of the group call in

the PurseSchemaWithSelector schema to unfold 100 tests from the unfold-

ing of TransactionGroup1To6. The test pattern PurseSchemaWithSelector

is unfolded into 700 test cases = 7 * 100 (result of Random selection from

TransactionGroup1To6 group unfolding). More complex selectors can be

defined in Java by the Tobias user to exploit the code of the test cases, or
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group PurseSchemaWithoutSelector {

@checkPinGroup;

@TransactionGroup1To6;

}

group checkPinGroup {

iut.checkPin ([1234,5678,9123,4567,8912,3456,7891]);

}

group TransactionGroup1To6 {

(iut.credit ([0,-1,100,5000]) | iut.debit([50,150,5000,-1]))

{1,6};

}

group PurseSchemaWithSelector [us=true] {

@checkPinGroup;

@randomSelection_TransactionGroup1To6;

}

selector randomSelection100

(int nb=100, int percent=-1, long seed=-1)

[lang=java,file=SelectorRandom.class]

selectorgroup randomSelection_TransactionGroup1To6

[groupid=TransactionGroup1To6,

selectorid=randomSelection100, us=false]

Figure 3.14: A test pattern using selector technique

could even connect to the code or the specification of the system under test

to measure some coverage.

3.4.5 Towards Model-based filtering

Combinatorial techniques allow exploring many different behaviors of the sys-

tem by combining relevant input values. However, they do not rely on a

specification of the SUT. Thus, generation may lead to a large number of

tests that correspond to illegal inputs or sequences of calls whose execution

results in inconclusive verdicts. This kind of test is called in the following

invalid test.

A test which contains an operation call that violates the op-

eration precondition is invalid. We take the example of test 3 :
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iut.checkPin(1234); iut.debit(50); presented in Fig. 3.5. We assume

that before calling checkPin operation, the instance under test (iut) of the

Purse class was created, initialized and the balance contains the zero value.

The test 3 is invalid if the precondition of debit states that the purse must

store more money than the amount debited. For the test suite in Fig. 3.5,

there are in total 26 invalid test cases.

The invalid tests can be useful for test robustness, which consists to execute

the system with illegal inputs. However, in a context of conformance testing,

one aims at checking whether the specification requirements are met or not in

the SUT. In these conditions, invalid tests according to the specification must

be discarded from the test suite.

We call a Model-based filtering strategy, the technique that relies on the

use of models to filter out invalid tests. The idea is to execute or evaluate

the tests against a specification. The next chapter presents research works

proposing to use a specification to discard invalid tests and tests which do not

provide the expected outputs.
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In this chapter we present the notion of model-based filtering. This is our

first contribution in combinatorial context to reduce a test suite. It consists

in using a formal specification to filter out invalid test cases. We remind

that an invalid test is a test that contains illegal inputs or sequences of calls

whose execution (or animation) on the specification results in inconclusive

verdicts. In this case, the specification provides the test oracle. It defines

with unambiguous representation the requirements that have to be met by a

system.

The specification of the SUT can be embedded in the system source code

as JML specifications (Java Modeling Language). Using JML we are able to

define system behavior aspects inside Java code. It can also be outside the

source code in the modeling artifacts as OCL specification for UML designed

systems.

Before presenting our filtering strategy (from Sect. 4.3 to Sect. 4.5),

we first present in Sect. 4.1 and Sect. 4.2 the principle of the source code

embedded specification and external specification. We give some examples

of specification languages from the literature. We also present examples of

researches that use these languages to evaluate test execution. In Sect. 4.6 we

present the limits of our model-based filtering strategy. Sect. 4.8 gives some

research works related to our contribution. Sect. 4.9 draws the conclusion of

this chapter.

4.1 The source code embedded specification

Specifications can be embedded as assertion properties in the source code of

the program under test, in a language extension to the programming language.

These assertions are executed at run-time to check whether they are verified

or not. These assertions are also called contracts and software development

methods using such technique are called Design by Contract (DBC) methods

[Meyer 1992].

Many embedded specification languages are reported in the literature. We

present here Anna and JML.

4.1.1 Anna specification language

Anna (Annotated Ada) is an assertion language extension to Ada that al-

lows to specify the intended behavior of programs [Luckham 1987]. It is the
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function IntSquareRoot (X: INTEGER) return INTEGER is

--| where

--| X >= 0,

--| return R:INTEGER => R*R <= X and (R+1)*(R+1) > X;

begin

...

end IntSquareRoot;

Figure 4.1: Anna code

“primary ancestor of many of the more recent executable assertion languages”

[Baresi 2001].

The Anna specification is inserted as annotations (comments fields) within

Ada programs. The Anna annotated program is called a "self-checking" pro-

gram, because for each annotated code encountered, it is checked for correct-

ness to the associated code.

The specifications are defined in Anna language as a set of constraints. The

violation of an asserted property raises the predefined error ANNA ERROR.

In Fig. 4.1, we give an example of a square root function for natural num-

bers. The precondition of the function (X>=0) is specified after the where

keywords. The return keyword specifies the postcondition (R*R <= X AND

(R+1)*(R+1) > X).

The annotations are marked as comments in the Ada syntax where each

line begins with --|. In [Hagar 1996], the authors use the Anna formal speci-

fication language as a test oracle to check the correctness of an avionic control

system.

4.1.2 JML specification language

Java Modeling Language (JML) is another embedded specification language

[Leavens 2006, Cheon 2002]. It defines system behavior inside Java code. The

correct execution of a method can be specified using invariants, pre- and post-

conditions.

An invariant assertion can be used to define conditions that hold in all

states of the class instance. The pre- and the post-condition have to be ver-

ified respectively before and after the execution of the method. JML spec-

ifications are written in special annotation comments, which start with an

at-sign (@). JML uses the requires keyword to specify the client’s obligation

(pre-condition), the ensures keyword to specify the implementor’s obligation

(post-condition) and the invariant keyword to define an invariant condition.

To check the JML assertions at runtime, they are translated into Java instruc-
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//@ requires X >= 0;

/*@ ensures \result*\result <= X && (\result+1)*(\result+1) > X

@*/

public static Integer IntSquareRoot(Integer X) {

/*...*/

}

Figure 4.2: JML specification example

tions and added to the code of the specified program.

In Fig. 4.2, we define the pre- and post- conditions for the method IntSquare-

Root.

In next section we present specifications that are defined outside the source

code.

4.2 The source code external specification lan-

guages

The previous specifications have to be inserted in the program to test and ex-

pressed in specification languages intended to be checked at run-time. Other

specifications can be defined outside the source code of the program under test.

They can be used to design a system by translating the informal requirements

into formal ones. Unlike the previous specification languages, these ones are

completely independent from the technologies used for the system implementa-

tion. However, like the embedded specifications, these external specifications

can be used as a test oracle to evaluate tests execution. VDM, Z and OCL

are examples of such languages.

4.2.1 VDM language

The Vienna Development Method (VDM) was originally developed at the IBM

laboratories [Bjørner 1978]. It is a method for modeling computer-based sys-

tems, using formal specifications. The VDM Specification Language (VDM-

SL) allows to specify a system using mathematical objects, like sets, sequences,

maps, etc. It has an extended form, VDM++, used to specify object oriented

systems with parallel and real-time behavior.

The VDM-SL language has an executable character and it is evaluated in

VDM tools environment as well as in the Overture open source tool built on

top of Eclipse platform. In Fig. 4.3, we specify the pre- and post- conditions

for the method IntSquareRoot using the VDM-SL language.
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IntSquareRoot (X: int) R: int

pre X >= 0

post R*R <= X && (R+1)*(R+1) > X

Figure 4.3: VDM specification example

The VDM specification can be used as test oracle to check the correct-

ness of tests. In [Aichernig 1999], the authors propose an approach to test a

black-box system using VDM specification as test oracle. In [Ledru 2004], the

authors use VDM specification to check the correctness of test cases generated

from a combinatorial unfolding.

4.2.2 Z language

Using the Z formal specification language [Spivey 1989], one can specify the

intended behavior of a system using familiar mathematical objects: sets, bags,

functions, integers, etc. It is a language independent from the programming

languages and the implementations details. Using the Z language the specifica-

tion is decomposed into small pieces called schemas. They are used to describe

both static and dynamic aspects of a system. The static aspect describes the

state space by defining a set of attributes and their types. Moreover, it in-

cludes the invariant conditions that must hold for every state transition. The

dynamic aspects include the operations, the input/output relationships and

the possible state changes.

In Fig. 4.4, we give an example of a Z schema, representing the IntSquare-

Root operation. Mikk [Mikk 1995] proposes an approach to generate an exe-

IntSquareRoot

X ?,R! : N

X ? >= 0

X ? >= R! ∗ R!

X ? < (R! + 1) ∗ (R! + 1)

Figure 4.4: Z specification example

cutable test oracle from a Z specification by constraining specifications to an

executable subset that can be translated into C or C++ code. To be able

to execute the result, the process has to transform all the infinite types to



38 Chapter 4. Model-Based filtering of combinatorial tests

finite ones. The iteration inside the predicate must be finite. The quanti-

fied expressions ranges have to be finite or transformable to a finite one. In

[Coppit 2005], the authors propose an approach for revealing faults by gener-

ating assertions from formal specifications (including Z) and inserting it into

the source code.

4.2.3 OCL language

The Object Constraint Language (OCL) [OMG 2012] is another formal spec-

ification language. It is used within object-oriented models, mostly within

UML diagrams. It allows to describe additional constraints about the objects

in the model that can not be expressed by the graphical modeling language.

Such constraints are usually described in natural language, but it may result

in ambiguities. Using OCL it is possible to specify these constraints with

precise and unambiguous representation. The OCL constraints may be in-

variants that must hold for every state of the class instance, or preconditions

and postconditions that check the transition from a pre-state to a post-state

upon an operation call. The OCL language allows to:

• navigate within the object-oriented model,

• manipulate sets and sequences of objects by performing special opera-

tions,

• to build first order (logic) statements by using universal/existential

quantifiers.

Let’s consider a class Math [Packevičius 2007] in UML containing a method

IntSquareRoot to compute the square root for integer numbers. The method

signature is defined as follows: public int IntSquareRoot (x: int). It is ex-

pressed in OCL in Fig. 4.5.

context Math::IntSquareRoot (x: int) : int

pre: x >= 0

post: (result*result) <= x AND ((result+1)*(result+1) > x)

Figure 4.5: OCL specification example

In [Cheon 2010], the authors propose an approach for automating the test

oracle in Java programs, to filter randomly selected test data and determining

test results. They define constraints in OCL language and translate them

into runtime assertions, written in the Aspect oriented extension for Java

(AspectJ).
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We have seen in Sect. 4.1 and Sect. 4.2 the different specification languages

used to evaluate test execution. These specifications are useful to decide on

test validity. We remind that our problematic point is to discard invalid

tests and tests which do not provide the expected outputs. We rely on a

specification (or model) to evaluate the validity of the generated tests. In

next section, we present our model-based approach to filter tests.

4.3 Filtering combinatorial test suites

Given an executable specification defined in a language X and animation

engine for the language X, it is possible to animate some tests. We can

construct a tool that couples the test generator and the animator engine. The

output of the test generator tool is the input of the animator tool. Doing this

presents two advantages:

1. It is possible to filter the invalid tests according to the specification.

2. It is possible to record outputs of the animation and compute expected

outputs as oracle.

Our model-based approach is developed to resolve especially the problem of

the test oracle that is not provided for Tobias generated tests. In our research

work and in the context of the ANR TASCCC project, we use a UML/OCL

specification as a test oracle. The Tobias generated tests are animated and

filtered on an UML/OCL model using the CertifyIt tool developed by the

Smartesting company1. In the following, we present a case study on which

illustrations of our approach are presented.

4.3.1 Case study

We consider an example of a smart card application, representing an electronic

purse (e-purse). This purse manages the balance of money stored in the purse,

and two pin codes, one for the banker and one for the card holder.

The e-purse has a life cycle (Fig. 4.6), starting with a Personalization

phase, in which the values of the banker and holder pin codes are set. Then

a Use phase makes it possible to perform standard operations such as holder

authentication (by checking his pin), crediting, debiting, etc. When the holder

fails to authenticate three consecutive times, the card is invalidated. Unblock-

ing the card is done by a banker’s authentication. Three successive failures in

the bank authentication attempts make the card return to the Personalization

1http://www.smartesting.com/
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Perso

Use

Invalid

SetBPC,SetHPC

setBPC,SetHPC,

checkpin

checkPin, credit,

debit, getBalance

SetHPC, 

authBank,

checkPin

checkpin

authBank

setHPC

Method signature Informal description

beginSession(int) Opening of session

endSession() Termination of session

setBpc(int) Sets the bank’s pin

setHpc(int) Sets the holder’s pin

checkPin(int) Identifies the holder

authBank(int) Identifies the bank

credit(int) credit of the purse

debit(int) debit of the purse

getBalance() value of the balance

Figure 4.6: The main modes of the bank card and the main operations

phase. Each sequence of operations is performed within sessions, which are

initiated through different terminals.

This example has originally been designed to illustrate access control mech-

anisms, and it is used as a basis for test generation for access control2. It was

already used to illustrate test suite reduction with Tobias [Dadeau 2007]. The

original example was specified in JML. We have translated this specification

into a UML/OCL model for the Smartesting Test CertifyIt tool.

An example of the pre- and post-conditions of the checkPin(int) opera-

tion is given Fig. 4.7. The pre-condition requires that the session is opened

using the beginSession method, the mode is put to Use by setting the user

and the holder pin code, the terminal is PDA and the number of remaining

attempts is positive. Post-conditions represent the code to be animated by

CertifyIt if the pre-condition is verified. In the postcondition of the checkPin

operation, if the pin code is correct, the card holder is authenticated else the

number of allowed tries is decremented. If the number of maximum tries is

reached, the card is set to the Invalid mode.

In next section we present the CertifyIt tool and its specific variant of

OCL.

4.3.2 Automated oracle with the CertifyIt tool

The OCL supported by the CertifyIt tool is an imperative variant of OCL,

inspired by the B language [Abrial 1996]. The variables appearing on the right

hand side of a = sign are implicitly taken in their pre-state (usually denoted

in OCL by @pre). In CertifyIt, information about the behavior of operations

2the original code of the application (in B and Java/JML) is available at

http://membres-liglab.imag.fr/haddad/exemple_site/index.html

http://membres-liglab.imag.fr/haddad/exemple_site/index.html
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Method: checkPin(pin : int)

Pre-condition:

(self.isOpenSess_ = true and self.mode_ = Mode::USE and

self.terminal_ = Terminal::PDA and self.hptry_ > 0) = true

Post-condition:

if (pin = self.hpc_) then /**@AIM: HOLDER_AUTHENTICATED */

self.isHoldAuth_ = true and self.hptry_ = self.MAX_TRY

else /**@AIM: HOLDER_IS_NOT_AUTHENTICATED */

self.hptry_ = self.hptry_@pre - 1 and self.isHoldAuth_ = false and

if (self.hptry_ = 0) then /**@AIM: MAX_NUMBER_OF_TRIES_REACHED */

self.mode_ = Mode::INVALID

else /**@AIM: MAX_NUMBER_OF_TRIES_IS_NOT_REACHED */

true

endif

endif

Figure 4.7: Pre and post-condition for checkPin(int) operation

is captured in assertions associated to the operations. In the perspective of

animation, these assertions must characterize a deterministic behavior.

In fact, the OCL language is a pure specification language [OMG 2012];

it means that the evaluation of an OCL expression is done without effects on

the model. It simply returns a value. The modified OCL version of CertifyIt

allows to change the state of the instance on which the expression is called.

The animation of an operation call on the model using OCL allows to change

the values of the instance attributes when the expression contains assignments

of values to these attributes. The initial state of an operation call in the

sequence is the final state from the previous operation call animation.

Another construct of CertifyIt that can also be used in the operation OCL

code is the tag clause. It is defined as a comment very often located in the

conditional branches (for example in Fig. 4.7, the tags begin by the /**AIM

keyword). It is not evaluated by the animator but collected and displayed

by the tool after each operation call animation. A set of tags covered by an

operation animation represents an operation behavior. For instance for the

checkPin operation, three behaviors can be identified:

B1 = {HOLDER AUTHENTICATED}

B2 = {HOLDER IS NOT AUTHENTICATED, MAX NUMBER OF TRIES REACHED}

B3 = {HOLDER IS NOT AUTHENTICATED, MAX NUMBER OF TRIES Is Not REACHED}

The CertifyIt tool, is developed by the Smartesting company. It is used in
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the context of the TASCCC project to provide an engine for test animation.

The animation engine of CertifyIt takes as entries a test case as a sequence of

operation calls and a UML/OCL model. The model contains the specification

of the classes that represent the system under test. It contains also the class

instances that will be used by the tests. The goal of these instances is to

specify the initial state of the system for test animation. The goal of the test

animations is :

• To verify the consistency of the specification

• To compute and observe the result (output and state) of the test

• To check the validity of the test according to the model

The answer of validity can be given by the tool after each operation call (called

step) of the test case. If an instantiated call in the sequence violates the pre-

or the post-condition of the corresponding operation, the animation stops and

the test is considered as failed (invalid according to the model). CertifyIt also

reports the tags covered by the last call and allows the evaluation of OCL

predicates at any intermediate state in the sequence of operations.

In the next section, we present technical details about the process of test

schema unfolding using Tobias and test animation using the CertifyIt tool.

4.3.3 Unfolding and animation process

The process of generation, animation and filtering of test cases by coupling

Tobias and CertifyIt tools is presented in Fig. 4.8. The starting point is a

schema file including a test pattern written in TSLT. Three steps are identified

to produce the test evaluation results:

1. The schema file is unfolded by the Tobias tool which generates one

or several test suite files written in the XML output language of the

tool (outob file). For each group marked in TSLT as us=true, Tobias

produces an outob file. This file contains all abstract test cases generated

by the combinatorial unfolding of the corresponding group.

2. The outob files are translated into Java/JUnit test suites (using TDTest-

Generator.xsl) including all necessary information to animate test cases.

Each JUnit test case interacts with the CertifyIt API (TD API3) to be

animated on the model (TD model file). We take advantage of the JUnit

framework and the Java CertifyIt API to animate the tests in a popular

and familiar tool for engineers, and to benefit from the JUnit structure

of test suites.
3TD = Test Designer, a previous version of CertifyIt tool
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3. JUnit executes the test suites. Each test case is animated on the Certi-

fyIt model through the CertifyIt API. The animation process allows to

identify and filter out invalid test cases, i.e. the ones which include an

operation call that violates its pre- or post- condition.

Figure 4.8: The process of generation and filtering test cases (standard pro-

cess)

The animation of test cases proceeds sequentially. If an operation call (step)

fails, the animation of the test case stops and it is declared as failed and

discarded from the test suite. The valid ones are saved to a test repository

and used afterwards to test the application.

In the next section, we present an example of test schema defined in TSLT

language. We also present the result of its Tobias unfolding and CertifyIt

animation of the unfolded test cases.

4.3.4 Unfolding and animation process illustration

To illustrate the unfolding and animation process, let us consider the

EPurseSchema1 test pattern presented in Fig. 4.9. It begins by creating

an instance under test. Next, it personalizes the card by setting the holder

and banker pin codes. Then, it authenticates the card holder. Finally, it per-

forms credit or debit operations using some amounts. The group that will be

unfolded by Tobias is EPurseSchema1 (us=true). It is a sequence of 4 groups:

IUT, Personalize, AuthenticateHolder and Transaction. The IUT group

defines a new instance of class EPurse. Then, the Personalize group opens a

new ADMIN session, sets the banker and the holder PIN codes, and finally closes

the session. The AuthenticateHolder group starts a session and checks the

pin of the holder one to four times, and finally the Transaction group allows
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group EPurseSchema1 [us=true, type=instruction] {

@IUT; @Personalize; @AuthenticateHolder; @Transaction;}

group IUT [type=instruction] { EPurse ep = new EPurse(); }

group Personalize [type=instruction] {

ep.beginSession(Terminal.ADMIN); ep.setBpc(@BankPinValue);

ep.setHpc(@UserPinValue); ep.endSession(); }

group AuthenticateHolder{

ep.beginSession(Terminal.PDA); ep.checkPin(@UserPinValue){1,4}; }

group Transaction [type=instruction] {

(ep.credit(@Amounts) | ep.debit(@Amounts)); }

group BankPinValue [type=value] {values = [12,45];}

group UserPinValue [type=value] {values = [56,89];}

group Amounts [type=value] { values = [-1,0,50]; }

Figure 4.9: A test pattern to illustrate the unfolding and animation process

to do credit or debit transactions. We use groups of values in some operation

calls. For instance, the parameter of the setBpc method has 2 possible values

defined in group BankPinValue: 12 and 45.

The EPurseSchema1 pattern is unfolded into 720 test cases:

IUT unfold = 1 ∗
Personalize unfold = (2 ∗ 2) ∗
AuthenticateHolder unfold = (21 + 22 + 23 + 24) ∗
Transaction unfold = (3 ∗ 2)
21 in the AuthenticateHolder group unfolding corresponds to the unfolding of

@UserPinValue (2 values) repeated one time. 22 corresponds to the unfolding

of @UserPinValue repeated two times, and so on for the 4 repetitions, and

similarily for group transactions. In Fig. 4.10, examples of test cases unfolded

from EPurseSchema1 are given.

The abstract test cases produced by Tobias are translated to Junit tests

and animated by CertifyIt tool on the electronic purse model. Only 168 test

cases are reported by JUnit as succeeded. These are the valid tests (i.e. which

satisfy the pre-conditions).

For instance, TC3 is valid, contrary to TC267 (which executes 4 consecutive

calls to the checkPin operation with the wrong Pin code) and TC720 (which

executes a debit operation but never credits).

Let now consider that our objective is to make more combinations of credit

and debit operations, by adding an iteration construct to Transaction group.

For example, if we put an iteration {1,10} to the Transaction group, it would

result into 8 707 129 200 test cases. This would be impossible to unfold because
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...

TC3: EPurse ep = new EPurse(); ep.beginSession(Terminal.ADMIN);

ep.setBpc(12); ep.setHpc(56); ep.endSession();

ep.beginSession(Terminal.PDA); ep.checkPin(56); ep.credit(50)

...

TC267: EPurse ep = new EPurse(); ep.beginSession(ADMIN);

ep.setBpc(12); ep.setHpc(89); ep.endSession();

ep.beginSession(Terminal.PDA); ep.checkPin(56); ep.checkPin(56);

ep.checkPin(56); ep.checkPin(56); ep.credit(50)

...

TC720: EPurse ep = new EPurse(); ep.beginSession(Terminal.ADMIN);

ep.setBpc(45); ep.setHpc(89); ep.endSession();

ep.beginSession(Terminal.PDA); ep.checkPin(89); ep.checkPin(89);

ep.checkPin(89); ep.checkPin(89); ep.debit(50);

Figure 4.10: Examples of test cases unfolded from EPurseSchema1

Tobias would run out of disk space to store the resulting file. When a test

pattern becomes complex by using many input values, iteration constructs

and/or instructions set, it may correspond to a huge number of tests, that

would be impossible to unfold. We call such test patterns as explosive test

patterns.

In the section 4.4, we present new pattern constructs proposed to make it

possible to take such explosive test patterns into account.

4.4 New pattern constructs

Here, we introduce three new constructs for the Tobias input language. These

constructs support new techniques for filtering test cases. This allows to

control the size of the produced test suite, and to incrementally pilot the

combinatorial unfolding process. These constructs are inspired by the jSyn-

oPSys scenario language [Dadeau 2009] and are syntactically and semantically

adjusted to meet our needs.

4.4.1 The State predicate construct

The state predicate construct inserts an OCL predicate in the test sequence.

The predicate expresses that a property is expected to hold at some point of

the test sequence w.r.t. the model. Tests whose animations do not satisfy

this OCL predicate at that point should be discarded from the test suite. It

allows the tester to select a subset of the unfolded test suite featuring a given

property at execution time.
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For example, we can use this construct after Transaction group to select

tests which result in positive balance. The pattern is defined as follows:

group EPurseSchema5 [us=true, type=instruction] {

@IUT;

@Personalize;

@AuthenticateHolder;

@Transaction❀({ep} , self.balance_ > 0);

}

The TSLT construct takes the form ❀(set of targets , OCL predicate),

where the set of targets identifies the objects (which correspond to self in

the OCL predicate) on which the OCL predicate will be verified. Here, the set

of targets is only one object that is the IUT ep. The OCL predicate requires

that the balance value should be positive. The cases where we get a positive

balance is when the credit operation is called with the value of 50. In the

168 valid tests unfolded from EpurseSchema5, only 56 tests result in positive

balance. Therefore using this filtering construct more tests are discarded (112

tests were removed) comparing to the standard filtering (filtering tests which

contain operation call that fails precondition).

4.4.2 The behaviors construct

We remind that the electronic purse specification is annotated by tags to

distinguish the different behaviors of an operation. For example, the checkPin

specification is annotated with tags in the conditional branches to differentiate

a successful authentication from a failed one. When the tests are animated on

the specifications using CertifyIt tool, it is possible to save the covered tags.

It is then possible to filter tests on the basis of the covered tags.

We propose another filtering construct called behavior construct. It applies

to an operation and keeps the tests whose animation covers a given behavior,

expressed as a set of tags (see Sect. 4.3.2).
In the AuthenticateHolder group (Sect. 4.3.1), the tests that fail the

authentication are valid tests because they verify the pre and post conditions
of the checkPin operation. However, these tests do not allow to perform
subsequent operations such as credit and debit. Therefore, we define a behav-
ior construct to select the tests which succeed the authentication by select-
ing the authentication sequences whose last call to checkPin covers the tag
@AIM:HOLDER_AUTHENTICATED (see Fig. 4.7). The test pattern is redefined as
follows:

group EPurseSchema6 [us=true, type=instruction] {

@IUT;
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@Personalize;

@AuthenticateHolder2;

@Transaction;

}

group AuthenticateHolder2 {

ep.beginSession(Terminal.PDA);

ep.checkPin(@UserPinValue){0,3};

ep.checkPin(@UserPinValue)/w{set(@AIM:HOLDER_AUTHENTICATED)};

}

After the last call to checkPin, we put the symbol /w (with) and we define a

set of tags that must be activated after the operation execution. Here, when

the pin code is correct, the tag @AIM:HOLDER AUTHENTICATED is covered in the

post-condition of checkPin (see Sect. 4.3.1). When a test fails to cover the

specified behavior by calling the checkPin operation, the animation is stopped

and the test is declared as failed.

Using this construct at the point of authentication results in 168 valid

tests that cover the @AIM:HOLDER AUTHENTICATED tag. This is the same

number of selected tests as for EPurseSchema1 unfolding. The only differ-

ence between the two processes of unfolding and animation (using respectively

EPurseSchema1 and EPurseSchema6 ), is that using the behavior construct

we avoid the animation of subsequent operations when the specified behavior

is not covered. Therefore, by defining this construct we save time of unneces-

sary operation calls animation.

The predicate and the behavior constructs provide new ways to filter test

cases. These new kinds of filtering are added in the third step of the process of

generation and animation of test cases (see 4.3.3). In this step, in addition to

the filtering according to operation pre- and post-condition, tests are discarded

if they do not fulfill some state predicate or if they include some operation

call that fails to activate the defined behaviors. Those constructs are used as

directives in the test pattern to get the desired tests by discarding test cases

which do not achieve the intent of the test engineer. The use of such filtering

construct allows also filtering tests at early stage in the schema and avoid

animation of failing subsequent operations (such as avoiding the animation

of credit and debit operation in the example of EPurseSchema6 by using the

behavior construct).

In next section we present another construct to filter test cases.

4.4.3 The Filtering key

The filtering key allows to select a subset of valid tests at some position and
to discard the others. TSLT provides four filtering keys (_ONE, _ALL, _n,
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_n%) to keep one, all, n or n% of the valid prologues. If we want to select
all of them, we use _ALL. If we need just one, we use _ONE. _n (resp. _n%)
randomly selects n (resp. n% of the) test cases amongst the valid ones. For
example consider EPurseSchema7. The prologue group leads the purse to a
state where the holder is authenticated. If the test engineer simply wants
to keep one sequence which performs the prologue satisfactorily, he can add
keyword _ONE after the prologue:

group EPurseSchema7 [us=true, type=instruction] {

@Prologue_ONE;

@Transactions;

}

group Prologue [us=true, type=instruction] {

@IUT;

@Personalize;

@AuthenticateHolder2;

}

It means that first, the Prologue group will be unfolded. Second, un-

folded elements are animated to get the valid ones. Third, one element is

taken randomly from the valid ones and combined with the next instruction

(@Transactions) to provide the final tests. More details about filtering keys

processing of a test pattern similar to EPurseSchema7, will be given in Sect.

4.5.2.

The choice of the _ALL filtering key leads to safe filtering, since we keep all

the valid tests at some specific point. However, the use of this key can be not

relevant when the set of valid tests generated from the prologue is very large.

The filtering keys :_ONE, _n and _n%, can be used to select a smaller set

of valid tests. However, they can omit relevant sequences for the subsequent

operations.

By using filtering keys in the test pattern, we introduce a new concept of

test pattern unfolding that consists in processing the test schema in many it-

erations. In each iteration, unfolding and animation techniques are performed

for a sub-sequence of schema instructions. In the next section, we present the

algorithm that allows to incrementally unfold and animate patterns by taking

advantage of these filtering keys. We illustrate also by some examples, how it

becomes possible to address explosive patterns using the incremental process.
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1 algorithm Incremental_Generation_And_Execution_Process (p):

2 while( p contains at least one filtering key )

3 Let (prefix _1stKey ; postfix) match p in

4 validPrefixes := apply_Standard_Process(prefix);

5 validPrefixesSubset := Select_Subset_Of_

6 According_To(1stKey, validPrefixes);

7 p := (validPrefixesSubset ; postfix);

8 end while

9 result := apply_Standard_Process(p);

10 end

Figure 4.11: The incremental unfolding algorithm

4.5 The incremental unfolding and animation

process

4.5.1 Algorithm

The standard process of test unfolding and animation presented in Sect. 4.3.3

requires to completely unfold the test patterns and to animate each test case

of each test suite. At this stage, we did not take advantage of filtering keys

(_ONE, _ALL, _n, _n%). These filtering keys can be applied on the resulting

test suite to select the relevant test cases. In this section, we will see that the

early application of filtering keys may lead to significant optimizations of (a)

the unfolding process and (b) the animation of the test suite.

The incremental process is defined for the unfolding of a single pattern p.

It can be generalized to unfold multiple patterns. Its algorithm is given in

Fig. 4.11 and performs the following steps:

• At each iteration, pattern p is divided into a prefix, located before the

first filtering key, and a postfix, located after it (line 3 in the algorithm).

• The standard unfolding and filtering process of Sect. 4.3.3 is applied to

the prefix. It results into a group of valid unfolded prefixes (line 4).

• A subset of this group is selected randomly according to the filtering

key (see Sect. 4.4.3)(lines 5 and 6).

• This subset of valid unfolded prefixes is concatenated with the postfix

to form the new value of p (line 7).

• The process iterates until all filtering keys are processed in the pattern

(line 2).
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• A last unfolding is applied to the resulting pattern stored in p (line 9).

4.5.2 Example

To illustrate this incremental process, we process the test schema

EPurseSchema1 by inserting the _ONE key after AuthenticateHolder

group call. We get the following EPurseSchema8 test pattern:

group EPurseSchema8 [us=true, type=instruction] {

@IUT;

@Personalize;

@AuthenticateHolder❀({ep} , self.isHoldAuth_ = true)_ONE;

@Transactions;

}

Before calling @Transactions, we would like to choose just one (_ONE)

sequence of operations that succeeds holder authentication.

The prefix of this pattern is:

group EPurseSchema8pre [us=true, type=instruction] {

@IUT;

@Personalize;

@AuthenticateHolder❀({ep} , self.isHoldAuth_ = true);

}

This prefix is then unfolded using the standard process. The three steps

are executed to generate, animate and filter test cases. It unfolds into 120

tests, where 56 are valid. A valid test is chosen randomly amongst them and

inserted as a prefix in the new pattern:

group EPurseSchema8b [us=true, type=instruction] {

(ep.beginSession(ADMIN) ; ep.setBpc(45) ; ep.setHpc(56) ;

ep.endSession() ; ep.beginSession(PDA) ; ep.checkPin(89) ;

ep.checkPin(56) ; ep.checkPin(56) ;); @Transactions;

}

Since there is no remaining filtering key, the whole pattern will be unfolded

to generate the final test cases. This unfolding leads to 6 test cases (that

corresponds to the result of the Transaction group unfolding), where only 3

are valid. The final number of valid test cases may depend on the prefix that

will be chosen randomly. These test cases will be animated to discard the

invalid ones, and then produce the filtered test suite. This process is clearly

optimized since only 126 (120 + 6) test cases were completely unfolded,

instead of 720 (120 * 6) in the standard process. Consider now the pattern

EPurseSchema9 that uses the _ALL filtering key instead of _ONE:

group EPurseSchema9 [us=true, type=instruction] {

@IUT;
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@Personalize;

@AuthenticateHolder❀({ep} , self.isHoldAuth_ = true)_ALL;

@Transactions;

}

The prefix of the pattern is the same as for EPurseSchema8

(EPurseSchema9pre). The 112 valid test cases generated from this

prefix are inserted as a prefix. The new pattern created is:

group EPurseSchema9b [us=true, type=instruction] {

((ep.beginSession(ADMIN) ; ep.setBpc(12) ; ep.setHpc(56) ;

ep.endSession() ; ep.beginSession(PDA) ; ep.checkPin(56);) | ;

...

((ep.beginSession(ADMIN) ; ep.setBpc(45) ; ep.setHpc(89) ;

ep.endSession() ; ep.beginSession(PDA) ; ep.checkPin(89);

ep.checkPin(89); ep.checkPin(89); ep.checkPin(89);));

@Transactions

};

Unfolding EPurseSchema9b schema results in 672 (112 * 6) tests. Only 216

among them are valid tests. We can see the difference between using the

filtering key _ALL and _ONE in terms of the number of tests generated. The

advantage of using the _ALL key is that we produce all valid tests of the

pattern. The more tests are produced from the schema, the more are likely

to find errors and system vulnerabilities in the implementation. However, if

the number of values and the number of operations in the operation group

is large, the result of unfolding becomes large and it is thus more likely to

suffer combinatorial explosion. Therefore, for a complex test scenario, the

test engineer is the primary actor responsible to manage the test schema. He

can see after which instruction the number of tests will be large, and then,

he can insert the keys that he considers relevant at that point. If at some

specific point, all the paths leading there are important, he uses then the

_ALL key. Otherwise, he inserts the proportion key (n, n%, ONE) to select a

subset of valid tests.

4.5.3 Potential adaptations of the approach

We have presented here a new approach introduced in the process of test

schema unfolding. The standard combinatorial approach performs the values

combination for all instructions in the test pattern. However, for big sets

of values and/or big number of sets of values, the combinatorial unfolding

will result in big number of tests that would be impossible to unfold or to

animate/execute on the model/implementation.

The main idea of our approach is to process the test schema step by step.
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A step in our context is a sequence of operation calls. We compute the result

of unfolding for every step alone, we animate the resulted tests and we take

only the valid ones. Taking the valid tests at early stages reduces the number

of combinations, and then, helps to fight the combinatorial explosion.

The filtering mechanisms proposed in our approach are realized using con-

structs added to the test pattern language. The constructs proposed are

specific to Tobias and CertifyIt tool, however they can be adapted to be used

in other technical contexts.

The Tobias tool can be replaced by any combinatorial tool that makes pos-

sible to define a test schema, containing a sequence of operation calls applied

with a set of values. The input language of the tool can be extended with the

proposed filtering constructs: behavior and predicate filtering constructs. The

filtering key is independent of the combinatorial tool. It is used only to in-

crementally unfold the test pattern and to avoid computing the combinations

for the whole operation calls sequence.

The algorithm proposed in Fig. 4.11 processes the test pattern containing

keys. Then, a test pattern containing a subset of instructions is produced that

conforms to the input language syntax of the tool. The valid selected prefixes

are inserted also in the syntax of the input language of the tool.

To perform the animation for the generated tests, the combinatorial tool

is coupled with a model-based animator tool. The specifications used for

filtering tests can be external to the source code as Z or B specifications, or

internal to the source code as JML specifications.

For the case of JML, the tests are executed on Java implementation con-

taining the JML specifications. The implementations are compiled using the

jmlc compiler to translate the specifications into executable instructions, that

can be checked at runtime. In the case of Z specification, the predicate con-

struct has to be formulated in a Z syntax and verified using the Jaza tool. In

the case of JML specification, the predicate is formulated as a Java assertion.

This can be the case for other languages allowing the definition of assertions

inside the code.

To perform behavior filtering, tags inside specification or source code must

be defined to trace the covered operation branch. In Java/JML context, we

can create a logging system that traces a tag inside every operation branches.

The logging system generates a trace file containing for each test the list of

tags covered. This file is then used to decide which test does not satisfy the

behavior defined in the test pattern.

In the next section, we present the principal limitations of the approach,

that have to be addressed in future works.
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4.6 Approach limitations

The filtering keys used to incrementally process the test schema can only be

used in the main schema that will be unfolded. The processing of other groups

can not be addressed by our approach, i.e. we can not use the filtering key

inside auxiliary groups to select a subset of valid tests from its unfolding.

Moreover, keys can not be used inside a disjunction of operations to select

the valid prefixes for each of the operations inside the disjunction.

To illustrate this limitation, let us consider a group mainSchema that calls

Group1 representing a sequence of two operations (op0 and op1), then applies

a disjunction (or choice) between operations (op2, op3, op4). The schema is

described as follows:

group mainSchema [us=true, type=instruction] {

@Group1;

(op2(@V) | op3(@V) | op4(@V));

}

group Group1 {

op0(@V);

op1(@V);

}

group V [type=value] {values = [-1,0,1];}

A group of values V is applied to the operation parameter. This disjunc-

tion represents the possible operation paths that can be traversed after calling

the operation sequence op0; op1. For example op0(-1); op1(-1); op2(-1)

and op0(-1); op1(-1); op3(0); are two possible unfoldings of mainSchema.

The key filtering may not be inserted inside Group1, e.g. after op0(@V)

to take only the valid tests of the op0 calls because pattern matching of Fig.

4.11 is not applied recursively. The key may only be inserted after calling

@Group1 to take the valid tests results from the sequence of calls op0; op1. If

the number of calls corresponding to Group1 is large, combinatorial explosion

will take place before we can apply incremental filtering. The solution we

use to resolve this problem is to copy and paste the definition of Group1 into

mainSchema and insert a key after the chosen operation call. The problem

can also be addressed by changing the algorithm to match recursively the

definition of groups.

Moreover, the key filtering can not be inserted inside the disjunction as for

example inserting a _ALL key after op2(@V). Once again, pattern matching

will not work. It is only possible to insert the key after the whole disjunction,

i.e. as follows:

(op2(@V) | op3(@V) | op4(@V))_ALL;
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The insertion of keys after operations in the disjunction has the advantage

to select a subset of valid operations paths at this stage and avoid computing

all the possible combinations results from the whole disjunction group. For

instance if it was possible to apply the _ALL key for op2(@V), the algorithm

will unfold only op2(@V) and not the whole disjunction. The algorithm then

selects all (_ALL) succeeded prefixes from op2(@v) unfolding and insert it to

replace the disjunction.

This problem can be resolved by changing the algorithm to process also

keys inside disjunction elements. Only the elements that are followed by a

key are unfolded. Prefixes are then selected from the valid ones according to

the key. For instance, if we insert the _ALL key after op2(@V) and the _ONE

key after op3(@V) then all valid prefixes from op2(@V) unfolding are selected

and one valid prefix is selected from op3(@V) unfolding. The resulting valid

prefixes taken from the two unfoldings are inserted in the schema to replace

the disjunction.

Our approach allows selecting valid sequences of calls for a specific prefix.

These valid sequences are inserted in the schema. Then, the test schema is

unfolded and resulting tests are animated. The drawback of this technique

is that the prefixes are animated before selecting them, and then reanimated

after unfolding the new pattern. The animation of these prefixes is then

performed twice and we know that their animation is valid. Therefore, there is

an unnecessary time dedicated for reanimation. This problem can be resolved

by memorizing the animation result after each succeeded sequence. In a new

iteration, the results of animation of each succeeded sequence are taken by

the animation engine as initial state used to launch the animation of the new

operation sequences (not animated in the previous iteration).

In next section, we present improvements of our approach with respect to

previous works developed for Tobias tool, to master combinatorial explosion

using filtering mechanism.

4.7 Improvements with respect to previous

works on Tobias

In [Ledru 2004, Ledru 2007], authors proposed two techniques to master com-

binatorial explosion with Tobias: test filtering at execution time, and test

selection at generation time. Filtering at execution time is based on a simple

idea: if the prefix of a test case fails, then all test cases sharing the same

prefix will fail. In [Ledru 2004], an intelligent test driver is proposed which

remembers the failed prefixes, and avoids to execute a test case starting with

a prefix which previously failed. This idea is close to the one presented in
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our approach. Still, there are significant advances in the new technique pro-

posed here. First, the original technique required to produce the full test

suite. Every test was examined to check if it included a failing prefix. Our

new incremental process does not generate the full test suite, it incrementally

builds and filters the prefixes by alternating between unfolding and animation

activities. Because we avoid the full unfolding of the test suite, we are able to

consider test patterns corresponding to huge numbers of test cases. Another

advance of our approach is the definition of new constructs for test patterns

(state predicates, behaviors, filtering keys), which help invalidate earlier the

useless test cases in the unfolding process.

Selection at generation time is another technique, where one selects a sub-

set of the test suite based on some criterion. This selection takes place during

the unfolding process and does not require to execute or animate test cases.

In [Ledru 2007] authors propose to filter the elements of the test suite whose

text did not fulfill a given predicate. This predicate is freely chosen by the test

engineer and does not prevent to filter out useful test cases. For example, one

could filter out all test cases whose length was longer than a given threshold.

In [Dadeau 2007, Ledru 2007], authors investigated the use of random se-

lection techniques. These techniques are by essence unable to distinguish

between valid and invalid test cases, but they are able to reduce the number

of test cases to an arbitrary number whatever be the size of the initial test

suite.

Compared to these selection techniques, our incremental process does not

discard valid test cases when using the _ALL key, but makes the assumption

that the number of valid test cases is small enough to remain tractable. When

_ONE or _n or n% is used random reduction takes place.

In the next section we present some related research works.

4.8 Related works

4.8.1 JSynoPSys

The research work the closest to ours is the one done by Dadeau et al.

[Dadeau 2009]. They propose an approach to couple scenario based test-

ing and symbolic model animation, implemented in a tool called JSynoPSys.

Inspired from Tobias tool, Dadeau et al. propose to create scenarios in an

expressive language used to generate test cases. Many constructs have been

proposed in this scenario language, especially the ones that provide direc-

tives for test generation. They consist in restricting some behaviors (behavior

construct) or properties (state predicate construct) in the resulting test cases.
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Inspired from these constructs, we proposed the filtering mechanisms in TSLT

to master the combinatorial explosion.

Unlike Tobias tool, the JSynoPSys tool avoids the enumeration of param-

eters values in the scenario. It describes only the succession of operations that

a test should have, possibly with the intermediate states that should be cov-

ered by a test. The scenario description language of JSynoPSys tool contains

three layers:

• the sequence layer, where regular expression are used to define the se-

quence of operation calls. For example, iteration or disjunction con-

structs can be applied on operation calls.

• the model layer, where operation calls at specification level are described

(operations names), it represents the interface between the specification

and the scenario.

• the directive layer, it makes it possible to use constructs to drive the

test generation such as using the operation behavior coverage construct.

After defining a scenario, the tool instantiates the abstract parameters and

generates test cases by performing the animation of a B formal model using the

constraint solver of BZ-Testing-Tools. The animation is performed as follows.

The abstract parameter is replaced by a symbolic variable handled by the

constraint solver. Every operation is decomposed into behaviors. A behavior

is defined by two elements: the predicate that indicates its activation condition

and the substitution that represents the modification of the state variables.

Then, the symbolic animation is performed by exploring the behaviors of

operations defined in the scenario. When two operations are chained in the

scenario, using backtracking mechanisms, the constraint solver enumerates all

the possible combinations of behaviors for each operation. Instantiating the

symbolic variables is performed by solving the constraints such as the variable

input domain constraint, the system invariants and the operation pre- and

post- condition. An operation sequence in a scenario is said as feasible if

there exists at least one solution (by assigning values to the variables) after

solving the related constraints.

To illustrate the JSynoPSys principle, let us consider an electronic purse

application named Demoney [Dadeau 2009] defined in B language, similar to

the EPurse application presented in Sect. 4.3.1. We used two commands

(operations) of the system to create a scenario:

• PUT_DATA(p, data): it personalizes a smart card by setting different

card parameters (such as the maximum balance, the maximum flow and

PINs values). In Fig 4.12, we give the B specification of the PUT_DATA()

operation.
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• STORE_DATA(): it validates the card personalization and puts the system

in the use state.

Out ← PUT_DATA (p, data) ^=

PRE

p ∈ -128..127 ∧ data ∈ -32768..32767

THEN

IF (card_status = perso) THEN

IF p = SET_MAX_BALANCE ∧ data≥ 0 THEN

max_balance := data || out := sw_Success

ELSE

IF p = SET_MAX_DEBIT ∧ data ≥ 0 THEN

max_debit := data || out := sw_Success

ELSE

... /* remainder of the operation */

END

END

ELSE

Out := sw_Error_life_cycle

END

END

Figure 4.12: B Specification of PUT DATA operation

Let us consider the following test scenario defined using these two opera-

tions (this example was presented in [Dadeau 2009]):

PUT_DATA {4} . STORE_DATA ❀ (card_status = use)

It consists in finding solutions that begin by calling the operation PUT_DATA

4 times, next call STORE_DATA one time and put the card in the use phase.

To perform the symbolic animation from this scenario, abstract operation

parameters are replaced by symbolic variables handled by the constraint solver

and the behaviors of the operation are animated. An example of behavior of

the PUT_DATA operation is:

p ∈-128..127+∧ data ∈ -32768..32767 ∧ card_status = perso ∧

p = SET_MAX_BALANCE ∧ data ≥ 0

⇒ max_balance := data || out := sw_Success

The first part (before the right arrow) represents the activation condition

and the second part (after the right arrow) represents the substitution. The

symbolic animation is performed successively for operations by exploring the

possible behaviors combinations. It results in the following symbolic test case:
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PUT_DATA(SET_MAX_BALANCE, X1) . PUT_DATA(SET_MAX_DEBIT, X2) .

PUT_DATA(SET_HOLDER_PIN, X3) . PUT_DATA(SET_BANK_PIN, X4) . STORE_DATA()

Using the following constraints:

X 1 ∈ 0..32767,X 2 ∈ 0..32767,X 3 ∈ 0..9999,X 4 ∈ 0..9999,X 1 > X 2,X 3 6= X 4

Finally, a simple labelling technique is applied by solving the con-

straints and instantiating the symbolic variables. A possible test case is:

PUT_DATA(SET_MAX_BALANCE, 1) . PUT_DATA(SET_MAX_DEBIT, 0) .

PUT_DATA(SET_HOLDER_PIN, 0) . PUT_DATA(SET_BANK_PIN, 0) .

STORE_DATA()

We can summarize that the JSynoPSys technique relies on the use of model

to filter invalid solutions, similar to our approach. Moreover, we use similar

filtering mechanisms in the scenario language to master the combinatorial

explosion due to the large number of combinations. For example, JSynoPSys

tool can specify in a scenario whether all solutions will be returned for a

specific iteration or just one.

Unlike our approach that animates test cases generated from combination

of input values in the test pattern, JSynoPSys approach avoids the enumera-

tion of values in the test scenario. The values are instantiated after a symbolic

animation of the operation sequence and a constraints system solving. The

example presented in [Dadeau 2009] does not give large examples of test pat-

tern to experiment the solution finding capability of JSynoPSys in huge search

spaces. However, such approaches suffer from combinatorial explosion because

of the very large space, where solutions have to be found. This results from

combination of values in large input domains. We assume that using some ex-

plosive test patterns (where many input parameters are used) such as the ones

created for ECinema or Global Platform case studies, the constraint solver of

BZ-Testing-Tools may be unable to find solutions.

4.8.2 Other related works

In [Jagannath 2009], authors propose to study test reduction in the context

of bounded-exhaustive testing, which could be described as a variation of

combinatorial testing. It is a technique to test an implementation by trying

all inputs within defined bounds. This technique is time-consuming since the

number of inputs is often large. Three techniques are proposed to reduce test

generation, execution time and result inspection time: Sparse Test Generation,

Structural Test Merging and Oracle-based Test Clustering.

Sparse Test Generation allows reducing the time that the user has to wait

after launching the evaluation until the testing tool finds a failure. It is based
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on the idea that failing inputs are closely located in the generated sequence

of inputs. It allows to avoid exhaustive generation of all inputs but rather

chooses one input from a closely located group.

Structural Test Merging allows reducing the total time for test generation

and execution. It allows producing a smaller number of large tests rather

than a large number of small tests. This technique is performed by merging

appropriate program elements. Oracle-based Test Clustering allows to group

failing tests such that all tests in the same group are likely caused by the

same fault. This technique allows reducing the inspection time. Similar to

our approach, the approach proposed in bounded-exhaustive testing context

allows to reduce the number of generated tests and the time of execution (or

animation) and evaluation. However, unlike our approach it does not rely

on a model to perform the reduction of tests. It uses clustering techniques

to reduce the number of inputs, and merging techniques to group a set of

smaller tests into a single test.

In [Grieskamp 2009], authors combine the t-way combinatorial approach

with a model-based approach. It allows generating combinations of actions

parameters in the specification (a labeled transition system or finite state

machine). In this approach, a t-way coverage requirement is combined with

the path exploration technique to generate more parameter combinations than

needed for covering the paths in the model. The generation of combinations

is based on SMT constraints solver. The constraints are a set of conditions

that have to be met by the generated solution. For instance, the range of a

parameter is a constraint that has to be taken into account by the solver.

The approach has to meet two goals for the test generation: the interaction

coverage goal and the path coverage goal. For instance, the generation engine

begins by the generation of tests that cover pairwise (2-way) interactions. If

there still remains some paths in the model not covered by the generated

tests, more combinations are selected from the 3-way interaction coverage.

The process begin from the 2-way generation to get the minimal set of tests

needed to cover the model paths. If the 2-way generation has accomplished

the path coverage goal, generating more combinations is not necessary.

The approach is integrated in Spec Explorer 4 from Microsoft, a model-

based tool that performs model exploration by symbolic execution of the

model code.

By summarizing the approach based on interaction and path coverage, we

can identify two main techniques used by the approach to produce a reduced

4http://visualstudiogallery.msdn.microsoft.com/271d0904-f178-4ce9-956b-

d9bfa4902745/
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test suite. First, it begins by the minimum interaction strength to generate the

minimum set of tests needed to cover the model paths. Second, it integrates

the constraint solver that allows to eliminate the tests that do not verify

the constraints. Satisfying the path coverage goal in this approach can be

considered similar satisfying the behavior coverage in our approach. Moreover,

discarding tests based on constraints in this approach is similar to discarding

tests based on predicates in our approach.

The test generation in this approach is carried out using a transition system in

the model, however, in our approach, test generation is performed according to

a test pattern that represents the set of test cases to unfold. Another point of

dissimilarity, this approach is performing the t-way combinations for a single

method, however, in our approach, the combination is performed exhaustively

for a single method (that uses a set of values for its parameter) and between

two method calls.

In [Nguyen 2012], the authors propose an approach to combine Model-

based techniques and combinatorial testing to generate test cases. The model-

based strategy allows to generate sequences of actions from models. Combi-

natorial testing defines the input combinations for the generated sequences.

The approach is based on 5 steps:

1. Path generation: consists in generating paths (as sequence of events)

from the model according to a specific criterion e.g. transitions coverage.

2. Path to classification tree transformation: consists in transforming each

path into a classification tree by dissecting its elements: event, param-

eter and domain.

3. Test combination generation: t-way combinations are applied for the

input domains in the different classification trees.

4. Post-optimization: consists in reducing the combinations repeated be-

tween classification trees for paths shared events.

5. Test execution and path constraint refinement: paths with input com-

binations are translated into executable test cases (e.g. for JUnit).

The test suite reduction appears in this approach in the step 4 (Post-

optimization) by removing test cases that have redundant combinations. An

algorithm is developed, taking as an entry test combinations for all paths.

The algorithm analyzes the shared events and the input combinations and

deletes redundant test cases by keeping the t-way coverage criterion satisfied.

Similar to our approach, this approach is combining the combinatorial

testing and the model-based testing. It uses the combinatorial testing to
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create combinations for the input parameters and get relevant tests. How-

ever, contrary to ours, this approach is using models to generate sequence

of operations and not to filter tests. The test reduction is performed by an

algorithm that compares the t-way coverage among tests.

4.9 Conclusion

In this contribution, we address the problem of filtering a large combinatorial

test suite with respect to a UML/OCL Model. The whole approach relies on

three main steps. First the set of tests to generate has to be defined in terms

of a test pattern. Second, this schema is unfolded using a combinatorial tool

to produce abstract test cases that are thirdly animated within an automated

test oracle tool. This animation allows to identify and remove invalid test

cases.

The process of unfolding and filtering can be done incrementally so that po-

tential combinatorial explosion can be mastered. Several new constructs have

been proposed in the input language of the combinatorial tool to help the test

engineer to express more precise test patterns and to filter out invalid test

cases at early stages of the unfolding process. From a methodological point

of view, this requires to augment the test pattern with state predicates, be-

havior selectors, and filtering keys, which keep the incremental process within

acceptable bounds.

The approach is described in this chapter using the Tobias as the combi-

natorial tool and CertifyIt as the automated test oracle tool. The three main

sub-contributions that can be applied on other technical context are:

1. Coupling a combinatorial tool to generate tests and an automated oracle

to discard invalid tests

2. Adding new constructs in the input language of the combinatorial tool

to perform new filtering features

3. Applying an algorithm to incrementally unfold and check invalid tests

by taking advantage of the new constructs proposed

In the next chapter we present illustrations of our approach on some case

studies.
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5.1 Introduction

In this chapter, we present illustrations of the approach performed using test

patterns specified with the proposed filtering constructs (see 4.4). The exper-

imented test patterns are explosive patterns whose unfolding using the stan-

dard process is subject to combinatorial explosion. The illustrations show

how it is possible to unfold such patterns incrementally by applying the in-

cremental unfolding and animation process that takes advantage of the new

constructs.

A first illustration is presented in Sect. 5.2, performed for test patterns

defined on basis of the case study presented in the previous chapter: Electronic

Purse application. A second illustration is presented in Sect.5.3, performed

on basis of a second case study called ECinema, a web application that allows

to buy tickets for cinema movies. We present also a problem found in our
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incremental approach, that will be discussed in detail in next chapter with

solutions proposed to address it.

5.2 Illustration on E-Purse case study

We remind that the specification of the E-Purse case study is defined using

UML/OCL for CertifyIt tool, presented in 4.3.1.

5.2.1 First example

Let us consider the following example:

group EPurseExample [us=true, type=instruction] {

@IUT;

@Personalize;

@AuthenticateHolder❀({ep} , self.isHoldAuth_ = true);

@Transactions{4};

}

The EPurseExample test schema performs in sequence an instantiation of

the IUT, a personalization of the card, an authentication of the card holder

by defining a state predicate to discard tests that fails the authentication and

finally crediting or debiting the purse 4 times. EPurseExample is unfolded

into 155 520 test cases. By totally unfolding the test schema, we succeed to

achieve steps 1 and 2 (translation into TSLT and production of an outob file,

see Fig. 4.8). Unfortunately, the translation of the outob XML file into a

JUnit file crashes due to a lack of memory (we used up to 1.5Gb of RAM). If

this had succeeded, we presume that the compilation of the JUnit file would

also crash. These technical problems can be overcome by decomposing our files

into smaller ones, but still the whole process would take time and computing

resources. Other group definitions can rapidly reach over 1 million test cases

which may require untractable time and memory resources.

Therefore, to make it possible to unfold the test pattern, we redefine it by

introducing filtering keys:

group EPurseExampleUsingKeys [us=true, type=instruction] {

@IUT;

@Personalize;

@AuthenticateHolder❀({ep} , self.isHoldAuth_ = true);

@Transactions_ALL;

@Transactions_ALL;

@Transactions_ALL;
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@Transactions;

}

This pattern will produce the same valid test cases as the previous one,

since we used the _ALL key. Using the incremental process, we need four

iterations to remove the three filtering keys and unfold the resulting pattern.

The pattern is completely unfolded and animated in 175 seconds as given in

Fig. 5.1.

Iteration Nb of tests unfolded Nb of tests accepted

1 720 168

2 1008 560

3 3360 1904

4 11424 6496

Figure 5.1: Results of EPurseExampleUsingKeys unfolding

As a result our 155 520 test cases only include 6496 valid ones. To identify

these, our incremental process needs four iterations but only unfolds and plays

16512 test cases. In this case, it performed the selection process using 10%

of the resources needed for the standard one, and kept the test suites small

enough to avoid tool crashes.

5.2.2 Second Example

Let us consider another explosive pattern, based on Fig. 4.6 called
EPurseSchema18op. The aim of this pattern is to find test sequences where
the purse goes back to Personalization mode, before being set in Use mode.
The only way to reach this goal is to start from Perso mode, go into Use and
Invalid modes, before getting back to Perso and finally to Use. These major
steps are captured in the state predicates of the following pattern:
group EPurseSchema18op [us=true, type=instruction] {

@IUT;

@ALLOps{4}❀({ep}, self.mode_ = Mode::USE);

@ALLOps{5}❀({ep}, self.mode_ = Mode::INVALID);

@ALLOps{5}❀({ep}, self.mode_ = Mode::PERSO);

@ALLOps{4}❀({ep}, self.mode_ = Mode::USE);

}

group ALLOps {

ep.beginSession(@TerminalValue) | ep.endSession() |
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ep.setBpc(@BankPinValue) | ep.setHpc(@UserPinValue) |

ep.authBank(@BankPinValue) | ep.checkPin(@UserPinValue) |

ep.credit(@Amounts) | ep.debit(@Amounts);

}

group TerminalValue [type=value] { values = [ADMIN,BANK,PDA,NONE]; }

Group ALLOps contains all operations offered by the card possibly using a set of

values for their parameters. It is unfolded in 19 elements. EPurseSchema18op

repeats all operations 4 times, until it reaches the Use mode. Finding that

it requires 4 iterations can result from a trial and error process, or from a

careful study of the specification. The engineer has attempted to reach the

Use mode in one to three steps, without success, and finally found that four

steps were sufficient (session opening, setting the Holder and Bank codes, and

session close). Similarly he found that 5 steps are the minimum to reach state

Invalid (session opening, three unsuccessful attempts to checkPin and session

close), and to then reach state Perso (session opening, three unsuccessful

attempts to authBank and session close). We call this approach as brute force

approach.

As a result, to find a valid sequence reaching the Use mode and returning

to the same mode after visiting the other modes, we need to call at least 18

operations (4+5+5+4).

EPurseSchema18op represents 1918 test cases (about 1023 test cases), and

thus cannot be directly unfolded. Because of the brute force approach, and

because we inserted filtering predicates, a large number of these test cases

will be invalid. This is typical situation where an incremental unfolding is

relevant. To use it, we redefine EPurseSchema18op using the filtering key

ALL to restrict unfolding to valid prefixes.

group EPurseSchema18opWFilteringKey [us=true, type=instruction] {

@IUT;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps❀({ep}, self.mode_ = Mode::USE)_ALL;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps❀({ep}, self.mode_ = Mode::INVALID)_ALL;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps❀({ep}, self.mode_ = Mode::PERSO)_ALL;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps❀({ep}, self.mode_ = Mode::USE);

}

EPurseSchema18opWFilteringKey is unfolded incrementally in 18 iter-

ations. Fig. 5.2 shows the number of unfolded and accepted tests at each
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iteration. It may be seen clearly that the number of unfolded tests increases

Figure 5.2: Results of EPurseSchema18opWFilteringKey unfolding

with the growth of the accepted tests. This is because the number of

unfolding of the ALLOps group is stable and equal to 19. This number is

multiplied with the number of selected prefixes in iteration i (accepted tests)

to get the number of unfolded tests in iteration i+1. We can also see clearly

in the graph that there are 2 peaks, one in the iteration 9 and the other in the

iteration 14. This is because in their previous iteration (resp. 8 and 13), the

numbers of accepted tests represent the two maximum values (resp. 1136 and

1160) of all accepted tests. The large numbers of generated tests of iteration

9 and 14 were addressed by using the filtering construct in the schema. In

these steps, we can see how filtering predicates dramatically decrease the

number of accepted tests. For instance from 21584 generated tests in step

9, only 54 tests were accepted. Fig. 5.2 shows that the number of test cases

animated at each step remains small enough to be handled within reasonable

time and computing resources, and to avoid tool crashes.

As a result, we unfolded and animated a total of 85 424 test cases for the 18

iterations in less than 17 minutes, instead of 1918 in the standard process. We

finally found all 640 valid test cases hidden into this huge amount of potential

test cases.

This second example shows that the incremental technique is efficient to

find complex test cases hidden in a huge search space. The key to success is

to make sure that the use of filtering keys will effectively reduce or limit the

number of test cases at each iteration.
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5.3 Illustration on ECinema case study

5.3.1 Specification of the case study

Figure 5.3: Class Diagram of the ECinema web application

ECinema is a web-application that allows registered and authenticated

users to buy tickets for movies played in movie theaters [Dadeau 2013]. A list

of available movies and their time sessions are displayed in the page. To be

able to buy a ticket, the user must first be logged to the system. To log to the

system, the user should be registered. To log in, the user must enter a valid

user name and password. The valid user name is a registered user name. The

valid password must match the password that corresponds to the valid user

name. When logged in, the user can buy tickets.

The ECinema case study is used in the ANR TASCCC project to validate

the complete chain of tools developed by project partners and resulting from

this research project.

The UML class diagram is presented in Fig. 5.3. The ECinema class rep-

resents the class under test. The User class represents the registered and/or

the connected users. The operations behavior is expressed using OCL spec-

ification, the OCL variant of CertifyIt tool. Fig. 5.4 gives the OCL code of

the login operation that allows to authenticate the user by checking its login

and password. The OCL code represents the post-condition of the operation.

The precondition is always true.

It is reminded that code branches are annotated with special tags (starting

with @REQ or @AIM) to trace requirements and identify specific behaviors
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context login(in_name,in_password)::effect:

---@REQ: ACCOUNT_MNGT/LOG

if in_name = USER_NAMES::INVALID_USER then

---@AIM: LOG_Empty_User_Name

message= MSG::EMPTY_USERNAME

else

if not all_registered_users->exists(name=in_name) then

---@AIM: LOG_Invalid_User_Name

message= MSG::UNKNOWN_USER_NAME_PASSWORD

else

let user_found : User = all_registered_users

->any(name = in_name) in

if user_found.password = in_password then

---@AIM: LOG_Success

self.current_user = user_found and

message = MSG::WELCOME

else

---@AIM: LOG_Invalid_Password

message = MSG::WRONG_PASSWORD

endif

endif

endif

Figure 5.4: OCL code of the login operation of the ECinema system

of the operation. In the CertifyIt tool, it is possible to get the covered tags

after a test animation.

5.3.2 Elements of illustration

In the context of the TASCCC project, the test patterns are not created

manually by the test engineer. They are generated automatically from test

properties [F. Dadeau 2013]. These properties express security requirements

of the system using an ad hoc language. The test property language is a

temporal extension of OCL, and describes with temporal patterns the correct

execution of events sequences.

These test properties are then used either for computing the coverage of

a property by executing a test suite, or for model-based test generation. The

property language and its associated tools was defined by our collegues of

Supelec and the University of Franche Comté. Here, we will not detail the
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\**

Property 1. ‘‘Before logging on the system,

it is not possible to buy a ticket’’

*/

never isCalled(buyTicket(), {@AIM:BUY_Success})

before isCalled(login(), {@AIM:LOG_Success})

Figure 5.5: An example of a test property

language used for test property definition, the interested reader can refer to

[Kanso 2013] or [Dadeau 2013] for more details. We present an example of

test property defined on the ECinema case study and test patterns generated

from this property.

We express in Fig. 5.5 a test property Property 1 constraining login and

buyTicket operations. It specifies that “before logging to the system it is not

possible to buy a ticket”.

From this property, different strategies exist to generate test scenarios

(expressed in TSLT syntax). The strategies differ by the way they cover the

property: nominal coverage tries to execute the transitions sequences accepted

by the property. Robustness coverage strategy tries to execute transitions

sequence not accepted by the property. Using the property prop1 of Fig. 5.5,

and by applying nominal strategies, the patterns generated are unfolded into

almost 200 000 tests. However, using the robustness strategy we generate very

explosive patterns.

We present in Fig. 5.6 an example of test patterns generated by robust-

ness strategy. The main schema is the sc_prop1_robustness schema which

is a sequence of group calls (sequenceGroup0). The simpleOperationCall

groups define a set of operation calls using a set of values for their parameters.

The sequenceGroup groups perform a sequence of group/operation calls. The

disjunctionGroup groups define a choice between operations/groups (in this

schema there is no disjunction groups). For example, simpleOperationCall0

calls setMinusGroup0 which defines a set difference between the set of all sys-

tem operation calls (base_call0) and the elements of call_restriction2

group. The complete test schema has 25 group definitions (it is presented in

Appendix B). Therefore, because of the length of the generated test patterns,

in the following, we only present the definition of the main sequence group

(sequenceGroup0). The unfolding of the schema sc_prop1_robustness re-

sults in 1.89 ∗ 109 test cases, which is impossible to generate.
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group sc_prop1_robustness [us=true] {

@sequenceGroup0{1, 1};

}

group sequenceGroup0 {

@simpleOperationCall0{0,2};

@simpleOperationCall1;

@simpleOperationCall2{0,2};

@simpleOperationCall3;

}

group simpleOperationCall0 {

(@setMinusGroup0)

}

group setMinusGroup0{

SET = @base_call0 setMinus @call_restriction2

}

group call_restriction2 {

( @all_instances_ECinema.buyTicket(@default_enum_TITLES)

| @all_instances_ECinema.login

(@default_enum_USER_NAMES, @default_enum_PASSWORDS))

}

...

Figure 5.6: An example of a test schema generated from a test property in

ECinema case study

5.3.3 Results of incremental process

Since the original schema sc_prop1_robustness can not be directly unfolded,

we process the schema in two steps to make it possible to unfold. First, we

replace the call to sequenceGroup0 in the sc_prop1_robustness group by

the sequence of operation calls defined in sequenceGroup0 group. Second, we

insert keys after each group call of the sequence to incrementally unfold the

sequence. The new pattern created is presented in Fig. 5.7

We present in Fig. 5.8 the result of incremental unfolding of

sc_prop1_robustness_Keys group. The incremental process is performed

in 4 iterations in 154 seconds. The number of tests unfolded in total is equal

to 29 148 tests = 2971 + 35 + 21246 + 4896.
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group sc_prop1_robustness_Keys [us=true] {

@simpleOperationCall0{0,2}_ALL;

@simpleOperationCall1_ALL;

@simpleOperationCall2{0,2}_ALL;

@simpleOperationCall3;

}

...

Figure 5.7: A test schema generated from a test property processed with

filtering keys

Iteration Nb of tests unfolded Nb of tests accepted

1 2971 7

2 35 6

3 21246 136

4 4896 76

Figure 5.8: Results of sc prop1 robustness Keys unfolding

5.3.4 Problems of explosive iteration

The maximum number of tests unfolded by processing

sc_prop1_robustness_Keys test schema is 21 246 tests (see Fig. 5.8,

iteration 3), and our tool is able to unfold and animate this number of tests.

However, if the number of tests unfolded in an iteration becomes larger, e.g.

100 000 of tests, our tool crashes and is unable to give a final result for the

schema unfolding.

group sc_1_prop3 [us=true] {

//@sequenceGroup0{1, 1};

@simpleOperationCall0{0,2}_ALL;

@simpleOperationCall1_ALL;

@disjunctionGroup0_ALL;

@simpleOperationCall6_ALL;

@disjunctionGroup1;

}

...

Figure 5.9: A test schema for which our approach fails to provide final valid

tests
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In Fig. 5.9, we present a test pattern sc_1_prop3 generated from a test

property prop3 and processed by filtering keys. We insert the ALL key after

each instruction. The test pattern represents a sequence of operations and

disjunction group calls. The incremental unfolding and animation approach

succeeds to process the schema until the iteration 3. In this iteration, the

number of tests to unfold is 1 658 423, that causes our tool to crash due a

lack of memory (Java Heap Space). In fact, the number of elements unfolded

from disjunctionGroup0 is 127 571 and makes the iteration 3 explosive.

In next chapter we present the solutions proposed to deal with the prob-

lems of explosive iterations.

5.4 Conclusion

In this chapter, we presented some experimentations of our approach, per-

formed on two case studies: EPurse and ECinema. In ECinema case study,

we use some user-defined test patterns, which satisfy the intents of test engi-

neer. The results show that our approach is able to find all valid tests in a

huge search space (1918 tests). In the ECinema case study, the experimented

test patterns are generated from high-level test properties. It is shown that

using the incremental unfolding and animation process, we get valid tests in a

large search space (1.89∗109 tests). We can conclude that using our approach,

we are able to get valid tests from explosive test patterns created manually

or generated automatically, that was impossible to unfold using the standard

unfolding process.

By using our approach, it was also possible to see its limitation. The incre-

mental unfolding process unfolds a test pattern in many iterations. However,

when the number of tests unfolded in an iteration becomes very large, our

process crashes and does not give final valid tests. In next chapter we present

the solutions proposed for such problem.
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6.1 Introduction

Using filtering keys, we are able to process explosive test patterns in many non

explosive iterations. However, for some test patterns, the number of unfolded

tests in an iteration can be very large and our tool crashes and is unable to

give a final result. This problem is a limitation of our approach for which

solutions have to be proposed. In this chapter, we give the solutions proposed

to address problems of explosive iterations. We identified three cases that

make an iteration explosive:
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1. Explosive group unfolding (operation group and sequence group): In an

iteration, a group may be unfolded in a very large number of elements

making impossible to get valid prefixes in this iteration. In Sect. 6.2,

we present the solution proposed to address problem of explosive group

unfolding.

2. Explosive disjunction group unfolding: We remind that a disjunction

group is a disjunction (choice) between sequence/operation/disjunction

groups. When the number of input values used in the choices, or/and

the number of possible choices (by using disjunction group inside dis-

junction/sequence group) is large, the called disjunction group in an

iteration may be impossible to unfold. We propose different solution

from the previous case. It is presented in Sect. 6.3.

3. Explosive instruction with repetition construct: some instructions are

defined with the repetition construct (e.g. {0, 2}), it makes the number

of elements unfolded in an iteration very large. In Sect. 6.4, we present

the solution proposed to such problem.

The solutions proposed for each case are used to deal with the explosive test

patterns generated from test properties in ECinema and Global Platform case

studies.

6.2 Addressing explosive group unfolding

The number of tests unfolded in an iteration is equal to the number of accepted

tests in the previous iteration multiplied by the number of calls unfolded from

the group of the current iteration. For example, in the experimental result

of Sect. 5.3.3 (Fig. 5.8), the number of tests unfolded in iteration 2 is equal

to the number of tests accepted at the previous iteration (= 7) multiplied

by the number of calls unfolded from simpleOperationCall1 group (= 5).

Therefore, to reduce the number of elements unfolded in an explosive iteration,

we have either to reduce the number of valid prefixes selected in the previous

iteration, or to reduce the number of unfolded elements in the group of the

current iteration. We illustrate the problem by the following sc1 test pattern.

We suppose that the schema sc1 is crashing at the second iteration, i.e. by

unfolding the seqGroup1 group.

group sc1 [us=true] {

@simpleOpCall0_ALL; @seqGroup1_ALL; @simpleOpCall1;

}

group seqGroup1 {
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@simpleOpCall2; @seqGroup2;}

group seqGroup2 {

@simpleOpCall3; @seqGroup3;}

group seqGroup3 {

@simpleOpCall4; @simpleOpCall5;}

We apply the following two solutions to deal with this problem:

• Using proportion filtering key instead of the _ALL key (such as _ONE) in

the previous iteration to reduce the number of selected prefixes (i.e.

after @simpleOpCall0 in our example). The sc1 test pattern can be

rewritten as follow:

group sc1 [us=true] {

@simpleOpCall0_ONE; @seqGroup1_ALL; @simpleOpCall1;

}

• A second solution is proposed that can be used with or instead of the

first solution. It consists in reducing the number of unfolded calls in

the group call of the explosive iteration (i.e. @seqGroup1). This can

be done by replacing the group call by its body instructions. The body

instructions of the group are the instructions defined inside the group.

By getting the body instructions instead of the explosive group call,

we can insert keys after each instruction. The number of iterations

increases and the number of unfolded tests in the processed iteration

will decrease. This work can be done recursively to resolve the problem

of combinatorial explosion in a specific iteration. This solution is only

possible when the group is a sequence of instructions (operation and

group calls). In the case of disjunction group, i.e. a choice between a

set of group or operation calls, it is not possible to apply because our

approach is unable to insert keys inside a disjunction (solution will be

presented in Sect. 6.3).

By applying this second solution on our example, @seqGroup1 group call

will be replaced by its body instructions (@simpleOpCall2; @seqGroup2;),

and the sequence groups can also be replaced recursively by their body

instructions. The sc1 test pattern can be then rewritten as follows:
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group sc1 [us=true] {

@simpleOpCall1_ALL; @simpleOpCall2_ALL;

@simpleOpCall3_ALL; @simpleOpCall4_ALL;

@simpleOpCall0;}

The sc1 test pattern is now processed in 5 iterations instead of 3, and the

number of calls unfolded in the iteration 2 is reduced from the unfolding size

of seqGroup1 to the unfolding size of simpleOpCall2.

6.3 Addressing explosive disjunction group

Unlike the sequence group, the disjunction group can not be replaced by its

body definition. If we get a disjunction group in an explosive iteration, this

is another problem. We propose two solutions to resolve this problem:

6.3.1 First solution

We begin by creating different schemas where each schema contains the in-

structions preceding the disjunction group followed by a call (group, opera-

tion) selected from the choices in the disjunction group. All the elements in

the disjunction group choices are selected. The number of schemas created is

the number of elements in the disjunction group choices. Fig. 6.1 illustrates

the schemas created from the disjunction group (disjGroup0_resol1 and

disjGroup0_resol2). _KEY is either _ALL, _ONE, _n or _n%. Each schema

created contains the prefix @simpleOpCall0_KEY1 followed by an element

from the disjunction group elements followed by the key defined after the

disjunction group. The valid tests resulting from the unfolding of the cre-

ated schemas, are intended to be inserted in sc1 test pattern to replace the

instructions sequence (@simpleOpCall0_KEY1; @disjGroup0_KEY2;).

• If KEY2 = ALL: it means that all valid tests from disjGroup0_resol1

and disjGroup0_resol2 unfoldings must be retained. We be-

gin for example, by unfolding the disjGroup0_resol1 to get

the set of valid tests (denoted by Valid(disjGroup0_resol1)).

Next, disjGroup0_resol1 is unfolded and the valid test set re-

sult is collected (denoted by Valid(disjGroup0_resol2)). The to-

tal of valid tests Valid(disjGroup0) = Valid(disjGroup0_resol1)
⋃

Valid(disjGroup0_resol2). Valid(disjGroup0_resoli) = ∅ if there

are no valid tests (using i=1, 2). The valid tests collected from the

union are inserted instead of the disjunction group and its preceding

instructions as a disjunction of operation call sequences.
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group sc1 [us=true] {

@simpleOpCall0_KEY1; @disjGroup0_KEY2; @simpleOpCall1; }

group disjGroup0 {

(@simpleOpCall2 | @simpleOpCall3) ;}

group disjGroup0_resol1 [us=true] {

@simpleOpCall0_KEY1; @simpleOpCall2_KEY2;}

group disjGroup0_resol2 [us=true] {

@simpleOpCall0_KEY1; @simpleOpCall3_KEY2;}

...

Figure 6.1: A second example of a pattern with explosive iteration

• If KEY2 = n%: we proceed as for the _ALL key to have all the selected

tests from disjunction group (and its its preceding instructions) unfold-

ing. Next, we insert the proportion (n%) of tests instead of the disjunc-

tion group and its preceding instructions as a disjunction of operation

call sequences.

• If KEY2 = ONE: it means that one valid prefix (result from the unfolding

of one of the created schemas) is sufficient. Therefore, we begin by

unfolding one of the schema, if there are valid tests one test is taken

randomly, else we try the next schema until having a valid test. The

selected test is inserted instead of the disjunction group and its preceding

instructions.

• If KEY2 = n: we begin by unfolding the first schema, the number

of valid tests is computed. If we reach the intended number (n) in the

current schema we stop the process, otherwise we continue the unfolding

of another schema until getting the desired number of tests. The tests

result are inserted instead of the disjunction group and its preceding

instructions as a disjunction of operation call sequences.

6.3.2 Second solution

The implementation of the first solution requires to modify the algorithm of

incremental unfolding, to take into account the processes described above for

each key. A second solution is proposed, to resolve the problem of explosive

disjunction group, without modifying the incremental unfolding algorithm. It
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is used to unfold test patterns with explosive disjunction groups in ECinema

and Global Platform case studies. We proposed a new key SUBSET that

can be defined after a disjunction group call. The principle of this key is

to select all valid prefixes results after calling one element from the choices

in the disjunction group. If we get valid prefixes for this element we do not

try another one. To select an element from the choices, the first priority

is for the operation group, the second one is for disjunction group and the

third priority is for sequence group. If we select a disjunction group, we have

to select an element from its definition by following the priorities described

previously. The selection of disjunction group makes the work to be performed

recursively.

To illustrate this solution, in Fig. 6.2, we define the SUBSET key after

the disjunction group. The created schemas (sc1_resol1 and sc1_resol2)

allow to resolve the pattern sc1. The sc1_resol1 is created by choosing the

element simpleOpCall2 (priority 1). The sc1_resol1 is created by choosing

the element simpleOpCall3 from disjGroup1 (priority 2). Other schemas

are also created by choosing the other elements. The _ALL key is following

the element selected. We begin by unfolding sc1_resol1, if the problem of

explosive iteration is resolved and we get valid tests at the final iteration, it

is not necessary to try with the second schema. If the problem of explosive

iteration is not resolved, or we do not get valid tests at the end, we try the

next schema.

6.3.3 TestSchemaGen tool

The use of the disjunction groups inside disjunctions groups create different

operations paths. Trying all the possibilities leads to several main schemas

containing all possible operation paths. Therefore, to make easier the re-

placement task, we created a tool (TestSchemaGen) allowing to generate all

possible paths from the original schema. Each path is generated as a test

schema and represents a sequence of operation groups. The advantage of the

tool is that it allows to generate in few seconds many possible schemas from

the original schema. We add filtering keys to these schemas to fight the com-

binatorial explosion and find tests that satisfy the pattern. Moreover, if a

processed schema does not provide valid tests we can try another one.

The advantage of this solution comparing to the previous one is that it

takes less time to get the valid prefixes from unfolding a single schema. The

drawback of this solution is that we do not get diverse valid operation calls

by choosing one element from the choices comparing to the previous solution

that can give diverse operation calls.
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group sc1 [us=true] {

@simpleOpCall0_KEY1; @disjGroup0_SUBSET; @simpleOpCall1; }

group disjGroup0 {

(@simpleOpCall2 | @disjGroup1 | @seqGroup0) ;}

group disjGroup1 {

(@simpleOpCall3 | @seqGroup1) ;}

group seqGroup0 {

(@simpleOpCall4; @disjGroup2}

group sc1_resol1 [us=true] {

@simpleOpCall0_KEY1; @simpleOpCall2_ALL; @simpleOpCall1;}

group sc1_resol2 [us=true] {

@simpleOpCall0_KEY1; @simpleOpCall3_ALL; @simpleOpCall1;}

...

Figure 6.2: Explosive disjunction group and SUBSET key

6.4 Addressing explosive instruction using rep-

etition construct

Another problem that can contribute to the combinatorial explosion is the

iteration (repetition) construct. For instance, @simpleOperationCall0{0,2}

of Fig. 5.6 represents a repetition of the group unfolding from 0 to 2 times. If

we increase the upper bound to 4 for example, the number of tests increases

from 2971 tests to 8 millions tests and will be impossible to unfold. Let us

consider @groupCall{m, n} a group call repeated from m to n times making

an iteration explosive. A solution to the problem can consist in reducing the

number of repetitions of groupCall. First, we try to repeat it (n-1) times,

if the iteration still explosive we try with (n-2), and so on until reaching

the m times. If m is equal to zero, it means that the call of the group is not

mandatory and we can delete it from the schema.

Another solution consists in processing @groupCall{m, n} incrementally

in k iteration where m <= k <= n. For example, @groupCall{m, n} can be

processed as follows:

@groupCall_ALL;
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...

@groupCall_ALL; //the kth element

In our work, the problem of explosive instruction using repetition construct

is resolved by deleting the repetition construct. We choose to iterate the

corresponding instruction at most one time. This solution can not be applied

in some cases where the repetition of instruction is important to lead some

intents of the test engineer (see Sect. 5.2.2), and therefore, the solutions

proposed above are used instead.

6.5 Other solutions

We propose another solution that can be used to reduce the number of un-

folded elements in an iteration. An operation group calls a set of operations

with a set of values for their parameters. Instead of calling the operation

group in the main schema we rather choose randomly an operation call from

the set of operations offered in the corresponding group definition. This allows

to reduce the number of combinations from the unfolding size of the group to

the unfolding size of the operation chosen.

In some cases, unfolding an operation group in one iteration leads to mil-

lions of tests. This can be resolved as seen previously by choosing one oper-

ation call instead of the whole operation set. However, this technique can be

ineffective because the chosen operation could invalidate the test, and thus we

have to choose another operation.

Therefore, to resolve the problem of explosive iterations we introduce To-

bias selectors in the TSLT schema (see Sect. 3.4.4). The Tobias selector

selects a subset of tests from the tests that will be unfolded. We apply a ran-

dom selector for the explosive schema group to select randomly a few number

of operations from the millions of possible ones. The group call Xi to replace

in the main schema is replaced with the random selector call to select tests

from the unfolding of the group Xi.

In the case of the ECinema case study, the three problems presented above

making an iteration explosive, are not common problems in the patterns gen-

erated from the test properties (defined in the context of ANR TASCCC

project). We often replace just the sequence group in the main group by its

body instruction. We insert then the keys (that can be in some cases the

proportion keys) after each instruction and we run the process to get the final

result without execution crash.

In the next section, we present illustrations done on the ECinema case

study which contains the problems described above.
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6.6 Some illustrations on ECinema case study

In ECinema case study, some test patterns generated from test properties are

very explosive. Inserting keys after instructions in the main schema does not

resolve the problem and the incremental unfolding results in explosive itera-

tions. In the previous sections, we have proposed several solutions, depending

on the case, to redefine the test schema to resolve the problem of explosive

iterations. In this section, we apply these solutions to some test patterns used

in the ECinema case study.

We used 3 test patterns: sc_1_prop2, sc_1_prop3 and sc_1_prop3bis

generated from different test properties. The test patterns are processed first

by inserting filtering keys (_ALL key) after each instruction of the main schema.

The incremental unfolding process crashes in some iteration due the large

number of tests and fails to provide final valid tests. Therefore, we redefine

the test patterns to resolve the problems of explosive iterations by applying

the solutions described in the previous sections.

In Fig. 6.3, in the top we present the explosive patterns, the number

of iteration (NbI ) where the incremental unfolding crashes and the number

of elements unfolded in this iteration (NbT ). In the bottom we present the

resolved pattern that represents the redefinition of the explosive pattern to

resolve the explosion problems. NMax gives the maximum number of tests

unfolded in the incremental unfolding process. TNb gives the total number

of tests unfolded in all iterations. NbA tells how many tests are accepted in

final. Nbs gives the number of seconds consumed to have the final result.

To resolve the explosive iterations, the disjunction groups are replaced by

an element from the choices (disjunction group solution). If the choice is a

sequence group, we take the sequence of group/operation calls. We can see in

sc_1_prop3bis for example, how the disjunction group disGroup0Prop3bis

is replaced by the body definition of a group sequence. Moreover, we apply

the solution of using proportion key instead of the _ALL key to reduce the

number of accepted tests in an iteration. For example, in sc_1_prop3 after

calling simOpCall6Prop3 we select 4 valid prefixes instead of all valid ones. In

addition to these solutions, we also use the solution of deleting the iteration

construct in the first schema sc_1_prop2.

It can be seen clearly how the solutions proposed allow to resolve the

explosive problems. By redefining the test patterns, it becomes possible to

fight combinatorial explosion and to get final valid tests.

Our approach using the proposed solutions has been applied for 21 patterns

generated from test properties and gives successful results for 12 patterns. The

9 other patterns are not giving valid tests in final. This can be explained by

the fact that the test property created does not have valid tests satisfying it,
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Explosive pattern

Pattern NbI NbT

1: group sc_1_prop2 { @simOpCall0Prop2{0,2}_ALL; @simOpCall1Prop2_ALL;

@disGroup0Prop2; } 1 118 681

2: group sc_1_prop3 { @simOpCall0Prop3{0,2}_ALL; @simOpCall1Prop3_ALL;

@disGroup0Prop3_ALL; @simOpCall6Prop3_ALL; @disGroup1Prop3; } 3 1 658 423

3: group sc_1_prop3bis { @simOpCall0Prop3bis{0,2}_ALL; @disGroup0Prop3bis_ALL;

@simOpCall8Prop3bis_ALL; @disGroup2Prop3bis; } 2 3.4 ∗ 1011

Resolved pattern

Pattern NMax TNb NbA Nbs

1: group sc_1_prop2 {@simOpCall0Prop2_ALL; @simOpCall1Prop2_ALL;

@simOpCall2Prop2;} 11 115 15 851 702 54

2: group sc_1_prop3 {@simOpCall0Prop3{0,2}_ALL; @simOpCall1Prop3_ALL;

@simOpCall2Prop3_ALL; @simOpCall6Prop3_3; @simOpCall13Prop3{0,2};} 10 623 15 390 48 92

3: group sc_1_prop3bis {@simOpCall0Prop3bis{0,2}_ALL; @simOpCall1Prop3bis_ALL;

@simOpCall5Prop3bis_ALL; @simOpCall6Prop3bis_4; @simOpCall7Prop3bis{0,2}_ALL;

@simOpCall8Prop3bis_ALL; @simOpCall15Prop3bis;} 21 224 47 780 840 331
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or because of the use of the SUBSET or the proportion key in the patterns to

resolve the explosive iterations.

By using the SUBSET key, we launch the TestSchemaGen tool to generate

all possible operation paths (from the disjunction groups) in different test

schemas (see Sect. 6.3.3 for details). In our work we have not tried all the

generated test schemas to find valid solutions. Therefore, we can not decide

if the test property has or not valid tests.

Moreover, the use of proportion key may miss some relevant sequence that

can make the test to be valid in final. Restricting the possible search space to

find valid solutions, is actually a limitation of our approach.

It is interesting to note that the patterns used for the approach illustration

are not defined by our team but rather generated from test properties defined

by our project partners. We can also notice that the unfolding of the patterns

is performed in reasonable time (few minutes or seconds), however the time of

manual processing to resolve the problems encountered has to be considered

(few minutes).

In next section, we present illustrations performed on Global Platform case

study where very explosive test patterns are used.

6.7 Illustrations on Global Plateform case study

6.7.1 Description of the case study

Global Platform1 is an industrial standard for the resource manager of

multi-applications smart cards. It describes a set of features and interfaces

for managing all aspects of card administration throughout its life cycle.

Implementations of this standard are common, especially on credit cards

to meet EMV (Eurocard-Mastercard-Visa) and the SIM and USIM cards

for mobile phones, but also a great number of identity cards, electronic

passports, health cards, etc. The features offered are:

• secure management of the life cycle of the card

• authentication of entities inside and outside the card

• secure communications with entities outside the card

• management of card contents, in particular applications

• routing of commands to the various applications

1http://www.globalplatform.org/
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An important aspect of the Global Platform standard is that it is designed to

allow multiple distinct actors (telephone operators, bank organization, trans-

port operators, ...) to coexist on card.

In the ANR TASCCC project, the behavior model of Global Platform

was designed by our partners using UML/OCL languages. The class diagram

contains 84 classes. The class under test is Card, it contains 79 methods. This

class presents 3 billions of possible atomic instantiated operation calls, due to

combination of operations parameters values. Considering the complexity of

the application, the properties defined by the test engineer to test the security

aspects of this application will produce very explosive test scenarios which are

unfolded to a huge number of test cases.

group sc_alpha3_temp1 [us=true] {

@sequenceGroup0{1, 1};

}

group sequenceGroup0 {

@disjunctionGroup0;

@simpleOperationCall7;

@disjunctionGroup2;

@simpleOperationCall12;

@disjunctionGroup3;

}

...

Figure 6.4: An example of a test schema generated from a test property in

Global Platform case study

6.7.2 Example of a test pattern

Similar to ECinema case study, the test patterns in Global Platform are gen-

erated from test properties written by the test engineer to specify an informal

security requirement. We take an example of test pattern in Fig. 6.4 gener-

ated from a test property. The test property describes a constraint between

two system operations: ExternalAuthenticate and InitializeUpdate. It spec-

ifies that ExternalAuthenticate operation call must be directly preceded by

InitializeUpdate call. We used nominal coverage strategy for test pattern gen-

eration to produce transitions sequences accepted by the property (see Sect.

5.3.2 for details). The pattern generated is a representative example of ex-

plosive Global Platform test patterns. The test pattern has a size of 51 KB.
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This test pattern contains 7 disjunction groups, 28 operation groups (group

that contains a set of operations calls with a set of values for its parameters)

and 9 sequence groups. It contains 32 different operations having from 0 to

12 parameters. The set of values for the parameters can reach 40 values.

Combining the values of a simple operation call can generate millions of in-

stantiated operation calls. Unfolding this pattern results in a number of tests

> 5 ∗ 10100. This pattern contains explosive instructions, and thus we often

use the proportion keys (_n, _n%, _ONE) as filtering keys to resolve explosive

iterations and get valid tests at the end. The use of such filtering keys allows

to reduce the number of unfolded tests in the next iteration and then master

the combinatorial explosion.

6.7.3 Advantages of test pattern redefinition

To address the problem of explosive iterations, we process the test pat-

tern similarly to the test patterns process in ECinema case study. We

replace the disjunction groups and the sequence groups by the corre-

sponding elements until having only the operation groups in the main

schema. We remind that to replace an explosive disjunction group in

the schema we select an element from its definition (choices). Perform-

ing this task manually is difficult and long because disjunction groups and

sequence groups recursively contain many groups of the same type. For

example, disjunctionGroup3 has two elements: disjunctionGroup4 and

sequenceGroup8. Choosing sequenceGroup8 for example, gives the following

instructions @disjunctionGroup7; @simpleOperationCall28;, and so on.

Given the complexity of the test pattern by using disjunctions inside dis-

junction groups, we use the TestSchemaGen tool (see Sect. 6.3.3) to generate

all possible paths (operation groups) in different test schemas. From the

schema sc_alpha3_temp1 of Fig. 6.4 we generate 36 different schemas repre-

senting all possible operation group sequences in the test pattern. In Fig. 6.5

we give an example of a schema generated from sc_alpha3_temp1.

Afterwards, we insert the _ONE key after each operation group, and we

delete the repetitions {0,2}. This allows to minimize the tests unfolded in

each iteration, however it can miss relevant valid prefixes.

In the iterations 3, 5 and 8, the number of tests generated exceeds one

billion of tests. The corresponding operation groups make a call to one of the

model operations (32 operations) using all possible values for their parameters

except for 2 operations. Therefore, we replace the corresponding group call

by a possible operation call (chosen randomly) rather than 30 operations to

decrease the number of the combinations. The test pattern result is given in

Fig. 6.6. The unfolding and animation process using this pattern is performed
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group sc_alpha3_temp1 [us=true]{

@simpleOperationCall0;

@simpleOperationCall1;

@simpleOperationCall2{0,2};

@simpleOperationCall3;

@simpleOperationCall5;

@simpleOperationCall7;

@simpleOperationCall8;

@simpleOperationCall9{0,2};

@simpleOperationCall10;

@simpleOperationCall12;

@simpleOperationCall13{0,2};

@simpleOperationCall14;

}

Figure 6.5: Example of test schema generated from an original test schema

group sc_alpha3_temp1_keys [us=true] {

@simpleOperationCall0_ONE;

@simpleOperationCall1_ONE;

@all_instances_Card.APDU_manageChannel

(@default_enum_ALL_LOGICAL_CHANNELS,...)_ONE;

@simpleOperationCall3_ONE;

@all_instances_Card.APDU_manageChannel

(@default_enum_ALL_LOGICAL_CHANNELS,...)_ONE;

@simpleOperationCall7_ONE;

@simpleOperationCall8_ONE;

@all_instances_Card.APDU_manageChannel

(@default_enum_ALL_LOGICAL_CHANNELS,...)_ONE;

@simpleOperationCall10_ONE;

@simpleOperationCall12_ONE;

@simpleOperationCall13_ONE;

@simpleOperationCall14;

}

Figure 6.6: Example of test schema generated from an original test schema

processed with keys

in 12 iterations. The total number of tests unfolded is 2420. The small number

is result to the test minimization techniques performed in the iterations (using
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of the _ONE key, the repetition deletion and minimization of operation calls

combinations). The whole process is executed in 28 minutes, and gives 1117

valid tests in final. The total number of accepted tests that satisfy the original

test pattern is larger than 1117. This is due the test minimization techniques

used to address explosive iterations. The process takes a long time for two

reasons:

• The problem of the re-animation of the valid prefixes. This is noted as

a drawback of our approach and we have given the solution to that in

Sect. 4.6.

• The complexity of the OCL specification code of the operations used in

test cases. The animation of an operation call with complex specifica-

tion takes more time than an operation call with simpler specification.

Moreover, in our illustration we are animating large test cases (number

of operation call) and then, it takes long time to be animated.

In the context of Global Platform case study, we used very explosive test

patterns. Therefore our objective is not to get all valid tests from the test

pattern (that would be impossible), but get at least one test that satisfies the

test pattern.

Actually, having 1117 tests for one property exceeds the number of tests

that should need to be played on the smart card.

6.7.4 Combining filtering keys and Tobias selectors

To reduce the number of elements unfolded in an operation group, we choose

only one operation call from the set of offered operations (as performed in

sc_alpha3_temp1_keys). However, it is not guaranteed that by choosing this

operation, the incremental unfolding process will give final valid tests. The

chosen operation may make the generated tests invalid and thus we have to

choose another operation call and re-execute the process to have valid tests.

Another solution that can be applied is the use of Tobias selector in

test schemas. It allows to select few random elements from the explosive

operation group unfolding. The advantage of using the random selection

is that it is likely to get different operations and it is then likely to get

diverse valid tests. The random selection is applied by replacing the ex-

plosive group call by the random selector call to select elements from the

group unfolding. An example of selector definition is provided in Fig. 6.7.

For example, the selector randomSelection100 is a Java random selector,

it selects randomly 100 tests from a group unfolding. To associate the se-

lector to a group we define randomSelection_simpleOperationCall2 that
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group sc_alpha3_temp1_selector [us=true] {

...

@randomSelection_simpleOperationCall2_ONE;

...

@randomSelection_simpleOperationCall5_ONE;

...

@randomSelection_simpleOperationCall9_ONE;

...

}

selector randomSelection100

(int nb=100, int percent=-1, long seed=-1)

[lang=java,file=SelectorRandom.class]

selectorgroup randomSelection_simpleOperationCall2

[groupid=simpleOperationCall2,

selectorid=randomSelection100, us=false]

...

Figure 6.7: A test schema processed with selectors in Global Platform case

study

is a selector applied to the group simpleOperationCall2. It is called in-

stead of the group call in the main schema to unfold 100 tests from the

unfolding of simpleOperationCall2. Using the same method, we replace

simpleOperationCall5 and simpleOperationCall9 by the corresponding

selector calls.

Unfolding the test pattern sc_alpha3_temp1_selector provides 1117

valid tests (same number of valid tests provided by sc_alpha3_temp1_keys).

6.8 Conclusion

We have presented illustrations and results of using our approach on several

case studies and several test patterns. We have seen how our approach

contributes to resolve the problem of explosive patterns written manually by

the test engineer or generated from test properties. Using our approach, it

becomes possible to find valid tests in a huge search space (> 10100 tests). We

also present the problems found when our approach is applied, especially the

explosive iterations. We propose several techniques to deal with the problem,

that we summarize in the following points:



6.8. Conclusion 91

• The use of the proportion keys (_ONE, _n, _n%) rather than the _ALL key.

In this case, the objective was to find a subset of solutions that satisfy

the test pattern rather than the complete set. The patterns processed

by the proportion keys contains very explosive iterations and using the

_ALL key will not resolve the problem.

• Replacing the groups with explosive unfolding by its body instructions

to have its unfolding in more than one iteration. This process can be

done recursively until having a non explosive iteration. We developed a

tool to perform this process automatically and to have all the possible

instructions sequences in different test schemas. The test schemas gen-

erated are the combinations of the elements that exist in the disjunction

group body (instructions set).

• The use of Tobias random selector techniques to select a small number

of tests from a huge number of tests in an iteration.

• For the instructions with the iteration construct, we choose to iterate it

only one time.

• Choosing manually one operation from the instruction set to unfold it

(choice or disjunction) to avoid unfolding all its elements.

The use of proportion keys in test patterns may avoid some interesting

prefixes that make it possible to generate interesting valid tests. Moreover,

the use of proportion keys restricts the possible search space. Then, in the

case where no valid tests are generated from a test pattern, it is not possible

to decide whether the test pattern has only invalid operation sequences or

whether the solutions exist in the search space avoided by the proportion

keys. It is more safe to use the _ALL all the time, and use the proportion keys

when it is the only solution to perform. In some contexts, using the proportion

keys can be prohibited, for example, when the security aspects defined in the

test pattern are very important. In this case, getting all valid combinations

from the test pattern is required. In other contexts, where it is suggested to

generate some tests satisfying a defined test pattern. In this case, all valid

combinations from a test pattern are not required.

The unfolding and animation process we have proposed is considered as

a trials and errors process. Many varied attempts are performed by choosing

different techniques and different inputs until having valid tests at the end.

Multiple solutions proposed to fight the combinatorial explosion in an iteration

are performed manually as replacing a group call in the schema by an element

from its definition. However, these solutions can be integrated in our approach

implementation to be performed automatically.
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The case studies ECinema and Global Platform on which our approach

are illustrated are given by a third party (our project partners). In these case

studies, we have seen how it was necessary to us to propose a new filtering

key ( SUBSET) that allows to accelerate the search of valid solutions.
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7.1 Motivation

Combinatorial testing allows to explore several system behaviors by combining

relevant values. This technique is very efficient in practice to produce a large

number of tests with minimum effort. However, this technique is often not

relying on a specification to perform test generation. Therefore, as a result we

get a large number of tests that correspond to illegal combinations of inputs

or sequence of calls whose execution results in inconclusive verdicts. This is

the case for example for tests which contain an operation call which fails the

operation precondition.

7.2 The principle of model-based filtering

The solution we propose is to couple a combinatorial testing tool to an anima-

tion tool. The animation tool takes the tests generated from the combinatorial

tool and animates them on a specification to decide which ones are valid and

which ones are not. The tests that are invalid can be removed from the gen-

erated test suite. We call that technique model-based filtering in the way that

it filters invalid tests based on a model (specification).
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The implementation of our solution is performed using Tobias tool as a

combinatorial testing tool and CertifyIt tool as an animation engine for the

Tobias generated tests. The tests are generated from Tobias test patterns

defined in the TSLT language. In a test pattern we combine different group of

system operation calls using several values for their parameters. Other con-

structs can be also applied like the iteration construct. The Tobias generated

tests are animated on UML/OCL model using CertifyIt tool to filter out in-

valid tests from the generated tests. The invalid tests are those which fail the

OCL operation precondition.

7.3 Mastering combinatorial explosion

At this stage, we have resolved the problem of invalid tests in the generation

stage by removing them. It is meaningful, since those invalid tests are not

candidate to detect failures in system implementations, because they do not

satisfy the specification.

However, complex test patterns (with many values, operations and/or it-

erations) can be impossible to unfold. Some patterns can be unfolded into

billions of test cases. To be able to unfold explosive patterns, we propose an

incremental unfolding process.

To perform the incremental unfolding process, we propose a filtering con-

struct in the TSLT language called filtering key. The filtering key consists

in a construct inserted after an instruction in the test schema in the form of

K (where K = ALL, ONE, n, n% or SUBSET). It introduces a new concept

of test generation and animation process, that consists in incrementally pro-

cessing the test schema. The incremental concept consists in unfolding the

instructions before the filtering key. The tests generated from these instruc-

tions are animated to get the valid operations sequences. The valid results are

inserted instead of the previous unfolded instructions. If K=ALL, we insert

all the valid prefixes, if k=ONE, one prefix is chosen randomly from the valid

tests and if K=n respectively n%, n or n% tests are chosen randomly from

the valid tests. This technique avoids to unfold the whole test pattern in one

unfolding and animation process, but rather unfold it incrementally in many

iterations until dealing with all keys in the test schemas. In an iteration we

take only the valid tests to be combined with the subsequent operations in the

next iteration to avoid a large number of invalid combinations, and therefore

we fight the combinatorial explosion.

In addition to the filtering key construct, we propose two other filtering

constructs. The first one is the behavior filtering construct. It allows to filter

out at some point in the test pattern instructions, the operation sequences that
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do not cover a specific behavior of an operation. The second filtering construct

is the predicate filtering construct. It allows to filter out at a specific stage

in the test pattern, the sequence of operation calls that fails a specified OCL

predicate. These two filtering constructs are kinds of directives that make

possible to better target our desired tests. The filtering key can be coupled

with the state predicate and behavior filtering constructs. In this case, in an

iteration, the valid tests are verified according to the state predicate or to

the behavior construct. Coupling the filtering key with a filtering construct

(behavior or state predicate) allows to filter more test cases and to better

target the desired tests in an iteration.

7.4 Results of using our approach in some case

studies

By proposing the three filtering constructs we offer solutions to deal with the

problem of explosive test patterns. We have experimented many test pat-

terns on three different case studies: Electronic purse specification (EPurse),

Electronic booking system of cinema ticket (ECinema) and Global Platform

a last-generation operating system for smart card (GP). The electronic purse

specification was constructed in our research team. We show using user-

defined test patterns in the EPurse case study that our approach allows to

find valid tests in a huge number of tests.

The ECinema and Global Platform case studies were provided by our

research partners. The test patterns used for evaluation are generated auto-

matically from test properties defined by the test engineer using an approach

implemented by our project partners. The test patterns evaluated in ECin-

ema case study can reach 9.3 ∗ 1026 tests. Test patterns evaluated in GP case

study are unfolded to more than 10100 tests. We have seen how our approach

has resolved the explosion problem of many patterns.

Thanks to these case studies, it was possible to see the limit of our in-

cremental unfolding approach. By inserting filtering keys in the explosive

patterns, it was not directly possible to unfold the test pattern due the large

number of tests generated in some iterations of the incremental unfolding pro-

cess. Therefore, it requires the redefinition of the test pattern by reducing the

number of elements generated in the explosive iterations and to make possi-

ble the incremental unfolding process to give final valid tests. The problem

of explosive iteration is mainly due to explosive group call in the iteration.

The main solution to this problem is to process the group call in the explosive

iteration in extended iterations by processing incrementally its nested instruc-

tions in the explosive group definition. This task is performed manually and
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recursively until having no explosive iterations. To help the test engineer to

do that, a tool is developed to generate possible redefinitions of test schemas

that may be proceeded instead of the original schema. Another solution is

proposed to reduce the number of generated tests in an iteration: the use

of Tobias selectors in test patterns such as the random selector, to choose

randomly a subset of elements from the huge number of unfolded ones.

7.5 Conclusion and perspectives

Finally, we can conclude that our approach is used efficiently using many

examples provided in intern and extern of our team. It can be adapted to be

used on other combinatorial and animation tools, using other languages than

TSLT for the test pattern and other specification languages than OCL.

The perspectives that concern this contribution consist in improving the

test schema processing algorithm to take into account the tasks performed

manually to resolve explosive iterations. Moreover, the current algorithm is

reanimating prefixes already animated in previous iterations, therefore, an ex-

tension of algorithm has to be developed to memorize the results of animation

of test schema prefixes.
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8.1 Problematic

We remind that our thesis provides solutions to combinatorial testing issues.

By using combinatorial testing, a large number of test cases generated from

test patterns can be invalid according to the specification of the SUT. These

test cases represent erroneous situations and do not fit into the set of test

cases used to test the application. The first contribution (first part) of this

thesis gives a solution to this problem by relying on a specification (model)

to filter out invalid test cases at early stages. Using the Model-based filter-

ing approach, the resulting test suite contains only the tests that are valid

according to the model.

These valid tests are used to evaluate the implementation of the SUT.

A few lines written in a test pattern can generate in few seconds a large

number of valid tests. They are very useful to systematically observe the

system behaviors and detect errors using many combinations of input values.

However, in the context of regression testing, as many test cases are added to

the test suite to evaluate new or modified requirements, the test suite grows

rapidly and the cost of executing it becomes more expensive. This is because

the translation of these test cases into a target technology such as JUnit, the

compilation of the resulting file and its execution require too much computing

resources.

Therefore, it is important to have a reduced test suite possibly to run

it on the system. The question asked here is how to keep providing the
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same capability of error detection with the reduced test suite. In general,

this problem is defined as the test suite reduction problem [Harrold 1993].

Many researches have been investigated to propose approaches to resolve the

problem and to provide a reduced test suite representative to the original

one [Harrold 1993, Heimdahl 2007, Fraser 2007, Lin 2009, Parsa 2009]. For

example, some approaches use the structural coverage information of test

cases to reduce test suites [Harrold 1993].

In our research work, the problem of test reduction arises in a context other

than regression testing context. We experimented embedded systems, espe-

cially to test security requirements of applications embedded in smart cards.

The test engineer formalizes a security requirement as a test property defined

in specific language [Castillos 2011]. Multiple test scenarios are generated

from this property using approaches based on automata [F. Dadeau 2013].

From these test scenarios a large test suite is generated and filtered to cover

all possible behaviors related to the security aspects defined before. Observing

the evaluation of all these tests generated from the security property is inter-

esting to detect errors and application vulnerabilities. However, in practice it

is often impossible to evaluate all of them on the real application on the card

due its limited resources. Therefore, we have to use a reduced test suite that

is representative of the original one which can be executed on the card.

8.2 Solution

In this second part of thesis, we present a solution to this problem by propos-

ing a new test suite reduction approach. The general idea of our test suite

reduction approach is to take advantage of tests execution traces to define

several similarity relations between tests. These relations are used to classify

test cases and then to reduce the test suite by selecting a test case from each

class.

Our work is inspired by approaches that use execution trace or coverage

information to reduce a test suite [Jones 2001, Mcmaster 2005]. These ap-

proaches rely on standard coverage criteria as branch coverage or method

coverage. Our approach differs from the existing approaches in two main

points:

• It relies on coverage of annotations that can be inserted anywhere in the

code for specific purpose and intended to be collected by test execution.

Code annotation will be presented in Sect. 8.2.1.

• From the trace of annotations collected, a family of equivalence relations

is proposed based on the order and the number of repetition of tags in
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the test. These equivalence relations are used to compare the traces of

tests and provide a reduced test suite. The equivalence relations and

the test reduction system are presented in Sect. 8.2.2.

8.2.1 Code annotations

Code annotations, also called tags, can take several forms: from meaningful

comments to calls to a special-purpose library. In our context, we only rely on

the assumption that the annotations produce a trace when the associated code

is executed. Executing a test case results in a trace of the covered annotations.

Comparing the traces of two test cases provides raw material to decide on their

equivalence.

The annotations can be used in various development contexts. It can be

used for example to perform source code instrumentation as for debugging,

profiling or code coverage measurement. The annotations can be also used for

traceability purpose to trace back user requirements. For instance, the anno-

tations inserted in the OCL specification of the model processed by CertifyIt

fit into the requirement traceability context and each tag defined refers to a

specific requirement. We note here that the idea of using covered annotations

to reduce a test suite came from the use of annotations in CertifyIt OCL

specifications.

In next section we present our test suite reduction approach.

8.2.2 Test suite reduction using equivalence relations

We assume the availability of a trace system that collects a tag when it is

covered during test case execution. We remind that a test case is a sequence

of operations calls. The execution of an operation call generates a sequence

of tags. The test case execution generates a sequence of tags sequences.

Based on the sequences of tags sequences, a family of equivalence relations

is proposed. These relations differ in the way they consider or not ordering

or/and repetition of tags in the generated result. A rather strict equivalence

relation requires that two equivalent test cases should feature exactly the

same traces of tags. A more permissive equivalence relation simply requires

the equality of the sets of tags present in both traces. This equivalence relation

makes sense if the order of execution of the instructions of the test cases is

not significant or relevant.

The test suite reduction algorithm takes as input the test suite to reduce,

the execution traces of each test case and an equivalence relation. It com-

pares the equivalence of tests according to the equivalence relation using their



102 Chapter 8. Introduction

traces. The equivalent tests are grouped in a cluster. The reduced test suite

is produced by choosing randomly one test from each cluster.

8.2.3 Annotated specification

In the previous section, we present our approach applied in the context where

we dispose of annotated source code and a trace system are available. Our

approach can also be applied for annotated specification. In our work, we

take advantage of CertifyIt functionality to collect tags to apply our approach.

We insert tags in the OCL specification to trace system requirements. The

CertifyIt tool collects the tags covered during animation of test cases. We

then carry out the reduction using the covered tags and equivalence relation

to provide a reduced test suite. The advantage of using our approach for an

annotated specification, is to get reduced test suite without running it on the

implementation of the SUT. This approach can be easily adapted to apply

with other kinds of specification where annotations are inserted.

We experimented our approach on different case studies and examples

of test suites generated combinatorially and randomly. The test reduction

rate and fault detection capability are compared between the original and

the reduced test suites. In these case studies, the annotations are inserted in

source code or in the OCL specification to achieve requirement traceability or

code coverage.

The organization of this part is as follow:

The chapter 9 presents the state of the art of test suite reduction approaches.

The chapter 10 presents our contribution with annotations inserted in

specification or source code.

The chapter 11 presents preliminary experimentations and experimental

results on a case study.
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9.1 Why reduction ?

One motivation behind performing test suite reduction is to reduce the amount

of time and resources needed for recording or running a test suite. Deciding

that a test suite is too large and needs to be reduced is relative. For example

running ten thousands of test cases on a computer with 7 processor cores and

8 GO of memory resources can be an easy task. However, running the same

test set on a smart card can be impossible due its limited memory resources

and slow CPU. It would rather execute a representative subset of the test

suite.

As well as the device capacity factor, the time factor can also be used to

tell whether the test suite is too large or not. Ten thousands of test cases with

the first computer configuration can be considered as large if the test running

task has to be done in few minutes.
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In the context of regression testing where software are continuously evolv-

ing, new test cases are added to the test suite to evaluate the new or the

changed requirements. However, many test cases remain in the suite that

could be either obsolete or redundant [Harrold 1993]. A test case is obsolete

if it does no longer reference any functionality.

A test case is redundant if it provides the same coverage of program code

(or the same coverage of requirements) than other test cases, for example with

respect to a test criterion. Test suite reduction in the context of regression

testing consists in deleting the obsolete and the redundant test cases.

The test suite reduction problem is widely addressed in the software testing

literature and many approaches have been proposed resolving the problem.

We notice that a reduction in test suite may affect its fault detection

capability. Many experiments have been investigated to see the effects of test

minimization on the fault detection capability. The experiments show different

results. Harrold, Jones [Jones 2001] and Rothermel et al. [Rothermel 1998]

showed that the test reduction can dramatically decrease the fault detection

capability. However, Wong et al. [Wong 1995] showed that the effect of test

suite reduction on fault detection capability is not significant. To stay on the

safe mode, since several studies have observed reduction in fault detection

capability, we must be aware of this risk.

Two families of approaches reported in the literature performing this re-

duction: The coverage-based approaches and the similarity-based approaches.

9.2 Coverage-based test suite reduction

The coverage-based approaches take a representative set of test cases that still

provide the same coverage of the program. They are based on the hypothesis

that the higher is the coverage the more likely it is to detect faults. This was

originally studied by Harrold et al. [Harrold 1993], and was later addressed

by numerous authors [Lin 2009, Fraser 2007, Parsa 2009, Heimdahl 2007].

The coverage-based approaches uses coverage criteria to perform the test

reduction. Multiple criteria have been proposed and explored [Zhu 1997]. We

report some basic criteria which are the most used in literature:

• Control flow coverage criteria: These criteria are based on the cover-

age of the control flow graph of the program. The control flow graph

represents all the paths that might be traversed by an execution of a

program. For example:

– Statement coverage: we consider a set of test cases is adequate if

it covers every statement in the program at least once.
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Figure 9.1: Simple program and test suite

– Branch coverage: This type of coverage requires that every con-

trol transfer (such as IF statement) in the program under test is

proceeded by at least one test case.

– Path coverage: It requires that all possible paths of the program

are executed by the tests.

• Data flow coverage criteria: These criteria are based on the coverage of

the data used in the program. For instance:

– All definitions criterion: It requires that all definitions occurrences

of variables must be covered. For each definition occurrence covered

the test must cover a path through which the definition reaches a

use.

– All use criterion: It requires that all uses of a definition should be

covered.

• Fault-based adequacy criteria: It is based on the measurement of the

fault detection capacity of the test set. This is based on mutation testing.

The principle is to insert artificial faults in the program and verify if it

is detected by the test. The program that contains the fault is called

mutant. When we execute a test case, if a mutant produces a different

result than the original program the fault is detected and we say that

the mutant is killed. Otherwise, the mutant is alive. The percentage
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Figure 9.2: Branch Coverage of test suite

of killed mutants by the test set is called the mutation adequacy or the

mutation score. Based on this measurement, we can define multiple

fault-based criteria such as if the execution of the test set reaches a

specific percentage of mutation score, it is then an adequate test set.

The problem of getting a representative set of test cases with respect to a

testing coverage criterion is defined as follows [Harrold 1993]:

Given: a test suite TS created for a program P, a set of test case require-

ments R=rl , r2,..., rn that must be satisfied to provide the desired testing

coverage of P.

Problem: Find TS’ a representative set of test cases from TS, that satisfies

all of the ri in R.

In this section we present 4 algorithms to build TS’. They share the same

structure presented in [Sprenkle 2005]:

1. Initializing TS’ as empty set.

2. Select a candidate test case t from T and add it to TS’.

3. Repeat 2 until TS’ satisfies R.

We will illustrate the four algorithms using the example of Fig. 9.1. It

presents a simple program and the corresponding test cases used to test it

with respect to the branch coverage requirements. The program accepts three

integers and returns a value. The example is defined in [Lin 2009].

Fig. 9.2 presents the branch coverage of the test suite.

9.2.1 Random reduction

A naive approach solves the problem by taking randomly [Sprenkle 2005] the

test case in the step 2. The implementation of the random approach is the

easiest one, however it does not provide an optimal reduction. The result of
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reduction depends on whether or not the test case chosen in step 2 covers

the maximum number of not yet covered requirements. In our example, the

random approach can begin by selecting t5 and it is added to TS’. Next, in

order t4, t2 and t1 are chosen. After choosing t1, all the requirements are

satisfied and the algorithm is finished. The result is then TS’={t5,t4,t2,t1}.

If the algorithm had selected t1 after choosing t5, more requirements would be

satisfied comparing to t4. After choosing t1, if the algorithm selects t2 all the

requirements will be covered by three tests. The result will be TS’={t5,t1,t2}

which is better than the previous result. The disadvantage of the algorithm

is that it might select a candidate, even though it does not provide more

coverage than the current reduced test suite.

9.2.2 The greedy approach

Using the greedy algorithm [Chen 1998], the next test case to choose has to

satisfy the maximum number of unsatisfied test requirements, i.e. it should

provide the most coverage improvement.

On our example Fig. 9.1 and Fig. 9.2, greedy algorithm will first select

either t1 or t2 because they have the maximum coverage of requirements. If it

selects t1, next, it will select t2 or t4 because each of them covers more different

requirements than the other tests. If the algorithm chooses t2, it will then

select any of the remaining tests because all of them cover the requirement

B3F that remains to satisfy. The result could be then TS’ = {t1, t2, t5}. The

result is better than the first solution produced by the random one, but it

requires more time to compute which of the tests have the maximum coverage

improvement.

It is clear that a greedy algorithm gives on average a better solution than

the random approach, however the greedy’s approach disadvantage is the time

taken to compute the improvement in maximum coverage among tests.

9.2.3 The HGS algorithm

Harrold et al. propose an heuristic (HGS algorithm) to reduce a test set

[Harrold 1993]. The heuristic begins by creating subsets from TS to associate

each requirement with the set of test cases that satisfy it: T1, T2,... , Tn.

Each Ti contains the test cases that satisfy the requirement ri . In Fig. 9.3

we present the subsets Ti ’s for our example.

The algorithm first adds to the representative set all test cases in the Ti ’s

featuring a single element and marks all Ti ’s containing these test cases. In

our example Fig. 9.1 and Fig. 9.2, the algorithm adds t2 and t1 to TS’

(because T7 and T8 have a single element) and marks T1, T2, T3, T4, T5,



108 Chapter 9. Test suite reduction

i ri Ti

1 BT
1 {t1, t3}

2 BF
1 {t2, t4, t5}

3 BT
2 {t2, t3, t4}

4 BF
2 {t1, t5}

5 BT
3 {t1, t2}

6 BF
3 {t3, t4, t5}

7 BT
4 {t2}

8 BF
4 {t1}

Figure 9.3: Association between requirements and set of test cases that satisfy

it

T7 and T8. Then, the algorithm processes all unmarked Ti ’s of cardinality

two, and chooses the test case that occurs in the maximum number of Ti ’s of

cardinality two. In our example, all Ti ’s with cardinality two are marked. The

algorithm processes then the unmarked Ti ’s with cardinality three and chooses

the test case that occurs in the maximum number of Ti ’s of cardinality three.

This process is continuously repeated from 4 to max, where max represents

the maximum cardinality of the Ti ’s.

When examining the Ti ’s to select the test case, several test cases can

occur in the maximum number of Ti ’s of the same size, and this case is called

a tie. In the case of tie for Ti ’s with cardinality n, the heuristic examines the

unmarked Ti ’s with cardinality (n+1) for the test cases that were involved in

the tie. If it still exists a tie in the cardinality (n+1), greater cardinality is

examined and finally the algorithm makes a random choice in the case where

the max cardinality is reached. In our example, in the cardinality three, there

is only one unmarked Ti that is T6. Because 3 is the maximum cardinality

the algorithm makes a random choice between t3, t4 and t5. The final result

could be then {t1, t2, t3}, {t1, t2, t4} (or {t1, t2, t5} as in Sect. 9.2.2).

9.2.4 The GRE algorithm

The GRE algorithm presented by Chen and Lau [Lin 2009] considers two types

of test cases: the essential test case and the 1-to-1 redundant test case. A test

case is said to be essential if it is the only one that covers a specific requirement.

A test case is regarded as 1-to-1 redundant if its covered requirements is a

subset of covered requirements of another test case.

Three strategies are applied alternatively by the GRE heuristic until all

requirements are satisfied: (1) the essentials strategy selects all essential test
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cases, (2) the 1-to-1 redundancy strategy removes 1-to-1 redundant test cases,

and (3) the greedy strategy selects test cases that meet the maximum number

of unsatisfied requirements.

The selection of essential test cases might cause 1-to-1 redundant test cases.

Removing 1-to-1 redundant test cases might generate more essential test cases.

Therefore, the GRE algorithm applies alternatively these two strategies when

possible. Otherwise the algorithm uses the greedy technique.

In our example Fig. 9.1 and Fig. 9.2, there are two essential test cases that

will be selected: t1 and t2 (see Fig. 9.3, t1 is the only one that covers B4T and

t2 is the only one tat covers B4F) After that, there is no 1-to-1 redundant test

cases to remove, the algorithm will then apply the greedy strategy. It chooses

the next test case that covers the most unsatisfied requirements (B3F), which

will be one of the three remaining test cases. The result could be then TS’ =

{t1, t2, t3}, {t1, t2, t4} or {t1, t2, t5} as in the previous section.

A recent empirical study has been investigated to compare Greedy tech-

nique, HGS and GRE algorithms [Zhang 2011]. Several realistic test suites

have been experimented on large programs. The authors evaluate the benefits

and costs of these test-suite reduction techniques. They suggest to use the

HGS algorithm in practice to achieve cost-effective reduction.

9.3 Similarity based test suite reduction

In contrast to the previous approaches that consider that test cases which have

more coverage of the program have better fault finding capacity, the similarity

based approaches consider the hypothesis that the more diverse test cases are

the more likely to detect faults they are.

These approaches can rely on the use of a similarity function to measure

test cases diversity. The similarity function can use information about the

tests such as their code coverage. We present in next section two research

works that study test reduction using similarity measures based on code cov-

erage.

9.3.1 Similarity-based reduction using code coverage in-

formation

In [da Silva Simao 2006], the authors propose a similarity-based approach to

select a subset of tests from a test set in the context of regression testing.

They apply a model to classify test cases by using an ART-2A (Adaptive

Resonance Algorithm) self-organizing neural network architecture. Here, we

will not give a description of the algorithm, interesting readers could refer to
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[Carpenter 1991] for details. We will just explain the principle of the authors

approach. The model applied uses structural coverage information of test

cases such as their source code statement coverage. The classification consists

in grouping similar test cases in the same cluster. The same cluster contains

tests that explore the same software test characteristics. When the software is

modified, the authors apply an automatic tool to identify the points in source

code where changes have been applied and selects the most adequate subset

of test from clusters to represent the software modification.

In [Masri 2007], the authors propose a similarity-based approach to select

test cases based on their execution profiles. A profile is defined as test ex-

ecution characterization that indicates the frequency of execution of certain

program elements, that are considered relevant to make an execution succeed

or fail. The diversity technique proposed observes how these execution profiles

are distributed using a dissimilarity function, that takes a pair of profiles and

gives a real number representing their degree of dissimilarity. The metric used

by authors consists in comparing two profiles based on the number of times

profile features were exercised. Afterwards, a clustering technique is used to

group tests into clusters based on the dissimilarity measure. A set of tests are

selected from each cluster or from a particular cluster by applying a sampling

method. For example, one-per-cluster sampling method selects randomly one

test from each cluster.

In this section, we presented two similarity test reduction approaches based

on code-level information. In next section we present some similarity test

reduction approaches based on model-level information.

9.3.2 Model-based similarity functions for test reduction

In [Cartaxo 2011], the authors approach is proposed for Labelled Transition

System (LTSs) models from which test cases are generated. To apply the

approach, the LTS behavior model and the intended percentage of path cov-

erage have to be specified by the tester. A test case is considered as a path

in the LTS model. To measure the similarity between two paths in an LTS,

the number of identical transitions between them is counted. Identical transi-

tions are those having exactly the same source and target states and the same

label. The similarity function is denoted as Identical Transitions Similarity

(It). The similarity function between two test cases tci and tcj is equal to the

number of identical transitions in tci and tcj divided by average between tci

and tcj paths length. One test is removed from the pair with highest degree of

similarity. The removed test should have the smallest number of transitions.

If the number of transitions is equal between the two tests a random choice is

then done. This process is repeated for each pair of tests until the intended
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path coverage is reached.

In [Hemmati 2010], the authors propose three different encodings for a

test path in UML state machine: state-based, transition-based and triggered-

guard-based. Similarity value can be then calculated based on the encoding.

Two types of similarities are considered: set-based similarity an sequence-

based similarity. The set based similarity is defined on two sets of elements

and sequence-based similarity is defined on two sequences of elements. The

difference between the two similarities is whether the order is taken or into ac-

count or not. For example, if a test case tc1 includes the sequence of operation

calls opA; opB and a test case tc2 contains the sequence opB; opA, these two

test cases are considered as equivalent according to the set-based similarity.

Given a similarity function (SimFunc) and a set of encoded test cases (Sn)

with Sn 6= ∅, the test selection problem consists in minimizing SimMsr (Sn).

SimMsr(Sn) =
∑

tpi ,tpj∈Sn∧i>j SimFunc(tpi , tpj )

Other authors propose similarity functions not to reduce test cases but to

prioritize them. Test prioritization does not remove test cases from the tests

set like Test reduction. It allows only to order their execution so that tests

which are more important (according to some measure) are executed first.

We thought interesting to present these approaches because they also can be

applied for test reduction.

9.3.3 Similarity functions for test prioritization

Ledru et al. [Ledru 2009] propose an approach to prioritize test cases using

a similarity function based on the test cases scripts. The approach can be

applied for the model based and code based context since it is based on test

strings.

The similarity function calculates String distances between test cases as

the Hamming distance or the Levenshtein distance. The distance is computed

between a test case tc and a set of test cases TS. It is the minimum distance

over the distances calculated between the test case tc and each test case from

TS.

The test cases prioritization algorithm is performed using a greedy algo-

rithm to choose at each iteration the test case which is the most distant from

the test set already selected. The advantage of this approach is that it does

not require the model or the code of the system under test, but it uses only

the textual information of the test cases. However string based similarity does

not take into account semantics difference between test cases, that may have

an influence on test case execution.
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In [Jiang 2009], authors propose an approach for test case prioritization by

using a similarity function based on coverage information. The next test case

to select is the most diverse one comparing to the test cases already prioritized.

The test cases are first associated with the set of statements covered in their

execution. The distance between the two test cases is measured using the

Jaccard distance based on the two sets. The distance between two sets A and

B is equal to D(A,B) = 1− | A ∩ B | / | A ∪ B |. If the two sets are equal

the distance will be equal to zero.

To perform test case prioritization, Yoo et al. [Yoo 2009] propose an ap-

proach based on a clustering technique. The clustering strategy puts a set of

objects into different groups, where each group contains objects with common

properties. To define which properties are used to measure the similarity of

objects, a clustering criterion is used. The best criterion that can be used is

the faults detected by the tests. However, the faults detected can be known

only after test execution possibly on a population of mutants (a mutant is a

program where a set faults are inserted). Therefore, the criterion to choose

should be a relevant substitute that clusters similar test cases to likely detect

the same faults. In [Yoo 2009], the authors use dynamic execution traces as a

clustering criterion. Each test case execution generates a trace presented as a

string of binaries. The bit corresponds to a statement in the program. The bi-

nary is equal to 1 if the statement is executed, and 0 otherwise. The Hamming

distance is then applied between two binary strings to measure the similarity

between two tests. Using the similarity measure, two types of prioritization

are realized, the intra-cluster prioritization and the inter-cluster prioritization.

Intra-cluster prioritization consists in prioritizing test cases inside a cluster.

Inter-cluster prioritization consists in prioritizing clusters where each cluster

is represented by a test case (the first one according to Intra-cluster priori-

tization) . The selection of test cases begins from the cluster with highest

priority. The selection of test is switched to another cluster, when the next

selected test inside the same cluster does not improve the number of faults

detected.

9.4 Conclusion

In this chapter we presented two big families of approaches. The first one

uses different algorithms to reduce the test set based on coverage of code (or

requirements) in a way to maximize the coverage of code among tests. The

second family of approaches defines a similarity function based on information

related to the test (as test execution, test string). This function is used to

calculate a diversity measure among tests and then basing on this measure
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keeps in the test set the tests the most diverse. We have seen some similarity

functions applied for test prioritization, to order test execution. The test re-

duction may have a loss in fault detection capability as shown in [Jones 2001].

The use of one technique instead of another one to perform test reduction de-

pends of many factors. For example, if we are in a model-based context we use

techniques different from the ones used in code-based context. It depends also

of the availability of the algorithms implementation and the spatial/temporal

complexity of executing them on the resources used.

In our work, we proposed a new test reduction technique that takes into

account some information that other test reduction techniques do not. The

test reduction techniques based on code (specification or requirements) cover-

age studied in the literature do not consider the order/repetition of execution

of some elements in the code. We found only the work of Masri et al. that uses

a criterion for reducing a test set based on the number of times an element of

the code is covered by execution. Another popular test criterion reported in

literature that takes into account these two information: order and repetition

of code instructions, is the path coverage criterion. However, the path cov-

erage criterion is a strong criterion to decide on similarity between two tests.

We thought that many similarity relations can be defined basing on order and

repetition of covering some elements in the code. Therefore, we proceed by

annotating the code by inserting tags at the points we consider important.

The test is then executed and the tags covered by the test are saved. Basing

on the order/repetition of tags covered we define different equivalence rela-

tions used to decide on the equivalence of two test cases. The choice of an

equivalence relation instead of another depends of the testing needs.

In the next chapter, we present our approach proposed to reduce a test

suite using similarity relations based on covered information.





Chapter 10

Test suite reduction using

equivalence relations

Contents
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 115

10.2 Code Annotation . . . . . . . . . . . . . . . . . . . . . . 116

10.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.2.2 Tagging process . . . . . . . . . . . . . . . . . . . . . . 119

10.3 Equivalence relations . . . . . . . . . . . . . . . . . . . 120

10.4 Reduction process . . . . . . . . . . . . . . . . . . . . . 123

10.5 Extension to the reduction algorithm . . . . . . . . . 125

10.6 Comparison with traditional approaches for struc-

tural based reduction . . . . . . . . . . . . . . . . . . . 125

10.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 127

10.1 Introduction

In this chapter, we propose an approach to reduce a test suite based on several

equivalence relations. The test reduction approach exploits the availability of

existing information called tag inserted in the code/specification for various

purposes. After executing/animating a test suite, a trace is collected contain-

ing the tags covered. A test case represents a sequence of operation calls.

Executing an operation call generates a sequence of tags. Executing a test

case gives then a sequence of tags sequences. The equivalence relations differ

in the way they consider or not the order/repetition of tags. The weakest

relation considers two test cases as similar if they cover the same set of tags.

The strongest one considers them as equivalent if they cover exactly the same

sequence of tags sequences. Four equivalence relations are defined.

In Sect. 10.3, we propose a family of four equivalence relations based on

annotation traces and covering a range of permissive to strict equivalences.
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Sect. 10.4 describes how the reduction is performed on a test suite using

the proposed equivalence relations and illustrates our test reduction approach

on an example of a test suite. Sect. 10.5 presents an extension proposed for

the reduction algorithm.

Finally, Sect. 10.7 draws the conclusions and perspectives of this work.

10.2 Code Annotation

10.2.1 Principle

Our approach relies on the availability of annotations inserted at different

points in the source code or in the specification of the SUT. We called these

annotations as tags and they are intended to be covered by executing the

program to collect a trace. The insertion of tags may be motivated by various

concerns:

• Source code instrumentation [Geimer 2009, Zhang 2011]: it consists of

inserting instructions in the source code to trace system execution. The

resulting trace may serve various purposes such as debugging, profiling

or code coverage measurement.

• Traceability: these annotations can be used to trace back system/user

requirements. This is useful to ensure that all requirements in the re-

quirement specification document are implemented in the source code

and tested by at least one test case [Connolly 2009, Mei 2009]. In our

research work, we used OCL specifications to animate test cases with

CertifyIt tool. In these specifications several tags are inserted to trace

back system requirements. We will see in Chapter 11 (Experimenta-

tions) an evaluation of our approach on an OCL specification using

tags.

In the sequel we illustrate our approach on tags inserted in source code.

The illustrations using tags inserted in specification will be presented in the

next chapter. To better understand our approach we first present some tech-

nical details about our tagging system.

We use a code annotation system based on calls to a static class named

TagLogger. Fig. 10.1 presents a simple example of an annotated class. A class

Value stores an integer, named val, which can be incremented or decremented

by operations inc and dec. These operations take as argument an array of

integers, and add or substract to val the absolute value of each element of the

array. The code of inc and dec includes calls to the Taglogger class. For space

reason, we only show method inc in Fig. 10.1.
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public class Value {

int val=0;

public void inc(int[] intTab) {

TagLogger.beginOpCall();

for(int i=0; i<intTab.length; i++){

int x = intTab[i];

if (x > 0) {

val = val + x;

TagLogger.log("Inc-gt0");

}

else if (x < 0) {

val = val + Math.abs(x);

TagLogger.log("Inc-lt0");

}

else {

TagLogger.log("eq0");

}

}

TagLogger.endOpCall();

}

... // Code for dec method

}

Log file

1 1 1:Inc-gt0

1 1 2:Inc-lt0

1 2 1:Dec-lt0

1 2 2:Dec-gt0

2 1 1:Inc-gt0

2 1 2:Inc-lt0

2 2 1:Dec-lt0

2 2 2:Dec-gt0

G(tc1) =

[[Inc-gt0, Inc-lt0],

[Dec-lt0, Dec-gt0]]

G(tc2) =

[[Inc-gt0, Inc-lt0],

[Dec-lt0, Dec-gt0]]

Figure 10.1: Annotated Java class and example of tagging log file for the test

cases of Fig. 10.2

Taglogger records the tags covered by the execution of the class. For

instance the instruction TagLogger.log("Inc-lt0") denotes that a tag "Inc-

lt0" is activated and recorded in a file. We used two instructions TagLog-

ger.beginOpCall() and TagLogger.endOpCall() to indicate the begin and the

end of the tagged method. We used TagLogger.beginTestCase() to indicate the

transition from a test case execution to another. The logging system records

tags with three elements: the test case number, the operation call number

where the tag is activated, and the tag number. This information is useful to

know tag activation order in execution.

Consider the two test cases in Fig. 10.2. The execu-

tion of the ValueTest class produces a logging file (Fig. 10.1)

that contains the tags activated. A tag is recorded using the

following pattern: tcNum opNum tagNum:tagName. For example,

1 1 2:Inc-lt0 tells us that Inc-lt0 was the second tag activated in the first

operation call of the first test case (tc1). In Fig. 10.1, G(tci) with i=1 or 2

represents the sequence of tags sequences resulting from the execution of the

test case tci .
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import logging.TagLogger;

import org.junit.Test;

public class ValueTest extends TestCase {

public void tc1(){

TagLogger.beginTestCase();

Value val = new Value();

val.inc(new int[]{1,-6});

val.dec(new int[]{-2,4});

}

public void tc2(){

TagLogger.beginTestCase();

Value val = new Value();

val.inc(new int[]{4,-2});

val.dec(new int[]{-1,2});

}

}

Figure 10.2: Example of JUnit test cases executing an annoted Java class

We can observe in the logging file of Fig. 10.1 that the test cases tc1

and tc2 produce the same sequence of tags. Therefore, they are equivalent

according to an equivalence relation that compares the tag sequences.

In the case of nested operation calls, i.e. a tagged operation(with beginOp-

Call) that calls another tagged operation (with beginOpCall), the logging sys-

tem records the tags covered in the nested operation calls but without creating

a new sequence of tags. The system records the tags as if they were covered for

the root operation (that exists in the test case). For instance consider a test

case tc3 with tc3 = op1();. Suppose that the execution of op1 covers two

tags t1 and t2, and then calls op2 that covers t3 and t4. The result generated

will be:

G(tc3) = [[t1, t2, t3, t4]]

We see that all the tags (t1, t2, t3 and t4) are recorded as if they were covered

in a single operation.

We assume that the tags activation system has no side effects and is cor-

rectly implemented.
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10.2.2 Tagging process

The insertion of tags can proceed manually or automatically. In the manual

tagging process, the user inserts tags at the points he considers relevant to

trace. At these points, execution of the program is likely to affect the result

or to change the system state, for example, one may tag a conditional branch

where an attribute value is modified. The points that only display an infor-

mation are not impacting the output and then are not candidates for tags

insertions. The places where tags are inserted can be after a set of instruc-

tions, inside conditional branches, inside loops, inside exceptional processes,

after a method call. A tag is related to a set of instructions. For example con-

sider a permutation process of two variables (x and y) using a third variable

(z). A tag can be defined for the permutation process and is inserted after the

execution of the process instructions. The process is done in three instruc-

tions after which the tag is inserted: z:=x; x:=y; y:=z; @tag permutation

In our approach, the tag is always inserted after the related instructions are

executed to ensure that all of them have a successful execution. In our case,

the test suite is executed before launching the reduction algorithm. Then, it

is important to make a difference between a failing test and a non failing test

by the way we insert our tags. For example if a unhandled exception (i.e. in

Java code) is triggered, the tag must not be activated because some of the

related instructions are not executed. For a handled exception, what makes

the difference between a normal execution of the tags related instructions and

its exceptional execution is the activation of the tag defined for the exception.

In the manual tagging process, the user aims to maximize the diversity

among the test suite by creating a fine-grained tagged system. The more

he creates tags in the code, the more the trace will have precise behavior

activation information and the more it is possible to assess the diversity of

test cases.

Automatic processes for tags insertions are used in the literature for auto-

matic requirements traceability between the requirement document, the model

and the source code [Antoniol 2002, Cleland-Huang 2007]. The automatic in-

sertion of tags is limited to the tags related to the element defined in the

model such as the classes, the fields and the methods. In these works, the au-

tomatic insertion of tags to trace a fine grained requirement is not available.

A fine grained requirement can be represented as a set of instructions inside

a method, or a specific behavior of the method.

In the next section, we present the equivalence relation family proposed

to reduce a test suite.
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10.3 Equivalence relations

Consider a test suite TS , defined as a set of test cases and a test case TC as

a sequence of method calls. We denote G(op) the sequence of tags obtained

by a given execution of a method op. We denote a set of elements between

"{" and "}", and a sequence of elements between "[" and "]". The set of

tags associated to a method call is denoted S(G(op)) = {tgi | tgi ∈ G(op)}.
The execution of a test case TC = [op1, op2, ..., opm ] results in a sequence of

tag sequences, which is denoted G(TC ) = [G(op1),G(op2), ...,G(opm)]. gTa =
⋃

opi∈Ta

S(G(opi)) denotes the union of all tags set (S(G(opi))) generated from

operation calls (opi) of test case (Ta).

Based on the sequences of tag sequences obtained by the execution of the

tests, it is possible to define a family of equivalence relations Ri . For a given

relation Ri , we write TCj ≡Ri
TCk to assert that test cases TCj and TCk are

equivalent according to relation Ri .

In what follows, we use the example described in the previous section to

illustrate each equivalence relation.

The weakest equivalence relation of our family is R0.

Definition 1 (Equivalence of tag set (R0)) Two test cases Ta and Tb are

equivalent according to a tag set (noted Ta ≡R0
Tb) iff the same tag set is

collected during both test executions.

Let gTa =
⋃

opi∈Ta

S(G(opi)) and gTb =
⋃

opj∈Tb

S(G(opj ))

Then Ta ≡R0
Tb ⇔ gTa

= gTb

The equivalence relation R0 establishes an equivalence between tests based

on observed tag sets. It does not take into account the possible repetition

or ordering of tags, since it relies on the notion of set. This relation is

reflexive (T ≡R0
T ), symmetrical ( T ≡Ri

T ′ ⇐⇒ T ′ ≡R0
T ) and transitive

(T ≡R0
T ′ ∧ T ′ ≡R0

T ′′ =⇒ T ≡R0
T ′′). It is thus an equivalence relation.

Consider a test suite TS with three test cases TC1, TC2 and TC3:

TC1 = val.inc([1,-6,2]); val.dec([0]);

TC2 = val.inc([-3,2,0]); val.inc([]);

TC3 = val.inc([1,-6]); val.dec([3,1]);

G(TC1) = [[Inc-gt0,Inc-lt0,Inc-gt0], [eq0]]

G(TC2) = [[Inc-lt0,Inc-gt0,eq0], []]

G(TC3) = [[Inc-gt0,Inc-lt0], [Dec-gt0,Dec-gt0]]

gTC1
= {Inc-lt0,Inc-gt0,eq0}

gTC2
= {Inc-lt0,Inc-gt0,eq0}
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gTC3
= {Inc-gt0,Inc-lt0,Dec-gt0}

TC1 and TC2 are equivalent according to R0 because gTC1
= gTC2

. How-

ever, TC3 is not equivalent to TC1 and TC2 because gTC3
differs from gTC1

and gTC2
.

A second equivalence relation keeps the individual traces of each operation

execution as the set of activated tags. This relation considers the set of tag

sets produced by each test case without mattering of their execution order.

Definition 2 (Equivalence of set of tag sets (R1)) Two tests Ta and Tb

are equivalent according to a set of tag sets (noted Ta ≡R1
Tb) iff the same

set of tag sets is collected during both test executions.

Let sTa = {S(G(oi)) | oi ∈ Ta} and sTb
= {S(G(oj )) | oj ∈ Tb} Then

Ta ≡R1
Tb ⇔ sTa

= sTb

Let us now consider TC4 and TC5 as follows:

TC4 = val.inc([1,2]); val.inc([0]); val.dec([0]); val.inc([-2,1]);

TC5 = val.inc([0]); val.inc([3,-3]); val.inc([3]);

G(TC4) = [[Inc-gt0,Inc-gt0], [eq0], [eq0], [Inc-lt0,Inc-gt0]]

G(TC5) = [[eq0], [Inc-gt0,Inc-lt0], [Inc-gt0]]

sTC1 = {{Inc-gt0,Inc-lt0}, {eq0}}

sTC4 = {{Inc-gt0},{eq0}, {Inc-gt0,Inc-lt0}}

sTC5 = {{eq0}, {Inc-gt0,Inc-lt0}, {Inc-gt0}}

sTC2 = {{Inc-lt0,Inc-gt0,eq0}, {}}

gTC4 = gTC5 {Inc-lt0,Inc-gt0,eq0}

We observe that tests TC4 and TC5 produce the same sets of tag sets.

Therefore, TC4 ≡R1
TC5. TC1 and TC2 do not give the same sets of tags sets

as for TC4 and TC5, however these four tests are equivalent according to R0

because gTC1 = gTC2 = gTC4 = gTC5.

TC4 and TC5 do not produce exactly the same sequences of tag sets.

Since the execution order of the methods in the test case may have an

influence on the tested behavior, we introduce a third equivalence relation,

which discriminates tests on the basis of sequences of tag sets.

Definition 3 (Equivalence of sequences of tag sets (R2)) Two tests

Ta and Tb are equivalent according to a sequence of tag sets (noted Ta ≡R2
Tb)

iff the same sequence of tag sets is collected during both test executions.

Let ssTa = [S(G(oi)) | ∀ oi ∈ Ta ] and ssTb = [S(G(oj )) | ∀ oj ∈ Tb ] Then

Ta ≡R2
Tb ⇔ ssTa = ssTb
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Let consider TC6 as follows:

TC6 = val.inc([0]); val.inc([-6,2]); val.inc([3,4]);

G(TC6) = [[eq0], [Inc-lt0,Inc-gt0], [Inc-gt0,Inc-gt0]]

sTC6 = {{eq0}, {Inc-gt0,Inc-lt0}, {Inc-gt0}}

ssTC4 = [{Inc-gt0},{eq0}, {eq0}, {Inc-gt0,Inc-lt0}]

ssTC5 = [{eq0}, {Inc-gt0,Inc-lt0}, {Inc-gt0}]

ssTC6 = [{eq0}, {Inc-lt0,Inc-gt0}, {Inc-gt0}]

As shown previously, TC4 and TC5 are equivalent according to R1. This

is not true according to R2. TC6 and TC5 produce the same sequence of tag

sets, that is why both tests are equivalent w.r.t. R2.

However, TC6 and TC5 do not have the same sequences of tag sequences

(G(TC5)6=G(TC6)). To differentiate the two tests in this case, we introduce

R3, that requires the same sequences of tag sequences.

Definition 4 (Equivalence of sequence of tag sequences (R3)) Two

tests Ta and Tb are equivalent according to a sequence of tag sequences (noted

Ta ≡R2
Tb) iff the same sequence of tag sequences is collected during both

test executions.

Ta ≡R0
Tb ⇔ G(Ta) = G(Tb)

We remind that:

G(TC6) = [[eq0], [Inc-lt0,Inc-gt0], [Inc-gt0,Inc-gt0]]

and G(TC5) = [[eq0], [Inc-gt0,Inc-lt0], [Inc-gt0]]

Let TC7 = val.inc([0]); val.inc([-3,5]); val.inc([9,6]);

with G(TC7) = [[eq0], [Inc-lt0,Inc-gt0], [Inc-gt0,Inc-gt0]]

we have TC6 ≡R3
TC7.

We have formalized four equivalence relations. The discriminating power

of the relations increases from R0 to R3, i.e. R0 ≤ R1 ≤ R2 ≤ R3.

A first advantage of our approach is that it is possible to adjust the size

of the reduced suite by choosing a stronger or weaker equivalence relation.

We illustrate the influence of the equivalence relation on the size of test suite

in the next chapter. Another advantage is that the approach does not rely

on a specific annotation scheme. Annotations may result from source code

instrumentation process or from traceability purposes. Of course, the accura-

cy/completeness of annotations will impact the relevance of the reduced test

suite.
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As any test reduction approach based on an analysis of coverage, it re-

quires to run at least once every test case. This will not be perceived as an

inconvenience in many projects where the test suite is executed regularly.

10.4 Reduction process

To generate a reduced test set, we first run the original test set. A logging

file is generated storing for each test case TCi , a sequence of activated tag

sequences G(TCi). Then, we execute the algorithm of reduction to get the

reduced test set. The algorithm takes as input all the generated sequences of

tags sequences (where each sequence of tags sequence corresponds to a test

case TCi in the test suite) and the equivalence relation.

The reduction algorithm is performed as follows. In the first iteration, the

first test case is compared to all the other test cases. The equivalent test cases

are grouped in the same equivalence class. In the second iteration, the next

non classified test case is compared to the remaining non classified test cases,

and puts the equivalent test cases in another equivalence class. If a test case

is not equivalent to any other test case, it is put alone in an equivalence class.

The iteration proceeds until classifying all equivalent test cases. Finally, the

algorithm selects randomly a test case from each equivalence class to get the

reduced test set.

To illustrate the algorithm, let us take the test set TS that contains the

7 test cases defined in Sect. 10.3 (TC1 to TC7). We present in Fig. 10.3 for

each test case TCi the corresponding sequence of tags sequences G(TCi).

The reduction algorithm using the equivalence relation R0 is performed as

follows. First, TC1 is compared to all other test cases. An equivalent class

is created grouping all the equivalent test cases (TC1, TC2, TC4, TC5, TC6

and TC7). Next, the remaining test TC3 is put into a new equivalence class.

Finally, the algorithm selects randomly a test case from each equivalence class.

For example, the reduced test set can be {TC1, TC3}.

The algorithm of reduction is applied on TS using the four equivalence

relations, and we get the following reduced test sets RTSRi
(reduced test set

according to the equivalence relation Ri):

RTSR0
= {TC1, TC3} : size = 2

RTSR1
= {TC1, TC2, TC3, TC4, TC5} : size = 5

RTSR2
= {TC1, TC2, TC3, TC4, TC5} : size = 5

RTSR3
= {TC1, TC2, TC3, TC4, TC5, TC6} : size = 6

We can see that RTSR0
⊆ RTSR1

⊆ RTSR2
⊆ RTSR3

due to the discriminating

power that increases from R0 to R3.

In next section, we present an extension proposed for the algorithm.
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10.5 Extension to the reduction algorithm

We propose an extension to the reduction algorithm aiming to improve the

reduction rate for R2 and R3. The reduction algorithm considers two test

cases equivalent according to R2 and R3 only if the two test cases have the

same length (number of operation calls). Using this equivalence principle,

many test cases existing in the reduced test suite may be prefixes for other

test cases. Our idea is then to delete these test cases (prefixes) since their

executions are included in other test cases. In our proposal, we consider a

test case (denoted as "small" test case) as a prefix of another test case if its

sequence of tags sequence generated is a prefix in a sequence of tags sequence

of another test case (denoted "large" test case). We give an example of 2 test

cases TC1 and TC2 with: G(TC1) = [[t1,t2], [t3,t4]] and

G(TC2) = [[t1,t2], [t3,t4], [t5]].

In this example TC1 is considered as prefix of TC2 because the sequence

of tags sequences [[t1,t2],[t3,t4]] is included in G(TC2). The extension of

reduction algorithm is applied for the equivalence relations R2 and R3 where

the activation order of tags sets/sequences of an operation call makes sense in

the operation call sequence. It consists in finding all the prefixes (sequences

of tags sets/sequences) included in other sequences of tags sets/sequences and

delete the corresponding test cases. We call R2’ or R3’, the reduction process

that consists in using the equivalence relation R2 respectively R3 to reduce

a test suite and then applying the prefix deletion process. The motivation

behind the deletion of prefixes is that we consider that the system behavior

covered by small test cases execution is covered by larger test cases execution,

and therefore, executing the large test case is sufficient.

In the next chapter we present experimental results of our test suite re-

duction approach performed on different case studies. We use the standard

algorithm (without extension) for the evaluation of examples. An example of

evaluation using the algorithm with extension is presented in Sect. 11.2.3.

10.6 Comparison with traditional approaches

for structural based reduction

The readers can say that our approach is similar to the structural reduction

approaches because they depend both on the structure of code. For example,

to compare equivalence of test cases based on their branch coverage, a tag

is inserted at each code branch. For instructions coverage we insert a tag

after each instruction bloc. Then, the recorded trace is compared between

tests, and the reduction is performed when two tests cover the same elements
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related to the chosen coverage criteria (i.e. branches, instructions, execution

path, etc.).

Many algorithms (as the HGS algorithm) have been proposed to perform

the test suite reduction based on the coverage information. It takes a test

suite and an array containing for each test the set of elements it covers, and

provides a reduced test suite representative of the original one.

It is true that our approach is similar to structural reduction approaches

when the tags are inserted in the code to perform source code instrumentation

and to compare it to other approaches based on structure. However in the

case where the tags are inserted in the code for requirements traceability, the

annotation process is different. Not every branch/instruction is tagged, only

the points that trace back a specific user requirement are tagged. Moreover,

the tags inserted in the source code to trace user requirements may be not

unique. They can be used more than one time at different points. This can

be explained by the fact that many points in the source code are realizing the

user requirement. For example a process of specific exceptional behavior can

be the same in many functions and therefore tagged with the same name of

tag. Another example, adding a node to a tree at the left or adding it at the

right can be tagged by a single tag: add_tag.

Another difference between our approach and structural reduction ap-

proaches is the relation of equivalence used to find diversity among tests.

The structural approaches are using traditional testing coverage criteria as

branch coverage, instruction coverage or method coverage. These criteria (ex-

cept for path coverage criterion) do not consider the number of repetitions of

an instruction or an operation call. They do not consider the execution order

of an instruction or an operation call. They see only if instructions/branch-

es/methods are covered or not. In our approach, 4 equivalences relations are

proposed based on two important criteria: the order and the repetition of

tags. The order and repetition of tags can be considered inside an operation

call or between two operation calls.

It is important to take into account the order and repetition of tags inside a

method when the execution order of instructions inside a method makes sense.

In this case, the execution of the instructions related to the tagi can affect the

execution of subsequent instructions related to the tagi+1. Let us consider the

example of code of operation opOnArray in Fig. 10.4. The operation iterates

on the integer elements of an array. If the element (T[i]) is even then we divide

the variable S by T[i] (the tag DIV2 is activated), otherwise we multiply it

by T[i] (the tag MUL2 is activated). The operation return then s. In this

operation the order of covering the branches in the iteration (activation of

tags) is important and gives a different result each time we change the order.

If we define two test cases tcA and tcB with:



10.7. Conclusion 127

public int opOnArray (int[] T){

TagLogger.beginOpCall();

int s=10;

for(int i=0; i<T.length; i++){

if(T[i]%2==0){

s=s / T[i];

TagLogger.log("DIV2");

}

else{

s=s * T[i];

TagLogger.log("MUL2");

}

}

TagLogger.endOpCall();

return s;

}

Figure 10.4: Example to motivate the importance of order and repetition of

tags

tcA: opOnArray([4,3]) –> s=6

tcB: opOnArray([3,4]) –> s=7

G(tcA) = [[DIV2, MUL2]]

G(tcB) = [[MUL2, DIV2]]

If we consider the order of activation of tags, the two test cases tcA and tcB

will be not equivalent. This is motivated by the fact that they give different

results for s by changing the order of tags activations. The two tagged points

(branches) are dependent because they modify the same variable.

The order is not important when our target is only to activate the tags

independently of their order of activation. The loop instructions, the recursion

and the goto statements are the types of instructions that give different orders

and numbers of repetitions of tags.

10.7 Conclusion

The concept of source code annotations is used for a variety of purposes, from

traceability [Connolly 2009, Mei 2009] to code instrumentation [Geimer 2009,

Zhang 2011]. We propose to take advantage of these annotations for test suite

reduction. We define four equivalence relations between tests based on the

annotations covered during test execution. These relations define equivalence
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classes for tests which are used to extract the reduced test suite. Depending

on needs and/or time limit, it is possible to adjust the size of reduced test

suite by choosing the most appropriate equivalence relation.
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11.1 Introduction

This chapter gives the results of experimenting our test reduction approach

for different test suites and on different case studies. Sect. 11.2 presents

the test suite reduction result using the four equivalence relations on small

programs. The tags are inserted in the programs for code instrumentation

purpose. The reduction rate and the fault detection capability are compared

between the reduced test suites and to the random selection approach. To

compute the faults detected by a test case we use the mutation testing by

inserting mutations into the programs under test.
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Sect. 11.3 presents the experimental results of our approach on a case

study (Video On Demand Player) where tags are inserted for requirements

traceability purpose. The reduction rate and the program coverage percent-

age are compared between the reduced test suites using the four equivalence

relations and to the original test suites.

Sect. 11.4 presents how our approach can be used in the context of anno-

tated specifications. An experimentation is performed on a specification of an

electronic purse application containing requirement traceability annotations.

The collection of tags covered is performed during test animation using Cer-

tifyIt. Using these collected tags our tool is then able to reduce the test suite

after its animation.

11.2 Preliminary Experimentations

Program Under Test LOC #Methods #tag #Mutants

ArrayStack [Weiss 2007] 100 8 17 54

AvlTree [Weiss 2007] 281 18 43 114

BinarySearchTree [Weiss 2007] 219 15 42 166

BinomialHeap [Weiss 2007] 434 6 20 73

BinomialQueue [Weiss 2007] 222 14 21 94

BoundedStack [Li 2009] 75 10 15 167

Buffer [Ledru 2004] 44 4 9 156

Node [Li 2009] 136 9 15 15

Queue [Li 2009] 73 5 10 71

RedBlackTree [Weiss 2007] 254 16 29 71

VendingMachine [Li 2009] 85 6 13 104

LOC is computed with LOC Calculator tool, http://code.google.com/p/loc-calculator/.

Figure 11.1: Subjects of the experimentation

We led several small experiments to investigate the influence of the equiv-

alence relations on the size and effectiveness of the reduced test suite. We

expect that a weaker equivalence criterion will lead to smaller test suites than

the stronger ones. We also compare the effectiveness of the reduced against

the original test suites.

In this section, we measure the effectiveness of a test suite by evaluating

its fault detection capability. To evaluate the fault detection capability of

the test suites, we introduce faults in the program under test following a

classical mutation approach [Offutt 1994]. Faults are introduced in copies of
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the program under test; each erroneous copy contains only one fault and is

called mutant. Faults are inserted with respect to a fault model, expected to

be representative of real faults. If a difference can be observed between the

execution of the original program and the execution of the mutated one, the

mutant is killed. It is alive otherwise. In the sequel, we will compare the

number of mutants killed respectively by the original and the reduced test

suites.

11.2.1 Experimental setting

Subjects We collected already existing subjects that are involved in other ex-

perimental studies. For instance, we selected some container classes used in

[Weiss 2007, Li 2009] and other types of classes [Li 2009, Ledru 2004]. Eleven

classes were thus analyzed. The table given in Fig. 11.1 provides some struc-

tural characteristics of these classes. Our experiment concerns 33 test suites,

3 test suites for each program. The test suites were generated independently

of this study. They were generated using a combinatorial tool developed by

Lydie du-Bousquet a member of our research team.

Annotation process Tags were inserted in the source code manually, but

systematically. They record the execution flow and are located:

• after instruction blocks that modify the state of the system,

• inside iteration blocks,

• inside conditional branches,

• inside class constructors,

• after operation calls (including recursive calls),

• inside exception block processing.

Faults were introduced in the classes under test using the MuClipse

tool1[Smith 2009]. MuClipse proposes two types of mutation operators: tra-

ditional or class-level mutant operators. Class-level mutants are dedicated to

evaluate tests with respect to classical mistakes in the use of object-oriented

features, such as inheritance or polymorphism. We choose to consider only

traditional mutants, since the programs under tests are not implemented us-

ing inheritance or polymorphism. Traditional mutations include replacing

operands, deleting statements, replacing some arithmetic operation with an-

other one (like "+" by "-"), replacing some variable with another one, . . . To

1http://muclipse.sourceforge.net/
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| | TSR1

| | TSR2
| | TSR3

| TS0 TB-TS R-TS TB-TS R-TS TB-TS R-TS TB-TS R-TS TB-TS(R3)

1 7 5 5 5 5 1.0 1.0 0.93 1.0 0.91 1.0 0.89 1.0 0.92 0%

Vending Machine 2 49 16 16 26 26 69.0 24.26 33.49 29.16 35.07 51.52 50.06 52.04 45.63 24.57%

3 343 31 31 141 141 82.0 75.47 66.95 76.28 66.02 80.55 78.26 80.4 78.9 2.39%

1 7 4 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0%

Binomial Queue 2 49 11 15 22 22 41.0 41.0 23.03 41.0 26.96 41.0 30.88 41.0 31.23 0%

3 343 25 36 94 94 58.0 55.47 46.9 55.3 49.08 58.0 55.33 58.0 55.19 0%

1 7 6 6 6 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0%

Array 2 49 19 19 31 31 10.0 9.25 8.36 9.33 8.18 10.0 9.55 10.0 9.65 0%

3 343 43 43 156 156 18.0 17.09 14.67 17.12 14.64 18.0 17.81 18.0 17.75 0%

1 7 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0%
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3 343 38 39 97 97 60.0 58.88 52.02 58.84 51.72 60.0 58.54 60.0 58.54 0%

1 8 1 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0%

Buffer 2 64 7 7 8 8 108.0 98.52 74.08 98.06 75.35 98.59 80.62 98.62 82.27 8.68%

3 512 17 17 38 38 132.0 129.56 125.1 129.73 124.5 131.93 130.51 131.93 130.1 1.51%

1 14 11 11 11 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0%

Node 2 196 48 60 114 114 6.0 1.21 3.01 1.27 2.9 3.86 4.86 3.86 4.95 35.66%

3 2744 122 221 1203 1203 8.0 5.58 5.94 5.8 6.44 6.86 7.59 6.83 7.53 14.62%

1 8 6 6 6 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0%

Binary Search Tree 2 64 24 24 35 35 17.0 15.8 11.76 15.8 11.28 15.84 14.47 15.8 14.16 7.05%

3 512 82 94 214 214 80.0 63.26 44.92 66.52 48.42 79.52 64.78 79.5 64.43 0.6%

1 8 4 4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0%

Bounded Stack 2 64 10 10 14 14 69.0 35.31 27.39 34.51 28.43 42.0 34.6 40.97 36.55 40.62%

3 512 20 20 48 48 105.0 64.78 64.02 65.1 62.1 79.83 78.89 79.59 77.14 24.2%

1 8 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0%

Binomial Heap 2 64 13 13 21 21 29.0 22.84 19.84 22.98 19.09 24.53 24.39 24.46 24.56 15.65%

3 512 22 24 85 85 51.0 32.28 32.87 31.33 34.95 40.82 43.59 40.24 44.73 21.09%

1 8 6 6 6 6 5.0 3.0 3.11 3.0 3.16 3.0 3.4 3.0 2.95 40%

Red Black Tree 2 64 21 22 33 33 17.0 17.0 17.0 17.0 16.88 17.0 17.0 17.0 17.0 0%

3 512 61 73 184 184 20.0 19.07 18.23 19.06 18.48 19.11 19.24 19.12 19.13 4.4%

1 7 4 4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0%

Queue 2 49 8 8 13 13 32.0 19.83 12.34 20.2 11.72 21.25 17.47 21.72 16.67 32.12%

3 343 10 12 40 40 53.0 32.58 27.12 34.11 29.73 41.13 40.33 41.76 40.64 21.2%
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kill a mutant we apply the traditional method which consists in comparing

the mutant outputs to the original program outputs.

To compute the reduced test suites, we first execute the original test suites

and collect the tags. From these data, we build the equivalence classes w.r.t.

to the four equivalence relations. Then, we select randomly one test case

by equivalence class to build a tag-based-reduced test suite. The sizes of

the original and reduced test suites are given in Fig. 11.2. Because the

reduced test suite can be affected by the random choice of its elements in

the equivalence classes, we performed the reduction 100 times and computed

the average number of faults detected by each of these 100 reduced suites.

Please note that the number of equivalence classes, and hence the size of the

reduced test suites, is not affected by the random selection, because classes

are computed before the random selection.

11.2.2 Results of the experiments

Fig. 11.2 gives the results of our experiments. Each line corresponds to one of

the 11 systems under test (SUT), and one of the three associated test suites.

Each original test suite is denoted as TS0.

The first five columns give the size of the original test suite and of the re-

duced ones, according to the four equivalence criteria. The following columns

evaluate the effectiveness of the reduced test suites and compare them to ran-

domly generated reductions of the same size. Column TB-TS, resp. R-TS,

gives the average number of mutants killed by the tag-based, resp. randomly,

reduced test suite.

Impact of the equivalence criterion on the size of the test suite

We observe that the reduction rates reach up to 90% even for the strongest

relation (R3). As expected, the test suite size increases for stronger relations.

In some cases, the size of the test suite reduced using R0 is equal to the one

reduced using R1. This is due to the small size of the test suites or/and due

to the tags shared between operation calls. When two operations calls in two

different tests produce the same tag names, the sets of tags generated by calls

(used to apply R1) will be equal to the set of tags generated by the test case

(used to apply R0).

The sizes of the reduced test suites using R2 and R3 are equal in these

case studies. Indeed, R2 and R3 produce different equivalence classes when

it is possible to observe two different sequences of the same set of tags. This

corresponds to a different ordering of the same tags, or different iterations of

some tags, like in [tag1, tag2, tag3] and [tag2, tag1, tag3] or [tag1, tag1, tag2,
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tag3]. This does not appear in our experimentations because of two main

points:

• Some programs do not contain constructs that create the difference in

reduction rate between R2 and R3, as the loop construction or the re-

cursion. When tags are inserted inside a loop, it is possible to cover the

same set of tags several times and in various ordering. Buffer and Array

are examples of such program.

• The test suites used for the experimentation contain test cases having

small size (from 1 to 3 operation calls). The input values used for

the experimentation and the length of the test cases are two essential

parameters to get different tags coverage.

In the section 11.2.3, we present another experimentation aiming to show

different results in reduction rate and fault detection capability between R2

and R3.

Impact of the equivalence criterion on the effectiveness of the test

suite

Looking at the scores of the tag-based reduced test suites, we notice that,

in most cases, stronger equivalence relations produce test suites which kill

more mutants. Eight cases (out of 132) do not follow this rule. For example,

considering the third test suite of AVL, R0 leads to kill 58.88 mutants, while

R1 corresponds to 58.84. We believe that this is due to the random selection

of test cases in an equivalence class.

Comparing the mutations scores of the reduced suites to the mutation score

of the original one, we notice that reduced test suites may loose fault detection

power. The last column of Fig. 11.2 compares the number of mutants killed

by TS0 with the number of mutants killed by the tag-based reduced test suite,

using R3. In most cases, the difference is small, but in some cases it can rise

up to 40%. Reduction can thus lead to loss of fault detection power.

Finally, we compare tag-based vs randomly reduced suites. The table

gives 132 cases, corresponding to the 33 original suites and 4 different criteria.

From this table, it can be noticed that our reduction strategy is better than

the random one 71 times out of 132, and gives the same result in 39 cases. A

statistical analysis, applying the Mann-Whitney U test with 95% confidence,

confirmed that our reduction approach is better than the random one.

In summary, these preliminary experiments show that:

• stronger equivalence relations lead to larger reduced suites;
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• the reduced suite corresponding to a stronger equivalence relation de-

tects more faults than the one reduced with a weaker criterion;

• tag-based reduced suites detect more faults than randomly reduced

suites of the same size.

Threats to validity

Since these experiments remain preliminary, they are subject to several threats

to validity. As with all empirical studies involving software artifacts, threats

to external validity questions whether the subjects used in our experiments

are representative of real programs and real test suites. Our experiment con-

cerns 33 test suites generated for classes collected on Internet. We focus on

classes that include a state. To decrease the risk to select inappropriate or too

specific programs under test, we consider codes that were frequently used in

the literature, such as containers [Arcuri 2010], but also other types of classes

[Li 2009]. Some of these classes under test (e.g. RedBlackTree) include other

classes. Original test suites aimed at testing all methods in the classes con-

trary to the study in [Arcuri 2010], where only add and remove methods were

considered.

Threats to internal validity correspond to bias in our experimental setting.

Here, a threat to internal validity is due to the faults we considered. About

the choice of faults, we apply mutation analysis, which is considered to be an

unbiased and varied manner to obtain faulty programs [Arcuri 2010].

One threat to construct validity is the way test suites are built. To build

test suites, we use a combinatorial tool. Using different tools could conduct

to different test suites.

11.2.3 Other experimentation

We perform another experimentation aiming at observing different reduction

rates between the equivalence relations R2 and R3. In the previous experi-

mentation, it can be seen that the reduction rate is always the same for R2

and R3. This is because equivalent test cases (according to R2 and R3), cover

the same sequence of tags sequence (equivalent according to R3). We assume

that this result is due the following reasons:

• Some program methods called in the experimented test suites do not

contain recursion or iteration process, that make it possible to generate

different tags sequence.

• The number of methods called in a test case (from 1 to 3) is not suffi-

cient to get different sequences of tags sequence. This can explained for
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example in the programs that implement the tree structure. We have to

call the insert operation many times to execute the recursion process

and get different tags. This corresponds to different kinds of insertion

(such as inserting to left node, or to right node of the tree).

• The values used in the operation call may have an influence in activating

different tags and then getting a different sequence of tags. For example,

for a binary search tree, to insert a value we compare if its is greater

than or less than the root node to insert it either to left subtree or to

right subtree.

To confirm these reasons, in this experimentation, we used only the pro-

grams that contain the methods with iteration or recursion process. For every

chosen program, we generate two test suites. One test suite generated combi-

natorially and the second is generated randomly.
The combinatorial test suites are generated using Tobias. To do that, we

define test patterns that aim to test especially the methods with iteration or
recursion constructs. Sets of values are defined for the operation parameters.
We define also repetition of operations between m and n ({m,n}) with n > m.
Performing this we get test cases with different sizes and diverse values. We
give for example the test pattern created to test the RedBlackTree program:

group RedBlackTreeOrigPattern [us=true] {

RedBlackTree rbt = new RedBlackTree();

(rbt.insert([10,-1,0,789655])| rbt.makeEmpty()| rbt.printTree()){4,5};

}

It represents a choice between three method calls repeated from 4 to 5 times:

the insert method to insert diverse values to the tree, the makeEmpty method

to delete all the elements in the tree and the printTree method to traverse

the tree nodes and print its elements. The methods insert and printTree

contain the recursion construct.

The random test suites are generated using the Randoop tool

[Pacheco 2007]. It is a tool that generates randomly a sequence of opera-

tion calls for Java in JUnit format. To generate the randoop test suite, we

have to define some parameters as the maximum length of a generated test

case and the maximum number of generated tests. We choose as 50 the max-

imum length of a generated test case and as 5000 as the maximum number

of tests generated in a single file. Randoop uses the technique of feedback-

directed random testing to generate tests. The principle of this technique is

to execute test inputs before they are recorded to avoid redundant and il-

legal inputs. Randoop generates randomly and in smart way a sequence of

operation calls and constructor invocations of the class under test. The se-

quences are created incrementally, and operation calls arguments are selected
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Program |TS0| |TSR0| |TSR1| |TSR2| |TSR3| |TSR2’| |TSR3’|

AVL Tree
TR 4842 398 863 3754 3758 2929 2933

TC 5120 10 242 1966 2584 1659 2163

Binomial Queue
TR 4951 381 2886 4159 4192 3220 3250

TC 4536 13 132 179 199 139 159

Red Black Tree
TR 5000 97 822 4781 4791 4415 4424

TC 9072 106 461 1190 1560 979 1313

Binary Search Tree
TR 5000 42 1367 4851 4852 4588 4589

TC 2744 32 132 410 412 349 351

Figure 11.3: Reduction of combinatorial and random test suites for programs

with iteration or recursion process

from sequences previously constructed. The generated test suites have ran-

dom length for the test cases and random values for the operation parameters.

Randoop proposes also that the user adds its own values for parameter types.

We used then the MAX INT value (maximum integer) and the MIN INT

value (minimum integer) to add the upper and the lower bounds of Java int

parameter.

We use the standard algorithm of reduction using the four equivalence

relations (R0, R1, R2 and R3). We also apply the proposed extension that

consists in deleting prefixes, to get results for equivalence relations R2’ and

R3’. The details of the extension is presented in Sect. 10.5.

The result of test suites reduction using the four equivalence relations (R0,

R1, R2 and R3) is presented in Fig. 11.3. We denote the combinatorial test

suite by TC and the random one by TR. The result of reduction by applying

R2’ and R3’ is also presented in Fig. 11.3. We remind that R2’ and R3’ consists

in reducing the test suite using R2 and R3 after that deleting the prefixes.

The first point we notice in the result is that the objective of this ex-

perimentation is reached by having different reduction rate for R2 and R3.

Therefore, we can confirm the reasons identified above. It can be seen clearly

that the reduction rate decreases with the strength of the equivalence relation.

For example for AVL program, the reduction rate for R0 is 91%, for R1 is 82%,

for R2 and R3 is 22%.

We can observe in the results, that the reduction rate of combinatorial test

suites is always greater than the reduction rate of random generated ones. For

example, for Binomial Queue program, the reduction rate of combinatorial test

suite reduced according to R3 is 96%. For random test suite, the reduction

rate is 28%. This is because the test pattern contains input values we consider

diverse, are actually generating tests that cover the same system behaviors.

However Random test suites contains random values, random test case size,

and random operation calls making more diverse the test suites.
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Looking at the reduction according to R2’ and R3’, we can notice that the

extension introduced in the algorithm allows to decrease further the number

of tests compared to the result of reduction according to R2 and R3. For

example, for BinomialQueue program, the result of reduction according to R2

is reduced from 4159 to 3220 (R2’) by deleting the prefixes, that represents

an improvement reduction rate of 22%.

We can conclude by observing these results that our reduction approach

is performing efficiently with randomly and combinatorially generated tests.

11.3 Case study: Video-On-Demand Player

In this second case study, we wanted to experiment our reduction technique

using another kind of annotations: traceability annotations. Actually, there

does not exist many freely available case studies which feature traceability

links between requirements and code. In the best cases, links correspond to

the whole class or the whole method. They don’t distinguish between normal

and exceptional behaviors in a method. Therefore this study is limited to one

program: the Video-On-Demand Player.

11.3.1 Subjects

It consists of a Video-On-Demand Player, aimed to play short movie clips

stored in a server. In [Lopez-Herrejon 2011], the original program was struc-

tured as a product line whose features correspond to each functional require-

ment. A feature is defined as a set of fragments in the code (attributes, meth-

ods or instructions). The system was created using the Feature House tool2.

This tool implements an approach to create a software system by compos-

ing software features. The system contains 13 requirements (See Fig. 11.4),

including 3 non-functional requirements (5,6 and 7). They correspond to 10

features in the code (one for each functional requirement). The whole appli-

cation counts about 3000 Loc.

We constructed 4 test suites, using the combinatorial Tobias tool

[Ledru 2004]. Each test suite invokes operations calls covering several re-

quirements. Some methods are called several times, using combinations of

values for each operation parameter.

Applying these tests, we discovered some subtle bugs in the application,

due to an incorrect use of the AWT graphics library of Java. Some incorrect

handling of multi-threading leads the program to not release some resources

at the end of each test. As a result, we were unable to play large test suites

2http://www.fosd.de/fh
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Requirement description

1- Display a list of movies and select one 8- Provide VCR-like user interface

2- Play movie immediately after selection 9- Stop a movie

3- Display textual movie information 10- Start a movie

4- Pause a movie 11- Change server

5- 3 seconds max to load movie list 12- Exit the player

6- 3 seconds max to load movie textual 13- Start the movie player

7- 1 second max to start playing a movie

Figure 11.4: VOD Player system requirements

in JUnit, and these had to be played in pieces. This prevented us from us-

ing mutation analysis in the evaluation of test suite effectiveness. Instead,

we measured code coverage (method and line coverage) for the system main

classes using the Emma tool3.

11.3.2 Annotation process

A feature is described in our case study as a set of code fragments that can be

located in different method definitions. A tag is inserted after each fragment.

For example, the feature playing a movie contains four tags corresponding to

four code fragments:

• fragment of code that initializes the elements to play a movie (the at-

tributes),

• method to play a movie,

• fragment of method to change the label of the button (to stop),

• method to destroy the thread of playing when the application is quited.

11.3.3 Results of the experiments

We used Tobias tool to generate 4 test suites from user-defined test patterns.

These patterns allow to combine execution of successive functionalities (fea-

tures) possibly with different values for the operation parameters. For exam-

ple, the test suite TS2 is generated from the test pattern sq2 defined in Fig.

11.6. It allows to execute successively the features SelectMovie, PlayImmTest,

StartMovie and StopMovie (the features presented in Fig. 11.4). To start a

3http://emma.sourceforge.net/
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Original R0 R1 R2 R3

Test suite Class Method Line Method Line Method Line Method Line Method Line

TS1

VODClient 66% 78% 62% 74% 66% 78% 66% 78% 66% 78%

ServerReq 100% 71% 100% 71% 100% 71% 100% 71% 100% 71%

ServerSelect 60% 75% 60% 75% 60% 75% 60% 75% 60% 75%

ListFrame 93% 92% 93% 92% 93% 92% 93% 92% 93% 92%

Detail 100% 97% 100% 97% 100% 97% 100% 97% 100% 97%

Number of tests 35 16 16 17 17

TS2

VODClient 72% 81% 72% 81% 72% 81% 72% 81% 72% 81%

ServerReq 100% 69% 100% 69% 100% 69% 100% 69% 100% 69%

ServerSelect 40% 68% 40% 68% 40% 68% 40% 68% 40% 68%

ListFrame 73% 78% 73% 78% 73% 78% 73% 78% 73% 78%

Detail 50% 76% 50% 76% 50% 76% 50% 76% 50% 76%

Number of tests 144 3 3 3 3

TS3

VODClient 72% 83% 72% 83% 72% 83% 72% 83% 72% 83%

ServerReq 100% 69% 100% 69% 100% 69% 100% 69% 100% 69%

ServerSelect 40% 68% 40% 68% 40% 68% 40% 68% 40% 68%

ListFrame 80% 81% 80% 81% 80% 81% 80% 81% 80% 81%

Detail 50% 76% 50% 76% 50% 76% 50% 76% 50% 76%

Number of tests 99 11 11 13 13

TS4

VODClient 72% 83% 72% 82% 72% 82% 72% 83% 72% 83%

ServerReq 100% 69% 100% 69% 100% 69% 100% 69% 100% 69%

ServerSelect 40% 68% 40% 68% 40% 68% 40% 68% 40% 68%

ListFrame 73% 78% 73% 78% 73% 78% 73% 78% 73% 78%

Detail 50% 76% 50% 76% 50% 76% 50% 76% 50% 76%

Number of tests 432 4 7 14 14
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movie (in StartMovie group), a movie have to be selected from a specified

group of values (MovieTitle) where "THIS FILM DOESNT EXIST" is an

invalid value. Fig. 11.5 shows the results of this case study. The four original

group sq2{

@SelectMovieTest;

@PlayImmTest;

@StartMovieTest;

@StopMovieTest;

}

group StartMovieTest{

@StartMovie;

...

}

group StartMovie{

vodClient.setPlayImm(false);

filmTitle = @MovieTitle;

vodClient.selectmovie(filmTitle);

actionEvent = new ActionEvent(vodClient, 1, "Play movie");

vodClient.buttonControl2_actionPerformed(actionEvent);

}

group MovieTitle{

values = ["A Grand Day Out (1)", "The Wrong Trousers (1)",

"THIS_FILM_DOESNT_EXIST"];

}

Figure 11.6: Example of test pattern defined for the Video-On-Demand case

study

test suites (TSi) were reduced using the tag-based approach. We only per-

formed the reduction once for each criterion. For each of the five main classes

of the application, we measured method and line coverage, considering the

original test suites and their reduced versions. Fig. 11.5 also gives the size of

each test suite.

As for our previous experiments, we notice that the size of the reduced test

suites grows with stronger equivalence criteria. We can observe that the test

suite reduction rate reaches up to 99% even for the strongest relation (R3).
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Regarding test effectiveness, code coverage is preserved by even the weakest

relation (R0) except for 3 cases: coverage of VODClient by TS1 and TS4 using

R0 and by TS4 using R1.

11.4 Experimentation with annotated specifica-

tions

We have seen previously that our approach can be applied for annotated source

code, using a tag Logger system, and we have described some experimenta-

tions performed on several programs. These experimentations show that our

approach gives efficient results in terms of reduction rate and fault detection

capability.

Our approach can also be used in a model-based context to reduce a test

suite animated on a specification. The specification should be annotated with

tags, that may be used for traceability purpose or for model commenting

purpose. A system for collecting tags should be available during the test case

animation to generate the covered tags.

We remind that using CertifyIt tool, we are able to animate a test case on

a UML/OCL specification and to get a set of covered tags for each operation

call of the test case. The result of animation for a test case is a sequence of

tags sets. The CertifyIt tool is not able to collect a sequence of tags covered

from an operation animation, it is only able to collect the set of tags (i.e.

without execution order). This result is saved only if the test case is valid,

because invalid test cases are discarded from the test suite result and are not

considered to test the SUT. A sequence of tags sets is used as input to our

tool to perform the reduction of test cases.

In the following, we present an experimentation of our approach on a

specification of an electronic purse application.

11.4.1 Subjects

Annotated specification

In this section, we consider the case study: Electronic purse application, pre-

sented in Sect. 4.3.1. We adapted it to make all tests animated on the

specification valid tests. This is done by adopting a defensive style. The OCL

preconditions that make the test to fail are transformed as annotated branches

in the OCL postcondition and the "true" value is assigned to the precondi-

tions. The motivation is that we wanted to generate a tag when a test fails

the original precondition. Moreover we would like to consider the behavior of
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/**@AIM: CHECK_PIN */

if (self.isOpenSess_= true and self.mode_= Mode::USE and

self.terminal_=Terminal::PDA and self.hptry_ > 0) then

if (self.hptry_ > 0) then

/**@AIM: NUMBER_OF_TRIES_IS_POSITIVE */

if (pin = self.hpc_) then

/**@AIM: HOLDER_AUTHENTICATED */

self.isHoldAuth_ = true and

self.hptry_ = self.MAX_TRY

else

/**@AIM: HOLDER_IS_NOT_AUTHENTICATED */

self.hptry_ = self.hptry_ - 1 and

self.isHoldAuth_ = false and

if (self.hptry_ = 0) then

/**@AIM: MAX_NUMBER_OF_TRIES_REACHED */

self.mode_ = Mode::INVALID

else

/**@AIM: MAX_NUMBER_OF_TRIES_IS_NOT_REACHED */

true

endif

endif

else

/**@AIM: NUMBER_OF_TRIES_IS_NEGATIVE */

true

endif

else

/**@AIM: TAG_OP_ERROR */

true

endif

Figure 11.7: Modified OCL post condition of the checkPin operation

failing original precondition as a unique behavior among operation calls. If

any operation call fails its precondition it generates TAG OP ERROR tag.

The reason we consider a unique name of tag is because if an operation fails

its precondition it will not perform any action.

We give the modified OCL postcondition of the checkPin operation in

Fig. 11.7. (c.f. the original checkPin with precondition in Fig. 4.7). Every

branch has been annotated with a tag. The specification contains 42 tags in

total.

Test suites

In our experimentation, we produced 10 test suites from several TSLT

schemas (S1 - S10) unfolding, using the Tobias tool. The test patterns
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combine several system operations (setHpc, setBpc, authBank, credit,

debit, checkPin) using group of values for their parameters. Iteration

construct is applied for some operations. Let us consider S1 TSLT schema:

group S1 [us=true] { @Personalize; @AuthentifyHolder {0,4} }

group Personalize { ep.beginSession(ADMIN); ep.setBpc(@BankPinVal);

ep.setHpc(@UserPinVal); ep.endSession(); }

group BankPinVal {values=[12,45]}

group UserPinVal {values=[56,89]}

group AuthentifyHolder {ep.beginSession(PDA); ep.checkPin(@UserPinVal);}

S1 produces a suite of test cases, each starting with a card personalization

(defined by the group @Personalize) followed by 0 to 4 Authentication(s)

of the card holder (defined by the group @AuthentifyHolder). The group

@Personalize unfolds into four sub-sequences, formed by combinations of two

values for the bank PIN and the other 2 values of the card holder. The group

@AuthentifyHolder is unfolded into two sub-sequences, and iteration of this

group between 0 and 4 times (denoted by {0,4}) provides 20 + 21 + 22 +

23 +24 = 31 sub-sequences. Therefore S1 is unfolded into 124 tests. The

sequence S1 was then reduced using the equivalence relations R0, R1 and R2.

The equivalence relation R3 is not used because CertifyIt tool is collecting the

tags for an operation call as a set and not a sequence.

11.4.2 Results and interpretation

The reduced test suites from S1 are containing respectively 8 and 9 tests for

R0 and R1 and 30 tests for R2. The overall results for the 10 test suites studied

is given Fig. 11.8.

The results also show that the test suites are greatly reduced (up 99% of

the size of the initial test suite, even with R2). These good results are due to

the fact that the test suites are built with a combinatorial approach. Many

cases are identified as potentially different in the test are actually covering the

same set of tags.
It can be noticed that the result of reduction for R0 and R1 are close.

This is explained by the nature of the model and the associated tags. R0 and
R1 give different equivalence classes when a tag may be associated to two
different subsets of tags. For example, let us consider two test cases TC1 and
TC2 with:
TC1: ep.beginSession(ADMIN); ep.setBpc(89); ep.setHpc(56);

ep.endSession(); ep.beginSession(PDA); ep.checkPin(56);

ep.endSession(); ep.checkPin(56);
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Schéma |TSo | |TSR0
| |TSR1

| |TSR2
|

S1 124 8 9 30

S2 496 15 21 74

S3 1 984 26 39 204

S4 7 936 25 45 604

S5 2 048 10 13 132

S6 8 192 10 13 428

S7 4 096 120 130 552

S8 7 239 22 25 155

S9 4 096 5 8 31

S10 9 216 45 60 122

Figure 11.8: Size of original test suite (TSo) and reduced one (TSRi
) with

i = {0, 1, 2} for schema Sj (j = 1− 10)

G(TC1) =

[[BEGIN_SESSION, SESSION_OPENED],

[SET_BANKER_PIN_CARD, BANKER_PIN_CARD_IS_SET, MODE_IS_NOT_SET_TO_USE],

[SET_HOLDER_PIN_CARD, HOLDER_PIN_CARD_IS_SET, MODE_IS_SET_TO_USE],

[END_SESSION, SESSION_ENDED],

[BEGIN_SESSION, SESSION_OPENED],

[CHECK_PIN, HOLDER_AUTHENTICATED, NUMBER_OF_TRIES_IS_POSITIVE],

[END_SESSION, SESSION_ENDED],

[CHECK_PIN, TAG_OP_ERROR]]

TC2: ep.beginSession(ADMIN); ep.setBpc(89); ep.setHpc(56);

ep.endSession(); ep.beginSession(PDA); ep.checkPin(56);

ep.beginSession(PDA);

G(TC2) =

[[BEGIN_SESSION, SESSION_OPENED],

[SET_BANKER_PIN_CARD, BANKER_PIN_CARD_IS_SET, MODE_IS_NOT_SET_TO_USE],

[SET_HOLDER_PIN_CARD, HOLDER_PIN_CARD_IS_SET, MODE_IS_SET_TO_USE],

[END_SESSION, SESSION_ENDED],

[BEGIN_SESSION, SESSION_OPENED],

[CHECK_PIN, HOLDER_AUTHENTICATED, NUMBER_OF_TRIES_IS_POSITIVE],

[BEGIN_SESSION, TAG_OP_ERROR]]

We have the set of tags generated from TC and TC2:

gTC1
= gTC2

=

{BEGIN_SESSION, SESSION_OPENED, SET_BANKER_PIN_CARD,
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BANKER_PIN_CARD_IS_SET, MODE_IS_NOT_SET_TO_USE,

SET_HOLDER_PIN_CARD, HOLDER_PIN_CARD_IS_SET,

MODE_IS_SET_TO_USE, END_SESSION, SESSION_ENDED,

CHECK_PIN, HOLDER_AUTHENTICATED, NUMBER_OF_TRIES_IS_POSITIVE,

TAG_OP_ERROR}

Therefore TC1 and TC2 are equivalent according to R0, however they

don’t generate the same sets of tags sets, because TAG_OP_ERROR appears in

two subsets with a different tag. In TC1, it appears with CHECK_PIN and in

TC2 it appears with BEGIN SESSION. These two different subsets make the

diversity between TC1 and TC2 according to R1.

We identified two cases where we get a difference between a two sets of

tags sets are:

• When identical tags are shared by different methods. This is the case

of the example described above. The operations share the tag TAG

TAG_OP_ERROR that correspond to a failing precondition.

• When the code (or postconditions) of the method contains several "if ..

then .. else .." not nested. This may allows a tag to be generated in

different operation calls with different tags. Our specification does not

contain such kind of constructs.

11.4.3 Application of our approach on ECinema and

Global Platform case studies

In this section, we present some experimentations of our approach on E-

Cinema and Global Platform case studies. We experiment test suites unfolded

from test patterns that are generated from test properties. The Model-based

filtering approach (using filtering keys) is applied on these test patterns to

resolve explosive unfolding problem. The valid test cases result are reduced

using the three equivalence relations R0, R1 and R2. We reuse the same pat-

terns generated in Sect. 6.6 and Sect. 6.7. In Fig. 11.9 we present the result

of test suite reduction. We can see that the reduction rate can reach 92%.

We observe also that the reduction rate decreases with the strength of the

equivalence relation.

Applying our approach on the annotated specification of Global Platform

generates a reduced test suite whose size is more likely to run on the card. In

the example of sc alpha3 temp1 test pattern, there are 7 representative tests

to run on the card instead of 1117.
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Case study Test pattern |T0| | T0R0
| | T0R1

| | T0R2
|

ECinema

sc1 prop2 702 25 25 25

sc1 prop3 132 16 16 60

sc1 prop3 bis 840 21 21 120

Global Platform sc alpha3 temp1 1117 7 7 7

Figure 11.9: Results of test suite reduction in ECinema and Global Platform

case studies

11.5 Conclusion

In this chapter, we presented experimentations of our test suite reduction

approach on several case studies. These case studies are defined in different

contexts. We used Java applications where tags are inserted for source code

instrumentation. We report also on another large case study: VOD movie

player, a graphical Java application where a 3000 lines program was tagged

to trace 10 functional requirements. Our approach is also applied for specifi-

cations where tags are inserted to trace user requirements. The specification

of EPurse, ECinema and Global Platform case studies are used.

We use several test suites generated from a combinatorial approach (To-

bias) or from a random approach (Randoop). We apply on these test suites

the reduction technique using the four equivalence relation (R0, R1, R2, R3).

We use several criteria to evaluate the efficiency of our approach: reduction

rate, code coverage and fault detection capability. The experimentation re-

sults on small Java applications shows that the stricter equivalence relations

lead to a better fault detection power of the reduced test suite. We have

also shown that the reduced test suites detect more faults than randomly re-

duced ones of the same size. The results shows good reduction rate that can

reach 99% even for the strictest equivalence relation. It also shows that the

reduction rate increases with the discrimination power of the equivalence re-

lation. This result on reduction rate is also true for annotated specification of

EPurse, ECinema and Global Platform case studies. Using the VOD player

case study, code coverage of the initial and reduced suites were compared. The

case study suggests that significant size reduction can be achieved from this

tagging while keeping a satisfactory level of code coverage. We have also ex-

perimented our approach using the proposed extension of our algorithm that

consists to improve the reduction rate of the reduction algorithm by deleting

prefixes. It has been shown in the result that the reduction rate is improved

by keeping the same fault detection capability. Observing the results shown

by the experimentations, we can conclude that our reduction approach can be
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used efficiently to reduce a test suite relying on tags inserted in source code or

specification. One can choose the equivalence relation the most appropriate

depending on the testing needs. If we would like to generate a reduced test

suite with good quality, we have to choose a strong equivalence relation. How-

ever, if it is suggested that the reduction rate is more important in a specific

context, we have then to choose a weak equivalence relation.

We already mentioned the potential diversity of the tagging approaches.

Further work should explore this diversity more systematically, addressing

questions such as the reuse of tags at several places, the granularity of tag-

ging, and the appropriate level for requirements traceability. Further work

also includes additional experimental evaluation. It would be interesting to

compare our approach to classical reduction techniques based on code cov-

erage. Actually, the annotation scheme used in these case studies is close to

the measurement of code coverage. We expect that the resulting reduced test

suites will have similar characteristics as the ones produced from code cover-

age information. Further experiments are needed to confirm this conjecture.

Other works may explore the definition of additional equivalence relations, as

well as evolutions of the algorithm. A simple evolution of the algorithm would

select more test cases if the equivalence class is more populated. This could

produce reduced test suites which are more representative of the original test

suite diversity.
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Summary of test suite reduction

contribution

12.1 Motivation

Our contribution is proposed in the context where a large number of tests is

generated automatically or defined manually. These tests are used to explore

maximum number of the behaviors of the SUT to detect failures. However,

this large number of tests can not be executed on the SUT when resources

are limited (time, system CPU or memory), for example when we test smart

card applications, or in the context of regression testing, where new tests are

added to the test suite to test new or changed requirements.

12.2 Tags and annotation process

Our test suite reduction approach relies on coverage information denoted as

tags. These tags are inserted in the source code or the specification of the

SUT.

Tags are textual information inserted in the form of comments or exe-

cutable instructions. They can be inserted manually or automatically for

source code instrumentation purpose or for traceability purpose. When they

are inserted to instrument the code, they can be used for example to mea-

sure the code coverage. If they are inserted for traceability purpose, they can

be used to trace back a user requirement. Whatever the purpose, we take

advantage of these inserted tags to realize the test suite reduction.

The way our code or specification is annotated may affect our reduction

result. In the experimentation of Java programs, we have a manual tagging

process, we choose to tag the points that affect the result or change the system

state. For example, tagging a conditional branch where an attribute value is

modified. We choose also to insert tags after the related set of instructions

to be sure that all of them are executed before covering the tag. A tag

can be unique or not if we see that two regions of code are performing the

same process. Another mode of tagging can be proposed in the context of

requirement traceability, where a requirement in a model has to be linked
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to requirement in the code. However, in the literature this process is still

in progress, and tags inserted in code are limited to the classes, fields and

methods. Tagging a fine grained requirement defined as a set of instructions

inside a method call is not suggested.

Like other test suite reduction technique based on code coverage, the test

suite to reduce have to be executed at least one time to get the covered tags.

For annotated source code, we developed a tag logger system that logs a tag

to a file once covered.

For annotated specifications, we use an animator engine that animates a

test on the specification and gets the activated tags. In our work, we use

CertifyIt tool as a test animator on UML/OCL specifications.

12.3 Equivalence relations and reduction algo-

rithm

Using the covered tags, the idea of our contribution is to reduce the test

suite based on equivalence. When two tests are equivalent according to some

equivalent relation, we consider that only one is sufficient for testing and

remove one of the two from the test suite. Using this idea, we get some

diversity among tests in the reduced test suite, and we consider this reduced

test suite as representative of the original one.

When we execute a test suite to get the covered tags, it results for each

test case a sequence (1) of sequences (2) of tags. The sequences (2) corre-

spond to the sequences of tags generated from operation calls executed in the

sequence (1) of operation calls. From the result generated, we have proposed

to construct a family of equivalence relations, taking into account (or not) the

order and repetition of tags covered. The order and the repetition of tags can

be considered inside an operation call or between two operation calls in the

sequence. In the case where we consider them inside an operation call, the

order and the number of times a set of instructions is executed (denoted by the

tag) are important and may have an influence. In the case we consider them

between two operation calls, the order and the number of times an operation

call is executed are important in the sequence of operation calls.

Considering on these two criteria (order and repetition of tags) we propose

four equivalence relations (R0, R1, R2 and R3), from weakest to strongest one.

If the order and repetition of tags are considered, we compare the sequence of

tags, otherwise we compare the set of tags between two test cases. The weakest

relation means that the order and the repetition of tags are not considered.

The strongest one requires that two test cases are equivalent if they cover

exactly the same sequence of tags sequences.
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The algorithm of reduction is applied using the coverage tags of each test

case and a chosen equivalence relation. Sample examples show that the re-

duction rate decreases with the strength of the equivalence relation.

An extension of algorithm has been proposed to improve the reduction

rate. This extension consider a test case as a prefix if its sequence of tags

sequence is included in another sequence of tags sequence of another test

case. The extension consists then in finding and deleting the prefixes in the

test suite.

12.4 Case studies

Three different case studies have been performed to evaluate our approach.

We consider annotated code and annotated specification. Two case studies

were provided externally to our team: from third party (our project partners

or research colleagues). They represent code and specification annotated to

trace requirements. The results show good performance of our approach in

terms of reduction rate that can reach more than 90%.

We also evaluate the fault detection capability of our approach by using

mutation testing. The results show also good performance by killing with the

reduced test suite almost the same mutants killed by the original test suite

even using the weakest equivalence relation. The number of mutants killed

increases with the strength of the equivalence relation, however the reduction

rate decreases with the strength of the equivalence relation.

12.5 Conclusion and perspectives

We conclude that our contribution can be used efficiently to produce a re-

duced test suite representative of the original one in terms of its capability to

detect fault. The reduction rate is very high for weakest equivalence relation

and acceptable for strongest one. The choice of an equivalence relation de-

pends on many factors. For example if the elements in the code/specification

are strongly dependent in terms of result/output production, it is better to

choose a strong equivalence relation that takes into account the order and the

repetitions of tags.

The dependency between operations is also a factor for equivalence relation

choice. By taking these factors into account we try to get a high quality test

suite (representative of the original one). In some cases, the reduction rate

is more important than the quality of the test suite as in the context to test

a system in very limited resources. A common case where we don’t have

much CPU or memory resources. Another example when the time dedicated
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for testing activity is limited. In this cases, a weaker equivalence relation is

chosen.

As perspectives, we would like to add new equivalence relations based on

the order and repetition of tags. For example, we intend to implement the

equivalence relation that consider two test cases as equivalent if they cover

the same set of tags sequence. We would like also to propose other kinds of

relations, always using covered tags, but basing on subsumption of tags. A

subsumption relation can be: if a test ta generates a sequence of tags sequence

that is a prefix of a sequence of tags sequence of another test tb . In this case,

we can remove the test ta from the test suite. Another perspective concerns

the annotation process, to experiment the effect of tagging the code of the

reduction result. For example, we can evaluate the effect of inserting tags

in different regions (condition, iteration, recursion, etc.) on the size of the

reduced test suite.

A final perspective consists in experimenting our approach on other large

programs annotated in all possible types of constructs (for example in java:

if, for, while, do, switch, etc.)
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13.1 Summary of the the thesis

In this thesis we presented two contributions developed to bring solutions to

two main issues related to combinatorial testing technique.

The first issue is manifested in the test generation time. It consists in two

sub-issues:

• A large number of tests unfolded from test patterns are invalid ac-

cording to the specification. This problem occurs because combinatorial

testing technique does not rely on the specification of the SUT to gener-

ate tests. Our solution consists in coupling the combinatorial technique

to an animation technique. The tests generated combinatorially are an-

imated on a specification of the SUT to report whether they are valid

or not. Only valid tests are kept in the test set result. We call this

principle as test filtering according to the specification.

• Some test patterns are subject to combinatorial explosion where a huge

number of tests will be unfolded. This problem is triggered because

the test pattern contains many input values. The solution proposed

to fight the combinatorial explosion is to incrementally unfold the

test pattern. It consists in processing the test pattern in iterations.

In each iteration one (sequence of) instruction(s) is unfolded, and the

tests generated are animated on the specification to filter invalid tests.

The valid prefixes are combined with the (sequence of) instruction(s)

of the next iteration to be unfolded. The advantage of this technique

is to discard invalid tests at early stages. We can further reduce the

combinations from an iteration to another by selecting a proportion of
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valid prefixes rather than selecting all of them. Other constructs are also

proposed in test patterns to filter tests in the incremental process. The

behavior filtering construct consists in discarding tests that contain

an operation call that does not cover the behavior specified by the test

engineer. The behavior is expressed as a set of tags often inserted in

the method branches. The state predicate filtering construct allows

to filter tests that do not satisfy a given property at a specific point

in the operation sequence. These two filtering constructs are used as

directives to remove the tests that do not fulfill the requirements and

to target the desired tests.

The first contribution represented by the solutions proposed above is imple-

mented using Tobias tool as a combinatorial testing tool and CertifyIt tool

as an animation tool. The Tobias generated tests are animated on a UM-

L/OCL specification to filter invalid tests. However, the principles of the so-

lutions are independent of the technologies, and they can be used with other

combinatorial and animation tools.

This first contribution is illustrated in 3 main case studies. One case

study was provided by our research team: the electronic purse application

(EPurse). The test patterns in this case study are defined by us aiming to test

a sequence of operation calls using some user requirements. Our incremental

process and filtering constructs allow to find test cases hidden in a huge search

space (e.g. 1918 tests). The two other case studies were provided by our

project partners: on-line vending application of cinema ticket (Ecinema)

and Global Platform, a last generation of smart cards operating system.

The test patterns in these case studies are generated automatically from test

properties using the tool chain of the ANR TASCCC project. These case

studies show limitations of our incremental approach related to explosive

iterations. Solutions are proposed to deal with this problem by introducing

some rules to redefine test patterns and to make the incremental unfolding

work and produce valid tests. Moreover, Tobias random selectors are also

used to reduce the number of elements unfolded from explosive groups. We

have seen that very explosive test patterns have been addressed to get valid

results. For example, in Ecinema case study we get valid tests from a test

pattern with 1.89 ∗ 109 tests. We also get valid tests from a test pattern that

contains an explosive iteration with 3.4 ∗ 1011 elements. In Global Platform

case study, using our approach we were able to find valid tests in a search

space > 10100 tests.

The second issue is manifested in the test execution time. In the context

of regression testing, as many test cases are added to the test suite to eval-

uate new or modified requirements, the size of the test suite grows rapidly
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and the cost of executing it becomes more expensive. This problem can be

resolved by applying a test reduction technique, it takes the large test suite

and provides a reduced test suite representative of the original one. In our

work, we proposed a new test reduction technique, that uses an equivalence

relation based on execution traces of tests to reduce tests based on similarity.

The traces generated consist of tags inserted in the implementation/specifica-

tion and covered during execution/animation. The tags are inserted for code

instrumentation purpose, for example to compute the code coverage. They

can also be inserted for traceability purpose to trace back user requirements.

The trace generated records the order and repetition of tags inside an oper-

ation call and inside the test case. They are related to the order of execution

and the number of times the tag is covered by execution. Using the criteria of

order and repetition of tags, a family of 4 equivalence relations is proposed

to decide on equivalence of two test cases. The weakest one does not take into

account the order and number of repetitions of tags and consists in comparing

the set of tags generated from two tests. The strongest one requires that two

equivalent tests have to record exactly the same sequence of tags.

This second contribution was experimented using many examples of test

suites. It was first experimented on small programs where tags are inserted

manually especially in the method branches. The original test suites were

generated combinatorially and randomly, and reduced using the 4 equivalence

relations. The reduced test suites were compared to the original ones and

to randomly generated test suites of the same size. The comparison was

performed in terms of fault detection capability (using mutation testing) and

reduction rate. In these case studies, the reduction rate decreases with the

strength of the equivalence relation and can reach 99%. The results also show

that stricter equivalence relations lead to a better fault detection power of

the reduced test suite. Moreover, reduced test suites detect more faults than

randomly reduced ones of the same size. In many cases, the reduced test

suites have the same fault detection capability as the original one. We also

experimented our approach using some combinatorial test suites on the case

study of the Video On Demand Player, where tags are inserted to trace user

requirements. The results show that significant size reduction can be achieved

from this tagging while keeping a satisfactory level of code coverage.

This contribution was also experimented in the model-based context where

tags are inserted in UML/OCL model. Tests are animated using CertifyIt

tool, saving the tags activated during animation. The results show significant

reduction rate for the EPurse, ECinema and Global Platform case studies.
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13.2 Perspectives

The perspectives of our research work concerning the two contributions in-

clude:

1. Proposing other mechanisms to filter tests in the test pattern unfolding.

2. Improving the model-based filtering algorithm by automating tasks that

are performed manually.

3. Proposing other equivalence relations and subsumption relation to re-

duce tests. The subsumption consists in comparing the trace of tests to

observe inclusion of tests in other tests.

4. Comparing our test reduction technique to the structural reduction tech-

nique by automatically inserting tags inside source code according to

some structural coverage criteria.

5. Performing experimentations of the test reduction techniques on large

case studies where tags are inserted by external party.

Another perspective is to further explore the constructs proposed by jSyn-

oPSys. In many cases, it is difficult to restrict the set of operation calls, or the

set of values included in a group. To solve this problem, jSynoPSys introduces

a form of "wild card": $OP represents the group of all possible operation calls

and $V the set of all possible values. Also $OP∗ represents an iteration with

undefined bounds. With these constructs, it is possible to characterize the

prefix of a test pattern with minimal effort by stating the state property that

must be reached at the end of the prefix:

$OP∗❀{property to reach}

In jSynoPSys, constraint programming techniques are used to instantiate

$OP∗, the sequence of operations leading to the desired state. If we want

to include the $OP , $V constructs in Tobias, we can consider them as sets

of operations or values. Moreover, to cope with the unfolding principles of

Tobias, these sets must be finite.

We propose to populate these sets by observation of a repository of avail-

able test cases. These test cases may be for example the ones produced by Cer-

tifyIt. A perspective is to use pattern matching and data mining techniques

to discover interesting values or instantiated operation calls or sequences.
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JML specification of container

manager system

public class ContainerManager {

private /* @ spec_public */ int cont1=0;

private /* @ spec_public */ int cont2=0;

private /* @ spec_public */ int cont3=0;

private /* @ spec_public */ int cont4=0;

/*

* @ requires lo1>= 0 && lo2 >=0 && lo3>=0 && lo4>= 0 &&

*(cont1+lo1)<1000 && (cont2+lo2)<3000 &&

*(cont3+lo3)<5000 && (cont4+lo4)<7000;

* @

*/

public void load(int lo1, int lo2, int lo3, int lo4) {

cont1 = cont1 + lo1; cont2 = cont2 + lo2;

cont3 = cont3 + lo3; cont4 = cont4 + lo4;

}

/*

* @ requires (lo>=0 && num>=1 && num<=4) &&

* ((num==1 && lo<cont1)||(num==2 && lo<cont2)

* ||(num==3 && lo<cont3)||(num==4 && lo<cont4));

* @

*/

public void unload(int num, int lo) {

if (num == 1) {

cont1 = cont1 - lo;

} else if (num == 2) {

cont2 = cont2 - lo;

} else if (cont == 3) {

cont3 = cont3 - lo;

} else if (num == 4) {

cont4 = cont4 - lo;

}

}}
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Complete description of a

generated test pattern in

ECinema case study

header{scenarioId=#sc_prop1_tagDeletion_0_0#}

group sc_prop1_robustness [us=true] {

@sequenceGroup0{1, 1};

}

group default_boolean {

values=[true,false];

}

group simpleOperationCall3 {

sut.login(@default_enum_USER_NAMES, @default_enum_PASSWORDS)

/w {set(@AIM:LOG_Success)};

}

group setMinusGroup1{

SET = @base_call3 setMinus @call_restriction5

}

group sequenceGroup0 {

@simpleOperationCall0{0,2};

@simpleOperationCall1;

@simpleOperationCall2{0,2};

@simpleOperationCall3;

}

group default_enum_PASSWORDS {

values=[ INVALID_PWD, PWD1, PWD2, PWD3,

REGISTERED_PWD, UNREGISTERED_PWD];

}

group all_instances_Movie {

values=[ film1, film2];

}

group anyCalls {

@all_operations_ECinema

}

group all_operations_ECinema {
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ECinema case study

( @all_instances_ECinema.buyTicket(@default_enum_TITLES)

| @all_instances_ECinema.checkAvailableTickets(@default_enum_TITLES)

| @all_instances_ECinema.checkMessage()

| @all_instances_ECinema.closeApplication()

| @all_instances_ECinema.deleteAllTickets()

| @all_instances_ECinema.deleteTicket(@default_enum_TITLES)

| @all_instances_ECinema.goToHome()

| @all_instances_ECinema.goToRegister()

| @all_instances_ECinema.login

(@default_enum_USER_NAMES, @default_enum_PASSWORDS)

| @all_instances_ECinema.logout()

| @all_instances_ECinema.registration

(@default_enum_USER_NAMES, @default_enum_PASSWORDS)

| @all_instances_ECinema.showBoughtTickets()

| @all_instances_ECinema.unregister())

}

group default_enum_MSG {

values=[ ALL_MOVIES_SOLD_OUT, ALREADY_LOGGED_IN,

ALREADY_REGISTERED, BYE, EMPTY_PASSWORD,

EMPTY_USERNAME, EXISTING_USER_NAME, LOGIN_FIRST,

NONE, NO_MORE_TICKET, REGISTER, REGISTER_FIRST,

UNKNOWN_USER_NAME_PASSWORD, WELCOME, WRONG_PASSWORD,

WRONG_STATE];

}

group default_enum_SystemState {

values=[ DISPLAY, REGISTER, WELCOME];

}

group simpleOperationCall2 {

(@setMinusGroup1)

}

group simpleOperationCall1 {

sut.buyTicket(@default_enum_TITLES);

}

group call_restriction4 {

( @all_instances_ECinema.login(@default_enum_USER_NAMES,

@default_enum_PASSWORDS))

}

group simpleOperationCall0 {

(@setMinusGroup0)

}

group call_restriction5 {

( @all_instances_ECinema.login

(@default_enum_USER_NAMES, @default_enum_PASSWORDS))
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}

group all_instances_Ticket {

values=[ t1, t2, t3, t4, t5, t6, t10, t9, t8, t7];

}

group base_call3 {

( @anyCalls)

}

group call_restriction1 {

( @all_instances_ECinema.buyTicket(@default_enum_TITLES)

| @all_instances_ECinema.login

(@default_enum_USER_NAMES, @default_enum_PASSWORDS))

}

group base_call0 {

( @anyCalls)

}

group default_enum_TITLES {

values=[ TITLE1, TITLE2, TITLE3, TITLE4, TITLE5];

}

group call_restriction2 {

( @all_instances_ECinema.buyTicket(@default_enum_TITLES)

| @all_instances_ECinema.login

(@default_enum_USER_NAMES, @default_enum_PASSWORDS))

}

group all_instances_ECinema {

values=[ sut];

}

group default_enum_USER_NAMES {

values=[ INVALID_USER, REGISTERED_USER,

UNREGISTERED_USER, USER1, USER2, USER3];

}

group setMinusGroup0{

SET = @base_call0 setMinus @call_restriction2

}

group all_instances_User {

values=[ registeredUser, unregisteredUser,

invalidUser, erronedUser];

}


