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RÉSUMÉ

Ce manuscrit d’Habilitation à diriger des recherches décrit mes
travaux de recherche récents en théorie des graphes et en théorie
des jeux combinatoires. Une première partie est consacrée à
l’étude de paramètres de graphes en s’intéressant particulièrement
aux contraintes structurelles qui permettent d’améliorer les bornes
connues. Dans cette partie, nous traitons notamment la paire-
domination, la domination indépendante mais aussi les partitions
en cographes et les colorations quasi propres. Une deuxième par-
tie traite de la domination de puissance, une forme itérative de
la domination au sujet de laquelle nous proposons un début de
synthèse des résultats existants. Enfin, une troisème partie parle
de jeux. Nous y traitons d’abord le travail réalisé sur quelques con-
jectures portant sur un jeu de domino, puis au sujet des jeux en
version misère. Nous y parlons enfin du jeu de domination, qui est
à l’interface entre le paramètre de graphe et le jeu combinatoire.
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Domination, power domination, coloration, partition, jeux combi-
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ABSTRACT

In this thesis for Habilitation à diriger des recherches, we describe
our recent work on graph theory and combinatorial game the-
ory. A first chapter is dealing with graph parameters, especially
on the structural constraints that permit to give better general
bounds. We consider in particular paired domination, indepen-
dent domination but also cograph partitions and near colorings.
In a second chapter, we propose a tentative survey of the known
results on power domination, an iterated variation of domination.
Finally, the third chapter is about games. We first present our re-
cent results about some conjectures on a domino game, toppling
dominoes, and then about misère games. We finally discuss a
domination game, which is a graph parameter based on a game.
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Introduction

This document gives an overview of my researches since my PhD in 2007.
Most of my contributions are dealing with graph parameters, such as domi-
nation and colorings, domination in particular being in a direct continuation
of my PhD researches. I got interested in colorings mainly because of my
integration of the LaBRI in 2009, whose historical specialty in graph theory
is colorings. Another field I got involved in since my arrival in Bordeaux is
combinatorial games theory, on which topic we have been supervising G. Re-
nault’s PhD with É. Sopena. Though it is still early for me to claim many
results in the topic, and therefore a little daring to have included it in this
document, I wanted to present the topic here as it is a new fascinating field
of exploration for me. Also, one of my objectives in this document being
to describe some of the research tracks I am willing to follow in future re-
searches, it naturally has its place here. This is also the reason for which a
whole chapter of this document is dedicated to power domination. Though
it is a variation of domination that could have been treated along with the
others in Chapter 1, I wanted to give a more extensive survey on the topic.
It actually is to my opinion an important source of open problems for future
researches. I already have a master student, N. Gillet, working on the topic
and I am sure there is more than enough material for a PhD in the questions
arising from power domination.

Note that some results and research tracks are willingly omitted in this
document, often to keep some unity. Moreover, one of the blatant missing
topic in this document is Vizing’s conjecture. In 2008, I was invited by
D.F. Rall to take part in a workshop on Vizing’s conjecture in South Car-
olina. I was delighted with the opportunity I was given to cooperate with
this small group of six people, all renowned researchers on domination in
graphs. I thereafter took part in the writing of a survey on Vizing’s conjec-
ture [16] that is not included here since it is not my own writing, though
I invite the reader to see it as the lost chapter of this document.

The document is divided into three chapters. First note that it does not
come with a definitions section, and some concepts might as well not be
defined thoroughly. We assume that the reader is at least a little familiar
with graph theory, yet we still try to give most of the definitions along
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with the writing, that the reader should be able to find through the index.
Note also that there are basically no proof in the document. Most results
described here are the object of a journal publication where the detailed
proofs can be found.

The first chapter deals with graph parameters such as domination, col-
orings, and their variations. General bounds on these parameters can often
be given, but are usually not very helpful because they are too close to a
trivial answer. We present in this chapter better bounds that we can obtain
on the parameter thanks to structural properties of graphs that allow the
exclusion of the few cases that made the bound not practical.

The second chapter is about power domination, a recent variation of
domination with an added propagation possibility. We here try to survey
thoroughly the results on that topic. Many research tracks are open in that
chapter, especially in relation with a recent generalization that we proposed
for power domination.

Finally, the third chapter is about games. A first half really deals with
combinatorial game theory, an elegant tool for deciding pure strategy games
outcomes. Continuing to settle this theory is a very challenging task that
is undertaken by a small but increasing group of (not necessarily academic)
researchers. One of the main current topic is about misère games, on which
we give some tentative improved framework. The other half is about a
domination parameter defined as a game, the domination game number.
Though this parameter does not really enter the combinatorial game theory
settings, it is interesting to approach it with these settings in mind as we
explain there. Note that the domination game is also a very recent but
promising problem on which many questions should be considered.



Chapter 1

Graph parameters with

structural properties

In graph theory, there are two main optimization problems, namely col-
oring and domination. A proper coloring is a partition of the vertices of
a graph into sets of independent vertices (which are given a same color).
You may see this as the problem of assigning jobs to parallel processors,
or frequencies to communicating devices, or classes to teachers, etc... The
objective in these settings is to determine the minimum number of inde-
pendent sets/colors for which this is possible, i.e. the chromatic number of
the graph, denoted χ(G). The coloring problem got very famous with the
four color saga, this long story of the question whether four colors suffice
to proper color any planar graph. A computer based proof exists now, but
some people are still trying to simplify it. Other fascinating stories relate
to that topic, e.g. on perfect graphs or on the Shannon capacity of a graph.

Graphs domination is less advertized, probably because there is no such
nice stories yet, but it is still a very interesting problem. A subset of vertices
in a graph is a dominating set if its neighborhood covers the whole graph.
You can see this as choosing places for some devices such as cameras, sen-
sors, intrusion detection system, or fire stations in a network. So as to
monitor/protect each places of the network, you want that every vertex not
equipped by a device is protected by a neighboring equipped vertex. In this
setting, we try to determine the minimum number of vertices required to
dominate the whole graph, called the domination number of the graph, and
denoted γ(G). Currently, the most challenging conjecture on domination
was proposed fifty years ago by Vizing [76]. The conjecture states that the
domination number of the Cartesian product of graphs should be proven to
be no less than the product of the domination number of the factors. How
little about this conjecture we have been able to prove until now is very
surprising, the reader may refer to our survey on the topic [16].

In this chapter, we consider variations of these optimization problems,
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4 CHAPTER 1. GRAPH PARAMETERS

starting with domination in Section 1.1, and then continuing in Section 1.2
with colorings.

1.1 Domination

In many variations of the domination problem, we look for a dominating
set which satisfies some structural properties. This is a very natural way of
generalizing the problem, often motivated by applied situations. For exam-
ple, you may require that a dominating set be connected, so that the devices
that are monitoring the network be able to communicate together. In this
section, we study two other variations of domination with a restriction on
the internal structure of the dominating set, namely paired and independent
domination.

1.1.1 Paired domination

Among the variations of domination, one of the most natural is total
domination. Total domination addresses the situation when each device
does not protect the vertex on which it is situated. That may happen
because what the network should be protected from may disrupt the device,
or simply because of the setting of the device. Anyway, in that case we want
that both the selected and non selected vertices be dominated by another
vertex, and such a set is called a total dominating set. By definition, in a
total dominating set, every vertex has at least one neighbor in the set, maybe
more. In best cases, when there is no redundancy (called efficient total
domination), the vertices in the total dominating set form an independent set
of K2 . This is probably what drove Haynes and Slater [53, 54] to introduce
paired-domination in graphs, presented as a way of assigning backups to
guards for security purpose.

A paired-dominating set of a graph is a dominating set S whose induced
subgraph G[S] has a perfect matching, i.e. a set of disjoint edges covering
the vertices. Note that the matching is not necessarily induced, and thus
that even if a paired dominating set is necessarily a total dominating set, it
may not be an efficient one. Actually, every graph without isolated vertices
has a paired dominating set, since the end-vertices of any maximal match-
ing dominate the graph. The paired-domination number of G, denoted by
γpr(G), is the minimum cardinality of a paired dominating set.

In the following, we first describe how we concluded a search for good
bounds for paired domination that we initiated during my PhD. We then
describe some results on upper paired domination, based on the minimum
degree of claw-free graphs. We finally present some bounds relating paired
and double domination.
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Figure 1.1: The shame of paired domination: a subdivided star

In subdivided star-free graphs

Haynes and Slater, when they introduced paired domination, gave the
following tight upper bound for paired domination in graphs :

Theorem 1.1.1 (Haynes, Slater [53]) If G is a connected graph of order
n ≥ 3, then γpr(G) ≤ n − 1 with equality if and only if G is C3, C5 or a
subdivided star.

In many aspects, this upper bound is the worst bound we could expect.
When the number of vertices n in the graph is odd, the bound is trivial, and
when it is even, it is not very difficult to find a basis for a paired dominating
set that isolates one or two vertices so that they do not require to be added
to the set. However, the bound is tight for an infinite family of graphs,
namely subdivided stars. A subdivided star is a star of which every edge is
subdivided once (see Figure 1.1).

The small cycles on 3 and 5 vertices (C3 and C5) in the theorem are
not really a concern, because they are graphs of bounded order. Frequently,
bounds for a parameter can be true only for graphs of large enough order.
However, the subdivided stars form an infinite family of unbounded order.
To improve the general bound, we thus have to eliminate the graphs with
big subdivided stars at least as components. In claw-free graphs, the star
with 3 rays K1,3 is forbidden as an induced subgraph. Considering claw-
free graphs and thus excluding most subdivided stars, Favaron and Henning
were able to propose a much better bound for cubic graphs:

Theorem 1.1.2 (Favaron, Henning [42]) If G is a connected claw-free
cubic graph of order n, then γpr(G) ≤ n

2 .

This study was continued in cite [29] by excluding a generalization of
claw-free graphs, and dropping the regularity assumption. We have:

Theorem 1.1.3 ([29]) For a > 0 an integer, if G is a connected K1,a+2-

free graph of order n ≥ 2, γpr(G) ≤ 2(an+1)
2a+1 and this bound is sharp.
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Note that this result does not generalize the result of Favaron and Hen-
ning, since for claw-free graphs we get γpr(G) ≤ 2(n+1)

3 , but dropping the
regularity condition still makes this result tight.

Considering claw-free or star-free graphs, we avoid the critical cases of
subdivided stars. However, just a claw or a star does not imply a large
paired-domination number for a graph. Moreover, the examples for which
the bound is tight in the above result are precisely the subdivided stars.
These observations made us go on with the problem and try to obtain similar
bounds for subdivided star-free graphs. The smallest subdivided star that
is interesting as a forbidden subgraph is P5 the path on 5 vertices (the path
P3 on 3 vertices can be seen as a subdivided trivial star, but a P3-free graph
is a complete graph). In [27], it is proved:

Theorem 1.1.4 ([27]) Let G be a connected graph of order n ≥ 2. If G is
not C5 and does not contain an induced P5, then

γpr(G) ≤
n

2
+ 1,

and this bound is sharp.

The sharpness of the bound is attained by the corona of a complete graph
of odd order: take a complete graph and attach a degree 1 vertex to each of
its vertices. The graph is P5-free since any path on 5 vertices in this graph
contains three vertices in the complete subgraph, thus it is not induced.

Finally, the result that we wanted to present here is the following [28].

Theorem 1.1.5 Let G be a connected graph of order n ≥ 3. If G contains
no induced subdivided stars on a+ 2 rays for some a ≥ 1, then we have

γpr(G) ≤
2(an+ 1)

2a+ 1
(1.1)

and this bound is sharp.

The proof of this theorem is based on the nonexistence of a minimum
counterexample. We suppose there exists a minimum counterexample, we
find a large subdivided star in it and remove its center. Then using a trick
on the parity of the paired dominating sets, we prove that one of the re-
sulting components is necessarily a counterexample too, contradicting the
minimality of our counterexample. The sharpness of the bound for a given a
is reached by the subdivided star with a+1 rays, so we cannot hope to keep
the same bound for larger excluded subgraph. The bound is also reached
on arbitrarily large graphs obtained by the following construction: take any
number p of subdivided stars on a rays, and form a complete subgraph with
the centers. Add a vertex to the clique and attach a degree one vertex to
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a rays

Kp+1

a rays

Figure 1.2: A construction of graphs reaching the bound of Theorem 1.1.5

it (see Figure 1.2). The set of gray vertices in the Figure is a subset of
any total dominating set thus of any paired dominating set, and since it is
independent, the paired domination number of the graph is at least twice
its order.

Note that the bound obtained in this theorem is the same as in Theo-
rem 1.1.3. This means that excluding subdivided stars is as efficient as ex-
cluding stars, though subdivided stars are much larger and more restricted
subgraphs. This somehow confirms our intuition that subdivided stars are
really the right subgraph for this study. Also, it should be noticed that the
result gives a very general bound. For any graph (with maximum degree
∆), there exist some a ≤ ∆ + 2 such that the graph does not contain an
induced subdivided star with a+ 2 rays. However, there is no lower bound
implied by the existence of an induced subgraph isomorphic to a subdivided
star.

Upper paired domination

In the previous section, we described the research for a good lower
bound on the cardinality of a minimal paired dominating set. Of course,
it also seems interesting to find a good upper bound on the cardinality of
a (inclusion-wise) minimal paired dominating set. The maximum size of a
minimal paired dominating set of a graph is called its upper-paired dom-
ination number and denoted Γpr(G). Upper domination parameters are
defined similarly for most domination parameters. The upper-paired domi-
nation number can also be seen as the worst result that a greedy algorithm
proceeding by exclusion of vertices to form a paired dominating set would
return.

From Theorem 1.1.1, we know that there is again no better bound on
the upper-paired domination number of a graph than its order minus one in
the general case. To propose better bounds on the upper paired domination
number, we tried to consider the case when the minimum degree of the graph
is bounded. We first proved the following in [31]:
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Theorem 1.1.6 If G is a connected graph of order n ≥ 3, then Γpr(G) ≤
n−1. Furthermore, if G has minimum degree δ ≥ 2, then Γpr(G) ≤ n−δ+1,
and this bound is sharp.

This theorem brings in view that no degree condition can efficiently decrease
the upper paired domination number of graphs in general. To see that this
bound is sharp, you may just consider the graph GΓpr

obtained as follows:

take G1 a union of at least δ
2 K2 and G2 any graph on δ − 1 vertices, and

add all possible edges between G1 and G2 (see Figure 1.3). Then G1 is a
minimal paired dominating set of the graph of size n − δ + 1. Note that
when taking for G1 a complete graph, GΓpr

does not contain an induced P5,
but it does contain a large star.

Figure 1.3: A graph GΓpr
with Γpr(GΓpr

) = n− δ + 1 for δ = 4

As a way to get rid of the cases with such large minimal paired domi-
nating sets, we consider graphs with no induced claw. In claw-free graphs,
we could prove that there exist no minimal paired-dominating sets on more
than 4n

5 vertices. Actually, we managed to give better bounds for larger
minimum degrees, and we got the following theorem.

Theorem 1.1.7 If G is a connected claw-free graph of order n and mini-
mum degree δ, then

Γpr(G) ≤







































4

5
n if δ = 1 and n ≥ 3

3

4
n if δ = 2 and n ≥ 6

2

3
n if δ ≥ 3.

and these bounds are tight.

The proof of this theorem strongly relies on a technical lemma that
shows that given a graph G and a minimal paired dominating set D, every
component of G[D] can be associated almost as many private-neighbors than
half its order. This naturally brings you to a bound of about 2

3 the order of
the graph.
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When the minimum degree of the graph is larger, we found some nice
constructions that we expect to reach the worst ratio (upper-paired domi-
nation number)/order. This ratio for our family goes to a half when the
minimum degree goes to infinity, but we did not manage yet to prove that
our construction indeed reach the worst case. It is still an open problem
that we expect should be solvable.

Also, in a similar way as the previous section, we notice that the claw is
an artificially chosen subgraph to avoid the worst cases. It seems that the
actual subgraphs that should have been considered are in fact the graphs
obtained by taking k copies of K2 and adding a vertex adjacent to at least
one vertex of each K2. Let Gk denote this family. One may improve the
bound by excluding this family instead.

Question 1.1.8 Is there a good bound on Γpr(G) when G does not contain
an induced subgraph in Gk?

Inspired by what was done on paired domination, a wild guess would be
that is G does not contain a subgraph in Gk, then Γpr(G) ≤ 2k−2

2k−1n.

Paired versus double domination

In the study of domination, many variations were introduced. It is often
difficult to give nice relationships between the various parameters, though
it is very instructive. In some recent collaboration, we got interested in the
relationship between paired domination and double domination. A subset
of vertices in a graph is a double dominating set if every vertex is dominated
twice, i.e. every vertex not in the set has two neighbors in the set and every
vertex in the set has one. Double domination is a special case of k-tuple
domination (where we require that every vertex be dominated k times). The
minimum cardinality of a double dominating set of the graph is the double
domination number, denoted γ×2(G).

Chellali and Haynes [23] were the first to study the relationship between
paired and double domination in graphs. They observed the following.

Observation 1.1.9 (Chellali, Haynes, [23]) In general, paired and dou-
ble domination numbers are incomparable.

This observation is based on the following examples (given in [23]). For
k ≥ 1, let Gk be the graph obtained from k disjoint 6-cycles by adding a
new vertex and joining it to an independent set of three vertices in each 6-
cycle (see Figure 1.4). The resulting graph Gk is a bipartite graph satisfying
γpr(Gk) = 4k, while γ×2(Gk) = 3k + 1. The second example is the corona
of the complete graph K2k: for k ≥ 1, let Hk be obtained from a complete
graph K2k on 2k vertices by adding a pendant edge to each vertex of the
complete graph. Then γpr(Hk) = 2k, while γ×2(Hk) = 4k.
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Figure 1.4: The graph Gk for k = 3

Despite this observation, in various cases, a relation can be established
between the paired and the double domination of two graphs. As an ex-
ample, Blidia, Chellali, and Haynes [10] showed that for every tree T on
at least two vertices, γpr(T ) ≤ γ×2(T ), and they characterized the extremal
trees. Chellali and Haynes [23] also showed the following bound on claw-free
graphs:

Theorem 1.1.10 (Chellali, Haynes [23]) If G is a claw-free graph with
no isolated vertex, then γpr(G) ≤ γ×2(G).

We managed to extend this bound by generalizing it to star-free graphs.

Theorem 1.1.11 For r ≥ 2, if G is a K1,r-free graph with no isolated
vertex, then

γpr(G) ≤

(

2r2 − 6r + 6

r(r − 1)

)

γ×2(G),

and this bound is asymptotically best possible.

We prove this theorem in [30] by constructing a paired dominating set of
appropriate order from a minimum double dominating of the graph. We first
select a maximum matching in the double dominating set, and then extend
this matching to get a dominating set. The star-free condition allows us to
give a bound on the number of edges added to the set. Note that this proof
is constructive and a polynomial time algorithm can be proposed naturally
following the proof. The theorem directly extend Chellali and Haynes’ result
on claw-free graphs when we set r = 3. When r > 3, the graph for which
this bound is closest to be tight to our knowledge is the following.
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v

Figure 1.5: The graph F5.

For r ≥ 4, let Fr be the graph obtained from a complete graph Kr as
follows: select an arbitrary vertex v and subdivide all edges not incident with
v. Equivalently, Fr is obtained from a complete graph Kr−1 by subdividing
every edge once and then adding a new vertex v and joining v to every
vertex of the original complete graph Kr−1. The graph F5, for example, is
illustrated in Figure 1.5. The graph Fr is K1,r-free of order r +

(

r−1
2

)

. The
minimum double dominating set of Fr is of size r, and it can be formed by
the r vertices of degree more than 2. However, to get a paired dominating
set one need to take 2(r − 2) vertices. Therefore, this graphs satisfies the
following equality, which is very close from our proof:

γpr(Fr) =

(

2r2 − 6r + 4

r(r − 1)

)

γ×2(Fr).

We expect that the upper bound can actually be improved to attain this
value. There might be some clue in our proof related to the selection of the
matching. Maybe a more careful choice than simply a maximal matching
would close the gap, though it is difficult to verify.

1.1.2 Independent domination

The last topic on domination in this chapter is on independent domi-
nation. A dominating set of a graph is an independent dominating set if
the subgraph induced by the set contains no edges, that is if the set is also
an independent set. The minimum size of an independent dominating set
is the independent domination number, denoted i(G). Since any maximal
independent set in a graph is also a dominating set, this parameter can also
be seen as the minimum size of a maximal independent set in the graph
(with a similar approach as upper domination, but for lower independence).

The question of best possible bounds on the independent domination
number of a connected cubic graph remains unresolved. Recall that a graph
is cubic (or 3-regular) if all its vertices are of degree 3, and subcubic if it
is of maximum degree 3. Lam, Shiu, and Sun [63] established the following
upper bound on the independent domination number of a connected cubic
graph.
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Theorem 1.1.12 (Lam, Shiu, Sun [63]) For a connected cubic graph G
on n vertices, i(G) ≤ 2n/5 except for K3,3.

Equality in Theorem 1.1.12 holds for the prism C5✷K2. It is conjectured
in [46] that the graphs K3,3 and C5✷K2 (drawn in Figure 1.6) are the only
exception for an upper bound of 3n/8.

Conjecture 1.1.13 (Goddard, Henning [46]) If G /∈ {K3,3, C5✷K2}
is a connected cubic graph on n vertices, then i(G) ≤ 3n/8.

K3,3 C5 ✷K2

Figure 1.6: The graphs K3,3 and C5✷K2.

As a comparison, the same bound is true for the domination number:
Reed proved in [74] that cubic graphs of order n have domination number
at most 3n

8 . He also conjectured that maybe a better bound of ⌈n3 ⌉ could
be proven. This was disproved by Kostochka and Stodolsky [61], who sug-
gested that the bound might hold for 2-connected cubic graphs. That second
suggestion was itself disproved by Kelmans [56], who conjectured that the
bound should hold for 3-connected cubic graphs. We don’t know of any
result proving or disproving that conjecture yet.

In the meanwhile, Kostochka and Stocker gave a better upper bound
for the domination number of connected cubic graphs. To summarize, if
Gncubic denotes the family of all connected cubic graphs of order n, then the
following is known ([56, 62]).

0.35 =
1

3
+

1

60
≤ sup

G∈Gn
cubic

(

lim
n→∞

γ(G)

n(G)

)

≤
1

3
+

1

42
≈ 0.35714.

In the following, we give a partial proof of Conjecture 1.1.13 for indepen-
dent domination. Note that a better bound than i(G) ≤ 3n

8 should not be
expected. Indeed, two infinite families Gcubic and Hcubic of connected cubic
graphs with independent domination number three-eighths their orders were
proposed by Goddard, Henning, Lyle and Southey in [47].

Property 1.1.14 ([47]) If G ∈ Gcubic ∪ Hcubic has order n, then i(G) =
3n/8.
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Graphs in the families Gcubic and Hcubic are illustrated in Figure 1.7. It is
remarked in [46] that “perhaps it is even true that for n > 10, i(G) ≤ 3n/8
with equality if and only if G ∈ Gcubic ∪ Hcubic. We remark that computer
search has confirmed this is true when n ≤ 20.”

G H

Figure 1.7: Graphs G ∈ Gcubic and H ∈ Hcubic of order n with i(G) =
i(H) = 3n/8.

We prove in [33] the following:

Theorem 1.1.15 If G is a subcubic graph that does not have a subgraph
isomorphic to K2,3 and which has no (C5✷K2)-component, then

8i(G) ≤ 8n0(G) + 5n1(G) + 4n2(G) + 3n3(G).

The proof is based on the nonexistence of a minimum counterexample.
Considering such a minimum counterexample, we show a series of lemmas
of type: if the graph contains such a structure, then we can remove some
subgraph, find a small enough independent dominating set on the subgraph
we got, and extend it to the whole graph. We show this way first that a
minimum counterexample should be 3-regular, then we work on the small
cycles until we prove the graph has girth at least 8, which allows us to
conclude the proof.

For this result, we require that there is no K2,3-subgraph in G. However,
we believe that the assertion should be dropped and replaced by G 6= K3,3.
This is still an open question. It is not an easy thing to do, but maybe
starting on the same basis, and adding some clever argument to replace
K2,3 by another subgraph, we could solve this other problem.

It should be noted that completing the same proof, we obtain the fol-
lowing theorem:

Theorem 1.1.16 If G is a subcubic graph, then

8γ(G) ≤ 8n0(G) + 5n1(G) + 4n2(G) + 3n3(G).
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This theorem is not new, but it implies Reed’s result [74] evoqued earlier
and is a new proof of the result proved independently by Fischer, Fraugh-
naugh, Seager [44], and Rautenbach [73] on the domination number of sub-
cubic graphs.

1.1.3 Conclusion

In this section on domination, different results on domination are pre-
sented that all share a common approach. The very first step of the research
process is looking for the worst cases for our parameter. We identify a few
examples or a small family of examples that reaches the worst bound, which
may usually be known. What we then prove is that this small family contains
the only few graphs forcing the bound, and we then prove a better bound. In
paired domination, this small family contains the subdivided stars; in upper
paired domination, we got rid of the graphs with claws to exclude the graph
GΓpr

(in Figure 1.3) or maybe simply the family Gk; for comparing paired
and double domination, we excluded the graphs in Figure 1.4 by excluding
induced stars; and for independent domination, the family contained just
two graphs: K3,3 and C5✷K2.

This really gives the feeling that for many problems, there are very few
graphs that are difficult to deal with, and the vast majority of graphs are
rather gentle. This idea is also supported by the very strong results that can
be obtained for almost all graphs by probabilistic arguments, even though
it is known that there are examples of graphs very far from the almost sure
bound.

On the other hand, this is an interesting general approach for these
graph parameters. Sometimes, like in paired domination and independent
domination, we could give a better bound by excluding precisely the graphs
known to be the worst cases. Such results are somehow more satisfying since
they are precise. This can be seen as a general question:

Problem 1.1.17 (General framework) Given a graph parameter γ∗ for
which we have a general bound and a family F of graphs reaching this bound,
can we improve the bound by excluding the family F?

Note that this is an auto-regenerating problem, since when you get a
new bound, you get a new graph for which it is tight and a new problem.
However, we can reach rather satisfying general family of bounds for that
problem, like what we got for paired domination in Theorem 1.1.5.
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1.2 Colorings

In this second part of the chapter, we study problems of colorings, that is
partitioning the vertices of a graph so that the vertices of a same color induce
a subgraph with a given property. The most frequent coloring problems
require for the parts to induce an independent set. We here study coloring
problem with different restrictions. In section 1.2.1, we require that the
parts induce a cograph. In section 1.2.2, we instead simply fix the maximum
degree of the subgraph induced by each part.

1.2.1 Cograph partitions

In this section we focus on vertex-partitions such that each part induces
a cograph. Cographs form the minimal family of graphs containing K1

that is closed under complement and disjoint union. Cographs are also
characterized as the graphs containing no induced copy of the path P4 (see
[75]). A simple example of a cograph is the star K1,n. In the following, we
get interested in both cograph partition and star partition.

A cograph k-partition (resp. star k-partition) of G is a vertex-partition
of G in k sets V1, . . . , Vk such that the graph induced by each Vi is a cograph
(resp. a star forest). Moreover we call a d-star k-partition a star k-partition
whose every induced component has order at most d. Note that a 1-star
k-partition is a proper k-coloring, and that any star-partition is a cograph
partition.

The first question we got focused on about cograph partition is the com-
plexity of the problem. Deciding whether a graph is cograph k-partitionable
is known to be linear time solvable when k = 1 [25] and NP-complete for
k ≥ 2 [3]. In [45] Gimbel and Nešetřil focused on planar graphs and proved:

Theorem 1.2.1 (Gimbel, Nešetřil [45])

1. Deciding whether a planar graph is cograph 3-partitionable is NP-
complete.

2. Deciding whether a planar graph with maximum degree at most 6 is
cograph 2-partitionable is NP-complete.

In the same paper, they implicitly raise the following question:

Question 1.2.2 (Gimbel, Nešetřil [45]) Does there exist a triangle-free
planar graph that is not cograph 2-partitionable? If the answer is yes, what
is the complexity of the associated decision problem?

In [37], we provide an example of a triangle-free planar graph not par-
titionable into two cographs, and manage to prove that the corresponding
decision problem is NP-complete, answering Question 1.2.2. In fact, we
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Figure 1.8: A triangle-free edge widget for NP-reduction

prove a stronger result. Let Ccograph be the class of graphs admitting no
vertex-partition into two cographs, and let C3-star be the class of graphs
admitting a 3-star 2-partition. Since a star is a cograph, these families of
graphs are disjoint: C3-star ∩ Ccograph = ∅.

Theorem 1.2.3

1. It is NP-complete to determine whether a triangle-free planar graph in
C3-star ∪ Ccograph belongs to C3-star, i.e. is 3-star 2-partitionable.

2. It is NP-complete to determine whether a planar graph with no 4-cycle
and with maximum degree 4 in C3-star ∪ Ccograph belongs to C3-star.

This shows that we cannot decide whether a graph is cograph partition-
able in polynomial time (unless P=NP) even if we know that if the graph
admits a cograph partition, then it is a simple one, that is a partition into
3-stars forests. The proof is based on a reduction from the problem of de-
ciding whether a 3-uniform hypergraph is 2-colorable. We simply provide
some appropriate sets of widgets, one triangle-free, the second of maximum
degree 4 with no 4-cycles.

For example in the widget of Figure 1.8, we proved that it is not possible
to find a cograph 2-partition where the two end-vertices x and y are in the
same part. On the other hand, the labels A and B describe a 3-star 2-
partition where these vertices are in different parts. To find a triangle-free
planar graph not cograph 2-partitionable, one may simply replace the five
edges of a cycle of length 5 by this widget, seen as the edge xy. Since the
5-cycle is not 2-colorable, there is no cograph 2-partition of the resulting
graph.
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Note that besides answering Question 1.2.2, this result also improves the
second point of Theorem 1.2.1, reducing the maximum degree from 6 to 4.
We observe that the maximum degree cannot be reduced further, with the
following observation:

Observation 1.2.4 All subcubic graphs admit a vertex-partition into two
subgraphs of maximum degree 1.

To see this, consider a coloring φ of the vertices of a subcubic graph
with two colors that minimize the number of edges with the same color at
both ends, called monochromatic edges. Suppose there is a vertex u with
the same color than at least two of its neighbors in φ. The vertex u is of
degree at most 3 so recoloring u, we replace two monochromatic edges by at
most one, contradicting our choice of φ. Thus, this coloring partitions the
vertices in two sets each inducing a graph of maximum degree one.

A very common proof technique for proving bounds on the coloring num-
bers of graphs is the so-called discharging procedure. Due to the nature of
this technique, many studies on vertex partitions use the maximum average
degree of a graph as a parameter. The maximum average degree of a graph
G, denoted mad(G), is the maximum of the average degrees of all subgraphs
of G, that is: :

mad(G) = max
H⊆G

{

2|E(H)|

|V (H)|

}

Note that due to Euler’s formula, the maximum average degree of a planar
graph is related to its girth g, i.e. to the length of a shortest cycle in the
graph, by the relation (g − 2)mad(G) < 2g.

In this context, a general question for star-partitions is the following:

Problem 1.2.5 Given an integer k ≥ 1, does there exist f(k) such that
every graph with mad(G) < f(k) is k-star 2-partitionable?

For k = 1, a 1-star 2-partition is exactly a 2-coloring, and the best general
possible bound on the mad for a graph to be 2-colorable is mad(G) < 2,
which correspond to trees. An odd cycle has average degree 2 and is not 2-
colorable. Havet and Sereni [50] proved that every graph with mad(G) < 8

3
is 2-star 2-partitionable. Studying list strong linear 2-arboricity of sparse
graphs, Borodin and Ivanova [11] proved that every graph with mad(G) < 14

5
and girth at least 7 is 3-star 2-partitionable. They added to their result the
following comment:

This could be weakened to g(G) ≥ 6, say, but at price of some
tedious case analysis.

In [37], we prove that we can completely drop the assumption on the girth
and obtain:
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Theorem 1.2.6 Every graph G with mad(G) < 14
5 is 3-star 2-partitionable.

The proof of this result begins by following the discharging procedure
scheme. We show that a graph either has mad at least 14

5 , or contains
one of a special family of subgraphs. Since 14

5 < 3, we know that the
graph contains a vertex of degree at most 3 and we can find our family
of subgraphs by generating the possible neighborhoods of this vertex. The
girth assumption in [11] is a frequently used way to restrict the number
of subgraphs generated that way. The originality of our proof resides in
the fact that we do not describe explicitly all the subgraphs we study, and
therefore avoid the “tedious case analysis” Borodin and Ivanova announced.
We describe the possible configurations as a family of trees, and then prove
the result for any embedding of these configurations in a graph. To do so,
we identify in the configurations some vertices whose color can be chosen
quite freely. We color greedily the other vertices, choosing any color if they
have no colored neighbors, and then have few simple rules for choosing the
color of the remaining vertices.

For k ≥ 4, Problem 1.2.5 remains open. By [11], every planar graph of
girth at least 7 is 3-star 2-partitionable. Moreover, there exist triangle-free
planar graphs which are not cograph 2-partitionable, and therefore planar
graphs with girth 4 not k-star 2-partitionable for any k. The existence of
star 2-partitions or even of cograph 2-partitions for planar graphs of girth 5
and 6 remains an open question.

1.2.2 Near colorings

In this section, we consider partitioning the graph in subsets with a
bounded maximum degree. A graph G is (d1, . . . , dk)-colorable if the vertex
set of G can be partitioned into subsets V1, . . . , Vk such that the graph
G[Vi] induced by the vertices of Vi has maximum degree at most di for all
1 ≤ i ≤ k. When all the di are equal to 0, this defines proper coloring
on k colors, whereas if all di equal to a same positive integer d, then this
defines d-improper coloring. For example, planar graphs are known to be
(0, 0, 0, 0)-colorable [6] and (2, 2, 2)-colorable [26].

An interesting result for our following study is due to Havet and Sereni
[50].

Theorem 1.2.7 (Havet and Sereni [50]) Every graph G with mad(G) <
k + kd

k+d
is d-improper k-colorable (in fact, d-improper k-choosable), i.e.

(d, . . . , d)-colorable (where the tuple is of size k).

Moreover the bound they propose here on the maximum average degree is
asymptotically sharp:
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Theorem 1.2.8 (Havet and Sereni [50]) There exists a non d-improper
k-colorable graph whose maximum average degree tends to 2k when d goes
to infinity.

Until now, most studies on (d1, . . . , dk)-colorable graphs with di taking
different values were just for (d1, d2)-colorings. After various weaker results
on the topic, Borodin and Kostochka [15] showed that every graph G with
mad(G) ≤ 12

5 is (1, 0)-colorable, implying that every planar graph with girth
at least 12 is (1, 0)-colorable. They also proved that their bound on the mad
is best possible by constructing graphsG with mad(G) arbitrarily close (from
above) to 12

5 that are not (1, 0)-colorable. Note that the largest known girth
for a planar graph non (1, 0)-colorable is due to Esperet et al. [41] that
found a planar graph non (1, 0)-colorable with girth 9; yet whether planar
graphs with girth 10 or 11 are (1, 0)-colorable remains an open question.

More general problems on (d1, . . . , dk)-colorings were also studied. For
this study, the most interesting one is the following:

Theorem 1.2.9 (Borodin et al. [12]) Let d ≥ 2 be an integer. Every
graph G with mad(G) < 3d+4

d+2 is (d, 0)-colorable. Moreover there exists a

non (d, 0)-colorable graph G with mad(G) = 3d+4
d+2 + 1

d+3 .

Other results give some bounds on the mad for being (d, 1)-colorable [14] or
general conditions on the graph density for being (d1, d2)-colorable [13].

We here consider the case where each graph G[Vi] (1 ≤ i ≤ k) is either
a subgraph with maximum degree at most d, or an edgeless graph, that is
(d, . . . , d, 0, . . . , 0)-colorings. In particular, we prove that having for G[Vi] a
subgraph with maximum degree at most d even for a large degree d is no
more powerful (in terms of mad) than having two edgeless graphs.

Let d, a, b be non-negative integers, with d > 0. A graph G is (d, a, b)∗-
colorable if the vertex set of G can be partitioned into subsets D1, . . . , Da

and O1, . . . , Ob such that the graph G[Di] induced by the vertices of Di

(1 ≤ i ≤ a) has maximum degree at most d, while the graph G[Oj ] induced
by the vertices of Oj (1 ≤ j ≤ b) is an edgeless graph. A (d, a, b)∗-coloring
can be looked at as a (d, . . . , d, 0, . . . , 0)-coloring with a occurrences of the
value d corresponding to colors of type Di and b occurrences of value 0,
colors of type Oj . We prove in [34]:

Theorem 1.2.10 Let a, b, d be integers with a + b > 0 and d > 0. Every
graph G with mad(G) < f(d, a, b) is (d, a, b)∗-colorable, where

f(d, a, b) = a+ b+
da(a+ 1)

(a+ d+ 1)(a+ 1) + ab
.

This property of graphs with small maximum average degree is proved by
a single general discharging procedure based on the degrees of the vertices.
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It has only two discharging rules and does not make any special cases related
to the values of a, b or d. The bound can probably be improved for precise
values of a, b or d by a dedicated proof. The second result we prove in [34]
shows that the bound is asymptotically tight.

Theorem 1.2.11 For any positive integers d, a, b, there exists a graph Gd,a,b

which is not (d, a, b)∗-colorable but is (d, 0, a + b + 1)∗-colorable, and has
maximum average degree g(d, a, b), where

g(d, a, b) = 2a+ b−
2

(d+ 1)(b+ 1)− 1
+

2a+ 2

(d+ 1)a+1(b+ 1)a+1 − 1
.

This theorem is simply proved by constructing a general family Gd,a,b

of non (d, a, b)∗-colorable graphs that reach that bound, by recursion on a.
For a = 0, we define Gd,0,b = Kb+1, the complete graph on b + 1 vertices.
Suppose now a ≥ 1. We first define a graph Fx (called the fan on x) as
follows : take d + 1 disjoint copies of Gd,a−1,b (denoted H1, . . . , Hd+1), and
add a vertex x adjacent to all the vertices of every copy. To form Gd,a,b, now
take b + 1 fans Fx1

, . . . , Fxb+1
, and form a complete graph on x1, . . . , xb+1.

The construction principle of the graph Gd,a,b is depicted in Figure 1.9.

Fxb+1

H3H2H1

Kb+1

Hd+1

Fx1

x1

Fx2

Fx3
Fx4

Figure 1.9: The graph Gd,a,b.

Then, proving the non (d, a, b)∗-colorability and the (d, 0, a + b + 1)∗-
colorability is rather easy. However, computing the mad of the graph is a
non trivial technical proof.

Interestingly, both functions f and g tend to 2a + b when d tends to
infinity, showing that asymptotically, we obtain a tight bound of 2a+ b. On
the one hand, this bound confirms the intuition given by the bound of Havet
and Sereni corresponding to the case b = 0, where the maximum average
degree tends to 2a when d goes to infinity. On the other hand, it also gives
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a better perspective of the work of Borodin et al. [12] corresponding to the
case a = 1 and b = 1, where the maximum average degree tends to 3 when
d goes to infinity. However our results do not imply these two results. For
these cases, their results are sharper in the sense that (1) the upper bound
on the maximum average degree that guarantees the existence of a (d, a, b)∗-
coloring (for b = 0 and a = 1, b = 1) is higher, and (2) the convergence
toward 2a + b (for b = 0 and a = 1, b = 1) given by their constructions is
quicker.

A question naturally arises from this study. We got that when d goes
to infinity, a color whose induce subgraph have maximum degree d behaves
in terms of maximum average degree similarly to two colors whose induced
subgraph are independent. Is it possible that we can simply model the
problem by giving a color of degree d for any d some share being simply a
function of d lying between 1 and 2?

Question 1.2.12 Is there some function f such that any graph with max-
imum average degree less than

∑k
i=1 f(di) is (d1, . . . , dk)-colorable and this

bound is tight?

The result on (d, 0)-coloring in [12] together with our results suggest that
f(d) should lie between 1 + d

d+2 and 1 + d
d+2 + 1

d+3 . It should be noticed

that a(1 + d
d+2) + b lies nicely between f(d, a, b) and g(d, a, b).
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Chapter 2

Power domination

In this chapter, we are interested in power domination in graphs. Power
domination is a variation of domination introduced to address a physical
problem of monitoring a network with phasor measurement units. It is
somehow a very singular variation of domination since it implies some pos-
sibility of propagation, the set of vertices monitored by an initial set has to
be computed with an iterative process.

I got interested in this problem quite early, and I have followed carefully
the different progresses on the topic. In 2010, during a visit in Taiwan,
we proposed a generalized version which reveals a nice common behavior of
power domination and domination. Since, I have often thought that this
problem was really accurate for a student to work on. I currently supervise
a master student working on this topic, especially on power domination in
graph products. He would like to continue on a PhD if he gets some funding.
Hopefully, he will have the opportunity to continue on power domination,
which I am convinced is an appropriate topic.

In this chapter, we propose a tentative survey of the known results on
power domination. After retracing the evolution of the definition of the
problem in Section 2.1, we quickly describe the progress made on its algo-
rithmic complexity in Section 2.2. Then, Section 2.3 is dedicated to the
search for bounds on the power domination number of graphs, depending
on the structural properties of the graph. This is the only section where
we present some of our recent new results. Section 2.4 recalls the different
studies on power domination in graph products, lattices and other families
of graphs. This is mostly interesting for the wide research tracks this offers.

2.1 Definition

Power domination was introduced by Baldwin et al. in [7], then described
as a graph theoretical problem by Haynes et al. in [51]. The problem is
motivated by the requirement for constant monitoring of power systems by

23
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placing a minimum number of phasor measurement units (PMU) in the
network. A PMU placed at a bus measures the voltage of the bus plus the
current phasors at that bus. Using Ohm and Kirchhoff current laws, it is
then possible to infer from initial knowledge of the status of some part of
the network the status of new branches or buses.

In [7], the following definitions are proposed:

A measurement-assigned subgraph, called for short a measure-
ment subgraph, is a subgraph which has a current measure-
ment assigned to each of its branches. These are either actual
measurement or calculated pseudo-measurement deduced from
Kirchhoff’s and Ohm’s laws. [...]

The coverage of a placement set of PMU’s is the maximal span-
ning measurement subgraph that can be formed by this set, that
is, the maximal observable sub-network that can be built from
them.

They introduced the following formal definition of the spanning mea-
surement subgraph:

Definition 2.1.1 ([7]) A spanning measurement subgraph is constructed
throughout the network on the grounds of the following rules:

Rule 1: Assign a current phasor measurement to each branch incident to
a bus provided with a PMU;

Rule 2: Assign a pseudo-current measurement to each branch connecting
two buses with known voltage;

Rule 3: Assign a pseudo-current measurement to a branch whose current
can be inferred by using Kircchoff’s current law.

In terms of graphs, where buses are vertices and connecting branches are
edges, we can describe the observability rules of a network with the following
definition:

Definition 2.1.2 ([51]) Initially, set as monitored any vertex with a PMU
and all edges incident to it. Then, expand iteratively the set of monitored
edges and vertices with the following rules :

1. set as monitored any vertex incident to a monitored edge whose other
end is monitored;

2. set as monitored any edge joining two monitored vertices;

3. if a vertex has all its incident edges monitored except one, set this one
edge as monitored.
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It was noticed in [40] and later in [36] that the power domination problem
can be studied considering only vertices (from then said monitored vertices).
The coverage of a placement set S of PMU is then simply the induced
subgraph on the final set of monitored vertices, G[M(S)]. Recall that we
denote by N(S) the open neighborhood of the vertices of S, that is N(S) =
{v | uv ∈ E, v ∈ S}, and by N [S] = N(S) ∪ S its closed neighborhood.

Definition 2.1.3 ([40, 36]) LetG be a graph and S a subset of its vertices.
The set M(S) of vertices monitored by S is defined algorithmically by:

1. (domination)
M(S)← S ∪N(S)

2. (propagation)
As long as there exists v ∈M(S) such that

N(v) ∩ (V (G)−M(S)) = {w}
set M(S)←M(S) ∪ {w}.

Finally, this latter definition was formally described with the following
sets definition, where P i

1 is the set of vertices monitored after i propaga-
tion rounds. This definition was first introduced by Aazami in [1] and we
generalized this definition in [22] to introduced k power-domination. The
corresponding definition for monitored set is obtained by replacing k by 1
in the following:

Definition 2.1.4 ([22]) Let G be a graph, S ⊆ V (G) and k a non-negative
integer. We define the sets

(

P i
k(S)

)

i≥0
of vertices monitored by S at step i

by the following rules.

• P0
k(S) = N [S].

• P i+1
k (S) =

⋃

N [v], v ∈ P i
k(S) such that

∣

∣N [v] \ P i
k(S)

∣

∣ ≤ k.

It should be noticed that necessarily from this definition, for any i ≥ 0,
P i
k(S) ⊆ P

i+1
k (S). Indeed, there exist some set S′ (equal to S when i is 0)

such that P i
k(S) = N [S′]. Any vertex v in S′ satisfies that

∣

∣N [v] \ P i
k(S)

∣

∣ =

0 ≤ k, and thus N [S′] ⊆ P i+1
k (S). It should also be noticed that when

k = 0, the definition corresponds to the normal domination parameter.

2.2 Algorithmic aspects

2.2.1 Complexity

The first question that arises with a new problem like this is whether it
is NP-complete. Clearly, the problem is in NP because the computation of
the monitored set from a vertex is polynomial. In [51], Haynes et al. proved
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that deciding if a graph has power domination at most n is NP-complete
even restricted to bipartite or chordal graphs. They used a similar reduction
from 3-SAT than is used for domination. Guo, Niedermeyer and Raible then
proved that power domination is also NP-complete for planar graphs, which
was then restricted to planar bipartite graphs by Brueni and Heith [18].

2.2.2 Algorithms

While the problem is shown to be NP-complete for bipartite and chordal
graphs, it can be polynomial in any classes not containing one of these.
Indeed, Haynes et al. [51] proposed a linear algorithm for trees based on
the recognition of spiders in the tree, a spider being any subdivision of a
star. Guo et al. [48] proposed an other linear algorithm for trees using
a technique more similar to the labelling algorithm that became classical
for domination. We generalized this algorithm to k-power domination in
[22]. This technique can also be extended to propose a fixed parameter
tractable (FPT) algorithm for graphs with bounded tree-width. In fact, the
existence of a FPT algorithm for power-domination was already proved for
(1-)power domination by Kneis et al. [59] who used an expression of power
domination in monadic second order logic. Then Guo, Niedermeyer and
Raible [48] gave a direct linear algorithm for fixed parameter tractability for
(1-)power domination in graphs with bounded tree-width.

Linear algorithms for block-cactus graphs were also proposed by Hon et
al. [55], and for interval graphs and circular arc graphs by Liao and Lee in
[64, 65].

2.3 Bounds for the power domination number

In this section, we recall bounds proven on the power domination number
of a graph under certain restrictions.

2.3.1 General graphs

The first easy and general bound is due to Haynes et al. [51]. They note
that the power domination number of a graph is always at least one, and
that a dominating set of a graph is always also power dominating. We thus
get

1 ≤ γP(G) ≤ γ(G) .

The upper bound is obvious, yet Haynes et al. proved that there is no
forbidden subgraph characterization of the graphs reaching the bound. This
inequality can be easily extended to generalized power domination, as we
noticed in [22]. Actually, we noticed that the obvious chain of inequality

γ(G) ≥ γP(G) ≥ γP,2(G) ≥ γP,3(G) ≥ . . . ≥ 1 (2.1)
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cannot be improved.

Observation 2.3.1 If (xk)0≤k≤n is a finite non-increasing sequence of pos-
itive integers, then there exists a graph G such that γP,k(G) = xk for
0 ≤ k ≤ n.

Such a graph can be obtained by the following construction : for 0 ≤
k ≤ n, take xk − xk+1 copies of the star K1,k+1, where xn+1 is set as 0, and
form a complete subgraph on the centres of all these stars. An example of
such a graph for the sequence (7, 5, 5, 3, 2) is depicted in Figure 2.1.

7
K

Figure 2.1: The graph for the k-power domination number sequence
(7, 5, 5, 3, 2).

This statement brings in the following open problem:

Question 2.3.2 Can one find some characterization of the graphs such that
γP,k(G) = γP,k+1(G) for some k?

This question for k = 0 is implicit in [51] Note that with a similar argument
than for k = 0, one can prove that there is no forbidden subgraph such
characterization.

Another interesting easy remark is that if a graph is connected and has
maximum degree at most k + 1, then its k-power domination number is 1.
Going further with this remark, we could infer that a minimum k-power
dominating set of a graph of maximum degree at least k + 2 can be formed
taking only vertices of degree at least k+ 2. A few more details and we got
the following result (in [22]):

Theorem 2.3.3 If G is a connected graph of order n ≥ k + 2, then

γP,k(G) ≤
n

k + 2

and this bound is best possible.

Note that the result for (1-)power domination was already observed by
Zhao, Kang and Chang in [79]. That the bound is tight is rather easy to
observe. Take any graph G0 of order x with vertex set u1, . . . , ux, any family
of x graphsH1, . . . , Hx of order k+1 and make each vertex ui of G0 universal
to the graph Hi, that is adjacent to all of Hi’s vertices. Then any k power
dominating set has to contain at least one vertex in each of {xi} ∪ V (Hi).
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Graphs with bounded diameter A natural question that arises is whether
one can bound the power domination number of a graph with some condi-
tion on the diameter, that is the maximum distance between two vertices of
the graph. In [78], Zhao and Kang gave some result on (1-)power domina-
tion in graphs with bounded diameter. In particular, they give some general
bounds for the power domination number of planar graphs with diameter 2
or 3. They showed that in outerplanar graphs, if the diameter is at most
2, then the graph admits a power dominating set of size one, while if the
diameter is 4 or more, the power domination number can be arbitrarily large.

In [22], we consider the general case for k-power domination, and we
prove that there exist graphs with diameter 2 and arbitrarily large k-power
domination number. The family of graphs is based on the projective plane.
Given a projective plane of order n, with P a set of n2+n+1 points and L
a set of n2+n+1 lines, take the graph whose vertex set is P ∪L and where
there is an edge between a line and all the n + 1 points it contains as well
as between any two lines. We proved in [22] that this graph is of diameter
2 and has k-power domination number n+ 1− k. Therefore, bounding the
diameter by itself is not sufficient to give a general bound for the power
domination number.

2.3.2 Regular graphs

For regular graphs, it seems that better bounds can be proved. The first
results in that sense are using as an additionnal condition that the graph is
claw-free.

Theorem 2.3.4 (Zhao, Kang, Chang [79]) If G is a connected claw-free
cubic graph on n vertices, then γP(G) ≤ n

4 .

Moreover, they characterize the graphs for which the bound is tight. This
is actually a simple family: you take an even cycle and you replace every
second edge by a K4 minus an edge, using the degree 2 vertices of K4− e as
end vertices of the edge.

In [22], we generalized this result to k-power domination, with the fol-
lowing result:

Theorem 2.3.5 If G is a connected claw-free k+2-regular graph on n ver-
tices, then γP,k(G) ≤ n

k+3 .

We also characterized the family of graphs reaching the bound, which is
similar. The same construction replacing edges by a Kk+3 minus an edge
forms the whole family of such graphs (see Figure 2.3.2). The proof of this
result strongly relies on the claw-freeness of the graph. For a claw-free cubic
graph, we consider a minimum k-power dominating set S such that G[S] has
as few edges as possible and |N [S]| is as large as possible. In that setting, we
gradually describe better the graph around that set and deduce the theorem.
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Figure 2.2: The family of graphs reaching the bounds of Theorems 2.3.4 and
2.3.5.

We recently improved this result by dropping the condition of claw-
freeness. In [32], we showed

Theorem 2.3.6 If G is a connected k+2-regular graph on n vertices, then
either G = Kk+2,k+2 or γP,k(G) ≤ n

k+3 .

Note that the k power domination number of Kk+2,k+2 is 2 = n+2
k+3 . The

proof of the theorem is based on the following ideas. Consider a maximum
packing in the graph G. Suppose it does not propagate to the whole graph.
This means that at some stage, all monitored vertices that are adjacent to
a vertex not monitored are adjacent to at least k+ 1 such. In that case, we
may find some vertex that when added to our initial packing newly monitors
at least k + 3 vertices. Otherwise, we describe precisely the settings of the
vertices, and call it an (A,B)-configuration. The difficulty of the description
is in fact that we do not want the description to rely on the current set
of monitored vertices. We then prove that (A,B) configurations cannot
intersect in too many ways, and then describe some way of choosing the
initial packing so that no (A,B) configuration remain non monitored. This
leads us to the result.

An interesting continuation of this study would be to drop the relation
between the parameter k of the power domination and the regularity of the
graph. We could propose the following question:

Question 2.3.7 Let r ≥ 3 and G be a connected r-regular graph of order n
non isomorphic to Kr,r. What is the smallest positive value kmin(r) such
that γP,kmin(r)(G) ≤ n/(r + 1)?

Notice that by the Inequality 2.1, the k-power domination number of a
graph increases when k decreases, so kmin(r) exists. Note also that when
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k ≥ r−1, γP,k(G) = 1 ≤ n/(r+1) and thus clearly, kmin(r) ≤ r−1. Actually,
we obtain from Theorem 2.3.6 that kmin(r) ≤ r − 2. When k ≤ r − 3, the
question remains open. In fact, we even conjecture that in general, it should
be true that for all r, kmin(r) is 1:

Conjecture 2.3.8 For k ≥ 1 and r ≥ 3, if G 6= Kr,r is a connected r-
regular graph of order n, then γP,k(G) ≤ n/(r + 1).

2.4 Power domination in graph products

Another track which was well studied and sounds interesting is to try to
determine the k-power domination number of graph products or on other
frequent families of graphs. This topic is not much studied, or rather not
many exact results where found on that setting. However, many interesting
questions can be raised here.

2.4.1 Graph products definitions

There are four classical graph products, namely the Cartesian, the direct,
the strong and the lexicographic products. Note that the direct product also
carry many other names, such as the cross product or the Kronecker product.
For any of these products, the product of two graphs G and H has vertex
set V (G) × V (H), only the rules for obtaining the edges differ. For details
on graph products and related topics, see [49].

The Cartesian product of G and H is denoted G✷H and two vertices
(u, x) and (v, y) are adjacent in G✷H if either u = v and xy is an edge of
H or uv is an edge of G and x = y. If you consider the subgraph of G✷H
induced by all the vertices sharing some coordinate, say in G, then you have
a copy of H, and vice versa. In particular, the Cartesian product of two
paths is a grid.

The direct product G×H has for edges the product of the edge sets of G
and H, i.e. two vertices are adjacent if their first coordinates are adjacent
in G and their second adjacent in H. Note that the direct product of two
bipartite graphs is not connected.

The strong product G⊠H has for edge set the union of the edge sets of
G✷H and of G×H. As a corollary, the closed neighborhood of a vertex in
G ⊠H is the product of the closed neighborhoods of its coordinates in the
factors. The strong product of two paths is sometimes also called the king
grid.

The lexicographic product G ◦H is non symmetric. Vertices of G ◦H are
adjacent if either their G coordinates are adjacent, or their G coordinates
are equal and their H coordinates are adjacent.
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2.4.2 Product of paths

Power domination in product of paths were among the first topic to
be studied on power domination. Dorfling and Henning [40] studied the
Cartesian product of two paths, i.e. the usual grid.

Theorem 2.4.1 (Dorfling, Henning [40]) The power domination num-
ber of the n×m grid Pn✷Pm for m ≥ n ≥ 1 is

γP(Pn✷Pm) =

{

⌈n+1
4 ⌉ if n ≡ 4 (mod 8),

⌈n4 ⌉ otherwise.

In their proof, they explicitly describe the shape of the vertex set mon-
itored by any set of vertices in the grid. However, their proof also relies
on a study on the cylinder using the number of ‘columns’ as an invariant.
Though, the use of an invariant is not explicit and cannot be transposed
easily in other situations. The question on the cylinder (i.e. the product of
a path and a cycle) was also studied later by Barrera and Ferraro [8]. They
gave some upper bounds for these products, though they did not propose
any lower bounds, which is in fact the difficult part of the study.

In [36], this study on the products of paths is continued with the three
other products mentioned earlier. For the direct product (which has two
connected components), the bound obtained can be synthesized as follows:

Theorem 2.4.2 ([36]) The power domination number of the product Pn×
Pm for m ≥ n ≥ 1 is

γP(Pn × Pm) =

{

2⌈n4 ⌉ if n is even,
2⌈m4 ⌉ if n is odd and m even,

If both m and n are odd,

γP(Pn × Pm) ≤ max

{

⌈m

4

⌉

+

⌈

m− 2

4

⌉

,

⌈

m+ n

6

⌉

+

⌈

m+ n− 2

6

⌉}

Actually, the result in [36] gives more information for the odd by odd
case. It is proved that one component as power domination number ex-
actly max

{⌈

m
4

⌉

,
⌈

m+n
6

⌉}

whereas for the other component, the only lower
bound proved is n

4 . The technique for proving the m+n
6 lower bound for

the first component is somewhat surprising, since it first uses a transposi-
tion to another (popularization) problem then the known bound for that
problem, which itself is related to an invariant. For the second component,
this technique cannot be used, and it would be very interesting to see what
technique can be used in that problem, also because it would transpose to
many situations.

The situation for the strong product is a little simpler, though not com-
pletely solved either.
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Theorem 2.4.3 ([36]) Let m ≥ n ≥ 2. Then

γP(Pm ⊠ Pn) = max
{⌈m

3

⌉

,
⌈m+ n− 2

4

⌉}

unless 3n−m− 6 ≡ 4 (mod 8) in which case

max
{⌈m

3

⌉

,
⌈m+ n− 2

4

⌉}

≤ γP(Pm⊠Pn) ≤ max
{⌈m

3

⌉

,
⌈m+ n− 2

4

⌉

+1
}

.

In this theorem, the value is precisely given except when 3n−m− 6 ≡ 4
(mod 8) in which case a gap of one may happen. Again, we think that this
gap is due to a to small lower bound, and we conjecture that the upper
bound should be proven to be optimal. Note that similarly to the end
of the previous case, these bounds are expressed as the maximum of two
values. When one factor is much larger than the other, the optimal power
dominating sets are of different shapes than when both factors are of similar
length.

Note that the proofs of the lower bounds in this theorem again relies
on an invariant. The invariant is counting the vertices not surrounded by
power dominated vertices. Whenever there is some propagation in (1-)power
domination, the vertex from which the propagation is made gets surrounded,
and at most one new vertex may be added to the set of surrounded vertices.
In the case of the strong product of two paths, one can consider the set of
vertices on the border as non surrounded (and prove that any propagation
that would start on one of these vertices could have been made from another
vertex too). This invariant allows to prove the lower bound here.

The case of the lexicographic product is easier, since the role of the graph
G is much more important than the role of H in G ◦ H. Actually, unless
the power domination number of H is one, it is as good to totally dominate
G ◦H than to use propagation.

Theorem 2.4.4 ([36]) For any nontrivial graphs G and H, if G has no
isolated vertices, then

γP(G ◦H) =

{

γ(G); γP(H) = 1 ,
γt(G); γP(H) > 1 .

With N. Gillet, a master student in Bordeaux, we are currently working
on the question of the power domination number of the product of graphs.
We started to consider the following question, which seems interesting.

Question 2.4.5 Consider the (Cartesian-direct-strong) product of d paths.
For which j, k does the k-power domination number of the product depend
only of the length of the j shortest paths?
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For example, in the Cartesian product of two paths Pn✷Pm, the (1-)power
domination number does not depend on the length of the longest path. The
2-power domination number of Pn✷Pm is one, and does not depend on the
length of any factor. The (0-power) domination number of Pn✷Pm does
depend on the length of both paths. For the strong product, what we got
earlier that for k ≤ 1, γP,k(Pn⊠Pm) depends on both m and n, and one can
easily check that when k ≥ 2, it does not depend on any of m and n. On
larger dimensions, things are not so easy though.

2.4.3 General framework

During a conference in Bled (2011), we raised the following question as
a general framework for studies in that direction:

Question 2.4.6 For some product ⊗, can we find some non trivial way to
relate γP,k(G), γP,ℓ(H) and some γP,f(k,ℓ)(G⊗H)?

Many things can be considered following this framework. First, one
could ask whether Vizing’s conjecture is still likely, that is if for all graphs
G and H

γP,k(G✷H) ≥ γP,k(G)γP,k(H) ?

Note that γP,k+1(G✷H) can be less than γP,k(G)γP,k(H), at least for k = 0
and the product of two paths as seen earlier.

Another natural question in that framework is whether something nice
can be said on the hypercube. A natural guess would be that

γP,k+1(Qi+1) = γP,k(Qi)
(

= γ(Qi−k) if i ≥ k
)

.

Actually this is not true for k = 1. Pai and Chiu [69] showed that γ(Q5) = 7
while γP(Q5) = 4, disproving the previous inequality. Though, there are no
examples disproving the inequality for larger k. So the following question
remains open:

Question 2.4.7 Is it true that for k ≥ 1, γP,k+1(Qi+1) = γP,k(Qi)? And if
not, what is the first counterexample for a given k?

Finally, if we consider other families of graphs, many problems sound
interesting even if they may not be easy. Barrera and Ferrero started the
study of generalized Petersen graphs in [8], which are also studied by Xu and
Kang in [77]. However, again it is more difficult to prove some lower bound
on the power domination, and their studies are rather unfinished. In [8],
they suggest a more general study on Cayley graphs as a continuation.
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2.5 Conclusion

We have seen in this chapter that power domination and its generaliza-
tion is a topic on which there are many open problems. The main difficulty
of the topic is to find lower bounds on the parameter, when we know that
one vertex may dominate any number of vertices even in a graph of small
degree. This tentative survey indeed shows that many more upper bounds
are known than lower bounds. A few lower bounds were proposed on graph
products, using invariants or similar techniques, but not much more. Note
that the invariants proposed for power domination are not even useful when
considering the generalized power domination problem, since they use the
fact that a vertex propagate to at most one new vertex, thus creating at
most one new vertex with the possibility to propagate further. This is no
more true in generalized power domination.

Some other studies suggest some strengthening or other generalization
of the problem, such as considering only a bounded number of propagation
steps. This is probably a good way to make finding lower bounds easier,
and there should be much more results to be found on families of graphs.
Another interesting question we thought about in a currently going research
with Klavžar is to characterize the power domination radius of a graph, i.e.
the minimum number of steps a minimum power dominating set needs for
monitoring the whole graph. We are studying this on the family of Sierpinski
graphs but it is a first step initiating the study.



Chapter 3

Games and graphs

For a few years, I got interested in another field of discrete mathematics,
namely combinatorial game theory. In this chapter we first recall the main
concepts of this theory that are necessary later on, and then describe our
recent results mostly with G. Renault and É. Sopena. These are on the one
hand some results on the normal version in a domino game called toppling
dominoes, in Section 3.2, and on the other hand some general study of
misère games in Section 3.3. Finally, we describe in Section 3.4 a problem
of different flavour, that is in between combinatorial game theory and graph
parameters, the domination game.

3.1 Definitions

A combinatorial game is a finite two-player game with no chance and
perfect information. The players, called Left and Right, alternate moves
until one player has no available move. Under the normal convention, the
last player to move wins the game while under the misère convention, that
player loses the game. The misère version of a game is reputedly more
difficult than its normal version. For notations and definitions, we generally
follow [4], yet we recall basic concepts.

A game can be defined recursively by its sets of options G = {GL|GR},
where GL is the set of games reachable in one move by Left (called Left
options), and GR the set of games reachable in one move by Right (called
Right options). We note GL for the typical option of GL, and GR for the
typical option of GR. Moreover, we allow ourselves to use an operation on
these sets while it should be used on elements of these sets only, meaning that
we apply the operation to all elements of the set. The zero game 0 = {·|·}, is
the game with no options. The birthday of a game is defined recursively as
one plus the maximum birthday of its options, with 0 being the only game
with birthday 0. We say a game G is born on day n if its birthday is n and
that it is born by day n if its birthday is at most n. The games born on day

35
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0 1 1 ∗

Figure 3.1: Game trees of games born by day 1.

L

N P

R

Figure 3.2: Partial ordering of outcomes

1 are {0|·} = 1, {·|0} = 1 and {0|0} = ∗.

A game can also be depicted by its game tree, where the game trees of
its options are linked to the root by downward edges, left-slanted for Left
options and right-slanted for Right options. For instance, the game trees of
games born by day 1 are depicted on Figure 3.1.

Given two games G = {GL|GR} and H = {HL|HR}, the (disjunctive)
sum of G and H is recursively defined as G+H = {GL +H,G+HL|GR +
H,G+HR} (where GL+H is the set of sums of H with an element of GL),
i.e. the game where each player chooses on his turn which one of G or H to
play on. The conjugate G of a game G = {GL|GR} is recursively defined by
G = {GR|GL} (where GR is the set of conjugates of elements of GR). In
normal convention, the conjugate of a game is also its opposite, and denoted
−G.

One of the main objectives of combinatorial game theory is to determine
for a game G the outcome of its sum with any other game. Under both
conventions, there are four possible outcomes for a game. Games for which
Left player has a winning strategy whatever Right does have outcome L (for
left). Similarly, N , P andR (for next, previous and right) denote respectively
the outcomes of games for which the first player, the second player, and Right
has a winning strategy. We note o+(G) the normal outcome of a game G, i.e.
its outcome under the normal convention, and o−(G) the misère outcome
of G. Outcomes are partially ordered according to Figure 3.2, with greater
games being more advantageous for Left. Note that there is no general
relationship between the normal outcome and the misère outcome of a game.

Given two games G and H, we say that G is greater than or equal to H
whenever Left prefers the game G rather than the game H, that is G ≥+ H
if for every game X, o+(G+X) ≥ o+(H +X) in normal play, and G ≥− H
if for every game X, o−(G+X) ≥ o−(H +X) in misère play. Note that the
relationship between two games is not necessarily the same under normal and
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misère convention. We say that G and H are equivalent, denoted G ≡+ H
(resp. G ≡− H), when for every game X, o+(G +X) = o+(H +X) (resp.
o−(G + X) = o−(H + X)). If G ≥+ H and H ≥+ G, then G ≡+ H and
similarly in misère play.

While the equivalence of two games is well understood under normal
convention, it is very limited in misère play, as we discuss in Section 3.3.
There are therefore many interesting notations and corresponding properties
under normal convention, a few of which we partially present here.

First of all, in normal convention, for any game G, we have the following:

G ≥+ 0 ⇐⇒ o+(G) ≥ P
G ≤+ 0 ⇐⇒ o+(G) ≤ P

As a corollary, we haveG ≡+ 0 ⇐⇒ o+(G) = P, which is a characterization
of the equivalence class of 0 in normal play. We also can write G >+ 0 for
games with outcome L and G <+ 0 for games with outcome R. Games
with outcome N are called fuzzy. Note that this gives a second way to
compare two games G and H, namely by computing the outcome of G−H.
In particular, we mentioned earlier that the conjugate of a game was seen as
its opposite, and it is indeed easy to prove that o+(G+G) = P by describing
for the second player a mimicking strategy.

Recall that the game {0|·} is denoted 1. In normal play, note that {1|·}
has the same options than 1 + 1. We thus denote 2 = {1|·} and similarly,
n = {n − 1|·}, and therefore, −n = {·|n − 1}. All these number notations
make perfectly sense with comparison, sums, and outcomes. Proofs of these
statements are given in [4]. Now, interestingly enough one can prove that
the game {0|1} satisfies {0|1}+ {0|1} ≡+ 1. This is how 1

2 is defined. More
generally, for m odd, m

2j
is defined as the game {m−1

2j
|m+1

2j
}. All numbers can

then be obtained as games, and we say a game is a number if it is equivalent
to a number. Note that all games are not numbers, for example ∗ = {0|0}
is not. Actually, the outcome of a number may only be P,R or L. In the
following, when a game is a number, say x, we usually denote x for the game
value and X for the game itself.

An interesting characterization of numbers is the following :

Theorem 3.1.1 Let G be any game. If there exists a number x and its
game X such that for all Left options GL, o+(GL − X) ≤ N and for all
Right options GR, o+(GR −X) ≥ N , then G is a number.

Note also that impartial games are represented by values of type ∗m
where ∗1 = ∗ = {0|0} and ∗m = {0, ∗1, ∗2, . . . , ∗(m− 1)|0, ∗1, ∗2, . . . , ∗(m−
1)}. These values correspond to the Grundy values of games.

We now should have enough basic concepts for discussing toppling

dominoes.
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3.2 Toppling dominoes

The game toppling dominoes was introduced by Albert et al. in [4].
The game is played on rows of dominoes that can take three colors: black,
white and gray. Left may at his turn topple any black or gray domino in a
row, either leftward or rightward, and remove all fallen dominoes (that is all
dominoes on the left of the leftward toppled domino or on the right of the
rightward toppled domino). Right then take his turn toppling similarly a
white or gray domino, and the two players alternate turns until there is no
dominoes left. In this section, we are interested in the game under normal
convention, so where the last player to move wins.

To describe a one row toppling dominoes game, we just give the word
formed by the colors of its dominoes read from left to right. The black,
white and gray dominoes are also symbolized respectively by a L (for Left or
bLack), R (for Right) and a E (for either). For example, LLERR represents
a toppling dominoes game with two black dominoes followed by a gray
then two white dominoes. We use the language notations for defining general
words, and mean for example by (LR)4 the game LRLRLRLR.

A first easy observation on toppling dominoes is that the only game
on one row that has outcome P is the empty row. Indeed, if there is at least
one domino, any player who can play a domino at one end of the line can
win playing first. So if both extremities of the game are black, the game
has outcome L (is positive), if both are white, the game has outcome R (is
negative), otherwise the game has outcome N (is fuzzy). This uniqueness
of the 0 game is rather unusual, and a natural question that arises is the
following :

Question 3.2.1 In the game toppling dominoes, are there many equiva-
lence classes with a unique element consisting in only one row? Or are there
many games with few representations in a single row?

Some initial study of this question was given by Fink et al. in [43]. They
gave much credit to this question with the following result:

Theorem 3.2.2 (Fink et al. [43]) All numbers appear uniquely in top-

pling dominoes, i.e. if two games G ≡+ G′ are numbers, then they are
identical.

A nice corollary of this result is that numbers in toppling dominoes

are necessarily palindromes, since they equal their reversal. Another result
in the sense of this question is for LR-toppling dominoes.

A toppling dominoes game is LR-toppling dominoes if it does not
use the color gray (E). Fink et al. proved that there are exactly 2m LR-
toppling dominoes games with value ∗m.
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Theorem 3.2.3 (Fink et al. [43]) The LR-toppling dominoes game
G is equivalent to ∗m if and only if it is of the form (LR)k(RL)m(LR)k

for some 0 ≤ k < m.

Recall that ∗m corresponds to the nim stack on m matches, and could
obviously have also been represented by Em in toppling dominoes. There
are possibly many other games with value ∗m in toppling dominoes, but
how many remains an open question.

We call a toppling dominoes-number x a toppling dominoes game
which is equivalent to a number x. Fink et al. conclude [43] with a series of
conjectures, some of which are inspired by Theorem 3.2.2. They reformulate
Theorem 3.2.2 as follows, explicitly describing for a number x the unique
toppling dominoesgames equivalent to x.

Theorem 3.2.4 (Fink et al. [43]) If a game G has value a number in
canonical form {a|b}, then G is the toppling dominoes game aLRb.

Their first conjecture was that a similar result is also true when a and b
are numbers but not the resulting game:

Conjecture 3.2.5 (Fink et al. [43]) Let a and b be numbers with a ≥ b,
the game {a|b} is given (uniquely) by the toppling dominoes game aLRb.

In recent yet unpolished work [39], we solve that conjecture. We first
prove that the game aLRb is indeed the game {a|b}, but we then show
that aEb also has value {a|b}. However, we proved that there are no other
toppling dominoes games with that value, namely:

Theorem 3.2.6 Let a ≥ b be numbers and G be a toppling dominoes

game. The value of G is {a|b} if and only if G is aLRb, aEb or one of their
reversal.

Fink et al. proposed two similar conjectures in [43], for the games
{a|{b|c}} and {{a|b}||{c|d}}.

Conjecture 3.2.7 (Fink et al. [43]) Let a, b and c be numbers with a ≥
b ≥ c. The game {a|{b|c}} is given (uniquely) by the toppling dominoes

game aLRcRLb.

Conjecture 3.2.8 (Fink et al. [43]) Let a, b and c be numbers with a ≥
b ≥ c ≥ d. The game {{a|b}||{c|d}} is given (uniquely) by the toppling

dominoes game bRLaLRdRLc.

We propose the following result to settle the conjectures.
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Theorem 3.2.9 If a ≥ b ≥ c are numbers, then aLRcRLb ≡+ {a||{b|c}}.
Moreover, if a > b are numbers, then aEcRLb also is equivalent to {a||{b|c}}.
If a ≥ b > c ≥ d are numbers, then both bRLaLRdRLc and bRLaEdRLc
are equivalent to {{a|b}||{c|d}}.

Note also that Conjecture 3.2.8 is not true when b = c. Indeed, the
game {{a|b}||{b|d}} has value b, and therefore has a unique representation
by Theorem 3.2.2. However, for these two conjectures, the question of the
uniqueness remains open. This raises the following questions, ordered by
increasing generality:

Question 3.2.10 For numbers a ≥ b ≥ c ≥ d,

1. can we characterize all the LR-toppling dominoes games that have
value {a||{b|c}} and {{a|b}||{c|d}}?

2. is aLRcRLa the unique toppling dominoes game with value {a||{a|c}}?

3. can we characterize all the toppling dominoes games that have value
{a||{b|c}} and {{a|b}||{c|d}}?

Note that a and c being numbers and thus palindromes, the second
question here is related to another conjecture of [43], namely:

Conjecture 3.2.11 (Fink et al. [43]) In LR-toppling dominoes, if G
is a palindrome then G’s value appears uniquely.

Remark that in [43], many other questions and conjectures are raised,
and many research tracks exist about the apparently simple game toppling
dominoes.

3.3 Taxonomic ranking for misère games

We now consider misère games, a family of games generally considered
more difficult than normal games. Indeed, as mentioned in this chapter’s
introduction, general equivalence and comparison of games are very limited
in misère play (see [66, 72]). In particular, in misère games, no game with
any option is equivalent to the game 0. A solution to handle this situation
is to try to consider the games we study in special circumstances. This
is probably why Plambeck and Siegel defined in [70, 71] an equivalence
relationship under restricted universes, leading to a breakthrough in the
study of misère play games.

Definition 3.3.1 ([70, 71]) Let U be a universe of games, G and H two
games (not necessarily in U). We say G is greater than or equal to H modulo
U in misère play and write G ≥− H (mod U) if o−(G +X) ≥ o−(H +X)
for every X ∈ U . We say G is equivalent to H modulo U in misère play and
write G ≡− H (mod U) if G ≥− H (mod U) and H ≥− G (mod U).
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For instance, Plambeck and Siegel [70, 71] considered the universe of all
positions of given games, especially octal games. Other universes have been
considered, including the universes of impartial games I [9, 24], dicot games
D [5, 67], dead-ending games E [68], and all games G [72]. Briefly, impartial
games are games where Left and Right always have the same options, dicot
games are defined below, and dead ending games are such that if a game has
no Left (resp. Right) option, so do its options. These classes are ordered
(ranked) by inclusion as follows:

I ⊂ D ⊂ E ⊂ G .

To simplify notation, we use from now on ≥−
U and ≡−

U to denote supe-
riority and equivalence modulo the universe U . Note that the symbol = is
reserved for equality between game trees. Observe also that if U and U ′ are
two universes with U ⊆ U ′, then for any two games G and H, G ≤−

U H
whenever G ≤−

U ′ H.
The canonical form of a game is the simplest game of its equivalence

class. It is therefore natural to consider canonical forms modulo a given
universe. In normal play, impartial games have the same canonical form
when considered modulo the universe of impartial games or modulo the
universe of all games. In misère play, the corresponding canonical forms are
different.

3.3.1 A canonical form for dicots

In the following, we focus on the universe of dicots. A game is said to be
a dicot either if it is 0 or if it has both Left and Right options which then
are all dicots. Note that the universe of dicots, denoted D is closed under
conjugate, sum of games and taking option. Our first result is to provide a
canonical form for dicots modulo the universe D of dicots.

To obtain the canonical form of a game, we generally remove or bypass
options that are not relevant. These options are of two types: dominated op-
tions can be removed because another option is always a better move for the
player, and reversible options are bypassed since the answer of the opponent
is ‘predictible’. Under normal play, simply removing dominated options and
bypassing reversible options is sufficient to obtain a canonical form. Under
misère play, things are more complicated. Mesdal and Ottaway [66] pro-
posed definitions of dominated and reversible options under misère play in
the universe G of all games, then Siegel [72] proved that deleting dominated
options and bypassing reversible options actually defines a canonical form
in the universe G. However, modulo smaller universes, games with different
canonical forms may be equivalent. In the following, we adapt the definition
of dominated and reversible options to restricted universes of games.

Definition 3.3.2 (U-dominated and reversible options)
Let G be a game, U a universe of games.
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(a) A Left option GL is U -dominated by some other Left option GL′

if
GL′

≥−
U GL.

(b) A Right option GR is U -dominated by some other Right option GR′

if
GR′

≤−
U GR.

(c) A Left option GL is U -reversible through some Right option GLR if
GLR ≤−

U G.

(d) A Right option GR is U -reversible through some Left option GRL if
GRL ≥−

U G.

To obtain the known canonical forms for the universe G of all games
[72] but also for the universe I of impartial games [24], one may just remove
dominated and bypass reversible options such defined. The natural question
that arises is whether a similar process gives canonical forms in other uni-
verses. Indeed, it is remarkable that in all universes closed by taking options,
dominated options can be ignored, as shown by the following lemma.

Lemma 3.3.3 Let G be a game and let U be a universe of games closed by
taking option of games. Suppose GL1 is U-dominated by GL2, and let G′ be
the game obtained by removing GL1 from GL. Then G ≡−

U G′.

Unfortunately, the case involving reversible options is more complex. We
managed to prove in the special case of dicots that we can bypass reversible
options that are different from ∗, and even bypass ∗ when another option is
winning for the corresponding player.

We obtain the following reduced form in [38]:

Definition 3.3.4 (Reduced form) Let G be a dicot. We say G is in re-
duced form if:

(i) it is not {∗|∗},

(ii) it contains no dominated option,

(iii) if Left has a reversible option, it is ∗ and no other Left option has
outcome P or L,

(iv) if Right has a reversible option, it is ∗ and no other Right option has
outcome P or R,

(v) all its options are in reduced form.

Theorem 3.3.5 Let G be a dicot, there exists a game G′ in reduced form
that is equivalent to G modulo the universe of dicots D; i.e. G′ ≡−

D G.
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Once we know that every game has a reduced form, to prove that this
reduced form can be considered as a canonical form, we prove that any two
equivalent games in reduced form are identical, namely:

Theorem 3.3.6 Consider two dicots G and H. If G ≡−
D H and both are in

reduced form, then G = H.

Remark also that as it was proved by Siegel in [72], we can prove that if
two games are equivalent modulo the dicot universe, so are they in normal
play. This is simply a corollary of the following result we proved in [38]:

Theorem 3.3.7 Let G and H be any games. If G ≥−
D H, then G ≥+ H.

In particular, thanks to this result, we get that any non equivalent games
in normal version are also non equivalent in misère modulo the dicot uni-
verse. Moreover, the same things hold for any universe containing the uni-
verse of dicots, such as the universe G of all game (implying the result of
[72]) and for the universe E of dead-ending games (studied in [68]).

3.3.2 Counting the dicots

Thanks to this result, we can count the number of dicots born by day 3.
Beforehand, note that there are 10 dicots born by day 2 of which only 2 are
equivalent modulo the universe D of dicots, namely 0 and {∗|∗}. We thus
get nine games. To count the dicots born by day 3, we thus just have to
count the number of distinct games in reduced form that can be obtained
with only options born by day 2.

We obtain the following result:

Theorem 3.3.8 There are 1268 dicots non equivalent modulo the universe
D of dicots born by day 3, of which 64 have outcome P, 201 have outcome
L, 201 have outcome R and 802 have outcome N .

That makes 1, 3, 9 and 1268 dicots born by day 0, 1, 2 and 3 respectively.
As a comparison, recall that the number of impartial misère games distin-
guishable modulo the universe I of impartial games that are born by day 0,
1, 2, 3 and 4 are respectively 1, 2, 3, 5 and 22 (see [24]). Siegel [72] proved
that the number of misère games distinguishable modulo the universe G of
all games that are born by day 0, 1 and 2 is respectively 1, 4 and 256, while
the number of distinguishable misère games born by day 3 is at most 2183.

3.3.3 Sums of dicots can have any outcome

Another property of the normal convention that makes it easier to study
is that in normal play, summing a game G with another game H whose
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outcome is P does not change the outcome, namely o+(G + H) = o+(G)
whenever o+(H) = P. This is in fact just a corollary of the fact that all
games with outcome P are equivalent to 0 in normal play. Such a property
is not true in misère version in general, and not even if we restrict ourselves
to the universe to dicots, as we show in [38].

Theorem 3.3.9 Let A,B and C be any outcome in {P,L,R,N}. On the
one hand, there exists a dicot G with normal outcome o+(G) = A and misère
outcome o−(G) = B, and on the other hand, there exist two dicots G1 and
G2 such that o−(G1) = A, o

−(G2) = B and o−(G1 +G2) = C.

This result is somehow still a very bad news for the study of games under
misère version. It would really be very useful to be able to at least partially
characterize the outcomes of sums of games in terms of the outcomes of the
operands, as is possible in normal play. One could thus consider the following
questions, even though they seem very difficult. It is anyway perhaps the
underlying hope of many studies of misère games in restricted universes.

Question 3.3.10 Is there some family such that there could be a better
relationship between the normal and misère outcome? Is there some family
where the outcome of the sum can be partly deduced from the outcomes of
the operands? Can we find a more precise partition of the games to have
such properties?

3.4 Game as a graph parameter: the domination

game

We now study a game of very different flavor, since what we are inter-
ested in is not the winner anymore but the final number of moves if both
players play optimally. Therefore, this study does not fit into combinatorial
game theory. However, it seems that some parallels with this theory can be
enlightening.

The domination game was introduced by Brešar, Klavžar and Rall in
[19]. It is played on a finite graph G by two players, Dominator and Staller.
They alternate turns in choosing a vertex that dominates at least one new
vertex. The game ends when there are no more possible moves, that is when
the chosen vertices form a dominating set of the whole graph. Dominator’s
goal is that the game finishes in as few moves as possible while Staller tries
to keep the game going as long as she can. There are two possible variants of
the game, depending on who starts the game. In Game 1, Dominator starts,
while in Game 2, Staller starts. The game domination number, denoted by
γg(G), is the total number of chosen vertices in Game 1 when both players
play optimally. Similarly, the Staller-start game domination number γ′g(G)
is the total number of moves in Game 2 when both players play optimally.
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(2, 3) (2, 3) (3, 4)

Figure 3.3: Some minus graphs.

Despite the fact that γ(G) ≤ γg(G) ≤ 2γ(G) − 1 holds for any graph
G (see [19]), the game domination number is essentially different from the
domination number. First of all, γg(G) is generally much more difficult to
determine than γ(G). Even on simple graphs such as paths and cycles, the
problem of determining γg is nontrivial [58].

As proved in [19, 57], the game domination number and the Staller-start
game domination number can differ by at most 1:

Theorem 3.4.1 ([19, 57]) If G is any graph, then |γg(G)− γ′g(G)| ≤ 1.

Call a pair (k, ℓ) of integers realizable if there exists a graphG with γg(G) = k
and γ′g(G) = ℓ. For the complete answer that all pairs that are potentially
realizable can be realized (with relatively simple families of graphs) see [60].

Whereas it seems rather natural that the Staller-start game domination
number γ′g(G) may be larger than the game domination number γg(G), it is
not so obvious that the other way around can happen. We later call graphs
G with γ′g(G) = γg(G)− 1 minus, and examples of small minus graphs are
depicted on Figure 3.3.

Kinnersley, West, and Zamani [57] conjectured that if G is an isolate-
free forest of order n or an isolate-free graph of order n, then γg(G) ≤ 3n/5.
Actually they posed two conjectures, because while the truth for isolate-
free graphs clearly implies the truth for isolate-free forests, it is not known
whether the converse implication holds. These conjectures are known as
3/5-conjectures. A progress on them has been made by Brešar et al. in [21]
by constructing large families of trees that attain the conjectured 3/5-bound
and by finding all extremal trees on up to 20 vertices; in particular, there
are exactly ten trees T on 20 vertices with γg(T ) = 12.

For a vertex subset D of a graph G, let G|D denote the graph G in
which vertices from D are considered to be dominated. One of the most
useful result on the domination game was proved by Kinnersley, West, and
Zamani [57] and is known as the continuation principle:

Theorem 3.4.2 ([57, Lemma 2.1] - Continuation Principle) Let G be a
graph and A,B ⊆ V (G). If B ⊆ A, then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤
γ′g(G|B).
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3.4.1 Effect of edge or vertex removal

Clearly, removing an edge from a graph can only increase its domination
number, that is, γ(G− e) ≥ γ(G). On the other hand, it was proved in [20]
that for any integer ℓ ≥ 1, there exists a graph G and its spanning tree
T such that γg(T ) ≤ γg(G) − ℓ. One of our recent contribution on the
domination game is to solve the question how much γg(G) and γ′g(G) can
change if an edge is removed from G as well as the analogous question for
vertex-removal. In [17], we prove the following:

Theorem 3.4.3 If G is a graph and e ∈ E(G), then

|γg(G)− γg(G− e)| ≤ 2 and |γ′g(G)− γ′g(G− e)| ≤ 2 .

This result is quite surprising. The possibility of modifying the domina-
tion game number by 1 in any direction is quite intuitive: the edge can make
a move legal or illegal, so could allow Staller one extra move to postpone
the issue of the game. But this extra move might also be played by Staller
just before starting to play in a minus for which γg = γ′g + 1. In such a
situation, Staller would increase the number of moves in the game by 2.

The proof of our result is made by proposing a strategy for both players
that guarantees no more moves than our bounds. It uses both the imagi-
nation strategy (one player mimic on the real game his optimal strategy for
an imagined game) and the continuation principle. We also accompany this
result with series of graphs that realize all possible pairs of values for the
(Staller-start) domination game numbers of G and of G− e.

e

γg(G− e) = γg(G)− 2

e

γg(G− e) = γg(G) + 2

Figure 3.4: Graphs with |γg(G− e)− γg(G)| = 2

We also got similar results for the removal of a vertex of the graph. Note
that the domination number of a graph can increase arbitrarily with the
removal of a vertex and so does the domination game number, e.g. when
the vertex is the center of a large induced star. However, while the removal
of a vertex could decrease the domination number by at most one, it can
decrease the domination game number by up to two:
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Theorem 3.4.4 If G is a graph and v ∈ V (G), then

γg(G)− γg(G− v) ≤ 2 and γ′g(G)− γ′g(G− v) ≤ 2 .

Again, we propose in [17] families of graphs that realize the possible
values that we proved above. Coming back to the edge deletion problem,
we wondered first whether it was possible to successively decrease the game
domination number by 2 by choosing different edges. We raise the following
problem:

Question 3.4.5 Given a positive integer k, can one find a general upper
and lower bound for γg(G) − γg(Gk) where Gk is obtained from a graph G
by the deletion of k edges from G? In particular, when two edges e and e′

of a graph G are deleted, can |γg(G)− γg(G− e− e′)| be more than 3?

Another question is whether it is possible to have in a same graph an
edge whose removal decreases the game domination number by two and an
edge whose removal increases it by two. In general we have the following
question:

Question 3.4.6 Which of the subsets of {−2,−1, 0, 1, 2} can be realized as

{γg(G)− γg(G− e) : e ∈ E(G)}

within the family of all (respectively connected) graphs G? In particular,
does there exist a graph G with edges denoted by e−2, e−1, e0, e1, e2 such that
γg(G)− γg(G− ei) = i for all i?

In addition, one can ask for a characterization of certain subfamilies of
graphs with respect to the above properties. For instance, following dom-
ination terminology, a possible question is to characterize the graphs that
are game domination edge-critical. That is, for which G we have {γg(G) −
γg(G− e) : e ∈ E(G)} ⊆ {−2,−1}?

3.4.2 Sums of domination games: the game played on the

disjoint union

Another study we made on the domination game is more related to
combinatorial games, as it tries to characterize the possible types of the
disjoint union of two games.

Recall that since |γg(G) − γ′g(G)| ≤ 1 for any graph G, realizable pairs
for (γg(G), γ′g(G)) are precisely of the form (k, k + 1), (k, k) and (k, k − 1).
We say a partially dominated graph G is a (k,+) (resp. (k,=), (k,−)) if
k = γg(G) = γ′g(G)− 1 (resp. k = γg(G) = γ′g(G), k = γg(G) = γ′g(G) + 1).
Additionally, we say that a graph G is a plus (resp. equal, minus) if G is
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(k,+) (resp. (k,=), (k,−)) for some k ≥ 1. Examples of known minus are
drawn in Figure 3.3.

This classification is interesting in the sense that players want to be
first to move on a plus, but would rather let the other player start on a
minus, in a similar way to what happen in games with outcome N and
outcome P in impartial combinatorial games. We thus wondered whether
we could describe the games behavior better by partitioning the games into
plus and minus as they can be partitioned according to their outcome in
combinatorial game theory. We proved in [35] that things are still not simple,
except when we consider graphs in a special family, that we call no-minus
graphs. We say that a graph G is a no-minus graph if for any subset of
vertices S, γg(G|S) ≤ γ′g(G|S). It is known from Kinnersley et al. [57] that
forests are no-minus graphs.

In [35], we prove that two families of graphs are no-minus graphs. The
first one is the family of tri-split graphs, a generalization of split graphs. A
graph is tri-split if its vertex set can be partitioned into three sets A,B and
C such that:

(i) A is non empty and G[A] is complete

(ii) B is an independent set

(iii) vertices in C are adjacent to all vertices in A and to no vertices in B.

Theorem 3.4.7 Connected tri-split graphs are no-minus graphs.

The second family of no-minus graphs is the family of dually chordal
graphs. A vertex u in the neighborhood N(v) is a maximum neighbor of v if
for all w ∈ N [v], N [w] ⊆ N [u], i.e. every vertex at distance at most 2 from v
is a neighbor of u. A vertex ordering v1, . . . , vn is a maximum neighborhood
ordering if for each i < n, vi has a maximum neighbor in G[1, . . . , i]. A
graph is dually chordal if it has a maximum neighborhood ordering. We
prove in [35] the following.

Theorem 3.4.8 Dually chordal graphs are no-minus graphs.

The proof of this theorem follows similar ideas than the proof for forests
in [57]. Note that forests, interval graphs and strongly chordal graphs are all
subclasses of dually chordal graphs, and therefore also are no-minus graphs
as a corollary of our result. We now describe the possible effects of the
disjoint union of no-minus graphs.

Theorem 3.4.9 Let G1|S1 and G2|S2 be partially dominated graphs, S1

and S2 being possibly empty. If G1 and G2 are no-minus, then their disjoint
union G1 ∪G2|S1 ∪ S2 is also a no-minus. Moreover,
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• if G1|S1 is (k,=) and G2|S2 is (ℓ,=), then G1∪G2|S1∪S2 is (k+ℓ,=)

• if G1|S1 is (k,=) and G2|S2 is (ℓ,+), then G1∪G2|S1∪S2 is (k+ℓ,+)

• if G1|S1 is (k,+) and G2|S2 is (ℓ,+), then G1 ∪ G2|S1 ∪ S2 is either
(k + ℓ,+), (k + ℓ+ 1,=) or (k + ℓ+ 1,+).

This theorem describes an easy situation, where the union of the graphs
can take few values. Note that all the values can be reached by some union of
trees. When we consider general graphs, things are more complicated. First,
useful information to be added into the study is whether γg(G) is even or
odd. Indeed, if γg(G) is even, then if Dominator plays first on G + H by
a move from G, Staller may force him to play first on H too. Choosing
for each graph whether it is a (k,−), a (k,=) or a (k,+) and considering
the cases whether k is even or odd, we got 21 different cases to study. We
solved most of them, meaning that we got bounds and examples of unions
reaching the bounds. In one case, when both operands are plus, one with
odd game domination number and the other with even game domination
number, tight bounds are at distance 3, i.e. there are graphs where the
bound is k+ ℓ−1 and others where it is k+ ℓ+2, but this is the unique case
for such a distance. For 6 out of the 42 bounds, we did not find an example
matching the bound yet, though it is likely that some examples reaching the
current bounds exist (rather than we can improve the bound).

Two things remain on that study. First, many of our examples are
artificially built by taking union of appropriate graphs. First, can we reach
the bounds with connected graph? Or better, can we find a graph operation
creating connected graphs equivalent to the disjoint union? The second
problem is motivated by how our study shows that no-minus graphs form a
rather predictable family in regards of the domination game. This motivates
the following question:

Question 3.4.10 Can we characterize the family of no-minus graphs? Or
can we simply propose more families of no-minus graphs?

One could start by trying to prove that chordal graphs are no-minus.
They are indeed a common generalization of split graphs, interval graphs
and forests, though we have no idea whether this family is no-minus.

3.5 Conclusion

In this chapter, we studied games with two very different settings: on the
one hand combinatorial games, where the only real concern is the possibility
to compute the outcome of a game as easily as possible and to find the next
optimal move, and on the other hand the domination game where what we
really want to know is what happened during the game, and which set of
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vertices was chosen. However, in both games we have to think on strategies:
the proofs mostly relies on the description of a good strategy, often described
by following another (sometimes hypothetical) strategy that we know is
optimal in a different situation. For this reason, the problem still are closely
related, even though they are described differently.

Both topics contain many open problems, generally related to one game
or one situation. However, what we are really looking for is always a better
way to describe the game so that the solution is inherent to the description.
This is a difficult task but easier results may be found by restricting our
study to some subfamilies of games, such as no-minus graphs for the dom-
ination games or dicots for combinatorial games as we did. Already trying
to properly define things in these situation gives a frame for generalizing the
idea to other families.
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List of symbols

FPT Fixed Parameter Tractable

Cn cycle on n vertices

{GL | GR} a typical combinatorial game

G[S] subgraph induced by S in G

G✷H Cartesian product of G and H

G | D A graph G with a set of dominated vertices D

γ(G) domination number of G

γ×2(G) double domination number

γg Domination game number

γ′g Staller-start domination game number

γpr(G) paired domination number of G

Γpr(G) upper-paired domination number

i(G) independent domination number

Ki,j bipartite complete graph with parts of size i and j

Kn complete graph on n vertices

mad maximum average degree

N(S) open neighborhood

N [S] closed neighborhood

Pn path on n vertices

χ(G) Chromatic number
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