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Preface

The objective of the present work is the analysis of coextrusion processes by numer-

ical simulation based on phase-field modeling of stratified confined flows. The study

of such flows is motivated by the presence of complex phenomena appearing in a

vast range of industrial operational coextrusion conditions due to the differences in

the components properties and their viscoelastic behavior. The basic idea in coex-

trusion is to combine several layers of different polymers in a common die, to form a

unique product with enhanced properties. However, the existence of fluid stratifica-

tion in the die is responsible of a severe distortion of the interface between the fluid

components, causing a loss of efficiency for the whole process. Experimental data

show that, even if a stratified initial configuration is imposed at the die entry, one

fluid eventually encapsulates the other in most of the flow condition analyzed. The

intrinsically three-dimensional nature of this phenomenon has required the develop-

ment of a three-dimensional flow solver based on the finite volume discretization of

the Navier-Stokes equations for incompressible and isothermal flow, together with

differential nonlinear constitutive equations (Giesekus, PTT models). The presence

of two fluid phases is taken into account by a phase field model that implies the

solution of an additional scalar equation to describe the evolution of the interface

on a fixed Eulerian grid. This model, unlike others of the same family, has a ther-

modynamic derivation and can be physically interpreted. The proposed method is

tested against experimental data and solutions already available in literature and a

study of coextrusion in rectangular dies is performed to identify the dependence of

encapsulation on the flow parameters

L’ensemble des travaux présentés dans cette thèse porte sur la simulation numérique

des procédés de coextrusion par un modèle d’écoulement stratifié basé sur la méthode

du champ de phase. L’avantage technologique offert par la coextrusion réside dans la

possibilité de combiner des matériaux ayant des propriétés physiques très spécifiques

dans un produit unique. Toutefois, les différences rhéologiques entre les divers

matériaux sont elles mêmes responsables d’un phénomène de distorsion de l’interface
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séparant deux couches adjacents. Les données expérimentales en coextrusion bi-

couches montrent que, en raison des différences de viscosité et d’élasticité entre le

deux composants, le fluide moins visqueux encapsule l’autre et le passage d’une

configuration stratifiée à une encapsulée comporte une perte de qualité du produit

final. Ce phénomène, dit d’enrobage, représente donc un sujet de très grande actu-

alité dans la recherche industrielle et la compréhension des mécanismes le générant

sera utile pour l’amélioration des procédés de mise en forme des polymères. La

nature intrinsèquement tridimensionnelle de l’enrobage a requis le développement

d’un code pour la simulation en trois dimensions basée sur la méthode des vol-

umes finis pour la discrétisation des équations de Navier-Stokes pour les écoulement

incompressibles et isothermes couplées avec une loi constitutive différentielle non

linéaire (modèles de Giesekus ou PTT). La présence de deux fluides est prise en

compte par une équation scalaire supplémentaire décrivant l’évolution de l’interface

sur un maillage fixe. Cette équation offre une interprétation physique précise car

elle est dérivée de la thermodynamique de séparation de phase d’un fluide binaire.

Le modèle proposé est validé par confrontation avec les résultats expérimentaux et

numériques disponibles dans la littérature. Une étude numérique de la coextrusion

en filière rectangulaire est effectuée afin de mettre en évidence les facteurs influençant

l’enrobage et la nature de son origine.
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1 Introduction

Multiphase confined flow is one of the most investigated research topics because of

its numerous industrial applications. The most interesting case is without doubt the

flow of stratified oil and water layers. The relevance of this system is given by the

tendency of the water to migrate toward the pipe wall in reason of its lower viscosity,

giving rise to the so called core-annular flow (CAF). This particular configuration

is characterized by a lower pressure drop than the single component flow produced

by the same oil flow rate. The simple observation that the addition of a 8 − 10%

of water in crude oil pipelines can considerably reduce the pressure gradient needed

to sustain the flow, leaded to the registration of several patents at the beginning

of the 20th century. Consequently, a significant research effort has been focused on

the study of the stratified bicomponent flows, the proliferation of different regimes

(slug flow, plug flow, CAF...) and their domain of stability. CAF is extensively

documented in the remarkable work of Joseph who defined it as a gift of nature,

[29].

Another technological application of paramount interest is represented by coextru-

sion. This process allows to combine several materials, in most cases polymers, into

a single product in order to obtain specifically tailored properties otherwise impos-

sible to attain with a single component. A noteworthy example of a coextruded

product is represented by conjugate fibers. These are produced by coextruding two

components in a side-by-side semicircular configuration. The difference of the ther-

mal expansion coefficients of the materials causes the buckling of the fiber upon

solidification at the exit of the spinneret, giving it a strong resemblance to natural

wool fibers.

The self-crimping characteristics of the produced fiber are function of the distri-

1
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Flow direction Inflow

Outflow

Figure 1.1: Schematic of the layer rearrangement occurring in two-layers coextrusion

in a circular die.

bution of the two components in the molten state within the spinneret hole. It is

evident that in order to control the amplitudes and the frequencies of the crimps

of the solidified fiber, the interfacial configuration must be controllable as well. For

this reason the textile industry had focused its attention in the experimental study

of bicomponent coextrusion in circular dies since 1970.

Multilayer coextrusion can also be employed to produce thin flat films or tubes.

Each layer contributes a specific property like oxygen or moisture barrier, heat

sealability, stiffness or flexibility, chemical inertness, electrical resistivity as well as

optical properties like color or transparency. Tubes can be further processed by blow

molding to produce bottles or tanks while films and plates can be manufactured into

several shapes by thermoforming (cups, trays, blisters...) or serve as coating layers

in overmolding processes (automotive industry).

Coextruded films are more economical than the ones produced by the conventional

lamination process and the former technique also allows much thinner layers. More-

over, cast film coextrusion presents the advantage over film-blowing in that the film

is drawn down and formed onto a rotating chill roll allowing a faster cooling and

thus a higher production rate.

There exists two kind of coextrusion lines that are widely employed by polymer
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processing industry: multi-manifold dies and single-manifold dies. The firsts allow

using polymers with liberally different properties since the layers come into contact

with each other only after exiting the die. At the same time, when more than

three layers are needed, multi-manifold dies are difficult to design and expensive to

operate. The logical alternative is represented by a single-manifold die where up to

several hundreds of layers can be extruded simultaneously. The drawback is that

the interaction between the layers can give rise to interface irregularities entailing

poor product quality.

Apart from flow instabilities, which represent a restrictive factor to the operational

conditions range, polymer coextrusion flows are interested by unique phenomena

that are due to the viscoelastic nature of the polymer melts. More specifically, when

two different polymers are coextruded in a common die, the originally stratified flow

can evolve toward a configuration where one component completely encapsulates

the other in reason of their different rheological properties as shown in fig. (1.1).

Although viscoelastic encapsulation is similar to the CAF transition in the sense

that the less viscous component generally encapsulates the more viscous one, its

driving mechanisms are basically different and thus the same considerations that

are uniformly accepted for Newtonian fluids cannot be straightforwardly applied to

this phenomenon.

Experimentation offers a solid approach to investigate the subject of the interface

rearrangement occurring in stratified flows of viscoelastic fluids; however the inter-

pretation of the experimental results must rely on theoretical basis which are not

as well established as for Newtonian fluids. Numerical simulation can offer a useful

tool to complement and support the experimental observations.

The rest of this chapter is dedicated to the review of principal aspects concerning

experimental studies as well as to an overview of the main theoretical results and

numerical methods that have been adopted so far for the simulation of encapsulation

in coextrusion flows.
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1.1 Review of the experimental studies

The experiments on coextrusion reported in literature are divided in two distinct

groups based on the historical period to which they belonged. In the years between

1972 and 1976 a number of papers were published on the subject of coextrusion in

circular dies because of the increasing interest raised by the advent of this kind of

technology in the textile industry. The interest on the subject was renewed again at

the distance of twenty years and studies on rectangular dies were carried on in the

attempt of understanding the physics of stratified flows characterizing the produc-

tion of thin multilayer films and possibly finding a cure to the irregularities in the

interface configuration observed in such flows. It seems only logical to review these

periods separately, especially considering the technological gap between both and

the advances in the understanding of the rheology of polymer melts achieved within

two decades. Without any claim of exhaustiveness on the matter, the principal re-

sults and observations are presented in two of the three sections that follow while

a third is dedicated specifically to the experiments that led to the identification of

two different encapsulation regimes.

1.1.1 1972-1976: The circular die

The first observation of the phenomenon of viscoelastic encapsulation ever reported

in literature was presented in the work of Southern and Ballman [49] at the Ameri-

can Chemical Society Polymer Division Meeting in 1972 and published later in 1973.

In this paper three causes are identified as possible reasons for the layer rearrange-

ment observed in coextrusion: the elasticity difference between the components; the

preferential wetting of the tube wall by one component and the viscosity difference.

Other factors, reported later in other works, include geometric quantities like the

flow rate ratio; the initial repartition, i.e. layer thickness distribution; the wall

surface roughness and the cross-section shape.

Most of the papers published between 1972 and 1976 indicate the viscosity mismatch

on the contact interface between two different polymers as the main reason for

encapsulation, even though the simultaneous development of a second order fluid
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theory, discussed here in section (1.2), seemed to point out that the mechanism of the

interface deformation is governed by the normal stress differences which are non-zero

in polymer melts. The first and second normal stress differences, hereafter denoted

as N1 and N2, are defined with respect to a local coordinate system formed by the

velocity direction (1), the velocity gradient direction (2), and the third orthogonal

direction (3). In this system:

N1 = σ11 − σ22

N2 = σ22 − σ33
(1.1)

Where σ is the Cauchy stress tensor. The difficulty to match the experimental

observations to the existing theory was probably due to the lack of accuracy in

measuring N1 and N2. The source of error is due to the fact that the measure of N2

involves the difference of two large numbers in order to obtain a small number and

thus the result is extremely noisy. Many authors were not even able to confirm the

exactitude of the sign of the measured N2 (Lee et al. [36]).

The device used to measure the encapsulation state in [49] is a a 0.05 inches diameter

per 3 inches length capillary rheometer in which the apparent wall shear rate 4Q/πR2

is varied from 7.45 to 149 reciprocal seconds by adjusting the global throughput Q.

A dye additive in polystyrene B permits the the definition of the interface shape and

position, since in the examined laminar flow conditions the diffusion of the additive

across the interface is negligible. The solidified polymer samples are extracted from

the rheometer and the encapsulation is then measured as the fraction of the tube

wall wet by the colored component. This procedure is established as a standard and

used later on by the majority of the authors.

When extruded alone, the swelling of the two commercial polystyrenes A and B,

measured as the ratio between the extrudate diameter and the capillary diameter,

is approximately the same, with values between 1.2 and 1.5. This quantity is taken

as a measure of the melt elasticity. For the shear conditions analyzed the die swell

ratio is always close to unity, which is why the elasticity difference is not considered

as a driving factor in encapsulation in this case. Preferential wetting, i.e. surface

tension, is also ruled out because the capillary effects between the two polystyrenes
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(a)

(b)

Figure 1.2: Shear viscosity of polystyrenes A nd B (a). Interface profiles for different

shear rates (b). Southern and Ballman, 1973 [49].
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(a) (b)

Figure 1.3: Shear viscosity of LDPE and PS (a). Schematic of the experimental

appartus (b). White et al. 1973 [26]

are negligible when compared to the forces due to the viscous and elastic forces.

For this reason encapsulation is attributed to the viscosity difference alone. The

interface profiles reported in fig. (1.2(b)) indicate that at low shear rates the more

viscous PS B is encapsulated by the the less viscous PS A, while for higher values,

since the two materials experience a viscosity cross-over, as shown in fig. (1.2(a)),

the phenomenon is reversed. At intermediate flow rates, when the two fluids have

comparable viscosities, the interface shape is not just simply convex or concave but

its curvature depends locally on the sign of the viscosity gradient.

In the same year, White et al. [26] conducted a series of experiments aimed to the

flow visualization of bicomponent side-by-side coextrusion. The same procedure as

the previous authors is adopted, involving two polymer rods cut in half and in-

serted into the barrel of a Instron capillary rheometer as sketched in fig. (1.3(b)).

The two halves are drilled along the length and filled with colored samples of the

same polymer. The materials considered are low density polyethylene (LDPE) and

polystyrene (PS). The viscosity at 180◦C as a function of the shear rate is reported

in fig. (1.3(a)). The pattern formed by the colored filaments (not shown here be-

cause of the poor quality of the images) shows that the velocity profile exhibits a

maximum in the region of the low viscosity component (LDPE) and less steep gra-
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(a) (b) (c)

Figure 1.4: Material functions of HDPE, LDPE, PS and PMMA. Shear viscosity

(a). First normal stress difference (b). Second normal stress difference

(c). Lee and White, 1974 [36]

dients in the higher viscosity region (PS). Attempts to visually observe the interface

deformation confirmed the results of Southern and Ballman: at low shear rates the

interface seems to be almost flat while at intermediate shear rates, for some cross-

sectioned solid extrudates, the the PS surface is observed to be convex. Finally,

for high shear rates, the flow is dominated by instabilities and the interface breaks

up because of the depletion of the more rapidly flowing LDPE. A more systematic

study of the interface deformation in coextrusion as a function of the rheological

properties of the materials is presented by Lee and White [36]. The aim of this work

is to determine the influence of the normal stress differences during encapsulation.

The four polymer analyzed are: low density polyethylene; high density polyethylene

(HDPE); polystyrene and polymethyl-methacrylate (PMMA). The shear viscosity

is measured by both cone-plate and plate-plate and capillary rheometers. The su-

perimposition of the obtained data, reported in fig. (1.4(a)), confirms the validity

of the measurements. Normal stresses N1 and N2 are measured with cone-plate

and plate-plate geometry respectively and the results are shown in fig. (1.4(b)) and

(1.4(c)). The rheological functions are plotted against the shear stress instead of

the shear rate because comparisons of rheological properties on opposite sides of

an interface must be made at equivalent shear stress levels. In the range of shear

stresses considered the ordering of viscosity is :
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Figure 1.5: Interface shape for HDPE/LDPE extrudates as a function of the capil-

lary die length and time. L/D = 20 (a). L/D = 10 (b). L/D = 5 (c).

[36]. Lee and White, 1974 [36]

PS > PMMA > HDPE > LDPE (σ12 < 105dyne/cm2)

PMMA > PS > HDPE > LDPE (σ12 > 105dyne/cm2)

while the first (N1) and second (N2) normal stress differences ordering are respec-

tively:

HDPE > LDPE > PS > PMMA

and:

LDPE > HDPE > PS > PMMA

For all the different possible pairings, experiments are run for a fixed global flow

rate and temperature. The interface section is observed at the exit of the capillary

for different coextrusion times and capillary lengths. In any of the examined case

the more viscous component has a convex surface (fig. (1.5)) and the coextrusion

degree is found to be an increasing function of the viscosity ratio and the capillary

length (fig. (1.6(b)) and (1.6(a))). According to the second order fluid model, the
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(a) (b)

Figure 1.6: Percentage of the wall perimeter wet by the most viscous fluid as a

function of the viscosity ratio (a) and capillary length (b). Lee and

White, 1974 [36]

fluid possessing the strongest (negative) N2 should display a convex interface, while

the experiments show the exact opposite. Based on this observation, the authors

concluded that the normal stress differences only produce lower order effects and

confirmed the results of the previous papers in stating that the phenomenon is

basically viscosity-driven. Nevertheless, no plausible explanation is given about the

mechanism determining the interface motion.

In the experiments of Han [22] the apparatus consists of a feeding block used to

merge the two melt streams into a common die. This solution offers the advantage

of providing a constant and controllable flow rate for each component. The interface

shapes observed for the solidified and cross-sectioned samples, do not suffer from

the same irregularities characterizing the samples from the capillary rheometer. As

previously noted by the above mentioned authors, the lower viscosity LDPE encap-

sulates the more viscous PS. Interestingly enough, years later, Sizaire [48] used the

material data provided in the original paper for the shear viscosity, shown in fig.

(1.7(a)), and the first normal stress difference to fit the parameters of a single-mode

Giesekus model. These are then employed to determine the second normal stress

difference which, in contrast with the results of Lee and White [36], is higher for the

PS than for LDPE for an equal shear stress. The fact that the numerical simula-

tions of Sizaire nicely agree with the interface profiles shown by Han denotes the
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(a) (b)

Figure 1.7: Shear viscosity for HDPE, LDPE and PS. Han, 1973 [22].

uncertainties related to the role of N2 in determining the convexity of the interface

although both the simulations and the experiments agree on that the LDPE always

encapsulates the PS as seen in fig. (1.8). When The PS is coextruded with the

HDPE, which is more viscous, the latter encapsulates the former when the flow rate

ratio QHDPE/QPS is made high, while when QHDPE/QPS is close to unity, the par-

ticular ”curtate cycloyd” interface shape observed in fig. (1.9). Near the wall the

PS has a convex surface while in the region close to the section symmetry plane,

the surface is concave. Neither this change in the sign of the interface curvature

nor the fact that the PS is encapsulated by the HDPE can be explained by the

viscosity criterion originally suggested by the the results of Southern and Ballman

since the HDPE is always more viscous than PS even for an equal shear stress level

(fig. (1.7(b))).

An additional observation that tends to invalidate the criterion of the mismatching

viscosities is that for Newtonian fluids the interface remains flat, although it is shown

to posses little stability [26]. For instance, the stratified configuration of oil and

water evolves towards the more energetically stable core annular flow (CAF) where

the water migrates towards the tube walls. A similar explanation is suggested for the

viscoelastic fluids for which the flow would naturally tend to a lower dissipation state,

however the mechanism of the CAF formation is due to the interfacial instability
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Figure 1.8: Interface profiles for the PS-LDPE configuration for L/D = 4. QPS =

10.9cc/min and QLDPE = 9.9cc/min (a). QPS = 8.3cc/min and

QLDPE = 53.8cc/min (b). Han, 1973 [22].

Figure 1.9: Interface profiles for the PS-HDPE configuration for L/D = 18. QPS =

8.3cc/min and QHDPE = 11.3cc/min (a). QPS = 8.3cc/min and

QHDPE = 54.2cc/min (b). Han, 1973 [22].
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Figure 1.10: Extrudate bending towards the high viscosity component occurring at

the exit of the die. Everage, 1975 [1]

of the stratified configuration while for polymer melts it seems more natural to

interpret the layer rearrangement as a manifestation of the viscoelasticity of the

fluids.

1.1.2 A dual mechanism hypothesis

In 1975 Everage [1] advanced the hypothesis that the interface motion in coextrusion

is the result of a dual mechanism. This idea comes from the observation of the

extrudate bending at the exit of the die. In fact, in the stratified flow between two

parallel plates, in reason of the different viscosity, the interface shifts towards the less

viscous and higher shear rate region of the die, as also reported in [26]. On exiting

from the channel the interface returns to its initial state as the velocity changes from

a parabolic to a uniform profile. This is represented schematically in fig. (1.10).

Since the less viscous component has a higher mean velocity, it also experiences a
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Figure 1.11: Bending angle and interface profile as a function of the capillary length

L/D. Everage, 1975 [1]

more rapid rate of change. The resulting acceleration is stronger in the less viscous

component than in the more viscous one, thus determining a net lateral force in the

direction of the more viscous fluid as originally highlighted in [49]. The exit angle

observed is thus a direct measure of the reversibility of the interface movement. For

the tube flow case, Everage measured the bending angle for a Nylon-Nylon system

for different L/D ratios. The viscosity ratio for the whole range of shear rates

examined is approximately 6:1. As show by the curve in figure fig. (1.11), for a

ratio L/D less than 2, the exit angle attains a steady value of 30◦ and the interface

profile is rather flat, while for greater values of L/D the exit angle decreases and the

interface curvature becomes more pronounced until, for L/D = 120, the flow has

reached a fully encapsulated configuration and the exit angle is zero since the flow

is symmetric about the axis of the tube. This observation evidences the presence of

two mechanisms:

1. a fast interface shift occurring within a length of 2 diameters due to a rapid

equilibration of the pressure gradients in the two components;

2. a slow encapsulation phenomenon taking place on longer distances from the

tube inlet.

The existence of a first regime is easily explained by the difference in the viscosities

of the components provoking a pressure gradient imbalance acting on the interface.
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Figure 1.12: Interface deformation for a two-layer polystyrene structure as it flows

down a square section die. The initial repartition is 20 : 80. Dooley,

2002 [12]

This kind of movement may be completely reversed upon exiting a short tube. The

same mechanism cannot justify also the second regime because of the extremely

long length needed for equilibrium and the irreversible curvature assumed by the

interface. At this point the factors determining the slow encapsulation still seemed

uncertain and Everage hypothesized the presence of a fluid instability leading the

flow to a more stable configuration. This explanation was generally accepted through

the following years.

1.1.3 1990-2002: The rectangular die

In the 90’s the study of the encapsulation phenomenon was resumed again and be-

came the subject of some Ph.D. thesis. The production of multilayer films motivated

the investigation of the layer rearrangement in dies of square and rectangular sec-

tion. For non radially-symmetric sections, even when the different layers are made

up of the same polymer, the primary flow is always accompanied by a secondary

recirculating flow. These are well documented in the work of Dooley [12] who co-

extruded differently colored layers of the same polymer in order to visualize the

secondary flow pattern. If the layer repartition does not respect the secondary flow

symmetry, as shown in fig. (1.12), the interface undergoes a deformation even if the
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(a) (b)

Figure 1.13: Coextrusion of two layer of PS 7240 at different temperatures. ∆T =

15◦C (a). ∆T = 30◦C (b). Mauffrey, 1998 [39]

fluid properties are the same on both sides of it. This deformation needs very long

dies to develop, since the magnitude of secondary flows is always much smaller than

that of the main flow, and it is referred to as elastic encapsulation as opposed to

the encapsulation due to the viscosity jump on the interface.

Some interesting results are included in the thesis of Texeira [44] and later Mauffrey

[39] who performed a series of experiments involving bicomponent coextrusion in

rectangular dies of variable aspect ratios. The polymer used include several kind of

polystyrenes and low density polyethylenes. As a preliminary study, the influence

of temperature is investigated by coextruding the same polymer in a side-by-side

rectangular die in which the two melt streams come in contact at different tem-

peratures while the wall of the die is kept at the temperature of the “cold” layer.

The high temperature layer encapsulates the low temperature one but the interface

shape is significantly different from the one observed in the bicomponent isothermal

case, as shown in fig. (1.13(a)) and (1.13(b)). Near the wall, the equilibration of

the temperature is more rapid. This means that the jump in the fluid properties

across the interface is nil at the wall (i.e the coextruded fluids are the same) while

it is non-zero in the inner region of the die. The fact that the flow still manifests

a layer rearrangement suggests that the mechanism of the encapsulation is not a

wall effect, but it is determined by the whole flow field. Encapsulation is only more

evident near the boundaries because the main flow becomes progressively weaker

approaching this region and so the residence time of the fluid particles flowing near

the wall becomes of the same order of the encapsulation characteristic time. When

the temperature difference is less than 5◦C no significant deformation in the inter-

face is observed which justifies the hypothesis of isothermal flow within a tolerance
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of ±3◦C.

For bicomponent coextrusion the frozen samples are extracted from within the die

and sliced at equally spaced positions along the axes. In this way the evolution of

coextrusion along the die is measured. The degree of encapsulation, defined as the

perimeter fraction wet by the less viscous fluid, is well represented by a piecewise

linear function of the distance from the die entrance (fig. (1.14(a)) to (1.14(d))). The

discontinuity of the steepness occurs for the position at which the contact line meets

the section corner. Mauffrey explained the presence of the discontinuity as a result

of the extra energy needed by the contact line to turn around the corner. Indeed this

energetic consideration should explain why for the case of polyethylene-polyamide

pairing (PE-PA), the contact line stagnates in corner until the accumulated energy is

enough to allow a further advancement (fig. (1.15)). In fact due to the considerable

viscosity difference between the two polymer melts the less viscous PA is not able

to push the PE away from the corner where there is a “dead zone” in the flow. In

general, after the corner point the encapsulation degree increases less rapidly.

The initial layer repartition is also investigated. The latter should respect as much as

possible the flow rate ratio between the layers, otherwise the interface is subject to a

brusque deviation from its initial position due to the rapid flow adaptation. The fact

that this phenomenon has only influence on the flow immediately downstream the

die entrance, suggests that varying the layer repartition while keeping a constant flow

rate ratio would only affect the first regime. Finally, the effect of different surface

roughness does not seem to affect the encapsulation evolution since the curves tend

to collapse into a single one for the four different kind of surfaces examined. This

result confirms that encapsulation is unrelated to the presence of a slipping velocity

at the wall.

Although it is now widely accepted that the viscoelasticity of the fluids, and in par-

ticular the presence of a second normal stress difference, is responsible for recirculat-

ing flows, this has been regarded as a different phenomenon than the one occurring

in encapsulation and therefore viscous encapsulation has been distinguished from

elastic encapsulation. There has not been any experimental evidence supporting the

fact that these two phenomena may be two manifestations of the same mechanism,
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(a) (b)

(c) (d)

Figure 1.14: Coextrusion degree (percentage of wet perimeter) of the pairing PS

1160 and PS 7240 for different aspect ratios of the rectangular section

and surface roughness. Aspect ratio = 1 (a). Aspect ratio = 2 (b).

Aspect ratio = 3 (c). Aspect ratio = 4 (d). Mauffrey, 1998 [39]

Figure 1.15: Coextrusion degree for the polyethylene-polyamide pairing evidencing

the presence of a plateau. Mauffrey, 1998 [39]
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except maybe for one unpublished work, a master thesis, cited in [48]. Nonetheless,

in recent years in both theoretical and numerical studies, the “flow instability hy-

pothesis”, advanced by Everage, Han and others, has been progressively abandoned

in favor of the hypothesis that the interface motion is always caused by an imbalance

of the second normal stress difference acting on it. However the latter point still

needs to be consolidated and validated through experimental investigation.

1.2 Theoretical Analysis

1.2.1 The minimum viscous dissipation principle

The first historical interpretation to the phenomenon of encapsulation in bicom-

ponent stratified flows is based on theoretical approach relying on the variational

principle known as the minimum viscous dissipation (entropy production) princi-

ple (PMVD) also referred to as the Helmholtz-Korteweg principle [18]. The first

formulation of the principle, given by Helmholtz in 1868, states that:

For a steady flow in a viscous liquid, with the speeds of flow on the

boundaries of the fluid being given steady, in the limit of small speeds,

the currents in the liquid so distribute themselves that the dissipation of

kinetic energy by friction is minimum.

This implies that in the limit of Stokes flow the energy dissipation in a specified

region of flow Ω is less than that in any other possible solenoidal velocity field

assuming the same fixed values on the boundaries ∂Ω.

The Stokes equations for an incompressible isothermal flow can be expressed as:

∇ · τ −∇p = 0

∇ · V = 0
(1.2)

where ∇· denotes the divergence operator, V is the velocity and p the pressure.

When paired with compatible boundary conditions on ∂Ω and appropriate constitu-

tive laws for τ , the system (1.2) admits the same solutions of the variational problem

associated with the minimization of the functional:
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I =

∫∫∫

Ω

(D · τ − p∇ · V ) dv (1.3)

With D being the strain rate tensor. If the analysis is restricted to the infinite flow

between two parallel plates at distance h and power law fluids, the system (1.2) can

be written as:

d

dy

[

η
dw

dy

]

− dp

dz
= 0 (1.4)

Where η = K|dw
dy

|n−1. Equation (1.4) can be completed by assigning a no-slip

condition at the walls (i.e. w = 0), and specifying a value for the pressure gradient

or alternatively the flow rate (i.e.
∫ h/2

−h/2
w dy). The corresponding functional to be

minimized is:

I =

∫ h/2

−h/2

[

K

(

dw

dy

)(n+1)

+ (n+ 1)
dp

dz
w

]

dy (1.5)

When dealing with two-phase flows, the problem can be formulated mathematically

by writing the system (1.4) separately for the two regions occupied by each fluid

and imposing the following kinematic conditions on the free surface:

V · n = 0

[V · t1] = 0

[V · t2] = 0

(1.6)

The relations (1.6), express the vanishing velocity normal to the interface and the

continuity of the components along the directions t1 and t2 tangent to the interface.

Since the interface is a material surface, it must be in equilibrium. Hence the

following dynamic conditions must be satisfied at any point on the interface:

[σ · n] = 2σtκn

[σ · t1] = 0

[σ · t2] = 0

(1.7)

with σt the surface tension and κ the local interface curvature.
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(a) (b)

Figure 1.16: Stratified flow between parallel plates. Side-by-side configuration (a).

Sheath-core configuration (b).

If the pressure gradient is assigned, a unique solution can be found for any arbitrarily

chosen interface position. The PMVD only assures that for fixed boundary condi-

tions (i.e. for a fixed interface position), the solution will be the function satisfying

the minimization of the viscous dissipation among all the possible functions respect-

ing that specific boundary condition. With this in mind, Mc Lean [38] computed

the channel flow and calculated the integral (1.5) for the sheath-core configuration

of fig. (1.16(b)) and the side-by-side configuration of fig. (1.16(a)). The author

considered Newtonian fluids, hence n = 1, having a viscosity ratio ηB/ηA of 2 and

occupying the same volume fraction in the channel and found that:

IA−B−A < IA−B (1.8)

which, accordingly with the experimental observations, indicates that the sheath-

core configuration with a more viscous core is the energetically favored solution.

When considering the first term of the integral, denoted as I ′ and corresponding to

the viscous dissipation, one finds that:

I ′A−B−A > I ′A−B (1.9)

indicating that the viscous dissipation in the sheath-core configuration is greater

than the one in the side-by-side configuration. This surprising result can be ex-
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Figure 1.17: Pressure gradient as a function of reciprocal viscosity ratio for the side-

by-side and sheath-core configurations. Flows are considered at equal

flow rates.

plained considering that the second term in integral (1.5), denoted as I ′′, is directly

proportional to the flow rate Q. Considering the inequalities expressed by (1.8) and

(1.9), the following relation can be deduced:

I ′′A−B−A < I ′′A−B (1.10)

which, given the fact that the pressure gradient is equal (and negative) for both

configurations, leads to the conclusion that QA−B−A > QA−B. Consequently, for

pressure driven two-phase flows the PMVD should be formulated as follows:

(PMVD1). For a fixed pressure gradient, the interface configuration observed ex-

perimentally is the one corresponding to the flow that maximizes the global flow rate.

The apparent discrepancy with the original formulation is explained by the fact that

the viscous dissipations can only be compared if the velocities on the boundaries are

the same which means that the flow rates for each fluid must be fixed.

If that is the case, the interface condition is no longer an arbitrary parameter. Let

us assume that the flow rate of each fluid and their viscosities are fixed. For in-

stance, let us take QA
A−B−A = QA

A−B = QB
A−B−A = QB

A−B and ηB/ηA = 2. For both
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configurations, there exists only one free surface position satisfying the equality of

the pressure gradient on both sides of the surface. Evidently, a jump of the pres-

sure gradient across the free surface cannot exist since it would imply a pressure

jump growing infinitely in the flow direction. Therefore, the solution of the veloc-

ity profile is unique and corresponds to the one minimizing the entropy production

and the pressure gradient jump across the interface. In these conditions the viscous

dissipation of the sheath-core configuration is less than the one of the side-by-side

configuration and consequently the pressure gradient needed to sustain the flow is

also inferior (see fig. (1.17)). This consideration leads to a second possible formula-

tion of the PMVD for two-phase flows:

(PMVD2). For fixed flow rates, the interface configuration observed experimen-

tally is the one corresponding to the flow that minimizes the viscous dissipation or,

alternatively, the pressure gradient.

Note that the formulation of the principle is based on the a-priori knowledge, from

the experimental observation, of what the fluid configuration is most likely to be, al-

though it gives no explanation on the mechanism driving the layer rearrangement.

1.2.2 The first regime of encapsulation

The pressure balance idea, expressed in the previous section, can be used to eluci-

date, at least for Newtonian fluids, the effect of protrusion of the high viscosity fluid

into the low viscosity one reported in many experimental studies like [26]. Let us

consider the side-by-side symmetric configuration A-B with a static fixed interface

separating the two fluids. If the flow rate ratio and the layer repartition are both

1 : 1 but the viscosity ratio is not unitary, the fluid with the higher viscosity will

also need a higher pressure gradient to flow, since for Newtonian fluid the latter is

proportional to the viscosity for a given flow rate and the section area. If we now

let the interface free to move, this will react to the pressure imbalance by mov-

ing towards the region initially occupied by the less viscous fluid until the pressure

equilibration is restored. At the equilibrium the flow is then characterized by a less

viscous but higher shear rate region and a more viscous but lower shear rate region.

The same concept is extended by Everage in [1] to the semi-infinite case with an
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Figure 1.18: Interface profile as a function of the channel length, obtained by solving

the differential equation derived by Everage [1] for different viscosity

ratios.

initial velocity field (at z = 0) assumed as parabolic and the interface midway be-

tween the plates. Starting from eq. (1.4), and under the simplifying assumptions

of negligible inertial effects, rectilinear flow and negligible normal stresses, Everage

derives a second order ordinary non linear differential equation for M (z), the free

surface deviation from the center line as a function of z. This equation is solved

numerically using a “shooting technique” for different values of the viscosity ratio.

The following conclusion can be drawn from the observation of fig.(1.18):

1. The interface deviation from its initial position is an increasing function of the

viscosity ratio.

2. The entry length, defined arbitrarily as the length required for the free surface

displacement to be within 1% of the steady state position, is also an increasing

function of the viscosity ratio. However its magnitude is always of the order

of one diameter.

Even if the assumption of rectilinear flow is not valid within the entry length and

the analysis is carried out for Newtonian fluids, these results basically confirm the

observation of the existence of a first regime of encapsulation which depends on
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three parameters being:

1. The viscosity ratio

2. The flow rate ratio

3. The initial layer repartition

A similar procedure as the one seen above is adopted by White [60] to calculate the

cross-section interface profiles in circular sections for Newtonian fluids with different

viscosity ratios. The results confirmed the fact that, starting from an initially flat

interface, the more viscous component expands in the region previously occupied

by the less viscous one, showing a convex surface. However, the little curvature

observed in the computed interface profiles is most likely a consequence of keeping

the contact point fixed at the wall. In real situations, contact lines are able to slip

in order to “follow” the dynamics of the free surface motion, therefore the computed

interface profile may probably overestimate the interface curvature.

More importantly it should be noted that in these results, there is nothing indicating

the movement of the less viscous fluid as to encapsulate the other. This is indicative

of the fact that the second regime of encapsulation is related to the viscoelasticity

of the fluids and cannot be interpreted as an effect of a viscosity difference alone.

1.2.3 The second regime of encapsulation

Since a generalized Newtonian fluid model cannot explain the presence of a second

regime of encapsulation, a fluid model capable of reasonably describe at least the

normal stress effects should be used to extend the analysis. In [26] a second order

model is used to demonstrate analytically that single-phase rectilinear flow (i.e. no

secondary flow) in a straight channel can only exists if at least one of the following

conditions is met:

1. The second normal stress difference coefficient of the fluid Ψ2 = N2/γ̇
2 is zero,

with γ̇ being the value of local shear rate.

2. Ψ2 is proportional to the viscosity of the fluid
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3. The derivatives in one direction perpendicular to the main flow direction are

uniformly zero

The third condition corresponds either to bidimensional or axisymmetric flow. In all

other circumstances, the flow will display secondary motions due to the fluid rheology

and a non radially-symmetric geometric configuration. In addition, White analyzed

the two-phase symmetric stratified flow in circular sections in the hypothesis of

rectilinear flow, equal viscosities but unequal Ψ2, and found out that:

1. For an initially flat interface the normal stress jump across the interface is

related to N2.

2. The dynamic equilibrium condition [σnn] = 0 fails to be satisfied at least in

one point of the interface.

From the latter result it can be observed that no flat interface can therefore exist

for two fluids having different second normal stress differences. According to the

sign of [σnn] and the fact that N2 is negative for polymer melts, the fluid having the

greater absolute N2 should present a convex surface. The argument used is similar

to the one used by Tanner to explain the convexity of the free surface of a polymer

stream flowing in an open channel in [46].

The same idea is exploited by Khan and Han in [33], who used a perturbation

method to analyze the interface deformation for the Coleman-Noll second order

fluid. Under the hypothesis that the magnitude of the transverse velocities are small

enough when compared to the main velocity, the authors decoupled and solved sep-

arately the momentum equation in the flow direction first, and in the transverse

directions then. Appropriate kinematic conditions are considered on the flat inter-

face. However, for a fixed interface, a closed solution can be obtained by simply

imposing the continuity of the velocity and shear stress without imposing the conti-

nuity of the normal stress. After computing the solution, if the normal stress across

the interface is not balanced, the component with a greater normal stress is supposed

to be pushing into the one having a lower normal stress pointing into the interface.

By expanding [σnn] in Taylor series around the interface, the following first order

approximation for the surface displacement can be obtained.
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δy =
− [σnn]

∂ [σnn]

∂y

(1.11)

The interface profile is calculated for different viscosity ratios and elasticity ratios

and the following conclusions are drawn:

1. in absence of an elasticity difference the more viscous fluid pushes into the less

viscous one;

2. in absence of a viscosity difference the more elastic fluid pushes into the less

elastic one;

3. in presence of both effects the viscosity plays a stronger role than elasticity in

determining the equilibrium shape of the interface between the two fluids.

Khan and Han also shown that, by eliminating the pressure from σnn, the expres-

sion (1.11) can be further manipulated into a form evidencing the dependence of

δy from the jump of N2 across the interface. Therefore, although this analysis is

based on simplifying assumptions, it can be concluded that the interface deforma-

tion observable for polymer melts during the second encapsulation regime is driven

by a N2 imbalance just as the mechanism of the first regime is driven by a pressure

imbalance. Since a jump of the normal stress cannot subsist at the equilibrium

configuration the interface moves as to minimize [N2], that is the interface is pulled

towards the fluid presenting the higher normal stress.

1.3 Numerical Simulation

The numerical simulation of two-phase flows of viscoelastic fluids presents some

very specific issues that make the computation of three-dimensional coextrusion

flows quite a challenging problem.

The classical approach to solve two-phase flows is to use an interface-fitted mesh.

The flow in each sub-domain is determined by the solution of the stokes equations

(1.2) completed by an appropriate modeling choice for the stress tensor. The cou-

pling across the interface boundary is assured by applying the boundary conditions
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expressed by (1.6) and (1.7). Since the surface position is not known a priori, an

iterative procedure must be adopted. Starting by a tentative initial guess for the

flow field and the interface shape, which do not satisfy the kinematic and dynamic

conditions, the solution is updated by using a Newton-Raphson or a Picard itera-

tion.

Many authors have employed the so called pathlines method who decouples the free

surface calculation from the calculation of the field variables through a Picard type

iteration [32, 48, 55, 53]. From the knowledge of a tentative velocity field, the points

on the interface are updated by solving:

du

dx
=
dv

dy
=
dw

dz
(1.12)

The velocity field is then recomputed and the procedure is iterated until convergence

is reached within a desired tolerance. As reported in [32], for this method to converge

a stabilizing underrelaxation scheme must be employed with an underrelaxation

parameter ranging between 0.2 and 0.8 depending on the nonlinearity of the problem.

Other methods of updating the surface position include, the spine method used in

[32, 48], or the line kinematic condition found in [48].

When a transient simulation is considered, the Arbitrary Lagrangian Eulerian (ALE)

formulation is employed to compute the solution on a moving grid and in this case

the kinematic boundary condition becomes:

(V -ẋ) · n = 0 (1.13)

where ẋ is the time derivative of the interface position. The mesh velocity in the

ALE formulation is not entirely arbitrary because it is associated to the remesh-

ing procedure needed due to the interface deformation. Since this procedure must

guarantee that the mesh stays as smooth as possible as the solution evolves in time,

the interior mesh points must also move along with the boundary points lying on

the interface. The regularity of the mesh is something that is not always possible

to control since for distorted interfaces the mesh elements can result as excessively

stretched as to provoke a dramatical decay in the solution accuracy. This is the
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(a) (b)

Figure 1.19: Comparison between an interface-fitted mesh, Sizaire, 1998 [48] (a)

and a diffuse interface mesh, Yue, 2006 [65] (b).

case when the encapsulation approaches its final state and the two contact lines

join. The computational domain undergoes a change of the topology both in space

and time and if the computer code is not able to continuously adapt the mesh to

this topology change, the solution is stopped and the the domain must be remeshed

from scratch. In [48], the solution is actually stopped much earlier because, even for

relatively small encapsulation degrees, the elements distortion in the region close to

the contact line becomes excessive, as shown in fig. (1.19(a)).

Another delicate point that requires a careful handling is the movement of the

contact line. In theory, the points of contact between the interface and the wall

should not move if a no-slip condition is applied. In reality however, contact lines

are observed to move since the no-slip condition and the same flow equations cease to

be valid in the region where two fluids meet the wall. Two solutions can be adopted

in order to include the contact line motion in a simulation. The first is to introduce

a certain slip amount in the contact line region. This is somewhat artificial and

needs an accurate tuning of the slip parameters and the a priori knowledge of what

the slip direction would be, to produce realistic results. The other solution would

be to extrapolate the contact point at the wall from the position of the interface

in the inner domain and using the value of the static contact angle to assign the
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equivalent of a Neumann boundary condition to the interface.

The slip velocity and the contact angle conditions need a precise definition of the

boundary surface normal direction to be applicable. This implies that both condi-

tions become critical when the contact line encounters a discontinuity in the bound-

ary normal, that is when there is a corner or an edge. For instance, this may cause

a code crash when the problem of coextrusion in a rectangular die is considered and

the contact line approaches the corner.

Surface-capturing methods can circumvent both the problems described above. The

mesh is no longer deforming with the interface but the latter is resolved on a fixed

Eulerian grid, as the one of fig. (1.19(b)). Each of the two phases is described by a

scalar function whose mathematical form yields different methods. For the Volume

of Fluid (VOF) and Phase-field method the scalar function represents or is related

to the fluid concentration and the interface is treated as a moving discontinuity. In

the Level-Set (LS) method the same function is given by the signed distance from

the interface which is then represented by the implicit surface c (x, y, z, t) = 0, where

c is the color function. The difference between the Phase-field and VOF approaches

is that while the former considers a diffuse interface the latter is based on sharp

surface reconstruction (as also in the LS method) from the cell averaged values of

the color function. The advantage of a diffuse interface is that it can naturally take

into account for wall slipping since the same mechanism controlling the interface

diffusion also governs the phase diffusion at the wall, and therefore the contact

line slippage. Furthermore, any topology change can be easily handled without any

restriction on the connectivity of the domain. However, the model is complicated by

the necessity to solve an additional scalar equation for the phase field and the fact

that the latter introduces a few other parameters whose physical significance is not

always straightforward. The real drawback of the method is that the presence of a

diffuse interface results inevitably in a low order accuracy in the numerical method

and that the convergence of the solution can become a complicated matter because it

depends both on the the grid convergence, as the mesh element size tends to zero, and

on the “model convergence” as the diffuse interface tends to a sharp one, that is the

interface width is reduced to zero. Recently this approach has been used successfully

by Yue et al. in [65] to model coextrusion flow by adaptive Finite Element Method
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(FEM). However the flow is simulated under the simplifying assumption of quasi2d

approximation, since a three-dimensional computation would be extremely costly

with the fully implicit time-stepping procedure adopted in the paper. Encapsulation

is in fact a slow process and takes a very long tube length to develop which implies

that, in order to observe a full encapsulation, the computational domain must be

considerably stretched in one direction and the simulation must be extended to very

long times.

1.4 Aim of the present work

The review of the available literature on the subject of encapsulation in coextrusion

revealed the coexistence of two different mechanisms: a first regime consisting of

a rapid interface shift due to the different viscosities and flow conditions at which

two polymer melt streams come in contact with each other, and a second regime

consisting in a slow encapsulation of one layer around the other depending on the

rheological properties of the components. Although in most of the experiments

reported it is the less viscous fluid which encapsulates the more viscous one, a simple

viscosity difference criterion fails to explain the mechanism of the second regime

since it is not able to justify certain experimental observations like, for instance,

the absence of encapsulation for Newtonian fluids. The theoretical analysis results

point out that the second normal stress difference is behind the mechanism of the

interface distortion.

The principal aim of this thesis is to validate the latter hypothesis through a three-

dimensional flow analysis, and to confirm the results concerning the nature and

the causes of the two different regimes. The flow of polymer melts is supposed

to be isothermal for the reason exposed in [39], and gravity effects are considered

negligible because of the very small density differences between the polymers melts

usually employed in coextrusion. Flow field solutions shall be obtained by numerical

simulation. The methodology should rely on a surface capturing method and more

specifically the choice of the method is turned to the Phase-field modeling approach

in reason of the successful use already reported in a previous work [65], and its ease of
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implementation. The choice of adopting Finite Volume (FV) discretization is instead

dictated by historical reasons, since the present work started on the base of the work

of Mompean at al. Although most parts were coded from scratch and ported to

another programming language to facilitate the integration with recently developed

external libraries, the code used in this thesis should be considered as a logical

extension of the method described in [41] to the case of two-phase flow. The two

principal design constraints imposed by the case in analysis in the implementation

of the code, were the necessity to be able to cope with arbitrarily high viscosity

jumps in the flow field and long solution times which motivated the choice of a

semi-implicit time-stepping procedure for the temporal integration of the equations

as opposed to the fully explicit procedure employed in the original code.



Résumé du chapitre 1

L’objectif principal de cette thèse est de comprendre le mécanisme générant le

phénomène de l’enrobage et, en particulier, de séparer les facteurs influençant le

premier régime, consistant en une adaptation des différentes épaisseurs des couches

aux conditions de gradient de pression en entrée de filière, de ceux qui déterminent

le deuxième régime, c’est-à-dire le véritable enrobage. La littérature suggère une

interprétation de ce phénomène essentiellement liée à la présence d’une différence

de viscosité des fluides qui favoriserait la tendance du fluide le moins visqueux à

migrer vers les zones de l’écoulement présentant un plus fort taux de cisaillement,

de manière à minimiser la dissipation d’énergie cinétique due à la viscosité. Toute-

fois, la physique de la transition d’une configuration stratifiée à une enrobée reste

toujours à clarifier, car un simple critère basé sur le rapport de viscosité ne suffit

pas à expliquer certaines observations expérimentales comme par exemple la totale

absence d’enrobage pour les fluides Newtoniens ou bien l’existence de conditions

d’écoulement pour lesquels le fluide plus visqueux enrobe le moins visqueux. La

méthodologie numérique adoptée pour l’analyse des écoulements de coextrusion est

inspirée des travaux de Mompean at. al [41] pour la conception d’un code de calcul

basé sur la méthode des volumes finis appliquée aux maillages cartésiens uniformes.

La présence de deux fluides est prise en compte par le modèle du champ de phase,

remplaçant l’interface mince existant entre deux fluides par une interface diffuse.

Ce modèle a été utilisé avec succès par Yue et al. en [65] pour simuler l’enrobage

dans l’hypothèse d’écoulement quasi2d avec la méthode des éléments finis couplée

avec une technique de raffinement de maillage adaptatif. L’élément innovant par

rapport à cette dernière solution est représenté par l’extension de la méthode au

cas à trois dimensions. Ce passage demande une attention particulière sur certains

aspects de la modélisation comme par exemple l’implémentation d’un solveur de

33
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Stokes itératif à viscosité variable capable de gérer des sauts de viscosité arbitraires

entre les deux fluides et l’adoption d’un schéma semi-implicite pour l’intégration en

temps des équations. Ce choix permet d’un côté de résoudre séparément les champs

de vitesse, phase et contrainte, contrairement au schéma implicite adopté par Yue

qui implique une solution couplée de ces équations, et en même temps de ne pas

avoir de contraintes importantes sur la réduction du pas de temps pour la stabilité

numérique comme pour la méthode explicite adoptée par Mompean et al. [41].



2 Governing Equations

This chapter illustrates the mathematical model for the treatment of coextrusion

flows. The phase-field model for two-phase incompressible flow is derived and the

surface tension forces modeling is discussed as well as the appropriate boundary

conditions to be assigned. A family of differential constitutive equations is briefly

presented. Finally equations are made non-dimensional and dimensionless parame-

ters governing the flow are derived.

2.1 The phase-field model

2.1.1 Derivation of the governing equations

Phase-field methods are based on the principal assumption that the sharp interface

existing between two non-miscible fluids is replaced by a thin but numerically re-

solvable region where the two fluid components are considered as locally miscible.

This miscibility layer is by definition a diffuse interface and its finite extension is

referred to as the interface thickness ǫ . The two components can be regarded as

the two phases of a binary fluid and described by means of a scalar function φ called

phase-field variable. As in level-set or volume of fluid methods, φ has the meaning

of a color function and it is directly related to the phase concentration of the fluid.

Cahn and Hilliard [6] hypothesized that the temporal evolution of the phase com-

position is governed by diffusive dynamics and that the interface diffusive fluxes are

proportional to chemical potential gradients.

The equation

35
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∂φ

∂t
= κ∆ψ (2.1)

is referred to as the Cahn-Hilliard equation (CH). The quantity ψ denotes the chem-

ical potential while the diffusion parameter κ is named mobility. The symbol ∆

indicates the laplacian operator.

The evolution of the binary solution is driven by the minimization of a Ginzburg-

Landau free energy functional
∫

Ω
fdV [27], with f the free energy density:

f = α|∇φ|2 + βζ (φ) (2.2)

Hence, the chemical potential form can be derived as the rate of change of the free

energy functional:

ψ =
∂

∂φ

(
∫

Ω

fdV

)

= −α∆φ+ βζ ′ (φ) (2.3)

where the coefficients α and β are treated as phenomenological positive constants.

The first of the two contributions in eq. (2.2) corresponds to the gradient interface

energy and it governs the creation of an interface of finite thickness between the

two phases, while the second corresponds to the bulk energy modeling the phase-

separation and taking into account for the non-miscibility of the fluids.

Among its many applications, the CH equation can be used to describe the spinodal

decomposition between two fluid phases. As depicted in figure (2.1), the evolution of

an initially homogeneous bicomponent solution is characterized by phase separation

and interface creation. The interface thickness ǫ and the surface tension σt between

the phases are controllable by properly choosing the appropriate parameters in the

chemical potential expression. The correlation between ǫ, σt and the coefficients α

and β will be discussed in section (2.1.2).

The simplest form of bulk free energy is given by:

ζ =

[(

φ+
1

2

)(

φ− 1

2

)]2

(2.4)
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Figure 2.1: Evolution in time of spinodal decomposition. Simulation is carried out

on a spatially periodic domain box.

This choice produces two stable phases corresponding to the two minima of the

function (2.4) at φ = −1
2
and φ = 1

2
and a peak energy at φ = 0, as shown in figure

(2.2). The concentration of each species is easily recovered from the the phase-field

function as follows:

c2 =
1

2
+ φ; c1 = 1− c2 =

1

2
− φ (2.5)

We shall refer to the bulk phases corresponding to the values −1
2
and 1

2
respectively

as fluid 1 and fluid 2.

The equation for the phase field evolution is obtained by injecting expression (2.3)

into (2.1) and adding an advection term due to the presence of a flow field V .

∂φ

∂t
+ V ·∇φ = −κ∇ ·∇

[

α∆φ− βφ
(

4φ2 − 1
)]

(2.6)

Equation (2.6) is an elliptic non-linear fourth order partial differential equation de-

scribing the advected dynamics of the phase field variable φ involving phase separa-
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Figure 2.2: Bulk free energy density as a function of the phase composition.

tion, interface creation and dissolution phenomena. If the velocity field is divergence-

free, as it is for incompressible flows, both the advective and diffusive term can be

manipulated into a conservative form. This implies that, when paired with appro-

priate boundary conditions, the phase-field equation ensures the mass conservation

for both fluid components. For instance, if one imposes that (V φ) · n = 0 and

κ∂ψ
∂n

= 0 on the boundaries, where n is the unit normal vector, the integral of φ over

the domain is constant in time.

∂

∂t

(
∫

Ω

φdV

)

= 0 (2.7)

It is very important that the mass conservation property expressed by the condition

(2.7) is retained by the numerical scheme in order to correctly describe the physics

of two-phase incompressible flows.

To complete the model, equations for mass, momentum and energy conservation

must be specified or, if the flow is incompressible and isothermal as in our case, only
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equation for mass conservation and momentum balance are sufficient to close the

system. These two are represented by the Navier-Stokes equations.

(i) Mass conservation:

∇ · V = 0 (2.8)

(ii) Momentum balance:

ρ
DV

Dt
= ∇ · σ − ℘ (φ) (2.9)

In equation (2.9) the symbol D
Dt

denotes the lagrangian derivative, ρ is the fluid

density, σ is the Cauchy stress tensor. As usual σ can be expressed as τ − pI,

where τ is the stress tensor and pI a spherical part, the pressure, required for

incompressibility.

The term ℘ represents the regularized surface tension. In the sharp interface de-

scription surface tension would be equal to σtδ (x− xi), with δ the Dirac function

located at the interface, while in a phase-field model it is treated as a distributed

body force term function of φ.

The form of the latter function can be derived according to the following consider-

ations:

(i) In equation (2.6) the advection term is responsible of changing amount the

free energy in the mixture by thinning or thickening the diffuse interface.

(ii) The rate of change of free energy due to the action of the velocity field must

be compensated by an equal rate of change of the kinetic energy, since the

global energy, sum of the two, must be conserved.

The term ℘ is thus tailored in order to produce a variation of kinetic energy equal

and contrary to the variation of free energy due to advection. The resulting function

is

℘ = φ∇ψ (2.10)
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A detailed explanation for the derivation of expression (2.10) can be found in [27] for

compressible flows. For incompressible flows the procedure is more or less the same

but an additional gradient term must be added to the momentum equation. The

latter can be easily incorporated into the pressure term which, for incompressible

flows, has no thermodynamical meaning but can be interpreted mathematically as

a potential term whose gradient enforces the divergence-free constraint.

To recover the ”true” pressure as defined for the case of one phase flow, the surface

tension forcing must be recast as the divergence of a tensor Ξ whose components

are given by

Ξi,j =



























α
∑

i 6=j

(

∂φ

∂xi

)2

if i = j

−α
(

∂φ

∂xi

∂φ

∂xj

)

otherwise

(2.11)

Expression (2.10) is still preferable over (2.11) because in the tensorial representation

the discretization of the surface tension term becomes non trivial.

As a consequence of introducing a phase field φ, all of the fluid properties such as

the density are defined as a function of the local phase concentration:

ρ = ρ1 (0.5− φ) + ρ2 (0.5 + φ) (2.12)

In the present case the density differences between the two components are neglected

for the reasons already exposed in section (1.4), but if the buoyancy force is to be

taken into account it can be easily included by an additional Boussinesq term in

the momentum balance equation in which the density is modeled as in the formula

(2.12).

The same consideration holds for the global stress tensor which is determined by

the linear mixing rule

τ = τ 1 (0.5− φ) + τ 2 (0.5 + φ) (2.13)

The whole set of equation for the phase-field model reads as follow:
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∇ · V = 0

ρ
DV

Dt
= −∇p+∇ · τ − φ∇ψ

Dφ

Dt
= −κ∆ [α∆φ− βφ (4φ2 − 1)]

(2.14)

The form of the stress tensor in each phase is to be specified by an appropriate

constitutive equation. The fact of using a mixing rule for the stress tensor, instead

of the material parameters themselves, allows to take into account the possibility of

using completely different constitutive equations for each phase. It is worth noticing

that more complex mixing rules apart from linear are also possible, like for instance

exponential or power law.

2.1.2 Physics of the phase-field model

The most simple equilibrium solution for the system (2.14) can be obtained ana-

lytically for the case of a planar interface in absence of flow. For this case, the

phase-field equation reduces to the following one-dimensional form:

α
d2φ

dx2
− βφ

(

4φ2 − 1
)

= 0 (2.15)

A solution of (2.15) with homogeneous asymptotic Neumann boundary condition is

given by:

φ (x) =
1

2
tanh

(

√

β

2α
x

)

(2.16)

As shown by figure (2.3), the function above expresses the fact that the phase

composition varies across the interface with an hyperbolic tangent profile.

The presence of the group
√

β
2α

in the hyperbolic tangent leads to the definition of

natural length scale associated to the interface thickness ǫ.
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Figure 2.3: One dimensional equilibrium solution of the phase-field model.

ǫ ∝
√

α

β
(2.17)

The surface tension can be evaluated by making use of (2.16) and integrating the

continuum tension forcing term in its stress form.

σt = α

∫ +∞

−∞

(

dφ

dx

)2

dx =

√

αβ

18
(2.18)

The latter result suggests that a proper choice for the surface tension scale unit

woud be:

σt ∝
√

αβ (2.19)

Assuming for instance that the interface thickness is defined as the width of the

region where 90% of the phase variation takes place, and using the solution (2.16),
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ǫ can be estimated to be 4.164
√

α/β. This region also contains 98.5% of the total

surface tension stress.

Instead of assigning the paramters α and β, in phase-field computations it is more

convenient to be able to control the surface tension and the interface thickness,

because the former is a macroscopic parameter that can be easily measured for

any pair of fluids by experimental techniques, and the latter can be chosen on the

base of purely numerical considerations deriving from the discretization of the CH

equation.

Indeed, real interfaces always have a finite thickness but since it may be smaller than

the macroscopic flow scales by several order of magnitude, it is often impractical to

resolve the flow with sufficient resolution to describe both scales. Therefore, in the

classical formulation of the Navier-Stokes equations, interfaces and free surfaces are

conveniently threated as discontinuities.

Conversely, in the phase-field approach, it is more suitable to artificially diffuse the

interface so that its width would match the scale of numerical resolution. By doing

so, one introduces an error in the solution deriving from the unphysical thickness of

the interface but, on the other hand, the error can be easily controlled if the right

behavior is given to ǫ as the numerical grid resolution parameter h tends to zero.

This consideration yields an important criterion in the choice of the ǫ parameter.

In practice, for the interface to be correctly resolved by the numerical methods, its

thickness must be greater than the mesh cell size and the following constraint, based

on an empirical rule [27], can be adopted.

ǫ

h
>

7

2
(2.20)

This also implies that, as h tends to zero, ǫ must also tend to zero but with slower

trend, for the diffuse interface equation to converge to the sharp interface limit,

while inscreasing the interface profile reasolution ǫ/h at the same time.

The coefficient κ is also significant in phase-field simulations. Like the interface

thickness ǫ, the mobility parameter can have a physical relevance in the model

especially for capillary flows or any flow observed at microscopic scales since it
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plays an important role by governing the dynamics of interfaces coalescence. For

instance, if the problem of two droplets in a shear flow is considered as in [59],

the effect of a high mobility is to promote the interface short range interactions

between the droplets, whereas for small values their coalescence is hindered. For

flows at macroscopic scales, mobility ceases to play such a fundamental role and

it can be conveniently tuned to reproduce the correct interface behavior of the

numerical model. Since the diffusion term of the equation is non-linear, it can

act in both a diffusive and anti-diffusive way in governing the dynamic relaxation

of the interface towards its equilibrium profile, so it can serve as to maintain the

equilibrium profile against the thickening or thinning modes due to the advection

and the smoothing action of the artificial diffusivity introduced by the numerical

scheme. A high mobility can over-damp the flow while a too small value will provoke

an excessively smearing of the interface profile. Good values for κ can be determined

empirically by numerical experimentation and depend on the problem examined.

2.1.3 Boundary Conditions

CH equation is fourth order in space and thus requires two boundary conditions due

to the presence of the biharmonic operator. The assignment of proper boundary

condition at the wall is non trivial and requires a certain understanding of the

dynamics of the contact line motion. A first condition comes from the notion that

the phase composition cannot vary through a solid wall due to diffusion. This yields

a Neumann condition on the chemical potential.

∂ψ

∂n
= 0 (2.21)

A second and more delicate condition is to be assigned for φ. Even if no slip velocity

is prescribed at the wall in the NS equation, the contact line movement can still be

taken into account thanks to the diffusive term in the CH equation. In fact as the

interface position is perturbed at the interior of the domain the contact line moves

because of the diffusion flux tangential to the wall arising from the deviation of the

interface from its equilibrium profile (see figure (2.4)). This mechanism makes the



2.1. The phase-field model 45

contact line follow the motion of the interface in the internal region with a velocity

that depends on the mobility parameter. A high value of κ means that the contact

line reacts quickly to the perturbations to which it is subject while a small value

implies that the movement of the contact line is lagged compared to the interface

motion.

Figure 2.4: Slipping mechanism of a diffuse interface contact line.

Assigning an equilibrium profile of the interface at the wall is equivalent to assigning

a static contact angle, which translates into a Neumann boundary condition for φ.

∂φ

∂n
= γL (φ) (2.22)

L (φ) is the wall chemical potential while the value of the constant γ depends on

the value of the equilibrium contact angle. For example, for γ = 0 the contact angle

will be π/2. Equation (2.23) reflects a more complex condition that can be used to

take into account the non-equilibrium deviation of the contact angle from its static

value and the presence of a slip velocity us as reported in [28].



46 Chapter 2. Governing Equations

∂φ

∂t
+ us ·∇φ = Dw

[

∂φ

∂n
− γg (φ)

]

(2.23)

It is clear that as Dw grows to infinity the static contact angle condition is recovered.

A general model for the slip velocity compatible with the phase-field model is offered

by the Generalized Navier Boundary Condition (GNBC) described by Quian et al.

[45].

For a Newtonian fluid, the slip velocity in the wall-tangent direction t obeys the

following law:

βs (φ) ust = −η
(

∂vt
∂n

+
∂vn
∂t

)

+ L (φ)
∂φ

∂t
(2.24)

where n denotes the wall-normal direction and βs is a slipping coefficient function

of the phase composition.

The interesting feature of this boundary condition is that, in the hypothesis of Stokes

flow and Newtonian fluids, both equation (2.14) and condition (2.24) and can be

formally derived from the minimization with respect to the fluid velocity of the

functional associated to the sum of the kinetic energy diffusive dissipation and the

rate of change of free energy [45], thus supporting the interpretations of interface

deformation phenomena as the result of the minimization of energy dissipation.

It is easy to see that, for single component flows, the GNBC reduces to the standard

Navier Boundary Condition (NBC). The difference between the two resides in the

presence of an unbalanced Young stress term L (φ) ∂φ
∂t

expressing the “elastic” force

exerted by the interface on the flow. This term is the slip velocity equivalent of the

distributed surface tension forces in the NS equations for the interior flow field.

When the fluid is Non-Newtonian the contribution −η
(

∂vt
∂n

+ ∂vn
∂t

)

in equation (2.24)

is replaced by the viscoelastic wall shear stress.

Although boundary conditions (2.24) and (2.23) allow a very sophisticated modeling

of the physics of contact line motion, their numerical implementation is a non-trivial

matter and makes them less attractive because they further enforce the coupling be-

tween the phase, the velocity and the stress fields on the domain boundary. More-
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over, the coefficients appearing in their mathematical expressions are not always

available nor easily measurable. If the flow is to be observed at macroscopic level,

boundary condition (2.22) together with NBC or even no-slip boundary condition

still offer a better option.

2.2 Constitutive equations

For most of the polymers used for industrial applications the shear viscosity η is a

decreasing function of the shear rate γ̇. This kind of fluids are often referred to as

shear-thinning fluids in contrast with shear-thickening fluids for whom the viscosity

increases with the shear rate. Figure (2.5) shows the typical curve trend for the

Figure 2.5: Shear viscosity as a function of shear rate for shear-thinning fluids.

shear viscosity as a function of the shear rate. At very high or very low shear rates

η is almost constant with γ̇, for this reason this two regimes are commonly called

Newtonian plateaus and the two limit values
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η0 = lim
γ̇→0

η (γ̇)

η∞ = lim
γ̇→∞

η (γ̇)

(2.25)

are referred to as zero shear viscosity and infinite shear viscosity. A general model

for the stress tensor is given by

τ = 2ηsD +

nmodes
∑

i=1

τei

f (τei) + λi
⋄
τei = 2ηpiD

(2.26)

where ηs is the so called solvent viscosity, while ηp is the polymer viscosity. τei is the

polymer stress tensor relative to the i-th relaxation time λi andD = 1
2

[

∇V +∇V T
]

is the strain rate tensor . The operator
⋄

() indicates the Gordon-Schowalter’s (GS)

convected derivative

⋄
τei =

∂τei
∂t

+ V ·∇τei −∇V T · τei − τei ·∇V + ξ (D · τei + τei ·D) (2.27)

In expression (2.27) the parameter ξ is an empirical coefficient measuring the extent

of non-affine motion of polymer molecules in the continuum. For ξ = 1 GS derivative

reduces to the upper convected derivative while for ξ = −1 the lower convected

derivative is retrieved.

The zero shear viscosity predicted by this model is given by

η0 = ηs +

nmodes
∑

i=1

ηpi (2.28)

A natural relaxation time is also defined as

λH =

nmodes
∑

i=1

ηpiλi

η0
(2.29)

This two quantities are essential in the process of non-dimensionalization of the

equation and their definition is independent of the choice of the function f (τei)

that characterizes a particular constitutive model.
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2.2.1 Giesekus model

Giesekus model [19] is obtained with

f (τei) = I +
λiai
ηpi

τei (2.30)

and ξ = −1.

In equation (2.30), I is the unitary tensor and a is a positive mobility coefficient

taking into account for the non-isotropic brownian motion and hydrodynamic drag

of the polymer chains in the solvent medium. Its admissible values range between

0 and 1. The presence of a solvent contribution in the expression (2.26) must not

necessarily imply the presence of a physical solution, instead it is necessary to be

able to predict an infinite shear viscosity asymptote especially when a single mode

approximation is used. In fact the term 2ηsD can be interpreted as an additional

purely Newtonian ”0-th” mode.

For small amplitude oscillatory shear-flow, the non linear term of the equation is

negligible and the predicted loss and storage moduli are the same as for the Upper-

Convected Maxwell fluid model (UCM).

G′ (ω) =

nmodes
∑

i=1

ηpiω
2λi

1 + (ωλi)
2

G′′ (ω) = ηsω +

nmodes
∑

i=1

ηpiω

1 + (ωλi)
2

(2.31)

The material functions of shear viscosity and normal stress differences coefficients

for steady shear flow are derived in closed form in the original paper by Giesekus.

η (γ̇) = ηs +

nmodes
∑

i=1

ηpi (1− gi)
2

1 + (1− 2ai) gi
(2.32)

Ψ1 (γ̇) =
N1

γ̇2
=

nmodes
∑

i=1

(2ηpi/λi) gi (1− aigi)

ai (1− gi)
(2.33)
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Figure 2.6: Shear viscosity of single mode Giesekus model for different values of the

non linear parameter a and ηs = 0.

Ψ2 (γ̇) =
N2

γ̇2
= −

nmodes
∑

i=1

(ηpi/λi) gi

(γ̇λi)
2 (2.34)

In expressions (2.32), (2.33) and (2.34) the coefficient gi is defined as

gi =
1− fi

1 + (1− 2αi) fi
(2.35)

and

f 2
i =

√

1 + 16ai (1− αi) (λiγ̇)
2 − 1

8ai (1− αi) (λiγ̇)
2 (2.36)

Giesekus model predicts a non zero second normal stress difference. For low shear

rates the ratio between the two normal stress differences is proportional to the

mobility parameter a.

lim
γ̇→0

N2

N1

= −a
2

(2.37)

When a tends to zero, N2 also tends to zero while N1 remains finite. Giesekus model

is thus reduced to Oldroyd-b model. Furthermore, if ηp is also zero, the model
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Figure 2.7: First and second normal stress difference coefficients of single mode

Giesekus model for different values of the non linear parameter a and

ηs = 0.

becomes the upper convected Maxell model (UCM). Finally for λ = 0 Newton’s

model is recovered.

2.2.2 Phan-Thien Tanner model

When

f (τei) = exp

{

λiei
ηpi

tr (τei)

}

Exponential Form

f (τei) = I +
λiei
ηpi

tr (τei) Linear Form

(2.38)

The Phan-Thien Tanner (PTT) model is obtained. This model is based on the

assumption that the hypothesis of affinity between the macroscopic motion of the

fluid and that of the polymer chains is not always valid. For this reason the GS mixed

derivative is employed without a non zero ξ parameter to simulate the slipping effect

of the polymers strands with respect to the deformation of the macroscopic medium.

A further assumption takes into account the rate of creation and destruction of
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junctions between the polymer chains. As a consequence the polymer relaxation

time and viscosity are functions of the trace of stress tensor, implying that where

the flow is characterized by a high stress level, the relaxation time and viscosity

decrease so that the molten polymer behaves like a Newtonian fluid. One advantage

of this model is that both the elongational and non-affinity properties of the material

can be controlled separately by the non-linear parameter e and ξ. On the other hand

the presence of a non zero ξ introduces unphysical oscillation at the start-up of a

shear flow that may affect the numerical stability of the time-stepping methods used

for temporal integration of the constitutive equation.

2.3 Nondimensionalization of the equations

Equations (2.14) together with (2.26) constitute a closed system supplied with

boundary conditions discussed in section (2.1.3). The family of constitutive equa-

tions analyzed are hyperbolic, and Dirichlet boundary conditions are needed only

on boundaries where V · n > 0.

In order to identify the non-dimensional parameters governing the physics of vis-

coelastic two-phase flows it is necessary to proceed to the non dimensionalization

of the equations. This is done by defining the characteristic units of the system

considered. In this analysis all the fluid properties are scaled by the properties of

the more viscous component that we indicate as the fluid 1.

The characteristic velocity and length depend on the problem examined. For in-

stance, in a coextrusion problem the characteristic velocity V ∗ corresponds to the

mean axial velocity while the characteristic length L∗ can be taken as the diameter

of the section. For the rest of this section all characteristic units are indicated by

the symbol ()∗.

The characteristic time is taken as the convective time:

t∗ =
L∗

V ∗

In the non dimensionalization of momentum equation, the pressure is scaled by
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the characteristic viscous stress because for very slow flows, as in coextrusion, the

diffusion term is entirely balanced by the pressure gradient. This particular choice

is called Stokes scaling in opposition to Reynolds scaling for which the pressure is

scaled by the dynamic pressure ρ∗V ∗2

p∗ = τ ∗ =
µ01V

∗

L∗

Characteristic surface tension and interface width are naturally defined according

to the considerations developed in section (2.1.2)

σ∗ =
√

αβ

ǫ∗ =

√

α

β

By scaling each variable by the respective characteristic unit the following dimen-

sionless groups can be made:

Reynolds number

Re =
ρ∗V ∗L∗

µ01

Capillary number

Ca =
V ∗η01
σ∗

Deborah number

De =
λH1

V ∗

L∗

Cahn number

Cn =
ǫ

L∗
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Péclet number

Pe =
ǫL∗V ∗

κσ∗

The Reynolds number gives a measure of the relative importance of the inertial

effects with respect to the momentum diffusivity and is usually very low for flows of

high viscosity fluids like polymer melts. The Capillary number measures the relative

importance of the momentum diffusion with respect to the surface tension effects.

The definition given here is slightly different from the classical one since it is derived

from the phase-field model. Ca can be related to the definition based on the real

surface tension using the result of equation (2.18) to obtain Ca = 3
√
2Ca.

The group
λH1

V ∗

L∗
, represents the Deborah number expressing the degree to which

the fluid elasticity manifests in response to a transient deformation. For low values

of De the material response is that of a viscous fluid while for high values of De the

material is observed to behave like an elastic solid. When
V ∗

L∗
does not match the

observation characteristic time of the phenomenon examined but can be interpreted

as an average shear rate, the same dimensionless group is representative of the

Weissemberg number Wi, indicating the degree to which the nonlinear behavior of

the material is exhibited. When the applied deformation is very slow, that is Wi≪
1, the material response is approximately linear, while for the opposite situation of

Wi≫ 1 the response is highly nonlinear.

The introduction of a Cahn number is made necessary by the existence of a diffuse

interface and it is a measure of the spatial scale at which the phase miscibility effects

take place. Real binary polymer blends have interfaces width between 2 nm and

50 nm depending on the level of compatibility [51, 10]. With characteristic section

diameters of the order of 1 cm, the natural Cahn number is around 10−7. For phase-

field simulations the Cahn number is chosen in such a way as to produce a interface

profile that is resolvable on the current grid resolution which means that the interface

width must respect the condition (2.20). Following the analysis of Jacqmin [27], the

error in the resolution of the hyperbolic tangent profile is o (h/ǫ)n where n is the

order of the scheme adopted for the numerical solution, while the error due to the

introduction of a diffuse interface is o (ǫ). Equating the two errors results in a scaling
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relation between the Cahn number and the mesh resolution parameter hs.

Cn ∝
(

h

L∗

)

n

n+ 1 (2.39)

Finally the Péclet number expresses the relative importance of the phase advection

effects with respect to the phase diffusion effects. The choice of this parameter

is dictated by the fact that the interface must be able to maintain its hyperbolic

tangent profile against the distortion exerted by flow. This consideration implies

that diffusion must balance the advection effects at this scale or equivalently that

interface Péclet number must equal one.

ǫ2V ∗

κσ
= PeCn = 1 (2.40)

From the relation (2.40), it follows that Pe ∝ 1/Cn.

Considering that the flow has two components, a viscosity ratio and an elasticity

ratio can be defined.

Rµ =
µ02

µ01

Rλ =
λH2

λH1

Since the adopted constitutive model introduces a solvent contribution to the vis-

coelastic stress, a solvent fraction parameter can be defined for each component as

follows:

̺1,2 =
µs1,2
µ01,2

The whole set of non dimensional equations reads then as follows:
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∇ · V = 0

Re
DV

Dt
= −∇p+∇ · τ +∇ · (2̺D)− 1

CaCn
φ∇ψ

Dφ

Dt
= − 1

Pe
∆ [Cn2∆φ− φ (4φ2 − 1)]

τ =

nmodes
∑

i=1

τei

f (τei) +Dei
⋄
τei = 2µpiD

(2.41)

In the non-dimensional form of the momentum balance equation, the stress tensor

is split into its Newtonian and viscoelastic part and the parameter ̺ represents the

solvent viscosity fraction defined as follows:

̺ = ̺1 (0.5− φ) +
̺2
Rµ

(0.5 + φ) (2.42)

Similarly, the quantity µpi refers to the non dimensional polymer viscosity:

µpi =
[

ηp1i (0.5− φ) + ηp2i (0.5 + φ)
]

/η01 (2.43)

The constitutive law expressed in system of equations (2.41) is written for each mode

and for both components. For formal simplicity the subscripts 1, 2, indicating the

bulk phases, have been dropped. Deborah number Dei is different from the global

Deborah number De defined on the basis of the natural relaxation time of the most

viscous component. Its definition varies for each mode and fluid component.

Dei =























De
λi
λH

fluid 1

De
λi

RλλH
fluid 2

(2.44)
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In addition, geometric ratios can be defined on the base of the problem analyzed.

For example in coextrusion simulations, flow rate and layer thickness ratios will also

be introduced.



Résumé du chapitre 2

Le chapitre 2 présente l’ensemble des équations modélisant les écoulements biphasiques

de fluides viscoélastiques. L’hypothèse de base de la méthode de champ de phase

est de pouvoir décrire un fluide binaire par une fonction φ représentant sa compo-

sition locale. L’interface entre deux fluides est donc remplacée par une région très

mince où les deux phases sont “miscibles”. Cette hypothèse de miscibilité locale

se traduit par l’introduction d’un terme de diffusion non-linéaire dans l’équation

hyperbolique de transport de phase. Ce terme est essentiel pour la régularisation

de cette équation et le traitement de la discontinuité. En même temps il est dérivé

de la théorie cinétique de séparation de phase proposée par Cahn and Hilliard [6].

Malgré le fait que l’interface soit résolue à une échelle typiquement plus grande

que dans la réalité, ce type de modélisation ayant une base physique se prête na-

turellement à décrire les phénomènes de rupture, de coalescence d’interface et de

glissement du point triple de contact entre l’interface et une paroi solide, ainsi qu’à

neutraliser les effets de diffusion numérique dérivant de la discrétisation du terme

convectif de l’équation. Après adimensionnement des équations, il apparâıt que la

physique d’une interface diffuse est régie par deux paramètres: le nombre de Cahn

Cn, représentant la séparation de l’échelle microscopique où les effets de mélange

entre les deux phases ont lieu, avec l’échelle macroscopique de l’écoulement, et le

nombre de Péclet Pe, indiquant le rapport entre les effets de transport convectif

de phase et les effets de diffusion. Le choix de Cn doit respecter un critère de

résolubilité du profil d’interface sur un maillage à pas uniforme fixé h qui impose

une limite de 3.5h pour l’épaisseur de l’interface. De la même façon, le Pe doit

garantir un équilibre local entre le transport convectif et la diffusion de phase pour

que l’interface puisse garder une épaisseur constante indépendamment de l’action

compressive ou dilatante exercée par le champ de vitesse. Cela se traduit par la

58
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relation Pe× Cn = 1.



3 Numerical Method

The following chapter provides the details about the numerical discretization of

system of equations (2.41) in space and time. The design criteria of the code for the

numerical simulation of viscoelastic two-phase flows are dictated by the presence of

a large amount of unknowns. A rough estimation is given by

Nunknowns = Ncells × (5 + 2× 6×Nmodes) (3.1)

where 5 are the unknowns of velocity pressure and phase and the factor 2 and 6

take into account the presence of two phases and the symmetry of the stress tensor.

For instance, if 4 modes are adopted for each component (which is common practice

in viscoelastic calculations) the number of unknowns is equal to the number of cells

multiplied by a factor 53.

A further critical factor is offered by the fact that the differential operators appear-

ing in momentum balance and phase field equations are either non linear or their

coefficients are time or space dependent. As a consequence, their discrete counter-

parts cannot be computed once and stored in memory in the setup phase of the

calculation but they need to be recomputed at each time step. Matrix-free opera-

tors involve a minimum amount of update operations at each iteration but they also

need an ad-hoc implementation of the matrix-vector product and matrix inversion

routines. The implementation of the numerical method adopted for the solution of

the discretized equations is based on standard programming language C and uses the

Message Passing Interface (MPI) protocol for the parallel communications between

the processes. Krylov subspace methods and multigrid accelerator routines are based

on the Portable, Extensible Toolkit for Scientific Computation (PETSc) library [4]

60
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Figure 3.1: Numerical molecule for the Marker and Cell method. V and S denote the

locations of the velocity components and strain rate tensor components.

while all the preconditioning, function evaluation and matrix-vector multiplication

routines are user-defined.

3.1 Spatial discretization

Equations (2.41) are discretized in space by standard second order finite volume ap-

proximation applied to staggered cartesian grids. With this kind of grids, staggered

arrangement of the flow variables has been regarded as a better option over colo-

cated arrangement, since it provides a better coupling between velocity and pressure.

Moreover, boundary conditions for the pressure do not need to be assigned. This

particular choice is often named “Marker and Cell” (MAC) from the original scheme

developed by Harlow and Welch [23]. The only drawback of the MAC method is
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in the necessity of storing four different meshes; namely, one for each velocity com-

ponent, computed at the centers of their respective faces and one for the pressure

which is computed at cells centers.

In the presentation of this method the subscript p is used to denote the pressure

space, which is also the space used for any other scalar field, and v to indicate the

velocity space. Discrete operators defining linear application mapping one space

into another are denoted by a double subscript. For instance, Lp,v is a linear inter-

polation function operating from the pressure space into the velocity space, Dv,p is

the discrete divergence operator applied to the velocity space and taking values in

the pressure space, and so on.

Handling multiple grids is not a complicated task if the mesh has a cartesian topology

but the extension to general unstructured meshes is non-trivial. The computational

molecule is depicted in fig. (3.1) where the nodes for velocity components and pres-

sure are also shown in different colors. In a structured mesh, each cell is identified

univocally by a set of integers e = (i, j, k), while the six staggered nodes correspond-

ing to the faces centers are defined by e ± en with n = 1, 2, 3 and e1 = (1/2, 0, 0),

e2 = (0, 1/2, 0), e3 = (0, 0, 1/2).

The viscoelastic stress components are also computed at the cell centers e. A more

natural choice would be to define the normal stresses at cell centers and the shear

stresses at the centers of the cell edges. The space defined in such a way is denoted

by the subscript s. The motivation behind this choice is that, in this way, the

divergence operator Ds,v, defined from the stress space to the velocity space, only

involves central differences and provides an optimal coupling between the velocity

and the stress fields. On the other hand in viscoelastic constitutive laws the presence

of tensor products between the stress and the velocity gradient would require a great

amount of interpolation operations if the stress components were computed at four

different locations. Hence, the choice to store all the components at the cell centers

is preferred.

As an example of application of the finite volume technique, the procedure for the

discretization of the phase-field equation is illustrated. Eq. (2.6) is rewritten in a

conservative form and integrated over the cell volume:
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∫∫∫

Ve

∂φ

∂t
dv +

∫∫∫

Ve

∇ · F dv = 0 (3.2)

The term expressing the divergence of F = φV − 1
Pe
∇ψ is then transformed into

the sum of surface integrals defined on the faces of the cell by means of the Gauss

theorem

dφ

dt
+

1

∆x∆y∆z

3
∑

n=1

∫

Se±en

F · nds = 0 (3.3)

In eq. (3.3), φ represents the cell average value of φ. The values of the surface

integrals are approximated by the midpoint rule and the values of ψ and φ are in-

terpolated at the faces centers from the average values φ. For second order accuracy

the cell-centered values of φ and its cell average value are equivalent and for this

reason the overline symbol shall be dropped for the rest of this section. Eq. (3.3)

can be written as

dφ

dt
+

1

∆v

3
∑

n=1

[(

φV − 1

Pe
∇ψ

)

· n∆s
]

e±en

= 0 (3.4)

where ∆v and ∆se±en
indicate the volume of the cell and the surface of its faces.

In order to compute eq. (3.4) it is necessary to interpolate the values of φ and ∇ψ

at the face-centered nodes. The numerical expression for the chemical potential at

the cell centers is given by a second order finite difference approximation

ψi,j,k = −Cn2 [
φi−1,j,k − 2φi,j,k + φi+1,j,k

∆x2

+
φi,j−1,k − 2φi,j,k + φi,j+1,k

∆y2

+
φi,j,k−1 − 2φi,j,k + φi,j,k+1

∆z2
] + ζ ′ (φi,j,k)

(3.5)

The staggered representation of the chemical potential gradient at the cell faces

centers is given by central differencing rule:
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Figure 3.2: Definition of the stencil for the TVD interpolation of φ.

Upwind l (r) = 0

Minmod l (r) = max (0,min (1, r))

Van Leer l (r) = r+|r|
1+|r|

Cubista l (r) = max
(

r,min
(

7
4
r,min

(

3
4
r + 3

8
, 1
4
r + 3

4

)))

Table 3.1: List of flux limiters

(∇ψ · nx)e+e1
=
ψi+1,j,k − ψi,j,k

∆x

(∇ψ · ny)e+e2
=
ψi,j+1,k − ψi,j,k

∆y

(∇ψ · nz)e+e3
=
ψi,j,k+1 − ψi,j,k

∆z

(3.6)

For the approximation of the advective fluxes a second order accurate total variation

diminishing (TVD) scheme is employed to obtain the face values for φ:

φf = φc +
1

2
l (r) (φc − φu) (3.7)

The quantity l (r) is a flux limiter and it is function of the parameter r = φc−φu
φd−φu

,

expressing the ratio of the gradients evaluated in two adjacent cells and thus repre-

senting a natural way to monitor the smoothness of the function φ. The subscripts

c, u, d are defined with respect to the upwind direction as shown in fig. (3.2). A list

of possible flux limiter functions is presented in the table (3.1)
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The flux limiter allows to switch from high order reconstruction to low order in

regions where discontinuities in the solution, indicating the presence of an interface,

are detected. For the scheme to be mass-conserving, the discretization of the eq.

(2.8) must be consistent with the approximation of the divergence operator adopted

for the phase-field equation. A numerical approximation for the volume integral of

φ can be taken as

∑

e

φe∆x∆y∆z (3.8)

The evolution equation for the global fluid composition is obtained by applying the

operator (3.8) to the discrete eq. (3.3):

d

dt

∑

e

φe∆x∆y∆z +
∑

e

3
∑

n=1

∫

Se±en

F · nds = 0 (3.9)

Since each cell face is counted twice with opposite normal directions, the fluxes

contributions in the double summation term of eq. (3.9) cancel each other, leaving

only the contribution from the boundary terms. If no fluxes are prescribed on the

boundary, the numerical analog of eq. (2.7), expressing the conservation of the phase

field variable, is obtained.

d

dt

∑

e

φe∆x∆y∆z = o (δ) (3.10)

The error o (δ), depending on the accuracy of the numerical method and the tol-

erance criterion used to terminate the iterative solution of the mass balance and

phase-field equation, can be made arbitrary small. Although controllable, this error

is cumulative in time and can lead to significant loss in the mass conservation of the

system for long integration times.

3.1.1 Surface tension

The discretization of the momentum equations is carried out in the same way and

it will not be repeated. The only difference is that the three scalar equations cor-
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responding to the three velocity components, are integrated over cells staggered in

the corresponding spatial directions. The surface tension term must be treated in

a careful way in order to ensure a correct energy transfer between the momentum

equation and the phase-field equation. In particular, the discrete kinetic energy vari-

ation due to the surface tension forcing must be balanced by an equal and opposite

variation of discrete free energy.

The discrete kinetic energy K = 1
2
(V ,V ) can be derived based on the following

definition of inner product for staggered vectorial fields:

(u,v) = ∆v [
Nx
∑

i=0

Ny
∑

j=1

Nz
∑

k=1

uxi,j,kvxi,j,k+

Nx
∑

i=1

Ny
∑

j=0

Nz
∑

k=1

uyi,j,kvyi,j,k+

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=0

uzi,j,kvzi,j,k ]

(3.11)

The evolution equation forK is then obtained by scalar multiplication of the discrete

momentum equation by the velocity field. The variation of kinetic energy due to

the phase-field potential is thus represented by the surface tension forcing term

pre-multiplied by V .

dK

dt

∣

∣

∣

∣

surf.tens.

= (V , φ∇ψ) = ∆v [
Nx
∑

i=0

Ny
∑

j=1

Nz
∑

k=1

Vxi,j,kφfxi,j,k
ψi,j,k − ψi−1,j,k

∆x
+

Nx
∑

i=1

Ny
∑

j=0

Nz
∑

k=1

Vyi,j,kφfyi,j,k
ψi,j,k − ψi,j−1,k

∆y
+

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=0

Vzi,j,kφfzi,j,k
ψi,j,k − ψi,j,k−1

∆z
]

(3.12)

In eq. (3.12) the subscripts f indicate interpolated values at the faces centers.

The discrete free energy associated to the phase field is derived from the inner

product for cell-centered scalar fields.
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(f, g) = ∆v
∑

e

fege (3.13)

The rate of change of free energy is obtained by multiplying the discrete phase-field

eq. (3.4) by the chemical potential. The advective term, multiplied by ψ, expresses

the rate of change of free energy due to the action of the velocity field:

df

dt

∣

∣

∣

∣

adv.

= (ψ,∇φV ) =
∑

e

ψe

3
∑

n=1

[V · nφ∆s]e±en
(3.14)

It is easily seen that for eq. (3.14) and eq. (3.12) to be equal and opposite it

suffices that values of φ interpolated at the cell faces in the surface tension term of

the momentum balance equation are consistent with numerical scheme used in the

phase field equation to treat the advective fluxes. For this reason the same TVD

reconstruction schemes used in eq. (3.2) must also be used for the discretization of

the distributed surface tension forces.

3.1.2 Treatment of the viscoelastic stress

The momentum equation also presents another delicate issue. Since the constitutive

equations are solved separately in a decoupled way, the divergence of the viscoelastic

part of the stress tensor is treated explicitly in the momentum equation. This may

lead to a loss of ellipticity for small values of the solvent fraction parameter and cause

numerical instability due to the explicit right hand side of the equation becoming

dominant. For this reason, a stabilizing term is added to both sides of the momentum

equation in the form of the divergence of a Newtonian stress, in a similar fashion as

the Discrete Elastic/Viscous Stress Split (DEVSS) technique developed by Guénette

and Fortin [20] for the finite element methods. The contribution in the left hand

side is treated implicitly to improve the stability of the method while the one on the

right hand side is treated explicitly. If the temporal discretization of this two terms

is consistent, their presence in the equation will not affect the global accuracy of the

time stepping scheme.

Spatial coupling between velocity and stress fields can also be improved. The de-



68 Chapter 3. Numerical Method

Figure 3.3: Velocity red-black decoupling occurring for staggered arrangement of

velocity and stress fields.

coupling occurs because the velocity and stress unknowns are computed at different

locations. For a staggered velocity field, the most natural and accurate way to define

a space for the strain rate tensor (and so for the stress tensor) is to use central differ-

ences to evaluate the three normal strain rates at the cell centers and the three shear

strain rates at the centers of the cells edges. Since the viscoelastic stress is entirely

defined at the cells centers, the strain rate tensor must be interpolated at these nodes

to compute the source term in the constitutive equation and successively, the three

shear components must be interpolated back to the cells edges centers. This double

interpolation causes the appearance of a red-black type decoupling of the same kind

as the one for the pressure and the velocity in colocated variables schemes. The

effect can clearly be seen in fig. (3.3) for the case of De = 0 (Newtonian fluids)

and in two dimensions. The nodes marked by the red crosses are the ones involved

in the discretization of the term ∂2u
∂x∂y

in the u node i, j if the choice of storing the

shearing components at the cells corners is adopted, while the blue ones represent

the resulting stencil for the same operator in case the first derivative ∂
∂y

is computed

at the cell centers (A,B,C,D) and then interpolated at the cell edges to perform

the second derivative in x. It is evident in this case that the node i, j is not coupled
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to any of the immediate neighboring nodes in the y direction, creating an alter-

nate lines pattern that is even more dramatic in three-dimensions. To improve the

coupling, the spatial discretization is performed differently for each of the two sta-

bilizing terms in the momentum equation in a similar way as for the Rhie-Chow [47]

interpolation technique used to suppress the spurious pressure modes appearing in

colocated FV methods. The resulting time-continuous/space-discrete Navier-Stokes

equations read as follows:

Dv,pV = 0

Re

[

dV

dt
+N (V )

]

−Ds,v [2 (̺+ ̺s)d] = −Gp,vp+Ds,vLp,s [τ − 2̺sLs,pd]

− 1

CaCn
φGp,vψ

(3.15)

The implicit term on the left hand side of eq. (3.15) is taken as the divergence of

the edge-centered strain rate tensor times the viscosity while the one on the right

hand side is taken as the divergence of the cell-centered strain rate tensor times the

viscosity. The parameter ̺s represents the stabilizing viscosity and N is the non

linear discrete operator arising from the discretization of the convective term of the

momentum balance equation. The discrete gradient operator Gp,v, defined on the

space of pressure, and the discrete divergence Dv,p, defined on the velocity space,

are each other’s transposed. This property is due to the fact that the equations are

discretized on uniform cartesian meshes and it is relevant since it makes the discrete

Stokes problem symmetric.

The spatial discretization of the constitutive law only involves the numerical ap-

proximation of the advective term appearing in the equation. Since the stress com-

ponents are computed at the cell-centered nodes the same schemes adopted for the

phase-field are also employed.
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3.2 Temporal discretization

A second order time-stepping procedure is employed to integrate the equations in

time. With reference to the general ordinary differential equation (ODE)

∂u

∂t
= f (u) + g (u) (3.16)

we denote by f (u) the non-stiff part of the ODE and by g (u) the stiff one. In

general the non-stiff term is also non-linear, which motivates an explicit treatment,

while the stiff term must be integrated implicitly in order to avoid severe constraints

on the time step size. This is not true for the phase-field equation for which the

stiff term is also non linear. When applying this idea to a system of equations, the

coupling terms are also treated explicitly to split the global problem in a series of

small subproblems that can be solved independently.

Two numerical variable step size semi-implicit schemes are considered: a Backward

Differentiation Formula (BDF):

1

∆tn

[

1 + 2ω

1 + ω
un+1 − (1 + ω) un +

ω2

1 + ω
un−1

]

= (1 + ω) f (un)− ωf
(

un−1
)

+ g
(

un+1
)

and a combination of Crank-Nicolson and Adam-Bashforth (CNAB) schemes

1

∆tn
[

un+1 − un
]

=

(

1 +
1

2
ω

)

f (un)− 1

2
ωf
(

un−1
)

+
1

2

[

g
(

un+1
)

+ g (un)
]

Where ω = ∆tn+1
∆t

is the ratio between two successive time steps.

Both the schemes are second order accurate. CNAB scheme only requires the storage

of two stages, while BDF scheme needs three. Furthermore the latter needs a special

treatment for the first step since solution at time step n−1 is not available. Usually
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a first order Backward Euler (BE) scheme is used to start up the BDF scheme. Al-

though less memory consuming, CNAB scheme often displays spurious oscillations.

These are produced by non-smooth initial conditions and are not damped by the

numerical scheme. One possible cure would be to use BE scheme for a few steps

and then switch to CNAB, but this does not always guarantee the smoothness of

the solution. In the case of flows in the Stokes limit, the pressure has been observed

to oscillate between two states, differing by a constant, even when the velocity is

stationary. For this reason, BDF scheme is employed for the Navier-Stokes and the

constitutive equations while CNAB is used for the phase-field equation.

Treating the coupling terms in an explicit way allows to split the solution of one

time step into three different stages:

(i) Update the phase field:

1

∆tn
φn+1 − 1

2

[

1

Pe
Dv,pGp,vΨ

]n+1

=
1

∆tn
φn −

(

1 +
1

2
ω

)

[Dv,p (V φ)]n +
1

2
ω [Dv,p (V φ)]n−1 +

1

2

[

1

Pe
Dv,pGp,vΨ

]n

(3.17)

(ii) Update the stress field:

1

∆tn
1 + 2ω

1 + ω
τn+1
e +Deτn+1

e =
(1 + ω)

∆tn
τne − ω2

1 + ω
τn−1
e

− (1 + ω)

[

Dv,p (V τe)− τe ·∇V − (τe ·∇V )T +
De a

1− β
τ 2e − 2 (1− β)ds

]n

+ω

[

Dv,p (V τe)− τe ·∇V − (τe ·∇V )T +
De a

1− β
τ 2e − 2 (1− β)ds

]n−1

(3.18)

with ∇V = Ls,pGv,sV and ds =
1
2

(

∇V +∇V T
)

.

The global stress field and solvent viscosity are found using expression (2.13) and

(2.42) with the newly computed values of φ and τe.
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(iii) Update the velocity and pressure fields:

Re

∆tn
1 + 2ω

1 + ω
V n+1 +Gp,vp

n+1 −Ds,v [2 (̺+ ̺s)d]
n+1

=
Re

∆tn

[

(1 + ω)V n − ω2

1 + ω
V n−1

]

+Ds,vLp,sτe
n+1 − 1

CaCn
φn+1Gp,vΨ

n+1

− (1 + ω) [ReN (V )−Ds,v (2̺sLp,sLs,pd)]
n

+ω [ReN (V )−Ds,v (2̺sLp,sLs,pd)]
n−1

(3.19)

Since the advection terms are treated explicitly, the time step size is subject to a

Courant-Friedrichs-Lewy (CFL) restriction of the type

max
e

1

2

{

Ue−e1
+ Ue+e1

∆x
+
Ve−e2

+ Ve+e2

∆y
+
We−e3

+We+e3

∆z

}

∆t < 1 (3.20)

In practice the time step size is found to be slightly smaller that the one imposed by

the CFL condition. In fact, since the stress components evolve in time with expo-

nential laws, the boundary and initial conditions can greatly influence the stability

of the scheme. For instance an abrupt start up of the flow or discontinuities on

the boundary conditions can produce overshoots in the stress magnitude that may

eventually destabilize the numerical time-stepping procedure.

3.3 Iterative Solvers

3.3.1 Phase-Field solver

The first stage of the time-stepping procedure involves the solution of the nonlinear

system of equations expressed by (3.17). For simplicity the system can be rewritten

as

φ+
∆t Cn2

Pe h4
F (φ) = rhs (3.21)

where h = min {∆x,∆y,∆z}. The discrete operator F (φ) is arising from the dis-

cretization of the chemical potential laplacian and is defined on the same 33-points
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stencil as the classical finite difference biharmonic operator. The term 1
h2

is factor-

ized in order to make F (φ) ≈ o(1).

The solution of (3.21) implies a Newton-Raphson iterative procedure. At each itera-

tion the jacobian matrix must be evaluated and the resulting linearized system must

be solved. This would require assembling and inverting the jacobian matrix several

times per time step and can be costly in terms on computational time and memory.

In order to avoid computing the jacobian, a different approach is adopted. Instead

of applying the Newton-Raphson procedure globally, each unknown is updated it-

eratively in a Gauss-Siedel cycle by solving a local non linear problem. Given the

solution at the kth iterate the local residual and jacobian are computed as:

re = rhse − φke − Fe
(

φk
)

je = 1 +
∂Fe (φ)

∂φe

∣

∣

∣

∣

φk

(3.22)

and the local value of φ is then updated

φk+1
e = φke − re

je
(3.23)

This procedure is cycled over the unknowns until convergence is reached but instead

of using it as a standalone solver, this routine is rather employed as a non linear

preconditioner for the Non-linear Generalized Minimal Residual Method (NGMRES)

that computes the (m+ 1)th iterate by combining the previous m iterates into a

minimal-residual solution after solving a small linearized optimization problem. This

method is implemented in PETSc as SNESNGMRES on the base of the algorithm

proposed by Osterlee and Washio [43] and it can be easily integrated with any

problem specific preconditioning routine. In the implementation of the non linear

Gauss-Seidel method proposed in this section, the unknowns are updated in a red-

black pattern for better smoothing properties. It can be easily remarked that the

convergence of the method depends on the value of δ = ∆tCn2

Peh4
since this paremeter

determines the diagonal dominance of the linearized discrete diffusion operator.

Indeed for δ → 0 the eigenvalues of the jacobian matrices become clustered around
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Figure 3.4: Convergence history of the non linear GS/NGMRES method applied to

the phase-field problem.

the unity and the NGMRES method converges in one iteration. This situation is

depicted in fig. (3.4) where the convergence history of the relative residual within a

tolerance of 10−8 is shown. For values of δ less than unity one single step is enough to

smooth the initial residual of a factor of 10−14. One would expect the convergence

properties to deteriorate dramatically with increasing mesh resolution since δ scales

with the fourth power of reciprocal mesh size, but since the time step is constrained

to be o(h) by the CFL condition and Pe and Cn must respect the conditions (2.39)

and (2.40), for the phase-field to converge to the sharp interface limit, δ scales only

linearly with the reciprocal mesh size. For this reason the proposed solver is found

to perform very well in the range flow condition and mesh resolution considered.

Should δ be very large, the solver could be further accelerated by using non linear

multigrid techniques as the Fully Approximation Storage (FAS) used by Kim et al.

[35].
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3.3.2 Stokes solver

A large part of the computing time is spent in the inversion of the linear system

arising from the discretization of the Navier-Stokes equations. In matrix form, and

after dividing the equations by the cell volume ∆v, the system reads as follows:







I − ∆t

Re h2
Ds,v̺Gv,s

∆t

Re h
Gp,v

1

h
Dv,p 0











V

p



 = rhs (3.24)

Since Gv,s is the transposed of Ds,v and Gp,v is the negative transposed of Dv,p,

the system can be made symmetric by appropriately scaling the mass conservation

discrete equation. A first manipulation of this system is made by adding the term

∆t
Re h4

Gp,v̺Dv,p to the block (1, 1). This is done to cancel the mixed second derivatives

in the regions of bulk flow where the viscosity is constant.







I − ∆t

Re h2
(Ds,v̺Gv,s −Gp,v̺Dv,p)

∆t

Re h
Gp,v

− ∆t

Re h
Dv,p 0











V

p



 = rhs (3.25)

Since Dv,pV = 0, the modified system admits the same solutions of the original

one (3.24), but has better conditioning properties, and thus convergence properties,

because it has a stronger diagonal dominance. System (3.25) shall be referred to

as the discrete Stokes problem and it belongs to the general class of saddle-point

problems.

The lack of the diagonal block (2, 2) makes it difficult to solve the system by tra-

ditional iterative methods. Splitting the Stokes problem in two subproblems for

the solution of the velocity and the pressure is a common way to circumvent this

difficulty. In pressure correction methods velocity and pressure are updated inde-

pendently at the cost of second order error in time due to the decoupling. This error

is also proportional to the reciprocal Reynolds number [8] and becomes significant

at low Reynolds.

In general, for Stokes flows coupled methods are preferred. The majority of coupled

iterative solvers rely on Krylov subspace methods with preconditioners based on

the block LU factorization of the matrix in the system (3.25) and a convenient
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approximation of the inverse of the Schur complement (see [5] for a complete survey

on saddle-point problem solvers). These methods are very robust and they can be

applied in a black-box fashion since they do not rely on the underlying geometry of

the problem but only on the structure of the matrix. The drawback is that they

require a fair amount of setup operations to build the algebraic operators used in

the preconditioning routines.

In variable viscosity problems the setup time can become significantly large since all

the discrete operators need to be updated at each time step. For this reason matrix-

free preconditioners are adopted. Even if the problem is symmetric, the adpoted

Krylov subspace methods are the Generalized Minimal RESidual (GMRES) and

the Generalized Conjugate Residual (GCR) since they allow general non-symmetric

preconditioning. Like for the case of the phase-field problem the routines for GMRES

and GCR are based on the PETSc implementations. The preconditioner is based on

geometric multigrid (GMG). The basic idea behind GMG is that since most of the

iterative solvers can suppress only the high frequency components of the error, low

frequencies can be effectively smoothed out by recursively interpolating the original

problem on a sequence of coarser grids and applying a few iterations of a basic solver

(or smoother) on each level. To achieve optimal convergence grid transfer operators

and the smoother must be carefully designed. Multigrid routines are also based on

PETSc implementation MG and use one V-cycle per GMRES or CGR iterate and 3

smoothing cycles per level. In the next subsections the grid transfer operators, the

system scaling and the smoothers are discussed in detail.

Grid transfer operators

In this section the system (3.25) shall be rewritten as





F G

G′ 0









V

p



 = rhs (3.26)

To solve (3.26) by multigrid methods, a hierarchy of grid is built by defining the

number of cells Nxc , Nyc , Nzc along the three spatial direction x,y and z on the

coarsest grid, the global number of levels nl and the refinement factors rx, ry, rz.
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Figure 3.5: Schematics of the restriction and prolongation operations on a staggered

grid. Cell-centered residual in the node I is obtained by averaging fine

grid values of nodes A to H (left). Staggered residual component in the

node E is obtained by averaging the fine grid values corresponding to

nodes A to D

Each level is identified by an integer n ranging from zero, corresponding to the

coarsest level, to nl − 1, corresponding to the finest level.

The mesh on a general level n is defined by

Nxn = Nxcr
n
x

Nyn = Nycr
n
y

Nzn = Nzcr
n
z

(3.27)

In this way each cell on a level n is formed by the union of rxryrz cells on the finer

level n+ 1.

The action of interpolating a function from a fine level to a coarse level is called

restriction and the corresponding operator is denoted by Inn+1. The inverse operation

is called prolongation and the operator mapping from a coarse level to a fine level is

denoted by In+1
n . Since the residuals rn are calculated at the same location on the

MAC grid as the corresponding unknowns , there will be a total of eight different

transfer operators.

Cell-centered divergence residuals dn+1 are restricted on a coarse level by taking the

arithmetic average of the related values at the fine grid centers.
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dnI,J,K =
1

rxryrz

(I+1)rx−1
∑

i=rxI

(J+1)ry−1
∑

j=ryJ

(K+1)rz−1
∑

k=rzK

dn+1
i,j,k (3.28)

The corresponding operator is denoted by Ip
n
n+1. The prolongation operator Ip

n+1
n is

instead defined by assigning to each fine level cell the same value of the corresponding

coarse level cell. The latter corresponds to a nearest-neighbor interpolation.

dni,j,k = dn−1
i/rx,j/ry ,k/rz

(3.29)

The staggered momentum residual can be restricted by averaging each component

over the corresponding cell face. For the U component, for example, the restriction

operator Iu
n
n+1 would be

Un
I,J,K =

1

ryrz

(J+1)ry−1
∑

j=ryJ

(K+1)rz−1
∑

k=rzK

Un+1
irx,j,k

(3.30)

The prolongation operator Iu
n+1
n is defined by nearest-neighbor interpolation along

y and z, as for the cell-centered residual, and by linear interpolation along x. For the

staggered node I, J,K on the coarse grid, the interpolation coefficients are calculated

as c1 = (I%rx) /rx and c2 = 1 − c1 (the % symbol denoting the reminder of the

integer division). The prolongated value is then given by

Un
i,j,k = c1U

n−1
i
rx
,
j
rx
,
k
rz

+ c2U
n−1
i
rx

+1,
j
rx
,
k
rz

(3.31)

The same considerations are valid for the staggered components of the residual along

y and z. The global velocity transfer operators can be defined as follow:

IV
n+1
n =











Iu
n+1
n

Iv
n+1
n

Iw
n+1
n











(3.32)

and
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IV
n
n+1 =











Iu
n
n+1

Iv
n
n+1

Iw
n
n+1











(3.33)

The equation for the error on a coarse grid is obtained by projecting the system

(3.26) from the finer grid to the coarse and approximating the fine grid error by a

prolongation of the coarse grid error.





IV
n
n+1F

n+1IV
n+1
n IV

n
n+1G

n+1Ip
n+1
n

Ip
n
n+1G

′n+1IV
n+1
n 0









en

en



 = rhsn (3.34)

The transfer operators defined as above are perfectly consistent with the finite vol-

ume discretization of the mass balance equation, in the sense that if a velocity field

is divergence-free on a coarse mesh, the same property is observed for the next finer

mesh and vice versa. Furthermore the following relation holds:

G′nIV
n
n+1 = Ip

n
n+1G

′n+1 (3.35)

The above property, together with the fact that IV
n
n+1IV

n+1
n = I and Ip

n
n+1Ip

n+1
n = I,

guarantees that Ip
n
n+1G

′n+1IV
n+1
n = G′n and IV

n
n+1G

n+1Ip
n+1
n = Gn. This is a very

important result since it means that for each level the projected divergence and

gradient operators have the exact same structure as if they were discretized directly

on that level. The same can not be said for the discrete diffusion operator since

IV
n
n+1F

n+1IV
n+1
n 6= F n. This implies that the definition of F is different on each

level. However, instead of projecting recursively F from the finest level to the

coarsest, it is more convenient to discretize it on each level to maintain the same

structure across the grid hiearchy. In order to do so, the viscosity field must also be

restricted from the finest level over the whole grid sequence. The same restriction

operator as the one used for the cell-centered divergence residual is used for the

viscosities.
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Diagonal scaling

Prior to applying the smoother at each multigrid level, the system needs to be

systematically scaled in order to uniform the magnitude of all the equations in it.

Depending on the viscosity ratio of the two fluids, the diffusive term in the region

occupied by one fluid can become smaller than that in the other fluid by orders

of magnitude. This causes the dispersion of the eigenvalues of the Stokes discrete

operator in the complex plane and consequently the loss of efficiency of the iter-

ative solvers. To understand this, recall that according the Gershgorin theorem,

the spectrum of the matrix in the linear system (3.26) is bounded by the union

of the circles whose centers and radii are respectively the matrix diagonal entries

and the sum of the absolute values of the non-diagonal entries in each row. Since

the diagonal entries of the matrix scale linearly with the viscosity of the fluids, the

greater the viscosity difference between the fluids the more spaced out are the Ger-

shgorin circles. The problem can be removed by employing the symmetric diagonal

scaling technique. The original system Ax = b is replaced by the scaled system

Ax = b, where A = S−1AS−1, x = Sx, b = S−1b and S is the scaling matrix

usually taken as a diagonal matrix whose entries are the square root of the diagonal

entries of A. In this way the diagonal entries of the scaled matrix are all unitary

and the Gershgorin circles become clustered in same region. The problem with

the Stokes discrete operator is that its diagonal elements are zeros in the pressure

block, so while the velocities unknowns are still scaled by Sv = diag
(√

Fii
)

, the

pressures unknowns are scaled by the diagonal of the pressure Schur complement

Sp = diag{
√

[

G′ diag
(√

Svii
)−1

G
]

ii
}. The complete scaling matrix reads as:





Sv 0

0 Sp



 (3.36)

Smoothers

The coupled smoothers used for the discrete Stokes problem belong to a specifically

designed class for indefinite saddle problems that circumvents the problem of having

zero diagonal entries corresponding to the pressure unknowns by smoothing at once
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a subset of unknowns corresponding to a local subdomain. This particular technique

is referred to as Box-relaxation. The most natural way to form subdomains is to

associate each pressure unknown to every velocity unknowns related to it. In the

case of a staggered cartesian grid each cell-centered pressure unknown is coupled

to six velocity unknowns corresponding to the faces of the cell considered. In this

way, smoothing a whole subset of unknown is equivalent to solving a local cell based

saddle-point problem. The procedure can be resumed as follows:

for i = 1 : ncells do

% For each cell, define the subset of associated velocity unknowns

si = [ei − e1; ei + e1; ei − e2; ei + e2; ei − e3; ei + e3]

% Restrict the discrete diffusion gradient and divergence operators

Fc = F (si, si)

Gc = G (si, ei)

G′
c = G′ (ei, si)

% Compute the local residual

ri = [rv (si) ; rp (ei)]

% Update the velocity and pressure unknowns by solving:





Fc Gc

G′
c 0









∆v

∆p



 =





rv (si)

rp (ei)



 (3.37)

end for

This procedure was first introduced by Vanka [58]. Full Vanka Smoothing (FVS)

requires ncells inversions of 7×7 matrices. These are in general dense because of the

mixed second derivatives in the velocity components appearing in reason of the non

uniformity of the viscosity. For uniform viscosity the block Fc is tridiagonal. For

the direct solution of the local linear systems by singular values decomposition, the

LAPACK [3] routine dgsev is employed.

A variation of FVS consists of approximating the block Fc by its diagonal. In

Diagonal Vanka Smoothing or DVS, the local saddle-point problem can be solved in a

very efficient way considering that, since the system is diagonally scaled, the diagonal

of Fc is the unit matrix. The same holds for the cell based Schur complement

Sc = G′
cGc = 1. Hence the solution for the velocity and pressure corrections is
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obtained by:

∆p = (rp −Dcrv) /Sc

∆v = ru −Gc∆p

(3.38)

A third candidate as coupled smoother for GMG is the Distributive Gauss Seidel

method (DGS). The procedure is given by:

for i = 1 : ncells do

% For each cell, define the subset of associated velocity unknowns

si = [ei − e1; ei + e1; ei − e2; ei + e2; ei − e3; ei + e3]

% Define the subset of the pressure unknowns surrounding the cell ei

spi = [ei − 2e1; ei + 2e1; ei − 2e2; ei + 2e2; ei − 2e3; ei + 2e3]

% Restrict the discrete diffusion gradient and divergence operators

Fc = F (si, si)

Gc = G (si, ei)

G′
c = G′ (ei, si)

% Restrict the discrete pressure laplacian operator

G′Gc = G′G
(

spi, ei
)

% Compute the local momentum residual rv

% Update the velocity and pressure unknowns by solving:

F̃c∆̃v = rv (3.39)

% where F̃c is the lower triangular part of Fc.

% Compute the local velocity divergence residual rp and momentum residual

rv

% Compute the pressure correction

∆̃p = (rp −G′
crv)) /Sc (3.40)

% Distribute the pressure correction to the six pressure unknowns and the six

velocity unknowns

∆p = G′Gc∆̃p

∆v = −Gc∆̃p

(3.41)
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Figure 3.6: Schematic of a subdomain block. face, edge and corner ghost cells are

represented only on one side for simplicity.

end for

In the three analyzed cases the cells unknowns are updated in a lexicographical way.

For better smoothing properties red-black ordering can be adopted. Extension to

plane or line versions for more robustness can be useful in case the unknowns are

strongly coupled in some direction like, for instance, when the cells are stretched.

3.4 Parallel implementation

The PETSc Distributed Mesh object (DM) is used both to partition the three-

dimensional arrays holding the values for the velocity, pressure, phase and stress

unknowns, and to manage the data communications between processes. The parallel

solution of the Stokes problem is discussed in this section, since the latter takes

the major part of the computational time spent to do one temporal iterate. The

implementation of a scalable parallel multigrid solver is a very complicated matter

and it is beyond the aim of this thesis. The following analysis is limited to the
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aspects of the parallelization encountered in our implementation of the Stokes solver

without wanting to give an extensive coverage of the topic. The reader should refer

to [7, ch.10] for a complete survey on more efficient parallelization techniques for

multigrid.

When considering the implementation of a multigrid solver, there are many aspects

that may partially limit the parallelization of the algorithm and its scalability. Do-

main decomposition technique is employed to divide three-dimensional arrays into

smaller arrays and each is assigned to one process. The group of processes, or com-

municator, is given a cartesian topology and each process can be identified by three

integers m, n and p.

Each subdomain needs to communicate with others through adjacent faces, edges

and corners to synchronize the boundary values. These are copied in appropriate

ghost cells. Since the stencil required to compute the convection term by second

order TVD methods is symmetric and 5-points wide in each direction, two layers of

ghost cells are required for each direction too. For a n × n × n block the number

of unknowns is n3 while the number of ghost cells is 12 × n2 + 48 × n + 32. The

schematic of a subdomain block and its ghost cells is depicted in fig. (3.6).

Since the number of operations needed for matrix multiplication, residual interpo-

lation and smoothing is also o (n3), it is clear that unless the block size is at least

equal to 16, the ghost cells number is greater than the interior cells number and the

communication time becomes dominant in the calculation. The situation is compli-

cated by the fact that even if the grid is big enough to justify the parallelism, when

restricted on coarser meshes for the multigrid solution the size of each subdomain

becomes inevitably suboptimal and the parallelization inefficient.

Another factor limiting the parallel implementation of our multigrid solver is that

the smoother acts differently when applied in parallel. In fact, in Box-relaxation the

unknowns are updated in a Gauss-Seidel fashion but as the level of parallelism is

increased the algorithm behaves more like the Jacobi method, since each subdomain

is smoothed independently. This consideration implies that the convergence rate of

the smoother decreases as the parallelism is increased.

To partially cure both problems discussed above a certain number of MPI processes
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Figure 3.7: Speed-up factor for the parallel solution of the SINKER problem de-

scribed in section (4.2) for a 2563 grid (non balanced) and a 3843 grid

(balanced).

can be suppressed as the grid is coarsened. In the present case, instead of suppressing

the processes, the smoothing is run redundantly on subsets of processes. This is done

by condensing several subdomains into one and scattering the data from one process

of the newly formed subdomain to the others. In this way the domain is divided in

less but bigger partitions shared by several processes. The communication time is

reduced; however an additional time is spent in the scattering process and optimality

can only be achieved as a trade-off between these two conflicting factors.

The domain is partitioned on the coarsest mesh and each subdomain is then re-

fined to ensure that the same geometric partitioning is maintained across the grid

hierarchy and that interpolation and restriction operations do not require commu-

nications. This choice has the drawback of producing non load-balanced blocks on

the finer grids.

As an example of the solver performances, the speed-up obtained when solving the

problem described in section (4.2) is estimated. The same problem is solved on

three communicators consisting of 4 × 4 × 4, 6 × 6 × 6 and 8 × 8 × 8 processes
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and referred to as C4, C6 and C8 respectively. The speed-up factor is defined as

Si = T (G4) /T (Gi), where T (Gi) is the computational time required to solve the

problem with the communicator Ci.

The problem is discretized on a 2563 grid with 5 multigrid levels. On the coarsest

level the grid has 163 cells and the communicator size is fixed at 2× 2× 2, meaning

that the solution is 8, 27 and 64 times redundant on C4, C6 and C8 respectively.

When the problem is solved with the communicator C6, the resulting coarse grid

blocks can have non uniform sizes ranging from 23 to 33 because 16 is not divisible

by 6. This means that on the finest grid there will be blocks of size 323 and 483,

giving a load balance ratio of 3.4 between the biggest and the smallest block. In

fig. (3.7), the speed-up for the 2563 grid is shown in comparison with the speed-up

obtained for a 3843 grid for which the load is perfectly balanced. Scalability is better

for the latter case even though in both cases the problem scales only sub-linearly

for the reasons already expressed in this section.



Résumé du chapitre 3

La méthode numérique utilisée pour la solutions des équations présentées dans le

chapitre (2), modélisant l’évolution spatiale et temporelle de l’enrobage de deux flu-

ides, se base sur une technique de discrétisation spatiale en volumes finis appliquée à

des maillages cartésiens uniformes de type MAC (maillage décalé) et caractérisée par

une précision d’ordre deux. L’intégration temporelle s’effectue par une combinaison

du schéma de Crank-Nicolson, utilisé pour l’équation d’évolution du champ de phase,

et une formule de type BDF (backward differentiation formula) pour l’avancement en

temps de V , p et τ . Seuls les termes de diffusion de phase et quantité de mouvement

sont traités implicitement tandis que les autres termes sont extrapolés à partir des

évaluations aux pas de temps précédents avec un schéma du type Adams-Bashforth.

Ce choix permet de découpler les équations et de les résoudre séparément tout en

gardant une précision du second ordre en temps. À chaque pas de temps le problème

discret de Stokes est résolu par une technique itérative: la Méthode de Minimisation

du Résidu Généralisée (GMRES) ou la Méthode du Résidu Conjugué Généralisée

(GCR), se servant d’un préconditionneur de type multigrille pour accélérer la con-

vergence. Il est basé sur une généralisation de la méthode de Gauss-Seidel (GS) dite

de Box-relaxation, qui consiste à appliquer GS à l’ensemble des inconnus de vitesse et

pression associés à une cellule et permet de contourner le problème lié à la présence

d’éléments diagonaux identiquement nuls associés à la pression. L’avancement du

champ de phase demande aussi méthode résolution itérative d’un système non-

linéaire par une méthode de Newton-Krylov qui offre une convergence quadratique

en appliquant la méthode GMRES à un problème non-linéaire et une stratégie de

préconditionnement de type Newton-Raphson locale.
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4 Validation of the code

The following chapter is dedicated to the validation of the numerical code for the

simulation of viscoelastic two-phase flows.

4.1 Accuracy testing

The second order space accuracy of the finite volume scheme adopted is verified

against analytical solutions available for simple flow configurations. The first case is

represented by a stationary fully developed flow in a rectangular duct whose section

is defined as [−Lx/2, Lx/2]× [0, Ly]. For Newtonian fluids the solution for the axial

velocity w, as reported in [42], is:

w (x, y) =
∆p

ηL

4L2
y

π3

∞
∑

n=1,3,5...

1

n3

(

1− cosh (nπx/Ly)

cosh (nπLx/4Ly)

)

sin (nπy/Ly) (4.1)

while u and v are nil. In the expression (4.1), ∆p
L

and η denote respectively the

pressure gradient and the dynamic viscosity. The simulations are performed on a

very long duct (103Lx) in order to allow the full development of the flow, imposing

a constant inflow velocity profile and inspecting the solution at the outflow section.

The resolution in the cross section plane is taken as h = 1/2n with n = 5, 6, 7, 8,

while it is kept constant at 1/16 along z. The comparison between the analytical

and numerical solutions is shown in figures (4.1(a)). The error is computed as the L2

norm of the difference between the numerical and analytical solutions. The conver-

gence rate is estimated as log2 (errn) − log2 (errn+1). The asymptotic convergence

rate calculated for the two cases is approximately 1.99, as shown in fig. (4.1(b)).
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Figure 4.1: Comparison between analytical and numerical solution for Poiseuille flow

of a Newtonian fluid in a square section. Velocity profiles are plotted

at equally distanced positions along y (a). Numerical error as function

of the mesh resolution showing the second order accuracy of the scheme

(b).

A second test case is given by the stationary fully developed two-dimensional flow

of an Oldroyd-B fluid between two plane plates. Oldroyd-B model can be obtained

from Giesekus model, selecting a = 0. The solution for w, τezz and τeyz is given

by:

w = 6y (y − 1)

τzy = (1− β) γ̇zy

τzz = 2Wiγ̇2zy

(4.2)

where γ̇zy = ∂w/∂y, Wi = λH γ̇zy is the Weissemberg number and β denotes the

solvent fraction as usual. The simulation are carried out on a channel geometry

given by Ly = 1 and Lz = 16 and uniform mesh size is again taken as h = 1/2n

with n = 5, 6, 7, 8. Only half of the channel is considered for symmetry reason. For

this case the phase-field is also simulated. The layer configuration is of the type

A− B − A as described in section (5.3.1), with a layer and flow rate repartition of
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Figure 4.2: Comparison between analytical and numerical solution for the Oldroyd-

B flow between parallel plates with β = 0.1. (a) Velocity profile; (b)

Shear stress; (c) Normal stress. (d) phase field.
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0.25/0.5/0.25. The layers A and B are made same fluid and the capillary effects are

neglected which means that phase field variable is only a passive scalar transported

by V (Pe ≫ 1). The values of φ at the face-centered position are obtained by a

Weighted Essentially Non-Oscillatory Scheme (WENO) scheme which is formally

fifth order accurate in regions where φ is smooth and switches to third order where

a the solution is steep. This reconstruction scheme, when coupled with the midpoint

numerical integration rule, should guarantee a global second order accuracy. The

solution is obtained for different Weissemberg numbers and inspected at the outlet

section where the flow is fully developed. The figures (4.2(a)), (4.2(b)), (4.2(c)),

respectively show the comparison between the numerical and analytical solutions for

the velocity profile, shear stress profile and normal stress profile, while fig. (4.2(d))

shows the numerical and analytical phase-field profile at z = 16. The latter is

expressed by the heaviside function H (y − h)−0.5 where h is the interface position

that can be determined analytically by the procedure illustrated in section (5.3).

Fig. (4.3) shows the numerical error as a function of the mesh size for the normal

stress tensor profile and the phase field profile. While the scheme is confirmed to

be second order accurate for the stress, the same cannot be said for φ since only

only first order convergence in L1 norm is obtained. The same result is reported

by Titarev in [56] who used WENO schemes up to the eleventh order of accuracy

in combination with high-order Gaussian quadrature for integration over cell faces.

It seems in fact that the presence of the discontinuity reduces the accuracy of the

numerical scheme to first order no matter how high is the order of the reconstruction

and integration schemes. This justifies the use of flux limited schemes that switch

to first order upwind near discontinuities and also, to a certain extent, the idea of

diffused interface introducing an o(ǫ) error in the model.

The rest of the chapter is organized as follows: in section (4.2) the performances

of the variable viscosity Stokes solver are analyzed. The successive sections present

comparisons with experimental data or existing numerical solutions for extrusion

and coextrusion flows.
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Figure 4.3: Error convergence for the normal stress and the phase field.

4.2 Analysis of the Stokes solver

In order to test the efficiency of the variable viscosity Stokes solver the SINKER

benchmark test [40] is considered, consisting in a sinking high viscosity and high

density cubic block in a low viscosity medium. This problem arises in mantle con-

vection simulations where fluids are characterized by viscosity contrasts up to 1012.

Furuichi describes it as “one of the most difficult problems to solve by iterative

techniques” [17], making it an optimal benchmark to test the robustness of a Stokes

solver. The SINKER configuration is sketched in fig. (4.4). The domain consists of

a unit cubic box. If the origin is placed at the center of the box, the high viscosity

central region is defined by:

− 0.15 ≤ x ≤ 0.15, −0.15 ≤ y ≤ 0.15, −0.15 ≤ z ≤ 0.15 (4.3)

The phase field is defined by:

φ =
1

2
tanh

(

d− 0.15√
2Cn

)

(4.4)

with d = max (x, y, z). In this way the steepness of the viscosity jump can be
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Figure 4.4: Schematic of the SINKER problem also showing streamlines for ∆η =

10−3. The central block in red is made of the more viscous and more

dense fluid

controlled by varying the parameter Cn. The right hand side of the momentum

equation is given by −ρg, where g ≡ (0, 0, 1). The central block is characterized by

η = ρ = 1, while the surrounding medium is characterized by η = ∆η and ρ = 0

and local density and viscosity are computed by linear mixing rule. The domain

is discretized on a uniform mesh of size h and free-slip boundary condition is im-

posed on the six faces of the box. In order to assess the robustness of the solver,

its sensitivity to the discretization parameter h , the viscosity contrast ∆η and the

viscosity jump layer width is examined for the three smoothers proposed in section

(3.3.2). Another parameter considered is the stretching ratio of the mesh since the

domains considered in coextrusion are in general extremely stretched in one dimen-

sion. Furthermore, since the solver is originally developed for transient simulations

the sensitivity to the parameter ∆t/h2Re is also tested. The problem is discretized

on a 64 × 64 × 64 grid and solved using GCR with a single V-cycle multigrid pre-

conditioning per iterate. The coarsening ratio is chosen to be equal to 2 in the three

spatial directions, resulting in 5 multigrid levels. On each level, 3 pre-smoothing and
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∆t
Re h2

≈ 1031 Smoother

∆η
DVS FVS DGS None

it. time C.R it. time C.R. it. time C.R. it. time C.R.

100 11 25.8 0.843 11 43.3 0.896 12 26.6 0.778 33 33.2 0.297

10−1 11 29.7 0.839 11 48 0.889 13 29.7 0.73 38 40.5 0.257

10−2 12 32.4 0.812 11 48.1 0.857 22 50.5 0.437 44 46.9 0.225

10−3 12 32.3 0.772 12 52.4 0.834 34 79.7 0.289 - - -

10−4 13 35.3 0.729 12 52.5 0.823 - - - - - -

10−5 14 37.8 0.694 12 52.5 0.818 - - - - - -

10−6 15 42.7 0.655 12 52.5 0.81 - - - - - -

10−7 15 42.7 0.649 12 52.5 0.805 - - - - - -

Table 4.1: Convergence properties of the three proposed smoothers: Iteration count

(it.); elapsed time (time) and convergence rate (C.R). Solutions are com-

puted for the sinker problem with h = 1/64 and wt/h = 3.5 and varying

the viscosity ratio.

post-smoothing iterations are applied. The parameter ∆t/h2Re is chosen as 1030 to

simulate conditions as close as possible to the Stokes limit and the Cahn number is

chosen to produce a viscosity jump over 3.5 cells since in phase-field simulation this

is the minimal width necessary to correctly resolve the diffuse interface thickness.

The viscosity contrast is varied from 1 to 107 and results are reported in table (4.1),

in term of computational time and number of iterations needed for convergence. The

termination criterion used to check convergence is given by ||r||/||f || < tol, where r

is the residual of the system and f the right hand side. The convergence tolerance

is fixed at 10−10. Computational times are reported with the sole purpose of com-

paring the different smoothers even though they are not fully representative of the

real solver timing performances. Indeed, in transient simulations less stringent con-

vergence tolerances are imposed and also the iterative solver becomes progressively

more efficient as the solution is advanced in time because the initial guess solution,

taken as the previous time step solution, becomes closer to the current solution. The

convergence rate is estimated as [log10 (||r0||)− log10 (||rit||)] /it, where it is number

of iterations needed for convergence.



4.2. Analysis of the Stokes solver 95

Figure 4.5: Convergence history of the SINKER problem solved with GCR+FVS on

64×64×64 grid with a viscosity jump defined over 3.5 cells and different

values of the viscosity contrast.

For low viscosity contrasts the three smoothers present a similar behavior. The

GCR method converges even if no smoothing but only unpreconditioned GCR iter-

ations are applied on each grid level, as a consequence of the beneficial effect of the

symmetric diagonal scaling. As the viscosity ratio is increased, unpreconditioned

GCR and DGS fail to converge within 50 iteration for viscosity contrasts stronger

than 10−2 and 10−3 respectively, while FVS and DVS converge in few iterations

for the whole range of ∆η examined. DVS is faster but less robust than FVS who

scales better with respect to the increasing viscosity contrast. In fig. (4.5), the

convergence history is plotted against the iteration number for the GCR+FVS com-

bination. The difference between ∆η = 1 and ∆η = 10−7 is only in one additional

iteration required for the latter case.

The effect of variable mesh size is illustrated in fig. (4.6) where the sinker problem is

solved for h = 1/32, h = 1/64 and h = 1/128 and a viscosity contrast of ∆η = 10−3.

Convergence to the fixed tolerance of 10−6 is reached for 6, 7 and 8 iterations re-

spectively, showing a weak sensitivity to the discretization parameter. The solution
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times are 3.18, 29.5 and 275.7 seconds respectively, indicating a good scalability of

the time per iteration with respect to the number of unknowns.

Figure 4.6: Solver sensitivity to h, for ∆η = 10−3 and a viscosity jump defined over

3.5 cells.

The effect of the variation of the thickness of the layer over which the viscosity jump

occurs can be evinced by the results reported in table (4.2). As the layer thickness is

made wider than 3.5 cells for a fixed viscosity contrast, the performances of the three

smoothers are improved, while for wt/h = 2 the number of iterations required for

convergence increases dramatically. This is due to the inefficiency of the grid transfer

operators in interpolating a discontinuous viscosity profile over the grid hierarchy.

The discrete diffusion operator is simply re-discretized on each level on the base of

the restricted viscosity field. When dealing with discontinuous coefficients a better

option is represented by Galerkin-based coarse grid operators obtained from the

projection of the fine grid operators. Surprisingly DVS performs better than FVS

for very steep viscosity profiles.

When the Reynolds number is increased or the time step size reduced, the solver

performances ameliorates considerably and even un-preconditioned GCR becomes

very efficient for high Re values as reported in table (4.3).
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∆t
Re h2

≈ 1031 Smoother

wt/h
DVS FVS DGS

it. time C.R it. time C.R. it. time C.R.

2 28 70.2 0.347 33 133 0.298 - - -

3.5 13 35.3 0.729 12 52.5 0.823 - - -

5 12 32.7 0.8 11 48.6 0.857 24 55.3 0.415

10 11 30 0.839 11 48.9 0.891 13 31.5 0.761

Table 4.2: Effect of interface thickness. Iteration count (it.); elapsed time (time) and

convergence rate (C.R). Solutions are computed for the sinker problem

with h = 1/64 and ∆η = 10−4.

∆η = 10−3 Smoother

∆t
Re h2

DVS FVS DGS None

it. time C.R it. time C.R. it. time C.R. it. time C.R.

4.1× 1030 8 20.4 0.772 7 30.9 0.804 22 47.4 0.289 - - -

4.1× 103 8 20.4 0.763 7 29.5 0.803 23 53.3 0.263 34 31.4 0.177

4.1× 10 6 15.2 0.911 6 25.2 0.902 11 25.3 0.528 23 22.4 0.259

4.1× 10−3 2 5.1 1.75 2 8.43 1.77 11 23.5 0.324 6 5.34 0.586

Table 4.3: Convergence properties of the three proposed smoothers: Iteration count

(it.); elapsed time (time) and convergence rate (C.R). Solutions are com-

puted for the sinker problem with h = 1/64, wt/h = 3.5, ∆η = 10−2 and

varying the Reynolds number.
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∆t
Re h2

≈ 1030 Smoother

Grid Size Stretching Factor
DVS FVS

it. time it. time

32× 32× 32 1/10 72 20.52 58 27.22

32× 32× 64 1/5 24 13.70 19 17.79

32× 32× 128 2/5 9 10.24 8 15.67

32× 32× 256 4/5 6 13.67 6 22.36

32× 32× 320 1 6 17.10 6 27.99

Table 4.4: Effect of interface thickness. Iteration count (it.); elapsed time (time) and

convergence rate (C.R). Solutions are computed for the sinker problem

with ∆x = ∆y = h = 1/32, ∆η = 10−1, wt/h = 3.5,and varying the

streching factor ∆z/h.

The effect of the stretching factor is illustrated in table (4.4). For a fixed domain,

consisting of a box defined by Lx = Ly = 1 and Lz = 10, the stretching factor

is varied by increasing the number of cells along z. The considered viscosity con-

trast is ∆η = 10−1 since this is a typical value for a coextrusion problem. For very

stretched cells, both FVS and DVS converges very slowly. Once again FVS shows

more robustness but is also more computationally expensive than DVS. Increasing

the stretching factor from 1/10 to 2/5 the number of iterations needed for con-

vergence changes from 72 and 58 for DVS and FVS respectively to 9 and 8. The

improvement is so evident that the computational time also decreases despite the

increasing number of unknowns. For the stretching factors 4/5 and 1 the number

of iterations required is 6 for both DVS and FVS but the computational time in-

creases because of the increased size of the problem. Note that number of iterations

required for the 32× 32× 320 grid is the same as for the 32× 32× 32 suggesting a

dependence on h but not on the number of unknowns.

In conclusion, the three smoothers perform similarly in the Stokes limit and for small

viscosity contrasts. DVS has better global performances than the others, showing a

robustness comparable to FVS but a faster execution time. For this reason it will

be employed in the next sections unless stated otherwise.
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Figure 4.7: Schematic of the domain used for the calculation of secondary flow in

square ducts.

4.3 Secondary flow in rectangular ducts

Secondary motions in non-circular ducts are characteristic of viscoelastic fluids ex-

hibiting a non zero second normal stress difference. In square sections eight vortices

are observed. The recirculation direction along the walls is toward the corners, while

along the diagonals the flow direction is toward the section center . Increasing the

width of the section with respect to height, the vortices intensity decreases and the

lateral vortices becomes progressively smaller. A detailed explanation on how the

phenomenology of the vortices depends on the negative N2 can be found in [66],

while numerical simulations including FEM and FVM modeling are available in

[24, 61, 11]. In the present section simulations are carried out on a square domain

corresponding to a quarter of the duct section. Symmetry is imposed on two sides

while no-slip is imposed on the opposite sides. Periodicity is imposed in the third

direction corresponding to the main flow direction. A schematic of the domain is

presented in fig. (4.7).

For a direct comparison with the results of Yue, the same spatial resolution of 50×50

is used along x and y, even though convergence of the results is already observed at

lower resolutions. Only five points are used to discretize the domain dimension Lz

because the flow is fully developed in this direction.
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(a)

(b)

Figure 4.8: Intensity of secondary flows in a square duct scaled by the intensity of

the main flow (a), and by L/λH (b). Comparison with numerical data

of Yue et. al. [66, fig. 3]
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(a) (b)

(c)

Figure 4.9: Stress difference τeyy − τexx for De = 1, a = 0.5 β = 0.1. (a) Calculation

by Yue et al. [66, fig. 2(c)] (b) Present simulation. (c) Streamlines of

secondary flow.



102 Chapter 4. Validation of the code

By varying the magnitude of the pressure gradient along z and the polymer relax-

ation time, different flow conditions can be reproduced. The equations are inte-

grated from 0 to 50 non dimensional time units ensuring that the flow has reached

a steady state by the final time. The adopted time step size is ∆t = 0.0125.

Based on the steady state computed flow rate, the mean cross sectional velocity

W = 1
S

∫∫

S
w (x, y) dx dy is obtained and the corresponding Deborah number is cal-

culated. The secondary flow intensity is defined as um = 1
S

∫∫

S

√
u2 + v2dx dy. By

varying the value of the mobility, N2 can also be controlled, since this parameter is

proportional to the first to second normal stress differences ratio for low shear rates.

Finally the effects of inertia are neglected selecting a Reynolds number of 10−6 and

the solvent fraction is chosen to be 0.1. In fig. (4.8(a)) the intensity of secondary

motion is plotted against the Deborah number for a = 0.2, 0.5 and 0.8. As expected,

um/W is an increasing function of a. The maximum of intensity is for a Deborah

number of order of 10−1 while for high values of De the curves tend to collapse into

one. If um is made non dimensional with respect to the natural relaxation time λH

and the section characteristic size D, a fourth power law dependence on the Deborah

number is evinced for vanishing De as shown in fig. (4.8(b)). Comparison with the

previous results of [66] shows an almost perfect agreement.

Fig. (4.9(c)) shows the structure of the two counter rotating vortices while figs.

(4.9(a)) and (4.9(b)) show the solution for the stress difference τeyy −τexx . Note that
the latter does not correspond to N2, since normal stress differences are defined with

respect to the directions 1, 2, 3 corresponding respectively to: the flow direction; the

velocity gradient direction in the plane orthogonal to the flow and the third conjugate

direction. At the wall, where 2 and 3 correspond to y and x (or vice versa), the

second normal stress difference is equal in magnitude to τeyy − τexx .

4.4 Quasi-2d calculation of encapsulation

Anomalous encapsulation occurs for the symmetric three-layer configuration of the

type “A-B-A”. It has been observed experimentally by Khomami and Ranjbaran

[34] and reproduced qualitatively by numerical simulations in [65]. The general
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Figure 4.10: Schematic of the domain used for quasi-2d calculation. The aspect ratio

of the rectangular section is equal to 4.

elastically driven encapsulation criterion predicts that, in absence of a viscosity dif-

ference between the two components, the more elastic one is always encapsulated

by the less elastic one. However under certain geometric conditions the inverse phe-

nomenon may take place. If the central layer is made of the less elastic component,

and its thickness is below a critical value, it will be eventually encapsulated by the

more elastic one. Since elastic encapsulation is much slower than viscous encap-

sulation, a fully three-dimensional simulation would require a very long domain in

order to be able to observe a fully developed encapsulation. For this reason, and

since our fundamental aim is to test our method against an existing numerical so-

lution for viscoelastic two-phase flow, the quasi-2d hypothesis of the original paper

is retained.

A general analogy can be made between the three-dimensional spatial evolution

along the main flow direction (i.e. z) and the quasi-2d temporal evolution of the

interface, but the latter is not necessarily indicative of what really happens in the

three-dimensional case. In two dimensions the interface deformation is due uniquely

to the secondary flows in the plane of the cross-section. If the out-of-plane velocity

component is sufficiently uniform across the section, the three-dimensional interface

deformation spatially evolves in a similar way as the quasi-2d interface evolves in

time, meaning that φ3D (x, y, z) ≈ φquasi2D (x, y,Wt), where W is the mean stream-

wise velocity. Since the velocity field in the main flow direction is not uniform,



104 Chapter 4. Validation of the code

Re Ca Pe De1,2 Cn β1,2 a1,2 d2/d1

Original 10−5 5.3 · 104 2500 1− 0 3 · 10−3 0.1− 1 0.5− 0 0.35

Rescaled 5.6 · 10−5 2.8 · 105 1.4 · 104 5.6− 0 3 · 10−3 0.1− 1 0.5− 0 0.35

Table 4.5: Flow parameters as originally reported in the work of Yue et al. [65] (first

row), and after rescaling (second row).

reaching its maximum value at the centerline and its minimum at the wall, the ac-

tion of secondary motions is greater at the wall then elsewhere. As a consequence,

the real encapsulation profile will progressively deviate from the profile obtained in

quasi-2d simulation as the solution advances in time, producing a completely differ-

ent profiles on long times. This is the reason why quasi-2d approximation should

not be used to produce quantitative results but only to understand qualitatively the

driving mechanisms of the flow.

The schematic for the domain is given in fig. (4.10). Again only a quarter of the

section is considered for symmetry reason. The domain is discretized over 768 ×
192×3 points, which gives a uniform mesh size slightly finer than the smallest mesh

size used in the adaptive meshes of Yue. The total number of unknowns is above

1.6×106. Solution is computed from 0 to 80 non dimensional time units with a time

step size of ∆t = 0.0125. The time required is approximately 6 hours with 16 MPI

processes on two processors Intel Xeon X5560, each having 4 cores and 8 threads.

The flow parameters are presented in table (4.5).

As is the previous test case, the flow is pressure driven and the flow rate is not

conserved. The pressure gradient is assigned to give an initial unitary flow rate.

This is done to obtain a solution that is at least qualitatively comparable to the one

given by Yue even if the dynamics of pressure driven and flow rate controlled flows

are essentially different. Under these conditions, the flow rate gradually adjusts to

a steady state value which is approximately 5 times greater than the original value.

To interpret the results of the simulation, the characteristic numbers are rescaled

by the newly computed mean streamwise velocity value and the same procedure is

applied to the non dimensional time. Temporal evolution of the interface, shown in

fig. (4.11), presents central layer breakup with the formation of the lateral blobs as
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Temporal evolution of anomalous encapsulation (rescaled time). (a) t

= 0 . (b) t = 27.85 . (c) t = 50.13 . (d) t = 83.75 . (e) t = 108.61 .

(f) t = 136.46 .

Figure 4.12: Comparison between the numerical solution in fig [65, fig. 10(a)] at time

t = 76.21 (bottom) and the present solution at t = 136.46 (top). Tem-

poral evolution of the interface is slower due to the secondary motions

being weaker because of the greater Deborah number in our simulation.
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Figure 4.13: Shear viscosity material function of the Giesekus model for PS 1161

and PS 4801

reported in previous calculations [65]. However, since the Péclet and the Capillary

numbers are greater than the reference values, the interface relaxation dynamics are

inhibited. This explains why, for example, the triple point movement at the wall

is somewhat lagged compared to the inner domain interface motion, while in Yue’s

solution the blob appears as completely relaxed, as it is visible in fig. (4.12). Solution

is extended further up to t = 420, showing the stretching of the less elastic blob

along the wall, and confirming the fact that the less elastic component preferentially

migrates toward the wall.

4.5 Bicomponent coextrusion in rectangular dies

Numerical simulation of three-dimensional bicomponent coextrusion is performed in

comparison with the experimental data obtained by Teixeira [44]. The experimental

setup consists of a rectangular die with a section aspect ratio of 2 and a total length

of approximately 24 diameters. The flow rates can be controlled individually for each

component as well as the layers thickness at inflow section. A typical experiment is

run for 30 minutes to ensure that the steady state is achieved and then inflow and

outflow section of the die are blocked simultaneously by two sash blinds. Once the

fluids have cooled down, the solid sample is extracted and sliced at equally distanced

positions along the main axis. Since the two polymers are colored with black and

white colors, the deformed interface profile can be easily read.
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Polymer ηp [Pa s] ηs [Pa s] λ [s] a

PS 1161 6128.66 254.53 0.8401 0.5246

PS 4801 1235.85 182.202 0.46571 0.6910

Table 4.6: Giesekus model parameters for PS 1161 and PS 4801

Material properties and flow parameters

The two polymers considered are two polystyrenes (PS) under the reference names of

Lacqrene 4801 and Lacqrene 1161. PS 4801 is less viscous than PS 1161 as depicted

at fig. (4.13). The experimental data are fitted by the shear viscosity material

function of the Giesekus model.

A constant temperature of 235 ± 2 ◦C is maintained along the die. Even though

polystyrene has temperature dependent viscosity, variations induced by temperature

do not affect encapsulation enough to justify the hypothesis of non-isothermal flow.

In case the thermal properties of the components are significantly different and

produce a viscosity crossover, dependence from temperature must be necessarily

taken into account.

The Giesekus model parameters are reported in table (4.6) for both polymers. Know-

ing that the section characteristic length is 1.35× 10−2m and that the flow rate is

for both polymers equal to 9.28 × 10−3 kg/s, the flow characteristic numbers are:

Re = 1.6 × 10−5 , De1,2 = 1.7 − 0.93, Ca = 5.3 × 103, Rη = 0.21, β1 = 0.04 and

β2 = 0.13. The capillary number is computed on the base of an estimated surface

tension of 10−2N/m. The Péclet number and the Cahn number are chosen on the

base of purely numerical considerations: Cahn number is dictated by the fact that

the interface should be at least 3.5 cells wide on the coarsest mesh, while the Péclet

number is set to be 1000. Tuning the Pe at a lower value would excessively damp

the flow while for higher values the interface would be smeared out due to artificial

diffusion.
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Figure 4.14: Schematic of the domain used for three-dimensional calculation of

encapsulation.

Boundary conditions

The computational domain is sketched in fig. (4.14). Lx, Ly, Lz refer to the domain

length along x, y and z, while Le is the thickness of the upper layer. The thickness of

the lower layer is given by Ly−Le. In our simulations Ly = Lx/2 = 1 and Le = 0.5.

To investigate the influence of boundary conditions at the inflow, two different cases

are analyzed. In a first simulation the total length of the die Lz is taken as 10

and Dirichlet boundary conditions are applied for the stress and the velocity. In

particular, the velocity is given a double Poiseuille profile with a zero stress profile.

Another option is to consider the presence of an horizontal separation plate at height

Le and extending from z = 0 to z = Lr. In this way, at the point where the two fluids

physically meet, the velocity and stress profile are more naturally developed. For

this second case Lr = 5 and Lz = 15. In both cases only half of the original domain

is considered for symmetry reason and open boundary conditions are imposed for

velocity and stress fields at the outlet. The flow rate ratio is unitary.
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Figure 4.15: Schematic of the three-layers coextrusion configuration.

Newtonian case

In a preliminary analysis, grid convergence is studied for a Newtonian equivalent

system, for which the transient time and the downstream length needed for the

flow to be fully developed are much less extended than for the viscoelastic case. In

this way the computational effort to compute steady state solutions is considerably

lowered. The test case consists of a symmetric three-layers configuration presenting

a less viscous central layer. The geometry of the die is defined by Lx = Ly = 1 and

Lz = 5. Initial layer widths are 0.25, 0.5 and 0.25.

The spatial resolutions considered are 1
32
, 1

64
and 1

128
and convergence is checked

through visual inspection of the interface position in the mid-plane of the die. The

interface thickness is 3.5h on the coarsest mesh and scales as h2/3 with the increasing

resolution, as suggested by Jacqmin [27]. If the flow rate is equally partitioned among

the layers and the viscosity ratio is close to unity, the resulting flow is smooth and no

abrupt distortion of the interface is observed, as in fig. (4.16). Good convergence in

the interface position is already achieved for h = 1
64
, despite the low order accuracy

of the phase-field methods.

Conversely, if the flow is such that the interface undergoes brusque deformations,

convergence is much worse. This situation occurs for instance when, in reason of

a high flow rate ratio, sudden expansion of one layer into another is produced.

In fig. (4.17), the breakup of the layer in the middle is anticipated for the mesh

corresponding to the lowest resolution because the interface thickness is too wide

compared to the thickness of the central layer. This case shows how the convergence

of the solution depends on the particular problem at hand. If the interface is too

thick compared to the mesh resolution, the hyperbolic tangent profiles of two close
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(a)

(b)

(c)

Figure 4.16: Mid-plane view of three layers coextrusion of Newtonian fluids with

Rη = 0.5 and Q1/Q2 = 1 (flow rate ratio) at t = 0.25. (a) h = 0.03125;

(b) h = 0.015625; (c) h = 0.0078125.

interface may overlap and the two interface coalesce due to the short range interac-

tions. A quantitative criterion is discussed by Beckermann in [52], who recommends

selecting an interface width at least 4.2 times smaller than the radius of curvature

of the interface.

Non-Newtonian case

In coextrusion the flow rates are balanced and the extruded materials do not present

viscosity differences as strong as for the case presented in section (4.5). The adopted

mesh size for all the viscoelastic simulations is 1
64
. A typical computation at this

resolution, involves approximately 1.2×106 finite volume cells and more than 22×106

unknowns. The computational time to integrate the equations from t = 0 to 60 is

roughly of 20 hours on the cluster SGI Altix ICE 8200 (JADE) 0, using 64 MPI

processes and with a time step size of ∆t = 0.004. The flow field computed in

0Centre Informatique National de l’Enseignement Supérieur in Montpellier (FR)
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(a)

(b)

(c)

Figure 4.17: Mid-plane view of three layers coextrusion of Newtonian fluids with

Rη = 0.1 and Q1/Q2 = 5.25 (flow rate ratio) at t = 0.5. (a) h =

0.03125; (b) h = 0.015625; (c) h = 0.0078125.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: Temporal evolution of the PS 4801 layer. (a) t = 0, (b) t = 5, (c) t =

10, (d) t = 35, (e) t = 60.

presence of the separation plate presents a discontinuity at the plate tip. At this

point the viscoelastic normal stress in the flow direction becomes unbounded as the

mesh is refined or the Deborah number is increased. Even allowing a partial slip of

the velocity on the plate, the stress level produces a numerical blowup of the code

already at h = 1
64
.

Figure (4.18) shows the temporal evolution of the PS 4801 layer as it gradually

encapsulates the PS 1161 component. The disturbance observable at t = 5, fig.

(4.18(b)), is due to the discontinuity in the initial condition for the velocity, which

is uniformly zero in the interior of the domain and finite at the inflow boundary. The
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instantaneous adaptation of the flow to the boundary conditions produces an abrupt

expansion of the more viscous component. This disturbance propagates rapidly

toward the exit of the die. The real encapsulation is a much slower mechanism

taking roughly 60 non dimensional time units to reach a steady state. After this time,

changes in the interface position are almost undetectable even if full encapsulation

has still not been reached. This is not surprising since secondary flows are always

weaker than the primary flow by one or even two orders of magnitude, as seen in

section (4.3). In order to achieve full encapsulation under the same flow conditions,

a die of a length equal at least to 30 should be considered. For Newtonian fluids

the expansion of the more viscous component is the only observable effect since the

second normal stress difference is zero and the absence of any cause for recirculation

prevents the onset of encapsulation.

In fig. (4.19), interface positions are compared between the two configurations con-

sidered. Since the two fluid components already have a developed stress profile,

encapsulation develops more rapidly in case the separation plate is included. Apart

from the bulge appearing at the centerline of the section, which might also be due

to the unphysical inflow conditions, the profiles are similar in the two cases except

that they are shifted along the axis z. Experimental data (courtesy of Teixeira,

1996 [44]) are reported in fig. (4.20(a)). The first row of slices corresponds to the

interface profiles at positions from z = 0 to z = 7.38. The encapsulation profile

obtained by numerical simulation is compared with the experimental data in fig.

(4.20(b)), showing a good agreement with the solution that includes the presence of

a separation plate. Since the spatial development of encapsulation depends on the

inflow conditions, the numerical encapsulation profile at z = 5 is compared with the

best matching experimental profile along the die (fourth slice in the first row), in

order to prove that the interface shape is correctly predicted at least qualitatively.

For a straightforward comparison the inflow boundary condition should be carefully

assigned in order to match the real inflow conditions.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.19: Interface profiles for configurations with (right) and without (left) the

separation plate. (a,e) z = 0.5, (b,f) z = 2.5, (c,g) z = 5, (d,h) z = 8
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(a)

(b)

Figure 4.20: (a) Experimental interface profiles from z = 0 to z = 24. Data courtesy

of Teixeira, 1996 [44] (b) Comparison between the numerical encapsu-

lation at z = 5 and the experimental data at z = 5.54



Résumé du chapitre 4

Le chapitre 4 est dédié à la validation du code de calcul. Dans tous les cas où

une solution analytique est possible, la précision du second ordre est confirmée

par l’analyse de l’erreur numérique en fonction de la taille du maillage. Pour un

écoulement entre deux plaques planes, à partir d’une répartition des couches initiale

arbitraire il est aussi possible de déterminer analytiquement la position asympto-

tique de l’interface si les deux fluides ont les mêmes propriétés et si la tension

de surface entre les deux est nulle. En fait, le rôle de φ se réduit à celui d’un

scalaire passif transporté par le champ de vitesse et l’erreur associée à l’équation

de transport hyperbolique (Pe >> 1) ne converge qu’au premier ordre en norme

L1 indépendamment de l’ordre de précision du schéma utilisé pour le traitement de

l’advection. Cette erreur associée à la présence d’une discontinuité dans la solution

justifie l’emploi d’une interface diffuse introduisant à la fois une erreur proportion-

nelle à son épaisseur wt. si wt tend vers zéro au moins linéairement avec la taille

du maillage h. En réalité, wt, et par conséquent le nombre de Cahn, doit tendre

vers zéro plus lentement que h car le rapport h/wt doit aussi tendre vers zéro en

raffinant le maillage afin que la représentation des forces de tension de surface soit

aussi convergente. La convergence de la méthode est donc le résultat combiné de la

convergence du schéma numérique utilisé pour la discrétisation des équations avec

celle du modèle de champ phase vers la limite d’interface infiniment mince. Malgré le

fait que l’ordre de précision de la méthode est relativement bas et dépend fortement

du cas examiné, les essais numériques réalisés montrent un très bon accord avec les

solutions numériques obtenues par raffinement de maillage adaptatif ainsi qu’avec

les données expérimentales relatives à un cas pratique de coextrusion bicouches.
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5 Numerical simulation of

three-dimensional multi-layer

coextrusion

5.1 Introduction

The aim of the present chapter is the investigation of the mechanism of encapsu-

lation through the analysis of the flow fields obtained by fully three-dimensional

simulation of coextrusion. Of the two cases considered, the two-layers coextrusion

in a square section duct is examined first. The geometric symmetry of this flow

allows the isolation of the effects produced by the rheological behavior of the mate-

rials from those produced by the layer distribution, since for a fixed flow rate and

layer thickness the configurations A−B and B−A yield the exact same results. In

addition, the square duct represents the case where the flow is most interested by

secondary recirculation. The same results obtained for this case can be qualitatively

extended to the case of rectangular ducts, considering that for the latter case encap-

sulation will be confined to the wall or, in the limit of infinite aspect ratio, it will

not be present at all. For the second case, the three-layers configuration, the layer

distribution plays a role as well, since, for fixed flow rates and layer thicknesses, the

configurations A− B − A and B − A− B lead to different flows.

In both cases the two regimes of encapsulation are examined separately as reasonably

possible. The second regime can be easily turned off if Newtonian fluids are taken in

consideration, since no layer rearrangement is observed in absence of a second normal

stress difference but an interface shift. Conversely, in order to observe the second

117
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regime alone, the fully developed flow corresponding to a stratified configuration is

adopted as inflow boundary condition. This is equivalent to observe the flow past

the region where the first regime takes place, because the pressure in the two layers

is already at equilibrium at the entrance of the die. However, when using this kind of

boundary condition, only the flow rates or the layer repartition can be freely chosen

but not both.

It should be noted that the separation of the two regimes is not entirely possible at

least when the second regime is examined and Non-Newtonian fluids are considered.

This is due to the viscosity being a function of the shear rate. So when the latter is

varied, that is varying Weissemberg number of the flow, the viscosity ratio assumes

different values, each yielding a different flow rate ratio, even for a fixed global flow

rate and initial layer repartition.

In the following sections, the flow parameters adopted are estimated on the basis

of realistic values for coextrusion flows. Taking the section characteristic dimension

of the order of 10−2m, the flow rate as 10−3Kg/s, the viscosity as 104Pa s and the

surface tension as of 10−2N/m, yields a Reynolds number of 10−5 and a Capillary

number of 104. These preliminary estimates should suffice to exclude both inertial

and capillary instabilities as causes for encapsulation.

A further clarification should be made about the role of elasticity in this phe-

nomenon. What so far has been referred to as a Deborah number, is the ratio

of the fluid natural relaxation time and the flow characteristic time or the observa-

tion time of a specific phenomenon. In the process of non-dimensionalization of the

equations, without any assumption on the nature of flow, this time has been taken

as the characteristic convective time, that is the ratio of the characteristic length

L and the characteristic velocity Wm. In pipe or channel flows the ratio Wm/L is

proportional to the flow average shear rate, so the dimensionless group λHW/L is

more likely descriptive of the flow’s Weissemberg number, expressing the degree to

which the non-linear behavior of a material is manifested in response to an imposed

shear rate, rather than Deborah number. The Deborah number of encapsulation

should be evaluated on the basis of the encapsulation characteristic time which,

corresponds to the duration of the time-unsteady flow. This time is by far greater
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Figure 5.1: Schematic side view of the computational domain used for the simula-

tions of the first regime.

than the convective time since encapsulation is a very slow process, which means

that De is almost close to zero. To have a preliminary estimate, one can consider

the characteristic time of encapsulation as being proportional to L/um where um is

the secondary flow intensity as defined in section (4.3). When read in this sense, the

curve of fig. (4.8(b)) is representative of the Deborah number λHum/L as a function

of the Weissemberg number Wi = λHWm/L. It is clear that even for high Wi the

De is always less than 10−2. The maximum value of secondary flow intensity is at

a Wi of the order of 10−1 corresponding to a De of the order of 10−4. This should

be enough evidence to exclude the hypothesis of an elastic instability driving the

mechanism of encapsulation, as the elasticity manifests itself very little in response

to the interface transient deformation. In the remaining part of this chapter the

group λHWm/L will be referred to as the Weissemberg number of the flow.

5.2 Two-layers configuration

5.2.1 Analysis of the first regime of encapsulation

In the assumption of well balanced flow rates and layer repartition, the two-layers

flow of Newtonian fluids has only one parameter to set, which is the viscosity ratio.

The latter is usually defined as being greater than one, since a high viscosity ratio

naturally induces to think to a high viscosity difference. However, for the flow

equations to be well scaled, it is more correct to define the viscosity ratio as being
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less than one. Although this is counterintuitive, a small viscosity ratio means in

this case a high viscosity difference. The term reciprocal viscosity ratio shall be used

instead to indicate the ratio of the viscosity of the more viscous fluid and the one

of the less viscous fluid. The geometry of the domain is represented schematically

in fig. (5.1). Both the flow rate ratio and the initial layer repartition are 1 : 1 while

the viscosity ratio assumes the values: 1, 0.5, 0.2, 0.1, 0.05; yielding a reciprocal

viscosity ratio ranging between 1 and 20. The inflow boundary condition consists of

a double Poiseuille profile symmetric about y = 0.5. A domain length of 4 diameters

is largely sufficient to reach fully developed flow at the exit of the die. From now on,

in the rest of the chapter the word diameter is used loosely to indicate the section

side length. The adopted mesh element size is h = 1/128, which gives a mesh of

64×128×512 elements. Only half of the domain is considered along x for symmetry

reason. The time step used for the simulation is ∆t = h/10 and the time-stepping

procedure is iterated up to 6 dimensionless time units. A typical simulation is run

for 7 to 14 hours on 16 MPI processes (Intel Xeon X5560), depending the viscosity

ratio, since the smaller the viscosity ratio the longer the transient duration. The

Péclet number and Cahn number adopted in all the simulations are respectively

Pe = 103 and Cn = 0.0088. This choice of the phase-field parameters gives an

interface width 4.7 times greater than mesh element size.

As usual, the sharp interface is given the implicit surface expressed by φ (x, y, z, t) =

0. Its temporal evolution is shown in fig. (5.2) where only the less viscous layer is

visualized. As expected, the more viscous layer pushes into the less viscous one

and this effect is more accentuated if the viscosity ratio of the fluids is decreased

from 0.2 to 0.05. Fig. (5.3) shows the temporal evolution of the interface and the

velocity profiles in the symmetry plane. The low viscosity layer is characterized

by a higher mean shear rate and velocity. Fig. (5.4) shows the interface profiles

in the channel cross-section. The contact line also moves in the direction of high

shear low viscosity region, confirming the hypothesis of no possible encapsulation

for Newtonian systems. The little curvature observed is due to the fact that the

contact line moves slower than the inner interface since its possibility to move is only

related to the phase diffusion at the wall and the high Pe selected implies a very slow

equilibrium process of the diffusion mechanisms. On a very long observation time
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.2: Comparison of two-layers coextrusion flows: η2/η1 = 0.2 (left), η2/η1 =

0.05 (right). t = 0 (a,e). t = 2 (b,f). t = 4 (c,g). t = 6 (d,h).
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Figure 5.3: Interface profile and velocity profiles in the symmetry plane. η2/η1 = 0.2

(left), η2/η1 = 0.05 (right). t = 1 (a,e). t = 2 (b,f). t = 3 (c,g). t = 4

(d,h).

(a) (b)

Figure 5.4: Interface profile in the cross section plane z = 1 at t = 6. η2/η1 = 0.2

(a). η2/η1 = 0.05 (b).
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Figure 5.5: Interface profiles in the symmetry plane for different values of the vis-

cosity ratio.

the interface is expected to become flat again. This fact is also confirmed by the

observation that for two different viscosity ratios the interface shape is surprisingly

similar except for the more pronounced shift induced by the smaller viscosity ratio.

The interface profiles in the symmetry plane are compared in fig. (5.5), while fig.

(5.6(a)) shows the entry length and interface position as functions of the viscosity

ratio. Note that the same definition of entry length as in [26] is adopted. As

predicted by the approximated analysis for the flow between to parallel plates, both

the entry length and the interface shift are increasing functions of the reciprocal

viscosity ratio. However, the interface equilibrium always occurs within a length of

the order of one diameter. This result confirms that the first regime is indeed a very

rapid mechanism for flows in the Stokes limit.

When considering a more general case the interface position will be the result of

the combined effects of the viscosity ratio, the flow rate ratio and the layer reparti-

tion. For a specific couple of fluids any desired layer repartition can be obtained by

appropriately tuning the flow rate ratio.

For each fluid the dimensionless viscous dissipation and pressure gradient are com-

puted. The viscous dissipation is defined as

Φ = 2

∫∫∫

Ω

η (x, y, z)D : Ddv , (5.1)

where Ω = [0, Lx/2]× [0, Ly]× [0, Lz].

Both quantities are decreasing functions of the reciprocal viscosity ratio as illustrated
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Figure 5.6: Interface position and entry length as functions of the viscosity ratio (a).

Dimensionless pressure gradient and viscous dissipation as functions of

the viscosity ratio (b).

in fig. (5.6(b)).

5.2.2 Simulation of interfacial instability

The fig. (5.3) also shows the evolution of the perturbation generated at the flow

startup. Since the boundary conditions are applied impulsively to the initially qui-

escent fluids, these react with a shear wave that propagates in the flow direction.

Although the disturbance is applied in the same way for the four cases in exam, the

wave evolves differently depending on the viscosity ratio. High viscosity differences

seem to promote the wave deformation into a finger-like structure as the one seen in

fig. (5.3(f)). This observation suggests the presence of an interfacial instability, im-

plying the growth of small perturbations in the flow direction, giving rise to a folded

surface. This kind of phenomenon is referred to as “zig-zag instability” in literature

and is often encountered in coextrusion as reported, for example, by Dooley [12].

A complete analysis on the problem of interfacial instabilities in two-layers flows can

be found in [62, 63, 64]. The main results can be summarized as follows:

1. for long wavelength perturbations, reducing the thickness of the less viscous

layer promotes the instability while a thin more viscous layer is favorable to

the stability.

2. For short wavelength perturbations, the stability region is reduced to a tighter

interval of the thickness ratio.
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Figure 5.7: Evolution of the interface shape due to a sinusoidal flow rate perturbation

in a two-layers stratified flow with Re = 10−6, η2/η1 = 0.1. t = 4 (a). t

= 5.5 (b). t = 7 (c). t = 8.5 (d). t = 10 (e). t = 11.5 (f)
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3. The surface tension is always a stabilizing factor, but its influence becomes

smaller for long wavelength perturbations.

4. Gravity can affect the flow in both destabilizing and stabilizing ways depending

on the viscosity gradient direction.

5. Instabilities are present even for vanishing inertial effects.

The sole purpose of this section is to illustrate the effect producing a folded interface

in order to show the difference between the latter and proper encapsulation, without

investigating further on the subject of the interfacial instability.

A two-layers flow is simulated considering the following perturbation of the boundary

conditions as proposed by Sizaire [48]:

Q1 = Q0 +∆Qsin (ωt)

Q2 = Q0 −∆Qsin (ωt)
(5.2)

The flow rate amplitude ∆Q = 0.35 and frequency f = 2πω = 0.25 are chosen in

such a way as to produce a wave shape that resists to the damping effect introduced

by the grid and the diffuse interface. For lower amplitudes or higher frequencies,

the wavelength and amplitude of the resulting perturbation become of the same

order of the interface width and thus the numerical error prevents the onset of

the instability, because the flow cannot “sense” the perturbation unless a higher

numerical resolution is used. This effect is comparable to the stabilizing effect of

the surface tension. In this sense the diffused interface introduces an artificial surface

tension that vanishes as Cn tends to zero and Pe becomes infinite.

In order to have the same spatial and temporal resolution as in section (5.2.1), but a

longer channel length (16D), only two-dimensional flow is considered. The same flow

parameters are also retained. Fig. (5.7) shows the results of the simulation. When

subject to an initial perturbation, the interface manifests a wavy shape. The crests of

the waves are subject to a velocity gradient that tends to pull them apart in opposite

directions producing pronounced folds. These become progressively thinner and

more elongated until they eventually break up and form an actual intermixing layer

between the two phases. In order to minimize these instabilities, Dooley suggests to
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(a) (b)

Figure 5.8: Lateral view of the computational domain used for the simulations of

the second regime of encapsulation (a). Local coordinate system for the

definition of N2 at the wall (b)

design the feeding block in such a way that the joining streams have similar velocities

at the merging point and directions as parallel as possible. The viscosity difference

should be minimized too or, alternatively, the thickness of the less viscous layer

should be increased. A more complete review of the techniques used to minimize

interfacial instabilities can be found in [25].

5.2.3 Analysis of the second regime of encapsulation

The effects of viscosity and geometry have been discussed in sections (5.2.1) and

(5.2.2). Oldroyd-B model fails in the prediction of a second regime of encapsulation

since it exhibits no second normal stress difference and the same consideration made

for the Newtonian model can be drawn for Oldroyd-B fluids. To be able to observe

the second regime, the Giesekus model is adopted in this section. With this model

the second normal stress difference is controlled by the mobility coefficient a which

corresponds to the ratio −N2/N1 in the limit of zero shear rate. A known issue of

the Oldroyd-B model, and by extension of the Giesekus model as a tends to zero,

is the presence of an unbounded extensional viscosity. When imposing a boundary

inflow condition like the one used in section (5.2.1), a double Poiseuille profile, the
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fluids are subject to a severe elongation in the region where the two streams merge,

since the point of the boundary where the two velocity profiles meet is characterized

by a virtually infinite
∂w

∂z
. In numerical simulations the value

∂w

∂z
is finite but

still considerably large and this, together with the unboundedness of the viscosity,

makes the elongational stress large enough to become a destabilizing factor for the

numerical scheme adopted for the integration of the constitutive equations. This

issue could be limited to some extent by using Finitely Extensible Nonlinear Elastic

(FENE) models [21], adopting different formulations of the constitutive equations

based on the matrix logarithm of the conformational tensor [2, 13] or modeling the

separation plate as having a finite thickness and a blunt edge. However, the problem

is simply circumvented in this analysis by adopting a different inflow boundary

condition.

For the simulations concerning the second regime, the fully developed steady flow

corresponding to a fixed layer repartition is assigned as a boundary condition to the

inflow section. The solution of the three-dimensional flow field is then composed of

two steps:

1. The quasi2D solution for a layer repartition of 1 : 1 (meaning that the interface

is kept fixed during this stage) is computed until steady state is reached.

2. This solution is imposed as inflow boundary condition as well as initial condi-

tion for the three-dimensional flow.

A schematic side view of the domain is presented in fig. (5.8(a)). The resulting

flow corresponds to two streams merging with perfectly balanced flow rates. In this

sense it is like observing the flow past the entry length required for the pressure

equilibration. Since the entry length is always o (D) and encapsulation is usually

much slower, the hypothesis of a first regime occurring without noticeable encapsu-

lation effects is fairly reasonable. Hence, the interface is assumed as still flat at the

entrance of the domain.

A further advantage of this assumption is that the viscoelastic stresses have already

reached their fully developed profiles at the start of the simulation, which consider-

ably shortens the time required to reach the steady state and also produces a faster

encapsulation development as seen in section (4.5). This means that a shorter die
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length can be considered.

The analysis of the flow includes the following aspects:

1. Inspection of the normal stress level at the inflow section:

The normal stress difference τxx − τyy is considered instead of N2 because it

does not depend of the definition of a local coordinate system. As illustrated

in fig. (5.8(b)), at the wall, where the flow direction is z ≡ 1, the velocity

gradient direction is x ≡ 2 and the third neutral direction is y ≡ 3, one has

N2 = τxx− τyy. Similarly, at the symmetry plane z ∼= 1 , y ∼= 2 and x ∼= 3, and

then N2 ≈ − (τxx − τyy). The approximation is due to the fact that v is non

zero at the symmetry plane and so the flow direction is not exactly parallel

to z. The normal stress difference is discontinuous at the interface since the

latter is not at equilibrium and the sign of the N2 jump across the interface is

to be related to the direction of the interface displacement.

2. Analysis of the secondary flow intensity and pattern at the inflow section: since

the flow is fully developed in this section, i.e. it is obtained in the assumption

of
∂w

∂z
= 0, u and v form closed streamlines.

3. Analysis of the velocity profile at the inflow section to put in evidence the

regions of high and low shear rate.

4. Temporal and spatial development of the degree of encapsulation.

From the comparison of the points 2 and 4, it should be possible to determine how

predictive is the secondary flow pattern of a quasi2D simulation with respect to

the actual three-dimensional encapsulation development. This point is fundamental

since if both are related to each other, as it is expected to be, it means that, for a

given pair of materials, the quasi2D analysis yields results predictive of the three-

dimensional flow but with a considerable reduction of the computational effort.

Newtonian fluid - Giesekus fluid pairing

The Newtonian/Giesekus combination offers the possibility to arbitrarily set the

viscosity ratio while keeping the jump of N2 across the interface always of the same



130 Chapter 5. Numerical simulation of three-dimensional multi-layer coextrusion

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

λ1 γ̇

η
/
η
0
1

 

 

Giesekus fluid: η
s
/η

01
=0.1 a=0.6

Case 1: η
2
/η

01
 = 0.6345

Case 2: η
2
/η

01
 = 2

Figure 5.9: Shear viscosity as a function of the shear rate for Newtonian and

Giesekus fluids.

sign, since for Newtonian fluids N2 = 0 and the Giesekus fluid will have a stronger

absolute N2 whatever is the viscosity ratio between the components. Two viscosity

ratios are considered: ηN/η0G = 0.63 and η0G/ηN = 0.5 where the subscripts G and

N refer to the Giesekus and the Newtonian fluids while 0 indicates the zero shear

viscosity. In the first case (NEWTGIE1) there is a viscosity crossover at λH γ̇ = 1.

At lower shear rates the Newtonian fluid is less viscous than the Giesekus one while

at higher shear rates it is more viscous. In the second case (NEWTGIE2) the

Newtonian fluid is always more viscous (fig. (5.9)).

If the viscosity mismatch criterion was verified, that is the less viscous component

encapsulates the more viscous one, the Giesekus fluid should always encapsulate the

Newtonian fluid in the latter case, while for the former one the phenomenon should

depend on the flow mean shear rate: at low Weissemberg numbers the Newtonian

fluid should encapsulate the Giesekus fluid while the sense of encapsulation should

be reversed at high Weissemberg numbers. The encapsulation degree should also be

minimum for the Wi approaching 1 as the fluids have the same viscosities. Con-

versely, if the N2 hypothesis was correct, the Newtonian fluid should encapsulate
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Figure 5.10: Intensity of the secondary flow as a function of the Weissemberg number

for the configuration NEWTGIE1 (a). Visualization of the secondary

flow in the left half of the square cross section. Newtonian fluid is red

(upper) and Giesekus fluid is blue (lower). Wi = 0.0278 (b). Wi =

0.2154 (c). Wi = 1.6681 (d).
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the Giesekus fluid at any Weissemberg number.

The spatial resolution used is h = 1/64 giving approximately 1.31 · 106 cells and

more than 22 · 106 unknowns to solve at each time step. The time step size is

∆t = h/10 and the solution is iterated until t = 60. In both cases, the simulations

are performed for evenly spaced Weissemberg numbers in the logarithmic interval

[10−2, 102]. Only half of the original domain is considered for symmetry reason.

For the first case, the curve in fig. (5.10(a)) shows the secondary flow intensity

plotted against the Weissemberg number. As for the single phase flow, the curve

presents a maximum corresponding to the Giesekus fluid single relaxation time at

a Wi of approximately 0.2, suggesting that at this condition the encapsulation will

also be maximum.

From the analysis of the secondary flow patterns, in fig. (5.10(b)) (5.10(c)) and

(5.10(d)), it is clear that despite the presence of a viscosity crossover, the recircula-

tion sense is unchanged. For allWi analyzed, the fluids recirculate counterclockwise

in the left half of the section. For high Wi a second vortex appears in the Giesekus

fluid but it does not seem to affect the rotation sense of the main vortex. The

velocity profile on the interface suggests that the Newtonian (upper) layer always

encapsulates the Giesekus (lower) layer and the latter has a convex surface. Three-

dimensional simulation confirms the fact that the sense of encapsulation is always

consistent with the sense of recirculation in the inflow section.

The layer rearrangement progression is shown in fig. (5.11(c)) to (5.11(k)) for

Wi = 0.21 which yields the fastest encapsulation development rate. Encapsula-

tion is slowed down as the contact line approaches the section upper corner. While

the latter no longer advances at the wall, the motion of interface proceeds in the

interior region until the Newtonian fluid reaches the upper wall and attaches to it

as seen in fig. (5.11(i)). From the reattachment point the contact line continues

to move towards the center of the section, while the Giesekus fluid blob that is

formed in the section upper corners is pushed forwards in the main flow direction

by the Newtonian component, as observed in fig. (5.11(j)), until it is completely

expelled from the die. At this stage it is not possible to verify the occurrence of this

particular phenomenon in real coextrusion flows since no transient data are made
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Figure 5.11: Case NEWTGIE1 at Wi = 0.2154. Inlet velocity profile at indicated x

sections (a) and normal stress (b). Visualization of the deformation of the

Newtonian fluid layer. t = 0 (c). t = 7.5 (d). t = 15 (e). t = 22.5 (f). t =

30 (g). t = 37.5 (h). t = 45 (i). t = 52.5 (j). t = 60 (k).
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Figure 5.12: Encapsulation level for the case NEWTGIE1 at Wi = 0.2154 (a), as

defined in the schematic (b).

available to the knowledge of the author and the fact that the radius of curvature

of the corner blob is small when compared to the interface width and mesh size in-

dicates that a further mesh refinement should be made in order for this result to be

quantitatively relevant (see section (4.5)). However the latter is definitely consistent

with the experimental observations reported by Mauffrey in [39] and summarized in

section (1.1.3).

With respect to the steady state configuration, the encapsulation degree can be

determined as:

Ed =
L1 + L2 + L3

D
(5.3)

Where L1, L2 and L3 are defined as in fig. (5.12(b)). This definition is more

appropriate than the classical definition relying on the fraction of perimeter wet by

the less viscous fluid, because it includes the interface deviation from the midplane

L1. This implies that even after the two contact lines have come to join, Ed still

increases as the encapsulated component moves towards the section center even if

the section perimeter is completely wet by one fluid. As reported in [44, 39], when

plotted against z, as in fig. (5.12(a)), the encapsulation rate can be approximately

represented by a piecewise linear function with a discontinuous steepness at the
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point where the contact line meets the section corner.

The fact that, independently of the viscosity ratio, the encapsulation always occurs

in the same sense and that the Newtonian fluid encapsulates the Giesekus fluid gives

credit to the hypothesis that the phenomenon is intrinsically related to the sign of

the jump of N2 across the interface.

To further reinforce this result, all the simulations are repeated for the second case

of η0G/ηN = 0.5 for which the viscosity of the Newtonian fluid is always greater than

the one of the Giesekus fluid. As for the previous case, the secondary flow intensity,

shown in fig. (5.13(a)), attains its maximum around Wi = 0.21 and the analysis

of the secondary flow fields in fig. (5.13(b)), (5.13(c)) and (5.13(d)), indicates that

the Newtonian fluid encapsulates the Giesekus one in any case. This is striking

in the three-dimensional visualization of the Newtonian layer in fig. (5.14(c)) to

(5.14(k)).

Giesekus fluid - Giesekus fluid pairing

The Giesekus/Giesekus combination offers the possibility to observe the inversion of

the encapsulation sense at high shear rates as first observed by Southern and Ballman

in [50, 49]. This phenomenon was originally attributed to the presence of a viscosity

crossover. In this section the inversion of encapsulation can be explained only as

an effect of N2 with arguments consistent with the ones provided in the previous

section. For this purpose, the parameters of the Giesekus model are choosen as

λ2/λ1 = 0.2, η02/η01 = 0.5 and a1,2 = 0.6. This choice produces a crossover of the

second normal stress difference coefficients of the two fluids and a double crossover

in the viscosity, as shown in fig. (5.15(a)) and (5.15(b)).

The values of the mobility parameter a, although a little too high when compared

to real polymer melts, for which the ratio of the second to the first normal stress

difference usually ranges between 0.1 and 0.3, are assumed in such a way as to

magnify the recirculation effects and be able to observe a significant encapsulation

within a relatively short die length.

The same simulation parameters and geometry as in the previous section are retained
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Figure 5.13: Intensity of the secondary flow as a function of the Weissemberg number

for the configuration NEWTGIE2 (a). Visualization of the secondary

flow in the left half of the square cross section. Newtonian fluid is red

(upper) and Giesekus fluid is blue (lower). Wi = 0.0278 (b). Wi =

0.2154 (c). Wi = 1.6681 (d).
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Figure 5.14: Case NEWTGIE2 at Wi = 0.2154. Inlet velocity profile at indicated x

sections (a) and normal stress (b). Visualization of the deformation of the

Newtonian fluid layer. t = 0 (c). t = 5.25 (d). t = 10.5 (e). t = 15.75 (f).

t = 21 (g). t = 26.25 (h). t = 31.5 (i). t = 37.75 (k)
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Figure 5.15: Case GIEGIE2. Shear viscosity (a). Second normal stress difference
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in the present simulation and while the elasticity ratio λ2/λ1 is kept constant, the

Weissemberg number is varied by varying the global flow rate. Note that, although

this would imply a variation of the Reynolds number and the Capillary number, even

increasing or decreasing the flow rate of two orders of magnitude does not weaken

the hypothesis of negligible inertial and capillary effects and thus the same Re and

Ca are retained.

The first important difference with the cases NEWTGIE1 and NEWTGIE2 lies

in the curve of the secondary flow intensity at the inflow section as a function of

Wi exhibiting two maxima at Wi ≈ 0.21 and Wi ≈ 3 as shown in fig. (5.16(a)),

corresponding to the two characteristic relaxation times of the system. A few more

points have been added to the curve in order to detect the local minimum located

at Wi ≈ 1.1.

From the analysis of the secondary flow pattern in the inflow section the following

predictions can be made:

1. At low shear rates the fluid 2 (upper layer) encapsulates the fluid 1 (lower

layer) who shows a convex surface as seen in fig. (5.16(b)).

2. At high shear rates the fluid 1 encapsulates the fluid 2 who shows a convex

surface. Fig. (5.16(d)) also shows a second vortex appearing in the region

occupied by the less elastic fluid (1).

3. At intermediate shear rates, 0.2 < Wi < 3, the secondary flows is experienc-
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Figure 5.16: Intensity of the secondary flow as a function of the Weissemberg number

for the configurationGIEGIE2 (a). Visualization of the secondary flow

in the left half of the square cross section. Fluid 1 is in red (upper) and

fluid 2 fluid is in blue (lower). Wi = 0.2154 (b). Wi = 1.1 (c). Wi = 3

(d).
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ing many recirculation cores and the flow direction on the interface seems to

suggest a double curvature deformation as in fig. (5.16(c)).

In the first case, the flow of a less elastic and viscous fluid encapsulating a more elas-

tic and viscous one yields analogous results as for the case of the Newtonian/Giesekus

pairing. The fluid 2 is pushing down at the wall and it is being pushed up in the

midplane.

In the second case, the less elastic fluid 2 is encapsulated by the more elastic fluid 1.

By inspecting the three-dimensional interface evolution in fig. (5.17(c)) to (5.17(k)),

it is possible to notice that the deformation in the midplane is not in the same sense

as the one suggested by the analysis of the secondary flow direction in the inflow sec-

tion. While the latter indicates a downwards displacement in the midplane section,

the three-dimensional interface becomes slightly bulged upwards. This represents

the only case where the results of the quasi2D flow with a fixed interface and the

actual three-dimensional calculation differ from each other.

The third and most interesting case is the one at Wi = 1.1. For this configuration

the fluid 1 has a lower absolute N2 than fluid 2 at the wall, where the shear rate is

maximum, while the situation is reversed when moving along the interface towards

the low shear region, i.e. the center of the section. The inversion of the N2 jump

sign along the interface produces a deformation that is characterized by a double

curvature. The evolution of the interface, shown in fig. (5.18(c)) to (5.18(k)),

is consistent with the observations on the shape interface between PS and HDPE

reported by Han in [22]. This particular shape, is sometimes referred to as “gull-

wing” interface, and it was usually attributed to the viscosity crossover.

If the same numerical experiments are repeated with two viscoelastic fluids pre-

senting a viscosity crossover but not a second normal stress difference crossover,

the inversion of the encapsulation sense is not observed. At this point the results

seem to clearly point out that phenomenon of encapsulation is driven by the normal

stresses in the cross section plane and not by a viscosity difference. However, for

real fluids these two elements are not always separable and the fluids having higher

viscosities in general are also characterized by higher normal stress differences.

A negative N2 means that the fluid experiences an extra compressive (negative)
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Figure 5.17: Case GIEGIE2 at Wi = 3. Inlet velocity profile at indicated x sections (a)

and normal stress (b). Visualization of the deformation of the fluid 2 layer.

t = 0 (c). t = 7.5 (d). t = 15 (e). t = 22.5 (f). t = 30 (g). t = 37.5 (h). t

= 45 (i). t = 52.5 (j). t = 60 (k).
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Figure 5.18: Case GIEGIE2 at Wi = 1.1. Inlet velocity profile at indicated x sections

(a) and normal stress (b). Visualization of the deformation of the fluid 2

layer. t = 0 (c). t = 7.5 (d). t = 15 (e). t = 22.5 (f). t = 30 (g). t = 37.5

(h). t = 45 (i). t = 52.5 (j). t = 60 (k).
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Figure 5.19: Schematic of mechanism driving the interface deformation at the wall

for the cases NEWTGIE1 and NEWTGIE2.

stress in the direction of the velocity gradient or equivalently that there is an extra

tensile stress in the third direction. In single phase flows the presence of N2 induces

secondary motions whose sense of recirculation depends on the sign of ∇γ̇ ×∇w as

demonstrated by Yue in [66].

In the case of two-phase flow under the assumption of a static flat interface and

zero derivatives in the flow direction, which is the case for the inflow section, the

interface is not at equilibrium, as confirmed by the presence of a non zero normal

velocity on it. The non equilibrium is given by the unbalanced normal stresses on

both sides of the interface. The coalescence of the contour lines of τxx− τyy near the

contact line, observable in fig. (5.14(b)) and (5.14(b)) for instance, indicates that

in the limit of sharp interface there is a jump of the normal stress difference across

the interface. If the analysis is restricted to the interface portion close to the wall,

depicted in the schematics of fig. (5.19), where this stress difference corresponds to

N2, following the same idea as in [65], it is possible to conclude that the interface

side facing the region of fluid having a greater negative N2, experiences a greater

tensile stress in the second direction (here y) than the side facing the region of lower

N2. This means that the net force exerted by the fluids on the interface tends to pull

it upwards in the region occupied by the fluid possessing the greater absolute value

of N2. This scenario is consistent with the direction of the flow near the contact line
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region as observed in all the numerical simulations. The same considerations can be

extended for the interface point in the midplane, where τxx−τyy corresponds to −N2

and the interface normal lies in the third direction. In this case the stronger the N2

the greater the compressive stress, hence the net force on the interface pulls it in the

region of lower N2. In contrast with what is observed for the contact line movement,

the flow direction in the midplane is not always consistent with the sign of the N2.

This is a consequence of the quasi2D assumption. Since all the derivatives in the z

direction are zero, the streamlines in the cross section plane are constrained to form

closed loops by the incompressibility condition. This implies that the net flow rate

across the initial flat interface must be zero:

∫ Lx

0

v(x, 0.5)dx = 0 (5.4)

The sign of v results from the competition of two factors: the local sign of the normal

stress jump and the global constraint imposed by the incompressibility. At the mid-

plane, the N2 jump is usually weaker than at the wall so the flow is most influenced

by this latter condition. This analysis explains the discrepancy observed of the flow

simulation GIEGIE2 at Wi = 3 between the local flow direction observed at the

inflow section and the actual three-dimensional deformation of the interface in the

opposite direction. Indeed, in three-dimensional flow the fluid stream is allowed to

accelerate in the z direction, so the condition expressed by the relation (5.4) does

not hold anymore. This consideration poses another limit to the validity of quasi2D

simulations which are able to correctly predict the interface movement at the wall

but may fail to describe the interface deformation in the interior domain.

5.3 Three-layers configuration

When more than two layers are coextruded, the effect of geometry comes into play

and the way the different layers are alternated has a role in the determination of

interface final state too. A simple way to illustrate this effect is offered by the

two-dimensional three-layers channel flow. As depicted in fig. (5.20), showing a

half of the channel, the two layers have an initial repartition and flow rate ratio of
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Figure 5.20: Schematic of the three-layers configuration.

0.25 : 0.5 : 0.25. If the viscosity ratio is 1, in simple two-layer flow with a layers

repartition of 1 : 1, the interface does not move from is initial position because

the it coincides with one of the two symmetry planes of the rectangular section.

In three-layers systems the interface is shifted from its initial position hi = 0.25

even if the viscosity ratio and the flow rate ratio are 1. To obtain the value of

the interface displacement, the mass conservation equation is applied to the control

volume ABCD. The flow rates through AB, AD and BC are given by:

∫

1

4

0

wdy = Q/4 (5.5)

∫ ∞

0

vdz = 0 (5.6)

∫ C

B

V · nds = 0 (5.7)

Here the flow rate through the inflow section has been set to one fourth of the total

flow rate Q, while the flow rates through the solid wall and the interface are zero

since V ·n is uniformly zero at these boundaries. To evaluate the flow rate through

DC, the channel section at z = ∞, the velocity profile is assumed as fully developed.

Hence:

∫ h

0

[6Qy (1− y)] dy = Qh2 (3− 2h) (5.8)

Equating this to Q/4 and solving for h, yields h = sin (π/18)2 +
√
3/2sin (π/9) ≈

0.326. So the interface moves a distance of h− hi ∼ 0.076 due to a plain geometric
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Figure 5.21: Three-layers configuration: comparison of the interface position in the

symmetry plane for different viscosity ratios.

effect. In the next section this phenomenon is analyzed in combination with the

effects of viscosity for the first regime in three-dimensional flow.

5.3.1 Analysis of the first regime of encapsulation

The three-dimensional flow analyzed in this section is characterized by the same

parameters as in section (5.2.1). The same simulation parameters are also retained

with the only exception that for this case the flow has two planes of symmetry, so

only one quarter of the domain is considered. Instead of separating the two cases

A−B−A and B−A−B, they are treated as if the ratio of the core to the skin layer

viscosities varied from 0.1 to 10. For instance, the cases η1/η2 = 0.1 and η1/η2 = 10

correspond to the same viscosity ratio but the former refers to the configuration

A− B − A while the latter to B − A− B.

From the observation of the steady state interface shape in the symmetry plane of

the channel in fig. (5.21), the it can be concluded that:

1. As for the two-dimensional case, for a viscosity ratio of 1 the core layer is

squeezed by the two skin layers due to a pure geometric effect

2. This phenomenon is favored by increasing the viscosity of the skin layers.

3. The same initial layer repartition can be maintained by increasing the viscosity

of the core layer. In the numerical simulations this seems to occur for a

viscosity ratio between 5 and 10.

The evolution of the interface deformation in time is shown by fig. (5.22), for the
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configurations corresponding to η1/η2 = 0.1 and η1/η2 = 10. In the former case the

initial perturbation grows in the flow direction forming two symmetric crests that

fold up and merge again with core layer, while in the latter the effects of flow rates

and viscosity compensate each other and thus the initial perturbation is damped

indicating a greater stability of the flow in case the core layer is made of the more

viscous fluid.

5.3.2 Analysis of the second regime of encapsulation

Since multi-layer coextrusion is used mainly for the production of thin films, the

analysis of the second regime for the three-layers configuration is extended to rect-

angular sections too. The combination of materials considered is the same as the

one for the case NEWTGIE1, with a viscosity crossover at λH γ̇ = 1. This choice

is motivated by results of the section (5.2.3) indicating that the Newtonian fluid

always encapsulates the Giesekus fluid. In this way N2 is always greater in one fluid

irrespective of the Wi of the flow, and the effect of geometry can be clearly evinced

since the way the jump of N2 influences the interface deformation for this fluids

combination has already been elucidated.

All the flow conditions and simulation parameters are the same as the one of the cor-

responding two-layers flow, except for the presence of a double symmetry boundary

condition allowing the restriction of the domain to only one quarter of the original

section. As for the previous cases, the quasi2D flow with the fixed interface (corre-

sponding to the inflow boundary condition) is inspected first in order to verify how

predictive is the secondary flow pattern with respect to the actual three-dimensional

deformation of the interface. Moreover, this step allows the determination of the

Wi yielding the strongest recirculation and thus the fastest encapsulation rate.

From the analysis of the secondary flow intensity curve plotted against the Weis-

semberg number in fig. (5.23(a)) it appears that when the core layer is made of

the Giesekus fluid (configuration B − A− B) the curve is shifted forwards and the

maximum of the intensity occurs at a higher Wi than for the opposite case when

the core layer is made of the Newtonian fluid (configuration A − B − A). This is

far more evident for the rectangular section. This effect is of difficult interpretation
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Figure 5.22: Comparison of three-layers coextrusion flows (only half channel):

η2/η1 = 0.1 (left), η2/η1 = 10 (right). t = 0.75 (a,e). t = 1.5 (b,f). t =

2 (c,g). t = 3.08 (d,h).
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Figure 5.23: Secondary flow intensity as a function of the Weissember number for

rectangular and square sections with A−B−A and B−A−B configu-

rations. Non-dimensionalization with respect to the main flow intensity

Wm (a), and λH/D (b).

since under the assumption of quasi2D flow, the flow rates of the single layers cannot

be arbitrarily fixed. Hence, for an equal Wi, the flow rate ratio of the configuration

B −A−B is different from the one of the configuration A−B −A and a straight-

forward comparison is not possible. What can be deduced from the analysis of fig.

(5.23(b)) is that the encapsulation characteristic time, estimated from the average

secondary flow intensity, is far greater than the polymer natural relaxation time,

meaning that the elasticity effects are negligible for this case too.

Fig. (5.24) shows the secondary flow pattern in the square section and confirms

the observations made for the two-layers flow. For both configurations the flow is

directed from the Newtonian fluid to the Giesekus fluid near the wall and from

the Giesekus fluid to the Newtonian fluid near the symmetry plane. The three-

dimensional results confirm this tendency as shown by fig. (5.26) and (5.27).

In the case of the rectangular section the aspect ratio is 2 : 1. The secondary

flow corresponding to the configuration A − B − A seems to suggest that near

the center of the section the Newtonian fluid pushes into the Giesekus fluid in

contradiction with what observed so far for both the two- and three-layers flows

in the square section. This is visible in fig. (5.25(a)). The latter could be an
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Figure 5.24: Secondary flow for the three-layers configuration in the square section

at Wi = 0.2154 (maximum recirculation intensity). A − B − A (a).

B − A− B (b). B is the Newtonian fluid and A is the Giesekus fluid.

effect of the quasi2D assumption as discussed in section (5.2.3), however the three-

dimensional evolution of the interface, shown in fig. (5.28), confirms that the core

layer made of Newtonian fluid actually pushes into the skin layers. This effect is

even more evident for Wi = 0.5995 for which the overall encapsulation degree is

smaller.

This result apparently undermines the validity of the N2 hypothesis, however it

should be noted that as the aspect ratio of the section is increased, the flow in

the symmetry plane of the channel tends to the two-dimensional flow between two

parallel plates. In this limiting case the second normal stress difference effects are

canceled out and encapsulation also vanishes. Hence, for high aspect ratios the

mechanism of the interface deformation in the symmetry plane is somewhat simi-

lar to the first regime mechanism. It has already been emphasized in section (5.1)

how the first regime cannot be completely excluded from the second regime simu-

lations due to the shear thinning behavior of the Giesekus fluids. In fact, as the

encapsulation evolves in space the mean shear rate of two adjacent layer changes

and consequently their viscosity ratio changes as well. This means that, since the

flow rate ratio is fixed, the interface will be subject to a shift due to the change
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Figure 5.25: Secondary flow for the three-layers configuration in the rectangular sec-

tion at the Weissember numbers yielding the maximum recirculation in-

tensity. A−B−A and Wi = 0.2154 (a). B−A−B and Wi = 0.5995

(b). B is the Newtonian fluid and A is the Giesekus fluid.

in the viscosity ratio and the higher the aspect ratio, the more this effect becomes

predominant.

When the aspect ratio is high enough, the effect of geometry can so prevail that

the core layer can break up halfway between the wall and the plane of symmetry

and the Newtonian fluid remains entrapped in the middle leading to the anomalous

encapsulation. This tendency is favored by incompressibility in quasi2D simulation,

as seen in section (4.4), where the phenomenon occurs for a section aspect ratio of

4 : 1 while in the experiments of Khomami it is observed for aspect ratios greater

than 10 : 1.

Fig. (5.29) and (5.27) show how neither in the rectangular nor in the square section

B − A − B configurations the contact lines come in contact within the first 60

dimensionless time units. This is because the point where they are supposed to

meet lies in a symmetry plane where the normal velocity is zero. Hence, as the

contact line approaches this region, it progressively slows down. The coalescence is

due to short range interactions occurring when the two interfaces profiles overlap
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but this phenomenon is observable on an even longer time scale (due to the high Pe)

than that of secondary flows. Indeed, most of experimental results indicate a time

of 15 to 30 minutes necessary to ensure the achievement of steady state conditions,

which is a lapse of time one order of magnitude greater than the one of the numerical

simulations presented in this chapter.
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Figure 5.26: Interface deformation for the three-layers configuration A−B−A with square

section at Wi = 0.2154. t = 7.5 (a). t = 15 (b). t = 22.5 (c). t = 30 (d). t

= 37.5 (e). t = 45 (f). t = 52.5 (g). t = 60 (h).
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Figure 5.27: Interface deformation for the three-layers configuration B−A−B with square

section at Wi = 0.2154. t = 7.5 (a). t = 15 (b). t = 22.5 (c). t = 30 (d). t

= 37.5 (e). t = 45 (f). t = 52.5 (g). t = 60 (h).
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Figure 5.28: Interface deformation for the three-layers configuration A − B − A with

rectangular section, Lx/Ly = 2, at Wi = 0.5995. t = 7.5 (a). t = 15 (b). t

= 22.5 (c). t = 30 (d). t = 37.5 (e). t = 45 (f). t = 52.5 (g). t = 60 (h).
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Figure 5.29: Interface deformation for the three-layers configuration B − A − B with

rectangular section, Lx/Ly = 2, at Wi = 0.5995. t = 7.5 (a). t = 15 (b). t

= 22.5 (c). t = 30 (d). t = 37.5 (e). t = 45 (f). t = 52.5 (g). t = 60 (h).



Résumé du chapitre 5

La simulation en trois dimensions du phénomène de l’enrobage en coextrusion est

réalisée pour le cas de filières à section carrée ou bien rectangulaire en identifiant

les deux différents régimes. Le premier régime est simulé en utilisant un modèle de

fluide visqueux Newtonien. Cette loi constitutive présentant une deuxième différence

de contraintes normales N2 nulle, ne rend possible aucun écoulement secondaire et

donc l’effet d’enrobage est nul lui aussi. Pour un débit fixé et égal dans les deux

couches, l’effet d’une différence de viscosité est de déterminer un amincissement de

la couche la moins visqueuse. Le déplacement de l’interface vers la zone à plus basse

viscosité rétablit l’équilibre des gradients de pression entre les deux fluides en faisant

augmenter le taux de cisaillement moyen dans cette région mais diminuer dans la

région à plus haute viscosité. Les différences de viscosité peuvent ainsi déclencher

des phénomènes d’instabilité d’interface caractérisés par la formation d’une zone

de mélange relativement importante entre les deux fluides. Le sens et le degré de

l’enrobage caractérisant le deuxième régime sont déterminés par la différence de N2

agissant sur l’interface. En fait, le fluide ayant leN2 plus important en valeur absolue

à la paroi exerce une traction sur l’interface non à l’équilibre par l’autre fluide qui

est donc étiré le long de la paroi de façon à encapsuler le premier. Ce résultat

est confirmé par les simulations numériques de coextrusion d’un fluide visqueux

Newtonien avec un fluide viscoélastique dans lesquelles le fluide Newtonien enrobe

toujours le fluide viscoélastique quel que soit le rapport de viscosité entre les deux.

Un facteur supplémentaire est représenté par la géométrie de la section: pour des

rapports hauteur/largeur très petits le mouvement de l’interface dans le plan de

symétrie de la section est dirigé dans le sens opposé à celui imposé par la différence

de N2 et, au delà d’une valeur critique de ce paramètre, une inversion du sens de

l’enrobage peut être observée.
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6 Conclusions and recommendations

6.1 General conclusions

Phase-field modeling is found to be an attractive approach to simulate bicomponent

coextrusion flows as an alternative to classic interface-fitted methods. Although

the developed code can only be considered as first version deserving improvements

in order to achieve the computational performance required to obtain significant

quantitative results, the overall method proved to be able to take into account for

all the different mechanisms involved in the encapsulation phenomenon.

Using numerical schemes on uniform meshes that are only second order in space can

be a limiting factor to the global accuracy of the model, since in order to correctly

model the surface tension forces it is necessary to accurately resolve the hyperbolic

tangent profile of the interface. This requirement could only be met for fairly wide

interfaces or, alternatively, by using a higher order numerical scheme. In case of

coextrusion flows, surface tension plays a minor role and satisfying results can be

found even for thinner interfaces since the Capillary number is high enough to allow

to neglect the interface tension.

The numerical solvers adopted in the present work to invert the discrete Stokes prob-

lem and the phase-field discrete equation are shown to perform adequately enough

for the problem at hand, although the implementation of the Vanka smoothing and

Non-linear Gauss Seidel techniques takes advantage of the relative simplicity of the

geometry considered. The extension to more general unstructured meshes would be

non trivial and it would require a considerable programming effort to try to make

these solvers independent on the underlying geometry.
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Even if the adopted schemes have an overall second order accuracy, only first order

accuracy can be obtained when capturing a discontinuity in the flow field. The

latter result is independent on the choice of the particular phase-field model and

numerical scheme adopted since it is found from the examination of the particular

case in which the phase field variable φ is just a passive scalar transported by the

velocity field and using high order reconstruction for the treatment of the advection

term. This accuracy limit justifies the presence of a diffuse interface introducing

a first order error o (ǫ), since the price for controlling the interface behavior, and

especially its diffusivity, is the same as the one due to the presence of a discontinuity

in the numerical solution. On the other hand, this loss of accuracy near the interface

might undermine the efficacy of the method itself.

In fact, from the analysis of the numerical solution of three-dimensional coextrusion

flows, the second normal stress difference jump acting on the interface is found

to be the real “engine” of encapsulation. Logically, this jump must be accurately

resolved in order to get correct results. Unfortunately the encapsulation principal

driving factor results from the resolution of the flow region where the accuracy of the

method is the lowest, that is the interface. Another factor determining the accuracy

of the solution in this region, is the adoption of the linear mixing rule; even though

the application of more sophisticated laws, like reptation mixing rules (see [16])

for the stress tensor or harmonic mixing rule for the density and the viscosity (see

[37, 57]), is not guaranteed to produce better results since the phase diffusion in

in the phase-field method is just a numerical artifact used to control the interface

behavior while the real mixing occurs at much smaller scales.

With in mind the limits exposed above, the phase-field model is still useful for the

comprehension of the physics behind the encapsulation phenomenon. The inspec-

tion of the flow solutions obtained under the assumption of quasi2d approximation

and static (fixed) interface allowed an estimate of the Deborah number of encapsu-

lation. Results show that, independent of the Weissemberg number of the flow, the

Deborah number is at most of the order of magnitude of 10−3 for square ducts. This

value represents an overestimate since it makes use of the initial value of the average

cross sectional velocity to estimate the characteristic encapsulation time. As encap-

sulation advances in time, the flow evolves towards an axisymmetric configuration
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(full encapsulation) where the secondary flow intensity tends to zero. This indicates

that the Deborah number is almost zero and that elasticity has little to do with the

layer rearrangement observed, since coextrusion is an almost viscosimetric flow.

So, instead of discriminating viscous encapsulation from elastic encapsulation as

usually presented by the specialized literature, these are interpreted as two manifes-

tations of the fluid viscoelasticity. In the intent of characterizing this phenomenon,

the first and the second regime of encapsulation are examined independently. The

first regime, consisting of a rapid interface shift, depends on the pressure gradient

conditions with whom the two polymeric fluids come into contact. The layer pos-

sessing the greater pressure gradient pushes into the one presenting the lowest one

until the equilibrium is restored. This phenomenon occurs with little interface defor-

mation and depends on the layers repartition, flow rate and viscosity. In two-layers

coextrusion, for equal flow rates and layer thicknesses, the first regime translates

into the protrusion of more viscous fluid into the less viscous one. In three-layers

configurations of the type A − B − A for balanced layer repartition and flow rates

(i.e 0.25/0.5/0.25), the first regime is complicated by the fact that interfaces do not

lie in the section symmetry plane and even if the viscosity ratio is 1 the pressure

gradient imbalance provokes the squeezing of the central layer. For more general

configurations both these two effects are observed.

The second regime is due to the unbalanced normal stress difference acting on the

surface. The interface reacts to this unbalance by moving towards the fluid having

the greatest absolute N2 near the wall and towards the one having the smallest N2 in

vicinity of the midplane, thus determining an interface shape that is convex on the

side of the fluid with the greatest negative N2. If the two components have a crossing

point in the curve of Ψ2 then, under particular shear rate conditions, the interface

assumes the so called “gull-wing” shape, consisting of a double curvature.

The flow direction, and consequently the interface deformation, is not always con-

sistent with the direction suggested locally by the N2 criterion discussed above,

because it often results from the competition of the first and second regimes com-

bined together. These two are non-linearly related and thus they are not simply

superposable. In fact, as the interface deforms for effect of the second regime, the
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viscosity in each component varies due to the readjustment of the velocity field to

the new conditions and the resulting change in the shear rate. A crucial role is

played by the geometry. For high values of the aspect ratio of the rectangular sec-

tion, the first regime effects prevail in center of the section while the second regime

effects become more evident at the wall. In three-layers coextrusion, for the case of

a central layer having a smaller N2 than the skin layers, the interface moves towards

the upper and lower walls in the symmetry plane of the section, opposed to what it

is dictated by the N2 jump sign. Consequently, if the central layer is sufficiently thin

it will rupture on both sides and become surrounded of the fluid having the greatest

negative N2. This phenomenon is referred to as anomalous encapsulation.

6.2 Recommendations

The main difficulties encountered in the simulation coextrusion flows by the phase-

field method are due to the loss of accuracy of the model in the region near the

interface. Two solutions can be envisaged to fix this problem. The first consists

in modifying the phase field equation in order to include additional terms that are

specifically tailored to eliminate or limit some known issues of the model. Since the

chemical potential terms can also be related to the curvature of a diffuse interface

having a hyperbolic tangent profile, the Cahn-Hilliard equation can be interpreted

as curvature-driven flow equation in which a free surface evolves as to minimize its

global curvature. This means that the Cahn-Hilliard model is not shape-preserving

unless a very high resolution is used (i.e. the interface width to radius of curvature

ratio must tend to zero). In practice, since the interface is artificially diffused, even

in absence of an external flow and surface tension effects, a closed surface of any

shape evolves into a sphere. For this reason, an additional term is included in order

to cancel the curvature leading order effect in the equation in such a way that the

phase-field diffusion only acts in the direction normal to the interface while the shape

of the latter is entirely determined by the velocity field and capillary effects are only

due to the surface tension term in the Navier-Stokes equation. The resulting phase-

field equation is no longer conservative and that is the reason why this solution is

often applied to the Allen-Cahn equation since it is already non conservative but
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only second order instead of fourth order. This method was first introduced by Floch

in [14, 15], while a similar approach, called the Advected-Field method can be found

in [54]. Recent developments lead to hybrid level-set/phase-field models relying on a

modified Cahn-Hilliard equation and a sharp interface reconstruction like in [52].

The second method is to use Adaptive Mesh Refinement (AMR) to improve the res-

olution only in the neighborhood of the interface [9]. The attractiveness of AMR is

in that the Cahn-Hilliard equation could be retained in its original thermodynamic

sense without any loss of accuracy and the simulation could take into account for

both the macroscopic flow and the phase intermixing occuring at the interface scales.

Although this alternative would be closer to the real physics of diffuse interfaces, the

macroscopic and the microscopic scales are so widely separated that the direct sim-

ulation of both is still an out-of-reach goal. Nonetheless, in most practical cases the

phase-field does not need a full scale simulation to converge, so AMR still represents

a completely viable option. Another promising feature of the phase-field method is

that it can be efficiently applied to multi-phase systems in a straightforward way

[30, 31].

Once the two-phase flow model improvement is assessed, the numerical study of

encapsulation could be extended some other aspects including:

1. the influence of the wall affinity and the choice of a more suitable wall condition

for the contact line;

2. the effect of the surface tension, which should be hindering the second regime;

3. the effect of a variable section die, for instance a tapered die;

4. the effect of a multi-mode constitutive equation.

The latter point is particularly important since the point of maximum in the curve

of the secondary flow intensity seems to be associated with the presence of a single

relaxation time. There is only one Weissemberg number condition for which the

recirculation and thus the coextrusion are maximized. Since real polymer melts

posses a spectrum of relaxation times, a more realistic multi-mode model is expected

to predict a larger interval of operational conditions in which the manifestation of

encapsulation is more substantial.



Conclusions et perspectives

La méthode du champ de phase est une alternative très intéressante aux méthodes

classiques de suivi d’interface pour la simulation numérique des écoulements en co-

extrusion en raison de sa prédisposition à gérer à la fois le mouvement du point

triple de contact d’une interface avec une paroi solide et le changement de topologie

des sous-domaines occupés par chaque fluide causé par l’enrobage. Malgré que le

code numérique implémenté ne représente qu’une version préliminaire et nécessite

des développements ultérieurs afin de pouvoir atteindre les performance requises

pour l’obtention de résultats quantitativement significatifs, la méthode proposée

s’est révélée capable de modéliser les principaux facteurs influençant le phénomène

de l’enrobage. Par l’analyse des solutions 3D obtenues pour les cas de coextru-

sion de deux ou trois couches dans un filière à section carrée ou rectangulaire,

nous sommes parvenus à caractériser la nature des deux régimes d’enrobage: le

premier régime comporte une réadaptation des épaisseurs des couches provoquée

par le déséquilibre des gradients de pression sur l’interface, ce qui est directement

lié aux rapports de viscosité entre les fluides et aux débits; alors que le deuxième

régime est dû aux différences de seconde différence de contraintes normales entre

deux couches adjacentes. Le fluide présentant le N2 plus important en valeur ab-

solue présente localement une interface convexe. Une vraie limite rencontrée dans le

modèle du champ de phase se trouve dans le fait que le vrai “moteur” de l’enrobage

-le saut de N2 localisé sur l’interface- souffre de la précision relativement faible du

modèle dans cette région de l’écoulement. Deux possibilités sont envisagées pour

régler ce problème. Une première solution serait de modifier l’équation de Cahn-

Hilliard en rajoutant des termes spécifiquement conçus pour contraster ces effets

non-désirés, l’autre est d’utiliser un Raffinement Adaptif de Maillage (AMR) perme-

ttant d’augmenter la résolution locale du maillage et donc la précision de la solution
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uniquement près de l’interface. Cette amélioration pourrait permettre l’extension

de l’étude de l’enrobage aux points suivants:

1. influence des différentes conditions aux limites sur le comportement du point

triple à paroi,

2. influence des effets de tension de surface,

3. effet d’une géométrie variable,

4. effet d’un modèle viscoélastique de type multi-mode sur le degré d’enrobage.

Ce dernier point serait particulièrement intéressant car la présence d’un maximum

absolu dans la courbe d’intensité des écoulements secondaires en fonction du nombre

de Weissemberg Wi est associé au temps de relaxation du polymère. Donc, pour un

modèle à un seul temps de relaxation il n’existe qu’une seule condition qui maximise

l’intensité de l’écoulement secondaire et donc le degré d’enrobage, alors que pour un

modèle multi-modes il pourrait y avoir un intervalle deWi dans lequel le phénomène

d’enrobage est plus présent.
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de Paris, 1996.

[45] TIEZHENG QIAN, XIAO-PING WANG, and PING SHENG, A variational

approach to moving contact line hydrodynamics, Journal of Fluid Mechanics

564 (2006), 333–360.

[46] R. I. Tanner, Some Methods for Estimating the Normal Stress Functions in

Viscometric Flows, Transactions of the Society of Rheology 14 (1970), no. 4,

483–507.

[47] C M Rhie and W L Chow, Numerical study of the turbulent flow past an airfoil

with trailing edge separation, AIAA Journal 21 (1983), no. 11, 1525–1532.

[48] R. Sizaire, Numerical study of free surface newtonian and viscoelastic flow,
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