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1 Context

All public transit providers around the world face a common problem: scheduling their

drivers. Three main aspects should be considered for this problem: all the tasks must be

completely assigned, all the duties must be feasible and the number of drivers must be

minimal. The bus driver scheduling problem is without doubt a very complex problem. A

great deal of research effort on this problem has been made since the 1960’s. However,

driver scheduling still remains one of the most challenging problems in the planning and

scheduling process of public transports [Zhao, 2006]. Thus, the research in this area is still

ongoing and new approaches have been constantly sought to solve this problem.

During the past years there is a phenomenal increase in problem sizes in the area of bus

driver scheduling due to two factors: rapid expansion of bus lines in cities and explosion in

the number of public transport passengers. Therefore, many companies do not require their

bus driver scheduling problems solved to optimality or even close to optimality since they

are more interested in good enough solutions in a reasonable time. Heuristics have played

an important role in such a situation. Although we can find the various heuristic approaches

to deal with bus driver scheduling problems in the literature, these algorithms are tailored to

the particular companies that may differ in the objective function and in the duty constraints,

such as union contract, company regulation, etc. Since the algorithm is dedicated, it is hard

to adapt and to apply to other problems, even other instances. Even though metaheuristics

were brought in to cope with this drawback, the employed metaheuristics, in most of the

metaheuristic studies, fell within problem-dependent methodologies. Research on hyper-

heuristics is an attempt to overcome such dependences in metaheuristics. In other words,

hyper-heuristic research is motivated by the goal of raising the level of generality for solving

a range of problems. In this thesis we focus our attention on a hyper-heuristic approach,

which has the potential advantages over existing heuristics or metaheuristics in terms of the

flexibility, the modularity and the robustness.

A classical problem when designing metaheuristics is the difficulty to achieve a balance

between intensification and diversification. The use of organizational models encourages

the design of metaheuristics by the identification of common components [Meignan et al.,

2008]. Therefore, we are interested in using the organizational concepts to support the

design of approaches within the context of hyper-heuristics in our work.

Like some similar problems, the bus driver scheduling problem can also be solved by

mathematical programming, particularly in linear programming. Based on a literature re-

view, column generation is one of the most successful approaches for Crew Scheduling

Problems [Desrochers and Soumis, 1989, Ernst et al., 2004, Lübbecke and Desrosiers,

2005]. As we know, the use of mathematical methods can help to obtain optimal solu-

tions, but the required computational complexity will result in exponential time when the

problem size is large. In recent years, interest in combination exact and heuristic algorithms

has risen considerably among researchers in combinatorial optimization. In our work, we
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also attempt to explore the usefulness and potential of this research direction by seeking a

heuristic approach in the context of column generation. It should be pointed out that this

approach is still in its infancy and needs substantial further research.

2 Objectives and concerns of this work

The main concern of this work can be summarized as follows:

Propose an approach to solve bus driver scheduling problems more effectively and

efficiently.

Our objective can be decomposed in two subcomponents. First, we describe a pattern

built upon organizational concepts in order to facilitate the design of cooperative hyper-

heuristics. Second, we develop an efficient and adaptive approach to solve the driver

scheduling problem by validating the proposed pattern.

2 .1 A multi-level hyper-heuristic pattern based on the Agent Meta-

heuristic Framework (AMF)

Since hyper-heuristics may have different performances during the search, it makes sense

to see whether they can cooperate in some way so that they can exchange useful informa-

tion to improve the capacity of exploration in the search space. However, the key chal-

lenge in cooperative search is the design of cooperation mechanisms and the determination

of useful information to exchange between hyper-heuristics. With this in mind, an or-

ganizational model called multi-level hyper-heuristic pattern is proposed to facilitate the

design of cooperative hyper-heuristics. In fact, this pattern is derived from the Agent Meta-

heuristics Framework (AMF) proposed by Meignan et al. [2008]. Specifically, Meignan

et al. [2008] proposed the AMF for analyzing existing algorithms and encouraging the

design of new metaheuristics. In this framework, a metaheuristic is defined as an organi-

zation composed of a set of roles which interact in order to find an optimal solution. From

this point of view, an organizational model of metaheuristics can be used to describe both

population-based metaheuristics and trajectory methods. Within the research covered in the

hyper-heuristic literature, to our knowledge, there is scarce research work on the analysis of

hyper-heuristics in this way. Therefore, we motivate and describe an organizational view of

cooperative search in the context of hyper-heuristics. The resulting pattern aims at support-

ing the design of cooperative hyper-heuristics with the desired characteristics of flexibility,

scalability and generality.
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2 .2 TPCH: A multiagent hyper-heuristic approach

To validate the proposed pattern, we develop a multiagent hyper-heuristic approach called

Two-phase Cooperative Hyper-heuristic Approach (TPCH). In this approach, we present

how hyper-heuristics, referred as agents, can be organized on the metaphor of the coali-

tion. More precisely, TPCH is a parallel computing algorithm with the purpose of accel-

erating and broadening the search. Parallelization scheme is implemented in a way such

that the removal or addition of any agent would not perturb the global functioning of the

system. Consequently, TPCH has been designed by considering a parallel hyper-heuristic

approach with decentralized strategy, where several agents visit the search space indepen-

dently. Moreover, the approach, on the one hand, does not rely upon any global information.

On the other hand, every agent can communicate with others using information that it re-

ceives from other agents. To be precise, this communication can be done by exchanging

information about solutions found and learning behaviors of search. Overall, the coalition

is composed of several agents, which concurrently explore the search space and cooperate

to improve their search abilities.

Agent, which combines a set of low level heuristics, looks more like an intelligent search

since it applies some rules based on artificial intelligence principles. Specifically, an agent

improves a candidate solution iteratively by selecting and applying a heuristic from the

set of low level heuristics when solving a given problem. The agent uses an individual

learning to adapt the heuristic selection in response to each low level heuristic performance

by updating a weight matrix. At the same time, a cooperative learning is used to share

the behaviors among the agents. The combination of individual learning and cooperative

learning enables the agent to find the best of sequence of low level heuristics to apply during

the search process.

Such an approach allows not only to speed up the convergence to the best solution, but

also to apply consistently over diverse sets of problem instances without excessive efforts.

To illustrate, the application of this approach is conducted on a variety of datasets including

real world scheduling problems.

3 Structure of the thesis

After a brief overview of the concerns of this work we present the organization of this thesis.

Following the previous analysis we have divided the thesis in two main parts. The structure

of the thesis is illustrated in Fig. 1.

The first part (chapters 1 and 2) presents the state of the art concerning the problem

of bus driver scheduling and hyper-heuristics. We first introduce the operational context

in which the problem is solved and two formal models used in our work for bus driver

scheduling. Then, we give an overview of related work on problem-solving methods in-

cluding both exact and heuristic methods (chapter 1). Finally, we review the literature on
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Figure 1: Structure of the thesis

hyper-heuristics (chapter 2).

The second part (chapters 3, 4 and 5) presents the two-phase cooperative hyper-heuristic

approach (TPCH), which is a parallel hyper-heuristic approach based on reinforcement

learning. Briefly speaking, we start by introducing the Agent Metaheuristic Framework

(AMF). Based on this framework, we describe an organization as a pattern to design the

approaches which aim at making use of the synergies among hyper-heuristics (chapter 3).

The two-phase cooperative hyper-heuristic approach is built from this pattern. We give the

details of this approach to the bus driver scheduling problem (chapter 4). Finally, we study

the influence of the role of the main algorithmic components in the proposed approach, and

applies the approach to a variety of artificial benchmark datasets and to real-world problem

instances (chapter 5).

This thesis consists of five chapters, and is organized in the following way:

Chapter 1 describes the problem domain. This chapter firstly summarizes the back-

ground of bus driver scheduling problems. Then we present the problem formulations used

by our proposed approaches. Finally, we summarize the optimization techniques that are

applied to bus driver scheduling problems.

Chapter 2 overviews the hyper-heuristic literature presenting the ways in which the

term “hyper-heuristic” has been interpreted and applied. As an emerging research direction,

the field of hyper-heuristics is increasingly related to some other research in the literature.

Thus, this chapter also discusses these current research trends.

Chapter 3 takes the first steps towards the design of cooperative hyper-heuristics. We
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introduce the organizational concepts. Then, the relationship between organization theory

and cooperative hyper-heuristics is studied. Finally, we present an organizational view of

cooperative hyper-heuristics called multi-level hyper-heuristic pattern, which is based on

the Agent Metaheuristic Framework (AMF) proposed by Meignan et al. [2009].

Chapter 4 presents our approach to solve the problem of bus driver scheduling. The

principles and the major components are depicted in this chapter. Indeed, this approach is

built from the pattern given in chapter 3. Therefore, we can consider our approach as a

case study to present how concepts from organizational theory and multiagent system may

contribute to the design of new cooperative search within the context of hyper-heuristics.

Chapter 5 continues the study of the proposed approach by testing the approach on

different problem instances. The experimental results show that our approach outperforms

some of heuristics to the bus driver scheduling problem of the literature.





PART I

Bus Driver Scheduling: State of the Art





CHAPTER 1

THE BUS DRIVER SCHEDULING
PROBLEM

1 Introduction

Bus driver scheduling is a major planning problem arising from bus companies. Thus,

research has been widely developed in recent years. It is motivated by the following three

main reasons:

• Bus companies face an increasing cost pressure due to the expensive cost of drivers.

As a consequence, scheduling drivers is important to make massive savings.

• Some traditional methods cannot meet future transportation needs because scheduling

drivers is becoming complex due to increased larger problem sizes and complexity of labor

rules.

•Developments in computer, in conjunction with new algorithms, which have advanced

remarkably can help public bus operators to improve their existing tools.

As stated above, public bus operators are motivated to seek the most efficient bus driver

schedules in their operational planning on the one hand. On the other hand, bus driver

scheduling is considered as a type of crew scheduling problem well-known to be NP-hard

[Kwan and Kwan, 2007, Leung, 2004]. Although a lot of work has been done on studying

bus driver scheduling problem, research on solving this problem still continues, especially

on exploring the possibility of obtaining efficiently near-optimal solutions.

The main objective of this chapter is to present the bus driver scheduling problem, to

describe the formulations used in this thesis, and to give the overview of the different ap-

proaches applied in the literature. The chapter is organized as follows: Section 2 introduces

the contexts under which the scheduling process is performed and presents some definitions

that allow us to state this problem in a formal way. Section 3 describes in detail two for-

mulations for the bus driver scheduling problem. At last, we review some related research

works on the bus driver scheduling techniques in section 4 .
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2 Problem description

2 .1 Public transport planning process

For several decades now, a variety of methods has been applied for solving problems in

public transport bus services. However, bus companies are still faced with an important

challenge to improve service quality and reduce operating costs. Addressed as a whole, the

global problem of public bus service is very complex to solve because they involve passen-

gers, buses and drivers that are subject to individual preferences and constraints. In order

to fulfill this role, the transport operations are required to establish and accomplish a pub-

lic transport planning process. In general, the public transport planning can be divided in

different steps: Network Design, Service Frequency Setting, Timetabling, Vehicle Schedul-

ing, Crew Scheduling (bus driver scheduling) and Crew Rostering. In Fig. 1.1, we illustrate

the relationship between these steps in the public transport planning process. The subject

of our work is related to the step of crew scheduling, however, the whole process will be

briefly described below.

In network design, the bus network structure includes all information which concerns

the areas covered by the transport service. The result of the network design should include

a set of bus routes. A set of bus lines composes the transport service by providing the

buses traveling on these routes. For each line, the frequency is determined by the passenger

demand. After setting frequencies, the next step is to construct a timetable resulting in

journeys characterized by a start and final location, and a start and end time. Then, the

vehicle scheduling assigns vehicles to journeys resulting in a schedule for each vehicle.

A schedule for a vehicle can be split into several vehicle blocks, where their lengths are

determined by the total operating time of the bus. On such a block, a sequence of tasks

can be defined, where each task needs to be assigned to one crew. The crew scheduling

generates daily duties for drivers. The roster scheduling is a long term crew planning (e.g.

half a year) comprising their days off and holidays. For a survey in the public transport

planning see [Freling, 1997, Lourenco et al., 2001], as well as a series of books arising from

the Computer-Aided Transit Scheduling conferences [Daduna et al., 1995, Desrochers and

Rousseau, 1992, Hickman et al., 2008, Lo, 2009, Voss and Daduna, 2001, Wren, 1981].

2 .2 Bus driver scheduling

Our focus in this thesis is to deal with Crew Scheduling Problem also designated as Bus

Driver Scheduling Problem (BDSP), which is widely considered to be one of the more

challenging problems in public transport planning. It is an important part of the public

transport planning from an economic point of view since it determines most of the wages

paid to the drivers, which are a very large cost element that accounts for about 45% of the

total operating cost [Meilton, 2001]. However, bus driver scheduling problems are well-
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Figure 1.1: Public transport planning process

known NP-hard problems [Leung, 2004]. Meanwhile, since the constraints according to

labor rules and requirements differ from country to country, even company to company, the

evaluation criteria and objectives may differ as well. In this sense, it is also an extremely

complex part of the transportation planning process.

In fact, there is a strong connection between the scheduling of vehicles and bus drivers.

Before scheduling the drivers’ tasks, the vehicle units normally have to be scheduled re-

sulting in obtaining a set of vehicle block. A vehicle block is a sequence of journeys to

be done by one vehicle from the time that it leaves the depot until it returns to the depot

in one day. Table 1.1 displays an example of a block in a vehicle schedule. In Table 1.1,

the main body describes a sequence of journeys operated by a vehicle, e.g. a journey from

Valdoie at 06:05 to Paquis at 06:10. The header of this table denotes a stop name (indicated

by Stop), the time when the vehicle arrives at a stop (indicated by Time) and whether the
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Table 1.1: Example of a block in a vehicle schedule

Bus 1
Stop Time Relief point
Valdoie 06:05 Yes
Paquis 06:10 No
Martinet 06:25 No
Briand 06:30 No
Madrid 06:35 Yes
Champ de Mars 06:40 No
Mieg 06:45 No
Saget 06:50 No
La Douce 06:55 Yes
Saget 07:00 No
Mieg 07:05 No
Champ de Mars 07:45 No
Madrid 07:50 Yes
Briand 07:55 No
Martinet 08:00 No
Paquis 08:15 No
Valdoie 08:20 Yes

stop is a relief point where one driver can replace another (indicated by Relief point). It

should be noted that not all the stops are feasible locations for relieving drivers. In practice,

relief points are typically at terminals and the appointed stops which are accessible. The bus

driver scheduling problem involves partitioning the vehicle blocks into a set of legal driver

duties that should reflect the operator’s definition of efficiency [Lourenco et al., 2001]. For

driver scheduling purposes, a block is usually represented in a graphical format [Parker and

Smith, 1981] showing a sequence of bus stops while identifying the bus number (i.e. block

number) and a set of relief points. Fig. 1.2 is a graphical representation of the bus block

of Table 1.1. Note that only those relief points where drivers can change are marked. In

this example, Valdoie, La Douce and Madrid are designated as relief points, which are de-

noted as V, D and M respectively in Fig. 1.2. The interval between two consecutive relief

points on a block must be worked by a single driver since there are no other opportunities to

change divers except at relief points during this period. Hence, this interval, from the driver

scheduling point of view, is considered as a task. From this figure, resulting four tasks, such

as task 1 with working time from 06:05 at Valdoie to 06:35 at Madrid, can be identified. It

should be pointed out that the problem size can be reduced in such a way that some relief

opportunities are omitted.
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Figure 1.2: Example of a block with relief points

2 .3 Definition of the terms

As explained above, it is necessary to gather a set of vehicle blocks showing the driving

work to be covered. An example of two bus blocks with a duty is illustrated in Fig. 1.3.

From this example, we can see that drivers can only be relieved at some designated places

called relief locations, which are represented by letter codes, such as A, B and C in the

figure. The times when a vehicle is at the relief locations are marked on the horizontal

timescale, they are known as relief times. Each pair of relief location and relief time is

a relief opportunity. The work between two consecutive relief opportunities on a same

vehicle is called a piece of work (or task, or trip) for the driver. The work of a driver in

a day is known as a duty (or shift). Note that not all relief opportunities will be used to

relieve drivers, and therefore a driver may cover a number of consecutive pieces of work

in a same vehicle, called a spell. It can be seen obviously that an example of a duty built

among two vehicle blocks is given in this figure. The duty is composed of two spells from

the two vehicle blocks.

Figure 1.3: Relationship between vehicle blocks and pieces of work

Duty types are classified according to when the drivers start their work. Thus, the legal

duties can be divided into the following four types:

Early Duty signs on early in the morning taking the buses out of garage before the

morning peak. The working time starts between 05h00 and 07h00.

Day Duty begins in the morning and ends in the afternoon. The working time starts

between 07h00 and 17h00.

Late Duty begins in the afternoon and ends in the night. The working time starts between

17h00 and 20h00.

Night Duty works in the late evening buses returning the buses to the garage. The

working time starts between 20h00 and 24h00.
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Clearly, the above is one of the possible classifications. Therefore, it evidently exists

other classifications in practice.

3 Mathematical formulations

A great variety of problems from practice can be formulated as a set covering problem

including scheduling, manufacturing, service planning, information retrieval, etc [Lan et al.,

2007]. The set covering problem may be defined as follows. There are many elements

contained in several sets (elements may be contained in more than one set), and the goal is

to find the smallest number of sets so that every element is represented in the selected sets.

The set partitioning is a special case, when overlapping is not allowed, i.e. one element can

not be covered by several sets.

In the formulation adopted in the second part of this thesis, we consider a set parti-

tioning formulation of the bus driver scheduling problem. It should be noted that the bus

driver scheduling problem has been formulated as a set covering when we study a column

generation heuristic.

3 .1 Set partitioning and set covering models

Let S = {1, 2, . . . , n} be the set of legal duties and M = {1, 2, . . . ,m} be the set of pieces

of work to be covered. We can define the problem as the construction of a matrix (aij),

where duties appear in columns and pieces of work in lines. Each element aij ∈ {0, 1},

i ∈ M , j ∈ S, of the matrix is such that aij = 1 if duty j covers pieces of work i, aij = 0

otherwise. Moreover, duty j has to satisfy constraints imposed by labour rules and company

requirements. We will detail the constraints below. The set partitioning can be formulated

as follows:

minW1

n∑

j=1

cjxj +W2

n∑

j=1

xj (1.1)

subject to
n∑

j=1

aijxj = 1, i = 1, 2, . . . ,m, (1.2)

xj ∈ {0, 1}, j = 1, 2, . . . , n, (1.3)

where cj is the cost of duty j, xj is equal to 1 if duty j is used in the solution and 0 otherwise,

and W1 and W2 are weight constants. Constraint (1.2) means that there is only one driver

in each vehicle at any time. Note that the term
n∑

j=1

cjxj is the total cost, whereas
n∑

j=1

xj is

the number of duties and hence of drivers.

By changing the constraint (1.2) into the following form, it becomes a set covering

problem, where pieces of work may be covered more than once in a schedule.
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subject to
n∑

j=1

aijxj ≥ 1, i = 1, 2, . . . ,m, (1.4)

Such a formulation is interesting because set covering concerns more duties than set

partitioning and can be solved easily.

3 .2 Constraints of legal duty

We now detail precisely what is a legal duty, and define the cost function. Let ST (t)

and FT (t) respectively be the starting and ending time of piece of work t ∈ M . Let

DS(t) and AS(t) respectively correspond to the depart and arrival station (relief location)

of piece of work t ∈ M . To each duty j ∈ S is associated an ordered set of pieces of

work Dj = {tj1, tj2, . . . , tjkj}, tjl ∈ M , that defines the (aij) matrix coefficients of the set

partitioning problem. Let WTDj = FT (tjkj) − ST (tj1) denote the total working time of

duty j. Furthermore, let MWT denote the maximum working time and NWT denote the

normal working time that are allowed by labour rules and specific company requirements.

Note that tjl and tj(l+1) are two consecutive pieces of work in duty j. A duty j ∈ S is a

legal duty if it satisfies the following constraints:

WTDj ≤MWT, j = 1, 2, . . . , n, (1.5)

FT (tjl) ≤ ST (tj(l+1)), j = 1, 2, . . . , n, (1.6)

AS(tjl) = DS(tj(l+1)), j = 1, 2, . . . , n. (1.7)

Constraint (1.5) enforces that the working time must not exceed the maximum working

time. Constraint (1.6) assures that the ending time of piece of work tjl must not exceed the

starting time of the next piece of work l + 1 in duty j. Constraint (1.7) guarantees that the

arrival station of a piece of work is the same as the depart station of the next piece of work

in duty j.

We consider the cost cj associated with a duty j as an aggregative function given by the

following formula:

cj = OV j + IT j, j = 1, 2, . . . , n, (1.8)

with

OV j = max(0,WTDj −NWT ), j = 1, 2, . . . , n, (1.9)
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IT j = max(0, NWT −WTDj) + . . .

+

kj−1∑

l=1

max(0, ST (tj(l+1))− FT (tjl)), j = 1, 2, . . . , n.
(1.10)

The OV j term defines the extra-time over the normal time of work established by law

for driver j, called over-time. The IT j term is the idle time of driver j, that is, the time

during which a driver has no task to do.

4 Related work

The approaches for the bus driver scheduling problem can be roughly classified into two

groups.

The first one is the Generate and Select (GaS) approach [Fores, 1996, Fores et al., 2001,

Kwan and Kwan, 2007, Leung, 2004]. GaS consists of two main steps. In generating step,

GaS builds a suitable large number of feasible duties. These duties satisfy all the con-

straints. The aim of the selection step is to select a subset of duties to cover all vehicle

work. Usually, mathematical programming methods are employed in this step. Some meta-

heuristic methods for the selection process have been proposed in recent years (e.g. [Dias

et al., 2002, Li and Kwan, 2003]). One of the advantages when using this type of approach

is that the duty generation module is separated from the duty selection module. This makes

the approach adaptable to different situations since the separation between duty generation

process and duties selection allow to adjust only the first module for each transportation

company and, therefore, is very convenient for implementation reasons [Lourenco et al.,

2001]. Unfortunately, the number of candidate duties is usually enormous even in the case

of a small problem, which precludes the duty selection module from finding an optimal

solution in reasonable time.

The other one is the constructive approach, which constructs an initial solution and then

tries to iteratively improve it [Aickelin et al., 2009, De Leone et al., 2011]. Obviously,

there are several motivations for applying this approach to the bus driver scheduling prob-

lem. First, the constructive approach works directly with integer solutions but GaS usually

needs to solve the linear programming relaxation. Second, the enormous size of problems

leads us to apply more efficient approaches. The constructive approach may obtain a good

approximation of the set of solutions in practical time due to the computational efficiency.

Third, the constructive approach can provide flexibility in handling variations of the model

under special constraints originated by bus companies. Fourth, the constructive approach is

relatively simple to implement and allows specific information to be exploited.

Strictly, the bus driver scheduling techniques can be divided into three groups: Heuristic
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methods, Mathematical programming methods and Metaheuristic methods. In the follow-

ing subsections, we give a brief literature review of about these three main approaches for

solving the bus driver scheduling problem.

4 .1 Early heuristic methods

Heuristic methods were used predominantly in driver scheduling between the early 1960’s

and the late 1970’s [Manington and Wren, 1975, Parker and Smith, 1981]. The early heuris-

tics were useful in some applications. Indeed, this is because computers were not powerful

enough to run the mathematical solvers in that period. Moreover, the early heuristics were

able to meet the specific requirements for public transit companies since they were cus-

tomized for these individual companies. A useful review relevant to these early approaches

has been given by Wren and Rousseau [1995]. We summarize some implementations of the

system based on heuristic methods in this area as follows.

RUCUS (Run Cutting and Scheduling) was developed in the later 1960’s [Wren and

Rousseau, 1995], which was installed in a number of bus companies in the USA and

Canada. The system firstly constructs a good initial schedule, while a series of optimisation

programs refine it.

TRACS (Techniques for Running Automatic Crew Scheduling) was developed at the

University of Leeds from 1970 [Kwan et al., 1996]. The system had many similarities with

RUCUS, which firstly construct an initial solution and then heuristically refined it.

HOT (Hamburg Optimisation Techniques) was developed and used by the schedulers

at the Hamburger Hochbahn AC since the 1970’s [Daduna and Mojsilovic, 1988]. The

driver scheduling process is basically heuristic and may need some extensions to adapt to

the needs of new users.

COMPACS (COMPuter Assisted Crew Scheduling) was an interactive driver scheduling

system which is described by Wren and Chamberlain [1988]. The system first estimates the

number of drivers needed to cover the vehicle work and then guides the decision maker to

built up the schedule interactively using the estimated number of drivers.

4 .2 Mathematical programming methods

Although the heuristic systems were successful on some applications, these approaches

were limited in solving the bus driver scheduling problems because a large amount of man-

ual intervention was needed. In the later 1970’s, research in driver scheduling methods has

stepped into the period of mathematical programming approaches. The bus driver schedul-

ing problem can be commonly modeled as a set covering or set partitioning integer linear

program (ILP) [Shepardson, 1981]. Therefore, many linear programming and integer pro-

gramming methods have been proposed [Mitra and Welsh, 1981, Ryan and Foster, 1981]

that can address such models. We review three systems IMPACS, TRACS II and HASTUS
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as follows.

IMPACS (Integer Mathematical Programming for Automatic Crew Scheduling) is a

driver scheduling system developed by the University of Leeds in the later 1970’s [Wren and

Smith, 1988], which was used to plan transport serivices in the city of London (England)

in 1984 and in Greater Manchester Buses in 1985. IMPACS is based on a set covering

model. Firstly, a large number of possible duties with associated costs are generated, a

subset is then selected to cover all the pieces of work at minimum cost. Meanwhile, it also

provides a decomposition module for solving large problem since the number of variables

and constraints are too large to be handled by computers in some cases.

TRACS II (Techniques for Running Automatic Crew Scheduling, Mark II) has been

developed since 1994 specifically to satisfy the needs of rail and bus driver schedules [Kwan

et al., 1996], which has been successfully installed in several transport companies (including

First Group, the largest bus company in the UK). In fact, this system is a new generation of

IMPACS. Therefore, it follows almost the same approach as IMPACS, but the components

have been considerably redesigned to cope with the complexity of rail and bus operations

and to incorporate new algorithmic advances.

HASTUS has been developed originally in 1974 by the University of Montreal’s Cen-

ter for Research on Transportation, and in collaboration with GIRO company [Blais and

Rousseau, 1988], which has been widely used throughout a lot of cities in the world, such

as Montreal, New York and Nantes (France). The system is an integrated and modular soft-

ware solution for transit scheduling, operations, and passenger relations. A crew scheduling

method called Crew-opt is one part of the system. The Crew-opt approach solves the driver

scheduling problem formulating a set covering (or set partitioning) model in order to incor-

porate a column generation technique. The approach used involves several steps. It first

generates a set of feasible duties. A subset of duties is then selected and, based on this

subset, a linear programming solution is obtained by relaxing the integrality of the duty

variables. After an LP solution is obtained, more feasible duties with negative reduced

costs can be created to add into LP in order to improve the current solution. The problem

of generating new feasible duties is formulated as a shortest path problem with constraints.

The process of finding the relaxed LP and the generation of shifts with negative reduced

costs is repeated until the LP optimum is reached. Then the process enters a branch and

bound phase which also uses a column generation method to solve the ILP at each node of

the branch and bound tree.

4 .3 Metaheuristic methods

Mathematical programming can only solve small problems because of the combinatorial na-

ture of the scheduling constraints [Zhao, 2006] which make the problem NP-hard. Namely,

practical solutions would be hard to find in short time. More recently, metaheuristic meth-

ods have been widely used for efficiently seeking near-optimal solutions to NP-hard prob-
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lems. There are many metaheuristic approaches applied to the bus driver scheduling prob-

lem, such as Tabu search and Genetic algorithms [Aickelin et al., 2009, Cavique et al., 1999,

De Leone et al., 2011, Dias et al., 2002, Li, 2005, Shen and Kwan, 2001].

Cavique et al. [1999] presented a Tabu search approach for the crew scheduling prob-

lem. Starting with an initial solution constructed by a traditional run-cutting approach, two

alternative improvement algorithms, which are embedded in a tabu search framework, are

used to reduce the number of duties in the initial solution. These two heuristic algorithms

for a real crew scheduling problem were presented. However, these algorithms only con-

struct one or two spell duties. The complexity will increase dramatically when duties with

three or more spells are allowed.

Dias et al. [2002] applied a genetic algorithm to the bus driver scheduling problem.

The application of genetic algorithms extends the traditional approach of Set Covering/Set

Partitioning formulations, using a new coding scheme in order to incorporate the user’s

knowledge in a quite natural way. The performance of this algorithm was evaluated with

standard test airline crew scheduling problems, and with real problems forming several

medium-size Portuguese urban bus companies.

Li [2005] used a novel evolutionary approach which is called a self-adjusting approach

for driver scheduling. It incorporates the idea of fuzzy evaluation into a self-adjusting

process, combining the features of iterative improvement and consecutive perturbation, to

explore solution space effectively and obtain superior schedules. Experiments with bench-

mark tests using data from the transportation industry demonstrate the success of the pro-

posed approach in solving large size problems.

Aickelin et al. [2009] introduced a new technique called Evolutionary Squeaky Wheel

Optimization to solve driver scheduling problems by using the original idea of Squeaky

Wheel Optimization and incorporating two additional steps (Selection and Mutation) for

added evolution. The experiments have demonstrated that this approach performs very com-

petitively on two different domains of personnel scheduling: bus and rail driver scheduling

and hospital nurse scheduling.

The latest research which addresses the problem of bus driver scheduling can be found

in De Leone et al. [2011]. A Greedy Randomized Adaptive Search Procedure (GRASP) has

been proposed and numerical results carried out on a set of instances show the effectiveness

of the designed metaheuristic approach.

5 Summary

In this chapter we first introduced the public transport planning process. This planning

process helps trace the information flow into and out of the bus driver scheduling part.

Moreover, this knowledge may be useful because sometimes the key to a better schedule

might consider a preceding step in the planning process.
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This chapter also gives the description of mathematical models. The driver scheduling

problem is generally formulated as a set covering/partitioning model. The set partitioning

model is best suited for the bus driver scheduling problem while the set covering model

allows the over-covering of tasks. This over-covering is not attractive, even not acceptable

especially when assigning one driver is cheaper than assigning several drivers to a task.

The main advantage of a set covering model over the set partitioning model is its flexibility

which allows more rapid computation of a feasible solution. Additionally, solving the set

covering model may produce a solution that contains very little over-covering in some cases.

Finally, this chapter reviews the driver scheduling approaches, which can be mainly di-

vided into three groups: Heuristic methods, Mathematical programming methods and Meta-

heuristic methods. Early computerized methods for driver scheduling were purely heuristic

and often needed large amounts of manual intervention. Moreover, most of early heuristic

methods are based on the consecutive approaches which relied on good initial schedules

constructed based on human schedules’ knowledge. Therefore, early heuristics were lim-

ited in solving the bus driver scheduling problem. Afterwards, mathematical programming

methods started to be used. In practice, there are several projects that have been developed

to design planning systems using these methods, such as HASTUS. Some of these suc-

cessful systems have been used by transportation companies in several countries and have

through long development and experience working to fit with these companies’ require-

ments. It should be noted that column generation algorithms have been widely applied to

tackle the driver scheduling problem in these methods. Although a lot of research effort has

been directed towards the development of methods, the driver scheduling problem is still

open. Firstly, most of the companies need fast methods to obtain good enough solutions that

can help the decision marker timely. Secondly, flexibility should be improved since there

are some aspects of scheduling that are hard to incorporate in a linear programming model.

Thirdly, the present mathematical approaches are hard to explain to schedulers. Sometimes,

these systems must be manipulated to produce driver schedulers for different bus schedules.

Such manipulation is frustrating and perhaps obscure to schedulers who have no knowledge

of mathematical programming. Hence, all of these make us to explore other areas where

improvement can be made. The balance between quality of solutions and computational

time leads to the use of metaheuristic approaches, particularly considering the very large

size of real problems. Thus far, there are many metaheuristic approaches applied to the bus

driver scheduling problem.

It is obvious that driver scheduling has provided interesting and challenging problems

to researchers. Research on this problem is still going on with the aim of developing new

solution approaches or improving existing ones that will allow to solve larger instances and

to address additional complexities.



CHAPTER 2

REVIEW OF HYPER-HEURISTICS

1 Introduction

The term hyper-heuristic was first used in 1997 to describe a protocol that combines several

artificial intelligence methods in the context of automated theorem proving [Burke et al.,

2010a]. In the context of combinatorial optimization, however, the term was independently

used in 2000 to describe heuristic to choose heuristics [Ross, 2005]. Unlike metaheuristics

which search in the space of solutions, hyper-heuristics search a space of heuristics. In this

sense, they differ from most application of metaheuristics.

Several hyper-heuristic approaches have been proposed in the literature. Over the past

decade, hyper-heuristics have been successfully investigated for a number of optimization

problems (e.g. Burke et al. [2003b, 2007], Cowling et al. [2001a], Misir et al. [2010],

Ochoa et al. [2009a], Ouelhadj and Petrovic [2008]). The underlying principle in using a

hyper-heuristic approach is that different heuristics have different strengths and weaknesses

and it makes sense to try to combine them (the heuristics) in an intelligent manner so that

the strengths of one heuristic can compensate for the weaknesses of another [Burke et al.,

2003a].

In this chapter we will discuss some research works related to hyper-heuristics. Section

2 firstly gives a brief history of hyper-heuristics. This is followed by introducing the

fundamental difference between metaheuristics and hyper-heuristics in section 3 . Finally,

a classification of hyper-heuristic approaches is summarized in section 4 .

2 A brief history

Although the term hyper-heuristic has been coined relatively recently, the ideas behind

hyper-heuristics are not new. They can be traced back to the early 1960s, Fisher and

Thompson [1963] proposed a method of combining scheduling rules using "probabilistic

learning". In their far-sighted work, they concluded (1) an unbiased random combination

of scheduling rules is better than any of them taken separately; (2) learning is possible.

This is especially pioneer and worthy since at that time, computational search methodolo-

gies were far from mature, not even the idea of metaheuristics existed and only relatively
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unsophisticated local search techniques were available.

In 1973, self-adaptation was originally introduced by Rechenberg [1971] for evolution

strategies (ES), later developed by Rechenberg and Schwefel [1974] and Fogel et al. [1991].

This notion similar to hyper-heuristic means that some parameters are varied during a run

in a specific manner: the parameters are included in the chromosomes and co-evolve with

the solutions. These approaches related to the idea of searching over a space of possible

algorithm which were proposed early in the history of evolutionary algorithms can also be

considered as antecedents of hyper-heuristics.

Afterwards, more and more researchers have perceived that employing heuristic meth-

ods to solve intractable optimization problems like scheduling often suffers from narrow-

ness in the range of problems to which they can be effectively applied. In 1993, a hill-

climbing algorithm operates on a search space of control strategies for satellite communi-

cation is proposed in Gratch and Chien [1993]. Notice that the term "hyper-heuristic" was

not still use in that time but this adaptive heuristic has been already close to the concept

of hyper-heuristic. Namely, the selection of an heuristic strategy is effected until some

information can be obtained with respect to which strategy is expected to perform most

effectively in solving a problem instance or class of instances.

In fact, the quest for robust heuristics that are able to solve more than one problem

was always ongoing. In 1995, a system called TEACHER was designed for learning and

improving Heuristic Methods (HM) used in problem solving [Ieumwananonthachai and

Wah, 1995]. This system employed a genetic-based machine learning approach, and was

successfully applied to a whole range of different problem domains such as process map-

ping, load balancing on a network of workstations, routing and testing, etc. Then in 1996,

Minton [1996] presents his work, called Multi-tac, which is the other learning system that

synthesizes heuristic constraint satisfaction programs. Multi-tac takes a library of generic

algorithms and heuristics and specializes them for a particular application.

Before the first time "hyper-heuristic" term used, there is actually another approach,

called "Squeaky Wheel" Optimization (SWO), considered also as an antecedent to hyper-

heuristic that it finds solutions quickly by operating on two search spaces: the traditional

solution space and a new priority space. In 1998, Squeaky Wheel optimization method is

introduced by Joslin and Clements [1999]. This is a search technique for solving a wide

range of optimization problems. In SWO, a greedy algorithm is used to construct, a solution

which is then analyzed to find the trouble spots, i.e., those elements, which, if improved,

are likely to improve the objective function score. The results of the analysis are used to

generate new priorities that determine the order in which the greedy algorithm constructs

the next solution. This Construct/Analyze/Prioritize cycle continues until some limits are

reached, or an acceptable solution is found. This work is developed by Aickelin et al.

[2009]. Evolutionary SWO (ESWO), which is a recent extension to SWO, is designed to

improve the intensification by keeping the good components of solutions and only using
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SWO to reconstruct other poorer components of the solution.

In 1997, the term hyper-heuristic was first time used in Denzinger et al. [1997]. They

used it to describe a protocol that chooses and combines several AI methods. Three years

later, Cowling and Soubeiga [2000] used it independently to describe the idea of "heuristics

to choose heuristics". This definition has been more clear to describe in Burke et al. [2003a]

as a heuristic selection process used to choose heuristics, which have been generalized to

designate a search method or learning mechanism for selecting or generating heuristics to

solve hard computational search problems [Burke et al., 2010a].

More recently, a survey of hyper-heuristics can be found in Burke et al. [2013]. They

describe some relevant intellectual roots and early approaches developed before 2000, and

define the five following types of early approaches: Automated heuristic sequencing, Auto-

mated planning systems, Automated parameters control in evolutionary algorithms, Auto-

mated learning of heuristic methods, and "Squeaky Wheel" Optimization.

Today, hyper-heuristic has emerged as effective search techniques that have been ap-

plied to various problem domains, such as production scheduling (Ochoa et al. [2009b],

Vázquez-Rodríguez and Petrovic [2010] ), the timetabling problem (Burke et al. [2003b,

2007], Ochoa et al. [2009a]), the bin packing problem (López-Camacho et al. [2011], Sim

et al. [2012]), the vehicle routing problem (Garrido et al. [2009], Garrido and Riff [2010]),

etc.

3 Metaheuristics vs Hyper-heuristics

In this section we will see the difference between heuristics and hyper-heuristics. Over the

last few decades, great efforts on a new kind of approximate algorithm which basically tries

to combine basic heuristic methods aimed at effectively and efficiently exploring a search

space. This kind of algorithms are nowadays commonly called metaheuristics. The term

metaheuristic derives from two composition of two Greek words, which are explicated as

follows. Heuriskein (ancient Greek) means "to find out, discover", while the prefix meta

means "beyond, in an upper level".

Up to now various metaheuristics have been proposed in the literature, such as tabu

search [Glover and Laguna, 1998], simulated annealing [Kirkpatrick et al., 1983], and evo-

lution computation [Calégari et al., 1999]. Surveys and current research on metaheuristics

can be found in Blum and Roli [2003] and Milano and Roli [2004]. In spite of the fact

that metaheuristic methods have been successfully applied to many areas in recent years,

we cannot ignore that they are often designed specifically and derived from prior experi-

ences with the particular problem domains. Once the problem is changed (even slightly),

the performance of the already developed specific-tailored metaheuristic may decrease dra-

matically for a new problem. Significant parameter tuning may also be necessary for the

purpose of adapting the algorithms to the new problem or a new problem instance. The "No
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Free Lunch" theorem [Wolpert and Macready, 1997] states that there is no one algorithm

that is superior to any other algorithm across all classes of problems. If an algorithm out-

performs other algorithms on a specific class of problems, there must be another class of

problems for which this algorithm is worse than the others. This drawback of metaheuris-

tics has motivated research to design algorithm which can be applied in many different

situations.

The methodology of hyper-heuristics is motivated by the goal of increasing the level of

generality of metaheuristics. The idea behind one type of hyper-heuristic is that better al-

gorithmic performance could be achieved by the combination of many different heuristics,

each with different relative performances. Namely, some heuristics may have the "individ-

ual flaws" in certain scenarios where other heuristics may perform better. Cowling et al.

[2001a] describe it as managing the choice of which lower-level heuristic method should

be applied at any given time, depending on the characteristics of the region of the solu-

tion space currently under exploration. Thus, it is a process which, when given a particular

problem instance, manages the selection of problem-specific heuristics to apply until a stop-

ping condition is met. Note that although low level heuristics could be metaheuristics, they

are usually simple and easily implemented heuristics. The hyper-heuristics aim to tackle

not only a specific problem or problem instance but a batch of problems. Furthermore,

hyper-heuristics aim to develop algorithms that are more generally applicable rather than

challenge the "No Free Lunch Theorem".

4 A classification of hyper-heuristic approaches

Despite being a rather young area of research, the methodology of hyper-heuristics has

already involved a wide range of different approaches and techniques. Several works have

made efforts towards providing classification schemes for hyper-heuristics.

In Soubeiga [2003], hyper-heuristics are classified into two groups: with learning and

without learning. Hyper-heuristics in the first group include approaches which use sev-

eral heuristics or neighborhood structures at each decision point, but select the heuristics

to call according to a predetermined sequence. In the later group, the hyper-heuristics is

equipped with a learning mechanism which dynamically change the preference of each

heuristic based on their historical performance.

In Bai [2005], hyper-heuristics are classified into two types of methodologies: con-

structive and local search. Constructive hyper-heuristics build a solution incrementally by

adaptively selecting heuristics, from a pool of constructive heuristics, at different stages of

the constructive process. While local search hyper-heuristics start from a complete initial

solution and iteratively select, from a pool of neighborhood structures, appropriate heuris-

tics to lead the search in a promising direction.

In Cotta et al. [2008], hyper-heuristics are classified into four categories: (1) hyper-
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heuristics based on the random choice of low level heuristics, (2) greedy and peckish hyper-

heuristics, which requires preliminary evaluation of all or a subset of the hyper-heuristics in

order to select the best performing one, (3) metaheuristics based hyper-heuristics, and (4)

hyper-heuristics employing learning mechanisms to manage low level heuristics.

A current state-of-the-art classification is given by Burke et al. [2010a], where hyper-

heuristics are classified according to two criteria: the nature of the heuristic search space

and the source of feedback during learning. This classification is illustrated in Fig. 2.1.

According to the first criterion, hyper-heuristics can be divided into two distinct groups:

heuristic selection and heuristic generation. In the first group, a set of pre-existing heuristics

is provided to select for solving the target problem. The task, in these hyper-heuristics, is

to find a "best" sequence of applications of these heuristics for solving the problem. For

the second group, the low level corresponds to a set of basic components of heuristics. In

this group of hyper-heuristics, the process requires to evolve new heuristics by making use

of these components for solving the target problem. The second criterion considers the

source of feedback used by the hyper-heuristic. Using this criterion, we can distinguish

three different types of hyper-heuristics due to the fact that they use online learning, offline

learning and no learning. In online learning hyper-heuristics, a mechanism is used to modify

the search strategy while the algorithm is solving an instance of a problem. In offline

learning hyper-heuristics, the search strategy is defined in a way that trains a set of instances

before solving problem instances. In addition to the two type of learning hyper-heuristics

just discussed, no-learning hyper-heuristics can be considered as a third type, referring to

those that do not use any feedback from the search process.

Figure 2.1: A classification of hyper-heuristic approaches [Burke et al., 2010a]

With respect to the first criterion in Burke et al. [2010a], the classifications can be fur-

ther refined according to whether the hyper-heuristic controls construction or perturbation

low level heuristics (see in Fig. 2.1). A hyper-heuristic that controls construction low level
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heuristics builds a solution incrementally. It starts with an empty solution, and then se-

lects the most suitable construction heuristics to gradually build a complete solution. A

hyper-heuristic that controls perturbation low level heuristics starts with a complete initial

solution and iteratively selects the appropriate perturbation heuristics to improve the current

solution.

From the literature, the most fundamental hyper-heuristic categories can be clearly sum-

marized as: generation hyper-heuristics and selection hyper-heuristics. One category cre-

ates new heuristics using basic components of heuristics. The motivation behind this cate-

gory is to evolve new heuristics for solving the target problem. The other category selects

existing heuristics. More precisely, this type of hyper-heuristics is provided with a set of

heuristics. The task is thus to discover a good sequence of applications of these heuristics

for efficiently solving the problem. In our work, we focus on selection hyper-heuristics.

That is, the hyper-heuristic developed for the problem of bus driver scheduling in this thesis

falls into the second category.

4 .1 Generation hyper-heuristics

The purpose of generation hyper-heuristics is to generate new heuristics from a set of heuris-

tic components. Although there are a number of potential advantages of generation hyper-

heuristics, this category of hyper-heuristics is less well studied in the literature. Indeed,

many of the previous studies on the generation hyper-heuristics use genetic programming

[Bader-El-Den and Poli, 2008, Burke et al., 2006, 2009b, Keller and Poli, 2008], which

is an evolutionary algorithm-based methodology inspired by biological evolution to find

computer programs that perform a user-defined task [Koza, 1999]. As stated in Burke et al.

[2010b], most examples of using genetic programming as a hyper-heuristic are offline in

that a training set is used for generating a program that acts as a heuristic, which is there-

after used on unseen instances of the same problem. The motivation behind this work is to

generate reusable heuristics. Namely, once a heuristic is evolved, it can be reused to any

new problem instances. However, research on “disposable” hyper-heuristics has also been

conducted [Keller and Poli, 2007]. In other words, these approaches are created for just

one problem instance, rather than for unseen instances. In the following, we discuss two

representative examples of generation hyper-heuristic using genetic programming.

Burke et al. [2006] proposed a genetic programming hyper-heuristic to automatically

generate good heuristics for one dimensional bin packing. The genetic programming system

chooses between a set of low level building blocks to evolve a heuristic. The heuristics

generated by this system are functions consisting of arithmetic operators and properties of

the problem. The best evolved heuristics are shown to be same to the human designed

‘best-fit’ heuristic on unseen problem instances.

In Keller and Poli [2007], the authors presented a linear genetic programming hyper-

heuristic for the travelling salesman problem. The approach evolves programs which rep-
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resent the repeated application of the simple local search operators. The programs are sen-

tences of a language defined by a grammar. The system is first evolves sequence of 2-opt

and 3-opt swap heuristics. Conditional and loop components are then added to the gram-

mar, to increase the complexity of the evolved heuristics. Experimentation with benchmark

instances shows that the results obtained are competitive with the best known results from

literature.

4 .2 Selection hyper-heuristics

The majority of hyper-heuristics so far can be classified as selection hyper-heuristics. Such

hyper-heuristics utilize a set of existing heuristics to improve an initial solution iteratively.

More precisely, the most appropriate heuristic is chosen from the set of heuristics to employ

at each step. At the high level, a hyper-heuristic interacts with the problem domain via these

heuristics and gathers problem independent information such as the number of heuristics,

the quality change in a candidate solution after applying a selected heuristic, or the success

of a heuristic [Burke et al., 2012]. Obviously, an important issue here is how to decide the

most appropriate heuristic at each step. In this respect, the selection hyper-heuristics use

two major components to operate: heuristic selection and acceptance criterion [Burke et al.,

2012, Özcan et al., 2008, 2010]. From this point of view, we present below the different

heuristic selection mechanisms together with acceptance criteria that are employed by the

existing hyper-heuristics.

In Cowling et al. [2001a], the authors experimented with a number of heuristic selection

mechanisms Simple Random, Random Permutation, Random Descent, Random Permuta-

tion Descent, Greedy and Choice Function. We introduce briefly these selection mecha-

nisms as follows. Simple Random chooses a low level heuristic randomly, applying it once,

until some stopping criterion is met. Random Descent chooses a low level heuristic ran-

domly and apply it until the candidate solution in hand is improved. Random Permutation

generates a random initial permutation of the low level heuristics and applies each low-level

heuristic once in the provided order. Random Permutation Descent is similar to the random

permutation, but it applies the selected heuristic repeatedly as long as the solution improves.

The Greedy method applies all low level heuristics to the current solution and chooses the

one that generates the most improved solution. Choice Function is the most complex one.

It analyzes both the performance of each low level heuristic and each successively applied

pair of low level heuristics. In terms of acceptance criteria, the authors considered two sim-

ple methods: (i) all moves are accepted (AM), and (ii) only improving moves are accepted

(OI). Experimental results show that the Choice Function that is combined with all moves

accepted within a hyper-heuristic performed better than the rest.

Kendall and Mohamad [2004] proposed Great Deluge as the acceptance criterion and

Simple Random as the heuristic selection to a mobile telecommunications network prob-

lem. Great deluge accepts all improving moves. However, non-improving moves are also
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accepted if the objective value of the candidate solution is better or equal to a dynamically

changing threshold value which depends on the current step and overall duration of the

experiment [Kiraz et al., 2013].

Apart from these selection and acceptance mechanisms, several metaheuristic-based

strategies for designing hyper-heuristics have been proposed in the literature, such as sim-

ulated annealing [Bai and Kendall, 2005], tabu search [Kendall and Hussin, 2005] and ant

algorithm [Burke et al., 2005, Chen et al., 2007].

A simulated annealing based hyper-heuristic is experimented in Bai and Kendall [2005]

for the shelf space allocation problem. The basic idea behind this approach is that simulated

annealing is used to guide the selection and acceptance of the low level heuristics. In fact,

greedy and choice function hyper-heuristics are also investigated in their work but the sim-

ulated annealing performed best. Specifically, for a maximisation problem, the pseudocode

of the algorithm is given in Algorithm 1. The experimental results show that this approach

produced high quality solutions in different problem situations.

Algorithm 1: Pseudocode for the simulated annealing based hyper-heuristic [Bai and
Kendall, 2005]

Define an objective function f and a set of heuristics H;1

Define a cooling schedule: starting temperature ts > 0, a temperature reduction2

function ϕ and a number of iterations for each temperature nrep;
Select an initial solution s0;3

while the stopping criteria is not met do4

Randomly select a heuristic h ∈ H;5

iteration_count = 0;6

for iteration_count = 0, . . ., nrep do7

iteration_count ++;8

Applying h to s0, get a new solution s1;9

δ = f(s1)− f(s0)10

if δ ≥ 0 then11

s0 = s1;12

end13

else14

Generate a random x uniformly in the range (0, 1);15

If x < exp(δ/t), then s0 = s1;16

end17

end18

Set t = ϕ(t);19

end20

Kendall and Hussin [2005] proposed a Tabu Search heuristic selection method. A tabu

list is used to monitor the performance of a collection of low level heuristics. Then, it

makes tabu heuristics that have been applied too many times so that it allows to apply other

heuristics which is not in the tabu list. This hyper-heuristic is outlined in Algorithm 2.
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Experiments carried out on examination timetabling datasets from the literature show that

this approach is able to produce good quality solutions.

Algorithm 2: Pseudocode for the tabu search hyper-heuristic approach[Kendall and
Hussin, 2005]

Construct initial solution1

while the terminating condition is not met do2

Consider heuristics that are not tabu3

Choose the best heuristic (with the best improvement)4

Apply chosen heuristic and make the heuristic tabu5

Update solution6

Update the tabu status of heuristics in the tabu list7

end8

An ant algorithm hyper-heuristic is introduced by Burke et al. [2005] to solve the Project

Presentation Scheduling Problem. Briefly, there is a network in which each vertex repre-

sents a low level heuristic. A number of hyper-heuristics, called ants, are located uniformly

among the vertices and carry initial solutions. Each ant traverses particular edges and reach

the next vertex. Once an ant arrives at a new vertex it applies the low level heuristic at that

node. Using a similar idea, another ant algorithm hyper-heuristic is proposed by Chen et al.

[2007] to solve the traveling tournament problem.

5 Summary

In this chapter we have reviewed hyper-heuristic techniques in the literature and identified

reasons why the research is getting more and more popular. The aim of hyper-heuristic

research is to provide the potential for increasing the level of generality of search method-

ologies, where it operates on a search space of heuristics rather than directly on a search

space of problem solutions. From what we can see from existing papers on hyper-heuristics,

the development of hyper-heuristics is going to play a major role in the field of optimiza-

tion. Therefore, it is reasonable to believe that further research can be carried out in a more

wide range of application areas.

So far, the most of research on hyper-heuristics has mainly focused on the development

of independent hyper-heuristics where a single hyper-heuristic controls a set of low level

heuristics to solve the problem. Clearly, there is much ground for further research within

hyper-heuristics. We believe that research efforts on parallel execution and cooperation are

worth devoting to hyper-heuristics. For one thing, parallel and distributed approaches can

be used to provide more powerful and robust problem solving environments. For another,

the use of cooperative approaches within a hyper-heuristic framework can be considered

as novel ways to combine different independent hyper-heuristics. In the next chapter we
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investigate on an agent-oriented approach. The goal of this study is to explore the coopera-

tive search mechanisms within a hyper-heuristic framework. This promising research area

opens up the possibility of having parallel execution of multiple hyper-heuristics that can

cooperate by sharing the information, e.g., the best solutions.



PART II

A New Parallel Hyper-heuristic
Approach Based on Reinforcement

Learning





CHAPTER 3

AN ORGANIZATIONAL MODEL OF
COOPERATIVE HYPER-HEURISTIC

1 Introduction

In Burke et al. [2009a], the authors stated that it is often still difficult to easily apply heuristic

search methods to new problems, or even new instances of similar problems. These diffi-

culties arise mainly from the significant number of parameter or algorithm choices involved

when using these type of approaches, and the lack of guidance to proceed when selecting

them. In such a situation, research in hyper-heuristics has gained attention. Recent studies

on hyper-heuristics include not only the improvement hyper-heuristic performances facing

different problems instances, but also the development of hyper-heuristic frameworks with

the characteristics of simplicity and generality. Some of these previous studies can be found

in several articles [Meignan et al., 2008, Ouelhadj and Petrovic, 2009, Özcan et al., 2009].

For many years, a technique has been developed under the general term of “artificial

intelligence” (AI). Roughly speaking, AI refers to an intelligent system that simulates a

certain form of human reasoning, knowledge, and expertise for solving one (or several)

given problem(s). In some respects, the growth of this field has been spurred by the ad-

vances in distributed, coordinated and concurrent problem solving. Hence, Distributed

Artificial intelligence (DAI) underlying AI has been established and motivated by the sci-

entific community. The definition of DAI can be clearly summarized in the similar words

of Chaib-Draa et al. [1992] as follows:

Distributed artificial intelligence systems were conceived as a group of intelligent enti-

ties that activated by cooperation, by coexistence or by competition.

The interests given by researchers for DAI lead to implement it in many ways. Multia-

gent systems can be considered as typical DAI systems in which several agents interact or

work together in order to achieve goals. Indeed, multiagent approaches and metaheuristics

are two independent problem-solving paradigms with different characteristics. Recently,

these two paradigms have been combined, resulting in agent-based metheuristic algorithms

that have been widely proposed, particularly for nature-inspired, hybrid and distributed

metaheuristics [Kazemi et al., 2009, Leitão et al., 2012, Zhao et al., 2005]. The main ad-

vantages of using multiagent approach for metaheuristics include:



48 CHAPITRE 3 • AN ORGANIZATIONAL MODEL OF COOPERATIVE HYPER-HEURISTIC

1) It may take advantage of the distribution and robustness inherent to multiagent sys-

tems by applying some agent properties within algorithms, such as communication, coop-

eration and learning.

2) It may offer the promise of higher computational speeds for solving complex prob-

lems by using the inherent asynchrony and parallelism in agents.

3) It may bring a new perspective in problem solving, by designing hybrid algorithms.

The aim of this chapter is to describe a multi-level hyper-heuristic pattern by following

the previous work in Meignan et al. [2008]. More precisely, Meignan et al. [2008] proposed

the Agent Metaheuristic Framework (AMF), which is based on an organizational model

describing metaheuristics in terms of roles. These roles correspond to the main components

or tasks in a metaheuristic: intensification, diversification, memory and adaptation or self-

adaptation. From this point of view, we attempt to introduce an organizational view of

cooperative hyper-heuristics.

This chapter is organized as follows: Section 2 overviews some related work on meta-

heuristic and hyper-heuristic frameworks. Section 3 presents the conceptions of Role-

Interaction-Organization model and the AMF model. In section 4 we present the organiza-

tional view for cooperative hyper-heuristics.

2 Metaheuristic and hyper-heuristic frameworks

It is critical to develop a useful framework to make metaheuristics or hyper-heuristics more

simple and adaptable, since the algorithms are defined as specification once some common

key properties have been recognized. Moreover, it is useful to compare existing algorithms

and to provide a general description. In this section, we overview some conceptual and

agent-oriented viewpoints to propose the frameworks in the literature, which enable the

design and implementation of metaheuristics or hyper-heuristics in different ways.

I&D Frame, (Intensification and Diversification Frame)

An important problem in the design of metaheuristics is to achieve the balance between

two contrasting needs: on one side, needs to intensively search in areas of search space

offering high quality solutions, and on the other side, needs to move to unexplored areas

of search space in order to diversity the search. These two opposed guides go under the

names, respectively, of diversification and intensification. A way of visual components of

metaheuristic on intensification and diversification has been proposed by Blum and Roli

[2003] in I&D Frame (Intensification and Diversification Frame). In this formalization,

metaheuristics are analyzed in terms of intensification and diversification components (I&D

components). These components correspond to operators, strategies or actions used to con-

duct the search, which are depicted as a triangle with the three corners (see in Fig. 3.1).

The OG corner corresponds to those components guided only by the objective function.
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The NOG corner refers to those components guided by other functions rather than the

objective one, again without using any random component. The third corner, denoted R,

comprises those components that are totally random, which plays an important role in many

metaheuristics. This component approach has tried to help analyzing existing heuristics and

designing new heuristics.

Figure 3.1: The I&D frame [Blum and Roli, 2003]

AMP, (Adaptive Memory Programming)

AMP (Adaptive Memory Programming) introduced by Glover [1997] aims to define the

strategic memory components in metaheuristics which guide the intensification and diver-

sification processes. Specifically, memory in AMP, which can be defined as global or inter-

individual, stands for the information collected by an algorithm on the objective function

distribution. It can be represented either as a simple set of points or as more complex

structures. The concept of memory has been extended in Taillard et al. [2001] to produce

an unified view of metaheuristics. In this scheme, a metaheuristic can be viewed as an

iterative process summarized in Algorithm 3.

Algorithm 3: AMP algorithm scheme [Taillard et al., 2001]

Initialize the memory1

while stopping criterion is not met do2

Generate a new provisional solution s using data stored in the memory3

Improve s by a local search; let s′ be the improved solution4

Update the memory using the pieces of knowledge brought by s′5

end6
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ALS, (Adaptive Learning Search)

In Dréo et al. [2007], the authors presented ALS (Adaptive Learning Search) as a frame-

work for considering the structure of metaheuristics, based on the AMP approach. The

major difference is that a learning phase is considered in ALS instead of considering only

a memorization process in AMP. The reason given by the authors for this is that the mem-

ory concept is quite static and passive. Moreover, it suggests that the metaheuristic only

takes into account the previous iteration, without considering the whole optimization pro-

cess. Thereby, a three-term to describe the main steps is proposed by Dréo et al. [2007] for

a population metaheuristic: learning, diversification and intensification, with respect to a

sampling either explicit, implicit, or direct. An ALS algorithm is defined as follows.

Algorithm 4: ALS algorithm scheme [Dréo et al., 2007]

Initialize a sample1

while until stopping criteria do2

Sampling: either explicit, implicit or direct, Learning: the algorithm extracts3

information from the sample, Diversification: it searches for new solutions,
Intensification: it searches to improve the existing sample, Replace the previous
sample with the new one.

end4

The I&D, AMP and ALS frameworks allow to describe different metaheuristics using

a limited set of generic concepts. However, they are too general to be used as a framework

to design metheuristics [Milano and Roli, 2004] and lack the consideration of dynamic

adaptation [Crainic and Toulouse, 2003]. In fact, it is hard to describe the structure, the

interactions and the relations of the algorithm to the optimization problem [Danoy et al.,

2010]. Thus, some agent frameworks have been proposed to tackle these issues by benefit-

ing from the point of multiagent view.

MAGMA, (MultiAGent Metaheuristics Architecture)

Milano and Roli [2004] introduced a multiagent architecture called the MultiAGent Meta-

heuristic Architecture(MAGMA) conceived as a conceptual and practical framework for

metaheuristic algorithms. The authors tried to identify the common principles and basic

components underlying metaheuristic algorithms in order to hybrid and implement them

easily. In this architecture, a metaheuristic is a multiagent system composed of four levels

each of which corresponds to a different level of abstraction. Fig. 3.2 depicts these different

levels in MAGMA. Level 0 is composed by the agents which consist in providing a feasible

solution for the upper level; it can be considered the solution level. Level 1 deals with solu-

tion improvement such as local search. The agents in this level perform a trajectory in the

fitness landscape until a termination condition is met; this can be defined as the level which
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deals with neighborhood structure. Level 2 agents are used as a balance between the tasks

of diversification and intensification; this can be defined as the landscape level.

Figure 3.2: Multilevel architecture for metaheuristic algorithms [Milano and Roli, 2004]

Generic cooperative hyper-heuristic framework

In Ouelhadj and Petrovic [2009], the authors proposed an agent-based cooperative hyper-

heuristic framework composed of a population of independent heuristic agents and a coop-

erative hyper-heuristic agent, as illustrated in Fig. 3.3. The heuristic agents perform a local

search to improve their local solutions from the same or different initial solutions. They co-

operate synchronously or asynchronously through the cooperative hyper-heuristic agent by

exchanging the solutions of the low level heuristics. The cooperative hyper-heuristic agent,

as a high level of hyper-heuristic, manages the cooperation between the heuristic agents,

the overall selection of the low level heuristics, and the acceptance of their solutions. Fur-

thermore, a variety of acceptance criteria, including AM (All moves), TS (Tabu search),

IO (Improving Only), SA (Simulated Annealing) and GD (Great Deluge), has been inves-

tigated to decide whether to accept or not the selected solutions to be sent to the heuristic

agents to diversify the search.

To summarize, we discuss some limitations of these agent-oriented frameworks. Al-

though MAGMA can describe existing metaheuristics in a uniform way, it seems limited to

describe the distributed approaches. Moreover, as the framework for the algorithms imple-

mentation, the concepts of self-adaptive strategy are not integrated into MAGMA. However,

this type of strategies is often added in heuristic approaches to enhance the search capabil-

ity. As stated in Ouelhadj and Petrovic [2009], the research into the investigation of the

agented-based hyper-heuristic framework only focused on the role of cooperation between

low level heuristics. Although this cooperative search in a hype-heuristic framework of-

fers promising perspectives in cooperative hyper-heuristics, they didn’t investigate the role
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Figure 3.3: A cooperative hyper-heuristic search framework [Ouelhadj and Petrovic, 2009]

of cooperation between multiple hyper-heuristics to combine the performance of single

hyper-heuristics. Hence, we can extend their cooperation mechanisms so that it increases

the level of generality of framework. Moreover, learning process is not stressed in their

framework. In many complex domains, however, learning is the only feasible way to train

an approach to perform well.

3 Agent metaheuristic framework

Using several terms inspired by the social metaphors, some organizational models have

been proposed to assist the design of systems [Ferber and Gutknecht, 1998, Ferber et al.,

2004, Hannoun et al., 2000]. In Meignan et al. [2008], the authors proposed an orga-

nizational model to guide the design and analysis of metaheuristics. That is, the Agent

metaheuristic framework (AMF) is introduced for the purpose of analyzing existing algo-

rithms and facilitating the design of new metaheuristics. In this framework, a metaheuristic

is viewed as an organization by using the Role-Interaction-Organization (RIO) meta-model

[Gruer et al., 2002]. In this section we begin by introducing the concepts of the RIO meta-

model. Then we discuss a definition of the term agent together with some characteristics

and advantages of multiagent systems. Finally, we detail the Agent Metaheuristic Frame-

work (AMF) proposed by Meignan et al. [2008].
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3 .1 Role-Interaction-Organization meta-model

The RIO meta-model [A.Rodriguez, 2005, Gaud, 2007, Gruer et al., 2002, Hilaire et al.,

2000, Meignan et al., 2008] takes its name from the three main concepts of meta-model:

Role, Interaction and Organization. In the RIO model, an organization represents a set of

roles and their interactions associated to the satisfaction of a goal or the execution of a

global task. A role is an abstraction of a behavior or a status defined in an organization. It

is associated to an objective to accomplish. Formally, the definition of role can be given as

follows:

Definition 3.1 Role, [A.Rodriguez, 2005]

A role is the abstraction of a behavior in a certain context and confers a status
within the organization. The Role gives the playing entities the right to exercise
its capacities. Roles may interact the other roles defined in the same organization.

An interaction that links two roles is defined as follows:

Definition 3.2 Interaction, [A.Rodriguez, 2005]

An interaction links two roles in a way that an action in the first role produces a
reaction in the second.

Finally, we give the definition of organization as follows:

Definition 3.3 Organization, [Hilaire, 2000]

An organization is defined by a set of roles, their interactions and common context.
They define a specific pattern of interaction.

From a multiagent point of view, an agent can be considered as an active entity which

plays roles. An agent may be associated to one or more roles and a role may be played

by one or more agents. In fact, RIO provides a graphical representation of organizations.

An example of the graphic representation of a RIO diagram is presented in Fig. 3.4. At an

organizational level, we find two organizations. Organization 1 composed of three roles,

noted Role 1, Role 2 and Role 3 respectively. Role 3, Role 4 and Role 5 are defined in Or-

ganization 2. The role playing relationship between roles and agents is dynamic. Namely,

at any given time agents may request to play new roles and quit roles that they are currently

performing. At the agent level the associations of roles to agents are specified. For example,

agent 1 plays Role 1 and Role 2 in Organization 1.
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Figure 3.4: RIO model example

3 .2 Agent and multiagent systems

Using agent-based methods is not a new idea to solve problems. Despite its successful

application on many problems, the definition of agent is till a topic of some debates in

the theoretical artificial intelligence community. In the following, we cite some of the

definitions which are used to refer to an agent.

Maes [1995] detailed that "Autonomous agents are computational systems that inhabit

some complex dynamic environment, sense and act autonomously in this environment, and

by doing so realize a set of goals or tasks for which they are designed."

Hayes-Roth [1995] described that "Intelligent agents continuously perform three func-

tions: perception of dynamic conditions in the environment; action to affect conditions in

the environment; and reasoning to interpret perceptions, solve problems, draw inferences,

and determine actions."

Smith et al. [1994] stated that "Let us define an agent as a persistent software entity

dedicated to a specific purpose. ’Persistent’ distinguishes agents from subroutines; agents

have their own ideas about how to accomplish tasks, their own agendas. ’Special pur-

pose’ distinguishes them from entire multifunction applications; agents are typically much

smaller."

In Jennings et al. [1998], the authors emphasized that an agent is a (software) system

that enjoys the following properties:

-autonomy: agents operate without the direct intervention of humans or others, and

have some kind of control over their actions and internal state;
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-social ability: agents interact with other agents (and possibly humans) via some kind

of agent-communication language;

-reactivity: agents perceive their environment, (which may be the physical world, a user

via a graphical user interface, a collection of other agents, the INTERNET, or perhaps all

of these combined), and respond in a timely fashion to changes that occur in it;

-pro-activeness: agents do not simply act in response to their environment, they are able

to exhibit goal-directed behavior by taking the initiative.

In Ferber [1999], a minimal common definition of an agent is discussed

An agent is a physical or virtual entity

(a) which is capable of acting in an environment,

(b) which can communicate directly with other agents,

(c) which is driven by a set of tendencies or goals (in the form of individual objectives

or of a satisfaction/survival function which it tries to optimise),

(d) which possesses resources of its own,

(e) which is capable of perceiving its environment (but to a limited extent),

(f) which has only a partial representation of this environment (and perhaps none at

all),

(g) Which possesses skills and can offer services,

(h) Which may be able to reproduce itself,

(i) Whose behaviour tends towards satisfying its objectives, taking account of the re-

sources and skills available to it and depending on its perception, its representation, and

the communication its receives.

Russell and Norvig [2003] depicted a generic agent presented in Fig. 3.5. In this di-

agram, the authors depicted that an agent is anything that can be viewed as perceiving its

environment through sensors and acting upon that environment through effectors. This

way, a human agent has eyes, ears, and other organs for sensors, and hands, legs, mouth,

and other body parts for effectors, whereas a robotic agent substitutes cameras and infrared

range finders for the sensors and various motors for the effectors.

Figure 3.5: Agents interact with environment through sensor and effectors [Russell and
Norvig, 2003]
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Although there is no universally accepted definition of the term agent, there is a general

consensus that autonomy is central of the notion of agency [Weiss, 1999]. In addition, for

the purposes of our work, we consider an agent to be an entity, with states, actions, and

situated in an environment. Formally, in the context of optimization, we give the definition

of agent in a similar way as Milano and Roli [2004]:

Definition 3.4 Agent

An agent is an entity which can build a solution, move over a landscape, commu-
nicate with other agents by sharing information, and autonomously be active and
adaptive upon the environment.

Distributed Artificial intelligence systems are usually divided into two main categories:

multiagent systems (MAS) in which several agents coordinate their knowledge and activ-

ities and reason about the processes of coordinate; and distributed problem solving sys-

tems (DPS) in which the work of solving a particular problem is divided among a number

of nodes that divide and share knowledge about the problem and the developing solution

[Weiss, 1999]. Naturally, we can distinct that the emphasis of work on MAS is behavior

coordinate, whereas DPS focus on task decomposition and solution synthesis. In this sense,

a multi-agent system can be defined as

Definition 3.5 Multiagent System

A collection of autonomous agents, which are able to communicate and to coordi-
nate with each other within an environment.

In Jennings et al. [1998], the authors summarized the main characteristics of a MAS as

follows.

•Each agent has incomplete information, or capabilities for solving the problem, thus

each agent has a limited viewpoint;

•There is no global system control;

•Data is decentralised;

•Computation is asynchronous.

In addition, all multiagent systems can be viewed as having dynamic environment since

agents intentionally affect the environment in unpredictable ways [Stone and Veloso, 2000].

In this dimension, each agent is both part of the environment and modeled as a separate

entity. An example is illustrated in Fig. 3.6. From this figure, we can see that there may be

any number of agents, with different degrees of heterogeneity. They may interact directly

(communicate) as indicated by the arrows between the agents.

Based on there characteristics, we can benefit the following advantages of MAS in our

work. One comes from the parallelism that can be realized by MAS. Clearly, it is useful

to make an approach more efficient, particularly in solving the large problems. Then, the



3 Agent metaheuristic framework 57

Figure 3.6: The fully general multiagent scenario [Stone and Veloso, 2000]

second advantage is scalability. Since a MAS is inherently modular, it should be easier

to add new agents to the MAS than it is to add new capabilities to a monolithic system

[Stone and Veloso, 2000]. Last but not least, multiagent systems provide insights about the

design of approaches with cooperation and interaction, which may enlighten us on solving

the problems in the face of enormous complexity.

3 .3 AMF

As mentioned earlier, the AMF presented in Meignan et al. [2008] proposed a framework

based on an organizational model which can be used to describe both population-based

metaheuristics and trajectory methods. This model describes a metaheuristic in terms of

organization, roles and interactions. In fact, the AMF model extends the AMP scheme by

adding the concepts of intensification, diversification and adaptation while keeping a high

level of abstraction. In this framework, we can consider a metaheuristic as an organization

composed of a set of roles which interact in order to find an optimal solution. Clearly, the

goal of this organization is to efficiently solve the problem instance by providing high qual-

ity solutions in reasonable computing times. Intensification and diversification tendencies

are combined to explore the search. During the search, structured information about the

search space is used by subordinate procedures as heuristics in order to guide the explo-

ration and balance these two tendencies. In addition, it is desirable to adaptively determine

strategies to guide, intensify and diversify by learning from their search experiences. Four

roles are defined from these observations: Intensifier, Diversifier, Guide and Strategist. The
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resulting metaheuristic organizational model is described in Fig. 3.7.

Figure 3.7: AMF organizational model of metaheuristic [Meignan et al., 2009]

To obtain a metaheuristic from the AMF organizational model, it is sometimes neces-

sary to provide some methodological guidelines for the design of a particular metaheuristic

starting from the AMF organizational model. By considering the result of design process

is a multiagent system, Meignan et al. [2008] draw the following phases inspired by RIO

methodology [Gruer et al., 2002]:

• AMF Roles refinement: It consists in determining the means that are required to

perform the different roles described in the AMF organizational model.

• Agentification: It allows to determine the multi-agent structure of the metaheuristic.

•Metaheuristic specialization: It consists in specializing the multiagent system to treat

a particular optimization problem.

More importantly, this model can be considered as an unified view of several meta-

heuristics. Following is an example from Meignan [2008] to illustrate how the components

of metaheuristics can be expressed by a refinement of the AMF organizational model.

Island evolutionary algorithm

One of the ways of solving optimization tasks is using evolutionary algorithms [Holland,

1992], which are based on the iterative improvement of a population of solutions. It is a re-

markable fact that there are numerous operators proposed and applied for specific purposes

in evolutionary algorithms. Nevertheless, most algorithms emphasis on three genetic oper-

ators: selection, mutation and crossover. That is, individuals are selected and recombined
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in order to generate new solutions that replace other ones by using these operators. Due to

increasing demands placed on evolutionary algorithms for solving large problems, some of

them drive naturally towards parallel processing. Island evolutionary algorithm is one of

such algorithms [Tanese, 1989]. The resulting parallelization is that the overall population

is broken into a relatively small number of subpopulations called islands. The islands evolve

independently a number of generations and some individuals (normally the best) then tran-

sit between them called individuals migration. Fig. 3.8 shows an organization model of

island evolutionary algorithm and its agentification. Briefly speaking, it is composed of

three roles: Recombinator-Mutator, Selector and Coordinator. The Recombinator-Mutator

role is a refinement of the Diversifier role since the aim of this role is to diversify the popu-

lation by using the mutation and crossover operators, so as to avoid getting trapped within

local optima. The Selector role selects better individuals by allowing them to pass on their

genes to the next generation and prohibit the entrance of worst fit individuals into the next

generations. Therefore, this role corresponds to the Intensifier role. In respect of agentifica-

tion, there are three agents in this example. Each of them plays a set of roles and manages a

subpopulation of solutions. The agents interact with each other when undergoing individual

migration.

Figure 3.8: An organization model of island evolutionary algorithm and its agentification
[Meignan, 2008]
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4 From AMF to multi-level hyper-heuristic

The AMF encourages the designe of modular metaheuristics by the identification of com-

mon components. Although this promising direction of research leads to the successful

applications, this model is sometimes too generic to support the design of metaheuristics.

Moreover, it may not ensure the possibility to reuse the component to tackle different prob-

lems [Meignan et al., 2009]. As noted in the previous chapter, the hyper-heuristic method-

ology is proposed to address such a issue. Therefore, in our work, we focus attention on the

role of cooperation between hyper-heuristics since it might make more sense to raise the

level of generality. For the purpose of facilitating the design of cooperative hyper-heuristics,

we propose a multi-level hyper-heuristic pattern, which is derived from the AMF. In agree-

ment with the previous work on the AMF, we present this pattern in the following sections

whereby the basis of RIO meta-model.

4 .1 Overview

A traditional hyper-heuristic framework, as represented in Fig. 3.9, is composed of two

levels, a high level and a low level, with a problem domain barrier separating them. On

the one hand, the low level includes a set of problem-specific heuristics called low level

heuristics, which search directly on the solution space. On the other hand, high level usually

operates a certain low level heuristic to be applied at a given step of the search process

depending on the non-specific knowledge, such as the difference in the objective function,

historical performance, etc.

Figure 3.9: Hyper-heuristic traditional framework [Burke et al., 2003a]

From the RIO point of view, we define a cooperative hyper-heuristic as an organization.
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The goal of this organization is to efficiently explore the search by combining a set of hyper-

heuristics in the hope that it can find high quality solutions in reduced amount of time. In

a cooperative hyper-heuristic search, where more than one hyper-heuristic is involved, the

information must be exchanged in order to achieve the cooperation. The exploration is de-

termined by intensification and diversification moves. However, to guide the exploration,

finding a balance between two moves often depends structured information, such as record

performances. Additionally, adaptiveness is a desired feature for search. As a result, the

strategies employed to guide, intensify and diversify may be adapted whereby the search

experiences. Five roles stems from this definition: Cooperation, Guide, Strategist, Diver-

sifier and Intensifier. From these observations, the resulting organization called multi-level

hyper-heuristic pattern is shown in Fig. 3.10. As can be seen from this figure, we define a

three-level architecture that providers an additional level on top of a hyper-heuristic in order

to make use of the cooperative search between hyper-heuristics. A top level thus refers to

the Cooperation role. A high level contains the Guide and Strategist roles. The Diversifier

and Intensifier roles are involved in a low level. The following subsections address three

levels in the pattern more precisely.

Figure 3.10: Organizational model of cooperative hyper-heuristic

4 .2 Top level

At this level, the distribution of the computation is organized on the metaphor of the coali-

tion as proposed by Meignan et al. [2009]. Namely, the coalition is made up of several

agents, which concurrently explore the search space and cooperate to improve their search

abilities.

Each agent can be seen as a hyper-heuristic. The coalition structure is intended to sup-

port robustness and facilitate the distributed computation since control is decentralized and
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communications between hyper-heuristics are asynchronous. Consequently, the removal

or addition of any hyper-heuristic would not perturb the global functioning of the system.

In our current study, we only investigate the improvement carried out by such a coopera-

tive level of hyper-heuristics. The method is simulated on a single processor, but it is also

intended to be easily implemented on multi-processor or asynchronous computer networks.

The Cooperation role allows hyper-heuristics to communicate. For example, hyper-

heuristics can exchange information about their own solutions of any problem given. Al-

ternatively, the behavior of hyper-heuristics, e.g., selection of low level heuristics, can be

learned/shared between hyper-heuristics. The primary reasons behind communicating/shar-

ing information between hyper-heuristics are to increase the level of generality and to speed

up the exploration of the solution space for large and complex problems. It should be in-

terested to notice that this level helps to design hybrid hyper-heuristics in many ways. Al-

though all hyper-heuristics used here are homogeneous, it should be mentioned that this

level also allows to achieve cooperation between heterogeneous hyper-heuristics. That is,

the coalition can be composed of agents that are not identical. For instance, it is possible to

form a hybrid of hyper-heuristics with a different set of low level heuristics. Alternatively,

hyper-heuristics have the same set of low heuristics but different learning strategies.

Formally, we give the definition of the Cooperation role composing the top level as

follows.

Definition 3.6 Cooperation Role

The Cooperation role combines the efforts of several independent agents by or-
ganizing the coalition. This role makes the information that agents must commu-
nicate available and accessible to agents. The goal of the Cooperation role is to
provide a mechanism to allow the information exchanged so as to yield a more
efficient global search.

4 .3 High level

A hyper-heuristic itself operates at a high level in the way of performing a search over a set

of low level heuristics for solving the problems. At this level a hyper-heuristic is seen as

an intelligent agent who takes decisions and learns from the past experiences. According to

AMF the agent behavior is specified by roles that interact one with each other. Two roles

are played by an agent for managing the low level heuristics during the search. They are

respectively called Guide and Strategist roles.

How to obtain a balance between diversification and intensification has become a sig-

nificant principle for successfully implementing algorithms. Here, the Guide role is re-

sponsible for such a balance by following a decision process. Specifically, the Guide role

attempts to make a decision between intensification and diversification by imitating intelli-

gent processes. That is, a kind of "memory" is used as the essential element of the Guide



4 From AMF to multi-level hyper-heuristic 63

role. The memory term in fact has been taken from Adaptive Memory Programming (AMP)

scheme [Taillard et al., 2001]. In practice, memory can take several forms embedded into

algorithms, such as a tabu list in tabu search, a population of solutions in evolutionary

algorithms and the pheromone trail in ant colony algorithms. As summarized in Taillard

et al. [2001], the common characteristics shared by these memory-based methods are the

exploitation of a memory to construct a new solution, an improvement procedure to find an

even better solution and a memory update procedure based on pieces of knowledge brought

by the improved solution. Using the memory, we can identify main “activities” which may

be performed by the Guide role within hyper-heuristic framework like the following:

• maintain a history of the search performed by low level heuristics;

• store the solutions found;

• avoid staying on regions which have been excessively exploited;

• offer the information about promising regions;

• provide dynamically the intensification and diversification.

To summarize, we formalize the definition of the Guide role as follows:

Definition 3.7 Guide Role

The Guide role directs, in the one hand, to diversify the search by exploring unvis-
ited regions, in the other hand to intensify the search in order to obtain promising
solutions. To this end, this role uses a memory, where the information necessary is
recorded, for guiding purposes. The goal of the Guide role is to achieve a balance
between the intensification and diversification.

Indeed, hyper-heuristics must address the issue of how to produce good sequences of

the low level heuristics. Often, the most effective way is to incorporate a learning mecha-

nism for the sake of assisting the selection of low level heuristics during the search process.

One of the commonly used methods for learning is by using a choice function which adap-

tively ranks the low level heuristics [Burke et al., 2010a]. Another method is reinforcement

learning due to its simplicity and effectiveness [Nareyek, 2004]. To take into considera-

tion a cooperative search, if a hyper-heuristic trends to behave as the most efficient than

another one, other hyper-heuristics must learn its behavior so as to compensate their lack

of “knowledge”. Therefore, the Strategist role corresponds here to the adaptation or self-

adaptation mechanisms used in hyper-heuristics. The goal of this role is to improve the

performance of the search process and possibly to reduce parameter setting. Obviously,

adaptation can be considered as a distinguishing feature of this role. Similar to the AMF

[Meignan et al., 2009], the term of adaptation is characterized by the modification or adjust-

ment of the search strategy resulting from the observation of experiences. Thus, adaptation

mechanisms use some kind of feedback to determine the nature or amplitude of the change.

In our study, we will apply a reinforcement learning approach in conjunction with a cooper-

ative learning mechanism between agents called mimetism learning [Meignan et al., 2009].

Some important activities performed by the Strategist role might be:
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• to distinguish desirable behaviors;

• to use the abstract knowledge for modifying the behaviors;

• to assign credit/blame associated with the low level heuristics.

The definition of the Strategist role can be formally given below:

Definition 3.8 Strategist Role

The Strategist role combines the use of different learning mechanisms so that the
search behavior improves over time. The goal of the Strategist role is to adapt the
search strategies according to the problem at hand.

4 .4 Low level

Intensification and diversification are two major issues when designing a global search

method [Blum and Roli, 2003]. Diversification generally refers to the ability to visit many

and different regions of the search space, whereas intensification refers to the ability to ob-

tain high quality solutions within those regions. Thus, the Intensifier and Diversifier roles

respectively represent the intensification and diversification procedures or tendencies. In

practice, intensification and diversification can be carried out in many ways. By analyzing

most of popular metaheuristics, we can observe that the way to achieve intensification is

mainly by a local descent procedure. A typical example can be taken from the tabu search

[Glover and Laguna, 1998]. The main way to achieve diversification is to use perturbation

techniques. For instance, crossover in the genetic algorithm [Holland, 1992] makes sure

new solutions by swapping parts of existing solutions. In a hyper-heuristic, a promising

way to achieve intensification and diversification is to combine several low level heuristics

with strong specialization for intensification of diversification. Obviously, this is done at

this level. More precisely, operators specified for intensification are used in local search

procedures, whereas operators for diversification usually apply the perturbation to solution.

Formally, the definitions of the Diversifier and Intensifier roles can be respectively ex-

pressed as follows:

Definition 3.9 Intensifier Role

The Intensifier role is engaged in concentrating the search. The goal of this role is
to exploit deeply in promising area of the search space.

Definition 3.10 Diversifier Role

The Diversifier role refers to the exploration of the search space. The goal of this
role is to move the search to unexplored areas.
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5 Summary

Due to the importance of combinatorial optimization problems for the scientific as well

as the industrial world, the field of metaheuristics is a rapidly growing field of research

for solving various combinatorial optimization problems. The different components and

concepts are used among these metaheuristic approaches. Therefore, it was interested in

proposing simple, flexible, robust and modular metaheuristics. Several frameworks of meta-

heuristics have been proposed in order to carry out these features and to analyze their simi-

larities and differences. This chapter outlines some frameworks for metaheuristics, and also

hyper-heuristics. In these previous works, we observe that agent-oriented frameworks seem

to be a promising field of research. However, there are some limitations of these existing

approaches in some regards. The interest in cooperative search frameworks has risen due

to successes in combining novel search algorithms. Nevertheless, cooperative algorithms

are relatively new. At the same time, most of current design of cooperative search algo-

rithms focus on metaheuristics. Based on the AMF model, we investigate the multi-level

hyper-heuristic pattern that provides an organizational description of cooperative search in

context of hyper-heuristics.

In a traditional hyper-heuristic framework, there is two levels: high level and low level.

The low level is in charge of building the solutions, whereas the high level operates a set

of low level heuristics in a strategic way. Here, we extend the traditional framework to

describe a multi-level heuristic pattern which contains three levels: top level, high level and

low level. Clearly, the top level is an additional level. Multiple hyper-heuristics enable to

communicate the collected information in regions of solution space through this level. At

the same time, it can help us to design new cooperative algorithms with this extra level in

the context of hyper-heuristics. The high level operates on heuristics rather than directly on

the solutions by indirectly choosing a low level heuristic at each step. Within the pattern

presented here, this level means to improve individual searches by learning. The reason

behind learning is to choose the most appropriate low level heuristic from a set of heuristics

during the search based on the experiences accumulated. Observing the similarities between

metaheuristics, we can identify two basic elements: intensification and diversification. The

intensification consists in looking further into the exploration of certain areas of the solution

space, offering the promising solutions. The diversification can be considered as the restart

searches when stagnation is encountered during the search e.g., no improvements after a

specif number of algorithm cycles. Therefore, the low level here addresses a problem at

hand by designing a set of low level heuristics for intensification and diversification.

The organizational approaches have offered the new ways for analyzing, designing and

implementing MAS. The AMF is proposed as an organizational and multiagent framework

to design and hybridize metaheuristics. The advantages of the AMF shed new light on the

cooperative search in a hyper-heuristic framework. Enlightened by these previous works,

we use an organizational model to describe a cooperative hyper-heuristic search. In a sim-
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ilar way, we define several roles, each is an abstraction of a behavior in an organization.

More precisely, five roles are used in our model: Cooperation, Guide, Strategist, Diversifier

and Intensifier. As explained previously, the concept of role does not match to a particular

agent, in a contrary, it can be played by several agents. At the same time, an agent can also

play several roles. Indeed, two roles are linked by an interaction. From the RIO point of

view, the interaction that links between the Guide role and the Intensifier role (or the Diver-

sifier role) corresponds to information about the regions of solution space. For instance, the

best solution found in certain areas of the solution space is an interaction between the Guide

role and the Diversifier role. For the Cooperation and the Strategist roles, the interaction is

the most efficient behavior of agent found.

In short, the pattern presented in this chapter serves as a new way to design the co-

operative hyper-heuristics. To test our proposed pattern and to observe the advantages of

cooperation in the context of hyper-heuristics, we propose a new type cooperative hyper-

heuristic in the next chapter.



CHAPTER 4

A TWO-PHASE COOPERATIVE
HYPER-HEURISTIC APPROACH FOR

BUS DRIVER SCHEDULING

1 Introduction

To the best of our knowledge, there is very little research work on the bus driver scheduling

problem by using hyper-heuristics. In this chapter, we introduce the two-phase cooperative

hyper-heuristic approach (TPCH, for short) based on the multi-level hyper-heuristic pattern.

The aims of this research are:

• to valid our proposed pattern carrying out the characteristics of generality, flexibility

and scalability;

• to propose a novel cooperative search approach;

• to exclusively devote the bus driver scheduling problem, particularly in solving real-

world instances.

We present our proposed approach in this chapter. The principles of TPCH are outlined

in section 2 . Firstly, we depict a general structure of TPCH in section 3 . Section 4 details

the decision process related to a TPCH agent. Then, we put the emphasis on learning

mechanisms in sections 6 to 4 . Finally, section 7 gives the low level heuristics used to

solve the bus driver scheduling problem.

2 Method principles

2 .1 Strategies of cooperation

Cooperative search is a category of parallel algorithms, in which several search algorithms

run in parallel in order to solve the optimization problem at hand [El-Abd and Kamel,

2005]. The authors in Crainic and Toulouse [2003] distinguish three parallel strategies for

metaheuristics. The first strategy aims directly to reduce the execution time of a given so-

lution method without achieving higher quality solutions. Namely, this kind of strategy

cannot improve solutions but runs faster when compared with a sequential one. In the sec-

ond strategy, parallelization is obtained by partitioning the set of decision variables. It is
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generally implemented in a master-slave framework without direct interactions between the

search processes. Often, the resulting framework of this strategy is a master-slave struc-

ture. The last parallel strategy consists of several concurrent searches in the solution space.

Although each concurrent search may implement the same heuristic method independently,

they usually communicate to identify the best overall solution during the search. The par-

allel strategy of our approach falls into this last category. In general, there are two fun-

damental strategies for the design of cooperation among agents: centralized cooperative

strategy and decentralized cooperative strategy. In centralized cooperative strategy there

is a central agent that conducts the interchange of information between the processes and

makes the decision on the explicit steps made by the individual process. In decentralized

cooperative strategy, however, each search process has its own rules to decide when and

how interchange the relevant information with other processes [Alba, 2005]. Theoretically,

cooperative architectures are more robust and scalable when used in a decentralized man-

ner. Additionally, communications among agents are intended here in a way such that the

removal or addition of any agent would not perturb the global functioning of the system.

For the above reasons, TPCH has been designed by considering a parallel hyper-heuristic

approach with a decentralized strategy. That is to say that an agent which acts as a central

controller does not exist. Furthermore, every agent is independent, and can communicate

with others by sending individual messages.

Fig. 4.1 illustrates our cooperative architecture. As we have seen, there is not a special

agent which dictates or centralized control to manage the agents. The arrow lines represent

the information exchanged. The agents, on the one hand, visit search space independently.

On the other hand, any agent can share information with the other concurrent agents. To

summarize, the strategy of cooperation used in our approach consists in sharing the infor-

mation gathered by the agents while they perform search independently on the solution

space.

Figure 4.1: Distributed cooperative architecture
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2 .2 Reinforcement learning

In TPCH, the problem of selecting the most appropriate low level heuristics is viewed as a

reinforcement learning problem.

Machine learning, a branch of artificial intelligence, is the study of computer programs

and algorithms that automatically improve their performance through experience. Rein-

forcement learning (RL) belongs to the category of machine learning algorithms. We begin

to explain reinforcement learning by giving a simple example. As discussed in Dayan and

Watkins [2006], one way in which animals acquire complex behaviors is by learning to ob-

tain rewards and to avoid punishments. Consider teaching a dog to achieve a task, you do

not need to tell it how to do, but you can reward/punish it if it does the right/wrong thing.

By using this feedback, after many trials the dog will learn a behavior to achieve the task

while avoiding any punishments. The behavior of this dog in this example can be consid-

ered as a type of learning, that is, a way of training dog by reward and punishment without

needing to specify how the task is to be achieved. In fact, reinforcement learning theory is

a formal computational model of such type of learning.

As discussed previously, multiagent systems are rapidly finding applications in a variety

of domains. The complexity of many tasks arising in these domains makes them difficult

to solve with designed agent behaviors in advance. It is common to make the agents to

discover a solution using learning strategies. Recently, there has been growing interest in

extending RL to the multi-agent domain [Busoniu et al., 2008, Panait and Luke, 2005]. In

Fig. 4.2 we depict the agent-environment interface. In the reinforcement learning system,

an agent interacts with its environment to achieve a goal. On each step of interaction the

agent observes the current state, s, of the environment; the agent then choose an action, a,

from a set of possible actions in that state. The action changes the state of the environment,

and the value of this state transition is communicated to the agent through a reward, r. A

policy π maps states to actions (or action probabilities). Agents observe their individual

states and perform actions for which numerical rewards are given. Thus, the agent’s goal is

to maximize its long-term cumulative reward by learning an optimal policy that maps states

and actions.

Figure 4.2: The agent-environment interaction in reinforcement learning
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Figure 4.3: Two-phase cooperative hyper-heuristic approach

Reinforcement learning can provide a robust and intelligent way for agents to learn

how to coordinate their action choices in environment. Using RL as a means of achieving

coordinated behavior is attractive because of its generality and robustness.

3 General structure of TPCH

Based on the multi-level hyper-heuristic pattern, the proposed approach is illustrated in Fig.

4.3.

Briefly speaking, each agent can be viewed as having two phases: the fundamental prin-

ciple of the first phase is to provide the interplay between intensification and diversification

of search, whereas the second phase is related to the ruin and recreate search principle.

The behavior of agents is based on four components: operators, rules, selection process and

learning mechanisms. The operators are used to implement intensification or diversification

tasks. Intensification operators refer to improvement process based on local search proce-

dures, and diversification operators correspond to three types of perturbation procedures.

Since, when solving a given problem, local search procedures alone cannot escape from a

local optimum, the latter provides different degrees of diversification which perform either

different number of perturbation moves or different types of moves used for perturbation.

Moreover, a set of rules plays also the role of diversification in the ruin and recreate pro-

cedure when more diversification is needed. The order in which operators are executed

is determined by the selection process. For each application of an operator to the current

solution, the agent’s rewards and states are stored in what we call an experience. Based on

the experiences accumulated, learning mechanisms are applied in order to choose the most

appropriate operators in the selection process. It is important to note that agents have no

synchronization point and doesn’t necessitate shared memory.
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Overall, our approach is described in Algorithm 5. In this algorithm, each agent man-

ages three problem solutions: a current solution Scurrent, the best solution from an agent

Sbestfound and the best solution from the entire coalition Sbestcoalition. When a solution is re-

ceived (line 24), this last one is noted Sreceived. The attribute W is a weight matrix, r refers

to the rewards and E denotes the experience memory. This memory stores o (operator in-

dex), t (execution time of operator), s (state) and fitness value for each operator application.

The decision process determines the sequence of operators to apply (lines 9 − 10). Then,

the agent’s set of solutions is updated (lines 12− 26) and the experience is stored after each

application of an operator to the current solution. Based on the experiences accumulated,

learning mechanisms modify the rules of the decision process. Moreover, if the obtained re-

sult remains unchanged after a given number of consecutive iterations (line 18 and line 34),

it seems that the diversification is not sufficient, and it is necessary to make large ’jump’

to quickly move out of unpromising regions of the solution search space. Thus, the search

goes into a ruin and recreate procedure (lines 34 − 38). After the application of a set of

rules (line 35), Scurrent is returned to the first phase (line 36) and a counter for consecutive

non-improving local optima is restarted from zero (line 37). Note that the given number of

consecutive iterations can be computed via a parameter p%. The p% parameter determines

the percentage of the maximum number of iterations allowed in solving the problem.

Some advantages of the multi-level hyper-heuristic pattern can be observed in the al-

gorithm. First, it is possible to distinguish the realization of defined roles in the pattern.

Realization of Cooperation role engages the communication among agents by sharing the

information (lines 21− 22). Guide role performs the choice of operators (lines 9− 10) and

updates the set of solutions (lines 12 − 26). After one operator is applied, the experience

is stored. Strategist role observes the experiences and modifies the decision weights using

individual and mimetism learning (lines 28− 32). Realization of Intensifier and Diversifier

roles corresponds to the application of low level heuristics (line 10 and line 35). Thus, the

algorithm can be viewed as a particular schedule of roles. Second, all procedures in Al-

gorithm 5, except the operators and rules application, are problem independent. This point

follows the hyper-heuristic approach, and ensures the flexibility of TPCH.

4 Selection process

The performance of hyper-heuristics depends on the selection of a promising low level

heuristic at each step to use its ability during the search. Here, we combine the selection

operators (low level heuristics) with a reinforcement learning scheme to improve the deci-

sion making process, called first phase in our approach.

In the reinforcement learning scheme, as explained in subsection 2 .2 of this chapter, an

agent perceives a state of the environment and takes an action, which causes the environ-

ment to transit into a new state. It receives a scalar signal, called reinforcement, from its
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Algorithm 5: Description of the TPCH algorithm

/∗ Initialization ∗/1

Set maximum number of iterations imax2

Set threshold percentage p%3

Set count value j ← 04

W ← init_weight_matrix()5

E ← init_experience_memory()6

for i = 1, . . . , imax do7

/∗ Choose and apply an operator ∗/8

op← choose_operator(W, s)9

Snew ← apply_operator(Scurrent, op)10

/∗ Update solutions ∗/11

Scurrent ← Snew12

if the Sbestfound improved by operator application then13

Sbestfound ← Scurrent14

r ←compute_rewards()15

end16

else17

j ← j + 118

end19

if the Sbestcoalition improved by operator application then20

broadcast_solution(Sbestcoalition)21

broadcast_weight_matrix(W )22

end23

if new best coalition solution received from another agent then24

Sbestcoalition ← Sreceived25

end26

/∗ Learning mechanisms∗/27

r ←compute_rewards(E)28

individual_learning(r)29

if weight matrix received from another agent then30

mimetism_learning(W,Wreceived)31

end32

/∗ Ruin and recreate ∗/33

if j = imax ∗ p then34

Snew ← apply_rules(Scurrent)35

Scurrent ← Snew36

j ← 037

end38

end39

Output Sbestcoalition40

environment depending on the action taken. The reinforcement can be positive (reward),

negative (punishment), or 0. Before we use multi-agent systems to solve problems, four

elements should generally be defined. The first is to define what an agent is. The second is
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to define the environment where all agents live. The third concerns the definition of state.

The last is a definition of action that each agent can take to achieve its purpose. As men-

tioned already, a hyper-heuristic is referred to as an agent. In the context of hyper-heuristics

we define the state, the action and the environment as follows. Let H = {h1, h2, . . . , hm}

be a set of the low level heuristics. Given a problem to solve, a low level heuristic h is

selected to apply from H at each decision point of the search. The state si indicates the

application of the low level heuristic hi, hi ∈ H . In a given state, the selection of the low

level heuristic hj, hj ∈ H corresponds to the possible action aj . The environment can be

viewed as a problem domain offering the rewards, which estimate the performances of se-

lected low level heuristics. After one action is applied, a new solution and several rewards

can be obtained from the environment, restarting the new state at the same time.

Let S = {s0, s1, . . . , sm} be the set of the states, A = {a1, a2, . . . , am} be the set of

actions. Each state-action pair 〈si, aj〉 is assigned a weight wi,j , which represents a degree

of suitability of the action in the given state. Namely, a weight wi,j is associated to each

action aj, aj ∈ A, for the state si, si ∈ S. The effective choice of execution of an action is

performed by a roulette wheel selection principle. Thus, the probability P (aj | si) to apply

the action aj in the state si is computed using the following formula:

P (aj | si) =
wi,j∑m

k=1 wi,k

(4.1)

with:

S : (si)i=0,...,m; Set of states

A : (aj)j=1,...,m; Set of actions

W : (wi,j)i=0,...,m;j=1,...,m; Weight matrix

5 Individual learning mechanism

Initialization of the weight matrix is made with the initial weight w. The weights that

correspond to undesirable actions are set to zero. Here, we set the weight (wj,j)j=1,...,m to

zero in order to prevent selecting successively the same actions. At the beginning of the

optimization, the learning state is set to the state s0. Then, a learning process will adjust

the weights according to the past experiences of the agent. An example of a weight matrix

is shown in Fig. 4.4 where the first column indicates the states; the first line indicates the

actions. In this example we can easily see that there are four actions a1, a2, a3 and a4. Each

state indicates the application of one action. As it can be seen from Fig. 4.4, an agent

selects the action a2 at the beginning and perform it, and then the agent senses the current

state s2.

It should be noted that a special state local optimum is reached when all the actions have

failed to improve a given solution after the consecutive steps. Therefore, we propose a ruin
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Figure 4.4: An example of a transition step using the weight matrix

and recreate procedure, called second phase in our approach, in an attempt to overcome this

difficulty. In the second phase the search randomly chooses a sequence of rules and then

applies each rule once.

Using reinforcement learning techniques for the learning selection in hyper-heuristics

is not new, having been proposed by Nareyek [2004]. In the majority of hyper-heuristics

using reinforcement learning techniques, a low level heuristic is rewarded if it improves

a solution, while a negative reinforcement is applied if it fails to do so. However, the

reward seems inappropriate only for the improvement of solution. As stated in Bai et al.

[2007], although some heuristics cannot improve the solution directly, they are still useful

in creating some intermediate situations to reach the optimal solution (or a good quality

solution). In addition, the positive behaviors of action (e.g. search efficiently) may be

considered when we give the rewards to actions. Here, we assume that a good solution

obtained by agent benefits from three particular cases to be rewarded. Table 4.1 presents

these particular cases and indicates the quantifiable rewards. It is clear that other particular

cases can be easily introduced, alone or in conjunction with those described below, without

modifying the agents’ architecture.

Let us dicuss a question before we detail the particular cases used in our approach. In

fact, for the purpose of estimating the actions in a given state, it is common to compare

their performances. In this sense, the following question has to be answered. How to

measure the performance of actions? To answer this question, we introduce an improvement

value, which allows to measure the ability of finding a good solution quickly. Formally, the

improvement value Ci,j can be given by the following formula.

Ci,j =
F

T
(4.2)

with:

Ci,j; Value related the action j in the state i

F ; Improvement on fitness values

T ; Execution time

Now let us return to the following three cases in which the rewards can be given.
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Table 4.1: Particular cases of rewards

Case Description Value of reward

Case 1 A new best solution
is found.

1

Case 2

The actions which
are not applied in a
given state are re-
warded if the ob-
tained solution re-
mains unchanged.

0.3

Case 3

The fitness value
improvement per
unit execution time
is more than the one
of other actions in
the same state.

0.5

Case 1 is the most important criterion to gauge the performance of action. At each

iteration, the reward is given as follows: when an action results in a better solution than

the best solution found we update the weights of the corresponding action with a reward

of 1, otherwise no reward is given. In practice, this simple binary reward may be the most

frequently used as a learning rule in the context of hyper-heuristics.

Case 2 leads to select actions which are not applied by raising their weights so as to

insure the best balance as possible between exploration and exploitation. It has been men-

tioned already that in each state an agent must select an action. For the purpose of obtaining

rewards in short term, the agent, on the one hand, selects an action with highest weight in

a very natural way. On the other hand, the agent needs also to take other ones that may

help it to obtain high rewards in long term and to avoid being stuck on sub-optimal policies.

Several strategies have been proposed during the learning process for balancing exploration

and exploitation. For instance, a strategy called GLIE is widely used to achieve a balance

between exploration and exploitation by making randomly the decision between to choose

the best and some other ones [Singh et al., 1998]. However, it is worth noting that this

type of strategies may cause too much exploration that prevents from maximizing the re-

wards. Moreover, the agent cannot sufficiently exploit its knowledge in this situation. Here,

we raise the possibilities to select the actions that are not applied if the obtained solution

remains unchanged. In order to explain how it works, Fig. 4.5 shows an example of five ac-

tions in a state for the case 2. In this example, the agent would execute an action from a set

of actions (a1, a2, a3, a4 and a5) in state S1, where each action has an improvement value

except actions a1 and a4. Due to the fact that an action is not assigned an improvement

value indicating that the action has not yet taken by the agent, actions a1 and a4 are not
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yet applied in this example. If the solution obtained remains unchanged, it seems worth to

discover new actions that may lead to good outcomes. For this example, as it is noted pre-

viously, we do not consider the application of actions a1. Consequently, we reward action

a4 so that it can help the agent select this action in next step.

Figure 4.5: An example of the Case 2

Case 3 is used to reward well-performed actions. Once we obtain all the values C

associated with the actions in a given state, a reward is given to the action that has the

highest value C according to the current estimate. However, if there are at least two actions

with same highest values, we randomly select one of actions which have the highest value

to reward. Then, the experience memory E will restart to record these values from zero.

Note that the value C is negative if an action leads to worse the fitness values. To put it

more precisely, we take an example showing in Fig. 4.6. As we have seen, there are five

actions in state 1, each having an improvement value except action a1. In this example,

C1,3 is the highest value comparing with others. As a result, action 3 will be rewarded. It

is clear that case 3 and case 2 are conjoint, that is, every action in a given state would have

its improvement value if we raise the possibilities to select the actions that are not applied.

The benefits of this case are twofold. First, favorable selections will be kept and used to

obtain promising neighboring solutions. Second, this case leads to select efficient actions,

and, consequently, the agent will learn faster.

It is worth underling that the values of reward reflect the importance of the performance

during the search process. After the application of the action aj in the state si, the weight

wi,j for the state si can be calculated by

wi,j = wi,j +
c∑

k=1

r
(k)
ij (4.3)

where rij is the rewards after the application of the action aj in the state si; c is the number

of particular cases.
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Figure 4.6: An example of the Case 3

6 Cooperative mimetism learning

In our study, each agent uses a reinforcement procedure to learn individually on the one

hand. On the other hand, a cooperative mimetism learning is used to learn the behaviors of

agent already enhanced by the individual learning. It may be impossible or undesirable for

agents to learn all their knowledge all the time. In this sense, we first make the assumption

that an agent which tends to behave as the most efficient agents can be found during the

search. Under this assumption, the cooperative mimetism learning improves the search

in the way that propagates the search behavior of this agent to others. Now, this rises

two questions that need to be answered before accomplishing the cooperative search: 1)

How to define the most efficient agent, 2) and which information to consider as the search

behavior. Here, to facilitate, we consider an agent as more efficient than another one if

it can improve the best coalition solution during the search. In our case, a weight matrix

could be regarded as sort of the search behavior for agent, since it impacts the search paths.

So far, we can apply the cooperative mimetism learning. Once the most efficient is found,

the learning procedure is implemented as follows. The most efficient agent broadcasts its

weight matrix to the other agents of the coalition. Then, when agents receive the weight

matrix, they resume the search with a modified weight matrix. In fact, mimetism learning

is firstly proposed by Yamaguchi et al. [1997] for the purpose of sharing learning results. In

Meignan et al. [2009], the authors adapted this notion by giving an example of a successful

cooperative algorithm design in the context of optimization. Following this meaningful

work, the cooperative mimetism learning is performed using the same formula as stated in

Meignan et al. [2009]. Let Wa be the weight matrix of the imitator agent A, and Wb the

weight matrix of the imitated agent B. The imitation is computed as follows:
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Wa = (1− ρ) ·Wa + ρ ·Wb (4.4)

with

Wa: weight matrix of the imitator agent;

Wb: weight matrix of the imitated agent;

ρ: mimetism rate.

As mentioned earlier, the cooperative search here is not based on a decomposition of

problem domain. Rather, a set of independent agent executes concurrently in the search

space. The cooperation focuses on the sharing information gathered by these individual

agents. The information shared not only gives correct indications concerning the current

status of the global search, but also enhances global behavior.

7 Low level heuristics

In this section, we introduce both the specialized operators and rules for the bus driver

scheduling problem.

7 .1 Specialized operators

Starting from an initial solution generated by applying a fast construction operator called

Generation operator, we apply a set of specialized operators to achieve a balance between

diversification and intensification during the search process. Here, three diversification op-

erators and six intensification operators are used by the agents. The set of diversification

operators is composed of Crossover operator, Shake operator and Perturbation operator.

Six intensification operators are as follows: Cut and Add operator, Removal and Add op-

erator version 1, Removal and Add operator version 2, Swap operator version 1, Swap

operator version 2 and Exchange operator. The operators are depicted in Fig. 4.7 and we

explain these operators in more detail below.

Generation operator: Initial solutions are obtained by this operator using a run-cutting

method. Namely, the pieces of work of the vehicle blocks are successively covered by

the created duties until the cover is complete. Indeed, the run-cutting method inspired

by manual schedule procedures can be implemented in different ways. Here, Generation

operator creates an initial feasible schedule by covering progressively uncovered pieces of

work from a pool of vehicle blocks. During this process, a piece of work is covered by an

assigned duty (or driver) if all the constraints are satisfied, and uncovered otherwise. The

algorithm is repeated until all pieces of work have been covered.

Cut and Add operator: The neighborhood structure used in this operator is inspired

by a heuristic called improvement heuristic in Lan et al. [2007]. If two solutions share at

least one duty, these two solutions are called neighboring solutions. Formally, a solution
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Figure 4.7: Specialized operators for the bus driver scheduling problem

S = {D1, D2, . . . , Dl} is a subset of selected duties. Each duty is an ordered set of tasks,

Di = {ti1, ti2, . . . , tiki}, tij ∈M . Given two feasible solutions S and S ′, if S∩S ′ 6= ∅, then

S and S ′ are neighboring solutions, otherwise, they are disjointed solutions. The operator

is performed as follows: A duty is selected from a given feasible solution, then we create a

new solution by removing its pieces of work which can be added to other duties satisfying

feasibility. Fig. 4.8 illustrates an example of Cut and Add operator performed on a feasible

solution S. In this example, a feasible solution S = {D1, D2, D3, D4} corresponds to a set

of four duties, where each duty is a set of pieces of work. The piece of work 6 is taken out

of the duty D2, and the piece of work 14 is from the duty D3. We attempt to add these two

pieces into the other duties if feasibility is satisfied. Subsequently, these removed pieces

are covered by D4. Note that this operator is employed to reduce extra time and idle time,

thereby reducing the total costs.

Figure 4.8: Cut and Add operator

Removal and Add operator version 1: This operator which follows the similar process
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of the neighborhood search introduced by Lan et al. [2007] can be applied via a two-step

procedure. Firstly, a number of duties that have the less working time are removed from a

given feasible solution. The solution will thus become infeasible because there are some

uncovered pieces of work. Next, this partial solution is made feasible in such way that we

try to add these pieces of work into other duties if feasible, otherwise we construct new

duties to cover the remaining pieces of work. To explain it more clearly, a simple example

is shown in Fig. 4.9. Duty D4 with pieces of work 15 and 16 in a feasible solution S can be

found in this example. The solution S is transformed into a new solution S ′ by removing

D4, and adding all its pieces to the other duties. This operator is used in order to reduce the

number of duties.

Figure 4.9: Remove and Add operator version 1

Removal and Add operator version 2: Behaves the same as Removal and Add operator

version 1, except the selection of duties for removal. This operator evaluates the number of

pieces of work for all the duties. Then a duty with the fewest number of pieces is selected

to removal until the removal number of duties is satisfied. Next, we try to add their pieces

to other duties as the same procedure as in Removal and Add operator version 1.

Swap operator version 1: This operator is based on the local search introduced by

De Leone et al. [2011] which swaps two pieces of work in two duties. An example of

description for this operator can be found in Fig. 4.10. Suppose that duty Di covers pieces

of work {ti1, ti2, ti3, ti4, ti5} and duty Dj covers pieces of work {tj6, tj7, tj8, tj9, tj10}, Di,

Dj ∈ S. The decomposition of two duties can be applied to obtain four subsequences of

piece of work. Swap operator is then performed to transform into two new duties D′

i and

D′

j by swapping. As shown in this example, the new two duties have less extra time than

before, therefore the total costs can be reduced. Note that this operator consists in finding

the solutions with better costs, however, the number of duties cannot be reduced since the

number of duties remain unchanged.

Swap operator version 2: The operator is as follow. A duty can be decomposed in

partial consecutive duties, each having one or sequence of piece of work, respectively.

Next, a similar decomposition can be applied to another duty. Then, a set of interchanges

is performed among these partial duties while feasibility is still satisfied. This operator can

be performed as shown in Fig. 4.11. In more detail, assuming that duty Di which covers

pieces of work {ti1, ti2, ti3, ti4, ti5} is decomposed as following partial parts: a sequence of
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Figure 4.10: Swap operator version 1

pieces of work {ti1, ti2}, piece of work {ti3}, piece of work {ti4} and piece of work {ti5}.

A similar decomposition can be applied to duty Dj to obtain the partial consecutive duties.

Then, the two new duties D′

i and D′

j can be obtained after applying a set of interchanges.

In this resulting example, we can observe that the costs for extra time are reduced. Note

that this operator has the same purpose as Swap operator version 1, that is, it provides the

possibility of constructing duties with lower cost.

Figure 4.11: Swap operator version 2

Exchange operator: This operator consists in taking one task out from two duties and

exchanges them while feasibility is still satisfied. Similar operator is used in Chew et al.

[2001]. In Fig. 4.12 we present an example in which the pieces of work 3 and 8 are

exchanged between two duties Di, Dj . Thus, we obtain the two new duties D′

i and D′

j .

Again, this operator is used in order to yield duties with lower cost.
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Figure 4.12: Exchange operator

Crossover operator: The solutions used for this operator are the current solution and

the best found solution in an agent. This operator creates an offspring solution by inserting

a duty from the fist solution in the other one. To obtain a valid solution without duplication

of pieces of work, each pieces of work in the inserted duty is removed from other duties.

More in detail, an example in Fig. 4.13 describes how to perform this operator. Given two

feasible solutions Sa and Sb, each solution corresponds to a set of duties respectively. Then,

Crossover operator is carried out by inserting Duty D3 from Sb to Sa. Of course, some

overlapping pieces are produced in this step. Therefore, in the next step all the pieces coved

by D′

3 are removed from other duties D1, D3 and D4 in Sa. This operator aims at giving

a perturbation by choosing a solution in the neighborhood of the current best solution in

order to produce a solution that maintains some good features of the current one.

Shake operator: This operator offers a new starting point which is not ’too far’ from

current one in order not to deteriorate too much the solution. It consists in exchanging tasks

among a number of randomly selected duties if feasibility is satisfied.

Perturbation operator: The objective of this operator is to perturb the solution in order

to provide a good starting point for the search. Behaves the same as Shake operator, but it

performs in a way such that a duty tries to exchange its tasks with a neighboring one in a

given solution. It is clear that this perturbation type has a strong diversification effect.

7 .2 Ruin and recreate procedure

This subsection describes the way to ruin and to recreate the current solution, continuing

search from this new solution may allow to escape from a local optimum and to find better

solutions. As mentioned before, we achieve the ruin and recreate principle in a special way

by using a set of rules for the purpose of a strong perturbation when more diversification is

needed. The following rules are used in this study:

Rule 1: A given feasible solution is destroyed by removing randomly a given number of

duties. As a result, the feasible solution is transformed into a partial solution. Then, Swap

operator is applied to this partial solution. Finally, the solution is rebuilt by satisfying all
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Figure 4.13: Crossover operator

the constraints until the solution is complete.

Rule 2: A given feasible solution is destroyed by removing randomly a given number

of duties. As a result, the feasible solution is transformed into a partial solution. Then,

Exchange operator is applied to this partial solution. Finally, the solution is rebuilt by

satisfying all the constraints until the solution is complete.

Rule 3: A given feasible solution is destroyed by removing randomly a given number

of duties. As a result, the feasible solution is transformed into a partial solution. Next, the

behavior is same as Cut and Add operator, but removes the pieces of work from the duties

with the total working time which is more than normal working time. Then, we try to add

these pieces of work to the duties with the short total work time. Finally, the solution is

rebuilt by satisfying all the constraints until the solution is complete.

Rule 4: A given feasible solution is destroyed by removing randomly a given number

of duties. As a result, the feasible solution is transformed into a partial solution. Next, the

behavior is same as Cut and Add operator, but removes the pieces of work from the duties

with the total working time which is more than normal working time. Then, we try to add

these pieces of work to a duty with the shortest total work time. Finally, the solution is

rebuilt by satisfying all the constraints until the solution is complete.



84
CHAPITRE 4 • A TWO-PHASE COOPERATIVE HYPER-HEURISTIC APPROACH FOR BUS

DRIVER SCHEDULING

8 Summary

Although we can find various methods dealing with bus driver scheduling in the litera-

ture, these algorithms are often specifically tailored to particular instances. They are not

generally applicable to other similar problems (or even instances of the same problems).

Hyper-heuristics represent a novel search methodology that addresses this issue. As far

as we know, no works have been devoted to hyper-heuristics for the bus driver schedul-

ing problem. This chapter presented a novel type hyper-heuristic approach, namely TPCH,

which is based on a proposed pattern introduced in the previous chapter. Overall, TPCH is a

parallel computing algorithm with the purpose of accelerating and broadening the search. It

also benefits from this parallel scheme to hybrid multiple hyper-heuristics. The cooperative

search consists in sharing the gathered information among concurrently executing hyper-

heuristics. In fact, the cooperative search can be broadly done in two ways: centralized

and decentralized manner. The centralized manner used is usually controlled by a central

entity. Contrary to centralized one, there is no single agent with a global view of group

activities when it is done in a distributed manner. Clearly, in this decentralized view each

agent decides on its own actions based on its local knowledge and any other information

it may obtain from the other agents. Our work focuses on the latter case, meaning that the

agents are not controlled by any other agent, and they can communicate and interact di-

rectly with any other agent to achieve a goal. With regard to an individual hyper-heuristic,

one of the main challenges is to be as general as possible on how to manage a set of low

level heuristics with minimum parameter tuning. TPCH combines reinforcement learning

and mimetism learning, in such an intelligent way, to adaptively choose promising the low

level heuristics during the search process. The specialized operators in the low level can

provide the intensification and diversification. Moreover, a set of rules allows to reach the

regions of unfeasible solutions, instead of always maintaining solutions in the feasible re-

gion, and then to repair the feasibility of solutions. This extension enriches the possibilities

of achieving a large ’jump’ out of unpromising regions of the solution search space. In the

next chapter, we will present the experimental design and analyses results. The comparative

experiments will be performed on both the benchmark problems and the real world cases.



CHAPTER 5

COMPUTATIONAL EXPERIMENTS

1 Introduction

In this chapter, we study the influence of the role of the main algorithmic components, a

comparative evaluation of the approach against some of heuristics used in the literature and

the application to real-world problems as well. We first present the parameter setting of

algorithm and the test instances used in our experiments. Then, we perform some evalu-

ations and analysis of the main characteristics of the approach. Finally, we evaluate the

approach on publicly available instances and compare its performance to a number of other

heuristics.

All the tests are performed in a personal computer with Intel Core2(TM) 2 Duo CPU

T5870 with a 2.00 GHz processor, 1.99 GHz with 2.00 Gb of RAM memory on Microsoft

Windows 2002. The whole implementation was developed in the Java language using multi-

threads. In addition, the percentage deviation, denoted “%” in the following sections, over

the best known solution to measure the quality of a solution is calculated as following:

Deviation =
ResultAverage −ResultBestknown

ResultBestknown

% (5.1)

2 Parameter setting

The parameter setting is given in Table 5.1. These parameters were determined experi-

mentally over a set of combinations, choosing the one that yield the best average output.

Moreover, these parameters are kept constant for all the tests.

Table 5.1: Parameter setting of TPCH

Parameter Description Value
w Initial weight value 1.0
p Threshold percentage 0.03
ρ Mimetism rate 0.3
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Table 5.2: Size and the best known results of test case 1

Problem No. of tasks Best known results
No. of drivers Total cost CPU(sec.)

1 25 12 2371 0.10
2 50 20 2600 4.63
3 100 40 7395 1.88
4 250 81 8854 70.90
5 500 145 9716 6567.80

3 Test instances

We use the three test cases in our experiments, each has a set of instances. The test cases

are described as follows.

Test case 1 provided by Mauri and Lorena [2007] is a set of artificial benchmark in-

stances 1 based on a public transit company in Brazil. More details, this case contains five

different instances. For each instance, Table 5.2 lists its number of tasks and the best known

results so far. In accordance with Mauri and Lorena [2007] we use the same duty rules and

cost functions as described in section 2.2. Note that it is a single depot case, where the

normal working time is 8 hours and the maximum working time 10 hours.

Test case 2 is another set of generated benchmark instances 2. A detailed description,

characteristics, and the way of generating these data instances could be found by Huisman

et al. [2005]. Briefly, the instances have been classified in two types (A and B) according to

the travel speed. There are six sets of instances in each type, with four lines (A to B, A to C,

A to D and B to C) in three sets and with five lines (adding a line from C to E in the above

four lines). Hence, there are 5 relief locations in this case. Moreover, the sets differ in the

number of trips and contain 80, 100, 160, 200, 320 and 400 trips, respectively. Thus, there

are twelve sets altogether. Each set consists of ten data instances. While Huisman et al.

[2005] have analyzed five different duty types, the duty scheduling rules associated in these

instances here are relatively simple and the same as in De Leone et al. [2011]. Namely,

the feasible duty schedules we have generated are sets of pieces of work with no particular

properties. The working time and maximum working time correspond 6.5 hours and 12

hours, respectively.

To our knowledge, there is not much real-life instances on which we can test our ap-

proach. Test case 3 involves a real-world instance, described in detail below, that was made

available to us. In Chen and Niu [2012], the authors provide a subset of dataset from a bus

service company in China. More details, the instance contains 168 trips (pieces of work)

for one line of bus in a day. The maximum working time is 8 hours. The idle time between

1The instances are available, and can be downloaded, at www.lac.inpe.br/~lorena/

instancias.html
2The instances are available, and can be downloaded, at www.few.eur.nl/few/people/

huisman/instances.htm

www.lac.inpe.br/~lorena/instancias.html
www.lac.inpe.br/~lorena/instancias.html
www.few.eur.nl /few/people/huisman/instances.htm
www.few.eur.nl /few/people/huisman/instances.htm
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two consecutive trips for one duty is considered as the costs. Note that the bus routes are

circular (ring around the city) in this real-world instance. In other words, it has only one

relief location.

4 Experiments with different strategies of learning and

selection

Learning function and action selection are the core elements in reinforcement learning

mechanism in the sense that it determines behavior of agent. Here, we evaluate the ap-

proach against some popular forms of reinforcement learning introduced by Sutton and

Barto [1998]. To be precise, we consider four configurations using two strategies of learn-

ing and two strategies of selection.

4 .1 Strategies of learning

Q-learning [Watkins, 1989] is a type of learning function that does not need a model of

its environment and can be used on-line policy. It works by estimating the value of state-

action pair Q(i, j), which can be viewed as the weight wij in our context. The key formula

to update this value is as follows:

Q(i, j)← Q(i, j) + α[ri + γmax
a

Q(j, a)−Q(i, j)] (5.2)

where Q(i, j) is the value of the state-action pair (si, aj); α and γ are the learning rate and

discount factor, respectively; ri is the rewards as the result of executing the action aj in the

state si.

Algorithm 6 presents Q-learning. In this algorithm, it can be seen that the agent main-

tains a value of state and action representing a prediction of the worth of taking a particular

action in a particular state.

The other learning function is SARSA [Sutton and Barto, 1998], which is very similar

to the Q-learning except for the update rule of Q value being followed:

Q(i, j)← Q(i, j) + α[ri + γQ(j, k)−Q(i, j)] (5.3)

where Q(i, j) is the value of the state-action pair (si, aj); α and γ are the learning rate and

discount factor, respectively; ri is the reward value as the result of tacking action aj in state

si; Q(j, k) denotes the Q value of next state-action pair (sj, ak).

SARSA learning is presented in Algorithm 7. As we have seen, there are two action

selection steps needed, for determining the next state-action pair along with the first. The

major difference between SARSA learning and Q-learning is that the maximum reward for
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Algorithm 6: Q-learning

/∗ Input ∗/1

States s∈ S2

Actions a ∈ A3

/∗ Initialization ∗/4

Set learning parameters α, γ5

Initialize Q(i, j)6

for step k = 0, 1, 2,... do7

Choose a from s using policy derived from Q (e.g., ǫ-greedy)8

Take action a, observe reward r, state sj9

Q(i, j)← Q(i, j) + α[ri + γmaxa Q(j, a)−Q(i, j)10

si ← sj11

end12

the next state is not necessarily used for updating the Q-values. Instead, action ak is selected

by using the same selection policy to obtain a new value of state-action pair Q(j, k).

Algorithm 7: SARSA learning

/∗ Input ∗/1

States s∈ S2

Actions a ∈ A3

/∗ Initialization ∗/4

Set learning parameters α, γ5

Initialize Q(i, j)6

for step k = 0, 1, 2,... do7

Choose a from s using policy derived from Q (e.g., ǫ-greedy)8

Take action a, observe reward r, state sj9

Q(i, j)← Q(i, j) + α[ri + γQ(j, k)−Q(i, j)]10

si ← sj , aj ← ak11

end12

4 .2 Strategies of selection

We consider firstly ǫ-greedy [Sutton and Barto, 1998] as a selection strategy. In ǫ-greedy

action selection, at each step the agent chooses a random exploratory action with probability

ǫ, 0 < ǫ < 1, while with probability 1− ǫ the agent chooses the greedy action, that it takes

whatever action seems best at the present moment, even when that decision might lead to

bad long term consequences.

Softmax [Sutton and Barto, 1998] is the other selection strategy. Softmax policy is also

based on the mentioned values Q(i, j), favoring the actions with the highest values. On one

hand, it ensures the selection of the best actions according to their Q(i, j) value. On the

other hand, a temperature parameter is used to decrease over time in order to obtain a good
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balance between exploration and exploitation. In the state si, the action aj is selected with

the probability:

P (aj | si) =
e

Q(i,j)
τ

∑m

k=1 e
Q(i,k)

τ

(5.4)

where m is the number of actions, and τ is the temperature parameter.

Table 5.3: Parameter setting of other reinforcement learning mechanisms

Parameter Description Value
α Learning rate 0.5
γ discount factor 0.5
τ Temperature parameter 0.3
ǫ Possibility 0.1

By considering the above strategies, we can combine four reinforcement learning mech-

anisms. The parameter setting of these mechanisms is given in Table 5.3. It should be

pointed out that the rewards are given during the learning process in these mechanisms

according to three particular cases described in Chapter 4. These mechanisms have been

compared using the instances in the test case 1. In order to evaluate these performances,

we consider that the mimetism condition (Algorithm 5, line 29) is never reached. For each

instance, we have tested 10 times per instance using 10 agents in the coalition and 1000

iterations by agent. The results for each mechanism are presented in Table 5.4. The first

column gives the instance number. Then the average deviations (denoted by %) to the best

known values and the computation times in seconds are reported. The results indicate that

the mechanism used in TPCH performs better on average than other mechanisms in terms

of quality of solution. Considering computation time, we observe that the differences are

not noticeable, that is, all the mechanisms required approximately the same amount of CPU

time. All these conclusions can be clearly seen in Fig. 5.1 and 5.2, showing an overall

comparison of performance obtained by using the different learning mechanisms on the

instances in the test case 1.
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Table 5.4: Comparison of TPCH with different learning mechanisms on the instances in the test case 1

Problem TPCH without mimetism Q-learning with ǫ-greedy Q-learning with Softmax SARSA with ǫ-greedy SARSA with Softmax
Driversa Costb CPU Drivers Cost CPU Drivers Cost CPU Drivers Cost CPU Drivers Cost CPU
(%) (%) (sec.) (%) (%) (sec.) (%) (%) (sec.) (%) (%) (sec.) (%) (%) (sec.)

1 -3.33 -5.60 3.46 -0.83 -2.24 3.41 -1.66 -3.62 3.33 -0.83 -2.31 3.40 -2.50 -4.43 3.26
2 0.00 0.00 3.65 0.00 0.00 3.71 0.00 0.00 3.40 0.00 0.00 3.49 0.00 0.00 3.69
3 -3.25 -2.12 10.67 -2.75 -1.73 10.07 -1.50 -1.86 9.36 -1.25 -0.39 9.38 -1.75 -0.72 14.44
4 0.00 0.37 64.73 0.00 -0.08 67.72 -0.37 -0.21 70.18 0.00 -0.01 57.93 0.00 0.20 90.87
5 0.00 2.37 246.81 0.00 3.09 303.73 0.00 2.85 289.58 0.00 3.01 311.23 0.27 2.52 299.79
Average -1.32 -1.00 65.86 -0.72 -0.19 77.73 -0.71 -0.57 75.17 -0.42 0.06 77.09 -0.80 -0.47 82.41

a denotes the percentage deviation over the best known result in terms of driver number
b denotes the percentage deviation over the best known solution in terms of total cost
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Figure 5.1: The average number of drivers obtained by using the different learning mecha-
nisms on the instances in the test case 1

Figure 5.2: The average total cost obtained by using the different learning mechanisms on
the instances in the test case 1

5 Performance with regard to coalition size

Starting with the parameter settings given in the previous section, but with the coalition size

set to 10, it might be interested to know the relative coalition size for agents. In this section,

we evaluate the performance of the different coalition size. The tests are done using the

number 4 instance (250 tasks) in the test case 1.

See Fig. 5.3 for an example depicting the average total cost over 10 runs according

to the computation time carried out for four coalition sizes from 50 to 1 agents. It can

be seen that the computation time increases as the number of agents grows to obtain the

same total cost at the beginning, but the coalition with more agents seems to have the

advantage if the computation time still increases. We thus note from this figure that the
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Figure 5.3: Average total cost according to the computation time

Figure 5.4: Performances of TPCH according to coalition size

size of 50 seems to be the best-performing case. However, the coalitions which are more

than 10 number of agents become gradually with the computation time increased to an

asymptotic point where more agents do not help much. A key point to notice is that in

the case of one agent, i.e. without cooperation, its curve always lies above the curve of

other cases after 20 seconds. To validate our observations, we present statistical analysis

by calculating confidence intervals. Error bars are 95% confidence intervals for the mean.

They are computed on the basis of standard deviations over 10 runs (2500 iterations per

agent) as follows. Assuming that the sample mean µ̂ and standard deviation σ̂ for K = 10

replicates are computed as

µ̂ =
1

K

K∑

k=1

yk, (5.5)
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where yk, k = 1, . . . , 10, are the mean fitness values in 95% confidence intervals, and

σ̂ =

√√√√ 1

K − 1

K∑

k=1

(yk − µ̂), (5.6)

a confidence interval that would cover the true mean approximately 95% of the time is

σ̂ ± tK−1,.025
σ̂

K
, (5.7)

where tK−1,.025 is the classic Student’s t-statistic with α = .025 and K − 1 degrees of

freedom.

Moreover, we use the same parameters setting in statistic analysis proposed by Créput

and Koukam [2008]. The confidence level is α = .025 instead of α = .05 because the

confidence interval is symmetric about σ̂, so the total probability of including the true mean

σ is .95, but the probability of missing σ on either side of σ̂ is .025. For K = 10 runs,

tK−1,.025 = 2.262.

The results in 95% confidence intervals of Fig. 5.4 clearly show that a single agent

is unable to compete with the multi-agent coalitions. Also, the case of 50 agents wins in

all cases, but 10 agents is considered to be more adequate from the point of view of both

solution times and achieved objectives.

6 Performance with regard to second phase and learning

mechanisms

In this section, we now turn to an analysis of the main algorithmic components’ influence

for a fixed coalition size of 10 agents and 5000 iterations per agent when performing statistic

analysis. Here again, all the tests are done using the number 4 instance (250 tasks) in the

test case 1. We carried out these tests applying our approach without mimetism learning,

with random selection, with simple reinforcement learning and without the second phase,

respectively. As mentioned in the previous section, the condition to broadcast the weight

matrix (Algorithm 5, line 29) is always considered to be false in order to remove mimetism.

To apply random selection, we consider that both reinforcement mechanism (Algorithm

5, line 27 and 28) and mimetism learning are never applied. In the case of the simple

reinforcement learning, the reward is given simply to the first particular case (see section

4.2). Namely, when an action results in a better solution than the best solution found, we

update the weight of this action with a reward of 2. In the case of the approach without

second phase, the parameter p% is set to a value greater than 1.

Fig. 5.5 plots the progress using the average total cost over 10 runs according to the

number of iterations performed. As we see from this figure, for all configurations, the total
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Figure 5.5: Average total cost according to the number of iterations

Figure 5.6: Performances of TPCH removing algorithmic components

cost decreases and we achieve better results as the number of iterations increases. However,

it can be seen that with the same number of iterations carried out, the solutions tend to

obtain toward overlapping target value at the beginning but the different quality solutions

are yield as the number of iterations increases. The results of statistical analysis, with the

same parameters setting in the previous section but 100 runs, given in Fig. 5.6 indicate

statistically these differences.

With these evaluations shown by Fig. 5.5 and 5.6, we can conclude that the addition

of second phase and the addition learning mechanisms show a good performance in terms

of quality of the solutions found. With regard to the difference between approach with

and without mimetism, the analysis showed that the use of mimetism learning improves

the quality of solutions found by agents. Clearly, selection operators have the greatest in-

fluence on the algorithm performance. Thus, removing the learning mechanisms yield the

relative poor quality solutions. Since little rewards given, the approach with the simple rein-

forcement learning is not sufficient to outperform TPCH. Finally, it seems that the approach

without the second phase does not easily get stuck at a local optimum. As expected, this ex-

perimentation illustrates the positive impact of learning mechanisms used in our approach

on the behavior of the agents.
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7 Comparative study

Here, we perform a comparative evaluation of TPCH against some heuristics used in the

literature for the bus driver scheduling problem. For each test case, we use the parameter

setting presented in Table 5.1 as mentioned previously.

In Table 5.5, we give the computational results of different approaches on the test case

1. The deviations and the computation time required for TPCH correspond to the average

values on 10 runs and a coalition size of 10 agents, each performs 5000 iterations. The

average computation times in seconds are reported in columns headed by CPU in Table 5.5.

All the other approaches proposed by Mauri and Lorena [2007] obtained the solutions on

Intel Celeron processor of 2.0 GHz and 256 Mb of RAM memory. Comparing with the best

known solutions, we can see that the reduce to 2.03% on average in terms of driver number

and on average 2.66% saving on the total costs. The results indicate that our approach

improve some best know solutions available so far for the test case 1. Furthermore, the

average run time required is 280.20 seconds. Although we cannot compare directly the

CPU time required, because the approaches were implemented using different computers

and the authors give the best solution found over 5 runs, our approach is able to furnish

the relatively good results from the point of view of quality of solutions achieved with the

reasonable solution times.
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Problem TPCHa PTA/LPb PTA/LP∗c SAd SA_20e

Driversf Costg CPU Drivers Cost CPU Drivers Cost CPU Drivers Cost CPU Drivers Cost CPU
(%) (%) (sec.) (%) (%) (sec.) (%) (%) (sec.) (%) (%) (sec.) (%) (%) (sec.)

1 -4.16 -6.26 6.21 0.00 0.00 0.10 0.00 0.00 0.30 0.00 0.00 1.90 0.00 0.00 35.48
2 -0.50 -0.96 12.93 0.00 0.00 4.73 0.00 0.00 41.64 0.00 2.07 42.87 0.00 0.00 949.04
3 -5.25 -5.31 46.09 0.00 0.00 1.57 0.00 0.00 4.98 0.00 0.00 7.60 0.00 0.00 173.26
4 -0.24 -0.63 375.46 0.00 0.00 71.34 1.23 4.40 229.68 4.93 15.17 199.86 2.46 11.04 3749.02
5 0.00 -0.14 960.32 0.00 0.00 6596.66 4.13 28.94 6717.30 5.51 32.37 7061.52 5.51 29.12 143565.20
Average -2.03 -2.66 280.20 0.00 0.00 1334.88 1.07 6.67 1398.78 2.09 9.92 1462.75 1.59 8.03 29694.36

a Two-phase cooperative hyper-heuristic approach
b Population training algorithm/Linear programming with more iterations
c Population training algorithm/Linear programming with few iterations
d Simulated annealing
e Simulated annealing with 20 executions
f denotes the percentage deviation over the best known result in terms of driver number
g denotes the percentage deviation over the best known solution in terms of total cost



7 Comparative study 97

Compared with GRASP (Greedy Randomized Adaptive Search Procedure) in De Leone

et al. [2011], Table 5.6 reports an overview of the results obtained for the the test case 2.

All the numerical tests reported by De Leone et al. [2011] were carried out on a Pentium

4 with CPU 3.20 GHz and with 1.00 Gb RAM. In our experiment each test has been run 3

times for all the size of datasets. The coalition size is fixed for 10 agents and 1000 iterations

by agent. We report the average number of drivers, and also the average computation time

in seconds (denoted as CPU). Although our proposed approach seems to improve the best

solutions for the sum of drivers, it should be emphasized that the comparisons between

these results obtained cannot be made directly, because we cannot compare the total cost

due to the two models defined differently. Regardless it is worth noting that our solutions

obtained are faster in general, especially for larger cases.

Table 5.6: Comparative results in terms of driver number for the test case 2

Instance TPCHa GRASPb

Problem Type Number CPU Number Timec Total Timed

of drivers (sec.) of drivers (sec.) (sec.)
6 80A 17.3 5.3 20.3 17.0 33.7
7 100A 20.9 9.6 23.7 15.0 43.8
8 160A 27.5 29.1 30.7 53.6 117.7
9 200A 34.5 40.1 37.6 71.1 143.2
10 320A 48.4 121.4 53.6 157.2 366.9
11 400A 61.2 131.7 65.7 204.0 458.9
12 80B 19.8 5.8 22.2 14.9 29.8
13 100B 23.9 10.6 26.7 18.2 41.9
14 160B 33.1 32.2 37.1 45.1 104.0
15 200B 41.1 37.1 45.8 63.0 141.1
16 320B 59.9 105.1 67.1 127.9 325.6
17 400B 75.2 132.2 83.4 267.6 455.9
Average 38.5 55.0 42.83 87.8 188.54

a Two-phase cooperative hyper-heuristic approach
b Greedy Randomized Adaptive Search Procedure
c The mean time needed to find the better solution
d The mean time needed to run a total of 1000 iterations

We perform 10 runs per instance for the test case 3. All the runs are done with a coalition

size of 10 agents and 5000 iterations by agent. Table 5.7 summarized that the average

results on 10 runs for our TPCH solution are compared with those obtained by Chen and

Niu [2012] using Tabu search. As well, the average computation in seconds is shown in

this table, but CPU time required for the best know solution unfortunately is not reported

by Chen and Niu [2012]. Our computational results show that there is on average 1.36%

more expensive in terms of total cost but a reduction of 2.72 on the number of drivers when

compared with the best known solution. As stated in Chen and Niu [2012], however, the

driver number 11 provided by the bus company is used to generate an initial solution for
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Tabu search. Then, its objective is only to minimize the total cost. On the contrary, we give

priority to minimize the number of drivers since this is considered as the first objective for

the most bus companies. Moreover, the best of these 10 runs can be considered as a new

best solution since it saves 6.43% to the total cost compared with the best known solution,

and gives the total number of 10 drivers (see Appendix).

Table 5.7: Computational results against the best known results for the test case 3

Instance Best known TPCHa TSb

Problem No. of No. of Total Driversc Costd CPU Drivers Cost CPU
tasks drivers cost (%) (%) (sec.) (%) (%) (sec.)

18 168 11 3512 -2.72 1.36 42.17 0.00 0.00 -

a Two-phase cooperative hyper-heuristic approach
b Tabu search
c denotes the relative percentage deviation over the best known result in terms of number of drivers
d denotes the relative percentage deviation over the best known solution in terms of total cost

8 A real-world case of a bus company in France

Figure 5.7: Distribution of trips along the Workday, Saturday and Sunday

In this section we apply our approach to a real-world large scale driver scheduling prob-

lem. This case involves a city bus service in Belfort in the east of France. All the data sets

have been provided by the Optymo company. This company covers the whole bus service

in Belfort, with over 300 drivers. For this real-life set of data all the information about

the tasks was available, such as the start/finish time and start/finish location of each task,

together with the bus lines.
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Typically, in each city the frequency of service trips during a weekday is more than a

weekend. A measure of the number of active trips along the Week day, Saturday, Sunday is

shown in Fig. 5.7. This figure is constructed by the number of active trips at different time,

which can reflect the different service levels satisfied.

Figure 5.8: The bus services network in Belfort

Fig. 5.8 shows the schematic diagram of existing bus service network. In 2011, Op-

tymo served more than 8.4 million passengers.3 Therefore, good schedules enable not only

to reduce operation costs, but also to achieve driver and passenger satisfaction. Table 5.8

3http://revue-transport-public.com/component/content/article/

687-urbain/1740-nouvelle-etape-de-developpement-a-belfort

http://revue-transport-public.com/component/content/article/687-urbain/1740-nouvelle-etape-de-developpement-a-belfort
http://revue-transport-public.com/component/content/article/687-urbain/1740-nouvelle-etape-de-developpement-a-belfort
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summarizes the dataset on which our approach was applied. More precisely, Optymo op-

erates 6 lines covering the whole city bus service in Belfort. In fact, the number of tasks

depends on the day of the week (weekday, Saturday and Sunday) and the season of the year

(summer and winter schedules). Experiments to be reported are conducted on their winter

schedule of 2012 including all the lines. The number of weekday services contains 1581

tasks with 18 relief locations, Saturday services includes 1176 tasks with 19 relief locations,

and 207 tasks with 10 relief locations for Sunday services. Additional restriction from this

operational environment impose that each driver entitles at least 30 minutes of break time.

Moreover, the working time (589 minutes) and maximum working time (600 minutes) must

be considered.
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Table 5.8: General description of instances for the Optymo

Bus line Weekday Saturday Sunday
No. of tasks No. of relief locations No. of tasks No. of relief locations No. of tasks No. of relief locations

Line 1 329 3 243 3 93 3
Line 2 166 3 124 3 14 3
Line 3 342 3 225 3 36 3
Line 4 328 3 246 3 28 3
Line 5 93 3 93 3 12 3
Line 6 323 3 245 3 24 30
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Here, the quality of the solutions is evaluated on the basis of the percent improvement

to the number of drivers obtained by Optymo schedulers. Table 5.9 compares our average

solutions in the ten runs with the solutions used in Optymo. It can be seen that the average

improvements represent a reduction of 1.38% on the solutions produced by the Optymo

planners. It is worth to notice that the tests performed on the real-world instances have

demonstrated that our approach can obtain good results while consuming an acceptable

amount of CPU time. The savings achieved may not seem large but in a typical operational

environment, any savings will prove valuable since schedules are generally changed few

times in one year. Moreover, our approach produce more efficient schedules, because man-

ual solutions generally take at least a few days to prepare, and then the schedulers adjust

them daily in order to improve some of their features [Dias et al., 2002].

Table 5.9: Computational results for the real-world instances provided by the Optymo

Instance TPCH
Problem No. of Best known Drivers CPU

tasks No. of drivers (%) (sec.)
19 207 9 0.00 111.84
20 1176 56 2.32 1548.93
21 1581 77 -6.49 4653.93
Average -1.38 2104.90

9 Summary

In this chapter, we analyzed the characteristics of TPCH in different dimensions. Firstly,

learning is especially interesting in combination with hyper-heuristics to perform better

choices during the search process. Therefore, we studied several popular learning mech-

anisms embedded TPCH to compare the performances. Observing from the results of the

experiments, it can be found that the proposed reinforcement leaning mechanism performed

better than others. Also, we studied the influence of the coalition size and the role of the

main algorithmic components. The experimental results showed that we can obtain the

satisfactory results when an overly large coalition size is employed, since a better chance

of exploring the search space and discovering possible good solutions might occur in this

situation. However, it is inevitable to suffer from an undesirable rise in computation time.

Therefore, we determined an appropriate coalition size according to the experiments. In the

last set of experiments we tested the influences of the main algorithmic components. The

results can be the evidence in support of the fact that all of them play important roles in

TPCH.

We performed a comparative evaluation of TPCH against some approaches found in

the literature on a variety of artificial benchmark datasets. Most results reported in the
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previous section indicate that our approach can produce better solutions when compared

with other ones. Later in this chapter, the problem of the Optymo in Belfort city was

analyzed. The solution obtained using our approach were presented and compared with the

actual schedules in Optymo. The existing schedules of the problem are improved by 1.38%

on average in terms of driver number. From the results on the test benchmark problems

and especially from the results achieved by solving the Optymo operation problem, we can

conclude that our approach is successful in solving the bus driver scheduling problem.





Conclusions

At the end of this thesis, we draw the conclusions and outline suggested further research

directions. As it was stated earlier, the aim of scope of this thesis is to tackle the bus driver

scheduling problem by proposing novel approaches. This chapter sums up not only the

major developments from the investigation presented in this thesis, but also the attempts

to explore the other new way of tracking bus driver scheduling problems, such as column

generation heuristic. Therefore, before giving the achievements in this research and future

work, we introduce briefly an abstract of a column generation heuristic since this approach

is still in its infancy and needs more improvement.

The organization of this chapter is as follows. Section 1 gives a brief description of

our heuristic approach within the context of column generation. In section 2, we present a

general conclusion for the major achievements and contributions in this thesis. Section 3

suggests some potential future directions.

1 A column generation heuristic

Despite the successful application of column generation on crew scheduling and similar

problems, attempts to improve column generation are still active due to the fact that column

generation is known for its poor convergence. In our work, we seek to address the bus

driver scheduling problem by using a column generation heuristic [Li et al., 2013]. A

main distinctive feature of this work when compared with the existing approaches is to deal

with the subproblem of column generation. That is, in contrast to the conventional column

generation procedure, the subproblem here is solved using a heuristic search procedure

inspired by some ideas from hyper-heuristics. We have tested the proposed approach by

carrying out computational experiments on some instances. However, the improvements

are needed to find the good results.

2 Achivements in this research

Heuristic and metaheuristic approaches tend to be knowledge rich, requiring substantial

expertise in both the problem domain and appropriate heuristic techniques [Aickelin and

Dowsland, 2000, Cowling et al., 2001b]. In this sense, most current methods are likely hard

to adapt to new situation demands due to the fact that they are heavily dependent on specific



106 CHAPITRE • CONCLUSIONS

problem knowledge. As already introduced, hyper-heuristic methodologies are motivated

by the goal of raising the level of generality. In other words, hyper-heuristics consist in

removing the disadvantage of metaheuristic approaches and having a reusable, robust and

fast-to-implement approach applicable to a wide range of problems and instances [Han

et al., 2002]. Hence, there is considerable interest in the use of hyper-heuristics to solve the

bus driver scheduling problem. Along this thesis, we have defined the multi-level hyper-

heuristic pattern, and then proposed a novel approach based on this pattern for solving the

bus driver scheduling problem.

Let us now briefly review the path that we have followed in this work.

Chapter 1 presented the bus driver scheduling problem and its importance for public

transit providers. Then, the mathematical formulations are described. In this chapter, we

also reviewed the three major types of research methods: heuristic methods, mathematical

programming methods and metaheuristic methods. Moreover, we introduced some previous

researches to present both success and limitations for bus driver scheduling.

In chapter 2 we reviewed the literature for related work on hyper-heuristics and iden-

tified reasons why hyper-heuristics offers promising perspectives for supporting heuristic

development. In addition, we gave the main hyper-heuristic categories according to Burke

et al. [2013] in which the emergence of hyper-heuristics has been deeply investigated.

Chapter 3 examined some recent metaheuristic and hyper-heuristic frameworks. Obvi-

ously, different frameworks analyze and design algorithms from different points of view.

We summarized some common points and main advantage of these frameworks. However,

we also discussed their limitations, particular in the context of cooperative hyper-heuristics.

Based on the observations, we presented in this chapter a multi-level hyper-heuristic pattern

as a blueprint to implement the cooperative hyper-heuristics. An important characteristic

of this pattern is that it combines multiple hyper-heuristics such that the group intelligence

can be more than the sum of the individual hyper-heuristics’ performances. This pattern

is concerned with the following aspects for the design and analysis of cooperative hyper-

heuristics:

• Facilitating the design: The pattern consists of three abstract layers, each having its

proper utility. We described main goals of each layer. The resulting architecture can be

considered as a guideline of the design.

• Towards a multi-agent organizational theory: As an organizational model, all the criti-

cal roles are identified and defined. Therefore, it may allow the research into designing new

and better approaches when using more powerful techniques to play these roles, and thereby

offer a means for achieving further advances through the use of agent-based method.

• Identifying algorithmic components: In this pattern, we try to identify the algorithmic

components underlying hyper-heuristics, such as the memory and learning mechanisms.

These components may be useful for the implementation of algorithms.

Chapter 4 presented the usage of the proposed pattern by introducing a particular hyper-
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heuristic approach, called TPCH. In this chapter, we detail how the hyper-heuristics take

advantages of learning and cooperation mechanisms. Briefly speaking, TPCH adopts a

decentralized approach which composes a set of agents. An individual which encapsu-

late a single solution are organized in a group called a coalition. In comparison to simple

evolutionary algorithms, these agents have additional capacities of decision, learning and

cooperation. In addition, the learning and cooperation capacities of agents favor the adap-

tation to various problem instances. The specialization of TPCH for the bus driver schedul-

ing problem necessitates the definition of diversification and intensification heuristics. We

combined here the different types of low level heuristics to achieve the intensification and

diversification. To the best of our knowledge, there is not much research work on incor-

porating these types of low level heuristics simultaneously in a hyper-heuristic approach.

Specifically, four types of low level heuristics are covered:

-Mutational heuristic (perturbation): performs a random modification of the solution.

-Neighborhood search heuristic (hill climbing): starts from a solution, and then searches

a better one by incrementally changing a single element of this solution.

-Ruin and recreate heuristic (large neighborhood search): allows to partly destroy the

solution and rebuilds it afterwards.

-Crossover heuristic (recombination): obtains a new solution in such a way that it com-

bines solution components from two solutions.

We showed also, in chapter 5, that the proposed hyper-heuristic approach can success-

fully address the bus driver scheduling problem both in terms of solution quality and com-

putational effort, particularly in regard to the large real-world instances.

3 Perspectives and future research

In this section, we detail the future research directions as follows.

• As like many other hyper-heuristics, TPCH has often involved one or more tuning

parameters to find good parameter settings for a given problem. Therefore, a major limita-

tion of TPCH is that many trial runs with different parameters are needed. Additionally, an

interesting approach might use other leaning mechanisms for each agent to perform more

efficiently. Finally, no theoretical analysis that guarantees the convergence of TPCH has

been presented. Some of these limitations can be seen as rewarding paths for future work.

•Our efforts are focused in finding good quality and implementable solutions in reason-

able computational time. Even though time consumed generally is satisfied when applying

to the bus driver scheduling problem, a faster algorithm is still hoped to be accomplished.

This may be achieved and be exploited by using the massive parallelism within multi-

processor architectures. These issues are currently under investigation in our research team

and will be the subject of further research.

• A major challenge within column generation procedure is to solve its subproblem.
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Our future research might also investigate an effective strategy which can overcome this

challenge. It is reasonable to believe that future work on the hybridization column genera-

tion methods and heuristics might be highly promising.

• Finally, we would like to make some suggestions for future work in the field of crew

scheduling. In the work reported here we focused on the bus driver scheduling problem. It

might be thought that other crew scheduling problems, e.g., train crew scheduling, could be

applied. This raises interesting research questions about how to solve variants of the similar

problems with minimal changes to the approaches.



Résumé étendu en français

1 Contexte

Tous les fournisseurs de transport en commun à travers le monde sont confrontés à un même

problème : l’affection des conducteurs aux véhicules ordonnances (l’habillage). Trois as-

pects principaux doivent être considérés pour ce problème : toutes les tâches doivent être

entièrement affectées, toutes les fonctions doivent être réalisables et le nombre de conduc-

teurs doit être minime. De par sa nature combinatoire, l’affection des conducteurs est un

problème très complexe. Beaucoup d’efforts de recherche sur ce sujet ont été entrepris

depuis l’année 1960. Cependant, il reste l’un des problèmes les plus difficiles dans le pro-

cessus de planification des transports en commun [Zhao, 2006]. Ainsi, la recherche dans ce

domaine toujours continue, et de nouvelles approches sont constamment proposées afin de

résoudre ce problème.

Au cours des dernières années, la taille des données à prendre en compte pour le prob-

lème de l’habillage s’est vue considérablement augmenter en raison de deux facteurs :

l’expansion rapide des lignes de bus dans les villes et l’augmentation du nombre de pas-

sagers dans les transports publics. Par conséquent, de nombreuses entreprises aujourd’hui

n’ont pas besoin de rechercher l’optimalité, ni même des solutions proches de l’optimalité.

Elles sont plus intéressées par d’assez bonnes solutions obtenues dans un délai raisonnable.

Les heuristiques ont joué un rôle important dans cette situation. Même si nous pouvons

lister différentes heuristiques pour faire face aux problèmes de l’habillage dans la littéra-

ture, ces méthodes sont adaptées à des conditions particulières. Celles-ci peuvent influer

sur l’expression de la fonction objective et sur les contraintes de service, telles que le con-

trat union, la réglementation de l’entreprise, etc. Souvent, comme l’algorithme leur est

dédié, il est très difficile de l’adapter et de l’appliquer à d’autres problèmes, voire à d’autres

instances du même problème. Les metaheuristiques ont permis de faire face à cet incon-

vénient, mais celles employées dans la plupart des études restent trop dépendantes du prob-

lème original. La recherche sur les hyper-heuristiques est une tentative pour surmonter

les dépendances des métaheuristiques : l’objectif est d’élever le niveau de généralité pour

résoudre une série de problèmes. Dans cette thèse, nous concentrons notre attention sur

une approche hyper-heuristique, qui présente notamment des avantages potentiels en ter-

mes de flexibilité, de modularité et de robustesse sur les heuristiques ou métaheuristiques

existantes.

Un problème classique lors de la conception de metaheuristiques est la difficulté de
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parvenir à un équilibre entre intensification et diversification. L’utilisation de modèles

d’organisation encourage la conception de métaheuristiques par l’identification des com-

posants communs [Meignan et al., 2008]. Par conséquent, nous nous sommes intéressés

à l’utilisation de notions organisationnels destinés à soutenir la conception d’approches

hyper-heuristiques.

Comme certains problèmes similaires, le problème de l’habillage peut également être

résolu par programmation mathématique, et en particulier par programmation linéaire. Selon

une revue de la littérature, la génération de colonnes semble être l’une des approches les

plus efficaces pour ce type de problème [Desrochers and Soumis, 1989, Ernst et al., 2004,

Lübbecke and Desrosiers, 2005]. Comme nous le savons, l’utilisation de méthodes math-

ématiques peut aider à obtenir des solutions optimales, mais la complexité de calcul croît

de façon exponentielle avec la taille du problème. Au cours des dernières années, l’intérêt

en combinaison de méthodes exactes et d’heuristiques a considérablement augmenté chez

les chercheurs en optimisation combinatoire. Dans notre travail, nous tentons également

d’explorer l’utilité et le potentiel de ces possibilités par la recherche d’une approche heuris-

tique dans le cadre de la génération de colonnes. Il convient de souligner que cette approche

en est encore à ses balbutiements et mériterait des recherches plus poussées.

2 Objectifs de nos travaux

L’objectif de cette thèse est de présenter une approche basée sur les agents, visant à résoudre

le problème de l’habillage plus rapidement et efficacement. La démarche que nous adop-

tons pour atteindre cet objectif est la suivante. Tout d’abord, nous décrivons un modèle con-

struit sur des concepts organisationnels afin de faciliter la conception d’hyper-heuristiques

coopératives. Deuxièmement, nous développons une approche efficace et adaptative pour

résoudre le problème de l’habillage en se basant sur le modèle proposé.

Un modèle hyper-heuristique multi-niveau basé sur le framework AMF (Agent Meta-

heuristic Framework)

Comme les hyper-heuristiques peuvent montrer des performances différentes au cours

de la recherche, il est logique de tester si elles peuvent coopérer d’une telle façon de

sorte qu’elles puissent échanger des informations utiles afin d’améliorer la capacité de

l’exploration dans l’espace de recherche. Cependant, la conception de mécanismes de

coopération et la détermination d’informations utiles à l’échange entre hyper-heuristiques

reste un défi. Suivant la direction donnée par Meignan et al. [2008], un modèle d’organisation

nommé modèle hyper-heuristique multi-niveau, dérivé du framework AMF, est proposé

pour faciliter la conception d’hyper-heuristiques coopératives. En réalité, Meignan et al.

[2008] ont proposé le framework AMF pour l’analyse des algorithmes existants, et ils en-

couragent la conception de nouvelles métaheuristiques. Une métaheuristique est définie
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comme une organisation composée d’un ensemble de rôles qui interagissent afin de trouver

une solution optimale. De cette manière, un modèle organisationnel de métaheuristiques

peut être utilisé pour décrire à la fois des métaheuristiques basées sur la population et les

méthodes de trajectoire. A notre connaissance, l’utilisation d’un modèle organisationnel

dans le but d’analyser et de concevoir des hyper-heuristiques est une approche rare. Par con-

séquent, nous décrivons un modèle organisationnel dans un contexte d’hyperheuristiques

coopératives. Le motif résultant vise à soutenir la conception d’une hyper-heuristique

coopérative avec les caractéristiques souhaitées de souplesse, d’évolutivité et de général-

ité.

TPCH : Une approche hyper-heuristique multiagent

Pour valider le modèle proposé, nous développons une approche hyper-heuristique

multi-agent nommée TPCH (Two-phase cooperative hyper-heuristic approach). A travers

cette approche, nous présentons comment les hyper-heuristiques, que l’on considère comme

des agents, peuvent être organisés d’après la métaphore de la coalition. Plus précisément,

TPCH est un algorithme de calcul parallèle qui vise à accélérer et l’élargissement de la

recherche. Le schéma de parallélisassion est mis en œuvre de manière à ce que la sup-

pression ou l’ajout d’un agent ne perturbe pas le fonctionnement global du système. Par

conséquent, TPCH a été conçu en considérant une hyper-heuristique parallèle avec une

stratégie décentralisée, où plusieurs agents parcourent l’espace de recherche de manière in-

dépendante. En outre, l’approche ne repose pas sur une quelconque information globale.

De plus, chaque agent peut communiquer avec les autres en utilisant les informations qu’il

reçoit d’autres agents. Cette communication peut se faire par l’échange d’informations sur

les solutions trouvées et les comportements de recherche d’apprentissage. Dans l’ensemble,

la coalition se compose de plusieurs agents qui explorent simultanément l’espace de reche-

rche et qui coopèrent afin d’améliorer leurs capacités de recherche.

Les agents, qui combinent un ensemble d’heuristiques de bas niveau, appliquent cer-

taines règles fondées sur des principes de l’intelligence artificielle lors de la recherche.

Plus précisément, un agent améliore une solution candidate en choisissant et en appliquant

de manière itérative des heuristiques, à partir d’un ensemble d’heuristiques de bas niveau,

lorsqu’il s’agit de résoudre un problème donné. Chaque agent utilise individuellement un

apprentissage par renforcement afin d’adapter la sélection d’une méthode (une heuristique)

en fonction de l’efficacité de plusieurs méthodes potentielles. En pratique, cela est réalisé en

mettant à jour une matrice de poids. Dans le même temps, l’apprentissage par mimétisme

permet de partager les connaissances individuelles acquises par renforcement. Ces deux

mécanismes d’apprentissage sont utilisés conjointement, ce qui permet à l’agent de sélec-

tionner la meilleure heuristique de bas niveau à appliquer pendant le processus de recherche.

Une telle approche permet non seulement d’accélérer la convergence vers la meilleure

solution, mais elle est également applicable uniformément sur divers ensembles d’instances
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de problèmes, sans efforts excessifs. Pour illustrer cela, une application en est effectuée sur

une variété de jeux de données, y compris sur des problèmes d’ordonnancement réels.

3 Structure de la thèse

Après un bref exposé de nos propositions, nous présentons l’organisation de cette thèse.

Suite à l’analyse précédente, nous l’avons divisée en deux parties principales.

La première partie (chapitres 1 et 2) présente l’état de l’art concernant le problème de

l’habillage et des hyper-heuristiques. Nous présentons d’abord le contexte opérationnel

dans lequel le problème est résolu et deux modèles formels d’ordonnancement de chauf-

feurs utilisés dans notre travail. Ensuite, nous donnons un aperçu des travaux connexes sur

les méthodes de résolution de problèmes, exactes et heuristiques (chapitre 1). Enfin, nous

passons en revue la littérature sur les hyper-heuristiques (chapitre 2).

La deuxième partie (chapitres 3, 4 et 5) présente TPCH, qui est une approche hyper-

heuristique parallèle basée sur l’apprentissage par renforcement. Brièvement, nous com-

mençons par introduire le framework AMF. Sur la base de ce cadre, nous décrivons une

organisation comme un modèle pour concevoir des approches qui visent à tirer parti des

synergies entre les hyper-heuristiques (chapitre 3). TPCH est construite à partir de ce mod-

èle. Nous donnons les détails de cette approche, et de son application au problème de

l’habillage (chapitre 4). Enfin, nous étudions l’influence du rôle des principaux composants

algorithmiques dans l’approche proposée, et appliquons celle-ci sur une variété de jeux de

données de référence artificiels et de cas réels (chapitre 5).

Cette thèse se compose de cinq chapitres, et est organisée de la manière suivante :

Le chapitre 1 décrit le domaine du problème. Ce chapitre résume d’abord le contexte

des problèmes d’ordonnancement de chauffeurs d’autobus. Ensuite, nous présentons les

formulations des problèmes utilisés dans les approches que nous proposons. Enfin, nous

listons les techniques d’optimisation qui sont appliquées aux problèmes de l’habillage.

Le chapitre 2 fait une synthèse de la littérature sur les hyper-heuristiques, et présente

les façons dont le terme « hyper-heuristique » a été interprété et appliqué. Ce chapitre traite

également des tendances prometteuses de la recherche actuelle sur ce sujet.

Le chapitre 3 reprend les premiers pas vers la conception d’une coopération entre les

hyper-heuristiques dont nous introduisons les concepts organisationnels. Ensuite, la relation

entre la théorie de l’organisation et l’hyper-heuristique coopérative est étudiée. Enfin, nous

avons étendu les fonctionnalités et amélioré les performances du framework traditionnel

des hyper-heuristiques. Le framework proposé est à plusieurs phases et plusieurs niveaux

afin de tirer parti de la synergie de l’exécution de plusieurs hyper-heuristiques, suivant une

structure de coalition dont le but est de soutenir et de faciliter une distribution du calcul

robuste par un contrôle décentralisé.
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Le chapitre 4 présente notre approche pour résoudre le problème de l’habillage. Les

principes et les principaux composants en sont décrits dans ce chapitre. En effet, cette

approche est construite à partir du framework donné dans le chapitre 3. Par conséquent,

nous pouvons considérer notre démarche comme une étude de cas pour présenter comment

les concepts de la théorie des organisations et des systèmes multi-agents peuvent contribuer

à la conception de la recherche coopérative dans le contexte d’hyper-heuristiques.

Le chapitre 5 poursuit l’étude de l’approche proposée par le test sur différentes instances

de problème. Les résultats expérimentaux montrent que notre approche surpasse certaines

des heuristiques de la littérature dédiées au problème.





Appendix

A New Best Solution to the instance provided by Chen and

Niu [2012]

The new best solution to the real problem provided by Chen and Niu [2012] is given as

follows:

63-76-80-86-93-100-111-116-124-132-140-149-154-159-2-4-8-14-38-43-49-71-23,

61-6-11-68-82-89-121-129-136-143-158-164-19-33-44-54,

88-94-99-118-125-133-155-161-165-168-7-13-27-37-42-50-55-65,

72-126-137-144-151-166-5-21-29-36-48-53-62-79-85-91,

74-101-142-150-9-16-24-31-67-84-92-107-112-117-156-160,

97-148-163-1-12-18-25-32-39-45-57-70-77-105-115-122-130-167,

30-40-59-73-81-87-95-106-119-127-135-145-152-157-162-10-17-47,

52-58-69-75-96-102-109-114-123-131-138-146-20-26-34-41-46,

60-66-83-90-98-103-108-113-134-141-3-15-22-28-35-51,

56-64-78-104-110-120-128-139-147-153
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Résumé :

La conception d’un système de transport en commun doit prendre en compte différentes dimensions

pour résoudre deux problèmes importants d’optimisation : l’ordonnancement des véhicules (le

graphicage) et l’affectation des conducteurs (l’habillage). Dans nos travaux, nous nous sommes

focalisés sur le problème de l’habillage. L’objectif est de minimiser le nombre de conducteurs en

respectant toutes les contraintes sociales et économiques. Par sa nature combinatoire, l’habillage

est considéré comme une tâche complexe du processus de conception de réseaux de transport en

commun.

Nous avons proposé une approche fondée sur les hyper-heuristiques dont le principal avantage

réside dans leur faculté d’adaptation à différents problèmes. Nous nous sommes intéressés plus

particulièrement à une approche coopérative, capable de prendre en compte les changements

au cours du processus de résolution. Nous avons étendu les fonctionnalités et amélioré les

performances du framework traditionnel des hyper-heuristiques. L’algorithme proposé comporte une

combinaison de plusieurs phases et plusieurs niveaux. La métaphore de la coalition est utilisée pour

permettre la coopération entre hyper-heuristiques. Elle est destinée à favoriser la diversification des

solutions et amplifier la capacité de recherche selon un contrôle décentralisé où chaque hyper-

heuristique possède une certaine autonomie. Il est ainsi possible d’envisager différents modes de

coopération entre les hyper-heuristiques : partage de solutions, apprentissage par mimétisme ou

encore mise en concurrence de différentes stratégies de recherche. L’expérimentation a été réalisée

aussi bien sur des instances réelles que sur des benchmarks. Elle a donné de bons résultats tant sur

la déviation que sur le temps d’exécution.

Mots-clés : Hyper-heuristique, Habillage de transport en commun, Modèle organisationnel, Sys-

tème multi-agents

Abstract:

The design of public transport system must take into account different dimensions to solve two main

problems of optimization: the vehicles scheduling and driver scheduling. In our work, we focused on

bus driver scheduling. Its objective is to minimize the number of drivers in accordance with social and

environmental constraints. By its combinatorial nature, bus driver scheduling is considered a complex

task in the design process of network transport.

We have proposed an approach based on hyper-heuristics whose main advantage lies in their ability

to adapt to different problems. We are particularly interested in a cooperative approach, which is

able to take into account changes in the resolution process. We have extended the functionality and

improved performance of the traditional framework of hyper- heuristics by proposing a pattern based

on an organizational model. The proposed algorithm consists of a combination of several phases

and several levels. The metaphor of the coalition is used to make cooperate several hyper-heuristics.

The coalition is intended to favor diversified solutions and expand search capacity with decentralized

control where each hyper-heuristic has certain autonomy. It is thus possible to consider different ways

of cooperation between the hyper-heuristics: sharing solutions, learning by mimetism or carrying out

different competitive search strategies. The experiment was carried out both on real-world instances

and benchmarks. It gave good results on both quality of solution and execution time.

Keywords: Hyper-heuristic, Bus driver scheduling, Organizational model, Multi-agent system
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