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Soutenue le 11 Décembre 2012 devant le jury composé de :
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Abstract

This work is dedicated to present and validate a new and generalized macroscopic

nonlocal theory of sound propagation in rigid-framed porous media saturated with

a viscothermal fluid. This theory allows to go beyond the limits of the classical

local theory and within the limits of linear theory, to take not only temporal

dispersion, but also spatial dispersion into account. In the framework of the new

approach, a homogenization procedure is proposed to upscale the dynamics of

sound propagation from Navier-Stokes-Fourier scale to the volume-average scale,

through solving two independent microscopic action-response problems. Contrary

to the classical method of homogenization, there is no length-constraint to be

considered alongside of the development of the new method, thus, there is no

frequency limit for the medium effective properties to be valid. In absence of

solid matrix, this procedure leads to Kirchhoff-Langevin’s dispersion equation for

sound propagation in viscothermal fluids.

The new theory and upscaling procedure are validated in three cases correspond-

ing to three different periodic microgeometries of the porous structure. Employ-

ing a semi-analytical method in the simple case of cylindrical circular tubes filled

with a viscothermal fluid, it is found that the wavenumbers and impedances pre-

dicted by nonlocal theory match with those of the long-known Kirchhoff’s exact

solution, while the results by local theory (Zwikker and Kosten’s) yield only the

wavenumber of the least attenuated mode, in addition, with a small discrepancy

compared to Kirchhoff’s.

In the case where the porous medium is made of a 2D square network of

cylindrical solid inclusions, the frequency-dependent phase velocities of the least

attenuated mode are computed based on the local and nonlocal approaches, by

using direct Finite Element numerical simulations. The phase velocity of the

least attenuated Bloch wave computed through a completely different quasi-exact

multiple scattering method taking into account the viscothermal effects, shows
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ii Abstract

a remarkable agreement with those obtained by the nonlocal theory in a wide

frequency range.

When the microgeometry is in the form of daisy chained Helmholtz resonators,

using the upscaling procedure in nonlocal theory and a plane wave modelling

lead to two effective density and bulk modulus functions in Fourier space. In

the framework of the new upscaling procedure, Zwikker and Kosten’s equations

governing the pressure and velocity fields’ dynamics averaged over the cross-

sections of the different parts of Helmholtz resonators, are employed in order to

coarse-grain them to the scale of a periodic cell containing one resonator. The

least attenuated wavenumber of the medium is obtained through a dispersion

equation established via nonlocal theory, while an analytical modelling is

performed, independently, to obtain the least attenuated Bloch mode propagating

in the medium, in a frequency range where the resonance phenomena can be

observed. The results corresponding to these two different methods show that

not only the Bloch wave modelling, but also, especially, the modelling based

on the new theory can describe the resonance phenomena originating from the

spatial dispersion effects present in the macroscopic dynamics of the matarial.

Keywords: porous media, rigid frame, viscothermal fluid, nonlocal theory, local

theory, homogenization, Bloch wave, Kirchhoff equation, Kirchhoff-Langevin

equation, temporal dispersion, spatial dispersion, circular tube, rigid cylinders,

Helmholtz resonators



Résumé

Ce travail présente et valide une théorie nonlocale nouvelle et généralisée, de la

propagation acoustique dans les milieux poreux à structure rigide, saturés par

un fluide viscothermique. Cette théorie linéaire permet de dépasser les limites

de la théorie classique basée sur la théorie de l’homogénéisation. Elle prend

en compte non seulement les phénomènes de dispersion temporelle, mais aussi

ceux de dispersion spatiale. Dans le cadre de la nouvelle approche, une nouvelle

procédure d’homogénéisation est proposée, qui permet de trouver les propriétés

acoustiques à l’échelle macroscopique, en résolvant deux problèmes d’action-

réponse indépendants, posés à l’échelle microscopique de Navier-Stokes-Fourier.

Contrairement à la méthode classique d’homogénéisation, aucune contrainte

de séparation d’échelle n’est introduite. En l’absence de structure solide, la

procédure redonne l’équation de dispersion de Kirchhoff-Langevin, qui décrit la

propagation des ondes longitudinales dans les fluides viscothermiques.

La nouvelle théorie et procédure d’homogénéisation nonlocale sont validées dans

trois cas, portant sur des microgéométries significativement différentes. Dans le

cas simple d’un tube circulaire rempli par un fluide viscothermique, on montre que

les nombres d’ondes et les impédances prédits par la théorie nonlocale, cöıncident

avec ceux de la solution exacte de Kirchhoff, connue depuis longtemps. Au

contraire, les résultats issus de la théorie locale (celle de Zwikker et Kosten,

découlant de la théorie classique d’homogénéisation) ne donnent que le mode le

plus attenué, et encore, seulement avec le petit désaccord existant entre la solution

simplifiée de Zwikker et Kosten et celle exacte de Kirchhoff.

Dans le cas où le milieu poreux est constitué d’un réseau carré de cylindres rigides

parallèles, plongés dans le fluide, la propagation étant regardée dans une direction

transverse, la vitesse de phase du mode le plus atténué peut être calculée en

fonction de la fréquence en suivant les approches locale et nonlocale, résolues au

moyen de simulations numériques par la méthode des Eléments Finis. Elle peut

être calculée d’autre part par une méthode complètement différente et quasi-
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iv Abstract

exacte, de diffusion multiple prenant en compte les effets viscothermiques. Ce

dernier résultat quasi-exact montre un accord remarquable avec celui obtenu par

la théorie nonlocale, sans restriction de longueur d’onde. Avec celui de la théorie

locale, l’accord ne se produit que tant que la longueur d’onde reste assez grande.

Enfin, dans le cas où la microgéométrie, formée de portions de conduits

droits, est celle de résonateurs de Helmholtz placés en dérivation sur un guide

principal, on peut, en appliquant la nouvelle procédure d’homogénéisation de

la théorie nonlocale, et en modélisant les champs par des ondes planes aller-

retour dans chacune des portions droites, calculer les deux fonctions de densité

et compressibilité effectives du milieu dans l’espace de Fourier. Sans faire

d’erreur appréciable les ondes planes aller-retour en question peuvent être décrites

par les formules Zwikker et Kosten. Disposant ainsi des fonctions densité et

compressibilité effectives, le nombre d’onde du mode le plus atténué peut être

calculé en résolvant une équation de dispersion établie via la théorie nonlocale.

Ce nombre d’onde peut être indépendamment calculé d’une manière plus classique

pour les ondes de Bloch, sans passer par la théorie nonlocale, mais en faisant les

mêmes simplifications consistant à introduire dans les différentes portions, des

ondes planes décrites par les formules Zwikker et Kosten. On observe alors,

encore, un accord remarquable entre le nombre d’onde calculé classiquement, et

le nombre d’onde calculé via la procédure nonlocale: le comportement résonnant

exact est reproduit par la théorie nonlocale. Il s’interprète comme un simple effet

de la dispersion spatiale, montrant la puissance de la nouvelle approche.
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Introduction

In this work, we present and validate a new macroscopic nonlocal theory of

sound propagation in an unbounded rigid-framed porous media saturated with

a viscothermal fluid. The porous medium is either isotropic or having a wave

guide symmetry axis, and macroscopically homogeneous. Despite the success of

the local theory to predict the macroscopic behaviour of long-wavelength sound

propagation in such a medium with relatively simple microgeometries, it remains

far to describe correctly the coarse-grained dynamics of the medium when the

wave length become smaller than, or even comparable to a characteristic length

of the medium, or when the microgeometry of the porous medium become more

complex. These can be observed, practically, either in high frequency regime, or

when the microgeometry is formed in a way to exhibit the resonance behaviour

at not necessarily high frequencies. It will be shown throughout this work that

the origin of these difficulties is that the classical theory, which is based on

the asymptotic approach of the so-called two-scale homogenization method, is

not capable to describe the macroscopic non local effects, contrary to the new

proposed non local theory.

In the framework of the non local theory allowing for spatial dispersion,

a new homogenization method is suggested by an analogy with Maxwell’s

electromagnetic theory and the establishment of a thermodynamic identification,

in order to upscale the dynamics of viscothermal fluids from pore level to

macroscopic level. The spatial dispersion is incorporated in the new theory by

considering that in Fourier space, the the two acoustic susceptibilities – effective

density and bulk modulus–, depend not only on the frequency, as in local theory,

but also on the wavenumber. We provide an upscaling procedure to obtain these

two effective properties of the medium in terms of the spatial-averaged values of

the microscopic fields which can be computed through solving two independent

action-response problems at the pore level. The theory is validated in several

cases with different microgeometries.
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2 Introduction

We present the non local theory in chapter 1. It is shown that the equations

governing the longitudinal wave motions in a viscothermal fluid can be put in a

Maxwellian nonlocal form. The procedure to derive the corresponding nonlocal

density and compressibility which is introduced there, then serves as a guide,

when the solid structure is present, to obtain the correct nonlocal theory upscaling

procedure.

In chapter 2, a successful test of this theory is presented in the simple case of

cylindrical circular tubes filled with a viscothermal fluid . It is found that the

wavenumbers and impedances predicted by nonlocal theory match with those of

the long-known Kirchhoff’s exact solution. On the contrary, the results by local

theory (Zwikker and Kosten’s), yield only the wavenumber of the least attenuated

mode, with a small discrepancy compared to Kirchhoff’s. Zwikker and Kosten’s

local theory is derived in Appendix A, using the language of temporal and spatial

dispersion. To evaluate the Zwikker and Kosten quantities in chapter 2, the

formulae reported in Appendix A are used.

In chapter 3, the nonlocal theory is verified in the case where the microgeometry

of the porous medium is nontrivial, in the form of an unbounded two-dimensional

square lattice of rigid cylinders permeated by a viscothermal fluid. On the one

hand, we will compare the complex frequency-dependent phase velocity associated

with the least attenuated plane wave, predicted by the new theory using Finite

Element Method simulations, with that of the corresponding least attenuated

Bloch mode, obtained by the quasi-exact multiple scattering method, and show

that the two are in remarkable agreement. The main microscopic equations

to be solved numerically, in order to compute macroscopic properties of the

porous medium according to local and nonlocal theory, are briefly reviewed.

The essential elements of calculation to obtain Bloch wavenumbers through the

multiple scattering method are also presented in this chapter.

In chapter 4, the theory will be validated when the the geometry of the porous

medium is in the form of a daisy chained Helmholtz resonators. Firstly, an

analytical plane wave modelling is employed to obtain the the least attenuated

Block mode of the medium. Secondly, using the upscaling procedures in nonlocal

theory and using the plane wave modelling lead to two effective density and bulk

modulus functions in Fourier space. Once we have these functions, we are able to

find, in particular, the least attenuated mode propagating in the medium, through

a dispersion equation coming from the macroscopic equations in nonlocal theory.

The chapters 1 and 2, and 3, can be considered as relatively independent texts

and have been written in a article style. Chapter 1 is the text of an article which

has been submitted recently to the journal Wave Motion. Therefore, throughout
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the chapters 2, 3, and 4, chapter 1 has been cited as a reference to this submitted

paper.





Chapter 1

Nonlocal theory of sound

propagation in homogeneous

rigid-framed porous media

1

Elaborating a Maxwellian representation of longitudinal wave propagation in

a viscothermal fluid, a new general nonlocal macroscopic theory of sound

propagation in homogeneous porous media saturated with viscothermal fluid is

proposed here in the case where the solid frame is rigid and isotropic. Allowing in

the most general manner for temporal and spatial dispersion this theory, contrary

to the conventional two-scale homogenization theory, is suitable to homogenize

the so-called metamaterials. Moreover, for propagation in periodic media along

a symmetry axis, the complete Bloch mode spectrum is expected to be achieved

without any frequency constraint.

1.1 Introduction

What are the equations governing small-amplitude sound propagation in a fluid-

saturated porous material, at the macroscopic level? Here, we propose an answer

to this question in the form of a new nonlocal theory of sound propagation,

applicable in the case where the macroscopically homogeneous and isotropic

material is rigid-framed and permeated by a viscothermal fluid. It is clear

that a macroscopically homogeneous medium is also necessarily unbounded.

Macroscopic homogeneity and isotropy are assumed here in Russakoff’s sense

of volume averaging [1].

1This chapter in its current form has been recently submitted as a paper to Wave Motion.
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6 1 Nonlocal theory of sound propagation in porous media

In the framework of this theory, we are able to upscale successfully the dissipative

fluid dynamics in a medium with periodic microstructure, as well. In this case,

the coarse-grained propagation is considered along a single symmetry axis.

The solid phase need not be necessarily connex. Thus the upscaling procedure

is also valid for an homogeneous, isotropic or periodic distribution of motionless

rigid scatterers of arbitrary shape, embedded in the viscothermal fluid.

The main existing homogenization method that may be used to predict the

macroscopic properties of sound propagation in the above media is the so-

called two-scale asymptotic homogenization method [2, 3, 4, 5, 6] which assumes

wide scale separation between characteristic macroscopic wavelengths and typical

correlation lengths of the solid and fluid phases. Applied to most sound

absorbers used in practice, it consistently leads to local models taking into account

temporal dispersion. The temporal dispersion effects are manifested in frequency-

dependent density and bulk modulus, describing the effective properties of the

medium, which can be well-approximated by simple formulae involving a few

geometrical parameters of the pore space [7, 8, 9].

This homogenization method, however, does not appear to give the general

solution of the problem. For instance, in geometries with structures in the form

of Helmholtz’s resonators, it does not predict the characteristic metamaterial

behavior related to the Helmholtz’s resonance [10], which is expressed in a

resonant bulk modulus. Moreover, in ordinary periodic geometries, it does not

predict, beyond the Rayleigh scattering regime, the high-frequency behavior of

the Bloch mode spectrum and the presence of the band gaps. Recently, powerful

high-frequencies extensions of the conventional homogenization method have been

introduced [11, 12, 13]; high-frequency meaning here the absence of two-scale

separation in the usual sense of homogenization. These extensions may be suitable

to homogenize periodic media in the vicinity of ‘cell resonances’, however, a new

sort of two-scale separation is required once again.

The present general physical solution to the aforementioned wave propagation

problems do not require any explicit scale separation. It takes advantage of

an analogy with electromagnetics and a thermodynamic identification. In three

forthcoming papers, it will be shown to successfully predict: the Kirchhoff’s radial

mode wavenumbers and impedances in a circular tube filled with a viscothermal

fluid [14], the Bloch’s wavenumbers and impedances in periodic square arrays

of rigid cylinders permeated by a viscothermal fluid [15], and the metamaterial

behavior of a line of daisy-chained Helmholtz’s resonators [10].

The new feature in the theory which explains its absence of limitation for

propagation in macroscopically homogeneous materials, is that it accounts both
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for temporal dispersion and spatial dispersion, without making any perturbative

simplification or introducing any explicit scale-separation condition. The only

scale separation that subsists is an unavoidable one. Given the finite spatial width

of Russakoff’s test function employed to smooth-out the material irregularities,

the material properties are necessarily subjected to remaining small point-to-

point fluctuations. The description of the propagation of macroscopic waves

with wavelengths comparable to the correlation length of these fluctuations

will no longer be possible in terms of an equivalent homogeneous frequency-

and-wavenumber-dependent medium. This problem does not exists for periodic

geometries, since these fluctuations entirely disappear by averaging over periods.

In this case, waves of typical wavelengths smaller than the irreducible cell

dimension can be treated by the present nonlocal macroscopic theory.

The paper is organised as follows. Sound propagation in a viscothermal fluid is

first revisited in section 1.2, where it is shown that the equations governing the

longitudinal motions are susceptible to be put in a Maxwellian nonlocal form.

After making the appropriate thermodynamic identification which implies that

the acoustic counterpart of the electromagnetic H field is the thermodynamic

pressure field, we conclude that the longitudinal wave motions derive from an

equivalent nonlocal density and an equivalent nonlocal compressibility. The

nonlocal density which plays the role of electric permittivity depends only on

inertial and viscous effects, and the nonlocal bulk modulus which plays the role

of magnetic permittivity depends only on elastic and thermal effects.

It is remarkable that, once this thermodynamic identification of the acoustic H

field is made, the corresponding density and bulk modulus operators are directly

related to the solutions of two independent action-response problems. On the one

hand, the density operator reflects the nonlocal response of the fluid subjected

to an external force. On the other hand, the bulk modulus operator reflects the

nonlocal response of the fluid subjected to an external rate of heat supply.

These fundamental observations are next directly used in section 1.3, when

the viscothermal fluid is permeating a macroscopically homogeneous porous

structure. Generalizing the electromagnetic recasting of the equations, and the

aforementioned thermodynamic identification as well, we conjecture that there is,

now, a macroscopic density operator which reflects the nonlocal response of the

permeating fluid subjected to an external force, and a macroscopic bulk modulus

operator which reflects the nonlocal response of the permeating fluid subjected

to an external rate of heat supply. This leads to stating definite recipes for

determining the operators from the microgeometry.
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1.2 Electromagnetic recasting of the acoustic equa-

tions in a viscothermal fluid

Within the approximations used in ordinary near-equilibrium fluid-mechanics,

small amplitude wave motions in viscothermal fluids can be analysed in terms

of two disconnected types of motion: shear motions with transverse velocity

variations and no condensation, pressure, and temperature variations, and

longitudinal motions with longitudinal velocity variations and nonvanishing

condensation, pressure, and temperature variations [16].

In section 1.3 we consider macroscopic sound propagation in a homogeneous, thus

unbounded, fluid-saturated porous medium. In practice the material is finite and

the macroscopic perturbation comes from a source placed in the external free fluid.

The source may generate shear waves and longitudinal waves. However, since we

intend to describe the propagation of sound waves in the material, we are not

concerned by the shear waves which, by nature, involve no pressure variations.2

Thus in this section, we are interested to investigate only the longitudinal motions.

Within the ordinary Navier-Stokes-Fourier model of a viscothermal fluid, the

linearised equations of longitudinal motions are written as [19, 20, 21]

ρ0
∂v

∂t
= −∇p+ (

4η

3
+ ζ)∇(∇ · v) (1.1a)

∂b

∂t
+∇ · v = 0 (1.1b)

γχ0p = b+ β0τ (1.1c)

ρ0cp
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ (1.1d)

where the wave variables v, b, p, τ , are the fluid velocity, condensation,

thermodynamic excess pressure, and excess temperature respectively, and the

fluid constants ρ0, η, ζ, γ, χ0, β0, cp, T0, κ, represent the ambient density,

first viscosity, second viscosity, ratio of heat coefficients cp/cv, adiabatic

compressibility, thermal expansion coefficient, specific heat coefficient at constant

pressure, ambient temperature, and thermal conduction coefficient, respectively.

Regarding these equations we observe that, if we make abstraction of our

knowledge that the condensation b represents the quantity ρ′/ρ0, where ρ′ is

the excess density, we may view the equation (1.1b) as a sort of definition of

2Shear motions will be present at the pore scale in the material, but only as a result of

longitudinal into shear wave conversion, occurring at the pore walls. This conversion is due to

the fact that the longitudinal motions in the bulk fluid cannot satisfy the no-slip conditions at

the pore walls, if they keep their initial type of motion.
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a field b which is interestingly similar, in its philosophy, to the macroscopic

electromagnetic equation-definition valid in any material medium

∂B

∂t
+∇×E = 0 (1.2)

To express it in more detail, we note that an enlightening way of looking at

the above equation (1.2) is to observe that, to any macroscopic electromagnetic

field present in a material medium – in a given rest state of thermodynamic

equilibrium –may be associated a 3-vector potential macroscopic field A. In fact,

the medium defines its own privileged rest frame in which we work, therefore

the time component of the electromagnetic potential can always be set to zero

by the jauge invariance. What we call, in this rest frame, the electric and

magnetic fields E and B, are nothing but the quantities which are related to

this 3-potential by the equation-definitions E = −∂A/∂t and B = ∇ × A.

Eq.(1.2) then is a direct consequence of the definitions of E and B in terms

of the electromagnetic potential. The physics is expressed in the additional

electromagnetic field equation

∂D

∂t
= ∇×H (1.3)

and the constitutive relations

D = ǫ̂E (1.4a)

H = µ̂−1B (1.4b)

where ǫ̂ and µ̂ are two constitutive permittivity operators in which the physical

properties of the medium are encoded. For sufficiently small amplitudes and in

an homogeneous medium, these are linear difference-kernel operators [22].

Here, the particle displacement field a which is a 3-vector as well, can be viewed

as the acoustic counterpart of the 3-potential A from which, may be derived the

fields v and b, by the equation-definitions v = ∂a/∂t and b = −∇·a, respectively.
Eq.(1.1b) then is a direct consequence of these definitions.

This suggests that we can complete the Eq.(1.1b) by expressing the acoustic

equations analogous to (1.3) and (1.4)

∂d

∂t
= −∇h (1.5)
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and

d = ρ̂v (1.6a)

h = χ̂−1b (1.6b)

where ρ̂ and χ̂ are two constitutive linear difference-kernel operators in which the

fluid physical properties are encoded.

The operator χ̂−1 or the field h can always be arbitrarily chosen. The physics

then is wholly expressed by the operator ρ̂. Indeed, this is the customary choice

utilized in electromagnetic theory in presence of spatial dispersion [24, 22, 23],

which consists in setting by definition µ̂−1 = µ−1
0 . Here we could set by definition

χ̂−1 = χ−1
0 .

However, in electromagnetism a different choice exists which seems to be more

natural, and which is based on the fact that the Poynting vector S = E ×H is

interpreted as the electromagnetic part of energy current density [25]. Although,

this point of view is usually considered in the case where there is no spatial

dispersion, we believe that one should go beyond and generalize its validity in

presence of spatial dispersion. Thus, a general nontrivial H field exists which is

defined through S.

Here, we borrow this concept from electromagnetism and bring it to acoustics.

As such, the acoustic Poynting vector s

s = hv (1.7)

is interpreted as the acoustic part of energy current density. Taking for this

acoustic energy current density the expression-definition suggested by Schoch

[26] s ≡ pv, the above condition requires that the field h identically matches the

thermodynamic excess pressure p

h ≡ p (1.8)

Accounting for the fact that the operators ρ̂ and χ̂1 must be expressed via

difference-kernels functions, allowing to respect time and space homogeneity, the

nonlocal Maxwellian acoustic equations then take the form

∂b

∂t
+∇ · v = 0 (1.9)

∂d

∂t
= −∇p (1.10)
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with

d(t,x) =

∫ t

−∞
dt′
∫

dx′ρ(t− t′,x− x′)v(t′,x′) (1.11a)

p(t,x) =

∫ t

−∞
dt′
∫

dx′χ−1(t− t′,x− x′)b(t′,x′) (1.11b)

We now intend to determine these kernel functions. It turns out that the direct

determination of the functions ρ(t,x) and χ−1(t,x) is not possible due to some

mathematical singularities. Their physical origin is related to the missing terms

in the Newton-type and Fourier constitutive laws introduced in the fundamental

momentum and energy balance laws leading to (1.1a) and (1.1d). Nevertheless,

working in Fourier space it is easy to find the Fourier kernels ρ(ω,k) = ρ(ω, k) and

χ−1(ω,k) = χ−1(ω, k) such that the wave physics described by Eqs.(1.1a-1.1d),

namely

iωρ0v = ikp+ (
4η

3
+ ζ)k2v (1.12a)

−ωb+ k · v = 0 (1.12b)

γχ0p = b+ β0τ (1.12c)

iωρ0cpτ = iωβ0T0p+ κk2τ (1.12d)

be exactly the same as that described by Eqs.(1.9-1.11), namely

k · v = ωb (1.13a)

kp = ωd (1.13b)

with

d = ρ(ω, k)v (1.14a)

p = χ−1(ω, k)b (1.14b)

Comparing the two sets of equations (1.12) and (1.13-1.14), we obtain the

following expressions for the Fourier density and bulk-modulus kernels

ρ(ω,k) = ρ(ω, k) = ρ0

(

1 +
4η
3 + ζ

ρ0

k2

−iω

)

(1.15)

χ−1(ω,k) = χ−1(ω, k) = χ−1
0

[

1− γ − 1

γ

(

1− iω

−iω + κ
ρ0cv

k2

)]

(1.16)
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where the following general thermodynamic identity [27] has been used

γ − 1 =
T0β

2
0

ρ0χ0cp
(1.17)

Although, this will not be our concern in this paper, we note that the above

Maxwellian recasting cannot express totally its power within the too-simplified

Newton and Fourier constitutive laws utilized here. Its degenerate character may

be seen through the above expressions in different related manners.

First, the above expressions depend on k only via the modulus k. With more

complete constitutive laws not leading to degeneracies, no complete decoupling

would exist between shear and longitudinal motions, and ρ(ω,k) would be a

tensor ρij(ω,k) having the general form [24]

ρij(ω,k) = ρt(ω, k)(δij − kikj/k
2) + ρl(ω, k)kikj/k

2 (1.18)

where ρt and ρl are transversal and longitudinal kernels which depend only

on the magnitude of the wave vector (and on ω). Here, the transverse part

disappears and the longitudinal part reduces to ρl(ω, k)δij , because they are

contracted just by longitudinal velocities, which finally leads to a scalar ρ verifying

ρ(ω,k) = ρ(ω, k).

Another way to see the existing degeneracies is to note that, for the reasons

relating to the causality, the above expression for ρ(ω, k) should satisfy Kramers-

Kronig dispersion relations [24, 28]

ℜ[ρ(ω, k)] − ρ0 =
1

π
P.V.

∫ ∞

−∞

ℑ[ρ(ξ, k)]
ξ − ω

dξ (1.19)

ℑ[ρ(ω, k)] = − 1

π
P.V.

∫ ∞

−∞

ℜ[ρ(ξ, k)]
ξ − ω

dξ +
σ(k)

ω
(1.20)

and similarly for χ−1(ω, k), but without the pole. For the density ρ, these

relations are verified in a trivial way. The only nonzero term in the right-hand

side of (1.19) and (1.20) is the pole relating to σ(k) = (4η/3 + ζ)k2.

For the bulk modulus χ−1, the degeneracy is not directly apparent in the

frequency and wavenumber dependencies (1.16). It is expressed by the very fact

that we are dealing with a scalar rather than a tensor: the vectors H and B are

replaced by scalars h (or p) and b. In reality, H should not be viewed as a vector

but an antisymmetric tensor of rank two with contravariant indexes and weight

W = −1 [25]. The field h should not be viewed as a scalar but a symmetric
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tensor of rank two with contravariant indexes and weight W = −1, akin to a

contravariant stress field. That is precisely the tensorial character of the quantity

h, which would allow ρ to be a tensor. In the same manner, B should not be

regarded as a vector but an antisymmetric tensor of rank two with covariant

indexes and weight W = 0. The field b should not be regarded as a scalar

but a symmetric tensor of rank two with covariant indexes and weight W = 0,

representing a covariant strain field. The nondegenerate tensor operator χ̂−1 that

could be written within a sufficiently general thermodynamic framework for the

fluid mechanics equations, would therefore become a tensor operator (χ̂−1)ijkl.

As such, the shear and compressional motions would be merged and treated

simultaneously, instead of being artificially disconnected.

To get a glimpse of some of the deep consequences of the Maxwellian recasting

sketched above, we notice that in electromagnetics, when the fields vary

sufficiently rapidly, the dissipation processes have no time to occur and the

general operator relations Di = ǫ̂ijEj and H ij = (µ̂−1)ijklBkl reduce to the

ones implying that D and H are determined by E and B in the same space-time

position. With material homogeneity, isotropy, and center symmetry taken into

account, the only available tensor is δij (in Cartesian coordinates) [24] and the

only relations compatible with the characteristic antisymmetry in H and B are,

Di = ǫ0δijEj and Hij = µ−1
0

1
2(δikδjl − δilδjk)Bkl, i.e., they are proportionality

relations D = ǫ0E, and H = µ−1
0 B, with ǫ0 and µ0, the physical constants

named electric and magnetic permittivity, respectively.

Here in acoustics, similarly, we suppose that when the fields vary sufficiently

rapidly, the dissipation processes have no time to take place, and the general

operator relations di = ρ̂ijvj and hij = (χ̂−1)ijklbkl reduce to the ones implying

that d and h are determined by v and b in the same space-time position. As

before, the only available tensor is δij , and the only relations compatible with

the characteristic symmetry in h and b are di = ρ0δijvj and hij = χ−1
0 δijδklbkl +

µ0(δikδjl+δilδjk− 2
3δijδkl)bkl, with ρ0, χ

−1
0 , and µ0, physical constants interpreted

as density, compressibility modulus, and rigidity modulus, respectively [29]. It

may be checked that the latter identically vanishes within the degenerate recasting

we discuss here, whereas the former two yield the ambient density and adiabatic

bulk modulus.

Regarding the above considerations, it seems that Frenkel’s idea in phonon

theory of fluid thermodynamics [30], reported long ago, stating that fluids should

behave like elastic solids at very short times, is automatically recovered. In this

connection we note that, recently, a phonon theory of thermodynamics of liquids

has been developed using Frenkel’s theoretical framework of the phonon states in
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a liquid, which has shown good agreement for the calculations of heat capacity

coefficients of different liquids in a wide range of temperature and pressure [31].

Although, the present Maxwellian description shows to have degeneracies and,

apparently, could be well-defined only in a larger fluid-mechanics thermodynamic

framework, we shall not care about this issue, as our purpose is to use this theory

to have a generalized description of sound propagation in fluid-saturated porous

materials. In this case, describing the fluid behavior at the level of the ordinary

Navier-Stokes-Fourier equations, will be entirely sufficient for the noise control

applications of the theory.

The fact that the correct longitudinal Navier-Stokes-Fourier wave physics [16]

is encoded in the degenerate expressions (1.15-1.16), can be easily checked by

writing the dispersion equation corresponding to the system (1.13-1.14)

ρ(ω, k)χ(ω, k)ω2 = k2 (1.21)

Substituting in the above equation, the expressions (1.15-1.16), we get the known

Kirchhoff-Langevin’s dispersion equation of longitudinal waves [20, 19]

−ω2+

[

c2a − iω

(

κ

ρ0CV
+

4η
3 + ζ

ρ0

)]

k2− κ

ρ0CV iω

[

c2i − iω
4η
3 + ζ

ρ0

]

k4 = 0 (1.22)

with c2a the adiabatic sound speed squared defined by c2a ≡ 1/ρ0χ0, and c2i the

isothermal sound speed squared defined by c2i ≡ c2a/γ. Therefore, it is verified

that the correct sound normal modes, and heat conduction normal mode [16], are

encoded in the given expressions.

We arrive now at the fundamental two important elements which will be used

in the next section. Let e be the direction along which we study the sound

propagation, and x = x ·e be the coordinate along this direction. It will be shown

next that the two functions ρ(ω, k) and χ−1(ω, k) are related to the solutions of

two independent action-response problems obtained by putting, respectively, a

fictitious harmonic pressure term P(t, x) = P0e
−iωt+ike·x in the Navier-Stokes

Eq.(1.1a), or the Fourier Eq.(1.1d).

Firstly, adding the potential bulk force f = −∇P = −ikPe to the right-hand

side of Eq.(1.1a) belonging to the equation system (1.1a-1.1d), and writing the
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fields as

v(t,x) = ve−iωt+ike·x (1.23a)

b(t,x) = be−iωt+ike·x (1.23b)

p(t,x) = pe−iωt+ike·x (1.23c)

τ(t,x) = τe−iωt+ike·x (1.23d)

we can easily get the response amplitudes v, b, p, τ . We then observe that the

same expression as in (1.15) for ρ(ω, k) is obtained through the equation

−ρ(ω, k)iωv = −ike(p + P0) (1.24)

In this problem, the response pressure p is added to the fictitious deriving pressure

amplitude P0 to represent a sort of total effective pressure field h.

This establishes a direct relation between the Fourier coefficient ρ(ω, k) (1.15)

of the operator density, and the response of the fluid subjected to an external

harmonic bulk potential force.

Secondly, putting the bulk rate of heat supply Q̇ = β0T0∂P/∂t = −iωβ0T0P in

the right-hand side of Eq.(1.1d) belonging to the equation system (1.1a-1.1d),

and writing the fields as before, we get the response amplitudes, v, b′, p, τ –

with a prime on the condensation for later convenience. We then observe that

the same expression as in (1.16) for χ−1(ω, k) is obtained through the equation

p+ P0 = χ−1(ω, k)(b′ + γχ0P0) (1.25)

In this problem, the response pressure p is again added to the fictitious deriving

pressure amplitude P0 to represent a sort of total effective pressure field h, and the

term γχ0P0 is added to the response condensation b′, in order to represent a sort

of total field b, related to h by the constitutive relation (1.6b). The interpretation

of the corresponding decomposition of b in two terms is that b′ is a nonisothermal

part of the response, while γχ0P0 is an isothermal response part; γχ0 being the

isothermal compressibility.

This establishes in turn a direct relation between the Fourier coefficient χ−1(ω, k)

(1.16) of the operator bulk modulus, and the response of the fluid subjected to

an external harmonic bulk rate of heat supply.

These relations are employed directly in the next section to arrive at the wanted

new macroscopic theory of sound propagation.
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1.3 Generalization to fluid-saturated rigid-framed por-

ous media

We consider, now, that the viscothermal fluid which is pervading the connected

network of pores of a rigid-framed porous material, is set to vibrate following

an incident small-amplitude sound wave. Assume that a characteristic length L

exists, allowing to smooth out the irregularities of the porous structure. The aim

is to describe the sound propagation in this complex medium.

As stated in general terms, this problem directly reminds the linear theory of

electromagnetic wave propagation in matter, investigated by H.A. Lorentz in his

theory of electrons [17]. In the same way as Lorentz could not hope to follow in

its course each electron, here we do not intend to analyse the detail of the wave

propagation at the pore level. Following Lorentz we remark that it is not the

microlevel wavefield that can make itself felt in the experiments, that are carried

out at the macroscopic level, but only the resultant effect produced by some

macroscopic averaging. A macroscopic description of the sound propagation in

the medium will be possible if we fix from the outset our attention not on the pore

level irregularities, but only on some mean values. We proceed now to clarify it

through some definitions.

1.3.1 Basic definitions

The homogeneous porous medium occupies the whole space and is composed of

two regions: the void (pore) region Vf which is a connex region permeated by the

fluid, and a solid-phase region Vs. The pore-wall region or solid-fluid interface is

denoted by ∂V. The characteristic function of the pore region is defined by

I(x) =

{

1, x ∈ Vf

0, x ∈ Vs

(1.26)

Given a field a(t,x) in the fluid, such as the velocity field, a macroscopic mean

value A = 〈a〉 may be defined by volume-averaging in a sphere of typical radius

L/2, as was done by Lorentz [17]. Since the purpose of the averaging is to get rid

of the pore-level irregularities, the length L is taken sufficiently large to include a

representative volume of the material. This Lorentz’s averaging was subsequently

refined by Russakoff [1] who replaced the integration in a sphere by a convolution

with a smooth test function fL of characteristic width L

A(t,x) = 〈a〉(t,x) =
∫

dx′I(x′)a(t,x′)fL(x− x′) (1.27)
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which is a much better smoothing procedure from a signal analysis standpoint,

especially on account of the fact that the material homogeneity is in general only

approximately realized over the distance L.

The presence of characteristic function I in (1.27) ensures that the integration is

taken in the only fluid region. The test function fL is normalized over the whole

space

∫

dxfL(x) = 1 (1.28)

The so-called spatial averaging theorem [18] is written as

〈∇a〉 = ∇〈a〉+
∫

∂V
dx′a(t,x′)n(x′)fL(x− x′) (1.29)

relating the average of the gradient of a microscopic field a to the gradient of the

averaged field. The macroscopic homogeneity implies that the quantity

φ = 〈I〉 (1.30)

is a constant independent of the position. It represents the fluid volume fraction

or the porosity of the medium. Thus for a macroscopically homogeneous medium,

the commutation relation (1.29) results in

∫

∂V
dx′n(x′)fL(x− x′) = 0 (1.31)

The constancy of φ or the vanishing of the integral (1.31) cannot exactly be

realized because of the irregularities of the medium; some inherent indeterminacy

is generally associated with the notion of spatial averaging. In practice, however,

the integral (1.31) often decreases sufficiently to be neglected for all practical

purposes, as soon as the averaging length L/2 reaches the value of some typical

coarse graining radius. This is the situation implicitly considered here.

Spatial periodicity is an important particular case where exact homogeneity (1.31)

is gained, but at the cost of an indefiniteness in the choice of the averaging length

L. Indeed, considering wave propagation along a single symmetry axis, and

denoting by P the irreducible period peculiar to this axis, we may take for the

smoothing test function fL, any of the following functions fn, n = 1, 2, ...

fn(x) = fn(x)g(y, z), with

∫

dydz g(y, z) = 1,

∫

dx fn(x) = 1
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and

fn(x) =

{

1/nP, |x| < nP/2

0, |x| > nP/2

These functions in turn define a series of different macroscopic averaged fields

〈a〉n performed with coarse-graning averaging length L = nP .

Now that the volume-average operation has been defined including the above

points concerning the periodic case, given a small amplitude wave perturbation to

the ambient equilibrium in the fluid, it is time to establish a Lorentz macroscopic

theory of wave propagation of averaged wavefield quantities.

1.3.2 Pore-level equations

At the pore-level the linearized fluid-mechanics equations describing the fluid

motion are written as

ρ0
∂v

∂t
= −∇p+ (

4η

3
+ ζ)∇(∇ · v)− η∇× (∇× v) (1.32a)

∂b

∂t
+∇ · v = 0 (1.32b)

γχ0p = b+ β0τ (1.32c)

ρ0CP
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ (1.32d)

in Vf , and

v = 0 (1.33a)

τ = 0 (1.33b)

on ∂V.

Comparing to the preceding equations in the free fluid (1.1a-1.1d), a rotational

viscous term has been added in (1.32a) to account for the shear motions generated

at the pore walls by virtue of the no-slip condition (1.33a). The condition (1.33b)

comes from the fact that the solid frame which is much more thermally-inert than

the fluid, is assumed to remain at the ambient temperature.
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1.3.3 Macroscopic equations

Given the pore-level equations, we seek the macroscopic equations governing wave

propagation of the averaged quantities

V ≡ 〈v〉 , and B ≡ 〈b〉 (1.34)

Since the velocity vanishes at the pore walls, the following direct commutation

relation always holds true

〈∇ · v〉 = ∇ · 〈v〉 = ∇ · V (1.35)

Thus, the Eq.(1.32b) is immediately translated at the macroscopic level

∂B

∂t
+∇ · V = 0 (1.36)

The electromagnetic analogy then suggests that the system of macroscopic

equations can be carried through by introducing new Maxwellian fields H and

D, and also operators ρ̂ and χ̂−1, such that

∂D

∂t
= −∇H (1.37)

with

D = ρ̂V (1.38a)

H = χ̂−1B (1.38b)

As we have seen in the previous section, such form of equations, with the scalar H

and scalar ρ, is suitable to treat nonlocal propagation of longitudinal waves in an

isotropic medium. Assuming scalar H and scalar ρ, we disregard the propagation

of macroscopic shear waves. Another case that is adapted to this form concerns

the propagation of longitudinal waves along a symmetry axis x set in the direction

e. In the former case, accounting for the time homogeneity and the material

macroscopic homogeneity, the nonlocal relations (1.38) are written

D(t,x) =

∫ t

−∞
dt′
∫

dx′ρ(t− t′,x− x′)V (t′,x′) (1.39)

H(t,x) =

∫ t

−∞
dt′
∫

dx′χ−1(t− t′,x− x′)B(t′,x′) (1.40)
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with scalar kernels ρ(t,x) and χ−1(t,x) whose Fourier amplitudes verify ρ(ω,k) =

ρ(ω, k), and χ−1(ω,k) = χ−1(ω, k). In the latter case with a symmetry axis along

e, we have D = De and V = V e, then the constitutive relations become

D(t, x) =

∫ t

−∞
dt′
∫

dx′ρ(t− t′, x− x′)V (t′, x′) (1.41)

H(t, x) =

∫ t

−∞
dt′
∫

dx′χ−1(t− t′, x− x′)B(t′, x′) (1.42)

with scalar kernels ρ(t, x) and χ−1(t, x) whose Fourier amplitudes are ρ(ω, k),

and χ−1(ω, k).

In the above, the integrations over time t′ in one hand, and over space coordinate

x′ or x′ in another hand, convey the image of the so-called temporal dispersion

effects and spatial dispersion effects, respectively. They can be served here as

definitions for these effects.

We need now to identify the macroscopic field H.

1.3.4 Identification of the field H

It results directly from writing the following macroscopic version of the relation

(1.7) used in the viscothermal fluid to identify the field h

S = HV (1.43)

provided that S = 〈pv〉. Thus H is identified as the field satisfying the relation-

definition

H〈v〉 ≡ 〈pv〉 (1.44)

This identification of an effective macroscopic pressure field H different from

the usual fluid-volume-averaged mean pressure p = 1
φ 〈p〉, appears very natural.

Generalized to the case of a bounded open material, it yields a field H that is

continuous at the macroscopic interface of the material. This follows from the

continuity of the normal component of the field V which is required by mass

flow conservation and the continuity of the normal component of the acoustic

part of the energy current density that may be supposed to hold true, provided

no resistive surface layer exists at the boundary of the material. Thus, in the

present electromagnetic-acoustic analogy, it may be noted that the continuity of

the normal component of velocity V replaces the continuity of the tangential
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components of the field E, and the continuity of the scalar H replaces the

continuity of the tangential components of H [24].

1.3.5 Identification of constitutive operators

Generalizing the relations established for the longitudinal motions in viscothermal

fluids to the present case, leads us to suggest now that the above Fourier

coefficients ρ(ω, k) and χ−1(ω, k) are directly related to the macroscopic response

of the permeating fluid subjected to a harmonic fictitious pressure term P(t, x) =

P0e
−iωt+ike·x added to the pressure, either in the Navier-Stokes Eq.(1.32a), or

the Fourier Eq.(1.32d).

Thus to determine the kernel ρ(ω, k) we first consider solving the action-response

problem

ρ0
∂v

∂t
= −∇p+ (

4η

3
+ ζ)∇(∇ · v)− η∇× (∇× v) + f (1.45a)

∂b

∂t
+∇ · v = 0 (1.45b)

γχ0p = b+ β0τ (1.45c)

ρ0cP
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ (1.45d)

in Vf , and

v = 0 (1.46a)

τ = 0 (1.46b)

on ∂V. The external force appears as before in the form of

f = −∇P = −ikeP0e
−iωt+ike·x (1.47)

The unique solutions to the above system (1.45a-1.47), for the fields v, b, p, τ ,

take the form

v(t,x) = v(ω, k,x)e−iωt+ike·x (1.48a)

b(t,x) = b(ω, k,x)e−iωt+ike·x (1.48b)

p(t,x) = p(ω, k,x)e−iωt+ike·x (1.48c)

τ(t,x) = τ(ω, k,x)e−iωt+ike·x (1.48d)

The response amplitudes v(ω, k,x), b(ω, k,x), p(ω, k,x), and τ(ω, k,x) are

bounded functions which are uniquely determined by the microgeometry.
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The above problem, once solved, we can extract of the response pressure p(t,x) =

p(ω, k,x)e−iωt+ike·x, its macroscopic part, denoted by

P(t, x) = P(ω, k)e−iωt+ike·x (1.49)

whose amplitude P(ω, k) is determined through the equation

P(ω, k) =
〈p(ω, k,x)v(ω, k,x)〉 .e

〈v(ω, k,x)〉 .e (1.50)

This expression comes from the relation-definition

P〈v〉 = 〈pv〉 (1.51)

which has been inspired by (1.44). Then using the following relation

−iωρ(ω, k) 〈v〉 = −ik(P(ω, k) + P0)e (1.52)

delivered from (1.24), gives rise immediately to nonlocal Equivalent-fluid density

ρ(ω, k)

ρ(ω, k) =
k(P(ω, k) + P0)

ω 〈v(ω, k,x)〉 .e (1.53)

As this point, we see that the fields p(ω, k,x) and v(ω, k,x) are needed to be

known in order to determine from microgeometry the effective density of the

fluid-saturated porous medium. Hence, instead of solving (1.45a-1.46b) we have

just to solve the following system of equations to get the amplitudes of the fields

in (1.48)

−iωρ0v = −(∇+ ike)p + (
4η

3
+ ζ)(∇+ ike) (∇ · v + ike · v) (1.54a)

−η(∇+ ike)× (∇+ ike)× v − ikeP0

−iωb+∇ · v + ike · v = 0 (1.54b)

γχ0p = b+ β0τ (1.54c)

−ρ0cP iωτ = −β0T0iωp+ κ(∇+ ike) · (∇+ ike)τ (1.54d)

in Vf , and

v = 0 (1.55a)

τ = 0 (1.55b)

on ∂V.
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The procedure to determine the kernel χ−1(ω, k) is quite similar. We consider

again, initially solving the action-response problem with an excitation appearing

this time in the energy balance equation, such that

ρ0
∂v

∂t
= −∇p+ (

4η

3
+ ζ)∇(∇ · v)− η∇× (∇× v) (1.56a)

∂b′

∂t
+∇ · v = 0 (1.56b)

γχ0p = b′ + β0τ (1.56c)

ρ0cP
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ + Q̇ (1.56d)

in Vf , and

v = 0 (1.57a)

τ = 0 (1.57b)

on ∂V, with the external heating

Q̇ = β0T0
∂P
∂t

= −iωβ0T0P0e
−iωt+ike·x (1.58)

The solutions to the above problem take the same form as specified before

through Eqs.(1.48). As previously done, we extract of the response pressure

p(t,x) = p(ω, k,x)e−iωt+ike·x, its macroscopic part P(t, x) = P(ω, k)e−iωt+ike·x

whose amplitude P(ω, k) is determined by the equation

P(ω, k) =
〈p(ω, k,x)v(ω, k,x)〉 .e

〈v(ω, k,x)〉 .e (1.59)

expressing a relation-definition P〈v〉 = 〈pv〉 inspired by (1.44). Then generalizing

Eq.(1.25) to the present case, results in

P(ω, k) + P0 = χ−1(ω, k)
(〈

b′(ω, k,x)
〉

+ φγχ0P0

)

(1.60)

where the factor of porosity is inserted in the last term to account for the fact that

〈P0〉 = φP0. That gives rise to nonlocal Equivalent-fluid bulk modulus χ−1(ω, k)

χ−1(ω, k) =
P(ω, k) + P0

〈b′(ω, k,x)〉 + φγχ0P0
(1.61)

Obviously, we need to know the fields p(ω, k,x) and v(ω, k,x), and b′(ω, k,x)

in order to determine the effective bulk modulus of the fluid-saturated porous

medium. Substituting (1.48) in (1.56a-1.57b), we have subsequently the following
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system whose solutions are the field amplitudes we seek

−ρ0iωv = −(∇+ ike)p + (
4η

3
+ ζ)(∇+ ike) (∇ · v + ike · v) (1.62a)

−η(∇+ ike)× (∇+ ike)× v
−iωb′ +∇ · v + ike · v = 0 (1.62b)

γχ0p = b′ + β0τ (1.62c)

−ρ0cP iωτ = −β0T0iωp+ κ(∇+ ike) · (∇+ ike)τ − iωβ0T0P0 (1.62d)

in Vf , and

v = 0 (1.63a)

τ = 0 (1.63b)

on ∂V.
The new upscaling procedures specified by Eqs.(1.50) and (1.53-1.55b) allowing

to determine nonlocal density ρ(ω, k), and Eqs.(1.59) and (1.61-1.63b) allowing

to determine nonlocal bulk modulus χ−1(ω, k), combined with the Maxwellian

acoustic equations (1.36-1.38), represent the essential results of this paper. They

wholly express the proposed new nonlocal theory.

1.3.6 Periodic media

In the special case of periodic media the response amplitudes (1.48), in both

density and bulk modulus relating action-response problems, are now periodic

functions of x = x ·e, where e is the symmetry axis along which the propagation

is considered. To fix the solution, it is necessary to precise its supercell irreducible

period L, which can be any integral multiple L = nP of the geometric irreducible

period P of the medium along direction e. Thus we now write, e.g., for the

velocity solution field

vn(t,x) = vn(ω, k,x)e
−iωt+ike·x (1.64)

with the periodicity condition

vn(ω, k,x+ nPe) = vn(ω, k,x) (1.65)

stated on the boundary of the supercell, being understood that nP is an

irreducible period of the considered amplitude, and so on for the other fields

pn, bn, and τn.

Moving on to the determination procedures of the operators, there follows that

a discrete infinite set of branches of an Equivalent-fluid density ρ(ω, k, n) are



1.3 Generalization to fluid-saturated rigid-framed porous media 25

produced, such that

Pn(ω, k) =
〈pn(ω, k,x)vn(ω, k,x)〉n .e

〈vn(ω, k,x)〉n .e
(1.66)

and

ρn(ω, k) =
−ik(Pn(ω, k) + P0)

−iω 〈v(ω, k,x)〉n .e
(1.67)

and likewise, a discrete infinite set of branches of an Equivalent-fluid bulk modulus

χ−1(ω, k, n) are produced, such that

χ−1
n (ω, k) =

Pn(ω, k) + P0

〈b′n(ω, k,x)〉n + φχ0γP0
(1.68)

where the symbol 〈〉n represents the averaging over the supercell constituted of

n geometric periods P in the propagation direction.

1.3.7 Characteristic wavenumbers and impedances of the normal

mode solutions

The characteristic feature of the present macroscopic theory is that, without any

simplifications, it allows for both temporal and spatial dispersion. Within the

classical local equivalent-fluid theory which only accounts for temporal dispersion,

for a given frequency ω, there is only one single normal mode that can propagate in

the given positive x direction. With this single mode is associated a wavenumber

q(ω) verifying the relation q2 = ρ(ω)χ(ω)ω2, ℑ(q) > 0, where ρ(ω) and χ(ω) are

the local density and compressibility functions. Here, since we fully take into

account the spatial dispersion, several normal mode solutions might exist, with

fields varying as e−iωt+iqe·x. At this time, each of these solutions should satisfy

the following dispersion equation

ρ(ω, q)χ(ω, q)ω2 = q2 (1.69)

If we label l = 1, 2, ..., the different solutions ql(ω), ℑ(ql) > 0, to the Eq.(1.69),

the corresponding wave impedances Zl = H/V for propagation in the direction

+x will be Zl(ω) =
√

ρ(ω, ql(ω))/(ω2χ(ω, ql(ω))).

When the geometry is periodic, the index n will have to be added in these

formulae. In our forthcoming papers, we show on different examples, that the

present theory predicts the adequate wavenumbers ql(ω) and impedances Zl(ω).

We note that the nonlocal functions ρ(ω, k) and χ(ω, k) will not be found to
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systematically reduce to the local ones at long wavelengths. The asymptotic

relations of the type ρ(ω) = limk→0 ρ(ω, k), χ(ω) = limk→0 χ(ω, k), which are in

line with the perturbative philosophy of conventional homogenization theory and

are also often assumed without proof for the electric permittivity [22], will not

hold true in the vicinity of Helmholtz’s resonances.

1.4 Conclusion

Following a general line of reasoning inspired by the electromagnetic theory, we

have proposed a definite new procedure to perform nonlocal homogenization

for sound propagation in rigid-framed homogeneous unbounded porous media

saturated with a viscothermal fluid, either for general isotropic materials, or for

propagation along a symmetry axis in periodic material. This procedure has

been clarified first in a viscothermal fluid, leading to the Kirchhoff-Langevin’s

dispersion equation, and has been next generalized when a rigid porous matrix is

embedded in this fluid. Contrary to the usual two-scale homogenization approach

[2], or its recent high-frequency extensions [11, 12, 13], the proposed theory makes

no perturbative simplification and will be valid as long as the medium can be

considered macroscopically homogeneous in Lorentz-Russakoff’s volume-average

sense.

In practice, the randomness of the medium, which cannot entirely be smoothed-

out by the averaging procedure, will prevent constructing meaningful macroscopic

description of the propagation, at wavelengths sufficiently small compared to

typical correlation lengths involved in the medium properties fluctuations. But for

periodic media, exact smoothing of microscopic variations can be achieved, and

the nonlocal macroscopic theory will not be limited. Spatial variations of averaged

fields, much smaller than the period, will be described as well by the macroscopic

theory. There, a longstanding misconception might be expressed, once again, in

connection with the notion of Lorentz-Russakoff’s averaging. Contrary to what

Lorentz mentioned in his theory of electrons, it is not necessary that the radius

of the averaging sphere be so small that the state of the body, so far as it is

accessible to our means of observation, may be considered as uniform throughout

the sphere. Therefore, one does not need to assume that macroscopic wavelengths

must be significantly greater than the length L. The ideal periodic case shows

that no scale separation is required to establish a macroscopic theory.

We believe that the present nonlocal acoustic theory also indicates some

misconceptions in electromagnetics regarding the nature of the field H in

presence of spatial dispersion. Contrary to what is often asserted, a meaningful
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H field certainly exists in presence of spatial dispersion, even if we lack the

adequate knowledge of thermodynamics necessary to define it. This problem is

not encountered in acoustics which is a theory supported by near-equilibrium

thermodynamics.

It is also suggested that the acoustic-electromagnetic analogy that we have used

here, is a degenerate version of a much deeper one. The deeper version might be

totally consistent with Frenkel’s long overlooked idea [30, 31], stating that a fluid

behaves like a solid at very short times. The fluid capability to support solid-like

shear waves at very short times is automatically implied by the tensor symmetry

of the equations and the electromagnetic analogy.
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Chapter 2

Nonlocal theory of sound

propagation in porous media: case

of circular pores

Elaborating on a Maxwellian representation of longitudinal wave propagation

in a viscothermal fluid, a new general nonlocal macroscopic theory of sound

propagation in homogeneous porous media saturated with viscothermal fluid

has been recently proposed. The present paper validates this new nonlocal

Maxwellian theory by showing that, in the case of the propagation in straight

circular tubes, it is in complete agreement with the long known Kirchhoff-

Langevin’s full solutions.

2.1 Introduction

In a recent paper [1], by using Kirchhoff-Langevin’s description of compressional

wave propagation in a fluid, and an electromagnetic analogy as a powerful

heuristic guide, we introduced two new upscaling procedures allowing to compute

two ‘acoustic permittivities’ from microstructure of porous media. These describe

in a nonlocal ‘Maxwellian’ manner, the phenomenon of macroscopic sound

propagation in rigid-framed homogeneous porous materials saturated with a

viscothermal fluid. The first is a macroscopic effective density playing the

role of macroscopic electric permittivity, the second a macroscopic effective

compressibility playing the role of macroscopic magnetic permittivity. By

‘macroscopic’ we mean that the theory is not concerned with the values of

the acoustic fields at every microscopic spatial position, but only, with their

‘macroscopic’ effective values, obtained by averaging in a way to be precised. In

the proposed theory, an energetic ‘Umov-Poynting’ definition of the macroscopic

33
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pressure is introduced, and the permittivities are fully nonlocal, i.e. they are

frequency and also wavenumber dependent.

The physical motivation of the new nonlocal theory is the recognition that spatial

dispersion effects are not well described by the existing theories. Indeed, at the

zero’th order of the asymptotic two-scale homogenization theory [2] and in all

existing macroscopic models such as [3] and [4, 5], spatial dispersion effects are

entirely absent. In the full asymptotic two-scale homogenization theory [2, 6], or

its recent variants [7, 8, 9], some spatial dispersion effects are present, but in a

limited manner.

The limited possible uses of the latter and other asymptotic methods, were

in recent years highlighted by their inability to cope simultaneously with all

geometries and frequencies, and in particular, to describe the whole dynamics

of metamaterial structures with Helmholtz resonators [10] on one hand, and the

complete Bloch mode spectrum in periodic structures on the other hand. With

the proposed new ‘Maxwellian’ approach, these limitations disappear and no

restrictions on periodic geometries or frequencies subsist, even if we have so far

formulated the solution only for the case of propagation along a symmetry axis of

an unbounded material. Therefore, it is important to note that the new theory is

suitable to predict the exact properties of the so-called metamaterials [10], from

microstructure.

As the new nonlocal theory is intended to provide the true physico-mathematical

solution of the macroscopic wave propagation problem, it needs to be mathem-

atically checked in unequivocal precise manner.

A proper checking is especially desirable, also, because a detailed verification of

the general ideas of the theory cannot be performed in electromagnetics, where

the counterpart of the upscaling procedures proposed cannot be formulated yet.

In electromagnetics, the nonlocal Maxwell macroscopic theory comparable to the

present acoustic one, is elusive. We believe that its very completion is not possible

yet, because the necessary thermodynamics of electromagnetic fields in matter is

missing.

In this paper we concentrate on a simple example for which an exact mathematical

verification of the general physical considerations used to construct the nonlocal

theory is possible. This example concerns sound propagation in straight ducts.

For ducts of circular cross-section the exact solution, accounting in the framework

of near-equilibrium ordinary fluid mechanics for the effects of viscous losses and

thermal conduction in the fluid, is known since G. Kirchhoff [11]. Kirchhoff’s

investigation had been in the thermodynamic framework of the ideal gas theory.

Langevin [12, 13] later showed that Kirchhoff’s solution applied more generally,
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to a viscothermal fluid obeying an arbitrary equation of state. This available

long known solution of the viscothermal wave propagation problem, offers the

possibility to directly check in simple but nontrivial manner the nonlocal theory’s

physical considerations.

This paper is organized as follows. In section 2.2 we present Kirchhoff-Langevin’s

solution of the problem of small-amplitude sound propagation in a tube of

circular cross-section filled with a viscothermal fluid. We recall how this solution

allows to compute at given real angular frequency ω, the complex wavenumbers

k(m,n)(ω) of the axisymmetric normal modes m = 0, n = 0, 1, 2, ..., where m

and n are azimuthal and radial mode indexes. The corresponding wavenumbers

kl(ω) = k(0,l−1)(ω), l = 1, 2, ..., are obtained as the complex roots of the

transcendent Kirchhoff-Langevin’s dispersion Eq.(2.47).

Anticipating on the Maxwellian theory’s definition of a macroscopic pressure field

H by means of the fundamental thermodynamic equation-definition

〈pv〉 = H 〈v〉 (2.1)

– which we call the ‘Umov-Poynting’ definition since 〈pv〉 is interpreted as

the acoustic part of macroscopic energy current density – where p is excess

thermodynamic pressure, v velocity, and 〈〉 is the averaging operation over a

cross-section, we then introduce at a given real angular frequency ω, the following

complex impedance factors Zl(ω), l = 1, 2, ...

H = Zl 〈v〉 · ex (2.2)

where ex represents the unit vector along the x-axis.

These frequency-dependent Kirchhoff-Langevin’s wavenumbers kl(ω) and imped-

ances Zl(ω) enable us to evaluate two frequency-dependent Kirchhoff-Langevin’s

permittivities, namely the densities ρl(ω) and bulk modulii χ−1
l (ω) associated

with the different radial modes n = l − 1, l = 1, 2, ...

ρl(ω) = klZl/ω, χ−1
l (ω) = ωZl/kl (2.3)

In section 2.3 we recall the principles of the proposed macroscopic Maxwellian

nonlocal theory. There, two permittivities are introduced which are funda-

mentally nonlocal. They are expressed through two nonlocal density and bulk

modulus operators, also described in Fourier space by frequency-dependent and

wavenumber-dependent complex amplitudes ρ(ω, k) and χ−1(ω, k). These func-
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tions ρ(ω, k) and χ−1(ω, k) are independently computable thanks to the two con-

jectured upscaling procedures.

It will be shown that the Kirchhoff-Langevin’s complex wavenumbers and

impedances kl and Zl still make sense in the framework of the macroscopic theory.

The wavenumbers kl are the solutions of the ‘Maxwell-Kirchhoff’ dispersion

equation

ρ(ω, k)χ(ω, k)ω2 = k2 (2.4)

and the impedances Zl then can be computed by

Zl =
√

ρ(ω, kl)χ−1(ω, kl) (2.5)

They may be referred as Maxwell-Kirchhoff’s wavenumbers and impedances.

The coincidence between Kirchhoff-Langevin’s and Maxwell-Kirchhoff’s complex

wavenumbers and impedances serves as a test of the exactness of the two upscaling

procedures of the new theory. Equivalently this can be expressed through the

coincidence of Kirchhoff-Langevin’s and Maxwell-Kirchhoff’s densities and bulk

modulii

ρl(ω) = ρ(ω, kl) χ−1
l (ω) = χ−1(ω, kl) (2.6)

A successful numerical checking of the above performed in section 2.4 will

clearly indicate that the two nonlocal upscaling procedures described in [1]

are exact, irrespective of the microgeometry. In forthcoming papers, similar

successful numerical verifications will be made when the geometry is nontrivial

but sufficiently simple to allow again for relatively easy detailed solutions. This

will complete the numerical demonstration of the exactness and generality of the

nonlocal upscaling procedures conjectured in [1].

We notice that Kirchhoff-Langevin’s theory has been scarcely used in practice.

For the least attenuated plane mode which is most often the only one of

importance, it gives the results indistinguishable from those of the simple

approximate theory developed much later by Zwikker and Kosten [14]. Extended

to arbitrary geometries this simpler treatment is nothing but that of the zero’th

order homogenization theory. The propagation models ordinarily used in acoustic

studies of porous media [4, 5, 15], are all developed in this local-theory framework.

In electromagnetism, it would correspond to the widely used simplification

which consists in assuming that the permittivities have no dependencies on the

wavenumber. This simplification, however, is clashing with the complete wave

nature of the problem which implies to some extent spatial dispersion as well as
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temporal dispersion. Even if Zwikker and Kosten’s theory works very well for

the least-attenuated plane wave mode, it never provides the complete physical

solution of the macroscopic (i.e. cross-section averaged) wave propagation

problem. In particular, it lacks predicting the existence of the higher order

modes, and also, the change of nature of the propagation in very wide tubes,

illustrated by the change of nature of the fundamental mode, which tends to

become surface-wave like.

Zwikker and Kosten’s local theory is derived in Appendix A, using the language

of temporal and spatial dispersion. It will be clear that the present complete

‘Maxwell-Kirchhoff’ description of sound propagation in a straight circular duct,

is nothing but a Zwikker and Kosten’s treatment generalized to include spatial

dispersion.

2.2 Kirchhoff-Langevin’s theory of sound propagation

in a tube of circular cross-section

Kirchhoff’s original investigations on the effects of viscosity and heat conduction

on sound propagation in free air, and also, air inside a hollow solid tube, were

conducted by treating the air as an ideal gas [11]. Langevin completed much

later Kirchhoff’s theory by considering air having the second viscosity and a

general equation of state [12]. We commence by recalling this complete Kirchhoff-

Langevin’s theory, which is usually not presented without simplifications in the

acoustic literature.

2.2.1 Linearized equations, in the Navier-Stokes-Fourier model

We are given a homogeneous viscothermal fluid which obeys an arbitrary caloric

equation of state

ε = ε(s, υ) (2.7)

with ε the specific internal energy per unit mass, s the specific entropy, and υ =

1/ρ the specific volume. The thermodynamic pressure p, absolute temperature

T , and specific heats at constant pressure and constant volume cp and cv are

defined by

p ≡ −
(

∂ε

∂υ

)

s

, T ≡
(

∂ε

∂s

)

υ

, cp ≡ T

(

∂s

∂T

)

p

, cv ≡ T

(

∂s

∂T

)

υ

(2.8)
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Eqs.(2.7) and (2.8) and elimination of s results in a thermal equation of state

p = p(T, υ). The fluid thermal expansion coefficient is defined by

β ≡ 1

υ

(

∂υ

∂T

)

p

(2.9)

Let us define two fixed reference sound speed values ca and ci, resp. adiabatic

and isothermal, by

c2a ≡
(

∂p

∂ρ

)

s

, c2i ≡
(

∂p

∂ρ

)

T

(2.10)

An application of general thermodynamic methods [16] show that the quantities

introduced in (2.8), (2.9), and (2.10), are not independent. They are related by

the following thermodynamic identities

γ − 1 =
Tβ2c2a
cp

, c2a = γc2i (2.11)

where γ ≡ cp/cv is the specific heat ratio.

With v, the Euler’s fluid velocity, σ the stress tensor, and q the heat

flux, the equations of mass conservation, momentum conservation, and energy

conservation, are expressed by

∂ρ

∂t
+∇ · (ρv) = 0 (2.12a)

∂(ρvi)

∂t
+ ∂j (ρvivj − σij) = 0 (2.12b)

∂(ρε)

∂t
+∇ · (ρεv + q) = σij∂jvi (2.12c)

TEqs.(2.7) and (2.8) results in the following relation

dε = −pd(1/ρ) + Tds (2.13)

As such, Eq.(2.12c) may be put in the following equivalent form of a balance law

for entropy

∂(ρs)

∂t
+∇ ·

(

ρsv +
1

T
q

)

=
1

T
(σij + pδij) ∂jvi + q ·∇

(

1

T

)

(2.14)

In the right-hand side, one sees the density of local entropy sources in the fluid,

which is required to be positive by the second law.
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Now substituting in Eqs.(2.12a), (2.12b) and (2.12c), the total fields

ρ(t,x) = ρ0 + ρ′(t,x) (2.15a)

σij(t,x) = −pδij + σ′
ij = −(P0 + p′(t,x))δij + σ′

ij(t,x) (2.15b)

s(t,x) = s0 + s′(t,x) (2.15c)

T (t,x) = T0 + τ(t,x) (2.15d)

where ρ0, P0, s0, T0 represent the constant thermodynamic equilibrium values,

and p′ the thermodynamic excess pressure p′ = p(T, 1/ρ) − p(T0, 1/ρ0) =

p(T, 1/ρ)−P0, the following linearized equations governing the small amplitudes

perturbations are immediately obtained

∂ρ′

∂t
+ ρ0∇ · v = 0 (2.16)

ρ0
∂vi
∂t

= −∂ip
′ + ∂jσ

′
ij (2.17)

ρ0
∂s′

∂t
= − 1

T0
∇ · q (2.18)

To close the system of equations, there remain to precise the constitutive laws

which give the deviatoric stresses σ′
ij and the heat flux q in terms of other

variables. In the Navier-Stokes-Fourier theory used in this paper, it is assumed

that the σ′
ij are purely viscous; the Maxwell’s stress terms [17] appearing in

nonisothermal fluids and required by the kinetic theory of gases are neglected.

In addition, molecular relaxation phenomena will not be considered. If necessary

they may be incorporated as done in e.g. [18].

Within these simplifications, the constitutive equations are written, in the

following Newton-Stokes form

σ′
ij = η

(

∂jvi + ∂ivj −
2

3
δij∇.v

)

+ ζδij∇.v (2.19)

and Fourier form

qi = −κ∂iT (2.20)

The coefficients of thermal conductivity κ, first and second viscosity η and ζ,

are constants to be evaluated in the ambient state (P0, T0). The second law of
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thermodynamics results in the inequalities

κ ≥ 0, η ≥ 0, ζ ≥ 0 (2.21)

The precise values of these fluid constitutive parameters are difficult to obtain by

molecular theories; they are generally best found by experiment.

Inserting the constitutive equations (2.19-2.20) in the 5 balance equations (2.12a),

(2.12b) and (2.14), we find for the system of 5 linearized conservation equations

of mass, momentum, and energy

∂ρ′

∂t
+ ρ0∇ · v = 0 (2.22a)

ρ0
∂vi
∂t

= −∂ip
′ + ∂j

{

η

(

∂jvi + ∂ivj −
2

3
δij∇.v

)

+ ζδij∇.v

}

(2.22b)

ρ0
∂s′

∂t
=

κ

T0
∇

2τ (2.22c)

In what follows, we keep using the 6 variables velocity, condensation b ≡ ρ′/ρ0,

excess pressure, and excess temperature. To obtain a closed system of equations

on these 6 variables we employ the equation of state ρ = ρ(p, T ), whose linearized

version gives

b = ρ′/ρ0 =

(

γ

ρc2a

)

0

p′ − β0τ (2.23)

where the coefficients being evaluated in the ambient state, represented by the

index 0. The linearized version of the state equation T = T (p, s) gives

τ =

(

Tβ

ρcp

)

0

p′ +

(

T

cp

)

0

s′ (2.24)

where the coefficient (∂T/∂p)s = βT/ρcp is expressed using Maxwell’s relation

(∂υ/∂s)p = (∂T/∂p)s, the identity (∂υ/∂s)p = − (∂υ/∂p)s (∂p/∂s)υ, and the

general thermodynamic identity (2.11). Using (2.24) to eliminate s′ in (2.22c),

and rewriting the first coefficient in (2.23) by introducing the adiabatic ambient

bulk modulus

χ0 ≡
(

1/ρc2a
)

0
(2.25)
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our complete system of six linearized viscothermal equations on the six variables

v, b, p′, τ , is finally written as follows

ρ0
∂v

∂t
= −∇p′ + η∇2v +

(

ζ +
η

3

)

∇(∇ · v) (2.26a)

∂b

∂t
+∇ · v = 0 (2.26b)

γχ0p
′ = b+ β0τ (2.26c)

ρ0cp
∂τ

∂t
= β0T0

∂p′

∂t
+ κ∇2τ (2.26d)

Equations (2.26a) and (2.26d) are the linearized Navier-Stokes and Fourier equa-

tions, respectively. Eqs.(2.26) are our starting linearized viscothermal equations.

For simplicity in what follows the prime over the excess thermodynamic pressure

p′ is omitted.

2.2.2 Propagation in the circular tube

The solutions of the viscothermal fluid equations were given by Kirchhoff, for the

case of axisymmetric wave propagation in a circular tube filled with ideal gas,

taking into account viscous losses and thermal exchanges [11]. Kirchhoff made

the simplification that the solid walls remain at ambient temperature due to the

large heat capacity and conduction coefficient of the solid compared to the fluid.

This is in general a well-verified simplification which is used in the following as

well. Here, we derive the axisymmetric ‘Kirchhoff-Langevin’s’ solutions of the

above equations (2.26), more general than Kirchhoff’s as they are written for a

fluid having arbitrary equation of state (thus β0 is different from the ideal gas

value 1/T0) and nonzero value of the second viscosity.

We notice that the reason to study only the axisymmetric solutions, is that

we later intend to use the macroscopic nonlocal theory to derive anew the

macroscopic characteristics of these solutions – wavenumbers and impedances.

But this macroscopic theory, by definition, concerns the response to a

‘macroscopic stirring’ whose variations over the transverse cross-section of the

pores are smoothed out and must not be considered. Therefore in circular

pores, by symmetry, the fields meaningful to consider in the framework of the

macroscopic theory are microscopically axisymmetric.

Following Rayleigh’s presentation of Kirchhoff’s theory [19], we first substitute

the state Eq.(2.26c) in Fourier’s equation (2.26d) and use the thermodynamic

identity (2.11) and definition (2.25) to obtain the following alternative form of
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(2.26d)

∂τ

∂t
=

γ − 1

β0

∂b

∂t
+

κ

ρ0cv
∇

2τ (2.27)

The equations are simplified, using the variable

τ ′ =
β0τ

γ − 1
(2.28)

With this variable, Eqs.(2.26c) and (2.27) become

p

ρ0
= c2i b+ (c2a − c2i )τ

′ (2.29)

and

∂τ ′

∂t
=

∂b

∂t
+

κ

ρ0cv
∇

2τ ′ (2.30)

Then, assuming that the variables v, b, p, τ ′, are varying with time as e−iωt, the

equations (2.26) yield

− ρ0iωv = −∇p+ η∇2v +
(

ζ +
η

3

)

iω∇b (2.31a)

−iωb+∇ · v = 0 (2.31b)
p

ρ0
= c2i b+ (c2a − c2i )τ

′ (2.31c)

−iωτ ′ = −iωb+
κ

ρ0cv
∇

2θ′ (2.31d)

Eliminating the pressure and condensation, give rise to the following velocity-

temperature equations

−iωv − η

ρ0
∇

2v = −∇X (2.32a)

X =

[

c2a −
η
3 + ζ

ρ0
iω

]

τ ′ +
κ

ρ0cviω

[

c2i −
η
3 + ζ

ρ0
iω

]

∇
2τ ′ (2.32b)

∇ · v − iωτ ′ − κ

ρ0cv
∇

2τ ′ = 0 (2.32c)
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Elimination of the velocity by taking the divergence of (2.32a) and using (2.31b)

results in the temperature equation

ω2τ ′ +

[

c2a − iω

(

κ

ρ0cv
+

4η
3 + ζ

ρ0

)]

∇
2τ ′

+
κ

ρ0cviω

[

c2i − iω
4η
3 + ζ

ρ0

]

∇
2
∇

2τ ′ = 0 (2.33)

Let λ1 and λ2 be the two, small and large, solutions of the associated Kirchhoff-

Langevin’s characteristic equation

ω2 +

[

c2a − iω

(

κ

ρ0cv
+

4η
3 + ζ

ρ0

)]

λ+
κ

ρ0cviω

[

c2i − iω
4η
3 + ζ

ρ0

]

λ2 = 0 (2.34)

The small solution – mainly real – describes propagating acoustic waves with

small bulk absorption, the large solution – purely imaginary – highly damped

diffusive entropic waves.

The field τ ′ solution to (2.33) will have the form

τ ′ = A1ϕ1 +A2ϕ2 (2.35)

with functions ϕ1 and ϕ1 verifying

∇
2ϕ1 = λ1ϕ1, ∇

2ϕ2 = λ2ϕ2 (2.36)

The velocity v will write

v = v′ +B1∇ϕ1 +B2∇ϕ2 (2.37)

with v′ the vortical part, such that

∇
2v′ =

−iωρ0
η

v′, ∇ · v′ = 0 (2.38)

The relation between coefficients B and A follows from (2.32c)

B1,2 =

(

κ

ρ0cv
+

iω

λ1,2

)

A1,2 (2.39)
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In summary, the viscothermal fields are generally decomposed as

v = v′ +

(

κ

ρ0cv
+

iω

λ1

)

A1∇ϕ1 +

(

κ

ρ0cv
+

iω

λ2

)

A2∇ϕ2 (2.40a)

b =

(

1 +
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

1 +
κ

ρ0cviω
λ2

)

A2ϕ2 (2.40b)

p

ρ0
=

(

c2a + c2i
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

c2a + c2i
κ

ρ0cviω
λ2

)

A2ϕ2 (2.40c)

τ ′ = A1ϕ1 +A2ϕ2 (2.40d)

Concerning the application to axisymmetric fields propagating in the right-going

x direction in a tube of circular cross-section, we wish to determine normal modes

as functions of x, proportional to e+iklx, where the kl s, ℑ(kl) > 0, l = 1, 2, ...,

are complex constants to be specified. In what follows for convenience the index

l, labeling the different axisymmetric modes solutions, will be omitted.

For these modes, the operator ∇ can be replaced by ikex+
∂
∂rer (er representing

the radial unit vector) and the operator ∇2 by ∂2

∂r2
+ ∂

r∂r − k2, and the different

fields a(t,x) by their amplitudes a such that a(t,x) = a(r)e−iωt+ikx. There

follows that the corresponding ϕ1 and ϕ2 will be described by Bessel functions

ϕ1,2 = J0

(

r
√

−λ1,2 − k2
)

(2.41)

Writing the vortical velocity v′ in the form v′ = u′ex+q′er, with axial and radial

amplitudes u′ and q′ independent of azimuthal angle ϑ, it is easy to see that

Eqs.(2.38) imply u′ is the solution to

(

∂2

∂r2
+

∂

r∂r

)

u′ =

(−iω

ν
+ k2

)

u′ (2.42)

where ν ≡ η/ρ0 is the kinematic viscosity and q′ is determined by the relation

q′ =
−ik

−iω
ν + k2

∂u′

∂r
(2.43)

As a result, u′ and q′ will be written as

u′ = Aϕ, q′ = A
−ik

−iω
ν + k2

∂ϕ

∂r
(2.44)
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where ϕ is the Bessel function

ϕ = J0

(

r

√

iω

ν
− k2

)

(2.45)

Finally, writing the total velocity in the form of v = uex + qer, u and q are

obtained as

u = Aϕ+ ik

(

κ

ρ0cv
+

iω

λ1

)

A1ϕ1 + ik

(

κ

ρ0cv
+

iω

λ2

)

A2ϕ2 (2.46a)

q = A
−ik

−iω
ν + k2

∂ϕ

∂r
+

(

κ

ρ0cv
+

iω

λ1

)

A1
∂ϕ1

∂r
+

(

κ

ρ0cv
+

iω

λ2

)

A2
∂ϕ2

∂r
(2.46b)

The tube being assumed sufficiently inert thermally to remain at ambient

temperature, no temperature-jump occurs on the tube wall r = R. On the

other hand no-slip condition is applied on the wall. Thus, (2.46a-2.46b) and

(2.40d) vanish on the fluid-solid boundaries. These three homogeneous equations

have non vanishing solutions only if their determinant is zero, which consequently

yields the following Kirchhoff’s dispersion equation

(

κ

ρ0cv
+

iω

λ1

)

1

ϕ1w

∂ϕ1

∂rw
−
(

κ

ρ0cv
+

iω

λ2

)

1

ϕ2w

∂ϕ2

∂rw

− k2

−iω
ν + k2

(

iω

λ1
− iω

λ2

)

1

ϕw

∂ϕ

∂rw
= 0 (2.47)

referred here as Kirchhoff-Langevin equation to remind its validity for a general

viscothermal fluid. The index w indicates that the functions and derivatives are

evaluated at the tube wall rw = R.

Eq.(2.47) has a series of discrete complex solutions kl, ℑ(kl) > 0, l = 1, 2, ...,

which can be sorted by convention in ascending manner relating the values of

ℑ(kl) such that ℑ(k1) < ℑ(k2) < ... . To determine the solutions kl, the Newton-

Raphson root-finding method may be employed, with initial values k0l taken as

if the dissipation effects are neglected. In this ideal lossless case, Eq.(2.47) will

be considered in the limit η, ζ, κ → 0, and therefore k0l will be the solutions to

J1

(

R

√

ω2

c2a
− k2

)

= 0 (2.48)
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that means

k20l =
ω2

c2a
− x2l

R2
(2.49)

where xl ≥ 0 are the successive zeros of the function J1(x). As J1(0) = 0 i.e.

x1 = 0, the first solution is always k01 = ω/ca, which corresponds to the plane

wave mode. At a given frequency, there are one (plane wave mode k01) or more

real positive solutions describing right-going propagating waves, and an infinite

discrete set of purely imaginary solutions with ℑ(k0l) > 0, describing evanescent

waves which attenuate as e−ℑ(k0l)x along positive x-axis.

In general, a few Newton-Raphson iterations suffice to make these starting

losseless purely real or purely imaginary solutions k0l converge towards the

complete complex solutions kl. In this process, the solution with positive

imaginary part is retained, as we consider waves propagating in the direction

+x which can be created by a source placed on the left. The condition that the

imaginary part is positive, automatically fixes the sign of the real part. We note

that, for a given solution l and on account of the two independent conditions

expressing the vanishing of τ ′ and u at the tube wall rw = R

A1ϕ1w +A2ϕ2w = 0 (2.50a)

Aϕw + ik

(

κ

ρ0cv
+

iω

λ1

)

A1ϕ1w + ik

(

κ

ρ0cv
+

iω

λ2

)

A2ϕ2w = 0 (2.50b)

the solution may be fixed in terms of only one arbitrary amplitude (related to

the arbitrary sound pressure level). We denote it by A and write

A = Aik

(

iω

λ1
− iω

λ2

)

ϕ1wϕ2w, A1 = −Aϕwϕ2w, A2 = Aϕwϕ1w (2.51)
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In summary, with this notation the different fields write as follows

u

ikA =

(

iω

λ1
− iω

λ2

)

ϕ1wϕ2wϕ−
(

κ

ρ0cv
+

iω

λ1

)

ϕwϕ2wϕ1

+

(

κ

ρ0cv
+

iω

λ2

)

ϕwϕ1wϕ2 (2.52a)

q

A =

(

iω

λ1
− iω

λ2

)

ϕ1wϕ2w
k2

−iω
ν + k2

∂ϕ

∂r
−
(

κ

ρ0cv
+

iω

λ1

)

ϕwϕ2w
∂ϕ1

∂r

+

(

κ

ρ0cv
+

iω

λ2

)

ϕwϕ1w
∂ϕ2

∂r
(2.52b)

b

A = −
(

1 +
κ

ρ0cviω
λ1

)

ϕwϕ2wϕ1 +

(

1 +
κ

ρ0cviω
λ2

)

ϕwϕ1wϕ2 (2.52c)

p

−Aρ0
=

(

c2a + c2i
κ

ρ0cviω
λ1

)

ϕwϕ2wϕ1

+

(

c2a + c2i
κ

ρ0cviω
λ2

)

ϕwϕ1wϕ2 (2.52d)

τ ′

A = −ϕwϕ2wϕ1 + ϕwϕ1wϕ2 (2.52e)

The key step to determine the above field patterns is to specify the wavenumber

kl. Suitable averaging of the above fields will then allow to compute the quantities

making sense in the forthcoming macroscopic theory.

Let us denote by a bracket 〈f〉 the average of a field f , performed over the cross-

section of the tube

〈f〉 = 1

πR2

∫ R

0
dr

∫ 2π

0
rdϑf (2.53)

For later use in the macroscopic theory, we introduce the following notion of

macroscopic mean pressure H

〈pv〉 = H〈v〉 (2.54)

Thermodynamic–relating reasons to define in such a way the macroscopic pressure

were given in [1]. The notation H comes from the affinity of this concept with

that of Maxwell magnetic field H. In accordance with this general definition, a

characteristic complex impedance factor Zl can be defined for a given mode, by

setting

H = Zl〈u〉, such that Zl =
〈pu〉
〈u〉2 (2.55)
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where the averages are computed knowing the wavenumber kl.

It may be noted that, by knowing the complex wavenumber kl(ω) and impedance

Zl(ω) for a given radial mode solution l, an equivalent-fluid complex density ρl(ω)

and bulk modulus χ−1
l (ω) might be defined through setting relations having the

usual form (see e.g. [?]) kl = ω/cl = ω
√
ρlχl and Zl = ρlcl =

√

ρlχ
−1
l , i.e.

ρl(ω) =
kl
ω
Zl =

kl
ω

〈pu〉
〈u〉2 , χ−1

l (ω) =
ω

kl
Zl =

ω

kl

〈pu〉
〈u〉2 (2.56)

Indeed, for a given mode l, this means that we may write classical macroscopic

equivalent-fluid equations of motion

ρl(ω)
∂

∂t
〈u〉 = − ∂

∂x
H, χl(ω)

∂

∂t
H = − ∂

∂x
〈u〉

To verify this, consider one wave e−iωt+iklx in the +x direction, we have

−ρl(ω)iω〈u〉 = −iklH, −χl(ω)iωH = −ikl〈u〉 (2.57)

By introducing the definitions (2.55) the above gives the relations (2.56).

There are known formulae giving the average 〈 〉 of Bessel functions ϕ, ϕ1 and ϕ2

and their products, in terms of other Bessel functions. Thus, when kl is known,

the above Kirchhoff-Langevin’s impedance factors Zl (2.55), and densities and

bulk modulii ρl(ω) and χ−1
l (ω) (2.56) are all known in closed form.

2.3 General nonlocal theory applied to sound propaga-

tion in a tube with circular cross-section

Applying the general nonlocal theory of sound propagation presented in [1], to

the case of sound propagation in a tube of circular cross-section, the macroscopic

averaging operation in the sense of [1] evidently becomes the cross-section average

(2.53). In fact, the fields relating to the harmonic action-response problems [1]

have the form a(ω, k, r)e−iωt+ikx, with amplitudes a(ω, k, r) independent of x,

and thereby, needed to be averaged only over a cross-section.

2.3.1 Linearized macroscopic equations in Maxwellian nonlocal

theory

Then introducing the macroscopic variables V = V · ex = 〈u〉 and B = 〈b〉,
where u is the axial velocity, the nonlocal theory (chapter 1) predicts that wave
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propagation of the averaged quantities V and B is described by the following field

equations (see Eqs.(1.36), (1.37), (1.41) and (1.42))

∂B

∂t
+

∂V

∂x
= 0 (2.58)

∂D

∂t
= −∂H

∂x
(2.59)

and constitutive relations

D(t, x) =

∫ t

−∞
dt′
∫

dx′ρ(t− t′, x− x′)V (t′, x′) (2.60)

H(t, x) =

∫ t

−∞
dt′
∫

dx′χ−1(t− t′, x− x′)B(t′, x′) (2.61)

where ρ(t, x) and χ−1(t, x) are constitutive kernel functions independent of

temporal and spatial variations of the fields. They are determined only by the

fluid constants and the microgeometry of the porous medium, i.e. here, the tube

radius R. The integrations over t′ determine the so-called temporal dispersion

effects and the integrations over x′ determine the so-called spatial dispersion

effects [20, 21]. The upscaling recipes, seen in chapter 1, lead to specify the

Fourier coefficients ρ(ω, k) and χ−1(ω, k) of these constitutive functions, and will

be described in the next two sections.

2.3.2 Determination of the nonlocal density ρ(ω, k)

To compute ρ(ω, k) we first consider the response of the fluid subjected to the

action of an external stirring force-per-unit-volume f , which derives from a

fictitious harmonic pressure waveform inserted in Navier-Stokes equation. Thus

we consider solving the action-response problem (see Eqs.(1.45-1.47))

∂v

∂t
+

1

ρ0
∇p = ν∇2v − (η3 + ζ)

ρ0
∇

∂b

∂t
+

1

ρ0
f (2.62a)

∂b

∂t
+∇ · v = 0 (2.62b)

γχ0p = b+ β0τ (2.62c)

∂τ

∂t
=

β0T0

ρ0cp

∂p

∂t
+

κ

ρ0cp
∇

2τ (2.62d)
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for r < R, and

v = 0 (2.63a)

τ = 0 (2.63b)

at r = R, with the deriving force given by

f = −∇P = −ikexP0e
−iωt+ikx (2.64)

With calculations entirely similar to those which have been done before, the

equations (2.32) become

−iωv − ν∇2v = −∇X +
1

ρ0
f (2.65a)

X =

[

c2a −
η
3 + ζ

ρ0
iω

]

τ ′ +
κ

ρ0cviω

[

c2i −
η
3 + ζ

ρ0
iω

]

∇
2τ ′ (2.65b)

∇ · v − iωτ ′ − κ

ρ0cv
∇

2τ ′ = 0 (2.65c)

and the temperature equation (2.33) becomes

− ω2τ ′ −
[

c2a − iω

(

κ

ρ0cv
+

4η
3 − ζ

ρ0

)]

∇
2τ ′

− κ

ρ0cviω

[

c2i − iω
4η
3 + ζ

ρ0

]

∇
2
∇

2τ ′ +
k2

ρ0
P = 0 (2.66)

A particular solution of the above equation is

τ ′p = C
k2

ρ0
P (2.67)

with

C =

{

ω2 −
[

c2a − iω

(

κ

ρ0cv
+

4η
3 + ζ

ρ0

)]

k2 +
κ

ρ0cviω

[

c2i − iω
4η
3 + ζ

ρ0

]

k4

}−1

(2.68)

The general solution of Eq.(2.66) is this particular solution added to the general

solution (2.35) of the homogeneous equation (2.33)

τ ′ = τ ′0 + τ ′p = A1ϕ1 +A2ϕ2 + C
k2

ρ0
P (2.69)
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Similarly, the general expression of the velocity will be

v = uex + qer = v0 + vp (2.70)

where v0 is written as in (2.40a), and vp = upex is the particular solution with

up determined by (2.65c), and τ ′ = τ ′p, i.e., ikup = (iω − κk2/ρ0cv)τ
′
p. Only

the x component u will be required to compute ρ(ω, k). However, the radial

component q needs also to be written as it is involved in the boundary conditions,

by means of which the amplitudes A,A1, A2 are finally fixed. Both components

write accordingly

u = Aϕ+ ik

(

κ

ρ0cv
+

iω

λ1

)

A1ϕ1 + ik

(

κ

ρ0cv
+

iω

λ2

)

A2ϕ2

+

(

−iω +
κ

ρ0cv
k2
)

C
ik

ρ0
P (2.71a)

q = A
−ik

−iω
ν + k2

∂ϕ

∂r
+

(

κ

ρ0cv
+

iω

λ1

)

A1
∂ϕ1

∂r
+

(

κ

ρ0cv
+

iω

λ2

)

A2
∂ϕ2

∂r
(2.71b)

Now, we seek the excess pressure solution as the last required quantity. It has

the general form

p = p0 + pp (2.72)

where p0 is given by (2.40c), and the particular solution pp is determined by

(2.26c) with τ ′ = τ ′p, b = bp, and iωbp = ikup. Thus

p

ρ0
=

(

c2a + c2i
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

c2a + c2i
κ

ρ0cviω
λ2

)

A2ϕ2

+

(

c2a − c2i
κ

ρ0cviω
k2
)

C
k2

ρ0
P (2.73)

The boundary conditions imply that the three quantities excess temperature and

the two components of velocity (2.69), (2.71a) and (2.71b), should vanish at

the tube wall r = rw = R. This yields a linear system whose solution uniquely

determines the three response amplitudes A, A1 and A2, in terms of the arbitrary

deriving pressure amplitude P0.

Knowing the response fields (2.71a) and (2.73) as functions of ω, k and r, is all

we need to compute the density ρ(ω, k). According to the conjectured upscaling

procedure we assume that in the action-response problem (2.62), the role of the

macroscopic field H in Eqs.(2.58-2.61) is played by the field P+P where P is the
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macroscopic part of the response pressure field p, which is defined by (see chapter

1)

〈pv〉 = P〈v〉, i.e. 〈pu〉 = P〈u〉 (2.74)

This assumption leads to Eqs.(1.50) and (1.53) in chapter 1, which give here

ρ(ω, k) =
k(P+ P0)

ω〈u〉 (2.75)

A direct verification of this conjectured upscaling procedure would be to see

whether or not, when the amplitudes A and P0 are adjusted so that the

gradient −∇H = −iklexH in section 2.2.2 is the same as the gradient −∇(P +

P) = −iklex(P + P) in this section, the averages of the velocities v appearing

respectively in Eqs.(2.26) and (2.62) turn out to be exactly the same. This

macroscopic coincidence of the two mean velocities obtained in two different

problems, is highly nontrivial even in the present simplest case of straight duct

geometry. In principle, the two problems have fundamentally different nature;

one is an eigenvalue problem and the other is an action-response problem. In the

two problems, the corresponding sets of microscopic field patterns are not the

same; but after averaging, the two mean velocities divided by the corresponding

two gradients are conjectured to be exactly the same.

A comparison between the first Eq.(2.57) and Eq.(2.75) shows that this matching

is expressed in explicit equivalent form by the following equation

ρl(ω) = ρ(ω, kl) (2.76)

It is in this last convenient form, which must be valid for all different modes, that

the validity of the upscaling procedure for ρ(ω, k) will be directly checked.

We may name ‘Maxwell-Kirchhoff’s’ the nonlocal density function (2.75). There

are known formulae giving the average of Bessel functions ϕ, ϕ1 and ϕ2 and their

products, in terms of other Bessel functions, which allow to write the nonlocal

density function (2.75) in closed form. This function is a complicate ratio of

sums containing many terms, each involving the product of 6 Bessel functions,

multiplied by factors involving ω, k2, λ1, λ2. To save time, instead of seeking its

most compact final expression, we have made a direct Matlab programming of it

with ω and k as input arguments.
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2.3.3 Determination of the nonlocal bulk modulus χ−1(ω, k)

The same type of calculations seen before to obtain ρ(ω, k), can be performed

to directly compute χ−1(ω, k). Here, we need first consider the response of

the fluid subjected to the action of an external stirring rate of heat supply per

unit volume and unit time Q̇, which derives from a fictitious harmonic pressure

waveform inserted in Fourier equation. Thus we consider solving the action-

response problem (see Eqs.(1.56-1.58))

∂v

∂t
+

1

ρ0
∇p = ν∇2v − (η3 + ζ)

ρ0
∇

∂b

∂t
(2.77a)

∂b

∂t
+∇ · v = 0 (2.77b)

γχ0p = b+ β0τ (2.77c)

∂τ

∂t
=

β0T0

ρ0cp

∂p

∂t
+

κ

ρ0cp
∇

2τ +
1

ρ0cp
Q̇ (2.77d)

for r < R, and

v = 0 (2.78a)

τ = 0 (2.78b)

at r = R, with the stirring rate of heat supply given by

Q̇ = β0T0
∂P
∂t

= −iωβ0T0P0e
−iωt+ikx (2.79)

Through similar calculations as seen before, Eqs.(2.32) now become

−iωv − ν∇2v = −∇X (2.80a)

X =

[

c2a −
η
3 + ζ

ρ0
iω

]

τ ′ +
κ

ρ0cviω

[

c2i −
η
3 + ζ

ρ0
iω

]

∇
2τ ′ (2.80b)

∇ · v − iωτ ′ − κ

ρ0cv
∇

2τ ′ = γχ0
∂P
∂t

(2.80c)

and the temperature equation (2.33) becomes

− ω2τ ′ −
[

c2a − iω

(

κ

ρ0cv
+

4η
3 − ζ

ρ0

)]

∇
2τ ′

− κ

ρ0cviω

[

c2i − iω
4η
3 + ζ

ρ0

]

∇
2
∇

2τ ′ − (iω − νk2)γχ0iωP = 0 (2.81)
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A particular solution to the above equation will be

τ ′p = −C(iω − νk2)γχ0iωP (2.82)

with the same constant C as before.

The general excess temperature solution is this particular solution added to the

general solution (2.35) of the homogeneous equation (2.33)

τ ′ = τ ′0 + τ ′p = A1ϕ1 +A2ϕ2 − C(iω − νk2)γχ0iωP (2.83)

Likewise, the general velocity solution is in the form

v = uex + qer = v0 + vp (2.84)

where v0 writes as in (2.40a), and vp = upex is the particular solution with up
determined by (2.80c) and τ ′ = τ ′p, i.e., ikup = (iω − κk2/ρ0cv)τ

′
p − iωγχ0P. We

obtain for the two components of the velocity

u = Aϕ+ ik

(

κ

ρ0cv
+

iω

λ1

)

A1ϕ1 + ik

(

κ

ρ0cv
+

iω

λ2

)

A2ϕ2

+

[(

−iω +
κ

ρ0cv
k2
)

C(iω − νk2)− 1

]

γχ0
ω

k
P (2.85a)

q = A
−ik

−iω
ν + k2

∂ϕ

∂r
+

(

κ

ρ0cv
+

iω

λ1

)

A1
∂ϕ1

∂r
+

(

κ

ρ0cv
+

iω

λ2

)

A2
∂ϕ2

∂r
(2.85b)

The general pressure solution, similarly is written as

p = p0 + pp (2.86)

where p0 writes as in (2.40c) and pp is determined by (2.26c) with τ ′ = τ ′p and

b = bp, iωbp = ikup. We will have

p

ρ0
=

(

c2a + c2i
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

c2a + c2i
κ

ρ0cviω
λ2

)

A2ϕ2

− C(iω − νk2)iω

(

c2a − c2i
κ

ρ0cviω
k2
)

γχ0P − c2i γχ0P (2.87)
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The general condensation solution will now also be required. It may be written

from (2.31c) and the expressions (2.83) and (2.87), which yield

b =

(

1 +
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

1 +
κ

ρ0cviω
λ2

)

A2ϕ2

− C(iω − νk2)iω

(

1− κ

ρ0cviω
k2
)

γχ0P − γχ0P (2.88)

As before, the boundary conditions imply that the three quantities excess

temperature and the two components of velocity (2.83), (2.85a) and (2.85b)

should vanish at the tube wall r = rw = R. This yields a linear system whose

solution uniquely determines the three response amplitudes A, A1 and A2, in

terms of the arbitrary deriving amplitude P0.

Knowing the response fields (2.85a), (2.87) and (2.88) as functions of ω, k and

r, is what we need to compute the bulk modulus χ−1(ω, k). According to the

conjectured upscaling procedure in chapter 1, we assume that in the action-

response problem (2.77), the role of the macroscopic field H in Eqs.(2.58-2.61) is

played by the field P+P where P is the macroscopic part of the response pressure

field p, which is defined by

〈pv〉 = P〈v〉, i.e. 〈pu〉 = P〈u〉 (2.89)

and, at the same time, the role of the macroscopic field B is played by the averaged

field 〈b+ γχ0P〉. This leads to Eqs.(1.59) and (1.61), which writes here

χ−1(ω, k) =
P(ω, k) + P0

〈b(ω, k, r)〉 + γχ0P0
(2.90)

A direct verification of this, would be to see whether or not, when the amplitudes

A and P0 are adjusted so that the amplitude H in section 2.2 is the same as

the amplitude P + P0 in this section, then, the average of the condensation b

appearing in Eqs.(2.26) and the average of the condensation b + γχ0P, where b

is the quantity appearing in (2.77), turn out to be also exactly the same. Again,

this macroscopic accordance is by no means trivial, even in the present simplest

case of straight duct geometry. A comparison between the second equation of

(2.57) and Eq.(2.90) shows that this matching is also expressed by the following

equation which must be valid for all different modes

χ−1
l (ω) = χ−1(ω, kl) (2.91)
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It is in this last convenient form, that the validity of the upscaling procedure for

χ−1(ω, k) will be directly checked.

As for the nonlocal density, we may name ‘Maxwell-Kirchhoff’s’ the nonlocal

bulk modulus function (2.90). As before, this Maxwell-Kirchhoff’s nonlocal bulk

modulus is known in closed form as a complicate ratio of sums containing many

terms, each involving the product of 6 Bessels. Again to save time, a direct

programming of the function χ(ω, k) was made, with ω and k the input arguments.

2.3.4 Dispersion equation, wavenumbers, and impedances

The above nonlocal theory predicts that, at a given frequency, normal mode

solutions with averaged fields varying as e−iωt+ikx will exist, for k solution to the

dispersion equation

ρ(ω, k)χ(ω, k)ω2 = k2 (2.92)

Indeed, this equation comes from Eqs.(2.58-2.61), making use of macroscopic

fields having the dependencies e−iωt+ikx. Hereafter we refer to this dispersion

equation as to the nonlocal Maxwell-Kirchhoff’s dispersion equation.

For the proposed nonlocal theory to be correct, Maxwell-Kirchhoff’s dispersion

equation (2.92) must be mathematically equivalent to the original Kirchhoff-

Langevin’s dispersion Eq.(2.47). In particular, both equations must have the

same set of solutions kl at given ω. Moreover, the macroscopic impedances of

the corresponding modes must also be the same. Recall that for any field freely

propagating in the tube, the nonlocal theory definition of the macroscopic field

H(t, x) originates from the fundamental ‘Umov-Poynting’ identification

〈p(t, x, r)u(t, x, r)〉 = H(t, x)〈u(t, x, r)〉 (2.93)

Since we have employed this expression to define ‘Kirchhoff-Langevin’s’ macro-

scopic impedance factors Zl (2.55), Kirchhoff-Langevin’s and Maxwell-Kirchhoff

wavenumbers and macroscopic impedances match automaticaly, provided the fol-

lowing aforementioned relations

ρl(ω) =
kl
ω
Zl = ρ(ω, kl), χ−1

l (ω) =
ω

kl
Zl = χ−1(ω, kl) (2.94)

The calculations to be performed in order to show the mathematical equivalence

between (2.47) and (2.92) appear very tedious, because of the large number of

terms to be collected and rearranged to express the mean term 〈pu〉.
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In what follows, to check the validity of the theory, the easier way of direct

numerical checking of relations such as (2.94) has been employed. The problems

relating to the precision in the Matlab computations would limit the number of

modes that can be valuably checked. The results which will be presented next,

however, clearly validate the theory.

2.4 Check on the nonlocal theory

In order to validate the theory, we detail three significant different cases,

representative of three main types of duct wave regimes, referred to the ‘narrow’

tube, ‘wide’ tube, and ‘very wide’ tube, respectively in acoustic literature [22].

In section 2.4.1 we will consider the case of low frequencies or ‘narrow’ tubes.

In this low frequency range, the viscous skin depth δ = (2ν/ω)1/2 and thermal

skin depth – having the same order for air – are greater than R. Calculations are

performed at frequency f = 100Hz for a tube of radius R = 10−4m. This is the

narrow tube configuration considered in [23]. The value R = 10−4m is typical for

the pore size dimensions found in ordinary porous materials used in noise control

applications [15] – such as pore-size parameter Λ of dynamically connected pores

in [3]. With a viscous skin depth equal to two times the radius, the fundamental

plane-wave like mode is mostly diffusive and the higher order modes are highly

attenuated.

Certainly due to insufficient accuracy of Matlab Bessel’s functions, only the first

mode appears to be numerically very well characterized. However, it provides a

first check of the theory: Kirchhoff-Langevin’s and Maxwell-Kirchhoff’s results

for this mode are found to be identically the same, up to the numerical accuracy.

In section 2.4.2 we consider the case of high frequencies or ‘wide’ tubes. In

this frequency range, the viscous skin depth and thermal skin depth become

significantly smaller than R. The calculations are done at frequency f = 10kHz

for a tube of radius R = 10−3m. This is the ‘wide’ tube configuration considered

in [23]. With the radius now being more than 50 times the viscous skin depth, the

fundamental plane-wave like mode is a well-propagating mode, whose macroscopic

characteristics may be followed with great numerical accuracy by the Matlab

nonlocal theory computations. Several higher order modes are also successfully

described by the present numerical computations, whether they are below or

above the cutoff frequency. Again, the results provide unequivocal validation of

the proposed nonlocal theory.

Finally, in section 2.4.3, taking a tube radius of 1cm, and a frequency f =

500kHz, we consider the case of ‘very wide’ tubes. Here, the fundamental
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least attenuated mode is no longer plane-like as predicted by Zwikker and

Kosten theory. Sound energy tends to concentrate near the walls. Once again

Kirchhoff-Langevin’s results are exactly reproduced by the nonlocal Maxwell-

Kirchhoff’s theory and provide unequivocal validation of the theory. In all

foregoing calculations the parameters of the air are set to the values shown in

Table 2.1.

Table 2.1: Fluid properties used in all computations.

ρ0 T0 c0 η ζ κ χ0 cp γ
(kg/m3) (K) (m/s) (kg ms−1) (kg ms−1) (Wm−1K−1) (Pa−1) (J kg−1K−1)

1.205 293.5 340.1391 1.8369× 10−5 0.6 η 2.57× 10−2 7.173× 10−6 997.5422 1.4

Given the radius R and the frequency f , we proceed as follows to evaluate the

different quantities. To evaluate the Zwikker and Kosten quantities, the formulae

reported in Appendix A are used. To evaluate the Kirchhoff-Langevin’s and

Maxwell-Kirchhoff’s wavenumbers kKL and kMK , a Newton-Raphson scheme is

used to solve, Eq.(2.47) and Eq.(2.92), respectively. In the Kirchhoff case, as

we dispose of the explicit analytical expression of the function F (ω, k) = 0, we

have an explicit analytical expression for its derivative with respect to k. In the

Maxwell case, the expressions are too lengthy, thereby we make use of a numerical

derivative. This is carefully done by evaluating the function F at two close values

of the wavenumber k(1± ǫd/2 eiθ), with ǫd a very small and adjustable parameter

(e.g. ǫd = 10−9), and then averaging over several random orientations θ between

0 and 2π. The results which are reported below have been shown to be insensitive

to the variation of ǫd. Our stopping condition of the Newton scheme is that the

relative error between two successive evaluations of kKL or kMK should be less

than a very small fixed value ǫs (e.g. ǫs = 10−12). The Newton scheme is more

stable and converges in fewer iterations for Kirchhoff-Langevin’s equation (2.47)

than for Maxwell-Kirchhoff’s equation (2.92).

Given a wavenumber k = kKL = kMK , the field patterns in the Kirchhoff-

Langevin source-free propagation problem, and Maxwell-Kirchhoff action-

response problems, can be explicitly written.

For the Kirchhoff-Langevin’s quantities, the impedance ZKL has been computed

first, using the explicit expression (2.55). The density ρKL and bulk modulus

χ−1
KL were then obtained using the relations (2.56).

For the Maxwell-Kirchhoff quantities, the density and bulk modulus were

computed first, using the direct programming of the relations (2.74-2.75) and
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(2.89-2.90), and as input argument k, the mode wavenumber, either coming

from the Newton solution of the Kirchhoff-Langevin’s equation, or the Newton

solution of the Maxwell-Kirchhoff’s equation. As the two wavenumbers may

not coincide exactly due to finite precision and existing inaccuracies in Matlab

Bessel functions, this does not produce exactly the same values of density

and bulk modulus. Corresponding end-values will be distinguished by using

indexes MKKL or MKMK respectively. Corresponding impedances could then

be computed from (2.5), and corresponding wavenumbers, by (2.4). If the theory

is correct, we expect to see consistency between these different quantities, when

no numerical problems arise; what will be shown below.

2.4.1 Narrow tubes: R = 10−4m, f = 100Hz

In order to distinguish between Zwikker and Kosten’s, Kirchhoff-Langevin’s, and

the different Maxwell-Kirchhoff’s values, we put subscripts ZW , KL, MK, and

MKKL and MKMK , on the various quantities.

For the least attenuated plane wave mode, the values obtained of the

wavenumbers, impedances, densities and bulk modulii are

kZW 7.01099685499484 + 6.61504658906530i

kKL 7.01099585405403 + 6.61504764250774i

kMK 7.01099585405408 + 6.61504764250779i

kMKKL
7.01099585405402 + 6.61504764250783i

kMKMK
7.01099585405407 + 6.61504764250775i

ℜ(∆k/k) < 10−14

ℑ(∆k/k) < 10−14

ZZW 1.122582910810147 × 103 + 1.037174340699598 × 103i

ZKL 1.122582790953336 × 103 + 1.037174463077600 × 103i

ZMKKL
1.122582790953338 × 103 + 1.037174463077570 × 103i

ZMKMK
1.122582790953347 × 103 + 1.037174463077563 × 103i

ℜ(∆Z/Z) < 10−14

ℑ(∆Z/Z) < 10−14

Zwikker and Kosten’s wavenumber differs from the exact wavenumber on the 6th

decimal. Kirchhoff-Langevin’s and Maxwell-Kirchhoff’s values of the wavenumber

are the same: the difference expresses on the 14th decimal, which is not

meaningful numerically.
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ρZW 1.60661929116825 + 23.39190009091327i

ρKL 1.60661313808787 + 23.39190042443754i

ρMKKL
1.60661313808802 + 23.39190042443739i

ρMKMK
1.60661313808843 + 23.39190042443734i

ℜ(∆ρ/ρ) < 10−14

ℑ(∆ρ/ρ) < 10−14

χ−1
ZW 9.962016440824576 × 104 − 1.043527914142315 × 103i

χ−1
KL 9.962016409534546 × 104 − 1.043531769001552 × 103i

χ−1
MKKL

9.962016409534367 × 104 − 1.043531769003892 × 103i

χ−1
MKMK

9.962016409534391 × 104 − 1.043531769003666 × 103i

ℜ(∆χ−1/χ−1) < 10−14

ℑ(∆χ−1/χ−1) < 10−14

Kirchhoff-Langevin’s value kKL is relatively insensitive to the starting value.

Convergence to the given solution is obtained by starting from the lossless case

solution k = ω/ca, the Zwikker-Kosten solution, or the value k = 6+ 2i taken in

[23]. On the contrary, Maxwell-Kirchhoff’s value kMK is sensitive to the starting

value. Not reported here, a meaningless unattenuated value kMK is found, when

using as starting value the lossless-relating solution k = ω/ca.

The errors ∆f/f indicate the relative differences computed between Maxwell-

Kirchhoff’s values and Kirchhoff-Langevin’s reference values. Their small values

show that they are numerically insignificant. There is complete matching

of wavenumbers, impedances, densities, and bulk modulus, for the first least

attenuated mode. For the first higher order mode, the imaginary part of the

wavenumber is already in the order 5. × 104i. This leads to a large imaginary

part in the complex arguments of the Bessel functions ϕ and ϕ1,2. The resulting

loss of precision prevents making precise checks with Matlab.

2.4.2 Wide tubes: R = 10−3m, f = 10kHz

For the least attenuated plane wave mode, the values obtained of the wavenum-

bers, impedances, densities and bulk modulii are:

The deviations are not significant owing to the calculation precision. This is again

a clear validation of the nonlocal upscaling procedures. The cutoff frequency of

the first higher order axisymmetric mode is a little above 10kHz. While this

mode is still very significantly attenuated, its macroscopic characteristics k, Z,
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kZW 1.877218171102030 × 102 + 3.047328259173055i

kKL 1.877217761268940 × 102 + 3.050105788888088i

kMK 1.877217761268940 × 102 + 3.050105788888080i

kMKKL
1.877217761268940 × 102 + 3.050105788888080i

kMKMK
1.877217761268940 × 102 + 3.050105788888122i

ℜ(∆k/k) < 10−17

ℑ(∆k/k) < 10−17

ZZW 4.122429513133025 × 102 + 2.490000257701453i

ZKL 4.122428467151478 × 102 + 2.490594992301288i

ZMKKL
4.122428467151478 × 102 + 2.490594992301361i

ZMKMK
4.122428467151476 × 102 + 2.490594992301310i

ℜ(∆Z/Z) < 10−16

ℑ(∆Z/Z) < 10−16

ρZW 1.23153152867920 + 0.02743301182273i

ρKL 1.23153080833621 + 0.02745300551283i

ρMKKL
1.23153080833621 + 0.02745300551283i

ρMKMK
1.23153080833621 + 0.02745300551283i

Re(∆ρ/ρ) < 10−15

ℑ(∆ρ/ρ) < 10−15

χ−1
ZW 1.379578791782648 × 105 − 1.406078512972857 × 103i

χ−1
KL 1.379578235612869 × 105 − 1.407920077798555 × 103i

χ−1
MKKL

1.379578235612869 × 105 − 1.407920077798545 × 103i

χ−1
MKMK

1.379578235612869 × 105 − 1.407920077798562 × 103i

ℜ(∆χ−1/χ−1) < 10−15

ℑ(∆χ−1/χ−1) < 10−15

nevertheless, are obtained with a precision which, once again, shows the exactness

of the upscaling:

It may be noted that the negative real part of the bulk modulus is the type of

behaviour described for metamaterials [10], the negative real part of wavenumber

also being present and associated with negative group velocity.



62 2 Nonlocal theory of sound propagation in a circular pore

kKL −4.306909087685141 × 10 + 3.869321168683033 × 103i

kMK −4.306909087685137 × 10 + 3.869321168683033 × 103i

kMKKL
−4.306909090003509 × 10 + 3.869321168690618 × 103i

kMKMK
−4.306909081646905 × 10 + 3.869321168665630 × 103i

ℜ(∆k/k) < 10−15

ℑ(∆k/k) < 10−15

ZKL 1.776687018193479 × 109 + 3.970076285107318 × 107i

ZMKKL
1.776687018218434 × 109 + 3.970076291590705 × 107i

ZMKMK
1.776687018142111 × 109 + 3.970076267272126 × 107i

ℜ(∆Z/Z) < 10−16

ℑ(∆Z/Z) < 10−16

ρKL 3.662717005908636 × 106 − 1.093850090017855 × 108i

ρMKKL
3.662717010578706 × 106 − 1.093850090034776 × 108i

ρMKMK
3.662716993171710 × 106 − 1.093850089982904 × 108i

ℜ(∆ρ/ρ) < 10−10

ℑ(∆ρ/ρ) < 10−10

χ−1
KL −3.235050540472611 × 108 + 2.885427853699511 × 1010i

χ−1
MKKL

−3.235050549225333 × 108 + 2.885427853735547 × 1010i

χ−1
MKMK

−3.235050516110349 × 108 + 2.885427853625859 × 1010i

ℜ(∆χ−1/χ−1) < 10−10

ℑ(∆χ−1/χ−1) < 10−10

2.4.3 Very wide tubes: R = 10−2m, f = 500kHz

Recall that in this new regime of the wave propagation the least attenuated mode

is no longer a plane mode. It tends to concentrate near the walls. The values

obtained of the wavenumbers, impedances, densities and bulk modulii are

They show the exactness of the upscaling procedure in this regime, as well. Since

spatial nonlocality plays an essential role here, there are considerable differences

between Zwikker and Kosten values and the exact ones. Recall that the local

Zwikker and Kosten theory assimilates the field H with mean pressure 〈p〉 and

the mean pressure with the pressure itself. But here, the pressure is no longer

a constant over the section, so that the local approach is largely in error. The

proposed theory, with its fundamental Umov-Poynting definition (2.1) of the H

field, properly takes into account the nonlocal behaviour.
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kZW 9.238319493530025 × 103 + 2.120643432935189i

kKL 9.230724176891270 × 103 + 6.352252888390387i

kMK 9.230724176891270 × 103 + 6.352252888390393i

kMKKL
9.230724176891188 × 103 + 6.352252888364898i

kMKMK
9.230724176891185 × 103 + 6.352252888365807i

ℜ(∆k/k) < 10−18

ℑ(∆k/k) < 10−18

ZZW 4.099012309061263 × 102 + 3.362191197362033 × 10−2i

ZKL 2.443313123663708 × 102 − 1.548257724791978 × 103i

ZMKKL
2.443313123674136 × 102 − 1.548257724791633 × 103i

ZMKMK
2.443313123674066 × 102 − 1.548257724791642 × 103i

ℜ(∆Z/Z) < 10−12

ℑ(∆Z/Z) < 10−12

ρZW 1.20537538699515 + 0.00037556247686i

ρKL 0.72103233188038 − 4.54864444048231i

ρMKKL
0.72103233188342 − 4.54864444048125i

ρMKMK
0.72103233188340 − 4.54864444048128i

ℜ(∆ρ/ρ) < 10−12

ℑ(∆ρ/ρ) < 10−12

χ−1
ZW 1.393914394285537 × 105 − 2.056360890188126 × 10i

χ−1
KL 8.279327305799672 × 104 − 5.269923491004282 × 105i

χ−1
MKKL

8.279327305835388 × 104 − 5.269923491003154 × 105i

χ−1
MKMK

8.279327305835144 × 104 − 5.269923491003189 × 105i

ℜ(∆χ−1/χ−1) < 10−12

ℑ(∆χ−1/χ−1) < 10−12

2.5 Conclusion

The exact matching between the macroscopic translation of Kirchhoff-Langevin’s

results and the results obtained on the basis of the new nonlocal theory proposed

in [1], provides a clear validation of the nonlocal-relating upscaling procedures.

The important concept, which leads us in [1] to these exact homogenization

upscaling procedures, is the ‘Umov-Poynting-Heaviside’ concept of ‘acoustic part

of energy current density’. Using an analogy with electromagnetics, we had to
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identify exactly this acoustic part with the quantity s = pv, where p is the

thermodynamic pressure. This served in turn as a basis to define a macroscopic

pressure field, through the macroscopic relation definition 〈pv〉 = H〈v〉. And

this thermodynamic definition can be recognized finally a key to make use

of the solutions of two simple action-response problems, in the appropriate

way, which lead to the independent computation of the two nonlocal acoustical

susceptibilities ρ and χ.

In forthcoming papers it will be shown that the proposed nonlocal Maxwellian

theory, providing exact homogenization procedures, is valid also in the case of

nontrivial geometries.

We believe that the present theory highlights the unsatisfactory thermophysical

state of affairs in macroscopic electromagnetic theory, where a comparable

definition of the macroscopic magnetic field H cannot yet be proposed,

because of lacking thermodynamic variables allowing to express the concept

of ‘electromagnetic part of energy current density’. For this reason, no

electromagnetic analogue of the present acoustic upscaling procedures can yet

be proposed.
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Chapter 3

Nonlocal theory of sound

propagation in porous media; case

of two-dimensional arrays of rigid

cylinders

3.1 Introduction

A new nonlocal theory of sound propagation in rigid-framed porous media

saturated with a viscothermal fluid has been recently proposed [1], which is

considered to provide for the first time an exact homogenization procedure. By

this theory we can treat, in particular, the media which are microscopically

periodic, and macroscopically homogeneous, and the propagation is along a

symmetry waveguide axis. A first successful test of this theory has been made

in the simple case of cylindrical circular tubes filled with a viscothermal fluid

(see chapter 2). It was found that the wavenumbers and impedances predicted

coincide with those of the long-known Kirchhoff’s full solution [2]. Here, we

want to verify the validity of this new nonlocal theory in the case where the

microgeometry of the porous medium is nontrivial, in the form of an unbounded

two-dimensional square lattice of rigid cylinders permeated by a viscothermal

fluid (see Fig. 3.1). This geometry allows a direct quasi-analytical calculation

of the medium properties by a multiple-scattering approach taking into account

viscous and thermal effects [3]. If, as guessed, the theory is exact, a matching

will be observed between the multiple scattering predictions and the new theory

predictions, independently of the frequency range considered.

To verify this, on the one hand, we will compare the complex frequency-dependent

phase velocity associated to the least attenuated plane wave, predicted by a FEM

implementation the new theory, with that of the corresponding least attenuated

67
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Bloch mode, obtained by the quasi-exact multiple scattering method, and show

that the two are in remarkable agreement. On the other hand, comparison with

the single mode complex phase velocity obtained by the previously existing local

theory, will show the domain of validity of the local description and its limit in

terms of frequency.

By local theory we refer to space locality. Nonlocality in time, or temporal

dispersion, has been already taken into account for wave propagation in porous

media [4, 5, 6, 7]. That means, in Fourier space the effective density and bulk

modulus depend on the frequency ω. In other terms, the field dynamics at one

location retains a memory of the field values at this location but is not affected by

the neighboring values. The local description is usually based on retaining only

the leading order terms in the two-scale homogenization method [8, 9, 7] using

an asymptotic approach in terms of a characteristic length of the medium, the

period L in periodic media, supposed to be much smaller than the wavelength λ

[10].

The nonlocal theory we propose takes not only temporal dispersion but also

spatial dispersion into account. Here, the medium is assumed unbounded

and homogeneous, so that spatial dispersion refers to the dependence of the

permittivities – effective density and bulk modulus – on the wavenumber k [11].

The materials susceptible to show the nonlocal behaviour may be classified into

two main groups regarding their microgeometry. The first comprises the materials

who exhibit this behaviour in sufficiently high frequency regime. The second one

concerns materials with microgeometry constituting the resonators, which exhibit

the spatial dispersion phenomena even at not very high frequencies; the resonance

phenomena act as a source generating nonlocal behaviour. In this chapter we

investigate the first type of these geometries, and will see the second one in a

forthcoming chapter where the geometry of daisy chained Helmholtz resonators

will be treated.

The nonlocal theory we use here takes advantage of an analogy with electro-

magnetics to give a coarse-grained description of dynamics of small amplitude

perturbations in the porous media; expressing the macroscopic governing equa-

tions in a Maxwellian form. The homogenization method employed in the present

nonlocal theory results in the remarkable point that considerations on length-scale

constraints inherent in local theory, originated from asymptotic approach, do not

exist any more. For the microgeometry considered in this chapter, the latter is

explicitly shown by the fact that the whole dynamics is described through the

nonlocal Maxwellian approach; the normal mode related phase velocity is pre-

cisely predicted by this approach in a large frequency range.
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R

L

Figure 3.1: Two-dimensional array of rigid cylinders with identical radius R. The
nearest neighbours in this lattice are distanced with the length L. The periodic
cell considered is shown by the square of length L.

The chapter is organized as follows. In section 3.2 microscopic equations of a

small perturbation in viscothermal fluids including balance laws and constitutive

relations are expressed. Here, microscopic scale refers to the scale in which

Navier-Stokes and Fourier equations are valid. In section 3.3 we will see how

the macroscopic fields are defined through a spatial averaging in the present

periodic media. In section 3.4 we review briefly the macroscopic governing

equations and constitutive relations in local theory. The procedure to determine

effective frequency-dependent density and bulk modulus through two action-

response problems, is presented as well. Once these two effective properties are

known, we can get directly the phase velocity of the single mode propagating

and attenuating in the medium. In section 3.5 the nonlocal theory [1] is briefly

presented for this case of periodic media and propagation according to a symmetry

axis, here considered the positive x-axis with the unit vector ex. It will be

shown how the wavenumber and frequency dependent effective density and bulk

modulus are determined by solving two distinct systems of microscopic equations,

coming from two independent action-response problems. Once these two effective

functions are known, we can have access after solving a dispersion equation, to the

phase velocity of the possible Bloch wavemodes propagating and attenuating in

the medium. In section 3.6 we introduce the multiple scattering method including

viscothermal effects, allowing to obtain the spectrum of Bloch wavenumbers for

the geometry shown in Fig. 3.1. The aforementioned microscopic systems of
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equations leading to determine the effective properties of the medium in the

framework of local and nonlocal theories are solved by Finite Element Method

(FEM) using FreeFem++ [12]. The phase velocities coming from these two

theories are compared to those obtained by the quasi-exact multiple scattering

method in section 3.7, where we will observe clearly the power of the new nonlocal

theory.

3.2 Microscopic equations

At the microscopic scale, the linear equations governing the dynamics of small-

amplitude disturbances in a homogeneous viscothermal fluid come from balance

equations of mass, momentum and energy, the constitutive relations of Navier-

Stokes and Fourier, and the state equation of the fluid. These governing

equations describe the small deviations of thermodynamic pressure p, density

ρ, temperature T , velocity v and entropy s, from their rest state p0, ρ0, T0,

v0 = 0 and s0, up to the terms of first order. The two constitutive relations are

written as

σ′
ij = 2η

(

eij −
1

3
(∇.v)δij

)

+ ζ(∇.v)δij (3.1a)

q = −κ∇T (3.1b)

The first one, is a linear relation between the shear stress σ′
ij and strain rate,

where eij = 1
2 (∂ivj + ∂jvi) is the symmetric part of the strain rate tensor, δ is

the Kronecker symbol, and η and ζ are the first and second viscosity of the fluid.

The second one, is the heat conduction Fourier’s law, with q the heat flow, and

κ coefficient of thermal conductivity.

Using these constitutive relations, the conservation equations of mass, momentum

and energy in the bulk fluid Vf for a fluid particle give

∂b

∂t
+∇ · v = 0 (3.2a)

ρ0
∂v

∂t
= −∇p+ η∇2v +

(

ζ +
1

3
η

)

∇ (∇ · v) (3.2b)

ρ0cp
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ (3.2c)

where b ≡ ρ′/ρ0 with ρ′ the density deviation, τ is the excess temperature,

β0 ≡ ρ0[∂(1/ρ)/∂T ]p and cp ≡ T0(∂s/∂T )p represents the coefficient of thermal

expansion and the specific heat at constant pressure, which are evaluated at

the fluid rest sate. For convenience in future writing, we denote also by p the
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pressure deviation. When we expand the thermodynamic equations of state,

ρ = ρ(p, s) and T = T (p, s) near the rest state up to the first term [13], then by

omitting s in these equations and making use of the thermodynamic identities

(∂ρ/∂s)p = −ρ0β0/cp, (∂T/∂p)s = β0T0/ρ0cp, c
2
0 ≡ (∂p/∂ρ)s representing the

adiabatic sound speed squared, we conclude the following state equation in Vf

γχ0p = b+ β0τ (3.3)

where χ0 ≡ ρ−1
0 (∂ρ/∂p)s is the coefficient of adiabatic compressibility at rest

state, γ ≡ cp/cv the relative specific heats at constant pressure and constant

volume, involved in the thermodynamic identity γ − 1 = β2
0T0/ρ0cp.

In the solid phase region Vs energy balance equation is reduced to

ρscsp
∂τ s

∂t
= κs∇2τ s (3.4)

where ρs is the constant solid density, τ s solid excess temperature, and κs solid

coefficient of thermal conductivity.

On the solid-fluid interface ∂V, we have the conditions of the continuity of the

temperature τ = τ s and heat flow κ∇τ = κs∇τ s. We admit in the following

that the specific heat and coefficient of heat conductivity of the solid phase are

sufficiently large to allow that the latter conditions combined with Eq.(3.4) are

reduced to a single boundary condition τ = 0. Taking into account the no-slip

condition on the fluid-solid interface, the boundary conditions for the velocity

and excess temperature on ∂V are finally written as

v = 0 (3.5a)

τ = 0 (3.5b)

The equations (3.2) and (3.3) with boundary conditions (3.5) establish a closed

system with the field variables v, b, p and τ .

3.3 Averaging

We need first to define our macroscopic fields in order to describe their dynamics,

specializing to the case of periodically structured porous media. We use here the

spatial averaging method following Lorentz [14] and refined by Russakoff [15].

Let I be the fluid indicator function

I(r) =

{

1, r ∈ Vf

0, r ∈ Vs
(3.6)
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Given a microscopic field a(t, r) in the fluid region, its macroscopic value is defined

by the following integration over the whole space

〈a〉(t, r) =
∫

dr′I(r′)a(t, r′)f(r − r′) (3.7)

where f is a test function with a typical width Lh which is defined as the

homogenization length. In periodic media, Lh is usually taken to be equal to

a period, function f then being constant inside and zero outside. However, this

homogenization length can include more than one spatial period which results

in a different value for 〈a〉 [1]. Here we choose to take the average just over

one irreducible spatial period according to the direction of propagation, which

gives the effective properties of the porous medium depending of this choice. The

presence of the characteristic function in the above, ensures that the integrand

be non-zero only in the fluid region. In addition, the test function is chosen to

be normalized over the whole space

∫

drf(r) = 1 (3.8)

The macroscopic homogeneity of the medium implies that the volume fraction of

the fluid, i.e., the porosity φ = 〈I〉 is constant all over the medium. The so-called

spatial averaging theorem [16] is written as

〈∇a〉 = ∇〈a〉 +
∫

∂V
dr′a(t, r′)n(r′)f(r − r′) (3.9)

relating the average of the gradient of a microscopic field a to the gradient of the

averaged field, where n(r′) is the outward normal from the fluid, on the solid-fluid

interface ∂V.

These definitions are employed next to formulate the macroscopic local and

nonlocal theory.

3.4 Local theory

As the nonlocal theory is presented in the form of Maxwell acoustic equations,

we present the macroscopic equations of local theory in a Maxwellian form as

well, in order to compare these two theories and see more clearly the difference

between them.
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The macroscopic velocity and condensation are defined as

V = 〈v〉 (3.10a)

B = 〈b〉 (3.10b)

Since the velocity vanishes on the pore walls, the following direct commutation

relation always holds

〈∇ · v〉 = ∇ · 〈v〉 = ∇ · V (3.11)

Thus, the averaged form of Eq.(3.2a) become

∂B

∂t
+∇ · V = 0 (3.12)

The electromagnetic analogy then suggests that the system of macroscopic

equations can be carried through by introducing new Maxwellian fields H and

D, and also operators ρ̂ and χ̂−1, such that [1]

∂D

∂t
= −∇H (3.13)

with

D = ρ̂V (3.14)

H = χ̂−1B (3.15)

Eqs.(3.12) and (3.13) represent the field equations which are completed by two

constitutive equations (3.14) and (3.15). The operators ρ̂ and χ̂−1 are called

density and bulk modulus, describing the effective properties of the medium.

Assuming that H and ρ are scalars, we disregard the propagation of macroscopic

shear waves. Here, the propagation of longitudinal waves is considered along the

symmetry axis ex, we have D = Dex and V = V ex, then the constitutive local

relations are written as

D(t, x) =

∫ t

−∞
dt′ρ(t− t′)V (t′, x) (3.16)

H(t, x) =

∫ t

−∞
dt′χ−1(t− t′)B(t′, x) (3.17)
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We see in the above relations that temporal dispersion is taken into account, i.e.,

the fieldsD andH at a given place x and time t depend on the history of the fields

V and B at the same place. The time invariance of the problem results in the

particular t and t′ time-difference dependence of the density and bulk modulus

kernels.

In the local theory it turns out that the abstract ‘Maxwell’ macroscopic field H

is the mean pressure 〈p〉. Indeed, we shall always define this field H by writing:

〈pv〉(t, x) = H(t, x)〈v〉(t, x) (3.18)

As p is the thermodynamic excess pressure, and pv is interpreted as the acoustic

part of the energy current density [17], this equality (3.18) may be viewed as a

thermodynamic definition. The vector S = HV plays the role of an acoustic

macroscopic ‘Poynting’ vector.

Now, in the local theory, because the motion is almost divergence-free at the

pore scale, the microscopic pressure gradients are always on the order of the

macroscopic pressure gradients, and, because scale separation is assumed, the

pressure can be viewed in first approximation as a slowly variable quantity equal

to the mean pressure. Thus in (3.18), p can be replaced by 〈p〉 and extracted

from the average; this leads to identifying H = 〈p〉.

The Fourier transform of the constitutive relations (3.16) and (3.17) are written

as

D(ω, x) = ρ(ω)V (ω, x) (3.19)

H(ω, x) = χ−1(ω)B(ω, x) (3.20)

We proceed next to review briefly how one can have access to the effective

functions ρ(ω) and χ−1(ω) from microscopic fields.

3.4.1 Determination of constitutive operators

The procedure to obtain effective properties of the medium in local theory

logically derives from the only assumption that, because of scale separation, the

motion may be viewed as divergence-free in first approximation, at the pore

scale. There is however no complete generality in this assumption. It is a sort of

simplification of the true wave problem which may be in error in geometries with

resonators.
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The two-scale homogenization using asymptotic analysis is usually employed

to justify the procedure. This technique provides a powerful mathematical

formalization of the above tacit physical assumption.

Two characteristic lengths are introduced: the wavelength λ and characteristic

length of the unit cell L. There, it is supposed that the wavelength is much bigger

than the characteristic unit cell length: ε ≡ L/λ ≪ 1. The microscopic fields are

expanded involving the parameter ε, leading further to derive two independent

sets of equations by which we can compute effective density and bulk modulus.

As such, the Fourier kernels density and bulk modulus are obtained via two

independent action-response problems.

When a harmonic bulk force f(t) = f0e
−iωtex, with constant f0, is applied on the

fluid, we will have the following action-response problem involving the amplitudes

of the fields

∇.v = 0 (3.21a)

−iωv = ∇p+ η∇2v + f0 (3.21b)

in Vf

v = 0 (3.22)

on ∂V, where the fields are the amplitudes of the solutions

v(t, r) = v(ω, r)e−iωt (3.23a)

p(t, r) = p(ω, r)e−iωt (3.23b)

This problem is one of the two independent problems, obtained at leading order,

by the aforementioned homogenization method. It is suitable to determine the

density ρ(ω) in the local theory because, the above-mentioned tacit physical

assumption is encapsulated in (3.21b), and, coherent with this simplification, the

neglect of spatial dispersion is apparent in the fact that f is taken as a spatial

constant.

Considering a periodic square cell with the length L, containing a single cylinder

(Fig.3.1) and bounded in x ∈ [0, L], y ∈ [−L/2, L/2], there are unique amplitude

fields v(ω, r) and p(ω, r) solutions to Eqs.(3.21a-3.22), which are periodic with

the period L, such that they give the same values on the cell boundaries x = 0

and x = L, ∀y; and also on the cell boundaries y = −L/2 and y = L/2, ∀x.
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From the solution field v the equivalent-fluid density is obtained as

ρ(ω) = − f0
iωV (ω)

(3.24)

Applying an excitation in the form of a stirring heating Q̇(t) = Q̇0e
−iωt, where Q̇0

is a constant, leads to the following action-response problem [7] for the amplitude

of the excess temperature field τ(t, r) = τ(ω, r)e−iωt

−iωρ0cpτ = κ∇2τ + Q̇0 (3.25)

in Vf

τ = 0 (3.26)

on ∂V.

This problem is the second one obtained at leading order, by the mentioned

homogenization. It turns out suitable to determine the compressibility χ(ω) in

the local theory because, the tacit physical assumption that the pressure field is

a slowly variable quantity that may be viewed in first approximation as equal

to the mean pressure, is encapsulated in (3.25) in the very fact that Q̇0 is taken

as a spatial constant. This is directly the consequence of the neglect of spatial

dispersion.

Considering as before the periodic square cell with the length L, containing a

single cylinder (Fig.3.1) and bounded in x ∈ [0, L], y ∈ [−L/2, L/2], there is a

unique amplitude field τ(ω, r) solution to Eqs.(3.25-3.26), which is periodic with

the period L such that it gives the same value on the cell boundaries x = 0 and

x = L, ∀y; and also on the cell boundaries y = −L/2 and y = L/2, ∀x.

From the solution field τ , a factor ρ′ analogous to the previous ρ is obtained as

ρ′(ω) = − Q̇0

iωT (ω)
(3.27)

where T = 〈τ〉.

In the framework of nonlocal theory, the following direct relation exists between

the two functions ρ′ and χ:

χ(ω) = χ0

[

γ − (γ − 1)
ρ0cp
ρ′(ω)

]

(3.28)
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The reasoning to obtain this relation has been given in Appendix A; indeed, the

fact that we were considering cylindrical circular tubes was not explicitly used.

The bulk modulus is thus written as

χ−1(ω) = χ−1
0

[

γ + (γ − 1)
iωρ0cp 〈τ(ω, r)〉

Q̇0

]−1

(3.29)

3.4.2 Phase velocity

Once the density ρ(ω) and bulk modulus χ−1(ω) (or compressibility χ(ω)) are

determined, we can obtain the constant of the medium for each frequency. For

a given frequency ω, there is only one single normal mode that can propagate in

the given positive x direction. With this single mode is associated a wavenumber

q(ω) verifying the relation

ρ(ω)χ(ω)ω2 = q2 (3.30)

such that ℑ(q) > 0. The complex phase velocity c(ω) associated with this

frequency ω is immediately written as

c(ω) =
√

ρ−1(ω)χ−1(ω) (3.31)

3.5 Nonlocal theory

We intend here to write the macroscopic equations in a Maxwellian form allowing

for both temporal and spatial dispersion. The field equations in nonlocal theory

will be the same as in local theory. As before, the macroscopic condensation and

velocity are defined as

V = 〈v〉 (3.32a)

B = 〈b〉 (3.32b)

The relation 〈∇ · v〉 = ∇ · 〈v〉 = ∇ · V is as well valid because of the boundary

condition on the velocity on the pore walls. Thus, the averaged form of Eq.(3.2a)

become

∂B

∂t
+∇ · V = 0 (3.33)
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Here also, the electromagnetic analogy then suggests that the system of

macroscopic equations can be carried through by introducing new Maxwellian

fields H and D, and also operators ρ̂ and χ̂−1, such that [1]

∂D

∂t
= −∇H (3.34)

with

D = ρ̂V (3.35)

H = χ̂−1B (3.36)

Eqs.(3.33) and (3.34) represent the field equations which are completed by two

constitutive equations (3.35) and (3.36).

The operators ρ̂ and χ̂−1 are density and bulk modulus, describing the effective

properties of the medium. They are uniquely fixed in principle, through the

condition that H is to be identified through the acoustic part of energy current

density S = 〈pv〉, by setting [1]

〈pv〉 = H〈v〉 (3.37)

The propagation of longitudinal waves is considered along the symmetry axis ex,

we have D = Dex and V = V ex, then the nonlocal constitutive relations, this

time, are written as

D(t, x) =

∫ t

−∞
dt′
∫

dx′ρ(t− t′, x− x′)V (t′, x′) (3.38)

H(t, x) =

∫ t

−∞
dt′
∫

dx′χ−1(t− t′, x− x′)B(t′, x′) (3.39)

We see in the above relations that not only temporal dispersion but also spatial

dispersion is taken into account, i.e., the fields D and H at a given time t depend

on the fields V and H at all previous time and all points of the space. The time

invariance and macroscopic homogeneity of the problem result in the dependence

of the kernels on the differences t − t′ and x − x′. The Fourier transform of the

constitutive relations (3.38) and (3.39) are written as

D(ω, k) = ρ(ω, k)V (ω, k) (3.40)
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H(ω, k) = χ−1(ω, k)B(ω, k) (3.41)

We proceed next to review briefly how one can have access to the effective

functions ρ(ω, k) and χ−1(ω, k) from microscopic fields.

3.5.1 Determination of constitutive operators

The above Fourier coefficients ρ(ω, k) and χ−1(ω, k) are directly related to the

macroscopic response of the permeating fluid subjected to a harmonic fictitious

pressure term P(t, x) = P0e
−iωt+ikx added to the pressure, either in the Navier-

Stokes Eq.(3.2b), or the Fourier Eq.(3.2c).

Thus to determine the kernel ρ(ω, k) we first consider solving the action-response

problem

∂b

∂t
+∇ · v = 0 (3.42a)

ρ0
∂v

∂t
= −∇p+ η∇2v +

(

ζ +
1

3
η

)

∇ (∇ · v) + f (3.42b)

ρ0cp
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ (3.42c)

γχ0p = b+ β0τ (3.42d)

in Vf , and

v = 0 (3.43a)

τ = 0 (3.43b)

on ∂V. The stirring force appears in the form of

f = −∇P = −ikexP0e
−iωt+ikx (3.44)

The unique solutions to the above system (3.42a-3.44), for the fields v, b, p, τ ,

take the form

v(t, r) = v(ω, k, r)e−iωt+ikx (3.45a)

b(t, r) = b(ω, k, r)e−iωt+ikx (3.45b)

p(t, r) = p(ω, k, r)e−iωt+ikx (3.45c)

τ(t, r) = τ(ω, k, r)e−iωt+ikx (3.45d)

The response amplitudes v(ω, k, r), b(ω, k, r), p(ω, k, r), and τ(ω, k, r) are

bounded functions which are uniquely determined by the microgeometry. For
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the special case of periodic geometry, the solution is not unique, however. The

unique formulation of the action response problem also includes a specification

of the periodic cell. The condition that the response amplitudes are bounded

functions is replaced by the condition that they are periodic over the chosen

cells. This indeterminacy was absent in the case of the local theory, because the

solutions were independent of the choice of the periodic cell. Here, in all foregoing

calculations, the irreducible cell as illustrated in Figs 1 and 2 will always be chosen

as the period.

The above problem, once solved, we use the fundamental ‘Umov-Poynting’

relation (3.37) to write

P〈v〉 = 〈pv〉 (3.46)

where P = P(ω, k)e−iωt+ikx is the macroscopic part of the pressure response

p(t, r) = p(ω, k, r)e−iωt+ikx, whose amplitude is determined by

P(ω, k) =
〈p(ω, k, r)v(ω, k, r)〉 .ex

V (ω, k)
(3.47)

Then using the Fourier transform of Eq.(3.34), applying Eq.(3.40), and admitting

that the two parts P and P0 just add to form the field H, viz.

−iωρ(ω, k)V (ω, k) = −ik(P(ω, k) + P0) (3.48)

gives rise immediately to nonlocal Equivalent-fluid density ρ(ω, k)

ρ(ω, k) =
k(P(ω, k) + P0)

ωV (ω, k)
(3.49)

The strong motivation for this conjectured expression (3.49), is its simplicity and

the fact that it is explicitly verified in absence of solid [1]. It has been exactly

verified in cylindical circular tubes (chapter 2). Thus it must provide the exact

upscaling procedure.

At this point, we see that the fields p(ω, k, r) and v(ω, k, r) are needed to be

known in order to determine from microgeometry the effective density of the fluid-

saturated porous medium. Hence, instead of solving (3.42a-3.43b) it is sufficient

to solve the following system of equations to get the amplitudes of the fields in
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(3.45)

−iωb+∇.v + ikvx = 0 (3.50a)

−iωρ0v = −∇p− ikpex + η∇2v + 2ikη
∂v

∂x
(3.50b)

−ηk2v +

(

ζ +
1

3
η

)

∇(∇.v) + ik

(

ζ +
1

3
η

)

(∇.v)ex

+ik

(

ζ +
1

3
η

)

∇vx −
(

ζ +
1

3
η

)

k2vxex − ikexP0

−iωρ0cpτ = −iωβ0T0p+ κ∇2τ + 2ikκ
∂τ

∂x
− k2κτ (3.50c)

γχ0p = b+ β0τ (3.50d)

in Vf , and

v = 0 (3.51a)

τ = 0 (3.51b)

on ∂V.

As in local case, considering a periodic square cell with the length L, containing

a single cylinder (Fig.3.1) and bounded in x ∈ [0, L], y ∈ [−L/2, L/2], the

amplitude fields v(ω, k, r), b(ω, k, r), p(ω, k, r), and τ(ω, k, r) are periodic with

the period L, such that they give the same values on the cell boundaries x = 0

and x = L, ∀y; and also on the cell boundaries y = −L/2 and y = L/2, ∀x.

The procedure to determine the kernel χ−1(ω, k) is quite similar but slightly less

direct, as was already the case in local theory. We now deal with the field B,

and the way the latter is thought to be connected with the fields appearing in

the new action-response problem, requires a little reflection.

We consider again, initially solving the action-response problem with an harmonic

fictitious term P(t, x) = P0e
−iωt+ikx added to the pressure, but appearing this

time in the energy balance equation

∂b′

∂t
+∇ · v = 0 (3.52a)

ρ0
∂v

∂t
= −∇p+ η∇2v +

(

ζ +
1

3
η

)

∇ (∇ · v) (3.52b)

ρ0cP
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ + Q̇ (3.52c)

γχ0p = b′ + β0τ (3.52d)
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in Vf , and

v = 0 (3.53a)

τ = 0 (3.53b)

on ∂V, with the stirring heating

Q̇ = β0T0
∂P
∂t

= −iωβ0T0P0e
−iωt+ikx (3.54)

The solutions to the above problem take the same form as specified before through

Eqs.(3.45) and the same comments can be made regarding the special case of

periodic microstructure. This problem, once solved, we again use the fundamental

‘Umov-Poynting’ relation-definition (3.37) to write

P〈v〉 = 〈pv〉 (3.55)

and thus

P(ω, k) =
〈p(ω, k, r)v(ω, k, r)〉 .ex

V (ω, k)
(3.56)

for the amplitude of the macroscopic part P = P(ω, k)e−iωt+ikx of the pressure

response p(t, r) = p(ω, k, r)e−iωt+ikx.

Then using the Fourier transform of Eq.(3.39), and admitting as before that the

two parts P and P0 just add to form the field H, viz.

P(ω, k) + P0 = χ−1(ω, k)B(ω, k) (3.57)

it remains to identify the field B.

This identification is obtained from the thermodynamic understanding that the

field b′ in the action-response problem (3.52-3.53), as it is fixed in particular by

the Laplacian term expressing thermal conduction in Eq.(3.52c), is to be viewed

as determining a nonisothermal response part in the macroscopic condensation

field B. The latter is thus seen as the direct sum of two contributions: B =

〈b〉 = 〈b′ + b′′〉, with b′ a nonisothermal response part determined by the above

action-response problem, and b′′ a complementary isothermal response part, by

definition given by the isothermal relation b′′ = γχ0P0. On account of the fact

that 〈P0〉 = φP0, this results in the following relation [1]

P(ω, k) + P0 = χ−1(ω, k)
[〈

b′(ω, k, r)
〉

+ φγχ0P0

]

(3.58)
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That gives the nonlocal equivalent-fluid bulk modulus χ−1(ω, k)

χ−1(ω, k) =
P(ω, k) + P0

〈b′(ω, k, r)〉 + φγχ0P0
(3.59)

Again, the strong motivation for the above simple ansatz (3.59) is its simplicity,

and the fact that it is explicitly verified in absence of solid [1] and in cylindrical

circular tubes (chapter 2). Thus we expect that it provides the exact upscaling

procedure.

At this point, to determine the effective bulk modulus of the fluid-saturated

porous medium, we have to look for the amplitude fields p(ω, k, r) and v(ω, k, r),

and b′(ω, k, r). These fields can be obtained by substituting (3.45) in (3.52a-

3.53b) which gives the following system

−iωb′ +∇.v + ikvx = 0 (3.60a)

−iωρ0v = −∇p− ikpex + η∇2v + 2ikη
∂v

∂x
(3.60b)

−ηk2v +

(

ζ +
1

3
η

)

∇(∇.v) + ik

(

ζ +
1

3
η

)

(∇.v)ex

+ik

(

ζ +
1

3
η

)

∇vx −
(

ζ +
1

3
η

)

k2vxex

−iωρ0cpτ = −iωβ0T0p+ κ∇2τ + 2ikκ
∂τ

∂x
− k2κτ − iωβ0T0P0 (3.60c)

γχ0p = b′ + β0τ (3.60d)

in Vf , and

v = 0 (3.61a)

τ = 0 (3.61b)

on ∂V.

Similarly, here also, considering a periodic square cell with the length L,

containing a single cylinder (Fig.3.1) and bounded in x ∈ [0, L], y ∈ [−L/2, L/2],

the amplitude fields v(ω, k, r), b(ω, k, r), p(ω, k, r), and τ(ω, k, r) are periodic

with the period L, such that they give the same values on the cell boundaries

x = 0 and x = L, ∀y; and also on the cell boundaries y = −L/2 and y = L/2,

∀x.
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3.5.2 Phase velocities

Contrary to the case of local theory, here, since we fully take into account spatial

dispersion, several normal mode solutions might exist, with fields varying as

e−iωt+iqx. Each solution should satisfy the following dispersion equation

ρ(ω, q)χ(ω, q)ω2 = q2 (3.62)

With each frequency ω, several wavenumbers ql(ω), ℑ(ql) > 0, l = 1, 2, ..., may

be associated. The complex phase velocity corresponding to a given solution is

written as

cl(ω) =
ω

ql(ω)
(3.63)

3.6 Multiple scattering method

For the simple geometry represented in Fig. (3.1) a relatively simple calculation

of the possible wavenumbers kl is feasible by a multiple scattering approach [3].

In this calculation, which is presented in some more detail in what follows, we

adopt a description of the fluid motion in terms of three velocity potentials, the

acoustic potential φa, entropic potential φe and vorticity potential ψ:

v = ∇ (φa + φe) +∇×ψ (3.64)

The vorticity potential ψ has just one component, which is directed along the

z-axis and is denoted by φv. In harmonic regime, three independent Helmholtz

equations

[

∇
2 + (kα)2

]

φα = 0, α = a, e, v (3.65)

are satisfied in Vf , where (kα)2, α = a, e, v, are the wavenumbers associated to

acoustic, thermal and viscous waves, respectively. The former two (ka)2 and (ke)2

are the opposite of the small and large solutions λ1 and λ2 of Kirchhoff-Langevin’s

dispersion equation (see Eq.(2.34) in chapter 2); the latter is (kv)2 ≡ iω/ν.

Using Eqs.(2.40a), (2.40d), and (2.28) in chapter 2, it is easy to express the excess

temperature in terms of potentials

β0τ

γ − 1
= (

κ

ρ0cv
+

iω

λa
)−1φa + (

κ

ρ0cv
+

iω

λe
)−1φe (3.66)

The boundary conditions at the solid-fluid interface for the potentials come from

the fact that the displacement and excess temperature fields on ∂V are such that
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u = 0 (3.67a)

τ = 0 (3.67b)

These boundary conditions establish the coupling between the potentials, which

results in the fact that a wave carried by one potential is scattered on the three

types of waves on interacting with the solid.

In this chapter, because we investigate only the least attenuated mode and are

not concerned with the terms of minor importance that concern the intrinsic bulk

fluid propagation, the bulk attenuation will be neglected for the acoustic mode.

This simplification will allow direct use of known results on Schlömilch series.

Thus we set as a simplification −λa = (ka)2 ≡ (ω/c0)
2. Moreover, we also

neglect the higher order terms governing the attenuation of entropic waves, and

set as another simplification −λe = (ke)2 ≡ iωρ0cp/κ. Consistent with the first

simplification, we need not account for the thermal conductivity term in the first

parenthesis in (3.66). After straightforward calculation using the thermodynamic

identity γ − 1 = T0β
2
0c

2
0/cp, the following relation is obtained

τ =
T0β0
cp

iωφa +
ρ0cp
β0κ

φe (3.68)

Considering one row of infinite number of cylinders, as is shown in Fig.3.2, we

expand the potentials in terms of right and left going plane waves

φα
0 (r) =

∞
∑

n=−∞

(

A+α
0n eik

α
n .r +A−α

0n e−ikα
n .r
)

(3.69a)

φα
L(r) =

∞
∑

n=−∞

(

A+α
Ln e

ikα
n .(r−Lex) +A−α

Ln e
−ikα

n .(r−Lex)
)

(3.69b)

The ingoing or outgoing meaning of the four types of amplitudes A is apparent

on the figure. The index α refers to the type a, e, or v of potential field. It is clear

that the periodicity of the potential fields with respect to y coordinates implies

that for each n the y component of the wavevectors kαn should be kαny = 2πn/L,

thus (kα)2 = (kαnx)
2+(2πn/L)2. Another symmetry consideration of the problem

is that we are interested only with the solutions leading to a fluid motion

symmetric around each cylinder. In this, we restrict to the motions that can

be created by a ‘macroscopic stirring’. This is analogous to our restriction in

chapter 2, for the same reason, to axisymmetric motions. This restriction implies
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that the fields φa and φe are even functions, and φv an odd function with respect

to y coordinates. Thus, with regard to the terms in (3.69), after combining the

up and down components n and −n there will appear cos(2πny/L) y-dependency

for acoustic and entropic potentials, and sin(2πny/L) y-dependency for vorticity

potential. To account explicitly for this symmetry in the notation, instead of

(3.69) we employ the following condensed form of the potentials

φα
0 (r) =

∞
∑

n=0

Cα
n (y)

(

A+α
0n eik

α
nxx +A−α

0n e−ikαnxx
)

(3.70a)

φα
L(r) =

∞
∑

n=0

Cα
n (y)

(

A+α
Ln e

ikαnx(x−L) +A−α
Ln e

−ikαnx(x−L)
)

(3.70b)

where

Cα
n (y) =







cos
(

2πny
L

)

, α = a, e

sin
(

2πny
L

)

, α = v
(3.71)

We note also, that to each n, α, and ω, we may associate a characteristic incidence

angle θαn , such that

kα sin(θαn) =
2πn

L
, kα cos(θαn) = kαnx (3.72)

For the acoustic type α = a, this angle will be real when the frequency is such

that 2πn/(kαL) < 1, and complex, equal to π/2 − iξ at higher frequencies, with

ξ > 0 ensuring that ℑ(kαnx) > 0. For the entropic and vorticity types, this angle

will be complex, chosen such that ℑ(kαnx) > 0.

The first step in the calculation is to obtain the reflection and transmission

properties of the row of cylinders, by the following scattering matrix, which relates

the outgoing waves to the ingoing ones





A−
0

A+
L



 =





T R

R T









A−
L

A+
0



 (3.73)

where

A−
0 =















A−a
0

A−e
0

A−v
0















, A+
L =















A+a
L

A+e
L

A+v
L















(3.74)
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Figure 3.2: One row of infinite number of rigid cylinders.

and so on for the vectors A+
0 and A−

L . Each of the vectors A+α
L , A+α

0 , A−α
L ,

and A−α
0 contains the whole ensemble of plane wave amplitudes with α = a, e, v,

each of which had been indexed by n. The reflection and transmission matrices

R and T thus have elements of the type Rαβ
pn and Tαβ

pn , where the indexes

on the right refer to ingoing waves and the index on the left to outgoing

ones. The presence of the different elements results from the interactions and

transformations of the different kinds of potentials into one another, due to

the boundary conditions (3.67). To compute R and T and thus construct the

scattering matrix, the analysis of the scattering problem is divided in different

elementary parts, combined in the end.

Consider a given ingoing potential φβ
n,in(r) = Cβ

n(y)eik
β
nxx coming from the left

on the row, with n arbitrary and β which is set to be replaced by either a, e or

v. This ingoing potential of type β, n, by the scattering effects and through the

boundary conditions, creates outgoing potentials of all of the three types a, e and

v, and indexes p. These outgoing potentials can be interpreted either as reflected

or transmitted fields by the row

φαβ
n,R(r) =

∞
∑

p=0

Rαβ
pn Cα

p (y)e
−ikαpxx, α = a, e, v, x ≃ 0 (3.75a)

φαβ
n,T (r) =

∞
∑

p=0

Tαβ
pn Cα

p (y)e
ikαpx(x−L), α = a, e, v, x ≃ L (3.75b)
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where φαβ
n,R and φαβ

n,T refer to the reflected and transmitted potentials of type α,

which have been created by the ingoing β, n-field. The coefficients Tαβ
pn and Rαβ

pn

are the above-mentioned elements of the matrices R and T .

On the other hand, the same reflection and transmission fields can be expressed

in terms of the potential fields scattered by all cylinders belonging to the row.

The scattered field from the j-th cylinder at the position rj can be expanded on

the basis of Hankel functions of the first kind

φαβ
n,scat(r, rj) =

∞
∑

m=−∞

Bαβ
mni

mHm(kα|r − rj|)eimθr−rj (3.76)

where θr−rj
is the azimuthal angle of the vector r − rj relative to ex, and Bαβ

mn

is the unknown weighting coefficient, associated with the scattered or Hankel

divergent wave Hm. The row of cylinders being infinite, this coefficient is

independent of the cylinder under consideration. Thus, the scattered field by

the row is written by summing the above expression over all cylinders

φαβ
n,scat(r) =

∞
∑

j=−∞

∞
∑

m=−∞

Bαβ
mni

mHm(kα|r − rj|)eimθr−rj . (3.77)

We can now identify the reflected and transmitted fields through the following

relations

φαβ
n,R(r) = φαβ

n,scat(r), x ≃ 0 (3.78a)

φαβ
n,T (r) = φαβ

n,scat(r) + δαβφ
β
n,in(r), x ≃ L (3.78b)

where δ represents the Kronecker symbol. It is clear that with the help of the

addition theorem of Bessel functions these relations determine in principle the

reflection and transmission coefficients Rαβ
pn and Tαβ

pn in terms of the coefficients

Bαβ
mn. To determine the coefficients Bαβ

mn, we proceed as follows.

With the same ingoing potential φβ
n,in(r) = Cβ

n(y)eik
β
nxx coming from the left on

the row, we can analyze the field incident on an arbitrary cylinder situated at rl,

in terms of the convergent Bessel waves. The three types α = a, e, v of incident

potentials will be present because of the row scattering, and each can be expanded

in the basis of Bessel functions centred at rl as

φαβ
n,inc(r, rl) =

∞
∑

m=−∞

Cαβ
mni

mJm(kα|r − rl|)eimθr−rl (3.79)
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Again, the unknown weighting coefficient Cαβ
mn, associated with the incident or

convergent Bessel wave Jm, is independent of the cylinder under consideration.

Alternatively, this incident field on cylinder rl can be regarded as the sum of

the ingoing field, and the fields scattered by cylinders j 6= l. According to this

viewpoint, the incident field on cylinder rl is given by

φαβ
n,inc(r, rl) =

∑

j 6=l

φαβ
n,scat(r, rj) + δαβφ

β
n,in(r, rl) (3.80)

For each ingoing β, n-potential, we now apply the boundary conditions (3.67) to

the total field resulting from the superposition of incident (3.79) and scattered

(3.76) fields around one arbitrary cylinder. This allow to relate the coefficients

Bαβ
mn to the Cαβ

mn as follows

Bαβ
mn =

∑

γ=a,e,v

Dγβ
m Cγβ

mn, α = a, e, v (3.81)

through the coefficient Dγβ
m which is defined by















kaH ′
m(kaR) keH ′

m(keR) m
RHm(kvR)

m
RHm(kaR) m

RHm(keR) kvH ′
m(kvR)

T0β0

cp
iωHm(kaR)

ρ0cp
β0κ

Hm(keR) 0





























Daβ
m

Deβ
m

Dvβ
m















=Kβ (3.82)

for β = a, e, v, where the vectors Kβ are defined as

Ka ≡















−kaJ ′
m(kaR)

−m
RJm(kaR)

−T0β0

cp
iωJm(kaR)















,Ke ≡















−keJ ′
m(keR)

−m
RJm(keR)

−ρ0cp
β0κ

Jm(keR)















,

and Kv ≡















−m
RJm(kvR)

−kvJ ′
m(kvR)

0
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Substituting (3.81) in (3.77), (3.80) for α = a, e, v and β = a, e, v, yields

φαβ
n,inc(r, rl) =

∞
∑

m=0

∑

γ=a,e,v

Dγβ
m Cγβ

mnG
α
m(r, rl) + δαβφ

β
n,in(r, rl) (3.83)

where,

Gα
m(r, rl) =















∑

j 6=l

imHm(kα|r − rj |) cos(mθr−rj
), α = a, e

∑

j 6=l

imHm(kα|r − rj |) sin(mθr−rj
), α = v

(3.84)

which can be rewritten using the addition theorem of Bessel functions as

Gα
m(r, rl) =











































∞
∑

q=0

[

σ|m−q|(k
αL) + σm+q(k

αL)
]

iqJq(k
α|r − rl|) cos(qθr−rl

)(1− 1

2
δq0),

α = a, e
∞
∑

q=0

[

σ|m−q|(k
αL)− σm+q(k

αL)
]

iqJq(k
α|r − rl|) sin(qθr−rl

),

α = v

(3.85)

where σm(kαL) is a function representing the series of Hankel functions of the

first kind defined by the relation

σm(kαL) = σ−m(kαL) = (1 + (−1)m)

∞
∑

j=1

Hm(jkαL), α = a, e, v (3.86)

which vanishes for the odd values of m. Notice that for the reason of better

convergence, it is necessary to expand theses series in terms of the Schlömilch

series [18]. In this expansion it is assumed that the wavenumber ka is real, which

is the case as we neglect as explained before the bulk attenuation in the fluid.

Finally, the relation (3.80) is expressed in the basis of Bessel functions with

respect to the coordinates centered at rl. First, the known formula eik.(r−rl) =
∑∞

m=−∞ imJm(k|r−rl|)eim(θk−θr−rl
) for the expansion of the plane waves on the
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basis of Bessels functions is used to express the ingoing part

φβ
n,in(r, rl) =











































∞
∑

m=0

[

(2− δm0)e
ikβnxL/2 cos(mθβn)

]

imJm(kβ |r − rl|) cos(mθr−rl
),

β = a, e
∞
∑

m=0

[

−2i(1 − δm0)e
ikβnxL/2 sin(mθβn)

]

imJm(kβ |r − rl|) sin(mθr−rl
),

β = v

(3.87)

Next, the addition theorem of Bessel functions is used to express the scattered

part.

We obtain in this manner three series of algebraic equations each of which

corresponds to either an ingoing acoustic, entropic or vorticity field, to determine

the coefficients Cαβ
mn and, as a result Bαβ

mn:

Cαβ
m =











































δαβ(2− δm0)e
ikβnxL/2 cos(mθβn) +

∞
∑

q=0

∑

γ=a,e,v

Dαγ
q Cγβ

q Fα
mq(σ), α = a, e, v;

β = a, v

−2iδαβe
ikβnxL/2 sin(mθβn) +

∞
∑

q=0

∑

γ=a,e,v

Dαγ
q Cγβ

q Fα
mq(σ), α = a, e, v;

β = v

(3.88)

where,

Fα
mq(σ) = (1− 1

2
δm0)(δαa + δαe) [σm+q(k

αL) + σm−q(k
αL)] (3.89)

+δαv [σm+q(k
αL) + σm−q(k

αL)] , α = a, e, v

By identifying the Eqs.(3.75) and the resulting (3.78), we conclude the explicit

expressions for the reflection and transmission coefficients Rαβ
pn and Tαβ

pn for all

β-potential

Rαβ
pn =















1

(1 + δp0)

4

L

∫ L/2

0
φαβ
n,R(0, y) cos

(

2πpy

L

)

dy, α = a, e

(1− δp0)
4

L

∫ L/2

0
φαβ
n,R(0, y) sin

(

2πpy

L

)

dy, α = v

(3.90)
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T aβ
pn =















δαβδpne
ikαnxL +

1

(1 + δp0)

4

L

∫ L/2

0
φαβ
n,T (L, y) cos

(

2πpy

L

)

dy, α = a, e

δαβδpn(1− δp0)e
ikαnxL + (1− δp0)

4

L

∫ L/2

0
φαβ
n,T (L, y) sin

(

2πpy

L

)

dy, α = v

(3.91)

At this point, reflection and transmission properties of one row are entirely

determined.

Now, we consider an infinite number of rows separated by the distance L. We

make use of the concept of scattering matrix which we have just studied for an

arbitrary row, and apply the Bloch condition for this case of periodic medium.

We have

(

A+
L

A−
L

)

= eikBL

(

A+
0

A−
0

)

(3.92)

where kB denotes the Bloch wavenumber to be determined. The use of scattering

matrix relation relation (3.73) and the Bloch condition (3.92) leads to the

following eigenvalue problem

(

T R

0 I

)(

A+
0

A−
L

)

= eikBL

(

I 0

R T

)(

A+
0

A−
L

)

(3.93)

where 0 and I are the are the zero and identity matrices, respectively. Since at

this stage the reflection and transmission matrices R and T are known, we are

able to solve the above eigenvalue problem numerically and get the macroscopic

Bloch wavenumbers of the medium. As in the nonlocal theory, here also, with

each frequency ω there might be associated several Bloch wavenumbers kB,l,

l = 1, 2, 3, ..., and their corresponding complex phase velocities will be

cl(ω) =
ω

kB,l
(3.94)

3.7 Results

In this section, we will present the results concerning the phase velocity of the

single mode obtained through the local theory, the phase velocity of the least

attenuated mode obtained using the nonlocal theory, and the phase velocity of

the least attenuated Bloch mode coming from the multiple scattering method.

These results are shown in a large frequency range for the three different values
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of porosity φ = 0.99, 0.9 and 0.7. For a constant period length L = 10µm, the

corresponding cylinder radius R = L
√

(1− φ)/π for the three values of porosity

becomes R = 0.56µm, 1.78µm, and 3.1µm, respectively. Fluid properties for all

computations are presented in Table 3.1. We note that we have taken ζ = 0 for

the second coefficient of viscosity, involved in nonlocal theory computations, in

order to be closer to multiple scattering calculation in which the dissipation due

to compression/dilation motions is not taken into account. As we have seen in

section 3.4 the phase velocity in local theory is given by Eq.(3.31) which requires

the Fourier effective density ρ(ω) and bulk modulus χ−1(ω) of the medium. These

two functions are computed through two independent sets of equations (3.21a-

3.22) and (3.25-3.26).

Table 3.1: Fluid properties used in all computations.

ρ0 T0 c0 η ζ κ χ0 cp γ
(kg/m3) (K)m/s (kg ms−1) (kg ms−1) (Wm−1K−1) (Pa−1) (J kg−1K−1)

1.2 293 343 1.8× 10−5 0 2.6× 10−2 7.1× 10−6 1005 1.4

The equations, for local and nonlocal theory, are solved in a periodic square cell

including a single cylinder (Fig.3.2), by Finite Element Method using FreeFem++

as a free software to solve partial differential equations numerically, based on

Finite Element Method which can be used for coupled systems. This software

has the possibility to generate mesh automatically and is capable of a mesh

adaptation, handling the general boundary conditions, to include, now, periodic

boundary conditions which is required to solve the present sets of equations.

However, the presence of a bug, relating to the handling of boundary conditions,

without receiving any error message, created a very long delay to obtain the

correct results. This bug has been corrected, finally, by intervention of the

developer of the software. FreeFem++ provides us with a powerful tool when the

solution of the problem varies locally and sharply, creating a new mesh adapted

to the Hessian of the solution. The weak form of the equations to be solved is

firstly needed in order to implement the FEM simulations through the software.

To obtain the phase velocity of the least attenuated wave according to nonlocal

theory, first we have to obtain the Fourier kernels ρ(ω, k) and χ−1(ω, k), via

solving separately two sets of equations (3.50a-3.51b) and (3.60a-3.61b) by FEM

using FreeFem++. For a given k which is involved in excitations (3.44) and (3.54)

we solve the two systems of equations for a large frequency range. A priori, we

can continue this procedure for several k to approximate finally the complex

functions ρ(ω, k) and χ−1(ω, k) and then using the dispersion relation (3.62) to
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Figure 3.3: Real and imaginary parts of the phase velocities according to local
theory, normal mode nonlocal theory and normal mode multiple scattering method
for φ = 0.99.

find the natural constants of the medium q and subsequently the corresponding

phase velocities by (3.63). However, these functions do not seem to have a simple

form, especially at sufficiently high frequencies where the spatial dispersion effects
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become important. Thus, to find the complex normal modes of the medium, we

have proceeded through Newton-Raphson method.
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Figure 3.4: Real and imaginary parts of the phase velocities according to local
theory, normal mode nonlocal theory and normal mode multiple scattering method
for φ = 0.9.
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Initial values q0 are chosen for each given frequency to compute the complex

functions ρ(ω, q0) and χ−1(ω, q0) for a large range of frequency ω, by setting the

two excitations and solving the two corresponding systems of equations through

FEM simulations. Then, the complex function F (ω, q) = ρ(ω, q)χ(ω, q)ω2 − q2

and its derivative ∂F (ω, q)/∂q are calculated at these initial values q = q0, to

start a Newton iteration qn+1 = qn−F (ω, qn)/[∂F (ω, q)/∂q]q=qn which converges

quickly to yield the value of q at which F vanishes. As such, the phase velocity

can be immediately determined. In this study, for the chosen frequencies we take

for the initial values of q, the fundamental mode obtained by multiple scattering

with a discrepancy of 20%. The fundamental modes obtained in such a way by

nonlocal theory are found to be in remarkable agreement with those corresponding

to multiple scattering method.

In Figures (3.3), (3.4), and (3.5) referring to the three values of porosity φ = 0.99,

φ = 0.9, and φ = 0.7, respectively, real and imaginary parts of phase velocities

predicted by local theory, nonlocal theory, and multiple scattering method, are

depicted in function of the reduced frequency k0L/π = ωL/c0π. Regarding the

multiple scattering related curves as those showing the most precise values, in

all three Figures we observe that the phase velocity predicted by local theory is

limited up to a frequency satisfying the condition qL ≪ λ, which has resulted

in particular, in the microscale incompressibility of the fluid ∇.v = 0. For all

three cases of porosity the rapid variations around reduced frequency k0L/π = 1

correspond to the location of the first band gap. This may be viewed as a cell

resonance which occurs when the length of the cell is around λ/2.

For more concentrated media the discrepancies between local theory and multiple

scattering predictions are larger and commence at lower frequencies. As a matter

of fact, when the medium becomes more concentrated, the band gaps include

larger frequency intervals and the resonance phenomena becomes more influential.

These are considered as the signatures of spatial dispersion effects which can be

precisely described by quasi-exact multiple scattering calculation.

Contrary to local theory, results issued from nonlocal approach show excellent

agreement with those from multiple scattering, regarding the above Figures.

These agreements appear to be insensitive to the frequency in which the phase

velocity is computed. That was expected by the fact that in nonlocal approach, no

length constraint, such as qL ≪ λ, has been considered. However, we note that as

the frequency is increased and the medium becomes more concentrated, because

of the significant effects due to of spatial dispersion in these cases, the behaviour

of wave propagation become more complicated to describe and consequently more

precision is required concerning the FEM computations to have an appropriate

convergence stability, in the framework of nonlocal theory.
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Figure 3.5: Real and imaginary parts of the phase velocities according to local
theory, normal mode nonlocal theory and normal mode multiple scattering method
for φ = 0.7.

3.8 Conclusion

The nonlocal theory in rigid-framed porous media, recently proposed [1], has

been here put into evidence through comparing the phase velocity of the least
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attenuated mode predicted by this theory, and a quasi-exact multiple scattering

method, in the case where the microgeometry of the porous medium is in the

form of a two-dimensional array of rigid cylinders and the propagation is along

one of the perpendicular axis with which the square lattice can be constructed.

The phase velocity according to local theory is computed as well in order to

observe its domain of validity and its limits in terms of frequency, comparing to

aforementioned approaches capable to take into account the spatial dispersion

effects.

The quasi-exact multiple scattering calculation of the least attenuated wavenum-

ber including viscothermal effects, which has been already validated [3], is de-

scribed here in more details. Concerning the local and nonlocal approaches, the

two different ways to compute the corresponding wavenumber, by applying the

corresponding local and nonlocal procedures to determine effective density and

bulk modulus, have been reviewed. We have seen that these procedures lead to

solving four independent action-response microscopic problems, each of which as-

sociated with a local or nonlocal effective property of the porous medium. These

microscopic cell-problems have been solved here through direct numerical simu-

lations by Finite Element Method using FreeFem++, to give then the frequency

dependent phase velocities according to local and nonlocal theories.

The results of computations show that with the geometry considered in this

chapter, contrary to local theory, nonlocal theory successfully describes the whole

dynamics, including high frequency one, where the band gaps are present. In

the future we will try to show that by nonlocal theory we can obtain the other

axisymmetric modes of the medium, as expected by the nonlocal theory through

its resulting dispersion relation.
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Chapter 4

Nonlocal theory of sound

propagation in porous media; case

of two-dimensional arrays of rigid

Helmholtz Resonators

4.1 Introduction

In this section we will show that by the nonlocal theory presented in chapter

1 [1], we will be able to predict the behaviour of sound propagation in the

structures exhibiting the resonance phenomena. To illustrate this we consider

– see Fig.4.1 – a 2D medium with embedded structures of Helmholtz-resonators’

type [2]. Macroscopic propagation is considered along the waveguide axis x.

Figure 4.1: 2D arrays of rigid Helmholtz resonators.

In sections 2 and 3, using a Zwikker and Kosten approximation [3], usual in

duct acoustics, we will show how to make a simplified modelling of the frequency

and wavenumber dependent density ρ(ω, k) and bulk modulus χ−1(ω, k) of the

101
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medium. Given these functions, a Newton-scheme solution of the dispersion

equation ρ(ω, k)χ(ω, k)ω2 = k2, allows finding the medium wavenumbers k(ω).

We focus here on the least attenuated mode. The Zwikker and Kosten

approximation consists in assuming that in the various elementary duct portions,

the propagation of the sound field may be described in terms of Zwikker and

Kosten effective density and compressibility [3, 4].

Within the same approximations a direct simplified modelling of the propagation

of normal modes in the medium will be made in section 4. This modelling will be

called here the Bloch-wave modelling. It predicts a typical resonance behaviour

of the least attenuated solution. The classical local theory cannot describe this

behaviour. On the contrary, the calculations based on nonlocal theory are found

to accurately predict the resonance behaviour. This, once again, will provide an

unambiguous validation of the proposed general theory.

The two different problems, the action-response one related to nonlocal theory,

and the other, which is an eigenvalue problem related to Bloch-wave modelling,

are solved in a single periodic square cell of the medium of length L. In Fig.4.2

this cell is illustrated with the lengths corresponding to its different parts. The

widths of the main tube, neck and cavity of the resonator are denoted by Σ, σ,

and L− Σ− 2l, respectively. The lengths of the tube, neck, and cavity are L, l,

and L− l.

L

L

l

l

l/2

Σ

σ

Figure 4.2: A periodic cell of the structure.
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4.2 Determination of nonlocal effective density

Considering the periodic cell of Fig.4.2 and the corresponding cell average

operation 〈 〉, we look for the response ofthe fluid when a harmonic stirring

force f(t, x) = f0e
−iωt+ikx in the direction of ex is applied in the medium. The

direction y goes downward in the neck. For later convenience, we note that our

coordinate system (x, y) will be taken such that the point (0, 0) is located at the

center of the neck portion. The indicated positions (5) and (6) in Fig.4.3 will

have the coordinates (0,−l/2) and (0, l/2) respectively.

If we can determine the microscopic response fields velocity v and pressure p then

we will have the function ρ(ω, k) through the relation (see chapter 1, Eq.(1.53))

ρ(ω, k) =
f0 − ikP

−iω〈v〉 (4.1)

with

P(ω, k) =
〈pv〉
〈v〉 (4.2)

where the v is the x-component of the microscopic velocity v.

In what follows, we make this calculation in analytical simplified manner. We

proceed to determine the functions ρ(ω, k) and χ−1(ω, k) sufficiently precise to

give an appropriate modelling of the least attenuated mode. To this aim, we

need not consider in full detail the microscopic fields v and p. In the waveguide

and cavity, instead of the microscopic fields, we can use with the mean values

Vx = v · ex and P = p, where the overline denotes the average (at a given x)

over the waveguide or the cavity width; and in the neck, we can use with the

mean values Vy = v · ey and P = p, where the overline denotes the average (at

a given y) over the neck width. At the same time, we make some simplifications

consistent with describing the propagation of these averaged quantities in terms of

the Zwikker and Kosten densities ρ(ω) and bulk modulii χ−1(ω), in the different

slit portions. These depend only on the slit half-widths, which we shall denote

by st, sn, and sc, in the tube, neck, and cavity. The different slit-like tube

portions are illustrated in Fig.4.3. The main tube t is divided in two Zwikker

and Kosten ducts, a left duct, and a right duct, oriented in the x direction. The

same separation is made for the cavity c, whereas the neck n is not divided but

seen as one Zwikker and Kosten duct oriented in y direction.

In Appendix A, the Zwikker and Kosten local theory is expressed for tubes

of circular cross-section. For 2D slits, exactly the same general principles of
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A4

A3

4

L

L

109

A5

5 A6

6

87

1 2 3
A2

A1

A7 A9

A10A8

x

y

Figure 4.3: Illustration of slit portions. Different positions are indicated by (n),
and different amplitudes by An, n = 1, ..., 10.

modelling may be used; only some details of the calculations are changed.

The cross-section averages become the aforementioned overlines, and the bessel

functions J0 and J1 are replaced by cosh and sinh functions. Zwikker and Kosten’s

effective densities ρα(ω) and bulk moduluii χ−1
α (ω) in the guide, neck and cavity,

will be [4]

ρα(ω) = ρ0

[

1− tanh
√

−iωρ0s2α/η
√

−iωρ0s2α/η

]−1

, α = t, n, c (4.3a)

χ−1
α (ω) = γP0

[

1 + (γ − 1)
tanh

√

−iωρ0cps2α/κ
√

−iωρ0cps2α/κ

]−1

, α = t, n, c (4.3b)

where the indexes t, n, and c are related to the tube, neck, and cavity respectively,

cp is the heat capacity at constant pressure, γ = cp/cv the ratio of the heat

capacities at constant pressure and constant volume, κ the coefficient of thermal

conductivity, ρ0 the fluid density at rest, and P0 the fluid pressure at rest.

The corresponding wavenumbers kα(ω) and characteristic admittances Yα(ω) are
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expressed as

kα =
ω

cα
, α = t, n, c (4.4)

Yα(ω) =
2sα
ραcα

, α = t, n, c (4.5)

where cα = 1/
√
ραχα, is the corresponding Zwiker and Kosten’s phase velocity.

Notice that we include the slit width 2sα in the definition of the characteristic

admittance, because it simplifies the subsequent writing of continuity conditions;

in what follows we replace directly the 2sα by their values Σ, σ, and L− Σ− 2l.

Now, we start writing the Zwikker and Kosten’s equations in the different parts

of the periodic cell. In the main tube, we have

−iω
ρt(ω)

Σ
Vt = −∂Pt

∂x
+ f (4.6a)

iωΣχt(ω)Pt =
∂Vt

∂x
(4.6b)

where, Vt = VxΣ is the flow rate field in the tube, with Vx the x-component of

the velocity in the sense of Zwikker and Kosten (averaged over the section), and

Pt is the Zwikker and Kosten’s pressure in the tube. In the neck, the external

excitation having no y-component

iω
ρn(ω)

σ
Vn =

∂Pn

∂y
(4.7a)

iωσχn(ω)Pn =
∂Vn

∂y
(4.7b)

where, Vn = Vyσ is the flow rate, with Vy the y-component of the velocity, and

Pn is the Zwikker and Kosten’s pressure in the neck. In the cavity

−iω
ρc(ω)

L− Σ− 2l
Vc = −∂Pc

∂x
+ f (4.8a)

iω(L−Σ− 2l)χc(ω)Pc =
∂Vc

∂x
(4.8b)

where, Vc = Vy(L − Σ − 2l) is the flow rate and Pc the Zwikker and Kosten’s

pressure in the cavity.

The general solution of the non homogeneous equations (4.6) is written as the sum

of the general solution (Pt,h, Vt,h) of the homogeneous equations and a particular
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solution (Pt,p, Vt,p) of the non homogeneous equations

(

Pt

Vt

)

=

(

Pt,h

Vt,h

)

+

(

Pt,p

Vt,p

)

(4.9)

A general solution of the homogeneous equations (4.6) is written as

(

Pt,h

Vt,h

)

=

(

1

Yt

)

A+eiktx +

(

1

−Yt

)

A−e−iktx (4.10)

whereA+ and A− are the amplitudes of the plane waves in direction of the positive

x-axis and negative x-axis, respectively. The following particular solution can be

considered

(

Pt,p

Vt,p

)

=

(

Bt

Ct

)

f0e
ikx (4.11)

where Bt and Ct are two constants (for each ω) to be determined. Substituting

(4.11) in (4.6) gives the two constants

Bt =
ikχ−1

t

k2χ−1
t − ω2ρt

(4.12a)

Ct =
iωΣ

k2χ−1
t − ω2ρt

(4.12b)

The particular solution is the same in the left and right portions. On the contrary

and because of the presence of the neck, the general solution will have different

amplitude constants in the left and right portions. Thus, the general solution of

Eq.(4.6) in the main tube can be written as

(

Pt

Vt

)

=

(

1

Yt

)

A1f0e
iktx +

(

1

−Yt

)

A2f0e
−iktx +

(

Bt

Ct

)

f0e
ikx (4.13a)

(

Pt

Vt

)

=

(

1

Yt

)

A3f0e
iktx +

(

1

−Yt

)

A4f0e
−iktx +

(

Bt

Ct

)

f0e
ikx (4.13b)

where (4.13a) corresponds to the left part of the tube, and (4.13b) to the right

part. The constants A1, A2, A3, and A4 are the amplitude-relating constants to

be determined.

The general solution of Eqs.(4.7), (Pn, Vn) has the form

(

Pn

Vn

)

=

(

1

Yn

)

A5f0e
ikny +

(

1

−Yn

)

A6f0e
−ikny (4.14)
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where A5 and A6 are the neck amplitude-relating constants to be determined.

Similar to the case of the tube, the general solution of the non homogeneous

equations (4.8) is written as the sum of the general solution of the homogeneous

equation (Pc,h, Vc,h) and a particular solution of the non homogeneous equations

(Pc,p, Vc,p) in the right or left part of the cavity

(

Pc

Vc

)

=

(

Pc,h

Vc,h

)

+

(

Pc,p

Vc,p

)

(4.15)

The general solution (Pc, Vc) of the homogeneous equation is of the same form as

(4.10), both in the left and right part of the cavity but with different amplitudes.

We can find a particular solution as

(

Pc,p

Vc,p

)

=

(

Bc

Cc

)

f0e
ikx (4.16)

where Bc and Cc are two constants to be determined. Substituting (4.16) in (4.8)

will give the two constants

Bc =
ikχ−1

c

k2χ−1
c − ω2ρc

(4.17a)

Cc =
iω(L− Σ− 2l)

k2χ−1
t − ω2ρt

(4.17b)

Thus, the general solution of Eq.(4.8) in the cavity can be written as

(

Pc

Vc

)

=

(

1

Yc

)

A7f0e
ikcx +

(

1

−Yc

)

A8f0e
−ikcx +

(

Bc

Cc

)

f0e
ikx (4.18a)

(

Pc

Vc

)

=

(

1

Yc

)

A9f0e
ikcx +

(

1

−Yc

)

A10f0e
−ikcx +

(

Bc

Cc

)

f0e
ikx (4.18b)

where (4.18a) corresponds to the left part of the cavity, and (4.18b) to the right

part. The constants A7, A8, A9 and A10 are the amplitude-relating constants to

be determined.

Indeed, in the framework of our simple plane-wave modelling, there are 10

relations concerning the flow rate and pressure, which are assumed to be verified.

These continuity relations involve the values of the fields at different locations

indicated by numbers (n = 1, ..., 10) in Fig.4.3. We now proceed to write them.

1- The Bloch condition results in P
(4)
t = eikLP

(1)
t , then

A3e
i
ktL

2 +A4e
−i

ktL

2 = eikL
(

A1e
−i

ktL

2 +A2e
i
ktL

2

)

(4.19)
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2- Again, because of the Bloch condition, V
(4)
t = eikLV

(1)
t , therefore

A3e
i
ktL

2 −A4e
−i

ktL

2 = eikL
(

A1e
−i

ktL

2 −A2e
i
ktL

2

)

(4.20)

3- We assume the continuity of the pressure at the junction (2)-(3), P
(3)
t = P

(2)
t ,

then

A3 +A4 = A1 +A2 (4.21)

4- We assume the continuity of the pressure at the junction (5)-(2), P
(5)
n = P

(2)
t ,

then

A5e
−i knl

2 +A6e
i knl

2 = A1 +A2 +Bt (4.22)

5- The flow rate at the junction (2)-(3)-(5) is assumed to verify V
(2)
t −V

(3)
t = V

(5)
n ,

which yields

Yt

(

A1 −A2 −A3 +A4
)

= Yn

(

A5e
−i knl

2 −A6e
i knl

2

)

(4.23)

6- The continuity of the pressure at the junction (6)-(7), P
(6)
n = P

(7)
c results in

A5e
i knl

2 +A6e
−i knl

2 = A7 +A8 +Bc (4.24)

7- The flow rate at the junction (6)-(7)-(8) is assumed to verify V
(6)
n +V

(7)
n = V

(8)
c

Yn

(

A5e
i knl

2 −A6e
−i knl

2

)

+ Yc(A7 −A8) = Yc(A9 −A10) (4.25)

8- The pressure is continuous at (7)-(8) P
(7)
c = P

(8)
c then,

A7 +A8 = A9 +A10 (4.26)

9- The flow rate vanishes at the interface solid-fluid, V
(9)
c = 0, we have

Yc

(

A7e
−i

kc(L−l)
2 −A8e

i
kc(L−l)

2

)

= −Cce
−i

k(L−l)
2 (4.27)

10- The flow rate vanishes at the interface solid fluid, V
(9)
c = 0, we have

Yc

(

A9e
i
kc(L−l)

2 −A10e
−i

kc(L−l)
2

)

= −Cce
−i

k(L−l)
2 (4.28)

As such, we have 10 equations (4.19-4.28) for 10 unknowns amplitudes A1, .., A10.

Once these are determined, we will have all the Zwikker and Kosten’s fields
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through Eqs.(4.13), (4.14), and (4.18). At this point, we can easily obtain the

cell averages 〈v〉 and 〈pv〉. Let us start with 〈v〉 regarding the fact that the

Zwikker and Kosten’s flow rate has no component along the x-axis

〈v〉 = 1

L2

(

∫ 0

−L/2
Vt dx+

∫ L/2

0
Vt dx+

∫ 0

−(L−l)/2
Vc dx+

∫ (L−l)/2

0
Vc dx

)

(4.29)

Thus,

〈v〉 =
1

L2

∫ 0

−L/2

[

Cte
ikx + Yt

(

A1e
iktx −A2e

−iktx
)]

dx (4.30)

+
1

L2

∫ L/2

0

[

Cte
ikx + Yt

(

A3e
iktx −A4e

−iktx
)]

dx

+
1

L2

∫ 0

−(L−l)/2

[

Cce
ikx + Yc

(

A7e
ikcx −A8e

−ikcx
)]

dx

+
1

L2

∫ −(L−l)/2

0

[

Cce
ikx + Yc

(

A9e
ikcx −A10e

−ikcx
)]

dx

Similarly, we can compute 〈pv〉 through the following relation

〈pv〉 = 1

L2

(

∫ 0

−L/2
PtVt dx+

∫ L/2

0
PtVt dx+

∫ 0

−(L−l)/2
PcVc dx+

∫ (L−l)/2

0
PcVc dx

)

(4.31)

thereby, we have

〈pv〉 = 1

L2

∫ 0

−L
2

(

Bte
ikx +A1e

iktx +A2e
−iktx

) [

Cte
ikx + Yt

(

A1e
iktx −A2e

−iktx
)]

dx

+
1

L2

∫ L
2

0

(

Bte
ikx +A3e

iktx +A4e
−iktx

) [

Cte
ikx + Yt

(

A3e
iktx −A4e

−iktx
)]

dx

+
1

L2

∫ 0

−L−l
2

(

Bce
ikx +A7e

ikcx +A8e
−ikcx

) [

Cce
ikx + Yc

(

A7e
ikcx −A8e

−ikcx
)]

dx

+
1

L2

∫ −L−l
2

0

(

Bce
ikx +A9e

ikcx +A10e
−ikcx

) [

Cce
ikx + Yc

(

A9e
ikcx −A10e

−ikcx
)]

dx

Now, we can obtain explicitly the effective density function ρ(ω, k) through

Eq.(4.1). In the next section, the effective bulk modulus is computed in a similar

way but with a different excitation term, and with exactly the same conditions

on the flow rate and pressure fields at different junctions.
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4.3 Determination of nonlocal effective bulk modulus

Considering the periodic cell (Fig.4.3), when a harmonic stirring heating Q̇(t, x) =

Q̇0e
−iωt+ikx = −iωβ0T0P0e

−iωt+ikx is applied in the medium, we write the

Zwikker and Kosten’s equations, in each part of the resonator: tube, neck, and

cavity. The aim is to obtain the function χ−1(ω, k) (see chapter 1)

χ−1(ω, k) =
P(ω, k) + P0

〈b′(ω, k,x)〉 + φγχ0P0
(4.32)

In the main tube, we write

−iω
ρt(ω)

Σ
Vt = −∂Pt

∂x
(4.33a)

iω (Σχt(ω)− γΣχ0)P0 + iωΣχt(ω)Pt =
∂Vt

∂x
(4.33b)

The first term of the second equation might not seem to be obvious but follows

the very procedure (1.60) seen in nonlocal theory. In the neck, the equations are

written as

iω
ρn(ω)

σ
Vn =

∂Pn

∂y
(4.34a)

iω (σχn(ω)− γσχ0)P0eikx + iωσχn(ω)Pn =
∂Vn

∂y
(4.34b)

where the term P0eikx comes from the averaging of Q̇ over the neck section. Here

also, the second equation might not appear obvious, but follows the procedure

(1.60) seen in nonlocal theory. In the cavity

−iω
ρc(ω)

L− Σ− 2l
Vc = −∂Pc

∂x
(4.35a)

iω(L− Σ− 2l) [(χc(ω)− γχ0)P0 + χc(ω)Pc] =
∂Vc

∂x
(4.35b)

The general solution of the non homogeneous equations (4.33) is written as

the sum of the general solution of the homogeneous equation (Pt,h, Vt,h) and

a particular solution of the non homogeneous equations (Pt,p, Vt,p) in the right or

left part of the tube

(

Pt

Vt

)

=

(

Pt,h

Vt,h

)

+

(

Pt,p

Vt,p

)

(4.36)
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A general solution of the homogeneous equations (4.33) is written as

(

Pt,h

Vt,h

)

=

(

1

Yt

)

A+eiktx +

(

1

−Yt

)

A−e−iktx (4.37)

whereA+ and A− are the amplitudes of the plane waves in direction of the positive

x-axis and negative x-axis, respectively. The following particular solution can be

considered

(

Pt,p

Vt,p

)

=

(

Bt

Ct

)

P0e
ikx (4.38)

where Bt and Ct are two constants to be determined. Substituting (4.38) in (4.33)

gives the two constants

Bt =
ikχ−1

t

k2χ−1
t − ω2ρt

(

1− γχ0

χt

)

(4.39a)

Ct =
iωΣ

k2χ−1
t − ω2ρt

(

1− γχ0

χt

)

ik (4.39b)

Thus, the general solution Eq. (4.33) in the tube can be written as

(

Pt

Vt

)

=

(

1

Yt

)

A1P0e
iktx +

(

1

−Yt

)

A2P0e
−iktx +

(

Bt

Ct

)

P0e
ikx (4.40a)

(

Pt

Vt

)

=

(

1

Yt

)

A3P0e
iktx +

(

1

−Yt

)

A4P0e
−iktx +

(

Bt

Ct

)

P0e
ikx (4.40b)

where (4.40a) corresponds to the left part of the tube, and (4.40b) to the right

part. The constants A1, A2, A3 and A4 are the amplitude-relating constants to

be determined.

As for the tube, the general solution of the non homogeneous equations (4.34)

in the neck, is written as the sum of the general solution (Pn,h, Vn,h) of

the homogeneous equations and a particular solution (Pn,p, Vn,p) of the non

homogeneous equations

(

Pn

Vn

)

=

(

Pn,h

Vn,h

)

+

(

Pn,p

Vn,p

)

(4.41)

We can find a particular solution in the following form

(

Pn,p

Vn,p

)

=

(

Bn

Cn

)

P0e
ikx (4.42)
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where Bn and Cn are two constants to be determined. Substituting (4.42) in

(4.34) gives the two constants

Bn =
2

kσ

(

γχ0

χn
− 1

)

sin
kσ

2
(4.43a)

Cn = 0 (4.43b)

To obtain the above expression for Bn, the average eikx has been easily calculated

eikx =
1

σ

∫ σ/2

−σ/2
eikxdx =

2

kσ
sin

kσ

2
(4.44)

Thus, the general solution of Eq.(4.34) in the neck can be written as

(

Pn

Vn

)

=

(

1

Yn

)

A5P0e
ikny +

(

1

−Yc

)

A6P0e
−ikny +

(

Bn

0

)

P0 (4.45)

where A5 and A6 are amplitude-relating constants to be determined.

In a similar manner, the general solution of Eq.(4.35) is written as the sum of the

general solution for homogeneous equation and a particular solution which can

be found as

(

Pc,p

Vc,p

)

=

(

Bc

Cc

)

P0e
ikx (4.46)

where Bc and Cc are two constants to be determined. As it has been done before,

substituting (4.46) in (4.35) gives the two constants

Bt =
ikχ−1

c

k2χ−1
c − ω2ρc

(

1− γχ0

χc

)

(4.47a)

Ct =
iω(L− Σ− 2L)

k2χ−1
c − ω2ρc

(

1− γχ0

χc

)

ik (4.47b)

The general solution, then, is expressed as

(

Pc

Vc

)

=

(

1

Yc

)

A7P0e
ikcx +

(

1

−Yc

)

A8P0e
−ikcx +

(

Bc

Cc

)

P0e
ikx (4.48a)

(

Pc

Vc

)

=

(

1

Yc

)

A9P0e
ikcx +

(

1

−Yc

)

A10P0e
−ikcx +

(

Bc

Cc

)

P0e
ikx (4.48b)

where (4.48a) corresponds to the left part of the cavity, and (4.48b) to the right

part. The constants A7, A8, A9, and A10 are the amplitude-relating constants to

be determined.
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As in the previous section, in the framework of our modelling, there are 10

relations which are assumed to be verified, allowing to relate the flow rate and

pressures at different indicated points in Fig.4.3. The assumptions for the flow

rate and pressure at different junctions are the same as considered in the previous

section:

P
(4)
t = eikLP

(1)
t (4.49a)

V
(4)
t = eikLV

(1)
t (4.49b)

P
(3)
t = P

(2)
t (4.49c)

P (5)
n = P

(2)
t (4.49d)

V
(2)
t − V

(3)
t = V (5)

n (4.49e)

P (6)
n = P (7)

c (4.49f)

V (6)
n + V (7)

n = V (8)
c (4.49g)

P (7)
c = P (8)

c (4.49h)

V (9)
c = 0 (4.49i)

V (10)
c = 0 (4.49j)

which, respectively, result in the following relations

A3e
i
ktL

2 +A4e
−i

ktL

2 = eikL
(

A1e
−i

ktL

2 +A2e
i
ktL

2

)

(4.50a)

A3e
i
ktL

2 −A4e
−i

ktL

2 = eikL
(

A1e
−i

ktL

2 −A2e
i
ktL

2

)

(4.50b)

A3 +A4 = A1 +A2 (4.50c)

A5e
−i knl

2 +A6e
i knl

2 +Bn = A1 +A2 +Bt (4.50d)

Yt

(

A1 −A2 −A3 +A4
)

= Yn

(

A5e
−i knl

2 −A6e
i knl

2

)

(4.50e)

A5e
i knl

2 +A6e
−i knl

2 +Bn = A7 +A8 +Bc (4.50f)

Yn

(

A5e
i knl

2 −A6e
−i knl

2

)

+ Yc(A7 −A8) = Yc(A9 −A10) (4.50g)

A7 +A8 = A9 +A10 (4.50h)

Yc

(

A7e
−i

kc(L−l)
2 −A8e

i
kc(L−l)

2

)

= −Cce
−i

k(L−l)
2 (4.50i)

Yc

(

A9e
i
kc(L−l)

2 −A10e
−i

kc(L−l)
2

)

= −Cce
−i

k(L−l)
2 (4.50j)

These 10 equations (4.50a-4.50j) on the 10 unknownsA1, ..., A10 wholly determine

the latter. Once the amplitudes are determined, we have all the Zwikker and

Kosten’s fields through the equations (4.40), (4.45) and (4.48). At this point, we
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can obtain the averages 〈v〉 and 〈pv〉 through the following expressions

〈v〉 = 1

L2

(

∫ 0

−L/2
Vt dx+

∫ L/2

0
Vt dx+

∫ 0

−(L−l)/2
Vc dx+

∫ (L−l)/2

0
Vc dx

)

(4.51)

Thus,

〈v〉 =
1

L2

∫ 0

−L/2

[

Cte
ikx + Yt

(

A1e
iktx −A2e

−iktx
)]

dx (4.52)

+
1

L2

∫ L/2

0

[

Cte
ikx + Yt

(

A3e
iktx −A4e

−iktx
)]

dx

+
1

L2

∫ 0

−(L−l)/2

[

Cce
ikx + Yc

(

A7e
ikcx −A8e

−ikcx
)]

dx

+
1

L2

∫ −(L−l)/2

0

[

Cce
ikx + Yc

(

A9e
ikcx −A10e

−ikcx
)]

dx

Similarly, 〈pv〉 will be computed by

〈pv〉 = 1

L2

(

∫ 0

−L/2
PtVt dx+

∫ L/2

0
PtVt dx+

∫ 0

−(L−l)/2
PcVc dx+

∫ (L−l)/2

0
PcVc dx

)

(4.53)

thereby, we have

〈pv〉 = 1

L2

∫ 0

−L
2

(

Bte
ikx +A1e

iktx +A2e
−iktx

) [

Cte
ikx + Yt

(

A1e
iktx −A2e

−iktx
)]

dx

+
1

L2

∫ L
2

0

(

Bte
ikx +A3e

iktx +A4e
−iktx

) [

Cte
ikx + Yt

(

A3e
iktx −A4e

−iktx
)]

dx

+
1

L2

∫ 0

−L−l
2

(

Bce
ikx +A7e

ikcx +A8e
−ikcx

) [

Cce
ikx + Yc

(

A7e
ikcx −A8e

−ikcx
)]

dx

+
1

L2

∫ −L−l
2

0

(

Bce
ikx +A9e

ikcx +A10e
−ikcx

) [

Cce
ikx + Yc

(

A9e
ikcx −A10e

−ikcx
)]

dx
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We need also the expression for 〈b′〉 to obtain χ−1(ω, k). We obtain it in the

following way

− iω
〈

b′
〉

= − 1

L2

∫

∇ · v dxdy (4.54)

= − 1

L2

∮

v · n dS = − 1

L2

(

−V
(1)
t + V

(4)
t

)

= − 1

L2

[

2iCt sin
ktL

2
+ Yt

(

−A1e
−i

ktL

2 +A2e
i
ktL

2 +A3e
i
ktL

2 −A4e
−i

ktL

2

)

]

where n is the normal unit vector outward from the border of integration. In

the above, the first line comes from the microscopic mass balance equation. In

the second line the divergence theorem has been applied. The integral over the

normal component of the microscopic velocity is the difference of the outgoing

and ingoing flow rates at the exit and entrance sections of the tube.

Now, we can obtain explicitly the effective bulk modulus function χ−1(ω, k)

through Eq.(4.32).

4.4 Normal Bloch modes

In this section, we seek the macroscopic Bloch wavenumber kB of the least

attenuated wave propagating in the direction of positive x-axis, such that

(

P
(4)
t

V
(4)
t

)

= eikBL

(

P
(1)
t

V
(1)
t

)

(4.55)

With a field constituted of 10 Zwikker and Kosten’s slit waves, as illustrated in

Fig.4.3, will be associated 10 complex amplitudes A1, ..., A10. As before, on these

10 amplitudes there are the 2 relations (4.55) expressing the Bloch conditions,

and the 8 relations expressing the continuity equations. All these relations are

now homogeneous relations, so that nontrivial solutions will be obtained only if

the determinant vanishes. This condition will give the wavenumber kB .

The first step is to determine the entrance admittance of the resonator Yr =

V
(5)
n /P

(5)
n . The general solution of the homogeneous form of Eqs.(4.8) without

the forcing term, is written as

(

Pc

Vc

)

=

(

1

Yc

)

A1e
ikcx +

(

1

−Yc

)

A2e
−ikcx (4.56a)

(

Pc

Vc

)

=

(

1

Yc

)

A3e
ikcx +

(

1

−Yc

)

A4e
−ikcx (4.56b)
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where (4.56b) corresponds to the left part of the cavity, and (4.56b) to the right

part. Regarding the above equations, the three conditions

P (7)
c = P (8)

c (4.57a)

V (9)
c = 0 (4.57b)

V (10)
c = 0 (4.57c)

result in the three following relations

A2 = A1e
−ikc(L−l) (4.58a)

A3 = A1

(

1 + e−ikc(L−l)

1 + eikc(L−l)

)

(4.58b)

A4 = A1 (4.58c)

Using (4.56) combining with (4.58), gives

P (7)
c = A1

(

1 + eikc(L−l)
)

(4.59a)

V (7)
c = YcA1

(

1 + eikc(L−l)
)

(4.59b)

V (7)
c = YcA1

(

1 + e−ikc(L−l)

1 + eikc(L−l)
− 1

)

(4.59c)

Then, we can obtain the exprssions for P
(6)
n and V

(6)
n , through the following

already indicated continuity conditions

P (6)
n = P (7)

c (4.60a)

V (6)
n + V (7)

c = V (8)
c (4.60b)

which, subsequently, yields the impedance Y6 = V
(6)
n /P

(6)
n

Y6 = Yc

1+e−ikc(L−l)

1+eikc(L−l) − 1−
(

1− e−ikc(L−l)
)

1 + e−ikc(L−l)
(4.61)

= −2iYc
sin kc(L− l)

1 + cos kc(L− l)

Once, P
(6)
n and V

(6)
n are known, we can obtain P

(5)
n and V

(5)
n through

(

P
(5)
n

V
(5)
n

)

=

(

cos knl − i
Yn

sin knl

−iYn sin knl cos knl

)

(

P
(6)
n

V
(6)
n

)

(4.62)
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Thus, Yr is expressed as

Yr =
−iYn sin knl + Y6 cos knl

cos knl − iY6
Yn

sin knl
(4.63)

Now, we look for the macroscopic wavenumber kB . The following relations are

satisfied in the right and left part of the tube
(

P
(3)
t

V
(3)
t

)

=

(

cos ktL
2 − i

Yt
sin ktL

2

−iYt sin
ktL
2 cos ktL

2

)

(

P
(4)
t

V
(4)
t

)

(4.64a)

(

P
(1)
t

V
(1)
t

)

=

(

cos ktL
2 − i

Yt
sin ktL

2

−iYt sin
ktL
2 cos ktL

2

)

(

P
(2)
t

V
(2)
t

)

(4.64b)

Making use of Eq.(4.55), the above equations result in

(

P
(3)
t

V
(3)
t

)

= eikBL

(

cos ktL − i
Yt

sin ktL

−iYt sin ktL cos ktL

)

(

P
(2)
t

V
(2)
t

)

(4.65)

On the other hand, as we have seen before, the three following conditions are

assumed in the resonator

P
(3)
t = P

(2)
t (4.66a)

P (5)
n = P

(2)
t (4.66b)

V
(2)
t − V

(3)
t = V (5)

n (4.66c)

We have immediately

P
(3)
t = P

(2)
t =

1

Yr

(

V
(2)
t − V

(3)
t

)

(4.67)

Writing the two equations resulting from (4.65), and eliminating P
(3)
t and P

(2)
t

in these equations, gives





1
Yr

− eikBL
(

1
Yr

cos ktL− i
Yt

sin ktL
)

− 1
Yr

(

1 + eikBL cos ktL
)

eikBL
(

i Yt

Yr
sin ktL− cos ktL

)

1− eikBL iYt

Yr
sin ktL





(

V
(2)
t

V
(3)
t

)

=

(

0

0

)

(4.68)

The determinant of the coefficient matrix must vanish, if the above equations

have non-zeros solutions. This yields a second degree algebraic equation

e2ikBL −DeikBL + 1 = 0 (4.69)
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with

D =

(

2 cos ktL− i
Yr

Yt
sin ktL

)

(4.70)

which gives immediately the Bloch wave number

kB = − i

L
ln

(

D

2
±
√

D2

4
− 1

)

(4.71)

4.5 Results

For the geometry considered, the functions ρ(ω, k) and χ−1(ω, k), with k involved

in the excitation terms, can be determined within the approximations in the

framework of our modelling. Given these expressions, we know that according to

nonlocal theory the possible wavenumbers in the medium will be the solutions of

the following dispersion relation as it has been mentioned in previous chapters

ρ(ω, q)χ(ω, q)ω2 = q2 (4.72)
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Figure 4.4: Real and imaginary parts of the normal mode, computed by Bloch-
wave calculations, and nonlocal theory.
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Solving the equation (4.72) by a Newton scheme, we have checked that the

obtained expressions of ρ(ω, k) and χ−1(ω, q) are such that a complex solution

q(ω) to (4.72) exists, very close to the value kB(ω) in (4.71).

To perform the computations, we have set L = 1cm, Σ = 0.2L and σ = 0.015L.

For the initial values of k(ω), we have chosen the values of kB(ω) with a 10%

discrepancy. Fluid properties for all computations are presented in Table 4.1.

We see in Fig.4.4 that the real and imaginary parts of q computed by nonlocal

theory via Newton’s method converges exactly to the real and imaginary parts of

kB which has been computed by a simple Bloch-wave modelling without any

use of nonlocal theory. The horizental axis is a reduced frequency equal to

ωL/c0π, with c0 the adiabatic sound speed. As such, through nonlocal theory, the

‘metamaterial’ resonance behaviour of the medium can be perfectly described.

Table 4.1: Fluid properties used in all computations.

ρ0 T0 c0 η κ χ0 cp γ
(kg/m3) (K) (m/s) (kg ms−1) (Wm−1K−1) (Pa−1) (J kg−1K−1)

1.205 293.5 340.1391 1.8369× 10−5 2.57× 10−2 7.173× 10−6 997.5422 1.4

4.6 Conclusion

The porous matrix with a microgeometry in the form of Two-dimensional arrays

of Helmholtz resonators has been considered in this chapter to investigate the

validity of the proposed theory of sound propagation through porous media. We

have used the homogenization method in nonlocal theory and taking advantage

of a plane wave modelling to obtain the effective density and bulk modulus

functions in Fourier space. In the framework of the homogenization method,

we have employed Zwikker and Kosten’s equations governing the pressure and

velocity fields’ dynamics averaged over the cross-sections of the different parts

of Helmholtz resonators, in order to coarse-grain them to the scale of a periodic

cell containing one resonator. Once these two effective properties have been

determined, the corresponding least attenuated wavenumber of the medium

could be obtained through a dispersion equation established via nonlocal theory.

The frequency range has been chosen such that the structure-based resonance

phenomena could appear.

Indeed, an analytical modelling, has been performed to obtain the least

attenuated Bloch mode propagating in the medium. It has been shown that,
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the values of Bloch modes obtained in such a way, match exactly those computed

by the nonlocal approach. Consequently, we have observed that not only the

Bloch wave modelling, but also, especially, the modelling based on the new

theory could describe the resonance phenomena, which can be interpreted as

a demonstration of the influential effects of the spatial dispersion in the medium.

The Finite Element numerical simulations allowing to compute the wavenumbers,

in the same manner as has been done in chapter 3, are in progress to confirm the

approximations which has been applied in our modelling here.
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Conclusion

In this work, inspired by the electromagnetic theory and a particular thermo-

dynamic consideration relating to Umov-Poynting-Heaviside-Schoch, concept of

acoustic part of energy current density, we have presented a new nonlocal theory

of sound propagation in unbounded homogeneous rigid-frame porous media sat-

urated with a viscothermal fluid. Contrary to the classical local theory, this new

approach allows both for temporal and spatial dispersion, which appears in the

fact that the acoustic susceptibilities depend both on the frequency and wavenum-

ber. The theory has been formulated to be applied to either isotropic materials, or

to periodic materials having a symmetry axis along which the propagation is con-

sidered. In the framework of this theory, we have proposed a homogenization pro-

cedure to upscale the dynamics of sound propagation from Navier-Stokes-Fourier

scale to the volume-average scale, through solving two independent microscopic

action-response problems.

An important aspect of the new homogenization method is that, contrary to

classical method, there is no lengh-constraint to be considered alongside of its

development, thus, in principle, there is no frequency limit for the medium

effective properties to be valid. In absence of solid matrix, this procedure leads to

Kirchhoff-Langevin’s dispersion equation for sound propagation in viscothermal

fluids. This theory can be extended, in the future, to anisotropic, bounded media.

The new theory and upscaling procedure has been validated in three cases

corresponding to three different microgeometries of the porous structure. A

successful test of this theory has been made by a semi-analytical method, in the

simple case of cylindrical circular tubes filled with a viscothermal fluid. It has

been found that the wavenumbers and impedances predicted by nonlocal theory

match with those of the long-known Kirchhoff’s exact solution, while, the results

by local theory (Zwikker and Kosten’s) yield only the wavenumber of the least

attenuated mode, in addition, with a small discrepancy compared to Kirchhoff’s.
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Another validation case concerned the microgeometry of a two-dimensional

array of rigid cylinders. The propagation has been considered along one of

the perpendicular axis with which the square lattice can be constructed. The

microscopic equations relating to different action-response problems, which lead

to the effective density and bulk modulus of the medium according to nonlocal

and also local theories, have been solved by direct Finite Element numerical

simulations. These have been allowed to compute the corresponding phase

velocities of the least attenuated mode according to local and nonlocal approaches.

On the other hand, the phase velocity of the least attenuated Bloch wave has

been computed through a completely different quasi-exact multiple scattering

method taking into account the viscothermal effects. The results of computations

based on these three approaches have shown a remarkable agreement between the

nonlocal and multiple scattering phase velocity predictions in a wide frequency

range. Furthermore, the local theory which takes into account only the temporal

dispersion, has shown its limits relating to the frequency, to predict correctly

the phase velocity. There, we have observed clearly that the new upscaling

procedure, in fact, has imposed no length-constraint; what has been expressed in

the correct predictions at high frequency regime. It is conceivable in the future,

by improving the performance of the numerical method, to obtain the phase

velocities of the higher modes by nonlocal theory and compare them with those

obtained by multiple scattering method.

The last case which has been investigated in order to validate the nonocal theory

has been related to the microgeometry in the form of a daisy chained Helmholtz

resonators. Using the upscaling procedure in nonlocal theory and a plane wave

modelling led to two effective density and bulk modulus functions in Fourier space

(ω, k). In the framework of this upscaling procedure, we have employed Zwikker

and Kosten’s equations governing the pressure and velocity fields’ dynamics

averaged over the cross-sections of the different parts of Helmholtz resonators, in

order to coarse-grain them to the scale of a periodic cell containing one resonator.

Once these two effective properties have been determined, the corresponding least

attenuated wavenumber of the medium could be obtained through a dispersion

equation established via nonlocal theory. The frequency range has been chosen

such that the structure-based resonance phenomena could appear. Indeed, an

analytical modelling, then, has been performed to obtain the least attenuated

Bloch mode propagating in the medium. It has been shown that, the values

of Bloch modes obtained in such a way, match exactly those computed by the

nonlocal approach. Consequently, it has been observed that not only the Bloch

wave modelling, but also, especially, the modelling based on the new theory could

describe the resonance phenomena, which can be interpreted as a demonstration

of the influential effects of the spatial dispersion in the medium. As a matter of
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fact, the need for a correct description of spatial dispersion effects, has been the

motivation of the new macroscopic theory presented and validated here.





Appendix A

Zwikker and Kosten’s simplified

local theory

The complete equations of the wave propagation problem in the circular tube are

ρ0
∂v

∂t
= −∇p+ η∇2v +

(

ζ +
η

3

)

∇(∇ · v) (A.1a)

∂b

∂t
+∇ · v = 0 (A.1b)

γχ0p = b+ β0τ (A.1c)

ρ0cp
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ (A.1d)

for r < R, and

v = 0 (A.1e)

τ = 0 (A.1f)

at r = R.

The aim of Zwikker and Kosten’s theory is to find ρZW (ω) and χZW (ω), such

that in harmonic regime

ρZW (ω)
∂V

∂t
= −∂P

∂x
(A.2a)

χZW (ω)
∂P

∂t
= −∂V

∂x
(A.2b)

where V and P are the cross-section averages of velocity and pressure.
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Knowing ρZW (ω) and χZW (ω) would entirely characterize the tube propagation

characteristics. It would give the propagation constant

kZW = ω
√

ρZW (ω)χZW (ω) (A.3)

and the characteristic impedance of the progressive wave

ZZW =
√

ρZW (ω)χ−1
ZW (ω) (A.4)

We note first that, in addition to Eqs.(A.2), it must also be assumed a relation

between the cross-section average of excess temperature and pressure. This

relation, between 〈τ〉 and 〈p〉, would play the role of (A.2a) between V and P.

Using the similarity between (A.1a) and (A.1d) we write it as

ρ′ZW (ω)
∂τ

∂t
= β0T0

∂P

∂t
(A.5)

We note next that, combining (A.1b) and (A.1c) and averaging over a cross

section a general relation between ∂P/∂t, ∂τ/∂t, and ∂V/∂x can be obtained

γχ0
∂P

∂t
= −∂V

∂x
+ β0

∂τ

∂t
(A.6)

Thus, putting in this equation the relation (A.5) and using the general

thermodynamic identity (2.11), it is easy to verify that, once the functions χZW

and ρ′ZW exist, they must be related by

χZW (ω) = χ0

[

γ − (γ − 1)
ρ0cp

ρ′ZW (ω)

]

(A.7)

Now we observe that Eqs.(A.2) have exactly the same form as the Maxwellian

equations (2.58-2.61) with, however, the crucial difference that they are written

excluding spatial dispersion

∂B

∂t
+

∂V

∂x
= 0 (A.8a)

∂D

∂t
= −∂H

∂x
(A.8b)

D(t, x) =

∫ t

−∞
dt′ρZW (t− t′)V (t′, x) (A.8c)

H(t, x) =

∫ t

−∞
dt′χ−1

ZW (t− t′)B(t′, x), H ≡ P (A.8d)
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We explain later on in concluding paragraph, why, in this context, the field

H coincides with the mean pressure. For the moment, we note that Eqs.(A.2-

A.8), local in space, are incompatible with Eqs.(A.1). Indeed, as we have seen,

Eqs.(A.1) consistently lead to Maxwellian acoustic equations which are – contrary

to the above – nonlocal in time and also in space.

Thus, what Zwikker and Kosten’s theory is doing to arrive at equations having

the local form (A.2), is not to solve the complete equations (A.1), expressed

in the complete action-response problems (2.62-2.64) and (2.77-2.79), but, by

introducing various simplifying approximations and idealizations, to solve only

some truncated simplified versions of these equations.

The approximations are made in a way to capture the characteristics of the plane-

wave component fields, in the limit where the wavelengths are large compared to

the duct transverse dimensions. It is only in this limit that the functions ρZW and

χ−1
ZW of Zwikker and Kosten’s theory allow to describe with high precision the

propagation of the least-attenuated, plane wave mode. The simplified versions of

the equations, and action-response problems determining ρZW and χ−1
ZW , can be

directly guessed through the fact that they have to neglect spatial dispersion.

To compute the density, we consider that, since the wavelengths are very large

compared to the duct transverse dimensions, the spatial variation of the pressure

gradient term in Eq.(A.1a) can be neglected for the purpose of determining the

fluid velocity pattern across a section. We thus look at the response of the fluid

subjected to the action of an external driving force-per-unit-volume f , which

is a pure spatial constant, while harmonic in time (in any real physical wave

propagation problem, the temporal variation of the pressure gradient would mean

that this gradient is also, to some extent, spatially variable). In this circumstance

we have not only to replace the driving f in (2.64) by a spatial constant f0e
−iωt,

but also to drop the response pressure gradient term in (2.62). Indeed, in the

cylindrical duct geometry and with constant driving force, no response pressure is

generated and no compression-dilatation of the fluid occurs. Thus, we also have

to drop the two other fields b and τ . The resulting fictitious problem reads

∂v

∂t
= ν∇2v +

1

ρ0
f (A.9a)

∇ · v = 0 (A.9b)

for r < R, with

v = 0 (A.10a)
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at r = R, and the deriving force is given by

f = −∇P = exf0e
−iωt (A.11)

The corresponding density ρZW (ω), such that

−iωρZW (ω)〈v〉 = f (A.12)

or, to compare with (2.75)

ρZW (ω) =
f0

−iω〈u〉 (A.13)

is the wanted Zwikker and Kosten density. Straightforward calculations result in

1

ρZW (ω)
=

1

ρ0
[1− ξ(ω)] (A.14)

where ξ(ω) is the following relaxation function

ξ(ω) =
2J1

[

( iων R
2)1/2

]

( iων R
2)1/2J0

[

( iων R
2)1/2

] (A.15)

In a similar manner, to compute the compressibility, we now consider that in the

long-wavelength limit, the pressure driving term in Eq.(A.1d) may be viewed as

a pure spatial constant for the purpose of determining the excess temperature

response pattern, across a section. Thus we consider that this driving term acts

as a spatial constant β0T0∂p/∂t ≡ Q̇0e
−iωt with Q̇0 a constant. The resulting

fictitious heat conduction problem reads

∂τ

∂t
=

κ

ρ0cp
∇

2τ +
1

ρ0cp
Q̇ (A.16)

for r < R, and

τ = 0 (A.17)

at r = R, with

Q̇ = β0T0
∂P
∂t

= Q̇0e
−iωt (A.18)

The corresponding function ρ′ZW (ω), such that

−iωρ′ZW (ω)〈τ〉 = Q̇ (A.19)
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through straightforward calculations is given by

1

ρ′ZW (ω)
=

1

ρ0cp
[1− ξ(ωPr)] (A.20)

where ξZ(ω) is the previous relaxation function (A.15) and Pr = ηcp/κ is the

Prandtl number. Finally, as ρ′ZW is related to the compressibility χZW by the

relation (A.7), the end Zwikker and Kosten’s expression for χZW (ω) is written as

χZW (ω) = χ0 [1 + (γ − 1)ξ(ω Pr)] (A.21)

In conclusion, we note that, within the simplifying approximations made in

Zwikker and Kosten’s local theory, as the excess pressure gradient term in

Eq.(A.1a) is represented by the constant term f , and as the excess pressure time

derivative term in Eq.(A.1d) is represented by the constant term Q̇, the excess

pressure is replaced by a constant over the cross-section. Thus, when writing

the definition 〈up〉 = H〈u〉 of the H field, the pressure can be extracted from

the averaging operation and it turns out that H = p, which also yields H = P

since the pressure is constant. We now see why, in the framework of Zwikker and

Kosten’s local theory, no distinction is to be made between the mean pressure P

and the effective macroscopic pressureH. This remark extends more generally to

the case of the usual local description [8, Appendix A], which generalizes Zwikker

and Kosten’s local solution to the case of arbitrary geometries.
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This work is dedicated to present and validate a new and generalized macroscopic

nonlocal theory of sound propagation in rigid-framed porous media saturated with a

viscothermal fluid. This theory allows to go beyond the limits of the classical local

theory and within the limits of linear theory, to take not only temporal dispersion, but also

spatial dispersion into account. In the framework of the new approach, a homogenization

procedure is proposed to upscale the dynamics of sound propagation from Navier-Stokes-

Fourier scale to the volume-average scale, through solving two independent microscopic

action-response problems. Contrary to the classical method of homogenization, there is

no length-constraint to be considered alongside of the development of the new method,

thus, there is no frequency limit for the medium effective properties to be valid. In

absence of solid matrix, this procedure leads to Kirchhoff-Langevin’s dispersion equation

for sound propagation in viscothermal fluids.

The new theory and upscaling procedure are validated in three cases corresponding to

three different periodic microgeometries of the porous structure. Employing a semi-

analytical method in the simple case of cylindrical circular tubes filled with a viscothermal

fluid, it is found that the wavenumbers and impedances predicted by nonlocal theory

match with those of the long-known Kirchhoff’s exact solution, while the results by local

theory (Zwikker and Kosten’s) yield only the wavenumber of the least attenuated mode,

in addition, with a small discrepancy compared to Kirchhoff’s.

In the case where the porous medium is made of a 2D square network of cylindrical solid

inclusions, the frequency-dependent phase velocities of the least attenuated mode are

computed based on the local and nonlocal approaches, by using direct Finite Element

numerical simulations. The phase velocity of the least attenuated Bloch wave computed

through a completely different quasi-exact multiple scattering method taking into account

the viscothermal effects, shows a remarkable agreement with those obtained by the

nonlocal theory in a wide frequency range.

When the microgeometry is in the form of daisy chained Helmholtz resonators, using

the upscaling procedure in nonlocal theory and a plane wave modelling lead to two

effective density and bulk modulus functions in Fourier space. In the framework of

the new upscaling procedure, Zwikker and Kosten’s equations governing the pressure

and velocity fields’ dynamics averaged over the cross-sections of the different parts of

Helmholtz resonators, are employed in order to coarse-grain them to the scale of a

periodic cell containing one resonator. The least attenuated wavenumber of the medium

is obtained through a dispersion equation established via nonlocal theory, while an

analytical modelling is performed, independently, to obtain the least attenuated Bloch

mode propagating in the medium, in a frequency range where the resonance phenomena

can be observed. The results corresponding to these two different methods show that

not only the Bloch wave modelling, but also, especially, the modelling based on the new

theory can describe the resonance phenomena originating from the spatial dispersion

effects present in the macroscopic dynamics of the matarial.
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