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ABSTRACT

A developing embryo, consisting initially of identical cells, transforms
itself into a spatially organized structure made of distinct tissues with
clear boundaries. This process, known as pattern formation, is studied
in the field of developmental biology. Cell interaction plays a key role
in pattern formation, and the community effect is an example of such
an interaction.

A population of cells in an embryo is said to exhibit a community
effect when they form a cell community with a common identity by
virtue of exchanging diffusible signalling molecules (morphogens). This
effect helps the cell community to maintain a common gene expression
profile over an extended period of time, and to eventually differentiate
co-ordinately into a functional tissue, such as muscle.

Self-organizing processes like community effects are difficult to under-
stand intuitively. Instead, a satisfactory description can be given in the
form of a formal model. Several computational models of community
effects were given in the literature. However, the concept of space was
not explicitly included in these models, making it difficult to understand
how community effects participate in pattern formation.

In this work, we study the behaviour of a community effect in space
and investigate its roles in other pattern formation processes, using
computational modelling. Main contributions of this thesis are the fol-
lowing:

e A model reduction method is developed for stochastic analysis,
and using it we have shown how the model of the community
effect in Xenopus is influenced by stochastic noise.

e Using the simplest possible spatial community effect model, we
show that the community effect must eventually spread across
the entire population of cells which respond to the morphogen.
This is confirmed in a more detailed model.

e Two models demonstrating how this expansion can be controlled
are presented. First, if the community effect is augmented with a
negative feedback mechanism, it forms a reaction-diffusion system
which self-organizes and forms a stable, localized area of activa-
tion. Second, when a simple cross-repression gene circuitry is
combined with a community effect loop, a gene expression pat-
tern with a well-demarcated boundary appears in response to a
transient morphogen gradient. The pattern remains stable even
after the gradient disappears, which shows that the gene network
has the memory of morphogen dynamics.






RESUME

Un embryon, initialement composé de cellules identiques, se transforme
progressivement en une structure spatialement organisée de tissus dis-
tincts aux frontiéres clairement démarquées. Ce processus de formation
de motifs est étudié dans le domaine de la biologie du développement.
Les interactions cellulaires jouent un roéle clé dans la formation de mo-
tifs, et 'effet de communauté est un exemple d’une telle interaction.

Une population de cellules dans un embryon présente un effet de com-
munauté quand elle forme une communauté de cellules ayant une iden-
tité commune obtenue grace & 1’échange de molécules de signalisation
qui diffusent dans le milieu (i.e. des morphogenes). Cet effet permet
aux cellules de la communauté de maintenir un profil d’expression géné-
tique commun pendant une période prolongée, et pour se différencier
finalement de maniére coordonnée dans un tissu fonctionnel, comme le
muscle.

Les processus auto-organisés tels que l'effet de communauté sont dif-
ficiles & comprendre intuitivement. Une description satisfaisante peut
étre obtenue sous la forme d’un modéle formel. Quelques modéles com-
putationnels des effets de la communauté ont été donnés dans la lit-
térature. Cependant, la notion d’espace n’ayant pas été explicitement
incluse dans ces modéles, il est difficile de comprendre comment 1’effet
de communauté participe a la formation de motifs.

Dans ce travail, nous étudions le comportement de l'effet de com-
munauté dans ’espace et étudions ses réles dans d’autres processus de
formation de motif, en utilisant la modélisation computationnelle. Les
contributions principales de cette thése sont les suivantes:

e Une méthode de réduction de modéle est développée pour 'analyse
stochastique. Par cette méthode nous avons pu démontrer que le
modéle de l'effet de communauté dans Xenopus est influencé par
un bruit stochastique.

e En utilisant un modéle spatial simple d’effet de communauté, nous
montrons que celui-ci doit finalement se propager dans I’ensemble
de la population de cellules qui réagissent au morphogéne. Cela
est confirmé par un modéle plus détaillé.

e Deux modéles montrant comment cette expansion peut étre con-
trolée sont présentés. Tout d’abord, si 'effet de communauté est
augmenté d’un mécanisme de rétroaction négative, il forme un sys-
téme de réaction-diffusion qui s’auto-organise et forme une zone
d’activation stable et localisée. En second lieu, quand un circuit
simple de repression génétique est associé au circuit produisant
leffet de communauté, un motif d’expression de géne avec une



frontiére bien démarquée apparait en réponse & un gradient de
morphogéne transitoire. Le motif reste stable y compris aprés dis-
parition du gradient, ce qui indique que le réseau de génes garde
en mémoire la dynamique du morphogéne.
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INTRODUCTION

1.1 COMMUNITY EFFECTS

During animal development from a fertilized egg (a single cell) into a
multicellular organism, embryos undergo complex series of transforma-
tions. By activating specific sets of genes, identical cells differentiate
and are partitioned into distinct tissues with clear boundaries. Differ-
entiating tissues are simultaneously patterned and moved to their final
destinations. This biological process, in which an organism develops its
shape, is called morphogenesis — a term coined in the late 1gth century,
having as origin the Greek words morphe (shape) and genesis (origin,
creation, generation). During the self-organized, finely regulated pro-
cess of morphogenesis, cells constantly create and exchange information
by means of diffusible factors. These signalling molecules diffuse from
a central source to other cells in the growing organism, forming a con-
centration gradient along an axis. Alan Turing introduced the term
morphogen for diffusible factors in development, in his seminal paper
The chemical basis of morphogenesis |Turing, 1952]. A morphogen is
rigorously defined as a diffusing chemical whose concentration varies
across the embryo and which is involved in pattern formation. Cells
respond differently to different concentrations of the morphogen, and
effectively its concentration provides positional information [Wolpert
et al., 1998].

A community effect is a developmental phenomenon allowing to es-
tablish a cell community with a common identity. Upon reception of
an inducing signal, a cell population starts co-ordinately expressing a
specific set of genes. Whenever the population size exceeds a certain
critical threshold, the cells maintain their common gene expression pro-
file over an extended period of time. Upon terminal differentiation, the
cell community has become a functional tissue, such as muscle.

A community effect was first identified in the African clawed toad
Xenopus laevis, where it assists differentiation of muscle precursor cells
[Gurdon, 1988, Gurdon et al., 1993]. In the experiments, Gurdon took
mesoderm cells from ¢ hours old Xenopus embryos, separated them,
and then inserted them into a structure that he called sandwich, which
is two layers of 7 hours old ectoderm tissue. The mesoderm cells are
implanted between the two layers. The cells were left there for 20 hours,
and then tested for presence of Xenopus MyoD protein, which is only
expressed in the nuclei of muscle cells. The presence of XMyoD means
that the cell has differentiated into muscle. Figure 1 shows the diagram
of these experiments.
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Figure 1: Diagram of sandwich experiments from [Gurdon et al., 1993].

Gurdon found that in order to differentiate into muscle, there must be
a large number, about 100 to 200, of mesoderm cells clustered together.
If this condition was not met, the XMyoD was not detected. This
suggested that cell to cell interaction is required to begin differentiation:
the cells could sense how many of their kind are around, hence the name
"community effect". The large number of cells needed, called the critical
number, means that the interaction is likely to be long-range, therefore
an involvement of a morphogen was hypothesized.

Community effects have subsequently been observed in other organ-
isms. Examples include the sea urchin oral ectoderm specification
[Bolouri and Davidson, 2010], differentiation of mesoderm cells into
muscle cells in mice [Cossu et al., 1995], differentiation of dorsal epi-
dermal anlage cells into epidermal cells in drosophila [Stiittem and
Campos-Ortega, 1991]. Community effect has been conjectured to be
a widespread phenomenon in development [Davidson, 2006].

The topic of this thesis is modelling of community effects. In partic-
ular, we consider in detail spatial aspects of community effects for the
first time.

1.2 WHY DO WE NEED MODELLING
In recent years, quantitative modelling has become an important ac-

tivity in biology. Theoreticians have modelled biological processes in a
purely mathematical way for a long time, for example [Turing, 1952].

12



However, these models were usually highly abstract and difficult to con-
nect to the real data collected in the labs, and thus largely ignored by
the wider community of "real biologists" [Barnes and Chu, 2010].

The main reason for this was that a mathematical modelling activity
usually seeks a simple formula which explains the relationship between
variables of the system in study. Such analytical solutions are attrac-
tive, because they provide an easily understandable insight into the
behaviour of the system. Unfortunately, for many real-world modelling
problems, which often feature many interactions and non-linear depen-
dencies between components, it is very hard or impossible to find such
exact solutions. This forced theoreticians to use models which were
simplified and abstract (e.g. pattern formation models of Turing [1952],
Gierer and Meinhardt [1972]).

Advances in computer science (for example, development of efficient
numerical analysis methods [Hildebrand, 1987]), as well as increasing
availability of computing power, have led to widespread application
of computational, numerical techniques to analyse models. Computa-
tional approaches can be often used to treat systems where attempts
for analytical solutions, even approximate, are currently hopeless. Us-
ing computational modelling to study biological systems is the topic of
the field of Computational Biology [Kitano, 2002]. The use of numerical
techniques has a price, however: results obtained in this way usually
take the form of numbers which depend on parameters of the model.
This dependency is often not obvious, which makes the results harder
to interpret compared to analytical approaches. Typically one has to
scan the parameter space in order to discover dependencies between
variables and draw general conclusions about the system’s behaviour.

In this thesis, we will model community effects using computational
modelling as the main tool, with an occasional excursion into analytical
treatment.

1.3 RESEARCH QUESTIONS AND CONTRIBUTIONS
1.3.1  Stochastic phenomena in community effects

During development, a multicellular organism must generate many dif-
ferent types of cells. Because the cells are genetically identical, differ-
entiation must rely on tuning expression levels of certain genes. Gene
expression is inherently noisy [Raj and van Oudenaarden, 2009], as is
cell signalling and generally all chemical processes which determine the
regulatory state of a cell. This noise ultimately comes from the Brow-
nian motion of molecules and takes the form of randomly fluctuating
counts of proteins involved in gene regulation.

This noise has been found to have a functional role in many processes
during development [Eldar and Elowitz, 2010, Balazsi et al., 2011|. How-
ever, the embryo must build the organism in a highly reproducible and
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robust way, despite the omnipresent noise. Mechanisms of noise reduc-
tion in embryo patterning is the subject of many studies [Arias and
Hayward, 2006, Horikawa et al., 2006].

Previous models of the community effect were mainly analysed in the
deterministic regime, ignoring the stochastic noise. Saka et al. [2011]
performed a stochastic analysis of their model of the community effect
in Xenopus. This analysis, which was the starting point of the present
thesis, indicated the presence of stochastic effects, but this was not
explored further. Therefore a more detailed analysis of the stochastic
behaviour is desirable. The questions here are: whether the community
effect in this model is robust with respect to stochastic noise, which
should be the case for a basic patterning mechanism in the embryo;
and how the stochastic effects affect the critical number.

The analysis performed in Chapter 3 shows that this model of the
community effect is still present if the stochastic noise is accounted for.
However, stochastic effects increase the critical number by about 20%.
The model was analysed using a method called moment closure. In gen-
eral, the computational complexity of this analysis grows quadratically
with the size of the model, and it becomes prohibitively high for the
community effect model with about 100 cells. The main contribution of
this part of the work is a new model reduction technique, first proposed
in Batmanov et al. [2012a], which exploits model’s symmetries. In a
highly symmetric model such as the space-less community effect, this
method makes the complexity of the analysis independent of number of
cells.

1.3.2  Spatial modelling of community effects

The space in which community effects occur was disregarded in pre-
vious models. However, different communities within the embryo are
spatially organized, with clearly demarcated boundaries. These impor-
tant phenomena could not be explained without explicit treatment of
space in the models. Therefore, to study properties of community ef-
fects in space, in Chapter 4 we adopt a spatial model in which cells
are arranged along a one-dimensional row. One dimensional space was
chosen for computational efficiency; it corresponds to spherically sym-
metric geometry in three dimensions. Diffusible factors for intercellular
communication can migrate from one cell to the two directly neighbour-
ing cells in this one dimensional grid. Although considering only one
dimension might appear simplistic, compared to the three dimensions
along which an embryo develops, we can obtain useful insights from it.

First we studied the minimal model of a community effect, which
is schematically illustrated in Figure 2a. This model, and the others
from this section, were first presented in [Batmanov et al., 2012b]. It
distils essential properties of previous community effect models. In this
model, there is a unique chemical species u, which is exchanged between

14
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Figure 2: Tllustrations of three models analysed in Chapter 4. The feedback
loop responsible for community effects is highlighted in red.

cells (thus being a morphogen) and promotes its own production. The
inducing signal for initial activation of u, which will be self-sustained
by the positive feedback loop, is represented by injecting some u at the
start of simulations into some cells.

We will show through stochastic simulations that, in this configura-
tion, a community effect spreads across the system. The central ques-
tion that arises is ‘How can we limit the community effect in space?’.
Intuitively, the system needs some negative feedback control mecha-
nism, which will limit the area of activation. To address this issue, we
propose two approaches.

THE TURING PATTERN MODEL adds a second diffusible factor v
with an inhibitory effect to the minimal model’s self-sustaining species
u. This second species is highlighted in black in Figure 2b. In order
to close the loop of mutual dependencies, u activates not only itself,
but also v. Intuitively, the effect of this seemingly small change in one
dimensional space is not clear. Using stochastic simulations, we obtain
the insight that in this system, the spread of the community effects in
space is restricted. How can this be explained?

Alan Turing’s paper, The Chemical Basis of Morphogenesis [Turing,
1952|, deals with the above network from the perspective of pattern for-
mation. Turing called it the reaction-diffusion system. When two dif-
fusible factors interact in the manner shown in Figure 2b, the reaction-
diffusion system may generate the so-called Turing patterns. The in-
tuitive explanation is that the inhibitor morphogen v, which diffuses
faster than the activator u, reaches distant areas of the population first,
and prevents their activation later. The result is an area of activation
centred on the place of initial induction, with a stable size and position.

It has been shown that this system can generate many diverse pat-
terns observed in development [Meinhardt, 1982], for instance, colour
stripes on fish skin [Kondo and Miura, 2010, Sanderson et al., 2006],
colourings of sea shells [Meinhardt, 19g5|, establishment of the left-
right asymmetry in vertebrates [Hamada et al., 2002] and plant growth
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[Jonsson et al., 2005]. The community effect, however, has not been
considered in the context of the reaction-diffusion system.

This model offers a plausible explanation of the community effect in
sea urchin, described by Bolouri and Davidson [2010], with u being the
Nodal protein and v its antagonist Lefty. Further evidence to support
this model is given by Duboc et al. [2008].

THE DYNAMIC MORPHOGEN GRADIENT MODEL sketched in
Figure 2¢ introduces a diffusible factor s, which activates two mutually
inhibitory species v and u. The latter participates in a self-activating
feedback loop with w, another diffusible species. Figure 2c highlights
the uw-w community effect loop in red. Without the community effect
loop and diffusion of the morphogen s in continuous space, this gene reg-
ulatory network (GRN) was previously considered in [Saka and Smith,
2007].

Mutual repression between two species is widespread, and results
in exclusive activation of either one species or the other |Cherry and
Adler, 2000]. It is often referred to as a genetic toggle switch, and
controls various aspects of cell fate decision, e.g., the genetic switch of
the bacteriophage lambda [Ackers et al., 1982, Ptashne, 2004], the gap
gene network [Jaeger et al., 2004a,b, Papatsenko and Levine, 2011], and
neural tube patterning [Ribes and Briscoe, 2009).

In our model, the morphogen s spreads along one dimensional space
from a localized source, and creates a morphogen gradient. It is pos-
tulated that embryonic cells learn their position by sensing the local
morphogen level in a gradient for pattern formation [Wolpert, 1969].
This system is analogous to embryonic induction, where one tissue in-
structs and patterns the neighbouring tissue by diffusible factors.

Analysing the dynamic morphogen gradient model, we demonstrate
that it efficiently limits community effects in continuous space. We
also show that a transient morphogen gradient is sufficient for pattern
formation in this system. This self-organizing property was previously
unknown. Our analysis using stochastic simulations of the system indi-
cates that community effects confer robustness to this patterning pro-
cess. Interestingly, we found that even when the morphogen distribu-
tion eventually becomes uniform, the system can maintain the pattern.
Thus our model confers memory to the system.

This model is based on a community effect GRN found in Xenopus,
as described in [Saka et al., 2011, Saka and Smith, 2007].

1.4 STRUCTURE OF THE THESIS

Chapter 2 gives an overview of modelling and analysis methods relevant
to the topic of the thesis. All techniques which are used in this work,
and their theoretical foundations, are explained.

16



Chapter 3 presents an extended stochastic analysis of a community
effect model without considering space. A major point there is the
proposed model reduction method which exploits symmetries in the
model to simplify the analysis.

Chapter 4 presents new spatial models of community effects. Various
properties of these models related to pattern formation in embryos are
studied.

Chapter 5 discusses findings of the work and connects them to related
works from the literature.

Conclusions in Chapter 6 provide the overview of the results and
outline directions for the future work.

1.5 PUBLICATIONS

This thesis is based on two publications:

e [Batmanov et al., 2012a] presents the symmetry-based model re-
duction method for moment closures, with an application to the
Xenopus community effect model without space.

e In [Batmanov et al., 2012b], the spatial models of community
effects were presented for the first time.

In addition, during the PhD study, the author participated in the
ICEBERG ANR project, in particular developing a microscopy image
processing tool. A paper about that is in preparation.
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COMPUTATIONAL MODELLING OF BIOLOGICAL
SYSTEMS

Computational biology in general is a diverse field. There are many
modelling techniques which are suitable for different problems [de Jong,
2002]. In developmental biology, three modelling scales are important:
molecular, cellular and tissue [Setty, 2012]. In the following we will
review modelling techniques which are necessary to demonstrate how
community effects at tissue level arises from a gene regulatory network
at the molecular level.

The main purpose of this review is to show how modelling methods
which will be used later are derived from first principles. In the author’s
opinion, it is important to understand that these methods, however
abstract they may seem, are firmly grounded in basic physical laws, with
clear assumptions which allow simplified treatments. Understanding
these assumptions helps choosing the right modelling approaches in
particular cases.

After defining a useful informal graphical way to easily describe mod-
els at high level in Section 2.1, we define a formal language of chemical
reactions in Section 2.2. Some basic definitions are given, and a short
overview of early empirical approaches to modelling the dynamics of
chemical reactions.

Section 2.3 lays the theoretical foundation for all other modelling
methods in this chapter by introducing the Smoluchowski model and
the Doi model. In these models, individual molecules are the basic
entities, and their positions and diffusion speeds are taken into account.

Section 2.4 considers an important class of models which all share
the assumption of fast diffusion. This assumption simplifies the state
representation of the model, as we only have to track population counts
of different molecular species.

Section 2.5 borrows some assumptions behind models in Section 2.4,
except the assumption of fast diffusion. The goal is to model systems
with slow diffusion efficiently, and thus make spatial modelling feasible.

2.1 GENE REGULATORY NETWORKS

A gene regulatory network (GRN) is a collection of genes which interact
with each other. An expressed (activated) gene produces its protein,
which may activate or inhibit expression of other genes or itself. An
schematic representation of a GRN may be given using a directed graph,
such as Figure 3, for example.
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Figure 3: A gene regulatory network.

A node in the graph represents a gene. The GRN on Figure 3 has
two genes, uw and v. Directed edges on the graph represent gene in-
teractions by means of protein production and subsequent regulation
of expression of another gene by that protein. A regular arrowhead
on the edge from u to v means that the interaction is activation of v
by the protein produced by u. We will simply say that u activates v.
Another regular arrow from u to itself denotes self-activation of w. A
T-shaped arrowhead on the edge from v to u represents inhibition of
u’s expression by v. Interactions may involve intermediate agents, such
as signalling pathways, which are usually omitted from the graph.

Graphical GRNs are useful to introduce and present models of ge-
netic interactions. Similar notations are widely used as a knowledge
representation language in biological literature [Alon, 2007, Davidson,
2010|. However, they are too abstract to faithfully represent the models
of biological mechanisms used in this thesis. In the following, a more
detailed modelling language will be reviewed, the language of chemical
reactions.

2.2 BIOCHEMICAL REACTION SYSTEMS

For studying the community effect, the scale of interest is gene regu-
lation and cell to cell communication. At this level, systems are often
modelled using chemical reactions [Bower and Bolouri, 2001], and this
will be the starting point for all the models that follow.

A chemical reaction

A+2B 5 3C+4D (1)

states that a molecule of type A can react with two molecules of type B
to produce three molecules C and four D. Molecules on the left side of
the arrow are called reactants, while molecules on the right are called
products. The numbers before molecule names are called stoichiomelric
coefficients. A reaction may have any number of reactants and products.
k is the reaction rate constant, which is a parameter specifying the speed
of this reaction. Reaction speeds are specified by functions, called rate
laws, which may depend on molecule counts and other parameters. An
unambiguous specification of this function must be written above the
arrow. Specification of the rate law as a reaction rate constant in this
case assumes the mass action law, which will be explained shortly.
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In general a reaction among n chemical species (we will write the
species as a sequence (X1,...,Xy) for notational convenience), can be
specified by a triplet (1, o, B). o = (&1,...,n) are stoichiometric
coefficients on the left hand side, corresponding to reactants. 3 =
(B1,...,Bn) are the stoichiometric coeflicients on the right hand side. 1
is an expression specifying the law used to compute the reaction speed,
which should return a real number. If a chemical species does not
participate in a certain reaction, its stoichiometric coefficient is 0.

For example, the reaction (1), if we order the species as (A, B, C, D),
has 1 = k[A][B]?, « = (1,2,0,0), B = (0,0,3,4). [A] and [B] are the
concentrations of A and B.

In order to analyse systems of chemical reactions, we need some way
to compute the reaction speeds, i.e. to define the aforementioned law.
In the following subsections, we will review empirical approaches to that
task. Later, starting from Section 2.3, we will follow a more principled
approach.

2.2.1  FEmpirical rate laws

Traditionally, chemical systems were analysed under assumption of con-
stant compartment volume, high molecule counts and fast diffusion. In
these conditions we can define reaction rate v [McNaught and Wilkinson,
1997], e.g. for the reaction above:

4 dt

dlA]  1d[B] 1dIC] 1dID]
S dt 24t 3 dt

where [A](t) is the concentration of species A in the compartment,
treated as a non-negative real number. The unit of v is concentration
per second, e.g. mol-17"-s71. The equalities follow from the mass con-
servation law: for each molecule A that disappears three C molecules
appear, hence % = —3%, and so on. Note that this definition is

only valid in a closed system where only a single reaction occurs.

Historically, the first approach to identify the laws governing reaction
speeds was purely empirical: a reaction was isolated to reasonably fulfil
the above conditions, and then concentrations of participating species
were measured over a period of time. It was found that the reaction
rate usually depends on concentrations of reactants, and also products
in case of reversible reactions [Connors, 1990]. For an elementary re-
action, i.e. a reaction which occurs in a single step and which has
no intermediate products created during the reaction, the law of mass
action is usually observed:
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For instance, if the reaction (1) is an elementary one, its rate would
be *

v = k[A][B]?

More generally, an arbitrary irreversible reaction is said to follow the
law of mass action if its rate follows the form

n
v=k]Jxiv
i=1

where [Xi] are the concentrations of n reactants involved in the reaction,
and yi is the order of reaction w.r.t. Xi. For elementary reactions
Yi = «;. The overall order of reaction is Y -, yi.

Sometimes it is useful to consider a chain of elementary reactions as
a single, non-elementary reaction. One example of this is an enzymatic
reaction, which is a fundamental reaction type in biochemical systems
[Chen et al., 2010|. The vast majority of reactions taking place in living
organisms are of this type |Erdi and Toth, 1992|. The canonical model
for an enzymatic reaction is the following system:

E+S =L C
kb

C K, pyp

It is a succession of a reversible binding step, where a substrate molecule
S binds to an enzyme (or catalyst) E, and a largely irreversible catalytic
step where the enzyme turns the substrate into the product P.

To provide a simple treatment of this important system, the following
assumptions are adopted:

1. All three reactions follow the law of mass action.

2. The enzyme does not participate significantly in other reactions,
therefore the conservation laws [E](t) + [Cl(t) = Eo, [SI(t) +
[C](t) + [P](t) = So hold.

3. The rate of the reversible reaction is much higher than the rate
of the catalytic step.

The last point allows to split the system into a fast and a slow one. For
the fast subsystem, defined by the reversible reaction, the concentration
of S is considered constant, since it changes slowly. For the slow subsys-
tem, the concentration of C is considered to be at its equilibrium limit
at all times (it is said to exhibit quasi-steady-state behaviour). Under
these conditions, the rate of change of S in the slow subsystem is

~ VinaxlS]
[S] +Km

Not to be confused with the stochastic propensity function, which will have a coef-
ficient of 1/2, see Section 2.4
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where Knpp = kc%:rkb is the Michaelis constant, and Vinax = KcatEo
is called the maximum rate. This v can be thought of as the rate of
the non-elementary reaction S — P, which is an approximation of the
enzymatic reaction system. This reaction is said to follow Michaelis-
Menten kinetic law.

2.2.2  Approzimating assumptions

Two treatments of chemical kinetics above are made for specific systems
and under many assumptions. To analyse an arbitrary system, a more
general theory is needed. We would like to derive analysis methods
for chemical systems from basic physical laws, using well-understood
assumptions to simplify calculations.

The main question of interest in biochemical systems is how the co-
operation between reactions gives rise to observed behaviours (rather
than, for example, details of mechanics of individual reactions) [Voit,
2000|. Therefore, the appropriate initial assumption about the system
is that we can ignore the internal states of the molecules. Namely we
ignore orientations, angular velocities and other states which are prac-
tically unobservable in the biological context. In addition, often entire
chains of reactions will be abstracted into a single reaction, ignoring the
intermediate steps |[Di Ventura et al., 2006]. Michaelis-Menten kinetics
above is one example of this. Another one is the transcription of a gene,
which is a complex set of events that creates mRNA from DNA. It is
typically represented as a single reaction.

Two important additional assumptions can be considered. One states
that we can ignore the positions of the molecules in space. Effectively
this assumes that within the compartment of interest the diffusion of
all molecules is so fast in comparison to the speed of the reactions that
it can be taken to be instantaneous. The mixture of chemicals under
these agsumption is spatially homogeneous, which simplifies the analysis
|Gillespie, 1976].

Another assumption that can be made is that the number of molecules
participating in the reactions is so large that the fluctuations of the
concentrations, which arise from the inherently random nature of the
reactions, are negligibly small. This can be formulated alternatively as
assumption of infinite volume of the compartment [Kurtz, 1972]. To-
gether with the well-mixed assumption this allows further (dramatic)
simplification of the analysis.

These approximating assumptions are not always reasonable for bio-
chemical systems. In the following we will review the hierarchy of anal-
yses developed for chemical reactions depending on which assumptions
can be made.
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2.3 MICROSCOPIC LEVEL MODELLING

First, consider the case when no additional approximating assumptions
are made. Then the behaviour of the system will depend on the posi-
tions of molecules in space, therefore the state of the system will include
coordinates of every molecule.

This is the most detailed level of modelling which is usually consid-
ered for biochemical systems. Correctness of various abstractions is
measured using this microscopic level as the standard.

2.3.1  Smoluchowski’s diffusion-limited reactions theory

One mathematical treatment of microscopic modelling was given by
Smoluchowski in his theory of kinetics of coagulating particles [Smolu-
chowski, 1917, Keizer, 1982, Fange et al., 2010|. In this framework, the
molecules are treated as points that diffuse in continuous space and
time.

In case of uni-molecular reactions, i.e. reactions which have only a
single reactant and its stoichiometric coefficient is one, the theory is
simple. Since we ignore internal states of molecules, for each small
period of time each molecule will have an equal probability to undergo
the reaction. Therefore the reactant undergoes an ezponential decay,
and the rate of this reaction can be computed as

v = A[A]

where [A] is the concentration of the reactant and A is the decay constant.
Note that this corresponds to the mass action law for this reaction with
k=A.

Reactions which involve more than two reactant molecules simulta-
neously, i.e. for which } ' ; a; > 2, are assumed to be non-elementary,
since the probability of more than two molecules colliding simultane-
ously is zero. In order to treat them, one has to decompose them to
elementary reactions first.

The most interesting case then is the bimolecular reaction, when
two molecules react with each other. In Smoluchowski’s model, a reac-
tion happens instantaneously when the distance between two reactant
molecules reaches a certain reaction radius R, which is the only param-
eter of the reaction. The reasoning behind this is that bimolecular
reaction rates are assumed to be diffusion-limited: the probability of a
reaction occurring when the reactants meet in space is so high that the
rate is determined only by diffusion speed. In a sense this is the inverse
of the well-mixed assumption mentioned earlier.

This framework leads to a kinetic theory of such reactions, i.e. a
description of this process from macroscopic perspective. As such, it
treats the system as a whole, and does not address for example, phe-
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nomena arising from inhomogeneous initial distributions of chemicals.
Later we will review more detailed treatments.

Consider a reaction A +B — A, with reaction radius R. First, assume
that there is one A molecule and a large amount of B. If we look at
distribution of B relative to the A molecule, we will find a gradient, be-
cause B is depleted in the vicinity of A. This gradient can be calculated
as follows [Rice, 1985]. Let the time-dependent density distribution of
B around A be

o(r,t) = [B](r,t)/[Bo] ()

where [Bo] is the initial concentration of B, [B](r,t) is the transient
concentration of B relative to A (here only the spherically symmetric
case is considered), T is the distance to A. The initial distribution is

1, >R
p(TIO) = (3)
0,r<R

which means that at time t = 0 the concentration of B is equal to [Bo]
everywhere except in the sphere of radius R around the A molecule.
Diffusion is considered in R3, therefore the boundary conditions are

p(r—=o00,t)=1,1

>0
p(R,t)=0,t >0

(4)
The first condition states that the concentration of B tends to its initial
value far from A. The second condition states that on the spherical
boundary of radius R around the A molecule B is always depleted.
Since A acts as a sink, there will be diffusion of B towards A, which
will form a gradient of B. To compute the speed of this diffusion, Fick’s
first law is used. This law was first empirically discovered by Adolf
Fick in 1855, and later derived from the Brownian motion theory, see
for example [Berg, 1993]. It relates the diffusive fluz, i.e. measure
of amount of substance which crosses a unit area per unit time, to

the concentration of the diffusing species. In the basic formulation, it
states:

] = DgVI[B]

where | is flux of B, i.e. the number of particles per unit time crossing
unit area, and Dy is called the diffusion coefficient of B (also diffusivity,
or Fick’s diffusion coefficient). V is the gradient operator in space
coordinates.

In our case, this simplifies to:

__d[B]
J=D%
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where D is the mutual diffusion coefficient, D = DA + Dg, the sum of
diffusion coefficients of A and B. The total number I of B molecules
crossing a sphere of radius x with centre at 0 per unit time is then

3E)
or

T=x

I(x) = 4mx?](x) = 47x?*D

Consider the quantity I(x) — I(x + dx), which is the speed of flow
(current) of B towards A crossing the sphere of radius x, minus the
current crossing the sphere of radius x + dx. This is the net loss of
B within a spherical shell of thickness dx per unit time. The volume
of this shell is 47tx?dx. Dividing the net loss of B in the shell by this
volume gives the rate of loss of concentration of B,

2
o8] _ (a [B] +za[B])

ot or2 r or

or, using (2)

op %p 20p
L _p(=-Lt, z=F
ot <8T2 t o
Generalizing the spherically symmetric case to arbitrary three dimen-
sional space, it can be shown that the Laplacian operator

0?2 0?2 02
~ a2 Toyz o2
should be used to express the diffusion:

% _

— DA
ot e

This is the well known heat equation, which can be solved analytically
using the initial condition (3) and the boundary conditions (4):

R R—r
p(T‘,t) =1-— ?erfc (W)

where erfc(x) = % fzo e—t’dt is the error function complement. The

steady state distribution of p is then

o(r,c0) =1— %
:

Now we can compute I(R), which is actually the rate of reaction of B
with the A reactant:

I(R) = 47RD(1 + R(4nDt)~'/?)[B]

Now consider the case of many A molecules sufficiently far from each
other such that the reactions of B with them do not affect each other.
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Then the rate of reaction per unit volume of all B reactants with all A
reactants will be I-[A]:
d[A]  d[B] 12
— = = 2 = 4nRD(1 + R(4nDt) /) [Bol[A
it it nRD(1 + R(47tDt)™ /<) [Bol[Al
It follows that the reaction rate coefficient as it is usually defined using
law of mass action is

k(t) = 4nRD(1 4+ R(4nDt)~"/?)

Note that the rate coefficient depends on time. In the long time limit,
the steady state rate constant is

k(oo) = 4nRD

This result is typically extrapolated, without justification, to any bi-
molecular reactions with any number of molecules [Waite, 1957]. Al-
though this derivation is intuitive and rests upon many assumptions, it
is possible to derive the same formulae more rigorously using pair distri-
bution functions [Kotomin and Kuzovkov, 1996, Doi, 1976, Waite, 1957].
The result is convenient, because it allows using the law of mass action
for macroscopic models with rates derived from microscopic parame-
ters (diffusion coefficients and the reaction radius); i.e. the macroscopic
model is derived from microscopic one. Note that this derivation does
not use the well-mixed assumption, therefore the reaction rate depends
on diffusion speed.

A reversible reaction in this model cannot be described as two inde-
pendent reactions. In reaction A +B = C, a pair of A and B which has
been just produced has a much greater chance of collapsing back to C
than a random pair of A and B [Berlin et al., 1980, Agmon, 1984]. This
means that only a portion of C — A + B reactions will be effective. It
can be shown [Andrews and Bray, 2004| that the equilibrium forward
reaction rate constant will be:

47’[Rb D

Koo = TR /R

(5)
where Ry and Ry, are forward (binding) and backward (unbinding) re-
action radii.

2.3.2  Doi model

A straightforward generalization of Smoluchowski’s theory is to consider
reactions which are not completely diffusion-limited: reaction rates will
depend not only on diffusion speeds, but also on intrinsic probabilities
of reactive interactions. Following [Isaacson, 2012|, we will refer to this
model as Doi model. It was introduced in [Teramoto and Shigesada,
1967] and [Doi, 1976].
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In this model, a bimolecular reaction occurs with fixed probability
ko per unit time when two reactants are separated by a distance less
than R. kg is called intrinsic reaction rate. The kinetic theory can be
derived in a way similar to the diffusion-limited case, only replacing
sink boundary condition in (4) with flux boundary condition

47TR2D ap(r/ t)

= kO p(Rr t)
r=R
It specifies that absorption of B molecules at the distance R from an A
does not happen instantaneously, but with a finite speed determined by
ko. From this new boundary condition a new expression for reaction
rate constant of an irreversible reaction can be derived |Rice, 1985]:

47RDkg

K(o0) = — TR0
(%) = Z7RD 1 %o

(6)

2.3.3  Smoluchowski equation

The kinetic theories reviewed above may be useful to analyse spatially
homogeneous systems at thermodynamic limit, but in case of biological
systems it is often desirable to model stochastic effects and inhomoge-
neous spatial distributions of molecules.

The general equation for temporal evolution of Doi model of reac-
tion A4+ B — C in d-dimensional space can be formulated as follows
[Isaacson, 2012]. Let q¢ € RY denote the position of lth molecule of
A when the total number of A is a. The state vector of A is then
Q¢ =(q%,...,q%) € R4, Let f(¢bc)(q%,q® q¢, t) be the probability
density of a molecules of A, b molecules of B and ¢ molecules of C to
be located in positions q¢, q® and q¢ at time t. Let DA, D and D¢
be the diffusion constants of A, B and C. The evolution of f(?:) ig
given by

af(a,b,c)
——@%a%q% 0 = (L+RF (g% q% q% 1) (7)
This is called Smoluchowski equation (without the convection term), a
variant of Fokker-Planck equation [Kadanoff, 2000]. L is the diffusion
operator which specifies how positions of molecules evolve by diffusion,
R is the reaction operator which specifies how the system is changed by
reactions.

The definition of L simply states Fick’s second law of diffusion for ev-
ery molecule. This law predicts how concentration of a diffusing species
changes over time and space:

A _ b, AA) (8)

It can be derived from Fick’s first law and mass conservation in the
absence of chemical reactions. This is also equal to the heat equation.
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In case of the Smoluchowski equation, it is applied not to concentrations,
but to probability densities of individual molecules:

a b c
1=1 m=1 n=1

where Af' is the Laplacian operator in coordinate qy'.
The definition of R is more involved. Let

UL TR DL [WRPRRIE: 9
. 9a,9)

q“\q{' = (q7,
q“Uq=(q7,

Denote 1o g(r) the indicator function on the interval [0, R], and Bf =
{q € R||q —qf| < R/2} the set of points a reactant could be at to
produce a C molecule at point qf. C is created in the middle point
between A and B. Then the reaction operator R can be defined as

(Rf(@be)y(q9,q®, q%, 1) =

k0< Z J f(a+1,b+1,c71)(qa Uq,qb U (chr:L _q)/qc\q%/t) dq—

a b
> D> lpwlaf - qﬁll)f(“’b’”(q“,qb,qc,t)>

1=1 m=1

The sum with an integral on the second line gives the total contribu-
tion of all states which could, as a result of A+ B — C reaction, bring
the system into the state (q%,q®,q¢). This contribution to the change
of probability density is non-negative. The third line gives the negative
contribution of possibility to leave the state (q%, q°, q¢) as a result of
a reaction.

(7) is a system of partial integral differential equations (PIDEs). It
spans all possible values of (a,b,c), and, although for this reaction it
is finite (provided that the initial probability distribution spans a finite
set of (a,b,c)), it may be infinite in general.

2.3.4 Stochastic simulations

Smoluchowski equation, like (7), has continuous space and time vari-
ables; and therefore is very difficult to solve even numerically. When
the number of molecular configurations is infinite the solution is usu-
ally impossible except in very simple cases, which may be analytically
solvable. The method of choice for analysis of this model is stochastic
simulation.

This simulation can be thought of as a (potentially approximate)
Monte-Carlo sample of one value of a random variable whose PDF is f
defined above. Since f is a function of time, it is sampled at a set of time
points, starting from some known initial condition at t = 0, usually a
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point mass probability density representing a deterministic initial state.
Then this state is updated according to the Smoluchowski equation or
some approximation of it to represent a probable situation after a short
period of time At.

There are several methods to compute the update for the simulation.
In [van Zon and ten Wolde, 2005] an event-driven approach is proposed,
named Green’s function reaction dynamics (GFRD). The simulation
algorithm can be summarized as follows:

1. Initialize positions for every molecule, set t := 0.

2. For every bimolecular reaction, and for every pair of its reactants,
calculate the probability distribution of #ime of the reaction oc-
curring between them, ignoring all other molecules and reactions.
This distribution can be computed by numerically integrating (7)
for the case a=1,b =1,c = 0. For every uni-molecular reaction,
the corresponding distribution is the exponential distribution with
A being the reaction rate.

3. Draw a sample from each distribution computed on the previous
step, this will be the next reaction time for the corresponding reac-
tion. Apply the reaction to the molecule, or the pair of molecules,
with the lowest next reaction time T.

4. Adjust positions of all molecules, drawing shifts from normal dis-
tributions N(0,2v/ D).

5. Update the time t:=t+T.
6. Go to step 2.

The computation of a bimolecular reaction’s time is possible by a
numerical solution of the spatio-temporal integral, thanks to the as-
sumption that no other reaction happens. The solution involves com-
putation of a Green’s function for the L + R operator, hence the name
of the method.

This approach is suitable for systems with relatively long time inter-
vals between reactions, which is the case with slow diffusion and few
molecules. It is exactly this kind of situation where the approximations
used by other treatments fail, when stochastic and diffusion-related ef-
fects dominate the dynamics.

As an example, the authors apply their method to analyse stochas-
tic fluctuations of gene expression, and show that spatial effects play
a major role. They call the effect spatial fluctuations, as opposed to
stochastic fluctuations of the well-mixed model which are usually con-
sidered in the literature when studying noise in gene expression |Singh
et al., 2012, Munsky et al., 2009].

If the frequency of reaction events in the system is high, the event-
driven approach will be inefficient, because each step is computationally
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expensive. In this case, a discrete time approach is more desirable. In
[Andrews and Bray, 2004] a constant time step is used. Molecules are
first moved to new positions according to Fick’s diffusion model, and
then those pairs which are closer than their reaction radius react. This
procedure ignores potential reactions that could have happened during
the update period, therefore the smaller is At, the more precise the
simulation will be. In order to treat the reversible reaction problem
described above, the monomolecular dissociation places the products
slightly further than the binding radius. The effective reversible reac-
tion rate then approaches (5) when At — 0.

Using a discrete time update results in limited spatial resolution of
the simulation. This means that effective reaction rate in this model
depends on At. In order to have the simulation match the experimental
data, we have to correctly specify the reaction parameters, in this case
binding and unbinding radii and diffusion coefficients. While the latter
is possible to know from experiments, the radii have to be fit to the
observed reaction rates. In this model, this fitting has to be done with
respect to specific At. In [Andrews and Bray, 2004] a numerical approx-
imation is used to match Ry and Ry to the supplied effective reaction
rates, and limit cases of small and large At are treated analytically.

To analyse a chemical system using stochastic simulations, one repeat-
edly performs a number of simulations, and then extracts quantities of
interest from the simulated samples. Typically the results are statistics
of certain variables in the samples, e.g. the mean or variance of counts
of a certain molecule type at a certain time, mean time until a certain
event, mean frequency of a certain reaction, a correlation coefficient of
two variables etc.

An example of such analysis is given in Figure 4. It is a simple
demonstration of how spatial distribution of slowly diffusing molecules
affects reaction rates. The reaction being modelled is A +B — C, with
200 A, 200 B and no C molecules initially. The space is a cube with side
10> meters and periodic boundary conditions. Other parameters are:
diffusion coefficient of all molecules D = 10~ '3m?/s; reaction radius
R =2.5-10"3m; intrinsic reaction rate kg =5-10"17m3 /s.

Three different initial conditions were used. The first one is the uni-
form distribution of A and B molecules over the spatial domain, illus-
trated in Figure 4a: this corresponds to the usually considered case of
thermodynamic equilibrium. In the second condition A and B molecules
are put in two different halves of the cube, Figure 4b. Such a situation
may occur, for example, if two adjacent tissues interact using two mor-
phogens. In the third condition, A and B molecules are put near each
other, Figure 4c. This artificially reflects the situation when both A
and B are produced in a single reaction.

100 simulations of each condition with different random seeds were
performed using GFRD algorithm. The results are summarized in Fig-
ure 4d in the form of a plot showing mean count of C molecules over
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Figure 4: Simulations of an irreversible reaction. (a, b, ¢) show different initial
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conditions used, with A molecules in red and B in blue. (d) shows
mean value of C count over time in 100 simulation runs. (e) shows
numerically estimated derivatives of (d), indicating reaction rates.
The simulations were done using eGFRD package, which implements
GFRD algorithm.



time. The mean is taken over 100 simulations of each type. It is ev-
ident that the dynamics of the reaction is very different in each con-
dition at the beginning of simulations, especially on the plot of the
derivative of mean C count, Figure 4e. This quantity is proportional
to the corresponding reaction rate. Later the dynamics become similar
due to the system shifting towards thermodynamic equilibrium. The
case of correlated initial condition illustrates the problem of modelling
reversible reactions mentioned earlier. If a single reaction produces mul-
tiple molecules, their positions will be correlated. If these molecules can
then react with each other, the dynamics of this reaction will be signif-
icantly different from what would be expected in the thermodynamic
equilibrium case.

2.4 MODELLING OF WELL-MIXED COMPARTMENTS

Now consider the case when diffusion is fast compared to reaction rates.
In this condition, diffusion does not play a significant role in the dy-
namics of the system. Instead, the dynamics are determined only by
number of molecules and the probability of reactions occurring when
the molecules are close enough, a concept from Doi model reviewed
earlier.

Gillespie [1992] adopts a model similar to Doi model, but in the
thermal equilibrium case. The exact assumptions that he uses are:

1. The probability that the centre of any randomly selected molecule
of the system will be found to lie inside any container subregion
of volume AQ is equal to AQ/Q, where Q) is the total volume of
the system. I will call it well-mized assumption.

2. The velocity of every molecule follows a Maxwell-Boltzmann dis-
tribution. This asserts that the system is in thermal equilibrium.

From these assumptions he derives that for each reaction j, there
exists a constant cj such that c;dt is the probability that a randomly
selected combination of reactants of reaction j at time t will react during
the infinitesimal time interval [t,t + dt). This statement means that
chemical reaction systems evolve as a continuous time Markov chain. c;
is called probability rate constant. Note that probability rate constant
is analogous to reaction rate constant defined for the mass action law.
The precise relation between them will be derived later (18).

We can define the propensity function for reaction j:

aj(v) = ¢j <;> (9)

where v(t) = (v1,...,vn) is the state vector for n chemical species

participating in these reactions, vi(t) is the count of molecules of type

i at time t. The term () =[]iZ; (J}) gives the number of possible
)

i=1 o
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combinations of reactants in state v. Therefore aj(v)dt is the proba-
bility, given that the system is in state v at time t, that one reaction
j will occur in the interval [t,t 4+ dt). This allows describing transition
probabilities in the Markov chain easily.

Writing the Kolmogorov forward equation for this Markov chain, we
obtain the chemical master equation (CME):

dmy _

at Z a;j(v+ o5 — [?)j)T[\,_|_(xj_[3j —a;(Vv)my (10)

=1

where m is the number of chemical reactions, 7y = 7y (t) is the proba-
bility of the system being in state v at time t. The CME is a potentially
infinite system of linear coupled ODEs.

Intuitively, (10) is similar to the Smoluchowski equation, e.g. (7),
with spatial variables dropped, diffusion operator L discarded and the
integral in the reaction operator R solved using the assumptions. How-
ever, the rigorous derivation is complicated.

CME has been known and used to analyse chemical systems long be-
fore this derivation was done [McQuarrie, 1967, Gillespie, 1977]. Well-
mixed chemical systems were postulated to behave like a jump Markov
process with states defined by counts of chemical species, and state
transitions following the law of mass action. Then a Kolmogorov for-
ward equation was written for this process, which is identical to (10).
The derivation done by Gillespie has shown that this model has a valid
microscopic basis.

CME is much easier to analyse than (7), and a number of exact
solutions for various systems is known, mainly for means of molecule
counts and for chemical equilibrium limits [McQuarrie, 1967, Jahnke
and Huisinga, 2007, Gadgil et al., 2005]. If the number of possible
states of the system is low enough, it may be possible to solve the CME
numerically.

Here is the CME for A+ B NYG system, which is supposed to start
with two A and two B molecules in the beginning, i.e. the initial state
is v(0) = (2,2,0):

dm22.0)
— = ANt

dt (2/2/0)
dm(q,1,1y
— 1 =47t — ATt

It (22,0) = M(11,1)
dmo,0,2)

7 7 — A

T T(1,1,1)
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Figure 5: The exact solution of the A + B L system with 2 initial A and B
molecules.

In this case the system has only three states reachable with non-zero
probability, therefore its CME is finite, and is in fact quite simple. Its
analytical solution is:

7.[(2’2’0) — e74?\t
4 _ 4 _
7.[(]’],” — _ge 4)\t+ ge At (11)
1 _ 4 _
7'[(0[0[2) = ge At ge At + 1

From this we can compute, for example, mean C count, which is
27t(0,0,2) + 7(1,1,1)- 1t is plotted in Figure 5 for A = 1.

2.4.1  Approzimate solutions of the CMFE

In the most general case, when the system contains species whose count
is unbounded, and there is a second order reaction, the exact analytical
solution of the CME is not known. One has to resort to an approximate
solution.

One class of these approximations aims to reduce the state space of
the system to a manageable size, while preserving the essential dynam-
ics. An algorithm called finite state projection |[Munsky and Khammash,
2006] provides a way to solve the CME approximately considering a
finite subset of states, and at the same time to calculate the approxima-
tion error. The idea is to ignore the states with negligible probability.
The error may be reduced by considering more states, which can be
done on-line. The resulting problem is a finite system of linear ODEs,
for which many efficient solution methods exist. There are a number of
optimizations and variations of this algorithm [Peles et al., 2006, Mun-
sky and Khammash, 2007, Munsky et al., 2007, Henzinger et al., 2009].
Mainly they try to tune the selection of the set of states dynamically
to achieve best precision/computation speed trade-off.

While the finite state projection algorithm makes the problem directly
solvable, in practice the number of significant states can still be huge,
especially when the number of chemical species is large. The state
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space grows exponentially with the number of species, and the algorithm
suffers from the curse of dimensionality. A complementary approach
is to aggregate the states which are close to each other and do not
have to be distinguished [Hegland et al., 2007]. Typically states are
judged to be close if species’ counts in them are sufficiently similar so
that the difference does not affect quantities of interest significantly.
After applying a finite state projection, a change of variables in the
ODE system is performed, such that the new variables are probabilities
of aggregated states. When the new system, which is still linear, is
solved, an inverse transformation is applied to obtain the approximate
probabilities of the original states. Error bounds can also be computed
for this approximation [Hegland, 2008].

A different approach to approximate the CME solution is to trans-
form it to a system of stochastic differential equations (SDEs). An SDE
is a differential equation in which one or more terms is a stochastic pro-
cess, making the SDE’s solution a stochastic process itself. The result
of transformation of CME into an SDE is called the chemical Langevin
equation |Gillespie, 2000]. Because it is an important step towards un-
derstanding deterministic approximations, I will outline the derivation.

Let’s introduce random variables X; (t) = vi(t) which track the counts
of ith chemical species in the system. Suppose the state of the system
at time t is v¢. Then for any T > 0

m
Xit+1) =vei+ ) KveDBji—o1), i=1,...,m (12
j=1

where m is the total number of reactions and K;(v¢,T) is a random
variable governing the dynamics of reaction j starting from state vi. vy
is the ith component of the initial state vector vi. Kj(v¢,T) represents
the number of times reaction j is going to occur during the interval T,
considering also all other reactions. Therefore in general, all Kj will
depend on each other. So far this is just a reformulation of the CME:
finding Kj is equivalent to solving the CME. Now we will find a simple
approximation for K;. Consider two assumptions for T

1. Leap condition: T is so small that the change of the propensity
functions in the time interval [t,t 4+ 7] is negligible: a;(X(t’)) ~
a;j(ve),t’ € [t,t+1]. This means that the reaction events in that
time interval will be independent of each other, and K; (v, T) will
be simply the number of times reaction j occurs in duration T if
the propensity function is constant a;j(v¢), as if no other reactions
have occurred. Then each K;(v¢,T) is an independent Poisson
random variable P;(a;j(v¢)T).

2. In addition to the leap condition, T is so large that the expected
number of occurrences of each reaction j in [t,t + T] is much
greater than 1:

E[P;(aj(vi)T)] = aj(vi)T > 1 (13)

36



This allows approximating the Poisson random variables by nor-
mal random variables with the same mean and variance.

The assumptions limit T from both sides, and for some systems such a T
does not exist. Propensity functions depend on non-negative powers of
molecule counts, and the counts usually change by at most two in each
reaction. Therefore if the number of reaction occurring during the in-
terval is much smaller than the smallest count of molecular species, the
leap condition will be fulfilled. This can always be satisfied if molecule
counts are much larger than 1. Large molecule counts generally make
it easier to satisfy (13) as well, because the propensity functions will
have high values.
Using these conditions, we can rewrite (12) into

Zi(t+1) =V + Z Nj(a;(ve)T, a5 (ve)T) (Bji — %51) =
=1

vei+ ) (B — o) e (vi)T+ D> (Bji — i)l (ve)t '/ 2N;(0,1),

j=1 j=1

i=1,...,n

where Nj are m independent normally distributed random variables,
and Z; are the new, continuous state random variables representing the
approximated counts of molecules in real domain.

Note that in this step we have converted discrete Poisson random
variables for molecule counts into continuous real-valued normal vari-
ables.

If we treat T as a macroscopic infinitesimal dt, i.e. a quantity much
smaller than the time scale of interest, we can write a standard-form
Langevin equation for a multivariate continuous Markov process:

Zi(t+dt) =Zi(t)+ ) _(Bji —ogi)ay(Z(t))dt+
m = (14)
> (Bji— o)y A (Z(1)N; (1) (dt) /2

j=1

where Nj(t) are normal random variables with zero mean and unit vari-
ances, and Nj(t) is independent of Nj/(t’) if j # j’ and t # t’. This
equation approximates the jump Markov process described by the CME
as a continuous Markov process.

This SDE can be analysed numerically, using stochastic simulations
in a way similar to microscopic simulations mentioned before. However,
here the state is a real vector of only n dimensions, representing average
counts of each molecular species. In the microscopic simulations the
state is an ) i ; 3vi-dimensional real vector representing the positions
of all molecules in 3D space. To simulate a system with such a large
state space is much harder computationally. Efficient procedures for
simulating SDEs exist [Higham, 2001].
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2.4.2 Moment closure

A different approach to solving CME is to rewrite it in terms of moments
of random variables X;(t). Then we can simplify the resulting system
using some additional assumptions, obtaining a moment closure (MC).
This approach has a long history: it has been used to analyse stochastic
systems in the fields of ecology [Whittle, 1957], demographics [Good-
man, 1953, epidemiology [Grenfell et al., 1995]| and statistical physics
[Levermore, 1996|. Traditionally they were derived manually. Recently,
methods for automatic MC derivation were proposed |Gillespie, 2009a,
Hespanha and Singh, 2005, Vidal et al., 2010| for biochemical reaction
systems.

Because we will use this method to analyse the community effect
system, I will outline a derivation of the formula. It is based on usage
of probability-generating functions from [Vidal et al., 2010].

A kth order raw moment of an integer-valued random variable X is
e = EX¥] = ¥ x-Prob(X¥ = x) = 3 x*Prob(X = x). Given
k € IN™ we can define a mized moment of a vector of n random variables
X as ulk) = gX¥] = ETTi, X]fi]. The order of a mixed moment is
> ' .ki. Note that all the moments do not necessarily exist for all
distributions.

We can also define joint factorial moment of the same variables:

u(k) _ E[X(K)] _ E[X(Q) .. .X(kin)] _

ZZ [ﬁxgki)] Prob(X = x) (15)
X1 i=1

Xn

where x¥ = x(x —1)(x —2)---(x —y + 1) is the falling factorial, or
falling power. The raw and factorial moments are related, and can
be computed from each other. In particular, pt = !, p2 = p? —
1!, A general formula can be derived for the conversion between them
using Stirling’s numbers, but we will not need to convert higher-order
moments.

A probability-generating function of a vector of integer-valued random

variables X is
$(z) = E[zX]

z is a vector of formal variables which is introduced with this function,
of the same dimension as X. In general these formal variables are not
meant to represent numbers, although we will sometimes substitute
numbers for them.

One property of probability-generating functions that we will use is
that by taking formal derivatives of it we can obtain factorial moments
of the associated random variables:

o[ oM kg
ozk | azb T oz

zZ=1
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Consider the probability-generating function ¢(z,t) for the random
variable vector X(t) that tracks the counts of molecules of each type in
a chemical system. It is possible to rewrite the CME (10) into the fol-
lowing PDE, which is the general evolution equation for the probability-
generating function [Erdi and Toth, 1992]:

ob
FYa Hdo (16)

H is a Hamiltonian operator

e CJ B o 0\ %
H=3 hE==(5)

j=1

where o! = [T, o il. It is called so by analogy to quantum physics,
(16) being the analogue of the Schroedinger equation. H is a differential
operator, i.e. a higher order function which takes another function as an
argument and transforms it, differentiation being one of the transforma-
tions which can be applied. In this notation, multiplication by (aizi)k
means taking kth derivative by z;. Multiplication by other terms de-
notes the ordinary multiplication.

By taking formal derivatives of (16) and evaluating at z = 1, we

can produce evolution equations for arbitrary joint factorial moments
of X(t):

Chl)
ozk ot

_ 0%
- 0t 9z

z=1

_ dp®) _ in)
—

dt ozk

Z=1 =1

All derivatives of ¢ in the last expression will be replaced by correspond-
ing factorial moments.

In this way, we can obtain evolution equations for any moments of
X(t). For example, the mean of molecular species 1 is

In general, an evolution equation for a moment of order N will depend
on moments of orders up to N4+ M — 1, where M is the maximum order
of a reaction in the system. Therefore, for first order systems, this
procedure allows to obtain closed, finite and linear ODE systems for
time evolution of any finite moment, which can be readily solved.

In the more interesting case of second order systems, the equation for
any moment of order N will depend on moments of order N + 1, they
in turn will depend on moments of order N 4+ 2 and so on. The system
of equations forms an infinite cascade, which is impossible to solve nu-
merically, just as the CME itself. In order to solve it approximately, we
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have to truncate the cascade. This is done by assuming a functional
relationship between moments of order N and lower order moments for
a certain N. The truncation is called moment closure.

One example of such a relationship is the assumption of zero co-
variances between counts of molecular species: Cov(Xj, Xj) = 0. This
allows expressing second order moments in terms of first order ones:
E[XiX;] = E[X{]E[X;]. In this way a set of equations for the time evo-
lution of first order moments, i.e. the mean molecule counts, may be
derived. These equations will be equal to reaction rate equations, which
will be more rigorously derived later. Note that this assumption implies
zero variances for the variables as well, which makes this analysis dis-
regard the stochastic effects. In addition it poses a technical difficulty
which prevents rigorous analysis of this method: the zero-variance dis-
crete random variable can only assume a single value, in this case a
non-negative integer, therefore the ODEs for time evolution of their
means do not make sense. This is because this treatment misses a cru-
cial step, which allows replacing integer-valued molecule counts with
real numbers. This was done for the chemical Langevin equation above;
later we will see how this brings a rigorous derivation of the determin-
istic approximation.

For now, a more useful approximation is to assume that the third
order mixed central moments for all variables are zero. This assump-
tion would be true, for example, if the variables are jointly normally
distributed |Isserlis, 1918]. This is impossible since the molecule counts
can only take non-negative integer values, and the normal distribution
allows any real value; nonetheless this assumption works quite well in
practice. The relationship between the moments is given by the follow-
ing:

0 = E[(Xi — EIXi]) (Xj — EDXD) (X — EIXG])] = EIX X5 X —
EIXOGIEX ] — BEIX X JEXG ] — EIXG X EIXG] + 2EIXGTEDGIEX ]

Using this relation, any third order moment can be replaced by a non-
linear expression depending on first and second-order moments of the
same variables. A closed system of joint time evolution of first and
second order moments can thus be derived. We will call this transfor-
mation normal closure.

Moment closure is typically done with help of a computer algebra
system to generate the equations [Vidal et al., 2010, Gillespie, 2009a,
Singh and Hespanha, 2006a]. Then an ODE solver is used to simulate
the resulting non-linear system.

As an example, let’s consider again the system A + B A C. The
Hamiltonian for this system is

0 0

H :A'(Zalb —Zc)ga
a
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Since this is a second order systems, the moment equations form an
infinite cascade. The first two levels of this cascade, involving moments
of up to third order, are

dE[A]
Tqr — MEAB
dE[tB] — _AEIAB
dE[C]
o = \EIAB]
dEc[l/:B] = A(E[AB] — E[A%B] — E[AB?))
2
dEc[l/: L A(EIAB]— 2E[A2B))
dE[B?] 2
= A(E[AB] — 2E[AB?])

The equations for the third order moments E[A2B] and E[AB?] will

involve fourth order moments and so on, so the ODE system is infinite
and unsolvable.

Using the normal approximation (17), we can write

E[A?B]

E[AZ]E[B] + 2E[AB]E[A] — 2E[A]*E[B]
E[AB%]=E

[AJE[B?] + 2E[AB]E[A] — 2E[AJE[B]?

This allows obtaining the normal closure for the system:

dE[A]

4 = \EIABI
dE[B]
. = MEAB]
dE[tC] = AE[AB]
dEgt\B] = A(2(E[AJE[B] — E[AB])(E[A] + E[B]) — E[A%]E[B] — E[A]E[B?] 4 E[AB])
dE[A?] 5 5
T = M-AEIAJEIAB] +4E[AJ"E[B] — 2E[A’JE[B] + E[AB])
4 = M—AEBIEIAB] +4E[AJE[B]* — 2E[AJE[B?] + E[AB))

Simulating it from a deterministic initial condition with 200 A and
200 B molecules using an ODE solver gives the result shown on Figure 6.
The only parameter of the model is the probability rate constant A. It is
computed as A = k/Q, where k is the reaction rate constant and Q is the
system volume. This relation will be derived later (18). k is computed
according to (6), and all other quantities are set to the same values
as for the GFRD microscopic simulation example above. Theoretically
the result of this normal closure approximates that example. Note,
however, that (6) is derived for partially diffusion-controlled reactions,
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Figure 6: Normal closure and GFRD simulation results

while CME assumes well-mixed compartment at all times. Therefore
this approximation will get worse with lower diffusion speed.

In Figure 6, the computed mean and standard deviation of C count
is compared to those derived from GFRD simulations starting with a
uniform initial condition (Figure 4a). In this case, the normal closure
gives a good approximation of the Doi model simulation, and it is several
orders of magnitude faster. The downside is that it is impossible to
simulate the systems where the spatial distribution of molecules plays
a significant role (e.g. situations on Figure 4b and Figure 4¢).

2.4.3 Gillespie algorithm

Yet another way to obtain information from CME is through stochas-
tic simulations. Each simulation computes a Monte-Carlo sample of a
continuous time distribution described by the CME.

Simulations are preformed using a variant of Gillespie algorithm [Gille-
spie, 1977]. The basic version, called Direct Method, is as follows:

1. Initialize molecule counts v := vy, set t :=0.
2. Calculate propensities a; for all reactions using (9).
3. Choose reaction g which happens next from the distribution

m
Prob(Reaction = u) = a,/ 3 aj.
j=1

4. Choose the time T of the next reaction from the exponential dis-
m

tribution with parameter A = ) aj.
j=1

5. Update molecule counts v:=v —a, + 3, and time t:=t+T.

6. Go to step 2.

One cycle of this algorithm, which computes a single reaction event,
takes O(m) time, where m is the number of reactions in the system.
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Figure 7: Gillespie algorithm and GFRD simulation results

There are optimized variants of this algorithm. Next reaction method
[Gibson and Bruck, 2000] is O(logm). It is even possible to have O(1)
complexity under some conditions [Slepoy et al., 2008|.

Stochastic simulations are a popular method of analysis of the CME.
Theoretically it is possible to achieve arbitrary precision of the solution,
using enough simulation runs. The computational complexity of sim-
ulations is proportional to the number of events we need to simulate,
which in turn depends on the molecule counts in the system. Therefore
this method may be problematic if the molecule counts are very high.

If allmolecular species in the system being studied have high numbers,
then arguably a chemical Langevin equation approach described earlier,
or even deterministic modelling, may work well. However, it will not
work if the system is heterogeneous in this respect, with some molecules
being abundant and others being scarce. Also, for some species the
molecule counts may vary greatly within a short time period. To address
this issue, recently hybrid approaches have been developed |Pahle, 2009].
They work by first separating all reactions into slow and fast subsets,
and then applying different simulation methods to them.

Gillespie algorithm is often called ezact simulation algorithm, because
it draws samples exactly according to probabilities described by the
CME. There are also more efficient approximate simulation algorithms,
notably the t-leaping method [Gillespie, 2001]. It works well if the leap
condition is satisfied, which makes it an intermediate approximation
between exact simulations and the chemical Langevin equation.

Using the same A+ B LY example as before, Figure 7 compares re-
sult of 10000 Gillespie simulations performed in COPASI to 100 GFRD
simulations with uniform initial spatial distribution of A and B. Prob-
ability rate constant A is the same as in the moment closure example.
The match between simulations is again very good. The advantage of
Gillespie algorithm over moment closures is that we can control the ap-
proximation error easily: confidence bounds on every statistic can be
computed, and it is straightforward to calculate the number of simu-
lations needed to reach the desired confidence. In moment closure the
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error is much harder to estimate and control. Typically it has to be
compared to Gillespie simulations in order to assess its quality. To re-
duce the error in moment closure, one may choose a more appropriate
closure type, or a higher order of the closure.

On the other hand, moment closure, being an ODE system, allows
easier manipulation and formal analysis. For tasks like parameter esti-
mation, it is vastly more efficient than a naive application of Gillespie
algorithm, since the latter will require many simulations for every set of
parameter values which are being tested. Another possible application
is model reduction, which will be described later in Chapter 3.

2.4.4 Deterministic modelling

The final approximation of dynamics of chemical reaction systems is
the deterministic model, called reaction rate equation (RRE). It is the
most widely used model, because of its simplicity and efficiency.

The derivation of RRE rests upon a further approximating assump-
tion called thermodynamic limit. 1t is defined as the limit where the
system volume Q) tends to infinity, while concentrations of the chemical
species are preserved. In other words, we consider () as a large value,
such that Q" can be taken to be zero.

In the thermodynamic limit, all counts of chemical species are in-
finitely large, but the concentrations are finite. Intuitively, this allows
neglecting stochastic fluctuations of molecular counts, which makes this
treatment based on the thermodynamic limit deterministic. In the fol-
lowing, we will outline the formal derivation of the RRE, which boils
down to removing the stochastic term from the chemical Langevin equa-
tion, turning it into an ODE system. This will also allow deriving
exactly the relationship between reaction rates and probability rate
constants.

We start from the leap condition. It is proven in [Gillespie, 200gb]
that close to thermodynamic limit, the second condition of the chemical
Langevin equation will also hold, therefore (14) holds.

Next, we observe that for zero-, uni- and bimolecular elementary
reactions the quantity a;/Q, where a; is the reaction’s propensity func-
tion, is asymptotically constant when going to thermodynamic limit
(although it may not be constant in time). Let’s see why this is the
case.

For source-like, zeroth-order reactions to behave sensibly in the ther-
modynamic limit, their a; must have the form a; = aj0Q, where ajo
is constant w.r.t. the thermodynamic limit. If this is not so, the num-
ber of molecules introduced in the system per unit time and per unit
volume would tend to zero or to infinity.

For unimolecular reactions with reactant i, a; = c¢jvi = ¢;[Xi]Q,
where [X;] is the concentration of the reactant, which is constant in the
thermodynamic limit. Therefore a;/(Q) is also a constant.
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In a bimolecular reaction with reactants i and k, aj = ¢jvivi if i #k
and aj = cj%vi(vi — 1) otherwise. Here cjdt = Prob.Prob,, where
Prob. is the probability that two randomly chosen reactant molecules
will collide in an infinitesimal interval dt, and Prob, is the probabil-
ity that the reaction will happen given a collision. The latter does
not depend on the molecular populations and Q. Gillespie [2009D]
showed that, assuming the system is well-mixed and in thermal equi-
librium, Prob. = (k’/Q)dt, where k’ does not depend on molecular
populations and Q. Combining all, we get a; = (k’/Q)Prob,vivy =
k'Prob, [Xi][Xk]Q in case of different reactants, and
a; = (k’/Q)ProbT%vi(vi —1) = %k’ProbT([Xi]zo_— [Xi]) for a reac-
tion of 1 with itself. In both cases, aj/Q is asymptotically constant in
thermodynamic limit.

Now if we divide (14) by Q and go to thermodynamic limit, the
coefficient of the random variable goes to zero, and we obtain the ODE:

m

Xil(t+dt) = Xid(t) + D (Bji — i) a;(X](1)/Qdt

j=1
or equivalently,

dgii] - Z(ﬁji —oyi)a;([XI(t))/Q

=1

Using the thermodynamic limit, we can simplify the right hand side
as follows. In case of source-like reactions, a;([X](t))/Q = ajo, for
unimolecular reactions a;([X](t))/Q = ¢;[X;]. For bimolecular reac-
tions with different reactants, a;([X](t))/Q = ¢;Q[X;][Xk], and for
self-reaction a;([X](t))/Q = %ch[Xi]z. Therefore we can write the
convenient form of the RRE:

d

X _ 3 k X]%i
@ Z i (Bji — i)
j=1
where k; is the reaction rate constant of the mass action law. The
relation between the deterministic reaction rate constant and stochastic

probability rate constant c;j is now clear:

¢;/Q, for source-like reactions with zero reactants

¢j, for unimolecular reactions

ki = (18)
j
¢; Q, for bimolecular reactions with different reactants

%c]- Q, for reactions between the same molecular species

The rates must be converted accordingly when switching between
different analysis methods. Note that it is necessary to know the system
volume Q in order to perform the conversion.
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Figure 8: Deterministic approximation compared to Gillespie simulations and
an exact solution.

The first formal derivation of RRE from the microscopic model was
given in [Kurtz, 1972]. It did not use the chemical Langevin equation,
however the argument was more mathematically involved.

Applying deterministic approximation to the A + B LN'e system
yields the following RRE:

dlA]  d[B]
d[C]
Tl k[A][B]

Its solution is plotted on Figure 8, together with the mean of 10000
Gillespie simulations, meant to indicate the exact solution of the CME.
k is set according to (18), with the same A as in the examples before.
Concentration [C] was converted back to molecular counts. On Fig-
ure 8a, the initial condition is the same as before, and the agreement
between stochastic simulations and the deterministic approximation is
good. On Figure 8b, molecule counts are low and the system volume
is 1000 times smaller. Under this condition, the thermodynamic limit
assumption of RRE is no longer justified, and we observe a considerable
approximation error. The exact solution of the CME (11) is plotted for
reference.

2.5 SPATIAL MODELLING

When the diffusion is too slow for the well-mixed assumption to be justi-
fied, we have to model the spatial distribution of the molecules. Micro-
scopic models directly based on Smoluchowski equation, like GFRD, are
computationally very expensive, so approximations are typically used
instead. This is a very large subject, so I will briefly review only the
approaches used in this thesis.
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2.5.1  Reaction-diffusion systems

A natural extension of the RRE approach is to consider concentrations
as functions of time and space and add diffusion terms to the equations.

The ODEs will be transformed into PDEs [Edelstein-Keshet, 2005]. For
mass action law this PDE is:

AXi] o
TR Z] ki (Bji — o51) [X]™ 4+ Dy A[X{]

j=
where concentration [X;] = [Xi](x,t) is the function of space x € R4
and time, A[Xj] is the Laplacian operator and D; is the diffusion coef-
ficient of 1 molecules. This equation can be derived by combining the
mass conservation law with Fick’s second law of diffusion (8) and the
RRE model of reactions |Edelstein-Keshet, 2005]. In order to solve this
equation, the boundary and initial conditions must be specified.

Such equations are typically solved using a variant of the finite volume
method [Eymard et al., 2000], which first subdivides the space into a
number of small sub-volumes, or cells. Then the PDE is transformed
into an ODE for each sub-volume, with the time as the variable. All the
ODEs are coupled by terms describing fluxes of concentrations across
cell boundaries. In reaction-diffusion systems these fluxes will be only
due to diffusion. Within each cell, concentrations are represented by
their volume averages, thus the local ODEs for the cells are just identical
RREs. Sometimes such a discretization is constructed manually [Turing,
1952].

Reaction-diffusion systems are often used to model pattern formation
in living organisms |Turing, 1952, Meinhardt and Gierer, 1974, Kondo
and Asai, 1995, Miura and Maini, 2004, Sheth et al., 2012]. They are
appealing since they provide very simple explanations for complex pat-
tern formation phenomena, typically requiring interaction of only a few
substances.

2.5.2  Reaction-diffusion master equation

Sometimes the deterministic treatment with the PDEs is not satis-
factory, because it rests on the assumption of thermodynamic limit.
This may become especially problematic with numerical solutions by
space discretization, since with a fine mesh molecule counts in the sub-
volumes may be low enough for stochastic effects to become signifi-
cant. This calls for an intermediate method between microscopic sim-
ulations and the CME, which accounts for both spatial inhomogeneity
and stochasticity, but does not require tracking of individual molecules.
Reaction-diffusion master equation (RDME) is such a method. It was
introduced in [Kuramoto, 1974] and [Gardiner et al., 1976].

The idea is similar to the finite volume method for solving reaction-
diffusion systems. The space is divided in sub-volumes AV;.. For each
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sub-volume the CME is written, with the additional diffusion reactions.
The diffusion reactions are first order reactions describing jumps of
molecules into a neighbour sub-volume. Probability rate constants of
these new reactions depend on the volumes and the surfaces of the
contacts between neighbours. In case of a homogeneous subdivision
[Baras and Mansour, 1996]:

12
2d
where A; is the probability rate constant of the diffusion reaction of
species 1, Dj is its Fick’s diffusion coefficient, d is the dimension of the
space and 1 = AV'/4 is the characteristic length of the cell.

The result is again a large CME. It can be solved by any method de-
scribed above. In addition there is a specialized variant of the Gillespie
algorithm, called Next Subvolume method [Elf and Ehrenberg, 2004].

Di = —X\

Special care must be taken when choosing the sub-volume size for dis-
cretization in this method. Obviously the cells should not be too large,
or the model will fail to represent spatial inhomogeneity adequately.
But there is also a lower bound on the cell size. If the volumes approach
zero, bimolecular reactions in this model will have zero probability, be-
cause reactants will almost never meet in the same volume [Hellander
et al., 2012|. Computing the minimum volume size for which the results
agree with the microscopic model is difficult, because it depends on the
system geometry and reactions. A correction called Convergent RDME
has been proposed |Isaacson, 2012|, but it requires that molecules in
the different volumes react with each other, making simulations more
computationally expensive.

There is no formal derivation of the general RDME from other models,
so it should be regarded as a heuristic extension of CME. However, the
derivation was done for some simple special cases [[saacson, 2009], and
extensive numerical testing showed good agreement with microscopic
models [Baras and Mansour, 1996, Bernstein, 2005).

RDME is used to study a range of phenomena, for example intra-
cellular signalling [EIf et al., 2003], spatiotemporal oscillations in cells
[Fange and Elf, 2006], and gene expression [[saacson et al., 2011].

Figure g shows the RDME method applied to the A + B LN system.
First, the cube is split into smaller tetrahedrons using Gmsh finite ele-
ment mesh generator, see Figure ga. Then the resulting mesh together
with the chemical reaction system is processed by the STEPS simulator
[Hepburn et al., 2012], which generates appropriate diffusion reactions
between neighbour subvolumes. A 1000 simulation runs is then per-
formed. On Figure gb, A and B are distributed uniformly across the
space at t = 0. In this case the agreement with GFRD simulations is
good, but this is not an interesting case since even deterministic approx-
imation can handle it (Figure 8a and Figure 7).

RDME is also capable of treating inhomogeneous cases, like the spa-
tially separated initialisation example of Figure 4b. However, the pre-
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Figure 9: Comparison of RDME and GFRD simulations. Subvolumes for
RDME were generated by Gmsh, and simulations were performed
using STEPS.
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cision of RDME in this case is not as good, as shown on Figure gc.
Making the mesh finer does not improve the agreement between sim-
ulations. There is no guarantee that theoretically-derived parameters
of the system will work well for RDME, because it was not derived
formally from the basic models. The simulation is still useful, but the
parameters have to be adjusted if numerically precise results are desired.

2.6 MODELLING LANGUAGES AND TOOLS

All modelling methods described in this chapter have been implemented
in various tools. Some of them are listed in Table 1.

Because all the methods are approximations based on assumptions
whose validity is difficult to establish, it is often useful to compare
the results of different methods with varying degrees of approximation.
However, many of the tools use their own languages to specify the
models, making it difficult to analyse the same system with different
methods.

SBML [Hucka et al., 2003] is an XML-based modelling language aim-
ing to be a standard to describe biochemical models. It is extensible
and widely supported, however it currently has no rule-based facilities
which are necessary to describe some systems. For example, if the sys-
tem has some repetitive structure, there is no method to describe it in a
compact way. It is also inconvenient (although possible, as in MesoRD)
to describe geometries.

The tools developed during this work use SBML for specification of
chemical reaction systems.
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Name of the | Modelling language used | Analysis methods
tool implemented

Smoldyn [An- | Custom rule-based language | Simulator of a discrete-
drews et  al.,| to describe reactions and ge- | time approximation of

2010

ometry

Smoluchowski model

MCell [Stiles and
Jr, 1998|

Custom language (MDL) to
describe reactions, events and
geometry

Simulator of a discrete-
time approximation of
Doi model

E-Cell |Takahashi

Custom imperative language

GFRD for Doi model

et al., 2003] (also possible to use C++) and

modelling environment
COPASI  [Hoops | SBML Gillespie and T-leaping
et al., 2000] simulator, RRE
Biocham Custom rule-based language, | Gillespie and T-leaping

[Chabrier-Rivier

SBML extension

simulator, RRE and a

et al., 2004] boolean approximation
with a temporal logic-
based analysis

KaSim [Danos | Rule-based language Kappa Gillespie simulator,

and Laneve, 2004 RRE, a model reduc-

tion method

React(C)  [John | Rule-based  language Re- | Gillespie simulator
et al., 2011] act(C)
MomentClosure SBML Generates ODEs of mo-

|Gillespie, 2009a]

ment closure

MesoRD [Hattne
et al., 2005]

SBML with extensions to de-
scribe geometry

RDME with automatic
cubic mesh generation,
reaction-diffusion PDE
solver using the same

mesh
STEPS [Hepburn | SBML for reactions, several | RDME, reaction-
et al., 2012] mesh formats for geometry, | diffusion PDE solver
Python to connect them into | on the custom mesh,
a model Gillespie simulator and

RRE
URDME [Draw- | Custom Matlab-based system | RDME with custom
ert et al., 2012] to specify the model, Comsol | mesh, finite  state
3D modelling software to spec- | projection on the

ify its geometry

sub-volumes

Table 1: Modelling tools

51







STOCHASTIC ANALYSIS OF A SPACE-LESS
COMMUNITY EFFECT MODEL

In this chapter, we will first review three existing models of community
effects from Bolouri and Davidson [2010] and Saka et al. [2011], and
their main analysis results.

In sections 3.2 - 3.3.3, a more in-depth analysis of the detailed model
from Saka et al. [2011] is given, with an emphasize on stochastic ef-
fects in particular. The method of choice for the stochastic analysis is
moment closure, the detailed description of which was given in subsec-
tion 2.4.2. It works by rewriting the CME of the chemical system into
a finite set of ODEs, with original system’s parameters in it. This is
an advantage if we want to scan a range of parameters of the system,
which is often the case in quantitative analysis.

A disadvantage of the moment closure method is that the number
of generated ODEs quickly grows with the system size, making it po-
tentially difficult to scale to larger systems. Reduction techniques are
needed to keep the analysis tractable. In Section 3.3, we exploit sym-
metries in cell signalling to perform model reduction.

To understand the notion of symmetry in chemical reaction networks,
consider a pool of identical cells communicating over a short distance
through the exchange of molecules, which are released by one cell, then
diffuse and make contact with another cell. The reaction set

T A; +B; = C, forie{l...n} (19)

describes such a system with n cells. Its symmetry is illustrated in
Figure 10. A reaction between a pair of A and B, within the i'! cell,
results in a C, which is expelled to the extracellular medium. Note that
the extracellular C lacks a positional index, unlike the other molecules.
C can migrate back from the extracellular medium to any of the n cells.
The symmetry of this minimal system clearly appears, with C as the
centre, around which the n equal cells gather, and through which they
communicate. Our model reduction strategy uses a notion of symme-
try based on invariance under certain changes of the chemical reaction

B A1 B1
8 2
& ~\Y /v Bs Figure 10: Symmetry in cell-to-cell communi-
B; 3 As cation: n cells with equal intracel-
Az » Bs lular reaction network, involving
By ’L\* A molecules A and B, interact through
Asg By the exchange of the extracellular
Bs As
molecule C.
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Figure 11: Model of the community effect in sea urchin.

network. Intuitively, we observe that the global dynamics of the system
remains invariant as we swap cell indices, because all cells are equal.

3.1 PREVIOUS MODELS OF COMMUNITY EFFECTS
3.1.1  Bolouri and Davidson’s model

First computational model of a community effect was made for the
community effect in sea urchin [Bolouri and Davidson, 2010]. The model
considers a single cell, and has no notion of space. Its GRN is given
in Figure 11a. It is the same as the abstract GRN in Figure 2b, which
will be studied later in Chapter 4. It consists of two interacting genes,
nodal and lefty. Both proteins they produce are morphogens, i.e. they
can diffuse out of the cell and affect other cells in the embryo. nodal
activates itself forming a positive feedback loop, which is hypothesized
to underlie the community effect circuit. The role of lefty, which inhibits
nodal, is to keep nodal’s expression from accelerating continuously. This
would explain the observed evidence that nodal’s expression stabilizes
at the level of only a few percent of its theoretical maximum which it
could reach if not inhibited.

The original model is given in [Bolouri and Davidson, 2010] as a sys-
tem of ODEs. An approximation of it in the chemical reaction language
is given in Figure 11b. N, L, and A denote free (unbound) Nodal, Lefty,
and Alkq. Alkyq is a receptor which resides on the surface of cells and
reacts to presence of Nodal in the extracellular environment. LA, LN,
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and NA are the pairwise complexes of the three proteins. L,rna and
Niprna are mRNA produced by lefty and nodal genes.

The reactions on the left hand side of Figure 11b describe the forma-
tion of the complexes, their dissociation and degradation. The reactions
on the right describe gene expression of lefty and nodal. Note that Alkg
does not degrade, so its overall quantity, including the complexes, is
constant. It was set to 100000.

The gene expression follows a two step model, and the genes are not
explicitly represented. In the first step mRNA is created either from
initial activator, of from Nodal-Alk4 complexes. This models: a) the
chain of chemical reactions initiated by an Alk4 receptor in the presence
of Nodal, which ultimately leads to gene transcription, i.e. the propaga-
tion of the signal of Nodal’s presence through a signalling pathway; b)
the gene transcription itself. The second step is the translation, which
produces the protein from its mRNA.

In this model Lefty acts as inhibitor of Nodal’s ability to activate
genes by binding competitively to the Alkq receptor, as well as bind-
ing to Nodal directly, this behaviour has been demonstrated previously
|[Chen and Shen, 2004]. Lefty has been shown to be an essential modula-
tor of Nodal activity in sea urchin embryos [Duboc et al., 2008]. Nodal
can activate expression of itself as well as Lefty.

The model was analysed deterministically using the following ODE

system:
d[cll—?] = kf1[L][A] — krq [LA]
d[;—,l\” = kf2[L]J[N] — kr2[LN]
d[:tA] = kf3[N]J[A] —kr3[NA]
[A] = [Agotal] — [LA] — [NA]
[N] = [Nyota] = [LN] — [NA]
L] = [Lioal — [LN] — [LA] (20)
‘”Nz{fo*] — [InitialActivator] + ktn [NA] — kdn, s [NmENA]
N ota.
d[dtt“] = ksn [Nmrna) — kdn [Niotall
d[LT;tM = kty [NA] —kdr s [LmRNA]
d[Liota
[c;ttl] = kst [Limrnal — kdp [Liotall

The authors argue that the linear transcription model is appropriate,
since the gene expression in the sea urchin embryo occurs on short time
scales [Bolouri and Davidson, 2003].

The model’s parameters were fit to observed data or set to plausi-
ble numbers where the data was not available. The model reproduces
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Figure 12: GRN of the community effect in Xenopus.

certain aspects of the community effect at the single cell level, for ex-
ample formation of steady state level of Nodal under the influence of
Lefty negative feedback. However, being a model of a single cell, it
is unable to reproduce cellular interactions leading to the formation of
the threshold of population size, and the appearance of the community
effect zone.

The authors also used a much simpler model resembling a two dimen-
sional cellular automaton to show that the community effect may lead
to uniform gene expression across the domain where it is active.

3.1.2  Saka et al.’s model

In [Saka et al., 2011], two models of the community effect in Xenopus
are presented. It includes multiple cells and cell to cell communication,
and allows deeper understanding of the phenomenon.

Both models have the same underlying GRN illustrated in Figure 12.
Two genes are involved, Xbra and FGF4. FGF4 proteins can diffuse out
of cells and activate Xbra in other cells, which in turn activates FGFy,
closing the positive feedback loop.

The first model is a highly abstract formalization of that GRN, and
the second one is more detailed. In the formal models, the proteins are
not called by their names, emphasizing that the analysis is generally
applicable to any system which has the same GRN.

The simplified model

The reactions of the simplified model are given in Figure 13a. x; and y;
represent two proteins in cell i, z represents the morphogen in the extra-
cellular environment; Vs is the total system volume, V. is the volume
of a cell, and N is the number of cells. The first three reactions follow
Michaelis-Menten kinetics with the two parameters given above their
arrows. The model was analysed using the RRE given in Figure 13b.

In this model, synthesis of x; is activated by the morphogen z, y; is
activated by xi, and z is the y; transported out of the cell i. The tran-
scription and translation are not explicitly modelled, instead the ODEs
specify Michaelis-Menten kinetics for gene expression. Expression of
V./(Vs —N-V,) is the factor of concentration adjustment. It accounts
for volume difference between intracellular and extracellular space.
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Figure 13: The simplified model.

The morphogen exported from cells forms an extracellular pool, from
where it can enter any other cell with equal rate. Therefore there is
no notion of space in this model, since any cell affects any other cell
equally.

For the initial condition x4 = 0,y; = 0,z > 0, it is easy to see that
xi(t) = xj(t),yi(t) = y;(t) for i,j = 1...N and all t. Using this we
can reduce the model, introducing new variables x = xi,y = yi:

%—klz—éx
dt  z+1 !
dy kax
- —5
dt  xi+1 (21)
dz  wy
Mo
at  y+1
where
N Veks
SRR VASENERVA

The reduced model consists of just three ODEs parametrized by the
number of cells N. It can be solved for the steady state analytically,
and a higher than zero steady state is only possible for

Vs
N>Ne=——"7—
T Ve(E4T)
where
_ kikoks
510203

This means that if the number of cells is greater than N, which is
called the critical number, the activity in the system will sustain itself
indefinitely, while if N < N, the activity will cease, see Figure 14.
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Figure 15: Scheme of the detailed model

This is one of the main features of the community effect. Note that the
outcome doesn’t depend on the initial conditions, provided that any of
X, Y or z is greater than zero.

If we define the cell density n = N - V. /Vs, we can infer the critical
cell density

T
i+

If 1 > nc, the system will show sustained activity. Therefore we can
say that in this model the community effect is cell density-dependent.

Nc

The detailed model

The detailed model has the same underlying structure as the simpli-
fied model, but translation and transcription of the genes are treated
explicitly, rather than using abstract Michaelis-Menten kinetics. The
model is represented schematically in Figure 15. The reactions, which
all follow mass action kinetic law, are given in Figure 16.

The model consists of a linear cascade of two genes, A and B. Ag and
Bg are inactive forms of the genes, while Ac and Ba are their activated
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d[A
[dtd — o [CplIAg] — a2[Ac]
dlAr]
dz\tm = y[AT] — aq [Apl[Bg] + a2 [Bal — 84 [Ap]
d(B
Eita] = «1[Apl[Bg] — a2 [Bal
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s B[Bal — & [Br]
d B in
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dEdC:ﬂ = E[Bpout] — X1 [Cp] [Ag] +x2 [AC] o 6(; [Cp]
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Figure 17: ODEs of the reduced detailed model.
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forms. Gene B produces the protein Bp. Bpin is the Bp inside a cell,
and Bpout is the same protein in the extracellular environment. Bpin
diffuses out of the cell with rate k, producing Bpout. When Bpout
binds to one of the cells, it produces the activator Cp. This conversion of
Bpout into Cp is an abstract representation a complicated call signalling
process, with a single rate €. Cp activates the gene A, whose product
Ap activates the gene B, closing the positive feedback loop. As before,
the chemical species are indexed by the number of cell they reside in,
so Apj is the A’s protein in cell i.

The model was first analysed deterministically. The RRE is given in
Figure 17, already reduced in the same way as (21). After this reduction,
we drop cell indices from names of species, since concentrations of corre-
sponding molecules is the same in all cells: [Api] = [Apl,i=1...N etc.
The last equation specifies the conservation law of the genes, similar to
the conservation of Alk4 was specified in (20). Total concentration of 1
here is arbitrary.

The parameters were set to biologically plausible values taken from
various sources. € was chosen such that the community effect can be
observed.

Using the same steady state analysis as for the simplified model, we
get

da
Ne=———
T elp—1)
where
_adei
p - 2 2 (22)
05000:0%, (K + 0y)

The conclusion is that the behaviour of this model is similar to the
simplified model. It demonstrates the threshold population size found
experimentally, which doesn’t depend on initial conditions as long as
they are non-zero. This leads to the important conclusion that the
community effect is a self-organizing system: in the absence of external
control it reaches the same state independently of the amount of initial
induction.

Being more detailed, this model allows investigating the influence of
gene copy number on the community effect. Also from (22) we can
see which parameters influence the critical number: the parameters
which promote the gene expression make N, lower, while the opposite
parameters, like degradation rates, increase it.

One drawback of the deterministic treatment of the detailed model is
that the gene count is continuous. Instead of assuming only two states,
active and inactive, the genes assume a concentration value between o
and 1. As was discussed previously, the model with such low molecule
count doesn’t fulfil the assumptions behind RRE modelling. Because
of this, and also to investigate the effect of the noise on N, stochastic
simulations of the same model were performed.
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The outcome of the Gillespie simulations was approximately in agree-
ment with the deterministic treatment. When N is close to N, the
system may enter the sustained activation, or the activity may stop
with some probability. Only when N is somewhat higher than N, the
activation becomes reliable.

3.2 STOCHASTIC ANALYSIS OF THE SPACE-LESS MODEL OF
THE COMMUNITY EFFECT

To study the stochastic aspect of the community effect in the detailed
model from the previous section, namely the threshold on the number
cells, we need to redefine the notion of sustained activation. In the
stochastic case we consider the probability of sustained activation, since
the outcomes are now random.

Also it is easy to see that the system in Figure 16 has an absorbing
state, where Ag; = Bgi = 1 and none of the other species are present.
Once the system falls into this inactive state, no further reactions can
happen. The absorbing state is reachable from any other state, because
all molecules can degrade with non-zero probabilities. In addition, none
of the species can accumulate indefinitely with non-zero probability,
again because of the degradation. All together this means that in the
long time limit, the system is doomed to fall into the absorbing state,
making it the only true steady state.

This observation is not very helpful, however, because once the sys-
tem has reached a high level of activation and accumulated large amounts
of molecules in cells, the probability of collapsing to the absorbing state
becomes extremely small, and this will not happen for a very long time.
We are more interested in the notion of quasi steady state (or "transient
steady state'"), which we will define simply as the system’s state after a
fixed, sufficiently long period of time. We consider the system to be at
a quasi steady state at time T = 10° seconds after the initial induction.

We can now define the critical number N in the stochastic setting as
the smallest number of cells in the system for which the probability of
collapsing to the inactive state at time T is less than o.5. The objective
of the following is to compute this N.

3.2.1  Stochastic simulations

First we performed Gillespie simulations of the detailed model in Fig-
ure 16. Three examples of these simulations are shown in Figure 18. It
is evident that as the number of cells N grows, so does the probability of
the system to enter the active quasi steady state: the community effect
works. If we consider the average behaviour of the system across many
simulations, we can see that the deterministic approximation diverges
significantly from the exact solution. In particular, for N = 100 (Fig-
ure 18a) almost all stochastic simulations end in the inactive state at
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Figure 18: Gillespie simulations of the detailed model for different cell counts.
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Bpout is plotted as a function of time. Green: deterministic so-
lution; yellow: mean of simulations; red: individual simulations
which end in the active state at t = T; blue: simulations which end
in the inactive state.



t =T, and the mean of Bpoyt, which we consider as the main indicator
of system’s activity, is converging to zero. The deterministic approxima-
tion, on the other hand, predicts a non-zero steady state for all N > 97.
The divergence of the mean of Bpgyt in stochastic and deterministic
simulations is also significant for higher cell counts (Figure 18b), but
becomes relatively smaller as the cell count grows (Figure 18c¢).

We performed a parameter scan of the number of cells in the stochas-
tic simulations for N = 0...210, which is summarized in Figure 1g.
Figure 1ga demonstrates the all-or-nothing behaviour of the system,
with the probability of the system to be partially active is essentially
zero in all cases. We used Ap; > 0 as the indicator of an active cell,
following [Saka et al., 2011]. The same data is presented differently in
Figure 1g9b. The statistically estimated critical number N, is about 117
according to the simulations, which is 20% higher than g7 predicted by
the deterministic approximation, making the divergence significant.

While stochastic simulations provide a simple way to study the stochas-
tic behaviour of chemical reaction systems, they do not provide the same
flexibility of analysis as the deterministic approximation because of the
associated computational cost. The simulations above took over ten
days to compute on a desktop computer. It is very inconvenient to
perform parameter scans like those in [Saka et al., 2011] using exact
simulations.

To overcome this problem, we will apply moment closure method to
the detailed community effect model.

3.3 APPLICATION OF MOMENT CLOSURES

We have implemented a software tool which can compute a moment
closure of a given system. The tool is written in Maple® symbolic com-
putation package, which allows easy manipulation of equations. The
actual algorithm closely follows the outline in subsection 2.4.2, first
described by Vidal et al. [2010].

Moment closure of order m for a system with n species generates
O(n™) ODEs, because moments for all combinations of n species may
be included. For the second order closure of the community effect model,
which has g species per cell, the moment closure procedure generates
40.5N? 4 22.5N + N moment equations® up to order two for N cells. For
120 cells, which is near this system’s true N, it would generate 585902
equations. This by far exceeds processing capabilities of the software
we used. The naive application of moment closure to systems of this
size is impractical. Attempts were made to simplify models based on
various properties, e.g. conservation laws and bounds on numbers of
species [Vidal et al.; 2010]. In the following, a model reduction method
based on symmetries in the reaction set is presented, which can reduce

1 http://www.maplesoft.com/
2 This is always an integer.
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the model dramatically in some cases, including the community effect
model. It first appeared in [Batmanov et al., 2012a].

3.3.1  Reduction by example

We demonstrate the idea by a simple example. Consider the set of p =
2n+ 1 chemical species Aq,...,An,B1,...,Bn, C associated with state
random variables x(t) = (A1(t),..., An(t),B1(t),...,Bn(t),C(t)) and
the following set of reactions

R={Ai+Bi—Clie{l,...,n}}

K2

This system is shown graphically in Figure 10. We assume that for
any fixed time t, R and an initial state x(0) = vp € INP defines a
probability distribution over x(t) with probability mass function 7ty (t).
For instance, considering combinatorial mass action kinetics, 7ty (t) will
be the solution of the CME (10).

We want to identify moment equalities from simple symmetries in
the reaction system. Since a moment is fully defined by marginal distri-
butions of variables composing it, we actually identify equal marginal
distributions from symmetries. The marginal distribution of the vari-
ables A7 and By is the probability distribution of this set of variables,
ignoring the others. By symmetry of the reaction set, we mean that
the reaction set remains invariant under permutation of the chemical
spectes. An obvious permutation of this kind for R is swapping A1 with
Ay and By with By. In that case, R remains unchanged. Suppose we
further assume that the initial state is invariant with respect to the
same permutation. That is, initial numbers of A1 and A are the same,
as well as those of By and B,. Because we consider probability distri-
butions that are completely defined by the reactions R and the initial
state, the stochastic dynamics of the variable set {Aq,B1} cannot be
distinguished from that of {A2,B>}. As proved below, this means that
their marginal distributions are equal

Prob(A;(t) = a,B1(t) =b) = Prob(A,(t) = a,B,>(t) = b),
vVt e Ryo,a,be N

Permuting of C with itself, we get

Prob(A;(t) =a,Bq(t) =b,C(t) =¢) =
Prob(A>(t) = a,B2(t) = b, C(t) =¢),
vt € Rso,a,b,c € N (23)

Importantly, this entails the moment equalities E[A% Bj1 Ck] = E[AiszzCk]
for any 1,j,k > 0. As another example of symmetry, assuming n > 4
one can swap Aj with A3z, Ay with Ay, By with B3, By with By, C
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with itself. Again, also assuming invariance of the initial state by this
permutation, we have

Prob(Aq(t) = a7,Az(t) = az,By(t) = by, B2(t) =b2,C(t) =c) =
Prob(A3(t) = a1, A4(t) = az, B3(t) = by, B4(t) = by, C(t) =),
Vt€R>o,a1,az,b1,b2,C€N (24)

It is straightforward to use equalities of the form (23)-(24) to reduce
a set of moment equations of the system. For example, the system con-
sidered above generates, among others, the following moment equations
for second order moments:
dE[A;C] =
Tl = Ki (ZE[AiAij]) — k1 (E[A;Bi] + E[A{B;iC]) —
j=1
k2(E[C]—E[C*]+n-E[AC)) i=1...n
(25)

Using relations as (23), we can infer the following moment equali-
ties: E[A{C] = E[A1C], E[A{Bi = E[A1B4], E[A;{BiC] = E[A1BC],
E[A%Bi] = E[A%Bﬂ, and using equalities as (24) we have E[AiAij] =
E[A1A2B2l,i=1...n,j =1...n,1#j. Therefore we can equivalently
rewrite all n equations in (25) into one:

(EE;Z\;C] = k1 ((n—1)E[A1A2B,] + E[ATB4]) —

k1 (E[A1B1] +E[A1B1C]) —
k2(E[C] —E[C?]+n-E[A;C]) (26)

We can’t exchange moments for Aj; and B; because they may have
different initial conditions in general. Using this approach, the system
of moment equations up to order two is reduced from 2n? 4 5n + 2 to
11 ODEs for any n > 2. The rest of the equations are redundant and
can be safely excluded. The transformation is exact, and we can recover
the dynamics of the original system from the reduced one. In order to
compute the moment dynamics, it is necessary to perform a closure of
the reduced system as described in subsection 2.4.2.

3.3.2  Formal reduction

We now formally define the previous notions. We however won’t make
use of marginal distributions, since equivalence of the full joint proba-
bility distribution entails equivalence of its marginal distributions.

We consider permutations o over the set of species indices {1,...,n}.
Permutations of vectors and reaction sets are defined as

ac = (ag(1),++-,5(m))

:Ro‘ = {(KI Ko, BG) | (Kr &, B) € :R}
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We say that a vector a, resp. a reaction set R, is o-invariant, iff a = ag,
resp. R = Rs. We denote P the function that, for a given set R of reac-
tions, initial state vp and time t, gives a probability distribution over
the counts of the species with probability mass function 7ty (t). Some-
how P gives the solution of the stochastic dynamics of the system. For
example, P could be the solution of the system’s CME, or an approxi-
mation of it, like a moment closure. We make the following assumption
about P.

Assumption 1. Let 7y (t) = P(R,vq,t) and 'y (t) = P(Rq, Voo, t),
for some reaction set R, initial state vo, time t, and permutation o of
the species indices. For any v € N™, we have 7y, (t) = 7'y (1).

This assumption relates permutations at the level of reactions to per-
mutation at the level of its stochastic semantics. It just states that the
stochastic dynamics of a species A provided by P does not depend on
its position in the state vector. Saying it differently, we assume that
the stochastic behaviour is insensitive to species renaming, provided
that this renaming doesn’t create name conflicts. This is a reasonable
assumption that is, for instance, satisfied by the master equation.

Theorem 3.3.1. Let R be a set of k reactions of n species, vy €
IN™ be an initial state, and o be a permutation over {1,...,n}. Let
Ty (t) = P(R, vo, t), if R and vo are o-invariant, then, for any v € IN™,
Ty (1) = 7oy, (1).

Proof. This theorem is a straightforward consequence of the above as-
sumption. Indeed, let 7t (t) = P(R,vo,t) and 'y (t) = P(Rg, Voo, t),
since R = Ry and vo = Vo4, we have 7y, (t) = 7'y (t). By the Assump-
tion 1 it follows that 7ty (t) = 7'y _(t) = 7wy (1). O

Corollary 3.3.2. Let R be a set of k reactions of n species, vo € IN™
be an initial state and o a permutation of the species indices. If R and
vo are o-invariant, then w™ = p(mo)

Proof. At any time t we have

pm(t) = Ex™(t)]
= >, V™ (t)
= ) , V@om,(t) by commutativity of multiplication
= ), V@om, (t) by Theorem 3.3.1
= Ex™e(t)] = pmel(y)
0

We denote by Z(R,vp) the set of permutations o such that R and
vo are o-invariant. By Corollary 3.3.2, this set defines equivalence
classes [u™)]s of moments, i.e. the set of moments p™") such that
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) — yme) for some 0 € L = (R, vo). As usual, we also write
[w™)]s for the representative moment of this set that is, for instance,
the smallest of those moments for the lexicographical order on IN™. We
denote py a vector of all M moments up to order k. Let

M(R, k) = {n™ = L., |order(m) < k, L € RM}

be a set of moment equations obtained by some moment generation
method, with moments up to order k (recall that moment equations
are always linear). h is the maximum order of the moments in the
equations, it can be greater than k for systems of moment equations
with an unclosed cascade of dependencies.

The reduced set of moment equations is defined by

Miea(R, vo, k) = {p(™) = L-p(u) | (1™ =L ) € M(R K}
where p is the substitution of moments for their representative
p = {n™ is substituted by [n™)]s | order(m) < k and £ = Z(R, vo)}

This transformation just excludes from M(R, k) repeated equations for
the variables which are provably equal, and therefore is exact.

3.3.3 Reduction of the detailed model

The community effect model’s structure resembles a star, just as Fig-
ure 10 on page 53 does. It is easy to see that the community effect
model exhibits the symmetries required by Theorem 3.3.1, which allows
to reduce its moment equations for any number of cells to a system of
constant size, similar to the example in subsection 3.3.1.

We have applied the symmetric reduction to the normal closure of
the detailed community effect model shown in Figure 16. The reduced
model contains 146 equations for any N. The deterministic approxima-
tion, which is equivalent to the first order moment closure, can also be
reduced using the same method. This kind of reduction, among others,
has been done in [Saka et al., 2011], where the deterministic approxima-
tion consisted of only 8 ODEs for any N. Our Maple implementation of
the MC method and the reduction for this model are available online3.

3.3.4 Comparison of approximations

Figure 20 plots the Bpoyt dynamics, computed by three different ap-
proximations. First is a mean of many stochastic simulations. As the
number of simulations increases, this converges to the true mean - how-
ever it is noisy and the simulations take very long time. The simula-
tions were done using COPASI software [Hoops et al., 2006]. Second

http://www.lifl.fr/~batmanov/cmsb2012-files/
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Figure 20: Traces of Bpoyt over time for systems of sizes below and above
N, computed using stochastic simulations, deterministic approxi-
mation and the reduced second order moment closure using normal
approximation.

is a (usual) deterministic approzimation of the system, with one ODE
per species, which is the fastest in terms of computation. However, it
tends to diverge from the stochastic estimates. This indicates the pres-
ence of significant stochastic effects in the model. Third is a reduced
moment closure of order two, using the normal approximation for trun-
cation. The normal approximation is not the best choice for chemical
reaction systems generally, but it is simple to implement and it gives
good results in this case.

Due to the complexity of the resulting system of ODEs in the moment
closure, we couldn’t derive an analytical solution for N.. By examining
the numerical solutions for different values of N, we found that the
moment closure gives N. = 117, the same as derived from statistical
analysis of stochastic simulations.

The deterministic approximation, on the other hand, predicts N, =
97, and therefore miscalculates the qualitative behaviour of the system
for a range of N. In addition, the deterministic estimate of Bpout
strongly diverges from the stochastic one, especially when the cell num-
ber N is close to N¢.
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SPATIAL MODELS OF COMMUNITY EFFECTS

In this chapter, several spatial models of community effects will be
presented, which appeared first in [Batmanov et al., 2012b].

In Section 4.1 a formal language is introduced which we will use to
define the models. Section 4.2 presents the minimal model of a com-
munity effect, whose GRN is illustrated in Figure 21a. It is a simple
model with a single species u which promotes its own production. In
Section 4.3, this model is refined to represent the community effect in
Xenopus in more detail, following Saka et al. [2011], but now with space.

The analysis of these models shows that community effects spread
through space without restriction. Two other models are proposed in
the following sections, which include different mechanisms to control
the area of community effects.

The Turing pattern model, which is based on the reaction-diffusion
theory, is presented in Section 4.4. It adds a second diffusible factor v
with an inhibitory effect to the minimal model’s self-sustaining species
u, as illustrated in Figure 21b.

The dynamic morphogen gradient model of Section 4.5 is sketched
in Figure 2c. It introduces a diffusible factor s, which activates two
mutually inhibitory species v and u. The latter participates in a self-
activating feedback loop with w, another diffusible species. Figure 2c
highlights the u-w community effect loop in red. Without the commu-
nity effect loop and diffusion of the morphogen s in continuous space,
this GRN was previously considered in [Saka and Smith, 2007].

What has emerged from the analyses described in this chapter is that
diffusible factors for intercellular communication could provide many

benefits to embryonic patterning, when interlinked with developmental
GRNs.

(s)

ava
Cw C@g\b w \}; v

Y%

(a) minimal model (b) Turing pattern  (c) dynamic mor-
model phogen gradient
model

Figure 21: GRNs of three models analysed in this chapter. The feedback loop
responsible for community effects is highlighted in red.
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4.1 SPATIAL MODELLING FRAMEWORKS

Later in this chapter, spatial models of community effects will be pre-
sented. The models consist of two parts: a description of chemical re-
action network, given as a list of chemical reactions; and a description
of space in which these reactions take place.

The analysis is then performed using two different methods as appro-
priate. The simple choice is to treat the model as a reaction-diffusion
system, with continuous concentrations and space. When we are inter-
ested in effects of the stochastic noise in the system, we use the RDME
approach.

For the RDME, a natural discretization of space is chosen, where one
subvolume represents a single cell. Therefore we assume that diffusion
of molecules inside cells is fast, while diffusion through cell membranes
and in the extracellular space is slower.

Since we consider a one-dimensional row of cells, each subvolume
inside the population will have two neighbours, and two subvolumes
on the borders will have one neighbor each. The subvolumes can be
assigned a one-dimensional integer coordinate x, and the diffusion will
take place between subvolumes x and x4 1. Moreover, since the surface
area of common boundaries of neighbour subvolumes is the same for all
cells, the rates of diffusion reactions added by the RDME will be all
the same. This allows reformulating the RDME as a simpler rule-based
model with chemical species indexed by coordinates of the subvolumes
where they reside, so species A in subvolume x is written as A(x). The
coordinate x 4+ 1 indicates the neighbour subvolume to the right of x.
Diffusion reactions then convert species of one subvolume into species
of another subvolume, for example A(x) D, A(x+1). All reactions
except diffusion must only involve species with the same coordinate,
because the reactions can only take place between species in the same
subvolume in the basic RDME model.

To unambiguously define rate laws of reactions, we will write its full
expression above the arrow. In these expressions, the count of molecule
X will be written as §X. For example, the system A + B 2, C with the

mass action law will be written as A +B m C.

4.2 MINIMAL MODEL OF A COMMUNITY EFFECT
4.2.1  Minimal model of a community effect in one dimension

In this section, we present a minimal model of a community effect in
one dimensional space. Its GRN is minimal, in the sense that the posi-
tive feedback loop for a community effect loop is the smallest possible,
with the single species u — illustrated in Figure 21a. Previous work
considered a well-mixed system of cells, in which a factor could diffuse
from one cell to any other with equal probability [Saka et al., 2011],
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Figure 22: Diffusion model scheme: row of N4 active cells, flanked by 2 x Ny,
passive cells. Here Ng = 6,Np, = 1.

or didn’t include multiple cells explicitly at all [Bolouri and Davidson,
2010|. The following model renders molecular diffusion in a more real-
istic way, considering a one-dimensional row of cells, in which we dis-
tinguish active cells (implementing the community effect GRN) flanked
by passive cells (that merely support diffusion). With the restriction
that molecules travel over longer distances by a random walk between
immediate neighbours, we can see how a community effect behaves in
space.

Space specification

Our model of space is illustrated in Figure 22. Cells are arranged in
a row of finite length. The row contains a domain of active cells in
the middle, which is flanked by passive cells. Only active cells can
respond to the inducing signal and produce the diffusible factors for a
community effect. Passive cells do not respond to inducing signals and
merely occupy the space on both sides of the active cells. N, and Ng
henceforth refer to the numbers of passive and active cells, respectively.

In the RDME treatment, which we will consider first, molecular dif-
fusion, i.e. the exchange of a diffusible factor, occurs stepwise between
adjacent positions. Molecules can move throughout the entire row by
random walk.

In the continuous, deterministic PDE treatment the diffusion works
according to Fick’s second law.

In our model, passive cells are required to obtain certain aspects of
community effects. Without passive cells, those effects do not occur,
regardless of initial conditions. We prove this later in subsection 4.2.4
after formally defining the model.

The common structure of GRNs for community effects |[Davidson,
2010] is a self-sustaining feedback loop with diffusible factors. The GRN
of our active cells illustrated in Figure 21a implements such a feedback
loop in a minimal fashion: the diffusible factor u directly enhances its
own production. Cells in the system are induced by a transient signal,
applied either locally or globally. In our model, the inducing signal
is represented by a number of diffusible factor molecules, which are
deposited at some cells at time zero.

Rule-based formalization of the minimal model

Chemical reactions which happen in active cells of the minimal model
are defined in Figure 23.
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self-activation: 1 —"" 2y (27)
degradation: u Bl (28)

Figure 23: Reactions of the minimal model.

o ﬁu(z)x
self-activation: Vx € ActiveCells, u(x) BTN 2u(x)

(29)
degradation: Vx € AllCells, u(x) Huful), (30)
. . Dy ffu(x)
diffusion: Vx € AllCells —{LastCell}, u(x) u(x+1)

Dyfu(x+1)

(31)

where ActiveCells = {1 + Np,...,N, + Ng}, AllCells =
{1,...,LastCell}, and LastCell = 2N}, + Ng.

Figure 24: Rules of minimal model’s RDME.

Reaction (27) describes ws self-activation, which is the GRN of this
model. It creates two u molecules from a single one. The rate law is
described by the expression o‘ukuﬁirnu which defines a Michaelis-Menten
kinetic law. &, and k,, are the rate parameter and the Michaelis con-
stant. Michaelis-Menten law is a standard way to model saturating
reactions in biochemistry. We need the self-activation to be saturating,
otherwise fu may grow indefinitely.

Reaction (28) describes degradation of u, with mass action kinetics.

The RDME corresponding to the minimal model is presented in Fig-
ure 24, using the rule-based language defined in Section 4.1. Here,
rules (29) and (30) describe Ws self-activation and degradation. The
self-activation rule applies to u at positions from the set of active cells,
which is denoted ActiveCells. The degradation rule applies throughout
the entire row.

The last rule (31) defines diffusion with diffusion rate Dy,. Dy, is con-
stant throughout the space because it is assumed that all cells have the
same volume and geometry, and that the distance between all neigh-
bours is the same. The diffusion rate D, can be related to Fick’s
diffusion coefficient, which is invariant to geometry and discretization
of space. The relationship can be derived by applying the finite volume
method [Eymard et al., 2000] to Fick’s second law, which describes dif-
fusion in continuous space. The derivation can be found in [Bernstein,
2005).
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Parameter Description Value
Xy u self-activation maximum rate 33-25
ku u self-activation Michaelis constant 450
Xy activation of v by u maximum rate 60
Ky activation of v by u Michaelis constant 450
o4 inhibition of u by v maximum rate 0.04
ki inhibition of u by v Michaelis constant 0.1
My degradation of u 0.035
Ky degradation of v 0.1
Dy diffusion of u 0.4
D, diffusion of v 15

Table 2: Parameter values for stochastic simulations in Sections 4.2.2 and
4-4.2.

The parameter values for the minimal model are listed in Table 2 on
page 75 (where applicable), with the exception of Dy, which is set to
1.6 for this case. The parameters choice is such that the model can be
simulated in a reasonable time, and shows the required properties.

All the models used in this chapter are available in SBML at http:
//www.lifl.fr/~batmanov/fi2012-models/.

4.2.2  Stochastic simulations show a community effect with unlimited
spread

We performed stochastic simulations of rule-based models using a vari-
ant of the Gibson and Bruck method [Gibson and Bruck, 2000]|, an
optimization of Gillespie’s algorithm |Gillespie, 1976]. It was imple-
mented in the Scala language'. The source code of Gillespie simulators,
as well as a Mathematica notebook showing PDE solutions used later
in this chapter, is available at
http://www.lifl.fr/~batmanov/thesis/simulationCode.zip.

We show typical single simulation runs in Figures 25a and 25b. The
plots show the dynamics of u across the cell row over time with different
numbers of active cells, below (Nq =9, a) and above (Ng =11, b) the
community effect’s activation threshold (Nq = 10). Both simulations
start from an initial induction with fu(x) = 10 molecules per active
cell at time zero. The system can reach either a state with fu(x) =0
in all cells, the zero state, or enter the self-sustained activation state,
where fu(x) stabilizes above zero. Since u can degrade at any moment,
there is a non-zero probability for the system to collapse to the zero
state at all time points. However, this probability becomes negligibly

1 http://www.scala-lang.org/
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Figure 25: Stochastic simulations of the minimal model of a community effect.
(a, b, d): single simulation runs. (c, e, f): summary of many
simulations.
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low for the cases studied here once the system reaches self-sustaining
activation; therefore we call this outcome a steady state.

e Figure 25a. Ny = 9: the system is unable to sustain activation.
The u molecules for induction at t = 0 are visible as a peak in
all active cells. However, they quickly dissipate. This is a typical
simulation outcome. Only 1 out of 100 simulations showed any
residual activity at t = 2000.

e Figure 25b. Ng = 11: the system enters sustained activation in
all 100 simulation runs.

To check if the system has reached self-sustaining activation, we sim-
ulate until t > 2000. This is long enough for the initial induction
to degrade. Any residual activity in the system can be ascribed to
self-sustaining activation. We used this criterion to systematically in-
vestigate the activation threshold number of active cells:

e Figure 25¢ summarizes simulation results (2100 runs in total).
Each point in this plot is the mean u amount at t = 2000 in the
cell in the middle of the community, for 100 simulations with the
given Ng. The threshold value of Nq = 10 clearly appears. The
system enters sustained activation only when N, is above this
value. As Ng increases, the steady state amount of u approaches
500, its theoretical maximum when the feedback loop saturates.

Next, we examined the dynamics of the system in space and made
an interesting observation.

e Figure 25d. With Ny = 500 well above the threshold, the sys-
tem enters sustained activation with high probability even when
inducing only one active cell at the centre of the row, with fu(x) =
10 at time zero. Note that, in Figure 25a and Figure 25b, the same
amount was injected into all active cells. Significantly, activation
spreads over the entire row of active cells from the location of the
initial induction in the middle of the row.

The probability of sustained activation varies with the total amount
of the initial induction when it is low. We found that initial activation
by fu(x) = 10 molecules per cell is sufficient to exclude this variation:

e Figure 25e. The effect of initial u amount on activation thresh-
old N4. Each square in the grid displays the colour-coded fu(x) in
the middle of the community at steady state (t = 1000), averaged
over 25 simulations, with a given combination of N4 and initial
fu(x) per active cell. For low initial u amounts, the threshold Ng
for self-sustaining activation increases. Beyond fu(x) = 10, the
threshold stabilizes. Note that N, = 50 for all simulations.
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e Figure 25f. The impact of the number of passive cells Ny, on the
threshold of active cell number Nq. The lower Ny,, the higher the
chance for u to re-enter the active area after being reflected back
at the system’s boundary. When N, = 0, this boundary effect
increases and effectively eliminates the N 4 threshold, down to zero
(see also subsection 4.2.4). With increasing N, the boundary
effect becomes negligible, and the critical N4 threshold becomes
independent of Ny,.

Simulations indicate that the steady-state number of u, if the system
ever reaches a non-zero steady state, is independent of the location, size
(width), and the amplitude of the initial induction. Similar behaviour
was observed in the spaceless model of the community effect in [Saka
et al., 2011]. We generally observed that, for a self-sustaining activation,
the number of active cells must exceed a critical threshold, which is
one of the hallmarks of a community effect. We observed that the
community effect spreads in an unlimited manner in the minimal model
described in this section.

4.2.3 Biological relevance of the minimal model

The minimal model introduced in this section is abstract, but nonethe-
less useful because it is simple and it reproduces the essential features
of community effects. We also modelled the community effect in Xeno-
pus in greater detail, using the RDME as well as PDE treatments. See
Section 4.3 for the description of those detailed models and discussions.

The saturating self-activation reaction abstracts a process by which
a diffusible factor enhances its own production. In real cells this in-
volves binding of a diffusible factor to the cell surface, activation of
the signalling pathway and the induction of the corresponding gene. In
addition, the gene that produces the diffusible factors may be induced
indirectly, by a cascade of inductions of intermediate genes, as happens
in the community effect of Xenopus muscle precursor cells [Saka et al.,
2011].

The diffusion scheme with the row of active cells between two layers
of passive cells reflects the sandwich-like experimental setup of Gurdon
et al. |Gurdon et al., 1996, 1993], in which an inducer-soaked bead is
placed between two slices of ectoderm tissue. To be more precise, our
model’s row corresponds to a vertical cut through the sandwich of cells.
The inner layer of the ectoderm tissue corresponds to active cells and
outer-most layer to passive cells.
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4.2.4 Passive cells are required for the cell number-dependent commu-
nity effect

We conclude the analysis of the minimal model by proving that the
closed system without passive cells cannot have the threshold of Ng
where its steady state changes. To formally analyse the steady states
of the minimal model, we treat it deterministically using the continu-
ous reaction-diffusion theory (see subsection 2.5.1). The PDE of the
minimal model is:

ou KU

— = AL A
ot ky+u Hult + AuAu (32)

where u(x, t) is the average fu at space coordinate x and time t, which
remain always implicit in PDEs. A, is a diffusion coefficient, which
can be derived from D and the spatial configuration. The precise
expression for it is not important for the following analysis. There
are no passive cells in this PDE model because the activation term is
applicable everywhere. All the parameters are assumed to be positive.
This model is using the Laplacian Au to describe the diffusion of u,
and therefore is applicable to n-dimensional case. Ay Au(x,t) defines
the rate of u diffusing to point x at time t. Let O C IR™ be the spatial
domain of the system, a compact, connected set, and Q its boundary.
We consider a closed system with no passive cells, so one of the boundary
conditions is

Vu(x,t) -n(x) =0,¥x € Q,Vt >0 (33)
where n(x) is an outward unit normal of the boundary Q and V is the

gradient operator. This states that the flux of u across the boundary is
zero at all points. Another boundary condition is the initial induction

u(x,0) =f(x) >0,vx € Q (34)

Let g(u) = k"l‘fj& — uu and ue = %_uit‘*ku Note that g(u) has two
zero points: g(0) =0 and g(uc) =0, and g(u) > 0,Vu:0 < u < uc.

First, note that vVt > 0,Vx € Q,u(x,t) > 0. It follows from the initial
condition being nonnegative and g(0) = 0.

Second, note that if f(x) = 0 for some x, but [ f(x)dQ > 0 and u, >
Q
0, then Vt > 0,u(x,t) > 0, because diffusion distributes concentration

across space instantly. To show this, we consider initial induction to

be a & function and consider the heat equation %%f = AyAu. It has
an analytical fundamental solution which is positive for t > 0, but the
solution of (32) is always greater or equal to the solution of the heat

equation, because g(u) > 0.
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Also u(x,t) is continuous Vt > 0,Vx € Q. So, without loss of gen-
erality, we consider the initial induction f(x) to be continuous, and if
uc > 0 then also f(x) > 0.

We will introduce simple lower and upper bounds on the solutions,
which can be easily analysed.

Lemma 4.2.1 (Lower bound). Ifu. > 0, thenVx € Q,Vt > 0, u(x, t) >
u(x, t), where w is the solution of (32)-(33) with initial condition u(x,0) =
mm f(x)/2.

First, note that u is homogeneous in space at all times. The initial
condition is homogeneous, so there is no diffusion inside the system;
also by (33) there is no diffusion through the borders. So we can write
u(x,t) = u(t), which is the solution of the ODE

du
at g(u)

u(0) = minf(x)/2

(35)

The initial condition of u is chosen in this way to guarantee 0 <
u(0) < u(x,0),vx € Q.

The idea of the proof can be summarized as follows. We consider a
point x, where u crosses u the first time. Then it must be the minimum
of u, and thus u will grow there at least as fast as u, because u cannot
diffuse out of the minimum point. Then it cannot go below u at this
point.

Proof. Suppose that u(x,t) < u(t) somewhere. Note that u(x,0) >
u(0),vx € Q. Let t, =inf{t > 0:3Ix € Q : u(x,t) < u(t)}. Note that

ulx, ti) > u(ty), vx € Q, (36)
because the solutions are continuous. It follows that
Ixs tuxy, te) = u(ty), (37)

and for any sufficiently small € > 0 : w(x4, ts +€) < u(ty +€). Sub-
tracting w(x,, ty) from the left side and w(t,) from the right side of the
last inequality, dividing by €, and taking lirr}) , we get

€—r

ou du

E(X*/ t*) dt (t*) (38)

From (36) and (37), w(x«, te) < u(x, ti),vx € Q, ie. u(xy, ti) is a
local minimum in space. Then Au(xs,ts) > 0, and we have

ou du
— (x4, ts) = g(u(x*, te)) +Au(xy, ti) > g(u(x*, t.)) = Q(E(t*)) = —(t.),
ot dt
but this contradicts (38). O
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Lemma 4.2.2 (Upper bound). Vx € Q,Vt > 0,u(x, t) < U(x,t), where

),
U is the solution of (32)-(33) with initial condition T(x,0) = max f(x)-
2.

The proof is analogous to lemma 4.2.1, exchanging max and min and
reversing inequalities as appropriate.

Theorem 4.2.3. If uc >0, then tlim u(x,t) =ue, vx € Q.
— 00

Proof. From the lemmas we have u(t) < u(x,t) <u(t),vt > 0,Vx € Q.

Since ue > 0, the ODEs for u and u have an attractor at u., to which

they will converge asymptotically starting from any point greater than

zero. Therefore, lim u(t) = lim u(t) = u., from which follows the
t—o0 t—o0

statement. O

Theorem 4.2.4. If uc <0, then lim u(x,t) =0,Vx € Q.

t—o0

Proof. From the lemmas we have 0 < u(x,t) < u(t),vt > 0,vx € Q.
Since ue < 0, g(u) < 0 in the ODE for u, and it has an attractor at
u = 0, to which it will converge asymptotically starting from any point
greater than zero. Therefore, tli_>rr01o u(t) = 0, from which follows the

statement. O

From the theorems it follows that for the closed system, where all cells
are active, the outcome does not depend on the geometry of space and
the initial conditions; it depends solely on the parameters of the GRN.
Therefore we cannot observe the property that there exists a threshold
on the number of cells below which there is no sustained activation.
Number of cells in this model corresponds to the volume of Q. We see
that for any spatial configuration, the system will either always enter
the sustained activation, or, if u. < 0, the activity will always fall to
zero. For the parameters we used in the simulations, u, = 500.

If we introduce the passive cells, in terms of the PDE the areas where
g(u) = —pyu, the lemmas still seem to hold, but the PDEs for u and
U can no longer be reduced to ODEs, since the solutions will not be
homogeneous anymore. We do not investigate the system with passive
cells further, because its PDE contains discontinuous functions and thus
its formal analysis is difficult. Rather, the behaviour of the system in
this case was investigated above in the stochastic regime, using the
RDME simulations.

4.3 SPATIAL MODEL OF A COMMUNITY EFFECT IN zenopus

In this section we present a model of the community effect in Xenopus.
It can be seen as an expansion of our minimal model in Section 4.2 on
two levels. First, the community effect loop here involves two genes and
their protein products, instead of one, in intercellular communication
(Figure 26). Second, instead of collapsing a gene expression into one
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Figure 26: The GRN for the community ef-
fect in an active cell with genes

A and B. Gene A activates gene
B, protein B is expelled from the T T T T T oo

\ ligand :
cell, transformed into a diffusible o rotein C 1
]
factor, here called ligand, that dif- $) !
fuses to adjacent cells. This sig- s ;l' proteiniB
nal’s reception activates protein C, e

which in turns activates gene A.

reaction, we consider separately transcription of genes into messenger
RNA, and its translation into proteins. This detailed reaction network
was previously investigated in [Saka et al., 2011]|. The new contribution
of this section is to consider the same detailed network of a commu-
nity effect in space. Based on a RDME analysis (subsection 4.3.3), we
observe an unlimited spread of a community effect in stochastic simu-
lation. This confirms our observations based on the minimal model in
Section 4.2. To confirm our results observed in discrete space, we inves-
tigate a deterministic PDE model with explicit diffusion in continuous
one-dimensional space in subsection 4.3.4. The findings confirm our
previous conclusions in [Saka et al., 2011] and strengthen the results we
have presented in Section 4.2.

4.3.1  Informal description of the GRN with one-dimensional diffusion

Due to the greater level of details, we resort to a different graphical
notation for the GRN of active cells in Figure 26. Each cell contains
two genes A and B, where A activates B. In turn, B activates A over
a feedback loop mediated by inter-cellular communication: Gene B ex-
presses a protein, which is then exported out of the cell and turned
into a diffusible factor, named ligand. This ligand either degrades,
or diffuses to a directly neighbouring cell. Reception of a ligand by an
active cell results in an intra-cellular signal, which creates a protein C.
This protein C then activates gene A.

4.3.2  Chemical reactions of the detailed model

The detailed reaction network including the intermediate steps of tran-
scription and translation is listed in Figure 27. Note that terms such as
Gene(A) include the species variables € {A, B, C} as the parameter. As
with position variables, this means that for each value of the variable
there is a separate chemical species, as well as an instance of the reac-
tion where this species appear. All listed reactions are present in the
active cells, while in passive cells only degradation of proteins occurs
(reactions (43), (44), and (47)).

Reaction (39) denotes the activation of the gene A in an active cell,
represented by the term Gene(A), by the protein Prot(C). Tt results
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Gene(A) + Prot(C) Oé InducedGene(A) (39)

x2
Gene(B) 4+ Prot(A) = InducedGene(B) (40)
o
InducedGene(s) LN InducedGene(s) + mRNA(s) 41
mRNA(s) X> mRNA(s) + Prot(s) 42
mRNA(s) 2™ 43
5

Prot(s’) %
InducedGene(s) 6—p> Gene(s)
Prot(B) = Ligand
Ligand LN

Ligand < Prot(C)

where s € {A,B}, s’ € {A,B,C}.

Figure 27: Chemical reactions of the community effect in Xenopus.

in an induced gene, represented by InducedGene(A). This is indeed a
complex between the protein C and the gene A’s promoter. o7 and o
are the rate parameters for the forward and reverse reactions, respec-
tively. These parameters define the mass action rate of this event. In
this model, we only write the rate parameters, since all the rate expres-
sions are defined by the mass action rule. Likewise, the reaction (40)
describes the activation of gene B by protein A.

Transcription and translation of a gene are defined by reaction (41)
and (42). Transcription requires an induced gene. Both mRNA and
protein degrade according to the rules (413) and (44). Proteins may also
degrade while they are bound to a gene, as stated in rule (45). The rate
of this degradation is the same as the degradation rate of the unbound
protein, &yp.

4.3.3 RDME analysis of the detailed model

First, we analysed the detailed model in the RDME framework. The
spatial configuration is the same as for the minimal model of Section 4.2,
therefore its RDME can be formulated in the rule-based language with
one-dimensional coordinate variable as before. This model is given in
Figure 28. Now every species has an additional parameter which is the
coordinate of the cell, so there are 2N, + N copies of every species in
the model.
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Vx € ActiveCells,
Gene(A,x) + Proi(C,x) Rad InducedGene(A, x) (49)
o
Vx € ActiveCells,
Gene(B,x) + Prot(A,x) e InducedGene(B,x) (50)

x2

Vx € ActiveCells, InducedGene(s,x) LN InducedGene(s,x) + mRNA(s,x)

(51)
Vx € ActiveCells, mRNA(s,x) > mRNA(s,x) + Prot(s,x)
(52)
Vx € ActiveCells, mRNA(s,x) om (53)
Vx € ActiveCells, Prot(s’,x) e, (54)
Vx € ActiveCells, InducedGene(s,x) e, Gene(s,x) (55)
Vx € ActiveCells, Prot(B,x) — Ligand(x) (56)
Vx € AllCells— LastCell, Ligand(x) = Ligand(x + 1) (57)
D
Vx € AllCells, Ligand(x) 2% (58)
Vx € ActiveCells, Ligand(x) < Prot(C,x) (59)

where s € {A,B},s’ € {A,B,C}, ActiveCells = {1+ Np,...,Np + Ng},
AllCells ={1,..., 2Ny, + Ng}, and LastCell = {2N,, + NgJ.

Figure 28: Detailed rule-based model of a community effect with diffusion in
one-dimensional space.

84



Parameter Description Value
fod binding of a transcription factor to a gene 1.93 x 1074
o dissociation of a transcription factor from a gene 347 x 1072
B transcription of a gene to mRNA 1.16 x 102
2% translation of mRNA, creating a protein 231 x 1072
om degradation of mRNAs 1.16 x 1073
op degradation of proteins 347 x 1074
o degradation of Ligand 14 %1072

K export of Prot(B) outside of a cell, creating a Ligand | 3.85 x 10~#
€ binding of Ligand to an active cell, creating a Prot(C) | 5.78 x 107>
D diffusion of Ligand between two adjacent cells 5.205 x 10~2

Table 3: Parameter values for stochastic simulations are the same as in [Saka
et al., 2011], except those concerning Ligand.

Diffusion is implemented in a more fine-grained manner than the

one described previously. Rule (56) defines the export of a B protein

from the x™ cell into the extracellular space and its conversion into a
ligand. The position of a ligand is specified by an integer x € AllCells,
the same coordinate system as the cell. Note the distinction between

active cells (pink ovals) and its neighbourhood (grey box without ovals)

in Figure 22 on page 73. A secreted ligand hops from one position to

the next by random walk, which approximates its diffusion in the entire

extracellular space via (57). Note that Ligand is the only diffusing

species in this model. In any position, the ligand can degrade (see rule
(58)). Finally, the binding of a ligand to a cellular receptor of an active
cell and subsequent production of protein C is governed by rule (59).

Stochastic simulations

We simulated the dynamics of the one-dimensional cell row over time

by stochastic simulations similar to those used previously. Again, we

first consider typical single simulation runs in Figure 29. Panels (a, c,

e) show the dynamics of the Ligand number across the cell row over
time. Panels (b, d, ) are snapshots of Prot(A) taken at the end of
those simulations. All simulations are initiated by the initial induction
with 100 Ligand molecules in the leftmost active cell at time zero. We
tested three different combinations of (Ng, Np) for simulations. See

Table 3 for the parameter values used in simulations.

We observe essentially the same behaviour as in the minimal model

in Section 4.2:

e Ng =25, N, = 100: below the threshold number of active cells,
the system is unable to sustain activation (Figure 29a, Figure 2gb).
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Figure 29: Single runs of stochastic simulation of the detailed model of a com-
munity effect. Left column: time course of Ligand over the entire

cell row. Right column: at the
level of protein A in active cells.
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Only 16 of 100 simulations showed any residual activity at t =
6 x 10°.

e Ng =50, Ny, =100: the system enters sustained activation in all
of 100 simulation runs, as shown for a typical run in Figure 29c.
Thus the activation threshold lies in the range between 25 and 50
active cells. At the end of the simulation, Prot(A) is present in all
active cells (Figure 2¢gd), indicating a coordinated gene expression
in the community.

e Ny =500, N, =100: With N well above the threshold, all sim-
ulations showed sustained activation, as in the run in Figures 29e
and 29f, where all active cells reached a self-sustaining gene ex-
pression at a significant level. We observe that, as in the minimal
model, a community effect spreads all over the active cells, similar
to Figure 25d on page 76.

To better understand our observation in stochastic simulations and
the relationship between Ny, Ng and the community effect, we con-
structed a deterministic model, which we describe below.

4.3.4 PDE analysis of the detailed model

The PDE model is made using the reaction-diffusion framework from
the reactions defined in Figure 27 and the spatial configuration of the
system. In this deterministic model molecular diffusion happens in con-
tinuous one-dimensional space. To avoid any confusion, we use different
nomenclatures for terms in the rule-based model (representing numbers
of molecules) and variables in this deterministic model (which stand for
concentrations), as summarized in Table 4.

There are several additional complications. First, the model is slightly
reduced using conservation laws. Second, we introduce the concept of
cell density, which was implicit in RDME thanks to simple space subdi-
vision, with one cell being represented with one subvolume. Third, the
spatial inhomogeneities, namely the presence of active-passive cell bor-
der and non-uniform initial induction, requires special treatment. The
detailed explanation is as follows:

Because the number of gene copies per cell (= 1 in our model) is
conserved, in the region occupied by active cells,

Ag+Agi=p

. (60)
Bg+ Bgi=p,

where p is the cell density. The dynamics of the variables are described
by a set of PDEs:
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Molecules PDE variables | Rule-based terms
Gene A Ag Gene(A,x)

Gene B Bg Gene(B,x)
Induced gene A Agi InducedGene(A,x)
Induced gene B Bgi InducedGene(B, x)
Transcripts (mRNA) of gene A | Ar mRNA(A,x)
Transcripts (mRNA) of gene B | Br mRNA(B, x)
Protein product of gene A Ap Prot(A, x)

Protein product of gene B Bp Prot(B, x)

Protein C Cp Prot(C,x)

The diffusible factor Lp Ligand(x)

Table 4: Terms of the stochastic model and corresponding variables of the
deterministic model. Variables in the PDE model, briefly referred to
as e.g. Ap, are indeed functions of (continuous) space x and time t,

e.g. Ap(x,t).
0Agi
Ttg:oq AgCp — (a2 +0p) Agi,

0Bgi
Ttg:oq BgAp — (o2 +8p) Bgi,

0AT .

W:BAgl—émAr,

oBr .

WZBBgl—SmBT,

0A

a—tp:yAr—l—ocngi—oq BgAp —9d, Ap,
0Bp

F:yBr—(K—l—ép)Bp,

oC

Ttp:el_p—f—oczAgi—oq AgCp—05, Cp,
oL

a—f:)\ALp—éehH—]—i—L

where the functions J and I in (68) are defined as

](Xrt) = KBP(X/t) - €Lp(xlt)/
I(t) =no(t—t).

Here, 0 is the unit step function:

0,
1,

B x <0

0(x)

x>0

and | is the net flow of Lp in and out of the cell. The function I is
the initial induction of amplitude n and duration t. The term AALp
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Parameter | Description Value Range
fod binding of Cp to Ag 1.93 x 1074 | fixed value
(%) dissociation of Cp from Ag 347 x 1072 | fixed value
B transcription 1.16 x 1072 | fixed value
2% translation w 231 x 1072 | fixed value
dm degradation of mRNAs 1.16 x 1073 | fixed value
dp degradation of proteins 578 x 1074 | fixed value
O degradation of Lp 5x 1074 fixed value

€ import and conversion of Lp into Cp 107> n.a.

K export and conversion of Bp into Lp 3.85x 1074 | fixed value

A diffusion rate of Lp 20 fixed value

p cell density see Fig.30 0<p<g2

n amplitude of induction 2 fixed value

T duration of induction 200 fixed value

Ta domain size of active cells (community | see Fig.30 | 0 <1, <400

size)
Ip domain size of passive cells see Fig.30 see Fig.30

Table 5: Parameter values for numerical simulations of a community effect in
subsection 4.3.4. Used for simulations, unless defined explicitly in the
main text. Parameter ranges in the last column are used for phase
diagrams.

describes diffusion of Lp, where A is the diffusion coefficient. The bound-

ary condition is

AQ(X,O) = Bg(X,O) =0,

and all other variables are 0 at t = 0. We consider the system in
0 < x < d with closed boundaries, therefore

oy _
ox

0
d

0, x =

(71)

As in the rule-based model, the active cells occupy the middle domain
of width 74, and are flanked by a passive cell region of size 1, on each
side. Therefore,

d=r1q+2rp.
Community effects are size- and density-dependent in the one-dimensional
model

The simulation results of the PDE model are qualitatively similar to
what we observed in stochastic simulations (Figure 30). The most no-
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Figure 30: Simulations of the deterministic model of a community effect. (a,
b) The dynamics of Ap in 1D space over time, for two different den-
sities. The concentration is colour-coded as indicated. (a) At high
density (p = 15) the community effect spreads rapidly once initi-
ated. (b) With low density (p = 5), gene expression is transient.
Note the different scale of colour-coding for gene expression level.
Parameter values for induction are 1 = 2, T = 200 and the width of
induction is 1. (c¢) Phase diagram in the parameter plane (p,7q).
Initial induction is applied uniformly across the community. Ap
concentration at quasi-steady state (t = 4 x 10°) is colour-coded
as indicated. Contours are also shown. Gene expression depends
on the cell density p and the size of the community r,. The blue
dots correspond to the parameter sets in panels (a) and (b). (d)
Ap concentration plotted as a function of the community size 7.
Simulations are performed with the constant 1, = 100 and p = 10.
Initial induction is applied uniformly across the community. The
plot shows many discontinuous jumps in concentration, which is
most likely an artefact of the numerical integration.

table observation is that self-sustained gene expression depends on the
cell density and the size of the community relative to that of the whole
system. This indicates that community effects are influenced by the
spatial arrangement of cells. Let us now explain the simulation results
of the PDE model.
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Figure 3oa and Figure 30b show the typical dynamics of Ap concen-
tration in one dimensional space with different cell densities. In these
simulations, d = 100 and rq = 60 (rp, = 20). Although only the narrow
middle region of width one is induced for a brief period, the entire do-
main of active cells starts expressing Ag after a time lag. This seemingly
dormant period before the surge of gene expression was previously ob-
served with a spaceless model of a community effect [Saka et al., 2011].
Such expression surge happens almost simultaneous across the commu-
nity in the simulations. The speed of the expansion of a community
effect obviously depends on the diffusion rate of the ligand 6,. With
lower diffusion rates, it becomes slower and is qualitatively similar to
the spread of a community effect shown in Figure 25d and Figure 2ge. In
the simulation in Figure 30a, the ligand concentration becomes almost
uniform across the whole system at steady state (data not shown).

The system reproduces a community effect: once the size and density
of the community exceeds certain thresholds the group can maintain
gene expression after a transient induction. We next asked what is the
relationship between the size of the community and the density of the
cell group. Figure goc is a phase diagram plotted for the parameter pair
(p,ra), with a constant system size d = 100. The diagram indicates that
the condition for a self-sustained gene expression is strongly correlated
with the cell density and the community size. The critical contour for
Ap = 0.2 (an arbitrary number close to 0) shown in the panel does not
fit to rqp (number of cells) = constant, indicating that the observed
community effects are not a simple cell number-dependent phenomena,
but are influenced by the cell density and the community’s size.

We also performed simulations with a constant cell density, constant
passive region v, = 100 and varying rq, that is, d = rq +200: this
scenario resembles that of the stochastic rule-based model of subsec-
tion 4.3.3. The results are consistent with the stochastic simulation
results, showing the clear minimal critical T4 that is required for a com-
munity effect (Figure 30d). The observed behaviour is qualitatively
similar to the minimal model of the community effect, see Figure 25c.

4.4 REGULATION OF A COMMUNITY EFFECT BY A TURING
PATTERN MECHANISM

The community effect spreads in an unlimited manner over the entire
range of active cells in Section 4.2’s minimal model, contradicting exper-
imental observations |Bolouri and Davidson, 2010, Duboc et al., 2008,
Gurdon et al., 1993]. We address the issue of unlimited spread by two
different models in the remainder of this chapter. In this section, we con-
sider a system with two interacting diffusible factors: the self-enhancing
species for a community effect, and a second species which negatively
regulates it. We review this combination, which was introduced in Tur-
ing’s reaction-diffusion theory [Turing, 1952|, in subsection 4.4.1. In
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(a) A typical Turing pattern in one di-  (b) GRN of the Turing pattern model.
mensional space.

Figure 31: A Turing pattern and the corresponding GRN.

subsection 4.4.2, we show that it allows limiting community effects in
space. Establishing this connection between the community effect and
Turing’s reaction-diffusion theory constitutes one of the core contribu-
tions of this chapter.

4.4.1  Turing’s reaction-diffusion theory

Turing investigated reaction-diffusion systems (see subsection 2.5.1) with
two interacting and diffusing species in general, regardless of the type
of their interaction. The following set of PDEs describing the dynamics
of two interacting and diffusing species u and v, is the simplest deter-
ministic model of such a system [Kondo and Asai, 1995]:

ou
3t =ciu+tcrv+es+ALAu—pu

v
n =cqu+csv+ceg+ALAv—u,, v,

where u(x,t) and v(x, t) are concentrations of the two species at space
point x and time t. The continuous space is of arbitrary dimension, i.e.
x € R™, similar to the model used in subsection 4.2.4. The interactions
between u and v are specified by the parameters c1,...,cg. By taking
positive or negative values, these can represent activation or inhibition,
exerted by either species on itself (c1,c5), on the other (c3, c4), or basal
production (c3,cg). Diffusion coefficients A, and A, define diffusion
speeds of u and v, following Fick’s second law, as usually done in the
reaction-diffusion models. Finally, u,, and w, are degradation rates.
Turing showed that, starting from homogeneous initial distributions
of the two species in space, with small random perturbations, this sys-
tem eventually converges to a steady state. It can reach six different
states, depending on the values of the parameters [Turing, 1952].
Turing patterns are the most interesting among the six possible stable
states of such reaction-diffusion systems. In two dimensional space,
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they can generate a nearly endless variety of spatial patterns. For the
simpler case of one-dimensional space that we consider in this work,
Turing patterns correspond to stable periodic waves. Figure 31a shows
a typical example. u and v concentrations are plotted against the space
coordinate x, they oscillate in space. Note that the pattern is stable in
time, i.e. it is a steady state of the system. Generally, the following
conditions must hold on the two species of a reaction-diffusion system,
in order for Turing patterns to appear [Meinhardt and Gierer, 1974]:

e One of the species, called activator, must have a positive effect
on both itself and the other. The second species, called inhibitor,
must have a negative effect on the activator. Figure 31b illustrates
this GRN, with activator u and inhibitor v. We refer to this GRN
as the Turing pattern model.

e The inhibitor must diffuse faster than the activator.

For real biological systems, it is hard to prove experimentally that
these conditions are fulfilled. However, reaction-diffusion systems ex-
plain many observed patterns. One well-studied case is the formation
of the oral ectoderm in sea urchin embryos. There is significant evidence
[Duboc et al., 2008] that its area is established by a reaction-diffusion
system with Nodal (activator) and Lefty (inhibitor). In this system, a
community effect is suggested to occur with Nodal as diffusible factor
for cell-to-cell communication Bolouri and Davidson [2010|. Thus, it
may not seem too speculative to expect some connection between the
reaction-diffusion system and the community effect.

One of our important insights is that Turing patterns can ezplain
the spatial restriction of the community effect in our one-dimensional
model. We will show that while in the minimal model for a community
effect, W's activity spreads over the entire available space, embedding
the minimal model into the Turing pattern model confines u’s activity
to a single wave of limited width.

4.4.2 Turing pattern model

In Figure 32, we present chemical reactions of a new model of a com-
munity effect, called Turing pattern model. 1t has two diffusible species,
u and v. The first two reactions, (72) and (73), are equal to those of
the minimal model of a community effect with the diffusible factor u
(Figure 23 on page 74). The behaviour of the second diffusible factor v
is described by three additional reactions. Reactions (74) and (75) rep-
resent activation of the inhibitor and inhibition of the activator required
for Turing patterns, with Michaelis-Menten kinetic laws. Reaction (76)
defines degradation of v, similar to that of u.

These reactions occur in space defined similarly to that of the minimal
model: a single row of cells with active cells being flanked by passive
cells, the latter only supporting diffusion and degradation reactions.
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Xu ku-+iu 2

self-activation of u: u (72)
degradation of u: u LATLN (73)
. ot
activation of vi u ——— u+v (74)
. ey Oéiﬁ\) kiurﬁu
inhibition of u: uw4v (75)
degradation of vi v LLLiN (76)
Figure 32: Reactions of the Turing pattern model.
. . . Xu kuu:éz)[ﬂ
self-activation of w: Vx € ActiveCells, u(x) 2u(x)
degradation of w: Vx € AllCells, u(x) M
. . Dy fiu(x)
diffusion of u: Vx € AllCells —{LastCell}, u(x) u(x+1)
Dyfu(x+1)
o ]
activation of v: Vx € ActiveCells, u(x) t u(x) +v(x)

fu(x)
xifv(x) ki +Hu(x)

inhibition of w: Vx € ActiveCells, u(x)+v(x) v(x)
degradation of v: Vx € AllCells, v(x) 22
. . Dyfv(x)
diffusion of v: Vx € AllCells —{LastCell}, v(x) vix+1)
Dyfv(x+1)
where ActiveCells = {1 + Np,...,Np + Ng}, AllCells =

{1,..., LastCell}, LastCell = 2Ny 4+ Ng.

Figure 33: Rules of Turing pattern model.
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Figure 34: Stochastic simulations of Turing pattern model, Nq = 200, N}, =
50. (a, b): single runs, number of u molecules against time and
space coordinates. (c, d): Impact of initial conditions at t = 1000.

The RDME formulation of the spatial model is given in the rule-based
language in Figure 33. As before, the diffusible activator at the x'P
position is u(x), and the diffusible inhibitor is v(x).

Figure 34a and Figure 34b show typical stochastic simulation results
of the system, using the same visualization as in Figure 25. The pa-
rameter values for these simulations are given in Table 2 on page 75.
The system is very sensitive to the choice of the parameters, and they
were tuned in a way that allows demonstration of the patterns while
keeping simulation time reasonable. Only u is shown, as the amount
of v is strongly correlated with it, see Figure 31a. As with the minimal
model, the system is initialized with ten u molecules in some cells at
time zero, which represent the transient signal that starts the differenti-
ation in biological systems. The main difference between the two cases
we show originates from how many active cells are initialized with u
at time zero: either all of them (a), or just one (b). The community
effect is present in either case: with Ng =5, 13 out of 100 simulations
show activity at t = 1000, while with Nq = 10 all 100 simulations enter
sustained activation. Thus the critical number for the used parameter
set is between 5 and 10.
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With homogeneous initial conditions in all active cells (Figure 34a),
the system exhibits a one-dimensional Turing pattern, i.e., stable peri-
odic waves of high u levels over time. This occurs because the stochas-
tic noise in fu and f#v introduces an initial random asymmetry, which is
later amplified by the system to larger scales. Note that this is impos-
sible in the deterministic model, where starting from a homogeneous
initial condition will always give a homogeneous solution.

The following observation is essential: if the initial signal is localized
to a narrower area than the width of one wave of the pattern (e.g., a
single cell as in Figure 34b), the sustained activation also remains local-
ized. It appears as an isolated wave that is stable over time. The reader
might want to refer back to Figure 25d: when no negative feedback is
present, a community effect spreads over the entire range of active cells
from an initial localized stimulation. In this model, the activated area
is centred on the initial signal’s location and it is about 20 cells wide.

Figure 34c¢ and Figure 34d show the outcomes of the pattern forma-
tion under different initial conditions. Each row is a snapshot of one
simulation of a system at t = 1000, with Nq = 200 and N, = 50 for all
cases.

Figure g4¢ shows the effect of varying the initial w amount, while
localizing it at the leftmost active cell. Localization at the edge of the
active area is biologically plausible, since the induction signal usually
comes from another tissue; also the resulting pattern is better aligned
in this case. Generally, a stronger initial signal yields a more stable
pattern. If present, the width of the pattern is mostly the same. In
rarer cases, secondary patterns can be seen - in real embryos those
could be suppressed by other, less precise mechanisms.

Figure 34d shows the effect of variable initial induction area on the
pattern. The initial induction signal is 10 u molecules in every cell in
the induction area, which is again located on the left of the active cells
row. The width of the generated pattern does not depend on the width
of the initial signal, provided that the initial signal is smaller than the
pattern itself.

Therefore, the system is organized into a robust stable pattern, which
is not fully specified by the initial signal. Rather, it is defined by
the properties of the gene regulatory network. In summary, the self-
requlation imposed by this RD system constrains the community effect
within an area with well-defined boundaries.

4.5 PATTERN FORMATION BY A DYNAMIC MORPHOGEN GRA-
DIENT AND A COMMUNITY EFFECT

We now introduce a second model that prevents the spread of a com-
munity effect in one-dimensional space. It is based on a gene regulatory
network controlling pattern formation in response to a morphogen gra-
dient in Xenopus embryos [Saka and Smith, 2007]. Figure 35a shows
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Figure 35: A model of embryonic induction by dynamic morphogen gradient
and a community effect. (a) GRN. (b) Illustration of the mor-
phogen gradient along one dimensional space of length d, with
cells implementing the GRN.

this GRN we refer to as the dynamic morphogen gradient model. First,
it contains a community effect loop between two mutually activating
genes u and w. The latter is a diffusible factor for cell-to-cell commu-
nication, which controls the community effect. Second, it has a genetic
toggle switch [Gardner et al., 2000] — a well-known GRN motif — formed
by the mutual repression between u and v. Third, both u and v are
positively controlled by s. Fourth, and importantly, s is a morphogen -
forming a gradient by diffusion from a source in space, as illustrated in
Figure 35b.

As before in this chapter, we formulate the model in terms of chem-
ical reactions. The space is defined the same way as for the minimal
model. We provide a deterministic analysis of the model first, using
the reaction-diffusion framework. We also provide a stochastic analysis
of the morphogen gradient model using its RDME formulation in the
rule-based language defined earlier.

The insights of this section are the following:

e We show that a pattern of gene expression emerges with a sharp
boundary in space, and that the community effect orients this
spatial pattern.

o We examine the system’s behaviour as the morphogen saturates
the entire space. Surprisingly, the established pattern is main-
tained in the community with uniform morphogen concentration.
This shows that positional information is not provided by mor-
phogen concentration alone, but is encoded in the morphogen dy-
namics.

e A community effect is dispensable for pattern formation. However,
it is essential for the refinement of gene expression boundary and
confers robustness to patterning processes.
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Figure 36: GRN without positive feedback and a community effect, analysed
in Figure 42.

ki GsmomT
activation of u by s: s — "l g4 (77)
.. ks (5uj)sn+1
activation of vby s: s ——— s+4v (78)
kzé 5 n(51ﬁw); N1
activation of u by w:  w —— o IR, ) 4y (79)
k45 ;5:1“1):‘]
activation of w by w: u — 2 s 0w (80)
degradation of w: u LALLN (81)
degradation of vi v Hatv, (82)
degradation of w: LELIA (83)
degradation of s: s Halls, (84)

Figure 37: Reactions of dynamic morphogen gradient model.

4.5.1  Dynamic morphogen gradient model

It was previously shown [Saka and Smith, 2007] that the network in
Figure 36, without the positive feedback mediated by w, can convert a
graded morphogen signal into a binary output (u ON v OFF, or vice
versa). We now explicitly take account of molecular diffusion of s and
w. We consider a gradient of the morphogen s, that arises by diffusion
from the origin at position x = 0 into one-dimensional space. At the
start of a simulation (t = 0), the levels of the other species u,v and w
are set to zero. This corresponds to an undifferentiated state, before
the morphogen s starts to induce the system.

The chemical reactions of the model are given in Figure 37. Reaction
(77) defines the activation of u by s, inhibited by v. Reaction (78)
defines the activation of v by s, inhibited by uw. Reaction (79) defines u’s
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activation by w with saturation, which is also inhibited by v. Reaction
(80) defines W’s saturating activation by u. Reactions (81)-(84) define
the degradation of all species.

& = Q7' the inverse of the system volume, is the scaling coefficient
which relates concentrations in the deterministic model to number of
molecules in the stochastic models. It is introduced to facilitate tran-
sition between deterministic and stochastic rate laws with complicated
higher-order expressions, which are used in this model. 6 is set to 1/100,
corresponding to 100 molecules per one unit of concentration. k; to k,
are synthesis rates and [ to pg are degradation rates. The synthesis
terms for u (laws of reactions (77), (79)) are inversely proportional to
(6fv)™ + 1 to model repression of u by v. Repression of v by u is imple-
mented in a similar way. The Hill coefficient n represents cooperativity,
which introduces non-linearity to the network [Saka and Smith, 2007].

4.5.2 PDE treatment
First, we analysed the model in the reaction-diffusion framework, with

continuous space and concentration variables. The PDEs of the model
are as follows:

du ks tks ()

vu whi1/

ot Vit 1 i

Q_ kss oy

ot unt1 M2 (85)
ow un

a:DlAW‘I‘kA‘(m)—HgW

0s

a:DzAs—Ms,

where D; and D, are diffusion coefficients. Note that the & coefficients
are cancelled out. The boundary conditions are:

s=1—-e " x=0 (86)
0s
P 0, x =d (87)
0 0
alxv —0, = (88)

We assume that the morphogen s is produced outside of our one-dimensional
space, left of the origin (x < 0), and that its concentration at x = 0

is defined by (86). The speed of injection of the morphogen s into the
one dimensional space varies according to the control parameter T. For
this deterministic model, the system is closed, meaning that except for
the supply of s from the boundary x = 0, no diffusion of any molecule
into or out of the system occurs. This boundary condition corresponds

to equations (87) and (88).
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Figure 38: Pattern formation by a dynamic morphogen gradient and a com-
munity effect.

Numerical simulations of the PDE model

We performed numerical simulations to analyse the system’s dynamics,
fixing the length of one-dimensional space to d = 100 for all simulations.
Exploring the parameter space of the system, we found three categories
of patterns of gene expression at steady state along the one dimensional
space (beyond the trivial case of u=v=w =10 ):

e uniform expression of u, denoted as [ul,
e uniform expression of v, denoted as [v],

e [v,u], denoting: v on and u off close to the origin x = 0, and
further away, v off and u on.

Figure 38a and Figure 38b show concentration profiles of u, v and
the diffusible molecule w over the entire range of cells, at time points
t =150 (a) and t = 5000 (b), obtained by simulation of the PDE model,
with the parameter values in Table 6 on page 101. Concentration pro-
files of the morphogen s at the same time points are shown in Figure 38c
and Figure 38d.

At the stable state (t = 1500), simulation yields a sharp boundary
of gene expression for the pattern [v,u]. This gene expression pattern
is self-organising and is refined spatially in response to the dynamic
gradient of the morphogen s. Small bumps at the [v,u] boundary in
Figure 38b are artefacts of numerical integrations. Interestingly, once
established, the [v, u] boundary is maintained even when the morphogen
concentration along space becomes uniform at steady state, i.e., even
when the gradient is transient (Figure 39). This observation indicates
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Parameter Description Value Range
D, diffusion of w 20 0<D; <100
D, diffusion of s 20 0<D, <100
k, activation of u by s 0.6 0<k; <1
k, activation of u by w 0.2 n.a.

k; activation of v by s 0.8 0<ky <1

k, activation of w by u 0.2 n.a.

L degradation of u 0.08 n.a.

Mo degradation of v 0.04 n.a.

TS degradation of w 0.01 n.a.

Ha degradation of s 0.001 n.a.

T control parameter for s(0,t) | 0.004 | 1073 <t < 107!
d responding tissue size 100 n.a.

Table 6: Parameter values for numerical simulations in Section 4.5. Used for
simulations, unless defined explicitly in the main text. Parameter

ranges in the last column are used for phase diagrams.

applicable.

30
251
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n.a., not

t=5000

concentration

4 ]

80 100

o

80 100

Figure 39: Pattern formation in a uniform concentration of morphogen along
one dimensional space at steady state. Uniform distribution of the
morphogen at steady state is established with ugs = 0. The simula-
tion result at a quasi-steady state (t = 5000) is shown. Parameter
values used for the simulation are listed in Table 6 except pg = o.
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Figure 40: Simulations of the PDE model show that cell-to-cell communica-
tion by the diffusible factor w is dispensable for pattern formation,
but is essential for community effects. (a) Steady state profile. (b,
c) Phase diagrams in the parameter plane (k;, k;) with D; = 20
(b) and D; = 0 (c¢). The position of the expression boundary for
[v,u] pattern is colour-coded as indicated. Borders between the
patterns [u], [v] and [v,u] are indicated by grey lines. Simulation
parameters for (b,c) are listed in Table 6, except ky,k; and D;as
indicated in the panels.

that a transient morphogen gradient is sufficient, and that maintenance
of the morphogen gradient at steady state is not a prerequisite for pat-
tern formation in our model.

We found that the steady-state pattern is either [u], [v] or [v,u], over
a wide range of parameter values, as shown by phase diagrams of the
parameter plane in Figure 40. We will later show that the pattern
[u,v] only appears in the absence of the community effect and positive
feedback loop. Therefore it seems that the positive feedback of com-
munity effect introduces an asymmetry to the system, and orients the
spatial pattern of gene expression. We next examined how the gene ex-
pression pattern is affected by the dynamics of the diffusible factors s
(morphogen) and w (community effect factor).

DISABLING THE CELL-TO-CELL COMMUNICATION MEDIATED
BY w. First, we tested the system’s behaviour without cell-to-cell
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Figure 41: The position of the gene expression boundary depends on the dy-
namics of the morphogen s. The figures are derived from simula-
tions of the PDE model. (a) Position of gene expression boundary
is plotted as a function of T (in log scale). T defines the speed
of morphogen supply (the larger 7 is, the faster the supply and s
gradient reaches a steady state). The parameter values used are
the same as Figure 38, except T. (b) Phase diagram in the param-
eter plane (D;,D,). The parameter values used can be found in
Table 6, except D; and D,. The expression boundary is relatively
insensitive to the fluctuation of D;, the diffusion rate of w. By
contrast, the boundary position is sensitive to the dynamics of the
morphogen s and shifts by changes in T or D, value.

communication mediated by w (by setting D; = 0) — while preserving
the mutual activation between w and u within the same cell (k,, k, >
0). Numerical simulation of the PDE model shows that the [v, u] pat-
tern of gene expression can be established without cell-to-cell communi-
cation (Figure 40a). Figure 40b and Figure 4oc show phase diagrams in
the parameter plane (k;, k;) obtained from the PDE model with cell-
to-cell communication (b), versus without (c¢). They were obtained by
leaving w’s diffusion rate on (D; = 20) and switching it off (D, = 0).
We recall that k; is the rate for u’s activation by the morphogen s,
and kj is the rate of v’s activation by the morphogen. The parameter
pair (k, k3) for the simulation in Figure 40a is marked by a blue dot
in Figure 4oc. As the phase diagrams show, the parameter range for a
[v, u] pattern widens in the presence of cell-to-cell communication.

PATTERN FORMATION IS SENSITIVE TO THE DYNAMICS OF
MORPHOGEN GRADIENT. We next examined how the gene expres-
sion pattern is affected by the dynamics of the morphogen s and the
community effect factor w. Figure 41a shows a plot of the position of
the boundary between v and u as a function of T (logT), the param-
eter controlling the supply of s to the system. The plot demonstrates
that the boundary shifts as T changes: the faster the supply of s to
the system, the broader the expression domain of v is at steady state.
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Figure 41b is a phase diagram in the parameter plane (D, D,). The
diagram indicates that faster diffusion of the morphogen, i.e., larger
diffusion coefficient D, shifts the expression boundary away from the
origin. This is consistent with the above results shown in Figure 41a. In
contrast, as shown in the same diagram, the boundary of [v,u] is insen-
sitive to the change of D;, the diffusion rate of w, especially when D,
value is low. This is also evident in the stochastic simulations, following
in subsection 4.5.3.

PATTERN FORMATION WITHOUT BOTH POSITIVE FEEDBACK
AND COMMUNITY EFFECT. Finally we consider the system with-
out both positive feedback and a community effect (Figure 36). This
gene regulatory network without w is effectively identical to the one
described in [Saka and Smith, 2007], with the addition of the diffusion
term of s. In contrast to the network with w, this system still forms
the [v, u] pattern at steady state, but also the previously unseen pattern
[u, V], in which u is on in a domain closer to the origin, while v is on
further away. The pattern depends on the parameter values (Figure 42).
However, a phase diagram in the parameter plane (k;, k;) shows that
the [u,v] and [v,u] patterns only appear for narrow parameter ranges
(Figure 42a, Figure 42c¢). In fact, stochastic simulations confirm that
the system mostly ends up with no clear pattern, and a heterogeneous
population of u-ON and v-ON cells at steady state (data not shown).
These results highlight an important role of the community effect that
confers robustness to this patterning system.

4.5.3 RDME treatment

In order to study robustness of pattern formation in the presence of
noise, we analysed the same model in the RDME framework. In Fig-
ure 43 the spatial model is written in the 1D rule-based language which
we used earlier.

Several points need clarification. Rules (97), (98) define the diffusion
for w and s, following the diffusion scheme of Section 4.2. D7 and D
are diffusion rates of w and s between neighbour cells. These generally
depend on Dy and D3, as well as on further details about cell geome-
tries which we did not specify; therefore they are chosen in a way that
makes simulation results close to the curves obtained using the PDE
model. Rule (99) describes the creation of s at the leftmost active cell,
approximating the boundary condition of the PDEs (86) on page 9g.
Since we did not perform simulations with varying T, T is not present in
the reaction rate. In the presence of only rule (99), the mean number of
#s(Np + 1) at time t would be (1 — e )61, which corresponds to the
boundary condition with T = 1. Because fs(Np + 1) is also affected by
rules (96) and (98), its actual number will be lower in general. Its max-
imum, for example, is about 55 instead of 100. This is the main source
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Figure 42: Pattern formation without positive feedback and a community ef-
fect (k, =k, = 0,D; = 0) in the deterministic model. (a) Phase
diagram in parameter plane (kq, k;) for (ny, u2) = (0.04,0.08). (b)
Steady-state profile (t = 5000) for the parameter values indicated
as a blue dot in (a). (¢) Phase diagram for (pq, pu2) = (0.08,0.04).
(d) Steady-state profile (t = 5000) for the parameter values indi-

cated as a blue dot in (c).

The parameter space for [v,u] (a) or

[u,v] pattern (b) (i.e., without w) is much smaller than in the sys-
tem with positive feedback and a community effect. Without w,
both [v,u] and [u, V] patterns are possible. Except for those indi-
cated in the figure, the parameter values for simulations are listed

in Table 6.
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D X
w(x) = iadbd w(x+1)
Ditw(x+1)
(97)
diffusion of s: Vx € AllCells —{LastCell},
D
s(x) = 2850) s(x+1)
Dyis(x+1)
(98)

711ax(6*]fﬁs(1\lp+1 ),0) s

external inflow of s:

(Np+1)
(99)

where ActiveCells = {1 + Np,...,Np + Ng},  AllCells =
{1,..., LastCell}, and LastCell = 2N, + Ng.

Figure 43: Rules of dynamic morphogen gradient model.
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Figure 44: Stochastic simulations of the morphogen gradient model, enabling
a community effect (left column) or disabling it (right column).

of numerical differences between the stochastic and the deterministic
models.

Stochastic simulations

We carried out stochastic simulations of this system, results of which
are shown in Figure 44. We paid particular attention to the roles of the
community effect, and observed the impact of enabling or disabling it.
Disabling the community effect can be achieved in two technical ways
in the rule based model, either by setting w’s diffusion rate to zero,
following the PDE model, or equivalently by withdrawing (97) from
our rule based model in Figure 43.
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Figure 44 shows snapshots at t = 990 (quasi-steady state) for 70 sim-
ulations with community effect (left column) and without community
effect (right column). The panels in the first row show the active cells’
level of s, averaged over all simulations. The second and third row in
Figure 44 show the number of u and w molecules, respectively, in active
cells at t = 990. Each plot contains 7o lines, each corresponding to the
outcome of one stochastic simulation. We do not show the distribution
of v molecules across active cells; it is opposite to that of u (middle pan-
els). Simulation parameters are the same as those of the PDE model
(Table 6 on page 101), except ko = 0.3 that represents u’s activation
by w.

The community effect being turned on (left column), the result of the
stochastic simulations are similar to those of the deterministic model,
except stochastic noise. In stochastic simulations, although a boundary
is formed around x = 30, minor populations of rogue cells with opposite
gene expression pattern are evident in both u-ON and v-ON domains
around the boundary in approximately 80% of simulations.

Interestingly, simulations revealed that stochasticity near the expres-
sion boundary is more pronounced in the absence of a community effect
with more rogue cells (Figure 44, right column). This result demon-
strates that a community effect sharpens the gene expression boundary
in our model, although rogue cells are not completely eliminated. With-
out the community effect the boundary is blurred. It has revealed an
interesting role of the community effect for refining gene expression
boundaries during patterning, in addition to its known role for a coor-
dinated gene expression in a group of cells.

In conclusion, stochastic simulations showed that the dynamic mor-
phogen gradient model has more robust pattern formation when includ-
ing a community effect. Although a community effect is dispensable
for patterning process per se (see Figure 41), it plays a crucial role for
refining the gene expression boundary.
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DISCUSSION

5.1 MODELLING METHODS
5.1.1  Stochastic modelling

Stochastic analysis derived from CME, as used in the previous chapters,
rests upon the assumptions of well-mixed compartments and elementary
reactions. It is unclear to which extent these assumptions apply to
intracellular reactions.

A review of methods which model intracellular diffusion in detail is
given in [Klann and Koeppl, 2012]. These include methods reviewed
in Chapter 2, as well as more complicated simulators which model
repulsive forces between molecules in crowded environments (referred
to as Brownian dynamics simulators) and flexible chains of connected
molecules.

Derivations of stochastic behaviour from CME assumes that the CME
describes the system completely. This can never be the case: there are
always missing details about the chemical interactions in all but very
simple systems. For example, models given before all include gene ex-
pression in some form, which is usually modelled as one or two reactions.
In the reality this is a complicated multi-step process which takes con-
siderable time and involves thousands of intermediate interactions with
other molecules. To model all this as an elementary reaction is a huge
simplification. Random fluctuations of molecule counts will have dif-
ferent distributions than what is predicted by the elementary reaction
model. Considering this, stochastic models may not predict well statis-
tics of the variables beyond first order (which is typically fit to the
observations), such as variances.

Perhaps a cleaner approach to take stochastic noise into account
would be to consider it explicitly as another parameter (or parame-
ters), e.g. using SDEs. In this work, since we are more interested in
qualitative behaviour than exact quantitative predictions, we use the
CME for simplicity.

5.1.2  Moment closures

The main difficulty in applying moment closures is the lack of under-
standing of conditions under which they give good results. It is made
worse by the lack of control of the approximation error. In theory, the
higher order closure should be more precise, but in practice we can only
apply second order closures, because third order ones are already too
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large for most systems. In addition, tests of simple systems indicate
that raising the order doesn’t help to reduce the error in some cases.

This leaves us the only practical method to control the approximation
precision: changing the type of the closure by trial and error. The
normal approximation is usually the first choice, but it can behave badly
even for very simple systems, e.g. 2A —, as demonstrated in [Vidal
et al., 2010]. Generally is has troubles when count of some species
approaches zero: under normal approximation the count will happily
cross zero (recall that the normal approximation allows negative values),
which has devastating effect on subsequent calculations. In this respect,
the lognormal closure may be more appropriate [Singh and Hespanha,
2006b].

For now, the only reasonable method to check if a moment closure
is working correctly is to compare it to many stochastic simulations.
Of course, doing so for every run of moment closure would defeat its
purpose, so it has to be done selectively, presumably in places where its
result looks abnormal. This makes its use inconvenient, unlike ’single
click’ solutions offered by other approximations.

Hopefully this can be improved in the future by developing more
robust closures, or checking the conditions for closures at run time (e.g.,
species count approaching zero) and adjusting the solution accordingly.

5.1.3  Symmetric reduction

Despite its shortcomings, the moment closure method is a flexible tool
for approximate stochastic analysis. It allows manipulations of moment
equations similar to those that can be done with deterministic ODEs,
but including, approximately, the stochastic effects.

Model reduction is one kind of such manipulations. It aims to elim-
inate redundant variables from the system of ODEs, making it easier
to solve. For moment closure, which tend to generate a large number
of ODEs, reductions are especially important. We have described a
model reduction method based on symmetries, which in case of mo-
ment closure is more complicated than what is used with deterministic
approximation.

Currently, the only way to exploit such symmetries while performing
stochastic analysis of a system is through moment closure: reduced
models are not amenable to Gillespie simulation. If the corresponding
species in the cells are "lumped" together, in the same way as in the
deterministic approximation, the results diverge quickly from the non-
reduced system. Also note that, as the order of the closure grows,
the symmetric reduction can eliminate a smaller fraction of moments,
suggesting that for the limit case of the exact solution the gain from
the reduction will be negligible. We believe that, for the community
effect model, the approach presented here provides the only tractable
analysis.
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Symmetry-based reduction is potentially applicable to many highly
regular systems. For example, in [Camporesi and Feret, 2011] a model
reduction method for deterministic approximation is applied to a system
that contains a protein with symmetric activation sites. That system is
also symmetric in the sense described here, w.r.t. exchanging activation
states for different sites. Thus, its moment closure could be reduced
with our method as well. Another example is a discrete ring of identical
cells, considered in [Turing, 1952|, which is symmetric under rotation
of all cells. Many higher order moments could be eliminated with our
method using this property.

5.2 COMMUNITY EFFECT
5.2.1  Stochastic phenomena

During development of a multicellular organism, the cell populations
expands quickly while differentiating into different types. This poses a
threat of error amplification, whereby a random switch to an incorrect
cell fate in the wrong place or at the wrong time could have detrimental
consequences for the developing embryo [Balazsi et al., 2011]. Collective
decision making was previously found to be essential for noise reduction
during development [Gregor et al., 2007]. Therefore it is an interesting
question how community effects behave in the presence of noise.

Our analysis showed that community effects do not change signifi-
cantly if the noise is considered, compared to the noise-free determin-
istic case. The minimum number of cells required to make a decision
is higher in the presence of noise (Figure 19a), which is not surprising:
the noise interferes with the cellular decision mechanism and, in this
case, biases it towards the inactive state, which is absorbing.

Another interesting observation in this respect is that with more cells
in the population, the convergence of the expression to its quasi steady
state seems to happen faster, visible on Figure 18. This may be con-
nected to the results of Gregor et al. [2007], who found the dependency
between the number of cells participating in a cell fate decision in the
presence of noise, and the shortest possible time to take this decision.

A noise-suppressing feature of the community effect in Xenopus is
demonstrated in Figure 44, where it helps to sharpen the gene expres-
sion boundary. Such an effect is clearly useful during development,
making the patterning mechanisms more robust.

5.2.2 Self-organized patterning

Spatial analysis of the three GRNs in Chapter 4 led to several insights
about the self-organisation related to community effects.



AN INCONVENIENT TRUTH OF THE COMMUNITY EFFECT. We
have shown that a community effect spreads across the system, without
any interlocked negative feedback. Although this is indeed an incon-
venient property for patterning of the embryo, it has turned into a
control mechanism for coordinated gene expression in nature. Our two
different models demonstrated that it can play another role as a control
sub-circuit for pattern formation.

We have also shown that, when the spatial dimension is taken into
account, the community effect must be treated as not a simple cell-
number dependent phenomenon, but also as tissue size and cell-density
dependent (Section 4.3).

COMMUNITY EFFECTS AND PATTERN FORMATION BY TURING
MECHANISM. Turing patterns emerge from a uniform signal with
noise as shown in Figure 34a. Embryonic induction, by contrast, is
initiated by diffusion of signalling molecules from a localised source.
Our simulation results suggested that the Turing pattern mechanism
can be exploited as a mechanism to restrict the effective range of a
community effect, in response to a localised inducing signal (Figure 34b).
Such an isolated area is maintained as a stable wave. A community
effect may also coordinate the gene expression within the area.

The Turing pattern theory was initially met with scepticism, but
recently many experimental results pointed to possibility of such mech-
anisms in many organisms. This includes works of Kondo and Miura
[2010] and Miiller et al. [2012], who found that interaction between
Lefty and Nodal proteins, which diffuse with different speeds, leads to
formation of a reaction-diffusion system in zebrafish. Similar findings
are reported by Duboc et al. [2008] for Lefty and Nodal interaction
which are shown to specify the area of oral ectoderm in sea urchin.
In [Su et al., 2009] a GRN of sea urchin oral ectoderm specification
circuit is given. Together with the fact that Nodal is involved in a com-
munity effect found in the same system [Bolouri and Davidson, 2010,
they provide evidence to support the Turing pattern model studied in
Section 4.4.

In other organisms, Turing patterns, or, more generally, reaction-
diffusion systems, have been found: Shiratori and Hamada [2006], Naka-
mura et al. [2006] show that Lefty-Nodal interaction establishes left-
right asymmetry in mouse, a complex phenomenon also studied by Tur-
ing [1952[; Sheth et al. [2012] show that Hox genes regulate a Turing
pattern mechanism which is responsible for patterning of digits in mice.
A review of experimental evidence for Turing patterns in development
is given by Marcon and Sharpe [2012].

The paper of Hsia et al. [2012], using deterministic and stochastic
spatial modelling, shows how an oscillatory circuit combined with a
Turing pattern GRN can form many types of patterns, focusing on ease
of implementation of such a circuit artificially.



ROLES OF COMMUNITY EFFECT IN DYNAMIC MORPHOGEN
GRADIENT INTERPRETATION. Dynamic assessment of a morphogen
gradient has been suggested previously based on experimental evidence
[Dessaud et al., 2010, Gurdon et al., 1995, Harvey and Smith, 2009,
Jaeger et al., 2004al. Surprisingly, our simulations indicate that a mor-
phogen gradient at steady state is not a prerequisite for pattern for-
mation. It turned out that a transient gradient is sufficient for pat-
terning and the steady-state morphogen distribution can be uniform
(Figure 39).

In our dynamic morphogen gradient model, therefore, positional in-
formation is encoded in the dynamics of diffusing morphogens, rather
than by the concentration in a stable gradient. In other words, the
system confers memory of morphogen dynamics. The dynamic mor-
phogen gradient model thus provides an alternative to the so-called
French flag model and the concept of positional information for embry-
onic patterning [Wolpert, 196g]. Pattern formation mechanisms based
on dynamic interactions between genes have also been modelled previ-
ously for Drosophila by Lembong et al. [2009)].

The network of a mutually-repressive pair of genes has been impli-
cated in interpretation of positional information in the gradients of ma-
ternal proteins, which work as morphogens [Jaeger et al., 2004a| in
the segmentation of Drosophila embryos. However, because it involves
a complex GRN, its exact mechanism remains unresolved. We found
that, when being combined with a community effect, this cross repres-
sion sub-circuit (genetic toggle switch) turned into a robust patterning
GRN with coordinated gene expression. The community effect plays a
role in refining patterns by sharpening gene expression boundaries.

Our simulation results have also shown that a community effect helps
orient gene expression patterns in space (Figure 38). This is one of the
roles of a community effect not recognised previously. In the context
of animal development, the community effect and the GRN depicted
in Figure g5a is a robust system to establish an asymmetric pattern
in embryonic tissues. These results indicate that diffusible factors for
cell-to-cell communication, either with positive or negative influence
from one cell to the other, may provide myriad mechanisms for embry-
onic patterning when interlinked with a sub-circuitry of developmental
GRNs.
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CONCLUSIONS AND FUTURE WORK

The goal of this work was to model community effects in more detail
than was considered in previous studies, in particular including spatial
and stochastic aspects. In the context of development, spatial phenom-
ena are obviously important, since formation of spatial organisation of
tissues is an essential task of embryogenesis. It is also important to con-
sider stochasticity, because developmental processes have to be robust
with respect to fluctuations inherent in chemical systems.

In the following, we list the specific research questions and the ob-
tained results, together with some directions for the future work.

WHAT IS THE INFLUENCE OF STOCHASTIC NOISE ON A COM-
MUNITY EFFECT?  We have analysed a detailed model of a commu-
nity effect in Xenopus and concluded that the only influence that the
stochastic noise has in that model is the increase of the critical number
by about 20%.

As a part of this work, a model reduction method was developed in
[Batmanov et al., 2012al, which can greatly reduce a symmetric model,
facilitating advanced stochastic analysis.

Symmetric reduction presented here can be extended in a number
of ways. Checking and finding the required symmetric properties of a
reaction set can be automated rather easily. The symmetries consid-
ered here are just the automorphisms of the reaction graph with the
additional constraints that the initial conditions of the corresponding
species must be equal and the rates of the corresponding reactions must
be equal. The problem of finding all automorphisms belongs to the NP
class of complexity, however for real systems the requirement of having
the same rates and initial conditions restricts the number of possible
symmetries. Verification of a specified symmetry can be done in poly-
nomial time.

One direction for future developments here is to directly derive a
reduced moment closure from a rule-based representation, without ex-
panding it to the full system. This becomes interesting if the expanded
system’s size is huge, and the system is highly symmetric, so that it
can be described by a manageable set of moment equations. In this
case, the expansion of the rule-based model to chemical reactions be-
comes the computational bottleneck, which can possibly be avoided. It
resembles what is done in [Camporesi and Feret, 2011].

However, the current method is not applicable to spatial systems with
borders. By borders, we mean the outermost cells in a one dimensional
row of cells, or in a two-dimensional grid, those cells that frame the grid.
In such system, a distinct distance from the border(s) uniquely identifies
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each cell. For example, one-dimensional spatial models of the commu-
nity effect from Chapter 4 can be reduced in half by central symmetry.
But, for a second order moment closure, the quadratic dependency of
number of equations on the system size remains. Because of this, we
resorted to lengthy stochastic simulations for the spatial models.

Moment closures for spatial models have been previously derived in
ecology [Gandhi et al., 2000] and statistical physics [Levermore, 1996].
In the future, we plan to develop methods to infer spatial moment
closures automatically for chemical reaction systems as well.

HOW COMMUNITY EFFECTS BEHAVE IN SPACE? To answer
this question, we have constructed a minimal model and analysed its
behaviour in one-dimensional space. One finding was that for a commu-
nity effect which depends only on the number of cells, i.e. if we consider
size of the cells and distances between them fixed, it is necessary to have
a loss of the diffusible factor. This was implemented in a biologically
plausible way with active and inactive cells, and this setup was used in
the rest of the work.

Our minimal model of community effect illuminated another prop-
erty of community effects, that is, its uniform unrestricted expansion
throughout the cell population. This property is obviously inconvenient
for pattern formation during embryogenesis. This raised the next ques-
tion:

HOW CAN THE SPREAD OF A COMMUNITY EFFECT BE LIM-
ITED? To resolve this issue, we have proposed two different models
that limit the spread of a community effect within a cell population:
the Turing pattern model and the dynamic morphogen gradient model.
These not only presented mechanisms of regulating community effects,
but also revealed several interesting insights into embryonic patterning.
Our findings are summarised as follows:

1. A community effect spreads out without any negative feedback
(Figure 25d).

2. With negative feedback, a community effect does not spread un-
restrictedly. We show that localised induction leads to localised
gene expression in our Turing pattern model (Figure 34b).

3. Community’s cell density and size become critical for self-sustaining
gene expression by a community effect (subsection 4.3.4). This is
relevant to embryonic patterning, because embryos undergo dy-
namic morphogenetic movement. It raises a question: How does
tissue geometry affect patterning? We plan to address this issue
in the future.

4. A modified form of genetic toggle switch combined with a com-
munity effect loop converts a dynamic morphogen gradient into

116



a spatially-asymmetric pattern of gene expression (Figure 38).
The community effect loop introduces an asymmetry to the GRN,
which biases pattern formation towards [v,u] pattern. However,
the fundamental, non-trivial question remains unanswered: how
does the topological asymmetry of the GRN bring about the bias
in pattern formation? This is a subject of our future work.

5. A transient and dynamic morphogen gradient is sufficient for pat-
terning. Moreover, a uniform morphogen distribution across the
induced tissue can maintain the established pattern with a well-
demarcated boundary (Figure 39).

In this work, we have only analysed one-dimensional spatial models.
They represent an idealized, spherically-symmetric cagse. This configura-
tion was chosen for computational efficiency. In order to study pattern-
ing in more complicated geometries, however, two- or three-dimensional
space representations will be needed, which is significantly harder in
terms of required computations. Building such models is another sub-
ject of our future work.

6.1 ON AUTHORSHIP OF CONTRIBUTIONS

This thesis is a result of collaborative work. In order to keep the pre-
sentation coherent, I have included all the material from co-authored
publications. While in general it is difficult to attribute ideas to a single
person, I will list several clear cases below.

The dynamic morphogen gradient model from Section 4.5 was created
by Yasushi Saka. All PDE-based analysis of it, as well as that of the de-
tailed spatial model in subsection 4.3.4 was also done by him. He made
the Mathematica notebook provided in the supporting on-line code
(http://www.lifl.fr/~batmanov/thesis/simulationCode.zip).

While the idea of the symmetric reduction first occurred to me, the
formalization of the proof presented in subsection 3.3.2 is done by Cédric
Lhoussaine.

The Maple code to derive moment closures was largely inspired by a
similar package written by Michel Petitot.
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