
HAL Id: tel-00977086
https://theses.hal.science/tel-00977086

Submitted on 10 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Image structures: From augmented reality to image
stylization
Jiazhou Chen

To cite this version:
Jiazhou Chen. Image structures: From augmented reality to image stylization. Graphics [cs.GR].
Université Sciences et Technologies - Bordeaux I, 2012. English. �NNT : 39�. �tel-00977086�

https://theses.hal.science/tel-00977086
https://hal.archives-ouvertes.fr


No : ????

THESIS
presented at

BORDEAUX OF UNIVERSITY 1

DOCTORAL COLLEGE OF MATHEMATICS AND

INFORMATION

by Jiazhou Chen

To obtain the degree of

DOCTOR

SPECIALITY : COMPUTER SCIENCE

Image structures:
From augmented reality to image stylization

Defend at : July 12th 2012

After review of :

Enhua Wu . . . . . . Professor

Joëlle Thollot . . . Professor

The jury of defense includes :

Enhua Wu . . . . . . Professor . Reviewer

Joëlle Thollot . . . Professor . Reviewer

Adrien Bousseau Researcher Examiner

Pascal Guitton . . Professor . Examiner

Xavier Granier . Researcher Advisor

Qunsheng Peng . Professor . Advisor

Pascal Barla . . . . Researcher Co-Advisor

2012





Abstract

In this thesis we consider in general image structures and more specifically, image

gradients and contours. They have been proven useful in recent years for vari-

ous computer graphics applications, such as Augmented Reality (AR), image and

video stylization. The goal of analyzing image structures is to describe a high level

understanding of image contents and to provide a powerful support to improve

the quality of applications, such as visual legibility, accuracy, spatial and temporal

coherence.

We first demonstrate the important role of image structures in Focus+Context

compositing. For Focus+Context rendering in AR, a technique dedicated to the

visualization of hidden scenes in video streams, the use of screen segmentation

and feature lines significantly emphasizes the depth cue of occluded scenes, and

reveals the correct occluding order. We further extend Focus+Context rendering

to importance-driven image synthesis, where image gradient and saliency map are

used to composite multiple rendering styles in a coherent manner.

In the second part, we thus introduce a new approach to estimate a continuous

gradient field without oversmoothing original details contained in an image. For

this purpose, we develop a new and higher-order local approximation method for

discrete non-oriented gradient fields based on a moving least square (MLS) for-

malism. We show that our isotropic linear approximation outperforms classical

structure tensor: image details are better preserved and instabilities are signifi-

cantly reduced. We demonstrate how our non-oriented MLS gradient field benefits

to various image stylization approaches.

Finally, we demonstrate that the use of a feature profile analysis for image line

extraction via fitting techniques permits to distinguish sharp and smooth features.

Profile parameters are then mapped to stylistic parameters such as brush orienta-

tion, size or opacity to give rise to a wide range of line-based styles.

Key-Words : Image structure, Augmented reality, image and video stylization,

gradient field, contours and lines.
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Résumé

Dans cette thèse, nous nous intéressons aux structures d’une image en général, et

plus particulièrement aux gradients et aux contours. Ces dernières se sont révélées

très importantes ces dernières années pour de nombreuses applications en infogra-

phie, telles que la réalité augmentée et la stylisation d’images et de vidéos. Le

but de toute analyse des structures d’une image est de décrire à un haut-niveau la

compréhension que l’on peut avoir de son contenu et de fournir les bases néces-

saires à l’amélioration de la qualité des applications citées au-dessus, notamment

la lisibilité, la précision, la cohérence spatiale et temporelle.

Dans une premier temps, nous démontrons le rôle important que ces structures

jouent pour des applications de type composition “Focus+Context”. Une telle ap-

proche est utilisée en réalité augmentée pour permettre la visualisation de parties

d’une scènes qui sont normalement derrières ce que l’on peut observer dans un flux

vidéo. L’utilisation d’une segmentation et de lignes caractéristiques permettent de

mettre en avant et/ou de révéler les relations d’ordre entre les différents objets de la

scène. Pour la synthèse d’images guidée par une fonction d’importance, de multi-

ples styles de rendu sont combinés de manière cohérente grâce à l’utilisation d’une

carte de gradients et une de saillance.

Dans un deuxième temps, nous introduisons une nouvelle techniques qui per-

met de reconstruire de manière continue un champ de gradient, et ceci sans trop

lisser les détails originaux contenus dans l’image. Pour cela, nous développons une

nouvelle méthode d’approximation locale et de plus haut-degré pour des champs

de gradients discrets et non-orientés. Cette méthode est basée sur le formalisme

“moving least square” (MLS). Nous démontrons que notre approximation isotrope

et linéaire est de meilleure qualité que le classique tenseur de structure : les détails

sont mieux préservés et les instabilités sont réduites de manière significative. Nous

démontrons aussi que notre nouveau champ de gradients apporte des améliorations

à de nombreuses techniques de stylisation.

Finalement, nous démontrons que l’utilisation d’une technique d’analyse de

profil caractéristique par approximation polynomiale permet de distinguer les vari-

ations douces des zones dures. Les paramètres du profil sont utilisés comme des

paramètres de stylisation tels que l’orientation des coups de pinceau, leur taille et

leur opacité. Cela permet la création d’une large variété de styles de ligne.

Mots-clefs : Structures d’une image, réalité augmentée , stylisation d’images et de

vidéos, champ de gradient, contours et lignes
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C 1

Introduction

During the recent years, acquired images have been integrated into a large variety

of computer graphics applications, thanks to the availability of affordable image-

capture devices, such as digital cameras, cell-phones. For many of these applica-

tions, extended knowledge of the information contained in images is required, but

absent in current 2D color array representation. For instance, smoothing is always

employed as a pre-process to reduce noises of the image, but over-smoothing im-

portant features such as edges is difficult to prevent without the a-priori knowledge

of their locations [SSD09]. Knowing the structures of an image, such as occlusion

relationship, greatly improves the quality of image stylization (as shown in Fig-

ure 1.1). Unfortunately, for videos and mixed-reality applications, such a manual

extraction of image structures will be hardly suitable for interactive applications.

In this thesis, we thus focus on automatic techniques.

Image structure may be used in a larger range of applications than for image

processing only. As an example, Focus+Context rendering is an Augmented Real-

ity (AR) technique that aims to visualize hidden scenes in video streams: the vir-

Occlusion relation Painterly rendering

Figure 1.1: Painterly rendering based on image parsing [ZZXZ09]. The input

image is segmented into four regions according to their occlusion relationships

(left). Structural information improves the quality of painterly rendering. Bound-

aries are used to ensure the sharpness on the object contours. Occluding order

is used to scale the brush size: small brushes for near scenes, large brushes for

distant scenes.
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2 Chapter 1 – Introduction

Input image Direct integration Integration w/ image structures

Figure 1.2: Visualization of hidden scenes [KMS07]. Direct integration, by

adding the human organs on the top of the video stream (left), makes the medicinal

operative landmark disappear (middle). By enhancing with lines, extracted from

the video stream, the new AR system (right) provides visual cues to register the

virtual object with the real environment. Therefore, doctors are able to insert the

virtual iatrical instrument into the expected position accurately.

tual objects are the focus, while the real environment is the context. The structural

information from the context could be used to improve the visualization quality.

Figure 1.2 illustrates that extracted lines from video streams provide visual cues to

register the virtual organ inside the human body.

The first part of this thesis is dedicated to the exploration of what are impor-

tant image structures through one specific application: Context+Focus composit-

ing in AR. We first present a new approach for the visualization of virtual under-

ground pipelines in video streams based on cutaways [BF08] that improves Fo-

cus+Context rendering [KMS07] in AR. The contribution comes from the fact that

direct compositing will cause an illusion that underground pipelines are floating on

the ground. Thanks to our approach, we are able to provide depth cues to legibly

reveal the correct occluding order.

Inspired from the Focus+Context rendering, we further extend it to importance-

driven image synthesis using multiple rendering styles. Different layers are ren-

dered separately with different styles, and the final result is obtained by composit-

ing them driven by an importance map of the input image. Thanks to the gradient

field that is, a field of 2D vectors that point in the direction of greatest rate of in-

creasing of the input image luminance, we can thus stylize the input image in a

spatial coherent manner.

The first part shows the importance of the gradient field. In the second part,

we develop a non-oriented gradient field estimation approach, and demonstrate

its advantages for image stylization. For instance, Figure 1.3 exhibits an improved

image abstraction result using a gradient field estimated from Van Gogh’s painting.

We thus introduce a new approach for defining a continuous non-oriented gra-

dient field from an image in Chapter 5, a fundamental stage for a variety of com-

puter graphics applications, such as curve reconstruction and image stylization.
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Input image Tangent field Flow-based abstraction

Figure 1.3: Image abstraction using gradient field [KLC09]. The floating feel-

ing in Van Gogh’s painting is exaggerated by a flow-based bilateral filter. Note

that here we employ a line integral convolution algorithm [CL93] to visualize the

tangent field, that is orthogonal to the gradient field.

Our approach is built on a moving least square formalism where the key is the

computation of higher-order local approximations of non-oriented input gradients.

In particular, we show that our novel isotropic linear approximation outperforms

its lower-order alternative: image structures are much better preserved, and insta-

bilities are significantly reduced.

We demonstrate the validity of our MLS gradient field on structure preserva-

tion by experimenting it on various stylization algorithms in Chapter 6, such as

continuous glass pattern [PP09], flow-based image abstraction [KLC09], enhanced

shock filter [KK11]. We also extend to image and video a feature profile analysis

approach, that identifies feature lines via fitting techniques. Our approach extracts

not only the location of features, but also their profile attributes, which permits to

distinguish between sharp and smooth feature lines. Profile parameters are then

mapped to stylistic parameters such as brush orientation, size or opacity.

In conclusion, we not only review all the contributions, but also detail interest-

ing research directions that deserve further endeavor, including exploring advanced

image structures, such as scales and multiple directions, structures for videos and

3D volume data, and an interactive image structure analysis tool.
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C 2

Image structures

In this chapter, we present a general overview of the use of image structures and

the previous work on their extraction. We particularly focus on gradient field and

object contours, and emphasize their important roles in Augmented Reality and

image stylization applications.

2.1 The use of image structures

Classically, an image is a 2D array that stores color data at each position. This

array representation provides great conveniences for storage and directly matches

screens and video projectors, but it does not contain any information about the im-

age contents. When humans look at an image, they do not only see a pattern of

color and texture, but the world behind it [HEK07]. Unfortunately, computer intel-

ligence is far from fully recovering the world from a single image. But, researches

in image structure analysis during recent decades show that essential image struc-

tures can be regarded as higher level understanding of image contents than a 2D

color array, and provide richer structural information for further image processing

in various applications.

Contours play an important role in human vision. Early clinical experiments

[Zek93] show that damages in brain areas which are in charge of contour perception

will make people completely lose the ability to recognize objects. Optical illusions

in Figure 2.1 show that humans are naturally accomplished in discovering object

contours, even if they are ambiguous in positive and negative spaces (left), and

contrary to the real contents in the images (middle and right).

Due to the importance of object contours, contour-based image representation

provides an ideal alternative of 2D array, which opens a door for creating and

manipulating an image much more easily. Diffusion curves are such a powerful

vector graphic tool that represents an image as a set of 2D Bézier curves with col-

ors on both sides. Figure 2.2 illustrates an example of diffusion curves [OBW+08].

Though the reconstructed result (b) is smoother and more stylized, it looks very

5



6 Chapter 2 – Image structures

c© Edgar Rubin c© CoolOpticalIllusions c© Octavio Ocampo

Figure 2.1: Optical illusions show that object contours play an important role in

object recognition for human vision. Rubin’s vase (left) shows a vase in positive

space, while the negative space around the vase forms the contours of two faces

in profile. Though the photo in the middle shows a tree, it is no doubt that we can

immediately recognize the head contour. Similarly in the painting “Boca del Flor”

(right), we see a woman face at the first glance, even faster than the flowers.

(a) Input image (b) Drawing result (c) Diffusion curves

Figure 2.2: Diffusion curves [OBW+08]. Contour-based image representation (b)

shows a result of a tracing using active contours and color sampling drawn by

c©Adrien Bousseau, and (c) is its corresponding diffusion curves.

(a) [SKSK09] (b) [CCT+09] (c) [JTC09]

Figure 2.3: Line sketching for modeling. Different line sketching, three input

examples in the top row, provides sufficient description of a 3D scaffold (a), image

content online (b), or symmetric architectures (c).
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close to the original image (a). What is more important is that the reconstructed

result is created by drawing several curves and assigning their colors on both sides,

as shown in Figure 2.2-(c). The reconstruction is done by solving a Poisson differ-

ential equation. This means the new image can be zoomed in an infinite resolution,

and be easily edited by modifying sparse curves.

Object contours are also an ideal medium to describe an object, since they usu-

ally correspond to the maxima of differential geometric properties, such as silhou-

ettes [DFRS03], ridges and valleys [LMLH07]. Such shape contours are also intu-

itive and have thus been used in sketching techniques [SKSK09, CCT+09, JTC09].

For instance, Google c© SketchUp provides simple but efficient sketch-based user

interaction tools to build a 3D scene. Figure 2.3 exhibits three recent applications

that allow the user to model a 3D object or to search an expected image by sketch-

based object description. Schmidt et al. [SKSK09] have introduced a new analytic

drawing tool that infers 3D curves from perspective line drawings, and further 3D

scaffolds reconstructed from these 3D feature-curves (as shown in Figure 2.3-(a)).

Figure 2.3-(b) shows that simple freehand line sketches can be used to automat-

ically convert a set of simple strokes into a photo-realistic picture by searching

online images that closely match these contours and by seamlessly compositing

them [CCT+09]. A 3D model can also be constructed using several sketched lines,

for instance a symmetric architecture from a single image as shown in Figure 2.3-

(c) [JTC09].

However, contours alone are not sufficient to describe small-scale image struc-

tures. For instance, diffusion curves preserve the contours of sharp objects and

smooth interior regions, but fails to mimic texture details. Though an extended

version [JCW11] defines texture details using Gabor noise in a resolution indepen-

dent manner, but it can only model certain kinds of textures. To preserve image

structures and texture details in various applications, other image structures such

as gradients are needed to describe both the interior regions and contours of an

object [LZPW04, JT08, MP08, BZCC10].

Gradient Gradient field is another important image structure. For instance, it

has been used for image stitching. The use of gradient field allows to remove the

visible seams in stitched images [LZPW04, ADA+04, AAC+06, JT08]. Even the

images to stitch are captured at the same time, differences still remain due to ei-

ther photometric inconsistencies caused by exposure times, or geometric misalign-

ments caused by camera movements and moving objects in the images. Direct

stitching will thus introduce seam artifacts, and simple color blending will blur out

the compositing regions. It will be even more difficult if the images are not well

registered [JT08]. Levin et al. [LZPW04] demonstrate that solving a cost function

over image gradients overcome the above issue. Jia and Tang [JT08] further show

that geometric misalignments can be removed by image structure deformation.

The use of image gradient also extends traditional image editing methods. A

painting tool designed in the gradient domain [MP08] requires much less effort for
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Source images Target image Pasted result

Figure 2.4: Poisson image editing [PGB03]. In order to integrate the source

image into target image seamlessly, only spatial gradients of the source images are

preserved, and the color of target image on the region boundaries is the Dirichlet

boundary condition. Note how the tone of the source images adapts to the target

image.

Input image Original gradients Smoothed gradients Abstracted result

Figure 2.5: Basic pipeline of gradient domain manipulation [BZCC10]. Instead

of abstracting the original image, gradient domain methods smooth the image

gradients, the abstracted result is computed by a least square solver using the

smoothed image gradients.

users to accomplish global lighting and contrast adjustments, requiring only local

image manipulations. Instead of assigning colors on both sides of contours as dif-

fusion curves [OBW+08], gradient-domain painting directly allows users to draw,

remove or copy contrasts on the boundaries. Image drag-and-drop in gradient do-

main [PGB03] recomputes the color of each pixel in the pasted region by solving

a Poisson equation. Figure 2.4 illustrates this application, where image gradients

from source images (a) and colors on the pasted boundaries in the target image (b)

constitute Poisson constraints to compute the color in the pasted region (c). Image

interpolation in gradient domain [MHM+09] moves gradients in the original im-

ages to produce an animation sequence that preserves the frequency content of the

original images. Compared to traditional image morphing of pixel colors [BN92],

interpolation in gradient domain provides a fully automatic solution.

Gradient information has been also used in image filters. Gradient-based image
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Occluding scene Remote scene Focus+Context compositing

Figure 2.6: Visualization of hidden scenes [AST09]. In order to visualize remote

scenes occluded by a wall, Focus+Context rendering techniques in AR overlay

extracted lines to the hidden scenes, to reveal the correct occluding order.

filters manipulate pixel difference (e.g. first order Gaussian derivatives) in addition

to pixel values of an image [BZCC10]. Figure 2.5 illustrates the basic pipeline

of a gradient domain filter. Instead of directly editing the original image, gradient

domain methods manipulate the image directional gradient (along x- and y- frame),

the final result is reconstructed by new image gradients using a least square solver.

But it is limited to first order features, thus not straightforward to work with other

image features, such as ridges and valleys.

As a conclusion of this section, all aforementioned applications show that con-

tours and gradients, can provide a higher level of image understanding, thus im-

prove the quality of these applications. We will give more details in the following

section for their use in Augmented Reality and image stylization.

2.2 Focus+Context compositing

Augmented Reality (AR) is classically known as a seamless integration of vir-

tual objects into real images or videos. Reconsidering AR from another viewpoint,

the main goal of combination of virtual and real information is visual communi-

cation. For this purpose, stylized rendering has been proven to be efficient for

revealing shapes and avoiding visual clutter, when compared to photo-realistic

rendering [FBS05, WCL+10, CTM08, HLB05]. In practice, object contours are

popularly used in stylized rendering for AR, since they enable quick recognition

of objects with little distraction from relatively unimportant contexts. Contours

of virtual objects are usually extracted in a view-dependent manner from a tex-

ture buffer that is either depth buffer [HLB05] or rendered luminance of the ob-

ject [FBS05, WCL+10, CTM08]. And the uniformity of integration is emphasized

by combining contours of virtual object and lines extracted from images or videos.

In this thesis, we are particularly interested in Focus+Context rendering of AR,

which is known as visualization of hidden scenes in images or videos. In order to

provide users a visual similarity of X-Ray vision to see-through the occluders,

image structures, such as feature lines and curvatures, are usually preserved in the

occluding regions [KMS07, AST09, KSW06]. Figure 1.2 in the previous chapter



10 Chapter 2 – Image structures

Input image ± Tangent direction

Tangent streamline Reshaped kernel

Figure 2.7: An illustration of gradient-guided image kernel reshaping on part

of Lena image introduced by Kang et al. [KLC09]. We apply a blending of original

image and LIC approach [CL93] to visualize the gradient field using a length 31

pixels. Given a gradient field, a streamline Φxxx is traced along the tangent direction

on both sides ±txxx, and the image kernel is reshaped by this streamline instead of

isotropic kernel. Various image filters can benefit from this new kernel to preserve

better image structures.

shows one advantage of image structures demonstrated in work of Kalkofen et

al. [KMS07], that is helping viewers to register between the virtual and real space

by preserving image lines in the occluding region. Avery et al. [AST09] have

presented a X-Ray vision system that allows users to see through a wall the remote

scenes behind it, meanwhile lines extracted from the walls provides depth cues

to make hidden objects appear to be behind the wall, as illustrated in Figure 2.6.

Kalkofen et al. [KMS07] have also pointed out that image structures like texture

details and edges can provide improved depth cues.

Image gradient can not directly benefit classical AR applications, but Wang

et al. [WCL+10] have shown that it is particularly useful for stylized AR system.

High-quality line drawing is obtained by using an adapted Flow-based anisotropic



11

Difference-of-Gaussian (FDoG) filter [KLC09, KD08]. Thus it improves both the

spatial coherence of a single frame and the temporal coherence of augmented video

streams.

2.3 Image stylization using image structures

The use of gradient information for image stylization has been proven to in-

crease accuracy. In particular, we are interested in gradient fields, defined as a

directional field of 2D vectors that point in their gradient directions. Figure 2.7 vi-

sualizes such a gradient field. For stroke-based painterly rendering, gradient field

guides the orientation of strokes [HE04, ZZXZ09], that mimics the classical way

artists paint. For filtering-based image abstraction, the use of gradient field per-

mits to orient filters along image features [KLC07, KLC09, KKD09, KK11] which

guarantees spatial coherence. Figure 2.7 exhibits how a filter kernel is reshaped ac-

cording to the local gradient field. For each position xxx, a streamline is traced along

the tangent direction with an assigned length S starting from both the positive and

negative tangential direction ±txxx of xxx forms a tangent curve Φxxx. Reshaped kernel is

then built by equidistant samples on the gradient curves Ψxxx, which are streamlines

trace along gradient field and start from the equidistant positions on Φxxx, or straight

lines. Note that the tangent is the direction orthogonal to the gradient, thus the

corresponding tangent field is automatically known if a gradient field is given.

There are many strategies to trace the streamlines. A straightforward approach

is to use Euler integration method. Kyprianidis and Kang [KK11] have shown that

second-order Runge-Kutta integration traces the streamlines at higher accuracy and

does not blur edges. Since samples might be pixel centered, a bilinear interpolation

is required to avoid aliasing. Fortunately, it is much less expensive with the help of

parallel processing on GPU. Note that since the tracing occurs on both sides, we

could only rely on the non-oriented direction, not the particular orientation, which

means that we have to decide whether to go forward or backward depending upon

the orientation of the previous step [KK11]. In practice, the orientation of current

position sssi has to be temporarily flipped if it is not consistent with the previous

orientation sssi−1, when the dot product is negative that is (sssi, sssi−1) < 0.

Gradient field visualization Line Integral Convolution (LIC) [CL93] is a very

classical gradient field visualization approach. It convolves an input noise texture

N using a low-pass filter along Φxxx to exploit spatial correlation in a gradient field

g:

Lg(xxx) =
1

K

∫ S

−S

N[Φxxx(s)] ds. (2.1)

where S is the half length of the 1D convolution kernel along the streamline, and

K = 2S + 1 is a normalizing term. The input noise texture is generally a 2D white

Gaussian noise texture. A discrete LIC on images is implemented by using bilinear

interpolation. A LIC visualization blended with the original image is shown in
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(a) Continuous glass pattern (b) Flow-based bilateral filter

(c) FDoG/XDoG (d) Enhanced shock filter

Figure 2.8: Various image stylization using gradient field on part of Lena image.

Isotropic filtering kernels are reshaped according to local gradient field, which

allows to preserve better the original structures.

Figure 2.7.

Recently, another technique has emerged. It is based on Glass Pattern [G+69],

known as the superposition of two random point sets, one of which is obtained

from the other by a small geometric transformation. Continuous Glass Pattern

(CGP) [PP09], is defined as the maximum of point sets that are on the trace of

continuous geometric transformation. Given a gradient field g and an input image

S, CGP for position xxx can be computed in a straightforward way by integrating

along the gradient field and by taking the maximum of S over a streamline Φxxx(t)

(the same definition as LIC).

Gg(xxx) = max
s∈[−S ,S ]

{S[Φxxx(s)]}. (2.2)

CGP convolutes a synthetic texture rather than a raw random noise texture, which

permits to simulate brush strokes with different thickness. This integration is done

numerically by using an Euler algorithm and the input image S is generated by
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convolving a white Gaussian noise N with a 2D Gaussian smoothing with a stan-

dard deviation σ. The stroke thickness is globally controlled by σ. Figure 2.8-(a)

is a continuous glass pattern result with σ = 2.0 and S = 25.

Gradient-based color abstraction Convolution over a noise texture based on a

gradient field extracted from the input image visualizes the local gradient of this

input image. LIC convolutes a Gaussian noise texture, while CGP convolutes a

synthetic texture. Kang et al. [KLC09] have shown that a separated bilateral fil-

ter [TM98] can be employed in the same way to improve the spatial coherence of

color abstraction if taking the input image as the texture to convolute. The authors

have proposed a flow-based bilateral (FBL) filter that separates 2D bilateral filter

into two 1D bilateral filters, first along the tangent direction (Equation 2.3), and

then along the gradient direction (Equation 2.4).

Bt(xxx) =

∫ S

−S

I[Φxxx(s)] Gσs
(s) Gσ(|I(xxx) − I[Φxxx(s)]|) ds. (2.3)

Bg(xxx) =

∫ T

−T

I[Ψxxx(t)] Gσt
(t) Gσ(|I(xxx) − I[Ψxxx(t)]|) dt. (2.4)

In practice, they are separated into two consecutive passes, thus this approx-

imation considerably reduces the computation cost. Bilateral filter is known as

a structure-preserving smoothing technique, but it still has color blending issues,

especially with a large neighborhood size [CPD07, SSD09]. FBL is able to over-

come this issue: a strong filter along tangent field can be applied (large σt) to

smooth colors without oversmoothing structures, since tangential streamline will

not go through features. And a weak filter along the gradient field is needed (small

σs), because we know that gradients always go through the features if exist. Fig-

ure 2.8-(b) is a bilateral filter guided by a gradient field, with S = 25, σt = 8.0,

σs = 0.5 and σ = 0.2.

Coherent line drawing In the same spirit of flow-based bilateral filter, flow-

based Difference-of-Gaussian (FDoG) applies 1D DoG along gradient field (Equa-

tion 2.5) filter followed by a 1D tangential smoothing along tangent field (Equa-

tion 2.6), instead of 2D DoG [WOG06].

Dg(xxx) =

∫ T

−T

I[Ψxxx(t)] DoGσc
(t) dt. (2.5)

Dt(xxx) =

∫ S

−S

I[Φxxx(s)] Gσm
(s) ds. (2.6)

where DoGσc
(t) = Gσc

(t)− ρGσs
(t), and σs is set as 1.6σc to approximate closely

to Laplacian-of-Gaussian. By setting ρ less than 1, a black lines will be obtained

if a step edge is nearby. σc controls the spatial scale of the lines, and ρ determines

the sensitivity of the edge detector. For small values of ρ, less noise is detected, but
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Figure 2.9: Iterative shock filter illustration on 1D example. The step edges are

sharpened by adding/reducing the gradient magnitude in convex/concave regions.

real edges become less prominent. This flow-based separate filter not only speeds

up the performance, but also improves the spatial coherence. In order to obtain

different stylization effects, an adjustable soft ramp function is designed:

I′(x) =

{

1, if DoG(x) < ǫ

1 + tanh(ϕ · DoG(x)), otherwise
(2.7)

where ϕ controls the sharpness of the lines, and ǫ is a parameter to clamp the DoG

operator.

Winnemöller [Win11] has demonstrated that an extended version of flow-based

DoG (XDoG) can get various kinds of stylization by modifying parameters ρ, ϕ and

ǫ. For instance, it is able to convert the input image into a black-and-white image

when ρ < 1, ϕ ≫ 1, and ǫ < 0. Figure 2.8-(c) shows a FDoG edge detection result

(top part) and a XDoG black-and-white converting result (bottom part).

Sharpening Shock filters [OR90] create strong discontinuities at image edges,

by a local dilation or erosion, depending on whether the pixel belongs to the influ-

ence zone of a maxima or a minima [Wei03]. Figure 2.9 illustrates how shock filter

works iteratively on 1D. For each pixel (((x) of an image I, the classical shock filter

evolution equation is given by:

h(xxx) = − sign(△I) |▽I| (2.8)

Gradient magnitude |▽I| is added in convex regions (sign(△I) < 0) where a

local maximum usually exists nearby, while gradient magnitude is subtracted in

concave regions (sign(△I) > 0) where is a local minimum usually exists nearby.

For an image, the gradients and curvatures are computed by 2D filters. The gradient

magnitude is recomputed in each iteration, thus its addition or subtraction will

sharpen the edges, but will not exceed the original luminance range.



15

Similar to FDoG, flow-based shock filter applies shock filter only along the

gradient field, and Gaussian smoothing along the tangent field:

Hg(xxx) =

∫ T

−T

I[Ψxxx(t)] h(t) dt. (2.9)

Ht(xxx) =

∫ S

−S

I[Φxxx(s)] Gσm
(s) ds. (2.10)

In practice, the Laplacian and gradient operator in Equation 2.8 can be com-

puted directionally. Thus, 1D shock filter is used to replace 2D version:

h(xxx) = − sign(▽g ▽g I)
∣

∣

∣▽gI
∣

∣

∣ (2.11)

where ▽g� is a 1D Gaussian derivative operator along gradient direction, its stan-

dard variation σ controls the sharpening size. Kyprianidis and Kang [KK11] em-

ploy shock filter to obtain sharp transitions at edges. Figure 2.8-(d) shows a result

of our implementation of their approach with one iteration and σ = 2. Kang and

Lee [KL08] use shock filter to simplify shapes by combining mean-curvature flow.

2.4 Gradient field estimation

As illustrated in the previous section, gradient information is extraordinarily

important in image stylization. But does the quality of the gradient affect the qual-

ity of image stylization? The answer is affirmative.

Many methods for computing image gradient have been proposed in recent

decades, such as Sobel filter, Gaussian derivatives, steerable filter [FAoTMLVG91].

All of them can be used to compute directional gradient of an image I in x- and

y-frame, denoted as gx and gy. Then a gradient field is defined as a vector field,

that contains a normalized 2D vector (gx, gy) for each position. This gradient field

definition can be only computed for single channel images. A simply method to

make use of this computation is to convert the color image into a gray image as

a preprocess. But this conversion will immediately lose the color variation of the

original image. To overcome this issue, color gradient is becoming popular re-

cently [KD08, KKD09, KK11]. Frame derivatives are first computed separately

for RGB channels:

Ix = (Rx,Gx, Bx), Iy = (Ry,Gy, By) (2.12)

Then a structure tensor is defined as a Jacobian matrix:

(

Ix · Ix Ix · Iy

Iy · Ix Iy · Iy

)

=:

(

E F

F G

)

(2.13)

This structure tensor is a symmetric matrix, the eigenvalues are real numbers and

the eigenvectors are orthogonal. The major eigenvalue λ1 is zero if and only if
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(a) Input image (b) 5x5 Gaussian derivative (c) 15x15 Gaussian derivative

Zoom

Figure 2.10: Gradient field Visualization using oriented mapping. We map the

gradient field to HSV color space, where hue represents angle of its direction while

saturation represents gradient magnitude re-mapped to [0,1]. The mapping circle

is shown in the right bottom corner. Visualization with oriented mapping in (b) and

(c) shows that Gaussian derivative using either small or large neighborhood size

has close-to-zero gradient magnitude in the center of thin features, and opposite

directions on both sides. For instance, if we zoom in on the butterfly, we will see a

white line in the middle of the antennas, and redgreen colors on the leftright of the

antennas.

(a) 15x15 Gaussian derivative (b) 15x15 Direct smoothing (c) 15x15 ST smoothing

Zoom

Figure 2.11: Gradient field Visualization using non-oriented mapping. We map

the gradient field to HSV color space, where hue represents 2 times the angle of

its direction while saturation represents magnitude re-mapped to [0,1]. The map-

ping circle is thus axial symmetrical. With our non-oriented mapping, gradients

on both sides of the features appear the same color (a). Directly averaging op-

posite directions introduce pair cancellation issues (b). Structure tensor naturally

encodes the non-oriented vector information (c), smoothing structure tensor result

in filling in the direction gaps in the center of the features, but still quickly blurs

out the original structures.
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both gradients are zero, and the minor eigenvalue λ2 is zero when the input image

is grayscale [KD08]. The eigenvectors are separately computed:

v1 =

(

F

λ1 − E

)

v2 =

(

λ2 −G

Fλ1 − E

)

(2.14)

and

λ1,2 =
E +G ±

√

(E −G)2 + 4F2

2
(2.15)

Color gradient encodes all the gradients from RGB channels, thus lose less

color information than using only grayscale images. But their orientation is still

discontinuous, even using large neighborhood size or large scale. For instance,

a thin line feature is expected to yield to a unique tangent direction while its

sides define opposite gradients and its center gives close-zero-magnitude gradi-

ent [BVL+06], as illustrated in Figure 2.10. Figure 2.10-(b) and (c) illustrate two

gradient fields computed by Gaussian derivatives with small and large neighbor-

hood size. Visualization using HSV color space mapping shows that derivatives

computed with larger neighborhood size don’t fix the above issues, and tend to

have an oversmoothed field.

A sophisticated way to obtain smooth but reliable gradient field is to first com-

pute the gradient with a small scale, and to smooth it considering its magnitude and

directional discontinuities [KLC09]. But the opposite directions on both sides of

the thin features introduces pair cancellation issues: directly averaging these oppo-

site directions might produce close-to-zero directions. This can be observed around

the antennas of butterfly in Figure 2.11-(b). Attempting to locally re-orient them as

Kang et al. [KLC09] is bound to fail if the reference direction is not reliable when

considering large neighborhoods. In order to overcome these difficulties, the most

common approach consists in encoding the non-oriented vector information into a

structure tensor [BG87]. Equation 2.13 is an example of structure tensor definition.

This representation has been employed to interpolate very sparse non-oriented vec-

tor data for synthesis [ZHT07] or abstraction [KK11] purposes. Filtering structure

tensors, smoothing the E, F and G in Equation 2.13, regularizes noise and merges

gradients coming from multiple image channels [KD08]. Smoothing the angle of

the gradients is equivalent structure tensor mathematically, and leads to similar re-

sult in practice [OH12]. In order to visualize a non-oriented gradient field and be

similar to [OH12], we multiply the angle of the gradient by 2 before HSV color

mapping. In the new visualization of Figure 2.11, opposite gradients (θ and θ ± π)
have the same color, because 2θ ≡ 2(θ ± π) (mod 2π).

An explicit method to estimate a coherent gradient field without oversmoothing

is to trust gradients in place where we are confident and use them to interpolate the

whole image [HE04, OH12]. Considering the sparsity of image salient structures,

Radial Basis Function (RBF) becomes a natural choice. Hays and Essa [HE04]

and O’Donovan and Hertzmann [OH12] interpolate the whole gradient field using

RBF based on sparse structures drawn by users. In order to provide more control
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of the gradient field, O’Donovan and Hertzmann [OH12] further propose a mixture

framework that allows to combine different fields, such as image gradient, region

boundary field, constant field and the one constructed by RBF. Though O’Donovan

and Hertzmann demonstrate that drawn strokes can be propagated through neigh-

bor frames in video, specifying and adjusting structures in video frames is not an

easy task for humans, which consumes a lot of time. An automatic method to find

image structures can surely save many efforts. Kyprianidis and Kang [KK11] re-

move the gradients in low-contrast regions, and fill in by a process of relaxation.

But, a unmanageable balance between removing gradients and preserving struc-

tures will always exist. Therefore, we believe that implicitly smoothing out unre-

liable gradients is better to preserve original structures than predicting structures

explicitly.

2.5 Line extraction and rendering

We have introduced in Section 2.1 that feature lines extracted from images are

used in various applications, including Augmented Reality and image stylization.

The problem of identifying image feature lines has received a lot of attention in

previous work. Lines in an image can be object silhouettes, occluding contours,

folds of object surface, edges in object textures, or even edges caused by shad-

ows. The boundaries of segmented regions produce closed lines [DS02, CM02],

they usually refer to object silhouettes or occluding contours. But, the smoothness

of the boundaries is difficult to guarantee. For instance, even if a hierarchical seg-

mentation is already built, a curve smoothing process is still needed to have smooth

contours [DS02]. Therefore, we mainly focus on direct feature-line extraction al-

gorithms, rather than by segmentation.

Among all of the direct line extracting algorithms, Canny edge detection method

is probably the most well-known one. It is defined as the zero-crossing of the sec-

ond order directional derivatives of a smoothed image. Mathematically, it is equiv-

alent to the maxima and minima of the first order derivative [LD08]. In practice,

only the maxima crossings are of interest since these pixels represent the areas of

the sharpest intensity changes in the image [MH80].

Ridges and valleys are second-order features, thus need to compute a curvature

tensor H from which principal curvatures kmax and kmin and directions tmax and tmin

are extracted. They have been well studied for line drawing of 3D objects [JDA07,

OBS04]. For images, the same algorithm can be applied on the luminance after a

suitable smoothing.

Inflections are third-order features, and thus require to compute a curvature-

variation tensor C from H, and extract a curvature gradient vmax from C. Lumi-

nance inflections are similar to Demarcating Curves for 3D surface [KST08], but

are defined in image space. Higher-order features will surely need larger tensor

matrix, and tends to be sensitive to the outliers, such as noises in the image and

feature variation.
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Our observation from aforementioned features with different orders is that in

most previous methods, features are identified as maxima of a differential geometry

invariant in a tangential direction. We call the loci of such maxima the feature

skeleton. Formally, it is defined by

S =
{

s ∈ �2
∣

∣

∣

∣

δh(s)

δθ(s)
= 0,

δ2h(s)

δθ(s)2
< 0

}

, (2.16)

where S ⊂ �2, h : �2 → � is a C2 height function, and θ : �2 → �2 is a

C1 direction field. Both h and θ are easily instantiated to produce existing surface

feature types. Canny edge is identified as maxima of luminance gradient magnitude

in gradient direction. Ridges (resp. valleys) are obtained as maxima of kmax (resp.

-kmin) in the tmax (resp. tmin) direction. And luminance inflection are obtained as

maxima of vmax in its normalized corresponding direction.

To robustly locate features, Lee et al. [LMLH07] propose a filter-based tech-

nique that produces feature lines with controllable thickness. They find edges and

ridges in shaded images of 3D objects or luminance of an image using a local 2D

fitting approach. Although the method is limited to the depiction of luminance

features with a simple line style, it shows that a fitting technique in image space

is able to capture and render dynamic features in real-time. Our line drawing ap-

proach in Chapter 6 makes use of a fitting technique and may thus be seen as a

generalization of Lee et al.’s approach that works with various images and surface

features. Based on the generalized feature lines definition 2.16, we can analyze

the profile attributes under different orders, and dynamically distinguish sharp and

smooth feature lines.

2.6 Conclusion

In this chapter, we have first presented a general overview of the use of im-

age structures in various applications, and then emphasized the importance of two

image structures, gradients and contours in AR and image stylization. Finally, we

have discussed the state of the art methods on estimating gradient field and extract-

ing lines.

In the next part, we will thus first investigate further the importance of such im-

age structures by introducing a new Focus+Context rendering of AR in Chapter 3,

whose goal is to visualize hidden scenes in a video stream. For instance, a region

segmentation reveals occluding orders, and lines extracted from contexts provides

depth cues. We will also introduce an extended Focus+Context synthesis approach

in Chapter 4, whose goal is to highlight the important regions using multiple ren-

dering styles driven by an importance map. In this approach, we will exhibit that

the importance map of an image can guide both image compositing and styliza-

tion, and the gradient field can improve the quality of various image stylization

applications.

In this section, we have shown that gradient field suffers from several limita-

tions. To fix these issues, in Part II, we will first present a new higher-order square
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local approximation method for discrete non-oriented gradient fields based on a

moving least square (MLS) formalism in Chapter 5. In Chapter 6, we will intro-

duce a feature profile analysis approach for image line extraction via image-space

fitting techniques. It permits to distinguish sharp and smooth features. Profile pa-

rameters are then mapped to stylistic parameters such as brush orientation, size or

opacity to give rise to a wide range of line-based styles.



Part I

On Focus+Context compositing

for Augmented Reality
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Visualization of underground

pipelines using context analysis

Visualization of underground pipelines is an X-Ray vision problem in Augmented

Reality, whose task is to display hidden scenes in a real environment revealing a

correct occluding order. For this purpose, we investigate in this chapter how the

image and video structures contribute to provide depth cues. For instance, display-

ing in front moving objects of video emphasizes that the pipelines are underground,

and the use of image feature lines preserves visual cues of the context in occluding

region. The work of this chapter has been validated by the publication [CGLP10]

and [CLLP12].

3.1 Introduction

Augmented Reality (AR) is classically described as the process to seamlessly

and realistically integrate virtual objects into real images or videos. For this pur-

pose, accurate camera calibration, accurate estimation of the geometry and reflec-

tive properties of each real components and accurate estimation of lighting condi-

tions are required since any rendering error breaks the feeling of a uniform world.

In some specific contexts and with dedicated devices, it is possible to obtain on-

line solutions (e.g., [Ait10]) but the accuracy is still limited. Furthermore, non-

photorealistic rendering (and more generally expressive rendering) is more suited

when visual efficiency is required for conveying information [Hal04, FHT08] with-

out the clutter that may result from a large amount of details due to realistic ren-

dering.

In this chapter, we are interested in on-line visualization of objects that are hid-

den by real occluders issued from an image or a video (such as underground pipes,

organs in a body [KBM+08], engines in a car [KMS09], ...): this is an important

issue of AR [FAD02]. By definition, these invisible objects are always inside of

or behind the occluding scene and they do not share the same lighting conditions

with the real data. Moreover, such an augmentation, close to classical illustration,

23
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should focus on conveying information such as depth, characteristic structures and

features, and spatial relationships. In this chapter, we focus on the visualization of

underground infrastructures, although the potential applications for this research

are much broader, including technical illustrations, computer aided education and

visualization of medical volume data.

Making “invisible” objects “visible” requires to (i) make sure that all their char-

acteristic structures are getting clearly and legibly visible in the final image in order

to be easily identified, and (ii) clearly and legibly provide some visual cues to il-

lustrate that this object is behind the 3D scene that is, to show a correct spatial

relationship. This problem is identified as the Focus and Context (F+C) render-

ing [KMS09]. In theory, the requirement (i) is trivial to achieve since this only

requires to render the virtual object on top of the real image. Unfortunately, such

an approach does not provide any cue about its relative positioning in the 3D scene,

not fulfilling (ii), as illustrated in Figure 3.1. Simple transparency provides occlu-

sion cues [LSG+03] but needs to be completed by other cues to not confuse the

user [FAD02] and to understand the relative order. One possible metaphor in AR

is X-Ray vision (e.g., [AST09]). For pure 3D models, Cutaway techniques [BF08]

and volume rendering [KSW06] share the same goals. In most of these solutions,

the transparency is efficiently replaced by compositing different layers [BRV+10]

with different styles according to their content (main focus or context) and charac-

teristic structures. In this chapter, we explore this approach for on-line video-based

AR without the requirement of 3D reconstruction of the environment.

To achieve the expected results, we first introduce a depth-ordered frame seg-

mentation for scenes with moving objects according to visualization purpose (Sec-

tion 3.3). We then demonstrate in Section 3.4 that the introduction of masks which

preserve the video structures creates some legible cues for the occluding order.

Finally, we have experimented two different cutaways, and show that particular de-

signed rendering of the virtual objects (both photorealistic and non-photorealistic

rendering) and well-tuned contrast enhancement participate to the legibility of such

cues. We demonstrate our on-line framework on several images and videos and

discuss its current limitations and potential improvements for future work in Sec-

tion 3.5.

3.2 Focus+Context based visualization in Augmented Reality

The visualization of hidden objects is a hot topic in AR since a long time. One

of the main problems is to convey the difference between what is not visible and

what would be visible [FAD02]. As an example, Bajura et al. [BFO92] have de-

veloped a technique for ultrasound medical imagery: the hidden organs appear in

front of the occluder (the body skin). Enhanced visualization makes use of a cue

similar to 3D cutaway but still displayed in front. Recently, Schall et al. [SMK+09]

have used a similar rendering technique for handheld AR system for visualization

of underground infrastructure. Most of these simple cutaway techniques use a sim-
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Figure 3.1: Direct overlay does not provide viewers a correct occluding order, thus

raises a depth illusion that the underground pipelines are floating on the ground.

ple binary mask between the image and the virtual object, resulting in a loss of

context cues. Some researchers have improved this technique to complex AR task.

Mendez et al. [MKS06] have introduced an interaction tool that extends global in-

formation filtering [JBBL02] using Context Sensitive Magic Lenses, which works

with highly complex AR scenes such as geo-data models. Such an approach ef-

ficiently allows the visualization of depth cues on 3D components, but failed in

preserving the context issued from the videos.

In order to preserve the context, earliest work made use of simple wire frames

to render hidden objects. Feiner et al. employed such a technique for laser printer

maintenance [FMS93] and for architectural components [FWK+95]. With these

solutions, the hidden object still appears in front of the occluders, inverting the

depth order.

Another simple solution is to use transparency (e.g., [KTO04]). Despite being

efficient to convey that there is an occlusion [LSG+03], it can be confusing when

the number of layers increase [FAD02]. Moreover, it cannot convey alone the lay-

ers’ order. Indeed, Furmanski et al. [FAD02] have shown that it is only one of the

five depth-dependent perceptual cues: occlusion events, texture scaling, shading

gradient and other cues such as shadows improve the depth perception. They also

have introduced some guidelines for developing effective visualization of occluded

information.

Among all the previous techniques, the most successful one is the X-Ray Vi-

sion. It has been defined as “the act of visualizing some target through at least one

layer of occluding structure” [BH04]. Bane and Hollerer [BH04] have thus intro-

duced the Tunnel Tool in which the invisible components are rendered when span in

a frustum-cut (the tunnel) and the context (geometry of the occluders) is rendered

using wires. Similar to cutaway [CH06], the lack of accuracy in the camera track-

ing can introduce incoherent motions between real and virtual objects [FAD02]
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and thus lower down the perception of depth order since the wires seem to float

on top of the occluding objects [AST09]. In their work, Kalkofen et al. [KMS09]

have proposed an interactive context preserving Focus and Context (F+C) visual-

izations. Similarly, their approach requires a 3D reconstruction of the occluders

and an accurate camera tracking. To overcome this problem, the authors propose

to use simple edges from videos: but they are not as clearly defined as ones from

3D objects and they can be either too cluttered or not noticeable due to lack of

contrast with hidden objects. In this chapter, we propose some improvements and

others solutions to reduce this problem.

The best results in X-Ray Vision for AR are the one from Avery et al. [AST09]:

they show how multiple view modes can provide depth cues and spatial awareness,

and how edge overlay and tunnel cutout can convey the distance between the user

and hidden objects. They use also edge detection to render the occluders, limited

to brick walls in their experimentations. Despite being powerful, having too much

edges might increase the difficulty for users to understand the 3D scenes [DCS10].

Thus, edge extraction should be controllable to avoid visual clutter.

Works in 3D visualization community also have proposed many ideas for sug-

gesting depth-order. Their processing data, pure 3D or volumetric data, is different

from AR community, but they shared the same main idea, that is revealing the depth

cue of the hidden objects while providing the most important structures of both hid-

den objects and external surface (or real-world data in AR). In their “ClearView”

system, Krueger et al. [KSW06] use the attributes of the surface, like curvature, to

modulate the foreground transparency and thus preserve the context. Modulating

the transparency has also been used by Bichlmeier et al. [BWHN07] taking into

account curvature, view angle and distance falloff. The resulting partial occlusion

of the focused object provides the user with an improved perception of depth. Vi-

ola et al. [VKG05] extend automatic F+C and cutaway techniques to volumetric

data, introducing screen-door transparency. Recently, Bruckner et al. [BRV+10]

have introduced a framework using rendered 3D layers instead of 2D layers, which

can provide artists many extended compositing operators, such as selective trans-

parency, occlusion overrides, and soft depth buffering. The GPU-based interface

makes its visibility compositing and masking as easy as image alpha blending pro-

cessing controlled by an alpha function. Unfortunately, their solution is tied to

knowledge of the 3D environment and thus not directly usable in our on-line con-

text since the reconstruction of the 3D environment is still hardly achievable. These

approaches illustrate nevertheless the need of an efficient extraction and visualiza-

tion of context structures to preserve depth cues.

In our approach, we introduce two different cutaway methods, and explore the

use of recent trends in structure estimation from videos to create improved context

visualization. We also ensure that during the final composition process all the cues

from the context are legibly rendered. And, we focus on on-line techniques and do

not rely on 3D knowledge of the real environment.
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(a) (b)

Figure 3.2: Depth-ordered segmentation (a) for the result using tunnel-based cut-

aways (b), the original image is on the top left corner. The red and blue regions

are respectively the main and second focus region. The blue region corresponds to

the cut geometry in front of the virtual object. Context cues are extracted from the

video outside the white region that is the moving objects: they are in front of the

virtual object.

3.3 System overview

Our system targets the following scenario: the camera is fixed and the geometry

of the real environment is mostly unknown. This last assumption is very important

for out-door scenes that are constantly evolving on-line reconstruction of 3D en-

vironment is still not a mature technology. In such a scenario, we want to display

hidden objects while preserving important contextual information issued from the

video.

Inspired by cutaways popularly used in pure virtual reality applications and un-

der the assumption that the geometry of the real environment can be approximated

as a ground plane, we use two different configurations: 1) trapezoidal tunnels

along the pipelines that better display the spatial distribution of the underground

pipelines, and 2) vertical sections cutting the pipelines that are able to precisely

reveal the depth of underground pipelines. For a sake of legibility, the description

of our approach will be illustrated on the tunnel-based cutaway. Results from both

configurations will be shown in Section 3.5. Instead of directly using the occlud-

ing cues introduced by cutaways [BH04], we identify four depth-ordered regions

(a tunnel-based cutaway example is shown in Figure 3.2) that we detail in the fol-

lowing.

3.3.1 Focus

The focus of all the rendering is the virtual object, located behind the real scene. To

improve depth perception, we add to the virtual object the geometry corresponding

to the cutaway, either tunnel-based or section-based one. This is trivially done

thanks to the fact that, contrary to the real scene, the object’s geometry and position

are more easily known. According to the visualization request, the virtual object
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can be rendered in either photorealistic or non-photorealistic manner. Comparison

and discussion of these two manners will be presented in Section 3.5.

Thanks to the integration of the cut geometry, we can divide the focus region

covered by both the object and the cut in two. The first region (red in Figure 3.2)

corresponds to the potentially visible parts of the object if a real cutaway hole was

created to reveal it: we call it the main focus. Technically, it is easily identified

using back-face culling on the combined object and cut geometry.

The second region (blue in Figure 3.2) corresponds to parts of the cut that

occlude the object (the back-faced surfaces of the cut in front of the object): we

call it the second focus. In order to suggest that this layer is in-between the main

focus and the scene, we use a lower transparency in this region.

3.3.2 Context

Similar to the focus region, we subdivide the context region (the video frame) in

two. The first contains the moving objects that are segmented out (white in Fig-

ure 3.2): the moving context. This segmentation may be done on-line [GWYY10].

As proof of concept, in this thesis we use an improved and off-line version of the

on-line solution [ZQC+10] as preprocess. Since the moving objects are mostly in

front of the scene and the virtual object, and in order to provide structure-from-

motion [FAD02] cues, we render this layer as-it on the top of all the others: the

occlusion events resulting from the movements reinforce depth-order understand-

ing.

We call the frame region that does not contain the moving objects the static

context. The realistic order of these four regions is: moving context, static context,

main focus and second focus, from close to far. In the hidden scene’s visualization

purpose, we adjust this order as: moving context, main focus, second focus and

static context. Thus, the virtual object is cut in static context region. We use this

region to extract characteristic structures (such as edges, gradients, second order

derivatives, ...) in order to re-introduce them as depth cues in the spirit of X-Ray

Vision in front of the 3D object. The use of these image and video structures is

detailed in the following section.

3.4 Image layers and compositing masks

Thanks to the depth-ordered segmentation, we define four different rendering

processes to suggest the correct occluding order. We rely on simple tools to com-

pute five layers and two masks (Figure 3.3 and following paragraphs). To effi-

ciently preserve context cues from the video, these masks use structural informa-

tion from both the video and the virtual object.
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Figure 3.3: Our framework extracts different layers and masks to composite. From

the video (red paths), we extract three layers Idynamic, Istatic and Iedge. From the

virtual object (blue paths), we extract one mask αedge and two layers Oedge and

Oshading. The last mask αcolor is a hybrid one (green paths) that combines both

video and object information to create the final cues.

3.4.1 Layers and Masks

From the videos, three layers are issued. Their main goal is to provide some visual

cues about the context. The two first layers contain different components of the

video frame. The “static” part of the video Istatic is the main layer: this corresponds

to the main context since it represents the real 3D scene and the main occluders of

the virtual object. This layer is mostly rendered without any changes in the regions

that are not covered by the virtual object and the cut geometry. The second layer

Imoving contains the moving objects of the video. Generally in front of the real

scene and thus of the virtual object, this layer is rendered directly in front of all

the other ones. Finally, the third one corresponds to image edges (Iedge, using a

GPU implementation of flow-based operator of Kang et al. [KLC07]) as abstracted

visualization of the static context.

From the virtual object and its corresponding cut geometry, two layers and one

mask are issued. The two layers are the shaded object (Oshading) and its 3D edges

(Oedge). Note that we do not take into account silhouette edges of the cut geometry

(see Figure 3.5): they visually conflict with the smooth transition that we introduce

later. To blend the image edges in the final image, we compute one mask from

the virtual object: αedge. It identifies the main focus area (αedge = 1, as shown in

Figure 3.6) with a smooth transition on its outside border: it is used to blend the

edges from video.

Finally, the last mask and core contribution is issued both from the video and

the virtual object αcolor (shown in Figure 3.4). Similarly to the edges’ one, it also

identifies the main focus (αcolor , 0), but with the transition increase toward 1 on

its inside border: it is used to blend the video frame with the virtual object.
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(a) Uniform Transparency

(b) Gaussian Smoothing

(c) Enhancement with Second Order Derivatives

(d) With Cross Bilateral Filtering

Figure 3.4: Mask for color blending. From upper row to bottom one: uniform

transparency, smoothing the edge inside, with modulation by image second order

derivative, with using cross bilateral filtering. Note that modulation by curvature

tends to preserve discontinuities and that cross bilateral filtering tends to preserve

uniform regions (like the upper-left dark mark on the road).
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(a) 3D edges with silhouettes (b) 3D edges without silhouettes

(c) Result with silhouette edges (d) Result without silhouette edges

Figure 3.5: Computation of 3D edges from the virtual object: the silhouettes

of the cut may introduce unwanted discontinuities in the smooth transition created

by the masks and connect un-wanted areas (such as the back of the car and the

ground).

3.4.2 Color Mask

Previous researches have shown that simple binary masks or simple transparency

is not sufficient to visually convey the depth order in X-Ray Vision. Neverthe-

less, Krueger et al. [KSW06] have shown that modulating the transparency by the

surface curvature helps in preserving the depth cues in their Clearview system.

Viola et al. [VKG05], introducing the screen door effect, and Mendez and Schmal-

stieg [MS09], introducing importance masks, have shown that a smooth transition

of transparency between the context and focus area also participate in preserving

such cues.

Inspired by these approaches that rely on the knowledge of 3D geometry, we

propose a solution for video-based AR that does not require any explicit 3D re-

construction of the real environment. For this purpose, we first modify the binary

mask that identifies the main focus area, smoothing its mask α1 inside (to create a

smooth transition from 0 to 1 where α1 = 1 as shown in the top middle image of

Figure 3.4). We denote α1 the inside smoothed mask. This results in a progressive

removal of the context image on top of the virtual object. Furthermore, in order to

reinforce the order cue, we also modulate the transparency using the curvature-like

(i.e., second-order derivatives or gradients) information from the image to obtain

similar effects like Viola et al. [VKG05] on 3D surfaces (see the third row of Fig-
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ure 3.4):

αcolor = α
1+β (|Lxx |+|Lyy |)
1

. (3.1)

In this formula, β > 0 is a user-control parameter for the modulation strength, Lxx

and Lyy are the second-order derivatives of the luminance L of the static context

Istatic. With such a formula, image areas with strong image structures (high second

derivatives) are kept on top of the virtual object. We also modulate the transparency

in the second-focus area in order to preserve the same cues. However, to distinguish

both areas, this transparency is initially set to a user-selected constant value γ less

than 1, which reveals the fact that the second focus is identified as back-faced

surfaces. The final mask is thus

αcolor = (α1 + α2 γ)
1+β (|Lxx |+|Lyy |) . (3.2)

Second order derivatives are only one of the potential image structures and con-

vey ridge/valley-like information. Further improvements are obtained using cross

bilateral filtering [ED04, PSA+04] with Istatic instead of a simple Gaussian filter for

the estimation of α1 (see the two last rows of Figure 3.4). While the transparency

modulation preserves the image discontinuities, cross bilateral filtering preserves

the uniform areas. Note that we use a small variance 0.05 for the Gaussian weights:

such a choice has experimentally leaded into better visual results.

3.4.3 Edge Mask and Final Blending

Edges are classical and very strong image structures. We are using the Edge Over-

lay of Avery et al. [AST09]. Similarly to this work and in order to prevent a lost

of connection with the context due to the brutal transition from image to edges, we

use a smoothed mask. But contrary to the previous work and in order to distinguish

the effect from the color transition, we use a Gaussian filtering outside of α1, only

where α1 = 0 (see Figure 3.6).

Finally, a pixel color is Imoving in areas containing moving objects, and is re-

sulting from the use of the different masks and layers elsewhere:

mix
(

CCCedge2d,mix
(

αcolor Oshading Oedge, Istatic, αcolor

)

, αedge

(

1 − Iedge

))

. (3.3)

mix(x, y, α) = α x + (1 − α)y is a linear blend between x and y, and CCCedge2d is the

color of the edges extracted from the image, we use black color by default.

Unfortunately, it is still difficult to ensure with such alpha-blending that the

image edges are clearly visible in the resulting image [KMS09]. Improving their

legibility is important for a better preservation of the corresponding context in-

formation and thus the depth-order cues. For this purpose, we use bilateral filter

operator [ED04] smoothing the input image before composition optionally and the

unsharp masking operator [BA04] locally around the edges (few pixels around, as

shown in Figure 3.7).
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Figure 3.6: Edge Blending. This figure shows both the mask without and with

smoothing outside, and their results on the final compositing. The three last rows

show a zoom on the upper part of two results and their Lab difference.

Figure 3.7: Local Unsharp Masking. Unsharp masking is applied around the

edges (in white areas in the left image) to enhance their legibility. The two last

rows show a zoom on the upper part and a Lab difference comparing to the original

image.
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3.5 Results and discussion

Tunnel vs. section: We have implemented two different cutaways. One is

trapezoidal tunnels along pipelines like Figure 3.8, and the other is vertical sections

cutting pipelines, like Figure 3.9. These two cutaways share the same framework

above, except that the section-based one defines second focus as regions where

pipelines are on the invisible side of the section, instead of back-faced surfaces of

the cutaways. Tunnel-based cutaway generates tunnel everywhere pipelines exist,

thus displays the spatial distribution of the pipelines clearly. But, it tends to fail

where pipelines are dense or far from the camera. Compare to tunnel, section

introduces much more accurate depth cues, and is still distinguishable for dense

pipelines. And multiple sections can be used to satisfy complex visualization tasks,

some examples in Figure 3.9-(b,d,f). The main limitation of section-based cutaway

is that the depth cues are strong only near the section.

PhotoRealism (PR) vs. Non-PhotoRealism (NPR): The choice of rendering

method depends on the purpose of the visualization, thus is related to the request

of the user. It is worth to notice that hidden scenes don’t share the same lighting

condition with the real environment. To investigate the validity of our approach,

we have experimented both photorealistic rendering (PR) and non-photorealistic

rendering (NPR). For NPR, we use a simple X-toon shader [BTM06] to enhance

the joint visualization of the shape and the depth with lines extracted from the

depth-map. In Figure 3.8, bright yellow is used to ensure the clarity of the pipeline

routing, and darker colors are applied to report the pipeline shape. For PR, we first

attach cutaways textures with red height lines, and then add artificial directional

lights to make underground pipelines cast shadows on the sections when they go

through the section surface. Figure 3.9 shows that this PR design seems to provide

accurate depth cues.

We have experimented different scenes, some with easily-extractable edges

(Figures 3.6, 3.9 and 3.8-(d)) and some others with less strong patterns (Figures 3.4,

3.8-(a) and (c). We also have run our system on simple images (Figures 3.8-(c), 3.9-

(a,c,e) and 3.6) and video from which we have segmented-out the moving objects

(Figures 3.8-(b,c) and 3.9-(b,d,f)). The resulting videos and some other images can

be seen in the companion videos.

One of the most noticeable results is the fact that we seem to reach the objec-

tive of a correct representation of depth order. Thanks to the color mask and the

use of both bilateral filtering and second order derivative modulation, we better

preserve the existing discontinuities in the original image (there can be some oc-

clusion events) and uniform areas without the need of any 3D reconstruction. This

is illustrated in Figure 3.4.

Beyond the occlusion order, the use of edges can help in understanding the

positioning where the hidden object is. As examples, in Figures 3.9 and Fig-

ures 3.8, the edges show the real place of the pipe exits. This understanding is

also reinforced in video by introducing the moving objects on the top, as show in

Figures 3.9-(c) and (e) and Figures 3.8-(d).
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(a) Original image (b) Image result

(c) One frame of original video (d) Video result

Figure 3.8: Visualization of underground pipelines using tunnel-based cut-

aways on an image (a) and videos with moving objects (c). The depth order is

suggested by displaying structural features from images such as edges over the vir-

tual objects, by introducing image-depend smooth transition for transparency, and

by preserving the moving object in front (d). The frame rate ranging from 18 to

25 fps depends mostly on the size of filters for edge extraction and transparency

smoothing.

In our implementation, we use the robust flow-based technique [KLC07] to

compute edges from Istatic. This is also quite costly (between 9 and 14 ms), and a

simple operator such as Canny [Can87] will reduce the performance impact. How-

ever, we believe that in future, the extracted flow might be used as a valuable image

structure to improve the legibility of our current cues.

All the results are computed on a PC workstation with a NVIDIA GeForce 460

GTX, an Intel(R) Core(TM)2 Duo E6550 @ 2.33 GHz and 4 GB of memory. Due

to its pixel processing nature, the achievable frame rate depends on the video/image

resolution and on the size of the different filters. The most costly step is the cross

bilateral smoothing used to create the two masks: it takes between 14 and 37 ms

per frame with filter size quite large ranging from 90 to 105 pixels in Figure 3.8.

Discussion

In our current implementation, we assume a fixed camera. In theory, our framework

can be used for moving cameras, and since we do not require any 3D reconstruction
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Visualization of underground pipelines using section-based cut-

aways on images (a,c,e) and videos (b,d,f). Elaborative section textures and

pipelines’ shadow on the section provide very accurate depth cues. Image edges

are white in order to be different from black object edges, they clearly reveal the

occluding orders. Object edges occluded by the section are dotted to hint their

invisibility. Segmentation of moving object in (c,e) further emphasizes correct oc-

cluding orders. The frame rate ranging from 22 to 45 fps depends mostly on the

size of filters for edge extraction and transparency smoothing.

of the real environment, the classical misalignment between reality and virtuality

is less important than in systems that rely on such a reconstruction. However, the

problem is still present and needs some improvements in camera tracking.

Our system does not need any 3D reconstruction of the environment and this

leads to an easy to implement on-line solution (except the segmentation of dynamic

objects) since there is no need in preprocessing to get the real 3D scenes. Unfor-

tunately, this is also one of the limitations: better coherency and more accurate
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geometry of the cut might be achieved with a better knowledge of the 3D envi-

ronment. One direction is to move from simple video streams to stereo cameras

in order to acquire on-line an approximation of the real scene, or to improve the

extraction of 3D cues into the image [KCB+05]. As with any AR systems, such

future work will result in improved solutions.

Finally, the current framework relies on a number of parameters (the different

sizes of filters, the strength of the transparency modulation and of the unsharp

masking, the transparency of the second focus area and all the parameters related

to extraction of edges and the shading of the virtual object, etc). We believe that

they are sufficiently comprehensible for most users to obtain quickly a convincing

result. However, in order to reach the most visually efficient set of parameters,

some user studies have to be done.

3.6 Conclusion

In this chapter, we have introduced a new framework for visualization of un-

derground pipelines that improves X-Ray vision. By extracting image and video

structures such as edges, second order gradients, and by creating some masks us-

ing both the virtual object and video frames, we manage to create visual cues that

suggest the depth order while reveal the virtual object hidden behind the scene.

Thanks to this approach, we achieve near real-time performances and good quality

without the requirement of 3D reconstruction. We demonstrate the validity of our

framework on two different cutaways, and believe that such a framework can be

easily adapted to visualize other hidden objects and will take benefit from future

work in on-line video processing.

Context structures play a key role in revealing depth cues of hidden scenes. A

moving object segmentation provides a strong visual cue that the virtual pipelines

are behind this object, thus under the ground. As an example, segmenting out

the car in Figure 3.4 to use it as a layer in front of the 3D scene will definitively

improve the result. Similarly, extracted lines preserve the object contours for the

real environment with few spatial occupation. They provide visual cues to position

registration between underground pipelines and real objects on the ground.

One limitation of our approach is the lack of coherence of image structures,

including spatial coherence for images and temporal coherence for videos. In im-

ages with apparent features, such as zebra crossing lines in Figure 3.9, a simple

line extraction method like Canny edges is efficient. An edge-preserving smooth-

ing can be applied to remove image noises before any other processing. However,

it is difficult to extract continuous lines in images with weak feature evidence, such

as Figure 3.2-(b) and Figure 3.8-(b), although we have employed a flow-based line

extraction technique. The same situation is observed for other structural features,

like second-order derivatives.

Flickering sometimes is observed around extracted lines and segmented bound-

aries in video results of our approach. In theory, our frame-by-frame approach
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naturally has this limitation, but it is more observable for video with low evidence

of structures. Motion flow is known to be helpful to improve the temporal co-

herence [BNTS07, LLY09], a simultaneous use of gradient field and motion flow

may result in a significant improvement of both spatial coherence and temporal

coherence.



C 4

Importance-driven image

synthesis

In the previous chapter, we have shown that the use of image and video structures

in compositing tasks for Augmented Reality applications improves the depth cue of

hidden scenes. We introduce a non-uniform image synthesis approach that extends

this idea in this chapter. The synthesis, driven by an importance map, is a compo-

sition combining multiple rendering styles. We demonstrate that image structures

can directly and indirectly contribute to the quality of the importance map and

stylized rendering. Besides Augmented Reality applications, we also illustrate the

versatility of our approach for images, videos and pure 3D scenes. The work of

this chapter has been validated by the publication [CCG+11] and [CCPP12].

4.1 Introduction

The use of multiple styles has been adopted in many artworks, mostly mod-

ern ones, to highlight the important meanings. However, it can only be conducted

by skillful artists. Some examples are shown in Figure 4.1. DeCarlo and San-

tella [DS02] cite Toulouse-Lautrec’s poster as an example to show that different

regions can be abstracted at different levels. We also cite this poster in the left of

Figure 4.1 to show that artists also employ significantly different styles for differ-

ent regions. In the other two pieces of artwork in the right, different styles, such as

watercolor painting, line drawing, luminance, are combined in different but reason-

able manners to exhibit the creators’ special design intents for different contents,

which also presents the maximal of visual information.

In Computer Graphics, many rendering papers focusing on a single style have

been published, while few works consider multiple styles. Focus+Context render-

ing methods in Augmented Reality render focus and context differently to reveal

the hidden scenes, as detailed in the previous chapter. Take visualization of under-

ground structures discussed in last chapter as example, only feature lines of the real

environment are preserved in the occluding regions, while the virtual underground

39
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c©Luis Ruiz

c©Henri de Toulouse-Lautrec c©Vic Kulihim Illustration

Figure 4.1: Three examples of artistic illustration with multiple styles. The poster

in the left, "Mouline Rouge-La Goulue", adopts detailed painting to exhibit the

pose of the woman dancer and the material of her dress, uniform color plus line

drawing for her partner, silhouette filled with black color for all the spectators in

the background. In the right-top painting, the cathedral painted with watercolor

stands out from surrounding building drawn by lines, and shows a clear overall

arrangement of this city. In the right-bottom illustration, the line drawing in the

middle of the car exhibits the interior structures while the luminance in the head

and the tail shows the global appearance of the car.

pipelines are fully rendered expressively with an auxiliary cutaway. Image abstrac-

tion techniques [DS02, SD02, WOG06, KLC09, ZMJ+09, KKD09] adopt edge-

preserving smoothing that gives the freedom to omit or remove visual information

under the guide of user interaction, eye tracking data or automatic saliency esti-

mation. Level-of-Detail rendering of 3D scenes [LRC+03, NJLM06] is achieved

by either pre-building the hierarchical structure of the mesh or adjusting the size

of strokes adaptively. Unfortunately, they severely restrict the choices of styles. A

pioneer work to extend this compatibility is called stylized focus [CDF+06], which

directs the attention of viewers to areas of interests in architectural rendering of 3D

models. User can select several elaborate focus models and rendering effects, but

gaze-based importance definition can not satisfy complex compositing tasks.

In this chapter, we introduce a non-uniform image synthesis approach that in-

tegrates multiple rendering styles in a picture driven by an importance map. This

map, either issued from saliency estimation or designed by a user, is introduced

both in the creation of the multiple styles and in the final composition. Our ap-

proach independently renders the images, videos or 3D scenes with different styles
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selected by users into texture buffers, which are finally composited in screen space.

It shares a lot of similarities with the classical compositing methods, but brings

three key advantages:

• It composites multiple rendering styles non-uniformly guided by an impor-

tance map instead of one or two styles;

• It can process different input data, such as images, videos, 3D scenes, or

even mixed reality data;

• It is compatible with different importance maps, even user-created or user-

edited ones.

The goal of this chapter is not to introduce a new rendering style, but an

importance-driven approach using multiple existing styles. We introduce our gen-

eral approach on an image example in Section 4.3, and then describe all the details

of each step in our synthesis pipeline in Section 4.4 and 4.5. We also demonstrate

the compatibility for various input data, styles, and applications in Section 4.6. The

final Section 4.7 presents a conclusion and potential future extensions.

4.2 Previous work

Most of the previous work only combines two styles: on one side the lines

and strokes and on the other side, color abstractions. DeCarlo and Santella [DS02,

SD02] first proposed the idea of "image abstraction" that offers such a style with a

spatially variant abstraction omits or removes redundant visual information. Orzan

et al. [OBBT07] uses the Gaussian scale space theory to deal with the discontinuity

problem in computing a perceptually meaningful hierarchy representation. Com-

pare to general image stylization, image abstraction differs from its goal of efficient

visual communication, rather than mimic artistic effect.

Inspired by these pioneer works, many extensions on image or video abstrac-

tion have been published [WOG06, KLC09, ZMJ+09, KKD09, KL08]. In general,

they reduce the contrast in low-contrast regions while increase the contrast in high-

contrast regions. Different from the hierarchical structure analysis used in [DS02,

SD02], they employ various image filters, such as edge-preserving smoothing filter,

Flow-based Difference-of-Gaussian (FDoG) filter, shock filter and Kuwahara filter,

to achieve the goal of reducing or increasing the contrast. Recent techniques take

the advantages of faster performance with parallel implementations and improved

temporal coherence, but still severally restrict in a particular rendering effect.

All these techniques are based on an underlying importance map either ex-

tracted from eye-tracker data [SD02], or from information extracted from images.

One more and more popular way to extract visual importance information is to

compute a saliency map [IKN98, LSnZ+07, ZMJ+09, BZCC10]. These techniques

detect low level features (such as intensity variance, orientation and color con-

trast, texture difference) and higher level features (such as horizon lines, human
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faces, cars) using bottom-up computation, but they don’t match actual eye move-

ments [JEDT09]. Thus, Judd et al. [JEDT09] introduces the eye tracking data to

learn a saliency model to predict where humans look. Zeng et al. [ZZXZ09] ana-

lyzes a top-down semantics of the image by image parsing, but requires much more

user interaction to segment and label the image. Kang et al. [KCC06] defines an

importance map based on outline, and controls the abstraction level by adaptively

adjusting the stroke attributes.

Using saliency or any other perception-based importance map only allows to

control the level of stylization according to what a common user will perceive in an

image. A wider range of applications are possible if we want to use such a map to

control the gaze. Presented in the last chapter, Focus+Context rendering is a well-

known expressive rendering mechanism in Augmented Reality (AR) and Volume

Rendering domain. Kalkofen et al. [KMS07] and Sandor et al. [SCDM10] render

the focus (the hidden scenes in the X-Ray vision of AR) and the context (other

visible scenes) with different methods, and composite them in the screen to reveal

the correct occluding order. Viola et al. [VFSG06] and Krüger et al. [KSW06]

composite interior structures and exterior surfaces by dynamically adjusting the

transparency in volume rendering.

The gaze simulation in [CDF+06] is the closest related work of our approach.

The authors introduce stylized focus to draw the viewer’s gaze to the emphasized

area through local variations in shading effects and line qualities. Though four

focus models are proposed, some easy-use interaction tools are expected but missed

unfortunately. And the stylized focus supports single-point based emphasized area

only, which loses the compatibility with either eye tracking data or saliency map,

and also the ability to fulfill complex stylization tasks.

In this chapter, we present an improved approach that allows the combination

of a larger set of styles while allowing a direct user controls of the spatial variation

of both styles and combination.

4.3 General approach

Our approach is indeed a generalization of image abstraction systems em-

ployed by many previous works [WOG06, ZMJ+09, JEDT09] and first described in

DeCarlo and Santella’s work [DS02]. This generalization is two-folds: 1) we can

combine more than two styles that are user-selected; 2) users can modify easily the

importance map. The former brings richer visual information and more stylization

effects, the latter provides a controllable interface to alter the visual importance.

To introduce our approach, we are using three rendering styles, including orig-

inal color (original color is considered as a stylization for simplification), color

desaturation and line drawing (see the overview of our approach in Figure 4.2).

The importance for each style is illustrated by different colors, such as red, green

and blue color in Figure 4.2. We may use an image saliency estimation tech-

nique [JEDT09] to initialize the importance, to produce results similar to [DS02].
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Figure 4.2: Overview of our system. Three example styles (original color, desatu-

rated color, line drawing) are presented by red, green and blue color respectively

in the importance map. One of our main contributions is that we use the impor-

tance map to guide not only stylization, but also the synthesis, illustrated by thick

red arrows. The user, presented by a green box, has to select the styles, and modify

the importance map optionally.

Or, we can let the user define it using several interaction tools.

Thanks to the importance map I, we are now ready to get the final synthesis

result. For each position ppp = (x, y) in the image, a non-uniform composition of N

stylized images SSS i(ppp,I), i ∈ [1, ...,N], using weights Wi(ppp,I) is:

CCC(ppp) =
1

K

N
∑

i=1

Wi(ppp,I)SSS i(ppp,I), (4.1)

where K =
∑N

i=1 Wi(ppp,I) is a normalizing term. We take the importance map as

the parameters of both stylization and weighting functions. The introduction of im-

portance improves the quality of synthesis, as presented in the following sections.

4.4 Importance map

Our importance map is still based on a gray-scale map with values between 0

and 1. But, in order to composite more than 2 styles, we subdivide the intervals in

a sequence Ei, with 1 ≥ E0 > E1 > ... > EN−1 ≥ 0. For each boundary of these

intervals, a style is assigned. The combination of the gray-scaled image and the

boundaries of interval subdivision is our importance map.

One goal of our approaches is to apply different styles in different regions with

the guide of an importance map. This is the reason why the blending weight

Wi(ppp,I) depends both on the position ppp and on the importance map I. As we

mentioned in Section 4.2, there are many ways to create an importance map. We

divide them by two categories: 1) the main one is based on the core of this thesis,

and is inspired by the previous chapter that is, by using extracted structures, such

as features and saliency, 2) the other one is drawn by the user with our interaction
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Gradient

Saliency Map

Improved With Cross Bilateral Filtering

Improved With Segmentation

Zoomed-in Comparison

Gradient-based User Interaction

Stroke-based User Interaction

Figure 4.3: Five importance map examples computed by different user inputs.

We take three styles for example, and use red, green and blue color to present

these styles, whose importance is 1, 0.5 and 0 respectively. Different user inputs

are shown in the left column. In the middle column, we visualize the importance

maps using one color for each style and composite them together using the weights

described in equation 4.5, the composition results are shown in the right column.
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design. Our approach does not try to improve any of these techniques, but provides

the compatibility to utilize any of them easily.

4.4.1 Derived from original image

Automatic construction of importance from image relies on image structures. Sim-

ilar to human visual system, the importance map, describing the possibility of at-

tracting user attention, has to be smooth everywhere. Sharp image features, such

as lines or object boundaries, thus are not suitable to define an importance map.

While saliency map is usually smooth, because it is computed by a combination

of estimation in multiple scales or different levels. For instance, Itti et al [IKN98]

employ linear filtering to compute color, intensity and orientation features in mul-

tiple scales, and Judd et al [JEDT09] use a machine learning approach to train a

classifier directly from human eye tracking data, which considers low-, middle-,

high-level features and center prior. In this chapter, we use source codes provided

by Judd et al.

This map can be further improved using different image-processing tools. In

our approach, we have experimented the following two. The first one, Ic, is ob-

tained by cross bilateral filtering (CBF) the importance map taking the color dif-

ference (i.e., gradient structure) in neighborhood pixels of the original image into

account:

Ic(ppp) =
1

Kc(ppp)

∑

qqq∈S
Gσs

(|ppp − qqq|)Gσr
(|CCC(ppp) −CCC(qqq)|)I(qqq) (4.2)

whereKc(ppp) =
∑

qqq∈SGσs
(|ppp − qqq|) Gσr

(|CCC(ppp) −CCC(qqq)|) is a normalizing term, Gσ(ppp) =

e−ppp2/2σ2

is Gaussian smoothing, S is a set of neighboring pixels and CCC(ppp) presents

the color of pixel ppp in original image. A CBF-based improved importance map

and its relative result are shown in the third row of Figure 4.3. Compared with

the original result (zoomed-in image in blue frame), Ic (zoomed-in image in red

frame) removes small spots while preserves the strong edges.

The second one, Is, is defined by averaging importance values in the same

segmented region, which is produced by Mean-Shift image segmentation [CM02]:

Is(ppp) =
1

K s(ppp)

∑

L(qqq)=L(ppp)

I(qqq) (4.3)

where L is the segmentation label for each pixel, andK s(ppp) is the amount of pixels

whose label equals to L(ppp). An segmentation-based importance map and its relative

result are shown in the forth row of Figure 4.3. Compared with the original result

and CBF-based improved one, Is (zoomed-in image in green frame) ensures the

consistency in each segmented regions.
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4.4.2 User interaction

Except selecting multiple styles, the user may decide themselves the expected im-

portance level Ei for each of them. Our system applies some styles to the most

important regions, and some others to the less important regions. Fortunately, most

of the users already have a general idea about this decision when they select the

styles from our observation.

To ease this manipulation for users, we provide them with a classical gradient

slider to adjust Ei (see the top image in Figure 4.3). Initially, the interval subdivi-

sion is uniform. Then the user can adjust the intervals by dragging all the bars.

Thanks to this gradient slider, we now can also introduce a full gradient-based

interaction tool, by which user can directly draws a line segment on the image

to modify or recreate a new importance map. And we also provide three gradi-

ent modes: radial gradient, linear gradient and symmetrical gradient, see a radial

gradient example in the sixth row in Figure 4.3.

To provide even more freedom to satisfy complex tasks, we also design a

stroke-based interaction tool. After the selection of the styles, the user can directly

draw strokes on the image, composed by a series of circles with different radii, to

indicate different styles in different regions. The interpolation to get a whole im-

portance map should: 1) smooth everywhere, 2) apply pure selected style for user

drawn regions, this is a guarantee to not disobey the user assignation. Radial basis

function is one of the well-known smooth interpolation functions, but its computa-

tion costs a lot, since it requires to solve a linear equation whose dimension is the

amount of all the drawn pixels.

We propose a fast approximate solution based on the distance function:

I(ppp) =
1

K′

N
∑

i=0

Ei

N
∏

j=1, j,i

D(ppp, j) (4.4)

where K′ =
∑N

i=0

∏N
j=1, j,i D(ppp, j) is a normalizing term and D(ppp, j) is the distance

between the current position ppp and the nearest circle related to the jth style. This

distance to the circle can be easily computed by the distance to the center of circle

subtracted by its radius, thus the proposed solution achieves fast performance. This

interpolation meets all the required properties, see the bottom row in Figure 4.3.

4.5 Non-uniform synthesis

4.5.1 Multiple weights

Due to non-uniformity of the synthesis, each style needs its own weighting image,

thus N weighting images are needed in total. But, our importance map initial-

ized by saliency map is only a scalar image contains the importance level for each

position, normally scaled to [0, 1] and higher value indicates higher importance.
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Original Image Simple Composition Our Method

Simple Composition Our Method

Uniform Lines Uniform Enhancement Uniform Smoothing

Our Lines Our Enhancement Our Smoothing

Figure 4.4: Compare with uniform stylization. In this experiment, we apply line

extraction, image enhancement and blurring driven by an importance map. The

first row contains the original image (with an importance map), a simple compo-

sition result and a synthesis produced by our method. A zoomed-in comparison is

shown below. To compare each component of these two compositions, we illustrate

all the stylized images one-by-one in the last two rows.
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Therefore, we need to find a mapping function to define N weighting maps from

an importance map and N expected importance values Ei the user sets. In our

system, we create the weighting maps using a piecewise linear interpolation:

Wi(ppp,I) =























M(i, i − 1), i f I(ppp) ∈ [Ei, Ei−1]

M(i, i + 1), i f I(ppp) ∈ [Ei+1, Ei)

0, others

(4.5)

M(i, j) =
Di(ppp) × E j + D j(ppp) × Ei

Di(ppp) + D j(ppp)
(4.6)

where Di(ppp) = |I(ppp) − Ei(ppp)| is a distance function between the importance value

of current pixel and the expected importance level of the ith style. For simplifying

the formula, we mark E−1 as 1 and EN as 0. In the gradient tool, the user can

see the interpolation result illustrated by different colors, as long as the all of Ei

are given. And then the importance map is illustrated in the same way before the

stylization, as the middle column of Figure 4.3. Note that highest importance is

presented by red, while least importance is presented by blue in this chapter, but

the user can select any color for them.

4.5.2 Spatial varying stylization

Besides the composition, the importance map is also used to guide the stylization

step. A uniform stylization without importance will introduces ghosting artifacts in

the final compositing results, see Figure 4.4 for example. The goal of the compo-

sition in this example is to draw lines in near-by scene (the top part of the image),

blur the distant scene (the bottom part) and enhance the color in the middle as fo-

cus. The original image and an gradient importance map is given in the left top

image. A simple composition can be obtained by a composition of uniform styl-

ized images. But, the color ghosting artifacts occurs in the regions where more

than two styles exist, see the blue zoomed-in image.

Our method adapts the kernel size of filter according to the weights, which

are computed by equation 4.5. In the regions with zero weight, the kernel size

become zero, thus filter is invalid in these regions. And in the regions with high

weights, the kernel size is maximal, a full filter is employed in these regions to

achieve a high abstraction. Compared with simple color composition using uniform

stylization, our method achieves higher quality. In Figure 4.4, the lines extracted by

our method become thinner when the weights are getting smaller, while the lines in

simple composition have uniform thickness which leads to ghosting artifacts. The

same phenomenon can be observed for image enhancement and blurring.

We have implemented various stylization techniques to demonstrate the effec-

tiveness of our approach:

• Color desaturation is an easy method to reduce the color cues. We reduce

the two chromatic channels in the CIE Lab color space [Wys82]. Because
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it is a pixel-wise conversion, its conversion does not need to be adapted ac-

cording to the importance as the previous ones.

• Enhancement technique increases the sharpness in the region with high con-

trast. We employ Unsharp-masking [RSI+08] to enhance both images and

3D objects in high important regions.

• Gaussian smoothing is an ideal effect for distant scenes.

• Edge-preserving smoothing has the ability to smooth the low contrast re-

gions while preserve the sharp edges. Bilateral filter [TM98] is a spatial

variable technique which meets the requirement.

• Line drawing is the very common but effective method to outline the shape

of the objects. We use Difference-of-Gaussian operator [WOG06] to detect

lines for images and 3D objects.

All listed rendering techniques, except the color desaturation, are based on lo-

cal filters. We thus adapt the kernel size of their filters, which use smaller filter ker-

nel where the importance is low. Therefore, original style is rendered with different

levels of abstraction according to its correspond weight map. And the combination

of different styles thus achieves high compositing quality. The original color is

sometimes needed to be preserved in some case, such as the important region in

Figure 4.2, we consider it as a special style. We apply these styles directly on the

images or each frame of videos. For 3D scenes, we use them either on luminance

of their shading or normal map of the 3D meshes. Combination with three styles

are employed in Figure 4.2, 4.3, 4.4, more results combined with more styles will

be shown in next section.

4.6 Results and discussion

Our approach includes parameters Ei (expected importance value for each style)

for the composition and the others in each stylization processing, such as the maxi-

mal enhancement strength, maximal Gaussian smoothing kernel, spatial kernel and

range kernel for bilateral filter, maximal spatial scale, sensitivity and sharpness of

DoG edge extraction. The performance of our approach mainly depends on the

stylization approaches we employed. Fortunately, our system prefers spatial vari-

able stylization techniques, which are naturally parallel. Therefore, we have im-

plemented our system in GPU architecture, that achieves a real time performance

with above styles currently.

Figure 4.6 illustrates various stylized results generated by our system. Fig-

ure 4.6 (a) shows an example of architectural 3D models, which are rendered by

photo-realistic manner and then stylized with lines, desaturated colors and en-

hancement from left to right. Figure 4.6 (b) mimics depth-of-field phenomenon

approximately, by applying a linear gradient Gaussian blurring. An X-Ray vision
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Figure 4.5: Overview of our evaluation on estimating the visual attention before

and after our stylization by the way of saliency Estimation.

in AR example is given in Figure 4.6 (c), the virtual underground pipelines are ren-

dered using X-toon shading [BTM06], the moving car is segmented out [ZQC+10]

and presented in the front of the pipelines as the original color while the back-

ground are extracted as line drawing. Figure 4.6 (d) displays three frames from

a video experiment, the dolphin is lighted by increasing the luminance, the color

of everything on the boat behind the dolphin is desaturated and edge-preserving

smoothed while lines are used for sea in the background. A example on large scale

image, part of the Chinese ancient painting “Qingming Festival by the Riverside”

painted by Song painter Zhang Zeduan, in Figure 4.6 (e), shows the ability of our

approach for complex stylization tasks.

Since our importance map is initialized by saliency estimation, the attractive

regions should receive higher saliency estimation if the style with a low abstracting

level is applied to these regions. The evaluation illustrated in Figure 4.5 demon-

strates this suppose. According to the saliency map of the original image, the orig-

inal color is preserved in high-saliency regions, while desaturated in low-saliency

regions. We then estimate the saliency of the processed result. Compared with

the original saliency map, the new one gathers the saliency to the high-saliency

regions, which shows the potential of our method in the future work to direct the

viewer’s attention.

4.7 Summary and limitations

In this chapter, we have introduced a non-uniform image synthesis approach
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that combines multiple rendering styles driven by an importance map. This map

is employed to guide both stylization and composition, which improves the quality

and compatibilities with different input data and user interactions.

One limitation of our approach is that our system requires the user to select

styles and adjust the expected importance values for each style. Though a de-

fault mode and user friendly gradient tools are provided, arbitrarily selection by

fresh users may produce unexpected results or even reverse the visual attention.

For directing attention, the user is supposed to select less-abstracted style to high-

saliency region of the original image, and higher-abstracted style to low-saliency

region. An automatic evaluation of the level of abstraction for each style would

provide the use a very good suggestion.

Another research direction deserves future endeavor is to investigate the image

structures representing the contained scenes. In importance estimating stage, we

have demonstrated that low-level local structure knowledge, such as local color

similarities and boundaries of segmented objects, could participate to improve the

validity of the importance map, see Figure 4.3. In stylization stage, though our

method adapts the kernel size of filters, filtering-based rendering techniques, such

as bilateral filter and DoG edge detection, might achieve higher quality stylized

results with the help of the image structures. For instance, once again, the local

gradient direction has been proved useful to guide the local filter or strokes in

order to have a better spatial coherent result [KD08, KLC09]. We believe that

current image analysis methods are either lacking of accuracy or too specific for

particular applications. This justifies the development of a higher-order gradient

field estimation with an exploitation of improvements for various applications in

the next chapter of this thesis.
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(a) Synthesis with four styles

(b) Appr. depth-of-field (c) X-Ray vision in Augmented Reality

(d) Three frames from our video example

(e) Complex stroke-based interaction

Figure 4.6: Various results. Each result is shown with its scaled-down original

image and the importance map. An example of architectural 3D models includes a

photo-realistically rendered image, gradual and final result (a), a depth-of-field ef-

fect is approximated using symmetrical gradient importance (b), and (c) exhibits an

example for X-Ray vision in AR. (d) shows three resulting frames in our video ex-

periments, their importance maps produced by video segmentation are also given.

We have also experimented complex stroke-based user interaction on large scale

image (e): trees are all outlined with thick lines, and buildings are silhouetted by

thin lines, and the edge-preserving smoothing is applied on the pedestrians.
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Non-oriented MLS gradient field

In the previous part, we have shown that the use of image structures, and partic-

ularly the gradient field, plays a key role in many applications, such as X-Ray

vision in Augmented Reality, image synthesis by combining multiple rendering

styles, and even directing user attentions. But, as pointed in the previous limita-

tion sections, they are lack of either accuracy or spatial and temporal coherency.

The same limitation exists for many image stylization methods guided by a gra-

dient field [Win11, KLC09, KKD09], including the line extraction and rendering

we employed [KLC07] in the previous part. In this chapter, we introduce a new

approach for defining continuous gradient fields, a fundamental stage for a variety

of computer graphics applications.

5.1 Introduction

The use of gradient information for image processing has been proven to in-

crease accuracy. For image and video stylization, the use of a gradient field permits

to orient filters along image features for a variety of applications: Kang et al. apply

Difference-of-Gaussian filter along gradient fields to extract continuous line draw-

ing [KLC07], and bilateral filter along gradient and tangent direction separately

to abstract color [KLC09], many painterly rendering techniques orient strokes ac-

cording to the gradient direction [Her98, HE04, PP09] to keep object boundaries

clear. All of them result in stylized images that better preserve the original features.

As pointed out in Section 2.4, a large enough smoothing size is needed if there

are a lot of noise or flat regions to be filled in; but computing or smoothing image

gradient in a large neighborhood raises oversmoothing and pair cancellation issues.

Pair cancellation issue can be well reduced by structure tensor [BG87]. Unfortu-

nately, a structure tensor can only encode a locally constant gradient field, thus still

tends to oversmooth original image structures. In the neighborhood of each pixel,

only a principal direction is estimated as the eigenvector corresponding to the max-

imum eigenvalue in the structure tensor. This constitutes a major limitation when

used to average information over curved neighborhoods. In this case, it quickly

55
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fails to preserve the original structure and tends to smooth out important image de-

tails (Fig 2.11-(f)). This problem is amplified with increasing neighborhood sizes

or sparsity. Medium-to-large filter sizes are not only required to regularize noise

found in images, but also for simplification or abstraction purposes, especially for

high dynamic range images [CPD07]. We also emphasize that in image processing,

sparsity arises when resampling low resolution information, and in places where

the input gradient has a close-to-zero magnitude, as shown in Figure 2.10.

It is interesting to note that the same issue raises in surface reconstruction

applications. Normals (i.e., normalized gradient of a surface) have been widely

used to regularize ill-posed optimization problems [HDD+92, SOS04, KBH06],

or to improve the robustness of local implicit fitting techniques [AK04, AA04b,

GG07], but consistently orienting normals from raw point clouds have been recog-

nized considerably harder, as difficult as reconstructing the surface itself [HLZ+09,

MDGD+10]. The limitation of structure tensor, a low order approximation, has al-

ready been pointed out in the previous Algebraic Point Set Surfaces (APSS) frame-

work [GG07].

In this chapter, we introduce a new local approximation method for discrete

non-oriented gradient fields that better preserves image structures. The key ingre-

dient of our approach is an extension of the structure tensor to a higher-order basis.

In particular, we show that an isotropic linear basis provides the best trade-off be-

tween accuracy and smoothness. Using a MLS formulation, we define a continuous

non-oriented gradient field at arbitrary scale. Our main propose of this chapter is

image features. However, similarly, we will also illustrate our approach on 2D

surface reconstruction, as well as on 1D curve reconstruction. Surface and curve

approximation from a raw point cloud is achieved by a MLS integration of the local

gradient fields, leading to a continuous implicit reconstruction. Our reconstructed

gradient fields and implicit curves of surface are analytically differentiable. Last

but not least, our approach does not require any preprocessing and involves only

local computations.

5.2 Non-oriented MLS gradient field

In this section we present our novel non-oriented gradient field and the subse-

quent manifold approximation technique which builds on the moving least squares

(MLS) formalism. We first describe the general approach (Sec 5.2.1), then dis-

cuss the choices of appropriate regularization (Sec 5.2.2) and higher-order basis

(Sec 5.2.3), and finally give some differential properties of our approach (Sec 5.2.4).

Before introducing our approach, we briefly reintroduce the formulism of MLS

method. The MLS method starts with a weighted least squares formulation, and

then moves point xxx over the entire parameter domain
∏d

m, where a weighted least

squares fitting is computed and evaluated for each point individuallyf(xxx) [Nea04].
∏d

m is the space of polynomials of total degree m in d spatial dimensions. It can

be shown that the global function f(xxx) at point xxx is defined as the value of the
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Figure 5.1: Overview of our MLS approach on sparse samples. (a) In green, the

local approximation gvvv(xxx) of the input vectors uuui around the evaluation point xxx. (b)

Streamlines of the global reconstruction of the continuous non-oriented vector field

uuu (in blue), and of its respective 2D tangent field (in red). (c) The reconstructed

continuous and unsigned scalar potential F, and its 0-isovalue. Note that this iso-

contour does not correspond to the tangent field streamlines. This figure has been

made using the isotropic linear basis.

approximating function at this point fxxx(x):

f(xxx) = fxxx(xxx), arg min
fxxx∈

∏d
m

∑

i

wi(|xxx − xxxi|) |fxxx(xxxi) − fi|2 (5.1)

where fi is the given scalar values in the neighborhood of point xxx, and wi is the

weights depending on a spatial distance between central point xxx and its neighbor

points xxxi.

5.2.1 General approach

Our algorithm takes as input a set of non-oriented and unit vectors uuui ∈ Rd speci-

fied at sample positions pppi ∈ Rd, with d the dimension of the ambient space (see

Figure 5.1-(a) for an example in R2). The samples should be pixels on the image

grid, here we use sparse samples for a sake of legibility. In this work, we further

assume the directions uuui come from the normalized gradient of an unknown contin-

uous scalar potential. Their orientation (i.e., signs) are either unknown or irrelevant

as previously motivated in the introduction.

Given an arbitrary evaluation point xxx ∈ Rd, we assume the neighborhood gra-

dients uuui may be well approximated by a low degree polynomial gradient field gvvv(xxx)
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defined in matrix form as (Figure 5.1-(a)):

gvvv(xxx)(yyy) = B(yyy)Tvvv(xxx) , (5.2)

where B is a polynomial basis matrix with d columns, and vvv is the vector of un-

known coefficients. For local gradient approximation, B must represent an inte-

grable basis, and its particular choice will be discussed in section 5.2.3.

The key idea to determine the coefficients of gvvv(xxx) is to consider the sum of

the squared dot products between the local gradient field and the prescribed in-

put vectors uuui, which is maximized when they are aligned, independently of their

orientation:

vvv(xxx) = arg max
vvv

∑

i

wi(xxx)
(

uuuT
i (B(pppi − xxx)Tvvv)

)2
. (5.3)

Here, wi is a smooth weight function, decreasing with respect to the distance ‖pppi −
xxx‖, that plays the role of low-pass filter. In this chapter, we take the suggestion of

Guennebaud and Gross [GG07], wi = φ(
∣

∣

∣pppi − xxx
∣

∣

∣ /S ), where S is the support size,

and φ is a quartic kernel function:

φ(x) =

{

(1 − x2)2 if x < 1

0 otherwise.
(5.4)

In matrix form, Eq (5.3) becomes:

vvv(xxx) = arg max
vvv

vvvT A(xxx)vvv , (5.5)

with the covariance matrix A defined as:

A(xxx) =
∑

i

wi(xxx)uuuT
i B(pppi − xxx)T B(pppi − xxx)uuui . (5.6)

From these local approximations, we reconstruct a continuous, but non-oriented,

vector field u : Rd → Rd that globally approximates the discrete vectors uuui (Fig-

ure 5.1-(b)). Since we are using a centered basis, u is classically defined as u(xxx) =

gvvv(xxx)(0). This MLS reconstruction of the gradient field can be used directly for

image abstraction and stylization purposes.

Omitting the dependencies on xxx for brevity, when the input samples are sup-

posed to lie on an unknown manifold, each local gradient approximation gvvv can be

integrated to recover a local scalar potential fc,vvv(yyy) = c + hvvv(yyy) such that ∇fc,vvv = gvvv.

The scalar potential hvvv is directly obtained by integrating gvvv, while the constant

offset c is recovered such that the 0-isosurface of fc,vvv best approximates the in-

put sample positions pppi nearby xxx (Figure 5.1-(a)). To this end, we minimize the

potentials fc,vvv(pppi) in a moving least square sense:

c = −
∑

i wi(xxx)hvvv(pppi − xxx)
∑

i wi(xxx)
. (5.7)
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As illustrated in Figure 5.1-(c), a continuous, but unsigned, scalar potential

F : Rd → R whose 0-isosurface globally approximates the non-oriented input

samples is finally defined as F(xxx) = fc(xxx),vvv(xxx)(0).

Two questions remain open though. Indeed, the maximization of Eq (5.5) is an

under-constrained problem which has to be regularized in order to avoid the trivial

solution of a vector field with infinite magnitude. This question will be addressed

in the next sub-section before answering the second question of the critical choice

of a higher order polynomial basis for the local gradient fields.

5.2.2 Problem regularization

Before presenting our regularization constraint for a higher-order basis, we briefly

study the case of a constant local approximation.

Regularization for constant approximations

The simplest approach is to assume that gvvv(xxx) is a constant multi-valued function,

i.e., B is the identity matrix and gvvv(xxx)(yyy) = vvv(xxx). Since we assume unit input vectors,

a natural regularization is then to constrain vvv(xxx) to be a unit vector. Under such a

constraint, the solution vvv(xxx) of Eq (5.5) is directly found as the eigenvector vvv of the

maximal eigenvalue λ of the following eigenvalue problem:

A(xxx)vvv = λvvv . (5.8)

This formulation corresponds to a continuous definition of the structure tensor

defined from discrete and possibly scattered inputs. In the context of MLS surface

reconstruction, it has already been suggested by Amenta and Kil [AK04], though

to our knowledge no result has been shown yet.

Generic regularization

In order to overcome the limitations of constant approximations, we study the pos-

sibility to locally approximate the vector field by higher order polynomials. In

this case, the previous regularization term (
∣

∣

∣gvvv(xxx)

∣

∣

∣

2
= 1) does not apply: if gvvv(xxx) is

a multivalued polynomial of arbitrary degree, then its magnitude is not constant

anymore. Nevertheless, one could be tempted to enforce this in a least squares

sense by minimizing
∑

i wi(xxx)(
∣

∣

∣gvvv(xxx)(pppi − xxx)
∣

∣

∣ − 1)2. To our knowledge, there is no

direct method to solve for Eq (5.5) with such additional least squares constraints.

Moreover, this strategy would exhibit the undesirable effect to favor local solutions

close to a constant gradient field because this is the only solution that can fully

satisfy such a constraint in general. Naively constraining the Euclidean norm of

the solution vector, i.e., |vvv(xxx)| = 1, is not an option either since, for a general basis,

such a normalization is clearly not invariant to similarity transformations. It would

therefore introduce a huge bias in the optimization process [Pra87].
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Our key observation here is that, in average, the norm of gvvv(xxx) should be equal

to 1 nearby the considered samples. Formally, this can be expressed as a quadratic

normalization constraint:

vvv(xxx)T Qvvv(xxx) = 1 , (5.9)

with Q a symmetric positive definite matrix:

Q(xxx) =

∑

i wi(xxx)B(pppi − xxx)B(pppi − xxx)T

∑

i wi(xxx)
. (5.10)

Equation 5.9 reduces the space of solution to the set of unitary vectors with

respect to our data-dependent quadratic norm defined by the matrix Q. Note that

the choice of the target magnitude, here 1, is totally arbitrary and does not affect

the directions of the fitted gradient. Strictly speaking, our norm Q is obviously not

affine invariant. However, by construction it is both invariant to the choice of a

basis frame, and to similarity transformations of the input data. The solution vvv(xxx)

of Eq (5.5) is now directly found as the eigenvector vvv of the maximal eigenvalue λ

of the following generalized eigenvalue problem:

A(xxx)vvv = λQ(xxx)vvv . (5.11)

When gvvv(xxx) represents a constant vector field, then Q is the identity matrix, and our

generalized approach gently boils down to the previous structure tensor. In the next

section, we discuss the choice of the local approximation gxxx.

5.2.3 Choice of the basis

The choice of basis for gvvv(xxx) is critical since it characterizes the quality of the ap-

proximation. In particular, we will consider constant g0, linear isotropic g∗, and

general linear g1 gradient fields whose expression and respective scalar potential

are given below:

g0(yyy) = rrr → f0(yyy) = c + rrrTyyy

g∗(yyy) = rrr + lyyy → f∗(yyy) = c + rrrTyyy + 1
2
l yyyTyyy

g1(yyy) = rrr + L · yyy → f1(yyy) = c + rrrTyyy + 1
2
yyyT Lyyy

where c, r, 1
2
l(L) are scalar potential coefficients of constant, linear and quadric

term respectively, and L is a symmetric matrix to ensure that g1 is a gradient

field. Once integrated, they represent a hyper-plane, a hyper-sphere, and a gen-

eral quadric respectively. g∗ and f∗ are illustrated in Figure 5.1, compared to others

in Figure 5.2 for sparse data, and in Figure 5.4 for an image. As already noticed

in the introduction, the constant basis cannot approximate well highly-curved re-

gions, yielding to over-smoothing of the features and even instabilities (Figure 5.2-

(c), 5.4-(b)). On the other hand, the general linear basis of g1 already presents too

many degrees of freedom (d-o-f) (5 in 2D, and 9 in 3D), and leads to over-fitting
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Figure 5.2: Illustration of the overfitting issue of the fully integrable linear basis

(g1,f1), with (a) the local gradient field and best fitted isoline for the given red

point, and (b) the global MLS reconstruction of the gradient field and isocurve.

(c) Comparison of various MLS variants: planar fit without normals (magenta)

and with non-oriented normals (our f0, blue), spherical fit without normals (green)

and with non-oriented normals (our f∗, orange), and, for comparison purpose,

spherical fit with consistently oriented normals (red). Note that these last two

curves match almost exactly.

issues in the form of the generation of oscillations and details which are not present

in the input data (Figure 5.2-(a), 5.2-(b), 5.4-(c)).

The isotropic basis g∗ clearly appears to be the best trade-off. As already no-

ticed by Guennebaud and Gross [GG07], compared to a constant basis it only in-

creases by one the number of d-o-f while offering a much richer space of solu-

tions. Keeping the number of d-o-f as low as possible is highly desirable, not only

for performance reasons, but also to keep high stability with small neighborhood.

Enlarging the neighborhood increases both the computation costs and the risk to

take into account different and/or inconsistent parts of the input data. Moreover,

it should be noted that in the case of manifold reconstruction, our approach works

best if the norm of the gradient along a given isovalue of the respective local scalar

potential is constant. Since this is not the case of the full linear gradient, this basis

also suffers from a slight bias in the fitting process.

Figure 5.2-(c) shows that the non-oriented normal information has a greater

impact on spherical MLS than on planar MLS. Our intuition is that the non-oriented

normal information is required to avoid the fitted spheres to sink in between the

input samples, thus producing a high quality smooth surface that well preserves the

features. Finally, it should be noted that in this example, our MLS reconstruction
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with non-oriented normals works very closely to the APSS method which can fit

spheres with oriented normals only.

5.2.4 Differential quantities

An important property of MLS is that the continuity of the reconstruction depends

on the continuity of the weight functions wi. Assuming twice differentiable weight

functions wi, our global gradient and scalar fields u and F can then be analytically

differentiated to compute, for instance, exact surface normals and/or surface or

flow curvature. In practice, differentiating gvvv(xxx) or fvvv(xxx) with respect to xxx involves

the differentiation of a generalized eigenvalue problem which turns out to lead to

solving an additional linear singular problem [Mag85].

When speed matters, our local approximations may be used to approximate

these differential properties. For instance, the gradient field u may be considered

as an approximation of the normal field of the reconstructed surfaces. A higher-

order isotropic linear basis allows to go a step further to approximate the surface

mean curvature κm as κm ≈ l/
√

rrr2 − 2c l. In the same vein, for a 2D gradient field,

the tangential curvature κt of the respective tangential field can be approximated as

κt ≈ 2l.

5.3 Results and discussion

Implementation details In practice, we employed a 5 × 5 Gaussian derivative

filter to compute the image gradient ∇I from which we get the unit vectors uuui.

In order to favor gradients with large magnitude while taking advantage of the

regular image structures via separable weights, the weight functions wi of position

xxx = (x, y) are slightly modified as:

wi(x, y) =
(

φ(
|x − xi|

S
) φ(
|y − yi|

S
)
)

1
2 |∇I(xi, yi)|2 . (5.12)

Figure 5.3 exhibits that only a minor difference occurs on the boundaries of the

constructed gradient field. Multichannel images yield multiple gradient vectors per

pixels which are all taken into account and approximated during the construction of

the covariance matrix A (Eq (5.6)). We unfold each term of this matrix, compute

all 1D sums related to x coordinate but irrespective of y coordinate in the first

pass, and then store these sums into 3 buffer textures, finally construct matrix A

by computing 1D sums in y coordinate of values in these textures. This separate

computing strategy reduces the number of texture sampling and averaging from

O(N2) to O(2N), where N = (2S + 1)2. It significantly speeds up the performance

when a large neighborhood size is used. Our image processing system is entirely

implemented on the GPU, and we obtained the results using an NVIDIA GeForce

GTX 460 with 1GB of memory.



63

(a) Input image (b) Non-separate @ 11 fps

(c) Difference × 4 (d) Separate @ 64 fps

Figure 5.3: Difference between non-separate and separate computation on a

500 × 347 image (a), using a 23 × 23 neighborhood size, is subtle. (c) shows that

the difference on the features are nearly none. The major difference is observed on

the boundaries of the reconstructed flow, due to different kernel shapes of non-zero

weights (square for separate, round for nonseparate). Note that the performance

superiority will be more distinctive if larger neighborhood size is employed.
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(a) Input image (b) Constant

(c) Full linear (d) Isotropic linear

Figure 5.4: Study of different approximations: Noisy images (400 × 400), such

as in (a), require a large smoothing neighborhood (33 × 33 here). The gradient

field is visualized using line-integral convolution, and a HSV color code. The con-

stant approximation (b) tends to oversmooth (cf. line extremities and dot centers).

The full linear approximation (c) leads to over-fitted issues. Our isotropic linear

solution provides the best trade-off (d).

Gradient field results Thanks to the separability and the GPU implementation,

our system easily achieves real-time performance. For instance, on a 512 × 512

image, our non-optimized implementation of the ILA costs 5.1 ms (resp. 11.5 ms)

for a 11 × 11 (resp. 41 × 41) neighborhood. Compared to structure tensor, we

observe a slowdown factor of about 1.5 to 2 because of the need to solve a slightly

larger eigenvalue problem (3×3 instead of 2×2). However, our ILA implementation

currently relies on a generic eigensolver, while we use a direct one for CA. This

small overhead could probably be significantly reduced using a more GPU friendly

direct 3 × 3 eigensolver.

Figure 5.4 compares gradient field estimated by constant, full linear and isotropic
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Constant Isotropic linear

Comparison by zooming in

Figure 5.5: Comparison with constant approximation. To fill in gradient holes

of Figure 5.7-(a) (500 × 347), a 23 × 23 neighborhood size is used. Comparison

with either color visualization or LIC (line integral convolution). Note the general

improvement in shape preservation using our isotropic linear approximation, such

as line extremities on the antennas and dot stripes on the wings in the zoomed-in

comparison.

linear approximations on a well-known noise image. The constant approximation

tends to oversmooth quickly. For instance, it extends lines on their extremities,

because the line direction dominates this approximation. With the same limitation,

the constant approximation also fails to preserve the accuracy of the center of the

dot. The full linear approximation overcome the above shortcomings, but leads to

over-fitting artifacts, i.e. the ones between slightly waved lines in red box of Fig-

ure 5.4-(c). Our isotropic linear solution provides the best-off. Figure 5.5 illustrates

the same conclusion. Note that though constant approximation in Figure 5.5-(a) is

similar to structure tensor result (Figure 2.11-(c)) in theory, it is still better to fill in

gradient holes due to our new weighting strategy. Figure 5.6 shows pair cancella-

tion issues for directly smoothing oriented gradient fields in (b), and shape losing

problem of constant approximation in (c).

Surface and curve reconstruction results As we have introduced in Section 5.2.1,

our approach can also be used to reconstruct scalar potential and thanks to the MLS

compatibility for different dimension, we are able to demonstrate scalar potential

reconstruction in 2D curve reconstruction and 3D surface reconstruction.

Our novel surface reconstruction approach essentially extends the APSS [GG07]

method to support non-oriented input normals, while APSS is limited to consis-

tently oriented inputs. As a fast preprocess, we employed the sphere fitting without

normal technique of the APSS framework to estimate the input normal directions

uuui since it better preserves the surface details than simpler covariance analysis. The
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(a) Original image (b) Smoothing oriented gradient fields

(c) Our constant Appro. (d) Our isotropic linear Appro.
w/ non-oriented gradient fields w/ non-oriented gradient fields

Figure 5.6: Comparison with smoothing oriented gradient fields. LIC gradient

field visualization for Lena image (512 × 512), using 25 × 25 neighborhood size.

Directly smoothing oriented directions raises pair cancellation issue (b), constant

approximation on non-oriented gradient field fails to preserves shape features (c).

Thanks to the continuous MLS reconstruction, we can recompute the gradient field

at arbitrary scales, the LIC visualization remains clear even in 10 times zooming-

in.
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(a) Input / APSS (b) Constant (c) Isotropic Linear
w/o normals w/ non-oriented normals w/ non-oriented normals

Figure 5.7: Results on 3D point sets. For 3D point set (a-left), not using a normal

field leads to poor quality reconstructions when using spherical MLS approxima-

tions [GG07] (a-right). The use of non-oriented normals leads to easy-to imple-

ment improvements (b-c) without the burden of having to coherently orient them.

Note that constant approximations (b) are outperformed by our novel isotropic

linear approximations (c) that better preserves surface features, while exhibiting

much smoother and stable surface reconstructions.

reconstructed unsigned implicit functions have been meshed using the advancing

front algorithm implemented in MeshLab. Our approach is also well suited for

direct raytracing [AA04a], or for the GPU accelerated resampling framework of

Guennebaud et al. [GGG08] to enable real-time visualization. All the results have

been made using exact surface normals (Sec 5.2.4). Figure 5.7 illustrates the ability

of our approach to reconstruct very sparse data with a high fidelity.

Figure 5.8 illustrates the natural stroke simplification ability of our approach.

Compared with an input image, the 2D real-time reconstruction takes place in back-

ground while the gradient information directly comes from the stroke directions.

We record all points the mouse passed under the pressed mode, and initialize their

gradients by the normalized vector constructed from previous point to the current

one. We store these position and gradient information into a texture. When the user

is drawing, this texture is updating, and the whole gradient field on the screen is

recomputed dynamically. Finally, a 0-isocurve is approximated by Equation 5.7. In

any moment during the interaction, the user can decide to draw new curves without

taking the previous strokes into account. In this case, only new strokes are used to

reconstruct the gradient field, but the previous reconstructed curves will still appear

in the final result.

Thanks to our real-time implementation and the sparsity of strokes, the user

can get an immediate feedback, either the constructed gradient field or the simpli-

fied curves, as illustrated in Figure 5.8. One observation in the system testing our

drawing software is that it is extraordinarily difficult for untrained users to draw an
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expected smooth and continuous curve by hand, even using a digital pen. Since the

reconstructed curves are recomputed dynamically, they can be easily modified by

adding or deleting strokes, for instance elongation, straightening or bending, see

the companion video. We would like also to emphasize how coherently orienting

the gradients between the different strokes would be particularly challenging on

these examples in the middle of Figure 5.8.

Differential properties, such as tangential curvature, can be easily estimated

based on our isotropic linear approximation, and further be used in image styliza-

tion applications. As an example, the last figure in the bottom of Figure 5.8 shows

cordate curves with varying thickness. It is rendered implicitly by convolution

of footprints whose size is dependent on curvatures. The detail of this rendering

technique will be presented in the next chapter.

Discussion Both our constant and higher-order gradient fields are defined at any

location, thus allowing for infinite zoom at a cost which is independent of the zoom

level. On the other hand, the color information used in various stylization is only

limited to the original resolution. Though we employed a bilinear interpolation,

color aliasing is still observed when the image is zoomed in a lot. We believe

sharper results could be obtained using more elaborated color interpolation tech-

niques. Our gradient fields could certainly help here for better edge preservation.

In this chapter, we have focused on the approximation of smooth gradient fields

mainly ignoring the junctions, occlusions and sharp edges that may arises in im-

ages and 3D point clouds respectively. This is however an orthogonal problem.

Indeed, to deal with discontinuities, many extensions of MLS have already been

proposed (e.g., [FCOS05, OGG09]), and many of them could be directly applied to

our approach without major difficulties. In the same vein, we consider the choice

of the filter size as a separated and more general problem. For videos, we think that

the use of motion flow could increase temporal smoothing, and deal more properly

with occluding contours.

As usual with MLS surface reconstruction, the global scalar field F might

present some unwanted extra zeros [AA06]. Since, by definition, they happen far

away from the input points, they are not a problem for smoothing, resampling, or

meshing with an advancing front. If evaluations happen in the whole space (e.g.,

for raytracing) then solution such as proposed by Guennebaud and Gross [GG07]

may be used.

5.4 Summary

Thanks to an appropriate regularization, we have demonstrated how the clas-

sical structure tensor can be advantageously generalized to achieve higher-order

approximations of non-oriented gradient fields. In particular, we have shown that

the best trade-off between stability and reconstruction fidelity lies in local isotropic

linear approximations. The presented MLS formalism provides continuous solu-
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Intermediate constructed curves Intermediate constructed gradient field

Sketched strokes Resulting curves

Sketched strokes Reconstructed curves Varying width using curvature

Figure 5.8: Curves from sketched strokes. The top row shows intermediate results

and reconstructed gradient field. Gray lines represent drawn strokes, and black

lines represent constructed curves. Note that large support size 50×50 is needed in

order to get simplified curves. The second and third rows show that our approach

for reconstruction of a 2D curve from drawn strokes is quite robust to the style:

straight lines in the second row, scribbling in the third row. Our isotropic linear

method estimates differential properties easily, such as tangential curvature we

mentioned in the end of Section 5.2. The bottom row shows a simplified curve

reconstructed from rough sketches, whose width is varying smoothly depending on

tangential curvature.
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tions at arbitrary scales with a low computational complexity. Our approach is par-

ticularly effective for local surface and curve reconstructions from sparse or noisy

data sets, as well as for image abstraction and stylization as we will demonstrate in

the next chapter. They constitute two kinds of applications for which it is seldom

possible to orient gradients consistently.

We believe that our approach could benefit many other types of data and ap-

plications. Since our MLS formulation works for arbitrary dimensions, it could

be used for scientific visualization (e.g., 3D medical imaging). It may serve as a

basis for multi-scale image decomposition, using increasing MLS support sizes.

For videos, optic flows may be used to combine corresponding gradients across

subsequent frames, for instance by advecting the MLS weight functions. Finally,

our approach could also benefit various global surface reconstruction methods that

rely on analytic gradient fields [KBH06, ACSTD07].
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Structure-preserving image

stylization

We have shown a huge potential of image structures for Augmented Reality and

importance-driven compositing applications in the previous part, and introduced

a novel approach for defining continuous non-oriented gradient fields based on

moving lease squares in the previous chapter. The gradient field is regarded as

one of the most important image structures in many applications, e.g. image stitch-

ing [LZPW04], image editing [PGB03] and image resizing [AS07]. In this chapter,

we will present our experiments on filtering-based image stylization using this im-

proved gradient field, such as enhanced shock filter, flow-based color abstraction

and difference-of-Gaussian. We will also demonstrate the improvement using our

isotropic linear approximation.

In order to further explore other key elements of image structures, we also

propose a new technique that analyzes the profile of line features, which permits

to distinguish between sharp and smooth features. This work will be presented in

Section 6.2 of this chapter, and it was part of the publication [VVC+11].

6.1 Introduction

Besides reproducing artistic effects, another important goal of image and video

stylization is to make them easier and faster be understood at the first glance. Many

automatic stylization approaches have been proposed for efficient visual communi-

cation in recent decades [DS02, GRG04, RTF+04, WOG06]. An ideal example to

illustrate this purpose is a video abstraction approach introduced by Winnemöller

et al. [WOG06]. The authors suggest to abstract imagery by modifying the contrast

of visually importance features. Their algorithms include two main steps:

Color abstraction: to reduce contrast in low-contrast regions, such as structure-

preserving smoothing and color quantization;

Line drawing: to increase contrast artificially in high-contrast regions.

71
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Task-based user studies [WOG06] in their paper show that participants are

faster at naming abstract images, and quicker in completing a memory game using

abstract images, compared to photographs, which verify their approach on efficient

visual communication. Based on this prototype, various improvements on both

steps have been proposed recently [KLC09, KK11]. We will review them sepa-

rately in the following part of this section.

6.1.1 About color abstraction

Image color abstraction methods can be classified into three categories according to

the operating domain: frequency domain, spatial domain and gradient domain. Fre-

quency domain methods, such as discrete Fourier transform [Win78] and wavelet

transform [ABMD92], provide a robust but fast tool to analyze the properties in

different frequencies. But due to their full-space characteristic, they have to give

special processes to preserve image structures [Fat09]. Gradient domain filters ma-

nipulate pixel differences instead of pixel values [BZCC10]. Though several non-

photorealistic rendering filters in gradient domain has been proposed [BZCC10,

MP08], it is still limited since it considers only first-order features due to the gra-

dient definition. Based on the above consideration, we believe that filters in spatial

domain will provide more flexibility and robustness. Our work in this chapter

mainly focus on spatial domain methods.

The simplest way to abstract an image in spatial domain is to smooth it, for ex-

ample global Gaussian smoothing. Local Gaussian smoothing can be also used to

simulate foveation effect of human eyes [ZWW+10]. To prevent smoothing away

image structures, many edge-preserving techniques has been proposed as an im-

proved alternative of direct smoothing. Among of them, bilateral filter [TM98] is

the most popular one. It takes both color difference and spatial distance as weights

during local averaging of colors. Several papers has pointed out that bilateral filter

quickly fails to preserve features if a lot of noises exist [FFLS08, SSD09, GO11].

Kuwahara filter [PPC07] is an alternative that avoid this shortcoming, but it is still

difficult to ensure the spatial coherence. Recently, flow-based techniques [KLC09,

KKD09] have been proposed to improve the spatial coherence. They first estimate

a directional field from the image, and then use it to either rotate or reshape the fil-

tering kernel. In this chapter, we improve flow-based image abstraction techniques

by using the proposed new gradient field estimation approach in the previous chap-

ter.

Another simple way to abstract color is color quantification. To avoid intro-

ducing hard boundaries, Winnemöller et al. [WOG06] proposed a soft color quan-

tization method, which has temporal coherent behaviors. An extreme color quan-

tization is to convert an image into black and white [MG08, XK08], though it may

start to mislead viewers the real image contents.

Besides color information, shape is another important element of image struc-

tures can be simplified. Different from 3D scene, simplifying the shape without

knowledge of the object geometry is extremely difficult. Morphological opera-
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tors, such as erosion, dilation, opening (erosion followed by dilation) and clos-

ing (dilation followed by erosion), unify the color in a specific neighborhood re-

gion [BKTS06]. Enlarging the size of neighborhood or increasing the iteration

will result in larger abstraction. Bousseau et al. [MG08] show that a good design

of this neighborhood in videos can improve the temporal coherence. Shock filter

has also been used to simplify shapes, for instance Kang et al. [KL08] iteratively

apply shock filter guided by a mean curvature flow, but it only provides the ability

of shrinking the shape, not expanding or simplification of the shape. In this chap-

ter, we apply shock filter on our MLS gradient fileds to show our improvement on

shape simplification. We also illustrate that with our continuous reconstruction of

MLS gradient field, the simplified shape evolves dynamically when we zoom in or

out the image.

6.1.2 About line drawing

Line drawings have always been used for illustration purposes in most scientific

and artistic domains. They have also played a fundamental role in the world of an-

imation, mostly because they allow artists to depict the essence of characters and

objects with an economy of means. Unfortunately, even when artists restrict draw-

ings to a few clean lines, hand-drawn animations require a considerable amount of

skills and time. Line drawing extracted from images or videos provides an cheap

but efficient alternative: lines are automatically identified in images or videos, and

drawn in a variety of styles. The challenge is then two-fold: extract a set of salient

lines, and render them in a spatially and temporally coherent manner.

For objects in an image or video, most existing line-based rendering techniques

consider salient lines as those that best depict its shape. According to the recent

study of Cole et al. [CGL+08], there is no consensus among various line defini-

tions. In particular, lines drawn by human subjects do not always represent cur-

vature extreme (ridges or valleys), but may also depict inflections (transitions be-

tween convex and concave regions). Moreover, lines from different subjects are

hardly correlated. The smoother and less pronounced a surface feature is, the less

correlated lines will be, until eventually the feature is too smooth to be depicted

by any line at all. The only exception occurs with occluding contours that depict

infinitely sharp visibility discontinuities. These observations strongly suggest that

on average, lines faithfully represent only these features that exhibit sharp-enough

profiles. However, the feature profile of an object evolves during animation, as the

object gets closer or farther from the camera, and is rotated or deformed. We thus

suggest to examine the sharpness of their profiles dynamically at each frame.

The second challenge of line extraction is to ensure spatial coherence in the

screen and temporal coherence when video is playing. Different from a single 3D

object, spatial coherence in the images and videos seems to be a big issue due to

the encoded noises and object occlusion. A preprocessed image smoothing, image

segmentation, or image parsing [ZZXZ09], might be useful to improve the spatial

coherence. Temporal incoherence arises when features are subject to various dis-
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Input image Oriented gradient field Constant Appro. Isotropic linear Appro.
@ 66 fps @ 60 fps @ 55 fps

Figure 6.1: Continuous glass pattern on Lena image 394 × 510 using a 25 × 25

neighborhood. The brush size of the glass pattern is 10 pixels. Note the general

improvement in shape preservation of Lena’s eye using our isotropic linear ap-

proximation (rightmost), and the pair cancellation issues of direct smoothing of

oriented gradient field (the second on the left).

tortion events during animation: they may either split and merge, or stretch and

compress. Especially, if the lines are further rendered by stylized approach, such

as stroke-based rendering, two important issues raise:

• features must be tracked accurately and each splitting or merging event must

be handled carefully;

• stroke style must be updated during stretching or compression events unless

stylization itself will be stretched or compressed.

6.2 Filtering-based image stylization

Followed by the work about non-oriented MLS gradient field estimation in

the previous chapter, we demonstrate that this gradient field can improve exist-

ing filtering-based image stylization techniques in this section. In particular, we

show how our approach improves image stylization by systematically comparing

the results obtained with our Constant Approximations (CA) and Isotropic Linear

Approximations (ILA).

6.2.1 Continuous glass pattern

As introduced in the Chapter 2, Continuous Glass Pattern (CGP) achieves artistic

effects by replacing the natural texture by a synthetic texture, rather than generating

a list of strokes with different attributes [PP09].

In the previous work chapter, we have shown the formula to obtain the CGPGg,

given the input image I and its gradient field g. The full CGP algorithm consists

of five steps. Firstly, an edge-preserving smoothing IEPS is employed to remove
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noises in the image, we use an anisotropic Kuwahara filter [PPC07]. Secondly,

a gradient field g of this smoothed image is computed using first-order Gaussian

derivatives. The third step is to generate a convoluting texture by applying Gaus-

sian smoothing with a variance parameter σ on a Gauss white noise image. Note

that the parameter σ controls the size of noise pattern, thus determines the thick-

ness of the brushes in CGP. Then the CGP synthetic texture Gg is obtained by

an integration (Equation 2.2). The final result is achieved by adding Gg to IEPS :

IEPS + λGg, where the parameter λ controls the strength of CGP.

Figure 6.1 compares CGP results based on gradient fields computed by our

CA, ILA and direct smoothing the oriented gradient field respectively. To compare

fairly, all other steps and parameters are the same, σ = 1.67, λ = 0.75, and the

half length of the convolution S = 10. Direct smoothing the oriented gradient

field results in losing image structures, and our CA also tends to oversmooth round

features, while our ILA accurately preserve the centrality of the eye accurately.

6.2.2 Enhanced shock filter

Shock filter is one of the oldest filters in signal processing, Rudin et al. [OR90]

have first introduced it to image processing to enhance the image contrast. Kang

and Lee [KL08] have reintroduced it to simplify shapes in images, and Kyprian-

idis and Kang [KK11] further make use of it to sharpen the image based on the

gradient field. Kyprianidis and Kang [KK11] apply 1D shock filter along the tan-

gential direction estimated by either direction smoothing that requires local flip in

the neighborhood or relaxing in low-contrast regions. They iterate several times,

for both directional field estimation and stylization, which limits their algorithm to

a specific style.

We employ the enhanced shock filter pipeline introduced by Kyprianidis and

Kang [KK11]. Given an input image and its gradient field, we first apply a 1D

Gaussian smoothing along the tangent field with a neighborhood size St, and then

a 1D shock filter along gradient field with a neighborhood size Ss. In this separate

kernel, St controls the spatial coherence, and Ss controls the thickness of the shock

filter. In order to remove the aliasing around the sharpening edges, we additionally

apply a 1D Gaussian smoothing along the gradient direction with a very small

kernel as a final step.

Thanks to the improvement of our ILA, we are able to improve the enhanced

shock filter, as illustrated in Figure 6.2. Small round dots are better preserved

in our ILA. Figure 6.3 shows a simplification result of line drawing. The green

and red dotted box means the zooming regions with our continuous reconstruction

based on MLS formalism. Note how lines dynamically split in zoomed views.

And Figure 6.3-(e) and (f) compare ILA and CA in a 4 times zoomed resolution.

Since our ILA derives differential quantities such as second-order curvature with a

nearly-zero cost, we adapt Ss to adjust the size of shock filter using this curvature:

Ss = Smin + (Smax − Smin) tanh(β · κt) (6.1)
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where Smin and Smin are minimal and maximal shock filter size, β controls the influ-

ence of curvature, tanh(·) is a function maps a positive value into [0, 1], and κt ≈ 2l

approximates skeleton curvature and l is half of the coefficient of the quadric term

in the formula of our isotropic linear approximation. The line drawing thus has a

varying thickness depending on local skeleton curvature. Figure 6.3-(c) exhibits

such a result that we use Smin = 2, Smin = 12 and β = 1.0. Figure 6.4 demon-

strates that our method naturally exhibits better temporal coherence even though

each frame is processed independently.

6.2.3 X-DoG

Difference-of-Gaussian (DoG) is a classical method to extract lines from an im-

age [WOG06]. The DoG operator is the difference between two bands of an image

I computed by Gaussian smoothing with two different kernels:

DoG(xxx) = Gσc
⊗ I(xxx) − ρ ·Gσs

⊗ I(xxx), (6.2)

Gσ ⊗ I(xxx) =
∑

yyy∈N(xxx)

I(yyy) e−dist(xxx,yyy)2/2σ2

(6.3)

where N(xxx) is the neighborhood set of pixel xxx, and dist(xxx,yyy) = |xxx − yyy| is a distance

function between xxx and its neighbor pixel yyy in image space. ρ determines the sen-

sitivity of the detector. For small values of ρ, less noise is detected, but real edges

become less prominent. As ρ −→ 1, the detector becomes increasingly unstable.

We use ρ = 0.99 in this thesis. σs is always set to 1.6σc to approximate closely to

Laplacian-of-Gaussian. The lines are extracted by a soft threshold function:

L(xxx) =

{

1, if DoG(xxx) < ǫ

1 + tanh(ϕ · DoG(xxx)), otherwise
(6.4)

Kang et al. [KLC07] have improved the spatial coherence by guiding DoG

filter using a gradient field. They separate the DoG operator into two passes, one

is an 1D DoG operator along the gradient field using σc, and the other is an 1D

Gaussian smoothing along the tangent field usingσ. Based on this separate filtering

kernel, N in Equation 6.3 becomes a 1D neighborhood, a streamline tracing along

the gradient field, and dist(xxx,yyy) is the 1D tracing distance from yyy to xxx. Note that

parameter σc controls the sparsity of lines, and σ determines the spatial coherence

aligned the tangent field.

Recently, Winnemöller et al. [Win11] have further generalized difference-of-

Gaussian to provide more ability to convert the image in various styles using the

same formula (X-DoG). Figure 6.5 exhibits that a black-and-white stylization can

be obtained by setting ρ < 1, ϕ ≫ 1, and ǫ < 0 in X-DoG filter. Though X-

DoG filter based on our CA sharpens the blurry image, it tends to oversmooth

the original structures. While the one based on our ILA preserves well the curly

features when sharpening. The improvement is even more observable when an

emboss effect is employed, as shown in Figure 6.5-(b).
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(a) LIC vis. of gradient field (b) Enhanced Shock filter
@77 fps | @72 fps @63 fps | @60 fps

Figure 6.2: Comparison between CA and ILA with enhanced Shock filter on

a 500 × 347 image using a 9 × 9 neighborhood for the MLS gradient field. We

use a 9 pixel size for uniform Shock filtering. Our MLS constant approximation

extends classical techniques based on structure tensor smoothing [KKD09] that

tends to oversmooth the details (left part). The use of non-oriented gradients leads

to easy-to implement improvements without the burden of having to coherently ori-

ent them. Constant approximations are outperformed by our novel isotropic linear

approximations (right part) that better preserves the image structures.

(a) Input image (b) Isotropic linear @ 79 fps (c) Isotropic linear @ 76 fps
w/o curvature w/ curvature

(d) Isotropic linear ×2 (e) Isotropic linear ×4 (f) Constant ×4 @ 88 fps

Figure 6.3: Enhanced Shock filter for line drawing simplification on a 422×499

image using a 23 × 23 neighborhood for the MLS gradient field. We use 2 for tan-

gential smoothing, and a 10 pixel size for uniform Shock filtering. (b), (d) and (e)

show our ILA results under different resolutions with our continuous reconstruc-

tion. Note that how the lines are splitting when the resolution increases. Compared

to CA (f), our ILA (b,d,e) improves the overall sharpness. Furthermore, it permits

to locally adjust the shock size based on curvature to vary stylization (c).
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Three frames of the input video

Video results @ 55 fps

Figure 6.4: Enhanced Shock filter on video. on a 366×206 video using a 25×25

neighborhood. We use a 10 pixel size for uniform Shock filtering. The companion

video shows the temporal coherence of our method.

(a) Input image (b) Isotropic linear/Constant emboss effect

(c) Constant X-DoG @ 45 fps (d) Isotropic linear X-DoG @ 40 fps

Figure 6.5: X-DoG filters: on a 916 × 379 image using a 29 × 29 neighborhood.

The original image is an ink rubbing of an engraved dragon, and the size of X-DoG

filter is 9 pixels. The difference of ILA and CA is easily observed in emboss effect

(b). And we use the infinite zoom ability of our approach to show how the curls are

consistently better preserved using ILA (d) compared to CA (c).
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Input image Constant @ 69 fps Isotropic linear @ 55 fps

Zoom

Figure 6.6: Flow-based abstraction on a 500 × 223 image (on the top) and a

500 × 327 image (the second row) using a 33 × 33 neighborhood. Note the curly

structures, such as the centers of stars and waterdrops, are better preserved using

our isotropic linear approximation.

6.2.4 Flow-based image abstraction

A simple structure-preserving color abstraction could be done by bilateral filter. In

order to be more spatial coherent, flow-based bilateral filter is proposed to better

preserve original structures. In our implementation, we first apply an 1D bilat-

eral filter along the tangent field, and then an 1D bilateral filter along the gradient

field. In order to avoid color blending issue, we use a large neighborhood size

aligned the tangent field, and a small neighborhood size aligned the gradient field.

Figure 6.6 exhibits our flow-based color abstraction on water splashing and Van

Gogh’s famous painting “The Starry Night”. Compared to our ILA, CA tends to

fail to preserve curly structures, such as centers of stars in Figure 6.6.

One main limitation of our ILA is that the user has to determine the best support

size parameter. Too small support size will not ensure the improvement, while too

large support size will tend to oversmooth the original structures even using our

ILA, as shown in Figure 6.7-(b). Since the oversmoothing artifacts are always first

observed around the object boundaries and small texture details when increasing

the support size, a knowledge of image discontinuities and feature scales would

helps to overcome this limitation. Figure 6.7 illustrates the use of masks to clip the

neighborhood at discontinuities, and to locally adjust the filter radius.

As already noted, our CA method can be seen as a continuous variant of clas-

sical structure tensor smoothing [KKD09]. This is a key advantage the enables
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(a) Input image (b) Uniform weights

(c) User-drawn masks (d) Non-uniform weights

Figure 6.7: Non-uniform weights for adaptive flow-based abstraction By ad-

justing the neighborhood size using a hand-drawn scale image (c-top) and hand-

selected segmentation (c-bottom), we locally improve the preservation of small fea-

tures (like on the peacock body and head) and the preservation of original discon-

tinuities (like between the body and the tail feathers).

high-quality dynamic zooms without any particular overhead since the cost of our

approach is linear in term of number of evaluations, i.e., in term of the number of

pixels of the output image. This contrasts with approaches based on a global for-

mulation (e.g., harmonic smoothing) for which the whole input image has always

to be considered. This ability is visible in Fig 6.1, but also in the insets of Fig 6.5

using the eXtended Difference of Gaussians (X-DoG) filter [Win11]. It is better

seen in the video where the lines produced by the coherence-enhancing shock fil-

ter [KK11] naturally separate or merge depending on the zooming level. This filter

is applied to a line-drawings image in Fig 6.3. Note that such inputs provide a

sparse information since most of the pixels present a null gradient.

6.3 Line feature analysis

We have pointed out the importance of line features in image representation,

image-based modeling Augmented Reality and image stylization in the previous

work chapter. But, the study of Cole et al. [CGL+08] has shown that although

occluding contours are expected to be depicted in virtually all line drawings, other

surface features are not systematically drawn. A simple use of occluding contours
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is not enough though. Regarding this issue, we make no attempt at defining a

new kind of image line feature in this section. Instead, our contribution consists

in first providing a generic definition for most common image line features, then

extending it to identify feature profiles (Section 6.3.1). We then show how these

generic image line features are extracted in real-time using an implicit approach

that works on the GPU (Section 6.3.2).

6.3.1 Feature definitions

Feature skeleton In the previous work chapter, we have derived our first obser-

vation that features are identified as maxima of a differential geometry invariant in

a tangential direction. We call the loci of such maxima the feature skeleton. It is

defined by

S =
{

s ∈ �2
∣

∣

∣

∣

δh(s)

δθ(s)
= 0,

δ2h(s)

δθ(s)2
< 0

}

, (6.5)

where S ⊂ �2, h : �2 → � is a C2 height function, and θ : �2 → �2 is a C1

direction field. Both h and θ are easily instantiated to produce existing image and

surface feature types.

For images, edges are obtained by taking the maximum of the gradient mag-

nitude in its corresponding direction. This gradient can be luminance gradient,

computed by Gaussian derivatives, or color gradient as we discussed in Chapter 2.

Ridges and valleys are second-order features, and thus require to compute a cur-

vature tensor H from which principal curvatures kmax and kmin and directions tmax

and tmin are extracted. Ridges (resp. valleys) are obtained as maxima of kmax (resp.

−kmin) in the tmax (resp. tmin) direction. Inflections are third-order features, and

thus require to compute a curvature-variation tensor C from H, and extract a cur-

vature gradient vmax from C. They are then obtained as maxima of vmax in its

corresponding direction.

All above image feature definitions can be generalized for surface as surface

edges, ridges/valleys, and surface inflections with a slight modification. For in-

stance, surface edges are obtained by taking maxima of the surface gradient gn =
(

−nx/nz,−ny/nz

)

in its corresponding direction, where n = (nx, ny, nz) is the surface

normal expressed in screen-space. Surface inflections are similar to Demarcating

Curves [KST08], but are defined in screen-space.

Feature profile An advantage of using Equation 6.5 is that we can now reason

on abstract features without having to focus on a particular definition. As an exam-

ple, we take the “ripple” function illustrated in Figure 6.8. It is obvious from this

example that the feature skeleton is not sufficient if one wants to convey differences

between height field oscillations.

Our second observation is that all the required information to make this distinc-

tion is contained in the direction field. Indeed, classic differential geometry [dC76]

tells us that for each non-singular point x of a direction field θ, there exists a unique
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Figure 6.8: Simple ripple example: we show the height function h(x) =

cos(|x|)/(1 + 0.2|x|), a subset trajectories (in pale blue) of its directional field

θ(x) = x/|x|, the corresponding feature skeleton S (in red), and a feature profile (in

dark blue) that goes both through points x < S and s ∈ S.

curve cx(t) that passes through x and which tangent is everywhere equal to θ. Such

a curve is called a trajectory (or integral curve); a subset of trajectories is drawn

as pale blue curves in Figure 6.8. However, a trajectory may cross multiple times

the feature skeleton S. To identify the unique feature profile corresponding to a

point s ∈ S, we clamp its trajectory to feature mimima (or singularities) on each

side of s. This is illustrated in Figure 6.8 by the dark blue curve. The feature pro-

file ps : (t−, t+) → � at a point s ∈ S is defined as the height function along the

truncated trajectory:

ps(t) = h ◦ cs(t), t ∈ (t−, t+), (6.6)

where t+ (resp. t−) is the positive (resp. negative) parametric location of either the

closest minimum or nearest singularity.

An interesting property of Equation 6.6 is that it also applies to any non-

singular and non-minimal point x < S. Hence, because of the unicity of a tra-

jectory, for each such point x lying in the span of a feature profile centered at s (the

dark blue curve in Figure 6.8), ps(t) and px(t) are equal up to a parametric transla-

tion. In other words, a feature skeleton and profile can be obtained implicitly at x

by analyzing a neighborhood along its trajectory. We make use of this property to

extract feature skeleton and profiles in parallel at each pixel.

6.3.2 Implementation details

The extraction of features as defined above is done in three stages: 1) we compute

h(x) and θ(x) per pixel for each frame; 2) we build a 1D neighborhood for each

pixel x by following its trajectory; 3) we identify feature skeleton and profile along

this neighborhood, using a fitting procedure.
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(a) (b) (c)

Figure 6.9: Feature extraction: (a) Feature data consists of a direction field θ

(here tmin, displayed on top using LIC with singularities in red), and a height field

h (here −kmin, displayed at bottom in gray-scales). (b) The trajectory c̃x(t) is shrunk

by a factor τ+ to stop at feature singularities (top); then profile data px is fit using

a cubic polynomial p̃x (bottom). (c) Profile parameters such as the distance ds to

the skeleton (top) and profile height p̃x(tx) (bottom) are spatially and temporally

coherent.

Feature data We have introduced the feature definition in different orders in

Section 6.3.1. In practice, we compute gradients by applying first-order Gaussian

derivatives on the image luminance. For second-order features, we compute a cur-

vature tensor H by applying second-order Gaussian derivatives. For third-order

features, we apply a Sobel filter to mean curvature H = tr(H) to compute vmax .

Having identified h and θ per pixel for a particular choice of image feature, we

are only one step away from inspecting pixel neighborhoods: we must first locate

feature singularities. Singularities of θ are approximated with the mean angular

variation in a 8-pixel neighborhood around each pixel: γθ(x) = 1−Σ8
i=1
|θ(x).θi(x)|/8,

with θi(x) the orientation at neighboring pixel i. They are approximated by γd(x) =

||gd(x)||. Feature singularities are then identified by the union of directional and

contour singularities: γ(x) = max(γθ(x), γd(x)). Per-pixel feature data is displayed

in Figure 6.9-a, using Line Integral Convolution [CL93] (LIC) for θ, which is a

valid display since all our direction fields are defined modulo π. We show singu-

larities in red; in this case they appear at places where principal curvatures are of

equal magnitude (i.e., at inflection points).

Profile sampling The second stage takes advantage of the observation made at

the end of Section 6.3.1: because each non-generic and non-singular pixel x be-

longs to a unique trajectory cx(t), we can walk along cx(t) to find the feature profile

it belongs to. In practice, we consider a first-order Taylor expansion of cx(t) (i.e., a

linear neighborhood): c̃x(t) = x + t θ(x). This approximation is all the more valid

for points in the vicinity of S where we have observed that trajectories are close

to simple lines. In our system, we measure px(t) along c̃x(t) at 2k + 1 samples

(henceforth named ti, i = −k..k) distributed uniformly on each side of x (we use
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k = 4).

However, care must be taken not to go through a feature singularity. To deal

with this issue, we take an approach similar to anisotropic diffusion: we shrink c̃x(t)

as soon as it comes close to a feature singularity. To do that, we first accumulate γ

values on each side of x:

Γ±x (ti) =

i
∑

k=0

γ ◦ c̃x(t±k)

The neighborhood is then shrunk so that no feature singularity is crossed. This

is done by identifying the location τ+ (resp. τ−) at which Γ+x (resp. Γ−x ) is greater

than a threshold Γmax (we use Γmax = 1), as illustrated at the top of Figure 6.9(b).

The shrinking factor is then taken to be the minimum of |τ−| and |τ+|. The shrunk

neighborhood is resampled using 2k + 1 uniformly distributed samples in order to

have enough information for profile fitting.

Profile fitting The goal of the third stage of analysis is to identify the location

of a potential feature skeleton along the 1D neighborhood, with additional profile

information. We do this by fitting an analytic profile function p̃x to profile data

measured at ti along c̃x(t). In practice, we take a least-squares approach, minimiz-

ing a per-pixel profile energy on the GPU:

E(x) =

k
∑

i=−k

(h ◦ c̃x(ti) − p̃x(ti))
2.

We use a cubic polynomial for the analytic profile function (see Figure 6.9-

b), since it has just enough degrees of freedom to identify surrounding extrema:

p̃x(t) = at3 + bt2 + ct + d. Having a simple analytic expression for the profile

at x allows us to identify characteristic profile properties. The profile generally

exhibits two extrema tα,β = (−b ±
√

b2 − 3ac)/3a. The skeleton location tx is

easily obtained by picking the one extrema for which the second-order deriva-

tive d2 p̃x(t)/dt2 = 6at + 2b is positive (when a single minimum is found, we ig-

nore the pixel). Profile height and curvature are then simply given by p̃x(tx) and

d2 p̃x(tx)/dt2 (since dp̃x(tx)/dt = 0).

Figure 6.9-(c) displays results of the fitting process: the per-pixel distance to

the nearest feature skeleton ds = ||x − c̃x(tx)|| is shown with a color gradient, and

profile height p̃x(tx) is displayed in gray-scales. Observe how both estimates are

consistent across a feature profile, illustrating the spatial coherence of per-pixel

fitting.

6.3.3 Results and discussion

Although line style may be strongly correlated to surface features, it is nonethe-

less independent of the feature extraction process. Our approach separates feature

extraction and rendering to allow the user easily control the line-based stylization

without considering how they are extracted. For the sake of legibility, we first show
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(a) Input image (b) Edges (c) Ridges & Valleys (d) Inflections

Figure 6.10: Various of luminance features. All features are extracted under the

assumption that features can be located at maxima of some differential geometry

invariant. Here we exhibit all the possible feature lines our approach can achieve.

Luminance edges are first-order features, ridges and valleys are second-order ones,

and inflection represents third-order features which are start to be less frequent in

line-drawing literature. Note that we render ridges as bright colors to reveal that

ridges are consist of pixels with maximal luminance in their neighborhood.

(a) Luminance of a 3D object (b) Lee et al. ’s approach (c) Our approach

Figure 6.11: Comparison with Lee et al. [LMLH07]. Rendering luminance val-

leys from (a) with the method of Lee et al. (b) produces satisfying results for thick-

enough lines (left) but raises noise issues with thin lines (right). Opacity thresholds

are chosen to obtain the cleanest possible lines. With Implicit Brushes (c), feature

extraction and line stylization are controlled independently, which produces clean

line renderings for any choice of line thickness.

two results with line-based stylization. Figure 6.10 exhibits various of line features

blended with the input image, based on our uniform extracting framework. This

is contrast with previous image-based techniques where extraction and stylization

are part of a single process. Take FDoG line extraction as an example, less lines

will be detected if their width is reduced. Figure 6.11 illustrates a comparison be-

tween our method and the method of Lee et al. [LMLH07] with identical input data

and similar styles. With the method of Lee et al., only opacity can be modulated

after the 2D fitting process, and one must modify feature extraction to control line

thickness. As a result, rendering of thin lines requires the identification of small

features, which raises noise issues. With our technique, feature extraction is in-

dependent of stylization choices, which allows us to create clean renderings even

with thin lines.

In order to achieve various line-based rendering styles, we employ a convolu-

tion approach that mimics the contact of a brush on canvas and easily takes fea-
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Figure 6.12: A stylized video. Frames of a water drop video where luminance

edges are depicted with lines of varying thickness, either drawn in black (top), or

drawn in white over the original image (bottom), both with a disk footprint.

(a) (b) (c)

Figure 6.13: Image enhancement: (a) Original image. (b) Enhanced using LoG.

(c) Enhanced using LoG footprint.

ture profile into account. Intuitively, our stylization technique consists in stamping

brush footprints of various size, orientation, colors and opacities at points that are

close-enough to a feature skeleton with a sharp-enough feature profile. This stamp-

ing process is done by a convolution implicitly, which can be computed in parallel.

The stylized lines that emerge from this process inherit the spatial and temporal

coherence of image features.

Figure 6.12 shows our result on four frames of a video using a round solid

footprint. Though we only use a disk footprint in this case, lines are starting to

adapt their thickness according to the sharpness of the profiles. We believe also

that identifying features properties at every point in the image is an efficient way

to control noise reduction. As a first experiment, we have tried to first use a Lapla-

cian of Gaussians function as a footprint, and then convolute implicitly taking the

sharpness of the profile as the weights for each pixel, finally add the results of

the convolution back into the image to increase the contrast. Since profiles only

near features are sharp enough, the contrast in this regions are enhanced, thus the

noise in the regions far away from any features will not be boosted. It results in a

compelling and controllable image enhancement technique that exaggerates details

only at feature locations, as seen in Figure 6.13. This direction of research deserves

future endeavor.

The performance of our system in this chapter is mainly dependent on fill-rate:

it varies with image resolution, the number of anisotropic diffusion iterations, and

footprint size. For example, using a NVidia G-480, it runs at 82 fps at a resolution
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of 1024 × 768 with a footprint of radius 10 pixels. Performances drop down with

increasing iterations: it runs at 56, 40 and 31 fps for 10, 20 and 30 iterations

respectively.

Our stylization technique produces temporal coherent lines from images and

videos in a variety of styles. In comparison, other methods are either limited in

terms of stylization abilities [ND04, LMLH07], since they only provide thickness

control; or they are prone to temporal artifacts even on static objects [KDMF03,

BCGF10], mainly with split or merge events. The flexibility of our approach comes

at a price though: user control is less direct with our convolution-based rendering

than with stroke-based techniques. For instance, perturbations are produced via

a global screen-space texture; and stylized lines automatically end at feature end-

points based on the choice of weight function. In other words, there is no simple

solution for applying a stroke texture along a line. Although it is a limitation that

prevents accurate local control of line style, it may also be seen as an advantage for

the applications we target in this paper: style is designed once and for all and ap-

plied either in real-time for dynamic systems, or as a batch process for compositing

pipelines.

6.4 Summary

We have presented two structure-preserving image stylization techniques, that

improves filtering-based color abstraction and line-based rendering. Thanks to the

higher-order approximation of gradient fields and robust profile analysis, we are

able to stylize images and videos in both spatial and temporal coherent manner.

Since our approach works in screen space, it can naturally analyze 3D objects

using their depth, normals or luminance buffers.

Our line feature extraction technique works for a range of image feature types,

including edges, ridges, valleys and inflections. However, the choice of feature

has an influence on a feature profile extent: indeed, with feature definitions of

increasing order, more singularities occur, which leads to more profile clamping

on average. Another limitation of our approach in this chapter is that it ignores

junctions, precisely because they are located at directional singularities. Due to

the lack of junction identification knowledge, color oversmoothing is difficult to

avoid for image abstraction on junctions, and in the same vein, the continuity of

a line is impossible to guarantee if it intersect other lines. One of the main future

work would thus be to analyze the multiple orientation fields instead of only one

direction, for instance steerable filter [FAoTMLVG91].

Another direction of research deserves future endeavor is to investigate our

approach in multiple scale space. We require the user to select the filter size in

filtering-based image stylization, and to assign a threshold to define a neighborhood

size for computing the profile sharpness. Moreover, both image abstraction and line

drawing rely on a directional field that is reconstructed in a specific support size.

An arbitrary value for any of them cloud lead to a unexpected result. We believe
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that local image structures are better observed in a specific scale. We thus have to

find an appropriate scale for each position of images or videos. Before developing

an automatic algorithm to directly estimate this scale, an easier way may be build a

Gaussian scale space hierarchy of structures [OBBT07] to study how our approach

behaves in increasing scales.



Part III

Discussion and conclusion
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Conclusion and future work

Along this thesis, we have explored the use of contours and gradients, as image

structures, for Focus+Context rendering in Augmented Reality and importance-

driven image synthesis using multiple rendering styles. We have also introduced

a new local approximation method for discrete non-oriented gradient fields that

better preserve image structures, and a feature profile analysis approach via fitting

techniques that permits to distinguish between sharp and smooth features. We have

further demonstrated how our improved image structure analysis benefits various

image and video stylization applications.

We have first introduced an improved Focus+Context compositing approach

for Augmented Reality in Part I. In Chapter 3, we have presented a cutaway-based

approach for visualizing underground pipelines, which demonstrates that the use of

screen segmentation and extracted lines can provide depth cues and reveal correct

occluding order. Our approach does not require an accurate reconstruction of the

3D environment and runs on-line on modern hardware. Depth cues to reveal occlu-

sion relationships is provided by using characteristic features extracted from video

frames. To enhance the perception of occluding order, the extracted features are

either directly rendered, or used to create hybrid blending masks: we thus ensures

that the resulting visual cues are clearly noticeable.

We have introduced an importance-driven image synthesis approach in Chap-

ter 4 that further extends Focus+Context compositing to a larger range of applica-

tions, not only AR, but also on images, videos and 3D scenes. An importance map,

either derived from saliency estimation or designed by the user, is introduced both

in the creation of the multiple styles and in the final composition. Our approach

accommodates a variety of stylization techniques, such as color desaturation, line

drawing, blurring, edge-preserving smoothing and enhancement. We have shown

that how an importance map guides both stylization and synthesis, and how feature

lines play a key role in revealing shapes.

The key of our success in compositing Focus+Context in AR introduced in

Part I, is the use of gradients and contours. But, the improvement is limited to

the quality of gradient field estimation and line extraction, for instance the spatial
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and temporal coherence, and flexibility for user control. To overcome some limita-

tions, we have introduced a new gradient field estimation method and a feature line

profile analysis method, and demonstrated their advantages in image stylization

applications in Part II.

In Chapter 5, we have presented a new approach for defining continuous and

non-oriented gradient fields from an image. Our approach is built on a moving

least square formalism where the key is the computation of higher-order local ap-

proximations of non-oriented input gradients. In particular, we have shown that

our novel isotropic linear approximation outperforms its lower-order alternative:

image structures are much better preserved, and instabilities are significantly re-

duced. We believe that its ease of implementation (on both CPU and GPU), and its

small performance overhead will find a widespread usage in graphics applications.

In Chapter 6, we have first demonstrated that our MLS gradient field improves

various image stylization techniques, such as continuous glass pattern, flow-based

image abstraction, extended DoG and enhanced shock filter. We have later used the

gradient information for a feature line extraction approach, that not only extracts

locations of features but also analyzes their profiles. The profile is analyzed via

a 1D fitting along the gradient field, and permits to distinguish between sharp and

smooth features. Profile parameters are then mapped to stylistic parameters such as

brush orientation, size or opacity to give rise to a wide range of line-based styles.

Finally, stylized lines are rendered in real time by a convolution of a brush foot-

print along the feature skeleton implicitly. Our approach is also naturally temporal

coherent, without requiring preprocessing or tracking.

7.1 Future Work

All our proposed approaches in this thesis are some first steps toward a longer-

term project that is, to extend the classical image-based applications, to create a

bridge between input images and target applications by image structures. Image

structure analysis methods that we have presented in this thesis, such as gradient

fields and lines, are only dedicated to two kinds of applications that are Augmented

Reality and image stylization. I personally believe that many further extensions are

possible and will allow to really build the bridge between source data and target

applications. It would be interesting first to process many other data sources, such

as videos, volume data. For higher dimension data, the main challenge is to over-

come the computation limitation. For other applications, it might be important to

investigate other image structures, such as scales, motion flow in video streams.

Richer is our understanding of image structures, larger is the range of data source,

and wider are the applications we can serve. For a short-term, we are especially

interested in the behavior of our MLS gradient field in video spatial-temporal cube,

volume data, and 3D mesh model.
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Figure 7.1: Different types of lines in an image.

7.1.1 Exploring advanced image structures

Scale. The most important parameter in our MLS gradient field is the support

size. Large support size will definitely produce a very smooth gradient field, but

unfortunately it will also easily smooth out some important but small-scale details.

In this case, such a global support size will be not adequate, even though the user

adjust it carefully. An automatic method to decide this support size locally refers to

multi-scale theory in computer vision. Lindeberg’s work in 1991 [Lin96] provides

us an executable approach of this theory. DeCarlo and Santella [DS02] build a

hierarchical segmentation in scale-space, and automatically select the correct level

of the hierarchy according to a perceptual model relying on eye movement data.

Orzan et al. [OBBT07] compute a perceptually meaningful hierarchy of image

edges using Gaussian scale-space theory, and demonstrate its use in various appli-

cations. Therefore, scale-space theory will be useful to automatically determine

local support sizes.

Different lines. Lines extracted in an image have many different types according

to what they represent, such as silhouettes of objects, contours produced by oc-

clusion, edges in object textures, folds of objects or even boundaries of shadows.

Figure 7.1 illustrate different kinds of lines exist in a single image. Classifying

them will certainly benefit line-based stylization and to improve depth cues in Fo-

cus+Context rendering for AR. As a pioneer work, Geusebroek et al. [GvdBSG01]

exploit the Gaussian scale-space paradigm for color images to define a framework

for robust measurement of object reflectance. Illumination and geometrical invari-

ant properties are derived from the reflectance model. But, it is limited to several

strict imaging conditions, thus difficult to work on any natural image.

Multiple directions. The MLS gradient field we have introduced in this thesis is

based on the assumption that only one gradient direction exists for each position of
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Figure 7.2: Using multiple directions. The left figure shows two simple exam-

ples where traditional gradient computation using x and y directional derivatives

does not find the correct gradient directions. The right figure illustrates a steer-

able wedge filters result [SF96], where 18 basis filters are used. Polar plots of

oriented energy maps are shown in the bottom figures. They respectively identify a

horizontal edge, a vertical edge, a corner and a “T” junction respectively.

an image. In fact, this is no more the case on the corners or junctions. Figure 7.2-

Left shows that traditional gradient computations using directional derivatives fail

at junctions: the directional derivatives along x- and y- frames (gxxx and gyyy) have ei-

ther zero magnitude or equal magnitude, which leads to detect a completely wrong

direction. Steerable filter [FAoTMLVG91] is an efficient architecture for creating

filters at arbitrary orientation by a simple linear combination of basis filters. The

output of this resulting filter is computed analytically for any orientation. Steerable

wedge filter [SF96] is an extended version that fixed the symmetric limitation of

steerable filter. An example of steerable wedge filter is shown in Figure 7.2-Right.

7.1.2 Structures beyond image

In parallel, it is also important to investigate structure estimation for a larger range

of data source. Nowadays, we can capture information beyond traditional RGB

color, like depth. Considering time for videos is also a natural next step to extend

our MLS gradient field.

We have experimented our MLS gradient field on video in a frame-by-frame

manner. Though it seems to be quite temporal coherent in the regions where fea-

tures exist, popping and flickering artifacts are observed in the region which looks

uniform but encodes a lot of noises in fact. One solution is to enlarge the neigh-

borhood size in such places where there is no image features near-by, to enforce

the accuracy in each frame. But estimating a gradient field in a “uniform” region is

not a natural way to completely solve the flickering issue, since the random noises

are fully different in each frame. A natural way would be to take the video as a 3D
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cube, and apply the MLS reconstruction algorithm directly on the 3D data. In this

case, it might be necessary to use the optical flow. But, the computation of a 3D

MLS algorithm might immediately increase due to the cubical neighborhood.

An algorithm that takes the video as a 3D cube has a large limitation, that it can

only be done off-line, since not only the previous frames but also the future frames

are needed to process the current frame. An approach that uses only the previous

frames and the current one, as suggested by Paris [Par08], might provide an online

alternative solution that still ensures the temporal coherence.

7.1.3 Interactive image structures

It would be also interesting to invite the user into the loop for extracting image

structures. For image and video stylization, this would provide the artists with

more freedom to create their desired stylized images. Zhang et al. [ZHT07] intro-

duce an interactive tensor field design tool that allows the user to create tensor fields

over 3D surfaces either from sketching or by modifying the tensor field of the orig-

inal image. This manipulation is done by controlling singularities. For instance,

merging or removing singularities can result in locally smoothing this tensor field.

But, image singularities are not only degenerates points, but also different kinds

of lines. Figure 6.7 in the previous chapter have shown that object contours can

locally improve the preservation of original boundary discontinuities in flow-based

image abstraction.

Most of previous work discusses creation and manipulation for different image

structures separately. But, these structures usually impact each other in a single

image. For instance, gradient field around object boundaries always follow the di-

rection of silhouettes, no matter inside or outside the object, and feature scales are

usually small in the regions where gradient fields have large variation. A promising

research direction is thus to explore an interactive tool that integrates different user-

defined image structures, such as object contours, gradient field, feature scales, and

even multiple directions. For instance, the computation of a gradient field should

only consider color information in the same object region not across object bound-

aries, to better preserve the original structures. And using a smaller neighborhood

size in places where users are more sensitive will preserves more user-interested

details, like faces and texts [ZZXZ09].

Another important element for a good interactive tool is to consider how much

effort is required for the user to finish an interaction task. For this purpose, an

accurate result constructed from rough interactions will certainly outperform any

system that requires accurate interactions: this is not the case in most previous

work. Our curve reconstruction approach introduced in Section 5.3 of Chapter 5

shows a huge potential to simplify rough sketched strokes. But, in order to become

an easy-use but powerful interaction tool, the most challenge work is to analyze

many important features, such as singularities, scales, multiple directions, in a uni-

fied interactive framework based on a moving least square formulism, and provide

a WYSIWYG feedback in real time.
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