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Abstract

Quantum memories are an essential building block for quantum information science, and in particular for

the implementation of quantum communications across long distances. A quantum memory is defined

as a system capable of storing and retrieving quantum states on-demand, such as quantum bits (qubits).

Atomic ensembles are good candidates for this purpose because they enables strong light-matter coupling

in case of a large number of atoms. Moreover, the collective effect, enhanced in the regime of large

optical depth, can lead to storage efficiency close to unity. Thus, in this thesis, a large magneto-optical

trap for cesium atoms is used as a atomic medium in order to implement a quantum memory protocol

based on electromagnetically induced transparency (EIT).

First, the EIT phenomenon is studied through a criterion for the discrimination between the EIT and

the Autler-Townes splitting models. We then report on the implementation of an EIT-based memory

for photonic qubits encoded in orbital angular momentum (OAM) of light. A reversible memory for

Laguerre-Gaussian modes is implemented, and we demonstrate that the optical memory preserves the

handedness of the helical structure at the single-photon level. Then, a full quantum state tomography of

the retrieved OAM encoded qubits is performed, giving fidelities above the classical bound. This showed

that our optical memory operates in the quantum regime. Finally, we present the implementation of

the so-called DLCZ protocol in our ensemble of cold atoms, enabling the generation of heralded single

photons. A homodyne detection setup allows us to realize the quantum tomography of the created

photonic state.

Key words quantum information science, quantum memories, magneto-optical trap, electromagneti-

cally induced transparency, orbital angular momentum of light, quantum tomography.
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Résumé

Les mémoires quantiques sont un élément essentiel dans le domaine de l’information quantique, en

particulier pour la mise en œuvre de communications quantiques sur de longues distances. Une mémoire

quantique a pour but de stocker un état quantique de la lumière, comme par exemple un bit quantique

(qubit), et de le réémettre après un délai donné. Les ensembles atomiques sont de bons candidats pour

construire de telles mémoires quantiques, car il est possible d’obtenir de fort couplage lumière-matière

dans le cas d’un grand nombre d’atomes. De plus, la notion d’effet collectif, qui est renforcé pour de

large profondeur optique, permet en principe une efficacité de stockage proche de l’unité. Ainsi, dans

cette thèse, un piège magnéto-optique de césium à forte densité optique est utilisé pour l’implémentation

d’un protocole de mémoire quantique basé sur la transparence induite électromagnétiquement (EIT).

Tout d’abord, le phénomène EIT est étudié à travers un critère de discrimination entre les modèles

d’EIT et de séparation Autler-Townes. Nous rapportons ensuite la mise en œuvre d’une mémoire basée

sur l’EIT pour des qubits photoniques encodés en moment angulaire orbital (OAM) de la lumière. Une

mémoire réversible pour des modes de Laguerre-Gauss est réalisée, et nous démontrons que la mémoire

optique préserve le sens de la structure hélicoïdale au niveau du photon unique. Ensuite, une tomographie

quantique complète des états réémis est effectuée, donnant des fidélités au-dessus de la limite classique.

Cela montre que notre mémoire optique fonctionne dans le régime quantique. Enfin, nous présentons la

mise en œuvre du protocole dit DLCZ dans notre ensemble d’atomes froids, permettant la génération de

photons uniques annoncés. Une détection homodyne nous permet de réaliser la tomographie quantique

de l’état photonique ainsi créé.

Mots clés information quantique, mémoire quantique, piège magnéto-optique, tranparence induite

électromagnétiquement, moment angulaire orbital de la lumière, tomographie quantique.
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Introduction

Quantum information and communications

From the eighties, the field of quantum information raised as a natural extension of quantum mechanics,

taking advantage of some of the fundamental principles, and amazing properties of quantum mechanics:

quantum superposition, non-cloning theorem, and quantum entanglement. The unit of information,

defined as a quantum superposition α |0〉 + β |1〉, and well-known as the quantum bit (qubit), gives

to quantum computation the powerful potential of beating computing based on classical resources. In

1981 R. Feynman first proposed to simulate complex problems of quantum mechanics with a quantum

computer [Feynman, 1982], and during the nineties, several algorithms for quantum computation were

developed [Deutsch and Jozsa, 1992, Shor, 1994, Grover, 1996]. Because of the special role of the

measurement in quantum mechanics, an unknown quantum state can not be completely determined with

only one measurement. This principle, known as the non-cloning theorem, can be seen as an obstacle for

the study of quantum systems, but directly provides a way to secure systems. The example of the famous

protocol proposed by Bennett and Brassard [Bennett and Brassard, 1984] illustrates its application to

quantum cryptography. Finally, entanglement has been identified as one of the main resource for

quantum information. In an entangled system, two particles can not be described independently, even if

the two particles are physically very far away from each other. This concept has naturally found a lot

of potential applications for the development of quantum communications, where photons are chosen

as the quantum information carriers. Quantum communications would aim to connect the nodes of a

future "quantum internet" [Kimble, 2008], including for instance quantum teleportation, or quantum

key distribution.

However, the distribution of entanglement over long distances suffers from decoherence and losses in

optical fibers. A typical example commonly given is the following: the direct transmission of a photon

over 1000 km via fibers with 0.2 dB/km loss and with a repetition rate of 10 GHz has a very low success

rate, about 10−10 Hz, corresponding to a photon transmitted every 300 years. The solution to this

problem is the quantum repeater [Briegel et al., 1998, Sangouard et al., 2011], based on the idea of

dividing the long distance into shorter segments. The creation of entanglement is realized across each

segment, then entanglement swapping is performed between the end nodes of adjacent segments, in

order to distribute the entanglement across the whole link. Importantly, this scheme requires quantum

memories for synchronization. Indeed, when entanglement has been successfully generated within a

segment, the ability to store it allows to wait until the success of entanglement creation in the adjacent

segment. The necessary time to distribute entanglement becomes polynomial with the number of

segments, whereas it is exponential without quantum memories. Quantum memories are indeed the

required tool for achieving scalable networks. The presented PhD works enter into this context.
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Introduction

Quantum memories

A quantum memory is defined as a system capable of storing and retrieving quantum states on-demand.

Here we focus on optical quantum memories. Thus, an optical quantum memory must be able

to store non-classical states of light, such as single photons, qubit states, entanglement or, in the

continuous variable regime, squeezing. Even though quantum repeater is the most commonly cited

application of quantum memories, they have been identified as useful devices for a great variety of

applications. Quantum computation based on probabilistic quantum gates using linear optics and

single-photon sources and photo-detectors [Knill et al., 2001, Kok et al., 2007] will take advantage of

the synchronization potential of quantum memories. By storing single-photons, quantum memories

can indeed becomes on-demand single photons sources. Furthermore, they can be useful for quantum

metrology [Giovannetti et al., 2011], where entanglement between atoms within an ensemble can improve

measurement precision.

Benchmarks for quantum memories

Different criteria enable to evaluate the performances of an optical quantum memory, mainly the fidelity,

the storage efficiency and the storage time. Others aspects, as the multimode capacity, the bandwidth,

or the wavelength of the memory have to be considered as well. Yet, the requirements depend on the

targeted application.

Fidelity The fidelity is defined as the overlap between the state to store and the retrieved state. It is

one of the main criteria because it allows to talk about quantum memory or not. Indeed, an optical

memory can be said in the quantum regime only if the fidelity is greater than the maximal fidelity

achievable by a classical device. Usually used for this purpose, the prepare-and-resend strategy involves

the measurement of the target state, the classical storage of the results, and the preparation of a new

state based on them. Then, depending on the input state, the maximal classically achievable fidelity

must be estimated and compared with the fidelity obtained experimentally. We mention here that

another criterion, the T-V diagram, has been developed to evaluate the storage of Gaussian states

[Hétet et al., 2008b].

Efficiency The efficiency corresponds to the probability to retrieve the optical pulse, i.e. the ratio

between the energies of the stored and retrieved pulses. This definition can be called unconditional

efficiency, as opposed to conditional efficiency, where the calculated probability to retrieve the optical

pulse is conditioned by the fact that the pulse has been stored. This second definition is sometimes used

for single photons storage, and is of course higher than the first one.

Storage time This criterion is important for long-distance communications. Indeed, for quantum

repeater applications the storage time must be larger than the average time for the entanglement

creation across the entire repeater, which is few seconds for a 1000 km fiber-link [Sangouard et al., 2011].

However, it is possible to reduce the required storage time to the average time of entanglement creation

across an elementary segment via multiplexing [Bussieres et al., 2013]. Moreover, other applications,

such as linear-optical quantum computing, implementing in small-scale devices, are less constrained.
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Multimode capacity The multimode capacity enables to multiply the repetition rate of the protocols,

for quantum repeaters or quantum computation applications. Atomic ensembles are then good candidates

for this purpose, where different modes, spatial or temporal, can be stored within the same ensemble.

The atomic frequency comb (AFC) protocol is particularly suitable for multimode storage because the

multimode capacity does not depend on the optical density, while it scales with the optical density for

photon-echo technique, and with the square-root of the optical density for electromagnetically induced

transparency (EIT) based protocol [Nunn et al., 2008].

Bandwidth The bandwidth of the memory defines the smallest temporal width of the optical pulses

that can be stored. Storing extremely sharp pulses in time can be used to increase drastically the

repetition rate, which can be useful in particular for quantum computation.

Wavelength For long-distance quantum communications, the wavelength of the photons that propagate

over long distances should be inside the low-loss window for fiber, which is around 1550 nm. Since almost

no quantum memory operates at telecommunication wavelengths, other solutions can be implemented.

It may be frequency conversion or generation of photon pairs with one photon compatible with the

memory, and the other one at telecommunication wavelength.

State of the art

Several review papers well summarize the large quantity of work done in this direction. They focus on

atomic ensembles [Lukin, 2003, Kimble, 2008, Lvovsky et al., 2009], trapped ions [Duan and Monroe, 2010],

light-matter interaction [Hammerer et al., 2010], photon-echo memories based on solid-state systems

[Tittel et al., 2010], quantum memories in the European project "QAP" [Simon et al., 2010], quantum

repeaters based on atomic ensembles and linear optics [Sangouard et al., 2011], quantum memories and

quantum error correction [Wootton, 2012], and finally on the large range of applications of optical quan-

tum memories [Bussieres et al., 2013]. Here we try to give a brief overview of the different media and

protocols used for the implementation of quantum memories, giving remarkable seminal demonstrations,

and recent progresses.

Atomic ensembles

Atomic ensembles form the largest family of media for quantum memory implementation, with cold

atomic ensembles, warm vapors, and rare-earth doped solids. One of the main requirements for atomic

ensemble is a large optical density, leading to a large light-matter coupling.

• Cold atoms

The ensembles of cold atoms, usually realized with rubidium or cesium atoms, are well-known

and well-controlled systems, with very limited inhomogeneous broadening. In this medium, the

EIT-based protocol and the DLCZ protocol, both based on collective excitation, are mainly

implemented.
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EIT-based protocol Based on eletromagnetically induced transparency (EIT), the so-called

dynamic EIT protocol [Lukin, 2003] enables the reversible mapping of a quantum state of light

through the application of a coupling laser, of which the intensity is dynamically varied. The storage

of single photons via dynamic EIT protocol was early demonstrated in 2005 [Chanelière et al., 2005,

Eisaman et al., 2005], followed by the reversible mapping of entanglement [Choi et al., 2008]. In

the continuous variable regime, the storage of vacuum squeezed states was experimentally demon-

strated in 2008 by different groups [Honda et al., 2008, Appel et al., 2008, Arikawa et al., 2010].

The efficiency of the reversible mapping through EIT condition has been widely investigated. For

instance, the authors of [Zhang et al., 2011] reported in the classical regime a maximum efficiency

of 50 % at a storage time of 100 ns, in an ensemble of cold atoms with a high optical depth of

150. This is in agreement with the work realized in warm vapors [Novikova et al., 2007], where

the maximum efficiency is found around 50 %. However, a very recent study of EIT-based storage

of bright pulses has reported very high efficiency, of 78 %, with a decay time around 100 µs

[Chen et al., 2013]. In the quantum regime, single photons generated by an ensemble of cold

atoms via DLCZ have been reversibly mapped with an efficiency of around 50 % into another cold

atomic ensemble, with a memory lifetime of the order of 1 µs [Zhou et al., 2012a].

DLCZ protocol Proposed by Duan, Lukin, Cirac and Zoller [Duan et al., 2001], the DLCZ

protocol constitutes an elementary segment of a quantum repeater itself. The first step of

this protocol, which corresponds to the heralded generation of single photons, has been widely

studied. In magneto optical traps (MOT), conditional retrieval efficiency of 50 % was achieved

in free space in the J. Kimble’s group [Laurat et al., 2006], and of 84 % in cavity in the V.

Vuletic̀’s group [Simon et al., 2007], both with strong single-photon character for the retrieved

state. An experiment of teleportation was realized via the DLCZ procedure by the group of

J.-W. Pan [Chen et al., 2008]. More recently, entanglement among four atomic ensembles within

a single MOT cloud was demonstrated [Choi et al., 2010]. Long storage time, of 3.2 ms, and

high efficiencies, 80 % at zero storage time and around 30 % at 3.2 ms, have been reported

in [Bao et al., 2012], with a MOT in cavity. While the authors were limited to the lifetime of

the expending cloud, other groups start operating optical storage in dipole traps. In the group

of A. Kuzmich, they achieved storage times of 100 ms, with an efficiency of 16 % at zero

storage time, and 5 % after 100 ms, with the conservation of a strong single-photon character

[Radnaev et al., 2010]. The authors were also interested in the frequency conversion of the

heralding photon to telecommunication wavelength. Finally, very recently, 16 s storage times have

been demonstrated via EIT protocol in the classical regime by the same group, with an efficiency

of 20 % [Dudin et al., 2013], the authors facing here the limitation due to the lifetime of the

optical trap.

Quantum memories based on cold atoms exhibit good efficiencies, high fidelity storage, and long

coherence times. The main limitations are their narrow bandwidth and their limited multimodal

capacity.

• Warm atomic vapors

In warm atoms, in order to avoid inhomogeneous broadening, the protocols usually involve a

Raman scheme, i.e. far off-resonance interactions.

Raman scheme Led by the group of I. Walmsley in Oxford, a special effort has been made to

realize a quantum memory at the single-photon level based on warm vapors, via a far-detuned
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off-resonant Raman memory scheme. Proposed in [Nunn et al., 2007], this scheme enables the

storage of broadband, sub-nanosecond photons. The first demonstration involded 300 ps-long

pulses of strong light stored for 12.5 ns [Reim et al., 2010]. However, in far off-resonant protocols,

the coupling pulses induce strong noise, which must be suppressed to operate in the single-photon

regime. In [Reim et al., 2011], the authors achieve a memory efficiency of 30 %, with a memory

time of few µs, for coherent states with a photon mean number of 1.6. The unconditional noise

floor produced by the strong Raman control fields being 0.25, the resulting signal-to-noise ratio

was around one. Finally, the same group has recently shown the storage of polarization states of

light containing 103 − 104 photons with high process fidelity, of 97 % at 12.5 ns storage time, and

of 87 % after 1.5 µs [England et al., 2012]. Further reduction of the noise is crucial in order to

harness the potential of Raman scheme memory in the quantum regime.

Gradient echo memory Based on the well-known photon-echo effect, the gradient echo-memory

(GEM) protocol consists in applying a controlled gradient of magnetic field along the atomic vapor

cell during the writing process, which induces dephasing of the spin wave. After a user-defined

time, the magnetic field is reversed, leading to the rephasing of the spin wave, which can be

read out by a strong control pulse. The experimental implementation of this scheme in warm

vapors was mostly developed by the group of P. K. Lam [Hétet et al., 2008a]. A coherent pulse

sequencer was demonstrated using this technique, where bright pulses were stored and retrieved in

an arbitrary order [Hosseini et al., 2009], opening the way towards quantum multimode storage

in warm vapors. Via this protocol, the same group reported the storage of bright pulses with an

efficiency of 87 %, the highest efficiency to date in any system and a memory time of the order

of 10 µs [Hosseini et al., 2011b]. In [Hosseini et al., 2011a], the authors succeeded in reducing

the noise induced by the strong coupling pulses to demonstrate the mapping of coherent pulses

containing in average less than one photon with 98 % fidelity, thus reaching the quantum regime.

Faraday interaction Here, the non-destructive interaction between the optical polarization and

the collective atomic angular momentum enables the implementation of light-matter interface

[Hammerer et al., 2010]. The group of E. Polzik focused on this off-resonant interaction, fol-

lowed by a measurement on light and a successive feedback onto the atoms. In 2001, they

demonstrated entanglement between two atomic ensemble [Julsgaard et al., 2001], followed by

the first quantum storage via this scheme [?]. Then, teleportation between light and matter was

shown [Sherson et al., 2006], and very recently between two warm vapors [Krauter et al., 2013].

However, this scheme does not allow a real read out stage, the optical stored state being never

retrieved, but estimated from measurements performed on the atomic ensemble.

• Rare-earth doped crystals

Memories based on rare-earth doped crystals take advantage of the long optical and spin coherence

times of impurity ions, hosted in a crystalline structure, when cooled to cryogenic temperatures,

around 4 K. Indeed, an impressive 1 minute-long storage experiment was realized very recently via

EIT protocol with classical light in praseodymium-doped Y2SiO5, reaching the limit of population

decay [Heinze et al., 2013]. With intrinsic large inhomogeneous broadening, they are specially

suitable for the multimode storage of broadband photons via protocols based on photon-echo

techniques. However, one of the main drawback of rare-earth doped solids is their limited optical

depth.
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Controlled reversible inhomogeneous broadening Similar to the gradient echo memory tech-

nique, the controlled reversible inhomogeneous broadening (CRIB) procedure first requires the

creation of a narrow absorption line by optical pumping. Then, an external electric field produces

a controlled inhomogeneous broadening, which is reversed after a certain time to enables the

re-emission of the stored light pulse by photon-echo [Tittel et al., 2010]. CRIB was first exper-

imentally demonstrated in europium-doped Y2SiO5 by the authors of [Alexander et al., 2006],

using bright light pulses. The same group then showed the preservation of coherent information

stored via this protocol [Alexander et al., 2007]. However, because of the limited optical depth,

the efficiency of the memory process was very low, much less than 1 %. Recently, the authors of

[Hedges et al., 2010] increased the effective absorption of the medium, and thus demonstrated

the storage and retrieval of classical light, using praseodymium-doped Y2SiO5, with an efficiency

of 69 %, at a storage time of 1.3 µs, with a decay time of the efficiency of 3 µs. This result

corresponds to the best efficiency demonstrated so far in solid-state systems.

Atomic frequency comb protocol The atomic frequency comb (AFC) protocol, also based on

photon-echo, has been proposed by the group of N. Gisin [Afzelius et al., 2009]. In this scheme,

the broad optical transition of a rare-earth doped crystal is shaped into a comb structure. After

the absorption of a light pulse, which covers few peaks of the comb, the collective dipole dephases,

but rephases after a time corresponding to the inverse of the periodical structure of the comb.

This protocol, leading to a memory with a given, and not user-defined, storage time is called the

"two-level" AFC scheme. In order to retrieve on-demand the stored photons, the collective state is

transferred onto a spin wave, i.e. into another ground state via an additional laser, and transferred

back for re-emission. Following the first demonstration of storage at the single-photon level in solid-

state medium [de Riedmatten et al., 2008], the authors of [Sabooni et al., 2010] implemented the

"two-level" AFC scheme with 25 % efficiency for a 800 ns-long storage of weak coherent pulses.

Embedding the crystal in an impedance-matched cavity allowed then to achieve an efficiency of 56 %

after a predetermined storage time of 1 µs with bright pulses [?]. In 2011, two groups demonstrated

the preservation of entanglement of broadband photons through their quantum storage via

the "two level" AFC protocol [Clausen et al., 2011, Saglamyurek et al., 2011], the first group

achieving 25 % efficiency at 25 ns storage time. Quantum memories based on rare-earth doped

crystals for polarization qubits have been demonstrated [Zhou et al., 2012b, Clausen et al., 2012,

Gündoğan et al., 2012]. Finally, the authors of [Rieländer et al., 2013] showed the quantum

storage of heralded single photons . However, all these works rely on predetermined storage times,

using the "two-level" AFC scheme. The first demonstration of the complete AFC protocol was

reported in 2010, showing a 20 µs storage time and an efficiency around the percent at zero

storage time in a classical regime [Afzelius et al., 2010]. More recently, the storage and on-demand

retrieval of low-power light pulses, containing around 104 photons with an efficiency around 5 %

and a memory time of 20 µs has been shown [Gündoğan et al., 2013]. In this experiment, five

temporal modes have been stored with preserved coherence. The single-photon regime with a

complete AFC protocol now is one of the objective [Timoney et al., 2013].

Alternatively to these two main protocols, a less complex protocol has been recently proposed.

Based on the simple idea of two-pulse echo, it consists of the retrieval of the stored optical pulse

after a secondary rephasing, the primary echo being suppressed. This revival of silenced echo

(ROSE) protocol has been experimentally demonstrated [Damon et al., 2011], with an efficiency

of 20 % at a 80 µs storage time.
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Single quantum systems

Quantum memories can be also be implemented in single quantum systems, such as single atoms in high

finesse cavities [Kimble, 2008]. Rencently, polarization qubits were reversibly mapped with an efficiency

of 9 %, a fidelity of 93 % after a storage of 2 µs, with a 180 µs decay time [Specht et al., 2011]. The

same group of G. Rempe then demonstrated an elementary quantum network based on two remote

single-atom memories [Ritter et al., 2012].

Nitrogen-vacancy center (NVC) are investigated by the groups of M. Lukin in Havard, and of

R. Hanson in Delft. Entanglement between a photon and a NVC was demonstrated by the authors

of [Togan et al., 2010], followed by the demonstration of quantum interference between two photons

emitted by NVC [Bernien et al., 2012, Sipahigil et al., 2012]. Very recently, heralded entanglement

between two NVC separated by three meters has been shown [Bernien et al., 2013]. NVC are promising

systems because of their long memory times, of the order of the second [Maurer et al., 2012]. Others

systems, such as quantum dots, are new candidates for the implementation of quantum memories.

Recently, entanglement between a photon and a quantum dot was demonstrated [De Greve et al., 2012,

Gao et al., 2012].

Context in the group

The group of Quantum Optics at the Laboratoire Kastler Brossel has widely studied light-matter

interactions from the quantum optics point of view. An experiment of quantum memory in warm vapors

was developed and implemented, based on electromagnetically induced transparency [Dantan et al., 2006,

Cviklinski et al., 2008, Ortalo et al., 2009]. EIT phenomenon was also investigated in this system, with

the conclusion that it is drastically degraded because of inhomogeneous broadening, and can be

recovered by depumping techniques [Mishina et al., 2011, Scherman et al., 2012]. Then, the group

chose to implement a quantum memory, still based on EIT, but in cold atom ensembles. A new

magneto-optical trap (MOT) was developed, mostly by Lambert Giner who started his PhD in September

2009. The timing part, crucial for experiment involving cold atoms, was realized by Sidney Burks who

installed a FPGA system and built programs to gate all the elements of the experiment: laser beams,

magnetic fields, and various devices. When I started my PhD in September 2010, my first task was

to succeed to the "Labview master", Sidney being finishing his thesis. In October 2010 the laboratory

moved, so it involved setting up again everything. From that point we finalized the preparations for the

implementation of an EIT-based memory in the single-photon regime, with the participation of Michael

Scherman, third-year PhD student at that time. In parallel, we investigated EIT in our ensemble of cold

atoms through the test of a proposed criterion for the discrimination between EIT and Autler-Townes

splitting (ATS), work mainly done by Lambert Giner and myself. This work showed us that our system

was well-controlled, but had some limitations, in particular the influence of the multilevel structure and

the residual Doppler broadening. Then, the group was interested in studying the multimode capacity

of our memory device, through the storage of various spatial modes. Adrien Nicolas, who started his

PhD in September 2011, first investigated the tools for the manipulation of Laguerre-Gaussian modes.

As a first step, an EIT-based memory for twisted photons was implemented at the single-photon level,

where we studied the characteristics of our memory in terms of efficiency and storage time. In a second

step, we realized an original setup to perform the storage and the analysis of qubits encoded in orbital

angular momentum. Our results, in the quantum regime, confirmed that our memory preserves OAM

encoded photonic qubits, and is therefore a quantum memory. These works were mainly done by Adrien

Nicolas, Dominik Maxein in a post-doctoral position, and myself. Finally, we have implemented the
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DLCZ scheme in our ensemble of cold atoms, with the objective of performing a complete tomography

of the retrieved state via homohyne detection, work that I started with Valentina Parigi, a post-doc,

who continues now the experiment with a new PhD student, Pierre Vernaz-Gris, in cotutelle with the

Australia’s National University.

Thesis outline

The first part of this manuscript is devoted to the two main tools for the implementation of quantum

memory protocols in an ensemble of cold atoms. The first chapter describes the quantum memory

protocols investigated in this thesis, the EIT-based memory and the DLCZ scheme, both based on

collective excitation, and the crucial parameters linked to them. In the second chapter, the ensemble

of cold atoms that we developed is presented, with the experimental tools for an appropriate atomic

preparation.

The second part is devoted to the experimental implementation of quantum memories in our system.

It starts in chapter 3 with an investigation about the EIT phenomenon, through a test for discriminating

between the EIT and the ATS models, proposed by [Anisimov et al., 2011]. In the chapter 4, we then

report on the implementation of an EIT-based optical memory for photonic qubits encoded in orbital

angular momentum (OAM) of light. First is implemented a reversible memory for Laguerre-Gaussian

modes, and we demonstrate that the optical memory preserves the handedness of the helical structure

at the single-photon level. Then, a full state tomography of OAM enoded qubits is performed, giving

fidelities above the classical bound. This showed that our optical memory operates in the quantum

regime. Finally, the chapter 5 presents the implementation of the DLCZ protocol in the ensemble of

cold atoms. An homodyne detection setup allows us to realize the quantum tomography of the heralded

single-photon state. Preliminary results are given.
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Chapter 1

Collective excitation in a large

ensemble of cold atoms
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Developing coherent protocols that allow storage and manipulation of quantum states carried by light

is crucial for quantum information science, including quantum networks and communications. Because

of their long-lived coherences, atomic spin states are precisely good candidates for this purpose. As

many protocols require the use of single photons, such quantum memory protocols have to work at the

single-photon level, a not-so-easy to reach regime.

Intuitively the simplest approach for reversible transfer is to map single-photon states into single

atoms. Thus, a single-atom coherently absorbs and emits later on-demand a single-photon. Strong

interaction between single photons and atoms are required to achieve good storage and read-out

efficiency, but the absorption of an individual atom is very small. An elegant solution to this problem,
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the well-known cavity QED framework [Miller et al., 2005], consists in placing the atom into a high

finesse resonator in order to enhance its effective cross section. The photon now travels many times in

the cavity, and can interact with the atom with a larger probability. A lot of work has been done in this

direction over the past few decades by different groups, leading to the recent textbook demonstration of

polarization qubit storage in a single-atom quantum memory [Specht et al., 2011]. However it is still

technically challenging to reach the very strong coupling regime and to control the motion of individual

atoms at the same time.

On the other side, atomic ensembles containing a large number of atoms can interact strongly with

light. The key feature relies on collective effects, which allow to achieve easily strong and controllable

coupling between many-atom systems and photons. The use of optically thick atomic ensembles was

thus motivated by the simplicity and the potential efficiency compared with single-atom settings. The

last ten years have seen a tremendous activity in this direction, both theoretically and experimentally

[Lukin, 2003, Lvovsky et al., 2009, Simon et al., 2010, Sangouard et al., 2011].

In atomic ensembles the coherent and reversible mapping of photonic quantum states can be

achieved via the electromagnetically induced transparency (EIT) phenomenon. The atoms are driven by

an auxiliary laser field that enables to control the photon group velocity, and in consequence to stop

and trap them inside an atomic cloud [Fleischhauer and Lukin, 2002]. Another protocol, which was

seminal for the study of protocols based on atomic ensembles and quantum repeater architectures, is the

DLCZ scheme [Duan et al., 2001]. This is a measure-induced protocol. Based on Raman scattering this

protocol allows for instance the generation of probabilistic but heralded entanglement between remote

atomic ensembles [Chou et al., 2005, Laurat et al., 2007a]. This entanglement can be transferred from

atoms to photonic modes on demand, so this scheme represents an elementary link of a quantum

repeater. The building block of the DLCZ scheme can be also used as an heralded single photon source.

In this chapter we first motivate the choice of cold atoms as a medium for quantum memory

implementation. Then we remind the principle of collective excitation, and in particular we focus on the

two quantum memory protocols introduced above, which rely on collective enhancement, the dynamic

EIT protocol and the DLCZ scheme. Finally critical parameters to achieve such quantum memory

protocols in atomic ensembles are presented.

1.1 Why using cold atoms ?

The use of cold gases instead of warm vapors in order to build a quantum memory is motivated by

several aspects, in particular the need to reach the single-photon level and the necessity of avoiding

Doppler broadening. We discuss in the following these two different aspects.

1.1.1 Down to the single-photon level

Single-photon has become a basic resource in quantum information science, where a great variety of

protocols involving single photons have been proposed. As stated before, the implementation of reliable

quantum memories at the single-photon level is thus truly wanted but still experimentally challenging.

In order to detect these photons single-photon counters, such as avalanche photodiode (APD), are very

convenient because they are sensitive to the single-photon level, easy to use and now reaching reasonable

efficiency, typically > 50% at the cesium wavelength, 852 nm, with low dark count rate. Nevertheless,

strong laser pulses must illuminate the atomic ensemble to control the interaction, whether it be for the
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dynamic EIT or the DLCZ protocol. Let us give a first indicating number. The bright coupling pulse

contains a huge number of photons, e.g. 2.108 in a 0.5 µs pulse with a power of 100 µW at 852 nm.

Rejection by at least 80 to 100 dB is thus required. To increase the difficulty, EIT or DLCZ quantum

memory schemes were proposed in a configuration where the coupling beam co-propagating along with

the interesting signal. It is therefore essential to efficiently separate the single photons from the coupling

field, which mostly overlap in time, in order to collect single photons with good signal-to-noise ratio for

characterization or further applications.

Going down to the single-photon level is not a trivial task in many practical implementations.

The first experimental demonstrations of nonclassical correlations between photon pairs generated in

atomic ensembles by the first step of the DLCZ protocol were indeed realized in collinear geometry

[Kuzmich et al., 2003, Wal et al., 2003]. One of the main experimental challenges was to separate

the photons from the classical pulses, and that is why classical fields were filtered in polarization and

also in frequency, using optically pumped atomic cells. Values for the normalized correlation function

g1,2, which characterizes quantum correlations between the two photons, slightly above the classical

limit of 2 were obtained [Kuzmich et al., 2003]. However, the authors were still strongly limited by the

write and read field contamination in each detection path. The solution was then to use an off-axis

configuration, namely to put an angle between the driving fields and the ones to detect for spatial

filtering [André, 2005].

First experimental uses of an off-axis configuration were reported in the classical regime in 2004 by

the authors of [Braje et al., 2004] and in the quantum regime in 2005 [Matsukevich et al., 2005]. In

the latter the authors reached g1,2 ≈ 300 with this additional spatial filtering, and high-quality heralded

photons were thereafter generated and values of g1,2 as large as 600 were obtained [Laurat et al., 2006].

Two similar experiments of EIT storage of a single photon generated by the aforementioned method

give an illustration of the effect of this spatial filtering. One has been performed in warm atoms and

with collinear configuration [Eisaman et al., 2005], while the other has used an ensemble of cold atoms

and the off-axis configuration [Chanelière et al., 2005]. The off-axis configuration allowed to achieve 20

times better g1,2 than the collinear one does at the single-photon creation step.

Although coherence times of few milliseconds have been demonstrated in warm atomic ensembles in

the collinear configuration, using another protocol [?], working in off-axis configuration kills the effective

coherence time in warm atomic ensembles because of motional dephasing. Indeed, whether it be EIT or

DLCZ, both of these protocols lead to the formation of a spin-wave grating in the atomic ensemble with

a spatial period that can be much smaller than the size of the whole sample. The interfringe depends

on the difference |∆k| between the k vector of the two fields (either control and signal in EIT or write

and field 1 in DLCZ), which form a small angle θ,

Λ =
2π

|∆k| ≈ λ

sin θ
. (1.1)

Here the wavelength of both fields are supposed to be identical and equal to λ, a very good approximation

in most experimental cases.

This grating is written during the writing process and has to remain until the reading process

otherwise the information about the optical excitation is partially lost and the efficiency decreases. If

atoms fly by a distance comparable to its spatial period within the storage time, the grating is destroyed.

As a typical value, one can evaluate the average time for an atom to fly over an interfringe of the

interference pattern because it limits the maximum achievable storage time. A realistic experimental

example would be the following: a control and a signal fields at 852 nm propagate in an ensemble of

cesium atoms with an angle of 2◦. As a result the interference pattern period is 25 µm. So, it takes
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Chapter 1. Collective excitation in a large ensemble of cold atoms

only 170 ns for 330 K atoms to travel across Λ, while it takes 100 µs for 1 mK atoms and 300 µs for

100 µK atoms. In this configuration the dephasing time due to atomic motion will be more than 500

times longer in cold atomic ensembles than in warm ones.

Collisional effects also induce decoherence in warm vapors. The authors of [Manz et al., 2007]

investigated the dephasing on collective state in the DLCZ scheme due to collision and concluded that

buffer gas in particular configuration should help to achieve longer coherence time, in addition to beam

with large diameters. This was confirmed by a study of the effect of the angle between coupling and

signal beams in a rubidium vapor heated at 78◦C, leading to the observation of 10 µs coherence time

with an angle θ = 2◦ [Jiang et al., 2009].

Another issue related to warm atomic ensembles is the required power for the coupling fields. First, if

the laser needs to be off-resonance it must be set with a detuning comparable to the Doppler broadening,

about some hundreds of MHz. To compensate this large detuning it is essential to operate at higher

power of the coupling beams, and filtering becomes more difficult. In addition, enlarging the size beams

in order to avoid decoherence effects contributes also to the increase of the power needed. That is

why several hundreds of milliwatts in the coupling path may be sent in warm vapors and co-propagate

with the single-photon level signal. Thus, filtering in this scheme is very difficult and requires especially

frequency filters such as cascaded Fabry-Perot etalons. With high power pulsed lasers, a quantum

memory operating at the single-photon level has been recently demonstrated in a warm atomic ensemble

[Reim et al., 2011]. However, the memory time was limited to 1.5 µs, with a signal-to-noise ratio around

one.

In summary, although very interesting works have been realized in warm vapors, cold gases appear

as a better platform to achieve the single-photon regime and keep reasonable coherence time at the

same time.

1.1.2 Avoiding Doppler broadening

Historically, the LKB quantum optics group studied the behavior of warm and cold atomic ensembles and

first implemented EIT-based quantum memories in ensembles of warm atoms [Cviklinski et al., 2008,

Ortalo et al., 2009]. In warm vapors, the Doppler broadening is the main component of inhomogeneous

broadening. Each atom sees both control and signal fields with different frequencies depending on its

velocity class. For a pure 3-level system in EIT, the resulting effect is a narrowing of the transparency

window. However the presence of hyperfine structure in the excited level associated with the Doppler

broadening, which is of the same order of magnitude as the separation in the excited state, destroyed

almost totally the transparency effect. Studies have been done in that direction in our group and it

has been demonstrated that depumping some velocity classes enables to enhance EIT in warm cesium

atoms [Mishina et al., 2011, Scherman et al., 2012]. Cooling and trapping atoms in a magneto-optical

trap strongly suppresses the Doppler broadening. This enables to see deep transparency window and

consequently to implement EIT-based quantum memory with better performances in ensembles of cesium

atoms.

Drawbacks of cold atoms Even though there are many advantages of using cold atomic ensemble,

as seen before, to implement quantum memories it still remains drawbacks. Here are the main ones:

1. The vacuum chamber, the ion pump and all the other vacuum components are much bulkier than

a simple ambient-temperature cell.

2. It requires at least two frequency-stabilized lasers just to cool and trap the atoms.
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3. When based on magneto-optical trap, the trapping magnetic field must be switched off during the

memory implementation (see chapter 2). Thus, the experiment runs in cycles, with a loading stage

and an experiment stage, and this has two consequences. First the storage time is intrinsically

limited by the cloud expansion. That is why a vertical configuration has been developed in

[Bao et al., 2012], storage times of few milliseconds were reported. Secondly the repetition rate

of the memory implementation is also limited. In fact, the time required to cool and trap the

atoms usually represents the main part of the timing, specially for ultracold atoms experiments.

One way to avoid the latter drawbacks is to use dipole traps [Chuu et al., 2008, Zhao et al., 2009].

Thus, the atoms are always trapped, even during the memory implementation stage, and once the

differential light shifts induced by the dipole traps across the entire lattice are compensated, long storage

times can be obtained. Very recently, optical storage in such a medium during 16 s has been observed

in a classical regime [Dudin et al., 2013].

In conclusion, despite of some drawbacks, cold atoms enable to realize quantum memories at the

single-photon level, with both large signal-to-noise ratio and long coherence time. Moreover, Doppler

broadening is limited, and this allows to increase the memory performances. In the following section,

we introduce the memory protocols that we implement in an ensemble of cold atoms during this PhD

work, the EIT-based memory, and the DLCZ building block. The common point between them is the

generation of collective excitations, which we first discuss.

1.2 Collective excitation

Collective states are of major interest because they can lead to collective enhancement, enabling the

retrieval of an excitation stored in a large atomic ensemble with an efficiency close to unity, in a well

defined spatiotemporal mode. In order to achieve long storage time it is also important to operate with

long-lived states, such as hyperfine sublevels of the ground state of alkali atoms.

In a large ensemble of N identical atoms optically pumped in a ground state |g〉, a collective

excitation corresponds to the transfer of one atom among the N atoms to another ground state |s〉,
but it is absolutely impossible to know which one is concerned (see fig. 1.1). The spin-flip is thus said

delocalized over the atomic ensemble. This state is therefore a coherent superposition of all the possible

terms with N − 1 atoms in |g〉 and one atom in |s〉 and it can be written as the following spin symmetric

state

|1〉 = ŝ† |0〉
= ŝ† |g1, g2, ..., gi, ..., gN 〉

=
1√
N

N
∑

i=1

|g1, g2, ..., si, ..., gN 〉 , (1.2)

where ŝ† is the creation operator for one atomic excitation in |s〉. Note that in practice, the amplitudes

of each term may vary, depending on the laser beam profiles or on the shape of the atomic ensemble.

Now we describe two memory protocols, the EIT-based memory and the DLCZ building block, which

rely on such collective excitations.

15



Chapter 1. Collective excitation in a large ensemble of cold atoms

|s〉

|g〉

+ + + ...=

FIGURE 1.1 : Simple representation of a collective excitation. All the atoms are prepared in the ground
state |g〉 and because of a unique excitation one atom among all is transferred to |s〉. Thus, the atomic
ensemble is in a coherent superposition of all the possibilities.

1.2.1 The dynamic EIT protocol

Via the electromagnetically induced transparency phenomenon, an initially strongly absorptive sample

can become transparent for a given signal by the mean of an additional control field [Harris, 1997]. This

effect is accompanied by a reversible reduction of the signal group velocity, which enables to build an

optical memory. We explain in the following how the control field opens a transparency window, and

how a light pulse can be mapped into an ensemble of atoms by dynamically changing the control field

intensity.

1.2.1.1 Electromagnetically-induced transparency

We consider an ensemble of N identical atoms with a Λ-type configuration as shown in figure 1.2: two

ground states, |g〉 and |s〉, and one excited state. Initially all the atoms are prepared in |g〉. A control

field drives the |s〉 → |e〉 transition with a Rabi frequency Ω while the signal field probes the |g〉 → |e〉
transition.

In the regime where Ω is much larger than the Rabi frequency of the signal field we first consider

the two states |s〉 and |e〉 interacting with the control field which is represented here by a Fock state

with n photons. In the basis {|s〉 |n〉 , |e〉 |n− 1〉} the Hamiltonian associated with one atom is

Hn =

(

0 Ω

Ω 0

)

, (1.3)

assuming ~ = 1 for simplicity, as in the rest of the manuscript. The dressed states |s〉 |n〉 and |e〉 |n− 1〉
have the same energy that corresponds to a null coefficient on the diagonal of the Hamiltonian and they

|g〉

Signal
Control

|s〉

|e〉

Ω

FIGURE 1.2 : Atomic Λ-configuration. Atoms are initially prepared in one of the ground state in such a
way that in the absence of the control field, the signal is strongly absorbed.
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FIGURE 1.3 : EIT features displayed: signal field absorption and dispersion as a function of its detuning
δ to resonance. The control field results in the appearance of a transparency window in the absorption
profile and modify the dispersion with a steep slope close to resonance. The Rabi frequency Ω of the
control is a crucial parameter.

are coupled to the control field related to the Rabi frequency Ω. The eigenstates of Hn,

|ψn
+〉 =

1√
2

(|s〉 |n〉 + |e〉 |n− 1〉) ,

|ψn
−〉 =

1√
2

(|s〉 |n〉 − |e〉 |n− 1〉) ,
(1.4)

are associated with the eigenvalues ±Ω. The eigenstates of the system {atoms+field} correspond to

superpositions of the dressed states |s〉 |n〉 and |e〉 |n− 1〉. The energy gap between these two states is

proportional to the Rabi frequency of the coupling field. For a large enough intensity of this coupling

field a transparency window for the signal appears, with a width scaling with Ω, as shown in figure

1.3. In the same time, the dispersion of the medium becomes very large, that leads to drastically

reduce the signal group velocity. In these conditions, "slow light" was observed experimentally in

1999, with an impressive reduction of the light speed down to 17 m/s in a Bose-Einstein condensate

[Hau et al., 1999]. Nevertheless, the EIT phenomenon is still widely studied, e.g. in optomechanical

systems [Safavi-Naeini et al., 2011].

1.2.1.2 Reversible mapping of a photonic excitation

Here we consider the two transitions |g〉 → |e〉 and |s〉 → |e〉, the control field as well as the signal

field to store. The latter is assimilated to a single photon coupled to an atom with the coupling

constant g and all the atoms are prepared in the state |g〉. The system can be described in the base

{|g〉 |n− 1〉 |1〉 , |e〉 |n− 1〉 |0〉 , |s〉 |n〉 |0〉} with

|g〉 = |g1, g2, ..., gi, ..., gN 〉 ,

|e〉 =
1√
N

N
∑

i=1

|g1, g2, ..., ei, ..., gN 〉 , (1.5)

|s〉 =
1√
N

N
∑

i=1

|g1, g2, ..., si, ..., gN 〉 .
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Chapter 1. Collective excitation in a large ensemble of cold atoms

signal

control

FIGURE 1.4 : Illustration of the dynamic EIT protocol. In the presence of a strong control field, the
incoming pulse is spatially squeezed inside the medium due to the reduction in the group velocity. When
the control laser is switched off, the compressed pulse remains trapped inside the atomic ensemble. Then,
by switching on again the control laser the signal pulse is re-emitted ideally in the same spatiotemporal
mode.

The states |e〉 and |s〉 are collective symmetric states, as the one presented above in equation 1.2. The

Hamiltonian is therefore given by

H(t) =





0 g
√
N 0

g
√
N 0 Ω(t)

0 Ω(t) 0



 . (1.6)

We can ignore in the following the control field photons |n〉, and only write the atomic and signal states.

The two eigenstates of the Hamiltonian H(t) are

|ψ(t)〉 =
1

√

g2N + Ω2(t)

(

Ω(t) |g〉 |1〉 − g
√
N |s〉 |0〉

)

,

|φ(t)〉 =
1

√

2(g2N + Ω2(t))

(

g
√
N |g〉 |1〉 +

√

g2N + Ω2(t) |e〉 |0〉 + Ω(t) |s〉 |0〉
)

,

associated respectively with the eigenvalues 0 and
√

g2N + Ω2(t). If Ω(t) varies slowly in time

the adiabatic regime hypothesis can be applied. Thus, the dynamic of the system is given by the

eigenstate of H(t) which is connected to the initial condition. We consider the case where initially

Ω ≫ g
√
N , corresponding to the first eigenstate, so the system is described by the so-called "dark-state"

[Fleischhauer and Lukin, 2000]

|ψ(t)〉 =
Ω(t)

√

g2N + Ω2(t)
|g〉 |1〉 − g

√
N

√

g2N + Ω2(t)
|s〉 |0〉 . (1.7)

The transfer of the photon energy into the atomic ensemble can be made reversible by changing

Ω in time, as illustrated in figure 1.4. At first, if Ω ≫ g
√
N , |ψ〉 = |g〉 |1〉 so the photon propagates

across the medium. Then, by switching off the control laser, |ψ〉 = |s〉 |0〉 and the optical excitation

is mapped into the collective spin state |s〉. After a user-defined delay the control field is turned on

again such as Ω ≫ g
√
N . The system is back in the state |ψ〉 = |g〉 |1〉 and the photon is retrieved in a

well-defined mode. Therefore, the reversible mapping of photonic quantum state into and out of an

atomic ensemble is possible by dynamically varying the control power. The first demonstration of this

reversible mapping was reported by the authors of [Liu et al., 2001]. Other aspects concerning spatial

or temporal pulse shaping during the process are detailed in section 1.3.1.

Thus, we have seen how to take advantage of collective effects to coherently and reversibly map
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|g〉|g〉

read
write field 1 field 2

write

read

field 1

field 2

|e〉

|s〉

|e〉

|s〉

FIGURE 1.5 : DLCZ building block in an off-axis configuration, and the relevant atomic levels with the
associated light fields involved in the writing and reading processes.

a photonic state into an atomic ensemble, via the dynamic EIT protocol. Still relying on collective

effects, it is also possible to produce interesting quantum states of light, as photon pairs or heralded

single-photon, by the implementation of the DLCZ protocol.

1.2.2 The DLCZ building block

Introduced by Duan, Lukin, Cirac and Zoller in 2001 [Duan et al., 2001], the seminal DLCZ protocol

constitutes a scheme for quantum repeater implementation. The building block can be seen as the

generation of photon pairs temporally separated by a user-defined delay and so is very interesting by

itself for various purposes in quantum information science, and enables to work with atomic ensembles

in the single-excitation regime.

As for the EIT setting, the DLCZ building block requires a large ensemble of N identical atoms with

a Λ-type atomic configuration. As shown in figure 1.5, a weak write pulse detuned from the |g〉 → |e〉
transition induces spontaneous Raman scattering into a photonic mode called field 1 or Stokes photon,

transferring one atom into the state |s〉. There is no preferred direction of emission for the field 1, the

total emission probability corresponds to the sum of the emission probability for each photon, but we

focus on one particular direction for both field 1 photon and atomic excitation. If the write pulse power

is low enough so that two excitations are unlikely to occur, the system {atoms + field 1} is described by

the following state

|ψ〉 = |0〉a |0〉1 +
√
χ |1〉a |1〉1 +O(χ) , (1.8)

where χ = 4g2NL/c (Ω/∆)2tw is the small Raman scattering probability, L the length of the medium,

Ω the Rabi frequency, ∆ the detuning, and tw the duration of the write pulse [Lukin, 2003]. The index

a denotes the atomic state while the index 1 is for the field 1 state. The collective state |1〉a is similar to

the one presented above (equation 1.2), or in the EIT part (equation 1.5). It corresponds to a symmetric

spin excitation in the atomic ensemble, with a phase term

|1〉a =
1√
N

N
∑

i=1

ei(kw−k1) · ri |g1, g2, ..., si, ..., gN 〉 , (1.9)

where kw and k1 are the k vectors of the write field and the field 1 photon, and ri is the position of

the ith atom. Equation 1.8 indicates that the atomic spin-flip and the emission of the field 1 photon are

strongly correlated. Practically, the field 1 is filtered in polarization, in frequency, and spatially in the

case of an off-axis configuration. The frequency filtering is very important to guaranty the creation of

a spin-flip. Consequently, in the very low excitation regime, the detection of a photon in the field 1

mode projects the ensemble into a non-classical state with a single excitation delocalized among the

whole ensemble. The writing process is probabilistic, but heralded. It is an example of measured-induced

protocol.
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Chapter 1. Collective excitation in a large ensemble of cold atoms

After a programmable delay a read pulse is sent on resonance with the |s〉 → |e〉 transition and

enables to transfer the atomic collective excitation into a second photonic mode, the field 2 or anti-Stokes

photon. Due to collective effect, this read out process can become very efficient, but some supplementary

phases arise, leading to a phase matching condition. Indeed, the term corresponding to the emission of

a field 2 photon is proportional to

N
∑

i=1

ei(kw−k1) · riei(kr−k2) · r
′

i |0〉a |1〉1 |1〉2 , (1.10)

where kr and k2 are the k vector of the read field and the field 2 photon, and r
′
i is the position of the

ith atom at the read time. We immediately see that the condition for constructive interference depends

on the atomic motion during the storage time.

• If atoms are moving, constructive interference arises only for k1 = kw and k2 = kr, and we

recognize what has been mentioned above in section 1.1.1, that the collinear geometry is strongly

recommended with warm atomic ensembles.

• If there is no atomic motion, constructive interference occurs whenever the phase-matching

condition

k1 + k2 = kw + kr (1.11)

is fulfilled. In consequence the probability amplitude for the field 2 emission in the kw + kr − k1

direction is large.

For very large atomic ensembles the emission in the direction that satisfies the aforementioned conditions

can completely dominate all the others and leads to a high efficiency collection of the field 2 photon

thanks to many-atom interference effect, namely collective enhancement. In the ideal case the final

state of the system {field 1 + field 2} is

|φ〉 = |0〉1 |0〉2 +
√
χ |1〉1 |1〉2 +O(χ) . (1.12)

Photon numbers for fields 1 and 2 are correlated. In fact the two modes are entangled, as it is for

two-mode squeezed states in parametric down conversion or four-wave mixing processes. This DLCZ

building block based on Raman scattering is thus a source of photon pairs with a delay, and can also be

used as a heralded single photon source [Chou et al., 2004, Laurat et al., 2006].

Entangling atomic ensembles The DLCZ scheme enables the generation of entanglement between

two remote atomic ensembles [Chou et al., 2005, Laurat et al., 2007a]. In a synchronous manner two

write pulses illuminate two atomic clouds, denoted left (L) and right (R) and separated by a long

distance. The scattered photons in field 1 are collected and interfere in an indistinguishable manner on

a 50/50 beam splitter, outputs of which are detected by two single-photon counters (see figure 1.6).

The detection of one and only one field 1 photon heralds a unique spin excitation in one of the two

ensembles, but knowing in which one is impossible from a fundamental point of view. The two atomic

ensembles are thus projected in a maximally entangled state

|Ψ〉±
LR =

1√
2

(|1〉L |0〉R ± |0〉L |1〉R) , (1.13)

where the ± sign depends on the output where a photon is detected. Finally, the heralded entanglement

between the two atomic ensembles can be transferred to photonic entanglement by applying two

read pulses simultaneously. Thus, the two field 2 paths are entangled. More details about the

entanglement swapping and about quantum repeaters in general can be found in [Sangouard et al., 2011,

Laurat et al., 2007b].
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write field 1
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R

L

R

field 2

read

(a) (b)

FIGURE 1.6 : Entanglement in the DLCZ scheme involving (a) the measured-induced creation of
entanglement between two remote atomic ensembles via the indistinguishable detection of a single-photon
on a detector, and (b) its subsequent mapping into single-photon entanglement.

1.3 Critical parameters

In the EIT-based storage or the DLCZ building block implementation, the retrieval efficiency must be in

principle very close to unity thanks to the collective enhancement, on which these protocols are based.

However, in practice, one of the most limiting factors is the achievable optical depth of the atomic

ensemble. Moreover, some other processes must be considered, as they induce decoherence of the stored

collective excitation. It can be dephasing due to atomic motion or to inhomogeneous broadening, caused

for instance by residual magnetic fields. In this section, we first highlight the crucial role of the optical

depth to achieve good efficiencies. Then, we list the different sources of decoherence in order to identify

the main one in the case of cold atoms from a magneto-optical trap, as we implemented. Finally, we

detail the consequences on the collective spin state described in the previous section.

1.3.1 Optical depth

1.3.1.1 Definition and general considerations

The optical depth, or optical thickness, measures the absorption of a medium. It represents the fraction

of a light beam which is scattered or absorbed along its path. If I0 is the initial light intensity and I the

intensity after the medium, the optical depth d0 is defined by the following relation

I = I0e
−d0 . (1.14)

This dimensionless quantity results from three terms

d0 = σnL , (1.15)

where σ is the effective cross section which is proportional to λ2, n is the atomic density of the medium,

and L is the length of the sample. Therefore the optical depth depends on the number of atoms

interacting with the light on the beam path.

In order to recognize the signature of the optical depth in the protocols, we express the optical depth

as a function of the factor g2N [Gorshkov et al., 2007b]

d0 =
2 g2NL

c γge
. (1.16)
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Chapter 1. Collective excitation in a large ensemble of cold atoms

Here, g is the coupling constant between the electromagnetic field and one atom, N the number of

atoms, and γge the relaxation rate of the |g〉 → |e〉 coherence, equal to half of the linewidth Γ of the

excited level.

Optically thick media are required to observe collective effects, which are not visible with individual

systems. That is one of the common points between EIT-based storage and DLCZ building block.

However, the need for high optical density in both quantum memory protocols can be discussed in

slightly different ways, as we do in the following.

1.3.1.2 Optical depth in the DLCZ building block

In the DLCZ building block, the atomic ensemble is prepared in a collective state. When the read pulse

is applied, the excited atom comes back to the initial state and emits a second photon in a well-defined

spatiotemporal mode. However, in competition with this collective enhancement some spontaneous

emission may occur.

The theoretical demonstration of collective enhancement has been treated in the case of an atomic

ensemble surrounded by a low-finesse cavity (see supplementary information of [Duan et al., 2001]). The

collective effect is here in competition with spontaneous emission. On one side, the coherent interaction

scales with the effective interaction rate κ′ = 4 g2N |Ω|2/(∆2κ), with κ the cavity decay rate, Ω the

Rabi frequency and ∆ the detuning of the classical write field. On the other side, the dephasing rate of

spontaneous photon scattering is given by γ′ = Γ Ω2/∆2. Thus, a signal-to-noise ratio can be defined

as R = κ′/γ′. In the limit where the finesse of the cavity is equal to one, which corresponds to the

free-space case, κ = c/L, with L the length of the atomic ensemble. The signal-to-noise ratio is thus

given by

R =
4 g2NL

cΓ
= d0 , (1.17)

and scales directly with the optical depth. If d0 is large, the signal-to-noise ratio will be enhanced

without the need of a cavity. More refined model has been developed later [Duan et al., 2002], and

influence of the optical depth on the DLCZ process efficiency has been demonstrated experimentally

[Braje et al., 2004, Simon et al., 2007].

Therefore, the optical depth plays a crucial role in the observation of collective effects in the DLCZ

protocol. We now see the case of EIT-based memory.

1.3.1.3 Optical depth in an EIT medium

When the pulse to store propagates through the medium under EIT condition its group velocity vg is

reduced in comparison with the speed of light in vacuum c,

vg =
c

1 + g2N/|Ω|2 , (1.18)

where Ω is the Rabi frequency of the control field. The pulse is spatially compressed by a factor c/vg,

that enables to contain the entire pulse inside the sample in the ideal case. There are two conditions for

trapping a light pulse inside the medium without losses.

First, the bandwidth 1/∆t of the signal pulse should be smaller than the width ∆ν of the transparency
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window: 1/∆t < ∆ν. The transmission of the medium close to resonance is given by [Lukin, 2003]

T (δ) ≈ e− δ2

∆ν2 with ∆ν =

√

c

γgeL

|Ω|4
g2N

=
2
√

2√
d0

|Ω|2
Γ

. (1.19)

Second, the delay τ induced by the medium should be much larger than the duration ∆t of the

pulse, i.e. τ ≫ ∆t, where the temporal delay induced by a medium of length L can be written as

τ =
L

vg
− L

c
=
L

c

g2N

|Ω|2 =
d0

4

Γ

|Ω|2 . (1.20)

We emphasize here that the two requirements - a large bandwidth and a large delay - are antagonistic.

Indeed, by increasing the Rabi frequency of the control field, ∆ν increases but τ decreases. In other

terms, when the control power is increased, the transparency window becomes wider and is able to

contain a signal pulse with a large spectrum. But at the same time, the slope of the dispersion curve at

resonance decreases, the delay gets therefore smaller, and the signal pulse can not be spatially contained

inside the atomic cloud. Experimentally, a trade-off needs to be found in order to minimize the losses

(see section 4.1.2). By combining the two conditions, we find that

τ ∆ν ≫ 1 . (1.21)

This "delay-bandwidth" product is in fact independent of Ω and can be also expressed as

τ ∆ν =

√

d0

2
. (1.22)

Therefore, the two conditions, on both the preservation of the pulse spectrum and the complete pulse

compression inside the ensemble, are satisfied together for a very large optical depth.

The role of optical depth, both in the EIT or DLCZ configuration, is illustrated on figure 1.7. The left

(a) (b)

FIGURE 1.7 : Exemple of the importance of optical depth in the literature. (a) Theoretical efficiency η
as a function of the optical depth d for an EIT memory based on a three-level atomic system, courtesy of
[Gorshkov et al., 2007b]. The solid and dotted lines are the maximum efficiencies ηmax for backward and
forward retrieval, while the dashed line represents the efficiency of backward retrival without optimization
of the signal or control pulse shape. (b) Conversion efficiency of the collective excitation into photonic
state, in the DLCZ building block, as a function of the read optical depth, courtesy of [Simon et al., 2007].
The dashed line corresponds to prediction for a three-level system, while the experimental black dots are
better fitted by a model taking into account dephasing due to additional hyperfine levels.
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Chapter 1. Collective excitation in a large ensemble of cold atoms

panel gives the theoretical storing and retrieving efficiency of a three-level EIT memory as a function of

the optical depth, extracted from [Gorshkov et al., 2007a]. We clearly see that for large values of d0 the

efficiency tend to 1. The right panel depicts the case of the DLCZ building block, with the conversion

efficiency of the collective spin state into a photonic excitation, namely the probability to emit a photon

in field 2 given the detection of a photon in field 1, as a function of the optical depth, extracted from

[Simon et al., 2007]. The same behavior is observed for small optical depth, until d0 ≈ 10. However, for

higher values, the experimental efficiency decreases, because of dephasing due to additional hyperfine

levels in this case. The drop of efficiency at very large optical depth has been then observed in several

experimental cases [Phillips et al., 2008]. Generally, this phenomenon originates from defects of the

atomic medium, such as residual absorption, which are enhanced when the optical depth increases, and

at some point can dominate the collective effect. In consequence, atomic ensembles with large and

tunable optical depth are wanted, but an investigation of the efficiency depending on the optical depth

must be performed, in order to optimize the efficiency of the quantum memory.

1.3.2 Decoherence of collective excitation and timescales

The phenomenon of decoherence corresponds to the loss of the collective excitation after a given time.

Thus, the information about the optical state which has been stored as a collective state is lost, and can

not be mapped out of the atomic ensemble. Decoherence is always inevitable, but if its characteristic

time is much longer than the storage time, the memory performances are not damaged.

As we have seen previously, the collective state is a coherent superposition of all the possible terms

with N − 1 atoms in the initial ground state |g〉, and one atom in the other ground state |s〉. Due to

interaction with the environment, a phase term can appear in the expression of the collective spin state

|ψ(t)〉 =
1√
N

N
∑

i=1

eiφi(t) |g1, g2, ..., si, ..., gN 〉 , (1.23)

where φi(t) depends on time, and can be different for each atom. It can indeed depend on the position

or on the velocity of the atom i. Starting from this generic expression, we now discuss the different

dephasing processes.

In an ensemble of cold atoms, different sources of decoherence can be identified: the atomic motion,

the light shifts induced by strong trapping lasers, and the inhomogeneous broadening due to residual

magnetic field.

1.3.2.1 Motional dephasing

We consider here the off-axis configuration, with a difference between the control and signal (or write

and field 1) wavevectors ∆k = kc − ks (= kw − k1). Thus, if the atoms are not at rest, the dephasing

term becomes

φi(t) = ∆k · (ri + vi(t)t) , (1.24)
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FIGURE 1.8 : Retrieval efficiency η of the collective excitation as a function of the storage time for (1)
50 µK, (2) 125 µK, (3) 1 mK, and (4) 10 mK. The angle is θ = 2◦, and we consider cesium atoms.

where ri is the position of the atom i at t = 0, and vi(t) its velocity. Thus, we can estimate the retrieval

efficiency η as

η(t) ∼ |〈ψ(t = 0)|ψ(t)〉|2 =

∣

∣

∣

∣

∣

1

N

N
∑

i

ei∆k ·vi(t)t

∣

∣

∣

∣

∣

2

(1.25)

=

∣

∣

∣

∣

∫

f(v)ei∆k ·vtdv

∣

∣

∣

∣

2

(1.26)

∼ e−t2/τ2

. (1.27)

The Maxwell-Boltzmann distribution f(v) ∼ exp[−mv2/(2kBT )] has a standard deviation vs =
√

kBT/m, with T the temperature of the atoms and m their mass. Morevover, as seen earlier,

|∆k| = 2π sin θ/λ. The decay constant is therefore given by

τ =
1

|∆k| vs
=

λ

2π sin θ

√

m

kBT
. (1.28)

Figure 1.8 displays the evolution of η(t) for some values of the temperature with an angle θ = 2◦. Thus,

considering cesium atoms at a low temperature T = 50 µK, the decay constant τ is 70 µs (curve (1)).

For atoms at the limit Doppler temperature TD = 125 µK, we find τ = 44 µs (curve (2)). For warmer

atoms at T = 1 mK, which is our experimental case, the dephasing time decreases to 15 µs (curve (3)),

while for a high temperature of 10 mK, it is about 5 µs (curve (4)). We clearly see that the temperature

can be a limiting factor in our case, and in consequence the temperature of the cloud must be identified,

in particular at large optical depth. Furthermore, to obtain storage time of the order of the millisecond,

or even longer, sub-Doppler cooling or in-axis configuration must be considered.

1.3.2.2 Differential light shift

In the case of magneto-optical trap, no problem with light shift usually occurs. However, it is a common

cause of decoherence in dipole trap, in particular used for optical lattices, where strong lasers are

applied on the atoms, even during the memory implementation. The light shift corresponds to the
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Chapter 1. Collective excitation in a large ensemble of cold atoms

shift in frequency of an atomic state |F,mF 〉 due to a laser with strong intensity |E(r)|2, and given by

[Grimm et al., 2000]

UF,mF
= |E(r)|2

∑

F ′,m′

F

| 〈J, F,mF |d|J ′, F ′,m′
F 〉 |2

4 ~∆F ′,m′

F

, (1.29)

where ∆F ′,m′

F
= ωL − ωF,mF →F ′,m′

F
is the detuning of the laser to the atomic transition |F,mF 〉 →

|F ′,m′
F 〉. Thus, we can write the frequency difference between two sublevels, |g,mg〉 and |s,ms〉, of

the ground states as:

∆ω(r) =
Ug,mg

− Us,ms

~
. (1.30)

Finally, the resulting dephasing is:

φi(t) = ∆ω(ri)t . (1.31)

Here we can see that if the laser intensity is not uniform on the atomic ensemble, ω(ri) 6= ω(rj), the

collective state is dephased after some time. Moreover, the phase shift depends on the mF state of

the atom in both ground states. Thus, dephasing will appear if several values of the total angular

momentum projection, mg and ms, are involved in the memory process.

1.3.2.3 Residual magnetic field

In an ensemble of cold atoms obtained by magneto-optical trap, an important source of decoherence is

the inhomogeneous broadening caused by the residual magnetic field. Indeed, the trapping magnetic

field is usually switched off during the memory implementation, but residual magnetic field persists, due

to the earth, or to the surrounding environment. Experimentally, additional coils enables to cancel this

field to a finite value.

The presence of a magnetic field induces the splitting of a F hyperfine level into 2F + 1 sublevels by

the Zeeman effect. The displacement of the mF sublevel induced by a magnetic field Bz along the z

direction is ZFmFB, where ZF = µBgF is the Zeeman coefficient, including the Bohr’s magneton µB

and the Landé factor gF of the hyperfine level F . For alkali atoms, the Zeeman coefficient is actually

opposite for the two ground states, so we note Z = Zg = −Zs.

As a consequence of the Zeeman effect, each single-atom excitation |si〉 from equation 1.23 should

be developed as a superposition of spin flips which depend on the initial Zeeman state |g,mg〉 and on

the final one |s,ms〉 [Felinto et al., 2005, Choi, 2011]. Thus,

|si(t)〉 =
∑

mg,ms

αmg,ms
eiφmg,ms (ri,t) |s,ms〉 , (1.32)

where αmg,ms
is a function of the population in the initial |g,mg〉 state, and of the dipole matrix

element for the |g,mg〉 → |s,ms〉 transition. Finally, the dephasing can be written as:

φmg,ms
(ri, t) = Z(mg +ms)Bz(ri) t . (1.33)

Actually, the two sublevels mg and ms are not independent but are related via the polarization q of

the different fields involved. We note q = ±1 for σ±-polarization and q = 0 for π-polarization field.

In the DLCZ protocol, the relation is ms = mg + qw − q1, where qw and q1 are the polarizations of

respectively the write field and the field 1 . The case of the EIT protocol is exactly similar, the write

being replaced by the control field and the field 1 by the signal field.
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FIGURE 1.9 : Retrieval efficiency η of the collective excitation as a function of the storage time, for
magnetic field gradient B1 of (1) 50 mG/cm, (2) 100 mG/cm, (3) 200 mG/cm and (4) 2.5 G/cm. We
consider L = 2 mm, and the dipole matrix elements corresponding to our experimental case.

To obtain typical values, we now assume the presence of a gradient of magnetic field along the z

axis, Bz(z) = B1z, and a Gaussian atomic distribution, n(z) = e−4z2/L2

. The retrieval efficiency η is

thus given by:

η(t) ∼ |〈ψ(t = 0)|ψ(t)〉|2 =

∣

∣

∣

∣

∣

∣

1

N

∑

mg,qw,q1

αmg,qw,q1

∫

n(z)eiW (2mg+qw−q1)B1tzdz

∣

∣

∣

∣

∣

∣

2

(1.34)

∼

∣

∣

∣

∣

∣

∣

∑
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αmg,qw,q1
e−t2/τ2

∣

∣

∣

∣

∣

∣

2

, (1.35)

with τ = 2
√

2/(Z(2mg + qw − q1)B1L). The retrieval efficiency is calculated assuming that the ground

state sublevels mg are equally populated. We consider the dipole matrix elements of the cesium D2

line, with |g〉 = |62S1/2, F = 4〉, |s〉 = |62S1/2, F = 3〉, |e〉 = |62P3/2, F = 4〉, which corresponds to

our experimental case, and a length of the medium L = 2 mm. Figure 1.9 represents the calculated

efficiency as a function of the storage time, for different values of the magnetic field. First, for a residual

magnetic field of 2.5 G/cm, which is of the order of the residual magnetic field without compensation,

the dephasing time is about 1 µs (curve (4) in inset). In order to increase the coherence time, the

magnetic field can be canceled (see section 2.2), down to 10 mG approximately. Curves (1), (2), and (3)

display the retrieval efficiency for residual gradient of magnetic field, after compensation, of respectively

50, 100 and 200 mG/cm. Under these assumptions, long storage times, up to 90 µs for 50 mG/cm,

may be achievable thanks to the compensation of the magnetic field. However, we only consider here a

gradient of magnetic field, whereas higher order components can be involved, and the atomic distribution

is assumed quadratic, whereas it may be in practice flat in the center of the atomic cloud.

We have just seen that the characteristic time of the dephasing due to magnetic field can be increased

to around 90 µs. However, the dephasing time constant due to motional dephasing for atoms at the

Doppler limit temperature (125 µK) is 44 µs. In consequence, after compensation of the residual

magnetic field, the main factor of decoherence may be in our case the atomic motion, as we are operating

in an off-axis configuration.
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Chapter 1. Collective excitation in a large ensemble of cold atoms

Optical pumping Another method to avoid the inhomogeneous broadening due to residual

magnetic field is to pump the atoms in a state insensitive to magnetic field, namely mg = 0,

and to involve only the ms = 0 sublevel during the memory protocol. Therefore, the efficiency

is in principle equal to unity whatever the storage is, and in practice it is limited by other

factors, as the atomic motion. This method can also be useful in EIT protocol to avoid the

possible residual absorption by the extreme sublevels mF = ±(2F + 1).

Conclusion

What we have seen:

• Ensembles of cold atoms are very good candidates to implement quantum memory

protocols at the single-photon level, a critical tool for quantum information science.

• One can take advantage of the many-atom interaction, which leads to collective

enhancement. The dynamic EIT protocol and the DLCZ building block rely on

collective effects and require a large number of atoms, namely high optical depth.

• In order to obtain long coherence time, dephasing effect must be avoided: motional

dephasing and residual inhomogeneous broadening are the main contributions.

In consequence:

• We want to operate on an ensemble of cold atoms with high optical depth and in

an off-axis configuration.

• The magnetic field has to be canceled down to the mG level in order to avoid any

inhomogeneous broadening, and the angle of the off-axis configuration has to be

small (< 2◦).
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In the first chapter, we discussed how to implement a quantum memory in a large ensemble of

cold atoms. The optical depth and the control of dephasing processes, due in particular to residual

magnetic field, are critical parameters. Thus, in the past few years, we have developed a magneto-optical

trap (MOT) for cesium atoms. Technical tools are described in this chapter for the preparation of the

atomic ensemble. A special focus is given on the determination of the optical depth, the cancellation of

magnetic fields and the preparation of atoms in a magnetic field-insensitive state.

N.B.: In the following, we describe processes that involve the atomic levels of the cesium D2 line.

The ground states
∣

∣62S1/2, F = 3
〉

and
∣

∣62S1/2, F = 4
〉

are denoted respectively |F = 3〉 and |F = 4〉,
while the excited states

∣

∣62P3/2, F = i
〉

are designated by |F ′ = i〉. Further details about cesium

properties can be found in [Steck, 1998].
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FIGURE 2.1 : Magneto-optical trap (MOT). (a) Cesium D2 line with required lasers. The trapping
field is 10 MHz-detuned from the |F = 4〉 → |F ′ = 5〉 transition, and the repump laser is on resonance
with the |F = 3〉 → |F ′ = 4〉 transition. (b) Picture of the MOT setup with the three MOT collimators
(the fourth one is for optical pumping), the glass chamber, and the trapping coils in white material.
The square coils are for magnetic field compensation. (c) Picture of the atomic cloud trapped in the
magneto-optical trap.

2.1 Large cloud of cold cesium atoms

2.1.1 Magneto-optical trap

A magneto-optical trap (MOT) is based on two steps: laser cooling thanks to the Doppler effect and

then magneto-optical trapping based on the Zeeman effect. Atoms can be cooled by this technique

down to the Doppler temperature which is for cesium atoms TD = 125 µK, but the temperature of

our dense atomic cloud is estimated around 1 mK (see section 3.4.2). The trapping laser drives the

|F = 4〉 → |F ′ = 5〉 cycling transition of the D2 line with a 10 MHz detuning and the repump laser

couples the other ground state |F = 3〉 to the excited state |F ′ = 4〉 (figure 2.1(a)). Figure 2.1(b)

shows a picture of our MOT setup which is made up of:

• 6 counter-propagative circularly-polarized one inch diameter beams, which are realized in practice

by 3 pairs of collimators and reflecting mirrors,

• a pair of coils in the anti-Helmholtz configuration to obtain a quadrupole magnetic field with a

gradient of around 20 G/cm in the coils axis direction,

• a glass chamber which limits the eddy currents, facilitates the switching of the trapping magnetic

field, and gives many optical accesses with anti-reflection coated on both sides to limit optical

losses (Precision Glassblowing),

• the vacuum apparatus, including the ion pump (Starcell Vacion Plus 40 L/s), which produces a

vacuum below 10−9 Torr,

• cesium sources provided by dispensers placed just below the glass chamber, in the glass metal

transition.

The trapping and repump beams come from very stable interference-filter external-cavity diode lasers,

which have been developed in a collaboration through the IFRAF consortium [Baillard et al., 2006,

Scherman, 2012]. They generate 3 × 25 mW by the help of a master oscillator power amplifier (Toptica,

BoosTA) for the trapping beams, and 2 × 2.5 mW for the repump beams. These diodes are located on

a distant table, and the light is transferred to the MOT table by polarization-maintaining optical fibers
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FIGURE 2.2 : Experimental cycling timing in three steps: the MOT loading, then the preparation of
the atomic ensemble and finally the memory implementation. Duration of each stage depends on the
repetition rate, which is either 40 Hz or 67 Hz.

(OZ Optics, PMJ-3S3S-850-5/125-3-5-1). More details about the MOT is given in [Giner, 2013]. This

set up enable us to observe a cloud of cold atoms with a diameter around 2 mm, as in figure 2.1(c).

2.1.2 Timing

The trapping magnetic field must be off during the memory implementation, otherwise the coherence

time is very short. Thus, the experiment runs in cycle with a repetition rate of 40 Hz. Each cycle consists

in a MOT build-up step of 19 ms, followed by a preparation step of 2 ms, which is an intermediate step

where the fields are successively switched off (figure 2.2). It also can be used to prepare the atoms in

one specific state by optical pumping. Finally a memory step lasts 4 ms, where many cycles of storage

and retrieval are realized. In a second experiment, we use an improved rate of 67 Hz, also depicted in

figure 2.2. In order to accelerate the measurements, which needs a good statistic and so a large number

of repetitions of the experiment, we reduce the cycle duration from 25 ms to 15 ms, without loss of the

optical depth.

About FPGA and Labview programming The key feature of field-programmable gate

array (FPGA) is its extremely precise clock, as opposed to computers. FPGA has thus

become an element of prime importance in cold atom experiments and provides all the trigger

signals to pulse light beams but also magnetic fields and various electronic devices. Dealing

with FPGA and Labview environment involves manipulating two VIs (virtual instrument),

the Host.vi and the FPGA.vi. The Host.vi runs on the computer, communicates with

the FPGA but also manages the acquisition cards and analyses the data in our experiment.

The FPGA.vi runs on the FPGA and generates the trigger signals for each element of the

experiment. Both programs in our experiment were initially developed by Sidney Burks who

gives a very clear overview of the concepts involved in FPGA programming in his thesis

[Burks, 2010]. During my PhD, I first adapted the part dedicated to the realization of

absorption spectra, which are used for the cancellation of the residual magnetic field or

for the study of electromagnetically induced transparency (appendix B). Furthermore, I

developed another part dedicated to the acquisition and the analysis of the single-photon

detector outputs for the memory implementation (appendix C).

The trapping coil current is dynamically controlled by an electronic circuit developed in the LKB

[Giner, 2013]. It enables to switch off the current with a characteristic time of about 100 µs. In our

experiment, the switching off of the magnetic field defined the time t = 0, and is the reference for
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FIGURE 2.3 : Off-axis configuration for (a) EIT-based memory, involving two fields, or (b) DLCZ
building block implementation, involving four fields. The angle θ is around 2◦.

the other signals. All the trigger signals are generated and controlled by a field-programmable gate

array (FPGA) via Labview (see boxed paragraph). The light beams are pulse-shaped by acousto-optic

modulators. The trapping lasers remain on for 650 µs in order to prevent the atoms to escape from the

cloud, while the repump laser is switched off few µs before the memory starts.

Thus, we now dispose of a cloud of cold atoms from a pulsed MOT. Several optical paths must be

built in the atomic ensemble in order to realize a quantum memory.

2.1.3 Optical paths for memory implementation

During the memory step, EIT-based memory or DLCZ building block will be implemented. These

protocols require the interaction between electromagnetic fields and the atomic ensemble. Different

optical paths crossing the atomic ensemble have therefore been set up for each protocol, but many

similarities exist, as we will see now.

Whatever the protocol, the best way to operate at the single-photon level is in an off-axis configuration

(see section 1.1.1). Figure 2.3 shows the off-axis configuration for both protocols. The blue path, where

the signal or the field 1 and 2 propagates, is focused into the atomic ensemble thanks to f ′ = 500 mm

achromatic doublets, and has a waist of 50 µm. The red path, where the control or the write and read

lasers propagate, is focused into the atomic ensemble by f ′ = 800 mm lenses, and has a waist of 200

µm, which allows to cover all the interaction region defined by the crossing of the blue path in the

atomic ensemble, in spite of the angle θ (see figure 2.4(a)). The choice of the θ value, typically 2 or

3◦, results from a trade-off. On one side, we want of course to optimize the retrieval efficiency, which

decreases with the angle θ, principally because of dephasing due to the atomic motion. On the other

side, the extinction of the coupling beams (control or write and read) on the signal path should be high

enough to enable a good signal to noise-ratio for the detection of the signal, or field 1 and 2.

Control extinction The polarizations are orthogonal between the two paths, either linear or circular.

Glan cubes are placed in the coupling path, before and after the atomic ensemble, in order to enable a

first polarization filtering. Losses on the signal path induced by the Glan cube are about 10 %. The

filtering of the coupling beam is also realized spatially thanks to the angle θ. For the memory experiment,

the signal fields are coupled into single-mode fibers, and measured via single-photon counters. We

characterize the extinction of the coupling beam as the ratio of the number of photons, converted into

a power, detected on the single-photon counters, over the power of the coupling beam that is sent

into the atomic ensemble. In our case, an extinction ratio of at least -100 dB is required to obtain a

good signal-to-noise ratio. We make predictions for the value of extinction ratio we can obtain with an

angle θ. The control intensity is averaged over the equivalent of the signal beam area (4 w0). Figure

2.4(b) shows the transverse distance between the two modes, 15 cm away from the atomic cloud, where

the extinction ratio is ideally extremely high (-1400 dB). However, in practice, several factors reduce
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FIGURE 2.4 : Overlap between the two paths. (a) The normalized intensity is represented as a function
of the transverse length r and the longitudinal length z within the atomic ensemble for an angle θ =
2◦ between the two paths. The blue curve corresponds to the signal (field 1 and 2) path, while the red
curve is for the control (write and read) path. (b) Predictions for the extinction of the coupling beam
15 cm away from the MOT, as a function of the angle θ. The dashed line represents our experimental
case (θ = 2◦), for which the transverse profiles of the two beams are displayed in inset. In practice, the
extinction ratio drastically decreases because of imperfections of the spatial mode and scattering.

drastically this spatial extinction. It can be imperfections of the spatial mode of the coupling beam

or scattering induced by our glass chamber and by the optics after the chamber. Experimentally, we

realized a total extinction ratio of typically -110 dB, but which can reach -115 dB.

The pair of pulses sent into the atomic ensemble, control/signal or write/read, is generated by a

Ti:Sapphire laser (Spectra Physics, Matisse) and an extended cavity laser diode, locked together in phase

and in frequency at the hyperfine frequency ωhf ≃ 9.2 GHz (see section 1.2 for interaction schemes).

The phase lock between the two lasers is described in appendix A.

Optimizing the overlap The control beam being only four times larger than the signal

beam, its position must be precisely adjusted. This is realized by operating a transparency

measurement with the signal field on resonance. More specifically, in the EIT configuration, a

signal pulse is sent through the atomic ensemble. Thanks to the presence of a strong control

field, the signal pulse is transmitted, partially in our case because of residual absorption.

By reducing the control power, and so the Rabi frequency of the control, the transparency

decreases, and becomes very sensitive to the control beam position. Then, by varying the

control beam position in the atomic medium, we can find precisely the best overlap between

the signal field, the atomic ensemble, and the control field. This optimization has be to done

before every memory operation, and can be used also before running the experiment in the

DLCZ configuration.

2.1.4 Measuring the optical depth

The optical depth is an essential parameter for collective effects. Indeed, large values of optical depth

are required to observe efficient quantum memories based on collective enhancement, even though some

effects may lead to decrease the efficiency for very high optical depth. We now explain how we determine

the optical depth of our atomic ensemble.

From the definition given in section 1.3.1, the optical depth of an atomic ensemble is given by

d0 = − ln (I/I0), with I0 and I the probe intensities measured respectively before and after the atomic
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FIGURE 2.5 : Optical depth of the atomic cloud on the |F = 4〉 → |F ′ = 5〉 transition as a function
of time. The trapping magnetic field is switched off at t = 0. The experimental points are fitted by a
decreasing exponential with a decay constant of 1.9 ms.

ensemble. In practice it is even simpler to measure the intensity of the probe beam after the chamber

without and with the MOT. Because we want to access to the optical depth seen by the signal, or fields

1 and 2, depending on the chosen memory protocol, the probe beam propagates in the atomic ensemble

in the same path, with a waist w0 = 50 µm.

To measure correctly d0 the probe beam intensity I0 must be very low compared to the saturation

intensity, Isat = 2.7 mW/cm2. The corresponding power is approximately 200 nW, so we choose a very

low power, around 10 nW, to avoid any pumping effect. Due to the noise level of the photodiode, the

probe beam is seen on resonance as "completely absorbed" by the atomic ensemble. In consequence,

the probe is set off-resonance with a detuning ∆ = − 10 MHz from the |F = 4〉 → |F ′ = 5〉 transition.

Thus, the cross section σ is modified from the on-resonance case (cross section σ0) by a factor

σ0

σ
= 1 + 4

(

∆

Γ

)2

+
I0

Isat
, (2.1)

where the I0/Isat term can be neglected. In our case we thus have σ0/σ ≃ 15.7. Finally, by measuring

I0 and I of the probe beam detuned by ∆ = − 10 MHz and propagating on the signal path with

an intensity smaller than the saturation intensity, we calculate the optical depth at resonance by the

following expression

d0 = −σ0

σ
ln

(

I

I0

)

= −
[

1 + 4

(

∆

Γ

)2
]

ln

(

I

I0

)

. (2.2)

Experimentally, 100 µs-long probe pulses are sent into the atomic ensemble. Figure 2.5 shows the

evolution of the optical depth in time. At t = 2ms, which is a good compromise with the magnetic field

cancellation (section 2.2) to start the memory sequence, the maximum of optical depth observed in our

atomic ensemble is larger than 40, but the optical depth can be set at lower values. The optimization is

done by changing the MOT beams alignment, in particular by moving the reflecting mirrors instead of

the collimators, which is a less diverging method. The optical depth decreases as function of the time

exponentially with a decay constant of approximately 2 ms. Thus, the memory implementation usually

ends at 3 ms.

It is important to point out that we measure the optical depth for the |F = 4〉 → |F ′ = 5〉 transition.

During the EIT-based memory implementation, the signal field is on the |F = 4〉 → |F ′ = 4〉 transition,

so the effective optical depth for this field has to be corrected by the ratio between the two relative
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FIGURE 2.6 : Absorption profiles for two different values of the optical depth, fitted by a Lorentzian
distribution with a width γ. The blue curve corresponds to an optical depth of 3, and its fitting gives
γ = 5.9 MHz. The red curve corresponds to an optical depth of 35, and its fitting gives γ = 11.8 MHz.
The linewidth of the excited state is Γ = 5.2 MHz.

hyperfine transition strength factors S44/S45 ≃ 0.48.

Broadening due to high optical depth In order to test the appearance of broadening in our system

at high optical depth, we acquire absorption profiles for different optical depth values. For cesium atoms,

the linewidth of the excited level 62P3/2 is given by a Lorentzian function with a full width at half

maximum Γ = 2π× 5.2 MHz. Figure 2.6 shows absorption profiles for a small and a large optical depth.

The experimental data are fitted by a Lorentzian distribution. For a low optical depth, d0 = 3, the fit

gives γ = 5.9 MHz, which is slightly larger than Γ. At a large optical depth of d0 = 35, the Lorentzian

width has here doubled, and is now γ = 11.8 MHz. This means that homogeneous broadening occurs

in our system, specially at high optical depth. A typical cause of homogeneous broadening is atomic

collisions. This is still under investigation in our setup.

2.2 Cancellation of the magnetic field

Canceling the spurious magnetic field that remains when the trapping field is off is crucial in order to

increase the coherence time (see section 1.3.2.3). The residual magnetic field, of the order of 0.5 G, is

due to the earth magnetic field or to the environment around the chamber, the optical table for instance.

Microwave spectroscopy, as described in this section, is a sensitive method to probe the magnetic field

at the center of the vacuum chamber. Thus, by varying the current of the compensation coils, it is

possible to control and cancel the magnetic field, and finally reach residual values about 7 mG.

2.2.1 Probing the residual magnetic field by microwave spectroscopy

Principle The principle of the microwave spectroscopy method is similar to the one described in

[Ringot et al., 2001]. The main difference is that the authors used off-resonance lasers to induce

stimulated Raman transitions, while in our case we operate with microwave field. A microwave pump

pulse at a frequency ω around the hyperfine frequency ωhf ≃ 9.2 GHz drives the atoms from the initial

|F = 4〉 state to |F = 3〉, depending on the detuning δ = ω − ωhf of the microwave pump, which is

scanned (see fig. 2.7). Indeed, if the microwave frequency corresponds to a transition between two
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FIGURE 2.7 : Principle of the microwave spectroscopy method. In presence of magnetic field the two
ground states are split in opposite direction. A microwave pump pulse drives atoms initially in F = 4 to
F = 3, and an optical probe pulse then probes the |F = 3〉 state.

Zeeman sublevels |F = 4,mF 〉 and |F = 3,mF 〉, atoms are driven to |F = 3〉, otherwise the atoms

stay in |F = 4〉. Then, an optical pulse in resonance with the |F = 3〉 → |F ′ = 2〉 transition probes the

presence of atoms in |F = 3〉 for each value of δ.

Experimental implementation The timing of the microwave spectroscopy is given on figure 2.8. The

duration of the microwave pulse is optimized so as to drive the largest number of atoms in |F = 3〉,
namely to make half a Rabi oscillation. With our basic antenna and the synthesizer level set at the

maximum, 27 dBm, it takes 200 µs to produce a π-pulse. Then, the 15 µs-long and linearly polarized

probe pulse is sent into the atomic ensemble by the signal path and its intensity I is recorded. After

the first probe pulse, a repump pulse is sent to transfer all the atoms back into |F = 4〉, and a second

probe pulse is applied. This additional step enables to measure the initial intensity I0 of the probe beam

independently of fluctuations of laser power or polarization. All the steps occur once in a MOT cycle and

provide a measurement for one microwave pump detuning δ. Then, the microwave frequency is scanned

by steps and its value changes at the end of each MOT cycle, or after few cycles if we want to average

each point over few measurements. Finally, the reconstructed spectrum corresponds to the probe pulse

absorption A = − ln(I0/I) as a function of the microwave detuning δ. Thus, we need several MOT

cycles to record a whole spectrum. Details about the frequency scan and about the acquistion and the

analysis of the probe pulse are given in appendix B.

0 2 2.3 t (ms)

B-field

Pump

Repump

Probe

200 µs

250 µs

15 µs 15 µs

FIGURE 2.8 : Timing of the microwave spectroscopy sequence. After a 200 µs-long microwave pump
pulse, a 15 µs-long probe pulse measures the atomic ensemble absorption. An additional probe pulse is
sent after a repump stage in order to get a reference for the probe intensity.
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FIGURE 2.9 : Microwave spectroscopy measurement. The absorption of the probe pulse is represented
as a function of the microwave pump detuning δ (a) when applying a DC magnetic field to split the
different levels, or (b) after optimization of the compensation coil currents in order to cancel the spurious
magnetic field. Typical widths around 20 kHz are routinely obtained.

Results Figure 2.9(a) shows a spectrum in the presence of magnetic field with 15 peaks: 7 peaks,

the higher ones, come from π-transitions, while the 8 remaining ones are from σ-transitions. The

predominance of π or σ transitions depends on the relative orientation between the external magnetic

field B and the microwave field. The distance between two adjacent peaks is given by ZB, so the width

of the whole spectrum is 14ZB, with Z the Zeeman coefficient (section 1.3.2.3).

2.2.2 Magnetic field compensation

In order to compensate the residual magnetic field three pairs of small coils are available around the

chamber (see figure 2.1). The current of each coil can be set independently. Thus, DC magnetic fields

and gradients are modified in order to minimize the width of the spectrum. A typical spectrum after

cancellation of magnetic field is displayed on figure 2.9(b). The width has been reduced down to less

than 20 kHz, a value which corresponds to a residual magnetic field of 4 mG. In practice, fluctuations of

the residual magnetic field in time prevent to preserve a good compensation. By averaging over few

minutes, the width of the averaged spectrum is around 35 kHz. Effective residual magnetic field can

therefore be estimated around 7 mG. Under the hypothesis considered in chapter 1 (section 1.3.2.3),

the corresponding decay time is longer than 100 µs.

Let us note that the cancellation is realized at t = 2 ms after the trapping field is switched off. In

fact, a trade-off between the optical depth and the magnetic field cancellation must be found. Indeed,

operating as soon as possible after the MOT extinction enables to have the highest optical depth, but

the magnetic field should be well canceled for a duration equivalent to the duration of the memory

experiment, which lasts about 1 ms. In our experimental case too many magnetic field fluctuations

remain until t = 2 ms, and in consequence a good cancellation over 1 ms can be obtained only if starting

at t = 2 ms.

2.3 Optical pumping in mF = 0

Optical pumping, or also called spin polarization, aims to prepare all the atoms into a unique Zeeman

sublevel, in our case |F = 4,mF = 0〉 because of its insensitivity to magnetic field, which may result in
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FIGURE 2.10 : Principle of optical pumping into mF = 0. A π-polarized pump field is applied in
order to transfer all the atoms into |F = 4,mF = 0〉, which is a dark-state due to the nullity of the
|F,mF = 0〉 → |F ′ = F,m′

F = 0〉 coefficient. If atoms fall in |F = 3〉 the repump field bring them back
into the pumping cycle. The number of levels is however an issue as many cycles are required, leading to
a heating of the atoms.

longer coherence times. In addition, an atomic ensemble with all the atoms in a single Zeeman sublevel

represents a system which is closer to a theoretical 3-level system. Then, residual absorption by atoms

on the maximally stretched Zeeman states, which is an issue during the implementation of the EIT-based

protocol with certain configurations of polarization, can be reduced.

2.3.1 Principle

The optical pumping in mF = 0 is based on the fact that for cesium atoms the Clebsh-Gordan coefficient

of the |F,mF = 0〉 → |F ′ = F,m′
F = 0〉 transition vanishes. Thus, by applying a π-polarized pump

on the |F = 4〉 → |F ′ = 4〉 transition, the |F = 4,mF = 0〉 state becomes a dark-state (figure 2.10).

Starting with atoms distributed over all the Zeeman sublevels, excitation by the pump laser leads to

spontaneous decay into any sublevels of the two ground states. A repump laser coupling the |F = 3〉 and

|F ′ = 4〉 states is thus required to bring back into the pumping cycle the atoms which fall in |F = 3〉.
Then, as soon as atoms are trapped in the dark-state they do not experience anymore spontaneous

emission due to fluorescence cycles and remain in this state. Consequently atoms accumulate in

|F = 4,mF = 0〉.

2.3.2 Experimental implementation

One problem with cesium atoms is the relatively large number of Zeeman sublevels, 9 in the |F = 4〉
state, so optical pumping can be achieved only after a large number of cycles. Consequently a number of

atoms are potentially pushed away from the MOT before being pumped into the magnetic field-insensible

state |F = 4,mF = 0〉. To mitigate this problem, two pump beams counter-propagate through the

atomic ensemble. This method is much more efficient than just retro-reflecting the pump laser, specially

because the optical depth in our system is high. In this way we can set the pump laser on resonance

with an intensity of 0.12 mW/cm2 in each side without losing too much atoms. The optical depth

decreases from 30 to approximately 20. In addition, a π-polarized repump leads to decrease the mean

number of cycles that an atom needs to reach the central Zeeman level, in comparison with a non-

or circularly-polarized repump [Tremblay and Jacques, 1990]. That is because for a circularly-polarized

light, Clebsh-Gordan coefficients of the transitions that guide the atoms on the extreme Zeeman sublevels
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FIGURE 2.11 : Setup for optical pumping. The directive magnetic field B defining the quantization axis
is applied along the y-axis signal path. The π-polarized pump and repump beams are sent from the front
and back side of the chamber, i.e. along the x-axis.
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FIGURE 2.12 : Electronic circuit for the dynamic control of current in the coils that generate the
additional magnetic field for optical pumping.

are stronger than the ones of transitions which bring the atoms to the center.

In order to properly define the quantization axis a magnetic field is applied during the pumping

process and generates a Zeeman splitting of few hundreds of kHz. As shown in figure 2.11, the linear

polarization of the pump and repump beams have to be set parallel to this quantization axis, which is

aligned with the signal path. Thus, the pump and repump fields are sent along the x-axis by similar

collimators as the MOT beam ones (one inch beam). Because the additional magnetic field must be

switched off during the memory sequence, an additional pair of small coils, with a radius of 3.5 cm and

made up of 40 turns, have been added close to the vacuum chamber, so they are separated by 10 cm. A

simple circuit (figure 2.12) enables to cut the small coil current according to a trigger signal from the

FPGA. The circuit is optimized to minimize the fall time of the current down to 100 µs at the expense

of the rise time which is equal to 500 µs.

Figure 2.13 presents the timing of a typical optical pumping sequence. First of all the trigger signal

for the directive magnetic field is switched on in advance at t = 1 ms to take into account the 500 µs

rise time of the small coils current. Then at t = 1.2 ms, the MOT repump is turned off in order to

t (ms)

B-field

Pump

Repump

Directive field

π repump

0 21.981.2 1.81

FIGURE 2.13 : Timing of the optical pumping sequence. Pump and repump beams are applied during
800 µs before the memory sequence, while a directive magnetic field defines the quantization axis. For
clarity, the scale of the time axis in not respected.
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FIGURE 2.14 : Microwave spectroscopy measurements (a) without optical pumping and (b) with optical
pumping to mF = 0. The pump power is 2 × 2.5 mW while the power of the π-polarized repump is 2 ×
0.5 mW. The optical depth of the atomic ensemble is 35 before the process.

enable the pumping process that operates with the pump and π repump lasers on. The pump pulse

duration is 780 µs and the π repump pulse is switched off 19 µs after the pump pulse to bring back

all the atoms into the |F = 4〉 state. The directive field trigger signal falls 200 µs before t = 2 ms to

prevent any residual magnetic fields during the memory sequence, which starts at t = 2 ms.

2.3.3 Results and discussion

After the optical pumping process, we operate a spectroscopy sequence with the directive magnetic

field on in order to measure the pumping effect. Figure 2.14 shows the effect of the optical pumping.

The central peak corresponding to the population in the mF = 0 sublevel doubles in height while the

extreme peaks associated with the mF = ±3 level decrease by a factor larger than two. Let us precise

that the population in one Zeeman sublevel is proportional to the height of the corresponding peak, but

coefficients are different for each sublevel because of the different dipole matrix elements. In addition,

if in the spectroscopy sequence the microwave pump induced both σ- and π- transitions, 1, 2 or 3

resonances should be taken into account in order to deduce the population in one Zeeman state, thanks

to the Clebsh-Gordan coefficients corresponding to the associated transitions. For this reason we only

compare before and after the optical pumping process.

The achieved optical pumping is clearly not very efficient in our experiment, despite our estimations.

We tried different pump detunings, durations and powers and we clearly see a saturation phenomenon

before obtaining a very good spin polarization. Indeed, many atoms are lost, certainly pushed from

the atomic cloud, without reaching the central Zeeman sublevel. One possible explanation is the

temperature of the atomic ensemble, which may be too high before the pumping process. For instance,

in [Chabé et al., 2007] the authors succeed in pumping 75 % of the atoms into the mF = 0 sublevel

with an atomic cloud at 3 µK, while our atomic ensemble is warmer than this by at least a factor 1000.

Therefore the optical pumping as it is now does not help to win on the memory efficiency or on the

coherence time. However the setup is in place and ready to use for further tries with colder atoms, as

planned in the very near future.
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Conclusion

What we have seen:

• We dispose of an atomic ensemble consisting in cesium atoms trapped in a pulsed

magneto-optical trap in a glass chamber with a relatively large optical depth of 40

on the |F = 4〉 → |F ′ = 5〉 transition.

• The microwave spectroscopy enables us to cancel the residual magnetic field down

to 7 mG which corresponds to a dephasing time of several tens of microseconds.

• Optical pumping into the magnetic field-insensitive state mF = 0 has been set up.

However, the observed results, although showing clearly a pumping effect, are not

satisfying, as certainly limited by the temperature of the atomic cloud.

In consequence:

• The system is well prepared in order to observe collective effects and to implement

quantum memory protocols, based either on EIT or the DLCZ paradigm.

• Further cooling the atoms is a crucial step for the very near future, and should

enable to optically pump the atoms more efficiently and additionally to increase the

coherence time by drastically decreasing the motional dephasing.
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transition between the Autler-Townes
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The work described in this chapter was motivated by the implementation of EIT-based memories

and constituted a first experiment performed in our system. It aims at first studying EIT features in our

implementation.

Coherent effects have been widely studied in the past two decades, leading to the modification of

optical properties of atomic media [Fleischhauer et al., 2005]. These coherent effects can be for instance

coherent population trapping [Alzetta et al., 1976, Arimondo, 1996], or electromagnetically induced
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transparency [Harris et al., 1990, Boller et al., 1991, Marangos, 1998]. Enabling strong reduction of the

signal group velocity, [Hau et al., 1999], EIT is particularly important for the implementation of quantum

memories [Lvovsky et al., 2009]. More recently, coherent driving effects has been investigated in various

systems, such as quantum dots [Xu et al., 2008], superconducting artificial atoms [Kelly et al., 2010] or

nanoscale optomechanics [Safavi-Naeini et al., 2011].

In a Λ-type atomic configuration, two very different processes can explain the transparency of an

initially absorbing medium for a probe field in the presence of a control field. The first one is a quantum

Fano interference between two paths in a three-level system [Fano, 1961], occuring at low control

intensity, and giving rise to EIT [Harris, 1997]. The second process is the appearance of two dressed-

states in the excited level due to intense control field, corresponding to the Autler-Townes splitting

(ATS) [Autler and Townes, 1955, Cohen-Tannoudji and Reynaud, 1977, Cohen-Tannoudji et al., 1992].

Discerning whether a transparency feature in an absorption profile is the signature of EIT or ATS is crucial

and is a long-standing issue [Anisimov and Kocharovskaya, 2008, Abi-Salloum, 2010, Li et al., 2012].

Indeed, only EIT allows applications of coherent processes, essential for optically controlled light slowing,

or optical storage, as mentioned before.

In this context, a recent theoretical study by Anisimov, Dowling and Sanders [Anisimov et al., 2011]

introduced a method to discriminate between these two phenomena. Our work consists in verifying the

reliability of the proposed criterion. In a well-controlled ensemble of cold atoms, where inhomogeneous

broadening, in particular due to magnetic field environment, is avoided, we first perform a detailed

study of absorption profiles of a weak signal field, in the presence of a control field. This study

demonstrates in a quantitative way the transition for the ATS to EIT models when the control field

power is decreased. This transition also reveals a strong sensitivity to the medium properties, such

as the multilevel structure or the residual inhomogeneous broadening. This work has been published

in Physical Review A 87, 013823, Experimental investigation of the transition between Autler-Townes

splitting and electromagnetically-induced-transparency models, in collaboration with the group of P.-K.

Lam at the Australia’s National University.

3.1 From the EIT to the ATS models

3.1.1 Atomic susceptibility for a three-level system

Let us consider a three-level system in a Λ-configuration (see fig. 3.1), with two ground states |g〉 and

|s〉 and an excited state |e〉. All the atoms are initially prepared in |g〉. An on-resonance control field

drives the transition |s〉 → |e〉 with a Rabi frequency Ω, while the signal field probes the transition

|g〉 → |e〉 with a detuning δ. The natural linewidth is Γ = 2π× 5.2 MHz while the dephasing rate

between the two ground states is denoted γgs. The value of this dephasing rate is given by experimental

factors, such as the linewidth of the lasers or the phase lock precision between the two lasers. By

denoting d0 the optical depth of the medium and γge = Γ/2 the optical relaxation rate of the |g〉 → |e〉
coherence, the atomic susceptibility χ(δ) in the first order in the probe electric field is therefore given by

[Anisimov and Kocharovskaya, 2008]

χ(δ) = −d0γge
δ + iγgs

δ2 − |Ω|2/4 − γgeγgs + iδ(γge + γgs)
. (3.1)

The atomic susceptibility corresponds to the atomic response, and gives access to the absorption by

evaluating its imaginary part, and to the dispersion by evaluating its real part Figure 3.2 displays the
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FIGURE 3.1 : Atomic three-level system in a Λ-type configuration. The natural linewidth of the excited
state |e〉 is Γ while the dephasing rate between the two ground states |g〉 and |s〉 is denoted γgs.

absorption and dispersion spectrum for two different values of the Rabi frequency of the control. For

small Rabi frequency, the absorption profile exhibits a narrow transparency window (panel (a)), induced

by the quantum Fano interference effect. In addition, around δ = 0 the dispersion spectrum (panel (b))

presents a very steep slope, which enables to strongly reduce the group velocity of the signal field. When

the Rabi frequency of the control field is large compared with the natural linewidth, two dressed states

in the excited level appear (panel (c)), while the dispersion profile shows a quite flat slope close to the

origin (panel (d)), and so no drastic reduction of the signal velocity can be observed in this regime.

The susceptibility given in equation 3.1 has two complex poles and depending on the range of Ω,

different simplifications can be done [Anisimov and Kocharovskaya, 2008]. Simplified or approximated

expression for the absorption as a function of the signal detuning δ can be found in each regime

[Anisimov et al., 2011]. These expressions are called, for small Ω, the EIT model, and for large Ω, the

ATS model, as detailed in the following.
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FIGURE 3.2 : Atomic susceptibility features in a three-level atomic system. Imaginary and real parts of
the atomic susceptibility (a)-(b) for a small Rabi frequency of the control, Ω = 0.25 Γ, and (c)-(d) for a
large Rabi frequency, Ω = 5 Γ. The dephasing rate is γgs = 10−4 Γ.
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3.1.2 Electromagnetically induced transparency model

For small Rabi frequency of the control, Ω ≤ ΩEIT = γge −γgs, the two poles of χ(δ) become imaginary,

and the absorption can be expressed as the difference of two Lorentzian functions,

AEIT(δ) =
C+

1 + δ2/(γ2
+/4)

− C−

1 + δ2/(γ2
−/4)

, (3.2)

with different heights C+ and C−, and different widths γ+ and γ−. Indeed, as it is shown in figure

3.2(a), the absorption profile at low driving field is composed of a positive Lorentzian function, which

corresponds to the linewidth of the excited level, and a negative one, which corresponds to the narrow

transparency window.

3.1.3 Autler-Townes splitting model

When, the Rabi frequency of the control field is large, no simple and exact expression can be written

anymore for the absorption. However, for Ω ≫ Γ, the absorption of the signal field can be approximated

by a sum of two well-separated Lorentzians functions,

AATS(δ) = C

[

1

1 + (δ + δ0)2/(γ2/4)
+

1

1 + (δ − δ0)2/(γ2/4)

]

, (3.3)

detuned from the origin by ±δ0 and with the same width γ. Indeed, when the Rabi frequency of the

control field is large compared with the natural linewidth, two dressed states in the excited level appear,

as it has been shown on figure 3.2(c). However, it is important to point out that the full transparency at

zero detuning in the absorption profile for high Ω is a signature of the EIT interference effect. Because

of this full transparency, the expression of AATS does not match perfectly the absorption profile for Rabi

frequency not very large compared to Γ.

Robustness to decoherence A main difference between the ATS and EIT phenomena is their

robustness against decoherence, namely the dephasing rate γgs between the two ground states. Figure

3.3 presents the absorption spectra in each regime but with a large dephasing rate, γgs = 0.25 Γ.

ATS is robust to decoherence and the two dressed-states in the excited level remain even when γgs

is large. But we clearly see that EIT is very sensitive to decoherence and that the transparency dip

disappears completely when γgs becomes close to Γ. This feature confirms again that the observation of
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FIGURE 3.3 : Absorption spectra for (a) Ω = 5 Γ and (b) Ω = 0.25 Γ with a large dephasing rate
γgs = 0.25 Γ. Dashed lines correspond to a small dephasing rate, γgs = 10−4 Γ.
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transparency in the presence of a control field is not necessary the signature of EIT, and a quantitative

test is very welcome [Anisimov et al., 2011].

The test proposed in [Anisimov et al., 2011] aims at determining which of these two generic models

is the most likely for given experimental data. Our well-controlled system is well-suited for testing such

criterion.

3.2 Experiment

In the former section, the EIT and ATS models have been introduced. Now, we want to record absorption

profiles for a signal field interacting with our ensemble of cold atoms, in the presence of a control field

with various Rabi frequencies. The aim is then to compare the absorption profiles with the two models.

Here we detail the experimental setup to obtain these profiles.

The experimental setup is illustrated in figure 3.4. The atomic ensemble is obtained from cold

cesium atoms in a magneto-optical trap (MOT). The three-level system involves the two ground states,

|g〉 = |F = 3〉 and |s〉 = |F = 4〉, and one excited state |e〉 = |F ′ = 4〉. The atomic ensemble is

prepared in the |F = 3〉 ground state. The control field is on resonance with the |F = 4〉 → |F ′ = 4〉
transition while the signal field is scanned around the |F = 3〉 → |F ′ = 4〉 transition with a detuning δ

(see inset). Both fields propagate in the atomic cloud with a small angle, and the signal is detected

after the MOT.

Inverted scheme As shown in chapter 2, every elements of the experiment have been

initially designed to operate with all the atoms in |F = 4〉, the control field driving the

|F = 3〉 → |F ′ = 4〉 transition and the signal field probing the |F = 4〉 → |F ′ = 4〉. However

the phase-lock between the two lasers allows to scan only the frequency of the |F = 3〉 →
|F ′ = 4〉 laser. For this reason, we invert the scheme for this specific study.

λ/4

Signal

Control
High gain

Ti:sapphire

Laser

diode

laser

Phase lock Signal
Control

δ

|F = 3〉
|F = 4〉

|F ′ = 4〉

σ−

σ+

photodiode

FIGURE 3.4 : Experimental setup. A weak signal beam and a control beam travel through a cloud
of cold cesium atoms. Atoms are initially in the ground state |F = 3〉. The signal field is close to
the |F = 3〉 → |F ′ = 4〉 transition with a two-photon detuning δ, while the control field drives the
|F = 4〉 → |F ′ = 4〉 transition on resonance.
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0 2 3 t (ms)

B-field

Depump

Repump

Signal

30 µs

15 µs 15 µs

Control

FIGURE 3.5 : Temporal sequence for the absorption profile acquisition. At t = 2 ms, a depump pulse
transfers the atoms to the |F = 3〉 state, and the measurement takes place 1 ms later. While the 30
µs-long control pulse is applied, a 15 µs-long signal pulse probes the medium. A reference signal pulse is
sent before t = 2 ms when the atoms are still in |F = 4〉 in order to measure the initial intensity of the
signal pulse.

3.2.1 Preparation of the atomic medium and timing

In this study, the atomic ensemble is prepared in a slightly different manner than presented in chapter 2

in order to initially set all the atoms in the ground state |F = 3〉. First the MOT is loaded and ends up

with atoms in |F = 4〉 (see section 2.1). Then, 2 ms after the trapping field extinction a σ−-polarized

depump laser coupling the |F = 4〉 to the |F ′ = 4〉 excited state brings the atoms into |F = 3〉 (see

timing on fig. 3.5). The depump pulse is 1 ms-long, has a power of 900 µW and propagates through

the atomic cloud along the control path. Because of the polarization of this depump beam, the atoms

do not equally populate all the Zeeman sublevels. For instance the extreme sublevel |F = 3,mF = +3〉
is empty (section 3.4.1). In addition, we verify that no atoms remain in the other ground state |F = 4〉
by sending an on-resonance light, which is not absorbed within our experimental precision.

The optical depth in |F = 3〉 is chosen around 3, sufficiently small in order to not absorb completely

the on-resonance signal. Thus, the high-gain photodiode can still detect the signal pulse and any shape

distortion of the absorption profiles is avoided. The residual magnetic field is canceled 3 ms after the

trapping field extinction via the microwave spectroscopy (section 2.2).

3.2.2 Signal and control fields

Generated by a Ti:Sapphire laser, the control beam is σ−-polarized. The signal beam comes from an

extended-cavity grating stabilized laser diode locked in phase and in frequency with the Ti:Sapphire laser

(appendix A). The signal beam is σ−-polarized and has a power of 30 nW. The angle between the two

paths is 2◦. The dephasing rate γgs between the two ground states is estimated to be 10−2 Γ in our

experiment. It is limited by the laser linewidths as well as the locking between the two lasers. Moreover,

simulations of absorption profiles with γgs = 10−2 Γ are in agreement with our experimental data.

The control pulse is applied 3 ms after the extinction of the trapping magnetic field with a duration

of 30 µs (figure 3.5). During this time a 15 µs-long signal pulse with a given detuning δ is sent through

the atomic ensemble. At t =2 ms, when only the |F = 4〉 state is populated, a first signal pulse enables

us to get a reference I0 of the signal intensity. Finally the absorption profile corresponding to the signal

pulse absorption A = − ln(I0/I) as a function of the detuning δ from resonance (see appendix B for

details) is obtained.
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FIGURE 3.6 : Absorption spectra for values of the Rabi frequency of the control between 0.1 to 4 Γ.
They correspond to the absorption of the signal field as a function of its detuning δ.

3.2.3 Absorption spectra

Absorption profiles are given in figure 3.6 for various values of the Rabi frequency Ω of the control field.

By changing the control power from 100 nW to 200 µW, Ω ranges from 0.1 to 4 Γ. For low driving

fields (at the back) spectra exhibit a narrow transparency window, which gets wider as the control power

increases, until the appearance of two well-separated resonances corresponding to two dressed-states in

the excited level for large driving field (at the front). One can already notice that the two resonances

are asymmetric, with different heights, widths and detunings. Moreover, the shape of the peaks strongly

differs from the theoretical Lorentzian shape for large Ω. These effects are due to the manifold structure

of the cesium D2 line, as seen later in this chapter.

3.2.4 Rabi frequency of the control

The absorption profiles are plotted for different values of the control Rabi frequency Ω. Here we detail

how we define this Rabi frequency. Basically, the definition of the Rabi frequency for the control field is

Ω =
|dse|Ec

~
, (3.4)

where dse is the electric dipole moment between |s〉 and |e〉, Ec is the amplitude the control field, i.e.

twice the positive frequency part. The intensity Ic of the control field connects Ec and the power P via

the transverse section S of the beam, the vacuum permittivity ǫ0 and the speed of light c in vacuum,

Ic =
1

2
ǫ0cE

2
c =

P

S
. (3.5)

Thus, the Rabi frequency of the control can be written as a function of our experimental parameters, in

particular the power P ,

Ω =

√
2

~
√
ǫ0c

|dse|
√

P

S
. (3.6)
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FIGURE 3.7 : Experimental splitting as a function of
√
P , where P is the control power, fitted by a

linear function with a slope of 1670 ± 100 MHz/
√

W.

Because the system is not a real three-level system, the calculation of the electric dipole moment dse

must take into account all the possible transitions given the control polarization and also the population

in each Zeeman sublevel. Furthermore, the effective section S of the beam is not simply πw2
0 where w0

is the control beam waist, but depends on the interaction region defined by the atoms, the signal and

the control beams, which is not predictable with a good precision. As a consequence calculating Ω via

the equation 3.6 does not allow to obtain values of the Rabi frequency of the control with reasonable

error bars for this study.

Thus, we operate an experimental calibration of Ω as a function of the power. The two maxima

of the absorption profiles are separated by Ω, even in a multiple level system, for Ω < Γ. We plot the

splitting measured on the absorption spectra as a function of the square root of the power, which is a

linear function, as shown in equation 3.6. Figure 3.7 shows the corresponding curve together with the

linear fitting, leading to Ω = α
√
P with α = 1670 ± 100 MHz/

√
W.

3.3 Fitting of the absorption profiles

We follow the method proposed by [Anisimov et al., 2011] and fit the absorption profiles by the two

models, AATS and AEIT. However, the models must be adapted to the experimentally observed behavior

by introducing additional parameters. Because of the asymmetry mentioned above for large Rabi

frequency of the control, three parameters are added in the ATS model to fit the different heights, C1

and C2, the different detunings δ1 and δ2, and the different widths γ1 and γ2. Moreover, we introduce

a shift ǫ between the positive and negative Lorentzian terms in the EIT model because of a possible

slight offset in the frequency locking point of the Ti:Sapphire laser. Therefore, the two models used to

fit the experimental spectra are given by

AEIT =
C+

1 + (δ − ǫ)2/(γ2
+/4)

− C−

1 + δ2/(γ2
−/4)

, (3.7)

AATS =
C1

1 + (δ + δ1)2/(γ2
1/4)

+
C2

1 + (δ − δ2)2/(γ2
2/4)

. (3.8)

Figure 3.8 shows the absorption profiles and the model fits for two values of the control Rabi frequency

Ω. Experimental data are presented together with the best fits of functions AEIT(C+, C−, ǫ, γ+, γ−)

(red lines) and AATS(C1, C2, δ1, δ2, γ1, γ2) (green lines). Parameters C+, C−, C1, C2 representing the

amplitudes of the absorption curves are in dimensionless units, while the parameters ǫ, γ+, γ− and
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FIGURE 3.8 : Experimental absorption spectra (blue dots) fitted by the EIT model (red solid lines) and
the ATS model (green solid lines) for (a) Ω = 0.2 Γ and (b) Ω = 2.3 Γ.

δ1, δ2, γ1, γ2 representing detunings and widths are in MHz. In the case of a small Rabi frequency

Ω = 0.2 Γ, the EIT model AEIT(3.52, 3.14, 1.45 × 10−2, 5.71, 0.239) fits the experimental data much

better than the ATS one, AATS(2.01, 2.04, 1.84, 1.84, 4.14, 4.08). On the contrary, for a large Rabi

frequency Ω = 2.3 Γ, AATS(2.05, 1.64, 5.86, 5.67, 3.94, 4.68) fits the data better than AEIT(1.59 ×
105, 1.59 × 105, 1.45 × 10−7, 8.17, 8.17). Thus, as expected, the EIT model fits better for low driving

fields while the ATS model fits better for high driving fields.

3.3.1 Akaike weights

In order to quantitatively compare the quality of the fits as in [Anisimov et al., 2011], we apply the

Akaike information criteria, which is based on the Akaike information

Ij = 2kj − 2 ln Lj (3.9)

where kj is the number of parameters of the model j = EIT or ATS and Lj is the maximized likelihood

function. The smallest value of Ij indicates the best model [Burnham and Anderson, 2002]. We

calculate the Akaike information IEIT and IATS via the NonLinearModelFit function of Mathematica.

Then, we estimate the Akaike weights as

wEIT =
e−IEIT/2

e−IEIT/2 + e−IATS/2
, (3.10)

wATS =
e−IATS/2

e−IEIT/2 + e−IATS/2
. (3.11)

The Akaike weights give a relative measurement of the likelihood of the models, normalized to unity.

Figure 3.9 presents the Akaike weights (red and green triangles) as a function of the normalized Rabi

frequency Ω/Γ. They exhibit a binary behavior, wEIT being very close to 1 and wATS to 0 when

Ω ≤ 1.15 Γ and the opposite for higher Ω. Thus, an abrupt transition is observed around Ω = 1.2 Γ

between the EIT and ATS models. This means that for Rabi frequency of the control smaller than 1.2 Γ,

the EIT model is the best model, and on the contrary the ATS model is better when Ω > 1.2 Γ.
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FIGURE 3.9 : Experimental Akaike weights as a function of the Rabi frequency Ω/Γ for ATS model
(green triangles) and for EIT model (red triangles) and experimental per-point weights for ATS model
(green dots) and for EIT model (red dots). The grey area indicates the EIT/ATS model transition. Error
bars include the uncertainty on the coefficient α and on the measured power. The solid lines give the
theoretical per-point weights for a pure three-level system.

3.3.2 Per-point Akaike weights

In order to access to a more sensitive criteria we calculate the so-called per-point weights, defined as:

wEIT =
e−IEIT/2N

e−IEIT/2N + e−IATS/2N
, (3.12)

wATS =
e−IATS/2N

e−IEIT/2N + e−IATS/2N
, (3.13)

where N is the number of experimental points in the absorption profile. The division of the Akaike

information by N corresponds to a contrast reduction of the relative weights. Thus, they give more

details about the relative likelihood of the models.

Per-point Akaike weights are displayed in figure 3.9 for EIT model (red dots) and ATS model (green

dots). The maximum value of wEIT is 0.9 while the asymptotic value of wATS at large Ω is 0.7. As

a consequence, we conclude that EIT model is more likely for small Ω than ATS model for large Ω.

Moreover, the crossing point between the two models is the same as the one given by the first calculated

Akaike weights, Ω = 1.23 ± 0.1 Γ. The region defined by the transition point and its error bar is

represented by the gray area.

Theoretical simulations are performed from the exact expression of the susceptibility given in equation

3.1. On fig. 3.9 the gray lines correspond to per-point Akaike weights in the case of a pure three-level

system. The experimental per-point weights are in qualitative agreement with the three-level system

simulation but three different features can be noticed:

1. The behavior of wEIT differs for low driving field, in particular the experimental maximum value is

smaller than the theoretical one, which is 1.

2. The crossing between the two models occurs theoretically at Ω/Γ = 0.9, a lower value than the

one obtained experimentally.

3. The theoretical asymptotic value of wATS, 0.92, is larger that the one found in the experiment.

Thus, as expected, our system is not well described by a simple three-level system. Further theoretical
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FIGURE 3.10 : Theoretical simulations with multilevel structure. (a) Level scheme for the cesium D2

line and the six-level transitions involving Zeeman sublevels; inset: population distribution. (b) Per-point
weights for a three-level system (gray lines), for a sytem involving hyperfine structure (dotted lines) and
for a system involving Zeeman sublevels (dashed lines).

investigations have been conducted in order to explain the observed experimental behavior.

3.4 Theoretical simulations

The complete hyperfine and Zeeman structures are taken into account, as well as the residual Doppler

broadening. This part is mainly the work of our collaborators in Saint Petersburg, Alexandra Sheremet

and Dmitriy Kupriyanov. A summary is given in the following.

3.4.1 Multilevel structure

The full hyperfine structure of the excited state 62P3/2 is first considered, based on a previous the-

oretical model developed in the group for the study of EIT in warm vapors at room temperature

[Mishina et al., 2011, Scherman et al., 2012]. This structure explains the asymmetry between the two

resonances but do not strongly influence the shape of the per-point weights curves. On figure 3.10(b)

the dotted lines represents the per-point Akaike weights for the six-level system. The new per-point

weights slightly differ from the ones calculated in the three-level system case for very small and very

large Rabi frequency of the control Ω, but the transition point remains close to Ω/Γ = 0.9.

Then, we take into account the Zeeman structure, which consists in several sublevels in each

hyperfine state (see fig. 3.10(a)). The atomic distribution in each Zeeman sublevel is determined by

simulating the optical pumping due to the depump field applied before the absorption measurement. The

resulting population distribution is shown in the inset of fig 3.10(a). Because control and signal fields

propagate with opposite circular polarization, the system is simplified to six independent subsystems in

a Λ-configuration with different Rabi frequency. Consequently, the atomic susceptibility is calculated as

the sum of the susceptibilities for each subsystem.

Theoretical per-point weights taking into account both the hyperfine and Zeeman structures are

displayed with dashed lines on fig. 3.10(b). We note that the Rabi frequency of the control field is

estimated in the same way as in the experimental case, i.e. from the distance between the two maxima of

the absorption profiles. The crossing between the weights for EIT and ATS models occurs at Ω = 0.98 Γ,

i.e. relatively close to the value in the three-level case. Thus, the transition point varies only slightly by
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FIGURE 3.11 : Theoretical simulations with Doppler broadening. Per-point weights for a three-level
system (gray lines), for a sytem involving Zeeman structure and residual Doppler broadening of ΓD/2π =
0.6 MHz (dashed lines) and 1.3 MHz (dotted lines).

considering the Zeeman structure, and is still not in agreement with the experimental value. However,

significant changes of per-points weights values at large Ω are observed, with an asymptotic value around

0.7 for wATS, and this new behavior corresponds to the one observed experimentally. The latter is due

to the fact that the six independent subsystems have different Rabi frequencies and this feature leads to

the distortion of the Lorentzian resonances for strong control field.

3.4.2 Doppler broadening

Finally, inhomogeneous broadening due to residual Doppler broadening is included. The value of the

residual Doppler broadening ΓD is estimated by fitting an experimental absorption profile without control

field by the convolution of a Lorentzian function of width Γ and a Gaussian function of width ΓD. We

find ΓD/2π = 0.6 MHz, corresponding to a temperature of 800 µK. Figure 3.11 presents the simulated

wEIT and wATS for ΓD/2π = 0.6 MHz (dashed lines). They exhibit a crossing point at Ω = 1.05 Γ, in

much better agreement with the experiment. Moreover the shape of the per-points weight curves is

similar to the shape of the experimental curves, and in particular the reduction of wEIT for small Ω is

also observed.

The slightly larger value of the experimental transition point is very likely to be due to heating and

additional broadening caused by the control laser. The Doppler broadening is increased up to ΓD/2π =

1.3 MHz (dotted lines), the crossing occurs at Ω = 1.23 Γ.

Therefore, including in the model both the Zeeman structure of the atomic system and the finite

temperature of the atoms enables us to explain the observed experimental behavior when the criterion is

applied.
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Conclusion

What we have seen:

• We tested and analyzed in details the transition between the ATS and EIT models

in a well-controlled system.

• The criterion proposed in [Anisimov et al., 2011] has been calculated and gives a

consistent conclusion for discerning between the two regions.

• The manifold structure and residual inhomogeneous broadening must be considered

to explain our experimental behavior, which clearly differs from the simple three-level

model.

In consequence:

• The discrimination criterion is suitable in an experimental case.

• Furthermore, the witness is very sensitive to the specific medium properties, and

potentially provides a practical characterization tool for complex systems.
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Quantum memory for orbital angular
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Thanks to its unique properties, orbital angular momentum (OAM) of light [Allen et al., 2003]

provides a large range of applications [Torres and Torner, 2011], and is in particular of major interest

for quantum information applications. Indeed, in opposite to other optical degrees of freedom such as

polarization, the unbounded orbital angular momentum of light offers the potential of high-dimensional

Hilbert space for information encoding and processing. Thus, photons having helical wavefronts are good

information carriers in order to increase the capacity of quantum information encoding and processing.

From the first demonstration of entanglement of twisted photons [Mair et al., 2001], several quantum

communication implementations based on OAM of light have indeed been developed, such as quantum

cryptography [Gröblacher et al., 2006], coin tossing [Molina-Terriza et al., 2005], or bit commitment

[Langford et al., 2004]. Very recently, extremely high-dimensional entanglement have been demonstrated,
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Chapter 4. Quantum memory for orbital angular momentum of light

up to 12-dimensional systems [Dada et al., 2011], or with modes having up to ± 300 units of OAM

[Fickler et al., 2012].

In order to extend these works to quantum networks, it is essential to develop light-matter in-

terface involving OAM of light. Great advances have been realized with the demonstration of

entanglement between an ensemble of cold atoms and photons carrying OAM via to the DLCZ

scheme [Inoue et al., 2006, Inoue et al., 2009]. Moreover, storage of bright light in Laguerre-Gaussian

modes [Pugatch et al., 2007, Moretti et al., 2009], and very recently in the single-photon regime

[Veissier et al., 2013, Ding et al., 2013] have been shown. However, no evidence of coherence in the

mapping process has been reported, which will prove the quantum character of the storage of OAM

encoded qubit.

Laguerre-Gaussian modes form a set of optical modes having a twisted structure, and thus describe

modes of light carrying OAM. They are noted LGl
p, where l is the azimuthal index corresponding to the

OAM of light in ~ units and p is the radial index. We particularly focus here on the so-called doughnut

modes, LG±1
0 , which present a vanishing intensity in the center and an OAM equal to ±~. Using the

LG+1 and LG−1 modes, one can encode a qubit on OAM of light, as a coherent superposition of these

two modes, that is in fact a Hermite-Gaussian mode of the first order (appendix D).

Thus, the goal is to store and retrieve an OAM encoded qubit via the dynamic EIT protocol in an

ensemble of cold atoms, and is achieved in two steps. First a memory for photons carrying OAM in

the single photon regime is built, demonstrating the preservation of the handedness of the wavefront in

the single-photon regime. This work is published in Optics Letters 38 (5), 712-714, Reversible optical

memory for twisted photons. Second the reversible storage of OAM encoded qubits is demonstrated in

the quantum regime. This second step requires to perform a full state tomography of the retrieval qubit

states, and to compare the obtained fidelities to the classical bound. This result is published on arXiv, A

quantum memory for orbital angular momentum photonic qubits, still under review at Nature Photonics.

4.1 Optical memory for twisted photons in the single-photon

regime

The first experiment consists in developing an optical EIT-based memory for Laguerre-Gaussian modes

imprinted on very weak pulses of light. We show that our memory preserves the handedness of the

helical phase structure at the single-photon level.

4.1.1 Experimental setup

The optical layout for the storage of twisted photons at the single-photon level is presented on figure

4.1. From left to right, it is composed of first the Laguerre-Gaussian mode generation via spatial

light modulator (SLM), then the memory setup, and finally the detection of the retrieved modes via

holographic masks and photon counting. We now see in details these three parts.

4.1.1.1 Mode generation

Laguerre-Gaussian (LG) modes are generated by a spatial light modulator (SLM, Hamamatsu LCOS-SLM

X10468-02), based on liquid crystals, with a resolution of 792 × 600 pixels. The collimated signal beam
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FIGURE 4.1 : Optical layout for the storage and analysis of Laguerre-Gaussian modes in the single-photon
regime. A signal pulse consisting of a very weak coherent state is orbitally shaped by reflection on
a spatial light modulator (SLM) and then mapped into an ensemble of cold cesium atoms via the
dynamic EIT protocol (relevant energy diagram in inset). After a user-defined delay, the collective atomic
excitation is readout. The retrieved light is analysed via splitting on a 50/50 beam-splitter and an OAM
mode projection on each path. This projection results from an OAM addition (for the l = −1 path) or
subtraction (for the l = +1 path) through diffraction by blazed fork holograms and a subsequent coupling
into single-mode fibers (SMF). The coupled light is finally detected by avalanche photodiodes (APD).

in a TEM00 mode is reflected on the SLM, on which is applied the appropriate phase profile of the mode

we want to create. To generated LG modes, we apply the rotating phase profiles, shown in figure 4.2.

Because of the phase jump at the center of the signal beam, the intensity vanishes around the beam

axis. The weak signal pulse is thus in the corresponding LG mode and carries one unity of OAM. It is

then focused into the atomic ensemble for storage.

The SLM is easy to use and versatile. Indeed, any mode can in principle be generated, just by

changing the phase profile on the SLM software. Figure 4.2 shows the various phases applied on the

SLM and their corresponding intensity profiles to the phase front for the modes we are interested in.

For instance, Hermite-Gaussian modes of the first order can be created by applying a π phase jump

pattern. A flat phase can also be set in order to let the signal beam in the fundamental gaussian

mode for alignment purpose for instance. However, the mode generation by phase modulation only, as

implemented here, is not perfect and higher order modes, in particular LGp>0, are created at the same

time. The solution we tried, such as operating diffraction and amplitude modulation via the SLM, have

not been successful, whereas the lack of space does not allow us to filter the unwanted modes.

2π

π

0

Phases applied
on the SLM

Corresponding
intensity profiles

LG+1 HG10 HG01 HG′
10 HG′

01LG−1

FIGURE 4.2 : Phase profiles applied on the SLM, and their corresponding intensity profiles, for the
two Laguerre-Gaussian modes LG±1, and for the Hermite-Gaussian modes of the first order horizontal
(HG10), vertical (HG01), diagonal (HG′

10) and antidiagonal (HG′
01).
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Chapter 4. Quantum memory for orbital angular momentum of light

4.1.1.2 Implementation of the reversible mapping

The ensemble of cold atoms is prepared in the |F = 4〉 ground state as described in section 2.1, with

an optical depth of 15 for the signal field. The weak signal field, with a typical mean photon number

per pulse of 0.6, comes from a Ti:Sapphire laser and is on resonance with the |F = 4〉 → |F ′ = 4〉
transition (inset of figure 4.1). The control field, which drives the EIT-based storage, couples the other

ground state |F = 3〉 to the excited state |F ′ = 4〉. The control beam has a power of 15 µW and is

generated by a laser diode, locked in phase and in frequency with the Ti:Sapphire laser (appendix A).

Both fields have linear, but orthogonal, polarization and propagate with a 2◦ angle .

The signal pulse is shaped into a half-Gaussian temporal profile with a 1/e width equal to 300 ns

(see boxed paragraph). Initially on, the control field is cut in 50 ns, after the signal pulse compression

inside the medium. The storage lasts here 1 µs and the control field is switched on and allows the

retrieval of the signal pulse. Many repetitions of this memory sequence occur in a MOT cycle, 100

during 1 ms, for a global repetition rate of 4 kHz of the memory cycles.

Shaping the signal pulse Optimal storage does not involve square pulse as basically

produced by acousto-optic modulators (AOM) because highest frequency component does

not fit into the transparency window and some are even not absorbed by the medium.

Furthermore, the dynamic EIT protocol involves signal pulse compression along the atomic

ensemble, and due to the finite length of the medium, some pulse shapes optimize the

storage and retrieval efficiency. The optimal shape can be found by implementing an iterative

method, proposed in [Novikova et al., 2007], which consists in sending the input pulse with

the output time-reversal shape. After some steps, the input pulse shape looks like the

output time-reversal one, converging approximately to a half-Gaussian shape. This shape

also minimizes the leakage of the signal pulse during the writing process. The temporal

shaping is realized in our experiment by mixing the RF signal that drives the AOM, before its

amplification, with a Gaussian envelop from an arbitrary signal generator (Agilent 33250A).

The temporal width of the Gaussian, as well as the maximum and the offset of the amplitude

are easily set on the signal generator. Then, the Gaussian-shaped RF signal is gated by a

trigger signal in order to cut the residual RF signal outside of the pulse. This is also how we

produce the half-Gaussian shape, with a controllable cutting time. All these parameters are

adjusted to optimize the memory efficiency.

4.1.1.3 Detection at the single-photon level

An easy way to characterize the spatial properties of Laguerre-Gaussian modes is to use imaging

techniques, as it has been used in many experiments involving bright beams. The intensity profile can be

observed by simply detecting the beam with a CCD camera, while the phase profile can be observed by

making the LG mode interfere with a TEM00 mode It can results in spiral patterns and the direction of

rotation indicates the sign of l. These spiral patterns are depicted on figure 4.1, but only as illustration

of the detection process. However, such imaging methods cannot be used at the single-photon level.

Several techniques have thus been developed for single-photon OAM detection [Berkhout et al., 2010,

Leach et al., 2002, Mair et al., 2001, Vaziri et al., 2002, Lavery et al., 2012]. Here we choose to work

with a combination of a computer-generated hologram and a single-mode fiber to implement a mode

discriminator [Mair et al., 2001, Vaziri et al., 2002]. Blazed fork phase holograms diffract the light into

the first order with good efficiency (> 80 %), and depending on the fork pattern orientation, adds or
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LG−1

LG−2

LG−1

LG0

hologram
∆l = +1

FIGURE 4.3 : Operation of a ∆l = +1 blazed fork phase hologram. An incident LG−1 mode is diffracted
through the holographic mask and becomes a fundamental Gaussian mode by addition of an OAM unit.
Others residual modes can be observed. The same hologram can operate as a ∆l = −1 hologram if the
fork pattern is reversed.

subtracts one OAM of light. Figure 4.3 shows the operation of such a ∆l = +1 hologram. A LG−1

mode is transformed into the fundamental Gaussian TEM00 mode by addition of one OAM unit, and

can be coupled to a single-mode fiber. The single-mode fiber filters out the residual modes that are

generated, and allows the mode discrimination. Indeed, by sending the opposite LG+1 mode which

becomes a LG+2 mode after the hologram, the light intensity at the fiber output vanishes. What is

detected after the l = −1 path results thus from a LG−1 mode with a probability close to unity.

The detection part is actually made up of two paths, the signal beam being split on a 50/50 beam-

splitter after going out from the atomic ensemble (figure 4.1). On the l = +1 path, the holographic mask

subtracts one OAM of light (∆l = −1), and an incident LG+1 mode is coupled into the single-mode

fiber. On the l = −1 path, the ∆l = +1 hologram enables to detect LG−1 mode. Finally, photon

counters (Perkin-Elmer SPCM-AQR-14-FC) detect the signal field at the fiber output on each path.

Both LG+1 and LG−1 components of an incident light pulse are therefore measured at the same time.

Alignment of the mode discriminators is done with bright beams. First, the incident light must

be perfectly centered on the fork pattern in order to well-transform a LG mode into a Gaussian one.

This alignment consists in superimposing the two opposite optical vortices, observed by a CCD camera

after the hologram, in order to reconstruct a Gaussian mode (see images on figure 4.3). Then, we

characterize each mode discriminators by measuring the coupling efficiency for a set of input modes

and we compare them with the coupling efficiency of the mode we want to select, which is around 77

%. Typical values are showed in table 4.1. High distinction ratios are obtained, i.e. 17 and 23 dB for

Gaussian and opposite LG modes respectively. The normalized coupling efficiencies for the HG modes

should be in principle all equal to 50 %, but we observe losses and unbalancing. Unbalancing occurs

between the different Hermite-Gaussian modes into a mode discriminator, but also for a given HG mode

into the two mode selectors. This is due to the finite precision of the alignment we perform, and to

imperfections in the mode generation done only by phase modulation. Thus, higher radial modes LGp>0

are present and contribute more in the HG mode creation than in the LG mode one.

LG−1 LG0 LG+1 HG10 HG01 HG′
10 HG′

01

5.10−3 1.6.10−2 1 0.38 0.42 0.32 0.46

TABLE 4.1 : Characterization of the mode sorting path l = +1 consisting of a hologram and a
single-mode fiber. Typical values for coupling into the single-mode fiber as a function of the input mode,
normalized by the LG+1 coupling (here equal to 76 %).
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Chapter 4. Quantum memory for orbital angular momentum of light

Thanks to this experimental setup, we can send LG modes and their superpositions into the atomic

ensemble, perform the EIT-based memory, and analyze the retrieved modes. In the following, the results

are presented.

4.1.2 Experimental results

Signal pulses in different OAM states are stored inside the ensemble of cold atoms, and observed on the

two detection paths l = +1 and l = −1 simultaneously. Detected events on each APD are collected in

order to produce histograms, corresponding to the number of events as a function of time (see appendix

C for more details on the data acquisition). Figure 4.4 displays as a table the histograms. The photonic

information is mapped into collective excitations when the control field is turned off. After a delay of 1

µs, the control field is switched on and the atomic excitation is transferred back into light pulse. The

switching time as well as the power of the control field are adjusted in order to optimize the retrieval

(see boxed paragraph).

The first two lines give the results respectively for an impinging LG+1 and LG−1 mode. Memory
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FIGURE 4.4 : Storage and retrieval of LG+1, LG−1, and HG10 modes at the single-photon level. For
the two simultaneous detection paths, the number of counts is represented as a function of time. Red
areas represent the incoming signal pulses recorded without atoms and blue areas correspond to memory
measurements. The events around the incoming pulses show the leakage of the signal while the later
events correspond to the readout. The dotted line in the first plot shows the timing of the control pulse.
Each curve results from 5×105 repetitions of the experiment.
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4.1. Optical memory for twisted photons in the single-photon regime

measurements (blue areas) exhibit a first peak corresponding to the leakage of the signal pulse during

the writing process, and a second peak, which is the retrieved pulse. The main feature of this memory

experiment is the fact that no event is observed on the detection path with l opposite to the one of

the stored state, within our distinction ratio. However, on the detection path with same l, a significant

quantity of light is detected in the reading process. By dividing this quantity to the number of events

contained in the pulse reference (red areas), we access to the memory efficiency, η = 16 ± 2 %.

Therefore, the reversible mapping described here, which operates at the single-photon level, preserves

the OAM of light. Furthermore, similar efficiency has been measured during the storage of a TEM00

mode, the best being η = 24 ± 3 %. Thus, it seems possible to achieve similar efficiency with LG

modes than for the fundamental Gaussian mode.

Optimizing the control field After optimizing the position of the control beam, as

described in chapter 1 (section 2.1.3), two parameters of the control field are adjusted to

optimize the memory efficiency.

1. Power. As detailed in chapter 1 (section 1.3.1.3), a trade-off needs to be found

between the delay and the transparency. A control field with low power induces a

large dispersion of the medium, namely a large delay for the signal pulse enables to

compress the signal pulse entirely inside the atomic cloud. However, the width, and

the depth if other effects have to be taken into account, of the transparency window

are small, therefore the signal pulse experiences a lot of absorption, i.e. losses. On

the contrary, a high driving field leads to a wider and deeper transparency window,

so the signal is poorly absorbed. Yet, the reduction of the group velocity is not large

enough to enable the total compression of the signal pulse inside the ensemble, and

a considerable leakage is observed before the switching off of the control field. For

a pulse duration of 300 ns, we find an optimum value for the control power around

20 µW. From the observed delay, in this case 200 ns, we estimate the Rabi frequency

of the control around 1.15 Γ, the length of the atomic ensemble being 2 mm and

the optical depth 15. The group velocity of the signal is approximately 3.3 ×10−5 c,

therefore the spatial length of the pulse drops from 90 m to 3 mm. However, the

compressed pulse is still longer than the atomic ensemble, and a leakage is observed

(8 % in average here). The EIT bandwidth is about 2π× 2.2 MHz ≈ 1/460 ns.

2. Switching time. In principle, the control pulse should be cut when the whole signal

pulse is contained inside the medium. Because of the finite length of the atomic

ensemble, the switching must occur after as much light as possible has entered the

medium, but before too much signal leaks out. Thus, by changing the cutoff time

of the control, the energy contained in the leakage clearly varies, and depending on

the optical depth of the atomic ensemble and the control power, an optimum can be

found. For instance, after increasing the control power, the control must be switched

off earlier, in order to reduce the leakage. Here, we cut off the control few tens of ns

before the signal pulse, and due to the acousto-optic modulator, the control is cut

within 50 ns. However, no additional shaping of the control field is needed if the signal

pulse is already shaped [Novikova et al., 2007].

As shown in the last line of figure 4.4, we also store and retrieve a HG10 mode. This state is an

equally weighted superposition of LG+1 and LG−1 states, so it is expected to detect half of the events

on each APD. This is indeed what we observed on the last row of figure 4.4, considering the unbalancing

between the two paths (section 4.1.1.3), equal here to 9% for the HG10 mode. Furthermore, the storage

efficiency η is the same for each LG component than for individual storage presented just above, within
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FIGURE 4.5 : Retrieval efficiency as a function of the storage time for a LG−1 mode, detected in the
l = −1 path. Experimental points are fitted by a Gaussian function, with a 1/e time constant of 15 µs.

our experimental precision.

Storage time We also study the retrieval efficiency as a function of the storage time, as shown in

figure 4.5. The experimental points are fitted by a Gaussian distribution e−t2/τ2

with a time constant τ

of 15 µs. This behavior corresponds to a dephasing due to motional dephasing, as introduced in chapter

1 (section 1.3.2), for a temperature of the atoms of 1 mK and an angle of θ = 2◦. Further cooling

of the atoms and optical pumping to clock state would improve the memory time around 100 µs, as

limited by the loss of atoms from the excitation region. To achieve larger values, as required for practical

quantum networking applications, other trapping techniques have to be implemented, enabling optical

storage in the second range as demonstrated for instance in light-shift compensated optical lattices

[Dudin et al., 2013].

In conclusion, an EIT-based memory for light carrying OAM at the single-photon level has been

demonstrated. The OAM degree of freedom of very weak coherent light pulse is preserved upon the

storage and retrieval processes. Moreover, OAM superposition has been stored and measurements, which

give access to the diagonal elements of the density matrix, have been realized. This opens the way

towards the reversible mapping of qubit encoded in OAM of light, which requires additional coherence

measurements to prove that it indeed operates in the quantum regime. We now explain how we measure

the coherence of an OAM encoded qubit, and reconstruct the full density matrix.

4.2 Quantum memory for OAM encoded qubit

The second step of our experimental developments has been to perform the complete state tomography

of a qubit encoded in the OAM degree of freedom, after storage inside our memory device via dynamic

EIT. This requires a more sophisticated detection part, and we choose to operate with an interferometry

technique in order to measure the coherences of the qubit. Here we still imprint OAM of light on

attenuated coherent pulses at the single-photon level. However, this can be taken into account in

the computation of quantum memory benchmarks [Specht et al., 2011, Gündoğan et al., 2012], which

provide a classical bound for the fidelity of the retrieved qubit. We thus demonstrate the quantum

character of our memory device.
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FIGURE 4.6 : Bloch sphere with the |R〉 and |L〉 states corresponding to Laguerre-Gaussian modes on
the poles, and the general qubit state |ψ〉, defining by the angles θ and φ. On the equator the |H〉, |D〉,
|V〉 and |A〉 states, correspond to Hermite-Gaussian modes.

As said before, spatial modes carrying OAM of light can be used to encode quantum information.

In this physical implementation, a qubit can be described in the basis {|R〉 , |L〉}, where the state |R〉
(|L〉) represents a photon in the right (left)-handed Laguerre-Gaussian mode. Therefore, the qubit state

can be written as a coherent superposition of the two modes,

|ψ〉 = α |R〉 + β |L〉 , (4.1)

with α, β ∈ C, and |α|2 + |β|2 = 1. This two-level quantum state can be represented on a Bloch sphere,

as shown in figure 4.6, where the |R〉 and |L〉 states are located on the poles. The vector corresponding

to the state |ψ〉 forms an angle θ with the z-axis, defined by |R〉 and |L〉, and an angle φ with the

x-axis in the xy-plane. Thus, we can express the qubit state as

|ψ〉 = cos

(

θ

2

)

|R〉 + sin

(

θ

2

)

eiφ |L〉 . (4.2)

Equally weighted superpositions, with |α| = |β| = 1/
√

2, correspond to Hermite-Gaussian modes of

the first order (appendix D). In particular, we introduce the states

|H〉 =
|R〉 + |L〉√

2
, |D〉 =

|R〉 + i |L〉√
2

,

|V〉 =
|R〉 − |L〉√

2
, |A〉 =

|R〉 − i |L〉√
2

. (4.3)

corresponding respectively to horizontal, diagonal, vertical and antidiagonal Hermite-Gaussian modes.

These four states, with θ = π/2, are located on the equator of the Bloch sphere. In fact, the qubit

state |ψ〉 can be expressed in the basis {|H〉 , |V〉}, or {|D〉 , |A〉}

|ψ〉 =
α+ β√

2
|H〉 +

α− β√
2

|V〉 =
α− iβ√

2
|D〉 +

α+ iβ√
2

|A〉 . (4.4)

In analogy with polarization qubit [James et al., 2001], the density matrix can be expressed as a
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function of the Stokes parameters Si as:

ρ̂ =
1

2

(

1̂ +

3
∑

i=1

Siσ̂i

)

, (4.5)

where 1̂ is the identity matrix and σ̂i are the Pauli spin operators. In order to determine the parameters

Si, three linearly independent measurements must be performed on the qubit. In our case, the three

spatial basis {|R〉 , |L〉}, {|H〉 , |V〉} and {|D〉 , |A〉} are used to this end. Then, the reconstruction of

the density matrices can be performed, as it has been done in various physical systems for polarization

qubit [Choi et al., 2008, Specht et al., 2011, Gündoğan et al., 2012, Clausen et al., 2012]. In order to

characterize our memory device, we propose to store a set of qubit states, reconstruct the density

matrices of the retrieved states, and finally compare the obtained fidelities with the classical bound.

4.2.1 Measuring the qubit coherence

The qubit density matrix, and in particular the coherence terms, is measured via an interferometry

technique, which is based on the former experimental setup. After explaining the technique, we show

how we access the interferometer phase, and how interference fringes are then obtained.

4.2.1.1 Interferometry technique

The detection setup is displayed on figure 4.7. The two detection paths consisting in holograms and

single-mode fibers are combined thanks to a fiber beam splitter (Evanescent Optics, 954P polarization-

maintaining 50/50 non-polarizing fiber couplers) in order to form a Mach-Zehnder interferometer. Thus,

when the qubit is sent into the interferometer, both its |R〉 and |L〉 components interfere, constructively

or destructively depending on the phase shift ∆ϕ between the two arms and on the qubit phase φ.

We described here the transformation of the qubit state by the interferometer. Only for this

paragraph, we note the photons in Laguerre-Gaussian state as |l〉, where l is the OAM of the photon.

Thus, |R〉 = |+1〉, |L〉 = |−1〉, |0〉 is the fundamental TEM00 mode, and |±2〉 are Laguerre-Gaussian

modes of the second order. The input qubit, initially in the state |ψ〉 = α |+1〉 + β |−1〉, is first split

into two equal parts by a first 50/50 non-polarizing beam splitter (BS1). Then, each path is diffracted

on an hologram, which changes the OAM number. On the R path, a unit of OAM is subtracted,

|l〉 Holo R→ |l − 1〉, while on the L path, a unit of OAM is added |l〉 Holo L→ |l + 1〉. After that, the output

states are sent into single-mode fibers, where ideally only the fundamental Gaussian state |0〉 can be

coupled. Neglecting losses and unbalancing of beam splitters, the qubit state transformation can be

written as follows in the R and L paths

α |+1〉 + β |−1〉 Holo R→ α |0〉 + β |−2〉 Fiber→ α |0〉 ,
α |+1〉 + β |−1〉 Holo L→ α |+2〉 + β |0〉 Fiber→ β |0〉 . (4.6)

Finally, the two paths are recombined on the second beam splitter BS2, and the two output states are

given by

|a〉 ∝
(

α+ ei∆ϕβ
)

|0〉 ,
|b〉 ∝

(

α− ei∆ϕβ
)

|0〉 , (4.7)
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FIGURE 4.7 : Experimental setup for quantum state analysis of OAM qubits. The photons (memory
output) enter into a two-path interferometer, defined between beam splitters BS 1 and BS 2, and each
path includes a mode projector based on a blazed-fork computer-generated hologram and a single-mode
fiber. The two paths are arranged in a way to project the photons respectively into the |L〉 mode (L path)
and the |R〉 mode (R path). Events are detected at the output of a fiber beam-splitter by single-photon
counting modules (APD 1 and APD 2). The relative phase ∆ϕ between the two paths is experimentally
determined in a cyclic fashion by sending a phase-reference beam backward (phase ref light) and analyzing
its spatial structure at the input of the interferometer via a CCD camera.

where ∆ϕ is the phase difference between the R and L paths, accumulated between BS1 and BS2. The

probabilities to detect events on the single-photon detectors at the outputs are therefore

Pa ∝
∣

∣α+ β ei∆ϕ
∣

∣

2
,

Pb ∝
∣

∣

∣α+ β ei(π+∆ϕ)
∣

∣

∣

2

. (4.8)

If the qubit state is an equally weighted superposition the probabilities becomes

Pa ∝ cos2

(

φ+ ∆ϕ

2

)

,

Pb ∝ sin2

(

φ+ ∆ϕ

2

)

. (4.9)

By scanning the phase ∆ϕ of the interferometer, fringes can therefore be observed with offsets

corresponding to the qubit phase φ. Furthermore, by selecting measurement for given phase ∆ϕ, one can

project the qubit on any HG states. However, the phase of the interferometer must be first determined,

as we now explain.

4.2.1.2 Accessing the interferometer phase

A bright light pulse is sent backward into the interferometer in a cyclic fashion in order to measure the

phase of the interferometer ∆ϕ (figure 4.7). For this purpose, the second output of BS 2 is separated

in two paths by a second fiber beam splitter, BS 3, the APD 2 being connected to one path, while the

other path is used to bring the phase reference light. This light is sent during the MOT loading and

the atomic preparation stages, so during 12 ms over 15 ms, which is the MOT cycle duration for this

experiment. Moreover, the power is very small, around 1 nW, and the beam is cut by an ensemble of

two AOMs, in order to avoid any scattering from this light into the detection paths. The phase reference

light has the same frequency and polarization as the photonic qubit, so it experiences the same phase

shift ∆ϕ in the interferometer.
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After passing through the holograms, both components of the phase reference light become LG

modes, |R〉 or |L〉. After recombination on BS 1, the resulting beam is thus in a coherent superposition

of LG states, with a relative phase ∆ϕ. The last channel of the beam splitter is used to image on a

CCD camera the resulting HG mode whose axis of symmetry forms an angle ∆ϕ/2 with the horizontal

axis. Pictures are recorded every 125 ms, thus averaged over few MOT cycles, and time-stamped by the

computer. The same computer time-stamps also the events detected by the single-photon counters,

enabling therefore to associate them to a ∆ϕ value afterwards.

We access to the value of the interferometer phase by analyzing images from the CCD camera via a

Python script (see supplementary information of [Nicolas et al., 2013]). First the center is determined

by summing all the images and fitting the resulting doughnut shape image by a ring. Then, images are

cut into n slices, where n determines the number of phase bins and must be dividable by 4. The average

intensity over each slice is calculated and the two diagonally opposite slices that minimize the intensity

define the symmetry axis. We choose n = 60, which corresponds to a discretization of 6◦ for ∆ϕ.

4.2.1.3 Observing the interference fringes

The phase ∆ϕ of the interferometer is scanned via a mirror mounted on a piezoelectric stack in the

R path. The scanning frequency is set in such a way that the interferometer phase varies by 2π in

approximately 10 s, which is large compared to the image recording time of 125 ms. After the image

analysis, events detected on the APDs are associated to a ∆ϕ value, and fringes can be reconstructed.

Figure 4.8(a) shows experimental fringes for the four HG states, recorded before storage on APD

1, which corresponds to the probability Pb from equation 4.9. Data recorded on APD 2 are not

displayed here but exhibit fringes proportional to Pa. Experimental points are fitted by the function

P exp
b = A + B sin2( π

360 (∆ϕ + φ)), with offsets (φH, φD, φV, φA) = (−10.1◦, 81.5◦, 173.8◦, 262.1◦),

that must be compared with the ideal offsets,
(

φth
H , φ

th
D , φ

th
V , φ

th
A

)

= (0◦, 90◦, 180◦, 270◦). Thus, we

observed a small global phase shift of the interferometer, of -8.2◦ in average for these data, which

is a typical value in our experimental setup. This small global phase shift is probably due to a small

misalignment between the SLM and the holograms axes, or to a tiny difference of polarization between

the qubit and the phase reference light, but leads only to a slight reduction in the fidelities calculated

afterwards.

Storage of the OAM encoded qubits is performed, based on the dynamic EIT protocol, as detailed in

section 4.1. Experimental interference fringes for the retrieved qubits are shown in figure 4.8(b). The

offsets determined by fitting, (−7.3◦, 78.9◦, 177.6◦, 277.8◦), are slightly different than the ones before

storage, and result in a global phase shift of -4.5◦.

The visibility can be calculated thanks to the fitting parameters, as V = B/(2A+B). The average

visibility for the four input states is 95.8 %, while it is 85.1 % for the four retrieved states. The visibility

decreases after storage mostly because of the reduced signal-to-noise ratio. Indeed, the background

noise level, displayed as the gray lines on figure 4.8(b), becomes non-negligible relatively to the detected

number of photons. The background noise has different contributions. It results from the dark counts of

the single-photon detectors, around 100 Hz, and from the residual leakage of the control field into the

detected mode, around 500 Hz. After background subtraction, the visibility averaged over the retrieved

qubit states becomes 95.7 %, so almost as large as for the input states. The coherence is therefore

preserved during the reversible mapping of the qubit into the atomic ensemble.

For LG states, ideally no interference occurs. However, due to the finite distinction ratio between

the two paths, small fringes are observed. They are presented in figure E.1 in appendix E, where the
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FIGURE 4.8 : Experimental fringes recorded before and after 1 µs storage into the atomic ensemble. The
number of photon per pulse detected on APD 1 is displayed as a function of the interferometer phase ∆ϕ for
the four qubit states |H〉,|D〉, |V〉 and |A〉, (a) without storage and (b) with storage. Experimental points
are fitted by the function P exp

b = A+B sin2( π
360

(∆ϕ+ φ)), with a set of four offsets (φH, φD, φV, φA)
equal to (−10.1◦, 81.5◦, 173.8◦, 262.1◦) for the input qubit states and (−7.3◦, 78.9◦, 177.6◦, 277.8◦) for
the retrieved qubit states. The gray lines represents the background noise level. Images correspond to
the phase reference light imaged on the CCD camera for several ∆ϕ values.

consequences for the fidelity are discussed.

Then, we perform state tomography of the retrieved qubits, and reconstruct the associated density

matrices.

4.2.2 Quantum state tomography

Complete state tomography is performed by selecting measurements at some phase interferometer ∆ϕ,

and by blocking each arm, in order to project the qubit on the six basis states |R〉, |L〉, |H〉, |D〉, |V〉,
|A〉. The density matrix reconstruction is done by calculating the Stokes parameters,











S1 = (pR − pL)

S2 = (pH − pV)

S3 = (pD − pA)

, (4.10)
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FIGURE 4.9 : Reconstructed density matrices for the four input states |R〉, |L〉, |H〉 = (|R〉 + |L〉) /
√

2
and |D〉 = (|R〉 + i |L〉) /

√
2. The mean number of photons per pulse is here n̄ =0.6, and no background

correction has been applied. The first column shows for each state its location in the Bloch sphere, the
phase pattern imprinted by the SLM and the associated spatial mode.

where pj is the normalized probability of the outcome i, obtained from the relative detected photon

number at ∆ϕ = π − φth
j mod 2π for j = H,V,D,A, or on the j path with the opposite arm blocked

for j = R,L. From the definition of equation 4.5, the density matrix ρ̂ is then expressed and computed

as

ρ̂ =
1

2

(

1 + S1 S2 − iS3

S2 + iS3 1 − S1

)

. (4.11)

Density matrices are thus reconstructed from the raw fringes of figure 4.8(b), and from measurements

with the arms of the interferometer blocked, which are similar to the measurements performed in section

4.1. Figure 4.9 displays the real and imaginary parts of the density matrices for the two qubit basis

states |R〉 and |L〉, and for two coherent superpositions, |H〉 and |D〉. The form of the experimental

density matrices is similar to the expected one for ideal states. In order to quantitatively determine

the fidelity of retrieved qubit density matrices, and to prove that the memory process operates in the

quantum regime, we compare to a classical bound.
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Input state Raw fidelity Corrected fidelity
|R〉 95.1 ± 0.5 % 99.3 ± 0.5 %
|L〉 90.0 ± 0.8 % 97.7 ± 0.6 %
|H〉 94.7 ± 0.9 % 98.1 ± 0.5 %
|V〉 90.3 ± 1.1 % 98.8 ± 0.5 %
|D〉 94.0 ± 0.9 % 98.7 ± 0.5 %
|A〉 90.6 ± 1.1 % 96.2 ± 0.8 %

TABLE 4.2 : Fidelities between the readout states and the ideal states for the six input qubit states
without and with background noise subtraction for a mean number of photon per pulse n̄ = 0.6. Errors
were estimated assuming Poissonian statistics and taking into account the phase binning and residual
error on the calibration of the interferometer.

4.2.3 Benchmarking

From the calculated density matrices, we compute the fidelity of the retrieved states and compare it to

the best classically achievable fidelity.

4.2.3.1 Fidelity with the ideal state

The retrieved qubit state ρ̂ is first compared to the ideal pure state |ψ〉 by computing the fidelity as

F = 〈ψ| ρ̂ |ψ〉 . (4.12)

Raw and background corrected fidelities corresponding to a photon number n̄ = 0.6 are given in table 4.2.

Raw fidelities are in average over the six states equal to 92.5 ± 2 % while averaging over background

noise corrected fidelities gives a value of 98.1 ± 1 %. Thus, the preservation of the coherence during the

memory process is once again confirmed. However, these high values correspond to low bounds for the

memory characterization as they depend on any imperfections of the mode preparation and detection.

In appendix E, we discuss about the influence of first the finite distinction ratio and the unbalancing

between the two detection arms and second the offset in the measurement of the interferometer phase.

4.2.3.2 Fidelity with the input state

A way to measure only the memory effect is to compute the fidelity between the input and the output

states of the qubit. Because both are mixed states, the fidelity is now expressed as

Fin/out = Tr

[
√√

σ̂ρ̂
√
σ̂

]2

, (4.13)

where σ̂ is the initial density matrix of the qubit. Table 4.3 presents the values of the "in/out" fidelities

for the same data as table 4.2. Calculated from raw data, Fin/out is equal to 97.5 ± 2 % in average,

while with background noise subtraction it is in average 99.2 ± 1 %. Thus, fidelities with the input qubit

state exhibit higher values than previous fidelities, confirming that the state analysis limits the fidelity.

We now compute the upper bound for the classical fidelity in order to compare it with the fidelities

presented here.
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Input state Raw in/out fidelity Corrected in/out fidelity
|R〉 98.1 ± 0.5 % 100 ± 0.5 %
|L〉 95.6 ± 0.8 % 98.5 ± 0.6 %
|H〉 98.8 ± 0.9% 99.9 ± 0.5 %
|V〉 98.2 ± 1.1 % 99.1 ± 0.5 %
|D〉 97.5 ± 0.9 % 99.6 ± 0.5 %
|A〉 96.5 ± 1.1 % 98.4 ± 0.8 %

TABLE 4.3 : Fidelities between the readout states and the input states for the six input qubit without
and with background noise subtraction for a mean number of photon per pulse n̄ =0.6. Errors were
estimated assuming Poissonian statistics and taking into account the phase binning and residual error on
the calibration of the interferometer.

4.2.3.3 Classical limit

In order to conclude about the quantum character of the reversible mapping, we have to compare the

measured fidelities with the best achievable ones using classical resources. The classical strategy consists

in measuring the qubit state, classically storing the results and later preparing a new qubit based on the

stored results. This corresponds to the so-called "measure-and-resend" attack. Following this strategy,

it has been shown [Massar and Popescu, 1995] that the maximal achievable classical fidelity for a state

with a fixed photon number N is

Flim =
N + 1

N + 2
, (4.14)

giving the classical limit of 2/3 for single-photons. Using weak coherent states of light with mean photon

number n̄, this expression must be weighted by the poissonian distribution, and it results in:

Flim =

∞
∑

N=1

N + 1

N + 2

e−n̄n̄N

N !

1

1 − e−n̄
. (4.15)

This classical bound is displayed on figure 4.10 as the blue dashed line. Closed to the single-photon

bound of 2/3 for very low n̄, the classical fidelity for a poissonian distribution increases up to 1 for large

photon numbers. A range of n̄ remains accessible for the demonstration of quantum memory, between

0.1 and 10.

Furthermore, if the memory efficiency η is not equal to one, an optimal classical strategy leads to higher

values for Flim, making the bound more difficult to beat [Specht et al., 2011, Gündoğan et al., 2012].

A photon number threshold Nmin is obtained from n̄ and η such as the classical strategy is performed

if N > Nmin, otherwise losses are induced and no results is given. For N = Nmin, measurement is

performed with a probability p, that also depends on n̄ and η. Thus, the expression of the best classical

achievable fidelity is given by:

Flim =
Nmin+1
Nmin+2p+

∑

N>Nmin

N+1
N+2

en̄n̄N

N !

p+
∑

N>Nmin

en̄n̄N

N !

. (4.16)

This classical bound is shown on figure 4.10 for η = 15 ± 2% as the red shaded region. Raw average

fidelities are depicted as purple points, while corrected average fidelities are represented by the green

points. Our results beat the classical limit by several standard deviations for a large range of mean

photon number, ranging from n̄ = 0.2 to 20. Thus, we can conclude about the quantum character of our

memory device. For very low n̄, the fidelity drops below the classical bound because the signal-to-noise

ratio becomes too small. At the opposite, for mean photon number above 20, the classical limit becomes

too high to beat experimentally. This experiment constitutes the first demonstration of a reversible
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FIGURE 4.10 : Fidelity F of the retrieved qubit with the ideal state, averaged over the six qubit states,
given as a function of the mean photon number per pulse n̄. The purple points correspond to the raw
data while the green ones are corrected for background noise. The blue dashed line gives the classical
limit for a memory with unity storage and readout efficiency and the red line shows the classical limit
for the actual efficiency of our memory device (the pink shaded area represents the error bar on the
efficiency). Vertical and horizontal error bars indicate respectively standard deviation on the fidelity
measurements and on the mean photon number.

quantum memory for photonic OAM encoded qubit. We emphasize here that no dual rail implementation

with spatially separated ensembles is required, as usually done for the polarization degree of freedom,

due to the intrinsic multimode nature of the storing medium for spatial modes.

Conclusion

What we have seen:

• We have demonstrated the preservation of light OAM upon an EIT-based memory

protocol at the single-photon level.

• Furthermore, performing quantum state tomography of OAM encoded qubits, we

have shown that the coherence of OAM state superpositions is preserved after

storage inside the atomic ensemble.

• Finally, the fidelities of the retrieved qubit states beat the best classically achievable

fidelity, demonstrating therefore that the memory operates in the quantum regime.

In consequence:

• This experiment provides the first demonstration of quantum memory for OAM

encoded qubits, an important tool for the development of quantum communication

protocols based on the OAM degree of freedom.

• This work opens the way towards further investigations, taking advantage of the

high-dimensional possibility of OAM, and storing Laguerre-Gaussian states with

higher l values.
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Single photons are of major interest for quantum information, and in particular for quantum

communications. Whereas faint laser pulses are now widely used in quantum key distribution protocol,

single photons will help to implement for instance device-independent protocols, which enable to

improve the security [Sangouard and Zbinden, 2012]. Moreover, single photons are also needed for the

demonstration of quantum repeaters, which require in the same time light-matter interaction and storage

into quantum memories.

The development of single-photon sources compatible with atomic systems is therefore moti-

vated in this context. Main requirements on the single photons include a precise frequency that

matches an atomic transition, and a narrow spectrum corresponding to the atomic linewidth. Hence,
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atomic systems are naturally good candidates for single-photon generation, which can be realized

via atomic cascade [Grangier et al., 1986], four-wave mixing [MacRae et al., 2012], Rydberg blockade

[Peyronel et al., 2012, Li et al., 2013, ?] or via the DLCZ building block [Chou et al., 2004, Laurat et al., 2006].

In the latter case of the DLCZ protocol, the single-photon is heralded by a first photon, emitted

during the writing process and announcing the creation of a unique atomic collective excitation. In

order to obtain a state with a high single-photon component, i.e. with a low admixture of vacuum,

the retrieval of the atomic collective excitation must be efficient and the correlations between the two

photons, the heralding and the heralded, have to be strongly non-classical.

The single-photon character is usually demonstrated by calculating the autocorrelation function of

the second order, which vanishes in the case of single-photon. Several previous experiments have been

performed in this way [Chou et al., 2004, Chanelière et al., 2005, Laurat et al., 2006, Chen et al., 2006].

However, complete state tomography via homodyne detection enables a full characterization in a well-

defined spatiotemporal mode and highlights the non-gaussianity of the single-photon state through

the Wigner function reconstruction. This has been demonstrated for the first time for a single-photon

generated by parametric down conversion [Lvovsky et al., 2001], but has not been investigated for

the heralded single-photon generated by DLCZ in an atomic ensemble. Furthermore, the quantum

tomography of the heralded single-photon generated by an atomic ensemble is a step towards the

quantum engineering of collective excitations, which can be efficiently transferred to light.

In this chapter we first remind how to characterize the implementation of the DLCZ building block

in an atomic ensemble, via different parameters quantifying the memory efficiency or the correlations

between the photons. Then, the implementation of the so-called DLCZ building block in our ensemble of

cold cesium atoms is described, and its characterization is realized. Finally, we perform state tomography

on the heralded single-photon via homodyne detection. The density matrix, as well as the Wigner

function, are reconstructed.

5.1 Characterizing the DLCZ building block

The DLCZ scheme enables the generation of photon pairs, field 1 and field 2, which can exhibit

strong non-classical correlations, as it is the case in parametric down conversion (section 1.2.2). The

atomic ensemble can also be seen as a source of heralded single photons, the first scattered photon

heralding the emission of a second photon after a programmable delay. The objective being to observe

the non-Gaussian character of the heralded single-photon, the system must be optimized to retrieve

efficiently the collective excitation into the field 2 photonic state with a low admixture of vacuum.

Furthermore, the second photon must exhibit a high suppression of the two-photon contribution. Here

we remind how to characterize this protocol via the following parameters: the retrieval efficiency, the

correlations between the two photons of the pair, and the autocorrelation function for the heralded

photon [Laurat et al., 2006].

Figure 5.1 displays the optical layout for the implementation of the DLCZ building block, and the

detection setup for the characterization of the photon pair. We now define different useful quantities. The

probability of detecting a photon in field i, either on detector Dia or Dib is noted pi, with i = 1 or 2. In

order to measure these quantities, only one detector for each field is sufficient. The conditional probability

of having an event j after an event i in the same trial is noted here p (j|i), with i, j = 1, 2, 1a, 1b, 2a, 2b.

Then, joint probability pij corresponds to the probability of detecting in the same trial a photon either

in field i or on detector Di and a photon either in field j or on detector Dj . When j = i, pii is the
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FIGURE 5.1 : DLCZ building block and detection setup for the determination of correlation and
autocorrelation functions. A weak write pulse induces a spontaneous Raman transition into field 1. This
mode is split by a 50/50 beam splitter and detected by a pair of single-photon counters, D1a and D1b.
After a user-defined delay, a strong read pulse enables the transfer of the atomic collective excitation into
a photonic mode, called field 2, also detected by a set of two single-photon counters, D2a and D2b.

probability of having an event on detector Dia and another one on Dib, in the same trial, so two photons

in the same field i.

5.1.1 Conditional retrieval efficiency

The conditional probability pc of detecting a field 2 photon after detecting a field 1 photon is in a certain

sense equivalent of the storage efficiency for the EIT-based memory. We can write the conditional

probability of detecting a field 2 by having a field 1 as

pc ≡ p (2|1) =
p12

p1
. (5.1)

It is related to the conditional probability qc of field 2 emission given a field 1 detection,

pc = η2 qc , (5.2)

where η2 is the overall detection efficiency for the field 2 photon. This probability qc is related to the

vacuum component of the density matrix of the heralded photon, qc ∝ 1 − ρ00. Hence, qc, and so pc

must be as high as possible in order to observe strong non-gaussianity of the heralded photon. For

increasing write power, the probability of creating multiple excitation becomes however non-negligible,

and the single-photon character drops. It is therefore important to characterize the correlations between

the two photons, as seen now.

5.1.2 Normalized intensity cross-correlation function

The correlations between the two photons are characterized by the normalized intensity cross-correlation

function g12,

g12 =
p12

p1 p2
. (5.3)

For classical field, the Cauchy-Schwarz inequality for coincidence detection of the two fields is expressed

as [Clauser, 1974]

R =
g2

12

g11 g22
≤ 1 (5.4)
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where gii = pii/p
2
i , with pii being the joint probability of detecting two events on field i. Thus, the

quantum character of the photon pair can be proved by the violation of this inequality. In the ideal case,

g11 = g22 = 2, so the condition for non-classical correlations simplifies to

g12 > 2 . (5.5)

The normalized intensity cross-correlation function depends on the Raman scattering probability,

χ ∝ d0Pwtw, with d0 the optical depth of the atomic ensemble, Pw the power, and tw the duration

of the write field, as defined in chapter 1 (section 1.2.2). For χ ≪ 1, the correlation function can be

expressed as

g12 ≈ 1 +
1

χ
, (5.6)

Thus, g12 increases when the excitation probability decreases, namely when the write power decreases.

5.1.3 Conditional autocorrelation function

The conditional autocorrelation function w for the detection of two photons from field 2, conditioned

upon a field 1 detection is given by

w ≡ p (2a, 2b|1)

p (2a|1) p (2b|1)
=
p1 p1,2a,2b

p1,2a p1,2b
. (5.7)

Ideally, two events are never detected within the same trial in field 2 after a photon is emitted in field 1,

so p1,2a,2b = 0 and w = 0. For a classical field, the Cauchy-Schwartz inequality leads to w ≥ 1. Thus,

fulfilling the condition

w < 1 (5.8)

is a signature of the single-photon character of field 2. The conditional autocorrelation function is

the equivalent to the second-order correlation function, usually noted g(2)(τ = 0). It represents the

extinction of higher excitation number relative to coherent states, and therefore is related to the diagonal

elements of the heralded photon density matrix corresponding to photon numbers higher than one, i.e.

ρii with i ≥ 2.

In the case of χ ≪ 1, the conditional autocorrelation function is simply w ≈ 4χ, and is therefore

related to the normalized intensity cross-correlation function,

w ≈ 4

g12
. (5.9)

Thus, the value of the conditional autocorrelation function w can be estimated from the measurement

of g12.

We now present how we experimentally implement the DLCZ building block and characterize it

with the parameters introduced above, the conditional retrieval efficiency and the normalized intensity

cross-correlation function, which require only one single-photon detector per photonic mode.
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FIGURE 5.2 : Optical layout for the experimental DLCZ building block implementation. A weak detuned
write pulse is sent into the ensemble of cold atoms and leads to Raman scattering into the field 1 mode,
which is detected with a small angle on a single-photon counter, APD 1, after frequency filtering. The
detection of a single-photon in this mode heralds the generation of a collective state in the atomic
ensemble. After a programmable delay, a strong read pulse maps out the collective excitation into the
field 2 mode, which can be detected on APD 2. Both detector outputs are recorded by computer for
analysis. Polarization are indicated as dots for vertical and arrows for horizontal polarization.

5.2 Experimental implementation of the DLCZ building block

5.2.1 Experimental setup

We implement the DLCZ building block in an off-axis configuration, as shown in figure 5.2. The write

field is generated by a Ti:Sapphire laser, locked on resonance with the |F = 4〉 → |F ′ = 4〉, and then

detuned by ∆ = − 10 MHz thanks to a setup consisting in two acousto-optic modulators. A 100

ns-long weak write pulse, with a power Pw and horizontally polarized, induces with a small probability χ

spontaneous Raman scattering into the field 1 mode. This field, projected on a vertical polarization, is

coupled into a single-mode fiber and frequency filtered through an atomic filter described in appendix F,

in order to ensure that its frequency is around the |F = 3〉 → |F ′ = 4〉 transition. Photons emitted on

the adjacent transition, which do not herald the creation of an atomic excitation, are therefore filtered

out. The photon is finally detected by an avalanche photodiode (Perkin Elmer, SPCM-AQR-14-FC),

APD 1, and heralds the generation of a collective spin state.

After a programmable delay, chosen in our case around 300 ns, short to operate at the maximum

of efficiency, a second optical pulse is sent into the atomic ensemble with a vertical polarization to

read the collective excitation. This read pulse comes from a laser diode, which is locked in phase and

frequency with the Ti:Sapphire laser, and so couples the |F = 3〉 ground state to the |F ′ = 4〉 excited

state. The read pulse has a power Pr ∼ 100 µW and a duration of 150 ns. This value has been obtained

by optimizing the retrieval efficiency. The field 2 photon is selected to be horizontally polarized and

sent via an optical fiber to a second single-photon counter, APD 2. Both APD outputs are recorded
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by computer and analyzed (appendix C), in order to determine the characteristic quantities introduced

above.

The DLCZ trial lasts only 1 µs and occurs 1000 times per MOT cycle. Thus, the mean repetition

rate is 67 kHz. Gaussian shapes for write and read pulses are obtained simply because the duration

of the wanted pulses is shorter than both the rising and falling times of the acousto-optic modulators

(AOM) that switch the light. Furthermore, depending on the alignment of the beam into the AOM,

the resulting optical pulse can be much shorter than the trigger signal pulse. That is why they are first

characterized using bright light and fast photodetector. After each DLCZ sequence, a second read pulse,

with a duration of 200 ns, is used to repump all the atoms in |F = 4〉.

Some experimental parameters are crucial and must be optimized. In particular, the coupling between

the write and the read paths, as well as the coupling between the field 1 and 2 modes, have to be as high

as possible. We achieve values around 75 % for both. Moreover, we characterize the detection efficiency

for photons in field 1 or field 2, and we obtain η1 ∼ 0.25 and η2 ∼ 0.3. These detection efficiencies

include the coupling of the modes into the optical fibers, the filter efficiency, and the detection efficiency

of the photon counters, which is around 45 % in our case.

5.2.2 Characterization

Thanks to the experimental setup described above, we characterize the DLCZ building block by measuring

the two crucial parameters introduced in section 5.1: the conditional retrieval efficiency, qc, and the

normalized cross-correlation function, g12.

5.2.2.1 Dependence with the excitation probability

We first study the behavior of these two parameters as a function of the probability p1 of detecting

a photon in field 1, which is proportional to the excitation probability χ = η1 p1, where η1 is the

detection efficiency for a photon in field 1. In practice we change the write power from 50 nW to 80

µW, the probability of excitation per write photon being approximately 6 × 10−9 in our experiment.

Figure 5.3 shows our experimental results as a function of p1. The left panel gives the evolution of

the normalized cross-correlation function g12, which globally decreases when the excitation probability

increases. However, all the values are above the classical limit of 2, and the highest value is g12 = 165,

confirming the strong quantum character of the photon pairs. A saturation is observed at very low p1,

because of the background noise, almost equally due to dark counts of the single-photon counters and

to leakage of the write and read pulses.

As it has been underlined in chapter 1, the filtering of the classical coupling fields is crucial when

operating at the single-photon level. Here, the write and read pulses are filtered spatially, in polarization,

and also in frequency. First, an angle of 2.5◦ is set between the two paths to enable spatial filtering, as

discussed in section 2.1.3. Secondly, the horizontal polarization of the write field is orthogonal to the one

of the field 1, which is vertically polarized (see figure 5.2). Similarly, the vertically polarized read field is

orthogonal to the horizontally polarized field 2. A Glan cube is placed only on the read path before the

chamber, to well-defined the read polarization, but not after to avoid loss due to a Glan cube on the

field 2 path. Thus, standard polarization beam splitters (PBS) are used here to filter in polarization the

coupling fields. Finally, the write pulse is filtered in frequency from the field 1 detection. Indeed, the

field 1 is frequency filtered by an atomic filter, where all the atoms are pumped into the |F = 4〉 state.

Hence, the write field is absorbed by this setup. No frequency filtering is realized here for the read pulse.
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FIGURE 5.3 : DLCZ building block characterization. (a) Normalized correlation function g12 and (b)
conditional retrieval efficiency qc as a function of the probability p1 to detect a photon in field 1. For
these data, d0 = 30, ∆ = − 10 MHz, and Pr = 90 µW. Error bars are smaller than the symbol size.

However, during the second step, the homodyne detection will filter in frequency the read field.

On figure 5.3(b) the conditional retrieval efficiency qc is displayed as a function of the excitation

probability. We access to qc from the conditional probability pc of detecting a photon in field 2 given

a field 1 event, corrected for the detection losses of field 2, η2 = 0.3. Three different regimes can be

observed on this plot. For high excitation probability, qc increases with p1 because of multiple excitations

that scale with the write power. For lower excitation probabilities, a plateau is observed, qc staying

constant. This corresponds to the single-excitation regime, where the probability for multi-excitation is

low. Finally, for very low values of p1, the conditional retrieval efficiency decreases. Indeed, because

p1 as well as p2 become close to the background noise, false field 1 events induced by the noise are

appearing. Our region of interest is the single-photon regime, where we obtain a retrieval efficiency qc

of 45 ± 1 %, corresponding to pc = 13.5 ± 0.3 %. In this regime, for Pw = 900 nW, the normalized

correlation function is 40 ± 1.

Optimizing the coupling beams In contrast with the dynamic EIT protocol, two different

beams are used to "write" and "read" the collective excitation. The optimization is therefore

easier.

• Write field. The power of the write beam plays a crucial role for the qc and g12

parameters, as just seen previously. The excitation probability χ ∝ p1 scales linearly

with Pw, which should be adjusted to work in the single-photon regime. In our case,

we find Pw ∼ 1 µW. The duration and the shape of the write pulse must be similar to

the ones of the first photon. The first photon pulse being close to a Gaussian with a

width around 50 ns, we set the write pulse as a Gaussian with a width of 100 ns.

• Read field. The reading process here is close to the retrieval process in an EIT-based

memory, but in a backward configuration, i.e. the the reading control beam is counter-

propagative with the writing control beam. Thus, we want to open a large transparency

window for the field 2 to avoid any absorption from the medium. Hence, a relatively

high power is set for the read beam, and a saturation is observed around 100 µW. The

duration of the read pulse is not very critical in our case, and set around 150 ns.

5.2.2.2 Dependence with the optical depth

In a second step the dependence of the retrieval efficiency with the optical depth is investigated. For

this purpose we choose a write power of 0.6 µW to be in the single-excitation regime identified above.
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FIGURE 5.4 : Dependence of qc with the optical depth. The conditional retrieval efficiency is shown as
a function of the optical depth d0. For this measurement, ∆ = − 20 MHz, Pw = 0.6 µW and Pr = 100
µW. Error bars are smaller than the symbol size.

Figure 5.4 gives the experimental curve for qc as a function of d0, for optical depths between 0.6 and

32. We clearly see that the retrieval efficiency strongly increases with d0 as expected, confirming that

the retrieval process is enhanced for large optical depth. However, for d0 > 20, qc starts decreasing,

meaning that unwanted processes, such as residual absorption, become stronger than the collective

effects when the optical depth increases. We identify the optimum value of optical depth, the best

value of qc being obtained for an optical depth of 20. Further investigations in this direction must be

conducted for a better understanding of the reasons causing this decrease in efficiency at high optical

depth. Indeed this work would be now very important to take advantage of the large optical depths that

we are able to obtain.

Given these results, the next step consists in characterizing the retrieved state, not only by photon

counting, as commonly done, but by full quantum state tomography via homodyne detection.

5.3 Tomography of the retrieved single-photon state

Quantum state tomography enables to reconstruct the density matrix of the heralded single-photon

emitted by the atomic ensemble. The method involves the measurement of marginal probabilities by

high-efficiency homodyne detection, and the reconstruction of the density matrix via the so-called MaxLik

algorithm.

5.3.1 Principle

5.3.1.1 Single-photon state in phase space

We describe here the state of a perfect single-photon in the phase space, i.e. in terms of quadrature

operators. The latter are defined as


















x̂ =
â† + â√

2

p̂ = i
â† − â√

2

, (5.10)
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FIGURE 5.5 : The Wigner function W (x, p) and the corresponding probability distribution pr(x) for a
single-photon state.

where â† and â are respectively the creation and annihilation operators, with the canonical commutation

relation

[x̂, p̂] = 1 , (5.11)

with ~ = 1. The x-representation of the wave function for a Fock state |n〉, which is phase independent,

is expressed as [Leonhardt, 1997]

Ψn(x) =
Hn(x)

√

2nn!
√
π
e−x2/2 , (5.12)

where Hn(x) are the Hermite polynomials. The wave function of the single-photon state is therefore

given by

Ψ1(x) =

√

2√
π
x e−x2/2 . (5.13)

We now introduce the Wigner function, which enables to fully characterize a quantum state of

light in phase space (x, p). The Wigner function is a quasi-probability distribution and the marginal

distribution pr(x, θ), as measured by an homodyne detection, for the quadrature x̂θ can be calculated as

pr(x, θ) =

∫ +∞

−∞

W (x cos θ + p sin θ, x sin θ − p cos θ) dp . (5.14)

The Wigner’s formula [Wigner, 1932], which relies the Wigner function and the density matrix can be

demonstrated non-trivially, and can be written as

W (x, p) =
1

π

∫ +∞

−∞

e2ipx′ 〈x− x′|ρ̂|x+ x′〉 dx′ . (5.15)

In order to access to the Wigner function of the single-photon, we inject the wave function given in

equation 5.13 in the Wigner formula, and we find

W1(x, p) =
1

π

[

2
(

x2 + p2
)

− 1
]

e−(x2+p2) . (5.16)

We notice here that the single-photon state is symmetric by rotation around the origin, and in consequence,

the probability distribution remains the same along any rotated quadrature. Figure 5.5 displays this

Wigner function, as well as the corresponding probability distribution pr(x). First, the single-photon
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state exhibits non-gaussian statistics, as opposed to coherent, squeezed or thermal states, which form a

large range of states of light. Moreover, whereas the marginal distribution is always positive, the Wigner

function exhibits negative values around the origin, which is a strong signature of non-classicality.

5.3.1.2 Quantum state tomography

The retrieval state is measured by homodyne detection. The field 2 is mixed on a 50/50 beam splitter with

a strong classical field, called the local oscillator, and detected by two high efficiency photodiodes. This

measurement leads to the projection of the signal state on the rotated quadrature x̂θ = cos θ x̂+ sin θ p̂,

where θ corresponds to the relative phase between the local oscillator and the signal field. The principle

of the homodyne detection is summarized in appendix G. In our case, since the single-photon state is

phase independent, the homodyne measurement is phase averaged. Then, we reconstruct the density

matrix ρ of the signal state via the iterative maximum likelihood algorithm (MaxLik). This method has

been identified as a very efficient method in quantum optics and is now widely used [Lvovsky, 2004].

Let us quickly describe the iterative maximum likelihood algorithm. Here we assume that the

experimental measurement is realized with infinitely small bins, and returns a data set {xi, θi}. The

MaxLik algorithm aims to find the density matrix ρ̂ that maximize the log-likelihood function,

log L(ρ̂) =
∑

i

log(pr(xi, θi)) , (5.17)

where the probability pr(x, θ) of detecting the quadrature value x at the angle θ can be defined as

pr(x, θ) = Tr
[

Π̂(x, θ), ρ̂
]

, (5.18)

with Π̂(x, θ) = |x, θ〉 〈x, θ| the projection operator onto the quadrature eigenstate. In the Fock basis,

the projection operator is expressed as

Π̂m,n(x, θ) = 〈m|Π̂(x, θ)|n〉 = 〈m|x, θ〉 〈x, θ|n〉 , (5.19)

where the overlap between the photon number and the rotated quadrature eigenstates is expressed

similarly as in equation 5.12

〈x, θ|n〉 = eiθn Ψn(x) = eiθn Hn(x)
√

2nn!
√
π
e−x2/2 . (5.20)

We now introduce the operator

R̂(ρ̂) =
∑

i

Π̂(xi, θi)

pr(xi, θi)
, (5.21)

which verifies the relation

R̂(ρ̂) ρ̂ R̂(ρ̂) ∝ ρ̂ . (5.22)

Therefore, starting from an initial density matrix, for instance ρ̂(0) = N [1̂], it is possible to apply the

following iteration

ρ̂(k+1) = N
[

R̂(ρ̂(k)) ρ̂(k) R̂(ρ̂(k))
]

, (5.23)

where N denotes normalization to a unitary trace. Thus, after several iteration, the algorithm returns

the likeliest density matrix given the experimental data. Finally, the Wigner function can be calculated

from the Wigner formula (equation 5.16).
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In practice, because the Hilbert space corresponding to the Fock basis is infinite, a truncation is first

realized. For a single-photon state with small higher photon number components, a truncation around

n = 5 is well adapted. Moreover, because of the symmetry of the single-photon Wigner function, the

marginal distribution can be averaged over θ,

prav(x) = 〈pr(x, θ)〉θ , (5.24)

before its introduction in the MaxLik algorithm. In practice, a random phase value is attributed to each

data xi.

Because of losses, the experimentally measured state, when neglecting the low two-photon component,

is of the form

ρ = (1 − η) |0〉 〈0| + η |1〉 〈1| , (5.25)

where η is the overall field 2 efficiency, from the generation to the detection. In our case it corresponds

to qc η
2
d V

2 where ηd is the quantum efficiency of the photodiodes, V is the visibility between the field 2

and the local oscillator and qc is the conditional retrieval efficiency of the DLCZ protocol. However, in

order to observe the negativity of the Wigner function, the following condition should be satisfied

qc η
2
d V

2 ≥ 0.5 . (5.26)

In our case, a value of only 45 % for the retrieval probability is observed experimentally. Thus, in these

conditions, the negativity of the Wigner function can not be demonstrated so far, but the non-gaussian

character of the retrieval state can be shown. Works for increasing the retrieval efficiency, in particular

about better exploiting the optical depth, are currently in progress.

In this section, we have seen how to reconstruct the density matrix and the Wigner function of a

quantum state of light, and in particular of a single-photon state, via homodyne measurement. In the

following, we describe the experimental setup that enables to perform the quantum state tomography of

the heralded single-photon emitted by the atomic ensemble via the DLCZ protocol.

5.3.2 Experiment

In this section the experimental setup allowing the homodyne measurement of the heralded single-photon

state retrieved by the atomic ensemble is presented. Then, we discuss the temporal mode of the photon,

which is required to access to the value quadrature.

5.3.2.1 Experimental setup

Figure 5.6 shows the optical layout for the homodyne measurement of the heralded single-photon.

The DLCZ building block is implemented as in section 5.2 and we highlight here the detection part.

Instead of being detected by single-photon counters, the field 2 photon is mixed on a 50/50 beam

splitter with the local oscillator, which comes from the Ti:Sapphire laser, locked on resonance with the

|F = 4〉 → |F ′ = 4〉 transition. The local oscillator is continuous and has a power of 4 mW. Because

we assume a phase independent state, no control of the local oscillator phase is required in our case,

and we let the phase randomly varying. The optical transmission from the vacuum chamber to before

the homodyne detection is 92 % for the field 2, while it is equal to 97 % in the homodyne detection

part. The matching between the field 2 and the local oscillator modes results in a visibility of typically

94 %. Each output is measured by a photodiode (Hamamatsu, S5971) having a quantum efficiency
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FIGURE 5.6 : Optical layout for homodyne measurement of single photons generated by the atomic
ensemble via the DLCZ protocol. The field 2 is mixed on a 50/50 beam splitter with a strong local
oscillator (LO) coming from the Ti:Sapphire laser. Both beam splitter outputs are detected by photodiodes
(PD), and the currents are subtracted, amplified and finally sent to a scope. The recording of the
homodyne detection signal is triggered by the previous detection of a field 1 photon on the single-photon
detector APD 1.

ηd = 92 %. The overall detection efficiency for the field 2 is therefore 0.67.

The photocurrents of both detectors are directly subtracted and then amplified. The overall bandwidth

is about 100 MHz. More experimental details about the implemented homodyne detection can be

found in appendix G. The output of the homodyne detection is finally recorded and analyzed by a scope

(Lecroy, Wavepro 7300A), which is triggered by the APD 1 output. Thus, the detection of a photon in

field 1 leads to the recording of a 200 ns segment of the homodyne detection subtracted photocurrent

within the same DLCZ trial. The time of arrival of the photon in field 2 has been observed previously

on the single-photon counters. The acquisition of the homodyne output is then gated during the read

process.

Before reconstructing the density matrix thanks to the homodyne measurement, we take a look at

the temporal mode of the retrieved state. Indeed, the local oscillator being continuous, post processing

is required in order to extract the temporal mode in which the photon is emitted.

5.3.2.2 Temporal mode

Thanks to the large bandwidth of the homodyne detection, the temporal shape of the heralded single-

photon can be observed. Figure 5.7(a) represents the variance of the homodyne detection output as

a function of time. The homodyne measurement is actually proportional to the electric field of the

signal to measure, so the variance is proportional to the intensity. The data are fitted by a Gaussian

distribution, f(t) = A exp(−t2/(2σ)) +B, with a standard deviation σ = 27.4 ns, which corresponds

to a full width at half maximum (FWHM) of 64 ns. For comparison, the coincidence events on APDs

are displayed on figure 5.7(b) as a function of time. The event number from the APD also scales with

the intensity of the signal field. Despite of the 10 ns resolution of the acquisition card that records

the APDs output, we also fit the data by a Gaussian distribution with a standard deviation of 23.4 ns,
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FIGURE 5.7 : Temporal mode of the single-photon measured via (a) the variance of the homodyne
detection output, and (b) the coincidence between events detected on APD 1 and APD 2, as a function
of the time. Experimental data (blue dots) are fitted by a gaussian distribution (red line). The full widths
at half maximum resulting from these fits are displayed on the graphs, and are equal to 64.6 ns and 55.1
ns. The variance corresponds to an average over 5000 measurements.

corresponding to a FWHM of 55 ns. The standard deviation σe of the electric field is related to the

standard deviation σi of the intensity, obtained by the variance of the homodyne detection output or by

the photon number of the APD by

σe =
√

2σi . (5.27)

These results are in agreement to the expected value of about 30 ns, the lifetime of the excited level

62P3/2 being 32.8 ns.

Accessing the quadrature values Determining the temporal mode of the heralded photon

is crucial in order to access to the quadrature value xi, which results from the projection

by the homodyne detection of the state to measure. Thus, the output signal xi(t) of the

ith measurement by the homodyne detection is multiplied by the temporal mode f(t), and

integrated, as

Xi =

∫ T

0

f(t)xi(t) dt . (5.28)

Then, the quadrature value is normalized by the vacuum variance V0:

xi =
Xi

V0
. (5.29)

A large number of measurements are recorded in order to obtain a large data set {xi}. The

histogram of this data set directly gives the experimental marginal probability pr(xi).

In the following, preliminary experimental results are presented, from the marginal probability to the

reconstructed Wigner function.

5.3.3 Preliminary results

Here are displayed our current results about the tomography of the retrieved state from our ensemble of

cold atom via the DLCZ protocol.

Figure 5.8 shows the marginal probabilities, corresponding to the histogram of values obtained

from a large number of quadrature measurements via homodyne detection. The blue area represents

the reconstructed marginal probability for the vacuum, i.e. when no retrieved photon comes to the
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FIGURE 5.9 : Tomography of the retrieved state. (a) Diagonal elements of the reconstructed density
matrix and (b) associated Wigner function.

homodyne detection, while the purple area corresponds to the retrieved state. Even though no dip is

observed in the marginal probability of the retrieved state, the behavior starts to become different from

the Gaussian distribution of the vacuum. The values around the origin, on the top of the distribution,

are 10 % smaller than for the vacuum.

The complete tomography of the retrieved state is shown on figure 5.9. The reconstructed density

matrix, displayed on panel (a), exhibits a large contribution of vacuum, ρ00 = 89.6 %, and a small

component of single-photon, ρ11 = 10.3 %. The two-photon component is well-suppressed, with ρ22 =

2.3 ×10−4. By neglecting the two-photon component, the corresponding Wigner function is given by

W (x, p) = ρ00W0(x, p) + ρ11W1(x, p) . (5.30)

The Wigner function of the retrieved state is plot on panel (b), together with the Wigner function of

the vacuum (transparent black meshed curve). As seen with the marginal probability, we start observing

the non-gaussianity of the retrieved state. Corrected for detection losses, the single-photon component

reaches ρcorrected
11 = 16 %. We emphasize again that these results correspond to very preliminary results

and improvements are ongoing.

These results are actually well below what we can expect currently in our system. Indeed, the

single-photon contribution should be close to the measured retrieval probability qc = 45 %, multiplied

by the overall detection efficiency, here 67 %. Thus, a value around 0.3 for ρ11 should be observable

in our experiment, but only 10 % is observed, meaning that additional losses may occur, or that the

90



5.3. Tomography of the retrieved single-photon state

mode that we detect on the photon counter is different than the one that we observed on the homodyne

detection. The latter can come from the fact that the write and read beams are not plane waves in

the atomic ensemble, leading to a bad definition of the phase-matching condition. Larger write and

read beams would therefore help to better define the spatial mode of the retrieved state, and this

investigation is currently conducted in our system. To go further, higher optical depth with a control of

the effect coming from the multilevel structure, as well as cooling the atoms down to lower temperature

via Sisyphus cooling will enable us to obtain higher retrieval efficiencies and longer storage times. We

note that in the past few weeks, results of a similar experiment but operating in cavity setting have

been reported on arXiv by the group of P. Grangier [Bimbard et al., 2013]. In contrast, our study focus

on a "free-space" ensemble.

Conclusion

What we have seen:

• We have implemented the DLCZ building block in our ensemble of cold atoms, and

we have characterized it by the retrieval efficiency and the normalized correlation

function. Typical values of respectively 45 % and 40 are obtained, for an optimal

optical depth of 25.

• An homodyne detection has been set up, in order to enable the reconstruction of the

density matrix of the heralded single-photon via the iterative maximum likelihood

algorithm.

• The complete quantum tomography of the photonic state generated by the atomic

ensemble definitely revels a single-photon component, but smaller than expected.

Work is still in progress to improve these preliminary results.

In consequence:

• With higher retrieval efficiency, our system will in principle allow the demonstration

of the quantum character of a heralded single-photon generated by an atomic

ensemble, via its complete reconstruction and negative Wigner function.

• The optical depth plays a crucial role in the DLCZ protocol. Further investigation

will enable us to know how to take advantage of the large optical depths that we

are able to produce. Moreover, the temporal mode of the retrieved photon must

depend on the optical depth [Mendes et al., 2013], and this study will be conducted

in our system.

• This work opens the way towards the tomography of a complete zoology of quantum

state, as the two-photon state, |2〉, or |3〉, or to coherent superposition, such as

|0〉 + |1〉 or |0〉 + |2〉. More generally, with further works on the retrieval efficiency,

this opens the path to the quantum engineering of collective excitation that can be

efficiently transferred to light.
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Conclusion

In this thesis, quantum memory protocols based on collective excitations, the EIT-based memory and the

DLCZ scheme, have been implemented in an ensemble of cold cesium atoms. Cold atomic ensembles

are indeed good candidates to operate at the single-photon level with off-axis configuration. We first

developed an atomic ensemble based on a pulse magneto-optical trap for cesium atoms with a relatively

large optical depth of 40. The residual magnetic field is canceled down to few mG via microwave

spectroscopy, which is crucial to avoid decoherence due to inhomogeneous broadening.

As a first experiment, we studied the electromagnetically induced transparency features in our system,

via the experimental test of the criterion proposed by the authors of [Anisimov et al., 2011] for the

discrimination between the EIT and the Autler-Townes splitting models. Identifying the presence of

coherent effects is indeed crucial for optically controlled light slowing, or optical quantum storage. We

tested and analyzed in details the transition between the EIT and ATS models, showing that the proposed

criterion gives consistent conclusion for discerning between the two phenomena and is experimentally

suitable. Moreover, the witness is very sensitive to the specific medium properties. The multilevel

structure and residual inhomogeneous broadening had to be considered to explain the difference between

the experimental behavior and the simple three-level model. Thus, the proposed criterion potentially

provides a characterization tool for complex systems.

Then, an EIT-based quantum memory for orbital angular momentum of light was realized. First,

we demonstrated that the memory device preserves the handedness of twisted photons, i.e. the helical

wavefront structure of first-order Laguerre-Gaussian modes in the single-photon regime. With a current

decay time of 15 µs, the storage time will be improved by cooling the atoms down to lower temperatures

via Sisyphus cooling or even further via dipole trap techniques. Second, the storage of OAM encoded

qubits was performed, along with the quantum tomography of the retrieved qubit states. The obtained

fidelities beat the best classically achievable ones, demonstrating therefore the quantum character of the

implemented optical memory. This experiment provides the first demonstration of quantum memory

for OAM encoded qubits, opening the way towards multimode quantum storage involving higher OAM

numbers. This constitutes an important tool for the development of quantum communication protocols

based on the unbounded OAM degree of freedom with high-dimensional potential.

Finally, we have implemented the DLCZ building block in our ensemble of cold atoms. A charac-

terization of the system in the photon counting regime has been performed, highlighting the strong

correlations between the two generated photons. Preliminary results about the state tomography of

the heralded single-photon via homodyne detection have been reported. Higher retrieval efficiencies

will allow us to demonstrate the quantum character of the retrieved state. Quantum tomography of

the heralded single-photon generated by DLCZ in an atomic ensemble is a step towards the quantum

engineering of collective excitations that can be transferred to light. Since the optical depth is a crucial

parameter, a better understanding of the effects occurring in our multilevel system will give clues to
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Conclusion

take advantage of the large optical depths that we are able to produce. Moreover, the optical depth

must influence the temporal mode of the retrieved photon, this study will be conducted in our system.
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Appendix A

Phase-frequency locking

The phase-frequency locking aims at setting the frequency difference between the Ti:Sapphire laser and

an extended cavity laser diode at the hyperfine transition frequency of cesium atom, ωhf = 9.192631770

GHz, or around if the two-photon detuning needs to be scanned. The phase is also stabilized between

the two lasers, which is important to observe EIT. This phase-frequency locking has been developed by

Jérémie Ortalo and Sidney Burks [Burks, 2010], but has been improved since then, and I give here an

overview of the current version.

A.1 Lasers

The first laser is a titanium-sapphire laser (Spectra-Physics Matisse) that is locked on resonance with

the |F = 4〉 → |F ′ = 4〉 transition. First a fast stabilization is performed by locking the laser cavity

on an ultra-stable reference cavity [Burks, 2010], and then a slow stabilization consists in locking the

reference cavity on the |F = 4〉 → |F ′ = 4〉 transition via saturated absorption spectroscopy. For this

purpose, the length of the reference cavity is modulated around 30 kHz and the error signal is obtained

via demodulation of the saturated absorption signal by a lock-in amplifier. The light coming from this

laser is temporally shaped into pulses by a pair of two acousto-optic modulators (AOM) diffracting both

at the same frequency, one in the +1, the other one in the -1 order, in order to keep unchanged the

laser frequency.

The second laser is an extended-cavity laser diode that was at first a Littrow type with a diffraction

grating to select the wavelength and then has been replaced during this PhD by an interference-filter

one (Radiant Dyes Laser NarrowDiode via Laserlabs), which is more stable. The change took place in

November 2012, so before the results about the complete tomography of orbital angular momentum

encoded qubits. The laser diode is temporally shaped by an AOM at 200 MHz, and the first order

is used for the memory experiment. Thus, to set the laser diode frequency on resonance with the

|F = 3〉 → |F ′ = 4〉 transition, the lock point has to be equal to 9.192631770 - 0.2 = 8.992361770

GHz.
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FIGURE A.1 : Setup of the phase-frequency locking. The beating between the two lasers, around 9
GHz, is detected by a fast photodiode, then mixed with a signal around 8.6 GHz. The resulting 400 MHz
signal is amplified and analyzed by a phase lock loop system, where a 100 MHz stable signal is used as a
reference. Finally, the error signal is directly sent to the current of the laser diode, while another part is
integrated and acts on the piezoelectric transducer of the laser cavity.

A.2 Operation

Figure A.1 shows the setup of the phase-frequency locking. A small amount of light of the extended-cavity

laser diode is mixed on a non-polarizing beam splitter with a beam coming from the Ti:Sapphire laser

via optical fiber. They are focused on a very fast photodiode with a time response of 30 ps (Hamamatsu

G4176-03) which is supplied by a + 15 V source via a bias tee. Then the electronic beating signal pass

through a + 27 dB amplifier and is mixed with a 8.592632 GHz signal (HP 8672A). This results to a

400 MHz signal which is easier to handle than a high frequency signal.

A small part of the 400 MHz signal is sent to a spectrum analyzer for monitoring (the signal must be

at least 20 dB above the noise), while the rest is amplified and sent to the phase-lock loop, which is the

main part of the locking. This electronic box was realized at the LKB and the principle is well described

in [Burks, 2010]. It consists first in a frequency divider by 4 and then a phase-frequency detector which

compares the beating signal to a 100 MHz reference generated by a very stable synthesizer (Agilent

E4420B). The set point of the locking can be modified by changing the frequency of the signal generator

output. Moreover the synthesizer can be controlled by the Labview program via GPIB in order to operate

a frequency scan of the laser diode for instance.

Finally the feedback occurs in two steps. First, the error signal is directly sent towards the current

of the diode for a very fast response. With the new diode, the error signal passes through the current

supply with a gain of 1 A/mV, without loss in terms of bandwidth. Secondly, an integrated error signal

part enables a slow drift compensation by acting on the piezoelectric transducer controlling the length
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A.2. Operation

of the external laser diode cavity. Thus, the laser diode is locked on phase and frequency with the

Ti:Sapphire laser at or around the hyperfine frequency ωhf = 9.192631770 GHz.

Figure A.2 shows the beating between the two lasers, when they are locked together. Here, the

resolution does not enable us to observe the width of the peak, which has been measured around 1 Hz.

However, sidebands can be remarked, approximately 800 kHz away from the central peak, this frequency

corresponding to the bandwidth of the locking.
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FIGURE A.2 : Beating observed at the spectrum analyzer. Sidebands are observed at 800 kHz around
the central peak.
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Appendix B

Labview managed spectroscopy

This appendix describes the device control part, as well as the data acquisition and analysis part, that

are run by Labview and used for both the microwave spectroscopy and the acquisition of EIT profiles.

B.1 Frequency scans

The Labview program Host.vi, which runs on the computer, can operate two different types of frequency

scans. The first option is the frequency sweeping of a microwave pulse produced by a signal generator

(Rohde & Schwarz, SMB100A) in order to obtain the Zeeman structure spectrum, as presented in

chapter 2. The second possibility is to scan the two-photon detuning between the two phase-locked

lasers described in appendix A. This scan is obtained by tuning the frequency of the 100 MHz reference

generated by a signal generator (Agilent E 4420B), corresponding to changing the set point of the

phase-frequency locking. This second option is used for the EIT study but has been developed initially

for a Raman spectroscopy scheme. In both options the signal generators are controlled by the Labview

program via GPIB (General Purpose Interface Bus). They perform a sweep by steps, and the user can

choose the start and stop frequencies, as well as the number of steps via the front panel shown in figure

B.2. The change of frequency occurs once per MOT cycle and is triggered by the process of recording

the probe pulse detection signal.

B.2 Absorption measurement

Figure B.1 shows the principle of the Labview managed spectroscopy via the recording of absorption

measurements. Light pulses are sent through the atomic ensemble to probe the system. Two pulses

are actually needed, one enables us to get a pulse intensity reference I0 while the other measures the

effect of the medium by its intensity I. The aim is to calculate the absorption, A = − ln (I0/I). Both

probe pulses are detected by a home-made high-gain photodiode whose output is recorded by Labview

via an acquisition card (National Instrument, PCI-6110). The probe pulse duration, usually 15 µs, is

chosen as short as possible while remaining compatible with the bandwidth of the high-gain photodiode.

The acquisition card is triggered by a FPGA signal trigger and the data are transferred to the Host.vi

Labview program (see figure B.3). Data analysis is made using Labview environment as the following.
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FIGURE B.1 : Principle of Labview managed spectroscopy. Probe or signal pulses are detected by a
photodiode, and its output is recorded by an acquisition card and transferred to the computer where it is
analyzed with Labview, by setting horizontal or vertical thresholds. The computer communicates also via
Labview with the FPGA (Field-programmable gate array), which triggers the acquisition and the shaping
of the optical pulses. Finally, the Labview program on the computer commands the frequency detuning δ
to a signal generator via GPIB.

Thresholds are set on each measured pulse, a high one, just below the top plateau of the pulse, and

a low one, just above the floor noise of the photodiode. Then, averages are done over all the points

above the higher threshold and over all the points below the lower threshold. Heights of the probe and

reference pulses, respectively I and I0, are thus given by the differences between the higher and lower

means values for each pulse. However this method for measuring the light pulse intensity is not practical

in the EIT study case because the absorption of the signal pulse varies drastically and is sometimes very

strong. Therefore, vertical bars are set up on each side of pulses, and averaging is performed over the

points between the vertical bars. After background noise subtraction we obtain I and I0. Thus, the

probe beam absorption is given by A = − ln (I0/I) using one of the methods.

Finally, the calculated value for the absorption is placed in an array with the corresponding frequency

value after each MOT cycle. At the end of the scan of the detuning δ, the spectrum is displayed and

saved into a text file.
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B.2. Absorption measurement

FIGURE B.2 : Front panel, i.e. the user interface, of the Host.vi for the spectroscopy.
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Appendix B. Labview managed spectroscopy

FIGURE B.3 : Part of the block diagram of the Host.vi program for the spectroscopy.
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Appendix C

Analysis of single-photon detector

outputs

In this thesis, several experiments are realized in the single-photon regime. Avalanche photodiodes

(APD) are indeed used to detect the different optical pulses involved in the protocols. Because the

detection setup sometimes consists in two parts, we dispose of two APDs. Our single-photon counters

(Perkin Elmer, SPCM-AQR-14-FC) have a quantum efficiency of approximately 45 % at 852 nm, a dead

time of 30 ns, and a dark count rate between 50 and 100 Hz. An event on the detector leads to an

output signal with a decreasing exponential shape, with a typical duration of 30 ns. The detectors would

be damaged by the strong illumination of the atomic ensemble during the MOT build-up stage. Thus,

they are gated by the FPGA to be on only during the memory sequence.

The APD outputs are recorded by an acquisition card (National Instrument, PCI 5122) at 100 Ms/s,

given a time binning of 10 ns, and then analyzed by the Host.vi Labview program. The acquisition card

is also triggered by the FPGA, and records in once the data for all the trials of a MOT cycle. Usually

the memory trials are contained in 1 ms within a MOT cycle. Then, the data are cut into elementary

memory sequence. A threshold is set on the analogue signal from the APD in order to digitize it. Using

this method, it is important to prevent double counts. Thus, when an event is detected, the program

skips the following data during 50 ns, which is slightly longer than the dead time of the detector.

C.1 EIT-based memory experiment

During the EIT-based memory experiment, the goal is to observe the memory histogram as a function

of time, and to calculate the memory efficiency.

C.1.1 Histograms

The timing for the EIT-based memory for OAM of light is displayed on figure C.1. The gate for the

APDs and the acquisition window starts 2 ms after the extinction of the trapping magnetic field and

last 1 ms. During this time, 100 memory trials occur, with a duration of 10 µs. The program sums

up progressively the data from all the trials, after each MOT cycle. After a user-defined number of
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B-field
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FIGURE C.1 : Timing for the EIT-based memory acquisition. At t = 2 ms, the APD gate and the
acquisition trigger signal are switched on, for a duration of 1 ms. During this time, 100 trials of the
memory protocol occur, each with a duration of 10 µs. The memory trial involves a control field which is
off only during the storage time, and a signal pulse which is sent just before the extinction of the control.
The stored signal is then retrieved and detected when the control is turned on again.

trials, the acquisition stops and the histograms representing the sum of each APDs output are displayed.

The histograms are finally saved in a text file. They enable us to show memory curves, as presented in

section 4.1.2 for the storage of twisted photons in the single-photon regime.

C.1.2 Efficiency calculation

The memory efficiency ηm is defined as the number of photons in the retrieval over the number of

photons in the input pulse, which is measured without the trapped atoms. Thus, two acquisitions are

needed, one without the atomic ensemble, called the reference, and one with the atomic ensemble,

the memory acquisition. In the case of EIT-based memory, the detection efficiency does not affect the

memory efficiency, because the same losses occur on both the reference and the retrieval. Moreover, it

is also very useful to obtain the leakage αl, defined as the percentage of the number of photons which

pass through the atomic ensemble without being stored. Indeed, leakage of the signal is purely loss, and

must be minimized.

We dispose of two histograms, the reference one, Nref (t), and the memory one, Nmem(t), as shown

in figure C.3. The user sets vertical cursors on the histograms to define the initial and final time bin tref
i

and tref
f for the reference pulse and tmem

i and tmem
f for the memory retrieval pulse. The leakage is then

defined by the same timing as the reference, but in the memory acquisition data. The number of events

is calculated within the defined pulses for the reference, the retrieval, and the leakage. Background noise

is also measured outside of the areas of interest, at a time tBG
i , for a number of time bins equivalent to

the reference on the reference acquisition, and to the leakage and the retrieval on the memory acquisition.

Subtracting the background noise is important in this context. Since the retrieval is smaller than the

reference, it is more sensitive to the presence of background than the reference. Thus, the calculated

efficiency would appear higher than what it really is without background noise subtraction. Therefore,

the efficiency is calculated as

ηm =

∑tmem
f

t=tmem
i

Nmem(t) −∑tmem
f −tmem

i

t=tBG
i

Nmem(t)

∑tref

f

t=tref
i

Nref (t) −∑tref

f
−tref

i

t=tBG
i

Nref (t)

, (C.1)
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C.2. DLCZ building block experiment

as well as the leakage,

αl =

∑tref

f

t=tref
i

Nmem(t) −∑tref

f
−tref

i

t=tBG
i

Nmem(t)

∑tref

f

t=tref
i

Nref (t) −∑tref

f
−tref

i

t=tBG
i

Nref (t)

, (C.2)

This information is given automatically after the acquisition ends, and helps to optimize the efficiency of

the memory by changing parameters such as the control power or switching time.

C.1.3 With interferometry

The demonstration of coherence of the OAM encoded qubit stored in our EIT-based memory involves an

interferometry technique (section 4.2.1). Here, we want to associate to each memory trial a value of the

interferometer phase, so the program does not average over the trials, but gives a timestamp to each

one. Actually, because the acquisition time of the picture which gives the interferometer phase is much

longer than the MOT cycle duration, we give one timestamp per MOT cycle. The data are written after

each MOT cycle into a text file in a JSON (JavaScript Object Notation) format, which derives from

the JavaScript scripting language and is an open standard format that uses human-readable text to

transmit data objects consisting of attribute–value pairs. The data are analyzed afterwards with the

interferometer phase information via Python.

C.2 DLCZ building block experiment

C.2.1 Timing

The timing is similar to the one for the EIT-based memory, and shown on figure C.2. Between t = 2

and 3 ms, the APD gate and the acquisition trigger are on. During this time, 1000 trials of 1 µs are

performed, which involve a write followed by two read pulse, the second playing the role of a repump.

0 2 3 t (ms)

B-field

Acquisition

Read

Write

1 µs

1000 repetitions

APD gate

FIGURE C.2 : Timing for the DLCZ protocol acquisition. At t = 2 ms, the APD gate and the acquisition
trigger signal are switched on, for a duration of 1 ms. During this time, 1000 trials occur, with a duration
of 1 µs. Each trial involves a write and a read pulse, followed by a second read pulse which is used as a
repump.
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Appendix C. Analysis of single-photon detector outputs

C.2.2 Parameter calculation

We want to measure the conditional probability of detecting a second photon, pc = p12/p1, and the

normalized cross-correlation function g12 = p12/(p1p2). Thus, we need the values of the probabilities

to detect a first photon, p1, a second photon, p2, and the joint probability p12. The user defined

temporal windows for the field 1 and 2, and events of each trial are analyzed separately, before any

summation. The Labview program, shown in figure C.4, detects events from the APD 1 and 2, within

the corresponding temporal windows, and also the presence of both events. The goal is to display the

results in real time, but some statistic is needed, so we average over M MOT cycles, the number M

being user-defined. Therefore, the program sums the detected events over n = M× 1000 trials, and

obtains n1, n2 and n12 the number of events from APD 1, 2, and joint events respectively. Thus, the

probabilities are simply given by p1 = n1/N , p2 = n2/N and p12 = n12/N . Finally, the parameters are

calculated as

pc =
n12

n1
(C.3)

g12 =
n12N

n1n2
, (C.4)

displayed in real time, and saved.

Moreover, histogram are computed in order to see the temporal shape of the photons, as well as the

leakage from the coupling beams. The histogram of all the events is realized over all the trials, and also

displayed in real time.
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C.2. DLCZ building block experiment

FIGURE C.3 : Front panel, i.e. the user interface, of the Host.vi for EIT-based memory implementation.
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FIGURE C.4 : Part of the block diagram of the Host.vi program for the acquisition in the DLCZ
protocol.
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Appendix D

From Laguerre-Gaussian to

Hermite-Gaussian modes

In this appendix, we remind the expression of the electric field amplitude for light beams in Laguerre-

Gaussian or Hermite-Gaussian modes of the first order. Then, relations between the two family modes

are given.

D.1 Generalities

Laguerre-Gaussian modes as well as Hermite-Gaussian modes form complete sets of solutions of the

paraxial wave equation. The Hermite-Gaussian modes, having a rectangular symmetry, are usually

expressed in Cartesian coordinates (x, y, z), while the Laguerre-Gaussian modes, having a cylindrical

symmetry, are expressed in coordinates cylindrical (r, φ, z). Figure D.1 shows the two coordinates

systems, related by










x = r cosφ

y = r sinφ

r2 = x2 + y2

. (D.1)

x

y

r

φ

FIGURE D.1 : Two-dimensional Cartesian (x, y) and cylindrical (r, φ) coordinates systems.

Omitting the propagation term, the electric field amplitude of the fundamental Gaussian mode

TEM00, of waist w0, is given by

E(r, z) = E0
w0

w(z)
e−ik r2

2q(z) eiζ(z) , (D.2)

where the remarkable quantities are
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• the Rayleigh range zR =
πw2

0

λ
,

• the beam size w(z) = w0

√

1 +
(

z
zR

)2

,

• the radius of curvature R(z) = z

[

1 +
(

z
zR

)2
]

,

• the Gouy phase shift ζ(z) = arctan
(

z
zR

)

,

• the complex beam parameter q(z) = z + izR , with the relation
1

q(z)
=

1

R(z)
− i

λ

πw2(z)
.

D.2 Laguerre-Gaussian modes

Laguerre-Gaussian modes form a set of optical modes having a helical wavefront, therefore they well

describe light beams carrying orbital angular momentum (OAM). Figure D.2 gives the intensity profiles

of the first LGl
p modes depending on the two indexes, l and p. The trivial LGl=0

p=0 mode corresponds to

the fundamental Gaussian TEM00 mode. On the first row, for p = 0 and l 6= 0, the intensity profiles

exhibit a ring shape. These so-called "doughnut modes" present an optical vortex in the center and

carry an OAM equal to l~. Indeed, the azimuthal l index denotes the circulation of the rotating phase

around the beam axis. On the vertical direction, when p increases, the intensity profiles of the modes

include additional rings. The radial p index in fact represents the number of electric field cancellation

along the beam radius.

For a mode LGl
p, the field amplitude is expressed as

ELG
lp (r, φ, z) =

√

p !

2π (p+ l)!

1

w(z)
eilφ

(
√

2 r

w(z)

)|l|

L|l|
p

(

2 r2

w(z)2

)

e−ik r2

2q(z) ei(2p+|l|+1)ζ(z) , (D.3)

where Ll
p(x) are the generalized Laguerre polynomials. Given that L1

0(x) = 1, we can write the amplitude

p

l0 +1 +2 +3-1-2-3

0

1

2

FIGURE D.2 : Laguerre-Gaussian modes. Table of the intensity profiles with p up to 2 and l ranging
from -3 to +3.
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FIGURE D.3 : Laguerre-Gaussian modes LG+1 and LG−1. (a) Intensity profiles of the two modes. (b)
Phase profile of LG+1 and LG−1 modes.

of the first-order modes, LG±1
0 , as

ELG
±10(r, φ, z) =

1√
π w(z)2

eilφr e−ik r2

2q(z) e2iζ(z) . (D.4)

These modes carry an OAM equal to ±~. The wavefront is a single helix, corresponding to the fact that

the phase rotates by 2π in one wavelength. The handedness is determined by the sign of l, so the LG+1

mode is right-handed while the LG−1 is left-handed. We sometimes call them right (R) and left (L)

modes here.

D.3 Hermite-Gaussian modes

The Hermite-Gaussian modes exhibit a rectangular symmetry and are expressed in Cartesian coordinates.

Here is the form of the field amplitude for a mode HGmn

EHG
mn(x, y, z) =

√

1

2m+n−1 πm!n!

1

w(z)
Hm

(
√

2x

w(z)

)

Hn

(
√

2 y

w(z)

)

e−ik
(x2+y2)

2q(z) ei(m+n+1)ζ(z), (D.5)

with m, n integers, and Hn(x) the Hermite polynomials. For Hermite-Gaussian modes of the first order,

the first two polynomials are used

H0(x) = 1

H1(x) = x (D.6)

In the following we explicit the expression of the horizontal and vertical modes as first and of the diagonal

and antidiagonal modes then, and show how they can be written as superposition of Laguerre-Gaussian

modes.

D.3.1 Horizontal and vertical modes

The electric field amplitude of the horizontal mode HG10 is

EHG
10 (x, y, z) =

√

2

π

1

w(z)2
x e−ik

(x2+y2)
2q(z) e2iζ(z), (D.7)
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(a) (b)

(c) (d)

0.50 1.51.0 0 1 2 3

FIGURE D.4 : Horizontal and vertical Hermite-Gaussian modes. (a) Intensity and (b) phase profile of
the HG10 mode. (c) Intensity and (d) phase profile of the HG01 mode.

while the one for the vertical mode HG01 is

EHG
01 (x, y, z) =

√

2

π

1

w(z)2
y e−ik

(x2+y2)
2q(z) e2iζ(z). (D.8)

These modes exhibit two lobes, with a π phase offset, either in the horizontal or vertical direction, as

shown in figure D.4.

Relation with LG±1 modes One can already notice that the term e−ik
(x2+y2)

2q(z) is present in the

expressions of both Laguerre-Gaussian modes and Hermite-Gaussian modes. Moreover, the effective

Gouy phase term is the same in the four introduced modes. Thus, it appears directly

1√
2

(

ELG
+10 + ELG

−10

)

=
1√

2π w(z)2
r (eiφ + e−iφ)e−ik

(x2+y2)
2q(z) e2iζ(z)

=

√

2

π

1

w(z)2
xe−ik

(x2+y2)
2q(z) e2iζ(z)

= EHG
10 , (D.9)

and

1√
2

(

ELG
+10 − ELG

−10

)

=
1√

2π w(z)2
r (eiφ − e−iφ)e−ik

(x2+y2)
2q(z) e2iζ(z)

=

√

2

π

1

w(z)2
ye−ik

(x2+y2)
2q(z) e2iζ(z)

= iEHG
01 . (D.10)
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0 1 2 3

FIGURE D.5 : Diagonal and antidiagonal Hermite-Gaussian modes. (a) Intensity and (b) phase profiles
of HG′

10. (c) Intensity and (d) phase profiles of HG′
01.

The inverse relations can be obtained easily

ELG
+10 =

1√
2

(

EHG
10 + EHG

01

)

, (D.11)

ELG
−10 =

1√
2

(

EHG
10 − EHG

01

)

. (D.12)

D.3.2 Diagonal and antidiagonal modes

Two other interesting modes are the diagonal HG′
10 and antidiagonal HG′

01 modes, which correspond

to HG10 and HG01 respectively, rotated by +45◦. Their intensity and phase profiles are shown in figure

D.5. We can write their field amplitudes as the following

EHG′

10 (x, y, z) =
2√
π

1

w(z)2
(x+ y) e−i k

2q(z)
(x2+y2)e2iζ(z) , (D.13)

EHG′

01 (x, y, z) =
2√
π

1

w(z)2
(y − x) e−i k

2q(z)
(x2+y2)e2iζ(z) . (D.14)

Relation with LG±1 modes These two modes can be also expressed as superposition of Laguerre-

Gaussian modes. Firstly, the diagonal HG′
10 mode can be written as

EHG′

10 =
2√
π

1

w(z)2
(cosφ+ sinφ) r e−i k

2q(z)
(x2+y2)e2iζ(z)

=
1√
π

1

w(z)2
(1 − i)

(

eiφ + ie−iφ
)

r e−i k
2q(z)

(x2+y2)e2iζ(z)

=
1 − i√

2

(

ELG
+10 + iELG

−10

)

. (D.15)
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Secondly, the antidiagonal HG′
01 mode can be expressed in the same manner as:

EHG′

01 =
2√
π

1

w(z)2
(sinφ− cosφ) r e−i k

2q(z)
(x2+y2)e2iζ(z)

=
1√
π

1

w(z)2
| − 1 − i|

(

eiφ − ie−iφ
)

r e−i k
2q(z)

(x2+y2)e2iζ(z)

= −1 + i√
2

(

ELG
+10 − iELG

−10

)

. (D.16)

All these relations can be useful for a better understanding of the description of qubits encoded in

orbital angular momentum of light in chapter 4.
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Appendix E

Effects of detection imperfections on

the fidelity

This appendix is related to the state tomography of OAM encoded qubit, performed in chapter 4. Here

we detail the effects of imperfections in the detection part, such as the finite extinction ratio and the

offset in the measurement of the interferometer phase, on the fidelity between the retrieved state and

the ideal state.

We remind the intensity I resulting from the interference between two fields of intensity I1 and I2

I(∆ϕ) = I1 + I2 + 2
√

I1I2 cos(∆ϕ) , (E.1)

leading to a visibility

V =
2
√
I2I2

I1 + I2
. (E.2)

E.1 For LG states

For the LG states |R〉 and |L〉, the problem comes from the finite distinction ratio: a small part of a

LGl can be detected on the −l path. As a consequence, small interference fringes are observed at the

output of the interferometer when a LG state is sent into. Figure E.1 shows these residual interference

fringes, after storage, for both |R〉 and |L〉 states, with visibilities of 10.3 % and 19.5 % respectively.

The residual visibility is larger for the |L〉 state, because the distinction ratio is smaller in the R path.

Here we calculate how the fidelity depends on the contamination of the wrong LG mode into the

detection paths. We note ε the quantity of LGl detected on the −l path. Thus, the intensity in both

arms are I1 = 1 − ε and I2 = ε for respectively the l and −l path. Thus, the visibility is in this case 2
√
ε.

For a |R〉 state, the experimental Stokes parameters, defined in section 4.2.2, can be written here as

S1 = 1 − ε

S2 = 2
√
ε (E.3)

S3 = 0
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∆ϕ (◦)
0 50 100 150 200 250 300 350

8.10−3

6.10−3

4.10−3

2.10−3

P
h
o
to

n
n
u
m

b
er

FIGURE E.1 : Residual interference fringes resulting from the finite distinction ratio of the detection.
Number of photon per pulse detected on APD 1 is displayed as a function of the interferometer phase ∆ϕ
for the two qubit basis states |R〉 and |L〉, after storage. Experimental points are fitted by the function
P exp

1 = A+B sin2( π
360

(∆ϕ+ θ)), and the resulting visibility V = B/(2A+B) is 10.3 % for the |R〉
state and 19.5 % for the |L〉. For comparison, the gray lines indicates the same measurement for the |H〉
state, with a visibility of 90.7 %.

which gives the following density matrix

ρ̂ =

(

1 − ε/2
√
ε√

ε ε/2

)

. (E.4)

In consequence, the fidelity to the ideal state |R〉 is given by

F = 1 − ε/2 . (E.5)

Figure E.2 displays both the fidelity and the visibility, V = 2
√
ε, as a function of ε, for distinction ratios

ranging from -13 dB to infinity. The fidelity decreases much slower than the visibility increases with the

contamination. For our typical value of distinction ratio of -23 dB, corresponding to ε = 0.5 %, the

fidelity is 99.75 %, while the visibility of the residual fringes is 14.1 %. The visibilities measured from

figure E.1 for |R〉 and |L〉 state, 10.3 % and 19.5 %, can be explained by a contamination of respectively

0.3 % (-25 dB) and 1 % (-20 dB). Following this simple model, these values of contamination lead to

F = 99.5 % and F = 99.85 %. In consequence, the distinction ratio of our detection setup is sufficiently

high to obtain in principle good values of the fidelity for the two LG states.
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FIGURE E.2 : Fidelity F and visibility V for the LG states |R〉 and |L〉, as a function of the quantity ε
of LGl detected on the −l path. The corresponding distinction ratio varies from infinity to -13 dB.
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E.2 For HG states

For HG states, two defects can induce a decrease in fidelity, first the unbalancing between the two

detection paths (see section 4.1.1.3), and secondly the global phase offset between the theoretical and

the experimental fringes. Indeed, we observe in section 4.2.1.3 an offset between the theoretical values
(

φth
H , φ

th
D , φ

th
V , φ

th
A

)

= (0◦, 90◦, 180◦, 270◦) of the HG state phases, and the values obtained from the

fitting of the experimental fringes. This can lead to a decreasing in the fidelity.

Here we take into account both effects. We note the unbalancing 2α, so we obtain I1 = 1/2 + α

and I2 = 1/2 − α, and we note the phase offset β. We take the example of the |H〉 state, with

φth
H = 0, but the following is also valid for the three other HG states. For a |H〉 state the intensity at

the interferometer output can be written as

I = 1 + 2
√

1/4 − α2 cos(∆ϕ+ β) . (E.6)

Then, the experimental Stokes parameters are expressed as

S1 = 2α

S2 = 2
√

1/4 − α2 cosβ (E.7)

S3 = 2
√

1/4 − α2 sin β ,

which gives the following density matrix

ρ̂ =

(

1/2 + α
√

1/4 − α2 e−iβ
√

1/4 − α2 eiβ 1/2 − α

)

. (E.8)

In consequence, we can write the fidelity with the ideal state |H〉 as

F = 1/2 +
√

1/4 − α2 cosβ . (E.9)

The fidelity is represented on figure E.3 for a large range of α and β. For the extreme case of an

unbalancing of 1 and/or a phase offset of 90 %, the fidelity decreases down to 50 %, which is the value

for two orthogonal states. In our experimental setup, the unbalancing is typically around 15 %, and the
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FIGURE E.3 : Fidelity F as a function of the unbalancing of the detection for HG state α, and of the
offset β in the measurement of the interferometer phase.
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offset difference around 10◦. For these values, we find F = 98.7 %, which is in agreement with the

corrected fidelities given in table 4.2.
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Appendix F

Atomic filter for the DLCZ

experiment

In the DLCZ experiment described in chapter 5 , the first emitted photon is filtered in frequency in

order to ensure that the field 1 frequency is around the |F = 3〉 → |F ′ = 4〉 transition. Indeed, if the

atom excited by the write pulse decays in the initial |F = 4〉 state, no collective excitation is created

in the atomic ensemble, and no second photon will be emitted during the read process. Thus, the

conditional probability pc to detect the second photon, as well as the correlation function g12 would

decrease. Because of this filter, the effective repetition rate of the experiment, namely p1 decreases, but

the quality of the source is improved.

We chose the simple solution of an atomic filter, which consists in a cesium cell, where the atoms are

pumped into a unique hyperfine ground state, |F = 4〉, by an auxiliary beam (see figure F.1). The pump

beam, on resonance with the |F = 3〉 → |F ′ = 4〉 transition, is sent off-axis during the build-up of the

MOT and the atomic preparation stage, but not during the memory implementation. Thus, despite

the large power of about 10 mW, the pump beam does not induce noise on the single-photon detector.

Furthermore, by using a paraffin-coated cell, we obtain population lifetimes around 10 ms, which is long

in front of the duration of the memory implementation.

Cs cell

pump

|F = 4〉

|F ′ = 4〉

|F = 3〉

−∆

field 1

MOT APD 1

FIGURE F.1 : Atomic filter for the field 1 photon. In order to detect the field 1 around the |F = 3〉 →
|F ′ = 4〉 transition and to absorb photons around the |F = 4〉 → |F ′ = 4〉, the field 1 passes through a
cesium cell, where all the atoms are pumped into |F = 4〉 thanks to a large and strong pump beam on
resonance with the |F = 3〉 → |F ′ = 4〉 transition.

We tested the filtering performances with low power coherent light. A light beam on resonance with

the |F = 3〉 → |F ′ = 4〉 transition is sent to estimate the transmission of the field 1 photons, and light
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Appendix F. Atomic filter for the DLCZ experiment

that couples the |F = 4〉 to the |F ′ = 4〉 states enables us to measure the absorption of the photons

we do not want to detect. The cell is heated in order to increase the number of atoms, and thus to

increase the absorption of the unwanted field. For this purpose, heating wires are wrapped around the

stem and around the body cell, and the temperature of each region is measured thanks to thermistors.

The heating wire is twisted so as to not induce any magnetic field in the atomic cell, and its resistance

is 12 Ω/m, the length being around 30 cm. The wires are supplied in current through a load resistance

of 10 Ω. Thus, the stem and the cell are heated up to two different temperatures, respectively Tstem

and Tcell.

We observe the normalized intensity of the two transmitted beams as a function of time. In the

experiment, the pump is switched off few microseconds before the several trials of the DLCZ scheme

start for 1 ms. Thus, we are mainly interested of the filter performances during the first millisecond after

the switching time of the pump. Figure F.2 shows the filter performances for two heating configurations.

First, for Tcell = 34◦C and Tstem = 32◦C (panel (a)), the transmission of the |F = 3〉 → |F ′ = 4〉 light

is 0.75 between t = 0 and t = 1 ms, while it is 5 × 10−2 for the |F = 4〉 → |F ′ = 4〉 light. Second, for

Tcell = 38◦C and Tstem = 40◦C (panel (b)), the transmission of the |F = 3〉 → |F ′ = 4〉 light is 0.6 at

t = 0, and 3 × 10−2 for the |F = 4〉 → |F ′ = 4〉 light.
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FIGURE F.2 : Atomic filter performances for two heating configurations, (a) Tcell = 34◦C and Tstem =
32◦C and (b) Tcell = 38◦C and Tstem = 40◦C. Normalized intensities of weak coherent beams as a
function of time, the pump being turned off at t = 0. Blue lines correspond to a |F = 3〉 → |F ′ = 4〉
light, orange lines to |F = 4〉 → |F ′ = 4〉 light.
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Appendix G

Homodyne detection

G.1 Principle

The homodyne detection aims at detecting the quadrature components of a single-mode electromagnetic

field of frequency ω, which can be expressed as

Ê(t) =
E√
2

(

âe−iωt + â†eiωt
)

= E (x̂ cos(ωt) + p̂ sin(ωt)) , (G.1)

where â and â† are the annihilation and creation operators, x̂ and p̂ the quadrature operators.

A scheme of the homodyne detection operation is displayed in figure G.1(a). The signal field to

measure, âs, is mixed on a 50/50 beam splitter with a strong local oscillator field, âLO with a phase

âLOe
iθ

âs

â1

â2

-

θ

p

x

xθ

as

〈xθ〉

∆xφ

î

(a) (b)

FIGURE G.1 : Homodyne detection principle. (a) The homodyne detection scheme involves a strong
local oscillator, âLOe

iθ, mixed on a 50/50 beam splitter with the signal to measure, âs. Both outputs
are detected by photodiodes, and the currents are subtracted. (b) Optical phase diagram where the
signal field is represented with its area of uncertainty. The homodyne measurement projects the signal
field on the rotated quadrature x̂θ, and gives access to the fluctuations of the quadrature component xθ

of the signal field.
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difference θ. The output fields can be written as:

â1,2 =
âs ± âLOe

iθ

√
2

. (G.2)

Each field is detected by a photodiode, which provides in the ideal case a current îj proportional to the

photon number â†
j âj where j = 1, 2,

î1,2 ∝ â†
sâs + â†

LOâLO ± â†
sâLOe

iθ ± âsâ
†
LOe

−iθ (G.3)

∝ |Es|2 + |ELO|2 ± |ELO|
(

â†
se

iθ + âse
−iθ
)

. (G.4)

Therefore, the subtraction of the two photocurrents gives

î = î1 − î2 ∝ |ELO|x̂θ , (G.5)

where x̂θ is the rotated quadrature operators, defined as

x̂θ =
â†eiθ + âe−iθ

√
2

= cos θ x̂+ sin θ p̂ . (G.6)

Thus, the homodyne measurement corresponds to a projection of the signal field along xθ in the optical

phase diagram, as shown in figure G.1(b). By performing a large amount of measurement with the

phase θ randomly evolving, the fluctuations of the quadrature components can be accessed. Starting

from this raw data set, we can perform a complete tomography of the signal state, via the iterative

maximum likelihood algorithm, leading to the reconstruction of the density matrix and the associated

Wigner function.

G.2 Details about the experimental setup

We realized an homodyne detection in order to perform the state tomography of the retrieved photon

from our atomic ensemble via the DLCZ protocol, as described in chapter 5.

We use photodiodes (Hamamatsu, S5971) having a efficiency ηd = 92 % without the protective

window (88 % with the window) at 852 nm. Diodes with high efficiency, higher than 98 %, may be

obtained soon from Hamamatsu (special order, in collaboration with A. Furusawa). At the polarization

Vpol

−Vpol

i

C

R

DC out

HF out

+6

-6

LMH6624

FIGURE G.2 : Schematic electronic circuit of the homodyne detection. The photodiode currents are
subtracted, converted into voltages and amplified. The high frequency signal is taken right after the
amplification, while the constant component is obtained after filtering.
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FIGURE G.3 : Effective efficiency ηe of the homodyne detection as a function of the frequency.

voltage Vpol = 10 V, the capacitance is only 3 pF. Photocurrents of both detectors are directly subtracted

before amplification, using an electronic circuit designed in the LKB, schematically displayed on figure

G.2.

The homodyne detection must exhibit a flat response within its bandwidth range. Moreover, the gain

must be sufficiently high to obtain a signal far above the electronic noise, the latter being considered as

an optical loss channel [Kumar et al., 2012]. The resistance R is adjusted to set the gain, whereas the

capacitance C is adjusted to optimize the flatness of the homodyne response. The bandwidth of the

homodyne detection results from these two adjustments. A trade-off is found with R = 3 kΩ, the value

of C being tunable from 1.5 and 10 pF. We then measure the effective efficiency ηe of the homodyne

detection, expressed as

ηe = 1 − 10−(SN+EN)/10 , (G.7)

with SN the shot noise, and EN the electronic noise, both in dBm [Kumar et al., 2012]. Figure G.3

displays η of the resulting setup, which shows a bandwidth of 100 MHz. The behavior at low frequencies

is not visible here, but a cutting occurs around 1 MHz.
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