
HAL Id: tel-00977434
https://theses.hal.science/tel-00977434

Submitted on 11 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge-based 3D point clouds processing
Quoc Hung Truong

To cite this version:
Quoc Hung Truong. Knowledge-based 3D point clouds processing. Other [cs.OH]. Université de
Bourgogne, 2013. English. �NNT : 2013DIJOS045�. �tel-00977434�

https://theses.hal.science/tel-00977434
https://hal.archives-ouvertes.fr

Thèse de Doctorat

n

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E B O U R G O G N E

Knowledge-based 3D point clouds
processing
Traitement 3D de nuages de points basé sur la connaissance

Quoc Hung TRUONG

Thèse de Doctorat

THÈSE présentée par

Quoc Hung TRUONG

pour obtenir le

Grade de Docteur de

l’Université de Bourgogne

Spécialité : Informatique

Knowledge-based 3D point clouds processing
Traitement 3D de nuages de points basé sur la connaissance

Soutenue le 15 November 2013 devant le Jury :

Prof. Laurent BIGUE President Université de Mulhouse

Prof. Yvon VOISIN Director Université de Bourgogne

Prof. Frank BOOCHS Co-director Fachhochschule Mainz

Prof. Adlane HABED Co-supervisor Université de Strasbourg

Prof. Sylvie TREUILLET Reviewer Université d’Orléans

Prof. Christophe DOIGNON Reviewer Université de Strasbourg

N◦ X X X

ACKNOWLEDGEMENT

I would here like to express my thanks to the people who have supported me during the

PhD study.

My first debt of gratitude must go to my supervisor, Prof. Yvon Voisin, who gives me the

chance to pursue a PhD as well as supports to carry out my thesis at the Laboratory of

Electronics, Computer science and Image (LE2I). I would like to express my sincerest

thanks and appreciation to my second supervisor, Prof. Adlane Habed. He provided

the vision, encouragement and advise necessary for me to proceed through the doctoral

program and complete my dissertation.

I am deeply indebted to Prof. Frank Boochs, my thesis would not have come to a success-

ful completion without the support, encouragement and invaluable suggestions I received

from him. He has enabled my research work during my PhD and it has been a great

privilege to spend several years in i3mainz.

I would specially like to thank Dr. Ashish Karmacharya and members of i3mainz for their

support, guidance and helpful suggestions. Their guidance has served me well and I owe

them my heartfelt appreciation.

The best and worst moments of my doctoral journey have been shared with my family. I

wish to thank my family whose love and encouragement allowed me to finish this journey.

CONTENTS

1 Introduction 11

1.1 Context and Motivation . 11

1.2 Scope of the thesis . 13

1.3 Contributions . 15

1.4 Thesis overview . 15

2 Literature review 17

2.1 Model-driven approaches . 17

2.2 Purely data-Driven approaches . 18

2.3 Intelligent data-driven approaches . 20

2.4 Data-driven incorporating semantics . 21

2.5 Knowledge-based approaches . 23

3 Background 27

3.1 Semantic knowledge . 27

3.1.1 Knowledge-based systems . 27

3.1.1.1 Artificial intelligence perspective 27

3.1.1.2 Data, information and knowledge 29

3.1.1.3 Expert system or knowledge-based system 31

3.1.2 Knowledge acquisition . 36

3.1.3 Knowledge Representation . 38

3.1.3.1 Semantic Networks . 38

3.1.3.2 Rules . 39

3.1.3.3 Logical representation . 40

3.1.4 Ontology in Information Systems . 40

3.1.5 Ontology Languages . 42

3.1.5.1 Web Ontology Language (OWL) 42

3.1.5.2 The Semantic Web Rule Language (SWRL) 44

3.1.5.3 Protégé - software Support for OWL 45

3.2 Numerical processing . 47

CONTENTS 8

3.2.1 Data acquisition . 47

3.2.1.1 Terrestrial Laser Scanner 47

3.2.1.2 LIMEZ III (Lichtraumprofil Messzug) 48

3.2.2 Noise reduction . 49

3.2.3 Fitting 3D points to primitive shapes 50

3.2.3.1 Fitting 3D points to a plane (Orthogonal Distance Regres-

sion Plane) . 50

3.2.3.2 Fitting 3D points to a line (Orthogonal Distance Regres-

sion Line) . 53

3.2.4 3D to 2D Projection . 55

3.2.5 RANSAC . 57

3.2.6 Point Cloud Library . 58

4 Methodology 61

4.1 System overview . 61

4.2 Knowledge engineering . 63

4.2.1 Knowledge management techniques 63

4.2.2 Knowledge modeling . 64

4.2.2.1 Scene knowledge . 65

4.2.2.2 Data knowledge . 67

4.2.2.3 Spatial knowledge . 68

4.2.2.4 Algorithm knowledge . 70

4.3 Numerical processing . 71

4.3.1 Algorithm categories . 71

4.3.2 Data preprocessing . 72

4.3.3 Segmentation . 73

4.3.3.1 Partitioning Point Clouds (Spatial partitioning) 73

4.3.3.2 Point clouds segmentation 74

4.3.4 Geometry detection . 76

4.3.4.1 Hull detection algorithm . 76

4.3.4.2 3D to 2D projection . 77

4.3.4.3 Position detection . 80

4.3.4.4 Particular features extraction 82

4.3.4.5 3D line detection . 84

4.3.4.6 Plane detection algorithm 86

4.3.5 Measurement . 87

CONTENTS 9

4.4 Algorithm Selection Module (ASM) . 88

4.4.1 Modeling algorithm in knowledge base 89

4.4.2 Algorithm graph . 89

4.4.3 Algorithm sequence extraction . 90

4.4.4 Knowledge-based algorithm configuration 92

4.5 Integration of knowledge into 3D processing 96

4.5.1 Knowledge-driven strategy . 96

4.5.2 Specific knowledge-based processing 97

4.5.3 Change detection in a scene . 97

4.5.4 Object localization . 98

4.5.5 Generic knowledge-based object detection 99

4.6 Integrating knowledge into processing technique 100

5 Implementation 103

5.1 Object classification in the railway system 103

5.1.1 Knowledge modeling . 104

5.1.2 Processing . 108

5.1.2.1 Results . 111

5.2 Object detection inside airport building (Fraport’s waiting area) 114

5.2.1 Processing . 114

5.2.1.1 Results . 119

6 Conclusions and Future Work 123

6.1 Results . 123

6.2 Future work . 125

1

INTRODUCTION

1.1/ CONTEXT AND MOTIVATION

Three-dimensional (3D) point cloud processing has lately known a growing interest fol-

lowing a surge in scanning technologies and capabilities. As collecting and digitizing 3D

data from the real-world have become readily accessible, several applications – whether

in industry, security, robotics, or even in the medical field – have already adopted 3D

scanning as an indispensable tool. While laser scanners have already been established

as a workhorse for topographic and building surveys, the introduction on the market of

affordable and simple scanning devices (such as Microsoft’s Kinect), 3D scanning is ex-

pected to reach an all new level of proliferation. With every new scanner model on the

market, phase-shift scanners in particular, such instruments are becoming faster, more

accurate and can scan objects at longer distances. However, increasing scanning speed

leads to a new behaviour of the user in the field. While region to be scanned and equip-

ment resolution have to be chosen carefully when using slow pulse scanners, phase-shift

scanners usually carry out high resolution scans exhibiting great redundancy and density

of points. In most cases, processing techniques are still mainly relying on user interven-

tion. Typical operations consist in denoising, deleting unnecessary areas, navigating in

an often huge and complicated 3D structure, selection of sets of points, extraction and

modelling of geometries and objects, etc. Such tasks are tedious and generally require a

high level of expertise as well as a lengthy training of personnel.

The development of processing algorithms in point clouds, such as registration, noise re-

duction, feature extraction, model fitting, object detection, etc, has been a key concern in

the research areas of Computer Vision and Photogrammetry. Object detection and recon-

struction from digitized data, typically images and point clouds, are important tasks that

find applications in many fields. Because such processing tasks are extremely laborious

and difficult when carried out manually, it is of the utmost importance that they benefit

from the support – or even be entirely performed through – numerical algorithms. Most

existing 3D processing techniques and object detection methods are data-driven. For

instance, several methods proceed by fitting models with scans. Typically, these methods

proceed by segmenting the point cloud under consideration and measuring the similarity

between the model and the extracted features. Some methods rely both on extracting

discriminating features from the data set as well as on numerical models characteriz-

ing either geometric (e.g. flatness and roughness) or physical (e.g. color and texture)

properties of the sought objects. The numerical model and the extracted features are

combined to form a decision. Other methods employ object segmentation techniques

CHAPTER 1. INTRODUCTION 12

and classification, possibly through learning. While using learning has the drawback of

requiring application-dependent training sets (often difficult to obtain), those methods that

do not rely on learning lack the flexibility expected from such systems. Indeed, the latter

methods are applied in a static manner regardless of the context or any scene-dependent

knowledge that might be available. These approaches often have one thing in common:

they are static and do not allow a dynamic adjustment to the object or to the initial pro-

cessing results. The employed algorithm is applied to the entire point cloud and the result

can be good or bad. The result is dependent upon several factors such as point cloud

quality, object distribution in a scene, object features and so on. However, there is no

feedback to the algorithmic part in order to either activate a different algorithm or use the

same algorithm with revised parameters. This interaction is still up to the users who have

to decide which algorithms are to be applied for the kind of objects and point clouds at

hand. This again leads to a time-consuming mostly manual process.

With the increasing complexity of the data and the objects represented therein, a correct

validation of the numerically modeled features becomes increasingly difficult and renders

decisions based on individual algorithmic features unreliable. This problem can be solved

by taking into account additional guiding information within the algorithmic process chain

as to support the validation process. Such information might be derived from the context

of the object itself and its behavior with respect to the data and/or other objects or from a

systematic characterization of the parameterization and effectiveness of the algorithms to

be used. Indeed, most conventional methods are generally affected by the nature of data

set and the behavior of the algorithms. It is up to the user to decide, often subjectively

but generally based on one’s experience, which algorithms are best suited for any par-

ticular kind of objects and/or data sets. It goes without saying that the success of these

approaches is significantly compromised by the increasing complexity of the objects and

the decreasing quality of the data. Furthermore, relying on only a restricted set of features

and individual algorithms to process the data might lead to unreliable results.

However, as far as the 3D processing of the resulting digitized scenes is concerned, this

seems to remain a matter that is limited to “knowledgeable” expert individuals, hence not

accessible to many. One way to overcome the drawbacks of the data-driven approaches

is to resort to the use of additional knowledge. For instance, knowledge characteriz-

ing the objects to be detected with respect to the data at hand, or their relationships to

other objects, may generally be derived beforehand. Such knowledge not only allows

for a systematic characterization and parameterization of the objects but also supports

the quantification of the effectiveness of the algorithms to be used. Methods combining

data-driven processing algorithms and semantic knowledge have been proposed in the

literature (these are discussed in the early chapters of this thesis). Such combination has

not only led to faster 3D processing of point clouds, in particular when dealing with large

sets of data, but also to more “intelligent” strategies for detecting objects and annotating

scenes. For example, semantic knowledge has been used to support the building of se-

mantic maps for autonomous robots from laser scans. Also, a combination of semantic

3D object maps and triangulated surface maps has been used to allow a personal robotic

assistant to classify regions and estimate 3D geometrical features.

A limitation that is common to all methods relying on the support of knowledge to detect

objects and annotate scenes is that their algorithms act on the results of the data-driven

segmentation/processing and do not exploit semantic knowledge to guide and direct the

processing itself. Indeed, the results of the 3D processing algorithms are very much

dependent upon the quality of the scanned data and on the topology of the scene be-

CHAPTER 1. INTRODUCTION 13

ing scanned. When a 3D processing task fails to provide adequate results, reasoning -

based on the knowledge being used and the result of the processing - necessarily fails

as well. The 3D processing tasks mostly fail however because they are unable to adapt

to particular circumstances. Therefore, it becomes necessary to devise a new approach

that supports 3D processing with knowledge, allows guiding, controlling and adapting the

processing of a point cloud in a continuous situation-specific manner. Additionally, this

approach should optimize the 3D processing by dynamically and automatically selecting

suitable algorithms based on both knowledge and feedback from the processing results to

decide for the next processing step. A platform integrating knowledge and 3D processing

to detect and annotate point clouds is therefore required.

1.2/ SCOPE OF THE THESIS

Problem statement

Digitized realistic 3D data have proven useful in a variety of industrial applications, rang-

ing from security and robotics to healthcare and surgical support. In this thesis, we focus

on investigating the problems of detecting and identifying objects laser scanned data,

typically point clouds, in site surveying applications. The approach is to devise a robust

numerical processing approach, employing point cloud preprocessing, feature extraction,

geometry fitting, etc., and providing reliable results under different conditions of data and

scene. In particular, the proposed approach relies on knowledge to guide processing

algorithms in the task of detecting and identifying objects in 3D point clouds. The algo-

rithms are combined in a flexible manner to act on data while relying on knowledge about

objects’ characteristics and relationships between them. In addition, our goal is also to

include in this approach the automatic selection of algorithms as to detect objects by

reasoning upon situations and analyzing relevant knowledge.

The work presented in this thesis uses semantic knowledge and employs a cognitive

approach to guide the processing. This is motivated by the need to replace the current

pure-numeric strategies by fault-tolerant and adaptive methods for object extraction and

identification, which are modeled in the knowledge domain. Data sources like images,

stereo pairs or point cloud colour information can be included in the detection process.

In contrast to existing approaches, we aim at utilizing previous knowledge on the objects

to measure. This knowledge can be contained in databases, construction plans, as-built

plans, Geographic Information Systems (GIS) or just obtained from domain experts.

Such knowledge is the basis for a selective, object-oriented detection, identification and,

if necessary, modelling of the objects and elements of interest in the point clouds.

Solution

The work proposed in this thesis bridges between semantic modeling and numerical pro-

cessing strategies. This avoids actual limits in the use of knowledge within numerical

strategies. As a basis for our approach, available knowledge is structured and explicitly

formulated by linking objects geometry to semantic information, creating rules and guid-

ing the algorithms used to process the real data. The general process architecture of

our system consists of two distinct parts that are combined seamlessly to carry out the

knowledge-based operations during the processing steps.

CHAPTER 1. INTRODUCTION 14

The first part encapsulates knowledge through the semantic definitions of the domains

that are involved. Four knowledge domains are involved in this process and should be

identified in all scenarios by human observation (for example through the scanning of

documents, site plans, CAD drawings, and GIS). For instance, we relate data set knowl-

edge and expert knowledge about processing algorithms to the geometrical or topolog-

ical behavior of the object. The created knowledge is structured into an ontology con-

taining a variety of elements such as prior information about the objects extracted from

data sources (digital maps, geographical information systems, etc) or information about

the objects’ characteristics, a hierarchy of the sub-elements, the geometrical topology,

the characteristics of the processing algorithms etc. During processing, such modeled

knowledge provides relevant information allowing for the guidance of the analysis and

the identification processes. This allows choosing from different algorithmic strategies,

possibly combining them and reacting to “unexpected” situations by making use of the

overall knowledge framework. To achieve this, all relevant information about the objects,

the algorithms and their interrelationships ought to be modeled inside the ontology, in-

cluding characteristics like positions, geometric descriptions, texture images, behavior

and parameters of suitable algorithms, etc.

If knowledge is considered as a critical element in guiding the various data processing

stages, the processing algorithms, which account for the second part of our system, play

an important role in detecting geometries in point clouds. The algorithmic part includes

a number of algorithms such as noise reduction in point clouds, the removal of outliers,

data partitioning, segmentation, geometry fitting, etc. These algorithms are independent

components in the sense that each can function independently from the others. However,

they could also be combined to create a sequence that allows the detection of geome-

tries present within the object. Note that, with a large variety of object types of diverse

complexity, a collection of many algorithms is needed in practice. In order to manage

these algorithms, we propose to classify them into individual groups according to the task

they have been designed for. This structure allows making the algorithms readily avail-

able for easy access under the guidance of knowledge as to direct, adapt and select the

most suitable algorithms based on the objects characteristics as well as to adjust their

parameters to the current situation. The characteristics are considered as values that

can change the parameters of the algorithms thus adapting to current conditions. After

an object is detected, its status is fed back into the knowledge part only to be taken into

account in subsequent processing stages.

The selection of an appropriate sequence of algorithms is carried out through the so-

called Algorithm Selection Module (ASM). This module takes expert knowledge on pro-

cessing into account and combines it with domain knowledge in order to support appro-

priate algorithm selection for every particular case. Each algorithm behaves differently

in combination with other algorithms. All algorithm characteristics and relations to other

algorithms should be taken into account while creating any chain that combines an algo-

rithm sequence. This knowledge is based on empirical studies and simulations carried

out by domain professionals and mapped on the knowledge schema. Using the modeled

algorithm characteristics, a graph representing all possible travel directions is created and

helps determining the appropriate flow of algorithm sequences.

CHAPTER 1. INTRODUCTION 15

1.3/ CONTRIBUTIONS

The work presented in this thesis aims at efficiently exploiting additional knowledge in the

processing of point clouds. Our main contributions can be stated as follows:

- We present a comprehensive review of state-of-the-art methods in both 3D data pro-

cessing and knowledge-based systems.

- We propose a framework to model and use knowledge from various domains and to

make it contribute to all steps of an object detection process. This starts with inferring

the steps that control algorithms based on object and scene-related knowledge (in order

to select appropriate algorithmic strategies) and ends with a knowledge-based object

classification while simultaneously extending and updating the knowledge base Boochs

et al. [2011], Truong et al. [2013a].

- We also propose a structured organization of a number of numerical processing algo-

rithms that serve as a basis for tasks such as data preprocessing, segmentation, ge-

ometry fitting, etc. This work has been published in Truong et al. [2010], Marbs et al.

[2010].

- We bridge semantic knowledge (taken from multiple sources such as digital maps and

geographical information systems) and numerical processing strategies in order to ben-

efit from knowledge in any or all parts of an automatic processing chain Truong et al.

[2012]. This approach not only relies on information about potentially present objects in

the scene (their characteristics, a hierarchal description of their sub-components, spatial

relationships) but also on the characteristics of the processing algorithms at hand. During

processing, the modeled knowledge guides the algorithms and supports both the anal-

ysis of the results and the object classification. Knowledge is also used to support the

choice among different algorithms, the combination of these, and the adopted strategies

Truong et al. [2013b].

- We have developed a demonstration prototype “Wissensbasierte Detektion von Objek-

ten in Punktwolken für Anwendungen im Ingenieurbereich” (WiDOP) of our knowledge-

driven approach. The solution rests on some fundamental knowledge domains: scene

knowledge, data knowledge, spatial knowledge and algorithm knowledge. These do-

mains allow describing the scene and the semantic behavior of the processing algorithms.

The semantic knowledge used to relate these domains provides the much needed flex-

ibility in the algorithmic processing. Our demonstrator uses datasets provided by the

Deutsche Bahn AG (German Railway system) and Fraport AG (Frankfurt International

Airport) to show the effectiveness of the approach.

1.4/ THESIS OVERVIEW

The thesis is structured as follows. An overview of the relevant literature on 3D point

cloud processing and that of knowledge-based systems is given in Chapter 2. Chapter 3

covers the necessary background used in this thesis. We introduce aspects of semantic

knowledge engineering as well as its usage in the scope of our work. The fundamen-

tal algorithms in image processing and 3D point cloud processing are highlighted in this

chapter as well. Chapter 4 is dedicated to our knowledge-based strategy which addresses

the problem of 3D object detection and classification in point clouds. The approach iden-

CHAPTER 1. INTRODUCTION 16

tifies several knowledge domains as to devise an algorithm selection module that enables

us to automatically identify objects in the scanned data. This is followed by case-studies

involving real-world examples in Chapter 5. Both cases, one for an indoor situation and

the other for an outdoor scene, require robust methods to detect and classify objects in

3D point clouds. Our approach was tested in these two scenarios and achieved reliable

results. Our conclusion and future work are given in Chapter 6.

2

LITERATURE REVIEW

In this chapter, we present a comprehensive review of data processing methods. The

discussed methods are classified into five main groups according to the processing

paradigm they are based upon. For instance, we distinguish purely model-driven and

data-driven approaches from those paradigms incorporating intelligence and semantic

aspects in the processing. We also discuss processing methods that are based on

various forms of knowledge and which represent the basis of the approach we propose

and defend in the present thesis.

2.1/ MODEL-DRIVEN APPROACHES

Model-driven approaches resort to the design of a model consisting in a mathematical or

graphical description the sough object. The model serves as a reference against which

the data being processed is compared. Several methods based on this approach have

been developed to solve a number of problems particularly in the field of Computer Vision

and of which the most relevant ones are discussed here.

[Kragic and Christensen 2002] proposed the use of a model-based tracking system to

estimate and continuously update the pose of an object to be manipulated. A wire–frame

model is employed to identify and track features across images. One of the important

parts of their system is the ability to automatically initiate the tracking process and op-

erate in a domestic environment with changing lighting and background conditions. In

[Truong et al. 2008] a model-based 3D object recognition method, employing intersecting

lines and a pre-defined object model, has been proposed. 3D line-segments are ex-

tracted using both 2D images and point clouds yielding the identification of pairs of inter-

est lines with given angle. By estimating the coverage ratio, the algorithm finds the most

accurate matching between detected line pairs and a model database. Note that several

model-based methods proceed in a way that is similar to the above two approaches. For

instance, objects are only described in terms of their shape using a wire-frame model

without incorporating any further details and features such as corners, interest points,

color or texture.

Other methods making use of such features in addition to a model have also been pro-

posed in the literature. For instance, the authors of [Taylor and Kleeman 2003] have

developed a fusion scheme for 3D model-based tracking using a Kalman filter framework.

Color, edge and texture cues, predicted from a textured CAD model of the tracked object,

CHAPTER 2. LITERATURE REVIEW 18

have been used to recover the 3D pose. Such approach has also the ability of taking

additional cues and cameras into account within the tracking algorithm provided a suit-

able measurement function exists. In term of changes in visual conditions, this approach

outperforms methods employing single-cue algorithms. In [Ekvall et al. 2005], the au-

thors propose another approach for object recognition and pose estimation that is based

on color co-occurrence histograms and geometric modeling. This method employs a

classical learning framework and color co-occurrence histograms that facilitate a “winner-

takes-all” strategy across different views and scales. The hypotheses generated in the

recognition stage provide the basis for estimating the orientation of the object around the

vertical axis. The system can automatically initiate an object tracking process. It uses ei-

ther recognition or pose estimation, both relying on the same object representation. This

approach yields a gain in robustness, invariance with respect to scaling and translation as

well as computational efficiency. The major contribution of their work is in the integration

of different techniques to obtain real-time, on-line 6DOF pose estimation, one of the few

systems that are able to perform automatic initialization of the pose tracking algorithm.

Model-based object recognition approaches utilize the knowledge of an object’s appear-

ance that is provided by an explicit model of its shape. Such techniques not only rec-

ognize objects through representing shape but also fuse other additional properties. The

advantage of using Model-driven approaches particularly manifests in the presence of low

quality data exhibiting a lack of object representation. However, such approaches suffer

from some obvious limitations in particular when the shape of the object is particularly

complicated. In such case the object’s representation may requires a faithful description

that may not be easy to obtain. Another shortcoming of the model-based approaches

has to do with the effect of noise on the mapping between the data and the model which

could very well lead to failure.

2.2/ PURELY DATA-DRIVEN APPROACHES

In contrast to model-driven approaches, data-driven ones act on the data without resort-

ing to the use of any predefined model of the sought object regardless of its form. Such

approaches proceed by extracting primitive features, should they be simple or complex

geometric features, from visual information such as point cloud data. The extracted fea-

tures are combined in such a way a model, not defined beforehand, is generated. Early

3D processing techniques were purely data-driven exhibiting obvious limitations with the

increasing complexity of the data and scenes. Progress has been achieved by consid-

ering the use of models approximating geometrical characteristics of objects. However,

despite the robustness and efficiency of many such processing algorithms, they alone

cannot resolve existing ambiguities when qualifying objects in a digitized scene. Such

ambiguities can be efficiently dealt with when integrating semantic knowledge with data

processing.

As far as feature-based object recognition is concerned, some approaches have been

used in both 2D images and 3D data. Many of these were dedicated to the reconstruc-

tion of buildings. For instance, [Vosselman and Dijkman 2001] made use of higher level

3D features, usually simple roof shapes (flat roofs, gable roofs and hip roofs) that are

generally present in building structures. The authors relied on the use of the 3D Hough

transform to detect planar roof faces in point clouds, and hence reconstructed the scene

in a higher level of abstraction. Their segmentation strategy was based on detecting

CHAPTER 2. LITERATURE REVIEW 19

intersecting lines and “height jump edges” between planar faces. In general, such meth-

ods require some level of user intervention. The user manually initializes the process by

providing some measurements based on which an algorithm attempts to extract other el-

ements. These methods are usually supported by (orthogonal or perspective) projections

[Zitova and Flusser 2003] in a lower dimensional space as to make some constraints

more evident.

When modeling buildings by constructive solid geometry, buildings can be regarded as

compositions of a few components with simple roof shapes, like flat roofs, gable roofs

and hip roofs. This has motivated the work [Bredif et al. 2007] and the one in [Lafarge

et al. 2008] for developing point cloud segmentation methods specifically designed for

buildings and relying on similarity measurements between the model and the extracted

features. For instance, planes are very useful features as they are typically present in any

man-made environments. For example, [Ameri and Fritsch 2000] introduces a method for

automatic 3D building reconstruction using plane-roof structures. First, the system con-

struct a boundary representation for a coarse building hypothesis based on a bottom-up

approach starting from simple geometric primitives (projections of co-planar feature roof-

points or lines), that are present in images, to complex geometric primitives (for instance

a roof structure) in the scene. Subsequently, the top-down approach is applied to back

project the reconstructed model to the corresponding images for verifying the hypothesis

model.

A stricking example of a data-driven approach is the one in [Pollefeys et al. 2000] where

the authors show the feasibility of a 3D reconstruction from a hand-held camera without

prior knowledge neither about the scene nor about the camera. The authors proposed

a system which automatically extracts a textured 3D surface model from a sequence of

images of a scene. Building the 3D model is processed without camera settings and

scene knowledge. The system uses recently developed Computer Vision algorithms and

3D modeling tasks decomposed into several consecutive steps. The scene and camera

settings are then gradually retrieved. The obtained accuracy is not yet at the level required

for most metrology applications, but the visual quality is very convincing. This approach

has been applied to a number of applications in archaeology.

As far as point cloud data are concerned, typically obtained from laser scanners, [Al-

harthy and Bethel 2004] shows that dense airborne laser scanning data may suffice for a

detailed 3D reconstruction of urban features such as buildings. Local statistical inference

is used and least-squares analysis of moving surfaces has been critical in determining

building roof details. The consistency of the data with those surfaces determines how

they can be modeled. Complete wireframe of buildings is constructed after obtaining the

roof facet orientation and approximate location, then, from the intersection of these facets,

the roof boundary is extracted. The method presented in [Pu and Vosselman 2006] used

segmentation and feature extraction algorithms to recognize building components (such

as doors, walls, windows) from point clouds. Based on constraints on the sought com-

ponents, they were able to determine the categories each extracted feature belonged to.

However, the results of these methods were not satisfying when the data did not clearly

describe the object due to either the presence of noise or because of occlusions. In fact,

the visual information (images, point clouds. . .) which is acquired from different scan-

ners has different property and quality, such as density of point clouds. The nature of

scanned area also determines complexity of the scene and object. Feature-based object

recognition methods depend on the representation of the objects in the data. Their out-

come is very much dependent upon the accuracy from the processing algorithms, such

CHAPTER 2. LITERATURE REVIEW 20

as segmentation, extraction and model fitting. This is a recurrent issue because each

processing algorithm comes with its own limitation and is only able to work effectively

under certain conditions and hypotheses.

2.3/ INTELLIGENT DATA-DRIVEN APPROACHES

Additional aspects need to be taken into account in order to cope with the limitations of

the conventional purely data-driven approaches in term of uncertainty and complexity of

data. Methods have been proposed to improve the existing data-driven approaches by

using concepts from machine learning as to enforce the robustness of such methods in

recognizing and processing complex objects and scenes. Machine learning is tradition-

ally considered as part of the field of Artificial Intelligence and aims at building programs

whose behavior changes (and improves) through experience or use a learning process.

Machine learning is integrated into data-driven approaches to solve the two most impor-

tant problems: classification and regression (numerical prediction). Classification meth-

ods may employ decision trees, Bayesian methods, instance-based learning (k-nearest

neighbor algorithm) and self-organizing feature maps and many other techniques.

A typical work in this category is the one presented by [Anguelov et al. 2005] in which

object segmentation and classification are obtained through a learning procedure em-

ploying Markov Random Fields (MRFs) and quadratic programming. The MRF models

incorporate diverse features and enforce the preference that adjacent scan points have

the same classification label. Maximum margin framework is proposed to discriminatively

train the model from a set of labeled scans. Finally, the system ends-up automatically

learning the relative importance of the features for the segmentation task.

Another method worth mentioning in the same category is the one proposed by [Triebel

et al. 2007b] which classifies more complex objects based on a diverse set of features. By

using the distances of features to their nearest neighbors, the transformed feature space

becomes more easily linearly separable. The associative Markov networks (AMNs) is

incorporated within the framework to improve the performance of the training step. How-

ever, the drawback of this approach is that, by storing instances, the resulting classi-

fier becomes a lazy classification method. The inference step in this approach requires

computing the distance between the instance to be classified and the known training in-

stances. To overcome the computational issues that arise in such calculations, data is

structured and the system uses kD-Trees to improve the performance.

[Golovinskiy et al. 2009] investigate a system for recognizing objects in 3D point clouds

of urban environments. The system consists of four steps: locating, segmenting, charac-

terizing, and classifying clusters of data. After locating the potential object positions by

clustering nearby points, the system segments points near those positions. Each point

cluster has a feature vector and the feature vectors are labeled using a classifier trained

on a set of manually labeled objects.

Such methods, however, generally require a large number of training data sets in order

to obtain good results. While using learning has the drawback of requiring application-

dependent training sets (often difficult to obtain), those methods that do not rely on learn-

ing lack the flexibility expected from such systems. Indeed, the latter methods are applied

in a static manner regardless of the context or any scene-dependent knowledge that might

be available.

CHAPTER 2. LITERATURE REVIEW 21

2.4/ DATA-DRIVEN INCORPORATING SEMANTICS

Some approaches rely on a combination between data-driven processing algorithms and

semantic knowledge. This has not only lead to faster 3D processing of point clouds, in

particular when dealing with large sets of data, but also to more “intelligent” strategies of

detecting objects and annotating scenes. Unlike methods based on Machine Learning,

incorporating semantic knowledge requires no learning step. Taking semantic knowl-

edge into account has brought significant improvements to the processing of 3D data as

demonstrated by the results reported [Duan et al. 2010] for the automatic data extraction

process from 3D point clouds.

The early method proposed by [Cantzler et al. 2002] relies on a semantic network defining

the relationships among objects in a scene (such as walls being perpendicular to the

floor) and rules which the extracted features must obey. The interesting issues come

however with complex indoor scenes, including many types of objects. [Hedau et al.

2009] recovered spatial layout of indoor scenes by modeling the global room space with

a parametric 3D box before iteratively localizing clutter and refitting the box. In a similar

approach, [Lee et al. 2010] parametrically represented the 3D volume of objects and

rooms that allowed them to apply constraints for volumetric reasoning, such as spatial

exclusion and containment.

Later, [Hedau et al. 2010] located objects of a specific geometry in an indoor scene. Us-

ing object geometry, scene geometry, their mutual arrangement and a single image, the

detector computes object location in 3D along with its orientation. These works aided in

scene understanding considering, however, a single object in the scene. Localizing mul-

tiple objects in a scene remains a difficult problem for which no reliable solution exists.

One way to address this problem is to resort to the use of semantic knowledge. Seman-

tic knowledge is defined in terms of geometric constraints [Nuechter et al. 2006]. This

has turned out to be very useful in building indoor 3D maps through classifying groups

of points into floors, ceilings and various other objects. The ability to exploit semantic

knowledge is limited when the number of objects becomes large, requiring an adequate

way for structuring properties of and relationships among objects.

Another example of classifying indoor environment into semantic categories, [Shi et al.

2010] proposes a methodology for a robot where the classification task, using data col-

lected from a laser range finder, is achieved by a machine learning approach employing

logistic regression. Instead of gross categorization of locations as in the conventional

approaches, this method shows the ability to classify parts of a single laser scan into

different semantic labels.Semantic knowledge has been also used to support the building

of semantic maps for autonomous robots from laser scans. For instance, the authors

of [Goerke and Braun 2009] present a framework to build semantically annotated maps

from laser range measurements of a mobile robot. The approach classifies an indoor

environment to build an annotated grid map by using features that are extracted from the

original laser range measurements. This allows calculating a class membership vector for

the robot position. Another application using a mobile robot in classifying the different ar-

eas in indoor environments is also reported in [Mozos 2008]. The system uses semantic

classes as information for representing the environment and extracting topological maps.

The goal of this approach is to classify the position of the robot based on the current ob-

servations taken by the robot. In the current position, geometrical properties are encoded

to be a set of features. They are then used to classify the scan into the corresponding

CHAPTER 2. LITERATURE REVIEW 22

semantic class. The approach reduces the exploration and localization time of the robot.

In [Stueckler and Behnke 2011], knowledge such as floor, chairs, shelves and other se-

mantic information have been used to support the detection and awareness of people

in a service-robot’s environment. The other information about the a priori likelihood that

people are present at semantically distinct places is also used. Besides, the approach uti-

lizes scene semantics to support robust detection and awareness of people in the robot’s

environment. The problem of detecting complex objects in the 3D scan of an indoor

environment has been addressed in [Rusu et al. 2009] as to allow a personal robotic as-

sistant to classify regions and estimate 3D geometrical features. The method employs a

combination of semantic 3D object maps and triangulated surface maps. The system was

designed to use either geometric mapping or learning to process large input datasets and

object extraction. The concerned objects are kitchen appliances, cupboards, tables and

drawers. These objects have been modeled accurately enough to be used in physics-

based simulations where doors of 3D containers can be opened based on their hinge

position. The result shows a map that comprises both the hierarchically classified objects

and triangular meshes.

As far as the use of knowledge for object detection/scene annotation is concerned, some

existing methods, such as [Wuenstel and Moratz 2004], only consider specific knowledge

about each individual object and do not exploit the relationships – whether topological or

semantic – that may exist between objects. This method however is restricted to basic

objects but not limited to a special form. It goes without saying that inter-object relation-

ships are important and can only facilitate object detection and improve the quality of the

labeling. For instance, the combination of topological constraints with scene similarity has

been proposed in [Posner et al. 2008] to support scene clustering. The method operates

on a single matrix that expresses the pairwise similarity between all captured scenes. A

concept of using sequence of algorithms is used and integrated with spatial constraints

provided by the continuous motion of the vehicle. The problem of acquiring such relation-

ships has been addressed in [Triebel et al. 2007a] in which relationships between classes

of objects are modeled from training data sets. The work is proposed as annotation for

different places and objects in 2D or 3D maps and shows how to choose the features rep-

resenting the points in a map, and applying Associative Markov Network (AMN) following

the concept of collective classification to classify sets of these features.

Some other approaches make use of hierarchical description of the objects’ (or a scene’s)

attributes. In this respect, building facades are segmented in [Teboul et al. 2010] seg-

mented using a derivation tree representing the procedural geometry, the connected

grammar semantics and images. This approach proposed a dynamic way to perform a

search through a perturbation model. [Ripperda and Brenner 2006] also extracted build-

ing facades using a structural description and used reversible-jump Monte Carlo Markov

Chains to guide the application of derivation steps during the building of the tree. Another

application of using knowledge is to infer the missing parts from detection. For example,

[Pu and Vosselman 2009] reconstructed building facades from terrestrial laser scanning

data. Knowledge about size, position, orientation and topology is used to recognize fea-

tures (e.g. walls, doors and windows) as well as to hypothesize the occluded parts. In a

similar work [Scholze et al. 2002], a model-based reconstruction method has been pro-

posed. In this method, semantic knowledge is also used to infer missing parts of the roof

and to adjust the overall roof topology. These approaches use knowledge to evaluate

results from numerical processes, but do not integrate it into the processing as such.

CHAPTER 2. LITERATURE REVIEW 23

2.5/ KNOWLEDGE-BASED APPROACHES

As discussed earlier, the use of semantic knowledge in evaluating results may com-

pensate for missing data in traditional numerical processing methods. Semantics are

only one possible kind of knowledge that can actually be employed to devise algorithms

dealing with complex situations in a flexible and intelligent manner. In general, one

would like to integrate human knowledge into processing. Such systems are capable of

understanding the meaning of available sources (input data) to infer a proper strategy in

processing. We review in the following the literature on knowledge-based technologies

and techniques.

Data, information and knowledge

In order to understand the knowledge management as well as knowledge-based systems,

it is important to have a working understanding of the differences between data, informa-

tion and knowledge. In [Kahn and Adams 2000], the authors provide an overview of the

terms:

Data is a collection of facts, unprocessed collection of details, with no purpose, value and

meaning. In particular, the same data may be represented differently from one domain

to another. For instance, data can be symbols which deliver a message, or raw numbers

corresponding to sales, invoices, return, etc.

Information is data when processed to be useful, depend on the purpose of using in-

formation. Data is organized, summarized or analyzed in a different way. The authors

gave an example about trend analysis of sales in which data provide information about a

performance of a company.

Knowledge is an application that shows how to use data and information, when infor-

mation is combined with context and experience. Knowledge provides implications and

presents strategies on which to base decisions. Knowledge may be viewed from several

perspectives: a state of mind, an object, a process, a condition [Alavi and Leidner 2001]

of having access to information. For example in the forecasting context, the forecasting

analysts use results of trend analysis (information) to draw inferences. From intuition and

their experience from similar trend statistics from other product lines, the analysts are

able to give an action plan. The more observations the analysts have, the more trend

analysis is enhanced. Knowledge is the result of fusing information with practice.

The three key points of knowledge which we borrow from [Alavi and Leidner 2001] are as

follows:

(1) A great deal of emphasis is given to understanding the difference among data, infor-

mation, and knowledge and drawing implications from the difference.

(2) Knowledge is personalized. In order for an individual’s or a group’s knowledge to be

useful for others, it must be expressed in such a manner it is interpretable by the receivers.

(3) Hoards of information are of little value; only that information which is actively

processed in the mind of an individual through a process of reflection, enlightenment, or

learning can be useful.

Knowledge management

CHAPTER 2. LITERATURE REVIEW 24

When the amount of data, information and knowledge become large and complex, an effi-

cient organization of knowledge is required. Such organization is critical for managing the

storage resources as well as rendering access and inference time minimal. Knowledge

management has been considered to identify and leverage collective knowledge and has

become become an important tool in several firms allowing them to gain a competitive

advantage.

The earlier knowledge management implementations focused on Information Communi-

cation Technology. It expended across all types of companies and organizations world-

wide as mentioned in [Bechina and Ndlela 2009]. For example, an application of knowl-

edge management in law firms [Gottschalk 2002] allows enhancing and abridging be-

tween implementing, sharing, distributing, creating and comprehending the knowledge of

the organization. First the authors defined law firms in term of knowledge organizations.

Then, knowledge management was presented in terms of the knowledge-based view of

the firm. Finally, knowledge categories in law firms are mentioned. Another example, this

time in [Alavi and Leidner 2001], lists out the appearance of knowledge management in

stock firms and consulting companies in which semantic memories have been created by

developing vast repositories of knowledge about customers, projects, competition, and

the industries they serve. The recent interest in organizational knowledge has prompted

the issue of managing the knowledge to the organization’s benefit.

Also in a commercial domain, [Durand et al. 2007] describe several knowledge man-

agement processes. For instance, knowledge identification comprehends the attributes

of the required knowledge. The knowledge acquisition process focuses on discovering

the required knowledge such as buying, consulting, researching, developing and self-

creating. Presenting information is carried out by the knowledge preparation process.

Knowledge dissemination ensures the distribution of knowledge. Lastly, the knowledge

maintenance process maintains a knowledge management system up-to-date. How-

ever, a knowledge management project implementation could be different from one

application to another. For example, the authors of [Karadsheh et al. 2009] present a

knowledge management process that allows saving time, efforts and avoids inaccuracies.

Knowledge-based systems

Knowledge management is applied to serve different particular purposes. These appli-

cations are knowledge-based systems. Such systems use knowledge-based techniques

to support decision-making, learning and action. A review of knowledge-based systems

has been reported in [O’keefe and Preece 1996]. The objective of a knowledge-based

system is to replace or augment a decision making task. Its success is often dependent

upon understanding of that task, its role in relation to other tasks, and its integration with

other tasks (both manual and automated). A knowledge-based system is applied in plenty

of domains such as accounting, finance, computer science, etc. There are five types of

tasks that appear to be particularly successful and which we discuss in the following.

First, cumulative-hurdle decision making: This is where a number of decisions are made

linearly, but the problem may be solvable without overcoming every decision making hur-

dle. A good example is loan approval where a knowledge-based system can handle the

first hurdle — logical consistency of the loan application, basic credit worthiness, etc.

When a ”reject” or ”grant” decision cannot be made, the application can be passed over

to an expert for further review.

Second, advisory systems: they give simple advice to someone performing a task, such

CHAPTER 2. LITERATURE REVIEW 25

as machine repair, collection of audit data, performing statistical experiments, etc. They

are typically applicable to any well-defined task that requires the necessary expertise,

and usable by a number of different users. They are beneficial when knowledge has to

be distributed to professionals due to changes in the law, redesign of machinery, etc.

Third, heuristic systems: they produce solutions generated from mathematical models

by using heuristics, but not in a reasonable amount of time or in a robust manner (e.g.,

infeasibility cannot be easily identified). As might be expected, they tend to be more

quantitative than other knowledge-based systems, and often appear in the same domains

as Operational Research models, for example, production scheduling.

Fourth, configuration systems: they take a requirement for a configured assembled prod-

uct (such as a computer, or an air conditioner) and generate the parts needed to configure

the product with associated assembly instructions. The major benefit of these systems is

the ability to collapse the order processing cycle, such that an order can be configured

and specified for manufacturing within hours, rather than days or weeks.

Fifth, critiquing systems: they are also known as expert critics. These produce critiques

of a design or plan that has been produced by a user. They can either be activated by

the user as required, or can run in the background, effectively ”looking over the shoulder”,

monitoring the user’s actions and suggesting changes when user actions appear to be

different from what the critic would do.

There has also been a growing interest in developing knowledge-based systems for vari-

ous data processing tasks such as data segmentation and registration but also for scene

understanding and interpretation. For instance, [Trinder and Wang 1998] have proposed

a knowledge-based method which automatically extracts roads from aerial images. The

description of roads includes radiometric, geometric properties and spatial relationships

between road segments, all formulated as rules in PROLOG. The knowledge base stores

structures of roads and relationships between them yielded from images. By using topo-

logical information of road networks, the method is able to predict missing road segments.

However, the used semantic model is limited to one type of objects (roads). [Growe and

Tonjes 1997] present a knowledge-based approach for the automatic registration of re-

motely sensed images. Knowledge is explicitly represented using semantic nets and

rules. Prior knowledge about scene objects and a Geographic Information System (GIS)

are used to select and match the best set of features. [Matsuyama 1987] proposes a

method for automatic interpretation of remotely sensed images. The approach empha-

sizes the use of knowledge management and control structures in aerial image under-

standing systems: a blackboard model for integrating diverse object detection modules,

a symbolic model representation for 3D object recognition, and integration of bottom-up

and top-down analyses. Two kinds of knowledge are considered in their expert system:

knowledge about objects and knowledge about analysis tools (e.g. image processing

techniques).

[Rost and Muenkel 1998] proposed a knowledge-based system that is able to automat-

ically adapt image processing algorithms to changes in the environment. The method

uses expert knowledge that is explicitly formulated by rules. Depending on a given task,

the system selects a sequence of relevant image processing tools and adjusts their pa-

rameters to obtain results with some predefined quality goals. Results on object contour

detection, carried out in various conditions, show the benefit of taking expert knowledge

into account for adjusting the parameters of various image processing operators.

Focusing on the application in Computer Vision and Robotics, [Okada et al. 2007]

CHAPTER 2. LITERATURE REVIEW 26

presents an object recognition subsystem of knowledge-based vision-guided humanoid

robot system. The approach introduces a visual object recognition system based on multi-

cue integration and particle filter based stochastic approach. The system is able to be

utilized for both navigation and manipulation tasks by using movable or fixed knowledge

of the object. The authors present a knowledge-centered integration of vision and motion

subsystems. This approach enables the subsystems to perform effectively by commu-

nicating with each other through shared knowledge. However, limitations of the system

are:

1) knowledge needs to be modeled manually. Development of manipulation and visual

knowledge acquisition behavior is required.

2) The system does not recognize other robots or humans. Human or robot activities

recognition and integration with an object recognition system are required.

3) The object recognition subsystem and the motion planning subsystem are tightly con-

nected and integrated by sharing the same object and environment knowledge. This

feature makes possible to automatically generate visually-guided behaviors.

Since the use of knowledge within processing is also useful, other research has focused

more on knowledge management in terms of computation. For example, [Maillot and

Thonnat 2008] used a visual concept ontology composed of visible features (such as spa-

tial relations, color and texture) to recognize objects through matching among numerical

features and visual concepts. [Durand et al. 2007] proposed a recognition method based

on an ontology which has been developed by experts of the domain; the authors have

also developed a matching process between objects and the concepts of the ontology to

provide objects with a semantic meaning. However, knowledge in these approaches has

not been fully exploited: other capabilities, such as processing guidance, have not been

explored.

This previous research efforts show that there have been various attempts to devise a

more robust and efficient analysis of point clouds. It emerges that such analysis re-

quires structured processing going from most to less prominent characteristic features

and bridging between the objects and their expected geometry. Simple models are effi-

cient and robust but have limitations for more complex objects. Statistical methods are

able to handle more complexity. They, however, also require large training efforts and

are difficult to transfer. Knowledge-based methods seem to have the potential to manage

complex scenarios. Successful work uses geometric and/or topological relations of ob-

jects for their identification, or attempts to map the structure of a scene into a semantic

framework. Other works introduce knowledge into the processing and allow the use of

various characteristics of the objects in order to improve their detection.

Various kinds of knowledge-based approaches appear in application development, doc-

umenting an increasing interest for semantic approaches. This expresses a certain ex-

pectation about the role of semantics in future solutions. What is still missing is an overall

approach for knowledge integration, which would guide the numerical processing, the

evaluation, and classification of the found objects.

3

BACKGROUND

3.1/ SEMANTIC KNOWLEDGE

3.1.1/ KNOWLEDGE-BASED SYSTEMS

Information and communication technologies play a vital role in many domains. The

presence of information technologies in strategic fields such as economics, finance, ed-

ucation, health care, security, etc. clearly shows their importance. The proliferation of

such technologies has given rise to numerous challenges as to reaching high levels of

precision and reliability.

3.1.1.1/ ARTIFICIAL INTELLIGENCE PERSPECTIVE

The field of Artificial Intelligence research has been founded in 1950s and has since pro-

vided key solutions for many novel applications. It is a branch of science that copes with

machines to solve complex problems and acts in a manner that inclines to call intelligent.

The goal of Artificial Intelligence is to develop systems that exhibit an intelligent behavior

somewhat like humans.

The main concern in Artificial Intelligence is to devise concepts, methods of symbolic

inference and reasoning. The key challenge lies in the machine representation of the

knowledge in such a way it can be used to make inferences. In general, Artificial

Intelligence attempts to borrow characteristics from human intelligence and simulating

them as algorithms in a computer. It is usually associated with Computer Science, and

yet it has many important connections to other fields such as Psychology, Philosophy,

Mathematics, Biology and others. Artificial Intelligence techniques come with their share

of advantages and drawbacks [Shermarc 2002]

Positive outcomes

+ The biggest advantage of Artificial Intelligence is tireless performance of tasks.

Unlike human who needs to take time and pauses to think, machines can get a

specific task done without having a break.

+ The positive changes in factories, such as increasing production and efficiency,

CHAPTER 3. BACKGROUND 28

indirectly lowering costs and decreasing errors can result in applying artificial

intelligence.

+ Artificially intelligent robots potentially replace human in dangerous tasks (potential

accidents and unsafe conditions), such as radioactive elements, confined space,

little oxygen to breathe, etc. This replacement reduces the risk and unwarranted

deaths.

+ Artificially intelligent robots are increasingly concerned to replace in menial tasks.

On the one hand, this is because of the demands in the society (public service

machines, elderly and disabled persons need help), and, on the other hand,

because the systems based on Artificial Intelligence are likely to be more accurate

and increase the level of trust in taking certain decisions.

Negative outcomes

- The use of artificial intelligence in everyday tasks more or less produces laziness

on the part of humans. However, because humans have an extraordinary ability

to think, analyze, and use judgment, Artificial Intelligence is unlikely not replace

humans completely.

- Artificial Intelligence is effortless performance of a job, and thus any artificial

intelligence-based system contains the risk of a breakdown or a loss of data.

In certain cases, a machine can fail to keep data within its memory due to the

malfunction of certain components and next process will fail as well. This error can

also happen with humans when they forget collecting and saving data. However,

human can change flexibly to adapt with new situations a machine only obeys a

given program.

Glancing over the achievements accomplished by Artificial Intelligence in different fields

it is to be noted that the contributions of Artificial Intelligence are remarkable [Bit-tech

2012]. For instance, banking systems employ algorithms that are capable of recognizing

unusual patterns in customer spending and detect credit card fraud. In security systems,

facial recognition is often installed at airports. Other systems are able to identify vehicles

based on recognizing their registration number right from the number plate. Both facial

and number recognition are algorithms that employ Artificial Intelligence techniques. Web

search engines, which are used by millions of people every day are also based on Artificial

Intelligence. Speech and/or voice recognition are now integrated into operation systems.

The field of Artificial Intelligence has brought solutions in many fields and made computer

programs exhibit an intelligent behavior.

Taking human cognition into account is nowadays a key research direction in the field

of Artificial Intelligence. Lots of efforts are focusing on capturing human knowledge and

embedding such knowledge explicitly into systems. The goal is to provide a computer

with the same knowledge a human may have in some domain.

CHAPTER 3. BACKGROUND 29

3.1.1.2/ DATA, INFORMATION AND KNOWLEDGE

Languages are used to communicate and express meaning. In each context, one aims

to talk about a specific topic. Languages contain data and information. However, the un-

derlying knowledge often takes on a variety of meanings. Answering questions such as

”What is knowledge?” and ”What is information?” has been a major problem of philoso-

phers and scientists since ancient times. This section is to contribute to an overview

regarding the terms data, information and knowledge within the Computer Science com-

munity in general.

Many studies claim that data, information and knowledge are part of a sequential

order. Data are the raw material for information, and information is the raw material

for knowledge. If this hypothesis is approved, then Information Science should explore

data and information, but not knowledge, which is an entity of a higher order. However,

information science does not seem to explore knowledge since it includes knowledge

organization and knowledge management, which can be confusing [Zins 2007]. From

the previous research [Davenport and Laurence 2000], [Trainmor 2013], we collect and

distinguish between the meanings of the three fundamental concepts of data, information

and knowledge as follows:

Data

Data are raw facts or figures about an event. They have no meaning on their own.

Data can be any numerical quantities (cost, time, speed, and capacity), text, symbols

or attributes derived from observation. These materials do not provide judgment or

interpretation, and they are not organized in any way, but raw material of decision making

may include data.

Information

Data, when organized with relevance and for a certain purpose, becomes information.

Information is a collection of data, or associated interpretations to describe a particular

meaning. As in [Davenport and Laurence 2000], there are five main processes to convert

data to information:

Contextualization: data is collected following a purpose or reason based on what we

already know.

Categorization: we process data as to assign each into a proper type or category.

Correction: is a process to remove noise (or errors) from data.

Condensation: data is summarized in a more concise form.

Calculation: we aggregate and analyze data to obtain useful information.

Knowledge

Knowledge is the combination of framed experience, contextual information and expert

insight, all of which are mixed to become a framework that is able to evaluate and incor-

porate new experiences and information. In each specific field, knowledge appears not

only in documents, books but also in routine activities and processes. Knowledge is de-

rived based on collecting information in an appropriate way that is carried out by humans.

CHAPTER 3. BACKGROUND 30

Basically, from the activities of human or a group of individuals such as when people ex-

change information or have conversations, we obtain knowledge about a specific domain

[Davenport and Laurence 2000].

There are two primary kinds of knowledge: explicit knowledge and tacit knowledge are

mainly considered.

Explicit knowledge is knowledge expressed or found in formal languages, statements or

certain expression types. It is easy to exchange from person to person, can be stored in

data bases or processed by computers.

Tacit knowledge is knowledge we can find from experience or insights of human. This

kind of knowledge usually refers to an implicit comprehension and is not intuitively

expressed through language. However, to describe tacit knowledge in forms that people

can understand, we can represent this knowledge through languages such as by words,

numbers, symbols or other types of representation.

Wisdom

Wisdom is the ability to make correct judgments and take appropriate decisions on the

bases of previous knowledge, experience and insight. Humans gained experience and

accumulated knowledge through activities over time. From accumulated knowledge and

experience, humans can create sensible judgments and make wise decisions in a cer-

tain situation or event. Thus an individual with wisdom can reach a goal by applying

appropriate knowledge into the way he processes [OTEC 2007].

Figure 3.1: A progress from data becoming to wisdom

Examples:

Data represents a fact or a statement of event which is independent from other things.

e.g.: Red

Information contains a meaning that can be a relationship between events, or possibly

cause and effect.

CHAPTER 3. BACKGROUND 31

e.g.: A traffic light has turned red.

Knowledge represents a pattern that connects and generally provides a high level of

predictability as to what is described or what will happen next.

e.g.: At a cross where my car is approaching, a traffic light has turned red.

Wisdom embodies more of an understanding of fundamental principles embodied within

the knowledge that are essentially the basis for the knowledge being what it is. Wisdom

is essentially systemic.

e.g.: I should stop the car.

Figure 3.2: Illustration of the example about the differences between concepts of data,

information, knowledge and wisdom in a context

3.1.1.3/ EXPERT SYSTEM OR KNOWLEDGE-BASED SYSTEM

Knowledge-based systems are computer programs belonging to the branch of Artificial

Intelligence. A knowledge-based system is an interactive computer-based decision tool

that uses facts and heuristics to solve difficult decision making problems based on knowl-

edge acquired from various sources. Such systems potentially solve problems such as

(1) understanding the behavior of data or events, (2) learning from experience and (3) de-

cision making. Traditionally, computers use computational algorithms to solve problems.

With a knowledge-based system, the idea is to improve conventional methods by taking

human knowledge and making it interact with a program to solve complex problems. A

knowledge base is modeled from different sources such textbooks, documents, data, ex-

pert or non-expert knowledge. In a knowledge-based system, the knowledge base does

not cover the entire knowledge from many fields but rather contains knowledge about a

specific domain (any part of the world) or some degree of expertise in the problem of

interest. The task of a knowledge-based system therefore is to solve issues within the

range of a domain. For example, knowledge-based systems are used in medical diag-

nostic applications, financial planning decisions, monitor real time systems or educational

aids.

Earlier, knowledge-based systems were known as expert systems. An expert system

CHAPTER 3. BACKGROUND 32

is an Artificial Intelligence application in which a computer program acts intelligently by

using the encoded knowledge of experts in field. Edward Albert Feigenbaum is widely

known as the father of expert systems. The first expert system called DENDRAL, was

developed in the early 70’s at Stanford University and was applied in the field of chemistr.

Later, the term “knowledge-based system” has been used more often than “expert sys-

tem”. However, both “knowledge-based system” and “expert system” are used synony-

mously to refer to such systems. While knowledge-based systems can employ knowledge

from various sources, including non-expert and expert, expert systems often use knowl-

edge created by a person or a group of people with special expertise in a specific area.

When solving particular tasks, either knowledge-based systems or expert systems cap-

ture concepts and act as humans would do, for instance for aiding customers in complex

regulations, for selecting products or diagnosing equipment problems, etc.

Figure 3.3: Intervention and major components in an expert system

Expert systems need persons/practitioners to model knowledge: they are knowledge

engineers. Before modeling knowledge, knowledge is acquired from different related

sources in the domain of interest. Knowledge acquisition includes the collection, analysis

and validation of knowledge. Note that knowledge acquisition requires time. As a sin-

gle expert may not know everything, this work sometimes requires several people to be

completed. The reason is that even one might in general be interested in a specific do-

main, but there are still vast amounts of knowledge in this domain. The task of integrating

knowledge into computer systems is known as knowledge engineering.

Knowledge engineers have the responsibility to make sure that the required knowledge

CHAPTER 3. BACKGROUND 33

is sufficient for an expert system to function properly. Therefore, knowledge engineers

play an important role in choosing the appropriate knowledge to feed into the knowledge

base. For example, in an online shopping platform, knowledge engineers collect sources

of related domain, such as properties of good, customer’s information, payment methods,

availability of goods in the store, etc. This knowledge is represented in a certain form and

stored in the knowledge base. The knowledge base may also encode expertise in a

domain of interest and used in the expert system. The formalization of knowledge is

referred to as knowledge management [Chakraborty 2010].

User interface

The human-computer interface in expert systems allows the user to communicate with

the system. The interface allows the user to enter information, to query and receive

advice from the system. In reality, users often communicate with experts for obtaining

advices to solve a problem in the range of the expert’s knowledge. Expert systems are

designed based on the same idea, i.e. the user interface in an expert system allows

users and experts to communicate easily. The main purpose of a user interface is helping

users easily communicate with the application. Interfaces could be menus, windows or

advanced tools which require graphic support.

Working memory

A working memory in an expert system is typically used to receive a set of facts,

information about a particular domain that is specific to the problem being solved. The

actual data presented to the working memory depends on the type of application. Data

may consist of the set of conditions leading to the problem. Working memory contains the

facts from both supplement from the users and reasoning done by the expert system itself.

Knowledge base

Knowledge base is a set of rules which presents the knowledge about the domain

of interest. Knowledge from expert is usually made up of heuristics or factual knowl-

edge. Heuristic knowledge is knowledge gained after experiences. Factual knowledge

includes information from textbooks, literatures, shared documents, common human

knowledge, etc. Heuristic knowledge and the factual one consist of large information

which is not structured in the way computers can understand. Transferring knowledge

from the expert into a program in computer requires an encoding process that pre-

serves the meaning of what the expert wants to deliver to the expert system. The

representation of the expertise is often in forms of “if-then” rules, semantic networks or

frames, they are the representative forms to store information in a logical and natural way.

“If-then” rules

“If-then” rules are often used to state “cause and consequence” sentences. In a specific

domain, experts in this field think along the same way:

Condition→ Action

Or

Situation→ Conclusion

Such usual statements can be transformed into a kind of knowledge encoding such as a

CHAPTER 3. BACKGROUND 34

“if-then” form:

If x1, x2, x3... Then y1, y2, y3. . .

Where xi is a condition or a situation and yi is an action or a conclusion.

Example:

“If it is raining then we will stay at home.”

Condition is “it is raining” and action is “stay at home”.

“If the humidity is high and temperature is low then it will probably snow”

Situations are “humidity is high” and “temperature is low”, conclusion is “it will probably

snow”.

Semantic networks

Objects or events in the real world usually have relationships which reflect the mutual

influences between objects. Representation in term of relationship between objects is

known as a semantic network. Semantic networks are often represented as graphs

whose nodes are objects. The links between nodes in the graph represent for relation-

ships between objects. The common form of a semantic network is a graph that contains

links between nodes using “is-a” and “has” relationships between objects. The phrase

“is-a” is used when we present objects and classes being related to each other by a class

relationship, while “has” is for representing one object belongs to or is a member of the

other object.

Figure 3.4: Relationships between elements in “vehicles” represented by a semantic net-

work

Frames

A frame is a type record structure which contains concepts (or objects), situations, at-

CHAPTER 3. BACKGROUND 35

Frame Car

Inheritance slot Is-a

Value Vehicle

Attribute slot Engine

Value 1

Attribute slot Cylinders

Value 4

Value 6

Attribute slot Doors

Value 2

Value 4

Table 3.1: A frame and its slots filled with data types

tributes of concepts, their relationships, and procedures to handle relationships and at-

tribute values. A frame-based representation has frames and slots. A separate frame

usually contains a concept and the attributes of concepts, the relationships between

them. The procedures are allotted to slots in a frame. The content of a slot are data

types (e.g. symbols, strings, numbers. . .), functions or procedures, etc. A single frame

is not much useful. Frame-based representation usually have frames connected to each

other through a similar kind of inheritance as that provided by a semantic network.

Inference engine

A knowledge base alone does not make an expert system become intelligent. An expert

system usually has an important facility which is used to navigate and manipulate knowl-

edge from the knowledge base to infer certain conclusions. This facility is an inference

engine which is usually set up to simulate the reasoning that humans use to draw con-

clusions. The reference engine of an expert system makes use of the knowledge base to

draw such conclusions in some given situations. Based on the given facts, the inference

engine determines the set of rules that should be considered and matched to the current

goal of the system [Nikolopoulos 1997], [Patterson 1990], [Rajeev 1996].

Two primary methods, namely forward chaining and backward chaining, are used for

making inferences from the knowledge base. Forward chaining is a data-driven method.

The system starts with the initial facts in the working memory, and keeps using the rules

to draw new conclusions or take certain actions based on those facts. Backward chaining

is a goal-driven method. The system starts with some hypothesis or goal and then keeps

looking for rules that would allow confirming that hypothesis and taking certain actions.

Expert system characteristics

• The highest level of expertise: The most important and useful characteristics of an

expert system are efficiency, accuracy and imaginative problem solving.

• Interactivity: Expert systems are defined as computer applications which embody

human expertise in aiding the decision making process. Such systems not only

perform the defined functions and given tasks but also make it possible to respond

to questions from users as well as request for clarifications. The aim of expert

systems is not replacing an expert to solve a problem but rather generally require

CHAPTER 3. BACKGROUND 36

a human–computer interaction which draws from supporting knowledge from both

the machine and the human side. An expert system must interact in a reasonable

time with the user, and this time must be less than the time taken by an expert to

solve the same problem.

• Knowledge is stored and sifted: Like human knowledge, knowledge in expert

systems is stored in working memory. Typically this knowledge is obtained from a

human expert through experience in a domain over a period of time. Depending on

the complexity of the domain, knowledge engineering could take a few days to a

few years. Knowledge is not fixed but also expandable due as processes may be

updated over time. Thus, knowledge in expert systems is accumulated. Knowledge

engineers carry out checks on the completeness and correctness of the knowledge

presented to the system.

• Making logical inference: A knowledge base contains sets of rules which represent

the knowledge about the domain. Unless these rules have means of exploiting the

knowledge that is stored in the working memory, they are useless. The reasoning

mechanisms make use of an inference engine to process rules in the knowledge

base.

• Domain-specific expertise: An expert system cannot have a knowledge base

covering all possible fields. Only some parts of the world are captured within the

system. A particular system only supplies a narrow area of specialization. Most

experts are knowledgeable and skilful in their own domain only. Therefore expert

systems are made to focus on a specific domain without mixing up the knowledge

of two experts from different domains.

• Making mistakes - Uncertainty: Human experts transfer their point of view in the

real world to an expert system. The knowledge from exerts can be imperfect

which causes uncertainty. The knowledge may therefore contain errors in the facts,

in the rules or in the input during the process of acquiring of knowledge. This

may yield an incorrect output from the side of the expert system [Chakraborty 2010].

3.1.2/ KNOWLEDGE ACQUISITION

Human beings often learn knowledge about a particular field from the related facts and

learn best from experience over time. Through the basic senses (touch, taste, smell,

sight, and hearing), humans perceive information from outside and transfer to the brain.

An expert system also needs knowledge in the domain of interest to be able to operate.

Unlike human beings, the expert system is not able to perceive knowledge through

senses. It, however, needs support from both human experts to extract knowledge

from different sources and knowledge engineers to pass the encoded knowledge (in the

form of the knowledge representation used) from experts to the system. This process

is known as knowledge acquisition or knowledge engineering. Knowledge acquisition

includes collecting, modeling, analyzing and validating knowledge. Knowledge about a

CHAPTER 3. BACKGROUND 37

specific domain can be of any form such as symbols, text, sound, pictures, etc., which

are often raw data. Knowledge can be acquired in various ways:

Interviews

The classical method of knowledge acquisition is the interview. Interview is a simple

method to exchange routine information between people. However, interviewing experts

to acquire their knowledge in a specific domain must be structured as opposed to

randomly selected questions that do not allow capturing and preserving the entire

information. A structured interview is carried out through a formal method that guides

both knowledge engineer and expert following a given scenario. Lists of questions

related to the domain of interest as well as lists of answers are created. A question

can have a few possible answers and the expert can select one of them (or a multiple

selection). Another task consists in modeling the rules in the system. This work should

be done based on the expertise of experts. Knowledge acquisition through interviews

can be used for any domain, does not require much time from the expert. However, the

difficulties are sometimes that the experts do not want to follow the given questions in

the interview which requires the knowledge engineer to have a certain prior knowledge

to be able manage such situations during an interview.

Protocol analysis techniques

The intent is to capture and report the activities of experts to model knowledge. The

knowledge engineers often use transcripts of interviews or text-based information to

record various types of knowledge such as target, decision, relationships, etc. The

knowledge engineer can interrupt the expert at critical points to ask questions. This

typically occurs when the knowledge engineers needs to know why the expert performed

a particular action. Such interruptions might distract the expert. This method is usually

time-consuming.

Observation techniques

This technique is another way of generating protocols. The knowledge engineers observe

the expert performing a task, take notes or use recording equipment. This method is

simple but may be time consuming.

Diagram-based techniques

Knowledge engineers employ network diagrams, such as concept maps, state transition

networks and process maps, to capture the ”what, how, when, who and why” of tasks and

events. The representation of acquired knowledge in a network format can be easier to

visualize and makes validation very efficient. This technique is particularly useful when

exploiting knowledge from a complex domain [Chakraborty 2010].

Knowledge acquisition is considered as a difficult process in the development of expert

systems since it requires several tasks from human experts. Such tasks consist in observ-

ing the facts, perceiving the knowledge from the facts. This is followed by understanding,

selecting and then transferring knowledge to the system. Knowledge is obtained from

the experts as they perform a certain task and archives experiences. Experts, who are

CHAPTER 3. BACKGROUND 38

knowledgeable in their specific domain, have vast amounts of knowledge of which a great

deal may be tacit and which is difficult to describer. However, one expert does not know

everything but mostly know deeply in a specific field. The progress of knowledge acquisi-

tion depends on the complexity of the domain and the availability of experts (as a fact the

experts are often busy), knowledge engineering could take anywhere from a few days to

a few years to complete the knowledge base for an expert system.

3.1.3/ KNOWLEDGE REPRESENTATION

Figure 3.5: Progress of knowledge representation

Computer programs are not capable of understanding the knowledge captured by the

knowledge engineers from experts. Knowledge representation is performed to encode

the acquired knowledge into forms that are useable for computer programs. A knowledge

representation appears in different forms, the most popular ones are semantic networks,

rules and logical presentations. Semantic networks are graph representations consisting

of categories of objects as well as the relationships between objects. Knowledge can

also be represented by rules which usually appear as ”if-then” constructs. Logical rep-

resentations are formalized through semantic networks and rules to give them a precise

semantics. These forms are introduced in the following sections [Grimm et al. 2007].

3.1.3.1/ SEMANTIC NETWORKS

Figure 3.6: Example of a semantic network

Knowledge acquired from experts is often represented through natural language, image,

voice, etc. These representations are familiar to humans but not to computers. Se-

mantic networks provide a way of interpreting the meaning of knowledge by a visual

graph. Semantic networks formalisms express the taxonomic structure of categories of

CHAPTER 3. BACKGROUND 39

concepts and relationships between them. A semantic network is a graph which consists

of nodes and arcs. Nodes represent concepts while arcs denote relations between con-

cepts. Statements about a domain of interest are represented through nodes and arcs in

the graph.

In a semantic network, concepts (nodes) are often nouns such as text and the relations

between concepts (arcs) are verbal phrases. The paths connecting concepts and their

relations represent statements in the domain of interest. Concepts are usually objects

in a relevant domain. However, relations can be generic (e.g. action, property, etc.).

Relations can be either a specific property/action or a general one which used in other

domains as well. For example: ”is a”, ”is a kind of”, ”consist of”, etc are general relations.

A few properties (e.g. negation, disjunction, and general non-taxonomic knowledge) are

not easy to express in semantic networks. To express those properties, we can use

complementary predicates. Data values, such as numbers and strings are also not rep-

resented in a semantic network.

3.1.3.2/ RULES

Rules are another form of expressing knowledge and allow expressing the notion of con-

sequence. Typically, the rules are often of the form “if-then” constructs that allow pre-

senting different kinds of complex statements. The “if-then” rule statements are used to

formulate the conditional statements that comprise fuzzy logic. The If-part is referred to

as premise and the then-part is referred to as conclusion.

For example, a single “if-then” rule can be:

if x is A then y is B

where A and B are values in the respective ranges of x and y.

The example above is a kind of simple single rule. Complex rule can contain two premises

and one conclusion or can be a combination of many single rules. The phrases “if-then”

are understandable for humans but not suitable for computation.

For example:

If a building has a roof and has walls then it is a house.

Such phrases are formalized to use predicates and variables over objects of the domain

of interest. A typical style of rule after being formalized looks as follows.

house(?b) : −building(?b) ∧ hasRoo f (?b, ?r) ∧ hasWall(?b, ?w)

In logic programming systems, a rule is often described as a conclusion first and then a

symbol “:-“ used to connect a premise afterwards. Variables start with the symbol ? and

take as their values the constants that occur in facts. Multi-premises are combined by

a intersecting symbol “∧”. A system that uses the rules to represent the statements in

the knowledge of a specific domain is known as “rule-based system”. The complexity of

a “rule-based system” reflects through the number of rules used in the system and the

number of premises in each rule.

CHAPTER 3. BACKGROUND 40

3.1.3.3/ LOGICAL REPRESENTATION

Humans speak in different languages and this sometimes leads to some sorts of misun-

derstanding in conversations. The reason mostly comes from linguistic representation. To

reduce this, we must understand the rules of the language (that we are using to present

information in the conversation) such as the syntax and the semantics. Each language

has a particular syntax in terms of using symbols, words and construction of sentence.

Semantics of a language is what the sentence means. Logic representation consists

in using a language and agreeing upon its rules when representing information [Colton

2010].

The term “predicate logic” is usually used in logical presentation. Predicate logic is de-

fined as the general symbolic formal systems such as first-order logic, second-order logic,

etc. Two common quantifiers in predicate logic are the existential ∃ (”there exists”) and

universal ∀ (”for all”) quantifiers. Those differentiate predicate logic from other systems.

The popular logical representations are Propositional logic and First-order predicate logic:

Propositional logic

Propositional logic is a restrictive logic which can express a possible condition of the world

as propositions or statements in a sentence. Propositional logic can have a complicated

proposition (or statements) by combining simpler propositions (or statements). To join two

propositions, we use connectives “and” (∧) or “or” (∨). The complex statement formed by

“and” is true if and only if both the component statements are true. The complex statement

formed by “or” is true if one of the component statements is true.

For example:

When we say: “If a building has walls and it has also a roof then the building is a house.”

The statement can be expressed in a form of logic description as:

A building has walls ∧ A building has a roof→ The building is a house

The meaning of the sentence is when we know the propositions (a building has wall and

a building has a roof) are true then we can assign truth values to a sentence.

First-order predicate logic

First-order predicate logic is built on propositional logic and allows us to employ not only

the connectives (“and” or “or”) to join the statements as in propositional logic but also

constants, variables, functions, predicates, quantifiers (existential ∃ and universal ∀).

First-order predicate logic allows us to express: “All buildings having roofs and walls

are houses” as:

∃ x (Building (x) ∧ hasWalls (x) ∧ hasRoof (x)→ house(x)).

3.1.4/ ONTOLOGY IN INFORMATION SYSTEMS

(Ref: T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisi-

tion, 5(2):199-220, 1993) The word “ontology” originally comes from philosophy, and the

meaning of “ontology” refers to the subject of existence and is about knowledge as well as

CHAPTER 3. BACKGROUND 41

knowing. In the context of knowledge sharing in information systems, an ontology refers

to a specification of a conceptualization. An ontology is a description of the concepts

and relationships that can exist for an agent or a community of agents. In the context

of Artificial Intelligence systems, knowledge in a knowledge-based system is often repre-

sented by a set of representational terms which are the concepts and their relationships

among concepts. Ontology used in a knowledge-based system contains entities in the

universe (e.g., classes, relations, functions). The name of entity is human-readable text

describing what the names mean, and formal axioms that constrain the interpretation and

well-formed uses of these terms.

(Ref:” Knowledge Representation and Ontologies Logic.pdf” or Book: “Scientific Data

Mining and Knowledge Discovery”) An ontology has several characteristics like formality,

explicitness, being shared, conceptuality and domain-specificity which are introduced in

the following

- Formality: Representing knowledge through an ontology must preserve the original

information of extracted knowledge. Besides, the way of interpreting knowledge in an

ontology must also be well-defined so that machine can access and process.

- Explicitness: If an ontology does not clearly and logically represent notions, the

machine will not be able to understand entirely the knowledge that human want to deliver.

Explicitness is an important characteristic that avoids ambiguity when transferring

information from knowledge to machine.

- Being shared: To have the same conceptualization in a large community is difficult.

However, it is easier to have an agreement on a conceptualization in a particular group

of people. An ontology is always limited to a particular community and its construction is

associated with a social process of reaching consensus.

- Conceptuality: In ontology, knowledge is interpreted in a conceptual way that the

concepts and their relations are presented by symbols. An ontology describes a

conceptualization in general terms and does not only capture a particular state of affairs

but attempts to cover as many situations as possible.

- Domain specificity: An expert cannot know everything in the world but focuses only

on a specific domain. Knowledge, acquired from the fact by experts, is also limited in

a particular domain of interest. An ontology often covers the details of a domain rather

than a broad range of related topics. However, it is possible to separate a domain of

interest to a narrower topic that can be represented in a single ontology.

Conceptual modeling with ontology is similar to designing the relationships in object ori-

ented software. However, structure of ontology language is more advanced than such

object oriented language. Ontology provides rich formal semantic knowledge in a specific

domain. Moreover, an ontology can be used for different purposes such as data storage

and reasoning about domain knowledge. To make the means of domain knowledge avail-

able to machine, using ontology language to represent knowledge is one technique that

can conceptualize the concepts in a machine-interpretable way. Detail about the ontology

CHAPTER 3. BACKGROUND 42

language is introduced in the following section.

3.1.5/ ONTOLOGY LANGUAGES

In the context of the Semantic Web, ontology languages play a particularly important

role. The general concept of a Semantic Web is to annotate web content by machine-

interpretable meta-data that allow computers to process this content on a semantic level.

There are several characteristics from Semantic Web that also affect the use of ontologies

for semantic annotation such as the distributedness of knowledge [Grimm et al. 2007].

3.1.5.1/ WEB ONTOLOGY LANGUAGE (OWL)

World Wide Web Consortium (W3C) standardization efforts have produced the Web

Ontology Language (OWL) family of languages for describing ontologies in the Semantic

Web. OWL is a language for semantic annotation of web content and is accepted within

the Semantic Web community. OWL has different degrees of expressiveness such

as: OWL-Lite, OWL-DL and OWL-Full. The OWL-Full is the most expensive one while

OWL-Lite is the least expensive one.

OWL-Full: There are no limitation of how and where to use the language constructs.

OWL-Full is designed to preserve some compatibility with Resource Description Frame-

work (RDF) Schema [semantic web 2004] and is undecidable.

OWL-DL: A limited version of OWL-Full, OWL-DL has certain restrictions on how and

where the language constructs can be used to guarantee decidability.

OWL-Lite: It is a subset of the OWL-Full and has a few limitations such as classes can

only be defined in terms of named super-classes and only certain kinds of restrictions

can be used.

Knowledge representation formalisms in the context of the Semantic Web nowadays often

employs both description logic style ontologies and logic programming style rules to be

interoperable on a semantic level. One attempt is the Semantic Web Rule Language

(SWLR) that extends the set of OWL axioms to include Horn-like rules interpreted under

first-order semantics.

The OWL abstract syntax presents an ontology as a sequence of annotations, axioms

and facts. OWL allows to present content (to knowledge engineer) in a human readable

text format or in more scientific context as using description logic formulas. The ba-

sic elements of an ontology are concepts, relations and instances which are also called

classes, properties and individuals, respectively. In description logic, these three terms

correspond to concepts, roles and individuals. The Web Ontology Language – Descrip-

tion Logic (OWL-DL) is constructed by two separate parts classes and individuals.

The components of OWL [semantic web 2007]:

OWL Classes

CHAPTER 3. BACKGROUND 43

Figure 3.7: Classes and properties in an OWL

Classes are the basic building blocks of an OWL ontology. OWL supports six main ways

of describing classes such as: Named classes, Intersection classes, Union classes, Com-

plement classes, Enumerated classes. Among them, Named class is the simplest one.

- Intersection classes are formed by using two or more than two classes with the inter-

section (AND) operator.

- Union classes are formed by combining two or more than two classes with the union

(OR) operator.

- Complement classes is specified by negating another class. Complement class contains

the individuals which are not in the negated class.

- Enumeration class is specified by explicitly listing the individual that are members of

the enumeration class. The members of the enumeration class are listed inside curly

brackets.

Restrictions

Restrictions in an OWL provide a way of specifying local domain and range constraints.

They describe a class of individuals based on the type and possibly number of rela-

tionships that they participate in. OWL Restrictions can be classified into three major

categories:

- Quantifier restrictions:

- Existential means “some values from” or “at least one”. A class of individuals that have

at least one kind of relationship along with a specified property of an individual that is a

member of a specified class.

- Universal means “all values from” or “only”. For a given property, all the individuals have

to be members of a specified class.

CHAPTER 3. BACKGROUND 44

Figure 3.8: Example of relations between individuals in an OWL

- Has value restriction: used to specify that a class of individuals that participate in a

specified relationship with a specific individual.

- Cardinality restrictions: For example: Min, Max, Equal. . . Cardinality restriction is the

number of relationships that a class of individuals participates in.

Property

There are two major categories of properties:

- Object property: that links individuals to individuals

- Data property: that links individuals to data-type values (integer, string, float, etc.)

Property in OWL has some characteristics such as Functional (the property takes only

one value), Inverse functional (the inverse of the property is functional). Furthermore,

there are Symmetric and Transitive characteristics. A Symmetric property refers to a

symmetric relationship, for example: if A is linked to B then B can be linked to A. A

transitive property is an object property that defines a transitive relationship, for example:

A is related to an element B, and B is in turn related to an element C, then A is also

related to C.

OWL is the latest standard in ontology languages. It has a rich set of constructs and can

perform reasoning over ontologies [Protege].

3.1.5.2/ THE SEMANTIC WEB RULE LANGUAGE (SWRL)

SWRL is an expressive OWL-based rule language which allows users to express the

terms of OWL concepts in rules. SWRL provides more powerful deductive reasoning

capabilities than OWL alone. Semantically, SWRL is built on the same description logic

foundation as OWL and provides similar strong formal guarantees when performing infer-

ence. A SWRL rule consists of an antecedent part and a consequent part: the two parts

include positive conjunctions of atoms. Informally, a SWRL rule may be read as meaning

that if all the atoms in the antecedent are true, then the consequent must also be true.

CHAPTER 3. BACKGROUND 45

SWRL neither supports negated atoms nor disjunction [team 2012].

In SWRL, the predicate symbols can include OWL classes, properties or data types.

Arguments can be OWL individuals or data values, or variables referring to them. All

variables in SWRL are treated as universally quantified, with their scope limited to a given

rule. For example, the concept of person can be captured using an OWL class called

Person. The property indicating that a person owns a car can be expressed using OWL

object properties hasCar. To classify all car-owner individuals of type Person to also be

members of the class Driver, a rule in SWRL can be expressed as follows:

Person(?p) ∧ hasCar(?p, true)→ Driver(?p)

Person, hasCar and Driver are OWL named classes, ?p is a variable representing an

OWL individual. A named individual (name of a person: Marry) in an ontology can also

be referred to directly in the rule. For example:

Person(Mary) ∧ hasCar(Mary, true)→ Driver(Mary)

One of the most powerful features of SWRL is that it allows user-defined built-ins. A built-

in is a predicate that takes one or more arguments and evaluates to true if the arguments

satisfy the predicate. An equal built-in can be defined to accept two arguments and return

true if the arguments are the same. A number of core built-ins for common mathematical

and string operations are contained in the SWRL Built-in Submission. New built-ins can

be defined and used in the rules. Users can define built-in libraries to perform a wide

range of tasks (Ref: from Web). The following is an example SWRL rule using a core

SWRL built-in indicating that a person with an age greater than 17 is an adult:

Person(?p) ∧ hasAge(?p, ?age) ∧ swrlb:greaterThan(?age, 17)→ Adult(?p)

Where “swrlb” is a namespace qualifier with which the core SWRL built-ins are preceded.

This rule, when executed, classifies individuals of class Person with an hasAge property

value of greater than 17 as members of the class Adult.

3.1.5.3/ PROTÉGÉ - SOFTWARE SUPPORT FOR OWL

Among several knowledge base editing tools, Protégé is a free, open-source tool devel-

oped at Stanford Medical Informatics and it has a community of thousands of users (Ref:

from Web). Protégé implements a rich set of knowledge-modeling structures as well as

actions. It supports the creation, visualization and manipulation of ontologies in various

representation formats [Knublauch et al. 2004].

The Protégé-OWL editor enables users to:

- load and save OWL and RDF ontologies

- edit and visualize classes, properties, and SWRL rules

- define logical class characteristics as OWL expressions

- execute reasoners such as description logic classifiers

- and, edit OWL individuals for Semantic Web markup.

Protégé enables one to describe the concepts and relationships in a particular domain

as well as build and populate ontologies. In a Protégé tool, ontologies are represented in

the range from taxonomies and classifications, database schemas, to fully axiomatized

CHAPTER 3. BACKGROUND 46

theories. One of the remarkable points that makes Protégé become a powerful tool is that

users can customize interface to be more convenient and friendly. The user interface sup-

ports for entering data and creating knowledge models such as a creation of individuals.

By using Protégé, users can create a form to edit components (widgets) for each prop-

erty of classes in ontology, for instance: when we select a value for a certain property,

a default text field widget is provided. In addition, plug-ins and Java-based Application

Programming Interface (API) are also embedded tin Protégé to build knowledge-based

tools and applications [Protege].

Figure 3.9: OWL represented in the Protégé tool

In recent years, many business and scientific communities have used ontologies as a way

to share, reuse and process domain knowledge in the related fields. Gradually, ontologies

appear more often in the applications of some fields such as scientific knowledge portals,

information management and integration systems, electronic commerce and semantic

web services. Several particular features of Protégé distinguish this tool from the other

knowledge base editing tools:

- Intuitive and easy-to-use graphical user interface

- Scalability: Protégé’s database back-end loads frames only on demand and uses

caching to free up memory when needed. There is virtually no deterioration in perfor-

mance as you go from several hundred frames to several thousand frames.

- Extensible plug-in architecture: Protégé allows to be extended with plug-ins tailored for

one’s domain and task.

CHAPTER 3. BACKGROUND 47

3.2/ NUMERICAL PROCESSING

3.2.1/ DATA ACQUISITION

The modeling of real-world scenarios through capturing 3D digital data is generally car-

ried out by means of a laser scanner. 3D laser scanners nowadays have the ability to

quicly and accurately take point measurements on surfaces and landscapes. The repre-

sentation of objects is digitalized in the form of point clouds in which point’s coordinates

are the essential elements. Some scanners can acquire RGB information which adds

color information to the scanned point clouds. Besides, some scanners can also record

intensity data that indicates different states of the point cloud at the scanned area or object

surface. Software then analyzes and processes the point clouds to carry out tasks such

as registration, normalization, segmentation, etc., to serve the desired targeted applica-

tion. The use of terrestrial scanner devices for surveying has contributed and advanced

the precision and completeness of data acquisition [Bornaz and Rinaudo 2004]. We in-

troduce two scanners, Terrestrial Laser Scanner and LIMEZ [Schewe et al. 1999], which

we have used in our work to acquire point clouds.

3.2.1.1/ TERRESTRIAL LASER SCANNER

Figure 3.10: Terrestrial Laser Scanner

A Terrestrial Laser Scanner is able to acquire landscapes point could representations

based on laser technology. Laser scanners rely upon the triangulation principle and a

high degree of precision (less then 1mm). Terrestrial laser scanning technology is based

on Light Detection and Ranging (LiDAR) that is an active imaging system. A laser beam is

emitted by the scanner to an object and reflected by the surface of object being scanned.

A Terrestrial laser scanner sweeps a laser beam over objects in the scene and records

millions of 3D points in a few minutes. The scanner provides highly accurate data which

intelligibly represent the real scene in rich 3D point clouds. The result of the laser scanner

is a very dense point cloud in which each 3D point is determined by its X, Y and Z

coordinates with respect to some given coordinate system and/or additional information

such as intensity or color. The notable feature of terrestrial laser scanner is its ability

CHAPTER 3. BACKGROUND 48

to provide high resolution 3D maps and images of a scene with centimeter precision.

This allows to precisely detect small details (centimeter squares) in a scanned data of

such large scenes (kilometers squares). These X, Y, Z measurements (and intensity,

color information) can be imported into CAD software such as AutoCAD, 3D point clouds

processing applications, etc. to view, measure or be analyzed on a computer.

Figure 3.11: Point cloud of a room

A terrestrial laser scanner is a powerful geodetic imaging tool ideal for aiding users to

capture different environments for applications. This equipment is today widely used and

gained popularity in various fields such as architectural, archaeological and environmen-

tal surveying due to its versatility in use.

3.2.1.2/ LIMEZ III (LICHTRAUMPROFIL MESSZUG)

Growing with technology, some devices for capturing 3D scene have been introduced to

serve particular fields of surveying. Besides two types of popular scanners: terrestrial

laser scanners and airborne laser scanners. LIMEZ is a typical device that was produced

to capture scene in the rail network. LIMEZ is a laser scanner that is usually mounted in

a train and captures certain areas of interest in the rail system. LIMEZ produces outputs

such as point clouds and images which represent area within facilities of the rail network

and obstacles. This device is used to enforce safety such as in obstacles detection.

LIMEZ III is launched as a new clearance profile recording train (serves for the Deutsche

Bahn AG, Germany) in September 2006 [Hoefler et al. 2006]. The features are like high

speed video techniques, photogrammetry, light sheet technology, forward view laser scan-

ning and fast side view laser scanning, all of which are compacted in the LIMEZ III and

overcome the drawbacks of its predecessor.

LIMEZ III consists of two majors subsystems:

- Side view laser scanners for profile measurement: Two fast laser scanners measure

CHAPTER 3. BACKGROUND 49

Figure 3.12: LIMEZ III measurement system [Hoefler et al. 2006]

almost 1200 clearance profiles per second with 3600 pixels each. Each laser scanner

comprises a 45 degrees tilted and rotating double sided mirror. Two laser beams reflected

on its surfaces propagate into opposite directions. The distance between two profiles

increases up to 25 mm at a train speed 100km/h.

- Video photogrammetry for supplement measurements and documentation: comprises

four 2-megapixel monochrome video cameras which are protected against high temper-

ature conditions. Both cameras are attached on both right and left side of a mounting

frame to capture pictures from the right and the left part of the measurement range.

Besides, there are other subsystems added to support the entire system such as: track

measuring system for referencing the other system to the track, wide view scanners for

forward scanning and identification of possible infringements and inertial navigation and

positioning system for measuring all vehicle movements for train localization.

All point clouds acquired from the scanners are registered automatically to the track by

the track referencing system. The closest scan profile therefore can be compared in real

time to reference clearance profiles. LIMEZ III acquires large amounts of data and is

transferred to an available online data preprocessing. The processed data are saved

to hard disks and also stored additionally on the vehicle on a network attached storage

(capacity of 5 TB) to avoid data loss during transport.

3.2.2/ NOISE REDUCTION

The presence of noise in point cloud datasets may be due to various reasons. For in-

stance, noise can be caused by scanning conditions adequate. Best scanning results are

obtained when the surface of the scanned object is perpendicular, or at least close, to

the laser beam. In addition, the surface materials may affect the refection of laser beam

resulting in 3D points of dubious quality. Noise in data leads to erroneous values and

causes representation failures of objects in point clouds [Soudarissanane et al. 2008].

CHAPTER 3. BACKGROUND 50

Figure 3.13: Point cloud data of a railroad segment acquired by the LIMEZ III

One way to reduce the effect of noise is to is based upon the computation of the distribu-

tion of point-to-neighbors distances in the dataset [Rusu and Cousins 2011]. By assuming

that the distribution of such distances in the input data is Gaussian, a mean distance from

each point to its surrounding points and a standard deviation are calculated. A point is

considered as an outlier (and eliminated from the dataset) if its mean distance is out of

an interval defined by the global distances mean and standard deviation.

3.2.3/ FITTING 3D POINTS TO PRIMITIVE SHAPES

When object detection is considered, bottom-up approaches often begin from the detec-

tion of individual base elements of the object. The greater details are then identified by

combining and/or deducing from the detected elements. Most objects are modeled by

primitive shapes such as planes, circles, linear structures, etc. In the following, two basic

methods often used for extracting linear and planar structure are introduced.

3.2.3.1/ FITTING 3D POINTS TO A PLANE (ORTHOGONAL DISTANCE REGRESSION

PLANE)

Given a set of 3D points, fitting points to a plane is carried out through Orthogonal Dis-

tance Regression. It consists in determining the parameter of a hypothesis plane by

minimizing the distance from the points to the plane.

Assume that we need to calculate the distance from P1(x1, y1, z1) to a plane which has

formula: ax + by + cz + d = 0 and normal vector ~v(a, b, c). H(x, y, z) is a point on the plane,

and we call vector ~HP is ~w. Projecting PH onto ~v gives the distance h between Q and H

of the point P to the plane:

|v.w| = |v|.|w|.cos(α) = |v|.QH (3.1)

CHAPTER 3. BACKGROUND 51

h =
|w.v|

|v|
=

|a(x1 − x) + b(y1 − y) + c(z1–z)|
√

(a2
+ b2
+ c2)

(3.2)

=

|ax1 + by1 + cz1–(ax + by + cz)|
√

(a2
+ b2
+ c2)

(3.3)

Since we have ax + by + cz + d = 0, then d = −(ax + by + cz), it leads to:

QH =
|ax1 + by1 + cz1 + d|
√

(a2
+ b2
+ c2)

(3.4)

Figure 3.14: Distance from a 3D point to a plane

Calculating the squared distances from every point Pi(xi, yi, zi) to the plane, we have an

equation:

f (a, b, c, d) =
∑ |axi + byi + czi + d|2

(a2
+ b2
+ c2)

(3.5)

A point is considered as on the plane, if its distance to the plane approaches zero. There-

fore, the purpose is to minimize the sum of squared distances to the plane in order to find

a, b, c and d.

In order to derive d, we set the partial derivative f with respect to d equal to zero:

p f

pd
= 2
∑ (axi + byi + czi + d)

(a2
+ b2
+ c2)

= 0 (3.6)

∑

(axi + byi + czi + d) = 0 (3.7)

a
∑

xi + b
∑

yi + c
∑

zi + Nd = 0 (3.8)

where N is the number of points,

CHAPTER 3. BACKGROUND 52

Nd = −(a
∑

xi + b
∑

yi + c
∑

zi) (3.9)

d = −
(a
∑

xi + b
∑

yi + c
∑

zi)

N
(3.10)

d = −(a

∑

xi

N
+ b

∑

yi

N
+ c

∑

zi

N
) (3.11)

If Po(x0, y0, z0) is the centroid of the data, then we have:

d = −(ax0 + by0 + cz0) (3.12)

We substitute d into the plane equation, the equation is then transformed as:

a(x − x0) + b(y − y0) + c(z − z0) = 0 (3.13)

Now, f (a, b, c, d) can be rewritten as following:

f (a, b, c) =
∑ |a(xi − x0) + b(yi − y0) + c(zi − z0)|2

(a2
+ b2
+ c2)

(3.14)

Before representing the equation as a matrix, we define v as a vector consisting of three

components a, b and c:

vT
=

[

a b c
]

and M such that:

M =





















































x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

. . .

. . .

. . .

xn − x0 yn − y0 zn − z0





















































If we multiply the matrices out, we see that f(a,b,c) becomes

f (v) =
(vT MT)(Mv)

(vT v)
(3.15)

=

vT (MT M)v

(vT v)
(3.16)

Let’s define A = MT M, then f (v) is on the form of the Rayleigh Quotient. It is minimized

by the eigenvector of A that corresponds to its smallest eigenvalue.

Minimum f (v) = smallest eigenvalue of A when v = eigenvectors of A

CHAPTER 3. BACKGROUND 53

The Singular Value Decomposition (SVD) of M is:

M = US VT

where S is a diagonal matrix containing the singular values of M, the columns of V are its

singular vectors, and U is an orthogonal matrix.

Replacing M = US VT in A = MT M, we have:

A = (US VT)T (US VT) (3.17)

= (VS T UT)(US VT) (3.18)

= VS 2VT (3.19)

The eigenvalues of A are the squares of the singular values of M, and the eigenvectors of

A are the singular vectors of M. The Orthogonal Distance Regression Plane contains the

centroid of the data, and its normal vector is the singular vector of M corresponding to its

smallest singular value [George 2005].

3.2.3.2/ FITTING 3D POINTS TO A LINE (ORTHOGONAL DISTANCE REGRESSION LINE)

Fitting the given 3D points to a line is also based on the Orthogonal Distance Regression.

In this case, however, it consists in computing the parameter of a hypothesis line in 3D by

minimizing the distances from the points to the line. A line L can be parameterized such

as:

x = x0 + a.t

y = y0 + b.t

z = z0 + c.t

where (x0, y0, z0) is a point on the line and (a, b, c) is a unit vector.

Figure 3.15: Distance from a 3D point to a line

CHAPTER 3. BACKGROUND 54

We calculate the distance from P(x1, y1, z1) to the line L. Projecting P onto the line, we

have the distance h between P and H, where H(x, y, z) is a point on the line L. Squared

distance of P to the line is calculated as:

h2
= (x1 − x)2

+ (y1 − y)2
+ (z1 − z)2 (3.20)

= (x1 − x0 − a.t)2
+ (y1 − y0 − b.t)2

+ (z1 − z0 − c.t)2 (3.21)

Substitute

t =
(x − x0)

a
=

(y − y0)

b
=

(z − z0)

c

we have:

h2
= (x1 − x0 −

a(y − y0)

b
)2
+ (y1 − y0 −

b(z − z0)

c
)2
+ (z1 − z0 −

c(x − x0)

a
)2 (3.22)

=

[b(x1 − x0) − a(y − y0)]2

b2
+

[c(y1 − y0) − b(z − z0)]2

c2
+

[a(z1 − z0) − c(x − x0)]2

a2
(3.23)

To minimize the sum of squared distances from every point Pi to the line, we minimize a

sum of squared distances as follows:

d =
∑

[b(xi − x0) − a(y–y0)]2
+ [c(yi − y0) − b(z − z0)]2

+ [a(zi − z0) − c(x − x0)]2 (3.24)

We take derivatives with respect to x0, y0, and z0 and set the results equal to zero, we get

equations that can be manipulated to yield:

(x0 − x̄)

a
=

(y0 − ȳ)

b
=

(z0 − z̄)

c
(3.25)

where (x̄, ȳ, z̄) is the centroid of the data.

To find vector (a, b, c), we consider C as the centroid, L as the Orthogonal Distance Re-

gression Line and Q as the plane through C such L is perpendicular to P.

For a set of points Pi, sum of distances from Pi to line L is calculated based on the

Pythagorean theorem:

∑

[distance(Pi, L)2] =
∑

[distance(Pi,C)2] −
∑

[distance(Pi,Q)2]

Note that, the unit vector v is normal vector of plane Q. Seeking (a, b, c) that

minimize
∑

[distance(Pi, L)2] is equivalent to maximizing
∑

[distance(Pi,Q)2] because
∑

[distance(Pi,C)2] is a constant. We recall that the minimum distance from a point to

a plane is found by choosing the singular vector of M that corresponds to its smallest sin-

gular value. For the Orthogonal Distance Regression Line, the maximum distance from

CHAPTER 3. BACKGROUND 55

Figure 3.16: A plane Q is assumed to compute the minimum distance from P to line L

a point to the plane is sought, we thus want the eigenvector of A that corresponds to

its largest eigenvalue, or the singular vector of M that corresponds to its largest singular

value.

The 3D Orthogonal Distance Regression Line contains the centroid, and its direction

vector is the largest eigenvector (or singular vector of M) corresponding to its largest

singular value [George 2005].

3.2.4/ 3D TO 2D PROJECTION

A projection is a way of transforming an object from one dimensionality to another. When

the 3D world is transformed to 2D one, the world is projected on a finite plane. We

distinguish in the following between orthogonal projections and perspective projections

[McMillan 2005], [Hearn et al. 2010].

Orthogonal projection

An orthogonal projection (also called a parallel projection) is simple projection that pre-

serves the object’s measurements in two dimensions. However, the projection of the

object does not appear natural lacks perspective.

The projection matrix for orthogonal projection expresses as:

Porthogonal =































1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1































(3.26)

The coordinates (x, y, z) are transformed to the new ones (x′, y′, z′) as:

[

x′ y′ z′ 1
]

=































1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1































[

x y z 1
]

=

[

x y 0 1
]

(3.27)

CHAPTER 3. BACKGROUND 56

In general, an orthogonal projection has some features such as:

- Scale is preserved;

- Good for exacting measurements;

- Angles are not preserved;

- Has no vanish-point;

- Parallel lines remain parallel.

Figure 3.17: An example of an orthogonal projection of a cube on a horizontal plane

Perspective projection

The perspective projection differs from the orthogonal projection in the way it simulates

perspective viewing. The perspective project allows us to denote the foreshortening of ob-

jects in 3D world. When applying a perspective projection for the lines in 3D, they always

intersect at a point. Such transformation therefore does not preserve the measurements

of object.

The projection matrix for perspective projection matrix is:

Pperspective =































1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/D 0































(3.28)

Where D is distance from the projection plane to the projection reference point. The

transformed coordinates (x′, y′, z′) of a point 3D (x, y, z) is computed:

[

x′ y′ z′ 1
]

=































1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/D 0































[

x y z 1
]

=

[

x y z z/D
]

(3.29)

This leads to:

CHAPTER 3. BACKGROUND 57

x′ =
x.D

z
(3.30)

y′ =
y.D

z
(3.31)

and

z′ = D (3.32)

(z component is omitted in 2D)

In general, a perspective projection has several features such as:

- Making close objects seem bigger;

- Have vanishing points;

- Not preserving distances and angles;

- Parallelism is not preserved.

Figure 3.18: An example of a perspective projection of a cube on a horizontal plane

3.2.5/ RANSAC

The RANdom SAmple Consensus (RANSAC) algorithm was proposed by Fischler and

Bolles in 1981 [Fischler and Bolles 1981], is an iterative method for estimating parameters

of a mathematical model from a set of data. RANSAC uses the smallest set possible and

proceeds to enlarge this set with consistent data points.

CHAPTER 3. BACKGROUND 58

A mathematical model estimated by iteratively selecting a random subset of the original

data which are hypothetical inliers. A model is then fitted to the hypothetical inliers and

the parameters of this model are determined. RANSAC algorithm is described as the

following:

1. A minimum number of points is selected to determine the model parameters.

2. Solve for the parameters of the model.

3. Find points from the dataset which satisfy a pre-defined tolerance. These points are

inliers. (for example in case of line fitting, a point fits the pre-defined tolerance if the

distance t from it to the line is smaller than a threshold).

4. If Ninliers/Npoints exceeds a pre-defined threshold, re-estimate the model parameters

using all the identified inliers and terminate.

5. Otherwise, repeat steps 1 through 4.

Maximum of iteration number is chosen high enough to ensure that at least one of the

sets of random samples does not include an outlier [Derpanis 2010].

Pros:

- Simple and general

- Applicable to many different problems

Cons:

- Require to tune many parameters

- Require many iterations to obtain a best result

- Time consuming.

3.2.6/ POINT CLOUD LIBRARY

The Point Cloud Library (PCL) (www.pointclouds.org) is built as a comprehensive free

library for n-D Point Clouds and 3D geometry processing. PCL is a standalone, large

scale, open project for 2D/3D image and point cloud processing. This library is written in

C++ and optimized for solving numerical processing problems. State-of-the art algorithms

for n-dimensional point clouds and 3D geometry processing are implemented in the PCL.

The library allows using algorithms for filtering, feature estimation, surface reconstruction,

registration, model fitting and segmentation.

The algorithms in PCL are grouped to the smaller libraries [Rusu and Cousins 2011]:

- libpcl io: provides input/output operations such as writing to/reading from Point Cloud

data files;

- libpcl registration: implements point cloud registration methods such as ICP, etc;

- libpcl filters: contains algorithms such as down sampling, outlier removal, indices ex-

traction and projections, etc;

CHAPTER 3. BACKGROUND 59

- libpcl features: provides algorithms to extract features such as surface normal vectors

and curvatures, boundary point estimation, moment invariants, PFH and FPFH descrip-

tors, NARF descriptors, RIFT, SIFT on intensity data, etc;

- libpcl segmentation: consists of cluster extraction, model fitting methods for a variety of

models such as planes, cylinders, spheres, lines, etc.

- libpcl keypoints: implements different keypoint extraction methods;

- libpcl range image: contains tools that support range images created from point cloud

datasets.

- libpcl surface: includes algorithms based on surface reconstruction techniques, mesh-

ing, convex hulls, Moving Least Squares, etc;

PCL has been developed thanks to the contribution of a large number of researchers and

engineers around the world. This library has been ported to Windows, MacOS, Linux,

and Android. As it has been developed by a community, the library has expanded over

time. PCL is used as an independent library in a framework which serves for different

purposes.

4

METHODOLOGY

4.1/ SYSTEM OVERVIEW

When attempting to build an integrated approach with knowledge directing all parts of

the process, several aspects have to be considered. At first, the whole process needs to

be incorporated into a knowledge management tool. Therefore, it is necessary to have

a process guiding all individual steps, leading from an initial situation to the final result.

Inside this overall process, one part has to cover the numerical processing and another

part has to handle the processing results. This latter part has to evaluate the results, draw

conclusions about what has been found, and also what this means for further processing.

This includes the need to update the content of the database with the objects that have

been found. This database has to be managed in a way that every detected object is

transferred from some initial state to a final one within the framework of a rule-based

system.

Figure 4.1: System architecture

The main components of our system are illustrated in Fig. 4.1. The strategy is applied

CHAPTER 4. METHODOLOGY 62

to the analysis of 3D point clouds, but can also be extended to other data sources. It is

based on explicitly formulating prior knowledge of the scene, on spatial relations of objects

and on processing algorithms. It is a multi-stage concept based on three components:

the modeled knowledge Fig. 4.1 (left), the package of algorithms Fig. 4.1 (right) and the

classification engine Fig. 4.1 (bottom-right). In the initial stage, the available knowledge

is transferred into a knowledge base. Starting from this initial stage, an updating process,

which invokes the algorithms and the classification engine, is launched. Here, the algo-

rithm selection module guides the processing via selecting a set of processing algorithms

based on the nature of the target objects, and produces new elements which can be

identified. These elements are passed on to the classification engine, which, based on

the existing knowledge expressed in the ontology, attempts to apply Semantic Web Rule

Language (SWRL) rules [Horrocks et al. 2004] and Description Logic (DL) constraints in

order to identify the nature or object category of the elements. This classification han-

dles the output obtained from the algorithms. The result of the classification step updates

the knowledge base by inserting newly classified elements or updating already existing

elements before running the next stage of processing. The process ends either when all

objects are detected and classified or when the annotation process stalls after a prede-

termined number of iterations.

Objects are represented by a point cloud (or possibly data from other sources). Such

data depend on many factors such as the type of the sensing system and the measur-

ing/capturing conditions. This representation has to be handled by algorithms which also

depend on many additional factors (e.g. noise, other data characteristics, and already

existing objects). Strong interrelationships among these factors have a direct influence

on the efficiency of the detection and classification processes. The more flexibly these

factors and interactions are controlled, the better results are to be expected. For these

reasons, knowledge from different domains is required and the quality of these various

knowledge sets has significant impact on the results. Our solution relies on four main

knowledge categories to construct the core of the knowledge base: the scene knowl-

edge, the spatial knowledge, the data knowledge and the algorithm knowledge. Each

field of knowledge is represented by circles in Figure 1, and relationships between these

concepts are represented by edges. The scene knowledge contains information related

to the content of the scene to be processed, important characteristics of objects (e.g.

geometric features, appearance and texture), and the geometry that composes its struc-

ture. Such knowledge is not only important for identification and classification processes

but also supports the selection and guidance of the algorithms. The spatial knowledge

models the relationships between objects in the scene. It is an important factor for the

classification process because it supports an object’s state disambiguation based on its

relationship with the common environment. The data knowledge expresses important

characteristics of the data itself. Finally, algorithm knowledge characterizes the behavior

of algorithms and determines which purpose they fulfill, which input is expected, which

output is generated, and which geometries they are designed for. Based on this knowl-

edge, a dynamic algorithm selection is possible allowing for a dynamic adaptation to

processing situations given from other domains Fig. 4.1.

CHAPTER 4. METHODOLOGY 63

4.2/ KNOWLEDGE ENGINEERING

Our concept requires efficient methods for knowledge representation, management and

interaction with algorithms. An ontology is a formal representation of knowledge as a set

of concepts within a domain, and the relationships between those concepts. It is used to

reason about the entities within that domain, and may be used to describe the domain.

In theory, conventionally, ontology presents a ”formal, explicit specification of a shared

conceptualization”. An ontology provides a shared vocabulary, which can be used to

model a domain. Well-made ontology owns a number of positive aspects like the ability

to define a precise vocabulary of terms, the ability to inherit and extends exiting ones,

the ability to declare relationships between defined concepts and finally the ability to infer

new relationships by reasoning on existing ones [Gruber et al. 1993].

4.2.1/ KNOWLEDGE MANAGEMENT TECHNIQUES

OWL

Efficient knowledge representation tools are available from the Semantic Web frame-

work, which expresses knowledge through the Web Ontology Language (OWL) [Bech-

hofer et al. 2004]. The encapsulation of semantics within OWL through Description Log-

ics (DLs) axioms has made it an ideal technology for representing knowledge from almost

any discipline. We use the OWL to represent expert knowledge about the scene of inter-

est and for algorithmic processing. With OWL ontology, we are able to describe complex

semantics of a scene.

For instance, the statement “A railway track is a linear feature with two linear structures

running parallel to each other within a certain distance” can be expressed through logical

statements. Likewise, we define the semantics of algorithmic processing within OWL. For

example, the CheckParallel algorithm is designed for detecting a Signal, which contains

parallel linear structures.

CheckParallel∃isDesignedFor.S ignal ⊓ S ignal.hasParallel.{true} (4.1)

SWRL

Despite the richness of OWL’s set of relational properties, the full range of expressive

possibilities for object relationships is not covered yet. Besides technologies known as

Semantic Web, most precisely the OWL, an additional technology is SWRL. It is a pro-

gram which infers logic from the knowledge base to derive a conclusion based on ob-

servations and hypotheses. SWRL allows to declare relationship in term of conditions

or rules. Rules perform particular operations on knowledge bases like the consistency

checking, the satisfiability checking and finally the expansion of relationships between

objects inferred from explicitly stated relationships. The SWRL is open and flexible and

allows to integrate Built-Ins, which in our case give access to the world of geometrical

processing.

Example 1: A rule asserts that the combination of the hasParent and hasBrother proper-

ties implies the hasUncle one. This rule could be written as:

hasParent(?x1, ?x2) ∧ hasBrother(?x2, ?x3)→ hasUncle(?x1, ?x3) (4.2)

CHAPTER 4. METHODOLOGY 64

Where x1, x2 and x3 present individuals from the class Person defined in the ontology

and hasParent, hasBrother and hasUncle presents data properties in the same cited

structure. As seen in the above example, rules are divided into two parts, antecedent

and consequent separated by the symbol “→”. If all the statements in the antecedent

clause are determined to be true, then all the statements in the consequent clause are

applied. In this way, new properties like hasUncle in our example can be assigned to

individuals in the ontology based upon on the current state of knowledge base. Add to

this standard, SWRL language specify also a library for Built-Ins functions which can be

applied to individuals. It includes numerical comparison, simple arithmetic and string

manipulation.

Example 2: The following rule (eq. 4.3) asserts that a detected element (of class Geome-

try) which has a distance from DistanceSignal of 1000m, has a height equal to or greater

than 4m, and which has a linear structure, will be inferred as a MainSignal.

Geometry(?x) ∧ hasLine(?x, ?l) ∧ line(?l) ∧ DistanceS ignal(?y)

∧DistanceFrom(?x, ?y, ?dis) ∧ swrlb : GreaterThan(?dis, 1000)∧

hasHeight(?x, ?h) ∧ swrlb : GreaterThan(?h, 4)→ MainS ignal(?x)

(4.3)

Variables are indicated by the standard convention in which they are prefixed by a ques-

tion mark symbol (e.g. ?x). An important SWRL feature is its ability to allow user-defined

built-ins (user-defined predicates, such as, swrlb:equal and swrlb:lessThan, that can be

used in SWRL rules) which help in the interoperation of SWRL with other formalisms and

provide an extensible infrastructure for knowledge-based applications.

4.2.2/ KNOWLEDGE MODELING

The techniques mentioned above serve as tools to formalize the identified and acquired

knowledge. We model an ontology which consists of four major knowledge domains:

SceneKnowledge, SpatialKnowledge, DataKnowledge and AlgorithmKnowledge Fig. 4.2.

SceneKnowledge contains the object information within the scene, such as definitions

and their properties. DataKnowledge expresses important data characteristics (for exam-

ple, density, noise, and the resolution of data) and is acquired from sources such as avail-

able documentation, CAD, Geographic information system (GIS) and expert assistance.

SpatialKnowledge contains information about how objects are scattered in the scene,

and their spatial relationships represent the geometric relations either among objects in

the scene or components in an object. AlgorithmKnowledge includes the algorithm defini-

tions and their properties. SceneKnowledge and AlgorithmKnowledge are linked together

through similarities between the object properties (defined in SceneKnowledge) and al-

gorithm properties (defined in AlgorithmKnowledge). In order to gain “intelligence” in pro-

cessing, the algorithms adapt to specific situations through parameter adjustment. Data

characteristics (low density, high density, distinct, invisible, noise, etc.) as well as object

geometry (thick, thin, flat, broken, etc.) are defined in Characteristic. These character-

istics usually influence algorithm performance, and the system is able to set algorithm

parameters in order to adapt to different object and data characteristics. The system

requires an expert to adjust and decide appropriate values (for algorithm’s parameters)

which are stored in the sub-class RiskBenefit.

CHAPTER 4. METHODOLOGY 65

Figure 4.2: General ontology schema overview

4.2.2.1/ SCENE KNOWLEDGE

The scene knowledge is described in the schema of ontology and includes semantics of

the objects such as properties, restrictions, relationships between objects and geome-

tries. These elements are managed in the scene knowledge and stored to one in three

layer classes: Domain Concept, Geometry and Characteristic. Particularly, Domain Con-

cept contains classes of object of interest in the scene. They are defined by their names

and particular features. Geometry shapes of object, such as: linear structure, planar sur-

face, etc., are sorted in the class Geometry. Characteristic class consists of instances

which describe characteristics of geometry or data, for example: thin, thick, low density,

high density, etc. The more information about an object is created and used, the more

accurate the detection and classification process is.

Figure 4.3: Grouping of scene objects in case of a building

Modeling knowledge for a part of a scene can be described as following example. Fig.

CHAPTER 4. METHODOLOGY 66

4.3 shows classes of object in a building. A collection of classes is represented in Do-

main Concept. They are additionally structured in a hierarchical order as might be seen

convenient for a scene. This could lead to relations like: a room is a super class of

wall and floor, with door as further sub class of wall. But also other ordering can be

imagined, as a structuring with respect to processing aspects. Such a structure could

separate between different complexity of classes. Simply structured objects like walls,

ground floors or ceiling then would be distinguished from other objects in accordance to

their impact onto the processing strategy. Simple objects require simple detection strate-

gies, whereas complex ones will be composed out of several geometrical objects needing

adapted and more complex processing strategies. They first have to be decomposed into

their geometric objects, which then have to be verified and regrouped based on known

topology relations between them. Likewise, a table as a complex element is composed

of a plane representing the table top and at least one linear structure, representing a leg.

Once theses geometries are detected, the topology decides upon the correctness of this

assumption, as the plane (table top) must be connected and perpendicular to the linear

structure (leg). This is just a first draft since modeling depends on the target scene to be

detected.

Each one of the above mentioned object classes have relations to the Geometry class.

This class handles features which may have an impact or are useful for decisions based

on geometrical aspects. It helps to enrich scene objects with additional information or

provide data for the processing strategies. Geometry class contains information about

the different geometric elements composing a semantic object, like plane, line, sphere

and others. A chair for example has linear elements (legs of the chair), a leaning plane

and a seat plane (Fig. 4.4).

Figure 4.4: The geometry class hierarchy

To specify its semantic characteristics, Characteristic class is created, aiming to charac-

terize a semantic object by a set of characteristics like color, size, visibility and its position

in the point cloud after detection. To do so, new object properties like “hasColor”, “ha-

sOrientation”, “hasFeature” are created linking the properties of object class to defined

characteristics “Color”, “Orientation”, “Thin” in the Characteristic class respectively (Fig.

4.5).

CHAPTER 4. METHODOLOGY 67

Figure 4.5: Object and data properties characterizing the semantic objects

4.2.2.2/ DATA KNOWLEDGE

There are different kinds of input data that would be used in a 3D processing task: images,

range images, 3D point clouds, etc. These data are directly used in extracting objects

present in a scene. There are other kinds of data, for example: documents in related

domain, CAD, GIS, etc., are also utilized to provide additional information. A collection

of necessary resources allows processing to be able to quickly detect/identify targeted

objects and achieve reliable results. To do that, we exploit different features of data

such as how much data characteristics (in term of data quality, attributes and error in

data) influence the numerical processing. For example, an object detection algorithm

can succeed or fail at a certain point during the process due to the quality of data. To

understand data characteristic, a process is required to extract information from data and

draw rules from such information. This process is a knowledge modelling from data, all

influences of data to processes are framed as rules which are stored in “Data knowledge”

– a class of knowledge base. Depending on the type of data, we have particular method

to extract data characteristics. Point cloud data are primarily used in our approach, in the

data knowledge modelling we thus focus on this kind of data in some aspects such as

quality, measurement error and feature of measurement devices.

First, data quality has a tremendous effect during the execution of an algorithm (for exam-

ple when detecting objects). In particular, thresholds in the algorithm should be properly

set to adapt to the quality of data. We create different levels of data density, for instance

low, medium and high. These notions are manually defined based on the number of 3D

points per volumetric unit. Threshold in an algorithm used for a low density data is differ-

ent from one used for a high density data. These rules or relations are defined in “Data

knowledge”.

Second, measurement errors are often responsible for algorithms failure. Point cloud

data with errors supply a sufficient number of points. However, their coordinates are not

faithful to the captured scene. Measurement errors mostly depend on the distance and

angle from scanner to surface object. Basically, point clouds representing an object that

is far from the scanner have high probability of containing errors. Therefore any result

CHAPTER 4. METHODOLOGY 68

obtained from such data will be uncertain. By a relative evaluation, we assign probability

values for these results indicating how much trust is put into each. The relationship be-

tween measurement error and probability of accuracy of the results are modelled in data

knowledge.

Third, measurement devices have directly influents to the way we model an algorithm. In

the current study, we have used two kinds of laser scanners: a terrestrial laser scanner

and LIMEZ III. These devices have been used to capture scenes and produce point cloud

data. Using multiple terrestrial laser scanners allows us to have full representation of

an object’s surfaces, while LIMEZ III supplies only one face of an object. Additionally,

data density acquired by this equipment has lower density than terrestrial laser scanner’s

(in our experiments). The significant distinction between these two scanners requires a

modification of the algorithms. For example: two different line extraction algorithms have

been designed. One for the data acquired from the terrestrial laser scanner and the other

for data acquired from LIMEZ III. Besides, since objects captured by this equipment only

show one side, we only focus on algorithms whose features are found from the visible

sides.

Figure 4.6: A point cloud acquired by Terrestrial Laser Scanners, all surfaces of panels in

the scene are captured

All factors originating from data characteristics and having influence on the processing

are collected and modelled in the data knowledge. In order to select the best suitable

algorithm with respect to different data conditions, relations between data characteristics

and algorithms are established to interpret the influences mentioned above. These rela-

tions are modelled in forms of knowledge representation which are then stored in Data

knowledge.

4.2.2.3/ SPATIAL KNOWLEDGE

Knowledge about 3D spatial relationships is used to enhance the classification process.

Information about how objects are scattered in a 3D scene make the detection and clas-

CHAPTER 4. METHODOLOGY 69

Figure 4.7: Objects scanned by the LIMEZ III only have one face represented in point

clouds

sification easier. For instance, given the detection of a wall, there are better chances that

a door or window will be detected within it. 3D spatial knowledge includes standards like

the 3D topologic knowledge, 3D metric knowledge and 3D processing knowledge. Spatial

knowledge contains relationships such as: disjoint, contains, inside, covers, equals, and

overlaps. They represent the geometric relationships either between components in an

object or between objects in the scene. Each of the mentioned types of spatial knowledge

contains a variety of relations modelled in the ontology structure. The top level ontology

is designed to include the topological relationships. This is then used to enrich an existing

knowledge base to make it possible to define topological relationships between objects in

a specific case. Metric knowledge presents important information, because the different

elements fulfil very strict metric rules that can also be used in the detection and classifi-

cation process. In the example of scenes that are specific for railroads, Fig. 4.8 shows an

ontological structure, supported by the SWRL rules, which can automatically specify that

an object (with certain characteristics) 1000 ± 0.5m away from Distance signal can be a

Main signal.

Figure 4.8: Metric rules

Topological knowledge represents adjacency relationships between scene elements. In

the case of a building, for example, a topological relation between a wall and the ground

floor can be defined as both being connected and the wall must be perpendicular to the

ground. The purpose of this class is to spatially connect objects present in the scene

and in the geometry layer class. From a semantic point of view, topological properties

describe adjacency relations between classes. For example, the property isParallelTo

CHAPTER 4. METHODOLOGY 70

allows to characterize two geometric concepts by the feature of parallelism. Similarly

relations like isPerpendicularTo and isConnectedTo will help to characterize and exploit

certain spatial relations and make them accessible during the reasoning steps.

4.2.2.4/ ALGORITHM KNOWLEDGE

The integration of 3D processing algorithms into the semantic framework requires an in-

teraction between scene data and algorithms. Algorithm knowledge is therefore needed

to make processing adapt to various conditions of input data (point clouds) as well as

different scene. Algorithm knowledge contains all relevant aspects needed to select pro-

cessing algorithms, generate processing sequences and set parameters for individual

algorithms under different situations.

Regarding the numerical processing algorithms, effectiveness depends on the quality of

the data (resolution, noise), the characteristics of the object that needs to be detected,

or other factors depending on a specific case. Algorithms are modelled under special-

ized classes of algorithms, sharing certain taxonomical and relational behaviour. The

hierarchical representation of the algorithms is addressed by dividing the algorithms ac-

cording to the context in which they are executed. Likewise, relational semantics are

represented by properties. In broader terms, there are two types of relationships: one

which applies to the geometry that an object in Domain Concept possesses, and one

which relates distinct objects. The first category of relationships is used for detecting

geometries. The object property isDesignedFor maps algorithms to the respective ge-

ometries. For example: LineDetection isDesignedFor lines. The second set of algorithm

properties hasInput/hasOutput are inter-relational properties to connect algorithms based

on the compatibility of output from an algorithm to the inputs of others.

To adapt processing to certain situations, depending on the data, the scene and the

characteristics of objects, we create a concept that allows for these interactions, as it

is able to automatically change the strategy based on a compromise between quality

and risks. A part of the knowledge base is dedicated to risk-benefit factors that have an

influence on the algorithms and have been deduced from “trial-and-error” simulations on

individual algorithms. Since an algorithm may perform best with some given parameters

in one setting and fail to deliver the same quality in other settings, it is important to

assess the risk-benefit factors of every algorithm with various possible settings. The

class RiskBenefit includes all identified risks and benefits. The class contains instances

such as Distinct, Illusive, Noise, and DetectionError. These instances are either the risks

or the benefits that have some influence on the algorithms as a whole, or at least the

values of the parameters they contain. Note that the classes mentioned above form the

general structure of the ontology. They can also be used for other domains, for example:

building semantic annotated maps by a mobile robot, mobile mapping of street furniture

or forest, semantic place labelling from airborne laser data, etc. In particular, every entity

within each class can be replaced by an appropriate one from the application field.

Knowledge modelling and human interaction: The process of modelling knowledge

requires the user to collect “information” from related domains. This process is currently

carried out manually. “Collecting information” can imply extracting knowledge from vari-

ous sources or filling the ontology with objects corresponding to specific classes, object

properties, algorithms, algorithmic properties, etc. Some of these tasks (such as data

CHAPTER 4. METHODOLOGY 71

extraction from technical documents) have the potential to be done automatically us-

ing specialized processing tools borrowed from the Document Analysis community [Tang

et al. 1996]. Depending on the available tools and target application (including its related

domains), the knowledge modelling process may take a single person from one to several

days of work (data extraction and ontology modelling) including interaction with domain

experts and modelling all relationships. Examples of the length of this process and the

amount of human interaction are given in next chapter (use cases). However, although

such figures may seem significant, one has to keep in mind that knowledge modelling

for a given application is done only once and used for processing numerous point clouds

with virtually very little or no changes to the ontology. It is also to be noted that other

approaches, such as those based on machine learning, would also require a significant

amount of preparation to extract training data and carry out annotations generally from

large amounts of scans, which may require at least as much time as modelling an ontol-

ogy. This is especially true when dealing with special environments (such as railroads,

industrial plants, etc.) which are often subject to various kinds of regulations, requiring a

certain level of expertise.

4.3/ NUMERICAL PROCESSING

The main objective of the set of algorithms provided by the numerical part is to allow

detecting geometries belonging to objects. The geometries represent particular features

between objects: this is how a human in the first place can recognize objects. In gen-

eral, the shape of object is represented through geometries and they are composed in

a structure that human is able to identify object. Hence, providing the best quality of

geometry detection algorithms is crucial for the work we had to carry out on the numer-

ical processing. This work is either based on existing techniques or improved from the

state-of-the-art methods to serve our particular targets. The algorithms should provide

their efficiency when detecting geometries in different situations (data condition, object

characteristic, etc.). This is can be done by changing parameters in each algorithm to

adapt with the diversity in the nature of data as well as object characteristics.

The goal of the numerical processing part is to provide a large set of individual algo-

rithms. Each algorithm plays a different role in data processing and some of them can be

appropriately linked together in order to complete a certain task. These algorithms are

introduced in more detail in the following section.

4.3.1/ ALGORITHM CATEGORIES

We set up the primary groups of algorithms of 3D object detection in point clouds and

images that were built to serve different desired targets in our approach. Each particular

algorithm corresponds to a particular purpose and data characteristics. Those character-

istics can be based on geometric or on radiometric information. With a large variety of

different object types of diverse complexity, we need a collection of algorithms. In order

to manage them, we classify them into individual groups. This is to structure the “toolbox”

in order to make the algorithms available for easy access under the guidance of knowl-

edge. Basically, there are four main groups of algorithms that we classify based on their

function:

CHAPTER 4. METHODOLOGY 72

Group I: ”Data processing” specializes in data processing for enhancing the quality of

datasets. This group consists of algorithms that allow to sample images and point clouds

(or reduce the weight of data) as to lower the unnecessarily high density of points in some

areas. We also consider here algorithms designed for reducing noise caused by the limi-

tations in the scanner accuracy or caused by other factors. Regarding 2D imaging data,

we have included in this group those algorithms that allow to process binary and color

images dealing with matters such as noise reduction, thinning, mathematical morphology

operations, edge detection, sharpening edge boundaries and so on.

Group II: ”Segmentation” is usually used for separating the regions of data based on

certain features. We mainly consider the algorithms which are able to crop point clouds

in 3D and specify the segmented region. The primary purpose of algorithms in this group

is to segment and then use points representing the objects of interest. The segmented

region is determined by a bounding box which contains points surrounding a relative

object position (central coordinate of object) and within a defined volume.

Group III: ”Geometry detection” contains the primary algorithms that will be used to de-

tect and recognize the primitive shapes or feature of objects. The main interests are

geometries such as linear structures, planar structures, points of interest, rectangles, cir-

cles, etc. We develop algorithms that are capable of detecting those shapes. Since the

datasets have always different qualities, thus the geometries of objects represented in

the point clouds are often different from the origin. To yield more accurate results in ge-

ometry detection, the algorithms must adapt to various characteristics of data such as

noise, density and so on. Each algorithm has parameters that can be set to adapt with

the nature of datasets.

Group IV: “Measurement” consists of methods that allow to measure dimensions. For

example, algorithms measure the dimensions (height, width, length) of a volume of subset

point clouds. Angle calculation algorithms measure angle between two lines or angle

between two planes based their normal vectors. Some algorithms calculate the length of

a line segment and number of lines, etc. We also include classification algorithms which

are able to classify the geometrical structures such as isolated points, line segments or

patches of finite plane, etc.

In the following section, we introduce some algorithms belonging to the defined groups.

These algorithms are just a small sample of the whole toolbox or catalogue of algorithms

we use in our approach. Many more have been analyzed, modeled in the knowledge

base and used for object detection.

4.3.2/ DATA PREPROCESSING

Noise reduction algorithm

Laser scanners capture geometry of 3D objects in the real-world and represent their sur-

faces in the form of 3D point coordinates. Either laser scanner devices or measurement

processes often cause two kinds of errors in the scanned data: measurement errors,

which are reasons the inaccurate point coordinates, or outliers, which are points far from

the true surface of objects. Several methods exist to reduce such noise and errors in point

clouds (i.e. Removing outliers using a Statistical Outlier Removal filter in PCL). Typical

applications of the present work are within structured man-made environments and we

found it much more effictive and simpler in such cases to work in a lower dimensional 2D

CHAPTER 4. METHODOLOGY 73

space as to rid the 3D data off errors and noise.

The approach we propose applies morphological image processing to grey-level images

that are created after orthogonally projecting 3D point clouds on a 2D plane (the plane

is usually a ground plane or a plane perpendicular to it). Morphology methods, such

as dilation and erosion, are incorporated to eliminate the isolated points in projected

images. These isolated points in 2D are the projected points from outliers in 3D point

cloud. Instead of reducing outliers in point clouds, we remove the isolated points (see

Fig. 4.9a) by using a kernel with a changeable size for erosion and dilation operators.

The projected images first are converted to binary images. The erosion operator is then

applied to eliminate the isolated points and also results in reducing pixels representing

details in the image. The dilation operator is thus applied to restore the details without

bringing back isolated points. Depending on the quality of data, the size of a kernel can

be set properly. We symbolize the kernel size as a parameter in noise reduction algorithm

that is flexibly controlled by knowledge.

The projected images of point clouds on the ground plane and side planes are obtained

by an orthogonal projection from 3D to 2D, coordinates of outliers in 3D are therefore

obtained by a transformation from the 2D coordinates (the isolated points are removed by

applying morphology) back to 3D ones. Note that, a 3D point may or may not appeared in

the 2D projected images. This essentially depends on the direction of projection. Thus, if

an isolated point is detected in at least one projected image, that point can be considered

as an outlier in 3D point clouds. Regarding objects that are visible by looking from a

certain side, this method can quickly solve an outlier removal problem through detecting

and eliminating isolated points in each projected images.

4.3.3/ SEGMENTATION

4.3.3.1/ PARTITIONING POINT CLOUDS (SPATIAL PARTITIONING)

One of the challenging issues in point clouds processing is that the size and the density

of data often affect the performance of numerical processing algorithms. In particular, a

large dataset or high density point clouds are computationally more expensive. Reducing

the number of points in the dataset can speed up the algorithms. However, this diminishes

details of object in the point clouds.

Our approach is to partition the dataset into subsets of non-overlapping regions contain-

ing 3D points in specific volumes (such as cubes). This process preserves the quality as

well as quantity of the data, and algorithms perform in each cube where the amount of

points is significantly reduced in comparison to considering the whole dataset. Moreover,

this approach allows us to select the cubes of interest and the ones which have not much

information, for example, number of points inside a cube is less than a given value. The

size of cube is a variable parameter that can be assigned a value depending on different

factors such as dimension and complexity (in structure) of the object. Particularly, in our

prototype, we use a range from 0.3m to 0.6m for the size of cube for an object with an

approximate height of 7m. For an object with a complex structure and containing many

geometric elements, the size of cube is set to approximate 0.5m.

Due to the fact that point clouds of objects of interest have various geometry structures,

the cube size in partition processing for these point clouds is different. We thus run the

partitioning algorithm on several datasets (for example, Fig. 4.10a, b) to yield appropriate

CHAPTER 4. METHODOLOGY 74

Figure 4.9: (a) Point clouds of an objects viewed from a side, with inliers represented as

the points inside circles. (b) Point clouds after removed outliers by using our approach

values of the cube size regarding to particular samples.

4.3.3.2/ POINT CLOUDS SEGMENTATION

When capturing scene by laser scanners, acquired dataset (point clouds) normally con-

tain the entire scene that includes objects of interest and others. Object detection strate-

gies often only focus on some specific objects but not entire scene. The unused parts,

which do not contain useful information, should be removed. Additionally, by eliminating

these points, we significantly reduce the size of the dataset and processing performance.

Our algorithm classifies the points in the dataset based on their coordinates (x, y, z).

Points whose coordinates satisfy the given conditions, such as x or y or z coordinate

must be in a certain range, will be stored. In particular, there are three segmentation

types:

- Segmenting point clouds region surrounding the center of an object: this case used for

cropping a point cloud region (usually, a cube or a cylinder) representing the object. To

determine the region, coordinates of the center and size of cube or radius of cylinder are

required.

CHAPTER 4. METHODOLOGY 75

Figure 4.10: Two examples of point cloud partition

- Trimming useless points: certain conditions must be set to define the region of interest.

For example, for objects standing on the ground and the scanned point clouds represent-

ing the ground can be detected. If the ground is not needed, then it is eliminated. This

can be done by selecting and storing only the points whose “z” component is greater than

the height of ground which is usually derived from (1) an assumption as it is approximate

to zero, (2) a prior knowledge that provides the information about the height of ground, or

(3) it is calculated from ground detection, such as plane detection algorithm.

We built algorithms that are able to segment point clouds in both cases mentioned above.

The following examples (Fig. 4.11 and Fig. 4.12) are objects before and after processed

by a removal ground point clouds. The ground information (the height) is provided from a

prior knowledge.

Figure 4.11: (a) Point cloud with ground points (b) Point cloud without ground points

CHAPTER 4. METHODOLOGY 76

Figure 4.12: (a) Point cloud with ground points (b) Blue point clouds indicates ground

area (c) Point cloud without ground points

4.3.4/ GEOMETRY DETECTION

4.3.4.1/ HULL DETECTION ALGORITHM

As far as the shape-based object detection methods are concerned, we are interested in

an approach that estimates the shape of object based upon the hull or boundary of that

object. The output is used to classify the type of objects that can be clearly distinguished

based on their dimensions. Hull detection is applied after a noise reduction process to

make sure that the detected boundary approximately represents a real shape of object.

Hull detection also requires a projection from 3D point clouds to 2D image and then uses

the image as an input to detect contours. From the detected contours (hull), it is possible

to relatively characterize the object through its shape.

To obtain a hull, the first step is transforming 3D coordinates of points representing object

of interest to 2D ones, this is simply done by omitting one component in the 3D (x, y,

z) coordinate. The omitted component can be “x” or “y”, depends on direction of an

orthogonal projection. The best direction is the orientation that shows the object from

a side-view within a fully representation. The second step is to eliminate the projected

points whose 2D coordinates are coincident. These points are obtained by projecting

every 3D point on a 2D plane. This work reduces the number of points in 2D having the

same coordinates.

There are two kinds of hulls: convex hulls and concave hulls. For the detection of convex

hulls, an assumption is made that points in the projected image must not contain noise.

This means that all points contribute to the representation of the object. The Graham Hull

algorithm [Graham 1972] is applied to find out a boundary. The Graham Hull algorithm is

based on sorting the points of a set around the lower point of the set by the angle that they

make with the sentinel point. After sorting, the algorithm starts from the sentinel point and

CHAPTER 4. METHODOLOGY 77

computes the cross product of three successive points to find out the orientation of these

points.

Figure 4.13: (a) Convex hull and (b) concave hull of a set of points

Regarding concave hulls, an efficient method is based on Delaunay triangulation. Gen-

erally, Delaunay triangulation starts from a convex hull and then determines, for each

segment of the convex hull, if two other segments can replace the previous one princi-

pally by some distance thresholds.

A hull obtained from a set of points represents the shape of object in 2D. The hulls are

used to approximately estimate the object’s dimensions such as height, width and length

(Fig. 4.14). Depending on the direction of the projection from 3D to 2D, which is mostly a

side-view projection, we are able to obtain the two of those dimensions. The hull detection

algorithm enables to classify some objects (which have distinct shapes) based on their

dimensions.

4.3.4.2/ 3D TO 2D PROJECTION

Acquiring depth information of 3D objects is an important task which allows us to have

rich information, such as 3D point cloud data. Such data may represent a scene like a

real world but usually have a large number of 3D points. In some cases, either indoor or

outdoor environments, information about location and properties of objects in the scene

can be conserved on 2D representation. Particularly, when we project a point cloud onto

a horizontal plane, we have a 2D image that keeps 3D points on a horizontal plane. This

projection allows to decrease the size of measurement data without losing information

that is needed for localization in the scene.

We project the acquired 3D point cloud data onto a horizontal plane, such as the ground

plane (Fig. 4.15). Depending on the density of dataset, we can use whether an orthogonal

(parallel) projection or perspective projection is appropriate. In our use case, perspective

projection is applied if the density of point clouds is low such as the distance between two

close points in 3D is larger than 10cm, else, an orthogonal projection is employed. This

CHAPTER 4. METHODOLOGY 78

Figure 4.14: (a) Convex Hulls obtained by Morphology processing and (b) Concave Hull

obtained by Graham Hull Algorithm

assumption is made to make sure that spatial information about 3D objects should be

preserved on the projection image. Since objects of interest are often set on the ground

and vertical on the horizontal plane, we chose to select the ground plane as a projection

plane. By a 3D to 2D projection, the depth component (z) in the coordinates of a 3D point

is omitted while the other components (x, y) represent the 3D points coordinate on the 2D

image. Before transforming from 3D to 2D coordinate, note that all 3D points’ coordinates

should be normalized in such a way their root coordinates are shifted to (0, 0, 0) and all

coordinates must be non-negative.

x′i = xi − xmin (4.4)

y′i = yi − ymin (4.5)

z′i = zi − zmin (4.6)

where (x′
i
, y′

i
, z′

i
) are coordinates of 3D points after normalization and (xmin, ymin, zmin) are

minimum values of the x, y and z components, respectively. The normalization is to make

sure that 2D coordinates after transformation are non-negative.

Orthogonal projection

An orthogonal projection used for projecting a 3D point cloud onto a plane allows to

preserve dimensions of 3D objects, except the height, on 2D plane. The transformation

matrix is following:

CHAPTER 4. METHODOLOGY 79

Porthogonal =































1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1































(4.7)

In this projection, every 2D point on the projection plane has \u” and \v” coordinates

which correspond to \x” and \y” in 3D. The \z” components of 3D points, which imply

the depth in 3D, are absent in 2D image but would be stored. 3D points having the

same (x, y) coordinates would share a same position in 2D projection image, this makes

an accumulation of points and results in various intensities of 2D points. The examples

below illustrate results of an orthogonal projection applied to 3D point clouds onto ground

plane.

Figure 4.15: (a) Point cloud of a room and (b) its projection image on the ground plane

Perspective projection

A perspective projection from 3D to 2D does not preserve the real dimensions of 3D

objects. We employ this projection to scale down a scene without distorting its proportion.

The scanned point cloud of the scene hold a low density in which the distance between

two close points exceeds a given gap. For example, our experiment with point clouds

of a railway system, typical gap between two close points is 10 cm. We therefore apply

a perspective projection for this dataset to reduce the size of the scene on a 2D image

as well as narrow down distribution of points on 2D plane (Fig. 4.16). A transformation

matrix is expressed as following:

Pperspective =































1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/D 0































(4.8)

D in the perspective projection matrix is the distance from the projection plane to the

projection reference point. New coordinates of a point in the projection image are (u, v):

u =
D

z
x (4.9)

CHAPTER 4. METHODOLOGY 80

v =
D

z
y (4.10)

Let us call r = D
z

the scale of the projection. Instead of choosing a value for D, we find out

a proper value for r. The scale r can be determined based on several factors:

Projection image size: when the size of projection image is given, r can be calculated by

WidthPro jectionImage/xmax where xmax is a maximum value of component x found among

points in the point clouds.

Point cloud density: r is relatively calculated based on this factor. The target is to drive

the projection image to appropriately represent the details of a 3D scene on a 2D plane.

Therefore, the gap between two close points in 3D, due to low data density, should be

narrowed down to make two corresponding pixels close together within a certain gap.

The gap is representative of the dimensions for 3D and 2D. The scale r is therefore

calculated by gap2D/gap3D.

In our example, we derive the scale based on “point cloud density” factor. The gap of

two close points in 3D is 10 cm and we assume that the gap of two close pixels in 2D is

0.01cm. The scale is thus equal to 0.001.

Figure 4.16: (a) Point cloud of a railroad segment, (b) a projection image of the railroad’s

point cloud on ground plane. The used scale is 0.001, i.e. the projection scales the scene

down 1000 times. The projection image keeps all the details of the original scene from

3D.

4.3.4.3/ POSITION DETECTION

One of the important tasks before identifying objects in the scene is to detect their po-

sitions. In fact, this task is rather difficult as the difference between objects of interest

CHAPTER 4. METHODOLOGY 81

and background is regularly slight. Additionally, many kinds of object which have dissim-

ilar shapes are present in the scene. Therefore, in order to detect potential positions of

objects, our method uses the selected features to distinguish objects and background.

Following this approach, we seek distinct properties of the objects thus exposing their

particular locations.

All 3D objects usually stand on the ground and have different heights from the ground.

This characteristic enables us to classify the ground and objects. In particular, we as-

sumed that the reference coordinate is set on the ground, the height of objects are then

often greater than zero while the ground level is approximately zero. A threshold of high

level is required to classify ground and objects separately and value of this threshold

depends on particular scene. Note that the sought objects may include noise or other

objects which are not of interest. We employ a 3D to 2D projection to project the point

clouds of the scene onto a horizontal plane that is also equivalent to the ground plane.

Depending on the density or dimension of the point clouds, an orthogonal projection or

a perspective projection is carried out. The 2D projection image represents the whole

scene in a form of gray image which has pixels with various intensities. After projecting,

the 3D points that share the same (x, y) coordinates are accumulated at the same loca-

tion and increase gray value at that pixel on 2D image. Normally, an object with a certain

height will appears as high density region on the image (Fig. 4.17).

Based on the information in the projection image, we apply some assumptions to be able

to recognize possible positions of objects of interest:

The point clouds are points on the surfaces of scanned object. The ground is considered

as a horizontal planar surface. Thus, the image of the ground on the 2D projection image

is the region represented by low intensity pixels. We use a predefined threshold h1 to

classify the intensity levels.

On the contrary, high density pixels correspond to the 3D points that have the same (x, y)

coordinates. Those 3D points usually are on the surface of vertical structures. Objects of

interest often have vertical structures.

The ”z” component (in a 3D point coordinate) has a relationship to the altitude of a point

in 3D. We assume that the height of the ground is zero and h0 is a threshold. Objects of

interest Oi are all above the ground and have a certain height. Then, the Oi contains the

3D points whose ”z” values should be greater than h0.

Relying on the assumptions above, we consider the possible positions of object are pixels

whose intensity is greater than h1 and pixels whose corresponding ”z” value is greater

than h0.

Figure 4.17: Projection image of railroad segment point cloud on the ground plane

The potential positions, the highlighted points, do not precisely locate the positions of the

CHAPTER 4. METHODOLOGY 82

Figure 4.18: Highlighted points are possible positions of object in 3D.

objects. They may consist of noise or some footprint parts of objects. We then refine the

number of the highlighted points by clustering them based on K-means algorithm. Two

points having an Euclidean distance not exceeding a threshold q, are classified into a

group. Value of q is equal to the maximum size of the objects (width or length). This is to

make sure that all of highlighted points belong to the area. Objects should be represented

by only one point. We store information about objects in the knowledge base of the

system. There, their largest size is easily selected.

After clustering, each group and its center stand for a potential position of an object. By

projecting back these positions to 3D for obtaining the corresponding 3D coordinates, we

are able to find the object positions in the point clouds and then segment subsets of points

surrounding the found positions. A subset of a point cloud, which may contain an object,

consists of points not far from the center of subset (at distance q). In the next step, the

system focuses on each subset to detect objects instead of considering the entire point

cloud.

Figure 4.19: Rectangle representing potential positions of objects in projection image

4.3.4.4/ PARTICULAR FEATURES EXTRACTION

Although a 3D to 2D projection results in losing spatial features of 3D objects shown in

the point cloud data, the projection image still carries some prominent features presenting

the 2D shapes of the objects. Basically, these 2D shapes are lines, rectangles, circles or

arbitrary shapes. Our approach is to use geometry detection algorithm in 2D to detect

these shapes in the projection image, we then base on the detected 2D geometries to

infer corresponding 3D geometries.

CHAPTER 4. METHODOLOGY 83

Figure 4.20: Subsets of point clouds probably contains objects in 3D

In the projection image, our method focuses on detecting 2D lines as key features to

infer a vertical structure in 3D. Indeed, such vertical planes in 3D usually create linear

footprints on a plane when projected onto a horizontal plane. We apply edge detection

on the projection image and then employ the Hough transform technique to extract line

segments from this image. Using Hough transform method enables to find best-fitting

straight lines with respect to a set of points. This method also allows us to set thresholds,

such as minimum/maximum length of line segments and min/max number of points used

to fit a line.

We model this algorithm, with changeable thresholds, to achieve the desired lines. In our

examples, we detect lines which are footprints of vertical structures in 3D such as walls,

separation panels, bridges, curbs, etc... When line detection algorithms are executed, the

thresholds are assigned appropriate values which are provided by the knowledge base.

Figure 4.21: Vertical planes inferred from 2D extracted lines in 2D projection image.

These results are obtained by using a line detection algorithm based on Hough trans-

form method.

CHAPTER 4. METHODOLOGY 84

Figure 4.22: By projecting the point clouds data on a horizontal plane, we detect high in-

tensity pixels on the image and fit these pixels to a line by using Hough transform method.

The pixels fitting a line are usually vertical structures in 3D (i.e. curbs). The detected

lines in conjunction with the given information about limited length of curbs, predefined in

knowledge base, to uncover the curbs position in the railroad system.

4.3.4.5/ 3D LINE DETECTION

The features that are generally present in most man-made objects are surfaces and in-

tersections between them. These features describe the particular characteristics of an

object. A dataset, acquired by a laser scanner, captures the object’s surfaces and repre-

sents them by point clouds. The points in the intersection between planar surfaces create

linear edges which are framed as lines in 3D. They play a role as primitive shapes in rec-

ognizing the object. To extract the lines, we rely on well-known algorithms such as Least

squares fitting and RANSAC to model some line detection methods.

The approach employs data partitioning techniques in conjunction with the least-squares

fitting algorithm and RANSAC to fit 3D points to a line. Since the scanned data have

many regions with different densities of points, the objects in the point cloud may not be

fully represented. For instance, there are missing parts of object whose surfaces have

insufficient points or an inaccurate representation (caused by measurement errors). Data

partitioning is carried out first in the line detection process to divide data into subsets.

The reasons for using data partitioning methods are as follows:

to reduce the complexity of data as well as the geometry structure of objects when data is

separated into subsets. Additionally, fitting points to shapes usually yields more accurate

results with small amounts of points. Subsets therefore definitely provide more reliable

results than original data,

to allow the algorithm to focus on each subset. This can reduce the influence of noise as

well as that of outliers. This may create errors when fitting the whole data to a model. In

particular, when a subset contains noise or outliers, the line fitting errors only occur inside

a subset without affecting the whole dataset.

Next, each subset processed: the least-squares method for line fitting and RANSAC

CHAPTER 4. METHODOLOGY 85

algorithms are carried out. The least squares-method is used to detect 3D line segments

in every subset and then RANSAC is applied for finding longer lines which can be fitted

from the detected segments in the subsets.

The least-squares method is employed to find the best-fitting line from the 3D points inside

a subset through minimizing the sum of squares residuals. A residual is the distance

from an observed value (3D point clouds) to the fitted value provided by a line model

(line equation). Due to the uncertainty in data, usually caused by measurement error, the

fitting algorithm accepts a tolerance. To adapt with this issue, we consider a line model is

as a model of cylinder whose radius can be adjusted. Regarding different data conditions,

we alter the radius of the cylinder through assigning proper values which are inferred from

data characteristics (density, noise, measurement errors. . .) and stored in the knowledge

base. Note that, to obtain these values, we perform a manual trial-and-error process for

different kinds of data.

Figure 4.23: Line segments are extracted from subsets of point cloud data based on data

partitioning and least-square fitting.

The results obtained after fitting points in each subset are shown as Fig. 4.23. How-

ever, these segments are separate individuals that require further processing to connect

them. Our algorithm, which based on RANSAC algorithm, searches possible straight lines

which might be generated by connecting the segments. RANSAC is executed through it-

erations to estimate parameters of a line model from an input data. The input data is not

considered as all 3D points of original point clouds but only a set of the ending points

of line segments. The number of points is therefore reduced remarkably which signifi-

cantly improves the computational time of the algorithm. For example, if a point cloud

data including 2000 points is partitioned into 100 subsets. In each subset, we employ the

least-squares method to fit a line segment. The fitted line segment has two end-points.

Hence, there are 200 ending points obtained in the whole data. We use RANSAC to fit

200 end-points to a line instead of 2000 points.

Based on the same idea we used for the least-squares fitting of a line, we also consider a

line model in the RANSAC algorithm as a cylinder. Following the RANSAC’s principle, our

method takes two random end-points to produce a line model. Along this model, points

CHAPTER 4. METHODOLOGY 86

outside the cylinder (outliers) are not interesting while the ones inside the cylinder (inliers)

are taken into account. A line is considered as a best fit line if the length is within some

predefined range, the number of inliers is greater than a given threshold (minimum inliers).

The maximum and minimum length of a line, minimum inliers and radius of the cylinder

can be set through different parameters. These parameters are altered to adapt with

different characteristics of the data and geometric features of an object. After the current

best fitting line is found, the next iteration processes the points that are not included in

the inliers in the detected line. The process ends when the number of remaining points

decreases to a certain amount.

Figure 4.24: Results of extracted lines obtained by using RANSAC integrated with least-

squares fitting and data partitioning

4.3.4.6/ PLANE DETECTION ALGORITHM

Laser scanners capture real-world objects and create point clouds describing the surface

of the objects while some acquisition devices are capable of providing color information.

However, the coordinates of the 3D points on the object’s surface are mainly used as

primary information. Shapes of object are diverse and basically presented by different

surfaces in term of orientations, characteristics (such as flat or curved), size, etc. Among

these features, planar surfaces are often encountered in man-made objects. Our ap-

proach thus focuses on this particular feature and exploits it in object detection. In the

scanned data, a planar surface contains sets of points on a finite plane each possibly

having different density. We introduce our plane detection algorithms to extract planes

from point cloud dataset within various conditions (density, noise).

The first approach of plane detection is based on data partitioning and least-squares fit-

ting. We proceed by partitioning the data into subsets (cubes) where small details of

objects are accessible. We employ the least-squares algorithm to find the best fitting

plane from the 3D points in a subset. The maximum distance from inliers to the plane

CHAPTER 4. METHODOLOGY 87

model is a threshold which can be adjusted. The detected plane is represented as a pla-

nar patch within a cube and identified by a normal vector indicating the orientation of the

plane. Patches sharing the same orientation (with some tolerance) will be grouped in a

class (in a distinct color as shown in Fig. 4.25) using the mean-shift algorithm [Comaniciu

and Meer 2002]. The mean-shift algorithm is a nonparametric clustering technique which

does not require prior knowledge of the number of classes.

In each class, we merge two close patches based on the Euclidean distance from two

centers of patches. In particular, if this distance is smaller than the length of edge of a

cube then two patches are connected. Consequently, we obtain patches representing the

3D points on the planar surfaces of the object. Note that, the size of a cube in the data

partitioning algorithm as well as the distance threshold in the least-squares algorithm will

be altered depending on the each situation.

Figure 4.25: Point clouds are partitioned into subsets. By using the least-squares al-

gorithm, we extract planar patches from 3D points inside the subsets. The same color

patches illustrate co-planar planes.

The second approach uses RANSAC to detect planes from point cloud data. RANSAC

enables to extract the best fitting plane after the first iteration. The points in the detected

plane will be used in the second iteration of the fitting process. The process stalls until

the number of remaining points reaches a threshold (in our use case, this threshold is not

smaller than 20% total number of points in the original data).

4.3.5/ MEASUREMENT

The group of “Measurement” algorithms contains calculation methods to measure three

dimensions (width, length and height) of an object represented in a point cloud. The aim

of this algorithm is to determine and calculate the dimensions of a specific region that

includes an object of interest. In fact, point clouds do not only represent a region of the

object but also noise and outliers caused by measurement that need to be accounted for.

To expect a precise approximation, our method reduces the influences of uncertain data

CHAPTER 4. METHODOLOGY 88

Figure 4.26: A point cloud of a room is partitioned into subsets. By using the least-

squares algorithm, we extract a plane in each subset and the normal vector of the plane

is therefore determined. The figure illustrates normal vectors with different orientations.

in calculating dimensions of an object in a point cloud.

We focus here only on the height of object as the width and length can also be cal-

culated in similar way. Basically, the height of an object is determined by the distance

from a lowest point Pbottom (usually ground level) to a highest point Ptop within a point

cloud representing the object. Finding the highest point is rather a difficult task. Indeed,

a scanned point cloud data often contains outliers an noisy points that may be present

around the Ptop. Our method is to give an approximate value for Ptop through calculating

an average height of highest points – which have almost the same level to the real height

of object. We select a given number of surrounding 3D points that have maximum ”z”

component values and then calculate their average. The height of an object is approxi-

mated as a distance from ground level to the mean height of the selected points. Point

cloud data usually have different quality, thus to obtain an optimal number of selected

points (having highest ”z” values), we must manually deal with each. For that, we carry

out some experiments in our dataset. The number of selected points is in a range from

five (if data has less noise) to ten (if data has much noise). This allows us to get reliable

results of height calculation.

This method can also be applied for calculating width/length of an object as points have

minimum and maximum “x”/”y” value will be taken into account. Width/length of an object

is approximated by a distance from minimum “x”/ “y” to maximum “x”/ “y” values.

4.4/ ALGORITHM SELECTION MODULE (ASM)

The ASM contains multiple algorithms to solve specific tasks such as point cloud seg-

mentation, model fitting or feature extraction. First, the ASM connects the algorithms as a

graph. Next, the ASM selects suitable algorithms and connects them (as a sequence) for

processing in specific situations. Finally, algorithm parameters are set to proper values in

order to increase their performance.

CHAPTER 4. METHODOLOGY 89

Figure 4.27: After classifying normal vector of planes based on their orientation, the result

shows the 3D points that belong to the plane are colored by a distinct color. Some objects

such as walls and floor can be detected.

4.4.1/ MODELING ALGORITHM IN KNOWLEDGE BASE

The entire algorithm library is also represented - in another part of the ontology - in a way

that is similar to the representation of objects. For instance, we model the attributes of

our algorithms and the relationships that may exist between them in a class named “Al-

gorithm”. Based on their general purposes, the algorithms are divided into groups: “Data

Processing”, “Geometry detection”, “Segmentation” and “Measurement” (Fig. 4.30).

The more specific purpose of an algorithm is defined by the field “isDesignedFor” in the

ontology. By this attribute, we can link an algorithm to a relevant property of an object and

therefore create relationships between algorithms and objects. The input data type of an

algorithm is determined through “hasInput”. Similarly, “hasOutput” defines the output data

type of an algorithm after processing. Each algorithm is also defined by its predecessor

through “hasPrerequisite”. The predecessor is an algorithm that needs to be executed

before the algorithm under consideration. By collecting such information, we build a con-

crete model for an algorithm as: AlgorithmName {hasInput, hasOutput, hasPrerequisite,

isDesignedFor} (Fig. 4.31).

4.4.2/ ALGORITHM GRAPH

The algorithm characteristics and their possible inter-relationships were modeled in Algo-

rithmKnowledge. All possible connections among algorithms are represented through a

directed graph, in which nodes are algorithms and edges are the connections between

them. We define three algorithm properties in the ontology: “hasInput” as input data type,

“hasOutput” as the output data type after processing and “hasPrerequisite” implies to ap-

propriate algorithms should be executed first. Note that, detecting a particular feature

of an object generally requires a processing sequence. The relationships are defined

through compatible “hasOutput”/“hasInput” attributes. Since the position of each algo-

rithm in a sequence needs to be respected, the “hasPrerequisite” attribute must also be

set to the appropriate groups of algorithms For example, the output from “Color Image Im-

CHAPTER 4. METHODOLOGY 90

Figure 4.28: Planes extracted by RANSAC algorithm

port” algorithm is compatible with algorithms having a “color image” as input, such as the

“Color Normalization.” In the knowledge base, this information is represented as “Import-

ColorImage” has “hasOutput” = ”color image” and “ColorNormalization” has “hasInput” =

“color image”. By collecting such information, a concrete model for an algorithm is built

with the following structure: AlgorithmName {hasInput, hasOutput, isDesignedFor}. All

connections in the graph must be taken into account in order to extract an algorithm se-

quence as a path from one algorithm to another. Djikstra’s algorithm was used to find

the shortest path from the starting algorithm to the desired one. This approach prevents

the algorithm sequence from forming an endless loop and results in the acquisition of an

appropriate sequence.

The example shows a graph with directed connections between pairs of algorithms in a

set. The algorithms have been denoted A, B, C, D, E, F, G, H (Fig. 4.32). The connections

are established based on “hasOutput”/“hasInput” and “hasPrerequisite” criteria.

4.4.3/ ALGORITHM SEQUENCE EXTRACTION

The input point cloud contains objects to be identified. The identification task is made

more difficult and challenging in the presence of noise and/or occlusions. The ontology

schema describes the scene through categories of objects that might exist in the scene,

their characteristics and their relationships to each other. The scene thus comprises

different objects with large number of properties and relationships. The impact of ob-

ject related knowledge is not restricted to the classification alone as it also affects the

algorithmic processing. The selection and behavior of algorithms are not independent

from other factors such as the type and characteristics of objects and data. Different al-

gorithms are designed for different contexts. These differences can be addressed and

CHAPTER 4. METHODOLOGY 91

Figure 4.29: An example of height approximation, height is counted from ground to the

mean height of five selected points on the top.

Figure 4.30: Algorithm constitution

properly modeled. For that purpose, the knowledge base hosts the algorithm knowledge

which is linked to other classes inside the knowledge, such as scene knowledge and data

knowledge. This allows for the modification of the usage (e.g. parameter, sequences) of

algorithms corresponding to the knowledge base details.

The ASM generates a sequence of algorithms, based on two conditions:

1. Algorithms are selected for a given object property,

2. Connections are established based on the possible routes in the algorithm graph.

For the first condition, ASM seeks algorithms having their “isDesignedFor” value that

matches the property under consideration. Some object properties can be detected by

not only one but also several other algorithms leading to various possible sequences. The

second condition, leads to several links between the algorithms following the similarity

input-output criterion as well as the order of processing. In order to extract an algorithm

CHAPTER 4. METHODOLOGY 92

Figure 4.31: Model of an algorithm

sequence as a path from an algorithm to another, all connections must be taken into

account. In general, there will be more than one path from one algorithm to another. In the

graph example, if we need to execute D starting from A, there will be three possible paths:

{A, B, F,D}, {A, B, E,D} and {A,C, E,D}. Each edge of the resulting graph of algorithms

is then assigned a weight based on algorithmic properties such as: processing time,

result quality and memory consumption. The weight “w” of each edge depends on which

algorithmic property should be considered in priority. It is controlled by three values: α, β,

and γ such as:

w = α.Time + β.Quality + γ.Consumption (4.11)

in which “Time”, “Quality” and “Consumption” are measured in a normalized frame. In the

present state of our system, the values of α, β, and γ - which measure the importance one

wants to assign to each of the three criteria (“Time”, “Quality” and “Consumption”) - are

left to the discretion of the user. In order to choose the appropriate algorithm sequence,

we use the well-known Djikstra’s algorithm ([Dijkstra 1959]) for finding the single shortest

path in the graph leading to the desired algorithm (Fig. 4.33). This approach has the

advantage of preventing the sequence of algorithms to form an endless loop and allows

for finding an appropriate sequence.

Once an algorithm sequence is executed to detect an object feature, each algorithm in the

sequence should be configured with proper settings. In brief, relying upon the knowledge

of the data and scene, algorithms are altered to adapt with different characteristics of

data as well as objects in particular situations. This technique is introduced in following

section.

4.4.4/ KNOWLEDGE-BASED ALGORITHM CONFIGURATION

The system is modeled as a knowledge-based configuration whose algorithms perform

differently under various conditions. The algorithm efficiency depends on multiple factors

which could include the geometry characteristics, data properties, and viewing angles.

Parameter modification is mostly done manually through a number of simulations, which

CHAPTER 4. METHODOLOGY 93

Figure 4.32: Vertices are algorithms and edges are connections between them.

execute the algorithm against different settings and then evaluate the best parameters

therein.

Objects of interest are represented by the class Domain concept, consisting of geometries

which are stored within the Geometry class. These geometries have certain characteris-

tics, such as thick, thin, flat, or broken. The DataKnowledge contains information about

datasets (point clouds, images), and provides characteristics such as low density, high

density, distinct, invisible, and noise, which can also influence the algorithm selection.

Both geometry characteristics and datasets are collected in a Characteristic class. Al-

gorithm knowledge is coupled with scene knowledge for appropriate algorithm selection,

for example, the system automatically invokes “3DLineDetection” to detect line features

in point clouds and “2DLineDetection” for the same line features within an image.

We implemented a “trial-and-error” simulation in order to obtain the values of an algo-

rithm’s parameters under different dataset states and object characteristics. For example,

the thick and thin characteristics are related to the instances of RiskBenefit. After a “trial-

and-error” simulation is done by an expert, a “LineDetection” algorithm with a threshold

value of 0.08 m (a threshold in linear model fitting by RANSAC), for example, could ex-

tract a thick line while 0.03 m would be suitable to extract thin lines. All the instances

and corresponding algorithm parameters (including the threshold values) are then stored

within the algorithm knowledge.

The following example explains in detail how an algorithm can be selected based on the

given conditions. Different numerical processing algorithms are executed to detect the

objects in the scene represented by class Domain Concept. The object classes in the

Domain Concept constitutes geometries that are stored within class Geometry. These

geometries have certain characteristics like thick, thin, flat, broken, etc. These character-

istics are present in the class Characteristic. These characteristics present first impres-

sions of risk or benefit that the algorithms can use. Different data sets (i.e. point clouds,

images) provide some characteristics that can influence the choice of algorithms or at

least its parameters. For simplicity of the present demonstration example, we use differ-

ent data sets, a 3D point cloud and an image, whose characteristics have an influence

CHAPTER 4. METHODOLOGY 94

Figure 4.33: Algorithm sequences extracted from the graph. The sequence with minimal

weight “w” will be selected.

Figure 4.34: The influence from instances in RiskBenefit on an algorithm

on the algorithms. We use two algorithms in this example: RANSAC-based Line Fitting

(RLF) and Line Detection from 2D Hough Transformation (LDHT). Both of them detect

lines. However RLF is executed in 3D point clouds while LDHT works on images. This

distinction should be reflected in the algorithm knowledge. The conditions that LDHT and

RLF are designed for line detection and work on 2D and 3D environments are represented

through description logic axioms:

LDHT ≡ ∃isDesignedFor.Line (4.12)

LDHT ≡ ∃bestS uitedFor.{2D} (4.13)

RLF ≡ ∃isDesignedFor.Line (4.14)

RLF ≡ ∃bestS uitedFor.{3D} (4.15)

CHAPTER 4. METHODOLOGY 95

Regarding the 3D environment, we simulate RLF in different settings to determine what

parameters need to be set at which setting. For simplicity, we assume that there are

two characteristics of line: thick line and thin line are concerned. To detect two kinds of

lines, RLF should be altered (by changing parameters) to adapt with each case. In short,

there are two instances within the class RLF that represents these two broader distinc-

tions: RLFDistinct and RLFIllusive. RLFDistinct represents suitability to the distinct lines

which has 0.08 as threshold value (a threshold needed in RANSAC algorithm) whereas

RLFIllusive represents the suitability to illusive lines having a 0.05 threshold value. If the

line is thick then it prompts RLFDistinct and if thin it prompts RLFIllusive within class

RiskBenefit. These are presented through description logic axioms:

〈RLFDistinct,Distinct〉 ∈ bestS uitedFor (4.16)

〈RLFDistinct, 0.08〉 ∈ thrs (4.17)

〈RLFIllusive,Distinct〉 ∈ bestS uitedFor (4.18)

〈RLFIllusive, 0.05〉 ∈ thrs (4.19)

The definitions of the geometries of the objects in the class Domain Concept are used

by the algorithms to determine the parameters. In an example of detecting a Signal in a

railroad system. Signal is an object of interest defined in the class Domain Concept which

is constructed by vertical and horizontal linear elements (lines). In the point cloud data,

a Signal appears as a clearly visible object with thickness of lines. The Signal should be

modeled in the knowledge base accordingly.

S ignal ≡ ∃hasDataNature.PointCloud (4.20)

PointCloud ≡ ∃hasProvision.{3D} (4.21)

S ignal ≡ ∃(hasGeometry.Line)AND(hasCharacteristics.{thick}) (4.22)

The restriction axioms presented in equations 4.20 and 4.21 provide the information that

the algorithms for Signal detection are designed for 3D environments. Likewise, the axiom

presented in 4.22 provides a clue that the Signal has thick lines. If we go to equation 4.14

and 4.15, we can reason that the algorithm RLF is best suited to detect lines in the Signal.

Now we come to which parameter should be passed to RLF to detect thick lines. The thick

and thin characteristics are related to the instances of RiskBenefit which is presented by

axioms:

〈Thick,Distinct〉 ∈ hasProvision (4.23)

〈Thin, Illusive〉 ∈ hasProvision (4.24)

CHAPTER 4. METHODOLOGY 96

Putting together axioms from equation 4.23 and 4.16, the knowledge base can reason

that the best choice for line detection of the Signal in the railroad scene is instance

RLFDistinct of class RLF with threshold value of 0.08.

Through this simple example, we have seen that with the modeling the knowledge pat-

tern of the algorithmic execution, one can make the algorithmic processing intelligent.

We have also witnessed the manual learning mechanism through simulating the algorith-

mic execution in different settings could be transferred to the knowledge base where the

machine helps in recommending the best suited algorithm for the particular case. This

mechanism however needs to be tested in other settings to make it even more compre-

hensive.

4.5/ INTEGRATION OF KNOWLEDGE INTO 3D PROCESSING

In this section, we introduce object detection strategies and the concept of integrating

knowledge into 3D processing. The detection strategy depends on the availability of

knowledge from various sources and how to model knowledge for different purposes. Re-

garding particular detection strategies, the acquired knowledge is stored and organized

in a specific way in order to be accessible for the reasoning process. We first present

knowledge-driven strategy in general. Then, two approaches are introduced as particular

methods of using knowledge to manage the process of object detection.

4.5.1/ KNOWLEDGE-DRIVEN STRATEGY

The knowledge formalization is based on the understanding of underlying semantics and

processing it through technologies such as OWL. The top-level ontology presents the

main knowledge framework and holds generic semantics for all addressed domains. For

the case studies, this contains: the scene, object geometries, spatial relations and al-

gorithms. It originates from existing knowledge sources, such as information systems,

guidelines as well as rules of the carrying institution, and an extensive study of the sam-

ple scenarios. Logically, quality and completeness of such formalized knowledge have a

large impact on the quality of the results, and also have to be adapted to each individual

application domain.

Such large differences in the knowledge base clearly must have impact on the guidance

of the algorithms and on the strategies used. In principle, the more knowledge existing,

the more precisely and directly the algorithms can be guided. There are strategically

different concepts following the degree of quality for the knowledge. Hence, we distinguish

between detailed knowledge case and generic knowledge case. In a simple scenario,

with concrete information about potentially existing objects, for example known through

CAD or Industry Foundation Classes (IFC) files, the detection strategy can be guided

more easily and may be reduced to a change detection problem. In the more generic

and difficult case, such a framework only contains the abstract and general knowledge

of object categories, the structure of a scene, geometric relations between objects, the

structure of data, the nature of algorithms and the potential relationships between all

these components. In short, three major strategies are concerned:

1. Defined specific knowledge-based processing: Change detection in a scene with

targeted objects are known and their positions in a point cloud are given.

CHAPTER 4. METHODOLOGY 97

2. Defined specific knowledge-based processing: Object localization with targeted

objects are known and their positions in a point cloud are unknown.

3. Generic knowledge-based processing: Object detection and identification with

unknown object as well as unknown position, only properties of all objects are given.

Figure 4.35: Knowledge-based object detection strategies

We proposed these strategies for each individual application case which has its own

framework of knowledge. The content of such a framework changes with the domain to

which an application has to be referenced (architecture, industry, civil engineering, etc.).

Accordingly, knowledge models to be used must be different. In addition, the framework

will be influenced by the amount of available knowledge in a particular application. This

may spread a large field, starting from extensive and actual databases with more or less

precise information up to just some general ideas about the objects in question and with-

out any direct data on the other end.

4.5.2/ SPECIFIC KNOWLEDGE-BASED PROCESSING

Data sources are various. This might range from simple CAD plans over spatial informa-

tion systems to object-oriented databases supporting data in rich and complex formats

like document, CAD, etc. Based on these data sources, the different levels (scene, ge-

ometry, topology) in our knowledge model can be expressed as much as possible. In

an ideal case, we therefore might know about the semantics of objects (there are walls,

floors, ceiling, etc.), the geometry (position, extension, orientation, etc.), additional fea-

tures (roughness, color, other surface characteristics) and topological relations (wall A sits

on floor B). This would give an important base for a detection strategy. This knowledge is

then linked to the algorithm knowledge and allows to guide the processing part.

4.5.3/ CHANGE DETECTION IN A SCENE

Official topographical data sets have an age between one and about twenty years. Even

continuously evolving objects like industrial plants may have data sets of similar age. But

even for early data sets an analysis could be of interest as the contained objects may

undergo permanent changes. For example, objects inside a building at an airport (where

we have conducted some experiments) are often changed and moved. Obviously, in

CHAPTER 4. METHODOLOGY 98

many construction sites visible on airports all around the world, building parts, and el-

ements of infrastructure are undergo many changes. Walls disappear, new walls show

up, new openings or closings inside walls arise and elements of various technical infras-

tructures get modified. Normally those changes are not updated into the databases. An

airport might seem as a special example, but there are many similar scenarios for aged

datasets. One reason for missing updates of databases is the cost of such maintenance.

In practice, update measurements are done manually and due the amount of time to be

invested it may turn out to be very expensive.

The goal of our system is to verify the presence of a known object at a given position in

point clouds. Change detection is a comparison between sought objects in a scanned

data with a defined one in the knowledge base at the same positions in scene. Knowl-

edge provides object positions of interest and object properties at those positions. This

strategy takes all properties of the object and ASM invokes appropriate algorithms to cre-

ate a sequence of algorithm to be executed. The entire results after detection, including

geometries and their dimensions (i.e. 3D line coordinates, number of lines, length of lines,

etc.), are populated in the ontology. By comparing these results to the defined properties

of the corresponding object, we are able to conclude that an object is still in the position

of interest or it has been moved or replaced by another object. This strategy enables to

detect the changes in a scene before and after a certain time.

4.5.4/ OBJECT LOCALIZATION

In previous cases of an available position, the system guides a detection process spatially

(at a given specific position) and semantically (with known object properties). In this

case, object localization knowledge provides us with the definition of the sought objects.

Knowledge also describes the scene in terms of the spatial relationship between objects

which tells us how the objects are scattered in a scene. The goal of object localization

is to determine the positions of objects of interest in the point cloud based on mutual

relationships with the other objects.

The scene knowledge is described in the schema of ontology and includes semantics

of the objects not only properties, restrictions but also relationships between objects. A

determined position of an object in the scene may allow an algorithm to find other posi-

tions of less prominent objects which are complex or invisible to be identified by detection

algorithms. The more information about an object position and spatial relationships are

determined, the more accurate the detection for other objects is. Spatial knowledge mod-

els geometric relations between either components in an object or objects in the scene in

the ontology. The object localization strategy utilizes geometric relations between objects

to find object positions based on the determined positions. For example, it is often seen

in a room that a table has to sit on a ground floor and chairs may have close adjacency to

other chairs or to tables. We assume that the floor and tables are identified while chairs

are more complicated to detect by algorithms (or due to missing data at chairs’ area). The

system bases on the rules, which draws the spatial relationship between chairs and ta-

bles to identify the chairs’ position. Note that, the scanned data might have different levels

of quality. Areas with poor data quality, for example, can provide inadequate information

for the detection process. In such cases, approximated positions can be found by using

known relationships (defined in Spatial Knowledge) of the detected object positions.

CHAPTER 4. METHODOLOGY 99

4.5.5/ GENERIC KNOWLEDGE-BASED OBJECT DETECTION

With a low amount of knowledge, especially with lack of prior information to a position,

the processing has to use a largely different strategy. In a generic knowledge-based ob-

ject detection issue, the definition of objects such as properties, restrictions and spatial

relations are available in the knowledge base. The task is to identify all objects present

in the point clouds without knowing of what object should be found first or later. Initially,

the most common property is defined in the set {Pc} object is selected to detect and find

the prominent features from objects in the scene. This allows classifying and annotating

potentially detectable objects based on this property. The ASM invokes appropriate algo-

rithms which are used to detect the selected properties, and then generate a sequence of

algorithms to execute. For example, the most common property of electric poles - objects

often seen in a railroad system - was found to be “vertical structure”. By projecting the

point cloud following the vertical direction, we are able to detect possible object positions

based on the density of points in the projection image.

The coordinates of the detected geometry properties as well as the detected objects are

stored in a part of the ontology and considered as “individual”. The annotated individuals

are identified as confined within bounding boxes in the sub-point cloud. There are three

types of annotations that we assign for each individual at this stage:

Unknown: for individuals with detected properties but with insufficient knowledge for

identification;

Ambiguous: individuals possibly having more than two labels;

Identified: individuals potentially within one label but still requiring further processing.

These individuals and their labels will be passed again to the processing side as new

inputs in the next iteration. The process is repeated to update and improve the quality

and accuracy of the results.

Next, the subsequent iterations focus on individual bounding boxes obtained from the ini-

tialization step rather than using the entire point cloud. Each sub-point cloud containing

an individual will be processed to verify the object’s existence. Object definitions such as

properties or restrictions are provided by the Scene knowledge, and detected by suitable

algorithms with their appropriate parameters, provided by the ASM. Appropriate param-

eter values are set depending on the data quality at a specific area (noise, low density,

etc.) and/or the object geometry characteristics (thin, thick, etc.) which are instances of

RiskBenefit. In particular, if a bounding box is labeled “Unknown”, this means the individ-

ual has not been identified yet and requires detecting new features. ASM will take a deci-

sion of using other common properties in {Pc} - other than the ones that have been used in

the previous iterations. With an individual having “Identified” label as L = {Ok}; ASM gen-

erates a proper algorithm sequence to detect properties of Ok which have been defined

in the ontology. “Ambiguous” label contains more than one object as L = {Oi,O j. . .Ok}. In

this case, the differences between objects in {Oi,O j. . .Ok} will be taken into account. This

is done by finding the discriminatory properties of those objects. ASM extracts the algo-

rithm sequence that is able to detect discriminatory properties. Based on the selected

properties in different states of a label, suitable algorithm sequences are extracted from

the graph and then executed to recognize object features. The process is repeated until

all individuals have been annotated completely. The labels therefore are updated and

improved continuously.

CHAPTER 4. METHODOLOGY 100

Starting from the initial situation, the process iteratively updates the knowledge base at

certain stages. At the beginning of each iteration, the content of the knowledge base is

used to detect new features. This may be a new object or a new component of an object.

These new geometric features are passed on to the knowledge base in order to extend

the knowledge base for the next step of classification. This classification is guided by the

content and the structure of the knowledge base, which has reasoning capabilities, based

on property restrictions or rule languages (such as SWRL) and refines the actual content.

This refined content is used in the next iteration. The process is repeated until all entities

have been completely annotated and meet the following convergence conditions:

1. All objects defined on the knowledge base are detected and annotated (simple

change detection).

2. A predefined number of iterations without refinement for any entity have been

reached.

4.6/ INTEGRATING KNOWLEDGE INTO PROCESSING TECHNIQUE

Robust and efficient data processing algorithms are generally available in the form of

libraries of independent source code. An interface has to be implemented giving access to

efficient programming languages, like C or C++, for example. Fortunately, Java provides

all necessary structures to build such an interface and therefore acts as bridge to combine

these real different worlds of semantic processing and efficient data processing.

Figure 4.36: Processing architecture

As shown in Fig. 4.36, JAVA has interfaces to the semantic world and also to the pro-

cessing world. As consequence, it is possible to start and control activities inside the

processing environment based on functions implemented in the semantic framework.

CHAPTER 4. METHODOLOGY 101

In the simplest case, this would allow to define a C or C++ function representing a defined

sequence of processing steps and to start this function as a semantic built-in method. In

that case the 3D-processing wouldn’t do more than just return information to be used in

a further reasoning process on the knowledge level. However, this is already useful to

exploit the potential of knowledge management for the guidance of 3D-processing.

However, such a solution of defining individual processing sequences and connecting

them to an own spatial built-in method is of limited flexibility. It would need a large number

of methods representing a complete toolbox covering most of the possible processing

situations. This might result in a certain redundancy between processing built-ins for

similar objects or for the same object to be analyzed under different conditions.

A higher degree of flexibility and less redundancy could be achieved by developing an

separate processing semantic and to exploit this by the reasoning capacity inside the

knowledge processing. Such a solution would need to describe each individual algorithm

by features that are important characteristics that model its behavior. This information

then could be treated to reason about the usefulness of a certain algorithm for a specific

detection situation. The reasoning would have to be based on features of the objects in

the scene and their importance for a processing decision. Thus, the semantics inside the

processing network has to be connected by relations and rules to the scene knowledge.

Such an extended and more flexible connection between scene and processing domain

needs extended experience with algorithms and their interaction with certain characteris-

tics of objects and data. For this reason, an implementation has to be postponed until the

experience needed is collected based on a realization of the built-in solution, explained

at the beginning.

5

IMPLEMENTATION

In this chapter, we illustrate our approach through two use cases: object classification in

the railway system and object detection inside an airport building. The goal in both cases

was to detect and check relevant objects inside a defined work area. In the first example,

a scene of the German Railway (DB), section from Nuremberg to Aschaffenburg, has

been used. The railway equipments along the left and the right side of a rail track are

scanned and presented as point clouds. Our approach was tested with the point clouds

of 2500 meters long of the railway and knowledge about the scene provided by experts

in railway system to classify the defined objects. The classification results are presented

after that. In the second example, we used scanned data of the waiting area inside a

building at Frankfurt International Airport in Germany (Fraport) for implementing a test for

our method. The check-in area in Fraport is equipped with the objects of interest such

as: separation walls, chairs, panels, recycling bins, etc., which were detected by using

our approach. The obtained results are also shown in this chapter.

5.1/ OBJECT CLASSIFICATION IN THE RAILWAY SYSTEM

We dealt with scans in the vicinity of the tracks. Data were captured using a LIMEZ III,

a special train equipped with a laser scanner mounted at its front-end. We selected a

point cloud of 2500 meters railway which contains typical equipments of a railway sys-

tem, for example: a station, electric pole, signals, advance signal marker posts, which

are also objects of interest in our experiment. Besides, the used dataset includes “non-

interest” objects (i.e. bridge, shrubs, heaps of stone, etc.) that challenge our algorithms

in detecting and classifying target objects in the scene. The scanned data were split into

five 500-meter-segments by the standard software tool of DB, we tested our system with

each segment. The origin of the whole process can be seen as collecting, structuring and

modeling all available knowledge. This includes the analysis of existing databases, guide-

lines, rules or other information available from the user side. More general knowledge (for

example that a window is an opening inside a wall) has also been collected and modeled.

This knowledge is entered into the knowledge base and expressed in interrelated ontol-

ogy with rules, constraints and other components. Other relevant information (concerning

probably existing individual objects) is also entered. Two non-domain experts worked for

approximately 20 days to build the DB example ontology. During this period, the persons

in charge of this task had to interact with two domain experts from the company. The

work carried out during this period includes data extraction from various sources, the def-

inition of objects and the scene knowledge, and the creation of relationships and rules.

CHAPTER 5. IMPLEMENTATION 104

The algorithm knowledge components are modeled and their possible connections are

described in Fig. 5.8. The selection module checks the compatibility between inputs and

outputs in order to create a graph (Fig. 5.8) of all possible algorithm sequences.

5.1.1/ KNOWLEDGE MODELING

Object detection and classification algorithms, which we model and use for particular

scenes, vastly depend on the characteristics of a specific scene. In order to model scene

knowledge, significant scene characteristics should be first collected. In the section, we

introduce how the scene knowledge can be modeled as of different sources, from explicit

knowledge like observation, rules, documents, CAD, GIS to implicit ones such as notions

from experts in the rail system field. In the knowledge modeling process, we observe the

usual railroad system – which is particularly applied in Germany – in both states: real

scenario and scanned data (point clouds) to extract prominent features. Characteristics

of the scanned data are also concerned. We then characterize the impact of scene knowl-

edge and data knowledge on the detection algorithms through their intrinsic parameters.

This process is based on the “trial-and-error” method.

Scene and data knowledge acquired from a railroad scene

- The railroad is a linear track with thousands meters in length, an algorithms is not capa-

ble to process entire scene in one time.

- The regions containing objects of interest (i.e. signals, electric pole, traffic lights, etc...)

are two areas of 2 m width and located at the left and the right side of rail track (2 m width)

and apart from the center of the track 1.57 m (see Fig. 5.1).

- The scanned data (point clouds) is devided into sections whose length should be long

enough to conserve spatial relations between objects (i.e. two objects have a defined

distance should not be in two different sections).

Figure 5.1: Particular characteristics in the railroad point cloud including regions of inter-

est (2 m width) and distance between profiles (0,1 m)

- Point clouds are acquired from laser beams rotating 360 degrees (perpendicular to the

rail track direction). The beams are projected from the scanners mounted on the head

of a train moving along the rail track. The point clouds are therefore created from two

CHAPTER 5. IMPLEMENTATION 105

movements: rotation and translation form a shape similar to a circular polarization.

- At both sides of the track, objects are only scanned on one side: the side facing the rail

way.

- One scanned circularity is a “profile”. On the visible face of an object in the point cloud,

the distance between two continuous profiles is 0.1 m.

- Point clouds at ground do not affect the representation of objects in the vicinity of the

track.

Geometrical features of objects

- Most objects of interest stand vertically to the ground and are located close to the track,

for example a traffic signal in Fig. 5.2.

- Distance from objects to the track is relatively the same. Therefore point clouds density

representing these objects has the same quality.

- Object has width less than 2 m and length often less than 1 m. Length is measured

following the railroad direction while width is measured following the orthogonal direction

to the tracks.

Figure 5.2: A traffic signal possesses the shape of a column constituted from linear struc-

tures

- Positions of some objects are often symmetrical, for examples: light signals are usually

distributed as one on the left and the other on the right of the tracks.

- The visible surface of objects is presented by co-linear point sets along vertical direction.

- The geometric structure of an object often consists of many lines with different orien-

tation and a few planes at the bottom. However, planes are not shown clearly in the

scanned data.

- Due to the movement of scanner, the vertical lines in the object are captured and repre-

CHAPTER 5. IMPLEMENTATION 106

sented better than horizontal lines.

Parameter selection based on “Trial-and-error” method

Due to the variability of the scanned data quality and object characteristics (some ge-

ometries are described in the knowledge base), the detection results thus have different

quality. This requires the numerical processing algorithms to adapt to different situations

to gain the most accurate results, compare with ground truth. In each algorithm, we model

one or more than one parameters which allow algorithms to adjust to yield different out-

comes. The quality of results depends on how we alter parameters in the algorithm. We

rely on the data knowledge and scene knowledge to alter parameters of an algorithm to

gain proper outcomes. To do that, we employed “trial-and-error” to find the suitable values

for each algorithm’s parameters in particular situations.

Example 1: Parameters selection in the line detection algorithm

We present an example (Fig. 5.3) of selecting threshold values for a parameter in the

line detection algorithm in 3D. The line detection algorithm is based on RANSAC whose

employed threshold is the maximum distance from a point considered as a hypothetical

inlier to the line model. From related documents in the DB domain as well as the knowl-

edge from experts, the definition of objects is given. The definition includes geometry

description of the object, such as number of linear structure in the object and geometry

characteristics, for example, line characteristic: thin, thick, continuous, disconnected, etc.

These create ground truth. Based on “trial-and-error”, we implement several tests with

different thresholds used.

Figure 5.3: Four objects (1-4) in the railroad system

After a “trial-and-error” process, we employ the detected results in conjunction with the

defined object geometry in the knowledge base to draw a suitable threshold. The deci-

sion of selecting a threshold value is usually made with the presence of the DB domain

experts. In this example, we establish a correlation between thresholds and object, data

characteristics as described in the table below:

Note that, one object may have different geometrical characteristics. For instance, both

thin lines and thick lines may exist in an object. The reason is the diversity of object

structures and/or quality of scanned data. One algorithm can therefore employ more than

one threshold to detect an object. For example, to detect lines in the object #3 (contains

both thin and thick lines), the line detection algorithm with threshold of 0.05 and 0.08 are

CHAPTER 5. IMPLEMENTATION 107

Figure 5.4: Results of line detection using RANSAC fitting algorithm with threshold 0.05

Figure 5.5: Results of line detection using RANSAC fitting algorithm with threshold 0.08

both executed.

Example 2: Parameters selection in the dimension approximation algorithm

The second example (see Fig. 5.6) is dimension approximation for a sub-point cloud.

We use height algorithm to measure the height of an object represented in the point

cloud. Basically, height approximation algorithm first seeks the mean point of a predefined

number of highest points, then calculates the distance from the mean point to the ground.

In this example, the number of highest points in the detection of the objects #2 and #4

are selected as 10 since these objects have sharp details on the top. Number of highest

points in case of detecting objects #1 and #3 is 20 as many outliers are included on the

top of these objects.

Example 3: Parameters selection in the position detection algorithm

In the DB scene, some sections contain special objects such as a bridge, a roof (of a sta-

tion) or a curbstone. The point clouds of such objects, when projected on the horizontal

plane (ground plane), are usually represented as lines with various lengths. Our method

detects separately positions of isolated objects (which are shown as points in the pro-

jection image) and such object with different lengths mentioned above. As the objects of

interest are defined in the knowledge base, their lengths are therefore given. The position

CHAPTER 5. IMPLEMENTATION 108

Threshold Object characteristic Data characteristic

0.05 Thin line (object: #2, #3, #4) and

simple structure: one single vertical

element (object: #4)

High density, this shows the linear

elements represented as continu-

ous lines (object: #2, #3, #4) (Fig.

5.4).

0.08 Thick line. Particularly, in this data,

many horizontal lines are repre-

sented as the thick lines (object:

#1)

Point cloud has noise. The visibil-

ity of object is not clear or occluded

(object: #1, #3) (Fig. 5.5).

Table 5.1: The correlation between object, data characteristic and threshold (in RANSAC

line fitting algorithm)

Figure 5.6: Various height values of objects obtained by differently selecting the number

of highest point

detection algorithm is built with an extra function which allows to detect these lines in 2D

(based on the line detection using Hough transformation).

The position detection algorithm has a parameter (takes Boolean values) which allows to

manage when an line detection algorithm is needed. This extra algorithm detects points

which lay on a line (i.e. blue lines in Fig. 5.7). These line segments are then classified

based on the lengths of the defined objects such as bridges, stations or curbstones. The

line with a specific length of the bridge (in this example) would be labeled as the position

of the bridge.

5.1.2/ PROCESSING

The whole processing chain requires an initialization in order to detect entities and in the

refinement steps. Such an initialization has to follow clear and prominent characteristics

allowing to obtain reliable candidates for a first classification. The prominent characteristic

is the most common one in the properties of the defined objects. In the DB case, a

prominent property can be found in the vertical structure of most objects (for example:

electric poles and signals). Such vertical structures are accessible via a vertical projection

of the point cloud and an analysis of the resulting feature values. In a second step,

feature values are analyzed in order to find evidence of sufficient characteristic entities.

CHAPTER 5. IMPLEMENTATION 109

Number of the highest

points

Object characteristic Data characteristic

1 ≤ p ≤ 10 Sharp on the top of object

(object #2, #4)

Low noise

10 ≤ p ≤ 20 Complex structure on the

top of object (object #1,

#3). Data representation is

ambiguous (#1, #2, #3)

Has noise and outliers

Table 5.2: The correlation between object, data characteristic and number of points se-

lected in the volume approximation algorithm

Figure 5.7: Projecting point clouds of a bridge on the ground plane, shape of the bridge

is presented as lines in 2D

These entities are passed into the knowledge base along with their coordinates and other

feature values to serve as an input for the classification step. Note that this step also

allows identifying the ground in the scene. Although the ground may be considered as

an object and hence could be passed into the knowledge base, only foreground objects

were fed into the knowledge base in this case study. If the initial result did not allow

for a classification, the algorithm’s parameters are altered in this iteration. A refinement

step attempts to detect additional characteristics of the entities found. The point cloud

of an entity is therefore segmented into smaller “sub-point-clouds” which are checked for

additional features. This step relies on the values of the most common feature to classify

the detected entities. For instance, the knowledge base stores hasHeight as a common

feature and an appropriate algorithm (DimensionApproximation) is selected to calculate

the height of each entity. Based on the values of such feature, the available knowledge is

used to classify the entities as:

Identified: as soon as a feature value is in the range of a class. This annotation has

to be supported by subsequent classifications and remains valid as long as no conflict is

detected.

Ambiguous: as soon as a feature value satisfies more than one class. Both anno-

tations are stored and have to be separated by subsequent classifications and remain

doubtful as long as no separation is possible.

CHAPTER 5. IMPLEMENTATION 110

Unknown: indicates that a feature value does not match any existing class. Further

processing then requires the ASM to select other properties in order to continue the

process.

Note that the label assigned to an entity may or may not change with every new itera-

tion. Based on the state of this information, the ASM chooses the best suited algorithm

for generating new characteristics, which will help in the next classification step. This

selection also integrates the choice of an optimal sequence out of several possible ones

(routes) of algorithms (or nodes). The aspect of quality can also be incorporated into

the concept, for example; data: noise, point density, point of view ; object: size, shape,

orientation; scene: possible objects, neighborhood, etc. These factors may either be re-

alized by thresholds modeling data noise or by changing the strategy of selecting a path

through the graph. The latter case handles situations in which features are sensitive to

noise and corresponding algorithms might fail. Although a simple example, assigning la-

bels nevertheless shows the general logic, which can then be further extended with other

considerations among entities. Success is directly related to the ability to detect enti-

ties and the significance of the feature values chosen. Less characteristic features can

also be used. However, these will require more iterations and additional rules in order to

achieve a stable classification.

Example: an electric pole (type 2) is represented by parallel vertical supports. ASM

searches and selects the relevant algorithm - CheckParallel from the algorithmic library.

This library is described by a graph (Fig. 5.8) representing all allowed connections, based

on input and output between algorithms. Based on some data quality thresholds, the se-

quence may or may not include pre-processing algorithms (e.g. NoiseReduction). On

the path from the starting algorithm (in this case, PositionDetection) to the desired al-

gorithm (CheckParallel), ASM infers and invokes all concerned algorithms based on the

hasInput/hasOutput property. Segmentation, NoiseReduction and LineDetection1 are the

selected ones. Afterwards, ASM links them together to create a proper sequence. It then

looks as follows (result illustrated in Fig. 5.12, Fig. 5.13):

PositionDetection→ S egmentation→ NoiseReduction→ LineDetection1→ CheckParallel

The execution of this sequence provides a list of recognized object entities which are then

classified. Further sequences are used to improve the quality and to reduce the ambiguity

within the results (Fig. 5.14). Iterations are repeated until a complete annotation for all

entities is performed. The convergence conditions are applied to terminate the detection

process for entities.

We have processed a 500 m section along the railway. Out of 12 algorithms modeled in

the knowledge base (Fig. 5.8), the following ones were used by the system to classify

objects (Tab. 5.3): PositionDetection, Segmentation (cropping points surrounding a given

position), DimensionApproximation, NoiseReduction, LineDetection1 (using RANSAC)

and AngleCalculation. Knowledge was collected carefully in order to provide a reliable

knowledge base related to objects, scene, the nature of the data, algorithms and relation-

ships between them.

Classification step: the ontology schema holds the semantics of the objects such as the

nature of its geometries and 3D spatial characteristics. This information helps to identify

the nature of detected entities using the inference capability of the knowledge tools. The

complexity of the required rules directly depends upon the complexity of the situation to

CHAPTER 5. IMPLEMENTATION 111

Class Object properties

Electric pole (type 1) Vertical structure, height, perpendicular lines

Electric pole (type 2) Vertical structure, height, parallel lines

Electric pole (type 3) Vertical structure, height, oblique line

Main signal (Mechanical

signal)

Vertical structure, height, perpendicular

lines, parallel line, number of lines

Main signal (Light signal) Vertical structure, height, perpendicular

lines, parallel line, oblique line, number of

lines

Table 5.3: Classes and properties used in DB scenario

be processed. In simple cases, even very simple rules are sufficient to produce a correct

result. However, this concept also allows handling more complex situations. A simple

classification of an entity (Geometry) based on a SWRL rule annotates an electric pole

(type 2), as found along railway tracks:

Geometry(?x) ∧ hasHeight(?x, ?ht) ∧ swrlb : greaterThan(?ht, 4)

∧swrlb : lessThan(?ht, 6)→ ElectricPole2(?x)
(5.1)

A first extension of such simple geometric considerations is possible by the use spatial

relations. It only requires having the appropriate algorithms available and provides the

result for the topological operation. In a simplified example, the following rule specifies

that a “Building” defined in the ontology that overlaps a “Railway” (defined as well in the

ontology), is a “RailwayStation”.

Building(?b) ∧ Railway(?r) ∧ topo : overlaps(?b, ?r)→ RailwayS tation(?b) (5.2)

Fig. 5.9 shows our process guided by various knowledge domains in object detection and

classification. In this figure, object names are referred to as A, B, C. . . etc. We recall here

that the process iterates until convergence (all objects are labeled) or stopping conditions

(maximum number of iterations without refinement) are met.

5.1.2.1/ RESULTS

The base was progressively extended with new knowledge gained either from the anal-

ysis of the detected geometries or from classification results. Initially, 17 classes were

defined as subclasses of the 5 classes in Tab. 5.3. These classes represent different

types of signals and electric poles that can be found along the tracks and are of interest

to our study. A total of approximately 500 geometries such as 3D line segments, angles

and points of interest were recognized, 10 SWRL rules are used and 63 entities (possible

object positions) were identified after the initialization step shown in (Fig. 5.11). All enti-

ties include possible objects in the scene but also noise and non-interest objects. The true

number of railway objects was 13 (Tab. 5.4). With the second iteration, the process tries

to refine the results and classify the objects. At the end, 10 out of 13 real railway objects

were correctly classified, 50 entities which represent non-railway objects were classified

as unknown, and 3 railway objects could not be unambiguously classified with the rules

CHAPTER 5. IMPLEMENTATION 112

Figure 5.8: Graph of possible algorithmic paths generated by ASM and used for detecting

objects in DB

implemented. The results in Fig. 5.14 were obtained by our software system. Compu-

tation took about 10 minutes on an Intel Xeon 2.4 GHz with 12G RAM. Note that our

software is a prototype and has not been optimized for performance. In our experiments,

we used the “shortest path” criterion from starting the algorithm to desired algorithm in

order to find the optimal algorithm sequence. Our system assumes equal weights for all

edges in the algorithms graph, i.e. factors that are intrinsic to algorithms such as time and

memory requirements are not taken into account at this stage. Results can be improved

by applying more complex rules, possibly using additional geometric constraints such as

line or plane orientation, angle between lines or number of lines expressed in the rule 5.3:

Geometry(?x) ∧ hasLine(?x, ?l) ∧ line(?l) ∧ DistanceS ignal(?y) ∧ DistanceFrom(?x, ?y, ?dis)

∧swrlb : GreaterThan(?dis, 1000) ∧ hasHeight(?x, ?h) ∧ swrlb : GreaterThan(?h, 4)

∧hasVerticalLineNumber(?x, ?vn) ∧ swrlb : lessThanOrEqual(?vn, 2)

∧hasObliqueLineNumber(?x, ?on) ∧ swrlb : equal(?on, 0)→ MainS ignal(?x)

(5.3)

In order to relate the classification to human interpretation the point cloud was presented

to test persons. They identified 8 of 13 railway objects based on a visual inspection of

CHAPTER 5. IMPLEMENTATION 113

Figure 5.9: Knowledge-driven method for object detection and classification process

Object Visual inspection Knowledge-based data

processing

Electric pole (type 1) 1/1* 1/1

Electric pole (type 2) 2/4 4/4

Electric pole (type 3) 1/1 1/1

Main signal (Mechanical

signal)

2/4 2/4

Main signal (Light signal) 2/3 2/3

Total 8/13 (61,53%) 10/13 (76,92%)

Table 5.4: Experiment in a section of DB railway, comparison result between two ap-

proaches: Visual inspection using the standard software tool of DB, and knowledge-

based data processing

the cloud and without taking into account topological or descriptive knowledge. This just

shows the limited representation of objects inside such types of point clouds. One major

reason for the poor quality of the point cloud is the fact that only the side of the object

facing the tracks is captured due to the scanner on the train. However, this also shows

the usefulness of additional knowledge.

(*) Number of detected objects over number of ground-truth objects.

Figure 5.10: A railroad segment representing the objects of interest such as: light signals,

distance signals, electrical poles, and advance signal marker posts

Results obtained after the processing along the tracks are shown in Tab. 5.4. Note that

the only failures using knowledge were Main signals that could also not be recognized

by visual inspection. This is mainly caused by the poor quality of the data, especially in

terms of point density, which made such structures hardly visible and undistinguishable.

The type 2 electric pole was successfully identified using the automated detection and

classification whereas visual inspection failed.

CHAPTER 5. IMPLEMENTATION 114

Figure 5.11: Point cloud representation of a section of a railway (top). Results after

executing the initialization step, projecting the point cloud to the ground plane, rectangles

denote possible object positions (bottom)

5.2/ OBJECT DETECTION INSIDE AIRPORT BUILDING (FRAPORT’S

WAITING AREA)

In the second case, we used scans from an environment inside the airport buildings,

typically a waiting area. Changes in the technical infrastructure were of main interest.

Data were obtained from classical terrestrial laser scanning. The Fraport scenario is an

indoor architecture of a waiting room in a boarding area of Frankfurt airport. It contains

regular walls, floor, chairs, advertisement panels, signs etc. The whole scene has been

scanned using five terrestrial laser scanners and registered, resulting in a large point

cloud representing the surfaces of the scene objects captured from different scanning

positions (Fig. 5.15). This scenario is different from the DB test example because a data

base of expected objects in the scene exists and can be used as a prior knowledge. Two

persons worked for about 10 days to fill the ontology with knowledge such as properties

of objects, scene, nature of data and characteristics of buildings. The data sources were

CAD plans, related documents from the experts and observations from the real scene.

5.2.1/ PROCESSING

The main issue in the Fraport case is to detect objects inside a building which are probably

moved and changed their positions due to different purposes of users. However, we

admit that some static objects such as walls, separation or advertising panels, etc. . .

cannot be moved. Therefore, our strategy was first attempted to validate the presence

of static objects in the point cloud that were supposed to exist according to the data

base. After that, moveable objects like chairs, trash bins, were detected and also fed into

the knowledge base. The initialization was different from the DB case because of more

CHAPTER 5. IMPLEMENTATION 115

Figure 5.12: Results from detecting 3D lines of a signal and electric pole (type 3) along

the railway

Figure 5.13: A classification and identification process based on the detected results.

Two objects were identified correctly as “Light signal” and “Electric pole”.

complex objects and the prominent role of many vertical planes.

Static objects detection

Walls are mostly fixed in the waiting area of Fraport. The presence of walls and such

vertical elements in the point cloud had to first be validated. By projecting the point cloud

onto the ground plane, we obtain a projection image which represents the footprint of

objects in the scene. Vertical plane detection was possible by a vertical projection of the

point cloud followed by Hough Line detection to locate the static objects’ position on the

ground plane. VerticalProjection and HoughLineDetection are included in PositionDetec-

tion algorithm. Points with a vertical projection in the vicinity of these lines were used to

define segments corresponding to vertical planes. We use a bounding box to represent

the point cloud of a vertical plane. Bounding box covers entirely point clouds of the ver-

tical plane and is determined by eight vertices (Fig. 5.16). The following step was used

to verify walls, separation panels or advertising panels defined in the data base based on

their particular length, height and width (Fig. 5.17).

CHAPTER 5. IMPLEMENTATION 116

Figure 5.14: Positions of objects and annotation results after the first iteration

Figure 5.15: 3D scan of a check-in area inside the Fraport

For example, to classify walls among the detected vertical planes, we based on the knowl-

edge in the Fraport case to draw a rule: “Select all vertical planes (geometries) whose

position were determined, the geometry which has height greater than 3 m, width greater

than 0.1 m and length greater than 4 m is a wall”. This rule can be expressed in a form of

SWRL as:

Geometry(?x) ∧ hasCorrespondingGeo(?x, ?v) ∧ VerticalPlane(?v) ∧ hasHeight(?x, ?hei)

∧swrlb : greaterThan(?hei, 3) ∧ hasWidth(?x, ?wid) ∧ swrlb : greaterThan(?wid, 0.1)

∧hasLength(?x, ?len) ∧ swrlb : greaterThan(?len, 4)→ Wall(?x)

(5.4)

All vertical planes satisfied the rule above would be stored as “walls” in the ontology.

Moveable object detection

CHAPTER 5. IMPLEMENTATION 117

Class Object properties

Wall Vertical plane, length, height

Separation panel Vertical plane, length, height

Advertising panel Vertical plane, length, height, number of

planes

Chair Horizontal plane, leaning plane, angle be-

tween planes, length of chair

Table 5.5: Classes and properties used in the Fraport scenario

Figure 5.16: Detected line segments corresponding to vertical planes in 3D

There are also many moveable objects like chairs, tables, counters, or trash bins, which

also need to be detected to update the knowledge base. All objects already available

from the first validation phase gave a geometric and semantic frame helping to support

the detection of unknown moveable objects. We focused on detecting walls in the border

region of the check-in area. Only two walls exist in the scene and the remaining larger

static structures are either separation or advertising panels, which are easily distinguish-

able from walls by their specific height. Both walls were successfully identified. Walls

gave a semantic frame to support the detection of the moveable objects. For example,

chairs were searched for in a specific area defined within a certain distance from the wall

and a certain height above the floor. Note that the reference frame of our point cloud is

attached to the floor such that the latter is simply determined by fitting a horizontal plane

(initialized at height Z = 0) using the PlaneDetection algorithm.

In this example, chair sets were found in a specific area (C) (Fig. 5.19), and defined

within a distance of 5 m from the walls and 0.7 m above the floor. Because chair sets

were arranged in a predictable parallel pattern, they were detectable through a division of

the point cloud (C) into sub-point clouds.

Chair identification

The chair definition (stored within the knowledge base) consists of features, geometries,

CHAPTER 5. IMPLEMENTATION 118

Figure 5.17: Walls are detected based on the rule

Figure 5.18: Chair set detection process

and compositions, such as chair lengths, seat planes, leaning planes and the angle be-

tween them. The chair as shown in Fig. 5.20b contains a composition of seat (normal

vector ~ns) and a leaning plane (normal vector ~nl), with an enclosing angle of 120 degrees.

The seating and leaning plane heights hs and hl are defined in the knowledge base.

Based on this knowledge, the Plane Detection algorithm in conjunction with two defined

normal vectors was used to detect the chair planes. Note that the leaning and seat plane

point clouds have different levels of quality (e.g. different point densities), and that the

geometries have particular characteristics (thin, thick, etc). Thus, to detect such planes,

the PlaneDetection algorithm should perform accordingly. Another role of the ASM is to

derive suitable values to PlaneDetection’s parameters in the specific situations. Conse-

quently, the ASM generated, based on the properties of a chair, an appropriate sequence

of algorithms to invoke:

PositionDetection→ S egmentation→ PlaneDetection→

DimensionApproximation→ AngleCalculation→ FitChair

The detected geometries are populated into the ontology, and the rules 5.5 in the knowl-

CHAPTER 5. IMPLEMENTATION 119

Figure 5.19: The chair area is found based on two detected walls.

edge base are applied to classify a chair:

Geometry(?x) ∧ hasCorrespondingGeo(?x, ?l) ∧ LeaningPlane(?l)∧

hasCorrespondingGeo(?x, ?s) ∧ HorizontalPlane(?s) ∧ hasAngle(?x, 120)∧

hasLength(?x, ?len) ∧ swrlb : greaterThan(?len, 370) ∧ swrlb : lessThan(?len, 380)→ Chair(?x)

(5.5)

Chair sets are arranged parallel to the walls and represented by very sparse point clouds

(Fig. 5.20a). Nevertheless, it is possible to detect, model and identify chair sets based

on a sequence of algorithms making use of topological and geometrical constraints aris-

ing from previously detected elements. Six algorithms were used (out of the 10 in Fig.

5.21) such as: PositionDetection, Segmentation, DimensionApproximation, PlaneDetec-

tion (based on RANSAC), AngleCalculation and FitChair (which verifies a chair by two

connected planes in an angle of 120 degrees).

5.2.1.1/ RESULTS

The results obtained are shown in Fig. 5.12 and Fig. 5.23 in which the five chair sets 8-12

were successfully identified, the five chair sets 3–7 were only partly detected and the two

chair sets ”1” and ”2” could not be identified due to missing points. In the next stage of

processing, objects were verified using topological constraints, such as a distance-based

identification from the identified objects. Finally, 10 out of 12 chair sets could be correctly

classified even in an insufficient dataset. The results reported here were obtained with

an ontology that had been filled with approximately 350 detected geometries (planes, line

segments. . .) and used 4 SWRL rules. The process took about 7 minutes on an Intel

Xeon 2.4GHz with 12G RAM when using our prototype software. The full process of

detecting chair sets including wall identification is depicted in Fig. 5.18.

CHAPTER 5. IMPLEMENTATION 120

Figure 5.20: (a) Point cloud of a chair and (b) chair as a composition of seat and leaning

planes

Figure 5.21: Graph of possible algorithmic paths generated by ASM and used for detect-

ing objects in Fraport

CHAPTER 5. IMPLEMENTATION 121

Figure 5.22: (a) A chair set point cloud and (b) a detected chair set

Figure 5.23: Identification results obtained on 12 chair sets in a waiting area (failures 1-2,

partial detection 3-7, successful identification 8-12)

6

CONCLUSIONS AND FUTURE WORK

The thesis presented a knowledge-driven approach to detect objects in point clouds. The

approach was based on semantics of different associated domains which assist in the

detection and classification of objects. Knowledge supported all processing steps, in-

cluding the guidance of the data processing. This allowed inter-relating the characteris-

tics of algorithms with those of the objects in the domain of the application. Our system

also provided the flexibility to infer the strategy from existing knowledge and to adapt the

processing to the application-specific requirements. In particular, the ASM, which uses

semantics between algorithms and other domains to suggest appropriate algorithms or

algorithm sequences, was an essential component within this platform. The first step

was to detect object geometry, which needs to incorporate various factors from different

knowledge domains. Indeed, the object geometries and their influencing factors or the

dataset nature could alter algorithms or their parameters. The knowledge base allowed

semantic investigation and classification suggestion through the ASM.

The permanent interaction between the algorithms and the knowledge base allowed for a

smooth and gradual construction of the knowledge base. Such base contains at the end

of the process all entities which could be detected and identified. Although knowledge

needs to be provided at the beginning of the process, it only has to be collected once and

then becomes permanently available for a certain application. In addition, the knowledge

base can be iteratively extended by the operator observing the behavior of the system

within various practical situations.

6.1/ RESULTS

To summarize the work we have carried out in this thesis, some achievements we have

reached are highlighted as following:

- A summary of the previous studies helps to evaluate appropriate methods to be used in

our approach. Accordingly, our approach, under the consideration of particular environ-

ments, employed cutting edge methods to efficiently solve given issues. We did not only

make use of existing algorithms, but we have integrated and combined robust algorithms

to serve our purpose more effective (i.e. RANSAC and least-squares fitting in conjunction

with data partitioning in extracting primitive shapes in an unordered data).

- A library of numerical processing algorithm was established to carry out different tasks

in data processing as well as object classification. Each single algorithm was modeled to

not only process in point cloud data sets but also comprehend the knowledge extracted

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 124

from the particular characteristics of data as well as objects. The algorithms are linked

and represented as a directed graph. We created the ASM to allow individual algorithms

to be connected in a proper way to for an algorithm sequence. While a single algorithm

could perform a specific task, a generated sequence was able to carry out multiple tasks.

The combination of algorithms created flexibility and intelligence in the system.

- Knowledge extracted from various domains contributed to the performance of an in-

dividual algorithm but also to all steps of a detection process. In a single algorithm,

knowledge drawn from the semantics of data and object characteristics first selected a

relevant algorithm among the available ones in the library. Second, knowledge controlled

algorithms to adapt with different data conditions. In particular, this has been done by

selecting appropriate parameter values for the algorithm. At each step of a detection

process, the knowledge base stores the results after detection. These results were not

only statically stored but also updated and frequently used to classify objects (based on

predefined rules). Therefore, our system is an automatic object detection platform which

is able to dynamically exchange information between knowledge and data processing in

any or whole process.

- Our method was implemented through an industrial project (WiDOP). The project aimed

at detecting objects in point clouds and classifying them based on the guidance of knowl-

edge. The scenes and their data are captured in outdoor environment - the German

Railway system - and an indoor one - Frankfurt International Airport. The two scenes

have differences in object distribution on the ground (because of particular features of

the test scene) and in data characteristics that are caused by both sensor characteristic

and measurement method. The solution consisted in extracting and modeling knowledge

domains, such as scene knowledge, data knowledge, spatial knowledge and algorithm

knowledge to describe the semantic behavior of the processing algorithms. Semantic

knowledge played an important role in selecting and guiding the processing algorithms

to perform differently behaviors in each particular situation. Through two case studies,

our method shown its ability to recognize objects in challenging scanned data guided by

knowledge.

The results reported in the two use cases showed applicable of our approach in two

different environments; indoor and outdoor scene. The quality of the results depends on

the robustness of the implemented algorithms, the selected strategy and the amount of

knowledge integrated. In practice, the solution is oriented towards the requirements of

a specific application. Through the outcomes, our solution showed strength as well as

weakness of a knowledge-based object detection system.

The representation of object in point clouds seems to be an important point of concern

which tremendously affects the algorithms. The presence of knowledge in guiding algo-

rithms following an intelligent manner and the robustness of the numerical processing

algorithms have significantly enhanced the system’s performance. The strength of the

system is manifested by the fact that it was able to automatically detect and classify

objects in different data conditions. The results have shown that our system is able to

recognize objects in challenging conditions such as low density point clouds, occlusion

(objects in the DB example), visibility low, even a part of object being not represented

(chairs in the Fraport example). The results were also improved (compared to the con-

ventional approaches’) in the sense that knowledge supported for classification process

is likely to increase the reliability.

In contrast, our approach was not able to gain accurate results in some cases. This was

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 125

for example the case with line segments extracted from point clouds, particularly data

containing noise and or having low density. This may also have been caused due to an

inappropriate setting of parameter values to the used algorithms. The “trial-and-error”

process, which we have used for some data sets, is not sufficient to obtain full range

of thresholds for all algorithms. Our system also failed in case of no reliable geometry

detected in an object, consequence was that object have not annotated. The object

definition in the knowledge, which is mostly done by knowledge engineers or experts,

was not always correct. This led to classification failures even when the detection results

were accurate.

6.2/ FUTURE WORK

Our proposed approach does not use pure-numeric strategies with fault-tolerant methods.

Instead, it relies on human knowledge and experience for object detection and identifica-

tion. We have implemented our approach in a prototype version which however should

be improved to get rid of existing shortcomings. To do that, further work is needed:

- Further development is desired to make algorithms more robust to quality variations

in the data, and to segment more complex objects. Furthermore, the “trial-and-error”

process is also required to do many examples, including diversity of data quality as well

as object type.

- The knowledge sources (data features, object properties and scene characteristics)

have to be extended in order to enhance the classification processing, especially regard-

ing ambiguous cases.

- Both an expansion of the ontology and further implementation and testing of rules are

currently considered and subject to investigation. This will also require further tests using

various datasets in order to achieve stable results and parameter values.

LIST OF MY PUBLICATIONS

Frank Boochs, Andreas Marbs, Helmi Ben Hmida, Hung Truong, Ashish Karmacharya,

Christophe Cruz, Adlane Habed, Christophe Nicolle, and Yvon Voisin. Integration of

knowledge to support automatic object reconstruction from images and 3d data. Inter-

national Multi-Conference on Systems, Signals and Devices (SSD), pages 1–13, 2011.

Andreas Marbs, Frank Boochs, Helmi B. Hmida, and Hung Q. Truong. Wissensbasierte

objekterkennung in 3d - punktwolken und bildern. Conference on DGPF-Tagungsband,

3-Ländertagung D-A-CH, pages 220–227, 2010.

Hung Truong, Frank Boochs, Adlane Habed, and Yvon Voisin. A knowledge-based ap-

proach to the automatic algorithm selection for 3d scene annotation. 11th International

Conference on Information Science, Signal Processing and their Applications (ISSPA),

pages 225–230, 2012.

Hung Truong, Helmi Ben Hmida, Frank Boochs, Adlane Habed, Christophe Cruz, Yvon

Voisin, and Christophe Nicolle. Automatic detection and classification of objects in point

clouds using multi-stage semantics. Journal of photogrammetry, remote sensing and

geoinformation processing (PFG), 2013a.

Hung Truong, Ashish Karmacharya, Waldemar Mordwinzew, Celeste Chudyk, Frank

Boochs, Adlane Habed, and Yvon Voisin. Automatic object detection in point clouds

based on knowledge guided algorithms. The international society for optics and pho-

tonics (SPIE), 2013b.

Hung Q. Truong, Helmi B. Hmida, Andreas Marbs, and Frank Boochs. Integration of

knowledge into the detection of objects in point clouds. International Society for Pho-

togrammetry and Remote Sensing (ISPRS), XXXVIII, 2010.

BIBLIOGRAPHY

Maryam Alavi and Dorothy E. Leidner. Review: Knowledge management and knowledge

management systems: Conceptual foundations and research issues. MIS quarterly,

pages 107–136, 2001.

A. Alharthy and J. Bethel. Detailed building reconstruction from airborne laser data using

a moving surface method. Arch. Photogrammetry and Remote Sensing, XXXV, 2004.

B. Ameri and D. Fritsch. Automatic 3d building reconstruction using plane-roof structures.

American Society of Photogrammetry and Remote Sensing, 2000.

D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, and A. Ng. Dis-

criminative learning of Markov random fields for segmentation of 3D scan data. 2005.

Sean Bechhofer, Frank Van Harmelen, Jim Hendler, Ian Horrocks, Deborah L McGuin-

ness, Peter F Patel-Schneider, Lynn Andrea Stein, et al. Owl web ontology language

reference. W3C recommendation, 10:2006–01, 2004.

Aurilla Aurelie Arntzen Bechina and Martin Nkosi Ndlela. Success factors in implementing

knowledge based systems. Electronic Journal of Knowledge Management 7. 2, 2:211–

218, 2009.

Bit-tech. Artificial intelligence, perception, and achievements, 2012. URL http://www.

bit-tech.net/bits/2012/03/19/aisearch/3.

L Bornaz and F Rinaudo. Terrestrial laser scanner data processing. In XXth ISPRS

Congress Istanbul. Citeseer, 2004.

M. Bredif, D. Boldo, M. Pierrot-Deseilligny, and Maitre. 3d building reconstruction with

parametric roof superstructures. IEEE International Conference in Image Processing,

2007.

H. Cantzler, R. Fisher, and M. Devy. Quality enhancement of reconstructed 3d models

using coplanarity and constraints. Pattern Recognition, pages 34–41, 2002.

RC Chakraborty. Artificial Intelligence. Jaypee University Lecture, 2010.

Simon Colton. Knowledge Representation. Imperial College London Lecture, 2010.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space

analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(5):603–

619, 2002.

Thomas H. ; Prusak Davenport and Laurence. Working knowledge: How organizations

manage what they know. Harvard Business Press, 2000.

Konstantinos G Derpanis. Overview of the ransac algorithm. Technical report, Technical

report, Computer Science, York University, 2010.

http://www.bit-tech.net/bits/2012/03/19/aisearch/3
http://www.bit-tech.net/bits/2012/03/19/aisearch/3

BIBLIOGRAPHY 130

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische math-

ematik, 1(1):269–271, 1959.

Y. Duan, C. Cruz, and C. Nicolle. Managing semantics knowledge for 3d architectural

reconstruction of building objects. International Conference on Software Engineering

Research, Management and Applications (SERA), pages 121–128, 2010.

N. Durand, S. Derivaux, G. Forestier, C. Wemmert, P. Gancarski, O. Boussaid, and Puis-

sant A. Ontology-based object recognition for remote sensing image interpretation.

Tools with Artificial Intelligence (ICTAI), pages 472–479, 2007.

Staffan Ekvall, Danica Kragic, and Frank Hoffmann. Object recognition and pose estima-

tion using color cooccurrence histograms and geometric modeling. Image and Vision

Computing, 23(11), 2005.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, 1981.

Doctor George. The math forum, drexel university, 2005. URL http://mathforum.org.

N. Goerke and S. Braun. Building semantic annotated maps by mobile robots. Towards

Autonomous Robotic Systems, pages 149–156, 2009.

A. Golovinskiy, V. G. Kim, and T. Funkhouser. Shape-based recognition of 3d point clouds

in urban environments. IEEE 12th International Conference on Computer Vision, pages

2154–2161, 2009.

P. Gottschalk. Toward a model of growth stages for knowledge management technology

in law firms. Informing Science, pages 79–93, 2002.

Ronald L. Graham. An efficient algorith for determining the convex hull of a finite planar

set. Information processing letters, 1(4):132–133, 1972.

Stephan Grimm, Pascal Hitzler, and Andreas Abecker. Knowledge representation and

ontologies – logic, ontologies and semantic web languages, 2007.

S. Growe and R. Tonjes. A knowledge based approach to automatic image registration.

International Conference on Image Processing, 3:228–231, 1997.

Thomas R Gruber et al. A translation approach to portable ontology specifications. Knowl-

edge acquisition, 5(2):199–220, 1993.

Donald D Hearn, M Pauline Baker, and Warren Carithers. Computer graphics with open

gl. Prentice Hall Press, 2010.

V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of cluttered rooms.

2009.

V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the box: Using appearance models

and context based on room geometry. pages 224–237, 2010.

H Hoefler, C Baulig, A Blug, H Woelfelschneider, O Fleischhauer, H Wirth, J Meier,

C Lehmkuehler, and H Lenz. High speed clearance profiling with integrated sensors.

In World Congress on Railway Research (WCRR), 2006.

http://mathforum.org

BIBLIOGRAPHY 131

Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, Mike

Dean, et al. Swrl: A semantic web rule language combining owl and ruleml. W3C

Member submission, 21:79, 2004.

B. Kahn and E. Adams. Sales forecasting as a knowledge management process. The

Journal of Business Forecasting, pages 19–22, 2000.

Louay Karadsheh, Ebrahim Mansour, Samer Alhawari, Ghassan Azar, and Naser El-

Bathy. A theoretical framework for knowledge management process: towards improving

knowledge performance. Journal of Communications of the IBIMA 7, 2009.

Holger Knublauch, Ray W Fergerson, Natalya F Noy, and Mark A Musen. The protege

owl plugin: An open development environment for semantic web applications. In The

Semantic Web–ISWC 2004, pages 229–243. Springer, 2004.

Danica Kragic and Henrik I. Christensen. Model based techniques for robotic servoing

and grasping. In Intelligent Robots and Systems, 1:299–304, 2002.

F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny. Automatic building

extraction from dems using an object approach and application to the 3d city modelling.

(ISPRS) Journal of Photogrammetry and Remote Sensing, 63:365–381, 2008.

D. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout of rooms using

volumetric reasoning about objects and surfaces. Advances in Neural Information Pro-

cessing Systems, 24, 2010.

N. Maillot and M. Thonnat. Ontology based complex object recognition. Image and Vision

Computing. 26, 26(1):102–113, 2008.

Takashi Matsuyama. Knowledge-based aerial image understanding systems and expert

systems for image processing. IEEE Transactions on Geoscience and Remote Sens-

ing, 3:305–316, 1987.

Leonard McMillan. Projection Transformations. MIT Computer Science and Artificial In-

telligence Laboratory (CSAIL), MIT, 2005.

O. M. Mozos. Semantic Place Labeling with Mobile Robots. 2008.

Chris Nikolopoulos. Expert systems: introduction to first and second generation and

hybrid knowledge based systems. Marcel Dekker, Inc., 1997.

A. Nuechter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, and H. Surmann. 3d

mapping with semantic knowledge. RoboCup, pages 335–346, 2006.

Kei Okada, Mitsuharu Kojima, Satoru Tokutsu, Toshiaki Maki, Yuto Mori, and Masayuki In-

aba. Multi-cue 3d object recognition in knowledge-based vision-guided humanoid robot

system. International Conference on Intelligent Robots and Systems, pages 3217–

3222, 2007.

Robert M. O’keefe and Alun D. Preece. The development, validation and implementation

of knowledge-based systems. European Journal of Operational Research, 92(3):458–

473, 1996.

OTEC. Data, information, knowledge, and wisdom, 2007. URL http://otec.uoregon.edu/

data-wisdom.htm.

http://otec.uoregon.edu/data-wisdom.htm
http://otec.uoregon.edu/data-wisdom.htm

BIBLIOGRAPHY 132

Dan Patterson. Introduction to artificial intelligence and expert systems. Prentice-Hall,

Inc., 1990.

M. Pollefeys, R. Koch, M. Vergauwen, and Van Gool. Automated reconstruction of 3d

scenes from sequences of images. ISPRS Journal Of Photogrammetry And Remote

Sensing, 55(4):251–267, 2000.

I. Posner, D. Schroeter, and P. Newman. Using scene similarity for place labelling. In 10th

International Symposium on Experimental Robotics, 39:85–98, 2008.

Protege. The protege ontology editor and knowledge acquisition system. URL http:

//protege.stanford.edu/overview/protege-owl.html.

S. Pu and G. Vosselman. Automatic extraction of building features from terrestrial laser

scanning. International Archives of Photogrammetry, Remote Sensing and Spatial In-

formation Sciences, 36:25–27, 2006.

S. Pu and G. Vosselman. Knowledge based reconstruction of building models from ter-

restrial laser scanning data. Journal of Photogrammetry and Remote Sensing, 64(6):

575–584, 2009.

S Rajeev. Artificial intelligence and expert systems for engineers, volume 11. CRC press,

1996.

N. Ripperda and C. Brenner. Reconstruction of facade structures using a formal grammar

and rjmcmc. DAGM’06 proceedings of the 28th conference on Pattern Recognition,

pages 750–759, 2006.

U. Rost and H. Muenkel. Knowledge based configuration of image processing algorithms.

In Proceedings of the International Conference on Computational Intelligence and Mul-

timedia Applications, 1998.

R. B. Rusu, Z. C. Marton, N. Blodow, A. Holzbach, and M. Beetz. Model-based and

learned semantic object labeling in 3d point cloud. IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 3601–3608, 2009.

Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In IEEE

International Conference on Robotics and Automation (ICRA), Shanghai, China, May

9-13 2011.

Heinrich Schewe, Jürgen Holl, and Lothar Gründig. Limez-photogrammetric measure-

ment of railroad clearance obstacles. Third Turkish-German Joint Geodetic Days, Is-

tanbul/Turkey. Towards a Digital Age, 2:721–727, 1999.

S. Scholze, T. Moons, Van Gool, and L. A probabilistic approach to building roof recon-

struction using semantic labelling. Pattern Recognition, pages 257–264, 2002.

W3C semantic web. Resource description framework (rdf), 2004. URL http://www.w3.

org/RDF.

W3C semantic web. Web ontology language (owl), 2007. URL http://www.w3.org/2004/

OWL.

Shermarc. Why create artificial intelligence?, 2002. URL http://www.units.muohio.edu/

psybersite/cyberspace/aisurge/implications.shtml.

http://protege.stanford.edu/overview/protege-owl.html
http://protege.stanford.edu/overview/protege-owl.html
http://www.w3.org/RDF
http://www.w3.org/RDF
http://www.w3.org/2004/OWL
http://www.w3.org/2004/OWL
http://www.units.muohio.edu/psybersite/cyberspace/aisurge/implications.shtml
http://www.units.muohio.edu/psybersite/cyberspace/aisurge/implications.shtml

BIBLIOGRAPHY 133

L. Shi, S. Kodagoda, and G. Dissanayake. Laser range data based semantic labeling of

places. Intelligent Robots and Systems (IROS), pages 5941–5946, 2010.

Sylvie Soudarissanane, Roderik Lindenbergh, and Ben Gorte. Reducing the error in ter-

restrial laser scanning by optimizing the measurement set-up. Proceedings of Interna-

tional Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,

pages 3–11, 2008.

J. Stueckler and S. Behnke. Improving people awareness of service robots by semantic

scene knowledge. RoboCup 2010: Robot Soccer World Cup XIV. Lecture Notes in

Computer Science, 6556/2011:157–16, 2011.

Yuan Y Tang, Seong-Whan Lee, and Ching Y Suen. Automatic document processing: a

survey. Pattern Recognition, 29(12):1931–1952, 1996.

Geoffrey Taylor and Lindsay Kleeman. Fusion of multimodal visual cues for model-based

object tracking. Conference on robotics and automation (ACRA), 2003.

Protege team. The semantic web rule language, 2012. URL http://protege.cim3.net/

cgi-bin/wiki.pl?SWRLLanguageFAQ.

O. Teboul, L. Simon, Koutsourakis P., and N. Paragios. Segmentation of building facades

using procedural shape priors. Computer Vision and Pattern Recognition (CVPR),

pages 3105–3112, 2010.

Trainmor. Basic knowledge concepts - data, information, knowledge and wisdom, 2013.

URL http://www.trainmor-knowmore.eu/FBC5DDB3.en.aspx.

R. Triebel, O. M. Mozos, and W. Burgard. Relational learning in mobile robotics: An

application to semantic labeling of objects in 2d and 3d environment maps. in Annual

Conference of the German Classification Society on Data Analysis, Machine Learning,

and Applications (GfKl), 2007a.

R. Triebel, R. Schmidt, O. M. Mozos, and W. Burgard. Instace-based amn classification

for improved object recognition in 2d and 3d laser range data. Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI), 2007b.

John C. Trinder and Yandong Wang. Knowledge-based road interpretation in aerial im-

ages. International Archives of Photogrammetry and Remote Sensing, 32:635–640,

1998.

Hung Q. Truong, Sukhan Lee, and Seok-Woo Jang. Model-based recognition of 3d ob-

jects using intersecting lines. In Multisensor Fusion and Integration for Intelligent Sys-

tems, pages 656–660, 2008.

G Vosselman and S. Dijkman. 3d building model reconstruction from point clouds and

ground plans. International Archives of Photogrammetry Remote Sensing and Spatial

Information Sciences, 34:37–44, 2001.

M. Wuenstel and R. Moratz. Automatic object recognition within an office environment.

Proceedings of the 1st Canadian Conference on Computer and Robot Vision, page

104–109, 2004.

http://protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ
http://www.trainmor-knowmore.eu/FBC5DDB3.en.aspx

BIBLIOGRAPHY 134

Chaim Zins. Conceptual approaches for defining data, information, and knowledge. Jour-

nal of the American Society for Information Science and Technology, 58(4):479–493,

2007.

B Zitova and J. Flusser. Image registration methods: a survey. Image and vision comput-

ing, 21(11):977–1000, 2003.

LIST OF FIGURES

3.1 A progress from data becoming to wisdom 30

3.2 Illustration of the example about the differences between concepts of data,

information, knowledge and wisdom in a context 31

3.3 Intervention and major components in an expert system 32

3.4 Relationships between elements in “vehicles” represented by a semantic

network . 34

3.5 Progress of knowledge representation . 38

3.6 Example of a semantic network . 38

3.7 Classes and properties in an OWL . 43

3.8 Example of relations between individuals in an OWL 44

3.9 OWL represented in the Protégé tool . 46

3.10 Terrestrial Laser Scanner . 47

3.11 Point cloud of a room . 48

3.12 LIMEZ III measurement system [Hoefler et al. 2006] 49

3.13 Point cloud data of a railroad segment acquired by the LIMEZ III 50

3.14 Distance from a 3D point to a plane . 51

3.15 Distance from a 3D point to a line . 53

3.16 A plane Q is assumed to compute the minimum distance from P to line L . 55

3.17 An example of an orthogonal projection of a cube on a horizontal plane . . 56

3.18 An example of a perspective projection of a cube on a horizontal plane . . . 57

4.1 System architecture . 61

4.2 General ontology schema overview . 65

4.3 Grouping of scene objects in case of a building 65

4.4 The geometry class hierarchy . 66

4.5 Object and data properties characterizing the semantic objects 67

4.6 A point cloud acquired by Terrestrial Laser Scanners, all surfaces of panels

in the scene are captured . 68

4.7 Objects scanned by the LIMEZ III only have one face represented in point

clouds . 69

LIST OF FIGURES 136

4.8 Metric rules . 69

4.9 (a) Point clouds of an objects viewed from a side, with inliers represented

as the points inside circles. (b) Point clouds after removed outliers by using

our approach . 74

4.10 Two examples of point cloud partition . 75

4.11 (a) Point cloud with ground points (b) Point cloud without ground points . . 75

4.12 (a) Point cloud with ground points (b) Blue point clouds indicates ground

area (c) Point cloud without ground points 76

4.13 (a) Convex hull and (b) concave hull of a set of points 77

4.14 (a) Convex Hulls obtained by Morphology processing and (b) Concave Hull

obtained by Graham Hull Algorithm . 78

4.15 (a) Point cloud of a room and (b) its projection image on the ground plane . 79

4.16 (a) Point cloud of a railroad segment, (b) a projection image of the railroad’s

point cloud on ground plane. The used scale is 0.001, i.e. the projection

scales the scene down 1000 times. The projection image keeps all the

details of the original scene from 3D. 80

4.17 Projection image of railroad segment point cloud on the ground plane . . . 81

4.18 Highlighted points are possible positions of object in 3D. 82

4.19 Rectangle representing potential positions of objects in projection image . . 82

4.20 Subsets of point clouds probably contains objects in 3D 83

4.21 Vertical planes inferred from 2D extracted lines in 2D projection image.

These results are obtained by using a line detection algorithm based on

Hough transform method. 83

4.22 By projecting the point clouds data on a horizontal plane, we detect high

intensity pixels on the image and fit these pixels to a line by using Hough

transform method. The pixels fitting a line are usually vertical structures in

3D (i.e. curbs). The detected lines in conjunction with the given information

about limited length of curbs, predefined in knowledge base, to uncover the

curbs position in the railroad system. 84

4.23 Line segments are extracted from subsets of point cloud data based on

data partitioning and least-square fitting. 85

4.24 Results of extracted lines obtained by using RANSAC integrated with least-

squares fitting and data partitioning . 86

4.25 Point clouds are partitioned into subsets. By using the least-squares algo-

rithm, we extract planar patches from 3D points inside the subsets. The

same color patches illustrate co-planar planes. 87

4.26 A point cloud of a room is partitioned into subsets. By using the least-

squares algorithm, we extract a plane in each subset and the normal vector

of the plane is therefore determined. The figure illustrates normal vectors

with different orientations. 88

LIST OF FIGURES 137

4.27 After classifying normal vector of planes based on their orientation, the

result shows the 3D points that belong to the plane are colored by a distinct

color. Some objects such as walls and floor can be detected. 89

4.28 Planes extracted by RANSAC algorithm . 90

4.29 An example of height approximation, height is counted from ground to the

mean height of five selected points on the top. 91

4.30 Algorithm constitution . 91

4.31 Model of an algorithm . 92

4.32 Vertices are algorithms and edges are connections between them. 93

4.33 Algorithm sequences extracted from the graph. The sequence with minimal

weight “w” will be selected. 94

4.34 The influence from instances in RiskBenefit on an algorithm 94

4.35 Knowledge-based object detection strategies 97

4.36 Processing architecture . 100

5.1 Particular characteristics in the railroad point cloud including regions of

interest (2 m width) and distance between profiles (0,1 m) 104

5.2 A traffic signal possesses the shape of a column constituted from linear

structures . 105

5.3 Four objects (1-4) in the railroad system . 106

5.4 Results of line detection using RANSAC fitting algorithm with threshold 0.05 107

5.5 Results of line detection using RANSAC fitting algorithm with threshold 0.08 107

5.6 Various height values of objects obtained by differently selecting the num-

ber of highest point . 108

5.7 Projecting point clouds of a bridge on the ground plane, shape of the bridge

is presented as lines in 2D . 109

5.8 Graph of possible algorithmic paths generated by ASM and used for de-

tecting objects in DB . 112

5.9 Knowledge-driven method for object detection and classification process . . 113

5.10 A railroad segment representing the objects of interest such as: light sig-

nals, distance signals, electrical poles, and advance signal marker posts . . 113

5.11 Point cloud representation of a section of a railway (top). Results after

executing the initialization step, projecting the point cloud to the ground

plane, rectangles denote possible object positions (bottom) 114

5.12 Results from detecting 3D lines of a signal and electric pole (type 3) along

the railway . 115

5.13 A classification and identification process based on the detected results.

Two objects were identified correctly as “Light signal” and “Electric pole”. . . 115

5.14 Positions of objects and annotation results after the first iteration 116

LIST OF FIGURES 138

5.15 3D scan of a check-in area inside the Fraport 116

5.16 Detected line segments corresponding to vertical planes in 3D 117

5.17 Walls are detected based on the rule . 118

5.18 Chair set detection process . 118

5.19 The chair area is found based on two detected walls. 119

5.20 (a) Point cloud of a chair and (b) chair as a composition of seat and leaning

planes . 120

5.21 Graph of possible algorithmic paths generated by ASM and used for de-

tecting objects in Fraport . 120

5.22 (a) A chair set point cloud and (b) a detected chair set 121

5.23 Identification results obtained on 12 chair sets in a waiting area (failures

1-2, partial detection 3-7, successful identification 8-12) 121

LIST OF TABLES

3.1 A frame and its slots filled with data types 35

5.1 The correlation between object, data characteristic and threshold (in

RANSAC line fitting algorithm) . 108

5.2 The correlation between object, data characteristic and number of points

selected in the volume approximation algorithm 109

5.3 Classes and properties used in DB scenario 111

5.4 Experiment in a section of DB railway, comparison result between two ap-

proaches: Visual inspection using the standard software tool of DB, and

knowledge-based data processing . 113

5.5 Classes and properties used in the Fraport scenario 117

Abstract:

The modeling of real-world scenes through capturing 3D digital data has proven to be both useful and

applicable in a variety of industrial and surveying applications. Entire scenes are generally captured

by laser scanners and represented by large unorganized point clouds possibly along with additional

photogrammetric data. A typical challenge in processing such point clouds and data lies in detecting

and classifying objects that are present in the scene. In addition to the presence of noise, occlusions

and missing data, such tasks are often hindered by the irregularity of the capturing conditions both

within the same dataset and from one data set to another. Given the complexity of the underlying

problems, recent processing approaches attempt to exploit semantic knowledge for identifying and

classifying objects. In the present thesis, we propose a novel approach that makes use of intelli-

gent knowledge management strategies for processing of 3D point clouds as well as identifying and

classifying objects in digitized scenes. Our approach extends the use of semantic knowledge to all

stages of the processing, including the guidance of the individual data-driven processing algorithms.

The complete solution consists in a multi-stage iterative concept based on three factors: the modeled

knowledge, the package of algorithms, and a classification engine. The goal of the present work is

to select and guide algorithms following an adaptive and intelligent strategy for detecting objects in

point clouds. Experiments with two case studies demonstrate the applicability of our approach. The

studies were carried out on scans of the waiting area of an airport and along the tracks of a railway.

In both cases the goal was to detect and identify objects within a defined area. Results show that our

approach succeeded in identifying the objects of interest while using various data types.

Keywords: 3D processing, point clouds, object detection, segmentation, algorithm selection, knowledge-

based systems, knowledge modeling, ontology, classification

Résumé :

La modélisation de scènes réelles à travers la capture de données numériques 3D a été prouvée à la fois utile et applicable dans une variété d’applications. Des scènes entières

sont généralement numérisées par des scanners laser et représentées par des grands nuages de points non organisés souvent accompagnés de données photogrammétriques. Un

problème typique dans le traitement de ces nuages et données réside dans la détection et la classification des objets présents dans la scène. Ces tâches sont souvent entravées par la

variabilité des conditions de capture des données, la présence de bruit, les occlusions ainsi que les données manquantes. Compte tenu de la complexité des problèmes sous-jacents,

les approches de traitement récentes tentent d’exploiter les connaissances sémantiques pour identifier et classer les objets. Dans cette thèse, nous proposons une nouvelle approche

qui fait appel à des stratégies intelligentes de gestion des connaissances pour le traitement des nuages de points 3D ainsi que l’identification et la classification des objets dans les

scènes numérisées. Notre approche étend l’utilisation des connaissances sémantiques à toutes les étapes du traitement, y compris le choix et le guidage des algorithmes de traitement

axées sur les données individuelles. Notre solution constitue un concept multi-étape itératif sur la base de trois facteurs: la connaissance modélisée, un ensemble d’algorithmes de

traitement, et un moteur de classification. L’objectif de ce travail est de sélectionner et d’orienter les algorithmes de manière adaptative et intelligente pour détecter des objets dans

les nuages de points. Des expériences avec deux études de cas démontrent l’applicabilité de notre approche. Les études ont été réalisées sur des analyses de la salle d’attente d’un

aéroport et le long des voies de chemin de fer. Dans les deux cas, l’objectif était de détecter et d’identifier des objets dans une zone définie. Les résultats montrent que notre approche

a réussi à identifier les objets d’intérêt tout en utilisant différents types de données.

Mots-clés : traitement 3D, nuages de points, détection d’objets, segmentation, sélection d’algorithme, systèmes basés connaissance, modélisation des connaissances,

ontologies, classification

	1 Introduction
	1.1 Context and Motivation
	1.2 Scope of the thesis
	1.3 Contributions
	1.4 Thesis overview

	2 Literature review
	2.1 Model-driven approaches
	2.2 Purely data-Driven approaches
	2.3 Intelligent data-driven approaches
	2.4 Data-driven incorporating semantics
	2.5 Knowledge-based approaches

	3 Background
	3.1 Semantic knowledge
	3.1.1 Knowledge-based systems
	3.1.1.1 Artificial intelligence perspective
	3.1.1.2 Data, information and knowledge
	3.1.1.3 Expert system or knowledge-based system

	3.1.2 Knowledge acquisition
	3.1.3 Knowledge Representation
	3.1.3.1 Semantic Networks
	3.1.3.2 Rules
	3.1.3.3 Logical representation

	3.1.4 Ontology in Information Systems
	3.1.5 Ontology Languages
	3.1.5.1 Web Ontology Language (OWL)
	3.1.5.2 The Semantic Web Rule Language (SWRL)
	3.1.5.3 Protégé - software Support for OWL

	3.2 Numerical processing
	3.2.1 Data acquisition
	3.2.1.1 Terrestrial Laser Scanner
	3.2.1.2 LIMEZ III (Lichtraumprofil Messzug)

	3.2.2 Noise reduction
	3.2.3 Fitting 3D points to primitive shapes
	3.2.3.1 Fitting 3D points to a plane (Orthogonal Distance Regression Plane)
	3.2.3.2 Fitting 3D points to a line (Orthogonal Distance Regression Line)

	3.2.4 3D to 2D Projection
	3.2.5 RANSAC
	3.2.6 Point Cloud Library

	4 Methodology
	4.1 System overview
	4.2 Knowledge engineering
	4.2.1 Knowledge management techniques
	4.2.2 Knowledge modeling
	4.2.2.1 Scene knowledge
	4.2.2.2 Data knowledge
	4.2.2.3 Spatial knowledge
	4.2.2.4 Algorithm knowledge

	4.3 Numerical processing
	4.3.1 Algorithm categories
	4.3.2 Data preprocessing
	4.3.3 Segmentation
	4.3.3.1 Partitioning Point Clouds (Spatial partitioning)
	4.3.3.2 Point clouds segmentation

	4.3.4 Geometry detection
	4.3.4.1 Hull detection algorithm
	4.3.4.2 3D to 2D projection
	4.3.4.3 Position detection
	4.3.4.4 Particular features extraction
	4.3.4.5 3D line detection
	4.3.4.6 Plane detection algorithm

	4.3.5 Measurement

	4.4 Algorithm Selection Module (ASM)
	4.4.1 Modeling algorithm in knowledge base
	4.4.2 Algorithm graph
	4.4.3 Algorithm sequence extraction
	4.4.4 Knowledge-based algorithm configuration

	4.5 Integration of knowledge into 3D processing
	4.5.1 Knowledge-driven strategy
	4.5.2 Specific knowledge-based processing
	4.5.3 Change detection in a scene
	4.5.4 Object localization
	4.5.5 Generic knowledge-based object detection

	4.6 Integrating knowledge into processing technique

	5 Implementation
	5.1 Object classification in the railway system
	5.1.1 Knowledge modeling
	5.1.2 Processing
	5.1.2.1 Results

	5.2 Object detection inside airport building (Fraport’s waiting area)
	5.2.1 Processing
	5.2.1.1 Results

	6 Conclusions and Future Work
	6.1 Results
	6.2 Future work

