
HAL Id: tel-00977574
https://theses.hal.science/tel-00977574

Submitted on 11 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Performance Hydraulic Simulations on the Grid
using Java and ProActive

Guilherme Peretti-Pezzi

To cite this version:
Guilherme Peretti-Pezzi. High Performance Hydraulic Simulations on the Grid using Java and ProAc-
tive. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Nice Sophia Antipolis, 2011.
English. �NNT : �. �tel-00977574�

https://theses.hal.science/tel-00977574
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC

SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

THÈSE

pour obtenir le titre de

Docteur en Sciences

de l’Université de Nice - Sophia Antipolis

Mention Informatique

présentée et soutenu par

Guilherme PERETTI PEZZI

HIGH PERFORMANCE HYDRAULIC

SIMULATIONS ON THE GRID USING JAVA AND

PROACTIVE

Thèse dirigée par Denis Caromel,

au sein de l’équipe OASIS,

équipe commune de l’INRIA Sophia Antipolis, du CNRS et du laboratoire I3S

soutenue le 15 décembre 2011

Jury:

Président du Jury Philippe GOURBESVILLE Université de Nice - Sophia Antipolis

Rapporteurs Jocelyne ERHEL INRIA Rennes

Pierre-Olivier MALATERRE CEMAGREF Montpellier

Co-rapporteur Olivier PILLER CEMAGREF Bordeaux

Examinateur Yann VIALA Société du Canal de Provence

Directeur de thèse Denis CAROMEL Université de Nice - Sophia Antipolis

ii

Contents

Contents iv

List of Figures v

List of Tables vii

1 Motivation and positioning 1
1.1 Water distribution systems . 1
1.2 Computer aided network system design . 3
1.3 Société du Canal de Provence . 5
1.4 Project goals . 7
1.5 Solution proposal overview . 8
1.6 Thesis structure . 11

2 IRMA Network Modeling 13
2.1 Overview . 13
2.2 Head loss equations . 15
2.3 Methods for calculating head loss . 15
2.4 Linearizing head losses . 17
2.5 Modeling a sample network . 18
2.6 Equipments . 19

3 IRMA simulation modes and the Clément demand model 23
3.1 Continuous flows . 23
3.2 Peak consumption using the Clément demand model 24
3.3 Maximum pressure . 26
3.4 Equipment positioning . 26
3.5 Network profiling in function of a Pump . 27
3.6 Pump Profiling . 28
3.7 Pressure driven analysis . 28
3.8 Discharge margin . 29
3.9 Extended period simulation . 30
3.10 Pipe size optimization . 30

4 Specification of IRMA 37
4.1 Overview . 38
4.2 Continuous flow simulation . 38
4.3 Maximum pressure . 40
4.4 Peak consumption . 41
4.5 Convergence parameters . 42
4.6 Network profiling in function of a Pump . 44
4.7 Pump Profiling . 45
4.8 Pressure driven analysis . 46
4.9 Discharge margin . 47
4.10 Dynamic network behavior . 48
4.11 Equipments . 48

5 Optimized linear system solving 53
5.1 Overview of methods for linear system solving . 53
5.2 Linear system solving libraries in Java . 54
5.3 Proposed solution for the solver . 55
5.4 Performance results . 60

iii

iv CONTENTS

6 Results validation and improvements 63
6.1 Validation of IRMA Java . 63
6.2 Sequential performance benchmarks . 65
6.3 Convergence fine-tuning . 66
6.4 Topology analysis . 67
6.5 User interface . 68

7 Parallel execution using the Service Oriented Architectures and the Grid 73
7.1 IRMA distributed execution as AGOS Use case . 73
7.2 Distributed execution of pump profiling on the Grid 77

8 Conclusion and Perspectives 83

Bibliography 85

List of Figures

1.1 Example of free surface channel (Boutre, Var department, France). 2
1.2 Diagram of a typical pressurized water network. 2
1.3 Screenshot of Epanet 2. 3
1.4 Screenshot of Porteau’s Opointe module. 4
1.5 Overview of SCP’s main distribution infrastructures in south of France. 5
1.6 Bimont Dam, next to Aix-en-Provence. 6
1.7 Excerpt from IRMA’s text network file: pipe description section. 7
1.8 Main components of the ProActive Programming framework. 8
1.9 Screenshot of the ProActive Scheduling tool. 9
1.10 Screenshot of the ProActive Resourcing tool. 9

2.1 Sample network with 7 nodes, 8 pipes, 2 tanks and 2 loops. 18
2.2 Linear system that solves the sample network in a given iteration. 18
2.3 Example of pumping stations. 19
2.4 Scheme representing the piezometric level of a network with a pumping station. . 19
2.5 Piezometric schemes for a pressure reducing valve. 20
2.6 Piezometric schemes for a pressure sustaining valve. 21

3.1 Network with demand between pumping station and the upper tank. 26
3.2 Network without demand between the pump and the tank in the extremity. 27
3.3 Booster pumping into a tank. 27
3.4 Distribution between two tanks. 27
3.5 Downstream distribution from a tank in the extremity. 28
3.6 Pump profiling in the "Boutre" network. 29
3.7 P(H): Lower envelope curve or minimum price of section. 32
3.8 Adding the equivalent distance Zm to the section’s head loss curve envelope. 33
3.9 Addition of price curves P1(Z) and P2(Z) in order to obtain the upstream lower

envelope curve Pi(Z) in a derived section i. 33
3.10 Examples of section addition in series: in the left addition of section i to a sub-

network and in the right the addition in terminal sections. 34
3.11 Addition of section i to the sub-network. 34
3.12 Examples of diameter selection in the descent process in 3 cases, considering D1 >

D2 > D3 and the selected diameter noted by D∗
i . 35

4.1 IRMA’s main data classes. 38
4.2 IRMA’s simplified sequence diagram. 39
4.3 Continuous flow simulation sequence diagram. 40
4.4 Flow diagram for maximum pressure simulation. 41
4.5 Flow diagram for peak consumption simulation. 41
4.6 Sequence diagram for simulating a class of probability. 42
4.7 Flow diagram for the network profiling in function of a pump. 45
4.8 Flow diagram for the pump profiling simulation. 46
4.9 Flow diagram for the pressure driven analysis. 47
4.10 Flow diagram for the discharge margin calculation. 47
4.11 Flow diagram for the dynamic network behavior. 48
4.12 Class diagram for the different types of pumps. 49
4.13 Class diagram for the pressure regulators. 50

5.1 LU Decomposition: example of Lower triangular matrix and an Upper triangular
matrix. 54

5.2 Calling FORTRAN code from Java through a JNI / C++ Interface. 57

v

vi LIST OF FIGURES

5.3 Execution time of a network using the original LU Decomposition from the Colt
library and the optimized version. 60

5.4 Execution time of a network simulation using different solvers in a Linux machine
and the former IRMA FORTRAN version executed in a HP-UX machine. 61

6.1 Screenshot of the simulated network designed with EPANET. 64
6.2 Execution time of selected networks using Java on a desktop machine and FOR-

TRAN in the Unix server. 65
6.3 Number of iterations required for converging SCP’s Maintenance department net-

works. This figures exclude the networks that do not converge at all (about 10%).
. 66

6.4 Execution time with 2 different iteration limits for 3 networks with convergence
problems. 66

6.5 Flow diagram representing the process of building the list of non redundant meshes. 68
6.6 Diagram representing the software layers used by the uDig Toolkit. 68
6.7 Overview of the new IRMA Java user interface. 69
6.8 Equipment editing with IRMA. 70
6.9 Example of integration of legacy IRMA network file with existing SCP spatial

database. This diagram represents the "Hugueneuve" network, in the south of
France next to Toulon. 71

6.10 Pressure results visualization with IRMA. 72

7.1 Architectural diagram of the proposed framework for the AGOS platform. Legend:
(WS Agent) = Web Services Agent / (S) = Sensors installed at the module level, to
relay performance information to the monitoring systems / (M) = Monitoring agent
installed at the service level. 74

7.2 Diagram illustrating the AGOS infrastructure for deploying parallel services. Stan-
dard services based environment (not implemented by the AGOS Project) are rep-
resented in red. The blue components represent the elements that are used to
deploy the IRMA use case: PA // WS (ProActive Parallel Web Services), ProActive

Scheduler and Resource Manager (RM). The green part represent the future work
that has been identified as a continuation of the AGOS project. (WSDL) = Web
Services Description Language / (AO) = Active Object. 76

7.3 Diagram illustrating the parameter Sweeping service. Legend: (I1, I2, . . . , In)
represent the input parameters, (O1, O2, . . . , On) represent the output of each
parallel instance, (Exec logic X) represents the generic execution logic (user code),
which in this case is implemented by the sequential version of IRMA. 77

7.4 Execution time of 119 networks on the Grid using up to 4 machines. 78
7.5 Flow diagram representing the parallelization algorithm for performing the pump

profiling. 79
7.6 Overview of the downstream networks from Bouteillère. 80
7.7 Pump profiling execution time of the downstream networks from Bouteillère in

function of the number of parallel tasks. 81
7.8 Obtained Speedup by number of parallel pump profiling tasks executed in parallel

on PACA Grid. 81

List of Tables

1.1 Time required for performing topology analysis of three IRMA networks. 7

3.1 List of commercial pipe diameters with respective unitary prices and velocity limits. 31

6.1 Overview of the networks controlled by SCP’s Maintenance department. 64
6.2 Flow differences between EPANET and IRMA in a sample network. Nodes marked

with "*" are tanks. 65

vii

viii LIST OF TABLES

1
Motivation and positioning

Contents
1.1 Water distribution systems . 1

1.1.1 Free surface/open channel . 1

1.1.2 Water Distribution Networks . 2

1.2 Computer aided network system design . 3

1.2.1 Epanet . 3

1.2.2 MIKE URBAN . 4

1.2.3 Porteau . 4

1.2.4 Flowmaster . 5

1.3 Société du Canal de Provence . 5

1.3.1 Infrastructure overview . 5

1.3.2 IRMA . 6

1.4 Project goals . 7

1.5 Solution proposal overview . 8

1.5.1 ProActive Parallel suite . 8

1.5.2 AGOS Project . 10

1.6 Thesis structure . 11

This chapter gives a background on water distribution systems, its evolution and the neces-
sity of using computer assistance in order to design modern distribution infrastructures. Then,
it is presented an overview of some of the main tools used for designing these networks, fol-
lowed by an introduction of the Société du Canal de Provence, their main activities and role
in this project. Finally, the main projects used in the context of this work are presented: the
ProActive Parallel Suite (developed by the OASIS research group at INRIA Sophia Antipolis and
ActiveEon) and the AGOS project (developed by INRIA, HP, Oracle, ActiveEon and Amadeus).

1.1 Water distribution systems

This section introduces the main types of infrastructure used nowadays for distributing water
around the world: free surface distribution and pressured water distribution networks (WDN).

1.1.1 Free surface/open channel

Water distribution systems have historically played a key role for supplying water to places with
scarce resources. These systems have been traditionally built mostly over open channels, since
the roman aqueducts for example, but still today these structures are widely used all over the
world and they are fundamental for the development of cities and of agriculture.

1

2 Chapter 1. Motivation and positioning

Figure 1.1: Example of free surface channel (Boutre, Var department, France).

The flow in open channels (Figure 1.1) ∗ is moved by gravity and thus is limited by the land
relief. In these structures it is difficult to measure precisely the consumption, making it also
difficult other maintenance task such as optimizing resources usage and reducing the loss. Also,
when used for irrigation it is often necessary to impose a rotation criteria in order to guarantee
equal rights to all consumers. As consequence of this compromise, some consumers might not
be able to irrigate their crops when needed and this will therefore cause productivity losses. In
order to avoid this issue it is also possible to feed the channel with more water than the actual
demand. This can guarantee availability but will cause higher loss levels.

Although open channels can be adapted for transport, alternative distribution methods had
to be developed due to the limitations when dealing with water distribution. One alternative
that has been used in order to overcome most of these issues is the adoption of WDN.

1.1.2 Water Distribution Networks

Water distribution network is a pressurized system where the water flows due differences in the
pressure, water flows from the point with higher pressure towards to the lower one. Today the
most common ways to obtain a high pressures are the use of strategically located tanks, which
are usually fed by a pump, or by using directly a pump in order to increase the network pressure.

Figure 1.2: Diagram of a typical pressurized water network.

WDN have many advantages over traditional open channel systems. They are able to provide
water on-demand, meaning that they can provide services with better quality and with a higher

∗Photo credits: Camille Moirenc.

Section 1.2. Computer aided network system design 3

distribution efficiency. They can also overcome topographic constraints and therefore they can
cover more area when compared to open channels. The mechanisms for measuring the water
usage are more precise, they can also help to detect water leaks and this has both economic and
environmental impacts.

One key issue especially when dealing with irrigation networks is the problem of predicting
the number of simultaneous clients consuming the resources. When designing these networks
the objective is to provide on-demand delivery schedule to all clients while minimizing the cost by
optimizing the pipes diameters. The original approach developed by SCP for predicting client’s
demand is called Clément’s Formula [Clé66], more details can be found in Section 3.2.

WDN can also be difficult to be designed as they become bigger and more complex. For exam-
ple, some WDN equipments can have dynamic behaviors depending on a monitored parameter
such as pressure, flow direction or tank level. Their actions may affect other equipments and
trigger other behavior changes. The possible scenarios can quickly become too complicated and
therefore it is crucial to use an adapted tool when designing these networks.

1.2 Computer aided network system design

With the growth of the WDN, the engineers began to rely on computer simulation in order to
design and optimize them. The use of computers allowed to design much more complex networks,
calculating information that otherwise couldn’t be obtained with the same level of precision.
This happened many years ago when computers were very limited in terms of processing power,
storage and availability of proper tools for writing software for performing complex calculations.
For example, the SCP began developing a software for simulating meshed water networks in
1977 based on an existing code formerly created by the CEMAGREF [cem11].

This section presents some of the existing tools used for designing WDN, including the soft-
ware developed by the SCP called IRMA.

1.2.1 Epanet

Epanet is a software for modeling WDN that was developed by the United States Environmen-
tal Protection Agency (EPA). Epanet is an open source tool, it first appeared in early 90’s and
nowadays it has become a standard reference for designing WDN.

Figure 1.3: Screenshot of Epanet 2.

It models several types of structures, such as pumps (with constant or variable speed), valves

4 Chapter 1. Motivation and positioning

(standard, pressure/flow regulating or shutoff/security), tanks (with different shapes) and reser-
voirs (with infinite capacity). More details about these equipments can be found at Section 2.6.
Epanet can perform steady state simulations and also simulation for extended periods of time.

Epanet provides an integrated environment for editing networks, running hydraulic and wa-
ter quality simulations, and viewing the results. Figure 1.3 shows an example network being
edited in Epanet. The icons for most commonly used operations can be found on the top menu
bar: file handling, edition, results viewing, table input edition, scrolling and selection tools, and
finally the icons for adding equipments. The network can be edited in the white pane below
where pipe, junctions and equipments are represented.

1.2.2 MIKE URBAN

MIKE URBAN [mik11] is a commercial software solution developed by DHI [dhi11] for urban
water modeling. Besides treating WDN, it covers also sewer and water drainage systems.

The underlying engine used by MIKE URBAN for simulating WDN is Epanet based and
being a commercial solution it offers other interesting features, such as support for Geograph-
ical Information Systems (GIS), fire flow analysis, demand allocation and distribution. It also
performs water quality analysis, for example water age, blending water from different sources,
contamination propagation and growth of disinfection products.

1.2.3 Porteau

Porteau [por11] is freeware software for simulating WDN and it is developed by the CEMAGREF
[cem11], which is a public research institute in France focusing on land management issues such
as water resources and agricultural technology.

Figure 1.4: Screenshot of Porteau’s Opointe module.

The first version of Porteau was written in FORTRAN released in 1977. In 2008 CEMAGREF
released the version 3.0, it is written in Java with graphical interfaces for editing and visualizing
the networks. Porteau consists in three main modules: Zomayet for performing simulations of
extended periods of time, Opointe for steady state simulation, including a probabilistic method

Section 1.3. Société du Canal de Provence 5

for estimating the demand, and Qualité that allows to simulate the water quality in the network.
Figure 1.4 shows a screenshot of a network being edited using the the Zomayet module.

1.2.4 Flowmaster

Flowmaster [flo11] is a commercial thermo fluid simulation software suite for the analysis of
fluid mechanics within pipe networks. The module for water systems may be used to help en-
gineers in many areas, for example it allows to perform several to predict water distribution to
meet cyclic demands, optimize pump station sizing and energy consumption to minimize pump-
ing costs, predict pressure surges to ensure safety and pipe integrity, size piping systems.

1.3 Société du Canal de Provence

Société du Canal de Provence (SCP) is a French company with more than 50 years of experience
in designing, building and maintaining WDN. The SCP main activities are the water distribu-
tion in the french region “Provence-Alpes-Côte d’Azur” and providing assistance for designing
and deploying infrastructures for water distribution. The infrastructure maintained by the SCP

in France is mostly used for agricultural purposes, but it also serves other clients such as indus-
tries, potable water providers and local communities.

1.3.1 Infrastructure overview

SCP’s most important activities are located in France, as it can be seen in Figure 1.5, where the
most relevant channels are represented.

Figure 1.5: Overview of SCP’s main distribution infrastructures in south of France.

Here are some key figures to summarize the managed infrastructure:

• 271 km of underground galleries and open channels

• 280 km of secondary/distribution channels

• 587 km of pipe with diameter ≥ 500 mm

• 5000 km of pipe with diameter < 500 mm

6 Chapter 1. Motivation and positioning

• 87 pumping and booster stations

• 16 drinking water plants and 3 treatment plants

• 4 reservoirs (> 1 million m3)

• 12 reservoirs (between 10.000 and 1 million m3)

• 70 tanks (between 500 and 10.000 m3)

Figure 1.6: Bimont Dam, next to Aix-en-Provence.

All this infrastructure is used to supply raw water to more than 2 million inhabitants. The
total amount of stored water is around 50 million of m3 coming from the Verdon river and 10
million of m3 coming from the Saint-Cassien lake. Figure 1.6 gives an example of one of the
reservoirs, the Bimont dam, that is located in Saint-Marc-Jaumegarde next to Aix-en-Provence.

Since the concerned structure in this project are the pressured piped distribution networks,
next section presents the software used by the SCP for designing and managing these networks.

1.3.2 IRMA

IRMA is a commercial software developed by the SCP for simulating meshed WDN. The initial
program was based in a FORTRAN developed by the CEMAGREF and in 1977 the SCP created a
branch in order to adapt the software for its own needs. CEMAGREF continued the development
independently on his side to create the software that is now called Porteau.

The main reason for creating a separate branch was the need adapt IRMA in order to fit
the SCP’s needs, while implementing the probabilistic resolution created and used by the SCP

in order to estimate agricultural clients demand. This probabilistic method is called "Débit de

Clément" and consists basically in performing separate resolutions for each class of offtake. More
details can be found in Section 3.2 and [Clé66].

IRMA networks consist of pipes, nodes, tanks/reservoirs and equipments, such as pumps,
valves (standard or shutoff/security) and pressure/flow regulators. The main simulation features
are: steady state and extended period of time simulations, peak demand estimation by using

Section 1.4. Project goals 7

Figure 1.7: Excerpt from IRMA’s text network file: pipe description section.

the Clément’s Formula, maximum pressure, pipe diameter optimization (Labye [REF]), water
quality analysis, tank and pump design.

Although IRMA provides most of the simulation features required by the SCP users, it lacks
graphical interfaces for editing network information and also does not allow any integration with
data available in other data bases used by the SCP (such as GIS). Figure 1.7 show an excerpt
from IRMA’s network description file, it uses a standard text file where lines beginning with
{ are comments. These comments are used to help the user to write the values in the correct
position, each field is precisely delimited and therefore values misplaced will be attributed to a
neighbor field. Each pipe is described by one line containing the first and second node, length,
diameter. Some fields are optional and other values, such as roughness, are taken from the line
above if they are not explicitly informed.

Table 1.1: Time required for performing topology analysis of three IRMA networks.

Network ID Pipes Extension (km) Offtakes Time (min)
R095.05 4350 160 1573 10,12
R155.05 2806 189 1276 12,25
R093.05 7369 287 2693 61,3

With the growth of the SCP networks, IRMA is also facing performance limitations. More
precisely, the algorithms for analyzing the topology and preparing the equations system became
inefficient when dealing with complex networks. Table 1.1 presents the time required to analyze
the topology of 3 networks along with some information regarding the size of the networks.
They have from 2806 up to 7369 pipes and a total length of 287km in the most complex case. In
these examples the topology analysis takes from 10 minutes to 1 hour, however there are cases
that can take up to several days. As a workaround for this issue, IRMA caches the topology
analysis results in temporary files so that they can be reused in future executions. However,
this mechanism is efficient only if there aren’t any changes in the network topology and thus
changes in the topology are usually avoided or postponed in complex networks.

1.4 Project goals

IRMA’s code base is becoming 30 years old, it consists in more than 40.000 lines of FORTRAN
code that were originally written for being used with punch cards. The code has been re-
engineered and updated to FORTRAN 90, but some deprecated software engineering techniques
still remain. The hydraulic simulations performed by IRMA are complex by nature and the inter-
actions among the equipments generate a big number of numeric exceptions. These exceptions
that were discovered as new networks were designed during the 3 decades of IRMA’s usage, the
patches for fixing these cases are spread over different parts of the code and therefore it is very
difficult to understand and to specify the behavior of a given equipment.

8 Chapter 1. Motivation and positioning

For all these reasons this version of IRMA is clearly becoming unsustainable in terms of
maintainability. With the need of overcoming the performance issues and in order to improve
user productivity providing modern graphical interfaces, the adoption of a new tool is unavoid-
able.

This new tool can be obtained by adapting one of the existing tools for designing WDN, what
would mean to implement the Clément’s Formula, migrate and validate all the existing networks
and projects to the new network format, and finally training all the users for using the new en-
vironment. Alternatively, the new tool could be rewritten from scratch based on IRMA’s source,
keeping the original model and, thus, minimizing the impact of replacing the tool. Assuming
that costs would be higher if a commercial software is purchased and all the networks had to be
migrated to a new format, the latter option was chosen as a solution.

1.5 Solution proposal overview

The language chosen for this new tool is Java, mainly for its portability, its ability to integrate
easily with other systems deployed at SCP (such as Netview, the GIS developed by the SCP).
Concerning performance, the use of Java can enable distributed execution on computing Grid
infrastructures, using especially the ProActive Parallel Suite [pro11].

Although Java provides very interesting features for easing the development and integration
with other systems, it’s also a recent language compared to FORTRAN. The language itself is
not yet consolidated for high performance scientific applications and therefore it lacks some
numerical libraries that are available in FORTRAN and C/C++, like direct linear system solvers
with sparse matrix storage. More details about this issue can be found in Sec. 5.2.

The following sections introduce the main projects used for enabling distributed and service
oriented execution on the Grid: the ProActive Parallel Suite and the context of the AGOS Project.

1.5.1 ProActive Parallel suite

ProActive Parallel Suite [BBC+06] is an innovative Open Source solution (OW2 consortium)
for parallel, distributed, multi-core computing. Developed by the OASIS team through a joint
project between INRIA, CNRS, I3S and UNSA, ProActive has produced innovation (INPI patents)
and new standards currently evaluated by the European standards organization (ETSI).

ProActive provides 3 main packages:
Programming: features a concurrent and parallel programming model, offers distributed

and asynchronous communications, mobility and a deployment framework. It simplifies the
programming of multithreaded, parallel, and distributed applications for Clouds, Grids, multi-
cores, clusters, and data-centers.

Figure 1.8: Main components of the ProActive Programming framework.

Section 1.5. Solution proposal overview 9

Scheduling: the ProActive Scheduler allows a multi-user sharing of resources to run work-
flows, ProActive applications, native or Java code on the Grid.

Figure 1.9: Screenshot of the ProActive Scheduling tool.

Resourcing: the ProActive Resource Manager allows to manage in real-time resources on
the grid, users can monitor their activity, add or remove resources, etc...

Figure 1.10: Screenshot of the ProActive Resourcing tool.

10 Chapter 1. Motivation and positioning

1.5.2 AGOS Project

AGOS 1, is a development project that integrates and standardizes a scientific approach (INRIA)
and a industrial approach (HP, Oracle, ActiveEon and Amadeus) of 2 innovative technologies:
Grid (Grid Computing) and Service Oriented Architecture (SOA).

AGOS is a secure platform that provides a:

• Reference architecture of the technology integration,

• Standard based services library,

• Set of tools and processes to build AGOS applications and Business/IT monitoring solu-
tions,

• Methodology to migrate existing applications to AGOS architecture.

Companies can benefit from an automated and integrated IT management environment
based on secured and distributed communicating agents. This project experiments the Open
Source ProActive, a solution that implements the European component model for Grid comput-
ing, aimed at providing a concrete solution that a company with an extended or local network
would implement. AGOS leverages recent progress in secured communicating agents and ser-
vices technologies based on Open Source ProActive (European standards, portability and multi-
platform/operating systems availability) that can support SOA architectures.

It provides tools and dashboards to monitor real-time company activity at the 3 levels:

• Company management level: At this level Business Intelligence (BI) covers two do-
mains, company business and market trends analysis based on historical data. This re-
quires access to various geographically distributed data and Grid computing is a key en-
abler of this domain. Real-time monitoring of company results in relation to the company
objectives. Automation of business processes based on Information technology is growing
and these business processes can be monitored using AGOS BI tools. AGOS approach
provides Business real-time based decision to business and geo managers, what is made
possible by the innovative standards and component base of AGOS layers.

• Business process management level: The manager of the business process is able to
monitor his business processes without knowing which platforms and applications exe-
cute it, nor the IT problems that could affect it. Business processes is based on services
that include a service level agreement that matches business requirements (response time,
availability. . .)

• System management level: AGOS provides an integrated management of grid computing
resources based on the service level agreed with the business group.

AGOS integrates these 3 levels, the definition of a new business process is able to leverage
existing services (SOA approach). The new process will be implemented as a flow of services
(such as product availability in stock service). One or several Service Level Agreements (SLAs)
is associated to the process and the execution of the services is automatically deployed and man-
aged on the Grid/SOA and reconfigured according to SLAs and resources. The Business process
manager is able to real-time monitor the process activity and is integrated into the Company
business dashboard for top management monitoring.

The role of IRMA in the AGOS Project is to provide a practical use case: a computing inten-
sive application that can be deployed as a service in order to validate the AGOS Infrastructure.

1http://h30423.www3.hp.com/?fr_story=c4ec832e00c43f2791a9e4f15189d1cd5a91f819

Section 1.6. Thesis structure 11

1.6 Thesis structure

• Chapter 2: presents the hydraulic model behind IRMA for describing the water networks,
including the different methods for calculating the head loss and the equipments that can
be represented.

• Chapter 3: presents the types of simulation that can be performed by IRMA, including
the Clément’s Formula that is used to estimate the peak demand in irrigation networks.

• Chapter 4: describes the algorithms used by IRMA for performing the different type of
simulations presented in Chapter 3.

• Chapter 5: presents the different methods and libraries for solving linear systems that
were analyzed for using with IRMA, the optimizations that were performed and the final
proposed solution.

• Chapter 6: first presents the validation of the new IRMA Java and then it presents the
most important feature improvements for the users: the performance gain regarding the
FORTRAN solution, the elimination of the waiting time for the topology analysis phase
and the new graphical user interface integrated with Geographical Information Systems.

• Chapter 7: presents two examples of distributed execution for validating IRMA’s capa-
bility of harnessing resources on the Grid and Service Oriented Architectures. First, a
demonstration of how the AGOS Infrastructure allows to deploy IRMA as a service that
takes a set of networks as input and automatically launches IRMA instances on the avail-
able resources. The second example illustrates how to reduce the execution time of a very
computing intensive simulation mode (pump profiling), by implementing a distributed sim-
ulation using the ProActive Parallel Suite.

• Chapter 8: concludes this work and summarizes the contributions obtained in this project.

12 Chapter 1. Motivation and positioning

2
IRMA Network Modeling

Contents
2.1 Overview . 13

2.2 Head loss equations . 15

2.3 Methods for calculating head loss . 15

2.3.1 Colebrook-White . 15

2.3.2 Lechapt/Calmon . 17

2.3.3 Williams/Hazen . 17

2.4 Linearizing head losses . 17

2.5 Modeling a sample network . 18

2.6 Equipments . 19

2.6.1 Pumps . 19

2.6.2 Pressure regulating devices . 20

2.6.3 Singular head loss / Valve . 21

2.6.4 Differential head loss / One-way valve . 21

2.6.5 Flow control valves . 21

This chapter presents the hydraulic model behind IRMA for describing the water networks,
including the different methods for calculating the head loss and the equipments that can be
represented.

2.1 Overview

In order to describe a meshed network in IRMA, it is necessary to identify the nodes, pipes,
points with known charge, its equipments and to specify the discharges at each point.
The network in IRMA is represented as directed graph, which is a set of vertices (representing
nodes) and edges (representing pipes.

A node is a junction of two (or more) connected pipes in the network. A point with known
charge is a node where the head (piezometry) is known at the beginning of the simulation (such
as a reservoir). An equipment is a device that creates a specific head loss that is added to the
pipes’ head losses, which can be due to friction, due to turbulent flows or it can be head gains in
case of pumping stations.

From this description, IRMA needs to find some specific paths before starting the computa-
tion: all the closed loops and the path between points with known charge needs to be identified.
These paths are used for building the equation system and also for calculating the probabilistic
demand model.

The mathematical model used by IRMA is based on the Kirchhoff ’s circuit laws that states:
the algebraic sum of currents in a network of conductors meeting at a point is zero. These laws
can be also applied to water networks, they are used in IRMA to write equations that represent
the flow conservation at the nodes and also the expected head differences between two nodes.

13

14 Chapter 2. IRMA Network Modeling

IRMA’s system of equations is divided in 3 groups:

∑
i

σiQi = 0, j = 1, ..., KN

∑
i

ǫi J(Qi) = 0, j = 1, ..., KL

∑
i

ǫi J(Qi) = ∆Hj = 1, ..., KE − 1

(2.1)

(2.2)

(2.3)

where
σi = −1, if the pipe i is directed entering node j, else +1,
Qi are the incoming and outgoing flowrates from each node,
ǫi = +1, if the pipe i is directed in the same sense than the path j, else -1,
J(Qi) are the head losses associated to each pipe,
KN is the number of junction nodes in the network,
KL is the number of independent (non redundant) loops,
KE is the number of nodes with known charge, fixed head (tanks/reservoirs)
KX is the number of nodes in the network (KN + KE) and
∆H is the head difference between the tanks.

The matrix can be noted as introduced in [Pil95]:
AQ = 0 M(J(Q)− AT

f H f) = 0kk−kn

where
A is the node-arc incidence matrix,
M is the loop-arc incidence matrix and A f is the fixed head node-arc incidence matrix.

• First group of equations (Eq. 2.1) represents the flow conservation at nodes: sum of the
flowrates in each node must be zero. The use of 0 in the second member allows to calculate
the maximum pressure and it can be replaced by the discharged value in order to simulate
the demands in each node. Each node is represented in the linear system by one equation
that defines its connections with all other nodes: ′1′ is used to represent a connection
between two nodes and ′0′ otherwise. These equations represent largest portion of the
linear system and since each node is usually connected to a maximum of 3 other nodes the
matrix representing the system will be sparse.

• Second group (Eq. 2.2) represents the head loss equations in a loop: sum of head losses
from the first to the last node in each loop must be zero.

• Third group (Eq. 2.3) represents the head losses in the paths between tanks: head loss in
each path between two tanks must be equal to head difference between first and last tank.

The unknown variables in the equation system are the flowrates in each node (Qi). The heads
(pressures) in each node are obtained from the flowrates, by calculating the pipes head losses.
The number of equations in a connected network must respect the following equation:

KK = KN + KL + KE − 1

where KK is number of pipes (unknown flowrates).
The number of independent loops is given by:

KL = KK − (KN + KE) + NCC

where NCC is number of connected components (or sub-networks).
The first group is filled with linear coefficients but second and third groups contain non linear

elements and must be linearized (Sec. 2.4) in order to be solved using traditional equations
solving algorithms (Sec. 5.2).

Iterative mechanism: IRMA determines initial flow values for each pipe and then calcu-
lates the head in each node. The system is then iteratively solved by applying the Kirschoff ’s

Section 2.2. Head loss equations 15

laws to calculate the resulting flowrates and then updating the heads based on these new
flowrates. This process is repeated until the sum of all differences between input and result
flowrates are smaller than a determined convergence value or until a maximum number of iter-
ations is performed (without reaching a stable state).

2.2 Head loss equations

The head loss (J) in each pipe is calculated in function of the flow (Q) and is given by the formula:

J(Q) = −(a + b.Q + c.Q2) + α.Qβ + D.Q2 (positive flowrate values)

where a, b, c represent pump coefficients (if it exists),
α represents friction head loss coefficients,
β is given by the head loss calculation method and
D represents singular head loss coefficient.

The equation needs to be adapted when the flowrates are negatives:

J(Q) = −(a + b.Q + c.Q.|Q|) + α.Q.|Q|β−1 + D.Q.|Q|

with positive pump coefficients a, b and c.

This head loss expression is continuous and derivable. Therefore we can write, with Q =
Q0 + ∆Q and J′(Q0) = (dJ

dQ)Q0
:

J(Q) = J(Q0) + J′(Q0).∆Q = (J(Q0)− Q0.J′(Q0)) + J′(Q0).Q

Head loss in a loop: the sum of all head losses in a loop is null. In a loop we have J(Q) = 0,
therefore:

∑ J′(Q0).Q = −∑(J(Q0)− Q0.J′(Q0))
First member . X = Second member

This formula will be used to write one equation for each loop in the network.

Head loss in a path between tanks: in these path equations the sum of all head losses
in each path is equal to the head difference between the two tanks. In each path we have
J(Q) = ∆H, therefore:

∑ J′(Q0).Q = −∑(J(Q0)− Q0.J′(Q0)) + ∆H

This formula will be used to write one equation for each 2 tanks in the network. If a network
contains KE tanks, there will be KE − 1 tank equations in the system.

2.3 Methods for calculating head loss

The methods for expressing head losses usually contain non linear elements in its formulas and
thus they must be linearized in order to build the system of linear equations. IRMA can use dif-
ferent methods for calculating the head loss: Williams/Hazen, Lechapt/Calmon and Colebrook.

2.3.1 Colebrook-White

The unitary head loss in a pipe can be obtained using this formula

∆h =
λ.V.|V|
2.g.D

16 Chapter 2. IRMA Network Modeling

where
λ is the Darcy-Weisbach friction factor (64

Re for laminar flows),
V is the water velocity,
g is the acceleration of gravity (9.81m/s2) and
D is the pipe diameter.

This section presents two iterative methods for obtaining the Darcy-Weisbach friction factor

λ: first a traditional method by using the original Colebrook-White formula and a new method
based on the Lambert W-function ([CGH+96, CJK97]).

2.3.1.1 Traditional resolution

The Colebrook head loss coefficient is calculated by first obtaining the Darcy-Weisbach friction
factor λ:

f (λ) =
1√
λ
+ 2log10

(

ε

3, 7D
+

2.51

Re
√

λ

)

where
λ is the Darcy-Weisbach friction factor,
ǫ is roughness height,
D is the pipe diameter and
Re is the Reynolds number.

This value is calculated traditionally using successive approximations (Newton’s method):

λn+1 = λn −
f (λn)

f ′(λn)

where
λn+1 is the next approximation of λn,
λn is the last calculated approximation of λ,
f ′(λn) is derivative function of f (λ), which is calculated as follows:

f ′(λ) = −0, 5

1√
λ

λ

1 +

2
log10

+ 2.51
Re

(

ε
3,7D + 2.51

Re
√

λ

)

2.3.1.2 Using the ω−function

Since the traditional method might need several iterations for achieving an accurate result,
newer methods have been developed for optimizing this computation. For example, the itera-
tive method defined in [Cla09] can achieve double precision accuracy by performing only two
iterations.

This method considers a generic Colebrook-like equation as:

1√
λ
= c0 − c1ln

(

c2 +
c3√

λ

)

where the ci are given constants. Then, the ω−function is defined as:

y + ln(y) = x =⇒ y = ω(x)

In the terms of the the ω−function, the solution for Colebrook equation is:

1√
λ
= c1

[

ω

(

c0

c1
+

c2

c1c3
− ln(c1c3)

)

− c2

c1c3

]

Section 2.3. Methods for calculating head loss 17

The iterative quartic scheme using the derivatives of the ω−function is:

yn+1 = yn −

(

1 + ni +
1
2 εn

)

εnyn
(

1 + yn + εn +
1
3 ε2

n

) for n ≥ 0

with

εi ≡
yn + ln(yn)− x

1 + yn
and initial guess y0 = x − 1

5

2.3.2 Lechapt/Calmon

The Lechapt/Calmon formula used in IRMA for calculating the unitary head loss is:

∆h =
L.Q.|Q|M−1

DN

where
Q is the flowrate,
D is the pipe diameter,
L, M and N are coefficients determined by pipe roughness.

For example, assuming a roughness value of K = 0, 25 mm, we have:

∆h =
1, 16 × 10−3.Q.|Q|0,93

D5,11

2.3.3 Williams/Hazen

The general form of the Williams/Hazen equation relates the mean velocity of water in a pipe
with the geometric properties of the pipe and slope of the energy line. The general form is
expressed as follows:

V = k.C1,852.R0,63.S0,54

where
V is velocity,
k is a conversion factor for the unit system (k = 0.849 for SI units),
C is a roughness coefficient,
R is the hydraulic radius and
S is the slope of the energy line (head loss per length of pipe or h f /L).

This formula is specialized to pipe flows, the unitary head loss is then calculated by:

∆h =
10, 69.Q.|Q|0,852

CD4,871

where
Q is the flowrate,
C is a roughness coefficient and
D is the pipe diameter.

18 Chapter 2. IRMA Network Modeling

2.4 Linearizing head losses

Head loss values (J1 and J2) are calculated with one of these formulas using two reference
flowrate values (1m3/s and 0.5m3/s). Then, a linear head loss coefficient α is determined by
the equation:

α = (2.
√

J1 −
√

J2)
2.(1 −

√
J1−

√
J2

2.
√

J1
)2

After obtaining the linear coefficient α, the following equation is used for calculating the head
loss:

J(Q) = α.Q.|Q|

Finally, matrix’s head loss equations (loops and path between tanks) will be filled using this
formula:

J′(Q0) =
J(Q0+h)−J(Q0)

Q0.h

where h is a constant small value.

2.5 Modeling a sample network

This section presents a sample network containing the basic elements modeled by IRMA and its
equation system when preparing the initial state for the iterative resolution.

Figure 2.1: Sample network with 7 nodes, 8 pipes, 2 tanks and 2 loops.

Figure 2.1 shows a diagram of this network, nodes 0001 and 0006 are tanks and there aren’t
any equipments. In this gravity-flow network there are no offtakes or equipments. The loops are
formed by the nodes {1, 0004} and {0002, 0003, 0004, 0005}.

Figure 2.2 shows the equation system that represents the first iteration when solving the
network from Figure 2.1. Lines 1 to 5 represent connections among ordinary nodes and since
there’s no consumption the second member is always equals to 0. Lines 6 and 8 represent loop
equation and line 8 represents the path equation between the 2 tanks.

2.6 Equipments

This section presents the equipments that can be described using IRMA and how they are mod-
eled.

Section 2.6. Equipments 19

Figure 2.2: Linear system that solves the sample network in a given iteration.

2.6.1 Pumps

Pumps are mechanical devices used for moving the water, they can be used to feed tanks or as a
booster to increase the network’s pressure. Figure 2.3 display an example of a pumping station.

Figure 2.3: Example of pumping stations.

Figure 2.4 shows a network scheme to illustrate the piezometric line behavior of a pump in
a sample network. The piezometric head represents the elevation summed with the pressure
head at each point of the network. In this case the pump is used to feed tank 2, located in the
higher end of the network.

Tank 1

Tank 2

Pump
 Piezometric line

Figure 2.4: Scheme representing the piezometric level of a network with a pumping station.

IRMA supports several types of pumps, they can have variable or fixed behavior and there-
fore they are divided in two groups: fixed or variable speed pumps.

Fixed speed pumps have a constant behavior during the iterative simulation and are de-
scribed by the curves that represent their Total Dynamic Head (TDH). The TDH of a pump is
given by the following equation:

TDH(Q) = a + b.Q + c.Q2

20 Chapter 2. IRMA Network Modeling

where a, b, c are the curve coefficients (usually given by the pump manufacturer) and Q is the
flowrate. The TDH is obtained in function of the observed flowrate and then it will be applied as
head gain to the pipe containing a pump.

Variable speed pumps adapt their behavior depending on an observed parameter. They
can have 3 regulation modes:

• Imposed regulation curve: in this mode there are different curves associated with a flowrate
interval. Whenever the observed flowrate is within an interval, the corresponding curve
will be adopted.

• Imposed head in a determined node: this mode is used to find out the coefficient k so that
TDH(Q) = k2.a + k.b.Q + c.Q2 can be used to obtain the desired head in a specified node.

• Imposed flowrate value: pumps in this mode are used to fill a tank using a chosen flowrate
value (Qi = cst). In this case, TDH is calculated automatically at each iteration in order to
respect the hydraulic equilibrium.

2.6.2 Pressure regulating devices

Pressure regulating devices are used to control the pressure in a specific part of the network.
There are 2 types of regulators: pressure reducing and pressure sustaining valves. The head loss
for these equipments is automatically adjusted by IRMA at each iteration in order to achieve the
desired head.

Pressure Reducing Valves are used to maintain the downstream pressure below a chosen
head value (Zreg). After each iteration i, the coefficient DH is adjusted for the iteration i + 1

taking into account the difference between the obtained head and the objective head :

DHi+1 = DHi +
Zi−Zreg

Q2

where
DHi+1 is the adjusted head loss coefficient for the next iteration,
DHi is the current head loss coefficient,
Zi is the obtained head,
Zreg is the desired downstream head and
Q is the flowrate.

Figure 2.5 displays a scheme representing the piezometric line when the pressure reducing
valve is active (left) and the case where it is inactive because the downstream head is below the
desired head (right).

 Desired head

 Piezometric linePressure
regulator
(active)

Pressure
regulator
(inactive)

Figure 2.5: Piezometric schemes for a pressure reducing valve.

Pressure Sustaining Valves are used to maintain the upstream pressure above a chosen
head value (Zreg). After each iteration i, the coefficient DH is adjusted for the next iteration
using the following formula:

Section 2.6. Equipments 21

DHi+1 = DHi +
Zreg−Zi

Q2

where
DHi+1 is the adjusted head loss coefficient for the next iteration,
DHi is the current head loss coefficient,
Zi is the obtained head,
Zreg is the desired upstream head and
Q is the flowrate.

Figure 2.6 displays a scheme representing the piezometric line when the pressure sustaining
valve is active (left) and the case where it is inactive because the upstream head is above the
desired head (right).

 Desired head

 Piezometric linePressure
regulator
(active)

Pressure
regulator
(inactive)

Figure 2.6: Piezometric schemes for a pressure sustaining valve.

If the water flows towards the direction that is not concerned by the valve (open position), a
second head loss coefficient kopen can be applied using the following formula:

DH = kopen.Q2

2.6.3 Singular head loss / Valve

A valve is treated as a singular head loss k that is constantly applied regardless of the flowrate
direction.

DH = −k.|Q|.Q

where Q is the flowrate. If k has a high value, this equipment will be treated as a closed valve
and this will represent a discontinuity in the network.

2.6.4 Differential head loss / One-way valve

A differential head loss is used to model valves that have different behaviors depending on the
flow direction. In this case, two coefficients kpos and kneg are informed for calculating respectively
the head loss in positive (Eq 2.4) and negative (Eq 2.5) position.

{

DHpos = −kpos.|Q|.Q
DHneg = −kneg.|Q|.Q

(2.4)

(2.5)

where Q is the flowrate. If kpos or kneg has a high value, this equipment will be treated as a
one-way (security) valve that only allows the water to flow in one direction. This valve is often
used, for example, associated to a tank in order to avoid emptying it.

22 Chapter 2. IRMA Network Modeling

2.6.5 Flow control valves

Flow control valves are used in order to keep flow under a chosen value. In order to achieve
the desired flow value (Qreg), the head loss coeffcient DH are automatically adjusted at each
iteration using this formula:

DHi+1 = DHi +
Ki

Q2
i

where
DHi+1 is the adjusted head loss coefficient for the next iteration,
DHi is the current head loss coefficient,
Qi is the flow and
ki is an adjustment coefficient (more details in Sec 4.11.4).

If DHi+1 becomes negative (causing a head gain), the value zero is imposed to the coefficient.

3
IRMA simulation modes and the Clément

demand model

Contents
3.1 Continuous flows . 23

3.2 Peak consumption using the Clément demand model 24

3.2.1 The general expression . 24

3.2.2 Adapting conservation equations to Clément formula 25

3.2.3 Calculating usage probability for irrigation networks 25

3.2.4 Issue with Clément when dealing with network ends 25

3.3 Maximum pressure . 26

3.4 Equipment positioning . 26

3.4.1 Pumping station to tank . 26

3.4.2 From tank to tank . 27

3.5 Network profiling in function of a Pump . 27

3.6 Pump Profiling . 28

3.7 Pressure driven analysis . 28

3.8 Discharge margin . 29

3.9 Extended period simulation . 30

3.10 Pipe size optimization . 30

3.10.1 Overview . 30

3.10.2 Construction of the lower envelope curve . 31

3.10.3 Ascent of the network . 32

3.10.4 Adding end sections . 32

3.10.5 Adding sections in derivations . 32

3.10.6 Adding sections in series . 33

3.10.7 Descent of the network . 35

This chapter presents the types of simulation that can be performed by IRMA, including the
Clément’s Formula that is used to estimate the peak demand in irrigation networks.

3.1 Continuous flows

Continuous flow is the basic simulation mode where all the demands are known and it is also
used for performing the other types of simulation that are detailed later in this chapter. IRMA’s
system of equations (previously defined in Sec 2.1) is modified in order to take the demand into
account and perform this simulation:

23

24 Chapter 3. IRMA simulation modes and the Clément demand model

∑
i

σiQi = Dn, j = 1, ..., KN

∑
i

ǫi J(Qi) = 0, j = 1, ..., KL

∑
i

ǫi J(Qi) = ∆H, j = 1, ..., KE − 1

(3.1)

(3.2)

(3.3)

where
Qi are the incoming and outgoing flows from each node,
Dn is the node’s demand,
J(Qi) are the head losses associated to each pipe,
∆H is the head difference between the tanks.

Second member of equation 3.1 represents the demand at each node. These equations are
then used to iteratively calculate the hydraulic equilibrium for scenarios with known demand
values.

3.2 Peak consumption using the Clément demand model

The goal of this simulation mode is to compute the piezometric heads at the moment of peak
consumption. Since this consumption is unknown, the flows are estimated at each pipe by using
the Clément’s formula [Clé66], which is a Peak Demand Diversity distribution. Basically, this
formula takes as input the number of offtakes (among other parameters) at each point and cal-
culates the flow in a given pipe based on the sum of all the estimatated downstream discharges.
The offtakes are seperated in classes according to the nominal flow (estabilished on the con-
tracts) and they are also associated to a probability according to the usage (for example, type of
crop).

3.2.1 The general expression

The flow generated for a given class of offtake in a pipe is given by the general expression of
Clément’s formula:

Q = Qcontinuous + ∑ nk.pk.dk + ǫ.U
√

|∑ nk.pk.(1 − pk).d
2
k |

where
dk is the nominal discharge of the offtake class k,
nk is the number of offtakes from class k served by the considered pipe,
pk is the opening (usage) probability of the offtakes from class k,
U is a parameter to determine the desired quality of service,
ǫ is the sense of the flow (represented by the sign of the term ∑ nk.pk.(1 − pk).d

2
k)

Qcontinuous is the pipe’s continuous flow (which is known in advance),
Q is the peak flow obtained in the pipe.

A class of offtake is defined by an association of nominal discharge and opening probability.
Therefore, a new class should be created for each offtake with different flow value or probability.

When the distribution of a given class of offtake k is calculated, the distribution of the classes
1 to k − 1 and the distribution of continuous flows are also known. The total flow in a pipe (in
function of the number of offtakes) is given by the following formula:

Q = Qcontinuous + nk.pk.dk +
k−1

∑
j=1

nj.pj.dj + ǫ.U

√

√

√

√|nk.pk.(1 − pk).d
2
k +

k−1

∑
j=1

nj.pj.(1 − pj).d
2
j |

Section 3.2. Peak consumption using the Clément demand model 25

3.2.2 Adapting conservation equations to Clément formula

When applying Clement’s formula, the equations need to be adapted in order to treat the conser-
vation of number of offtakes instead of flow. For a given class of offtake, the flow conservation
equations defined in Sec 2.1 are modified to:

∑
i

σini = 0, j = 1, ..., KN

∑
i

ǫi J(ni) = 0, j = 1, ..., KL

∑
i

ǫi J(ni) = ∆H, j = 1, ..., KE − 1

(3.4)

(3.5)

(3.6)

where ni is the number of offtakes of this class served by the pipe.

Most networks have several classes of offtake and therefore this system needs to be solved
successively for each class of offtake:

∑
i

σinik = 0, j = 1, ..., KN

∑
i

ǫi J(nik) = 0, j = 1, ..., KL

∑
i

ǫi J(nik) = ∆H, j = 1, ..., KE − 1

(3.7)

(3.8)

(3.9)

where nik is the number of offtakes of class k served by the pipe.

This means that the hydraulic equilibrium needs to be iteratively calculated for each class of
offtake and the obtained results are used for calculating Clément’s values for the next class.

3.2.3 Calculating usage probability for irrigation networks

One crucial aspect when performing simulations is to check if the model corresponds to what is
actually observed in the network. IRMA allows to fit the probabilistic parameters based on the
observed consumptions in the network.

Given a subset of network nodes, the usage probability of the offtakes of the class i is calcu-
lated by using this formula [Clé66]:

p =
Si.v

r. ∑i (ni.di)

where
Si is the irrigated surface,
v fictive continuous flow,
r is the crop yield (efficiency)
ni is the number of offtakes of the class i present in the subset of the network and
di is the nominal flow of the class i.

3.2.4 Issue with Clément when dealing with network ends

When applying Clément’s formula to pipes serving a small number of offtakes (particularly when
dealing with network extremities), the obtained flow is too small and therefore not acceptable
because the resulting heads are too optimistic.

In a ramified network, this problem is overcome by replacing the Clément’s flow by the re-
sulting flow by summing the n bigger offtakes served by the pipe, whenever this sum is bigger
than Clément’s flow.

26 Chapter 3. IRMA simulation modes and the Clément demand model

The drawback of this method is that it can only be applied to purely ramified networks. In
the generic case of meshed networks, the discontinuity introduced in the flow calculation (when
switching between Clément’s flow and sum of n bigger offtakes) does not allow to correctly solve
the equations that state the hydraulic problem (continuity and energy conservation equations).

The solution proposed to this problem with meshed networks is to adapt the probability of
the offtake’s usage Pk when dealing with small offtake populations. For large populations of
offtakes, the probability pk defined by the network designer is adopted. For small populations,
Pk tends to a value pk0 higher than the original value pk. The formula describing the evolution
of Pk between pk0 and pk is:

Pk+1 = pk0 − (pk0 − pk). tanh(pk. ∑
k

nk)

The hyperbolic tangent is used for obtaining a continuous evolution, since tanh(x) is equal
to 0 to x = 0 and tends to 1 for big x values. The slope value for the evolution is defined by the
multiplicative coefficient (in this case the original probability pk is used).

3.3 Maximum pressure

This simulation mode is used to compute the maximum pressure observed at each node and
assure that the obtained pressures are adapted to the infrastructure’s specification. Since the
discharges lower the network pressure, the basic assumption for this simulation is a scenario
without discharges and all the tanks at the maximum level.

The maximum pressure might be obtained in different scenarios and therefore in some con-
figurations it is necessary to perform multiple simulations. These scenarios depend mostly of
the equipments that are present in the network and in some cases some theoretical equipments
are added in order to model the state where maximum pressure is reached.

3.4 Equipment positioning

This section presents some typical examples for positioning pumps and one-way valves when
performing maximum pressure and peak consumption simulations. Sec. 3.4.1 presents sce-
narios where pump stations (or boosters) are present and Sec. 3.4.2 presents scenarios where
distribution is done by gravity-flow.

3.4.1 Pumping station to tank

Pump feeding upper tank: if the demand is present between the pumping station and the
upper tank, there is no need of installing one-way valves (Fig. 3.1).

Tank 1 Distribution

Tank 2

Pump

Figure 3.1: Network with demand between pumping station and the upper tank.

Downstream distribution from a tank in the extremity: in this case (Fig. 3.2) the
one-way valve should be present in both simulations to avoid emptying the tank towards to the
pumping station.

Section 3.5. Network profiling in function of a Pump 27

Tank 1

Distribution

Tank 2

1-way valve

Pump

Figure 3.2: Network without demand between the pump and the tank in the extremity.

Booster pumping towards a tank: in this case (Fig. 3.3) the one-way valve is needed only
to calculate the maximum pressure in the case the booster is off.

Tank 1

Distribution

Tank 21-way valve
Pump

Figure 3.3: Booster pumping into a tank.

3.4.2 From tank to tank

Distribution between two tanks: in this case (Fig. 3.4) the one-way valve avoiding to feed
the extremity tank 2 is needed but only for calculating the maximum pressure.

Tank 1

Tank 2

1-way valve

Distribution

Figure 3.4: Distribution between two tanks.

Downstream distribution from a tank in the extremity: in this case (Fig. 3.5) two
different one-way valves are needed. One valve avoiding to feed the extremity tank 2 for calcu-
lating the maximum pressure and one valve to avoid emptying this tank towards the upstream
network.

3.5 Network profiling in function of a Pump

The network profiling represents the pumping head variation in function of the pumped flow,
for given demand scenarios, pipes roughness values and the variation of level in the tanks. In
order to calculate the envelope curve for this profiling it is necessary to know how the maximum
and minimum heads vary at the pump (upstream and downstream) in function of these different
possible scenarios.

In the case of a pumping station associated to a compensation tank, the following method is
used:

28 Chapter 3. IRMA simulation modes and the Clément demand model

Tank 1

Distribution

Tank 2

1-way valves

Distribution

Figure 3.5: Downstream distribution from a tank in the extremity.

• Upstream from the pump: the minimum head is obtained when the peak demand is ob-
served (calculated with Clément’s Formula), considering the maximum value for pipes’
roughness and minimum level on the upstream tank. The maximum head is obtained
when there aren’t any discharges, considering the minimum value for pipes’ roughness
and maximum level on the upstream tank.

• Downstream from the pump: the minimum head is obtained when the peak demand (be-
tween the pumping station and the tank) is observed, considering the minimum value for
pipes’ roughness and minimum level on the downstream tank. The maximum head is
obtained when there aren’t any discharges (all the pumped flow reaches the tank), con-
sidering the maximum value for pipes’ roughness and maximum level on the downstream
tank.

In order to perform this computation, IRMA simulates the four different scenarios. The min-
imum envelope curve is obtained from the difference between the maximum downstream head
and the minimum upstream head. The minimum envelope curve is obtained by the difference
between the minimum upstream head and the maximum upstream head.

3.6 Pump Profiling

IRMA can also be used to help the design of new pumps in a network without tanks. Pump
profiling is performed first by defining a fixed amount of flow (demand) objective values, varying
from the minimum demand that can be observed (only continuous flows) up to a demand that is
equivalent to 25% more than the estimated peak consumption.

Second step is to generate the possible discharge scenarios that will reach each objective
flow value. These scenarios could be generated exhaustively in networks containing only a few
nodes, however in most networks this is not possible and for that reason they will be randomly
generated. The number of scenarios will be calculated in function of the number of offtakes, with
a minimum of 250 scenarios in order to guarantee a minimum sample size in case of networks
with a small number of offtakes.

Finally, all these scenarios will be simulated and the resulting value for each scenario will
be the required head in the node where the pump will be placed in order to provide the guaran-
teed pressure to all clients. All this data will then gathered to plot one graph where each line
represents the required head to satisfy a percentage of scenarios.

Figure 3.6 displays a sample result of this simulation in an existing network, objective flows
are represented in the x axis, required head in the y axis and each line represent a % of scenarios
that are satisfied.

3.7 Pressure driven analysis

The demand is usually fully satisfied under normal pressure conditions, but in scenarios with
low pressures modeling the demand independently from the pressure is not realistic and may

Section 3.8. Discharge margin 29

Figure 3.6: Pump profiling in the "Boutre" network.

often lead to negative pressures in the results.
The alternative for demand driven analysis is to take into account the pressure obtained in

each point in order to estimate the actual demand. There are several approaches for performing
this analysis, for example [GSK08] and [CVZR05] where it is presented an extension to EPANET
to perform pressure driven analysis.

In IRMA the user can associate to each node a nominal flow value Qn and a couple of bounding
pressure values P0 and P1. The estimated flow Q is obtained as follows:

• If pressure P is between the bounding pressure values [P0, P1], flow Q is taken as a fraction
of Qn equals to [P−P0

P1−P0
]

1
2

• If P is lower than P0, Q is taken as 0

• If P is higher than P1, flow Q is taken as:
Qn if there’s a flow limiter

[P−P0
P1−P0

]
1
2 .Qn if there’s no flow limiter

These coefficients will be iteratively calculated in function of the obtained pressures, until
convergence is reached.

3.8 Discharge margin

This functionality was designed to help the network manager to know more precisely the net-
work areas where it is possible to consider adding new discharges without deteriorating the
existing clients.

The goal is to determine what consumption can be added (or should be removed), in terms
of flow or number of offtakes, in a given served node in order to respect a condition given by the
user. This result is obtained by adjusting the additional consumption on the target node and
performing successive peak consumption simulations, until finding the consumption value that
corresponds to the criteria given by the user.

At the end of the simulation, the detailed results of obtained flows and pressures in the
network are given taking into account this additional consumption.

Two types of criteria can be defined, individually or combined:

• Exceeding pressure at the most unfavorable node served by the network.

30 Chapter 3. IRMA simulation modes and the Clément demand model

• Exceeding velocity.

If there aren’t any problems initially (pressure deficit or exceeded velocity), additional dis-
charges will be added and the condition will be to reach null exceeding pressure or null exceeding
velocity. If problems are present, discharges will be removed in order to reach an acceptable (or
null) deterioration.

3.9 Extended period simulation

This mode allows to simulate the network behavior in a period of time, by performing a chain
of static simulations that follow a variation law for the discharges. This law is expressed by
a series of coefficients that are applied to the demanded flows and are used to distinguish the
discharges in a certain number of time steps. For each time step, the hydraulic equilibrium is
calculated in order to obtain flows and heads.

In order to perform this type of simulation, the discharges are transformed from number of
offtakes to continuous flows in the following way:

• Calculation of the demanded flow at moment peak consumption (total flow that should
be fed to the network by a unique source) by using the Clément’s formula in function of
offtakes of each class i and each serving point j.

• Calculation of the equivalent continuous flows dj, demanded by each serving point j, by
distribution of the demanded flow Qp proportionally to the sums (∑(number of offtakes x
probability x nominal flow)

dj = Qp.

∑
i

Nij.pi.qi

∑
j

∑
i

(Nij.pi.qi)

where
Qp is the total demanded flow by the network at moment peak consumption,
Nij is the number of offtakes of each class i and each serving point j,
pi is the opening (usage) probability of the offtakes from class i and
qi is the nominal flow of the offtakes from class i.

These results can be used to calculate the water flow in the tanks, the stored volume periodic
variations by summing of the incoming and outgoing flows. Also, the tank level variations can
be calculated from this results (if the data concerning the tank shape is known).

3.10 Pipe size optimization

This section presents the optimization model adopted by IRMA for calculating optimal pipe sizes
using the Labye’s iterative discontinuous method [Lab88]. This method is designed for ramified
networks and is also used in other software, such as CEMAGREF’s [xer91] and COPAM [LS00].

3.10.1 Overview

The optimization procedure involves 3 distinct phases:

• Phase 1. Construction of the "lower envelope curve" for a section. This indicates the
minimum price of the section as function of the head loss in the pipe. (Sec. 3.10.2)

• Phase 2. Ascent of the network: moving upstream section by section, the lower envelope
curves of the individual sections are summed either in groups or in series (Sec. 3.10.3 to
Sec. 3.10.6) to obtain the network characteristic curve. This curve represents the total cost
of the network as a function of the hydraulic head the upstream extremity.

Section 3.10. Pipe size optimization 31

• Phase 3. Descent of the network: moving downstream section by section, for a given
hydraulic head at the upstream extremity selected as a function of pumping or reservoir
costs, the diameter of each section is defined together with the hydraulic head at each node
(Sec. 3.10.7).

3.10.2 Construction of the lower envelope curve

First step for calculating pipe sizes is to perform a peak consumption simulation (using Clément’s
Formula) using a pre-defined diameter value for the pipes that should be optimized. Then, a list
of suitable diameters for each section is constructed by calculating the velocity for each possible
diameter Di:

Vi = Qi/Si

where
Qi is the peak flow observed at the pipe i and
Si is the pipe’s i sectional area.

Table 3.1 presents the diameters list used as reference by IRMA, including the unitary price
and bounding values for minimal velocity (VMin) and maximum velocity (VMax).

Table 3.1: List of commercial pipe diameters with respective unitary prices and velocity limits.

Diameter (mm) Price (eur) VMin(m/s) VMax(m/s)

1000. 677.00 0.65 3.10
900. 568.00 0.65 3.10
800. 458.00 0.60 3.10
700. 375.00 0.60 3.10
600. 302.00 0.50 3.10
500. 232.00 0.50 2.85
400. 174.00 0.50 2.50
350. 137.00 0.40 2.30
300. 117.00 0.40 2.30
250. 102.00 0.40 2.15
200. 84.00 0.35 2.05
150. 74.00 0.35 1.95
100. 62.00 0.30 1.85
85. 51.00 0.30 1.60
70. 49.00 0.30 1.60
58. 46.00 0.30 1.60
49. 43.00 0.30 1.60
39. 42.00 0.30 1.60

Next step is to create a list of pipes suitable for a given section l(n), by calculating the total
head losses and prices:

Hi = ji.L(n) and Pt(n) = pi.L(n)

where
Hi is the total head loss,
ji is the unitary friction loss for the diameter i,
L(n) is the length of the section l(n),
Pt(n) is the total price and
pi is the unitary price for the diameter i.

32 Chapter 3. IRMA simulation modes and the Clément demand model

The lower curve envelope is a curve representing the minimum price of a section as function
of the permissible head loss in the section. This curve is created by plotting the slopes of the
suitable pipes for the section. The slope (β) of a segment representing pipes i and i + 1 is given
by:

βi,i+1 =
Pi+1−Pi
Hi+1−Hi

< 0

Figure 3.7 presents an example of lower envelope curve, the extremities of the curve are filled
with straight segments: a vertical segment rising from the point of minimum head, which indi-
cates that the discharge cannot be conveyed with a smaller head loss, and a horizontal segment
extending from the point of minimum price and which indicates that the cost of the section can-
not be reduced even if excess head is available. This curve can be used for example to calculate
the optimal diameters for a given head loss Hn. The benefit obtained by accepting an increase of
head loss can be also calculated.

0

P
1

P
2

P
3

H
1

H
2

H
3

D
3

D
2

D
1

Pn

H
n

P

H

Figure 3.7: P(H): Lower envelope curve or minimum price of section.

3.10.3 Ascent of the network

The ascent of the network is performed starting from the lowest point in the network for calcu-
lating the price curve Pi for each section. Here are presented the three possible section scenarios
when calculating the price curve: end sections, sections in derivations and in sections in series.

3.10.4 Adding end sections

End sections are defined as sections downstream of which it is essential to satisfy a minimum
piezometric head either because of the presence of a hydrant or because a branch originates at
the end of the section.

The least-cost section, as function of the upstream piezometric head is obtained by shifting
the lower envelope curve through a distance Zm equals to the imposed minimum head (as shown
in Figure 3.8).

3.10.5 Adding sections in derivations

Addition in derivation can happen when connecting either terminal nodes with a single section
or sub-networks. In both cases the the lower envelope curve has been determined on the basis of
a minimum piezometric head, since the head is added to the head loss curve for all end sections.
Consider two terminal sections 1 and 2, the resulting envelope curve Pi(Z) for the upstream
section i is given by:

Section 3.10. Pipe size optimization 33

0

P (dh)
i

Zmin

H

P (Z)
i

P

Figure 3.8: Adding the equivalent distance Zm to the section’s head loss curve envelope.

Pi(Z) = P1(Z) + P2(Z)

0
Z

P

P(Z) 2

P(Z)
1

P(Z)
i

a'

b'

c'
d'

D
1

D
2

D
3

D
4

D5

Zm1Zm2

Figure 3.9: Addition of price curves P1(Z) and P2(Z) in order to obtain the upstream lower
envelope curve Pi(Z) in a derived section i.

Since the curves P1(Z) and P2(Z) consist of a series of segments, each intersection of these
segments on either of the two initial curves will give rise to an intersection on the lower envelope
curve of the common upstream node. Similarly, each segment forming the curve Pi(Z) will have
a slope equals to the sum of the slopes of the two initial segments:

βi = β1 + β2

Figure 3.9 illustrates this derivation example in the ascent process: the price curves P1(Z)
and P2(Z) represent the downstream curve envelopes and Pi(Z) is the resulting price curve for
the section i. The minimum head of the lower envelope curve cannot be less than Zm1, which
leads to the elimination of Zm2 < Zm1.

3.10.6 Adding sections in series

Addition in series happen when a section i is added to a network, as illustrated in the left of
Figure 3.10. The problem in this case is to define the lower envelope curve at the upstream node

34 Chapter 3. IRMA simulation modes and the Clément demand model

nu as function of the head in the downstream node nd and of the head loss in the section i.

n
d

n
u

i

n
3

n
4

i

n
2

n
1

1 2

Figure 3.10: Examples of section addition in series: in the left addition of section i to a sub-
network and in the right the addition in terminal sections.

As an example, in the right of Figure 3.10 section i is added to the sub-network formed by
sections 1 and 2 added in derivation. The procedure is illustrated in Figure 3.11.

H

P
a

b

c

d

D
3

D
1

D
4

D
2

D5

H2H1

ZZ4Z 3

Z'a

P
a

P
b

P
c

P
a

P (dh)
3

P (Z)
r

P (Z)
4

P(Z')

Z'

Z5

Z' bZ' cZ' dZ'

Figure 3.11: Addition of section i to the sub-network.

If Pr(Z) is the lower envelope curve with respect to the head of the sub-network and P3(H) is
the lower envelope curve with respect to the section 3, it follows that the minimum head at node
4 is the sum of the minimum head loss in section 3 and the head of the downstream sub-network
formed by sections 1 and 2. The price curve is expressed by:

P4(Z) = P3(H1) + Pr(Z3)

The lower envelope curve P(Z) represents the range of diameters of pipes of least cost for each
head. Once these curves are calculated for all sections, all the parameters for determining the
minimum cost of a network are available and the ascending process can be performed. When
ascending the only assumption made is that the minimum (desired) head is known and the
upstream head will be calculated for each suitable diameter for each section.

Section 3.10. Pipe size optimization 35

3.10.7 Descent of the network

The optimal head at the upstream end having been determined, the next step is to decide upon
the head loss in each section. This is done by reading off the head from the lower envelope curve
P(Z) drawn for each node and selecting the diameter in function of P(Z).

P(Z)

D1

D2

D3

ZZ(D)1 Z(D)2 Z(D)3

P(Z)

D1

D2

D3

ZZ(D)1 Z(D)2 Z(D)3

P(Z)

D1

D2

D3

ZZ(D)1 Z(D)2 Z(D)3

Z upstream
Z upstream Z upstream

D3D =*i
D2D =*iD1D =*i

Figure 3.12: Examples of diameter selection in the descent process in 3 cases, considering D1 >

D2 > D3 and the selected diameter noted by D∗
i .

Figure 3.12 illustrates the selection of diameter in the descent process in 3 cases. In the
first case (left) the obtained head in the upstream node is lower than the minimum head and
therefore the largest diameter D1 is selected. In the second and third cases (center and right),
the smaller diameter that allows to obtain the minimum head is selected.

36 Chapter 3. IRMA simulation modes and the Clément demand model

4
Specification of IRMA

Contents
4.1 Overview . 38

4.2 Continuous flow simulation . 38

4.2.1 Overview . 38

4.2.2 Initialization . 38

4.2.3 Simulation steps . 38

4.3 Maximum pressure . 40

4.3.1 Overview . 40

4.3.2 Simulation steps . 41

4.4 Peak consumption . 41

4.4.1 Overview . 41

4.4.2 Simulation steps . 41

4.4.3 One way valve and Clément resolution issue 42

4.5 Convergence parameters . 42

4.5.1 Basic parameters . 43

4.5.2 Flow control valve . 43

4.5.3 Pressure regulating devices . 43

4.5.4 Paths equations . 44

4.5.5 Overview . 44

4.6 Network profiling in function of a Pump . 44

4.6.1 Overview . 44

4.6.2 Simulation steps . 44

4.7 Pump Profiling . 45

4.7.1 Initialization . 45

4.7.2 Simulation steps . 46

4.8 Pressure driven analysis . 46

4.8.1 Initialization . 46

4.8.2 Simulation steps . 46

4.9 Discharge margin . 47

4.9.1 Overview . 47

4.9.2 Simulation steps . 47

4.10 Dynamic network behavior . 48

4.10.1 Overview . 48

4.10.2 Simulation steps . 48

4.11 Equipments . 48

4.11.1 Pumps overview . 49

4.11.2 Variable speed pumps . 49

37

38 Chapter 4. Specification of IRMA

4.11.3 Pressure regulators . 50

4.11.4 Flow regulators . 51

4.11.5 Valve . 51

4.11.6 Differential head loss . 52

4.11.7 One-way valve . 52

This Chapter describes the algorithms used by IRMA for performing the different type of
simulations presented in Chapter 3.

4.1 Overview

IRMA has 4 main classes to drive the simulation (Fig. 4.1): IRMContext where all the data
needed for the simulation is gathered, IRMAGraph that stores the graph representing the net-
work topology, IRMASimu that performs the iterative simulation and LinearSystem that stores
the linear system representing A.x = b.

IRMContextIRMAGraph IRMASimu LinearSystem

Figure 4.1: IRMA’s main data classes.

The classes IRMASimu and LinearSystem can be extended in order to implement different
simulation algorithms and different methods for solving the linear system.

Figure 4.2 displays a sequence diagram to illustrate a basic execution of IRMA, the pre pro-
cessing phase consists in the following steps: IRMA first create an object of type IRMContext,
that will then be filled by parsing the input file in IRMAInit, then a consistency check is per-
formed in order to check for malformed networks and finally the topology analysis is performed
in order to find all the meshes and the paths required for the simulation (as explained in Sec.
2.1). At this point IRMA is ready to launch the simulation, represented here by IRMASimu,
but for each simulation mode the actual computation is performed by a class that extends IR-

MASimu.

4.2 Continuous flow simulation

4.2.1 Overview

Continuous flow simulation is used to calculate the hydraulic equilibrium in scenarios with
constant discharges and is the building block for all the other simulation modes.

4.2.2 Initialization

Before starting the iterative simulation, IRMA fills the second member of the linear system
A.x = b for the first group of equations 3.1 with the constant discharges at each node. Then,
IRMA gives an initial flow values Qi for each pipe i, calculated in function of the diameter di:

Qi = 2.π.d2
i

4.2.3 Simulation steps

The iterative execution of the continuous flow simulation is illustrated in Fig. 4.3:
The simulation loop consists basically in iteratively executing the following steps until con-

vergence is reached:

Section 4.2. Continuous flow simulation 39

Figure 4.2: IRMA’s simplified sequence diagram.

1. initFlowParams(): initialization of flow values Q0 and ∆Q that will be used for writing
the head loss equations for meshes and path between tanks (Sec. 2.3). In the first iteration
Q0 is calculated with the formula Q0 = 2.π.d2

i and for the following iterations Q0 is taken
from the solution flow of the previous iteration.
∆Q is flow value obtained in function of Q0 using the following formula ∆Q = Q0 + |Q0.h|,
where h is a small constant value.

2. buildSystemAxb(): initialization of the first member of flow conservation equations at
the nodes;
initialization of head loss equations in paths using J′(Q0)−J′(∆Q)

|Q0.h| for the first member.
The second member represents the sums of all head losses in the path. If the considered
path is a loop, first and last node are the same and therefore the path head loss is equal to
zero.

3. solve(): this method solves the linear system and stores the flow results for open pipes.
For closed pipes (discontinuity), the flow is a known value (null) and the obtained result is
the head loss observed at the pipe.

4. calcHeadLosses(): updates the head losses in all open pipes, using one of the proposed
methods for calculating the linear head loss (Sec. 2.3).

5. calcHeads(): updates head values at each node using the new flow and head loss values.

40 Chapter 4. Specification of IRMA

Figure 4.3: Continuous flow simulation sequence diagram.

6. calcConverg(): checks if the hydraulic equilibrium has been reached by comparing with
results from previous iteration (more details at Sec. 4.5). If the resolution converges,
the observed pipe flows, head losses and node heads will be taken as the result of this
simulation.

7. adjust(): in case the resolution does not converge, the coefficients of some equipments
might have to be adjusted in order to reach the hydraulic equilibrium. If there are no
equipments, no adjustments have to be done among the iterations.

4.3 Maximum pressure

4.3.1 Overview

The computation of the maximum pressure can be performed in 1 or 2 steps, depending on
the equipments that are present in the network and also depending on the results of the first
simulation. In some cases, it is also needed to add hypothetical equipments in order to simulate
states that each network might reach.

Section 4.4. Peak consumption 41

4.3.2 Simulation steps

Figure 4.4 presents the flow diagram for this simulation mode: the first simulation is performed
and then if there is at least one pump present with significant flow (higher than 1l/s), all the
pumps are replaced by closed pipes and a second simulation is triggered. A particular case is
treated in this second simulation: if there are disabled security valves associated to pumps they
will be enabled in order to prevent flows in the wrong direction (against the pump direction).

Start
Sim. Maximum

Pressure
Has pumps?

End

Sim. Max. Press.

without Pumps
Y

N

Figure 4.4: Flow diagram for maximum pressure simulation.

4.4 Peak consumption

4.4.1 Overview

The computation of the hydraulic equilibrium at the moment of peak consumption consists in
a series of chained simulations, where the result of each simulation is used as input for the
following simulation.

4.4.2 Simulation steps

Start
Simulate Class of

Offtake i

Finished all

classes
End

Sim. Continuous

Flow

N

Y

Figure 4.5: Flow diagram for peak consumption simulation.

The number of simulations performed is equal to i + 1, where i is the number of classes
of offtake with different nominal flow or usage probability (also called classes of probability).
Figure 4.5 display the flow diagram for the peak consumption simulation: the first simulation
performed is the simulation with continuous flows, where all the known demands are taken into
account. Then, the hydraulic equilibrium simulation is performed for each class of probability.

Figure 4.6 presents the sequence diagram that illustrates the simulation of one class of prob-
ability. The hydraulic equilibrium is calculated similarly to the continuous flow (as explained in
Sec. 4.2) except for the following two methods:

• initOfftakes(): estimates the number of offtakes of the current class of probability
that are being used at the moment of peak consumption (using the Clément’s Formula).

• initClassParams(): calculates the flow that will be adopted in the pipe, it takes the
number of offtakes in use and convert to a flow value using either the original Clément’s
Formula for the main parts of the network or the modified version if the pipe is located in
the network extremity (as described in Sec. 3.2.4).

42 Chapter 4. Specification of IRMA

Figure 4.6: Sequence diagram for simulating a class of probability.

4.4.3 One way valve and Clément resolution issue

When performing a peak consumption simulation using the Clément’s Formula, the presence of
one way valves may cause problems for estimating the demanded flow. These valves might close
during a simulation and therefore they introduce a discontinuity in the network flows.

As workaround for this issue, all the one way valves are removed from the network model for
performing the peak consumption simulation. At the end of the simulation, the flow direction is
verified in the pipes where the valves have been removed: if the flow is going to the forbidden
direction then the one way valve is replaced by a closed valve in the concerned pipe.

This process is repeated in the end of the second simulation, the fact of closing one (or more)
pipes might affect the flow direction in other pipes and the closed valves may also be blocking
flows in the allowed direction (and thus have to be removed). A simulation is performed with the
new parameters in order to make sure all the flows are in the allowed direction.

4.5 Convergence parameters

This section presents the parameters used for determining the convergence of continuous flow
and peak consumption simulations.

Section 4.5. Convergence parameters 43

4.5.1 Basic parameters

When IRMA performs a continuous flows simulation, the first convergence test is regarding
the variation of flow values in each pipe. For each pipe with a significant flow value (> 0.005 l/s),
the following sum is calculated:

∆Q =

Npipes

∑
j=0

|Qi − Qi−1|
|Qi−1|

Npipes

where:
∆Q is the average flow variation between current and previous iteration,
Npipes is the total number of pipes in the network,
Qi is the obtained flow value in the pipe for the current iteration and
Qi−1 is the obtained flow value in the pipe for the previous iteration.

If a peak consumption simulation is performed, a similar test is performed but instead of
summing the flow values, the sum of the number of offtakes is taken:

∆n =

Npipes

∑
j=0

|ni − ni−1|
|ni−1|

Npipes

where:
∆n is the average variation of number of offtakes between current and previous iteration,
Npipes is the total number of pipes in the network,
Qi is the obtained number of offtakes in the pipe for the current iteration and
Qi−1 is the obtained number of offtakes in the pipe for the previous iteration.

Then the following test is executed:

∆Q or ∆n < TOL

where TOL is a constant tolerance value.

4.5.2 Flow control valve

If this first test fails, IRMA considers that the simulation has not yet reached the hydraulic
equilibrium and triggers a new iteration. If it passes, IRMA continues to verify the remaining
convergence parameters.

The second parameter tested is regarding the equipments with regulated flow value (im-
posed flow pumps or flow control valve). For each of these equipments the following value is
calculated:

∆Qreg = |Qi − Qreg|

where ∆Qreg is the difference between the observed flow Qi and the desired flow value Qreg. The
value than taken for the current iteration from the equipment with the higher ∆Qreg.

4.5.3 Pressure regulating devices

For the pressure regulating devices, a ∆Qreg is calculated in a similar way:

∆Zreg = |Zi − Zreg|

where ∆Zreg is the difference between the observed head Zi and the desired head value Zreg.

44 Chapter 4. Specification of IRMA

4.5.4 Paths equations

Finally, the last convergence parameter checked is regarding the paths equations: the average
difference between the total head loss in the path and the head difference between the initial
and the last node ∆P is calculated for each path (meshes and path between tanks) :

∆P =
|∑ (∆H)− ∆Z|

Plength

where
∑ (∆H) is the sum of head losses in all pipes of the path,
∆Z is the head difference between the first and the last node of the path and
Plength is the total pipe length of the path.

4.5.5 Overview

The convergence parameters can be summarized as follows:

∆Q < TOL, for continuous flows simulation

∆n < TOL, for peak consumption simulation

∆Qreg < TOL

∆Zreg < TOLZ

∆P < TOL

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

where TOL is a constant generic tolerance threshold and TOLZ is the head tolerance threshold
that is usually set to require less precision than TOL in order to avoid convergence problems.

4.6 Network profiling in function of a Pump

4.6.1 Overview

In this mode IRMA simulates 4 scenarios for the different pumped flow values defined by the
user. In order to determine the different scenarios and the pumped flow intervals, the following
parameters need to be set by the user:

1. Minimum pumped flow.

2. Maximum pumped flow.

3. Minimum pipe roughness.

4. Maximum pipe roughness.

5. Number of steps.

4.6.2 Simulation steps

Figure 4.7 presents the flow diagram for performing this simulation: the starting pumped flow
value is set initially to the minimum given by the user and then is increased at each iteration
proportionally to the number of desired steps.

The result for this simulation is a table containing for each step (pumped flow value):

• Minimum and maximum heads obtained at pump’s upstream node.

• Minimum and maximum heads obtained at pump’s downstream node.

Section 4.7. Pump Profiling 45

Start
Sim. Max Press.

Min Roughness

Sim. Max Press.

Max Roughness

Sim. Peak Cons.

Min Roughness

Sim. Peak Cons.

Max Roughness

Increase Pumped

Flow
Flow > Limit

End

N

Y

Figure 4.7: Flow diagram for the network profiling in function of a pump.

4.7 Pump Profiling

This simulation mode has two main steps, first the initialization of the network and of the
different parameters that will be used for generating all the scenarios that will be simulated.

4.7.1 Initialization

The initialization phase consists in the execution of the following steps:

1. Definition of the number of configurations (scenarios) to simulate for each objective flow.
This value is calculated as follows:

Ncon f = k.Nhydrants

where
k is a multiplicative coefficient that can be defined by the user and
Nhydrants is the total number of hydrants installed in the network.

A minimum of 250 scenarios is imposed, in order to have a significant sample size for
networks containing a small number of hydrants.

2. Definition of the objective flow intervals : a ∆Q is calculated in order to divide the flow
interval [0, Qmax] in equal parts respecting the limit of 20 objective flows.
Qmax is defined as 25% more than the estimated peak discharges and it is obtained as
follows:

Qmax = 1, 25.(Qpeak + Qcont)

where
Qpeak is the peak demanded flow (using the Clément’s Formula) and
Qcont is the sum of all known continuous discharges.

3. Pumping station neutralization: this step consists in removing the pumping station
from the network description and updating the upstream tank head level:

Ztank = Zre f + apump

where
Zre f is reference value for the desired head in the upstream tank and
apump is the TDH coefficient taken from the neutralized pump.

46 Chapter 4. Specification of IRMA

4. Hydrants initialization: transformation of the discharges represented by number of off-
takes of each class into individual objects representing each hydrant (client) and the asso-
ciated nominal flow.

5. Computation of the piezometric line: calculation of the static piezometric line by per-
forming a hydraulic equilibrium computation considering the network without discharges
and after the pump neutralization.

4.7.2 Simulation steps

The second step is to iterate through all the objective flows and simulate Ncon f configurations
(scenarios) where the demand is equals (or close to) the objective value. This process is described
in the Figure 4.8.

Start
Create scenario

for objective flow

Simulated all

scenarios?

End

Set next

objective flow

Y

Simulated all

obj flows?

N

N Y

Simulate scenario

Figure 4.8: Flow diagram for the pump profiling simulation.

The result of each simulation is the required head where the pump will be placed, in order
to obtain a satisfying pressure in all points of the network. This required pressure is obtained
based on the observed pressure at the point with minimum exceeding pressure.

At the end of all simulations, a curve representing the required head in order to satisfy a
certain percentage of scenarios will be plotted for each objective flow (Fig. 3.6, Sec. 3.6).

4.8 Pressure driven analysis

4.8.1 Initialization

The first step is to initialize the bounding pressure values [P0, P1] for all nodes. These values
can be given by the user or taken from the default values: P0 = 0 and P1 equals to the desired
piezometric head at the node.

4.8.2 Simulation steps

The iterative process for finding the coefficients for nodes with pressure deficit is described in
Figure 4.9: an initial simulation is performed with all the demands satisfied in order to find out
where the pressure problems are. Then, the iterative process begins: nodes with pressure deficit
will have their consumption coefficient adjusted (in order to respect the equations described
in Sec. 3.7), until the mean differences in the actual demands (∆mean) between two iterations
reaches a small value.

Section 4.9. Discharge margin 47

Start Δmean = 0

Simulate demand

driven peak

consumption

Compute exceeding

pressures for each

node

Update discharge

coefficients for nodes

with pressure deficit

update

Δmean

Simulate pressure

driven peak

consumption

Δmean < minEnd Y

N

Figure 4.9: Flow diagram for the pressure driven analysis.

4.9 Discharge margin

4.9.1 Overview

In this mode, IRMA calculates the discharge that can be added to a node while respecting the
user defined criteria of velocity and/or minimum pressure in the network.

4.9.2 Simulation steps

Figure 4.10 illustrates the main steps of this simulation, first a peak consumption simulation
is performed without modifying the discharge and the initial values of exceeding pressure and
velocities are stored. If a problem is detected in these initial values, the goal of the simulation
is to calculate a reduction of the discharge in order to solve the pressure or velocity problem.
The new discharge Qmargin is calculated iteratively, until the velocity and pressure criteria are
respected.

Start
Simulate peak

consumption

Compute inital exceeding

pressures for all nodes

Update Qmargin

Simulate pressure

driven peak

consumption

Velocity and pressure

criteria respected ?
EndY

Compute inital velocities

for all pipes

Simulate peak

consumption

Calculate

Max Δ velocity

Max Δ pressure

N

Figure 4.10: Flow diagram for the discharge margin calculation.

48 Chapter 4. Specification of IRMA

4.10 Dynamic network behavior

4.10.1 Overview

In this mode, IRMA simulates the network behavior over the time by using discrete time steps.

4.10.2 Simulation steps

The flow diagram of this simulation mode is described in Figure 4.11, the discharges described
in number of offtakes are transformed into continuous flows using the Clément’s Formula and
then the simulation for each time step is performed. In order to estimate the demand in a period
of time, for each time step a multiplicative coefficient is applied to all discharges.

Start
Transform offtakes in

continuous flows

Start new time step:

update consumption

update tank levels

Simulated all

time steps?
EndY

Simulate peak

consumption

N

Figure 4.11: Flow diagram for the dynamic network behavior.

4.11 Equipments

All the equipments extend an abstract class that gives the main properties that are common to
most equipments. These are the main methods declared in the Equipment class:

1. init(): initialization before each simulation of flow values and pipe state (open/close).

2. initAdjustStep(): initialization before each iterative resolution of the step for adjust-
ing the head loss coefficient. This is needed by the equipments that automatically adjust
the head loss, such as pressure/flow regulators and variable speed pumps.

3. calculHeadLossCoeff(): update the head loss coefficient for equipments with a vari-
able head loss.

4. calculHeadLoss(): calculates the head loss in function of the observed flow Q. The
generic formula is:

DH = k.Q2

where k is the head loss coefficient. This method will be overloaded by the equipments that
need to calculate the head loss using different formulas.

5. calculConverg(): calculates the ∆ in order to check if the equipment has reached the
objective head or flow value.

6. adjust(): this method is executed in case the resolution has not yet converged, as the
last step of each iteration. Depending of the type of equipment, this method is used for
triggering state changes (open/close or active/inactive) and the recalculation of the head
loss coefficients.

7. changeCoeffs(): this method is used for changing the coefficients for each type of simu-
lation, or to change the pump curves during a simulation.

Section 4.11. Equipments 49

4.11.1 Pumps overview

The relation among the different types of pumps (as detailed in Sec. 2.6) is illustrated in the
class diagram (Figure 4.12).

Equipment
<<abstract>>

Pump

Variable Speed Pump
<<abstract>>

Qinf Qsup Pump

Imposed Q
Pump

Imposed Z
Pump

Figure 4.12: Class diagram for the different types of pumps.

The following methods are defined in the class Pump common for all types of pumps:

1. calculNominalFlow(): the nominal flow is used for initializing the pump flow before
each simulation and also in case of divergence. This value can be informed by the user
update the head loss coefficient or calculated with the following formula:

Qnominal = −b −
√

b2−4.a.c
2.c

where a, b and c are the curve coefficients of the pump.

2. calculHeadLoss(): calculates the total dynamic head loss in function of the observed
flow Q using the formula:

TDH = −(a + b.Q + c.Q2)

where a, b and c are the curve coefficients of the pump. The resulting TDH is negative in
order to give a head gain.

3. init(): initializes pump flow value to the nominal flow of the pump Qnominal before start-
ing each simulation.

4. adjust(): checks if the pump is diverging (flow is going into the wrong direction or is
outside the curve describing the pump). If the pump is diverging, the nominal flow is taken
as the pumped flow for the next iteration.

4.11.2 Variable speed pumps

Pump with imposed regulation curves (Qinf Qsup): this kind of pump adapts its behavior
depending on the observed flow. This pump takes as input different curves associated to flow
intervals. The following method is overloaded:

• adjust(): checks if the pump is working within the accepted flow interval and updates
the coefficients if needed.

Pump with imposed head in a determined node: the class implementing this pump
overloads the following methods:

50 Chapter 4. Specification of IRMA

1. converg(): calculates the difference between the obtained and desired head in the regu-
lated node.

2. adjust(): updates the coefficients a, b and c in order to adjust the head gain and reach
the desired head in the observed node.

Pump with imposed flow value: the class implementing this pump overloads the following
methods:

1. init(): initializes pump flow value to the pump’s imposed flow value before starting each
simulation.

2. converg(): calculates the difference between the observed flow and the imposed flow.

3. adjust(): updates the coefficients a, b and c in order to adjust the head gain and reach
the imposed flow.

4.11.3 Pressure regulators

Both downstream and upstream regulators share a common class as illustrated in Figure 4.13.

Equipment
<<abstract>>

Pressure Regulator
<<abstract>>

Downstream Pressure
Regulator

Upstream Pressure
Regulator

Figure 4.13: Class diagram for the pressure regulators.

In the abstract class Pressure Regulator, the following methods are overloaded from the
class Equipment:

• init() initializes the head loss coefficient ∆h to zero.

• calculHeadLoss() computes the head loss, using two different formulas depending on
the observed flow Q:

{

DH = ∆h.Q2 if Q ≥ Qmin

DH = ∆h Q < Qmin

(4.6)

(4.7)

This special treatment needs to be done for avoiding numerical problems when dealing with
values very close to zero: the ∆h coefficient tends to increase and yet it is not effective for in-
creasing the head loss.

Downstream pressure regulator:

• adjust() updates the head loss coefficient using the formula:

∆hi+1 = ∆hi + k.
Zreg−Zi

Q2

Section 4.11. Equipments 51

where
∆hi+1 is the head loss coefficient calculated for the next iteration i + 1,
∆hi is the head loss coefficient from the current iteration i,
k is an adjustment coefficient for cases with small flow values,
Zreg is the desired downstream head,
Zi is the obtained downstream head and Q is the observed flow in the pipe.

If Zi < Zreg and the obtained coefficient ∆hi+1 is negative, then the pressure regulator will be
deactivated (and therefore ∆hi+1 will be taken as zero).

If the calculated coefficient ∆hi+1 is smaller than the coefficient in open position kopen, then
kopen is taken as the head loss coefficient for the next iteration i + 1.

Upstream pressure regulator:

• adjust() updates the head loss coefficient using the formula:

∆hi+1 = ∆hi + k.
Zi−Zreg

Q2

where
∆hi+1 is the head loss coefficient calculated for the next iteration i + 1,
∆hi is the head loss coefficient from the current iteration i,
k is an adjustment coefficient for cases with small flow values,
Zreg is the desired downstream head,
Zi is the obtained downstream head and Q is the observed flow in the pipe.

If Zi > Zreg and the obtained coefficient ∆hi+1 is negative, then the pressure regulator will be
deactivated (and therefore ∆hi+1 will be taken as zero).

If the calculated coefficient ∆hi+1 is smaller then the coefficient in open position kopen, then
kopen is taken as the head loss coefficient for the next iteration i + 1.

4.11.4 Flow regulators

Flow regulators have four input parameters:

1. Maximum desired flow Qreg1 for the positive sense (from node 1 to node 2).

2. Maximum desired flow Qreg2 for the negative sense (from node 2 to node 1).

3. Head loss coefficient kopen1 in open position (Qi < Qreg for the positive sense.

4. Head loss coefficient kopen2 in open position (Qi < Qreg for the negative sense.

In the open position kopen1 or kopen2 are taken as head loss coefficient. When the flow regulator
is active, the head loss coefficient is adjusted at each iteration in order to reach the desired flow.

The class implementing the flow limiter extends the Equipment class and overloads the
following methods:

1. init(): initializes to zero the head loss coefficient before starting each simulation.

2. converg(): calculates the difference between the observed flow and the regulated flow.

3. adjust(): if active, updates the head loss coefficient in order to reach the desired flow. If
inactive, takes kopen1 or kopen2 as head loss coefficient.

4.11.5 Valve

The open valve (or singular head loss) uses only methods from the super class (Equipment),
except for the constructor that initializes the head loss coefficient given by the user.

In the case of the closed valve (high value for the head loss coefficient), a variable indicating
the discontinuity in the pipe is set to true.

52 Chapter 4. Specification of IRMA

4.11.6 Differential head loss

The differential head loss equipment takes two input parameters:

1. Head loss coefficient k1 in the positive sense.

2. Head loss coefficient k2 in the negative sense.

The class implementing the differential head loss extends the Equipment class and overloads
the following method:

• calculHeadLossCoeff(): updates the head loss coefficient depending on the observed
sense of the flow, taking k1 if Q > 0 and k2 if Q < 0.

4.11.7 One-way valve

One-way valve is a special case of the differential head loss and it has two input parameters:

1. Allowed sense.

2. Head loss coefficient kopen in open position.

The class implementing the One-way valve extends the Differential Head Loss class
and overloads the following methods:

1. init(): initializes the flow before starting each simulation and also some variables for
dealing with the peak consumption computation (more details in Sec. 4.4.3)

2. calculHeadLossCoeff(): updates the head loss coefficient depending on the observed
sense of the flow, taking kopen if open and kmax if active.

This class also implements a private method:

• calculIClose(): checks if the valve must change the current state, by checking the
sense of the flow.

5
Optimized linear system solving

Contents
5.1 Overview of methods for linear system solving 53

5.1.1 Direct methods . 53

5.1.2 Iterative methods . 54

5.2 Linear system solving libraries in Java . 54

5.2.1 JAMA . 54

5.2.2 Colt . 55

5.2.3 MTJ . 55

5.2.4 BLAS and LINPACK . 55

5.3 Proposed solution for the solver . 55

5.3.1 Yale Sparse Matrix Package . 55

5.3.2 Yale’s compressed matrix format . 56

5.3.3 Building the JNI Interface to FORTRAN . 57

5.3.4 Java interface . 57

5.3.5 C++ interface . 58

5.3.6 Compilation steps . 59

5.4 Performance results . 60

5.4.1 Optimizing the Colt library for IRMA . 60

5.4.2 Performance overview of the solvers . 60

This chapter presents the different methods and libraries for solving linear systems that were
analyzed for using with IRMA, the optimizations that were performed and the final proposed
solution.

5.1 Overview of methods for linear system solving

This section gives an overview of the methods found in the literature for solving linear systems
expressed in the form Ax = b, where A is a square matrix containing the coefficients, x repre-
sents the variables and b represents the second member of the system.

They can be classified in two main groups: direct and iterative methods.

5.1.1 Direct methods

These methods attempt to solve the linear system by a finite sequence of operations and aim
to obtain an exact solution for the problem. The LU Decomposition is an example of direct
method, it consists basically in decomposing the A matrix in two triangular matrices (Lower
and Upper), as illustrated in Figure 5.1. This decomposition can be obtained by performing the
Gaussian elimination.

The matrix equation becomes LUx = b and it can be solved in two logical steps:

53

54 Chapter 5. Optimized linear system solving

Figure 5.1: LU Decomposition: example of Lower triangular matrix and an Upper triangular
matrix.

1. Solve the equation Ly = b for y.

2. Solve the equation Ux = y for x.

In both cases the matrices are triangular and can be solved directly using the forward and
backward substitution.

In order to improve numerical stability, a technique called pivoting can be used. This tech-
nique has also the advantage of treating most types of systems (as long as they have a solution),
without requiring special properties of the input matrix. The drawback is the complexity, as this
method is very computing intensive.

5.1.2 Iterative methods

An iterative method is a mathematical procedure that generates a sequence of improving approx-
imate solutions by usually giving an initial guess for the solution and then generating successive
approximations. These methods in general require some properties and a specific conditions for
solving a system, therefore iterative methods have often an associated procedure for precon-
ditioning the problem into a suitable form. Here are some examples of iterative methods for
solving linear systems:

• The Conjugate Gradient (CG) [She94] is an algorithm for solving systems whose matri-
ces are symmetric and positive-definite. There is also a variant called Biconjugate Gra-
dient (BiCG) that provides a generalization to unsymmetric matrices.

• The Quasi-minimal Residual Method (QMR) [FN91] solves non-hermitian systems and
attempts to overcome irregular convergence behavior of the Biconjugate gradient method.

• The Generalized Minimum Residual method (GMRES) [Saa03] solves unsymmetric

linear systems by approximating the solution vector in a Krylov subspace with minimal
residual.

• The Iterative Refinement (IR) proposed by [WRB86] to improve the accuracy of numeri-
cal solutions to unsymmetric systems of linear equations.

5.2 Linear system solving libraries in Java

The model currently used by IRMA generates unstructured matrices containing up to 15.000

elements and the iterative nature of the resolution of the system need to be solved hundreds or
up to thousands of times. Therefore, the performance of the linear solving library is a crucial
element for executing the simulation in an acceptable time.

This section presents the most relevant libraries that were found and tested in the develop-
ment process of the Java version of IRMA. A comparative performance chart of these libraries is
presented in Sec. 5.4.

5.2.1 JAMA

JAMA (JAva MAtrix Package) [jam11] is a basic linear algebra package for Java and it was
developed by the National Institute of Standards and Technology (NIST) at the University of

Section 5.3. Proposed solution for the solver 55

Maryland, USA. It provides user-level classes for constructing and manipulating real, dense
matrices.

JAMA proposes five matrix decompositions, which consist of pairs or triples of matrices, per-
mutation vectors, and the like, produce results in five decomposition classes. The five decom-
positions are: Cholesky Decomposition of symmetric, positive definite matrices, LU Decomposi-
tion (Gaussian elimination) of rectangular matrices, QR Decomposition of rectangular matrices,
Eigenvalue Decomposition of both symmetric and unsymmetric square matrices and Singular
Value Decomposition of rectangular matrices.

This package provides only support for dense systems, no representation for sparse matrices
is offered.

5.2.2 Colt

Colt [col11] provides a set of Open Source Libraries for High Performance Scientific and Techni-
cal Computing in Java and it was developed by the European organization for Nuclear Research

(CERN) 1.
Colt uses JAMA as underlying library for linear algebra and therefore offers the same five

decompositions available in JAMA.

5.2.3 MTJ

MTJ [mtj11] is a library for developing numerical applications, both for small and large scale
computations. The library is based on BLAS [LHKK79] and LAPACK [ABB+99] for its dense
and structured sparse computations, and on the Templates project for unstructured sparse op-
erations.

MTJ is based on the netlib-java project [net11], which can be set up to use machine-optimized
BLAS libraries for improved performance of dense matrix operations, falling back to a pure Java
implementation. This ensures perfect portability, while allowing for improved performance in a
production environment.

MTJ implements 2 direct methods, LU and Cholesky decomposition, and it implements sev-
eral iterative methods for solving linear systems, such as: Conjugate Gradient, BiConjugate
Gradient, Chebyshev method, GMRES, IR and QMR.

5.2.4 BLAS and LINPACK

BLAS [bla11a] stands for Basic Linear Algebra Subprograms, it was first published in 1979
and is a standard API for libraries publishing basic linear algebra operations. The FORTRAN
version is widely used but it has been also translated into other languages (such as C and Java).

LINPACK [DMBS79] is a collection of FORTRAN subroutines that analyze and solve linear
equations and linear least-squares problems. It uses the BLAS libraries for performing ba-
sic vector and matrix operations. LINPACK offers decomposing methods such as LU, QR and
Cholesky.

There are some Java translations of these libraries, for example in [bla11b] some methods
from the BLAS libraries can be found and also decompositions translated from LINPACK ’s FOR-
TRAN version.

5.3 Proposed solution for the solver

5.3.1 Yale Sparse Matrix Package

This FORTRAN library [EGSS77] was written at the Yale University and it implements the LU

Decomposition with sparse matrix storage. The resolution is divided in two phases:

1http://public.web.cern.ch/public/

56 Chapter 5. Optimized linear system solving

1. Pivoting: consists in organizing the equation matrix assuring that it contains a non-zero

element in the diagonal. The row permutations that need to be performed are stored in a
permutation matrix and is given as input for the second phase.

2. Resolution: solves the system by performing the LU Decomposition using the permuta-
tion matrix.

The pivoting phase has the highest computational cost and this package also allows the
reuse of the permutation matrix. Since we need to solve several times our systems and the pivots

rarely change among the iterations, this feature can dramatically speed up our simulation.
In order to use this FORTRAN library from a Java application it is necessary to perform na-

tive calls using JNI (Java Native Interface). Since JNI does not allow direct access to FORTRAN
code from Java, a C++ interface was written to wrap the FORTRAN library. The main drawbacks
of this approach are reducing the portability of the Java code and complicating the compilation
process, but this solution has been already successfully deployed in Windows, HP-UX Unix and
Linux.

This library takes as arguments the list of system’s pivots and the matrix stored using the
Yale sparse matrix format. Therefore the last requirements for using this library are to search
the pivots before first iteration (also after a few particular cases, e.g. when a pipe is closed
between two iterations) and write the matrix respecting Yale’s compressed format for matrix
storage.

5.3.2 Yale’s compressed matrix format

The sparse format stores only the nonzero entries of the matrix A, row-by-row in the array YA.
To identify the individual nonzeros entries in each row, it is needed to know which column each
entry lies. The column indexes which correspond to the nonzero entries of the original matrix
are stored in the array JA; i.e, if YA(K) = A(I, J) then JA(K) = J.

In addition, it is needed to know where each row starts and how long it is. The index positions
in JA and YA where the rows of A begin are stored in the array IA; i.e., if A(I, J) is the first
nonzero stored entry in the I − th row and YA(K) = M(I, J), then IA(I) = K.

Moreover, the index in JA and YA of the first location following the last element in the the
last row is stored in IA(N + 1). Thus, the number of entries in the I − th row is given by IA(I +
1)− IA(I), the nonzero entries of the I − th row are stored consecutively in:

YA(IA(I)), A(IA(I) + 1), ..., YA(IA(I + 1)− 1)

and the corresponding column indexes are stored consecutively in:

JA(IA(I)), JA(IA(I) + 1), ..., JA(IA(I + 1)− 1)

For example, the 5x5 matrix:

1 0 2 0 0

0 3 0 0 0

0 4 5 6 0

0 0 0 7 0

0 0 0 8 9

is stored as:

1 2 3 4 5 6 7 8 9
IA 1 3 4 7 8 10
JA 1 3 2 2 3 4 4 4 5
YA 1 2 3 4 5 6 7 8 9

In order to simplify the construction of the compressed matrix, a new Java class has been
created. This class allows to progressively fill the sparse matrix, row-by-row and avoiding to
allocate a dense matrix. This new class offers the following interfaces for dealing with the com-
pressed format:

Section 5.3. Proposed solution for the solver 57

• restart(): reset to zero the counters of current row and number of elements stored.

• addValue(val,j): add new value val to column j of current row.

• endRow(): finalize current row by consolidating the values currently stored into the 3
arrays format. This allows to add the elements in any column order for a given row.

• setBeginPaths(): set the beginning of the matrix’s portion representing the mesh equa-
tions and the path equations between tanks.

• goToPaths(): after the first iteration, in most cases, only the path equations need to be
updated. This method allows to perform an optimization by allowing to keep the first part
of the matrix untouched and to modify only the path equations.

5.3.3 Building the JNI Interface to FORTRAN

The Java Native Interface (JNI) is a framework that enables Java code running on a Java Virtual

Machine (JVM) to call native applications, compiled specifically to a hardware and operational
system, written in other languages such as C, C++ and assembly. However, JNI does not offer
any interface to access FORTRAN code. In order perform FORTRAN calls from Java, a new
interface needs to be created, for example, using C++ to make calls to the FORTRAN library
(Figure 5.2).

Java C++ FORTRANJNI

Figure 5.2: Calling FORTRAN code from Java through a JNI / C++ Interface.

FORTRAN routine signature: this is the simplified signature for accessing Yale’s LU De-

composition FORTRAN routine (parameters not needed by IRMA are omitted):

SUBROUTINE CDRV (N, R, IA, JA, A, B, Z, FLAG)

where the input parameter:
N is the size of the square matrix A,
R contains the pivots of the system,
IA is the 1d array containing the row indexes in the Yale’s compressed format,
JA is the 1d array containing the column indexes in the Yale’s compressed format,
A contains the nonzero values of the matrix in the Yale’s compressed format,
B is the second member of the system A.x = b,

and the output parameter:
B is the solution of the system (resulting flows or heads),
Z and FLAG are errors detectors in case of problems in the system resolution.

5.3.4 Java interface

The Java interface consists in declaring a native method with the corresponding signature:

public static native float[] yale(int n, int[] r, int[] ia, int[] ja,

float[] a, float[] b);

Then, the JNI will generate a header file containing the signature:

58 Chapter 5. Optimized linear system solving

JNIEXPORT jfloatArray JNICALL Java_linear_1algebra_SolverYale

(JNIEnv *, jclass, jint, jintArray, jintArray,

jintArray, jfloatArray, jfloatArray);

This header file is then included in the C++ code.

5.3.5 C++ interface

The C++ interface has two roles:

• export a method that can be called from the Java application and

• call a FORTRAN method with the data retrieved from the JVM and transfer FORTRAN
results to the JVM.

In order to access the fortran routine, the C++ code must declare the following interface:

extern "C" {

void cdrv_(int* n, int*r, int*ia, int *ja, float * a, float *b, float *z,

int * flag);

}

Then, a standard JNI C++ method call is performed:

JNIEXPORT jfloatArray JNICALL Java_linear_1algebra_SolverYale (args) {

jboolean iscopy;

int flag = 0;

int * ja = env->GetIntArrayElements(jJA, &iscopy);

float * A = env->GetFloatArrayElements(jA, &iscopy);

float * Y = env->GetFloatArrayElements(jB, &iscopy);

int * iper = env->GetIntArrayElements(perm, &iscopy);

int * ia = env->GetIntArrayElements(jIA, &iscopy);

cdrv_(&n, iper, ia, ja, A, Y, Y, &flag);

env->ReleaseFloatArrayElements(jB, Y, 0);

env->ReleaseIntArrayElements(jJA, ja, JNI_ABORT);

env->ReleaseFloatArrayElements(jA, A, JNI_ABORT);

env->ReleaseIntArrayElements(perm, iper, JNI_ABORT);

env->ReleaseIntArrayElements(jIA, ia, JNI_ABORT);

return NULL;

}

This piece of code is very sensible regarding the performance and the memory management.
Although this call is triggered by the Java application, the JVM does not handle the memory
management in this code. The first group of calls are used to access the Java matrix data and
pivots from the C++ code, by pinning the variables using the JNI interfaces.

Then, the FORTRAN routine (cdrv_) is executed and the variable containing the system’s
solution jB is transfered back to the Java application. The other pinned variables are released
using the JNI_ABORT flag in order to optimize the call by avoiding copying them back to the
Java stack.

The release of pinned variables is necessary even if the JNI code is declared static in the
Java side, because if not released the JVM will not reuse the allocated memory area between two
method calls and this will eventually consume all the available memory for a long simulation.

Section 5.3. Proposed solution for the solver 59

5.3.6 Compilation steps

Since the native code is hardware and operational system dependent, the compilation steps may
vary from each configuration or compiler (except for the JNI header that is platform indepen-
dent). This section explains all the steps for compiling the FORTRAN library and the C++
interface using, for example, a GNU/Linux platform.

The first step for compiling this new interface is to create the JNI header file from the
Java class that declares the native call:

javah -jni SolverYale.java

This will generate the header file SolverYale.h that should be included in the C++ code:

#include "SolverYale.h"

Compiling the FORTRAN code as a shared library using, for example, the GNU G95
FORTRAN compiler [g9511].

g95 -fmultiple-save -ffixed-form -ffixed-line-length-132 -i4 -c -fPIC

-freal-loops YALE.F90 -o YALE.o

where:
-fmultiple-save allows multiple declarations of the SAVE statement ,
-ffixed-form specifies the format of the source code,
-ffixed-line-length-132 sets the length of each line to 132,
-i4 sets the default size of the integer variables to 32 bits,
-c tells the compiler to create the compiled object only (without linking to an executable),
-fPIC tells the compiler to create position independent (relocatable) code and
-freal-loops accepts real variables to control loops.

This step will create the object file YALE.o that is used in the next step for compiling the
C++ interface:

g++ -I/jvm/include/ -I/jvm/include/linux -fPIC libf95/*.o -shared

YALE.o Yale.cpp -o libYale.so

where:
-I/jvm/include/ -I/jvm/include/linux are to include the JNI headers from the JVM,
-fPIC tells the compiler to create position independent (relocatable) code,
libf95/*.o includes the G95 FORTRAN needed libraries,
-shared tells the compiler to create a shared library (.so under linux),
YALE.o is the object file containing the FORTRAN routine
YALE.cpp is the source code file of the C++ interface.

This will create the shared library libYale.so containing the LU Decomposition FORTRAN
routine, the needed G95 FORTRAN routines and the C++ interface for accessing the FORTRAN
code.

In the case of the G95 FORTRAN compiler, the object files libf95/*.o need to be extracted
from the file libf95.a (which is available with the compiler package) in order to be used in a
shared library. This extraction can be made using the GNU ar command:

ar x libf95.a

60 Chapter 5. Optimized linear system solving

5.4 Performance results

This section presents the performance results of the previously mentioned solvers when simu-
lating the network with 1.763 pipes called "TAMAGNON LA MARONNE LES PLAINES". This
network was chosen as test case for benchmarking the solvers because of its size: it can be solved
within a reasonable amount of time and memory using the solvers that store dense matrices.

5.4.1 Optimizing the Colt library for IRMA

This section presents the results of the optimization implemented in the Colt library in order
to reduce the execution time of the IRMA simulations. The optimization consists basically in
applying two changes to its LU Decomposition class:

1. Modification of the original method that performs the decomposition by creating a permu-

tation matrix and storing it after the method invocation.

2. Adding a new solver method that uses the already stored permutation matrix.

The usage of these methods is straightforward: the first method is used for the first resolution
and whenever IRMA knows that the pivots will change (e.g. security valve that opens or close).
In all other cases the second method is used for solving the system.

Figure 5.3: Execution time of a network using the original LU Decomposition from the Colt
library and the optimized version.

Figure 5.3 presents the execution time of this simulation when using both the original and
the optimized version of the LU Decomposition: the observed reduction in the execution time is
of 33%.

5.4.2 Performance overview of the solvers

This section presents performance overview of the previously mentioned solvers when simulat-
ing the network "TAMAGNON LA MARONNE LES PLAINES". These tests were performed in
a Desktop PC running Linux except for the FORTRAN version that was executed in the produc-
tion HP-UX Unix server.

Figure 5.4 shows the execution times: Jama, Colt and Blas are pure Java solutions, FOR-
TRAN Yale is pure FORTRAN and Java Yale is the proposed mixed FORTRAN/Java solution.

In Colt optimized the results come from a modified library version where we adapted the
LU Decomposition in order to save the pivots found on the first iteration and reuse them in the
following iterations.

Section 5.4. Performance results 61

Figure 5.4: Execution time of a network simulation using different solvers in a Linux machine
and the former IRMA FORTRAN version executed in a HP-UX machine.

In this example, BLAS Java presents acceptable performance for being a 100% Java solution
but lacking sparse matrix storage it does not scale for simulating networks containing more
than 3.000 pipes and therefore the only solution that is able to deal with large networks with a
reasonable processing time is the proposed mixed FORTRAN/Java solution.

62 Chapter 5. Optimized linear system solving

6
Results validation and improvements

Contents
6.1 Validation of IRMA Java . 63

6.1.1 Comparing results with the former version 63

6.1.2 Comparing results with EPANET . 64

6.2 Sequential performance benchmarks . 65

6.3 Convergence fine-tuning . 66

6.4 Topology analysis . 67

6.4.1 Proposed algorithm and data structure . 67

6.4.2 Performance: FORTRAN vs. Java . 67

6.5 User interface . 68

6.5.1 Database interconnection . 69

6.5.2 Result visualization . 70

This chapter first presents the validation of the new IRMA Java (Sec. 6.1) and then it
presents the most important feature improvements for the users: the performance gain regard-
ing the FORTRAN solution (Sec. 6.2 and 6.3), the elimination of the waiting time for the topology
analysis phase (Sec. 6.4) and the new graphical user interface integrated with Geographical In-
formation Systems (Sec. 6.5).

6.1 Validation of IRMA Java

Two main phases were performed in order to validate the results of tne new IRMA Java. The
first and more comprehensive phase (Sec. 6.1.1) consisted in comparing the new results with
the former version for all the 128 networks that are currently managed by the SCP. The second
phase (Sec. 6.1.2) consisted in comparing the simulation results of a given network simulated
with IRMA Java with the results of the same network simulated by a standard tool used for
simulating WDNs (EPANET).

6.1.1 Comparing results with the former version

The first phase when validating the Java version consisted in comparing new results with the
former FORTRAN version. This validation is performed automatically by a module that runs the
former IRMA FORTRAN version, read the results file and compare them with the new version.
The following values are compared: heads, flows, maximum pressures and head losses. This
module reports if there’s any difference superior to 1% in any of these values. This module has
been used in order to validate all 128 networks from the Maintenance department. Table 6.1
presents an overview of all the validated networks, that represent a total fo 5.000 km of piped
networks located in the south of France.

63

64 Chapter 6. Results validation and improvements

Table 6.1: Overview of the networks controlled by SCP’s Maintenance department.

Networks 128
Pipe Extension 5.000 km
Tanks 240
Pumps 147
Pressure Regulators 322
Security Valves 82
Closed Pipes 2

This validation process also allowed to discover and fix some issues in IRMA FORTRAN
version: thanks to the new IRMA version some problems in the equipment model and in the
treatment of the input data have been found and corrected. For example, for a given pipe con-
taining two equipments the FORTRAN version failed to treat both equipments. This happens
due to the use of the same variable for representing different types of equipments and this has
been corrected in the new model by defining a separate class for each equipment.

Another example is the incorrect behavior of a pump due to the usage of one integer variable
in order to store two different informations: type of the equipment (identified by the absolute
value) and the direction of the equipment (identified by the signal of the variable). This type of
practice is error-prone and as a result of testing only the value (instead of absolute value), the
pump was incorrectly treated when described in the negative direction. By avoiding this kind of
practice, the new model is more clear and less vulnerable to this sort of coding mistake.

6.1.2 Comparing results with EPANET

IRMA’s results have also been compared with results obtained with EPANET by using a module
that read EPANET’s .inp files. This module is able to read network topology, but currently it
does not treat other sections (like equipments).

Figure 6.1: Screenshot of the simulated network designed with EPANET.

In order to compare both simulators, a sample network was designed using EPANET, ex-
ported through .inp file and read by IRMA (Fig. 6.1). It is a simple network containing two
tanks and without any equipments.

Section 6.2. Sequential performance benchmarks 65

In this test there are some differences in flow results, but head and head loss values obtained
are exactly the same in both simulators. Table 6.2 shows the differences between EPANET and
IRMA flow results, they vary in l/s but the proportional difference (in %) is constant.

Table 6.2: Flow differences between EPANET and IRMA in a sample network. Nodes marked
with "*" are tanks.

Pipe Flow (l/s) Difference
Node 1 Node 2 EPANET IRMA l/s %

0006* 1 -683.87 683.06 0.81 0.12
1 0004 341.93 341.53 0.40 0.12

0004 1 -341.93 -341.53 0.40 0.12
0005 0002 -95.10 94.99 0.11 0.12
0004 0005 95.10 94.99 0.11 0.12
0003 0004 -588.77 -588.07 0.70 0.12
0002 0003 -588.77 -588.07 0.70 0.12
0001* 0002 -683.87 -683.06 0.81 0.12

6.2 Sequential performance benchmarks

This section presents the performance obtained with the new Java version and compares with
the former FORTRAN version. The purpose of these tests is to highlight the performance im-
provement perceived by the user in most representative simulation scenario. In this case, usu-
ally only the number of offtakes are modified in the input file, the topology is not modified and
therefore the topology analysis does not necessarily needs to be performed in the FORTRAN
version. In these tests, the cached topology results are always given to the former version and
the new version performs the topology analysis (with almost no impact in the execution time).

Figure 6.2: Execution time of selected networks using Java on a desktop machine and FORTRAN
in the Unix server.

Figure 6.2 presents the execution times using original solution on the Unix server and the
new solution on a Linux desktop machine. This set of networks is very representative regarding
the network size, they contain the largest networks simulated in the SCP (with 1.845 up to 10.395

nodes).
The iterative resolution algorithms are very similar in both versions and they had similar

performance results when using the original proprietary compiler. The performance improve-
ment in the Java version is mainly justified by the adoption of a different compiler (G95) [g9511],

66 Chapter 6. Results validation and improvements

as explained in Sec. 5.3.6. However, it was not possible to compare both versions with the new
compiler, because the former version currently runs only in the dedicated HP-UX Unix server
and the recompilation procedure is too complex due to the high number of dependencies.

6.3 Convergence fine-tuning

Most networks reach stability (hydraulic equilibrium) after a few iterations when simulated
with IRMA. However, it may also happen that several iterations are required and in some cases
IRMA never reaches a stable state. This can be caused by several reasons, in most cases the
equipments are responsible. The way equipments are modeled or the interaction of two or more
equipments may cause new adjusts in coefficients in every iteration indefinitely.

Figure 6.3: Number of iterations required for converging SCP’s Maintenance department net-
works. This figures exclude the networks that do not converge at all (about 10%).

Figure 6.3 shows the number of iterations performed before reaching a stable state in all
networks from the Maintenance department, excluding pathological cases that do not converge
at all. The main consequences of not converging are the lack of precision in the results and the
increase of execution time because IRMA performs a maximum amount of iterations.

Figure 6.4: Execution time with 2 different iteration limits for 3 networks with convergence
problems.

The former IRMA version has set as 500 the maximum number of iterations. In some simu-
lations with convergence problems this limit is reached several times, because the simulation is
performed for each class of offtake when calculating the peak consumption. In these cases where

Section 6.4. Topology analysis 67

stability is not reached, simulation time is much longer and accurate precision is not guaranteed
even after 500 iterations.

In order to decrease execution time in these cases we have decided to change the maximum
number of iterations, like in EPANET for example, where this limit can be set by the user.
Figure 6.4 compares the execution time of 3 different networks with convergence problems when
reducing this limit from 500 to 50 iterations. The given results with this modification are slightly
different for flows (lower than 1%) but head values are preserved.

6.4 Topology analysis

Redesigning completely IRMA brought the possibility to improve it in many ways. The improve-
ment that most impacted the users regarding the performance is the topology analysis phase.
This section presents the new algorithm and data structure proposed for performing the topology
analysis and the obtained performance results.

6.4.1 Proposed algorithm and data structure

Given a network, IRMA needs to obtain the following information about its topology in order to
perform the simulation:

1. A chained list containing all ordinary nodes, in order to update the head values.

2. The list of paths between all the tanks (two-by-two).

3. The list of all non redundant meshes.

The creation of the first two lists is straightforward, the first list needs only to have a ref-
erence value for the head in each ordinary node: for the node next to the tank the head is
calculated by the tank level (that is known) and the obtained head loss in the pipe connecting it
to the tank. The process continues in the same way for the remaining nodes, the new heads are
obtained using the heads that have already been calculated.

For the second list, a single iteration among all tanks is enough in order to obtain all the
paths.

The process for obtaining the third list is more complex, because for every new discovered
mesh IRMA needs to make sure that this new mesh is not redundant with the meshes already
found. Figure 6.5 displays the flow diagram for building the list of non redundant meshes.

The data structure used to represent the graph is an undirected multigraph, meaning that
edges do not have an associated sense and multiple edges are allowed. The graph library used
for implementing it is called JGraphT [jgr11]. This library allows to build the graph by directly
using IRMA’s classes: the network nodes become the vertices and the pipes become the edges.
JGraphT allows also to find the shortest path between two nodes using the Dijkstra’s algorithm
[Dij59].

6.4.2 Performance: FORTRAN vs. Java

Section 1.3.2 presents the time needed to perform the topology analysis using the FORTRAN
version of IRMA (Table 1.1) and also explains the need of caching the results of the analysis in
order to reduce the execution time. Some cases, very large networks and heavily meshed, can
even require days to be analyzed.

With the simplification of the FORTRAN data structures (from cross referenced tables con-
taining pointers and indexes going to a high level multigraph representation), the algorithm for
executing the topology analysis could be heavily optimized.

This analysis now takes only a few seconds for any SCP network. This means that there’s
no need to use temporary files for caching topology results and the user can always modify the
network structure with no impact in the execution time.

68 Chapter 6. Results validation and improvements

Start
Check next

pipe

Remove pipe

from graph

Find shortest path

between node 1

and node 2

Path already

exists?
Y

Add new path to

meshes list

Path is

redundant?
Y

Add pipes from path

to redundant list

Reinsert pipe in the

graph

A path was

found?
N

N

Y

N

Checked all

pipes?
End Y

N

Figure 6.5: Flow diagram representing the process of building the list of non redundant meshes.

6.5 User interface

The new Java version of IRMA also brought the possibility of providing modern graphical inter-
faces for the users that otherwise would have been too costly to implement using the former FOR-
TRAN version. Besides giving the possibility of inputting network data through user-friendly
interfaces, the new interface is also able to deal with GIS (Geographical Information System) for
visualizing the network graphically. This interface was developed using an open source toolkit
called uDig (User-friendly Desktop Internet GIS) [udi11].

Figure 6.6: Diagram representing the software layers used by the uDig Toolkit.

Figure 6.6 illustrates the software layers used by uDig:

• Eclipse Rich Client Platform [rcp11] is a platform for building and deploying rich client
applications.

Section 6.5. User interface 69

• GeoTools [geo11] is a Java software library that handles infrastructural GIS tasks, like
reading GIS file formats, connecting to spatial databases, rendering GIS objects into col-
ored maps, etc

• The JTS Topology Suite [jts11] is an open source Java software library that provides an
object model for Euclidean planar linear geometry together with a set of fundamental geo-
metric functions.

• Java 5 is the Java Platform Standard Edition 5.0.

Figure 6.7: Overview of the new IRMA Java user interface.

Figure 6.7 illustrates a screenshot of the new interface. In the left pane some simulation
options are displayed: name of the network, choice of the simulation type and head loss calcula-
tion method. In the top right pane the network is represented graphically: blue lines represent
the pipes, nodes are represented by circles and equipments are represented by triangles (in this
case RP stands for pressure regulator). In the bottom right tab the nodes are listed using a table
format, including information such as node name, terrain level, obtained pressure, probability
zone, discharges, etc.

Figure 6.8 illustrates the edition of equipments using IRMA. In this example the equation
of a pump is being edited and the the curve representing its Total Dynamic Head (TDH) is also
displayed.

6.5.1 Database interconnection

In the former version of IRMA, the network files used for simulation were stored in text files
without geographical information for representing the network graphically. This data is stored
in a spatial database and it can be easily integrated by using a modern GIS, like uDig.

70 Chapter 6. Results validation and improvements

Figure 6.8: Equipment editing with IRMA.

Figure 6.9 illustrates an example of a network that is stored using the legacy network files
(without geographical information) and is graphically displayed using the uDig toolkit. uDig
allows to integrate the network information from the legacy file with the spatial database and
also to add different layer in order to enrich the visualization experience. In this example, a
layer contaning a map is added in order to help locate the network.

6.5.2 Result visualization

The obtained results in IRMA are typically given by a report that begins with an overview of the
network: pipe lengths and diameters, list of equipments, probability zones with the respective
number of offtakes of each class, global flow information (peak consumption, total number of
offtakes, total continuous flows). The second part of the report is filled by a table containing key
input and result values for all network pipes, such as:

• Diameter (input)

• Length (input)

• Flow (result)

Section 6.5. User interface 71

Figure 6.9: Example of integration of legacy IRMA network file with existing SCP spatial
database. This diagram represents the "Hugueneuve" network, in the south of France next to
Toulon.

• Velocity (result)

• Unitary head loss (result)

• Terrain elevation (input)

• Obtained head at node (result)

• Desired head at node (input)

• Maximum pressure at node (result)

The new interface allows to visualize these results graphically, making it much easier to
understand the results and to identify the pipes and nodes in the map.

Figure 6.10 illustrates the pressure results visualization with IRMA, the network is plotted
over a geographical layer containing buildings, contour lines, roads, etc. The circles in the leg-
end represent the obtained pressure in the nodes: from green circles that indicate acceptable
pressure to black circles that indicate a very large pressure deficit.

72 Chapter 6. Results validation and improvements

Figure 6.10: Pressure results visualization with IRMA.

7
Parallel execution using the Service Oriented

Architectures and the Grid

Contents
7.1 IRMA distributed execution as AGOS Use case 73

7.1.1 Overview of the AGOS Architecture . 73

7.1.2 AGOS use case implementation using Parallel Services 75

7.1.3 Benchmark using all Maintenance department networks 76

7.2 Distributed execution of pump profiling on the Grid 77
7.2.1 Parallelization algorithm . 77

7.2.2 Benchmarks on PACA Grid . 77

This chapter presents two examples of distributed execution for validating IRMA’s capability
of harnessing resources on the Grid and Service Oriented Architectures.

The first example (Sec. 7.1) demonstrates how the AGOS Infrastructure (introduced in Sec.
1.5.2) allows to deploy IRMA as a service that takes a set of networks as input and automatically
launches IRMA instances on the available resources.

The second example (Sec. 7.2) aims to reduce the execution time of a very computing in-
tensive simulation mode (pump profiling), by implementing a distributed simulation using the
ProActive Parallel Suite (introduced in Sec. 1.5.1) and deploying it on PACA Grid, a Cloud In-
frastructure maintained by the french region “Provence-Alpes-Côte d’Azur”.

7.1 IRMA distributed execution as AGOS Use case

Rewriting IRMA was done as part of the AGOS Project (Sec. 1.5.2), a project that uses a Service
Oriented Architecture (SOA) Framework for deploying and running applications on the Grid.
The AGOS Project consists basically in providing a Framework for implementing, managing,
deploying and monitoring parallel services and the related Grid infrastructure. IRMA was cho-
sen as use case of computing intensive application in order to validate the performance of the
Parallel Services implemented by the AGOS Framework.

One of the main reasons for choosing Java as new programming language for IRMA is to
have a portable solution and also to be able to easily integrate with the AGOS infrastructure.
This section presents the work done with IRMA as use case for validating the AGOS framework
and the performance results obtained in the Grid using the AGOS IRMA prototype.

The goal of this use case is to use the AGOS Infrastructure to deploy IRMA as a service that
is able to perform several simulations simultaneously.

7.1.1 Overview of the AGOS Architecture

Figure 7.1 illustrates the different layers of the proposed architecture for the AGOS Service
Level Management (SLM) Platform.

73

74 Chapter 7. Parallel execution using the Service Oriented Architectures and the Grid

Figure 7.1: Architectural diagram of the proposed framework for the AGOS platform. Legend:
(WS Agent) = Web Services Agent / (S) = Sensors installed at the module level, to relay perfor-
mance information to the monitoring systems / (M) = Monitoring agent installed at the service
level.

Business Services: the interaction of an AGOS Client with the AGOS platform is made
through the AGOS business provider which is an interface to the client: it processes the

Section 7.1. IRMA distributed execution as AGOS Use case 75

requests of the client, forwards the responses, manages interaction with the SLM module, etc.
Services middleware: the Service Management module is concerned with assuring the

system-wide management of the web services exposed internally by AGOS, in terms of Web Ser-
vices security (through a Web Services Manager) and negotiation of Service Level Agreements
(SLAs) through the Service Level Manager. This layer employs “Web Services agents”, which
are modules attached to web services at every level of the platform, that act as proxies in:

• Formulating Service Level Requirements (SLR’s) and negotiating SLAs.

• Assuring security policies are in place.

• Passing authentication between the boundaries of AGOS.

The Business Process Execution Language (BPEL) Orchestration Engine is respon-
sible for executing and managing the business processes of AGOS. This layer will use “BPEL
templates” plug-ins, which are pieces of generic BPEL code that are able to manage the calling
and the pre- and post-interaction with a ProActive (Sec. 1.5.1) parallel service.

From an ITIL (Information Technology Infrastructure Library) point of view, the level of
ProActive services could be interpreted as an “operational level”, thus all SLAs with these
services will be considered “Operational Level Agreements” (OLAs). ProActive services OLAs
should expose “pre-negotiated” service-level terms. That means OLA templates had been al-
ready constructed by the service before runtime. These templates contain the available tasks,
the set of service-level terms and Key Performance Indicators (KPIs) that the client then accept
or deny (“take or leave”). This way, SOA clients can choose the ProActive service that best suits
their runtime needs, and eventually “mix and match” between various levels of parallel services.

The Parallel Services and the Grid Middleware are both implemented by the ProActive

Parallel Suite, that also handles the resource management of the Adaptive Infrastructure.
The Monitoring of services in the AGOS platform (in terms of security, SLAs, performance,

etc), will be carried out platform-wise with the help of various industry-standard methods and
protocols such as:

• Monitoring agents installed at the service level, that relay (and some of them even aggre-
gate) the different KPIs associated with the respective service.

• Sensors installed at the module level that relay performance information to the monitoring
systems.

• Monitoring protocols such as Web-Based Enterprise Management (WBEM).

• Technologies such as Java Management Extensions (JMX) and Java Message Service (JMS).

Monitoring data is collected, centralized and made available also through industry-standard
technologies and tools, such as system monitoring tools, grid monitoring tools, enterprise man-
agers, business activity monitoring platforms, etc.

For IRMA’s use case, the main modules used are in the Service Middleware, Parallel Services
and Grid Middleware layers. The implementation and usage of these modules are detailed in
the next section.

7.1.2 AGOS use case implementation using Parallel Services

The goal of the AGOS use case is to transform the standalone Java version of IRMA into a service
that is capable of automatically deploying parallel simulations on the AGOS Infrastructure. The
standalone version processes an input file, simulates the WDN and generates an output file to
write the results. In the use case, the user wants to simulate several networks and therefore his
input is a folder containing all the files that describes the networks and simulation parameters.

The role of the AGOS Infrastructure is to offer a service that takes the input folder, splits
the different networks in order to deploy IRMA instances in the existing resources and then

76 Chapter 7. Parallel execution using the Service Oriented Architectures and the Grid

Figure 7.2: Diagram illustrating the AGOS infrastructure for deploying parallel services. Stan-
dard services based environment (not implemented by the AGOS Project) are represented in red.
The blue components represent the elements that are used to deploy the IRMA use case: PA //
WS (ProActive Parallel Web Services), ProActive Scheduler and Resource Manager (RM). The
green part represent the future work that has been identified as a continuation of the AGOS
project. (WSDL) = Web Services Description Language / (AO) = Active Object.

retrieve the results to finally give them back to the user. Figure 7.2 illustrates (in blue) the
AGOS modules that has been used.

AGOS provides a set of Parallel Services and, in this use case, the module responsible for
splitting the input folder is called Parameter Sweeping. Figure 7.3 illustrates how this module
works:

1. User launches the application by giving the input data to Parallel Services.

2. Parameter Sweeping Service splits the input data into (I1, I2, . . . , In).

3. Parallel instances of IRMA are executed in the Grid using the different parameters.

4. Outputs (O1, O2, . . . , On) are gathered and given back to the user.

One last key element in this approach is the synchronization of files that is performed by
using ProActive Data Spaces API 1. On top of the ProActive Parallel Suite, Tomcat [tom11] is
used for deploying the services and submitting the jobs.

7.1.3 Benchmark using all Maintenance department networks

This section presents IRMA’s performance for the use case using the AGOS Infrastructure that
has been deployed by HP Sophia Antipolis for developing and testing the AGOS prototype.

1http://proactive.inria.fr/release-doc/Programming/ReferenceManual/multiple_html/DataSpaces.html

Section 7.2. Distributed execution of pump profiling on the Grid 77

Figure 7.3: Diagram illustrating the parameter Sweeping service. Legend: (I1, I2, . . . , In) repre-
sent the input parameters, (O1, O2, . . . , On) represent the output of each parallel instance, (Exec

logic X) represents the generic execution logic (user code), which in this case is implemented by
the sequential version of IRMA.

Figure 7.4 shows the execution time when simulating a batch of 119 networks using 1 ma-
chine up to 4 machines from the Grid. Total sequential execution time is around 22 minutes and
with 4 machines we reach 11 minutes, which is already close to the longest sequential execution
time since the largest network runs in 7 minutes.

7.2 Distributed execution of pump profiling on the Grid

In order to perform the pump profiling (Sec. 3.6 and 4.6), several different scenarios need to be
simulated. The total number of simulated scenarios is proportional to the number of hydrants
present in the network and therefore the execution time can be prohibitive in case of large
networks.

This section presents a solution for reducing the execution time by performing a distributed
simulation of these scenarios on a Grid, using the ProActive Parallel Suite (without using the
AGOS Platform).

7.2.1 Parallelization algorithm

The initialization phase is executed sequentially (as described in Sec. 4.7.1), since it is not
computing intensive. The simulation phase is executed as described in Fig 7.5: instead of sim-
ulating sequentially each created scenario (Fig. 4.8), parallel tasks containing X scenarios to
be simulated are created. This parameter X defines the granularity of each task and should be
adjusted according to the network size and number of available resources where the tasks can
be deployed.

The implementation with the ProActive Scheduler is straightforward: all the parallel tasks
are aggregated into a job and then submitted to the ProActive Scheduler. The Scheduler is
responsible for deploying the tasks on the Grid machines, for retrieving the results from each
task and returning them back to the user machine where the simulation was launched.

7.2.2 Benchmarks on PACA Grid

This section presents the benchmarks performed on PACA Grid for validating the parallel pump
profiling. PACA Grid is a set of machines (1 368 cores, 30 TB, 480 CUDA cores) accessible via

78 Chapter 7. Parallel execution using the Service Oriented Architectures and the Grid

Figure 7.4: Execution time of 119 networks on the Grid using up to 4 machines.

ProActive Parallel Suite tools. The Cloud aggregates dedicated machines, running both Linux
and Windows.

The network file used for this profiling models the downstream networks from Bouteillère

(Fig. 7.6) and it contains:

• a total pipe length of 190 km.

• 2832 nodes.

• 5 tanks.

• 4 distinct probability zones (total of 28 classes of probability)

• 6 downstream pressure regulators.

• 4 pumping stations.

• 2 security valves.

• 2 differential head losses.

The total sequential execution time of this pump profiling using one machine from the Grid
is: 25 hours and 23 minutes. Figure 7.7 displays the obtained times by splitting the scenarios
into different number of parallel tasks: from 18 up to 360 tasks (the initial number 18 comes
from the 18 different objective flows values that are taken for this network and the remaining
values are taken as multiples of 18).

The improvement in the performance drastically reduces the execution time: from 25 hours
sequentially to 13 minutes using the Grid (360 parallel tasks). These test were repeated at least
5 times, the values represent typical execution times obtained when there are enough resources
available to simultaneously run all the parallel tasks.

Figure 7.8 represents the evolution of the Speedup in order to measure how much a parallel
execution is faster than a corresponding sequential version. The Speedup (Sp) is defined by the
following formula:

Sp =
T1

Tp

where:
p is the number of processors,

Section 7.2. Distributed execution of pump profiling on the Grid 79

Start
Set next objective

flow

Create parallel task

with X scenarios

Created all

scenarios?

Y

N

Iterated over all

objective flows?
N Y

Create ProActive

Job with all tasks

Submit job to

ProActive Scheduler

Gather and process

results as they

become available

End

Figure 7.5: Flow diagram representing the parallelization algorithm for performing the pump
profiling.

T1 is the execution time of the sequential algorithm and
Tp is the execution time of the parallel algorithm with p processors.

The ideal environment for measuring the Speedup is dedicated environment made of homo-
geneous resources. Since the resources available in PACA Grid are heterogeneous and cannot be
reserved, these figures do not give a precise representation of the Speedup. These numbers give
approximative values by using as reference the performance of the machine where the sequen-
tial version was executed.

80 Chapter 7. Parallel execution using the Service Oriented Architectures and the Grid

Figure 7.6: Overview of the downstream networks from Bouteillère.

Section 7.2. Distributed execution of pump profiling on the Grid 81

Figure 7.7: Pump profiling execution time of the downstream networks from Bouteillère in func-
tion of the number of parallel tasks.

Figure 7.8: Obtained Speedup by number of parallel pump profiling tasks executed in parallel
on PACA Grid.

82 Chapter 7. Parallel execution using the Service Oriented Architectures and the Grid

8
Conclusion and Perspectives

IRMA has been developed over the last 30 years, with several persons been involved. As devel-
opers left the project, the SCP lost most of the knowledge behind IRMA. This happened due to
different reasons: lack of documentation, the programming techniques used, and the limitations
of the computational environments that were available at the time. This project has started with
two main goals: the first was to redesign IRMA in order to fully understand it, and the second is
to be able to solve the performance issues.

The first and more complex step was about understanding IRMA and this has been achieved
by performing a detailed analysis of the ancient source code, along with a permanent consultancy
of a hydraulic engineer. This work allowed to clean up the simulation model and to provide a
more complete documentation about all the simulation processes.

The following step was to confront the results of all networks maintained by the SCP when
simulated with the new and the former versions. This allowed first to have a second validation
of the results being used by the SCP and then also allowed to find out and correct some flaws in
the former implementation (that were mostly caused by programming faults).

This thesis explores the usage of the Java language for scientific high performance simula-
tions, facing the challenges of using the modern languages for solving numerical problems and
how to overvome this problem (by using a C++ interface in order to access an existing library).
The final solution exploits the advantages of standard numerical tools, by using a scalable high
performance FORTRAN library with minimal memory footprint, and the advantages of develop-
ing the new model using a modern object-oriented language.

The new high-level simulation model is modular and it can be understood more easily. Equip-
ment specification has become much simpler and independent from the linear system construc-
tion. Code reading has been enormously simplified by eliminating global variables, goto calls
and other deprecated programming practices that were used back then when IRMA was coded
using punch cards.

The new Java implementation has been already successfully deployed in production and has
replaced the FORTRAN version since July 2011. Many possibilities for improving user experi-
ence are now being exploited, text input file editing has been replaced by geographically-aware
graphical editors and simulation data can be integrated with other GIS tools available at the
company.

The performance issues have been solved mostly with sequential optimizations and the upper
bound execution times, that before could take up to one week in some cases, have now been
reduced to only a few minutes. The capability of performing distributed simulations has been
demonstrated by deploying parallel simulations on the Grid using ProActive Parallel Suite and
the AGOS Infrastructure. The parallel approach allowed to reduce the simulation time of the
existing networks and gives new perspectives for dealing with the growth of the networks.

There are still improvements and tests that can be done in the simulation core, such as
implementing another method for solving flow continuity and head loss equations. For example,
the use of the gradient method proposed by Todini [TP88, Tod10] could allow to replace the
FORTRAN solver with one of the Java iterative linear solver implementation and therefore it

83

84 Chapter 8. Conclusion and Perspectives

could be possible to eliminate the C++/FORTRAN JNI bridge and have a pure Java solution.

Bibliography

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edi-
tion, 1999.

[BBC+06] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes, Fabrice Huet,
Matthieu Morel, and Romain Quilici. Grid Computing: Software Environments and

Tools, chapter Programming, Deploying, Composing, for the Grid. Springer-Verlag,
January 2006.

[bla11a] Basic linear algebra subprograms (blas) website at netlib, 2011.
http://www.netlib.org/blas/.

[bla11b] Linpack java translation, 2011. <http://www1.fpl.fs.fed.us/linear_algebra.html>.

[cem11] Cemagref website, 2011. http://www.cemagref.fr/.

[CGH+96] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
lambert w function. In ADVANCES IN COMPUTATIONAL MATHEMATICS, pages
329–359, 1996.

[CJK97] Robert M. Corless, David J. Jeffrey, and Donald E. Knuth. A sequence of series for
the lambert w function. In ISSAC, pages 197–204, 1997.

[Cla09] Didier Clamond. Efficient resolution of the colebrook equation. Ind. Eng. Chem. Res.,
47:3665–3671, 2009.

[Clé66] R. Clément. Calcul des débits dans les réseaux d’irrigation fonctionnant à la de-
mande. In La Houille Blanche, volume 5, pages 553–576. Société Hydrotechnique de
France, 1966.

[col11] Colt project website, 2011. <http://acs.lbl.gov/software/colt/>.

[CVZR05] P. B. Cheung, J. E. Van Zyl, and L. F. R. Reis. Extension epanet for pressure driven
demand modeling in water distribution system. In Computing and Control for the

Water Industry, volume 1, pages 311–316. Center for Water Systems, University of
Exeter, 2005.

[dhi11] Dhi website, 2011. http://mikebydhi.com/.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

[DMBS79] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G.W. Stewart. LINPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1979.

[EGSS77] S.C Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale sparse matrix
package, ii. the nonsymmetric codes. Technical report, Department of Computer
Science, Yale University, 1977.

[flo11] Flowmaster water applications website, 2011. http://www.flowmaster.com/water.html/.

[FN91] Roland W. Freund and Noël M. Nachtigal. Qmr: a quasi-minimal residual method
for non-hermitian linear systems, 1991.

[g9511] Gnu g95 compiler website, 2011. <http://www.g95.org/>.

[geo11] Geotools website, 2011. http://geotools.org/.

[GSK08] O. Giustolisi, D.A. Savic, and Z. Kapelan. Pressure-driven demand and leakage
simulation for water distribution networks. Journal of Hydraulic Engineering,
134(5):626–635, 2008.

[jam11] Java matrix (jama) website, 2011. <http://math.nist.gov/javanumerics/jama/>.

85

86 BIBLIOGRAPHY

[jgr11] Jgrapht library website, 2011. <http://www.jgrapht.org/>.

[jts11] Jts topology suite website, 2011. http://tsusiatsoftware.net/jts/main.html.

[Lab88] Y. Labye. Design and optimization of irrigation distribution networks. Number 44-
45 in FAO irrigation and drainage paper. Food and Agriculture Organization of the
United Nations, 1988.

[LHKK79] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Softw., 5:308–323, September
1979.

[LS00] N. Lamaddalena and J.A. Sagardoy. Performance Analysis of On-demand Pressurized

Irrigation Systems. Food and agriculture organization of the United Nations, Rome,
2000.

[mik11] Mike urban website, 2011. http://mikebydhi.com/Products/Cities/MIKEURBAN.aspx.

[mtj11] Matrix toolkits java (mtj) website, 2011. <http://code.google.com/p/matrix-toolkits-
java/>.

[net11] Netlib java website, 2011. <http://code.google.com/p/netlib-java/>.

[Pil95] O. Piller. Modeling the behavior of a network - Hydraulic analysis and sampling

procedures for parameter estimation. PhD thesis, University of Bordeaux (PRES),
Talence, France., 1995.

[por11] Porteau website, 2011. http://porteau.cemagref.fr/.

[pro11] Proactive website, 2011. <http://proactive.inria.fr/>.

[rcp11] Eclipse rich client platform, 2011. http://www.eclipse.org/home/categories/rcp.php.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[She94] Jonathan R Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain. Technical report, Pittsburgh, PA, USA, 1994.

[Tod10] Ezio Todini. Pressure-driven demand and leakage simulation for water distribution
networks. Journal of Hydroinformatics, 13(2):167–180, 2010.

[tom11] Apache tomcat website, 2011. <http://tomcat.apache.org/>.

[TP88] E. Todini and S. Pilati. A gradient algorithm for the analysis of pipe networks, pages
1–20. Research Studies Press Ltd., Taunton, UK, 1988.

[udi11] Udig website, 2011. http://udig.refractions.net/.

[WRB86] J.H. Wilkinson, C. Reinsch, and F.L. Bauer. Handbook for Automatic Computa-

tion: Linear Algebra. Grundlehren Der Mathematischen Wissenschaften, Vol 186.
Springer-Verlag, 1986.

[xer91] Logiciel xerxes-renfors, calcul économique optimisé d’un
réseau d’irrigation sous pression, 1991. http://www-
old.cemagref.fr/informations/Produits/Logiciels/ReseauxEau/XERXES.html.

HIGH PERFORMANCE HYDRAULIC SIMULATIONS ON THE GRID USING JAVA

AND PROACTIVE

Abstract

Optimization of water distribution is a crucial issue which has been targeted by many modeling tools.
Useful models, implemented several decades ago, need to be updated and implemented in more power-
ful computing environments. This thesis presents the redesign of a legacy hydraulic simulation software
(IRMA) written in FORTRAN that has been used for over 30 years by the Société du Canal de Provence
in order to design and to maintain water distribution networks. IRMA was developed aiming mainly the
treatment of irrigation networks – by using the Clément demand model and is now used to manage more
than 6.000 km of piped networks. The growing complexity and size of networks requested to update IRMA
and to rewrite the code by using modern tools and language (Java). This thesis presents IRMA’s simulation
model, including its head loss equations, linearization methods, topology analysis algorithms, equipments
modeling and the linear system construction. Some new specific simulation features are presented: sce-
narios with probabilistic demands (Débit de Clément), pump profiling, pipe sizing, and pressure driven
analysis. The new adopted solution for solving the linear system is described and a comparison with the
available Java solvers is presented. The validation of results is achieved with a comparison between the
previous FORTRAN results of all networks maintained by the Société du Canal de Provence and the val-
ues obtained using the new solution. A second validation is performed by comparing the results obtained
from a standard and well-known simulation tool (EPANET). Regarding the performance of the new solu-
tion, a sequential benchmark comparing with the former FORTRAN version is presented. Finally, two use
cases are presented in order to demonstrate the capability of executing distributed simulations in a Grid
infrastructure, using the ProActive solution. The new solution has been already deployed in a produc-
tion environment and demonstrates clearly its efficiency with a significant reduction of the computation
time, an improved quality of results and a transparent integration with the company’s modern software
infrastructure (spatial databases).

SIMULATIONS HYDRAULIQUES D’HAUTE PERFORMANCE DANS LA GRILLE AVEC

JAVA ET PROACTIVE
Résumé

L’optimisation de la distribution de l’eau est un enjeu crucial qui a déjà été ciblé par de nombreux
outils de modélisation. Des modèles utiles, implémentés il y a des décennies, ont besoin d’évoluer vers
des formalismes et des environnements informatiques plus récents. Cette thèse présente la refonte d’un
ancien logiciel de simulation hydraulique (IRMA) écrit en FORTRAN, qui a été utilisé depuis plus de 30
ans par la Société du Canal de Provence, afin de concevoir et maintenir les réseaux de distribution d’eau.
IRMA a été développé visant principalement pour le traitement des réseaux d’irrigation - en utilisant le
modèle probabiliste d’estimation de la demande de Clément - et il permet aujourd’hui de gérer plus de
6.000 km de réseaux d’eau sous pression. L’augmentation de la complexité et de la taille des réseaux met
en évidence le besoin de moderniser IRMA et de le réécrire dans un langage plus actuel (Java). Cette thèse
présente le modèle de simulation implémenté dans IRMA, y compris les équations de perte de charge, les
méthodes de linéarisation, les algorithmes d’analyse de la topologie, la modélisation des équipements et
la construction du système linéaire. Quelques nouveaux types de simulation sont présentés: la demande
en pointe avec une estimation probabiliste de la consommation (débit de Clément), le dimensionnement de
pompe (caractéristiques indicées), l’optimisation des diamètres des tuyaux, et la variation de consommation
en fonction de la pression. La nouvelle solution adoptée pour résoudre le système linéaire est décrite
et une comparaison avec les solveurs existants en Java est présentée. La validation des résultats est
réalisée d’abord avec une comparaison entre les résultats obtenus avec l’ancienne version FORTRAN et la
nouvelle solution, pour tous les réseaux maintenus par la Société du Canal de Provence. Une deuxième
validation est effectuée en comparant des résultats obtenus à partir d’un outil de simulation standard et
bien connu (EPANET). Concernant les performances de la nouvelle solution, des mesures séquentielles de
temps sont présentées afin de les comparer avec l’ancienne version FORTRAN. Enfin, deux cas d’utilisation
sont présentés afin de démontrer la capacité d’exécuter des simulations distribuées dans une infrastructure
de grille, utilisant la solution ProActive. La nouvelle solution a déjà été déployée dans un environnement
de production et démontre clairement son efficacité avec une réduction significative du temps de calcul,
une amélioration de la qualité des résultats et une intégration facilitée dans le système d’information de la
Société du Canal de Provence, notamment la base de données spatiales.

88 BIBLIOGRAPHY

	Contents
	List of Figures
	List of Tables
	Motivation and positioning
	Water distribution systems
	Computer aided network system design
	Société du Canal de Provence
	Project goals
	Solution proposal overview
	Thesis structure

	IRMA Network Modeling
	Overview
	Head loss equations
	Methods for calculating head loss
	Linearizing head losses
	Modeling a sample network
	Equipments

	IRMA simulation modes and the Clément demand model
	Continuous flows
	Peak consumption using the Clément demand model
	Maximum pressure
	Equipment positioning
	Network profiling in function of a Pump
	Pump Profiling
	Pressure driven analysis
	Discharge margin
	Extended period simulation
	Pipe size optimization

	Specification of IRMA
	Overview
	Continuous flow simulation
	Maximum pressure
	Peak consumption
	Convergence parameters
	Network profiling in function of a Pump
	Pump Profiling
	Pressure driven analysis
	Discharge margin
	Dynamic network behavior
	Equipments

	Optimized linear system solving
	Overview of methods for linear system solving
	Linear system solving libraries in Java
	Proposed solution for the solver
	Performance results

	Results validation and improvements
	Validation of IRMA Java
	Sequential performance benchmarks
	Convergence fine-tuning
	Topology analysis
	User interface

	Parallel execution using the Service Oriented Architectures and the Grid
	IRMA distributed execution as AGOS Use case
	Distributed execution of pump profiling on the Grid

	Conclusion and Perspectives
	Bibliography

