
HAL Id: tel-00977726
https://theses.hal.science/tel-00977726

Submitted on 11 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An organizational ontology for multiagent-based
Enterprise Process modeling and automation

Yishuai Lin

To cite this version:
Yishuai Lin. An organizational ontology for multiagent-based Enterprise Process modeling and au-
tomation. Computers and Society [cs.CY]. Université de Technologie de Belfort-Montbeliard, 2013.
English. �NNT : 2013BELF0206�. �tel-00977726�

https://theses.hal.science/tel-00977726
https://hal.archives-ouvertes.fr

Thèse de Doctorat

n

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E T E C H N O L O G I E B E L F O R T - M O N T B É L I A R D

An organizational ontology for
multiagent-based Enterprise
process modeling and automation
Application to SCRUM

Yishuai LIN

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E T E C H N O L O G I E B E L F O R T - M O N T B É L I A R D

THÈSE présentée par

Yishuai LIN

pour obtenir le

Grade de Docteur de

l’Université de Technologie de Belfort-Montbéliard

Spécialité : Informatique

An organizational ontology for multiagent-based
Enterprise process modeling and automation

Application to SCRUM

Soutenue le X septembre 2013 devant le Jury :

Nada MATTA Rapporteur Maı̂tre de conférences-HDR à l’Université de

Technologies de Troyes

Vincent CHEVRIER Rapporteur Maı̂tre de conférences-HDR à l’Université de

Lorraine, Nancy

Djamal BENSLIMANE Examinateur Professeur des Universités, Université Claude

Bernard, Lyon

Nicolas GAUD Examinateur Maı̂tre de conférences à l’Université de Technologie

de Belfort-Montbéliard

Vincent HILAIRE Examinateur Professeur des Universités, Université de

Technologie de Belfort-Montbéliard

Pierre-Alain MÜLLER Examinateur Professeur des Universités, Université de Haute

Alsace

Samuel GOMES Examinateur Professeur des Universités, Université de

Technologie de Belfort-Montbéliard

N◦ X X X

ACKNOWLEDGMENTS

At the final stage of preparing the documentation of my work, this section gives me the

opportunity to express my gratitude to all the people who supported and assisted me.

First of all, my research would not have been possible without the generous funding of

CSC-China Scholarship Council programme1.

1For more information, please refer to http://en.csc.edu.cn

http://en.csc.edu.cn

CONTENTS

I Context 17

1 Introduction 19

1.1 Context . 19

1.2 Objectives and concern of this work . 20

1.2.1 Towards a method of Organizational Ontology K-CRIO for one as-

pect of Enterprise Modeling: business processes 21

1.2.2 Case Studies for conceptualization with K-CRIO 21

1.2.3 Towards an assistance system for Scrum Project Teams 21

1.3 Plan of the document . 22

2 State of the Art 25

2.1 Introduction . 25

2.2 Ontology . 26

2.2.1 Overview of the concept of Ontology 26

2.2.2 Ontology Description Language . 27

2.2.3 Ontology used in Knowledge Presentation 28

2.3 Agent and Multi-Agent System . 29

2.3.1 Agent . 29

2.3.2 Multi-Agent System . 30

2.3.3 Organizational Centered Multi-Agent Systems 31

2.4 Business Process in Enterprises . 33

2.4.1 Aims and objectives . 33

2.4.2 Definition of criteria for comparison 34

2.4.3 Models/Methods used for Business Process 35

2.4.3.1 Descriptive Models/Methods 35

2.4.3.2 Procedural Models/Methods 37

2.4.3.3 Formal Models/Methods 38

2.4.3.4 Ontology-based Models/Methods 39

2.5 Conclusion . 44

CONTENTS 8

II An Organizational Ontology and Case Studies 45

3 K-CRIO Ontology 47

3.1 Introduction . 47

3.2 Background: the CRIO Meta-model . 47

3.3 Definition of the K-CRIO Ontology . 49

3.3.1 Organization . 51

3.3.2 Role . 53

3.3.3 Capacity . 53

3.3.4 Interaction . 54

3.4 A simplified software development process modeled with K-CRIO 66

3.5 Conclusion . 71

4 Scrum Process Conceptualized with K-CRIO Ontology 73

4.1 Introduction . 73

4.2 A short introduction to the Scrum Process 73

4.3 Conceptualization of Scrum with K-CRIO 75

4.3.1 Identification of Organizations, Roles and Capacities in Scrum Pro-

cesses . 75

4.3.2 Conceptualization of Interactions in Scrum Processes 82

4.4 Conclusion . 89

III A Web Application with Multi-Agent System 91

5 A Scrum Web-based System With Multi-Agent Technology 93

5.1 Introduction . 93

5.2 Background: Existing Agile Tools . 94

5.3 Overview of our Scrum Tool . 95

5.3.1 The goals of our Scrum Tool . 95

5.3.2 Functions of our Scrum Tool . 96

5.4 Description Architecture of Scrum Web-based System 98

5.4.1 Multi-Agent System . 98

5.4.2 IS Organization . 101

5.4.3 Monitor Organization . 103

5.4.3.1 How to monitor estimate cost of projects ? 112

5.4.3.2 How to monitor workers’ efficiency? 113

CONTENTS 9

5.4.3.3 How to provide suggestions to Scrum Masters ? 115

5.5 Conclusion . 116

IV Conclusions and Perspectives 117

6 Conclusion 119

6.1 General Conclusion . 119

6.2 Perspective and Further Research Directions 120

6.2.1 Implementation of semantic application based on the K-CRIO On-

tology . 120

6.2.2 Implementing an editor for K-CRIO 121

6.2.3 Methodology based upon K-CRIO for guiding the design and imple-

mentation of intelligent assistance tools to support business pro-

cesses . 121

6.2.4 Improving Scrum Tool . 121

LIST OF FIGURES

1.1 Reading Directions . 22

2.1 Problem Domain of the CRIO metamodel 33

2.2 UML Activity Diagram: An example of business flow activity to process order 36

2.3 BPMN: an Example of a shipment process of a hardware retailer [BPM,

2010] . 37

2.4 Organizational object taxonomy in TOVE [Fox et al., 1997] 40

3.1 Example of Organizations, Roles and Capacity diagram 49

3.2 K-CRIO taxonomy . 50

3.3 K-CRIO Ontology . 50

3.4 Inspiration from OWL-S [Martin et al., 2004] 56

3.5 Definition of Formalized Interaction from the workflow aspect 58

3.6 The format of a Split Process . 59

3.7 The format of Split+Join Process . 60

3.8 The format of a If-Then-Else Process . 61

3.9 The format of a Repeat-While Process . 62

3.10 The format of a Repeat-Until Process . 62

3.11 Interaction in K-CRIO . 64

3.12 All related concepts and relationship in K-CRIO 65

3.13 Software development process: the Waterfall Model 66

3.14 An Example of K-CRIO . 69

3.15 Waterfall Process by K-CRIO Ontology . 70

4.1 The Product Backlog . 74

4.2 The Sprint Backlog . 76

4.3 The process of Scrum . 77

4.4 Scrum with K-CRIO . 78

4.5 FormalizedInteraction in Scrum Process with K-CRIO 82

4.6 A Composite Process: Scrum Process . 84

LIST OF FIGURES 12

4.7 A Composite Process: The Game Phase 86

4.8 A Composite Process: Sprint . 87

4.9 Composite Process: Articulate Product Vision and Composite Process:

Sprint Planning Meeting . 88

5.1 Goal Diagram of our Scrum Tool . 95

5.2 Elements for each project . 97

5.3 Monitor workers’ efficiency . 99

5.4 Suggestions for assigning team members to tasks 100

5.5 Import MAS to typical web-based System following Struts 2 101

5.6 The structure of MAS . 102

5.7 Interactions, Role and Capacity Identification in IS Organization 102

5.8 Interactions, Role and Capacity Identification in Monitor Organization 103

5.9 Role behavior Description of InterfaceRole 104

5.10 Role behavior Description of SupervisorRole 105

5.11 Role behavior Description of UserRole . 106

5.12 Role behavior Description of TaskRole . 107

5.13 Role behavior Description of StoryRole . 107

5.14 Role behavior Description of ProjectRole 108

5.15 Scenarios Description: the part of InterfaceRole and SupervisorRole . . 109

5.16 Scenarios Description: the part of UserRole (following the Figure 5.15) . . 110

5.17 Scenarios Description: the part of TaskRole, StoryRole and ProjectRole

(following the Figure 5.16) . 111

5.18 How to calculate task cost . 114

5.19 Roles and their required Capacities in Developing Team 115

LISTINGS

3.1 Organization in K-CRIO . 51

3.2 Restrictions of Organization in K-CRIO . 52

3.3 Role in K-CRIO Ontology . 53

3.4 Capacity in K-CRIO Ontology . 54

3.5 Interaction in K-CRIO . 55

3.6 Defining Project Leader Role in OWL . 67

4.1 Role: Scrum Master in OWL . 80

4.2 A Composite Process: Sprint by OWL-WS 87

LIST OF TABLES

2.1 Summary and Comparison of Business Process Models and Methods . . . 43

I
CONTEXT

1
INTRODUCTION

1.1/ CONTEXT

In the 21st century, enterprises face an increasingly competitive market place. In the

environment of which, the successes of enterprises depend critically on the quality and

efficiency of their product business processes. By enterprise, we mean an entrepreneurial

economic organization or a business organization.

Enterprises generally aim at delivering products or services to given markets. The en-

gineering of such products/services are the result of business processes, which involve

staff of the enterprise. These processes define the activities, organizational structures,

organizational management and aim at collective achievements in the form of product-

s/services.

Specifically, software companies are a special kind of IT enterprises delivering software

products or services. The delivery processes deployed in these enterprises frequently

follow one specific software-development process such as the traditional Waterfall Model,

Spiral Model, Scrum, Extreme Programming (XP), OpenUP, etc.

Project teams, which are the collective units responsible for software products/services’

design, have to face to increasing product complexity, process intricacy, markets glob-

alization, distributed organizations and ever-changing customers’ orientation. All these

parameters ask for a well organized/framed approach and a strong support to business

processes within enterprises.

With the development of Web 2.0, enterprises have entered the web generation, particu-

larly through the use of collaborative technologies. It is thus significant to think about how

to model the actual business processes and to manage occurring interactions in business

processes. Moreover, this kind of technology could be the basis building block for an as-

sistance system servicing for related processes’ participants who join in these business

processes.

CHAPTER 1. INTRODUCTION 20

1.2/ OBJECTIVES AND CONCERN OF THIS WORK

The major concern of the work could be summarized as:

Propose an approach for

(i) modeling and conceptualizing various business processes in enter-

prises and,

(ii) (based on the result of the previous modeling and conceptualization)

designing and implementing an intelligent assistance system to support

human activities within business processes.

In order to help human actors of business processes to understand how these processes

proceed, the proposed approach should not only conceptualize items in enterprises, like

their department structures, human relationships and so on, but also model actual work-

flows occurring within these processes.

To answer these concerns, we have built an organizational ontology named K-CRIO [Lin

et al., 2011],[LIN et al., 2011b] for modeling enterprises. Moreover, for automating the

business processes, our approach consists in designing and implementing a software as-

sistance system that acts as a tool for human workers. This assistance system must take

into account the availability and geographic distribution of actual users and must ensure

means of communication. Obviously, there are too many kinds of business processes for

producing a generic tool. However, to be efficient, such a tool should possess knowledge

about the supported business process. This knowledge is provided by the overall process

description provided with the instantiation of K-CRIO Ontology’s concepts.

K-CRIO Ontology aims at proposing an organizational ontology for gathering and concep-

tualizing knowledge, which is defined by concepts and relationships of these concepts,

which are respectively described with owl:class and owl:ObjectProperty in Ontology

Web Language (OWL). Furthermore, we apply K-CRIO to conceptualize knowledge ap-

pearing in human activities. To explain the usage and guidelines of K-CRIO, we introduce

two case examples, e.g. the Waterfall Model and the SCRUM Method, these two models

are two well-known software-development processes, widely used in software engineer-

ing. Through these examples related to software engineering, we also aim at showing the

capabilities of K-CRIO for modeling wider issues within the field of business processes.

In order to design and implement an intelligent assistance system to support business

processes we have designed and implemented a web-based system relying on a Multi-

Agent System. The web-based system allows the collaboration of human actors, and

the MAS enables an autonomous and pro-active assistance owing to agents’ capabilities.

The MAS monitors the actual processes and interactions and has the knowledge of the

business process described by instances of the K-CRIO ontology.

Lastly, for validating our proposed approach, we deployed our approach with the SCRUM

process refining the K-CRIO ontology and adapting our MAS to support this process.

CHAPTER 1. INTRODUCTION 21

1.2.1/ TOWARDS A METHOD OF ORGANIZATIONAL ONTOLOGY K-CRIO FOR

ONE ASPECT OF ENTERPRISE MODELING: BUSINESS PROCESSES

An Enterprise Model is a computational representation of the structure, activities, pro-

cesses, information, resources, people, behavior, goals and constraints of a business,

government or other enterprises [Fox and Grüninger, 1997].

From a design perspective, an enterprise model should provide understandable language

used to explicitly define an enterprise. From an operations perspective, the enterprise

model should be able to represent what is planned, what has happened and what will

happen?

As stated in [Bottazzi and Ferrario, 2009], an Ontology of organizations is the first, funda-

mental, and ineliminable pillar on which to build a precise and rigorous Enterprise Model.

Therefore, as a first step of our contribution we have defined an ontology for enterprises

that rely on organizational concepts that are now considered a standard by the majority

of the approaches in the field Agent-Oriented Software Engineering. This organizational

ontology is named K-CRIO.

The context of this ontology is that many enterprises are on the path towards the automa-

tion of their business processes. More specifically, the targeted enterprises are the ones

that are dedicated to the design of a product. The conceptualization of such enterprises

results in an organizational ontology, named K-CRIO, which defines a rich and semantic

model for business processes. This model allows the description of business processes

in terms of peoples involved and their interactions. Indeed, expressing related people and

their interactions is the basic work for modeling and conceptualizing business processes.

1.2.2/ CASE STUDIES FOR CONCEPTUALIZATION WITH K-CRIO

The definition and instantiation of the K-CRIO ontology are illustrated with the concep-

tualization of a simple sequential process, namely the Waterfall Model, often used in

traditional software-development processes. In this process, the progress is seen as

flowing steadily downwards (like a waterfall) through the phases of Requirement, Design,

Production/Implementation, Testing/Verification and Maintenance. This example is not

completely detailed, but it acts as a starting point for understanding K-CRIO fundamen-

tals.

In order to improve and validate the K-CRIO Ontology and provide some guidelines for

using this ontology to model business processes, we used K-CRIO Ontology to fully con-

ceptualize a famous agile and iterative process, namely the SCRUM Method. This latter

is widely used in current software-development processes. The provided ontology is a

rather complete case study directly related to the implementation work described here-

after.

1.2.3/ TOWARDS AN ASSISTANCE SYSTEM FOR SCRUM PROJECT TEAMS

Ontologies in software engineering are generally used to represent (a partial) knowledge

of a particular domain [Calero et al., 2006]. This knowledge constitutes a starting point

for requirements analysis.

CHAPTER 1. INTRODUCTION 22

Considering our work, the use of K-CRIO will be twofold. On the one hand, it is a basis

for requirements analysis. And adopting this stance, it should help defining what kind

of help the assistance system could provide. On the other hand, K-CRIO is a rich and

semantic model that will be used by the assistance system for reasoning on business

process operations.

Multi-Agent Systems have proven to be a suitable paradigm for modeling autonomous,

distributed, dynamic and complex systems.

They are thus a good candidate for the analysis, design and implementation of the aimed

assistance tool. Hence, we have developed a web-based system, allowing a distributed,

including a Multi-Agent System for automating a software-development process: SCRUM.

It is a preliminary attempt to practice our built ontology K-CRIO as the basis ontology for

assistance software. Specifically, the SCRUM Tool is providing a platform for distributed

SCRUM team members, which supports actual human activities and work-flows, such

as the SCRUM project phases and steps, and SCRUM MASTER1 related tasks occurring

in the SCRUM project process. Among the tasks of the SCRUM MASTER, we focused

on project monitoring, cost estimations and team member efficiency evaluation. These

different elements provide help for the SCRUM MASTER for decision making and project

management.

1.3/ PLAN OF THE DOCUMENT

After this brief overview of the proposals presented in this thesis, this section introduces

the overall organization of this manuscript. According to the objectives set out in section

1.2, this thesis is organized into three main parts. The various chapters in this document

and their respective organization are summarized in Figure 1.1.

Context

Part I

An Organizational Ontology

&

Case Studies

Part II

A Web Application with Multi-Agent System

Part III

State of the Art

Chapter 2

K-CRIO Ontology

Chapter 3

Scrum Process Conceptualized with K-CRIO Ontology

Chapter 4

A Scrum Web-base System with Multi-Agent Technology

Chapter 5

Figure 1.1: Reading Directions

Chapter 2, and more generally the first part of this thesis, presents all the necessary

background for comprehending our work, more precisely the state of art about existing ap-

1SCRUM project team’s managers

CHAPTER 1. INTRODUCTION 23

proaches based upon Ontology, MAS or Web Technologies used in Enterprise business

process management and modeling. It also analyses and compares these presented

models/methods.

The second part (Chapters 3 and 4) is the core of our contribution and presents the

K-CRIO Ontology, and its illustrations on the Waterfall model and SCRUM software devel-

opment process.

Chapter 3 presents the definition of all the concepts and their relationships in K-CRIO

Ontology. K-CRIO Ontology is an organizational ontology described with Ontology Web

Language, the designing inspiration of which is CRIO Meta-model that an existing meta

model used in MAS. After the presentation about definition, there is a pellucid example

of using K-CRIO to conceptualize the Waterfall Model software development process in

order to help readers to understand K-CRIO Ontology.

Chapter 4 presents the popular agile software-development process: SCRUM, and its

conceptualization with K-CRIO.

The third and last part, represented by Chapter 5, illustrates shows how to exploit the

concepts provided by K-CRIO to develop a multiagent-based web application to assist

SCRUM MASTER and SCRUM teams in managing their software-development processes

and associated technical tasks (task assignment, product delivery, . . .). Precisely, this

chapter provides a general description of the developed tool in terms of functionalities

and architecture, and a feature-based comparison with existing SCRUM tools.

2
STATE OF THE ART

2.1/ INTRODUCTION

This State-of-the-Art chapter presents the three different domains this work is the conver-

gence of namely, the business or enterprise models, ontologies and Multi-Agent Systems.

Indeed, many enterprises are on the path towards the automation of their business pro-

cesses. As stated in the introduction, the main hypothesis of this work is that to be fully

efficient this kind of automation needs to rely on (i) rich models of business processes,

and (ii) software tools that support this automation and allow it to take place in a trans-

parent fashion.

The literature in terms of business/enterprise models is nowadays huge as it can concern

many different domains. We will restrict our study to the models that can be exploited

by software agents. These models were generally defined in the computer science, or

software engineering communities.

These models differ first by the chosen expression language. Each language has it owns

semantic and expression capabilities and thus allow the conceptualization of the different

kind of models. Ontologies are the most-used languages in order to produce such con-

ceptualizations. Hence, we also present in this chapter ontology background and more

specifically Ontology Web Language (OWL) which is widely used in knowledge engineer-

ing and domain conceptualization.

Concerning the software tool aspect, many technologies can be used. Our claim is that

Multi-Agent Systems, because of the intrinsic capabilities of agents such as autonomy,

re-activity and pro-activity allow the implementation of complex systems like the aimed

software assistance tool.

This chapter is structured to cover the three main areas constituting the foundations of

this thesis. Section 2.2 quickly presents the concept of ontology. Section 2.3 introduces

the multi-agent systems. And finally, Section 2.4 looks at the heart of this thesis, the

business process approaches and their associated tools.

CHAPTER 2. STATE OF THE ART 26

2.2/ ONTOLOGY

2.2.1/ OVERVIEW OF THE CONCEPT OF ONTOLOGY

The word Ontology has been taken from Philosophy, where it means a systematic expla-

nation of Existence. In terms of etymology, it comes from the Greek ”ontos” for being and

”logos” for word.

Depending on the considered area and the adopted point of view, numerous definitions

may be considered. Some of the main ones are described below. Within the Artificial

Intelligence field, [Neches et al., 1991] defines the notion of ontology as: ”An ontology

defines the basic terms and relations comprising the vocabulary of a topic area as well

as the rules for combining terms and relations to define extensions to the vocabulary ”.

Gruber in Gruber [1995] defines an ontology as ”an explicit specification of a conceptual-

ization”. This definition is the most referenced definition in the literature. Moreover, Borst

[1997] slightly improved Grubers’ definition by considering that ”Ontologies are defined

as a formal specification of a shared conceptualization”. Based on these descriptions,

Studer et al. [1998] gave a more exhaustive explanation of ontology as that ”Conceptual-

ization refers to an abstract model of some phenomenon in the word by having identified

the relevant concepts of that phenomenon. Explicit means that the type of concepts used,

and the constraints on their use are explicitly defined. Formal refers to the fact that the on-

tology should be machine-readable. Shared reflects the notion that an ontology captures

consensual knowledge, that is not private to some individual but accepted by a group”.

From the perspective of taxonomy, ontology could be seen as ”a set of types, properties,

and relationship types” [Garshol, 2004]. Basically, an ontology defines a set of concepts

in a specific area and their relationships.

In Swartout et al. [1996], the authors bind ontology with a knowledge base, so that , ”an

ontology is a hierarchically structured set of terms for describing a domain that can be

used as skeletal foundation for a knowledge base”. This definition is based upon the

face that builds domain-specific ontologies by identifying the relevant terms to a partic-

ular domain in the ontology SENSUS (which includes more than 50000 terms). Then,

they prune the SENSUS ontology using a kind of heuristics. A different approach is taken

by Bernaras et al. [1996]. They build a preliminary ontology from a knowledge base,

which is refined and augmented with new definitions if new applications are built. This is

the cause why the propose the following definition. ”An Ontology provides the means for

describing explicitly the conceptualization behind the knowledge represented in a knowl-

edge base.”

Since ontology raised, it has haven widespread use. As a set of well-defined constructs, it

could be used to build structured knowledge. Ontologies include rich relationships among

terms, rich taxonomies, and enable intelligent researches. For humans, ontologies enable

better access to information and promote knowledge reuse and shared understanding.

For computers, ontologies facilitate comprehension of information and more extensive

processing (Ontology Engineering). Being a technology used for Knowledge Manage-

ment, ontology defines the terms used to describe and represent an area of knowledge.

Meanwhile, the ontology specifications can be passed as parameters in agent conversa-

tions. It is established as a powerful tool to enable knowledge sharing, and a growing

number of applications has benefited from the use of ontology as a means to achieve

semantic interoperability among heterogeneous, distributed systems.

CHAPTER 2. STATE OF THE ART 27

2.2.2/ ONTOLOGY DESCRIPTION LANGUAGE

As a language for describing ontology, OWL stands for Ontology Web Language. In fact,

it is a family of knowledge representation languages for authoring ontologies. OWL is

supported by the World Wide Web Consortium. OWL is based upon RDF and RDFS,

which are extensions of XML for describing web resources. Compared with RDF, OWL

has more features that allow a greater machine interpret-ability, and comes with a larger

vocabulary and richer syntax. OWL has three increasingly expressive sub-languages:

• OWL Lite, which supports those users primarily needing a classification hierarchy

and simple constraints;

• OWL DL, which supports those users who want the maximum expressiveness while

retaining computational completeness and decidability. OWL DL includes all OWL

language constructs, but they can be used only under certain restrictions.

• OWL Full, which is meant for users who want maximum expressiveness and the

syntactic freedom of RDF with no computational guarantees.

In the following, we introduce the logical constructs of OWL. Classes provide an abstrac-

tion mechanism for grouping resources with similar characteristics. Every OWL class is

associated with a set of individuals (called the class extension). The individuals in the

class extension are called the instances of the class. OWL classes are described through

”class descriptions”, which can be combined into ”class axioms”. Specifically, OWL dis-

tinguishes six types of class descriptions:

• a class identifier (a URI reference),

• an exhaustive enumeration of individuals (that together form the instances of a

class),

• a property restriction (including value constraints and cardinality constraints),

• the intersection of two or more class descriptions,

• the union of two or more class descriptions and the complement of a class descrip-

tion.

In terms of class axioms, OWL contains three language constructs for combining class de-

scriptions, which are rdfs:subClassOf, owl:equivalentClass and owl:disjointWith.

In addition, OWL distinguishes between two main categories of properties that an

ontology designer may want to define, which are Object properties defining rela-

tionships between classes and Datatype (properties linking individuals to data val-

ues). Equally, OWL also supplies various types of property axioms to define ad-

ditional characteristics of properties, which are as following: RDF Schema con-

structs (rdfs:subPropertyOf, rdfs:domain and rdfs:range), relations to other prop-

erties (owl:equivalentProperty and owl:inverseOf), global cardinality constraints

(owl:FunctionalProperty and owl:InverseFunctionalProperty), logical property

characteristics (owl:SymmetricProperty and owl:TransitiveProperty). Finally, individ-

uals are defined with individual axioms (also called ”facts”), where are two types of facts:

one about class membership and property values of individuals and the other about indi-

vidual identity (that details owl: sameAs, owl:differentFrom and owl:AllDifferent).

CHAPTER 2. STATE OF THE ART 28

2.2.3/ ONTOLOGY USED IN KNOWLEDGE PRESENTATION

Various methods have been devised to support knowledge organization and interchange.

Controlled vocabularies provide a standardized dictionary of terms for use during, for ex-

ample, indexing or retrieval. Dictionaries can be organized according to specific relations

to form taxonomies. Ontology further specifies the semantics of a domain in terms of

conceptual relationships and logical theories [Jurisica et al., 2004].

Take an instance, if you are interested in the knowledge of health care, the patient, dis-

ease, symptom, diagnosis, and treatment might be the primitive concepts upon which you

could describe the domain. These concepts related to their meanings, and relationships

could define an ontology for health care. Such an ontology could be used as common

knowledge for facilitating communication among medical workers. Additionally, it could

also be used during the development of hospital information systems or decision support

systems.

Earlier work in computational ontologies includes the Cyc project [Lenat and Guha, 1990]

and the ARPA Knowledge Sharing effort [Neches et al., 1991]. The Knowledge Inter-

change Format effort provides a declarative language for describing knowledge [Gene-

sereth, 1991]. The National Library of Medicine has assembled a large multidisciplinary,

multi-site team to work on the Unified Medical Language System, aimed at reducing fun-

damental barriers to the application of computers to medicine [Humphreys et al., 1998].

Similarly, an ontology for manufacturing may consist of (industrial) process, resource,

schedule, product and the like [Vernadat, 1996].

Ontologies may be constructed for different purposes. Some ontologies aim at describing

very general concepts like space, time, matter, object, event, action, etc [Guarino and

Guarino, 1997] . They are called top-level ontologies (also named upper ontologies, or

foundation ontologies), which are independent of a particular problem or domain, such as

DOLCE 1. Specially, when we want to enable sharing and reuse, we define an ontology

as a specification used for making ontological commitments [Gruber, 1993]. Ontological

commitment is an agreement to consistently use a vocabulary with respect to a theory

specified by an ontology. In order to support a specification, we define an ontology as a

conceptualization, i.e., an ontology defines entities and relationships among them. Every

information is based on either an implicit or an explicit conceptualization.

Research within artificial intelligence has formalized many interesting ontologies and has

developed techniques for analyzing such knowledge. Along a very different path, [Wand

and Weber, 1990] studied the adequacy of information systems to describe applications

based on a general ontology, such as the one proposed by [Bunge, 1977].

In the area of ontology used for knowledge management, especially from the perspective

of information system,[Jurisica et al., 2004] proposed four broad ontological categories,

which respectively deal with static, dynamic, intentional and social aspects of the world.

Their claim is that, for a large class of applications, the representation of relevant knowl-

edge can be based on primitive concepts derived from these four ontological categories.

For example, if someone wants to model a university environment, we may choose enti-

ties and relations to model static aspects of the domain and processes to model dynamic

aspects. Our classification of ontological concepts into four categories has been derived

from a broad survey of modeling techniques in computer science [Mylopoulos, 1998]. The

four ontological categories are:

1http://www.loa.istc.cnr.it/DOLCE.html

http://www.loa.istc.cnr.it/DOLCE.html

CHAPTER 2. STATE OF THE ART 29

• Static ontologies describe static aspects of the world, for example, what are the

existing things, their attributes and relationships.

• Dynamic ontologies describe changing aspects of the world, of which, typical prim-

itive concepts include state, state transition and processes.

• Intentional ontologies encompass the world of motivations, intents, goals, beliefs,

alternatives, choices, etc., of which, typical primitive concepts include issue, goal,

supports, denies, subgoalOf, agent, etc. The example of this classification is

the ”Softgoals ontology” [Chung et al., 1999] for modeling software nonfunctional

requirements, like software usability, security, reliability, user friendliness, perfor-

mance, etc. (”Softgoals” are defined as goals whose criteria for satisfaction are not

crisply defined a prior.)

• Social ontologies cover social settings, organizational structures or shifting net-

works of alliances and inter-dependencies [Scott and Davis, 2006]. Traditionally,

social ontologies have been characterized in terms of concepts such as actor, po-

sition, role, authority, commitment, etc. Speech acts theory offers an ontology for

modeling communication among actors [Medina-mora et al., 1992]. Social ontolo-

gies are also of interest in distributed artificial intelligence. Some of the concepts

have been formalized using a specialized logic [Castelfranchi and Müller, 1993].

In certain situation, these above categories of ontologies need to be used together. On

the application side, the most prevalent ontology-based activity is developing static on-

tologies, such as taxonomies or controlled vocabularies in [Godfray, 2002], [Ashburner

et al., 2000], [Gennari et al., 1995]. The goal is to standardize terminology and taxonom-

ically organize concepts in specific domains to enable information sharing and system

cooperation.

2.3/ AGENT AND MULTI-AGENT SYSTEM

2.3.1/ AGENT

Multi-Agent Systems (MAS) stand out as a paradigm for the design of Complex Systems.

Indeed, this paradigm proposes new strategies for the analysis, modeling and implemen-

tation of such systems. Its elementary constituents are called ”agents”, i.e. software

entities, which exhibit autonomous and flexible behaviors.

It is to be noted that the word ”Agent” may appear in serious different areas, like in phi-

losophy, in sociology, in law enforcement, in economics, in medicine and so on. Indeed

in these different areas, agents may be used to represent acting entities. In our case, we

will restrict at agents in the area of computer science.

Autonomy it operates without the direct intervention of humans or others, and has some

kind of control over its actions and internal state.

Social ability it interacts with other agents (and possibly humans) via some kind of agent

communication language.

CHAPTER 2. STATE OF THE ART 30

Reactivity it perceives its environment, (which may be the physical world, a user via a

graphical user interface, a collection of other agents, the Internet, or perhaps all of

these combined), and it may respond to changes that occur in it.

Pro-Activeness it does not simply act in response to its environment, it also can exhibit

goal-directed behavior by taking the initiative.

This minimal set of features that an entity must exhibit to be an agent is completed by the

following definition from [Ferber, 1999] :

A clearly identifiable physical or virtual autonomous entity which: (i) is situated in a partic-

ular environment of which it has only a partial representation; (ii) is capable of perceiving

(with sensors) and acting (with effectors) in that environment; (iii) is designed to fulfill a

specific role; (iv) communicates directly with other agents; (v) possesses its own state

(and controls it) and skills; (vi) offers services (in the sense of particular problem solving

capabilities); (vii) may be able to reproduce itself; (viii) has a behavior that tends to satisfy

its objectives.

2.3.2/ MULTI-AGENT SYSTEM

A Multi-Agent System could be defined as a loosely coupled network of agents who work

together as a society aiming at solving problems that would generally be beyond the reach

of any individual agent.

According to [Sycara, 1998], the characteristics of MAS are that:

• each agent has incomplete information or capabilities for solving the overall problem

tackled by the system and, thus, has a limited viewpoint.

• there is no system global control: the collective behavior is the result of social rules

and interactions and not of a supervising central authority.

• resources are decentralized: resources needed for the completion of the tasks as-

signed to the system are divided and distributed.

Multi-Agent System has advantages for solving two main classes problems distinguished

by [Zambonelli et al., 2000] as:

• distributed problem solving systems in which the agents are explicitly designed to

cooperatively achieve a given goal in a benevolent fashion.

• open systems in which agents are not necessarily co-designed to share a common

goal and can dynamically leave and enter the system.

Frequently, MAS researches are concerned with the problem of coordinating the behav-

iors among a collection of intelligent agents. For example, what are the mechanisms

for agent coordination, for sharing knowledge, coordinate goals’ achievement, coordinate

joint plans to solve problems [Van, 1989]. Hence, numerous works, in the MAS field,

have paid attention to additional architectural problems to traditional artificial intelligence,

including organizational structure of the agent society and its patterns (hierarchy, anarchy,

CHAPTER 2. STATE OF THE ART 31

etc.), organizational interactions sustaining the structural patterns and organizational and

environmental rules constraining the structures of the interactions.

In sum, a MAS is a system composed of multiple interacting intelligent agents. MAS

could be better used to solve problems, which are difficult or impossible for an individual

agent or monolithic system to solve. Some examples of problems considered as being

appropriate to MAS include distributed problem solving involving real distributed actors

(e.g. image processing [Bourjot et al., 2003], tracking [Gechter et al., 2006], scheduling

[Maes, 1994], distributed constraints satisfaction [Dury et al., 1999], collaborative work

[Adam et al., 2003]), management of distributed resources and means (e.g. network

management [Sierra and Sonenberg, 2005], sensors data [Yao et al., 2009], information

gathering [Adam and Mandiau, January 2005, Revised Selected Paper]) and simulation

of complex systems ([Gaud et al., 2008, Helleboogh et al., 2007, Rodriguez et al., 2007]).

To support MAS implementation, an adapted platform is required. There are a lot of

platforms designed for developing MAS, such as JADE [Bellifemine et al., 2007], ADK

(Tryllian Agent Development Kit)2, CybelePro3, MASS (Multi-Agent Simulation Suit4) and

so on. For the implementation of our MAS, we have selected the Janus Platform5.

2.3.3/ ORGANIZATIONAL CENTERED MULTI-AGENT SYSTEMS

Already in the eighties, links between human organizations and computational systems

were suggested Fox [1981]. Since then, organizational approaches have become the

subject of an increasing interest in the research community.

In MAS several approaches have been proposed inspired from a Social Metaphor, where

terms like ”role”, ”group”, ”community” represent the main concepts of the model. We can

realize the usefulness of the concepts when we consider the number of methodologies

(e.g. GAIA Zambonelli et al. [2003] or MESSAGE Caire et al. [2002]) and (meta-)models

(e.g. AGR Ferber and Gutknecht [1998] or CRIO Cossentino et al. [2007].

As Ferber Ferber and Gutknecht [1998], Ferber et al. [2003] points out Organizational

approaches can contribute to Agent Software Engineering in the following points:

Heterogeneity of Languages : If each group is considered as an interaction space, in-

side each group we can find specific communication means such as KQML or ACL

without modifying system-wide architectures.

Modularity : Organizations can be seen as modules that provide a description to obtain

a particular behavior of the members. We can use them to define clear visibility

rules that help in the design of MAS.

Multiple Architectures : An organizational approach makes no assumptions about the

internal architecture of the agent, thus leaving the specification open for a number

of models and implementations

Security of Applications : If all agents communicate without any external control it may

lead to security problems. If we allow, when required, each group to control the

2http://www.tryllian.org.
3http://i-a-i.com/cybelepro
4http://mass.aitia.ai
5http://www.janus-project.org

http://www.tryllian.org.
http://i-a-i.com/cybelepro
http://mass.aitia.ai
http://www.janus-project.org

CHAPTER 2. STATE OF THE ART 32

access to the roles defined in the group, we can then reach a level of security

without the need of a ”global” centralized control.

By considering organizations as blueprints that can be used to define a solution to a

problem, we believe that an organizational approach encourages a reusable model.

Among the possible metamodels that define organizational concepts we have chosen

CRIO Cossentino et al. [2007]. As stated in Isern et al. [2011], it seems to be, currently,

the more complete available. The meaning of completeness here is understood as the ex-

pression capability of the underlying concepts. Indeed, the CRIO metamodel was defined

specifically to design complex organizations (sometimes holonic) according to structural,

functional and behavioral viewpoints. Moreover, CRIO is integrated in a methodologi-

cal process from analysis to implementation, namely ASPECS Cossentino et al. [2010b,

2013], and is supported by a deployment platform, namely Janus Gaud et al. [2009].

The CRIO metamodel relies upon four main fundamental concepts: Capacity, Role, Inter-

action and Organization (see Figure 2.1). An organization is composed of Roles, which

are abstract behaviors interacting following defined interactions within scenarios while ex-

ecuting their Role plans. An organization has a context that is described in terms of an

ontology. Roles participate to the achievement of their organization goals by means of

their Capacities.

An organization is defined by a collection of roles that take part in systematic institutional-

ized patterns of interactions with other roles in a common context. This context consists

in a shared knowledge, social rules/norms, social feelings, and it is defined according to

an ontology. The aim of an organization is to fulfill some requirements. An organization

can be seen as a tool to decompose a system and it is structured as an aggregate of

several disjoint partitions. Each organization aggregates several roles and it may itself be

decomposed into sub-organizations.

A Role defines an expected behavior as a set of role tasks ordered by a plan, and a

set of rights and obligations in the organization context. The goal of each Role is to

contribute to the fulfillment of (a part of) the requirements of the organization within which

it is defined. Roles use their capacities for participating to organizational goals fulfillment;

a Capacity is a specification of a transformation of a part of the designed system or its

environment. This transformation guarantees resulting properties if the system satisfies a

set of constraints before the transformation. It may be considered as a specification of the

pre- and post-conditions of a goal achievement. This concept is a high level abstraction

that proved to be very useful for modeling a portion of the system capabilities without

making any assumption about their implementations as it should be at the initial analysis

stage.

A Capacity describes what a behavior is able to do or what a behavior may require to be

defined. As a consequence, there are two main ways of using this concept:

• it can specify the result of some role interactions, and consequently the results that

an organization as a whole may achieve with its behavior. In this sense, it is possible

to say that an organization may exhibit a capacity.

• capacities may also be used to decompose complex role behaviors by abstracting

and externalizing a part of their tasks into capacities (for instance by delegating

these tasks to other roles). In this case the capacity may be considered as a be-

havioral building block that increases modularity and reusability.

CHAPTER 2. STATE OF THE ART 33

Figure 2.1: Problem Domain of the CRIO metamodel

2.4/ BUSINESS PROCESS IN ENTERPRISES

2.4.1/ AIMS AND OBJECTIVES

Considering the current economic market, in order to achieve the success in product

competition, enterprises are often faced with the following questions concerning about

developing and producing products /services:

• How would it be possible to reduce the time needed to turn an idea of one customer

into a final product/service?

• How it be possible to make the processes to produce product/service more efficient

and normative?

Therefore, business processes have been widely recognized as the key capital of enter-

prises that contributes to enterprise competitiveness and provides the basis for long-term

growth, development and existence.

Generally speaking, a business process is any system or procedure that an organization

uses to achieve a larger business goal. If we break it down, in enterprises, a business

process is a collection of related, structured activities or tasks, executed in a specific

order, that produce a specific service or product (serve a particular goal) for a particular

customer or customers. In enterprises, business processes are found everywhere and

all the time. For example, a business process could be simple as a vendor sells an item

to a customer. However, business processes can also be complex. For example, a car

production business process.

In the field of software enterprises, business processes are mainly related to software-

development processes. They are also called software-development life-cycle (SDLC) or

software process, which is a process structure imposed upon the development of a soft-

ware product. There are several software processes, like Waterfall Model, Spiral model,

Iterative and incremental development Model, Agile development Model, Rapid applica-

tion development Model and so on. Each of these processes describes various kinds

CHAPTER 2. STATE OF THE ART 34

of tasks or activities that take place during the software-development process. These

predictable processes provide delivery schedule and planning. People manage projects

following these software processes in software enterprises, in order to develop products

and avoid delays in products’ delivery or budgets that become greater than initial estima-

tions.

Accompanying with rising market competition, business processes are also becoming

more and more complex. Therefore, enterprises must require some assistant models,

techniques, and software to support business processes, particularly, to design, enact,

control, and analyze operational processes involving humans, organizations, applications,

documents and other sources of information.

2.4.2/ DEFINITION OF CRITERIA FOR COMPARISON

The first question one must answer is: Considering a model/method related to business

processes, what are the desired characteristics ? We have identified the following list:

• It is advisable that a business process model can be understood by the various

stakeholders involved in a manner as straightforward as possible. For example, this

is achieved through the use of graphical representations.

• It is also advisable that business process models have a formal foundation. Well-

known reasons in [Van der Aalst], [Wodtke and Weikum, 1997] include the fact that

formal models do not leave any scope for ambiguity, and formal models increase

the potential for analysis.

• It is advisable that behaviors in a business process can be explained in terms of a

formal semantics. As remarked in [Kiepuszewski et al., 2002], the lack of a formal

semantics has resulted in different interpretations by vendors of even basic control

flow constructs, definitions in natural language such as the ones provided by the

Workflow Management Coalition are not precise enough.

Moreover, each model/method used in business processes is designed and described

according to a specific expression mean. Following these different description patterns,

we could classify models/methods for business processes by:

• Descriptive Models/Methods, which are described by a descriptive language, and

that always come with a graphical representation. For example, the UML Activity

Diagram provides a graphical presentation to support design business process;

• Procedural Models/Methods, which are described by a procedural language. For

example, XPDL applies a procedural language to automate business processes;

• Formal Models/Methods, which are described by formal language. For example, the

MOISE+ Model use a formal language to describe relationships between individuals

and organizations in business processes;

• Ontology-based Models/Methods, which are described by an ontology-

based/semantic languages, for example, TOVE and BPAL both use a semantic

approach to model business processes.

CHAPTER 2. STATE OF THE ART 35

The previous criteria concern general aspects of model/method for business processes.

We have also to detail what are the internal features of these model/methods. For ex-

ample, a complex business process may involve serious element kinds. In order to mod-

el/describe a business process, these aspects have to be considered, including:

• Individual, that means a single human being, as distinguished from a group. For

modeling individual, the attributes of individuals may be modeled, like abilities of

individuals;

• Actor, that means role played by an entity that interacts with the subject. For busi-

ness processes, it may be considered as a participant;

• Organization Structure, that means the structure of organization (organization

means a group of interacting entities organized for some goal or common work

common, like enterprise, special department, project team, etc.).

• Behavior, that means the individual behaviors in the human activities in business

processes, such as a person sending a mail to other persons.

• Data flow, that means the related parameters about human activities, such as the

input parameter and output parameter.

• Workflow Pattern, that means the pattern of all the relational activities in a process,

from start to finish. Activities may be triggered by external events or by other activ-

ities. The pattern between activities may be sequential, choice, exclusive, iterative,

in parallel and so on.

2.4.3/ MODELS/METHODS USED FOR BUSINESS PROCESS

In the following section, we briefly state and discuss some existing methods/models used

for modeling business processes, which are organized according to the four groups iden-

tified by description pattern (languages) in the previous section. Some models/methods

are designed with two description patterns, such as TOVE and PSL Ontology which are

generally described by ontological languages, but use formal languages for assistant de-

scription. The chosen approach is to classify by their core description pattern.

2.4.3.1/ DESCRIPTIVE MODELS/METHODS

UML Activity Diagram Activity diagrams are graphical representations of work-flows of

step-wise activities and actions with support choice, iteration and concurrency. UML

(Unified Modeling Language) activity diagrams are typically used for describing

business processes, for modeling operational step-by-step work-flows of compo-

nents within a system or a single use-case, or modeling the detailed logic of a

business rule.

For example, the business flow activity of order processing, based on the example

from [OMG, 2007] is represented by the diagram of figure 2.2 6. The figure presents

a RequestedOrder as input object of the sequence and then the possible orders of

activities and data exchange.

6Please see complete example from http://www.uml-diagrams.org/activity-diagrams-examples.html#

process-order

http://www.uml-diagrams.org/activity-diagrams-examples.html#process-order
http://www.uml-diagrams.org/activity-diagrams-examples.html#process-order

CHAPTER 2. STATE OF THE ART 36

Figure 2.2: UML Activity Diagram: An example of business flow activity to process order

BPMN BPMN stands for Business Process Model and Notation. It is a graphical rep-

resentation for specifying business processes in a business process model, and a

standard for business process modeling notations. BPMN aims to provide a stan-

dard notation readily understandable by all business stakeholders. These stake-

holders may be the business analysts who create and refine the processes, the

technical developers responsible for implementing them, and the business man-

agers that monitor and manage them.

The core constructs defined in BPMN as following, related graphical notations could

see official document of BPMN7.

• Event, including Start Event, Intermediate Event, End Event;

• Activity, including Task, Sub Process, Call Activity;

• Gateway (for decision), including Exclusive Gateway without Marker, Exclusive

Gateway with Marker, Inclusive Gateway, Parallel Gateway, Complex Gate-

way, Event-Based Gateway, Event-Based Gateway to Start a Process, Parallel

Event-Based Gateway to Start a Process;

• Flow (Connecting Object), including Sequence Flow, Message Flow, Associa-

tion, Data Association;

• Data, including Data Object, Data Object Collection, Data Input, Data Input

Collection, Data Output, Data Output Collection, Data Store Artifact;

• Artifact, including Group, Text Annotation;

• Swimlane (for actor), including Pool, Lane.

BPMN could be used for very complex business processes. Here, we just take

a simple example of a shipment process of a hardware retailer, as presented in

Figure 2.3. This example uses only one pool (Hardware Retailer) and different lanes

(Warehouse Worker, Clerk, Logistics Manager) for the peoples (roles) involved in

this process.

The start event is ”goods to ship”, which indicates that this preparation should be

done now. After the instantiation of the process, there are two things done in paral-

lel, as the parallel gateway indicates:

7Please refer to http://www.bpmn.org

http://www.bpmn.org

CHAPTER 2. STATE OF THE ART 37

Figure 2.3: BPMN: an Example of a shipment process of a hardware retailer [BPM, 2010]

• the Warehouse Worker can already start packaging the goods.

• the Clerk has to decide whether this is a normal postal or a special shipment.

This Clerk’s task, which is followed by the exclusive gateway ”mode of deliv-

ery” (exclusive gateway means only one of the following two branches can be

traversed). The gateway only works as a router, which is based on the result of

the previous task, and provides alternative paths. These two alternative paths

are:

– If we need a special shipment, the Clerk requests quotes from different

carriers, then assigns a carrier and prepares the paperwork.

– If we need a normal post shipment, the Clerk needs to check if an extra

insurance is necessary. If that extra insurance is required, the Logistics

Manager has to take out that insurance. In any case, the Clerk has to

fill in a postal label for the shipment. Because of this parallelism, there

is a synchronizing inclusive gateway right behind ”Fill in a Post label” and

”Take out extra insurance”. In this scenario, the inclusive gateway will

always wait for both ”Fill in a Post label” and ”Take out extra insurance” to

be completed.

Furthermore, there is a synchronizing parallel gateway before the latest task ” add

paperwork and move package to pick the area”, to make sure that everything has

been fulfilled before the last task is executed.

2.4.3.2/ PROCEDURAL MODELS/METHODS

XPDL The XML Process Definition Language (XPDL) is a WfMC standard for interchang-

ing process models among process definition tools and workflow management sys-

tems. It provides the modeling constructs of BPMN and allows a BPMN process

to be specified as an XML document. Precisely, XPDL provides a file format that

supports every aspect of the BPMN process definition notation, including graphical

CHAPTER 2. STATE OF THE ART 38

descriptions of the diagram, as well as executable properties used at run time. With

XPDL, a software can write out a process definition with full fidelity, and another

software can read it in and reproduce the diagram that was sent.

BPEL Business Process Execution Language (BPEL), and its extension to Web Ser-

vices, Web Services Business Process Execution Language (WS-BPEL) is a stan-

dard executable language for specifying actions within business processes with web

services.

According to BPEL, processes can be described as executable processes, model-

ing the behavior of a participant in a business interaction, or as abstract processes,

specifying the mutually visible message exchange between the parties involved in

the protocol, without revealing their internal behavior. To obtain an executable BPEL

process, modelers need to specify primitives and structured activities, execution or-

dering, messages exchanged, fault and exception handling.

There are existing tools for support BPEL, such as BPEL Process Manager by Or-

acle, BPWS4J by IBM and so on.

2.4.3.3/ FORMAL MODELS/METHODS

MOISE+ Model The MOISE+ Model [Hübner et al., 2002] structure is built up in three

levels: one is the behaviors that an agent playing a role is responsible for (indi-

vidual), the other is the structure and interconnection of the roles with each other

(social), and the last is the aggregation of roles in large structures (collective). In

MOISE+, as in MOISE, three main concepts, roles, role relations, and groups, are

used to build, respectively, the individual, social, and collective structural levels of

an organization. Furthermore, the MOISE original structural dimension is enriched

with concepts such as inheritance, compatibility, cardinality, and sub-groups.

• Individual level is formed by the roles of the organization. A role means a set

of constraints that an agent ought to follow when it accepts to enter a group

playing that role. These constraints are defined in two ways: in relation to

other roles (in the collective structural level) and in a deontic relation to global

plans (in the functional dimension). In order to simplify the specification, like

in Object-Oriented (OO) terms, there is an inheritance relation between roles.

If a role p0 inherits a role p (denoted by p ⇢ p0), with p , p0, p0 receives

some properties from p, and p0 is a sub-role, or specialization, of p. In the

definition of the role properties presented in the sequence, it will be precisely

stated what one specialized role inherits from another role. For example, in

the soccer domain, the attacker role has many properties of the player role

(pplayer ⇢ pattacker). It is also possible to state that a role specializes more than

one role, i.e., a role can receive properties from more than one role. The set

of all roles are denoted by Rss. Following this OO inspiration, we can define

an abstract role as a role that cannot be played by any agent. It has just a

specification purpose. The set of all abstract roles is detonated by Rabc(Rabc ⇢

Rss). There is also a special abstract role Psocwhere 8(p2 Rss)Psoc ⇢ P, trough

the transitivity of ⇢, all other roles are specializations of it.

• Social level defines other kinds of relations between roles that directly con-

strain the agents. Those relations are called links and are represented by the

CHAPTER 2. STATE OF THE ART 39

predicate link(ps,pd ,t) where ps is the link source, pd is the link destination, and

t 2 acq, com, aut is the link type. In case the link type is acq (acquaintance), the

agents playing the source role ps are allowed to have a representation of the

agents playing the destination role pd (pd agents, in short). In a communication

link(t = com), the ps agents are allowed to communicate with pd agents. In an

authority link(t = aut), the ps agents are allowed to have authority on pd agents,

i.e., to control them. An authority link implies the existence of a communication

link that implies the existence of an acquaintance link:

linkps,pd ,aut =) linkps,pd ,comlinkps,pd ,com =) linkps,pd ,acq (2.1)

Regarding the inheritance relation, the links follow the rules:

(link(ps,pd ,t) ^ ps ⇢ ps0) =) link(ps0 ,pd ,t)(link(ps,pd ,t) ^ ps ⇢ pd0) =) link(ps,pd0 ,t) (2.2)

For example, if the coach’s role has authority on the player’s role

link(pcoah,pplayer ,aut) and player has a sub-role (pplayer ⇢ pattacker), by Eq. (4), a

coach has also authority on attackers. Moreover, a coach is allowed to com-

municate with players (by Eq. (1)) and it is allowed to represent the players (by

Eq. (2)).

• Collective level: the links constrain the agents after they have accepted to

play a role. However, we should constrain the roles that an agent is allowed to

play depending on the roles this agent is currently playing. This compatibility

constraint pa ./ pb states that the agents playing the role are also allowed to

play the role pb (it is a reflexive and transitive relation). As an example, the

team leader role is compatible with the back player role pleader ./ pback. If it is

not specified that two roles are compatible, by default they are not. Regarding

the inheritance, this relation follows the rule

(pa ./ pb ^ pa , pb ^ pa v p0) =) (p0 ./ pb) (2.3)

Hence, there should be a series of rules and relationships defined within the collec-

tive level.

AIC Model The AIC Model represents such a system as a tripartite graph with hyper-

edges [Mika, 2007]. The set of vertices is partitioned into the three (possibly empty)

disjoint sets A = {a1, a2, ..., ak}, C = {c1, c2, ..., ci}, I = {i1, i2, ..., im} corresponding to

the set of actors (users), the set of concepts (tags, keywords) and the set of anno-

tated objects (bookmarks, photos, etc.). It extends the traditional bipartite model of

ontology (concepts and instances) by incorporating actors in the model. In a so-

cial tagging system, users’ tag objects with concepts, creating ternary associations

between the user, the concept and the object. Thus, the folksonomy is defined by

a set of annotations T 2 A ⇥ C ⇥ I. Such a network is most naturally represented

as a hypergraph with ternary edges, where each edge represents the fact that a

given actor is associated with a certain instance and a certain concept. In particu-

lar, the author defines the representing hypergraph of a folksonomy T as a (simple)

tripartite hypergraph H(T) = (V, E) where V = A [C [I, E = {{a, c, i} | (a, c, i) 2 T }.

2.4.3.4/ ONTOLOGY-BASED MODELS/METHODS

TOVE One of the earliest initiatives was the TOVE project that aimed at developing a set

of integrated ontologies for modeling all kinds of enterprise, such as commercial

CHAPTER 2. STATE OF THE ART 40

Figure 2.4: Organizational object taxonomy in TOVE [Fox et al., 1997]

and public ones. The TOVE Organization Ontology [Fox et al., 1996] for Enter-

prise Modeling is one of these, which puts forward a number of conceptualizations

such as agents, roles, positions, goals, communication, authority, commitment. Pre-

cisely, one organization consists of a set of Organization-Agents (OA) having two

sub-classes: Individual-Agents and Group-Agents, a set of Organization-Units as

recursive sub-components and an Organization-Goal tree (that could divide goals

into sub-goals). An Organization-Role defines a prototypical function of an agent in

an organization. Each Organization-Role played by OA has Organization-Goals or

Role-Goals, Role-Skills, Role-Process or Organization-Activity, Role-Policy, Role-

Communication-Link. Moreover, an Organization-Position defines a formal position

that can be filled by OA in the Organization. The figure 2.4 represents a taxonomy

of organizational object in TOVE.

Ontologies based upon SPEM The approach proposed in Rodrı́guez et al. [2010] de-

fines Ontologies based upon SPEM Meta-Model with Ontology Web Language. The

software & Systems Process Engineering meta-model (SPEM) allows the Modeling

of software processes using OMG (Object Management Group) standard such as

the MOF (meta-object facility) and UML: making possible to represent software pro-

cesses using tools compliant with UML. Rodrı́guez et al. [2010] represents generic

processes modeled with SPEM using an underlying ontology based upon the OWL

representation together with data derived from actual projects.

SPEM is generally used to design generic software processes such as Scrum.

Therefore, Rodrı́guez et al. [2010] discussed a first approach to create an ontol-

ogy from the Scrum process as example using SPEM. In [Rodrı́guez et al., 2010],

Scrum Ontology extends from the Role class in the method-content ontology in

SPEM. Method-Content: Role has scrum:Pig and scrum:Chicken as sub-classes.

The productOwner, scrumMaster and team were instances of the Scrum Chicken

role. Moreover WorkProduct as one class in the method content ontology has three

sub-classes: Artifact, Deliverable and Outcome. The term like SprintBacklog is as

an instance or individual of Artifact as the part of the scrum Ontology. Furthermore,

the process ontology of SPEM has Activity class with Iteration and Phase classes

defined as sub-classes. Relatively, the PreGame, Game and PostGame are defined

in the scrum ontology.

CHAPTER 2. STATE OF THE ART 41

BPAL BPAL (Business Process Abstract Language) is an ontological framework for busi-

ness process, in the context of BPMN business process modeling method. It is

primarily conceived to provide a formal semantics to BPMN, an informal business

process modeling method that is emerging in the business world [Nicola et al.,

2007].The modeling categories of BPAL are based on well accepted business no-

tions, such as activity, decision, role. And within BPAL, relationships among these

notions are also defined, such as

• pre(activity/decision, activity/decision): a precedence relation between activi-

ties, decisions, or an activity and a decision,

• perf(role, activity): a relation that indicates which role/roles are dedicated to

which activities,

• msg(obj, sourceNode, destNode): a message, characterized, for instance, by a

content (obj), a sending activity (sourceNode), and a receiving activity (destN-

ode).

PSL Ontology The Process Specification Language (PSL) is a set of logic terms used

to describe processes. The primary component of PSL is an ontology designed to

represent the primitive concepts that, according to PSL, are adequate for describ-

ing basic manufacturing, engineering, and business processes [Schlenoff et al.,

1999b]. Precisely, the PSL ontology provides a rigorous mathematical character-

ization of process information as well as a precise expression of the fundamental

logical properties of that information in the PSL language [Schlenoff et al., 1999a],

and the PSL Ontology consists of a set of first-order logic theories within which there

is a distinction between core theories and definitional extensions 8. All core theories

within the ontology are consistent extensions of PSL Core. Within PSL Ontology,

four kinds key elements in PSL Core are as:

• Activity: a class or type of action.

• Activity-Occurrence: an event or action that takes place at a specific place and

time. An instance or occurrence of an activity.

• Timepoint: a point in time.

• Object: anything that is not a timepoint or an activity.

The axioms among these four elements are as everything is either an activity, an

activity-occurrence, an object, or a timepoint, and activities, activity-occurrences,

objects, and timepoints are all distinct kinds of things. Within PSL Ontology, primi-

tive relations for the PSL Core are as:

• Before (timepoint, timepoint): this relation is used to impose a total ordering on

timepoints. For example, Before(t1,t2): time point t1 precedes time point t2 on

the time line.

• Occurrence-of (activity-occurrence, activity): the activity-occurrence is a par-

ticular occurrence of the given activity.

• Participates-in (object, activity-occurrence, timepoint): the given object plays

some role in the given occurrence of an activity at the given timepoint.

8The complete set of axioms for the PSL Ontology can be found at http://www.mel.nist.gov/psl/

psl-ontology/.

http://www.mel.nist.gov/psl/psl-ontology/
http://www.mel.nist.gov/psl/psl-ontology/

CHAPTER 2. STATE OF THE ART 42

All the concepts, relationships and functions in PSL core are explained in [Schlenoff

et al., 1999a].

DOLCE DOLCE [C. Masolo and Schneider, 2002] is an important existing work about

ontological model. It stands for Descriptive Ontology for Linguistic and Cognitive

Engineering, which is implemented by First Order Logic, KIF, OWL languages. The

taxonomy of the most basic categories of particulars assumed in DOLCE includes,

for example, endurant, perdurant/occurrence, quality, quality region, abstract enti-

ties.

Different with all the above ontological models, DOLCE is not an ontology, which

is specially for modeling business processes. Oppositely, it is a top-level ontology,

which may describe very general concepts that are the same across all domains.

Accroding to the level of dependence on a particular task or point of view, [Guarino

and Guarino, 1997] distinguished between top-level ontologies, domain ontologies,

task ontologies and application ontologies:

• Top-level ontologies describe very general concepts like space, time, matter,

object, event, action, etc., which are independent of a particular problem or

domain: it seems therefore reasonable, at least in theory, to have unified top-

level ontologies for large communities of users.

• Domain ontologies and task ontologies describe, respectively, the vocabulary

related to a generic domain (like medicine, or automobiles) or a generic task

or activity (like diagnosing or selling), by specializing the terms introduced in

the top-level ontology.

• Application ontologies describe concepts depending both on a particular do-

main and task, which are often specializations of both the related ontologies.

These concepts often correspond to roles played by domain entities while per-

forming a certain activity, like replaceable unit or spare component.

Hence, there are some existing special ontologies extending foundational ontology

DOLCE. Precisely, [Bottazzi et al., 2005] have presented a preliminary proposal

of an ontology of organizations based on DOLCE. Compared to [Bottazzi et al.,

2005], K-CRIO is an organizational ontology specially for modeling/conceptualizing

business processes. Therefore, K-CRIO is considering not only structural aspects,

but also many more entities about processes (workflows), like interaction patterns,

data-flow, etc.

C
H

A
P

T
E

R
2

.
S

T
A

T
E

O
F

T
H

E
A

R
T

4
3

Model Description

Scope of modeling

Related Tool
Individual Actor

Organization

Structure
Behaviors

Data

Flow

Workflow

Pattern

Descriptive

Model/Method

UML Activity

Diagram

Graphical representations of work-flows of step-wise activities and actions

with support for choice, iteration and concurrency. Yes Yes Yes Yes
Rational Rose,

Vision,

PowerDesign

BPMN
Graphical representation for specifying business processes. Provide a

standard notation readily understandable by all business stakeholders. Yes Yes Yes Yes XPDL

Procedural

Model/Method

XPDL

Provide a file format that supports every aspect of the BPMN process

definition notation including graphical descriptions of the diagram, as well

as executable properties used at run time.
Yes Yes Yes Yes

BPEL

A standard executable language for specifying actions within business

processes. With BPEL, processes can be described as executable processes,

modeling the behavior of a participant in a business interaction, or as

abstract processes.

Yes Yes Yes Yes
Oracle BPEL

Process Manager,

IBM BPWS4J

Formal

Model/Method

AIC Model
A tripartite relationship with actors (users), concepts (tags, keywords) and

annotated objects (bookmarks, photos etc).
Yes

MOISE+ Model
The behaviors that an agent playing a role is responsible for (individual);

the structure and interconnection of the roles with each other (social), and

the aggregation of roles in large structures (collective)
Yes Yes

Ontology-based

Model/Method

TOVE

An Organization Ontology for Enterprise Modeling, which puts forward a

number of conceptualizations as agents, roles, positions, goals,

communication, authority, commitment.
Yes Yes Yes Yes Yes

Ontologies based on

SPEM
Design/Build Ontologies based upon SPEM Meta-Model with Ontology

Web Language.
Yes Yes Yes Yes

BPAL
An ontological framework for business process, in the context of BPMN

business process modeling method.
Yes Yes Yes Yes

PSL Ontology

Provide a rigorous mathematical characterization of process information as

well as precise expression of the basic logical properties of that information

in the PSL language, for describing basic manufacturing, engineering, and

business processes.

Yes Yes Yes Yes

Table 2.1: Summary and Comparison of Business Process Models and Methods

CHAPTER 2. STATE OF THE ART 44

Lastly, we summarize and compare previously presented methods/models in Table 2.1.

None of the existing methods do cover all the criteria considered advisable for a complete

Business Process modeling approach. From the table, we could see that, although there

are serious existing models/methods described with different features, used for model-

ing/conceptualizing business processes, these models/methods lack abilities for model-

ing/conceptualizing one or more aspects in business processes. This simply means that

their scope of modeling couldn’t cover all the involved elements in business processes.

For example, XPDL lacks the ability for modeling individual and organization structure

in business processes. TOVE could model organization structure and individual but can

not express workflow pattern. Furthermore, as the top-level ontology, DOLCE is general.

However, as the ontological model specially for conceptualizing business processes, it is

too general for providing the actual support to human activities in business processes.

Therefore, these above observations led us to develop the K-CRIO ontology and its as-

sociated approach in an attempt to model/conceptualize all the aspects of business pro-

cesses, including individual, actor, organization structure, behaviors, data flow and work

pattern.

2.5/ CONCLUSION

This chapter has presented a state of the art in terms of enterprise models, ontologies

and MAS. The contributions of this thesis are at the convergence of these three domains.

Indeed, among the hypothesis of this work, we have emphasized in this chapter the need

of rich and semantic models of enterprises in order to build assistance tools.

Among the possible representations of such rich and semantic models, ontologies exhibit

satisfying features and expressive capabilities. Specifically, the OWL language has been

chosen.

In order to design assistance tools that can support business processes in a transparent

way, MAS is a fitted paradigm. We have thus presented the necessary background to

understand what are the building blocks of the tool that is one of the contributions of this

thesis.

The following chapters will define respectively: the K-CRIO ontology, that is our contribu-

tion in terms of an enterprise model, the conceptualization of SCRUM methodology with

K-CRIO and a SCRUM assistance tool based on MAS.

II
AN ORGANIZATIONAL ONTOLOGY AND CASE

STUDIES

3
K-CRIO ONTOLOGY

3.1/ INTRODUCTION

The K-CRIO Ontology is an Ontology dedicated to the study of organizations. In other

words, it is used to understand, analyze and reason about organizations. The targeted

organizations are those composed of individuals involved in the design of a product and,

to do so, following a business process. This ontology is to be used to support pro-

cess assistance within the described organizations. More specifically, the ontology could

provide means for reasoning, annotating resources, monitoring business processes, en-

abling searches and pro-actively proposing tips and proper content. This kind of approach

was already deployed, for example, in [Kiesel et al., 2008, Limpens et al., 2008], in the

knowledge management field.

The ontology defined in this chapter is based upon the elements of an existing organi-

zational meta-model, namely CRIO, already used for the description of Multi-Agent Sys-

tems (MAS) organizations [Cossentino et al., 2007]. In our case, the concepts of this

meta-model are used to model human activities.

The definition of K-CRIO was a two steps process. First, the concepts of the CRIO meta-

model that were identified as pertinent for the description for our objectives are concep-

tualized through an ontology formalism, namely OWL [McGuinness and Van Harmelen].

Second, the result of this conceptualization is enriched by a set of classes and relation-

ships that cover the gaps for human processes’ description.

This chapter is organized as follows, in Section 3.2, the basic meta-model CRIO will be

shortly presented. After that, Section 3.3 defines the K-CRIO Ontology. Using K-CRIO

a simple example related to Software-Development Process, specifically the Waterfall

process, is presented in Section 3.4. Finally, Section 3.5 concludes.

3.2/ BACKGROUND: THE CRIO META-MODEL

The CRIO meta-model relies upon four fundamental concepts: Capacity, Role, Interaction

and Organization (see Figure 2.1). An organization is composed of Roles, which are ab-

stract behaviors interacting following defined interactions within scenarios while executing

their Role plans. An organization has a context that is described in terms of an ontology.

Roles participate in the achievement of their organization goals by their Capacities.

Definition 1 An organization is defined by a collection of roles that take part in systematic

CHAPTER 3. K-CRIO ONTOLOGY 48

institutionalized patterns of interactions with other roles in a common context. This con-

text consists in shared knowledge and social rules/norms, social feelings, and is defined

according to an ontology. The aim of an organization is to fulfill some requirements.

An organization can be seen as a tool to decompose a system, and it is structured as an

aggregate of several disjoint partitions. Each organization aggregates several roles and

it may itself be decomposed into sub-organizations.

Definition 2 A role is an expected behaviour (a set of role tasks ordered by a plan) and

a set of rights and obligations in the organisation context. The goal of each Role is to

contribute to the fulfilment of (a part of) the requirements of the organisation within which

it is defined.

Inside organizations, roles are supposed to interact. These interactions denote whatever

happen between roles of a same organization.

Definition 3 An interaction is a dynamic, not a priori known sequence of events (a speci-

fication of some occurrence that may potentially trigger effects on the system) exchanged

among roles, or between roles and entities outside the agent system to be designed.

Roles may react to the events according to theirs behaviours.

The concept of capacity abstracts a specific know-how. It is a high level abstraction that

proved to be very useful for modeling a portion of the system capabilities without making

any assumption about their implementations as it should be at the initial analysis stage.

Definition 4 A capacity is the specification of a transformation of a part of the designed

system or its environment. This transformation guarantees resulting properties if the

system before the transformation satisfies a set of constraints. It may be considered as a

specification of the pre- and post-conditions of a goal achievement.

Roles use their capacities for participating to organizational goals’ fulfillment.

A Capacity describes what a behavior can do or what a behavior may require to be de-

fined. As a consequence, there are two main ways of using this concept:

• it can specify the result of some role interactions, and consequently, the results that

an organization as a whole may achieve with its behavior. In this sense, it is possible

to say that an organization may exhibit a capacity.

• capacities may also be used to decompose complex role behaviors by abstracting

and externalizing a part of their tasks into capacities (for instance, by delegating

these tasks to other roles). In this case, the capacity may be considered as a

behavioral building block that increases modularity and re-usability.

Let’s take an example to illustrate these concepts. If we have a Motion control organi-

zation composed of two roles: Route requester role that asks for a route between two

locations and Route provider role that provides routes. The capacity to find the shortest

path in a weighted directed a cyclic graph G(N, E), from a source node to a destination

CHAPTER 3. K-CRIO ONTOLOGY 49

Figure 3.1: Example of Organizations, Roles and Capacity diagram

node d may be required by the role Route provider. This capacity may be realized in

various ways, by using classical graph algorithms, if the know-how of a single entity is

considered, or it can also be modeled by an organization. The Ant Colony is a well-

known organization able to find a solution to the problem of finding the shortest path in

a graph [Attiratanasunthron and Fakcharoenphol, 2008]. The solution (the shortest path)

emerges from interactions between Ants in their environment. Let us suppose that the

environment represents the graph G, the source node s is mapped to the Ant Hill and

the destination d to a food source. At the level n + 1, the Route Choice organization is

responsible for providing the best route between two given points to another organization

(for instance the Motion Control organization). This capacity provides the solution of a

problem that is effectively solved at a lower level of abstraction (level n). The ant colony

organization that is located at a lower level in the organizational hierarchy can realize this

capacity. The capacity concept thus allows to define how an organization at level n may

contribute to the behavior of a role at level n + 1.

3.3/ DEFINITION OF THE K-CRIO ONTOLOGY

The K-CRIO Ontology is based upon the elements of an existing organizational meta-

model, namely CRIO [Cossentino et al., 2007], already used for the description of MAS

organizations. In the case of K-CRIO Ontology, the concepts and relationships of this

meta-model are used to model human activities. K-CRIO stands for Knowledge-Capacity

Role Interaction Organization.

CHAPTER 3. K-CRIO ONTOLOGY 50

Thing

Role
has subclass

Capacity
has subclass

OntologyElementhas subclass

DesignObject
has subclass

Organization

has subclass

Ontology

has subclass

Interaction
has subclass

Prediate
has subclass

FormalizedInteractionhas subclass

CasualInteraction
has subclass

Figure 3.2: K-CRIO taxonomy

Ontology

OntologyElement

isComposedOf (Domain>Range)

Predicate

has subclass

Interaction

CasualInteraction

has subclass

FormalizedInteraction

has subclass

Role

hasParticipants (Domain>Range)

Capacity

requires (Domain>Range)ensures (Domain>Range)

input (Domain>Range)output (Domain>Range)

DesignObject

produces (Domain>Range) required (Domain>Range)

Organization

hasContext (Domain>Range)

isSubOrganizationOf (Domain>Range)

isThePlaceOf (Domain>Range)

includes (Domain>Range)

provided (Domain>Range)

Figure 3.3: K-CRIO Ontology

CHAPTER 3. K-CRIO ONTOLOGY 51

The core content of K-CRIO is presented in Figure 3.2 from the point of view of a taxon-

omy and in Figure 3.3 from the relationships point of view.

In the following section, we will detail the conceptualization of the different K-CRIO con-

cepts and their relationships respectively.

3.3.1/ ORGANIZATION

The targeted organizations are those dedicated to product design. We have then defined

a concept named DesignObject (owl:class) which is the inheritance root class of all

possible products that an organization can produce.

An organization can be seen as a set of interacting entities: sub-organizations or roles,

which are regulated by social rules and norms. Taking a simple instance, an university

could be seen as one organization. In this organization, the different departments could

be also seen as organizations and more specifically university sub-organizations. As ex-

ample, one can cite: Faculty of Computer Science, Faculty of Art, Faculty of Humanities,

and so on. These organizations, for example, Faculty of Computer Science, are com-

posed by some roles as student, professor, associate professor, lecturer, president of

faculty, etc. All of these entities define both the university organizational structure and

the global objectives that the university should fulfill. Therefore, we analyze the concept

Organization from these two aspects.

• With respect to the ontology, an organization may be seen as a concept connected

to other concepts by various kinds’ relationships, such as hierarchical relations be-

tween organizations and sub-organizations, or composed of relation between an

organization and its roles.

• With respect to the human processes in enterprises, an organization may be con-

sidered as a collective global system able to achieve particular goals through its

collaborative members.

<owl:Class rdf:ID="Organization"/>

<owl:Class rdf:ID="Ontology"/>

<owl:Class rdf:ID="Capacity"/>

<owl:Class rdf:ID="Role"/>

<owl:Class rdf:ID="Interaction"/>

<owl:ObjectProperty rdf:ID="hasContext">

<rdfs:range rdf:resource="#Ontology"/>

<rdfs:domain rdf:resource="#Organization"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="includes">

<rdfs:range rdf:resource="#Organization"/>

<rdfs:domain rdf:resource="#Role"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="provided">

<rdfs:range rdf:resource="#Capacity"/>

<rdfs:domain rdf:resource="#Organization"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isThePlace">

<rdfs:range rdf:resource="#Oraganization"/>

<rdfs:domain rdf:resource="#Interaction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isSubOrganizationOf">

<rdfs:range rdf:resource="#Organization"/>

<rdfs:domain rdf:resource="#Organization"/>

</owl:ObjectProperty>

Listing 3.1: Organization in K-CRIO

In the rest of this paper, we denote these definition with the following logical language:

CHAPTER 3. K-CRIO ONTOLOGY 52

Organization(X) means that X is an Organization.

DesignObject(X) means that X is a DesignObject.

Role(X) means that X is a Role.

Capacity(X) means that X is a Capacity.

Ontology(X) means that X is an Ontology.

Interaction (X) means that X is an Interaction.

isSubOrganizationOf (X,Y) means that X is a sub-Organization of Y and {X: Organiza-

tion(X), Y:Organization(Y)}.

includes (X,Y) means that X includes Y and {X: Organization(X), Y: Role(Y)}.

provided (X,Y) means that X includes Y and {X: Organization(X), Y: Capacity(Y)}.

hasContext (X,Y) means that X hasContext Y and {X: Organization(X), Y: Ontology(Y)}.

isThePlaceOf (X,Y) means that X is the place of Y happening and {X: Organization(X),

Y: Interaction(Y)}.

Presented in Figure 3.2, we also define some necessary restrictions between Organi-

zation and associated classes, which are represented by qualified cardinality restric-

tions in OWL (cardinality constraints, including owl:cardinality, owl:minCardinality,

owl:maxCardinality1).

Specifically, one Organization may have an unspecified number of sub-organizations,

(zero or more). Moreover, the ObjectProperty: isSubOrganizationOf is a transitive Object-

Property. For example, on the one hand, if we consider an university as one Organization,

different departments may be seen as its sub-organizations. On the other hand, one de-

partment is usually composed of diverse majors, which may be seen as sub-organizations

of this department. Because of transitivity, these majors are also the sub-Organizations

of the university. Expressed by an owl:Restriction, the sub-Organization ”isSubOrganiza-

tionOf” its Organization with minCardinality 0 (owl:restriction). The logical expression

of the transitivity of ObjectProperty:isSubOrganizationOf is:

isS ubOrganizationO f (O1,O2), isS ubOrganizationO f (O2,O3)) isS ubOrganizationO f (O1,O3)

Moreover, one Organization must include one Role at least (inversely, one Role must be

included by one Organization at least). Moreover, one (or more) interactions must occur

in an organization. That means, describing with an owl:Restriction, that Organization

”includes” Role with minCardinality 1 (owl:restriction) and ”isThePlaceOf” interaction

happening with minCardinality 1 (owl:restriction). The logic axiomatization of these

facts are:

8O,Organization(O)) 9R, {Role(R) ^ includes(O,R)}

8R,Role(R)) 9O, {Organization(O) ^ includes(O,R)}

8O,Organization(O)) 9I, {Interaction(I) ^ isThePlaceO f (O, I)}

<owl:Class rdf:ID="Organization">

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isSubOrganizationOf"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdf:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing">

1http://www.cs.vu.nl/⇠guus/public/owl-restrictions/

http://www.cs.vu.nl/~guus/public/owl-restrictions/

CHAPTER 3. K-CRIO ONTOLOGY 53

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="includes"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isSubOrganizationOf"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Listing 3.2: Restrictions of Organization in K-CRIO

3.3.2/ ROLE

A role may identify a person, status or generic behavior. A role is a necessary part to

achieve social objectives (goals of its organization). In order to fulfill this common target,

each role of an organization may have specific individual capacities. An Organization (an

owl:class) ”includes” (owl:ObjectProperty) Roles (an owl:class) which may ”required”

(owl:ObjectProperty) Capacity (an owl:class). Following there are two expressions

respectively as expressed by OWL in Figure 3.3 and logic language expression:

<owl:Class rdf:ID="Role"/>

<owl:ObjectProperty rdf:about="#includes">

<rdfs:domain rdf:resource="#Organization"/>

<rdfs:range rdf:resource="#Role"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="required">

<rdfs:range rdf:resource="#Capacity"/>

<rdfs:domain rdf:resource="#Role"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasParticipants">

<rdfs:range rdf:resource="#Role"/>

<rdfs:domain rdf:resource="#Interaction"/>

</owl:ObjectProperty>

Listing 3.3: Role in K-CRIO Ontology

required(X,Y) means X required Y and {X: Role(X), Y: Capacity(Y)}.

Moreover, an Interaction (owl:class) occurring in an Organization ”hasParticipants”

(owl:ObjectProperty) that are Roles.

hasParticipants(X,Y) means the X hasParticipants Y happening and {X: Interaction(X),

Y: Role(Y)}.

3.3.3/ CAPACITY

A capacity is a know-how and ability, which may be considered as an interface between

the role, as generic behaviors, and its role-players. Capacities may be required by a role

or provided by an organization to define their respective behaviors.

CHAPTER 3. K-CRIO ONTOLOGY 54

A Capacity is represented by an owl:class. This class is related to some ContextOntolo-

gyElement (which are parts of the Organization Ontology defining it context) divided into

two sets ”input” and output” (both are owl:ObjectProperty). The Capacity class is also

related to properties, which are conceptualized by the Predicate concept. A predicate

is an assertion on a property of some ContextOntologyElement. There are two types of

relationships between Capacity and Predicate. The first type is named ”requires” and

represents the properties that are required by the capacity. The second type is named

”ensures” and represents the effects of the capacity. The whole concept Capacity and its

related relationships could be expressed by OWL in Figure 3.4.

<owl:ObjectProperty rdf:ID="provided">

<rdfs:range rdf:resource="#Capacity"/>

<rdfs:domain rdf:resource="#Organization"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="ensures">

<rdfs:domain rdf:resource="#Capacity"/>

<rdfs:range rdf:resource="#Prediate"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="required">

<rdfs:domain rdf:resource="#Role"/>

<rdfs:range rdf:resource="#Capacity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="output">

<rdfs:range rdf:resource="#Capacity"/>

<rdfs:domain rdf:resource="#OntologyElement"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="input">

<rdfs:range rdf:resource="#OntologyElement"/>

<rdfs:domain rdf:resource="#Capacity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="requires">

<rdfs:domain rdf:resource="#Capacity"/>

<rdfs:range rdf:resource="#Prediate"/>

</owl:ObjectProperty>

Listing 3.4: Capacity in K-CRIO Ontology

3.3.4/ INTERACTION

As already identified in numerous works, such as [Matta et al., 2010], interactions are

an essential component for modeling human collaborative processes. The aim of an

interaction in this context is to achieve a goal or to contribute to a goal of one organization.

In this thesis a partition in two different types of interactions is proposed. These types are

respectively Casual Interaction and Formalized Interaction. The former ones depict inter-

actions between roles, which do not follow any specified pattern or sequence of activities

in the model and that can take place in a non determined fashion. This kind of interactions

usually do not produce any DesignObject, at least no identified ones. Among the possible

examples of these interactions one can cite: chatting or mails exchange between different

roles.

Definition 5 A Casual Interaction is any interaction that is not specified by a sequence

of events and that do not produce any DesignObject.

On the contrary, formalized interactions identify, in a pre-determined way (frequently de-

scribed in business processes), how different roles belonging to the same organization

can interact with each other to achieve the common goal of the organization and in the

meantime produce DesignObject of any sort.

CHAPTER 3. K-CRIO ONTOLOGY 55

Definition 6 A Formalized Interaction is any interaction that satisfies the two conditions:

1. is specified by a sequence of events,

2. produce at least one DesignObject,

The distinction between these two types of interactions is introduced to distinguish inter-

actions that will be reasoned upon, the Formalized Interactions, and those that are either

unknown or of no interest for the task at hand.

From the perspective of the K-CRIO ontology definition, Formalized Interaction and Ca-

sual Interaction are both defined as owl:class. These two classes are sub-classes of

the Interaction (owl:class):

CasualInteraction(X) means X is CasualInteraction.

FormalizedInteraction(X) means X is FormalizedInteraction.

Interaction(X) ⌘ CasualInteraction(X) [FormalizedInteraction(X)

The FormalizedInteraction class is related by the ”produces” (owl:ObjectProperty)

relationships to the ”DesignObject” (an owl:class) concept:

produces(X,Y) means X produces Y and {X: FormalizedInteraction(X), Y: DesignOb-

ject(Y)}.

It may be expressed by OWL as detailed in Figure 3.5.

<owl:Class rdf:ID="Interaction"/>

<owl:Class rdf:ID="FormalizedInteraction">

<rdfs:subClassOf rdf:resource="#Interaction"/>

</owl:class>

<owl:Class rdf:ID="CasualInteraction">

<rdfs:subClassOf rdf:resource="#Interaction"/>

</owl:class>

<owl:ObjectProperty rdf:ID="produces">

<rdfs:range rdf:resource="#DesignObject"/>

<rdfs:domain rdf:resource="#FormalizedInteraction"/>

</owl:ObjectProperty>

Listing 3.5: Interaction in K-CRIO

In the following section, we define Interaction, in K-CRIO, from two different perspectives.

Interaction may be seen as a description of possible patterns of actions and exchanges

between the participant roles. This vision is similar to a workflow, the definition of which is

in Section 3.3.4. On the other hand, we should consider about the state and the time-table

of Interactions, the definition of which is in Section 3.3.4.

DEFINING INTERACTION FROM THE ASPECT OF WORKFLOW

FormalizedInteraction, seen as a description of possible patterns of actions and ex-

changes between the participant roles can be conceptualized by workflows. The concept

of workflow is quite wide. In this thesis we have adopted the following definition of Beco

et al. [2005]:

CHAPTER 3. K-CRIO ONTOLOGY 56

Definition 7 Workflow can be defined as the orchestration of a set of activities to ac-

complish a larger and sophisticated goal. Examples of workflow include application pro-

cesses, business processes, and infrastructure (e.g. “behind the scenes”) processes.

One can see that this definition fits well with the already defined FormalizedInteraction. In

order to conceptualize FormalizedInteraction, we have thus chosen to reuse and improve

an existing ontology, OWL-WS, dedicated to the description of workflow [Beco et al.,

2005] and inspired by OWL-S (Semantic Markup for Web Services, [Martin et al., 2004]).

OWL-WS is based on the assumption that a workflow is a kind of complex service and

therefore it can be represented in OWL-WS as a full OWL-S Service. This service can be

a simple one or composed of simpler services using the OWL-S control constructs such

as: Sequence, RepeatUntil, Split, etc.

The reason behind the choice of such an (sub-)ontology for describing FormalizedInter-

action is twofold. First, it allows to describe and specify the possible sequences of events

that take place during a FormalizedInteraction. Considering this aspect only the con-

tribution is not much as many formalisms, such as BPEL or BPMN, allow this kind of

representations. Second, it allows to manipulate and reason upon the process in it work-

flow, as defined in this thesis, perspective. This last aspects is of interest as it is one of

the goal of this thesis, defining an ontology for reasoning about productive organizations.

Figure 3.4: Inspiration from OWL-S [Martin et al., 2004]

CHAPTER 3. K-CRIO ONTOLOGY 57

Figure 3.4 illustrates the upper level of the process ontology in OWL-S [Martin et al.,

2004]. As Figure 3.4 representing, the concept Process has three sub-classes: Atomic

Process, Simple Process and Composite Process. The Composite Process collapses

to Simple Process, which is realized by Atomic Process. The definitions of these three

kinds of processes in [Martin et al., 2004] are: ”Atomic processes correspond to the

actions a service can perform by engaging it in a single interaction; composite processes

correspond to actions that require multi-step protocols and/or multiple server actions;

finally, simple processes provide an abstraction mechanism to provide multiple views of

the same process”. It is the difference between Atomic Processes and Simple Processes

in service models. It means that for each atomic process, there must be provided a

grounding that enables a service requester to construct messages to the process from its

inputs and interpret or deconstruct a reply as an output of the service. On the contrary,

simple processes are not invocable and are not associated with a grounding, but, like

atomic processes, they are conceived as having single-step executions.

In our designed K-CRIO Ontology, because our purpose is to model business pro-

cess, we conceptualize the concept of Process (owl:class) as being a class equiv-

alent to FormalizedInteraction (owl:class), which has two sub-classes: Atomic Pro-

cess (owl:class)) and Composite Process (owl:class). Each process has its partici-

pants and its parameters. Specifically, Participant as an owl:class is equivalent to the

Role class. Parameter (owl:class) has two sub-classes: Input (owl:class) and Output

(owl:class). The relationship between Process and Parameter are respectively hasIn-

put (owl:ObjectProperty) and hasOutput (owl:ObjectProperty). These elements are

formalized as follows.

Process(X) ⌘ FormalizedInteraction(X)

Process(X) ⌘ AtomicProcess(X) [CompositeProcess(X)

Participant(X) ⌘ Role(X)

hasParticipant(X,Y) means X has participant Y and {X: Process(X), Y: Participant(Y) or

Y:Role (Y)}.

hasParameter(X,Y) means X has parameter Y and {X: Process(X), Y: Parameter(Y)}.

Figure 3.5 helps us to understand how to define the FormalizedInteraction from the re-

spective of workflow, which is referred by OWL-S.

C
H

A
P

T
E

R
3

.
K

-C
R

IO
O

N
T

O
L

O
G

Y
5

8

Parameter

Input

has subclass

Output

has subclass

Process

Participant

hasParticipant (Domain>Range)hasParameter (Domain>Range)

CompositeProcess

has subclass

AtomicProcess

has subclass

FormalizedInteraction

equivalent class

Role

equivalent class

ControlConstructBag

ControlConstruct

first(Subclass all)

rest(Subclass all)

Sequence

has subclass

Choice

has subclass

Split

has subclass

Iterate

has subclass

Split-Join

has subclass

Any-Order

has subclass

Perform

has subclass

If-Then-Else

has subclass

Unordered

equivalent classcomponents(Subclass all)

ControlConstructList

first(Subclass all)

rest(Subclass all)

components(Subclass all)components(Subclass all)components(Subclass all)

Repeat-While

Condition

whileCondition (Domain>Range)

whileProcess (Domain>Range)

components(Subclass all)

Repeat-Until

has subclasshas subclass

ifCondition (Domain>Range)

then (Domain>Range)else (Domain>Range)

composedOf (Domain>Range) process (Domain>Range)

untilProcess (Domain>Range)

untilCondition (Domain>Range)

List

has subclass has subclass

ProcessComponent

equivalent class

Figure 3.5: Definition of Formalized Interaction from the workflow aspect

CHAPTER 3. K-CRIO ONTOLOGY 59

Start/Input

Finish/
Output

Retrieve_QuotesFromSuppliers
Retrieve_QutoesFrom

InternalWarehouseService
Retrieve_QutoesFrom

PartnerSupplierMediator

Start/Input

Finish/
Output

Figure 3.6: The format of a Split Process

Precisely, a process may be an atomic process which is a description of one (possibly

complex) sent message and one returning (possibly complex) message in response. A

process may also be a composite, which means that it can be divided into atomic pro-

cesses describing a behavior (or a set of behaviors) sending and receiving a series of

messages. The Composite Process is composed of (owl:ObjectProperty) Control Con-

struct (owl:class) , which has several sub-classes, including Sequence (owl:class),

Choice (owl:class), Split (owl:class), Split-Join (owl:class), Any-Order (owl:class),

If-Then-Else (owl:class), Iterate (owl:class), Perform (owl:class). These different con-

structs are detailed in the following list.

• Sequence means a list of control constructs to be executed in the defined order.

This construct is further defined by several components (owl:ObjectProperty)

Control Construct List (owl:class). (Control Construct List and Control Con-

struct Bag are two sub-classes of List (owl:class).) Moreover, the first

(owl:ObjectProperty) element of Control Construct List could be another Con-

trol Construct and the rest (owl:ObjectProperty) of Control Construct List can be

a Control Construct List defining a typical linked list.

Examples of Sequence process could be comprehended easily. The example of

Waterfall Model process is one of them in following section 3.4.

• The components of a Split process are a bag of process components to be executed

concurrently. The Split completes as soon as all of its component processes have

been scheduled for execution.

For example, the process of retrieving quotes from all suppliers could be seen as

a CompositeProcess: Retrieve QuotesFromSuppliers. It is a Split process with

two components: AtomicProcess: Retrieve QuotesFromInternalWarehouseSer-

vice and AtomicProcess: Retrieve QuotesFromPartnerSupplierMediator. These

two processes are executed concurrently, and the CompositeProcess: Retrieve -

QuotesFromSuppliers is not finished until these two component processes are fin-

ished. The format of Split process is shown in Figure 3.6.

• When a composite process is composed of a control construct of Split-Join, it means

that the process consists of concurrent executions of a bunch of process compo-

CHAPTER 3. K-CRIO ONTOLOGY 60

Start/Input

Finish/
Output

Retrieve_TheLowestQuoteFromSuppliers

Retrieve_QutoesFrom
InternalWarehouseService

Retrieve_QutoesFrom
PartnerSupplierMediator

Start/Input

Finish/
Output

FindTheLowestQuote

Split

Join

Figure 3.7: The format of Split+Join Process

nents with barrier synchronization. That is, Split+Join completes when all of its

components processes have completed. With Split and Split+Join, we could define

processes that have partial synchronization.

Extending the above example, the process of retrieving the lowest quote from

all suppliers could be seen as a CompositeProcess: Retrieve TheLowestQuote-

FromSuppliers. It is a Split-Join process that two atomic processes, Atom-

icProcess: Retrieve QuotesFromInternalWarehouseService and AtomicProcess:

Retrieve QuotesFromPartnerSupplierMediator are executed in parallel, and joins

the responses into a single AtomicProcess:FindTheLowestQuote. The format of

Split+Join process is shown in Figure 3.7.

• Any-order is the equivalent class of Un-order, which allows the process components

(specified as a bag) to be executed in some unspecified order but not concurrently.

Execution and completion of all components is required.

For example, the process of mixing pigments could be seen as a CompositePro-

cess: MixPigments. In order to finish this process, we need to finish the processes

AtomicProcess: AddRedPigment, AtomicProcess: AddWhitePigment and Atom-

icProcess: AddYellowPigment. The order of these three processes is not important.

• Choice calls for the execution of a single control construct from a given bag of

control constructs (given by the components property). Any of the given control

constructs may be chosen for execution.

For example, the process of finding the fittest airplane ticket could be seen as a

CompositeProcess: FindTheFittestAirplaneTicket. There are two choices for finish-

ing this process: the CompositeProcess: FindTheCheapestAirplaneTicket and the

CompositeProcess: FindTheFastestAirplaneTicket.

• The If-Then-Else class is a control construct that has properties ifCondition

(owl:ObjectProperty), then and else holding different aspects of the If-Then-Else.

CHAPTER 3. K-CRIO ONTOLOGY 61

Start/Input

Finish/

Output

ManageProductsQuality

Start/Input

Finish/

Output

TheProductReachQualityLevel?

SendToSeller ReturnToProducer

True False

Figure 3.8: The format of a If-Then-Else Process

Its semantic means as that test the Condition (owl:class) of the related property

If-condition; if True do Then, if False do Else.

For example, a process of managing products quality could be seen as an If-

Then-Else CompositeProcess: ManageProductQuality, which has a Condition:

TheProductReachQualityLevel. If the condition is true, execute the AtomicPro-

cess:SendToSeller, otherwise execute the AtomicProcess: ReturnToProducer. The

format of If-Then-Else process could is shown in Figure 3.8.

• Iterate construct makes no assumption about how many iterations are made

or when to initiate, terminate, or resume. The Condition (owl:class) of ini-

tiation, termination or maintenance could be specified with a whileCondition

(owl:ObjectProperty) or an untilCondition (owl:ObjectProperty). Both iterate un-

til a condition becomes false or true, following the familiar programming language

conventions. Repeat-While tests for the condition, exits if it is false and does the

operation if the condition is true, then loops. Repeat-Until does the operation, tests

for the condition, exits if it is true, and otherwise loops. Thus, Repeat-While may

never act, whereas Repeat-Until always acts at least once.

For example, the process of correcting coding mistakes could be seen as a Repeat-

While CompositeProcess: Debug with the Condition: HasBugs?. The condition is

true executes the AtomicProcess: Correct and then re-evaluates the condition. The

format of Repeat-While process is shown in Figure 3.9. Additionally, if we define the

CompositeProcess: Debug as a Repeat-Until process. The format of this Repeat-

Until process is shown in Figure 3.10

• Perform could be considered as the command to execute a process. From the ontol-

ogy point of view, one Perform (owl:class) could process (owl:ObjectProperty)

one Process (owl:class). It could concerns either one Atomic Process or one

Composite Process.

CHAPTER 3. K-CRIO ONTOLOGY 62

Start/Input

Finish/

Output

Debug

Start/Input

Finish/

Output

HasBugs ?

Correct

True False

Figure 3.9: The format of a Repeat-While Process

Start/Input

Finish/

Output

Debug

Start/Input

Finish/

Output

NoBugs ?

False

True

Correct

Figure 3.10: The format of a Repeat-Until Process

CHAPTER 3. K-CRIO ONTOLOGY 63

DEFINING INTERACTION FROM THE ASPECT OF SCHEDULE

Additionally, if we need to pay more attention to the state and time-table of each formal-

ized interaction, we could use an extension of the K-CRIO ontology, which use a state

machine representation for FormalizedInteraction. We define for FormalizedInteraction

a specific relationship ”is in” (an ObjectProperty) some State (an owl:class), which

has three sub-classes: NotStarted, Doing, Done. In certain situations, a formalized

interaction has its pre-Interaction (hasPre-Interaction is an ObjectProperty, the domain

and range of which are both FormalizedInteraction):

is in(X,Y) means X is in Y state and {X: FormalizedInteraction(X), Y: State(Y)}.

hasPre-Interaction(X,Y) means X has pre-interaction Y and {X: FormalizedInterac-

tion(X), Y: FormalizedInteraction(Y)}.

In order to test whether the interaction is executed following the schedule or not,

we consider the the FormalizedInteraction may respect time constraints. Therefore,

we defined an owl:class Time which is related with FormalizedInteraction by the

ObjectProperty:follows. More specifically, Time has four sub-classes: BeginningTime,

EndTime, RealBeginningTime, RealEndTime, in which, BeginningTime and EndTime ex-

press the planning schedule and RealBeginningTime and RealEndTime expresses the

real schedule. Comparing the subtraction of two types of beginning time and end time,

we could express whether the process is earlier or later than the schedule actually:

For Follows(FormalizedInteraction, BeginningTime) ^ (FormalizedInteraction, EndTime) ^

(FormalizedInteraction,RealBeginningTime) ^ (FormalizedInteraction,RealEndTime):

(EndTime − BeginningTime) > (RealEndTime − RealBeginningTime) means the Formalized-

Interaction is earlier than the schedule.

(RealEndTime − RealBeginningTime) > (EndTime − BeginningTime) means the Formalized-

Interaction is later than the schedule.

Figure 3.11 represents the concept of FormalizedInteraction in K-CRIO and related con-

cepts/relationships.

In summary, all the related concepts and their relationships in K-CRIO are presented in

Figure 3.12.

C
H

A
P

T
E

R
3

.
K

-C
R

IO
O

N
T

O
L

O
G

Y
6

4

CompositeProcess

ControlConstruct

composedOf (Domain>Range)

………

Process

Input

hasInput (Domain>Range) AtomicProcess

has subclass

Parameter

hasParameter (Domain>Range)

FormalizedInteraction

equivalent classhas subclass

Output

hasOutput (Domain>Range) Participant

hasParticipant (Domain>Range)

has subclasshas subclass

DesignObject

produce

hasPre-Interaction

Time

follows (Domain>Range)

State

is in (Domain>Range)

Role

equivalent class

BeginingTime

has subclass

EndTime

has subclass

RealBeginingTime

has subclass

RealEndTime

has subclass

Doing

has subclass

NotStart

has subclass

Done

has subclass

Figure 3.11: Interaction in K-CRIO

C
H

A
P

T
E

R
3

.
K

-C
R

IO
O

N
T

O
L

O
G

Y
6

5

Ontology

OntologyElement

isComposedOf (Domain>Range)isComposedOf (Domain>Range)

Predicate

has subclass has subclass

Interaction

CasualInteraction

has subclass

FormalizedInteraction

has subclass

Role

hasParticipants (Domain>Range) has subclass has subclasshasParticipants (Domain>Range)

Capacity

requires (Domain>Range)ensures (Domain>Range)

input (Domain>Range)output (Domain>Range)

requires (Domain>Range) ensures (Domain>Range)

input (Domain>Range) output (Domain>Range)

DesignObject

produces (Domain>Range)produces (Domain>Range)produce

hasPre-Interaction

Time

follows (Domain>Range)

State

is in (Domain>Range)required (Domain>Range)required (Domain>Range)

Organization

hasContext (Domain>Range)

isSubOrganizationOf (Domain>Range)

isThePlaceOf (Domain>Range)

includes (Domain>Range)

provided (Domain>Range)

hasContext (Domain>Range)

isSubOrganizationOf (Domain>Range)

isThePlaceOf (Domain>Range)

includes (Domain>Range)

provided (Domain>Range)

Parameter

Input

has subclass

Output

has subclasshas subclasshas subclass

Process

Participant

hasParticipant (Domain>Range) hasParameter (Domain>Range)

CompositeProcess

has subclass

AtomicProcess

has subclass

equivalent class hasInput (Domain>Range)

has subclasshasParameter (Domain>Range)

equivalent class

has subclass

hasOutput (Domain>Range)

hasParticipant (Domain>Range)

equivalent class equivalent class

ControlConstructBag

ControlConstruct

first(Subclass all)

rest(Subclass all)

Sequence

has subclass

Choice

has subclass

Split

has subclass

Iterate

has subclass

Split-Join

has subclass

Any-Order

has subclass

Perform

has subclass

If-Then-Else

has subclass

Unordered

equivalent class components(Subclass all)

ControlConstructList

first(Subclass all)

rest(Subclass all)

components(Subclass all)components(Subclass all)components(Subclass all)

Repeat-While

Condition

whileCondition (Domain>Range)

whileProcess (Domain>Range)

components(Subclass all)

Repeat-Until

has subclass has subclass

ifCondition (Domain>Range)

then (Domain>Range)else (Domain>Range)

composedOf (Domain>Range)composedOf (Domain>Range) process (Domain>Range)

untilProcess (Domain>Range)

untilCondition (Domain>Range)

List

has subclass has subclass

ProcessComponent

equivalent class

BeginingTime

has subclass

EndTime

has subclass

RealBeginingTime

has subclass

RealEndTime

has subclass

Doing

has subclass

NotStart

has subclass

Done

has subclass

Figure 3.12: All related concepts and relationship in K-CRIO

CHAPTER 3. K-CRIO ONTOLOGY 66

Figure 3.13: Software development process: the Waterfall Model

3.4/ A SIMPLIFIED SOFTWARE DEVELOPMENT PROCESS MODELED

WITH K-CRIO

In the previous sections, we have presented the K-CRIO concepts and their relationships.

In order to make the definition of K-CRIO more comprehensive and understandable, in

this section, we will provide a brief case study to explain how to use K-CRIO to model

business processes. The presented concepts and relationships should not be taken as a

complete description.

More specifically, we use K-CRIO on a traditional software-development process, namely

the Waterfall Model [Melonfire, 2006] illustrated by Figure 3.13. This model is one of

the most famous for software processes and has been used widely in IT (Information

Technology) organizations for project teams developing software.

The Waterfall Model is just a primer case study for K-CRIO that is used to illustrate the

previous concepts and relationships. As such, the Waterfall model has been simplified in

order to serve as an example. Other business processes or classical models of software-

development processes could also be modeled by K-CRIO, like Spiral Model, Rapid Pro-

totyping Model, etc.

As presented in Figure 3.13, one could see that the Waterfall Model defines five main

phases. These phases are detailed by the following list.

• In the Requirement phase, the Requirement Analysts need to visit the customer

and to study system requirements. They examine the need for possible software

automation in the given software system. After feasibility study, the development

team provides a document that holds the different specific recommendations for the

candidate system. It also consists of personnel assignments, costs of the system,

project schedule and target dates.

• In the Design phase, the overall software structure and its outlay are defined, like

package architecture, database design if needed, data structure design, etc. All of

these elements give birth to a design document and the main role that participates

CHAPTER 3. K-CRIO ONTOLOGY 67

to this phase is Designer.

• In the Implementation phase, the whole system design must be implemented into

a machine-readable form by coders with programming languages like C, C++, Java

and so on.

• After the code generation phase the software program testing activities begin in

order to try detecting the bugs in the Verification phase.

• In the Maintenance phase, software will definitely go through change once when it

is delivered to the customer.

As stated above, we could apply K-CRIO to model the Waterfall Model process. An IT

Company should be seen as an Organization. The Software Developing Team is also

an Organization and one of the IT Company sub-organizations. The Software Develop-

ing Team organizations includes Roles such as: Project Leader, Requirement Analyst,

Designer, Coder, Tester (System Tester, and Unit Tester).

Speaking about actual Software-Development Project process, the Capacities required

by the Roles are:

• managing project, organizing meeting, confirming the domain, supervising sched-

ule, making decisions, examining and checking, etc.(required by Project Leader);

• communicating with clients or customers, analyzing the requirement of users, writ-

ing requirement document (required by Requirement Analyzer);

• designing the system (including system design, architecture design and database

design, etc.), writing design document (required by Designer);

• coding (required by coder);

• test, writing test report (required by Tester, System Tester, Unit Tester);

Following the K-CRIO definitions of previous sections, the above description may be ex-

pressed as presented in Figure 3.14. Additionally, we take an instance of Project Leader

to explain how to define these in OWL, it is depicted in Figure 3.6.

<Organization ref:ID="SoftwareDevelopmentTeam">

<includes rdf:resource="#ProjectLeader"/>

<provided rdf:resource="#SuperviseSchedule"/>

<provided rdf:resource="#ComfirmSchedule"/>

<provided rdf:resource="#OrganizeMeeting"/>

<provided rdf:resource="#ConfirmDoman"/>

<provided rdf:resource="#MakeDecision"/>

<provided rdf:resource="#ExamineAndCheck"/>

</Organization>

<Role rdf:ID="ProjectLeader">

<required>

<Capacity rdf:ID="ConfirmSchedule"/>

</required>

<required>

<Capacity rdf:ID="OrganizationMeeting"/>

</required>

<required>

<Capacity rdf:ID="SuperviseSchedule"/>

</required>

<required>

<Capacity rdf:ID="ConfirmDomain"/>

</required>

CHAPTER 3. K-CRIO ONTOLOGY 68

<required>

<Capacity rdf:ID="ExamineAndCheck"/>

</required>

<required>

<Capacity rdf:ID="MakeDecision"/>

</required>

</Role>

Listing 3.6: Defining Project Leader Role in OWL

C
H

A
P

T
E

R
3

.
K

-C
R

IO
O

N
T

O
L

O
G

Y
6

9

Figure 3.14: An Example of K-CRIO

CHAPTER 3. K-CRIO ONTOLOGY 70

The interactions in the SDT Organization (Software Developing Team) may be considered

as Casual Interaction and Formalized Interaction separately. Chat is a kind of Casual In-

teraction between different persons (Roles), other examples may be Exchanging Mail or

Joining Conference Meeting, etc. Furthermore, the whole Waterfall Software Develop-

ing process should be defined by Formalized Interaction as well as Composite Process

to produce a software or tool defined as a specific DesignObject in K-CRIO. The cor-

responding Formalized Interaction is composed of a Sequence Control Construct. The

components of the Control Construct Sequence are:

• CompositeProcess RequirementAnalyzing has participants (Roles) of Project

Leader, Requirement Analyzer, Designer to produce Requirement Document de-

fined as DesignObject;

• CompositeProcess SystemDesigning has participants (Roles) of Project Leader,

Designer, Coder to produce System Design Documents defined as DesignObject;

• CompositeProcess Implementation has participants (Roles) of Project Leader,

Coder to produce coding source or some similar things defined as DesignObject;

• CompositeProcess Verification has participants (Roles) of Project Leader, Coder,

Tester, System Tester, Unit Tester to produce the software or tool defined as Desig-

nObject;

• CompositeProcess Maintenance has other participants (Roles), like servicing peo-

ple to produce robust softwares or tools defined as DesignObject.

Start/In

CompositeProcess(FormalizedInteraction)_RequirementAnalysing

CompositeProcess(FormalizedInteraction)_SystemDesigning

CompositeProcess(FormalizedInteraction)_Implementation

CompositeProcess(FormalizedInteraction)_Verification

CompositeProcess(FormalizedInteraction)_Maintenance

Finish/Out

Perform_Implementation

CompositeProcess_Implementation

process

ControlConstructList_4

Perform_Maintenance

first

CompositeProcess_Maintenance

process

ControlConstructList_whole

ControlConstructList_1

rest

Perform_RA

first

ControlConstructList_2

rest

Perform_SD

first

ControlConstructList_3

rest

first

Perform_Verification

first rest

CompositeProcess_RequirementAnalysing

process

CompositeProcess_SystemDesigning

process

first

Sequence_whole

components

CompositeProcess_Verification

process

CompositeProcess_WaterfallProcess

composedOf

Figure 3.15: Waterfall Process by K-CRIO Ontology

The overall Waterfall process is defined by CompositeProcess WaterfallProcess, which

is composed of Sequence whole. The single component of Sequence whole is Control-

ConstructList whole. The first element of ControlConstructList whole is Perform RA that

CHAPTER 3. K-CRIO ONTOLOGY 71

processes CompositeProcess RequirementAnalysing. The rest of ControlConstructList -

Whole is ControlConstructList 1. Furthermore, the first of ControlConstructList 1 is Per-

form SD that processes CompositeProcess System Designing and the rest of that is

ControlConstructList 2. Similarly, the first of ControlConstructList 2 is Perform Imple-

mentation that processes CompositeProcess Implementation and the rest of ControlCon-

structList 2 is ControlConstructList 3. The rest definition could be done in the same man-

ner to finish the general description of Waterfall process.

On the contrary, if the document does not satisfy a given criterion (the condition Redo

is true), it will be returned to Designers with some synthetic suggestions and then be

checked again until the document is valid (the Composite Process Review Design Docu-

ment is executed again and return a new value of Redo).

In sum, all the detail of the conceptualization of Waterfall Model with K-CRIO could be

explained precisely in [Lin et al., 2011].

3.5/ CONCLUSION

In this chapter, we have defined the K-CRIO ontology, including each concept, related

relationships and restrictions. More precisely, the K-CRIO Ontology is an organizational

ontology, described with Ontology Web Language (OWL). The core concepts in K-CRIO

are Organization, Role, Capacity and Interaction. We built K-CRIO Ontology in order to

model and conceptualize business processes in enterprises. These business processes

are dedicated to the design of products. Using the K-CRIO Ontology, we could not only

conceptualize human roles and their relationships in enterprises, but also model the hu-

man activities and the scenario of how human roles’ interactions happen.

The K-CRIO Ontology is our proposed approach trying to answer the concerns about

enterprise modeling, especially about business processes. It is a core contribution of

this thesis. The underlying assumption is that it should help developers to design and

implement the system for supporting a special business process.

In our thesis, we want to design and implement an intelligent assistance system to sup-

port human activities within business processes, and as an example of such a process the

Scrum process is detailed in the following chapter. This chapter is based upon the con-

ceptualization of Scrum process with K-CRIO, as the primary attempt. Precisely, Scrum

process is a famous agile software-development process, which is used widely in many

project teams delivering their projects/products in software enterprises.

Therefore, following the definition of K-CRIO in this chapter, we will illustrate the use of

K-CRIO to conceptualize the Scrum process in the following chapter. The content of

next chapter also serves as a complete case study for explaining the usage of K-CRIO

Ontology.

4
SCRUM PROCESS CONCEPTUALIZED

WITH K-CRIO ONTOLOGY

4.1/ INTRODUCTION

Scrum is a well-known, iterative and agile software-development process, that involves

different kinds of roles interacting with each other in order to achieve their purpose. It is

currently widely used to develop software.

The Scrum process, as many other processes, involves several human actors interacting

to produce deliverables and a final product under the form of a software. Even if it is an

agile software-development process reputed of low ceremony, the sequence of interac-

tions may appear more complex than the sequential Waterfall process, shortly described

as an example in the previous chapter. For human actors involved in a Scrum process,

assistance to support the process could help with many aspects such as respecting the

schedule, managing the costs, delivering the right products, ...

In this chapter, we will conceptualize the different elements of Scrum Processes with the

K-CRIO ontology that is presented in the Chapter 3. That is to say, we will use the K-

CRIO ontology to describe for the Scrum process, the different involved organizations,

human roles and interactions their capacities and how these roles interact in each phase

of a Scrum process. For understanding the conceptualization Scrum with K-CRIO, we

could also read related contents in [LIN et al., 2011a], [LIN et al., 2012].

The organization of this chapter is the following. In Section 4.2, we make an introduction

to the Scrum Process. Based upon this general introduction to Scrum, we conceptualize

all Scrum elements with the K-CRIO ontology in Section 4.3. Eventually, Section 4.4

concludes.

4.2/ A SHORT INTRODUCTION TO THE SCRUM PROCESS

Scrum is an iterative, incremental framework for projects and products or application de-

velopments and is often seen as an agile software-development process. Scrum struc-

tures development in cycles of work called Sprints (or iterations). These iterations last

no more than one month each, and take place one after the other without pause. The

people involved in Scrum could be divided into two groups. The first group denotes the

Scrum team and has a figurative name: ”Pig”, where are three core components: The

Product Owner, The Scrum Master and The Team. All these members are committed to

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 74

The Product Backlog (Example)

ID Name Priority Estimate Effort (hours) Description
Note

1 Deposit 10 12

A user Log in, open deposit

page, deposit money, go to

my balance page and check

that it has increased equal

amount money.

Need a UML sequence

diagram. No need to

worry about encryption

for now.

2

See your own

transaction

history
5 6

A user Log in, click on

“transactions” and show the

transaction record.

Use paging to avoid

large DB queries.

Design similar to view

users page.

3
Edit your

information 10 10

A user Log in, click on

“personal information” and

show the users' information

Change password need

the confirmation of

SMS

… … … ...

Figure 4.1: The Product Backlog

the project in the Scrum process. These components are the ones producing the product

(objective of the project). The other group is composed by Ancillary people and is named

”Chicken”. Precisely, the ancillary people in Scrum are those with no formal role and infre-

quent involvements in the Scrum process that must, nonetheless, be taken into account.

For example, one can cite some Stakeholders, Customers, Vendors or Managers (that

represents a kind of person who will set up the environment for product development).

The Scrum process is presented in Figure 4.3 extracted from [Deemer et al., 2010]. In

this figure, we could see that during the first step, the Product Owner needs to commu-

nicate with all the Stakeholders in order to transform each User Story into one item or

one feature in the Product Backlog. The Product Backlog is the core document contain-

ing prioritized descriptions which will be referred by the Scrum Team during the Scrum

Process. The product backlog is basically a prioritized list of functional requirements,

non-functional requirement, issues, stories, features, or other related things. These ele-

ments in the Product Backlog describes what the customer wants. They are described

using the customers’ terminology. We call these elements ” user stories”, or sometimes

just backlog items. Figure 4.1 represents an example of Product Backlog about an e-bank

project. Generally, the Product Owner could describe each item of the Product Backlog

with the following fields:

• ID: a unique identification or an auto-incremented number;

• Name: a short descriptive name of a story;

• Priority: or alternatively named Importance, higher of which means the items is

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 75

more important to finish;

• Estimate effort: the initial assessment of how much work needed to implement this

story. The unit is story point and usually corresponds to ”ideal man-days” or ”ideal

man-hours”;

• Description: a high-level description of how this story will be demonstrated at the

sprint demo;

• Note: any other information;

• Others: like Category (or Track, which is a rough categorization of this story),

Components (which can identify which technical components will be involved in

implementing this story, for example ”database, server, client”), Requester (show-

ing which customer or stakeholder originally requested the item), Bug tracking ID

(information for reporting bugs).

In a second step, before the beginning of each Sprint, a cross-functional team selects

items (customer requirements) from the prioritized list (Product Backlog) [Deemer et al.,

2010]. This phase occurs in the Sprint Planning Meeting. The team should commit to

completing these items by the end of the Sprint. Each item represented in the Sprint

Backlog, that can be called task, is decomposing one user story in Product Backlog down

to small units. Precisely, in actual Scrum projects, teams could use different formats

for the Sprint Backlog. These formats include specific Scrum software, Jira, Excel, or a

physical task board screwed on the wall. However, no matter the selected format, the

contents of one Sprint Backlog are generally represented by a list of tasks that defines

a team’s work for a Sprint. The list emerges during the Sprint. Each task identifies

those responsible for doing the work and the estimated amount of work remaining on

the task on any given day during the Sprint. This estimated amount is updated with a

given frequency. Figure 4.2, presents an example of Sprint Backlog which selects two

user stories from the Product Backlog of Figure 4.1. More information about Scrum could

be found in: http://www.scrummethodology.org/scrum-phases.html and [Deemer et al.,

2010].

4.3/ CONCEPTUALIZATION OF SCRUM WITH K-CRIO

In this section, we present how to use the K-CRIO Ontology to conceptualize Scrum

processes. Based on the general understanding derived from the previous description

of Scrum, one can make the hypothesis that Scrum contains diverse kinds of people

working together with specific interactive modes in order to achieve a common goal, such

as delivering a product or exploring a project.

4.3.1/ IDENTIFICATION OF ORGANIZATIONS, ROLES AND CAPACITIES IN SCRUM

PROCESSES

Following the definition of K-CRIO, Scrum may be seen as one Organization that is called

Scrum. Within this organization, there are smaller groups that can also be seen as Orga-

nizations (sub-organization of Scrum), like the groups ”Pig” and ”Chicken”. Among these

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 76

New Estimate Effort

Remaining at end of Day

Product

Backlog Item

Sprint Task Assigned

Worker

Initial Estimate

Effort

1 2 3 4 5 ...

Deposit Modify database Harry 5

Create webpage

(UI)

6

Create webpage

(Javascript logic)

Bob 8

...

Edit your

Information

Modify database Harry 4

Create webpage

(UI)

6

Update related user

homepage (UI)

6

...

Figure 4.2: The Sprint Backlog

organizations, the roles involved are Scrum Master, Product Owner,etc. These definitions

expressed in a logical form are as follows.

Scrum:

Organization(S crum) ^ isS ubOrganizationO f (Pig, S crum)

^isS ubOrganizationO f (Chicken, S crum)

Following K-CRIO definitions, Figure 4.4 describes all the related elements in Scrum

Processes that are considered as Organization, Role and Capacity. Specifically, Organi-

zation, Role and Capacity are represented in purple, black and green respectively. In the

following section, each of them will be detailed.

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 77

Figure 4.3: The process of Scrum

C
H

A
P

T
E

R
4

.
S

C
R

U
M

P
R

O
C

E
S

S
C

O
N

C
E

P
T

U
A

L
IZ

E
D

W
IT

H
K

-C
R

IO
O

N
T

O
L

O
G

Y
7

8

Scrum

ScrumTeam AncillaryPeople Chicken Vendor Customer

EnablingProject

Stakeholders

Manager

SettingUpEnvironmentFor

ProductDevelopment

isSubOrganizationOf

isSubOrganizationOfisSubOrganizationOf

Pig

isSubOrganizationOf

isSubOrganizationOf

includes includes

includes

provided

required

required

provided

required

Developing

Team

DeliveringTheProduct

Cross-funcationalDevelopingSkills

provided

provided

isSubOrganizationOf
isSubOrganizationOf

ProductOwner

ScrumMaster

Writing

UserStories

Representing

InterestsOfStakeholder

Maintaining

TheProductBacklog

Prioritizing

UsersStroies

Removing

Impediments

Enforcing

Rules

Ensuring

ScrumProcess

UsedAsIntended

ProtectingAndKeeping

TeamFocusedOnItsTasks

includes

includes

includes

includes

provided

provided

provided

provided

providedprovided

provided

provided

required

requiredrequired

required
required

required required

sameAs

sameAs

Developer

includes

required

required

Figure 4.4: Scrum with K-CRIO

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 79

ORGANIZATION: ”PIG”

In the Organization: Scrum, the group ”Pig” (Scrum Team) aims at releasing the prod-

uct following the requirement of customers and vendors through its members’ contri-

butions. Therefore, the group ”Pig” (Scrum Team) may be seen as the Organization:

”Pig” (Organization: Scrum Team) in K-CRIO, which is a sub-Organization of Organiza-

tion: Scrum. As three significant components of the group ”Pig”, the Product Owner (PO),

the Scrum Master (SM) and the Developing Team (DT) fulfill the objective of Organiza-

tion: ”Pig” through accomplishing their jobs. Deeply, the Product Owner and the Scrum

Master could be both seen as a Role in K-CRIO, which is included in Organization: ”Pig”.

Furthermore, the Developing Team could be seen as Organization in K-CRIO, which is a

sub organization of Organization: ”Pig”. Therefore, we could define ”Pig” as:

Pig (ScrumTeam):

Organization(Pig) ^ isS ubOrganizationO f (Pig, S crum) ^ isS ubOrganizationO f (DT, Pig)

^includes(Pig, PO) ^ includes(Pig, S M) ^ provided(Pig,Capacities f orPO)

^provided(Pig,Capacities f orS M)

Because of the transitivity of isSubOrganizationOf, there is:

isS ubOrganizationO f (Pig, S crum), isS ubOrganizationO f (DT, Pig)

) isS ubOrganizationO f (DT, S crum)

The Pig group is composed by two Roles : the Product Owner and the Scrum Master. The

Product Owner represents the voice of the customer and writes customer-centric items

(typically user stories), prioritizes them, and adds them to the product backlog. This role

is also accountable for ensuring that the Team delivers value to the business:

Product Owner (PO):

Role(PO) ^ includes(Pig, PO) ^ provided(Pig,Capacities f orPO)

As an enforcer of rules, the Scrum Master is accountable for removing the impediments

to the ability of the team to deliver the sprint goal/deliverable and for ensuring that the

Scrum process is used as intended:

Scrum Master (SM):

Role(S M) ^ includes(Pig, S M) ^ provided(Pig,Capacities f orS M)

Differently, the Developing Team is typically made up of five to nine developers with

cross-functional skills who do the actual work (analysis, design, development, testing,

technical communication, documentation, etc.) for releasing the product. For this reason,

the Developing Team is seen as Organization which is a sub-Organization of Organiza-

tion: ”Pig”. Additionally, in the Developing Team, the Developer may be seen as a Role

in K-CRIO, which is included in Organization: Developing Team. Sometimes, Product

Owner and Scrum Master may also be members of the Developing Team1 [Deemer et al.,

1please refer to http://en.wikipedia.org/wiki/Scrum

http://en.wikipedia.org/wiki/Scrum

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 80

2010]. This means that the Organization: Developing Team may include Role: Product

Owner and Role: Scrum Master in certain situation. However, generally these two Roles

are out of Developing Team.

Developing Team (DT):

Organization(DT) ^ isS ubOrganizationO f (DT, Pig) ^ includes(DT,Developer)

^provided(DT,Capacities f orDeveloper)

Developer:

Role(Developer) ^ includes(DT,Developer) ^ required(Developer,Capacities f orDeveloper)

Following the analysis above, Organization: ”Pig” and Organization: Developing Team

provide the following capacities required by the roles composing it.

• Organization: ”Pig” provides:

– Capacity: Representing interests of stakeholder, Capacity: Writing User Sto-

ries, Capacity: Prioritizing Users Stories, Capacity: Maintaining the Product

Backlog, etc. (required by Role: Product Owner);

– Capacity: Protecting and keeping team focused on its tasks, Capacity: Enforc-

ing rules,Removing impediments (required by Role: Scrum Master);

– Capacity: Ensuring Scrum Process used as intended,etc.

• Organization: Developing Team provides: Capacity: Cross-functional developing

skills, Capacity: Delivering the Product (required by Role: Developer).

Additionally, in the former paragraphs, we described that Developing Team includes only

one Role: Developer, who required cross-functional skills. This description of DT is fol-

lowing the official document of Scrum2 [Deemer et al., 2010]. However, some software

companies apply another different constitute of Developing Team. In these companies,

the composed members of Developing Team are diverse roles. Each of them has its spe-

cial ability, instead of the single Role: Developer required cross-functional skills. For this

reason, the Organization: Developing Team may include various Roles, such as Role:

Designer, Role: System Designer, Role: UI Designer, Role: Coder, Role: Java Devel-

oper,Role: C++ Developer, Role: Tester Role: Unit Tester, Role:System Tester and so

on. Moreover, the capacity required by each of these roles are the same as the corre-

sponding roles in the Waterfall process example of the previous chapter.

<Organization rdf:ID="Pig">

<owl:sameAs rdf:resource="#ScrumTeam"/>

<includes rdf:resource="#ProductOwner"/>

<includes rdf:resource="#ScrumMaster"/>

<Role rdf:ID="ScrumMaster">

<owl:differentFrom>

<Role rdf:ID="ProductOwner"/>

</owl:differentFrom>

<requird>

<Capacity rdf:ID="ProtectingAndKeepingTeamFocusedOnItsTasks"/>

2SCRUM Phases: http://www.scrummethodology.org/scrum-phases.html

http://www.scrummethodology.org/scrum-phases.html

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 81

</requird>

<requird>

<Capacity rdf:ID="EnforcingRules"/>

</requird>

<requird>

<Capacity rdf:ID="RemovingImpediments"/>

</requird>

</Role>

<provided rdf:resource="#EnforcingRules"/>

<provided rdf:resource="#ProtectingAndKeepingTeamFocusedOnItsTasks"/>

<provided rdf:resource="#EnsuringScrumProcessUsedAsIntended"/>

<provided rdf:resource="#RemovingImpediments"/>

<isSubOrganizationOf>

<Organization rdf:ID="Scrum"/>

</isSubOrganizationOf>

</Organization>

Listing 4.1: Role: Scrum Master in OWL

As an example describing how to define these elements with OWL, Figure 4.1 expresses

the Role: Scrum Master.

ORGANIZATION: ”CHICKEN”

In the Organization: Scrum, the group ”Chicken” (Ancillary People) is a group of person

including Stakeholder and Manager Roles. This group may be seen as the Organization:

”Chicken” (Organization: Ancillary People). This Organization is a sub-Organization of

Organization: Scrum. In this organization, the Stakeholder represents all people for whom

the project will produce the agreed-upon benefits, which justify its production, such as the

Customer and the Vendor. Furthermore, the Manager Role represents the people who will

set up the environment for product development. Consequently, Organization: ”Chicken”

includes one Role:Manager and has one sub-Organization Organization: Stakeholder,

which includes Role: Customer and Role: Vendor :

Chicken:

Organization(Chicken)^includes(Chicken,Manager)^isS ubOrganizationO f (S takeholder,Chicken)

^provided(Chicken,Capacities f orManager)

Stakeholder:

Organization(S takeholder)^isS ubOrganizationO f (S takeholder,Chicken)^includes(S takeholder,Customer)

^includes(S takeholder,Vendor) ^ provided(S takeholder,Capacities f orCustomer)

^provided(S takeholder,Capacities f orVendor)

Moreover, we could state:

isS ubOrganizationO f (Chicken, S crum), isS ubOrganizationO f (S takeholder,Chicken)

) isS ubOrganizationO f (S takeholder, S crum)

Eventually, we denote various capacities supplied to corresponding roles.

• Organization: ”Chicken” provides Capacity: Setting up environment for product de-

velopment, which is required by Role: Manager.

• Organization: ”Stakeholder” provides Capacity: Enabling project required by both

Role: Customer and Role: Vendor.

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 82

TheGamePhase

Productproduces

DeveloperhasParticipants

ScrumMasterhasParticipants

ProductOwner

hasParticipants

hasParticipants

hasParticipants

hasParticipants

Sprint AReleaseOfItsSprint
produces

SprintReviewMeeting

ExperienceOfSprint

produces

SprintRetrospectiveMeeting
produces

GetRequirementFromStakeholder UserStories
produces

SCRUM produces

SprintPlanningMeeting SprintBacklog
produces

ArticulateProductVision

ProductBacklogproduces

Customer

hasParticipants
Vendor

hasParticipants

hasParticipants

MakeProductBacklog produces

DailyScrum UpdateSprintBurndownChart
produces

ThePostgamePhase OtherRoles
has Paraticipant

Figure 4.5: FormalizedInteraction in Scrum Process with K-CRIO

4.3.2/ CONCEPTUALIZATION OF INTERACTIONS IN SCRUM PROCESSES

So far, we have defined relevant Organizations, Roles and Capacities in Scrum. In order

to describe Scrum processes, we still have to define the interactions occurring during the

different Scrum phases. Interactions in K-CRIO may be considered as Casual Interaction

or Formalized Interaction separately. Chat is a kind of Casual Interaction between dif-

ferent persons (Roles), other examples may be Exchanging Mail or Joining Conference

Meeting, etc. It is Formalized Interactions of Scrum that produces relative DesignOb-

ject. In the Scrum processes, we have identified the following objects as DesignObject :

Product, Product Backlog, a sprint release, Sprint Backlog, Updated Burn-down Chart.

WORK-FLOW POINT OF VIEW

As shown in Figure 4.5, the complete Scrum Process could contains 11 formalized inter-

actions (defined as FormalizedInteraction in K-CRIO):

• SCRUM (the whole process) produces the Product;

• ArticulateProductVision produces Product Backlog;

• GamePhase produces the same special Product with SCRUM;

• DailyScrum products Update Sprint Burndown Chart;

• SprintPlanningMeeting produces Sprint Backlog;

• GetRequirementFromStakeholer produces User Stories;

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 83

• SprintReviewMeeting and SprintRetrospectiveMeeting produces Experience Of

Sprint;

• Sprint produces A Release Of Its Sprint;

• MakeProductBacklog produces Product Backlog;

• PostgamePhase produces other things, like client servicing, version control, etc.

In Figure 4.5, the concepts in pink are considered as FormalizedInteraction, in which, the

ellipse shapes are considered as AtomicProcess and the box shapes are considered as

CompositeProcess. Furthermore, the concepts in orange and the concepts in blue are

respectively considered as DesignObject and Role.

In the following, we will detail each process. As sketched by the right block in purple of

Figure 4.6, the whole Scrum process may be seen as a Composite Process that pro-

duces the DesignObject: Product. This Composite Process is composed by the Control

Construct Sequence over the three following sub-processes. A Composite Process: Ar-

ticulate Product Vision (also called The Pregame Phase), a Composite Process: The

Game Phase and a Composite Process: The Postgame Phase3.

In the left part of Figure 4.6, labels in pink are showing elements and their relationships

in K-CRIO and labels in green are representing mapped concepts of Scrum Process con-

ceptualized with K-CRIO. Precisely, the whole Scrum process is represented by SCRUM

(CompositeProcess), which is composed of Sequence 4.

The components of Sequence 4 is ControlConstructList 6. The first of ControlCon-

structList 6 is the Perform 5 that processes ArticulateProductVision (CompositeProcess).

The rest of ControlConstructList 6 is ControlConstructList 4.

Furthermore, the initial element of ControlConstructList 4 is Perform TheGamePhase

that processes TheGamePhase (CompositeProcess) and the rest is ControlCon-

structList 10. Similarly, the initial element of ControlConstructList 10 is Perform 7 that

processes The Postgame Phase (CompositeProcess).

3SCRUM Phases: http://www.scrummethodology.org/scrum-phases.html

http://www.scrummethodology.org/scrum-phases.html

C
H

A
P

T
E

R
4

.
S

C
R

U
M

P
R

O
C

E
S

S
C

O
N

C
E

P
T

U
A

L
IZ

E
D

W
IT

H
K

-C
R

IO
O

N
T

O
L

O
G

Y
8

4

Perform

Perform_7

has individual

Perform_5

has individual

Perform_TheGamePhase

has individual

CompositeProcess

process

ThePostgamePhase

process

ArticulateProductVision

process

TheGamePhase

process

has individual

has individual

has individual

SCRUM

has individual

Sequence

composedOf

ControlConstruct

composedOf

Sequence_4

composedOf

Product

produces

ControlConstructList_10

first

ControlConstructList_6

components

ControlConstructList_4

rest first

first rest

Process

FormalizedInteraction

equivalent classhas subclass

DesignObject

produces

has individual

ControlConstructList

first

rest

ControlConstructList_7

has individual

has individual

has individual

has individual

has subclass

has subclass

has individualcomponents

Start/In

CompositeProcess:ArticulateProductVision

Finish/Out

CompositeProcess:TheGamePhase

CompositeProcess:ThePostgamePhase

Figure 4.6: A Composite Process: Scrum Process

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 85

The right block in purple of Figure 4.7 generally states the The Game Phase, which may

be seen as a composite process with the Control Construct Repeat-While for producing

the DesignObject: Product. The Condition Has Next Sprint controls the loop and is ini-

tialized to true. While Has Next Sprint is true, the processes: Sprint Planning Meeting,

Sprint, Sprint Review Meeting and Sprint Retrospective Meeting are executed orderly by

the Control Construct Sequence and return a new value of Has Next Sprint. If Has Next

Sprint is false, the Composite Process: The Game Phase is finished.

In more details, The GamePhase (CompositeProcess) is composed of Repeat-While -

16. The condition (whileCondition) of Repeat-While 16 is HasNextSprint and the pro-

cess (whileProcess) of the Repeat-While 16 is Sequence 19. The component of Se-

quence 19 is ControlConstructList 21. The first element of ControlConstructList 21 is

Perform 20 that processes SprintPlanningMeeting (CompositeProcess). The rest of Con-

trolConstructList 21 is ControlConstructList 23. Furthermore, the first element of Control-

ConstructList 23 is Perform 22 that processes Sprint (CompositeProcess) and the rest

is ControlConstructList 7. The first element of ControlConstructList 7 is Perform 6 that

processes SprintReviewMeeting (AtomicProcess). The rest of ControlConstructList 7 is

ControlConstructList 9, the first of which is Perform 8 that processes SprintRetrospec-

tiveMeeting (AtomicProcess).

C
H

A
P

T
E

R
4

.
S

C
R

U
M

P
R

O
C

E
S

S
C

O
N

C
E

P
T

U
A

L
IZ

E
D

W
IT

H
K

-C
R

IO
O

N
T

O
L

O
G

Y
8

6

CompositeProcess

Sprint

has individual

TheGamePhase

has individual

has individual

SprintPlanningMeeting

has individual

ControlConstruct

composedOf

Perform_6

SprintReviewMeeting

process

ControlConstructList_21

ControlConstructList_23

rest

Perform_20

first

ControlConstructList_7

rest

Perform_22

first

ControlConstructList

has individual

Repeat-While_16

composedOf

HasNextSprint

whileCondition

Sequence_19

whileProcess

ControlConstructList_9

rest first

process

AtomicProcess

has individual

SprintRetrospectiveMeeting

has individual

components

Perform_8

first

process

process

Repeat-While

has individual

Condition

whileCondition

whileProcess

has individual

Performe_TheGamePhase

process

Sequence

has individual components

FormalizedInteraction

DesignObject

produces

has subclass

has subclass

Process

has subclass

has subclass

equivalent class

Start/In

Condition:HasNextSprint

Finish/Out

CompositeProcess:Sprint

AtomicProcess:SprintRetrospectiveMeeting

CompositeProcess:SprintPlanningMeeting

AtomicProcess:SprintReviewMeeting

true false

Figure 4.7: A Composite Process: The Game Phase

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 87

Repeat-While_1

Perform_3

whileProcess

SprintIsNotFinished

whileCondition

DailyScrum

process

Sprint

composedOf

AtomicProcess:DairyScrum

Condition:SprintIsNotFinished

true

Finish/Out

false

Start/In

Figure 4.8: A Composite Process: Sprint

In the Scrum process Game Phase, the most important sub-process is Sprint, which may

be seen as a composite process with the Control Construct Repeat-While as depicted in

Figure 4.8. Every sprint is producing the DesignObject: a release of its sprint. The Con-

dition Sprint Is Not Finished controls the loop and is initialized to be true. While Sprint

Is Not Finished is true, the Atomic Process: Daily Scrum (producing DesignObject: Up-

dated Burndown Chart) is executed and return a new value of Sprint Is Not Finished.

If Sprint Is Not Finished is false, the Composite Process Sprint is finished and Sprint

Review Meeting and Sprint Retrospective Meeting are executed sequentially. The mech-

anism for describing composite processes composed of Repeat-While is the same as

what is stated above. Moreover, in Figure 4.2, we use this simple formalized interaction

to explain how to express the Composite Process: Sprint.

<process: process>

<process: CompositeProcess rdf:ID="Sprint">

<process: composedOf>

<process:Repeat-While rdf:ID="Repeat-While_1">

<process:whileCondition>

<expr:Condition rdf:ID="SprintNotBeFinished">

<expr:expressionLanguage rdf:resource="http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#SWRL"/>

</expr:Condition>

</process:whileCondition>

<process:whileProcess>

<process:Perform rdf:ID="Perform_10">

<process:process>

<process:AtomicProcess rdf:ID="DailyScrum">

</process:AtomicProcess>

</process:process>

</process:Perform>

</process:whileProcess>

</process:Repeat-While>

</process: composedOf>

</process: CompositeProcess>

</process: process>

Listing 4.2: A Composite Process: Sprint by OWL-WS

Additionally, represented by the left part of Figure 4.9 Articulate Product Vision may be

seen as a Composite Process with the Control Construct Sequence: an Atomic Process:

Get Requirement from Stakeholder, in which the Product Owner communicates with the

stakeholder of the product for collecting User Stories and an Atomic Process: Make Prod-

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 88

CompositeProcess:ArticulateProductVision CompositeProcess:SprintPlanningMeeting

Start/In

AtomicProcess:GetRequirementFromStakeholder

Finish/Out

AtomicProcess:MakeProductBacklog

Start/ In

AtomicProcess:SprintPlanningMeeting_PartOne

Finish/ Out

AtomicProcess:SprintPlanningMeeting_PartTwo

Figure 4.9: Composite Process: Articulate Product Vision and Composite Process: Sprint

Planning Meeting

uct Backlog in order to produce as output the DesignObject: Product Backlog.

As the right part of Figure 4.9 Sprint Planning Meeting may be seen as a composite

process aiming at the production of the DesignObject: Sprint Backlog. It is the same,

respectively in Figure 4.9, which is composed of two sequential Atomic Processes: Sprint

Planning Meeting PartOne which is a discussion about what items are chosen for being

realized in this Sprint, and Sprint Planning Meeting PartTwo which is focusing on how to

finish these tasks.

Eventually, the Postgame Phase may be seen as a composite process, which may be

composed of the processes: Integration Testing, Writing User Document, Training Users,

Marketing Material Preparation and so on.

SCHEDULING POINT OF VIEW

In this subsection, we will use the concepts related to State and Time in K-CRIO to

conceptualize the states and time-table of each FormalizedInteraction. Some examples

will illustrate queries and reasoning to address how the ontology could help people who

pay attention about processes schedule and management of activities.

• we want to know the current state of one given project? That is to say, we want to

know what are the current executing processes in this project?

We suppose P is the process we want to find. Hence, P:

FormalizedInteraction(P) ^ at(P,Doing) ^ hasPre − Interaction(P, P0) ^ at(P0 ,Done)

• we want to know which developers are late for the schedule during all the sprints?

We suppose D is the Developer we want to find. Hence, D:

CHAPTER 4. SCRUM PROCESS CONCEPTUALIZED WITH K-CRIO ONTOLOGY 89

Developer(D) ^ hasParticipants(S print,D) ^ f ollows(S print, BeginningTime)

^ f ollows(S print,RealBeginningTime)^ f ollows(S print, EndTime)^ f ollows(S print,RealEndTime)

^{(RealEndTime − RealBeginningTime) > (EndTime − BeginningTime)}

4.4/ CONCLUSION

In this Chapter, we have used the K-CRIO Ontology on an agile software-development

process: Scrum. We have conceptualized the different elements appearing in Scrum

processes and modeled how a Scrum project team could deliver a product following this

specific business process.

The result of this conceptualization is expressed in OWL and corresponds to our vision

of Scrum processes. This ontology helps to understand the different human behaviors in-

volved in Scrum processes, how they interact and what are the deliverables. The content

of this chapter may be a foundation for people who want to design a software system or

tool to model actual Scrum Processes or manage assistance for Scrum actors.

In the next chapter, we will present our idea about designing such a software tool that is

an assistant for Scrum project teams. This assistant aims at the automatization of Scrum

processes, based on the conceptualization of Scrum with K-CRIO.

III
A WEB APPLICATION WITH MULTI-AGENT

SYSTEM

5
A SCRUM WEB-BASED SYSTEM WITH

MULTI-AGENT TECHNOLOGY

5.1/ INTRODUCTION

Nowadays, there exist many Agile Methodologies for Software Development such

as: Scrum, XP1, Crystal Methodology [Cockburn, 2004], Dynamic Systems Devel-

opment Model (DSDM) Methodology [Stapleton, 1999], Feature-Driven Development

(FDD) [Palmer and Felsing, 2001] and so on. These methodologies have gained

widespread adoption and acceptance.

Therefore, many project management tools were designed for supporting such agile

methodologies, including some non-free software, like ScrumWork, ThoughtWorks Min-

gle, etc. There also exist several open-source softwares, like IceScrum2, Agilefant3,

XPlanner4, etc. From the name of these existing softwares, we could deduce that some of

them are particularly designed for a specific Agile method. ScrumWork and IceScrum, for

example, are specific to the Scrum Method, and XPlanner is dedicated to XP. Inversely,

some could be used for various Agile development methodologies. One of the hypothe-

ses underlying this work is that, to be efficient, a tool should use a precise and semantic

model of the methodology or business process being used. We thus have chosen to

develop an assistance tool, specifically for the Scrum process.

Being an agile method, Scrum is inspired by their general principles: lightweight agile

project management framework with broad applicability for managing and controlling iter-

ative and incremental projects of all types based on cross-functional and self-organized

teams.

Compared with existing Agile software, our contribution more specifically concerns the

improvement of functions that monitor and estimate project costs and workers’ efficiency.

Precisely, we calculate how much money needs to be spent in order to finish one project.

This computation uses the estimation time of each task or story in the project. The pro-

posed tool also displays the estimated cost of each project timely and fire alarms if the

budget is greater than a given maximum threshold. Furthermore, we calculate and dis-

play each workers’ efficiency timely referenced by his/her historical situation concerning

the implementation of tasks and user stories, on time, in advance or delayed.

1eXtreme Programming: http://www.extremeprogramming.org/index.html
2http://www.icescrum.org
3http://www.agilefant.org
4http://xplanner.codehaus.org

http://www.extremeprogramming.org/index.html
http://www.icescrum.org
http://www.agilefant.org
http://xplanner.codehaus.org

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 94

These functionalities are a real contribution compared to existing tools. Indeed, a lot of

Scrum Masters expect of a Scrum tool (i) that they could provide support for the elements

of a Project following the Scrum Method (building project with iterated Sprints, releases

and some special charts showing the project proceeding), but also, (ii) support for indi-

cating financial updated estimations of every Scrum Project. These estimations should

help Scrum Masters in order to monitor and manage project estimated costs to adjust the

project plan as soon as possible. In the meanwhile, Scrum Masters ask for a scrum tool

that could give them some advises and help them take decisions, such as selecting team

members, estimating task effort, etc.

Our Scrum tool is based upon a typical web-based tool written in Java. Underlying,

this web-based application there is a Scrum ontology, written with K-CRIO, and a Multi-

Agent System (MAS). The agents are used for their autonomy, re-activity and pro-activity

capabilities to implement the above cited functionalities.

The chapter is organized as follows. Section 5.2 introduces some of the existing agile

tools and their features. Section 5.3 provides an overview of the proposed Scrum Tool,

by describing its targeted goals and provided features. Then, Section 5.4 presents the

architecture of the Scrum Tool and details the Multi-Agent System contributing to update

the estimate cost of project and workers’ efficiency indicators. Finally, it draws some

conclusion in Section 5.5.

5.2/ BACKGROUND: EXISTING AGILE TOOLS

The market for agile project management tools is vigorous, with dozens of offerings from

both small and large vendors. Moreover, more and more products are hitting the market

regularly. Market leading commercial offerings include Rally, VersionOne, Thoughtworks

Mingle, and Danube Scrum Works. A few open source tools also have been around

for some time and several have been used widely, like Agilefant, IceScrum, Agilo5, eX-

PlainPMT6 and so on. In this section, we will make a brief summary and analysis of

the open-source alternatives, which have demonstrated significant usage measured by a

combination of download volume.

It is to be noted that most of these softwares could indicate general Scrum elements and

model the Scrum process. One can cite Project with its Backlog composed of User Stories

or tasks, Sprints as iterations, Release and so on. Some of them propose several User

roles. IceScrum has User roles: Product Owner (PO), Scrum Master(SM), Team Member,

Stakeholder, Customer. Agilo has User roles: SM, PO, Team Member. The others didn’t

have User roles. For a special Scrum User, IceScrum is the most well suited for the Scrum

Method, but not suitable for large projects with multiple teams working on a single product;

only a single release and single sprint can be active at a time. Considering this aspect,

Agilefant avoids this weakness and is supporting larger organizations and projects, but it

has disadvantages in the ”task board” and ”white board” views. Agilo has excellent task

board and white board views but like Trac7 it does not support agile concepts very well.

eXPlainPMT owns an intuitive interface but has serious shortcoming such as no support

for the tasks duration estimation.

5http://www.agilosoftware.com/
6http://www.userstories.com/products/
7http://trac.edgewall.org

http://www.agilosoftware.com/
http://www.userstories.com/products/

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 95

Scrum Tool Assist Scrum Project

Team

Model and Automate

Scrum Process

Monitor Scrum

Project Proceeding

Monitor estimate

cost of Scrum

Project

Monitor estimate

spent time of

Scrum Project

Monitor workers'

efficiency
Provide suggestions

for Scrum Master

Model each occurred

event as actual Scrum

process

automate human

activities during

developing Scrum

projects

model each concept

as its actual structure

in Scrum process

Manage data/

knowledge about

Scrum Project

Figure 5.1: Goal Diagram of our Scrum Tool

5.3/ OVERVIEW OF OUR SCRUM TOOL

5.3.1/ THE GOALS OF OUR SCRUM TOOL

The goal of our Scrum Tool is to provide an assistance platform for distributed Scrum

users. On the one hand, the system aims at modeling and automating human activities

and concepts during development projects following the Scrum method. More specifically,

it aims at managing data/knowledge about elements and events appearing in the Scrum

process. On the other hand, the system monitors projects by estimating both the cost

and the time of each task whatever it granularity. Moreover, the system can monitor

each human worker in order to compute it efficiency and provide suggestions for Scrum

Masters for helping them take decisions.

Considering the distribution of the users of our Scrum Tool and the distribution of projects

data we have deployed the system as a web-based system. Figure 5.1 presents the goal

hierarchy analysis for the system . The general goal of our Scrum Tool is to assist Scrum

project teams. In order to achieve this goal, we have identified three sub goals:

• modeling and automating Scrum process, which is in turn divided into three sub

goals:

– modeling each occurred event as actual Scrum process, for example, as actual

human activities occurring in Scrum process, the project is released as iterative

sprints;

– modeling each concept as its actual structure in Scrum process, for example,

Product Backlog is composed of user stories for representing requirements;

– automating human activities during developing Scrum projects.

• managing data/knowledge of Scrum projects, that is to say, accompanying Scrum

projects life cycle, related data/knowledge are reported and updated.

• monitoring Scrum projects, which is divided into four sub goals as

– monitoring estimated spent time of Scrum projects;

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 96

– monitoring estimated costs of Scrum projects, that is to say, estimated cost

(spent money) of each project is computed and monitored in real time auto-

matically, according to the users actions and their task execution duration;

– monitoring workers’ efficiency, that is to say, monitor the rate of finishing tasks

on time for each worker;

– providing suggestions for Scrum Masters.

5.3.2/ FUNCTIONS OF OUR SCRUM TOOL

Based on the conventional functions of Scrum software, in our Scrum Tool, a user should

register firstly by filling required information. Once identified the user will have a role

assigned within the Scrum project. With the confirmation of identifier and password, a

logged user can create new project as Scrum Master or operate all invoked projects.

Each role has specifics allowed operations. The possible roles were described in the

chapter 4. Among these roles one can cite: Scrum Master, Product Owner or Developer,

and, for example, each developer could update it spent hours on his/her assigned tasks.

In the meanwhile, each project owns the following specific elements:

• a dashboard (for representing last activities about this project),

• a sandbox (for building temporary user stories or tasks before being valid in Back-

log),

• a backlog

• a time line

• a release plan

• a sprint plan

• a team

Each element is mapped onto one button in the menu bar of system interface. We could

see this menu bar in the top of system interface, like Figure 5.2.

Users could build and edit user stories, update the hierarchy of tasks with estimated effort

(hours) in the Sandbox and Backlog, and could build and edit iterated sprints and releases

to implement user stories or tasks selected from Backlog for one project. In order to

precisely monitor each project, each project owns specifics burn-down charts of sprints

and releases. Generally, all the basic performances necessary for building projects as

Scrum method are implemented in our Scrum Tool. However, these functions described

above are synthesizing basic functions in existing Agile software for Scrum users, which

are not the main contribution.

As presented in the introduction, one of the contributions of our system is to display how

much money needs to be spent for finishing one project. The idea is to help Scrum

Masters understanding the estimated cost of each project in a timely manner and control

the money spent for each project. The result of this function could be shown in the left

of Figure 5.2. A second contribution is to compute and record each workers’ efficiency.

In other words, the system records all the tasks (user stories) assigned to the workers

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 97

Figure 5.2: Elements for each project

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 98

and calculate the rate of workers’ finishing tasks on time with the initial estimated efforts

(hours) and real-time (maybe final) actual spent time of all the related tasks. The result

of this function is represented in Figure 5.3 .This recorded efficiency can help Scrum

Masters in order to take decision about team members and specifically help promoting

the accuracy of estimation of a task assigned to a specific worker involvement.

Last but not least, our last contribution consists in providing suggestions to Scrum Master,

including suggestions for assigning team members to tasks (as Figure 5.4), or sugges-

tions for re-estimating tasks effort, because of its assigned worker, etc. All these im-

provements are really needed by scrum masters as it allow to accurately monitor scrum

projects in real-time.

5.4/ DESCRIPTION ARCHITECTURE OF SCRUM WEB-BASED SYS-

TEM

To resume, the Scrum tool presented in this chapter is a traditional web-based tool devel-

oped in Java. This tool relies on the modeling of Scrum Method by one Organizational On-

tology, K-CRIO, and on a Multi-Agent System (MAS) animating the functionalities. Agents

are used for updating estimated costs of each project and each workers’ efficiency, when

any change happens in the project. In the following sections, we will detail the architecture

of the system.

5.4.1/ MULTI-AGENT SYSTEM

The majority of the existing tools for Scrum Method are based on a typical web-based ar-

chitecture. Their main functionalities are to build the project and monitor project lifecycle.

Our Scrum Tool is trying to help it users to monitor and control cost, time and workers’

efficiency in Scrum Projects so as to make projects not only follow the Scrum Method,

as for example, using iterating sprints and daily meetings, but also being understood and

controlled by its Scrum Master. This enhanced control is reached owing to the accurate

estimation of time and cost, when any change is happening during the development. In

order to achieve this target, we use a Multi-Agent System (MAS) for improve the orig-

inal web-based System. Indeed, MAS have proven to be a fitted paradigm to provide

solutions in situations where resources are spatially and temporally distributed. Addition-

ally, it could enhance overall system performance, specifically along the dimensions of

computational efficiency, reliability, extensibility, robustness, maintainability, responsive-

ness, flexibility, and reuse. The MAS in our scrum tool is implemented with the platform

Janus8 [Gaud et al., 2009].

As stated in Figure 5.5, our Scrum Tool uses the popular framework Struts 29. The

left part Figure 5.5 represents how a user could get the related result operating from a

web-browser. User actions trigger effects on the MAS, various agents will be launched

accompanying with the successful log-in of any user.

In the following, we brought elements from the analysis of the MAS in our Scrum Tool with

the ASPECS methodology [Cossentino et al., 2010a] as the guide, which is a step-by-

8http://www.janus-project.org
9http://struts.apache.org/2.x/

http://www.janus-project.org
http://struts.apache.org/2.x/

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 99

Figure 5.3: Monitor workers’ efficiency

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 100

Figure 5.4: Suggestions for assigning team members to tasks

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 101

Figure 5.5: Import MAS to typical web-based System following Struts 2

step to code software engineering process dedicated for the analysis and design of MAS.

Based on the organizational ontology, the functionalities to be realized are assigned to or-

ganizations that accomplish them also by means of the hierarchical decomposition of the

organization structure in sub-organizations. The principle of the analysis is as that each

Organization owns its goal. This goal is fulfilled by the interactions of the different roles

that define the organization. Each role may require special capacities, and is played by an

agent. The behavior of each role can be seen as a contribution towards the achievement

of the goal of its Organization. The structure of organizations, roles and agents in our

Scrum Tool is described in Figure 5.6.

5.4.2/ IS ORGANIZATION

IS Organization: The goal (g0 in Figure5.6) of the Organization is getting the actions of

users in the client part (always in the browser), in which there are two roles played by two

related agents:

• Interface Role: it is played by the InterfaceAgent, which will be activated when the

InterfaceAgent is launched. The required abilities of Interface Role are

– getting the message about users’ operations in the client part,

– transferring received messages to Supervisor Role.

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 102

Figure 5.6: The structure of MAS

Figure 5.7: Interactions, Role and Capacity Identification in IS Organization

• Supervisor Role: it is played by the SupervisorAgent, which will be activated when

the SupervisorAgent is launched. In order to get the common target of IS Organi-

zation, the abilities required by Supervisor Role are

– reading received messages and sending messages to a special role,

– analyzing the content of messages for making decision about who is the re-

ceiver of the id message sent by Supervisor Role. The receiver could be one

of the roles included in Monitor Organization, except Supervisor Role, Project

Role, Task Role, Story Role or User Role.

Figure 5.7 describes the fragment of Interactions, Role and Capacity Identification

in IS Organization. Exclusively, interactions between InterfaceRole and Supervi-

sorRole in IS Organization are as that InterfaceRole sent the information of users’

actions in the client to SupervisorRole, including the type of actions and id of related

action, for example, the type of action maybe ” update project” and Id of related ac-

tion is Id of this updated project.

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 103

Figure 5.8: Interactions, Role and Capacity Identification in Monitor Organization

5.4.3/ MONITOR ORGANIZATION

Monitor Organization: The goal (g1 in Figure 5.6) of this Organization is to monitor

the time effort and cost of projects, workers’ efficiency (rate of finishing tasks on

time) and help Scrum Master make a decision during the scrum project execution.

In this organization, there are five roles played by five agents respectively:

– Supervisor Role: it is included by two Organizations: IS Organization and

Monitor Organization. The detail of the role is described in the IS Organization

details.

– Project Role: it is played by the ProjectAgent, which will be activated when the

ProjectAgent is launched. For fulfilling the goal project monitoring, the abilities

required are:

∗ reading the id of the message to know which project changed and needs

to be monitored,

∗ calculating and updating all the data related to cost estimation of this

project, including the cost spent for paying salaries, the estimated cost

for finishing the rest of the stories and tasks in the product backlog, etc..

– User Role: it is played by the UserAgent, which will be activated when the

UserAgent is launched. Similarly, the abilities required are

∗ reading received messages and sending id messages to special role,

∗ getting related project and updating the average salary of workers’ of this

project

∗ for this project, getting id of the narrower unit between task and user story.

Precisely, task is narrower than user story.

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 104

Wait and Read

Messages

Send messages to

Supervisor Role

Receive new message

Figure 5.9: Role behavior Description of InterfaceRole

∗ calculating and updating workers’ efficiency (rate of finishing tasks on

time).

– Story Role: it is played by the StoryAgent, which will be activated as the

StoryAgent is launched. With the common aim of monitoring project, the Story

Role required abilities are

∗ reading messages and sending messages to a special role,

∗ getting id of project, which contains the story with special id.

∗ calculating and updating all the data related to the effort estimation of the

story identified by the received id, including the spent time, the estimated

effort for finishing the rest of the tasks in the story, etc..

∗ calculating and updating all the data about cost estimation of the story

identified by the received id, including the cost spent for paying salaries,

the estimated cost for finishing the rest of the tasks in the story, etc..

– Task Role: it is played by the TaskAgent, which will be activated when the

TaskAgent is launched. It is the finest grain unit of completion in a Scrum

project. The required abilities about the role are

∗ reading received message and sending message to special role,

∗ getting id of story, which contains the task with special id,

∗ getting id of user, who is working on the task with special id,

∗ calculating and updating all the data related to effort estimation of the task

defined by the received id, including the time spent, the estimated effort

for finishing the rest of the work of the task etc..

∗ calculating and updating all the data related to cost estimation of this task

defined by the received id, including the cost spent for paying salaries, the

estimated cost for finishing the rest of the work in the task, etc..

Figure 5.8 describes the fragment of Interactions, Role and Capacity Identification

in Monitor Organization. Additionally, in Figure 5.8, the capacities of reading mes-

sage and sending message to special role for each role are omitted for highlighting

particular capacities for each role. Accompanying the Figure 5.15, 5.16 and 5.17,

the pattern of the interactions and the scenarios description of all roles will be pre-

sented in the following.

• In the lifecycle of the InterfaceRole, there are two sequence states circularly as

– the default state is reading messages about user actions in the client part

repeatedly until a new message is received and then go to the next state.

– send all the new actions messages to SupervisorRole and then go back to the

state of reading messages.

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 105

Wait and Read

Messages

Send Id message to

User Role

Received message about User

Send Id message to

Project Role

Send Id message to

Task Role

Send Id message to

Story Role

Received message about TaskReceived message about Project

Received message about Story

Figure 5.10: Role behavior Description of SupervisorRole

The State Diagram of InterfaceRole is presented in Figure 5.9.

• In the lifecycle of SupervisorRole, there are two sequence states circularly as

– the default state is reading messages received from InterfaceRole repeatedly

until a new message is received, it then goes to the sending message state.

– send related Id to right kind Role after judging the content of received message,

which is about User, Task, Story or Project. For Example, if the message is

” update project”, the SupervisorRole will send id of the project (ProjectId) to

ProjectRole. Similarly, if the message is ” user”, the SupervisorRole will send

id of the user (UserId) to UserRole and so on. After that, it goes back to the

reading messages state.

The State Diagram of SupervisorRole is presented in Figure 5.10.

• In the cycle life of UserRole, there are three sequence states circularly as

– the default state is reading messages (the content of message is id of User)

repeatedly until a new message is received and then goes to a next state

depending on the sender of the message.

– if the sender of the message is SupervisorRole, it gets the id of related projects

and goes to the next state.

∗ calculates and updates the average salary of all the projects got above

and goes to next state.

∗ gets the the id of narrower unit between task and story composed of the

project above (task is a narrower unit than story), and then goes to the

state of sending message. That is to say, if the id of task composed of the

project is not null, then UserRole goes to the state of sending message.

Inversely, if id of task composed of the project is null, UserRole continues

to get the id of story composed of the project, then goes to the state of

sending message.

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 106

Get Id of related

Projects

Narrower unit is Task

Received Id message
from Task Role

Calculate and update

average salary of

related Projects

Calculate and update

workers' effciency

Send Id

messages to

Task Role

Get the id of narrower

unit (Task or Story of

Projects)

Wait and Read

Messages

Send Id

messages to

Story Role

Received Id message
from Supervisor Role

Narrower unit is Story

Figure 5.11: Role behavior Description of UserRole

∗ sends the id obtained (if existing) in the upper state to the related Role.

Specifically, if the id obtained is about Task, the UserRole will send a mes-

sage including the id of the task to TaskRole. After that it goes back to the

reading messages state .

– if the sender of the message is TaskRole, it calculates and updates the work-

ers’ efficiency, then it goes back to the reading message state.

The State Diagram of UserRole is presented in Figure 5.11.

• In the cycle life of TaskRole, there are six sequence states circularly as

– the default state is reading messages (the content of the message is the id of

the Task) repeatedly until a new message is received and then it goes to the

monitoring task state.

– monitors the task referenced by the received id, specifically it calculates and

updates the data about real-time estimation of cost of the task. After that, it

goes to the next state.

– gets id of related story containing the task with special id, and then goes to the

next state.

– gets id of users involved in the task with special id, and then goes to the next

state.

– sends the obtained id of the user to UserRole and then goes to the next state.

– sends the obtained id of the story to StoryRole and then goes back to the

reading messages state.

The State Diagram of TaskRole is presented in Figure 5.12.

• In the StoryRole lifecycle, there are four sequence states circularly as

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 107

Wait and Read

Messages

Monitor the Task with

received Id

Get related Story Id

Get related assigned

User Id

Send Id messages to

Story Role

Send Id messages to

User Role

Received new Id message

Figure 5.12: Role behavior Description of TaskRole

Wait and Read

Messages

Monitor the Story with

received Id

Get related Project Id
Send Id messages to

Project Role

Received new Id message

Figure 5.13: Role behavior Description of StoryRole

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 108

Wait and Read

Messages

Monitor the Project with

received Id

Receive new message

Figure 5.14: Role behavior Description of ProjectRole

– the default state is reading messages (the content of the message is the Story

id) repeatedly until a new message is received and goes to the next state of

monitoring story.

– monitors the story referenced by the received id, specifically calculates and

updates the data related to the real-time estimation of the cost of the story.

Then goes to the next state.

– gets id of related project containing the story with special id, and then goes to

the next state.

– sends the id of the project (if existing) obtained from the upper state to Projec-

tRole. Then goes back to the reading messages state.

The State Diagram of StoryRole is presented in Figure 5.13.

• In the ProjectRole lifecycle, there are two sequence states circularly as

– the default state is reading messages (the content of the message is the id of

the Project) repeatedly until a new message is received and then goes to the

monitoring project state.

– monitors the project referenced by the received id, specifically calculates and

updates the data related to real-time estimation of the cost of the project. Then

goes back to the reading messages state.

The State Diagram of ProjectRole is presented in Figure 5.14.

C
H

A
P

T
E

R
5

.
A

S
C

R
U

M
W

E
B

-B
A

S
E

D
S

Y
S

T
E

M
W

IT
H

M
U

L
T

I-A
G

E
N

T
T

E
C

H
N

O
L

O
G

Y
1

0
9

Figure 5.15: Scenarios Description: the part of InterfaceRole and SupervisorRole

C
H

A
P

T
E

R
5

.
A

S
C

R
U

M
W

E
B

-B
A

S
E

D
S

Y
S

T
E

M
W

IT
H

M
U

L
T

I-A
G

E
N

T
T

E
C

H
N

O
L

O
G

Y
1

1
0

Figure 5.16: Scenarios Description: the part of UserRole (following the Figure 5.15)

C
H

A
P

T
E

R
5

.
A

S
C

R
U

M
W

E
B

-B
A

S
E

D
S

Y
S

T
E

M
W

IT
H

M
U

L
T

I-A
G

E
N

T
T

E
C

H
N

O
L

O
G

Y
1

1
1

Figure 5.17: Scenarios Description: the part of TaskRole, StoryRole and ProjectRole (following the Figure 5.16)

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 112

5.4.3.1/ HOW TO MONITOR ESTIMATE COST OF PROJECTS ?

The enumeration of all the capacities required by various roles and provided by respective

organizations is represented by the concept of capacity in Figures 5.7 and 5.8. These

capacities are: reading message, sending message to a special role, calculating and

updating data about the estimated cost of the project and so on. In this subsection,

we didn’t detail all of them but the important capacities instructing how to monitor the

estimate cost of one project and workers’ efficiency (rate of finishing tasks on time) via

the interactions of Project Role, Task Role, Story Role, User Role included in their Monitor

Organization.

For each Scrum Project, we suppose one project cost is composed of the constant cost

and the real-time estimated personal salary cost.

• The former is the constant cost that Scrum Master could generally ensure at the

beginning of the project. In our Scrum Tool, each Scrum Master must provide the

constant cost of project when creating the project. That is to say, when the estimated

cost of the project is over or below the budget of the project, it is difficult for Scrum

Masters to get expected profits of the project by adjusting this part cost.

• Considering about the estimated salary cost, it is containing the paid part and the

estimation part for finish the rest of the project. Furthermore, the cost of the project

is associated with all the user stories composing the project, except the stories still

in Sandbox. More precisely,

– the paid part cost is the sum of the paid cost of all the stories in Sprints,

– the paying part cost is the sum of the estimated cost of stories in the Backlog,

– the paying part cost for finishing the rest work of stories in the Sprints.

Similarly, each user story in Backlog or Sprint may be composed by several tasks.

Therefore, the cost of one user story is the sum of the costs of composed tasks, in

which, the paid part of the story is the sum of the spent costs of composed tasks

and the paying part is the sum of estimated costs for finishing the rest work of all

the composed tasks.

Hence, the two different costs of each project is updated by Project Role required Capac-

ity ”Monitoring Project” as:

real-time project cost = constant cost + real-time personal estimated cost of project

(5.1)

real-time personal estimated cost of project = paid cost of project+paying cost for rest work of project

(5.2)

The two different costs of each story is updated by Story Role required Capacity ”Moni-

toring Story” as:

paid cost of project =
X

paid cost of user story in the project (5.3)

paying cost for rest work of project =
X

paying cost for remain work of user story in the project

(5.4)

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 113

Two different costs of each task is updated by Task Role required Capacity ”Monitoring

Task” (see Figure 5.18) as:

paid cost of user story =
X

paid cost of tasks composing the user story (5.5)

paying cost of user story =
X

paying cost of tasks composing the user story (5.6)

Based on the hierarchical analysis, the question turns to how to calculate two kinds of

cost of each task (paid cost and estimate rest cost). Figure 5.18 represents the capacity

of updating task cost, required by Task Role. At beginning, it needs to set the salary unit

for the task via judging whether the task was assigned to one special user.

• If the current task was assigned to one user, set the salary unit as the salary of this

user:

salary unit − salary of assigned user (5.7)

• Otherwise, if the current task was not assigned to any user, set the average salary

of invoked project as salary unit for the current task:

salary unit − average salary of invoked project (5.8)

Following, update paid cost of the task as spent hours of the task timing salary unit got

above.

paid cost = spent hours ⇥ salary unit (5.9)

Update remaining paying cost as estimate remaining hours timing salary unit, and real-

time estimate cost of the task as the sum of paid cost and remaining paying cost.

remaining paying cost = estimate remaining hours ⇥ salary unit (5.10)

real-time estimate cost = paid cost + remaining paying cost (5.11)

The estimated remaining hours for one task could be updated by its assigned user at

any time. According to the role scenario, described in the Figure 5.15, 5.16 and 5.17,

any change done, by a user, on any project information (e.g. Time or Cost of Task,

Story, Project) is monitored by the Interface Role. This change is then forwarded to the

Supervisor Role which identifies the impacted level in the project decomposition. This

level is then informed (e.g. Project, Story or Task). Knowing this level, the changed

information is propagated by message to the upper level (e.g. from Task to Story, or from

Story to Project). At each level, a dedicated role is in charge of updating the impacted

informations (e.g. Time or Cost).

5.4.3.2/ HOW TO MONITOR WORKERS’ EFFICIENCY?

In this section, we present how to monitor users’ efficiency, the rate of finishing tasks on

time. One users’ efficiency is defined initially as 100% . As the user contributing to some

project, User Role will update the rate as the situation of the user working on tasks with

the formula 5.12. For User Role, the signal of re-calculating one users’ efficiency is that

any task contributed by the user is changed. For example, one developer updated the

remaining hours for one task or the Scrum Master updated the initial estimated hours of

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 114

Figure 5.18: How to calculate task cost

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 115

System Tester
System Testing

required

Tester

Unit Testing

required

required

Unit Tester
required

Developer
Developingrequired

C Developing

required

C++ Developingrequired

Java Developing

required

Java Developer
required

C++ Developer required

C Developer
required

System Designer System Designing
required

UI Designer UI Designing
required

Database Designer Database Designing
required

Figure 5.19: Roles and their required Capacities in Developing Team

one task. From the view of interactions between roles, it is when Task Role receives a

message and got id of assigned users, it sends these ids to User Role who will update

related users’ efficiency as defined in equation 5.12.

Rate of finishing tasks on time =

P
Initial Estimated Time of TaskP

Real-time Estimated Time of Task
⇥ 100% (5.12)

5.4.3.3/ HOW TO PROVIDE SUGGESTIONS TO SCRUM MASTERS ?

During Scrum projects, our Scrum Tool wants to give Scrum Master some suggestions in

order to take decisions, such as recommending workers for one selected task from the

current project team and help the Scrum Master estimating one task assigned to a specific

person. The general idea for the first suggestion is based on the conceptualization of

Developing Team with K-CRIO. If the user as the member of one Scrum Project owns

its particular role, like Tester, who is the defined role required special defined capacities

(abilities) in the Organization: Developing Team. Hence, our Scrum Tool will recommend

this user (Tester) to tasks described about testing, unit testing and system testing. All the

roles and their required capacities are represented in Figure 5.19, in which roles are in

pink and capacities are in green.

Furthermore, for helping Scrum Masters with the estimation of one task assigned to a

specific person, our Scrum Tool estimates with the initial estimated time of the task and

the rate of finishing tasks on time for the task assigned user/worker (assigned workers’

CHAPTER 5. A SCRUM WEB-BASED SYSTEM WITH MULTI-AGENT TECHNOLOGY 116

efficiency), that as defined in equation 5.13:

Estimated spent hours for one Task =
Initial Estimated Time of the Task

Rate of finishing tasks on time for Assigned User
(5.13)

5.5/ CONCLUSION

The content of this chapter is our first attempt to design and implement an intelligent

assistance system to support human activities within business processes, based on the

result of modeling and conceptualization of business processes with K-CRIO.

Scrum is our selected business process. Therefore, in this chapter, we have presented

a Scrum Tool for assisting Scrum project teams to deliver products/projects. It is an in-

telligent system, which is based on a web-based architecture, including a Multi-Agent

System, and based on a conceptualization of the Scrum process with the K-CRIO ontol-

ogy presented in the previous chapters.

Precisely, in this chapter, we have analyzed the goal of our Scrum Tool. This tool, relying

on a riche semantic model of the scrum process can not only manage related data ap-

pearing during Scrum processes, but also help user to monitor and control the cost/time,

workers’ efficiency, and provide suggestions to Scrum Masters. In order to achieve these

goals, we have compared our specific contributions with some existing agile tools. After

that, we have given details of the analysis and design of the system.

Finally, it is the last chapter for describing our contributions to this thesis. Following this

chapter, we will make a common conclusion to sum up all contents of our work presented

in this thesis. Then, we will discuss possible extension directions for this work in the

future.

IV
CONCLUSIONS AND PERSPECTIVES

6
CONCLUSION

6.1/ GENERAL CONCLUSION

Along this thesis, we have worked on the definition of an organizational ontology K-CRIO

for modeling and conceptualizing various business processes in enterprises. Our ap-

proach was then applied to the specific field of software engineering processes. More-

over, we have used K-CRIO to model and conceptualize an agile software-development

process, namely the Scrum process. Based on the result of the modeling and conceptu-

alization of Scrum, we have designed and implemented an intelligent assistance system

for Scrum project teams. This tool aims to support human activities within Scrum process.

Precisely, the system is a kind of web-based system that uses a Multi-Agent System to

implement it functionalities.

In order to understand the works presented in this thesis, we briefly review the path that

we followed throughout this work.

In Chapter 2, we discuss related works. Firstly, we describe the statements of business

processes in enterprises. After that, we present and analyze some existing models/meth-

ods to support business processes in enterprises. For representing elements and knowl-

edge appearing in processes in enterprises, we discuss the features of ontologies used

for modeling enterprises. Moreover, we present definition of agents and advantages of

Multi-Agent Systems.

Based on the analysis of the observations of Chapter 2, we present in Chapter 3 our

approach, an organizational ontology named K-CRIO, used to model enterprise business

processes, and especially to model and conceptualize human relationships and activities

within these processes. The main characteristics of K-CRIO are summarized hereafter:

• K-CRIO Ontology is defined with the Ontology Web Language.

• The core concepts in K-CRIO are: Organization, Role, Capacity and Interaction.

These four concepts are all defined by an owl:class. The relationships among

these concepts are described by an owl:ObjectProperty.

• An organization could have sub-organizations, and include one or more roles.

• A role may identify a person, status or generic behavior. A role is a necessary part

to achieve social objectives (goals of its organization). Different roles in the same

organization could interact with each other.

CHAPTER 6. CONCLUSION 120

• Capacity is an ability required by each role to finish its job or contributing to the

common goals of its organization.

• Interaction could be understood as a work-flow, in order to achieve a goal or to

contribute to a goal of one organization.

Based on the definition of K-CRIO Ontology of Chapter 3, we apply it to the modeling of

various enterprise business processes. Chapter 4 is dedicated to the description of the

Scrum software development process, widely used in IT enterprises. There were two ma-

jor reasons to provide this process as a complete case study of K-CRIO Ontology. Firstly,

it demonstrates the ability of K-CRIO to model enterprise business process. Secondly, it

is the basic building block of the design and the implementation of an intelligent assistant

Scrum Tool, described in Chapter 5. Hence, the K-CRIO Ontology is used to conceptu-

alize each item appearing in the Scrum process and to model how a Scrum project team

could deliver its products following this business process. Chapter 5 thus consists of the

analysis and descriptions of this Scrum Tool, including:

• the goal is to provide a platform for distributed Scrum users to model actual human

activities and workflow within Scrum process, manager/monitor Scrum projects and

provide suggestions to Scrum users.

• the architecture of the scrum tool is a traditional web-based tool, including a Multi-

Agent System developed with the MAS platform Janus. Agents were used for mon-

itoring and updating estimated costs of each project and each workers’ efficiency.

6.2/ PERSPECTIVE AND FURTHER RESEARCH DIRECTIONS

The three main axis presented here, can be considered as extensions of this work. The

first one aims at improving the advantages of the K-CRIO Ontology in terms of semantic

reasoning. The second axe concerns the creation of K-CRIO sub-ontologies for specific

processes. This task is not easy and a tool to visualize the work of modeling business

processes with K-CRIO should enhance the usability of K-CRIO. The last axis deal with

the improvement of our Scrum Tool in terms of the functionalities, mainly to enhance its

usability and level of intelligence.

6.2.1/ IMPLEMENTATION OF SEMANTIC APPLICATION BASED ON THE K-CRIO
ONTOLOGY

Ontologies can be used to formally specify concepts and relationships within a domain.

The resulting logic based representation form a conceptual model that can help with

storage, management and sharing of data among different research groups. Relational

databases can effectively store and retrieve extensional data, but Ontologies have advan-

tages in queries with semantic reasoning.

The amount of works in knowledge engineering domain and the knowledge management

fields shows that such approaches can be used to go a step further and add knowledge

for support business processes as already presented in [Gomes et al., 2009, Monticolo

et al., 2006, 2007]. Therefore, based upon the K-CRIO Ontology, we may design and build

CHAPTER 6. CONCLUSION 121

a semantic database to gather, save and update data in enterprises. With this semantic

database, we should easily query to answer questions like

• “What interactions are in progress currently in one given organization?”

• “One worker has played which roles lastly?” and so on.

6.2.2/ IMPLEMENTING AN EDITOR FOR K-CRIO

Although, enterprises require methods to define complex business processes, actually,

most people in enterprises are not acquainted with what is Ontology and OWL, and they

also are not used to reason about method for modeling their business processes.

Therefore, K-CRIO may need a matched assistance tool. This tool may provide opera-

tions and a graphical representation for visualizing the work of modeling business pro-

cesses by K-CRIO, in order to expand users of K-CRIO to people in enterprises who

are not familiar with ontologies. Moreover, automatic or semi-automatic assistance and

guidelines such as the ones presented in [Miled et al., 2009] may be used to support the

process of ontology creation.

6.2.3/ METHODOLOGY BASED UPON K-CRIO FOR GUIDING THE DESIGN AND

IMPLEMENTATION OF INTELLIGENT ASSISTANCE TOOLS TO SUPPORT

BUSINESS PROCESSES

The Scrum Tool designed and implemented in this work, relies on the conceptualization

of the Scrum process with K-CRIO. Actually, conceptualization of other processes with

K-CRIO is a mandatory first step for people that aim to design and develop intelligent

software.

However, in this PhD, we have not followed a principled approach for the conceptualization

and the analysis and design of the tool. There may be a lot of works if one wants to

develop a tool for another process. Thus, a methodology leading from user (process user

in this case) requirements to an assistance tool should be helpful to minimize the amount

of works. Such methodology, if the developed system is still based on MAS as it its the

case in this PhD, can be based on ASPECS. Indeed, with ASPECS the integration of

ontological analysis during the preliminary phases is already done. What is lacking is

some kind of activity that links a process description to intelligent agent support.

6.2.4/ IMPROVING SCRUM TOOL

As an intelligent assistance system for Scrum project teams to support and automate

their working, the current Scrum Tool is just the primary version. It has a lot of functions

that could be improved, such as:

• reusing of released user stories/ tasks in new projects;

• helping Scrum Master to find problems leading to project delays/ project deficit;

• providing solutions to Scrum project teams, after understanding problems.

BIBLIOGRAPHY

Readings in distributed artificial intelligence. ed by a. h. bond and l. gasser (morgan kauf-

mann, 1988). SIGART Bull., (110):25–26, October 1989. ISSN 0163-5719. doi:

10.1145/74664.1059787. URL http://doi.acm.org/10.1145/74664.1059787. Reviewer-

Van Dyke Parunak, H.

BPMN 2.0 by Example Version 1.0. Technical Report 3, Object Management Group, June

2010.

E. Adam, C. Kolski, R. Mandiau, and E. Vergison. A software engineering workbench for

modeling groupware activities. In Proceedings of the Tenth International Conference on

Human-Computer Interaction, volume 4 of Universal access in HCI : inclusive design

in the information society, pages 1499–1503, 2003.

Emmanuel Adam and Rene Mandiau. A hierarchical and by role multi-agent organization:

Application to the information retrieval. In Felix F. Ramos Corchado, Victor Larios-

Rosillo, and Herwig Unger, editors, Advanced Distributed Systems (5th ISSADS’05),

volume 3563 of Lecture Notes in Computer Science (LNCS), pages 291–300. Springer-

Verlag (New York), Guadalajara, Mexico, January 2005, Revised Selected Paper.

Michael Ashburner, Catherine Ball, Judith Blake, David Botstein, Heather Butler, Michael

Cherry, Allan Davis, Kara Dolinski, Selina Dwight, Janan Eppig, Midori Harris, David

Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John Matese, Joel

Richardson, Martin Ringwald, Gerald Rubin, and Gavin Sherlock. Gene ontology: tool

for the unification of biology. Nat Genet, 25(1):25–29, 2000. ISSN 1061-4036. doi:

10.1038/75556.

Nattapat Attiratanasunthron and Jittat Fakcharoenphol. A running time analysis of an ant

colony optimization algorithm for shortest paths in directed acyclic graphs. Inf. Process.

Lett., 105(3):88–92, January 2008. ISSN 0020-0190. doi: 10.1016/j.ipl.2007.08.013.

URL http://dx.doi.org/10.1016/j.ipl.2007.08.013.

Stefano Beco, Barbara Cantalupo, Ludovico Giammarino, Nikolaos Matskanis, and Mike

Surridge. OWL-WS: A workflow ontology for dynamic grid service composition. In

eScience, pages 148–155. IEEE Computer Society, 2005. ISBN 0-7695-2448-6.

Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing Multi-Agent Sys-

tems with JADE (Wiley Series in Agent Technology). Wiley, 2007. ISBN 0470057475.

A. Bernaras, I. Laresgoiti, N. Bartolome, and J. Corera. An ontology for fault diagnosis in

electrical networks. In Intelligent Systems Applications to Power Systems, 1996.

W. N. Borst. Construction of engineering ontologies for knowledge sharing and reuse.

1997.

E. Bottazzi and R. Ferrario. Preliminaries to a dolce ontology of organizations. Interna-

tional Journal of Business Process Integration and Management, 4(4):225–238, 2009.

http://doi.acm.org/10.1145/74664.1059787
http://dx.doi.org/10.1016/j.ipl.2007.08.013

BIBLIOGRAPHY 124

Emanuele Bottazzi, Emanuele Bottazzi, and Roberta” Ferrario. R.: A path to an ontology

of organizations. IN: PROCS. OF EDOC INT. WORKSHOP ON VOCABULARIES, ON-

TOLOGIES AND RULES FOR THE ENTERPRISE (VORTE, 2005. doi: 10.1.1.100.2130.

Christine Bourjot, Vincent Chevrier, and Vincent Thomas. A new swarm mechanism

based on social spiders colonies: From web weaving to region detection. Web Intelli-

gence and Agent Systems, 1(1):47–64, March 2003. ISSN 1570-1263.

M. Bunge. Treatise on Basic Philosophy: Volume 3: Ontology I: The Furniture of the

World. Springer, 1 edition, 1977. ISBN 9027707804.

A. Gangemi N. Guarino A. Oltramari C. Masolo, S. Borgo and L. Schneider. Wonder-

web deliverable d17. the wonderweb library of foundational ontologies and the dolce

ontology. Technical report, November 2002.

Giovanni Caire, Wim Coulier, Francisco J. Garijo, Jorge Gomez, Juan Pavón, Francisco

Leal, Paulo Chainho, Paul E. Kearney, Jamie Stark, Richard Evans, and Philippe Mas-

sonet. Agent oriented analysis using message/uml. In Michael Wooldridge, Gerhard

Weiß, and Paolo Ciancarini, editors, Agent-Oriented Software Engineering II, Second

International Workshop, AOSE 2001, Montreal, Canada, May 29, 2001, Revised Pa-

pers and Invited Contributions, volume 2222 of Lecture Notes in Computer Science,

pages 119–135. Springer, 2002. ISBN 3-540-43282-5.

Coral Calero, Francisco Ruiz, and Mario Piattini. Ontologies for Software Engineering

and Software Technology. 2006.

Cristiano Castelfranchi and Jean-Pierre Müller, editors. From Reaction to Cognition, vol-

ume 957 of LNCS, Neuchâtel, Switzerland, August 1993. 5th European Workshop on

Modelling Autonomous Agents in a Multi-Agent World, MAAMAW, Springer.

Lawrence Chung, Brian Nixon, Eric Yu, and John Mylopoulos. Non-Functional Require-

ments in Software Engineering (the Kluwer International series in Software Engineer-

ing, Volume 5). Springer, 1st edition, 1999. ISBN 0792386663.

Alistair Cockburn. Crystal Clear: A Human-Powered Methodology for Small Teams.

Addison-Wesley Professional, 1 edition, 2004. ISBN 0201699478.

Massimo Cossentino, Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and Abderrafiaa

Koukam. A holonic metamodel for agent-oriented analysis and design. In LNAI 4659

”Holonic and Multi-Agent Systems for Manufacturing” (HoloMAS’07), pages 237–246,

September 2007.

Massimo Cossentino, Nicolas Gaud, Vincent Hilaire, Stephane Galland, and Abderrafaa

Koukam. Aspecs: an agent-oriented software process for engineering complex sys-

tems. Autonomous Agents and Multi-Agent Systems, 20:260–304, 2010a. ISSN 1387-

2532. URL http://dx.doi.org/10.1007/s10458-009-9099-4. 10.1007/s10458-009-9099-

4.

Massimo Cossentino, Nicolas Gaud, Vincent Hilaire, Stéphane Galland, and Abderrafiaa

Koukam. ASPECS: an agent-oriented software process for engineering complex sys-

tems. Autonomous Agents and Multi-Agent Systems, 20(2):260–304, march 2010b.

Massimo Cossentino, Vincent Hilaire, Nicolas Gaud, Stephane Galland, and Abderrafiaa

Koukam. The ASPECS process. Springer, 2013.

http://dx.doi.org/10.1007/s10458-009-9099-4

BIBLIOGRAPHY 125

Pete Deemer, Gabrielle Benefield, Craig Larman, and Bas Vodde. The scrum primer.

Technical report, www.goodagile.com, 2010.

Arnaud Dury, Florence Le Ber, and Vincent Chevrier. A reactive approach for solving

constraint satisfaction problems. In Jörg Müller, Munindar P. Singh, and Anand S. Rao,

editors, Proceedings of the 5th International Workshop on Intelligent Agents V : Agent

Theories, Architectures, and Languages (ATAL-98), volume 1555 of LNAI, pages 397–

412. Springer-Verlag: Heidelberg, Germany, July 1999.

Jacques Ferber. Multi-Agent Systems—An Introduction to Distributed Artifical Intelli-

gence. Addison-Wesley, 1999. ISBN 0-201-36048-9.

Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design of

organizations in multi-agent systems. In Y. Demazeau, E. Durfee, and N.R. Jennings,

editors, ICMAS’98, july 1998.

Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From agents to organizations: An

organizational view of multi-agent systems. In In LNCS n. 2935, Procs. of AOSE’03,

pages 214–230. Springer Verlag, 2003.

Mark S. Fox. An organizational view of distributed systems. IEEE Trans. on System, Man,

and Cybernetics, SMC-11(1):70–80, January 1981.

Mark S. Fox, Mihai Barbuceanu, and Michael Gruninger. An organisation ontology for en-

terprise modeling: Preliminary concepts for linking structure and behaviour. Computers

in Industry, 29(1-2):123 – 134, 1996. ISSN 0166-3615. WET ICE ’95.

Mark S. Fox, Mihai Barbuceanu, Michael Gruninger, and Jinxin Lin. An organization

ontology for enterprise modelling. In Modeling, International Conference on Enterprise

Integration Modelling Technology 97. Springer, 1997.

M.S. Fox and M. Grüninger. Ontologies for enterprise modelling. In Kurt Kosanke and

JamesG. Nell, editors, Enterprise Engineering and Integration, Research Reports Es-

prit, pages 190–200. Springer Berlin Heidelberg, 1997. ISBN 978-3-540-63402-7. doi:

10.1007/978-3-642-60889-6 22.

Lars Marius Garshol. Metadata ? thesauri ? taxonomies ? topic maps ! making sense of

it all. Information Science, pages 378–391, february 2004.

N. Gaud, S. Galland, F. Gechter, V. Hilaire, and A. Koukam. Holonic multilevel simulation

of complex systems. application to real-time pedestrians simulation in virtual urban

environment. Simulation Modelling Practice and Theory, 16(10):1659–1676, 2008.

Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and Abderrafiaa Koukam. An orga-

nizational platform for holonic and multiagent systems. In 6th International Workshop

ProMAS 2008, Lecture Notes in Computer Science 5442, pages 104–119, Estoril, Por-

tugal, May 2009. Springer.

Franck Gechter, Vincent Chevrier, and François Charpillet. A reactive agent-based

problem-solving model : Application to localization and tracking. ACM Transactions

on Autonomous and Adaptive Systems (ACM TAAS), 1(2):189–222, November 2006.

M. R. Genesereth. Knowledge interchange format. principles of knowledge representa-

tion and reasoning. In Proceeding of the Second Interational Conference, Cambridge,

pages 599–600, 1991.

BIBLIOGRAPHY 126

J. H. Gennari, D. E. Oliver, W. Pratt, J. Rice, and M. A. Musen. A web-based architecture

for a medical vocabulary server. Proceedings / the ... Annual Symposium on Computer

Application [sic] in Medical Care. Symposium on Computer Applications in Medical

Care, pages 275–279, 1995. ISSN 0195-4210.

Godfray. Challenges for taxonomy. Nature, 417(6884):17–19, 2002. ISSN 0028-0836.

doi: 10.1038/417017a.

S. Gomes, D. Monticolo, V. Hilaire, and B. Eynard. Content management based on multi

agent systems for collaborative design. International Journal of Product Development,

8(2):178–192, 2009.

Thomas Gruber. A translation approach to portable ontology specifications. Knowl. Ac-

quis., 5(2):199–220, 1993. ISSN 1042-8143. doi: 10.1006/knac.1993.1008.

Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge

sharing. Int. J. Hum.-Comput. Stud., 43:907–928, December 1995. ISSN 1071-5819.

Nicola Guarino and Nicola” Guarino. Semantic matching: Formal ontological distinctions

for information organization, extraction, and integration. INFORMATION TECHNOL-

OGY, INTERNATIONAL SUMMER SCHOOL, SCIE-97, pages 139–170, 1997. doi:

10.1.1.20.7515.

Alexander Helleboogh, Giuseppe Vizzari, Adelinde Uhrmacher, and Fabien Michel.

Modeling dynamic environments in multi-agent simulation. Autonomous Agents

and Multi-Agent Systems, 14(1):87–116, 2007. URL http://dx.doi.org/10.1007/

s10458-006-0014-y.

Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. A model for the struc-

tural, functional, and deontic specification of organizations in multiagent systems. In

Proceedings of the 16th Brazilian Symposium on Artificial Intelligence: Advances in Ar-

tificial Intelligence, SBIA ’02, pages 118–128, London, UK, UK, 2002. Springer-Verlag.

ISBN 3-540-00124-7.

B. L. Humphreys, D. A. Lindberg, H. M. Schoolman, and G. O. Barnett. The unified med-

ical language system: an informatics research collaboration. Journal of the American

Medical Informatics Association : JAMIA, 5(1):1–11, 1998. ISSN 1067-5027.

David Isern, David Sánchez, and Antonio Moreno. Organizational structures supported

by agent-oriented methodologies. Journal of Systems and Software, 84(2):169–184,

2011. URL http://dx.doi.org/10.1016/j.jss.2010.09.005.

Igor Jurisica, John Mylopoulos, and Eric Yu. Ontologies for knowledge management: An

information systems perspective. Knowledge and Information Systems, 6(4):380–401,

2004. ISSN 0219-1377. doi: 10.1007/s10115-003-0135-4.

B. Kiepuszewski, A. H. M. Ter Hofstede, and W.M.P. van der Aalst. Fundamentals of

control flow in workflows. Acta Informatica, 39:143–209, 2002.

Malte Kiesel, Sven Schwarz, Ludger van Elst, and Georg Buscher. Mymory: Enhanc-

ing a semantic wiki with context annotations. In Sean Bechhofer, Manfred Hauswirth,

Jörg Hoffmann, and Manolis Koubarakis, editors, The Semantic Web: Research and

Applications, 5th European Semantic Web Conference, ESWC 2008, Tenerife, Ca-

nary Islands, Spain, June 1-5, 2008, Proceedings, volume 5021 of Lecture Notes in

http://dx.doi.org/10.1007/s10458-006-0014-y
http://dx.doi.org/10.1007/s10458-006-0014-y
http://dx.doi.org/10.1016/j.jss.2010.09.005

BIBLIOGRAPHY 127

Computer Science, pages 817–821. Springer, 2008. ISBN 978-3-540-68233-2. URL

http://dx.doi.org/10.1007/978-3-540-68234-9 65.

D.B. Lenat and R.V. Guha. Building Large Knowledge Bases. Addison Wesley, 1990.

Freddy Limpens, Fabien L. Gandon, and Michel Buffa. Bridging ontologies and folk-

sonomies to leverage knowledge sharing on the social web: A brief survey. In

ASE Workshops, pages 13–18. IEEE, 2008. ISBN 978-1-4244-2776-5. URL http:

//dx.doi.org/10.1109/ASEW.2008.4686305.

YISHUAI LIN, Vincent HILAIRE, Nicolas GAUD, and Abderrafiaa KOUKAM. Towards an

ontological approach for the description of design processes: the scrum example. In

First International Symposium on Data-Driven Process Discovery and Analysis (SIM-

PDA), jun 2011a.

YISHUAI LIN, Vincent HILAIRE, Nicolas GAUD, and Abderrafiaa KOUKAM. A con-

ceptualization of organizations involved in product design: a first step towards rea-

soning and knowledge management. International Journal of Digital Information

and Wireless Communications, 1(1):141–153, nov 2011b. ISSN 2225-658X. URL

http://www.sdiwc.net/noahjohn/web-admin/upload-pdf/00000103.pdf.

Yishuai Lin, Vincent Hilaire, Nicolas Gaud, and Abderrafiaa Koukam. K-crio: an ontology

for organizations involved in product design. In Proceedings of the DICTAP’11 con-

ference, number 167 in Communications in Computer and Information Science series.

Springer, 2011.

YISHUAI LIN, Vincent HILAIRE, Nicolas GAUD, and Abderrafiaa KOUKAM. Scrum con-

ceptualization using K-CRIO ontology, volume 116 of Lecture Notes in Business Infor-

mation Processing, pages 1–19. Springer, jul 2012.

Pattie Maes. Agents that reduce work and information overload. Communications of the

ACM, 37(7):31–40, July 1994.

David Martin, Mark Burstein, Drew McDermott, Sheila McIlraith, Massimo Paolucci, Ka-

tia Sycara, Deborah L. McGuinness, Evren Sirin, and Naveen Srinivasan. Bringing

semantics to web services with OWL-S. In First International Workshop on Semantic

Web Services and Web Process Composition, pages 243–277, 2004.

Nada Matta, Hassan Atifi, Mohammed Sediri, and Mohammed Sagdal. Analysis of inter-

actions on coordination for design projects. In Kokou Yétongnon, Albert Dipanda, and

Richard Chbeir, editors, Sixth International Conference on Signal-Image Technology

and Internet-Based Systems, SITIS 2010, Kuala Lumpur, Malaysia, December 15-18,

2010, pages 344–347. IEEE Computer Society, 2010. ISBN 978-0-7695-4319-2. URL

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5714190.

Deborah L. McGuinness and Frank Van Harmelen. http://www.w3.org/tr/owl-features/.

Raul Medina-mora, Raul Medina-mora, Terry Winograd, Rodrigo Flores, and O” Flores.

The action workflow approach to workflow management technology. IN PROCEED-

INGS OF ACM CSCW’92, pages 281–288, 1992. doi: 10.1.1.151.3701.

Melonfire. Understanding the pros and cons of the waterfall model of soft-

ware development, september 2006. URL http://www.techrepublic.com/article/

understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/

6118423.

http://dx.doi.org/10.1007/978-3-540-68234-9_65
http://dx.doi.org/10.1109/ASEW.2008.4686305
http://dx.doi.org/10.1109/ASEW.2008.4686305
http://www.sdiwc.net/noahjohn/web-admin/upload-pdf/00000103.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5714190
http://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/6118423
http://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/6118423
http://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/6118423

BIBLIOGRAPHY 128

Peter Mika. Ontologies are us: A unified model of social networks and semantics. J. Web

Sem, 5(1):5–15, 2007. URL http://dx.doi.org/10.1016/j.websem.2006.11.002.

Achraf Ben Miled, Davy Monticolo, Vincent Hilaire, and Abderrafiaa Koukam. An ap-

proach for building holonic organizational models of design processes for knowledge

management. In International Workshop on Organizational Modeling, 2009.

Davy Monticolo, Vincent Hilaire, Abder Koukam, and Sébastian Meunier. An approach

for building project memories to facilitate design process in a concurrent engineering

context. In ISPE CE, pages 279–287, 2006.

Davy Monticolo, Vincent Hilaire, Abder Koukam, and Samuel Gomes. A multi agent model

to support the knowledge management process inside professional activities. In ICDIM,

pages 799–804, 2007.

John Mylopoulos. Information modeling in the time of the revolution. Inf. Syst., 23(3-

4):127–155, May 1998. ISSN 0306-4379. doi: 10.1016/S0306-4379(98)00005-2. URL

http://dx.doi.org/10.1016/S0306-4379(98)00005-2.

Robert Neches, Fikes Richard, and Finin Tim. Enabling technology for knowledge shar-

ing. AI Magazine, 12(3), 1991.

Antonio De Nicola, Mario Lezoche, and Michele Missikoff. An ontological approach to

business process modeling. In IICAI, pages 1794–1813, 2007.

OMG. Unified Modeling Language (UML), Infrastructure, V2.1.2. Technical report, Object

Management Group, 2007.

Steve R. Palmer and Mac Felsing. A Practical Guide to Feature-Driven Development.

Pearson Education, 1st edition, 2001. ISBN 0130676152.

Daniel Rodrı́guez, Elena Garcı́a, Salvador Sánchez, and Carlos Rodrı́guez-Solano Nuzzi.

Defining software process model constraints with rules using owl and swrl. International

Journal of Software Engineering and Knowledge Engineering, 20(04):533–548, 2010.

doi: 10.1142/S0218194010004876. URL http://www.worldscientific.com/doi/abs/10.1142/

S0218194010004876.

S. Rodriguez, V. Hilaire, and A. Koukam. Towards a holonic multiple aspect analysis

and modeling approach for complex systems: Application to the simulation of industrial

plants. Simulation Modelling Practice and Theory, 15(5):521–543, May 2007.

Craig Schlenoff, Craig Schlenoff, Michael Gruninger, Florence Tissot, John Valois, Tad-

dle Creek Road, Steptools Inc, Josh Lubell, and Jintae” Lee. The process specification

language (psl) overview and version 1.0 specification. 1999a. doi: 10.1.1.34.1404.

Craig Schlenoff, Craig Schlenoff, Don Libes, Mihai Ciocoiu, and Michael” Gruninger. Pro-

cess specification language (psl): Results of the first pilot implementation. In proceed-

ings of IMECE, pages 14–19, 1999b. doi: 10.1.1.37.3741.

Richard Scott and Gerald Davis. Organizations and Organizing: Rational, Natural and

Open Systems Perspectives. Prentice Hall, 1 edition, 2006. ISBN 0131958933.

Carles Sierra and Liz Sonenberg. A real-time negotiation model and A multi-agent sensor

network implementation. Autonomous Agents and Multi-Agent Systems, 11(1):5–6,

2005. URL http://dx.doi.org/10.1007/s10458-005-1281-8.

http://dx.doi.org/10.1016/j.websem.2006.11.002
http://dx.doi.org/10.1016/S0306-4379(98)00005-2
http://www.worldscientific.com/doi/abs/10.1142/S0218194010004876
http://www.worldscientific.com/doi/abs/10.1142/S0218194010004876
http://dx.doi.org/10.1007/s10458-005-1281-8

BIBLIOGRAPHY 129

J. Stapleton. DSDM: Dynamic systems development method. In Technology of Object-

Oriented Languages and Systems, 1999. Proceedings of, pages 406–406, 1999. doi:

10.1109/TOOLS.1999.779095.

Rudi Studer, Rudi Studer, V. Richard Benjamins, and Dieter” Fensel. Knowledge engi-

neering: Principles and methods. 1998. doi: 10.1.1.41.1007.

Bill Swartout, Ramesh Patil, Kevin Knight, and Tom Russ. Towards distributed use

of large-scale ontologies. In Proceedings of the 10th. Knowledge Acquisition for

Knowledge-Based Systems Workshop, 1996.

Katia P. Sycara. Multiagent systems. AI Magazine, 19(2):79–92, 1998.

W. M. P. Van der Aalst. Three good reasons for using a petri-net-based workflow man-

agement system. doi: 10.1.1.147.3781.

F. Vernadat. Enterprise Modeling and Integration: Principles and Applications. Springer,

1st edition, 1996. ISBN 0412605503.

Y. Wand and R. Weber. An ontological model of an information system. IEEE Transactions

on Software Engineering, 16(11):1282–1292, 1990. ISSN 0098-5589. doi: 10.1109/32.

60316.

Dirk Wodtke and Gerhard Weikum. A formal foundation for distributed workflow execution

based on state charts. In Proceedings of the 6th International Conference on Database

Theory, ICDT ’97, pages 230–246, London, UK, UK, 1997. Springer-Verlag. ISBN 3-

540-62222-5. URL http://dl.acm.org/citation.cfm?id=645502.757730.

Ye Yao, Cai Wandong, Abderrafiaa Koukam, and Vincent Hilaire. A multi-hierarchical

group mobility model for tactical mobile wireless networks. International Journal of

computational information system, 5(1), 2009.

F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems: the gaia

methodology. ACM Transactions on Software Engineering and Methodology, 12(3),

July 2003.

Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Organizational ab-

stractions for the analysis and design of multi-agent systems. In Paolo Ciancarini and

Michael Wooldridge, editors, AOSE, volume 1957 of Lecture Notes in Computer Sci-

ence, pages 235–251. Springer, 2000. ISBN 3-540-41594-7.

http://dl.acm.org/citation.cfm?id=645502.757730

Abstract:

The work presented in this PhD thesis defines a new approach for the modeling and the conceptualization of enterprise

business processes in the perspective of building intelligent assistance software tools to support these processes. The

proposed approach defines an organizational ontology, named K-CRIO. Its description is based on the Ontology Web

Language. To illustrate our work, an intelligent assistance system has been designed and implemented according to the

result from the modeling and conceptualization of a specific business process with the K-CRIO Ontology. It is a web-

based application that integrates and takes full advantage of multi-agent systems. The K-CRIO Ontology is an Ontology

dedicated to the study of organizations and the analysis of business processes adopting an organizational point of view.

Specifically, it is used to understand, analyze and reason about organizations and the processes they implement. The

targeted organizations are those composed of entities involved throughout products’ design and, to do so, following a

defined business process. The range of this type of organizations is quite wide. We have thus limited our study to

organizations that produce software as the final process goal, specifically IT enterprises delivering software products or

services. In this context, the K-CRIO ontology could be used to model structure of the considered organizations (entity

relationships) and model human activities appearing in their business processes. This ontology could be used to support

process assistance within the described organizations. More specifically, the ontology could provide means for reasoning,

annotating resources, monitoring design processes, enabling searches and pro-actively proposing tips and proper content.

In order to illustrate the usage of K-CRIO, we apply K-CRIO on two different processes: the Waterfall Model and the Scrum

methodology. These examples are both classical software-development processes. Moreover, for Scrum, the famous

agile software-development process widely used in software enterprises, we have designed and developed an intelligent

assistance tool. This tool mainly helps Scrum Masters to make decision by monitoring Scrum project teams’ activities

within their various projects and collecting knowledge about these activities.

Résumé :

Le travail présenté dans cette thèse définit une nouvelle approche pour la modélisation et la conceptualisation des proces-

sus métiers dans les entreprises afin de construire des outils logiciels d’assistance intelligents qui prennent en charge ces

processus. L’approche proposée définit une ontologie dédiée à l’étude des organisations, nommée K-CRIO. Elle est décrite

à l’aide du langage de représentation des connaissances OWL. Afin d’illustrer nos travaux, un système d’assistance a été

implanté sur la base des résultats issus de la modélisation et de la conceptualisation d’un processus métier spécifique

avec l’ontologie K-CRIO. Ce système prend la forme d’une application Web qui intègre et exploite pleinement les avan-

tages des systèmes multiagents. L’ontologie K-CRIO est une ontologie dédiée à l’étude des organisations et à l’analyse

organisationnelle des processus métiers qu’elles mettent en œuvre. Plus précisément, elle est utilisée pour comprendre,

analyser et raisonner sur ces organisations. Les organisations visées sont celles composées d’acteurs humains impliqués

tout au long de la conception de produits et, pour ce faire, organisés selon un processus métier. L’éventail de ce type

d’organisations est assez large. Nous avons donc limité notre étude aux organisations qui produisent des logiciels comme

objectif final du processus. Dans ce contexte, l’ontologie K-CRIO peut être utilisée pour modéliser la structure organisation-

nelle du processus (acteurs et leurs relations) et les activités qui en résultent. Cette ontologie peut ensuite être exploitée

afin de concevoir des outils d’assistance à la mise en œuvre des processus ciblés au sein des organisations décrites.

Plus précisément, l’ontologie fournit des moyens de raisonnement, d’annotation des ressources, et de suivi des proces-

sus de conception, permettant des recherches et de proposer pro-activement des conseils et des contenus appropriés.

Afin d’illustrer l’utilisation de K-CRIO, nous appliquons K-CRIO sur deux processus différents: le modèle en cascade et

la méthodologie Scrum. Ces exemples sont des processus de développement de logiciels classiques. En outre, pour le

processus Scrum, qui est un processus agile de développement de logiciel, largement utilisé dans les entreprises de logi-

ciels, nous avons conçu et développé un outil d’assistance intelligent. Cet outil contribue principalement à aider les Scrum

Masters en leur fournissant des indicateurs pour les assister dans leurs prises de décisions ainsi que par la constitution

d’une base de connaissances sur les activités des membres de leur équipe projet.

	I Context
	1 Introduction
	1.1 Context
	1.2 Objectives and concern of this work
	1.2.1 Towards a method of Organizational Ontology K-CRIO for one aspect of Enterprise Modeling: business processes
	1.2.2 Case Studies for conceptualization with K-CRIO
	1.2.3 Towards an assistance system for Scrum Project Teams

	1.3 Plan of the document

	2 State of the Art
	2.1 Introduction
	2.2 Ontology
	2.2.1 Overview of the concept of Ontology
	2.2.2 Ontology Description Language
	2.2.3 Ontology used in Knowledge Presentation

	2.3 Agent and Multi-Agent System
	2.3.1 Agent
	2.3.2 Multi-Agent System
	2.3.3 Organizational Centered Multi-Agent Systems

	2.4 Business Process in Enterprises
	2.4.1 Aims and objectives
	2.4.2 Definition of criteria for comparison
	2.4.3 Models/Methods used for Business Process
	2.4.3.1 Descriptive Models/Methods
	2.4.3.2 Procedural Models/Methods
	2.4.3.3 Formal Models/Methods
	2.4.3.4 Ontology-based Models/Methods

	2.5 Conclusion

	II An Organizational Ontology and Case Studies
	3 K-CRIO Ontology
	3.1 Introduction
	3.2 Background: the CRIO Meta-model
	3.3 Definition of the K-CRIO Ontology
	3.3.1 Organization
	3.3.2 Role
	3.3.3 Capacity
	3.3.4 Interaction

	3.4 A simplified software development process modeled with K-CRIO
	3.5 Conclusion

	4 Scrum Process Conceptualized with K-CRIO Ontology
	4.1 Introduction
	4.2 A short introduction to the Scrum Process
	4.3 Conceptualization of Scrum with K-CRIO
	4.3.1 Identification of Organizations, Roles and Capacities in Scrum Processes
	4.3.2 Conceptualization of Interactions in Scrum Processes

	4.4 Conclusion

	III A Web Application with Multi-Agent System
	5 A Scrum Web-based System With Multi-Agent Technology
	5.1 Introduction
	5.2 Background: Existing Agile Tools
	5.3 Overview of our Scrum Tool
	5.3.1 The goals of our Scrum Tool
	5.3.2 Functions of our Scrum Tool

	5.4 Description Architecture of Scrum Web-based System
	5.4.1 Multi-Agent System
	5.4.2 IS Organization
	5.4.3 Monitor Organization
	5.4.3.1 How to monitor estimate cost of projects ?
	5.4.3.2 How to monitor workers' efficiency?
	5.4.3.3 How to provide suggestions to Scrum Masters ?

	5.5 Conclusion

	IV Conclusions and Perspectives
	6 Conclusion
	6.1 General Conclusion
	6.2 Perspective and Further Research Directions
	6.2.1 Implementation of semantic application based on the K-CRIO Ontology
	6.2.2 Implementing an editor for K-CRIO
	6.2.3 Methodology based upon K-CRIO for guiding the design and implementation of intelligent assistance tools to support business processes
	6.2.4 Improving Scrum Tool

