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Abstract 

During the last decades, the localized failure of massive structures under thermo-mechanical 

loads becomes the main interest in civil engineering due to a number of construction damaged 

and collapsed due to fire accident. Two central questions were carried out concerning the 

theoretical aspect and the solution aspect of the problem.  

In the theoretical aspect, the central problem is to introduce a thermo-mechanical model capable 

of modeling the interaction between these two physical effects, especially in localized failure. 

Particularly, we have to find the answer to the question: how mechanical loading affect the 

temperature of the material and inversely, how thermal loading result in the mechanical response 

of the structure. This question becomes more difficult when considering the localized failure 

zone, where the classical continuum mechanics theory can not be applied due to the discontinuity 

in the displacement field and, as will be proved in this thesis, in the heat flow.  

In terms of solution aspect, as this multi-physical problem is mathematical represented by a 

differential system, it can not be solved by an „exact‟ analytical solution and therefore, numerical 

approximation solution should be carried out.  

This thesis contributes to both of these two aspects. Particularly, thermomechanical models for 

both steel and concrete (the two most important materials in civil engineering), which capable of 

controling the hardening behavior due to plasticity and/or damage and also the softening 

behavior due to the localized failure, are carried out and discussed. Then, the thermomechanical 

problems are solved by „adiabatic‟ operator split procedure, which „separates‟ the multi-physical 

process into the „mechanical‟ part and the „thermal‟ part. Each part is solved individually by 

another operator split procedure in the frame-work of embbed-discontinuity finite element 

method. In which, the „local‟ discontinuities of the displacement field and the heat flow is solved 

in the element level, for each element where localized failure is detected. Then, these 

discontinuities are brought into the „static condensation‟ form of the overall equilibrium 

equation, which is used to solved the displacement field and the temperature field of the structure 

at the global level.  

The thesis also contributes to determine the ultimate response of a reinforced concrete frame 

submitted to fire loading. In which, we take into account not only the degradation of material 

properties due to temperature but also the thermal effect in identifying the total response of the 
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structure. Moreover, in the proposed method, the shear failure is also considered along with the 

bending failure in forming the overal failure of the reinforced structure. 

The thesis can also be extended and completed to solve the behavior of reinforced concrete in 2D 

or 3D case considering the behavior bond interface or to take into account other type of failures 

in material such as fatigue or buckling. The proposed models can also be improved to determine 

the dynamic response of the structure when subjected to earthquake and/or impact.  
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Résumé 

Ces dernières années, l'étude de la rupture localisée des structures massives sous chargement 

thermomécanique est devenue un enjeu important en Génie Civil du fait de l'augmentation du 

nombre de constructions endommagées ou totalement effondrées après un feu. Deux questions 

centrales ont émergé: la modélisation mathématique des phénomènes mis en jeu lors d'un feu 

d'une part et la simulation numérique de ces problèmes d'autre part. 

Concernant la modélisation mathématique, la principale difficulté est la mise en place de 

modèles thermomécaniques capables de modéliser le couplage existant entre les effets 

thermiques et mécaniques, en particulier dans une zone de rupture localisée. Comment le 

chargement mécanique affecte la distribution de température dans le matériau et inversement, 

comment le chargement thermique influence la réponse mécanique? Sont des questions qui 

doivent être abordées. Ces questions sont d'autant plus difficiles à aborder que l'on considère une 

zone de rupture où la mécanique des milieux continus classiques ne peut pas être appliquée du 

fait de la présence de discontinuités du champ de déplacement et, comme cela est démontré dans 

ce travail, du flux thermique. 

Pour ce qui concerne la simulation numérique, la complexité du problème multi-physique posé 

en termes de système d'équations aux dérivées partielles impose le développement de méthodes 

de résolution approchées adaptées, efficaces et robustes, la solution analytique n'étant en général 

pas disponible. 

Cette thèse contribue sur tous les deux aspects précédents. En particulier, des modèles 

thermomécaniques pour le béton et l'acier (les deux principaux matériaux utilisés en Génie Civil) 

capables de contrôler simultanément les phases d'écrouissage accompagnées de plasticité et/ou 

d'endommagement diffus, ainsi que la phase adoucissante due au développement de macro-

fissures, sont proposés. Le problème thermomécanique est ensuite résolu par une méthode dite 

«adiabatic operator split» qui consiste à séparer le problème multiphysique en une partie  

mécanique et une partie thermique. Chaque partie est résolue séparément en utilisant une fois de 

plus une méthode «d'operator split» dans le cadre des méthodes à discontinuités fortes. Dans ces 

dernières, une discontinuité du champ de déplacement ou du flux thermique est introduite et 

gérée au niveau élémentaire du code de calcul Éléments Finis. Une procédure de condensation 

statique élémentaire permet de prendre en compte ces discontinuités sans modification de 
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l'architecture globale du code de calcul Éléments Finis fournissant les champs de déplacement et 

de température.  

Dans cette thèse est également abordée la question de l'évaluation de la réponse jusqu'à rupture 

de structures en béton armé  de type poteaux/poutres soumises à un feu. L'originalité de la 

formulation proposée est de tenir compte de la dégradation des propriétés mécaniques du 

matériau due au chargement thermique pour la détermination de la résistance limite et résiduelle 

des structures, mais également de prendre en compte deux types de rupture caractéristiques des 

structures poteaux/poutres à savoir les ruptures en flexion et les ruptures en cisaillement. 

Les travaux présentés dans cette thèse pourront être étendus pour décrire la rupture de structures 

en béton armé dans des cas bi ou tridimensionnels en tenant compte en particulier du 

comportement de l'interface acier/béton et/ou d'autres types de rupture comme la rupture par 

fatigue ou le flambage. Une extension possible est également la prise en compte des effets 

dynamiques mis en jeu lorsque la structure est sollicitée mécaniquement par un tremblement de 

terre ou un impact en plus de la sollicitation thermique. 

  



10 

 

Table of Contents 

Remerciements .............................................................................................................................................. 4 

Lời cảm ơn đến gia đình ............................................................................................................................... 5 

Abstract ......................................................................................................................................................... 6 

Résumé .......................................................................................................................................................... 8 

Table of Figures .......................................................................................................................................... 13 

List of Tables .............................................................................................................................................. 16 

List of Publications ..................................................................................................................................... 17 

Journals ................................................................................................................................................... 17 

Conferences and Workshops .................................................................................................................. 17 

1 Introduction ........................................................................................................................................ 18 

1.1 Problem statement and its importance ........................................................................................ 18 

1.2 Literature review ......................................................................................................................... 20 

1.2.1 Previous works on stress-resultant model ........................................................................... 21 

1.2.2 Previous works on multi-dimensional thermodynamics model .......................................... 22 

1.3 Aims, scope and method ............................................................................................................. 24 

1.4 Outline......................................................................................................................................... 25 

2 Thermo-plastic coupling behavior of steel: one-dimensional simulation .......................................... 27 

2.1 Introduction ................................................................................................................................. 27 

2.2 Theoretical formulation of localized thermo-mechanical coupling problem .............................. 29 

2.2.1 Continuum thermo-plastic model and its balance equation ................................................ 29 

2.2.2 Thermodynamics model for localized failure and modified balance equation. .................. 32 

2.3 Embedded-Discontinuity Finite Element Method (ED-FEM) implementation .......................... 36 

2.3.1 Domain definition ............................................................................................................... 36 

2.3.2 „Adiabatic‟ operator splitting solution procedure ............................................................... 37 

2.3.3 Embedded discontinuity finite element implementation for the mechanical part ............... 38 

2.3.4 Embedded discontinuity finite element implementation for the thermal part ..................... 44 



11 

 

2.4 Numerical simulations ................................................................................................................ 47 

2.4.1 Simple tension imposed temperature example with fixed mesh ......................................... 47 

2.4.2 Mesh refinement, convergence and mesh objectivity ......................................................... 61 

2.4.3 Heating effect of mechanical loading ................................................................................. 62 

2.5 Conclusions ................................................................................................................................. 64 

3 Behavior of concrete under fully thermo-mechanical coupling conditions ....................................... 66 

3.1 Introduction ................................................................................................................................. 66 

3.2 General framework ..................................................................................................................... 67 

3.2.1 General continuum thermodynamic model ......................................................................... 67 

3.2.2 Localized failure in damage model ..................................................................................... 71 

3.2.3 Discontinuity in the heat flow ............................................................................................. 75 

3.2.4 System of local balance equation ........................................................................................ 76 

3.3 Finite element approximation of the problem ............................................................................. 76 

3.3.1 Finite element approximation for displacement field ......................................................... 76 

3.3.2 Finite element interpolation function for temperature ........................................................ 77 

3.3.3 Finite element equation for the problem ............................................................................. 79 

3.4 Operator split solution procedure ................................................................................................ 82 

3.4.1 Mechanical process ............................................................................................................. 83 

3.4.2 Thermal process .................................................................................................................. 88 

3.5 Numerical Examples ................................................................................................................... 90 

3.5.1 Tension Test and Mesh independency ................................................................................ 91 

3.5.2 Simple bending test ............................................................................................................. 95 

3.5.3 Concrete beam subjected to thermo-mechanical loads ....................................................... 99 

3.6 Conclusion ................................................................................................................................ 103 

4 Thermomechanics failure of reinforced concrete frames ................................................................. 104 

4.1 Introduction ............................................................................................................................... 104 



12 

 

4.2 Stress-resultant model of a reinforced concrete beam element subjected to mechanical and 

thermal loads......................................................................................................................................... 105 

4.2.1 Stress and strain condition at a position in reinforced concrete beam element under 

mechanical and temperature loading. ............................................................................................... 105 

4.2.2 Response of a reinforced concrete element under external loading and fire loading. .............      

112 

4.2.3 Effect of temperature loading, axial force and shear load on mechanical moment-curvature 

response of reinforced concrete beam element. ............................................................................... 116 

4.2.4 Compute the mechanical shear load – shear strain response of a reinforced concrete 

element subjected to pure shear loading under elevated temperature .............................................. 119 

4.3 Finite element analysis of reinforced concrete frame ............................................................... 122 

4.3.1 Timoshenko beam with strong discontinuities .................................................................. 122 

4.3.2 Stress-resultant constitutive model for reinforced concrete element ................................ 125 

4.3.3 Finite element formulation ................................................................................................ 130 

4.4 Numerical example ................................................................................................................... 137 

4.4.1 Simple four-point bending test .......................................................................................... 137 

4.4.2 Reinforced concrete frame subjected to fire ..................................................................... 141 

4.5 Conclusion ................................................................................................................................ 146 

5 Conclusions and Perpectives ............................................................................................................ 147 

5.1 Main contributions .................................................................................................................... 147 

5.2 Perpectives ................................................................................................................................ 148 

6 Bibliography ..................................................................................................................................... 149 

 

  



13 

 

Table of Figures 

Figure 1-1. Windsor Tower (Madrid) before, in and after fire disater ......................................................................... 20 

Figure 1-2. Stress-resultant model of a reinforced concrete structure ........................................................................ 21 

Figure 2-1.Displacement discontinuity at localized failure for the mechanical load ................................................... 33 

Figure 2-2.Displacement discontinuity for 2-node bar element: Heaviside function ݔܪ aŶd φ;xͿ .............................. 34 

Figure 2-3. Heterogeneous two-phase material for a truss bar, with phase-interface placed at 36 ............................. ݔ 

Figure 2-4.Two sub-domain �݁1 and �݁2 separated by localized failure point at 37 .................................................. ݔ 

Figure 2-5Displacement discontinuity shape function M1(x) and its derivative. .......................................................... 39 

Figure 2-6. Strain discontinuity shape function M2 and its derivative ........................................................................ 39 

Figure 2-7. Bar subjected to imposed displacement and temperature applied simultaneously .................................. 47 

Figure 2-8. Time variation of imposed displacement and temperature ...................................................................... 48 

Figure 2-9. Stress– strain curves in two sub-domains .................................................................................................. 50 

Figure 2-10. Force – displacement curve of the bar ..................................................................................................... 50 

Figure 2-11. Distribution of temperature (
o
C) along the bar at chosen values of time ................................................ 51 

Figure 2-12. EvolutioŶ of Δ ߴ versus time (in 
0
C) ......................................................................................................... 52 

Figure 2-13. Stress-strain curves in two sub-domains ................................................................................................. 53 

Figure 2-14. Force displacement curve ........................................................................................................................ 53 

Figure 2-15. Evolution of temperature (
o
C) along the bar in time ............................................................................... 54 

Figure 2-ϭ6. EvolutioŶ of Δϑ versus time (in 
0
C) ........................................................................................................... 55 

Figure 2-17.Temperature dependent coefficients (according to [6]) ........................................................................... 57 

Figure 2-19. Force-displacement diagram for the bar ................................................................................................. 58 

Figure 2-18. Stress-strain curvesfor two sub-domains ................................................................................................. 58 

Figure 2-20. Distribution of temperature (
0
C) along the bar due to time .................................................................... 59 

Figure 2-Ϯϭ. EvolutioŶ of Δϑ vs time ............................................................................................................................ 60 

Figure 2-22.Bar subjected to imposed loading and imposed temperature ................................................................. 61 

Figure 2-23. Load-displacement diagram with different number of elements ............................................................ 62 

Figure 2-25. Load-displacement curve ......................................................................................................................... 63 

Figure 2-24. Description of the third example and its mesh ........................................................................................ 63 

Figure 2-26. Temperature evolution along the bar before and after the localized failure occurs (computed with 5 

elements mesh) ............................................................................................................................................................ 64 

file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568824
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568828
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568829
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568830
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568843
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568846
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568847
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568849


14 

 

Figure 2-27. Temperature evolution along the bar before and after the localized failure occurs (computed with 9 

elements mesh) ............................................................................................................................................................ 64 

Figure 3-1. LoĐalized failure happeŶs at ĐraĐk surfaĐe  aŶd the ͞loĐal͟ zoŶe .............................................................. 71 

Figure 3-2. Additional shape function M1(x) for displacement discontinuity ............................................................... 77 

Figure 3-3. Additional shape function .......................................................................................................................... 78 

Figure 3-4. ͞AdiaďatiĐ͟ splittiŶg proĐedure. ................................................................................................................ 83 

Figure 3-5. Local computation for mechanical part ..................................................................................................... 86 

Figure 3-6. Temperature distribution in the plate at t = 20s ........................................................................................ 92 

Figure 3-7. Temperature distribution in the plate at t = 52.4s..................................................................................... 92 

Figure 3-8. Temperature distribution in the plate at t = 100s...................................................................................... 92 

Figure 3-9. Load/Displacement Curve for the coarse and the fine mesh ..................................................................... 93 

Figure 3-10. Traction - Crack Opening relation at the localized failure ....................................................................... 93 

Figure 3-11. Load/ Displacement Curve of the plate in thermo-mechanical loadings ................................................. 95 

Figure 3-12. Temperature evolution in the plate for the first loading case (0C) .......................................................... 97 

Figure 3-13. Temperature evolution in the plate for the second loading case (
0
C) ..................................................... 97 

Figure 3-14. Evolution of maximum principal stress for the first loading case (MPa) ................................................. 98 

Figure 3-15. Evolution of maximum principal stress for the second loading case (MPa) ............................................ 98 

Figure 3-16. Load/ Displacement curve for 2 loading cases ........................................................................................ 98 

Figure 3-17. Example configuration ............................................................................................................................. 99 

Figure 3-18. Evolution of maximum principal stress and temperature due to time .................................................. 100 

Figure 3-19. State of the plate at the final loading stage (t = 20s) ............................................................................ 101 

Figure 3-20. Mechanical and Thermal state of the plate after unloading (t=40s) ..................................................... 101 

Figure 3-21. Reaction/ Deflection curve .................................................................................................................... 102 

Figure 4-1. Mechanical loading and fire acting on reinforced concrete element ...................................................... 106 

Figure 4-2. Thermal stress and thermal strain condition ........................................................................................... 106 

Figure 4-3. Total stress and strain condition at a positioŶ iŶ ďeaŵ eleŵeŶt ;εy=Ϭ aŶd σy=0) ................................... 107 

Figure 4-4. Mohr circle representation for strain and stress condition at a point in beam element ......................... 108 

Figure 4-5. Relation between compressive stress and strain of concrete due to tempeture[10] .............................. 110 

Figure 4-6. Stress- strain relationship of rebar in different temperature................................................................... 112 

Figure 4-7. Response of reinforced concrete element under mechanical and thermal loads .................................... 113 

file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568853
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568854
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568855
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568856
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568861
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568862
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568868
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568872
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568875
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568876
file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568879


15 

 

Figure 4-8. Procedure to determine the mechanical response of RC beam element ................................................. 115 

Figure 4-9. Cross-section and Dimensioning of the consider reinforced concrete element ....................................... 116 

Figure 4-10. Evolution of temperature profile due to time[11] ................................................................................. 116 

Figure 4-11. Dependence of moment-curvature with time exposure to fire ASTM119 ............................................. 117 

Figure 4-12. Dependence of moment-curvature on axial compression ..................................................................... 117 

Figure 4-13. Dependence of moment-curvature response on shear loading ............................................................. 118 

Figure 4-14. Multi-linear moment-curvature model of the reinforced concrete beam in bending ............................ 119 

Figure 4-15. Stress components of reinforced concrete subjected to pure shear loading ......................................... 120 

Figure 4-16. Mechanical shear force- shear deformation diagram ........................................................................... 121 

Figure 4-17. Beam under external loading and fire ................................................................................................... 122 

Figure 4-18. Kinematic of beam element ................................................................................................................... 124 

Figure 4-19. Moment-curvature relation for bending stress-resultant model ........................................................... 128 

Figure 4-20. Shear load-shear strain relation for shear stress-resultant model ........................................................ 130 

Figure 4-21. Simple reinforced concrete beam subjected to ASTM 119 fire and vertical forces ................................ 137 

Figure 4-22. Reduction of bending resistance due to time exposing to fire ASTM 119 ............................................. 138 

Figure 4-23. Reduction of shear resistance due to time exposing to fire ASTM 119 ................................................. 139 

Figure 4-24. Force/displacement curve of the beam at different instants of fire loading program .......................... 140 

Figure 4-25. Reduction of ultimate load due to fire exposure ................................................................................... 141 

Figure 4-26. Two-story reinforced concrete frame subjected to loading and fire ..................................................... 142 

Figure 4-27. Temperature profile of the reinforced concrete beam due to time of fire ............................................. 143 

Figure 4-28. Moment-curvature model for column ................................................................................................... 144 

Figure 4-29. Shear failure model of the column......................................................................................................... 144 

Figure 4-30. Degradation of bending resistance of reinforced concrete beam versus fire exposure......................... 145 

Figure 4-31.Horizontal force/displacement curve of two-story frame at different instants of fire ........................... 145 

 

  

file:///D:\Dropbox\Thesis\final\PhD%20final%20version.docx%23_Toc374568880


16 

 

List of Tables 

Table 1-1. Several building fire accidents from 1970 to present (see [4]).................................................................... 19 

Table 2-1. Material properties of steel bar .................................................................................................................. 49 

Table 2-2.Time Evolution of Temperature along the Bar ............................................................................................. 51 

Table 2-3.Time evolution of temperature along the bar ............................................................................................. 54 

Table 2-4. Temperature dependent coefficients .......................................................................................................... 56 

Table 2-5. Distribution of temperature along the bar ................................................................................................. 59 

Table 2-6. Material properties ..................................................................................................................................... 61 

Table 3-1. Material Properties .................................................................................................................................... 91 

Table 4-1. List of symbols for thermomechanical model ........................................................................................... 105 

Table 4-2. Bending model parameters for different instants of fire loading program .............................................. 138 

Table 4-3. Parameters of shear model at different instants of fire loading program ................................................ 139 

Table 4-4. Material properties ................................................................................................................................... 143 

 

  



17 

 

List of Publications 

Journals 

[1] V.M. Ngo, A. Ibrahimbegovic, and D. Brancherie, "Model for localized failure with thermo-plastic 

coupling. Theoretical formulation and ED-FEM implementation," Computers and Structures, vol. 127, 

pp. 2-18, 2013. 

[2] M. Ngo, A. Ibrahimbegovic, and D. Brancherie, "Continuum damage model for thermo-mechanical 

coupling in quasi-brittle materials," Engineering Structure, vol. 50, pp. 170-178, 2013. 

[γ] ε. ζgo, A. Ibrahimbegovic, and D. Brancherie, “Softening behavior of quasi-brittle material under 

full thermo-mechanical coupling condition: Theoretical formulation and finite element implementation,” 

Computer Methods in Applied Mechanics and Engineering, Accepted. 

[4] N.N Bui, M. Ngo, D. Brancherie, and A. Ibrahimbegovic, "Enriched Timoshenko beam finite element 

for modelling bending and shear failure of reinforced concrete frames," Computer and Structures, 

Submitted. 

[5] ε. ζgo, A. Ibrahimbegovic, and D. Brancherie, “Thermomechanics Failure of Reinforced Concrete 

Composites: Computational Approach with Enhanced Beam Model,” Computer and Concretes, 

Submitted. 

[6] M.Ngo, A. Ibrahimbegovic and E. Hajdo, “δocalized failure for large deformation of thermo-plasticity 

problem,”  Nonlinear Coupled Mechanic System, Submitted.  

Conferences and Workshops 

1. V.M. Ngo, P. Jehel, A. Ibrahimbegovic “Numerical modelling of monotonic and cyclic response of 

anchorage steel bar,” Workshop on Construction under Exceptional Conditions (CEC 2010), 

Hanoi,October, 2010. 

2. M. Ngo, A. Ibrahimbegovic, and D. Brancherie , “A thermo-damage coupling model for concrete 

structure,” 7th International Conference on Computational Mechanics for Spatial Structures. IASS-IACM 

2012, Sarajevo, April 2-4, 2012. 

3. M. Ngo, A. Ibrahimbegovic, and D. Brancherie “Continuum damage model for thermo-mechanical 

coupling in quasi-brittle materials,” The first AVSE Annual Doctoral Workshop. ENS Cachan, Cachan, 

September 13-14, 2012. 

 



Chapter 1. Introduction  

18 

 

1 Introduction 

1.1 Problem statement and its importance 

The characterization of the failure in steel, concrete and reinforced concrete structures under 

thermo-mechanical loading is not only the main theoretical importance but also the major 

interest for its practical application. In recent years, the number of massive constructions 

collapsed and/or damaged due to fire loading is increasing. A list of several major building fire 

accidents from 1970 onwards (given in Table 1-1) has indicated the progress of them in term of 

number and severity. Among these accidents, perhaps the most well-known is the collapse of the 

World Trade Centre in New York in September, 2001, where the thermal response and the 

degradation of material properties due to fire were considerably contributed into the final 

breakdown of the tower in addition to the mechanical response due to the airplane impact (see 

[1], [2], [3]). More recently, the burning occurred in the 32-storey Windsor tower in Madrid, 

Spain in February, 2005 (see Figure 1-1) is also a typical example of construction failure due to 

fire loading. In this accident, the fire started on the 21st floor then quickly spread throughout the 

entire building. After 24 hours exposure to fire, the steel components of the tower were 

destroyed while the reinforced concrete components were also partially damaged. Although not 

being completely destroyed in the fire, the remaining reinforced concrete structures had also lost 

its working capacity and had to be demolished later. These structural failures, from the civil 

engineering point of view, happened due to the lack of structure resistance, or more particularly, 

the degradation of structure resistance when exposed to extreme thermal loads. This issue is still 

not clearly understood presently. Therefore, it is necessary to go into deeper studies of the 

behavior of structure subjected to thermal loading and mechanical loading simultaneously. Of 

special interest is the problem of localized failure of the structure at extreme conditions that can 

produce the localized heavily damaged zones leading to structure softening response. In this 

thesis, the localized failure of structures built of standard construction materials, such as steel, 

concrete and reinforced concrete will be discussed. The main target, as will be explained in more 

detail in the following, is to provide a more robustness simulation of the „ultimate‟ response of 

reinforced concrete structure, which will further lead to a better and safer design of the 

construction.   
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Table 1-1. Several building fire accidents from 1970 to present (see [4]) 

No. Names of the buildings  Description Time 

1 One New York Plaza, New York, 

USA 

50-storey office building 

2 persons died 

August 15, 1970 

2 MGM Grand Hotel and Casino, 

Paradise, Nevada, USA 

21-storey hotel and casino 

building 

85 persons died  

November 21,  

 

1980 

3 First Interstate Bank – Los Angeles, 

California, USA 

62-storey building 

One person died 

May 4, 1988 

4 One Meridian Plaza, Philadelphia, 

Pennylvania, USA 

38-storey office building 

3 persons died 

February 23, 1991 

5 World Trade Centrer North and South 

Tower (Building 1&2), New York, 

USA 

Airpcarft impacted and then Fire 

happened 

Nearly 3000 persons died 

September 11, 2001 

6 World Trade Center Building 7, New 

York, USA 

Fires burned for nearly 7 hours 

before  collapsing 

September 11, 2001 

8 Cook County Administration 

Building, Chicago, Illinois , USA 

6 persons died October 17, 2003 

9 Caracas Tower , Caracas, Venezuela 56-storey, 220 m high tower.  

Tower was burned for more than 

17 hours before collapsing 

October 17, 2004 

10 Windsor Tower, Madrid, Spain 32-storey RC building, 106 m 

high 

7 persons injured 

February 12, 2005 

 

11 Tohid Town Residential, Tehran, Iran 10-storey apartement building 

116 to 128 persond died 

December 6, 2005 

12 The Beijing Mandarin Oriental Hotel,  160 m tall skyscraper February 9, 2009 
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 Figure 1-1. Windsor Tower (Madrid) before, in and after fire disater  

1.2 Literature review 

There are two types of structural analysis that can be used in determining the behavior of steel, 

concrete and reinforced concrete structures, which are the (one-dimensional) stress-resultant 

model and the multi-dimensional continuum mechanics model. In dealing with these problems in 

the most efficient manner, we are led to develop different both the continuum-mechanics-based 

models and the stress resultant models. 

The stress resultant model considers the structure as a system of one-dimensional elements: 

beams, frames, columns, trusses. (see Figure 1-2). These elements, due to their special 

configurations with one dimension being much greater than the two others, are assumed to 

satisfy traditional hypotheses of the structural analysis such as the Saint-Venant hypothesis: 

„…the difference between the effects of two different but statically equivalent loads becomes very 

small at sufficiently large distances from load‟ (see [5]) and the beam theory assumptionsμ „beam 

is initial straight and has a constant cross-section‟, „the plane cross-section remains plane 

before and afterloading‟. Due to the  simplicity and the low-cost of computation, this type of 

approach is widely used in practical design of reinfored concrete as well as steel structures 

submitted to combined action of fire and mechanical loading. Such is still the basic method 

introduced in the design code of Europe and America  nowadays (see [6],[7], [8], [9], [10], [11]). 

However, despite the forementioned avantages, the stress-resultant model can not be applied for  

the „local‟ regions (or the „D‟ regions [12], [9]) of the structure where the Saint-Venant and 
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beam hypotheses are no longer valid. Examples of this kind are the beam-column joint or the 

footing region (see Figure 1-2).  

 

 

The latter approach, which is now developing very fast due to the development of computers, is 

to treat the structure as a multi-dimensional media subjected to external thermo-mechanical. This 

type of computation further leads to the needs of: 1) a thermo-mechanical model which is 

capable of modeling the response of steel and concrete material under the combining effect of 

thermal and mechanical loading; 2) a robust numerical solution procedure to solve such a multi-

physical problem. Although this type of approach leads to a much higher calculation cost in 

comparison to the stress-resultant approach, it will certainly provide better results, especially 

when modeling the local region of the structure.  

1.2.1 Previous works on stress-resultant model 

The analysis combining thermo-mechanical response of reinforced concrete frame structure 

based on the stress-resultant model were entirely studied by many researchers and many 

interesting results were introduced. Among them, one can refer to the work of Kodur and 

Dwaikat (see [13], [14]), Hsu and Lin ([15]) or Capua and Mari ([16]). However, most of these 

studies considered only the bending failure and ignored the shear failure, which is also a typical 

damage model of the reinforced concrete structure. Moreover, practically none of the works 

available in the literatures considers the effect of shear force and axial force on the bending 

Figure 1-2. Stress-resultant model of a reinforced concrete structure 
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resistance of reinforced concrete element, although the stress-strain relation of the cross-section 

where shear force and axial force exist are much different  from the stress/strain condition of the 

pure bending cross-section. Another deficiency of previously proposed methods is that  only the 

degradation of the mechanical resistance due to material strength reduction at high temperature is 

taken into account, while the „thermal‟ response of the frame is usually neglected while at high 

temperature, thermal behavior might significantly contribute  to the total behavior of the section. 

The last important model feature to be improved with respect to the previous works is to cast the 

stress-resultant model that can represent such a thermomechanical behavior of a reinforced 

concrete elements (either beam or column), which can provide an efficient computational basis 

in identifying the overall response of the frame structure. Therefore, a method to overcome the 

mentioned shortcomings of the present stress-resultant based model will be introduced in this 

thesis. 

1.2.2 Previous works on multi-dimensional thermodynamics model 

As already declared, the multi-dimensional analysis of „local‟ regions should be based on a 

thermo-mechanical model of steel and concrete material. In the following, some main 

contributions on the modeling of softening behavior of construction material due to mechanical 

effect only and due to thermo-mechanical coupling effect are summarized. 

The „ultimate‟ resistance of structures under mechanical loading was previously studied by many 

research groups, by using a number of different approaches. The research group entitled 

„Structure under Extreme Conditions‟ of θrofessor Ibrahimbegovic at δεT Cachan contributed 

to this topic by considering the softening behavior of material in the frame-work of Embedded-

Discontinuity Finite Element Method (see [17]). Here, the localized failure of the solid is 

represented as a „discontinuity‟ (or a „jump‟) in displacement field and is modeled by an 

additional interpolation function using the incompatible mode in finite element method [18]. 

Based on this method, this research group contributed in determining the softening behavior of 

the structure due to both the stress-resultant model approach and the multi-dimensional analysis 

approach. For the stress-resultant model approach, one can refer to the study on the bending 

failure frame (see [19],[20]) and/or the bending failure accompanied with shear failure (see [21]) 

of reinforced concrete frame. In terms of the multi-dimensional analysis approach, the 

thermomechanical softening model of some fundamental construction materials were introduced: 
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elasto-plastic steel material structure (see [22],[23]), quasi-brittle material (concrete, masonry) 

(see [24], [25]) and reinforced concrete structures (see [26]). Other (and earlier) significant 

contributions to the topic that should be recalled are the work of Ortiz el al. on weak 

discontinuity (see [27])  and of Simo et al., Armero et al. and Oliver et al. on strong discontinuity 

of material (see [28], [29], [30], [31], [32]). These methods are based on a modification of 

classical continuum models and provide an adequate measure of the dissipation with respect to 

the chosen finite element discretization. However, they only consider the combination of the 

discontinuity with an elastic behavior of the material without taking into account the continuum 

inelastic behavior of the material. Therefore, these models are not actually suitable to be used in 

modeling the working of steel and concrete structures, since the plastic behavior and damage 

behavior play an important role in the total behavior of these materials. 

The behavior of material under thermal loading only, or in other words, the heat transfer problem 

was a classical topic and was thoroughly studied. However, the coupling effect of mechanical 

loading and thermal loading on material was not much studied, both in terms of theoretical 

formulation and numerical solution. In terms of theoretical aspect, we can recall several 

important works of Armero and Simo (see [33]) on nonlinear coupled plasticity for small 

deformation, of Ibrahimbegovic et al. (see [34], [35]) on thermo-plastic coupling with large 

deformation, of Baker and de Borst (see [36]) on anisotropic thermomechanical damage model 

for concrete and of Tran and Sab (see [37]) on steel-concrete bonding interface. These works are 

limited to the behavior of material in classical continuum mechanical framework and thus are not 

able to model the behavior of solid at localized failure where „discontinuity‟ appears in the 

displacement field.  

We also note that in the framework of continuum mechanics, there is not much research 

considering the numerical solution for the problem of computing the localized failure and 

associated softening response due to coupled thermomechanical loads. The latter especially 

applies to quasi-brittle material models, which are generally the most popular for representing 

the mechanical behavior of construction materials employed in civil engineering nowadays. 

The softening behavior of material under the fully thermo-mechanical coupling effects was 

analyzed by very few previous research works, and also for only special cases. For example, in 

1999, Runesson and coworkers (see [38]) studied the theoretical aspect of the localization in 
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thermo-elastoplastic solids subjected to adiabatic condition, which is a really „ideal‟ case of 

loading. This work has more a theoretical meaning than a practical application and need to be 

extended. In 2002, a one-dimensional analysis of strain localization in a shear layer under 

thermally coupled dynamic conditions was introduced by Armero and Park (see [39]). In that 

work, an analytical solution for the localization of a one-dimensional shear layer was discussed 

in detail. However, due to the limitation of analytical approach, this method cannot be extended 

to higher-dimensional problems. We can also mention the work of Wiliam et al. in 2004 (see 

[40]) who studied the interface damage model for thermomechanical degradation of 

heterogeneous materials. However, this work does not include a clear numerical solution for the 

model and thus, its application is limited to fairly simple problems. 

1.3 Aims, scope and method 

The first target of this thesis is to improve the present stress-resultant model in determining the 

overall behavior of the reinforced concrete structure. In order to do so, two central problems 

should be considered: 1) how to take into account the shear failure (along with the bending 

failure) into the overall failure of the reinforced concrete frame; 2) how to evaluate and account 

for the cumulative effect of thermal loading on the total response of the structure. In this thesis, 

the answers to these questions are found by the following procedure. First, we use the Modified 

Compression Theory (see [41]) to construct the stress-strain conditions of the considered beam 

element under different mechanical and temperature loadings. Based on the chosen stress-strain 

relations of the beam ingredients, we plot its bending-curvature and shear force-shear strain 

curve at a given temperature loading. These curves are then treated as input parameters of a 

beam stress-resultant model, which can finally be solved by the embedded-discontinuity finite 

element analysis. 

The second (and also the main) goal of the thesis is to provide a thermodynamic model capable 

of considering the ultimate load behavior accompanied by softening phenomena not only due to 

mechanical loading but also to fully coupled thermomechanical condition. Both plasticity and 

damage models of this kind are developed in this thesis. Regarding the numerical 

implementation, two important tasks are examined in detail. The first one is the numerical 

solution of the problem. As explained in the following, the mathematical representation of 

thermo-mechanical problem is a system of differential equations with unknowns pertaining to 
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mechanical fields (displacement, strain, stress) and thermal fields (temperature, heat flux). Such 

a system normally does not have an „exact‟ analytical solution except for some of the simplest 

one-dimensional cases. In general, an approximate numerical solution for the problem should be 

introduced. We propose and discuss, in particular, the operator split solution procedure, which is 

adapted to both initial hardening behavior and subsequent softening behavior of the 

thermoplastic or thermo-damage solid mechanics models. The latter is one of the most complex 

tasks when considering the aspects of numerical implementation in the thesis. The second 

objective is to examine the softening behavior of the solids under fully coupled 

thermomechanical extreme conditions. To that end, the first challenge is pick the right thermo-

mechanical model for either quasi-brittle or ductile failure phenomena and validate the choice. 

Two models describing the corresponding inelastic behavior of solids are chosen: the thermo-

plasticity and thermo-damage. These two correspond to typical choices made for the construction 

materials like steel and concrete. These models are carefully assembled within a complex model 

corresponding to the reinforced concrete composite. We also develop a more efficient structural-

type model for reinforced concrete in terms of the Timoshenko beam formulation. The final 

challenge we address concerns the appropriate choice of the enhanced kinematics to be 

introduced at the point of localized failure. This has been done in a systematic manner for 

different models developed in this thesis. 

1.4 Outline 

The outline of the thesis is as follows. In the next chapter, we present the general theoretical 

formulation for the problem in solid mechanics subjected to thermo-mechanical actions and the 

approximation numerical solution. This general method is applied in detail to model the 

localization on elasto-plastic material such as steel in Chapter 2. One-dimensional case will be 

considered in this chapter in order to show a clear overview of the method. The third chapter 

considers the continuum damage and also the degradation of quasi-brittle material like concrete 

or masonry in multi-dimensional problem.  This chapter removes two deficiencies of the existing 

documents on thermomechanical coupling reaction of quasi-brittle material, which are the 

numerical solution for continuum damage threshold and the model for the softening behavior of 

this material.  Theoretical model and a numerical solution of the „ultimate‟ response of 

reinforced concrete structure subjected to thermal loading and mechanical loading applying 
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simultaneously based on Timoshenko beam formulation is carried out in the fourth chapter.  

Finally, the conclusion summarizes all the main findings of the thesis and suggests the 

perspective of the study on this topic in the future.  
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2 Thermo-plastic coupling behavior of steel: one-dimensional simulation 

2.1 Introduction 

How to determine the inelastic behavior of a structure subjected to mechanical and thermal loads 

jointly applied is an important task in civil engineering, especially for the case of accidental 

loading scenarios and/or fire resistance. Studies of thermo-mechanical resistance have been 

performed for a number of different structures and typical construction materials. In particular, 

one finds the previous works pertaining to steel (see [35], [34],[42]), to masonry (see [43], [44]), 

as well as to concrete and reinforced concrete structures (see [45],[36],[37]). The issue of 

computational procedure for the thermo-mechanical coupling has also been thoroughly studied 

(see[33], [46], [47]) and quite considerable level of robustness has been achieved. However, 

these continuum models were limited to model the inelastic behavior of the material with 

hardening before the localized failure occurs. 

None of these existing models can be applied to estimate the ultimate thermo-mechanical state of 

a complex structure, with the for a localized failure number of components. In such a case, it is 

necessary to provide a model capable of representing the thermomechanical behavior of the 

material in localization zone. Even for purely mechanical loading, where the material 

propertiesare considered to be independent of temperature, one already needs a special model 

formulation to capture localized failure with adding either strong displacement discontinuity for 

brittle failure (see [32], [29], [31]) or fracture process zone with hardening and displacement 

discontinuity with softening for ductile failure ([23], [25]). The new issue for coupled 

thermomechanics problem concerns the heat transfers and temperature changes in the localized 

failure zone. Only a couple of recent works tried to answer this question, resulting from opposing 

views. More precisely, Armero and Park ([39]) consider an elastic rectangular shear layer 

subjected to a propagation of stress wave from its two ends, leading to a strong displacement 

discontinuity in the middle, accompanied with a jump in the heat flux through the localization 

zone. In contrast with this hypothesis, Runesson et al. ([38]) considered the adiabatic condition 

with the material properties (i.e. heat capacity) at failure zone assumed to remain similar to the 

non-failure zone, leading to a jump in temperature field in the localized failure zone to 

accompany the displacement discontinuity. Neither fracture process zone, nor the temperature 

dependent material properties is considered in these works. 
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Thus, the first main target of this chapter is to provide the theoretical formulation for a coupled 

thermo-mechanical failure problem that can take into account both the fracture process zone and 

softening behavior at localized failure zone. We provide perhaps „the best choice‟ compromise 

for describing the localized thermo-mechanical failure, introducing the displacement and 

deformation discontinuity for the mechanical part along with the discontinuity in temperature 

gradient for the thermal part. The proper justification for this choice based upon the adiabatic 

split is also provided. Another main aim of this chapter is to provide a very careful consideration 

of finite element approximation in the presence of thermo-mechanical coupling and localized 

failure which allows us to use the structured mesh. Here, we choose enhancement of strain field 

to accompany displacement discontinuity, which is needed to accommodate the temperature 

dependent material properties in the fracture process zone in the presence of non-homogeneous 

temperature field induced by localized failure. For clarity, in this chaper, the development is 

presented in detail for a one-dimensional bar subjected to static mechanical loading coupled with 

temperature transfer from one end to the other. 

The efficiency of our numerical implementation is ensured by using the structured finite element 

mesh, which is constructed by employing the finite element methods with embedded 

discontinuities (ED-FEM). As explained by Ibrahimbegovic and Melnyk in [22], the proposed 

ED-FEM is proved to be a very successful alternative to the extended finite element method or 

X-FEM (see[48]), providing higher computational robustness with the discontinuities in 

displacement and in heat flux defined at the element level. The same helps to better separate the 

roles of strain versus displacement discontinuities, and considerably simplifies the numerical 

implementation within the standard computer code architecture.  

The outline of this chapter is as follows. In Section 2.2, we provide the theoretical formulation of 

thermo-plastic model for localized failure in the one-dimensional framework. The embedded-

discontinuity finite element method (ED-FEM) implementation for the problem is presented in 

Section 2.3. Several numerical simulations and illustrative results for 1D problem are given in 

Section 2.4. Conclusions and discussions are stated in Section 2.5. 
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2.2 Theoretical formulation of localized thermo-mechanical coupling problem 

2.2.1 Continuum thermo-plastic model and its balance equation 

The free energy of the continuum thermo-plastic consists of three components: mechanical 

energy, thermal energy and thermo-mechanical energy: 

        ppp
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Where E is the Young modulus, ߝ is the total strain, p  is the plastic strain, ݍ is the stress-like 

variable associated to hardening, � is the hardening variable, � is the mass density, ߴ is the 

temperature, 0ߴ is the reference temperature, ܿ is the density heat capacity and ߚ is the 

coefficient that gives the relation between stress and temperature. In this work, we consider that 

the mechanical properties are temperature dependent.  

The state equations are given by � ≔ ߝ݀߰݀ = ߝ ܧ − − ݌ߝ ߴ)ߚ − ݁ߟ (2-2)  (0ߴ ≔ − ߠ݀߰݀ = ߝ ߚ − + ݌ߝ �݈ܿ݊ ߴߴ 
0
   (2-3) 

where � is the stress and ݁ߟ  is the reversible part of the entropy or “elastic” entropy (see [17])  

The coefficient   can also be expressed in terms of the thermal expansion coefficient ߚ :ߙ =  ߙܧ

By taking the last result into account, (2-2) can be rewritten in an alternative form: 

� ≔ ߝ݀߰݀ = ܧ ߝ   − − ݌ߝ ߴ ߙ − ݄ݐߝ        0ߴ  = �݉ + ݄ݐ�   (2-4) 

where ݄ݐߝ   denotes the thermal deformation, while �݉   denotes the mechanical part and �݄ݐ  the 

thermal part of stress.  

Denoting with݌ߟ  the irreversible or “plastic” part of the “total” entropy ߟ (with the additive split 

of entropy, ߟ = ݁ߟ + ݌ߟ  - see ([17], [33]), the local form of internal dissipation rate can be 

expressed as follows: 
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0 ൑ ݐ݊݅ܦ ≔ + ߟߴ − ߝ� ݐ݀݁݀ = + ߟߴ − ߝ� ݐ݀(ߴ݁ߟ+߰)݀       (2-5) 

where ݁ = ߰ +  is the internal energy. We can thus obtain the additive split of dissipation ߴ݁ߟ

rate into mechanical and thermal part: 

0 ൑ ݐ݊݅ܦ = ߟ ߴ  ݁ + +  ݌ߟ − ߝ� ݁ߟ− ߴ߲߲߰  ߴ − � ߝ߲߲߰ − ߝ �− ݌ߝ߲߲߰ − ݌ߝ ݍ− �߲߲߰ � − ߟߴ  ݁ − ݁ߟ  (2-6)   ߴ

0 ൑ ݐ݊݅ܦ = ݎ݄݁ݐܦ  ݌ߟߴ + + ݌ߝ� ܿ݁݉ܦ        �ݍ ݄   (2-7) 

The temperature dependent yield criterion for the material in the fracture process zone is defined 

as � �, ≕ ߴ,ݍ  � − − ߴ ݕ�) ((ߴ)ݍ ൑0  (2-8) 

Where �(ߠ)ݕ is the initial yield stress of the material at temperature ߴ and ߴ ݍ  is the stress-like 

hardening variable controlling the evolution of the yield threshold. 

The form of the temperature dependence of these two variables is expressed in the following 

equations: �ߴ ݕ = ݕ�  1 ߴ ߱− − ݍ (2-9)    0ߴ = = ߴ ܭ   ;  � ߴ ܭ− 1]ܭ − ߴ ߱ −  (2-10)  [ 0ߴ

where �ݕ  and K are the values at the reference temperature 0ߴ. 

The evolution laws of the state variables are established by the second law of thermodynamics, 

in which the internal dissipation reaches the maximum value. In particular, the Kuhn – Tucker 

condition is used to find the maximum of internal dissipation Dint among the admissible stress 

values with �(�, (ߴ,ݍ ൑ 0. This can be defined as the corresponding constrained minimization: 

maxݐ݊݅ܦ  �, � �            ߴ,ݍ ݍ, ൑0 ߠ,

݉݅݊ ݉ܽݔ ,� ܮ ,ߴ,ݍ  ;   ߛ
,� ܮ ,ߴ,ݍ =  ߛ ݐ݊݅ܦ−  �, + ߴ,ݍ ,�)� ߛ  (2-11) (ߴ,ݍ

The corresponding optimality conditions can be written as follows: 

0 =
�߲ܮ߲ → = ݌ߝ �߲�߲ ߛ =  (12-2) (�)݊݃݅ݏ ߛ

0 =
ݍ߲ܮ߲ → � = ݍ߲�߲ ߛ =  (2-13)  ߛ
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0 =
ߴ߲ܮ߲ → = ݌ߟ ߴ݀�߲ ߛ = ݕ�  ߛ +  (14-2)  ߱ �ܭ

where ߛ   is the Lagrange multiplier. 

The balance equations for the problem are obtained by using the force equilibrium equation and 

the first principle of thermodynamics. The force equilibrium equation can be written as:   

-� 2ݐ݀ݑ2݀
+

ݔ݀�݀ + ܾ = 0  (2-15) 

where � is the mass density, u is the displacement, � is the stress and b is the distributed load. 

The energy balance is then established by using the first principle:  ݀݀ݐ  ݁ +
1

2
� ݐݑ݀݀   2 = ܾ ݐݑ݀݀ +

ݔ݀݀  � ݐݑ݀݀  +  ܴ − ݔ݀ܳ݀  (2-16) 

where݁ is the internal energy density, R is the distributed heat supply and Q is the heat flux. The 

last equation can be rewritten explicitly as: ݀݁݀ݐ + � ݐݑ݀݀ 2ݐ݀ݑ2݀ 
 =  ܾ ݐݑ݀݀ +

ݔ݀�݀ ݐݑ݀݀ + � ݐ߲ݔ߲ݑ2߲ + ܴ − ݔ݀ܳ݀  (2-17) 

By combining this result with the force equilibrium equation, we get the reduced form of the first 

principle:  ݀݁݀ݐ = � ݐ݀ߝ݀ + ܴ − ݔ݀ܳ݀  (2-18) 

By exploiting the Legrendre transformation, ݁ = ߰ + ݁ߟߠ , we can further introduce the free 

energy potential ߰ ݀݁݀ݐ =
ݐ݀߰݀ + ݁ߟ ߴ + ߟߴ  ݁ → ݐ݀݁݀ =

݁ߟ− ߴ߲߲߰  ߴ + � ߝ߲߲߰ + ߝ �− ݌ߝ߲߲߰ + ݌ߝ
ݍ− �߲߲߰ � + ݁ߟ ߴ + ߟߴ  ݁  (2-19) 

Replacing this expression into (2-18), we get the final form of the balance equations:  ߟߴ  ݁ = − ݔ݀ܳ݀ + + ݌ߝ� ܿ݁݉ܦ        �ݍ ݄ + ܴ (2-20) 

→ = ߟߴ − ݔ݀ܳ݀ + ݐ݊݅ܦ + ܴ (2-21) 

We note that the definition of thermal dissipation in (2-7), has allowed us to obtain the final 

result in (2-21). By considering further only quasi-static loading applications, we can recast (2-

15) and (2-21) as the final form of the balance equations: 
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 0 =
ݔ݀�݀ + = ߟߴܾ − ݔ݀ܳ݀ + ݐ݊݅ܦ + ܴ  (2-22)  

2.2.2 Thermodynamics model for localized failure and modified balance equation. 

2.2.2.1 Thermodynamics model  

When the localized failure happens, the free energy is decomposed into a regular part in the 

fracture process zone and the irregular part of free energy at the localized failure point: ߰ ߝ, ݌ߝ , = ߴ,� ߝ ߰   , ݌ ߝ ,ߴ, �  + ,  �) ߰  ݔߜ  (2-23) (݈ߴ

where  ∗  denotes the regular part and ∗   represents the singular part of the potential, ߴ denotes the 

temperature in any position and ݈ߴ  denotes the temperature at the localizedfailure point ݔ . In (2-

23) above, the irregular part of energy is limited to the localized failure point by using ݔߜ , the 

Dirac delta function: ݔ  ݔߜ =  ∞; ݔ         =  ݔ
0;  (24-2)  ݁ݏ݅ݓݎ݄݁ݐ݋  

The regular part of the free energy pertains to the fracture process zone, and it keeps the same 

form as written in (2-1). The localized free energy is assumed to be equal to:  ߰ (�  , (݈ߴ =
1

2
)  ܭ  (2-25) 2  �(݈ߴ

where �   is theinternal variable quantifying the softening behavior due to localized failure. The 

chosen quadratic form of softening potential in (2-25) further allows us to obtain the 

corresponding stress-like internal variable  ߴ   ݍ, �   ∶= − ݀  ߰  �   ݀�  =  (2-26)   � ݈ߴ   ܭ−

This variable drives the current ultimate stress value to zero, when the failure process is 

activated, as confirmed by the corresponding yield criterion: �   ݔݐ , =∶   ݍ −  ݔݐ  − ݈ߴ ݑ�  ݈ߴ   ݍ , �    ൑ 0 (2-27) 

where  ݔݐ   is the traction at the localized failure point ݑ� , ݔ(  is the initial value of ultimate (݈ߴ

stress.  
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The mechanical properties at localized failure are assumed to have the same dependence on 

temperature as the bulk part; hence, we can write: �݈ߴ ݑ = 1 ݑ� − ݈ߴ ߱ − = ݈ߴ   ܭ (2-28)   0ߴ 1]  ܭ − ݈ߴ ߱ −  (2-29) [ 0ߴ

where �ݑ  and ܭ   are, respectively, the ultimate stress and softening modulus at reference 

temperature 0ߴ. 

 

Figure 2-1.Displacement discontinuity at localized failure for the mechanical load 

Once the localized failure occurs, the crack opening (further denoted as (ݐ)   ݑ, seeFigure 2-1) 

contributes to a “jump” or irregular part in the displacement field. The total displacement field is 

thus sum of regular (smooth) part and irregular part:  ݔ ݑ, = ݐ ,ݔ  ݑ + ݐ − ݔ  ݔܪ (ݐ)  ݑ  (30-2)  (ݔ)�

whereݔܪ  is the Heaviside function introducing the displacement jump ݔܪ =  0, ݔ ൑  ݔ
1, ݔ >  (31-2)    ݔ

In (2-30) above, �(ݔ) is a (smooth) function, introduced to limit the influence of the 

displacement jump within the “failure” domain. Usual choice for � ݔ  in the finite element 

implementation pertains to the shape functions of selected interpolation. For example, for a 1D 

truss bar with 2 nodes and element length ݈݁ , we can choose: � ݔ = = ݔ 2ܰ
ݔ݈݁

 (2-32) 

The corresponding illustrations for (ݔ) ݔܪ and �(ݔ) for a two-node truss-bar element are given 

inFigure 2-2 

 (ݐ)  ݑ

 0  ݔ ݔ

Ω 1 Ω 2 
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Figure 2-2.Displacement discontinuity for 2-node bar element: Heaviside function ࡴ�  and ĳ(x) 

Denoting with ݔ  ݑ, = ݐ ,ݔ  ݑ  − ݐ  the continuous part of the displacement field, and (ݔ)� ݐ   ݑ

with (ݐ)  ݑthe “jump” in displacement, we can further write additive decomposition of 

displacement field: ݔ ݑ, = ݐ ,ݔ  ݑ  + ݐ  (33-2) (ݔ) ݔܪ ݐ   ݑ

The corresponding strain field can then be obtained by exploiting the kinematic relation: ݔ ߝ, =∶ ݐ ݔ݀ݑ݀ =
ݔ߲߲ ,ݔ  ݑ  + ݐ = (ݔ) ݔܪ ݐ   ݑ +  ߝ  (34-2) (ݐ)  ݑ ݔ  ݔߜ

The rate of internal dissipation can then be written as: 

0 ൑ ݐ݊݅ܦ = + ߟߴ �߳ − ݐ݀݀ ݁ ߝ ݁ , � , = ߴ,  � + ߟߴ �߳ − ݐ݀݀ ݁ ߝ ߰  , � , + ߴ,  �   ߴ݁ߟ
ݐ݊݅ܦ = ݌ ߟߴ + ݁  ߝ  � − ߲߲߳ ߝ ߰   ݁ , +  ߴ, � ݌  ߳�  − ߲߲߰� �  – ߲ ݔߜ +   �  �߲ ݈ߴ,   �  ߰   + ݐ    ݑ ݔ� ݔߜ 

ݔ݀ ݔ �݀   ݐ    ݑ
            (2-35) 

For the elastic loading case where the rate of internal variables and the internal dissipation are 

equal to zero, we can obtain the stress constitutive equation: � ≔ ݀݀߳ ߝ ߰   ݁ , = ߴ, � − ߝ ܧ ݌ ߝ  − ߴ)ߚ −  (2-36) (0ߴ

For the bulk material, this equation remains the same as presented in (2-2). With this result in 

hand, we can obtain the final expression for internal dissipation for plastic loading case, where 

the correct interpretation ought to be given in terms of distribution (e.g. see [49]): 

− ݔܪ  (ݔ)�

 (ݔ) ݔܪ

 (ݔ)�

1 

1 

0.5 

-0.5 

  ݔ
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Ωݐ݊݅ܦ = ׬  Ω݁ݐ݊݅ܦ ݔ݀ = ׬ ݌ ߟߴ) + ݌  ߝ�  + Ω݁ (  � ݍ ݔ݀ +  (37-2)  ݔ|    �  ݍ 

The evolution laws for localized variables are established in the same way as for the classical 

continuum model. In particular, the evolution equation for internal variable controlling softening 

can be written as: 

0 =
→  ݍΩ݀  ܮ݀ = ݔߜ   � =  ݍ߲  �߲ ݔߜ   ߛ  (38-2)  ݔߜ   ߛ

where ߛ     is the plastic multiplier at the point of localized failure. 

2.2.2.2 Thermo-mechanical balance equation 

The set of force equilibrium equations consists of two equations:  

(1) the local force equilibrium (established for all the bulk domain) 

0 =
ݔ݀�݀ + ܾ (2-39) 

the stress orthogonality condition to define the traction at localized failure point 

0 = + ݔݐ  ׬ ݔ݀ ݔ �݀ Ω݁ ݔ�  (40-2) ݔ݀

(2) Local balance of energy at the localized failure point 

For the regular part, the local energy balance is still described by continuum thermodynamic 

model (2-21): ߟߴ = − ݔ݀ܳ݀ + ݐ݊݅ܦ + ܴ 

The corresponding state equation (2-3) reads: ߟ ݁ = − ߴ݀߰݀ = ߝ ߚ − + ݌ߝ �݈ܿ݊ ߴߴ 
0
 → ߟߴ  ݁ = − ߝ ߚߴ +  ݌ߝ �ܿ   (2-41)  ߴ

By considering thatߟ = ݁ߟ + ݌ߟ ݐ݊݅ܦ , = ܿ݁݉ܦ ݄ + ݎ݄݁ݐܦ  and ݎ݄݁ݐܦ = ݌ ߟߴ , the local energy 

balance can finally be rewritten in the format equivalent to the heat transfer equation: �ܿ  ߴ = − ݔ݀ܳ݀ + ܿ݁݉ܦ ݄ − − ߝ ߚߴ +  ݌ߝ ܴ (2-42) 

where the mechanical dissipation ܿ݁݉ܦ ݄  and the structural heating (−ߝ ߚߴ −  act as an (  ݌ߝ

additional heat source. This equation holds at any point of the material in the bulk.  

We further consider that at the localized failure point, the material has no more ability to store 

heat, which implies setting the heat capacity to zero (�ܿ = 0). We also take into account that at 

localized failure point there is no heat source (ܴ = 0) nor thermal stress (ߚ = 0). Therefore, the 
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mechanical dissipation at localized failure can be balanced only against the change of heat flux. 

Moreover, the local energy balance equation at the localized failure point ought to be interpreted 

in the distribution sense, resulting with the corresponding jump in the heat flux: 

0 = ݔ݀ܳ݀ − + ݔ  ׬ ܿ݁݉  ܦ ݔߜ ݄� →  ܳ = ܿ݁݉  ܦ    (43-2)  ݔ| ݄

where the mechanical dissipation ܦ  ݉݁ܿ ݄  acts as the heat source at the failure point. As indicated 

in (2-21) to (2-4γ) above, this results in the corresponding “jump” of the heat flux through the 

localized failure section. We note in passing that the jump in the heat flux leads to a change of 

the temperature gradient at the localized point. In the finite element implementation, one needs 

additional shape functions for describing not only displacement but also temperature field, as 

described in the following. 

2.3 Embedded-Discontinuity Finite Element Method (ED-FEM) implementation 

2.3.1 Domain definition 

 

Figure 2-3. Heterogeneous two-phase material for a truss bar, with phase-interface placed at �  

We consider a 1D heterogeneous truss-bar subjected simultaneously to mechanical loading 

(including distributed load b(x) and prescribed displacements at both ends) and heat transfer 

along the bar (Figure 2-3). The material heterogeneity is the direct result of temperature 

dependent material parameters under heterogeneous temperature field. In particular, we consider 

that the bar is built of an elasto-plastic material, occupying two different sub-domains separated 

by localized failure point at ݔ : 
Ω݁ = Ω݁1 ת Ω݁2 ;  Ω݁ =  0, ݈݁ ; Ω݁1 = [0, Ω݁2 ;] ݔ , ݔ[= ݈݁]  

The mechanical localized failure is assumed to happen at the interfaceݔ  (seeFigure 2-4) 

1ߴ  

b(x) 

R(x) 

1ݑ  

2ߴ  

2ݑ   ݔ ݔ 
Ω݁1  Ω݁2 
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In the following, the indices “1” is used for all the thermodynamics variables relate to sub-

domain Ω݁1 , and the indices “β” to the second sub-domain Ω݁2. 

2.3.2 „Adiabatic‟ operator splitting solution procedure 

Due to the positive experience of Kassiotis et al. (see [50]), we choose the operator split method 

based upon adiabatic split to solve this problem. In the most general case with active localized 

failure, the coupled thermomechanical problem is described by a set of mechanical balance 

equations defined in (2-39) and (2-40), accompanied by the energy balance equations in (2-42) 

and (2-43). Solving all of these equations simultaneously is certainly not the most efficient 

option. In order to increase the solution efficiency, we can choose between two possible operator 

split implementations: isothermal and adiabatic (see [17]). We note in passing that the isothermal 

operator split is not capable of providing the stability of the computation (see [50]). Therefore, 

we focus only upon the adiabatic operator split method.  In this method, the problem is divided 

into two phases, with each one contribution to change of temperature: 

Phase 1 - Mechanical part              

with “adiabatic”condition 
Phase 2- Thermal part 

 0 =
ݔ݀�݀ + = ߟܾ 0 → = ߠܿ� ܿ݁݉ܦ ݄ − − ߝ ߚߠ     ݌ߝ

(at localized failure point): �1|ݔ = = ݔ|2�   ݔݐ
= ߠܿ� ݔ݀ܳ݀− + ܴ    ܳ = ܿ݁݉  ܦ     ݔ| ݄

The computations of the mechanical and thermal states remain coupled through the adiabatic 

condition. 

0 ݈݁  

 (ݔ)ܾ

 (ݔ)ܴ
 ݔ

  ݔ

 ૚܍� ૛܍�

Figure 2-4.Two sub-domain �ࢋ૚ and �ࢋ૛ separated by localized failure point at �  
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2.3.3 Embedded discontinuity finite element implementation for the mechanical part 

The basis of the numerical implementation is the weak form of the balance equations. For the 

mechanical part, we can write (e.g. see [17]): ׬ Ω݁ݔܾ݀ݓ − ׬ ݔݓ݀݀ ݔ݀� + − ݈݁ ܾݓ = 0 ܾݓ 0Ω݁  (2-44) 

where w is the virtual displacement field. In the numerical implementation, we choose the 

simplest 2-node truss-bar element with linear shape functions: 

(ݔ)1ܰ = 1 − ݔ݈݁
 (2-45) 

= ݔ 2ܰ
ݔ݈݁

 (2-46) 

where le is the element length. When the localized failure occurs, a displacement discontinuity at 

the failure point is introduced, with parameter 1݉ߙ  representing the crack opening (ݐ)

displacement. The latter is multiplied by shape function (ݔ)1ܯ (seeFigure 2-5), in order to limit 

the influence of crack opening to that particular element. Due to temperature dependence of 

material properties we might have potentially different values of Young‟s modulus in the two 

parts of the element. Considering that the stress remains continuous inside the element, as shown 

in [22], we must introduce the corresponding strain discontinuity at the localized failure point. 

This is carried out by using the shape function ݔ 2ܯ  shown inFigure 2-6 with the corresponding 

parameter 2݉ߙ  are chosen with respect to the localized (ݔ)2ܯ and (ݔ)1ܯ We note that both .(ݐ)

failure that occurs in the middle of the element, so that ݔ = ݈
2݁

. Thus, the displacement field 

interpolation can be written as: ݔ ݑ, = ݐ 1=2ܽ ݐ ܽ݀ ݔ ܰܽ  + 1݉ߙ ݔ 1ܯ + ݐ  2݉ߙ ݔ 2ܯ   (47-2) (ݐ)

with 

= ݔ 1ܯ − ݔܪ (ݔ)2ܰ =  − ݔ݈݁ ݔ݂݅ ∊ [0,
݈
2݁

[

1 − ݔ݈݁ ݔ݂݅ ∊ ]
݈
2݁

, ݈݁]

  (2-48) 

=  ݔ 2ܯ  − ݔ݈݁ ݔ݂݅ ∊ [0,
݈
2݁

ݔ݈݁] − ݔ݂݅          1 ∊ ]
݈
2݁

, ݈݁]

  (2-49) 

The corresponding strain interpolation can then be written as: 
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,ݔ ߝ = ݐ
ݑ݀ ݔ  ݔ݀ ݐ, = 1=2ܽ ݐ ܽ݀ ݔ ܽܤ   + 1݉ߙ ݔ 1ܩ + ݐ  2݉ߙ ݔ 2ܩ (ݐ)

 (2-50)

= ݔ 1ܩ
ݔ݀ ݔ 1ܯ݀ =  − 1݈݁ ݔ ݂݅       ∊ [0,

݈
2݁
݈ ׫ 

2݁
, ݈݁]− 1݈݁ + ݔ           ݂݅  ݔߜ = = ݔ ݈

2݁

   = 1ܩ
 + ݈= ݔ) ݔߜ

2݁
)
1ܩ ;  
 = − 1݈݁  (2-51) 

= ݔ 2ܩ
ݔ݀ ݔ 2ܯ݀ =  − 1݈݁ ݔ݂݅ ∊ [0,

݈
2݁

[

1݈݁ ݔ݂݅ ∊ ]
݈
2݁

, ݈݁]

  (2-52) 

 

   

 

1݈݁  

-0.5 

�૛(ݔ) 

 (ݔ)૛ࡳ

ݔ = ݔ 0 = ݈݁ ݔ  =   ݔ

− 1݈݁ 

M1(x) 

x = le  

− x 
le

 

G1(x) 
Ł0 

x = 0 x = x  
1 − x 

le

 

x 

−1

le

 

Figure 2-5Displacement discontinuity shape function M1(x) and its derivative. 

Figure 2-6. Strain discontinuity shape function M2 and its derivative 
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The corresponding discrete approximation of the virtual displacement and strain can be written 

in an equivalent form: ݔ ݓ = ܽݓ ݔ ܰܽ + 1݉ߚ ݔ 1ܯ + 2݉ߚ ݔ 2ܯ  ݔ݀ ݔ ݓ݀ (2-53)  = ܽݓ ݔ ܽܤ + 1ܩ
(ݔ)   1݉ߚ + 2݉ߚ ݔ 2ܩ   (2-54) 

where 1݉ߚ  and 2݉ߚ  are the variations corresponding to 1݉ߙ 2݉ߙ and (ݐ)  respectively.With these ,(ݐ)

interpolations in hand, the weak form of the equilibrium equation can be recast in incompatible 

mode format (see [18]) as the set of equations: 

   
1=݁ܣ  

݈݊݁ ݐ݂݊݅ ) ,݁ − ݐݔ݂݁ ,݁) = ݐ݂݊݅ ;0 ,݁ = ׬  ܽ݀ ݅�݁ܽܤ 1݉ߙ, 2݉ߙ, �ݔ݀ ݅ߠ, ݄݅݁1݁ = 0; ݄1݁ = ׬   ܽ݀ ݅�1݁ ܩ 1݉ߙ, 2݉ߙ, Ωݔ݀ ݅ߠ, ݅݁ + 1݉ߙ  ݔݐ 2݉ߙ,  ݄2݁ = 0;݄2݁ = ׬  ܽ݀ ݅�2݁ܩ 1݉ߙ, 2݉ߙ, Ωݔ݀ ݅ߠ, ݅݁
  (2-55) 

Given highly nonlinear material behavior, this set of equations ought to be solved by an iterative 

scheme. If ζewton‟s method is used, we make systematic use of the consistent linearization (see 

[17]), where the corresponding incremental stress-strain relation has to be obtained. We note that 

the chosen isoparametric elements provide continuum consistent interpolation, and furthermore 

that the continuum and discrete tangent modulus remain the same in one-dimensional setting (see 

[17]). Thus, we start with the consistent linearization of the continuum problem to obtain the 

stress rate constitutive equation, one in each sub-domain „i‟: � ݅ = ݅  ߝ ݅ܧ − − ݌݅  ߝ ݅ ߠ݅ߚ  (2-56) 

The time derivative of temperature can be computed by imposing the adiabatic step: ߟ݅ߠ ݅݁ = ݅  ߝ ݅ߚ݅ߠ − + ݌݅  ߝ ݅ ߠ݅ܿ݅� = 0 → ݅ ߠ = − �݅ߠ݅ߚ ݅ܿ݅ ݅  ߝ  −  (57-2)  ݌݅  ߝ

Combining the last two results, we finally obtain � ݅ = ݁݅ܥ ,ܽ݀ ݅  ߝ  − ݁݅ܥ ; ݌݅  ߝ ,ܽ݀
= ݅ܧ +

�݅ߠ2݅ߚ ݅ܿ݅  (2-58) 

Where ݁݅ܥ ,ܽ݀  denotes the adiabatic tangent modulus.  For sub-domain i, undergoing elastic 

loading, with ݌݅  ߝ = 0, the constitutive equation can be simplified as: � ݅ = ݁݅ܥ ,ܽ݀ ݅  ߝ  (2-59) 

On the other hand, if sub-domain i undergoes plastic loading, the consistency condition requires: 
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�  ݅ �݅ ݅ݍ, = ݅ߠ,  
݀�݅݀�݅ � ݅ +

݀�݅݀�݅ �  ݅ +
݅ߠ݀݅�݀ ݅ ߠ = 0 (2-60) 

With the expression for � ݅  chosen herein, (2-60) can further be simplified to:  ݊݃݅ݏ �݅ � ݅ ݅  �݅ܭ− + ݕ݅�  + ݅ �݅ܭ ݅ ߠ݅߱  = 0 (2-61) 

By using equation (2-57), we get the constitutive equation in rate form: � ݅ = ݕ݅�  ݅� ݊݃݅ݏ + ݅ �݅ܭ  ߱݅ �݅ߠ݅ߚ ݅ܿ݅ ݅  ߝ + ݅ܭ  − ݕ݅�  ݅� ݊݃݅ݏ + ݅ �݅ܭ  ߱݅ �݅ߠ݅ߚ ݅ܿ݅ ߝ  ݌݅    (2-62) 

From equation (2-58), we have  ݌݅  ߝ = ݅  ߝ − ݁݅ܥ݅ � ,ܽ݀  (2-63) 

Combining equations(2-62) and (2-63) we can establish the constitutive equation for a plastic 

domain “i”μ � ݅ = ݕ݅�  � ݊݃݅ݏ + ݅߱ ݅�݅ܭ ݅ܿ݅�݅ߠ݅ߚ ݅  ߝ + ݅ܭ  − ݕ݅�  � ݊݃݅ݏ + ݅߱ ݅�݅ܭ ݅ܿ݅�݅ߠ݅ߚ ݅  ߝ)  − ݁݅ܥ݅ � ,ܽ݀ ) 

� ݅ =
݁݅ܥ݅ܭ ݁݅ܥ݀ܽ, ,ܽ݀

݊݃݅ݏ−݅ܭ+ ߱ ݅�݅ܭ+ݕ݅�  �  ߚ݅ ߠ݅ ݅� ܥ                   ݅ܿ݅ ݅݌ ,ܽ݀
݅  ߝ  (2-64) 

In conclusion, the following constitutive equation can be employed:  

� ݅ = ܽ݅ܥ ݀ ݅  ߝ ܽ݅ܥ   ;  ݀ = ݁݅ܥ  ,ܽ݀
        ;   ݂݅� ݅ < ݅݌ܥ݁ݏܽܿ ܿ݅ݐݏ݈ܽ݁        0 ,ܽ݀
        ;   ݂݅� ݅ =  (65-2)  ݁ݏܽܿ ܿ݅ݐݏ݈ܽ݌        0

where ݁݅ܥ ,ܽ݀  and ݅݌ܥ ,ܽ݀ are defined in (2-59) and (2-64), respectively. 

To solve the problem, two operator split are employed (e.g. see[17]) with „local‟ and „global‟ 

phases of computation. The former provides the internal variables, while the latter gives the 

nodal values of displacement. We briefly describe those two algorithm phases: 

i) Local computation: 

Given: ݀ܽ ,݊+1, ݅ ߝ ݌݊, , � ݅ ,݊ , ݉݊,1ߙ , �  ݊ ݉݊,2ߙ,  

Find: ݅ߝ ,݊+1
݌

, � ݅ ݅ߙ,1+݊, ,݊+1
݉ , �  ݊ 1+݊,2ߙ,1+

݉  

which should obey the following conditions:  
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 � ݅ �݅,݊+1, ݅ ݍ ,݊+1 ൑ ݅ ߛ ;0 ,݊+1 ൒ ݅ ߛ0 ,݊+1� ݅ ,݊+1 = 0; ݅ = 1,2
  (2-66) 

,1+݊ݐ   �  ൑ 1+݊  ݍ 1+݊  ߛ ;0 ൒ 1+݊  �1+݊  ߛ0 = 0

  (2-67) 

and ׬ ܽ݀)1� ݔ 2ܩ Ω1ݔ݀(2ߙ,1ߙ,1+݊,
+ ׬  ܽ݀ 2� ݔ 2ܩ Ω2ݔ݀ 2ߙ,1ߙ,1+݊,

= 0 (2-68) 

We note that (2-66) is used to compute plastic internal variables of two sub-domains at the step 

(n+1) from the previous step (n) by the so-called „return-mapping‟ algorithm (see [51]). 

Conditions (2-67) and (2-68) are used to compute 1+݊,1ߙ and 1+݊,2ߙ by using the following 

algorithm:  

i) Assume 1+݊,1ߙ ≔ ݊,1ߙ 1+݊,2ߙ , = 0 

ii) Compute trial stress at the two sub-domains with 1+݊,1ߙ and 1+݊,2ߙ 

1+݊ߝ
ݐݏ݁ݐ ,ݔ  = ݐ

,ݔ ݑ݀ ݔ݀ ݐ = + ݐ ܽ݀ ݔ ܽܤ  ݐݏ݁ݐ݊,1ߙ ݔ 1 ܩ + ݐ ݉, 1+݊,2ߙ ݔ 2ܩ
ݐݏ݁ݐ ,݉

݅� (ݐ) ,݊+1
݈ܽ݅ݎݐ  ݀ܽ = 1+݊,2ߙ,1+݊,1ߙ,1+݊, ݁݅ܥ ܽ݀ 1+݊ߝ)

ݐݏ݁ݐ − ݅݌ ߝ ) 

iii) Compute trial value of  tension force at localized failure point  1+݊ݐ
݈ܽ݅ݎݐ = ׬ −  �1 ܩ ݈ܽ݅ݎݐ݅  ݀ܽ 1+݊,1ߙ,1+݊,

݉ 1+݊,2ߙ,
݉ ݅ Ωݔ݀   (2-69) 

IF �   1+݊ݐ
݈ܽ݅ݎݐ , ൑ 1+݊  ݍ 0 THEN 1+݊,1ߙ

݉ ≔ ݉݊,1ߙ  and go to step (vi) 

iv) IF �   1+݊ݐ
݈ܽ݅ݎݐ , < 1+݊  ݍ 0 THEN  1+݊  ߛ =
1+݊ݐ   �

݈ܽ݅ݎݐ 1݁ܥ 1+݊  ݍ,
ܽ݀ 2݁ܥ+

ܽ݀
2݈݁  (70-2)   ܭ+

(le is the length of the element) �  ݊ +1 = �  ݊ + 1+݊,1ߙ (2-71) 1+݊  ߛ
݉ = ݉݊,1ߙ +  (72-2)  1+݊ݐ ݊݃݅ݏ1+݊  ߛ 

Return to step (ii) with the updated value of 1+݊,1ߙ and �  ݊ +1 

v) Compute updated value of 1+݊,2ߙ
݉  from condition (1-69)  
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1+݊,2ߙ
݉ ≔  �1

݈ܽ݅ݎݐ −�2
݈ܽ݅ݎݐ 1݁ܥ݈݁ 

ܽ݀ 2݁ܥ+
ܽ݀  (2-73) 

With the updated value of 1+݊,2ߙ check  

IF  ׬ ܽ݀)݅� ݔ 2ܩ 1݉ߙ,1+݊, 2݉ߙ, Ω݅ݔ݀( = 0 THEN 

           EXIT 

ELSE 

           Return to step (ii) 

ii) Global computation  

In global computation phase, the system (2-55) is rewritten in linearized form:  

 
  

















 


0

0

0

2

1

,int,

1

e

e

eexte
nel

e

Lin

Lin

Lin A

h

h

ff

  (2-74) 

The corresponding result of consistent linearization can be recast in matrix notation: 

 �૚܍ �૚܍ �૛܍�૚܍� �૚܍ +
ݐ߲ 1݉ߙ  1݉ߙ߲ 

�૛܍�૛܍� �૛܍� ܍۾   
2ߙ�1ߙ��܌�

 =  ݂݊ +1
ݐ݊݅ ,݁ − ݂݊ +1

ݐݔ݁ ,݁
0

0

  (2-75) 

where we have: 
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1݁ܭ = ׬  ܽ݅ܥ ݔ ܽ�ܤ Ω݅ݔ݀(ݔ)ܽܤ݀ 1݁ܭ   ;  =
1ܽܥ

݀ 2ܽܥ+
݀

2݈݁  1 −1−1 1
  (2-76) 

1݁ܨ = ׬  ܽ݅ܥ ݔ ܽ�ܤ Ω݅ݔ݀(ݔ)1 ܩ݀ 1݁ܨ   ;  =
1ܽܥ

݀ 2ܽܥ+
݀

2݈݁  1−1
  (2-77) 

2݁ܨ = ׬  ܽ݅ܥ ݔ ܽ�ܤ Ω݅ݔ݀(ݔ)2ܩ݀ 2݁ܨ    ;   =
1ܽܥ

2ܽܥ−݀
݀

2݈݁  1−1
  (2-78) 

1݁ܪ = ׬  ܽ݅ܥ(ݔ)1 ܩ Ω݅ݔ݀(ݔ)1 ܩ݀ 1݁ܪ    ;   =
1ܽܥ

݀ 2ܽܥ+
݀

2݈݁  (2-79) 

2݁ܪ = ׬  ܽ݅ܥ ݔ 1 ܩ ݅ Ωݔ݀(ݔ)2ܩ݀ 2݁ܪ   ;   =
1ܽܥ

2ܽܥ−݀
݀

2݈݁  (2-80) 

ܲ݁ = ׬   ܽ݅ܥ(ݔ)2ܩ Ω݅ݔ݀(ݔ)2ܩ݀   ;    ܲ݁ =
1ܽܥ

݀ 2ܽܥ+
݀

2݈݁  (2-81) 

∂t α1
m  ∂α1

m = K   sign(tx ) (2-82) 

By using static condensation at the converged value of incompatible mode parameters, �܌� is 

obtained as the solution of: � �܌� = ݂݊ +1
ݐ݊݅ ,݁ − ݂݊ +1

ݐݔ݁ ,݁  (2-83) 

where ܭ  takes the standard form for the stiffness matrix: 

= ܭ 1ܽܥ 
݀ 2ܽܥ+

݀
2݈݁ − 1ܽܥ)

݀
2ܽܥ+

݀
1ܽܥ(

݀ 2ܽܥ
݀

2݈݁3 ݊݃݅ݏ  ܭ+ 1ܽܥ  ݐ 
݀ 2ܽܥ−

݀  2

1ܽܥ4݈݁2
݀ 2ܽܥ

݈݀݁2 +
݊݃݅ݏ  ܭ 1ܽܥ  ݐ 

݀ 2ܽܥ+
݀  

2݈݁   1 −1−1 1
  (2-84) 

Once Δ܌� is obtained from (1-83), the nodal displacement can be updated: ܌�,�+૚ = �,�܌ +  .�܌�

2.3.4 Embedded discontinuity finite element implementation for the thermal part 

In thermal part, the heat transfer equation is written for two sub-domains as the following: �݅ܿ݅ ݅ ߴ = − ݔ݀݅ܳ݀ + ܴ݅  (2-85) 

And at the localized failure zone, the heat propagation happens with a jump in heat flux:  � =  (2-86)  �| �ࢉࢋ࢓  �  

In each of two sub-domains, the heat transfer obeys the Fourier heat conduction law:  ܳ݅ = −݇݅ ߴ݀ ݔ݀݅  (2-87) 

The local energy balance can be rewritten in the equivalent form to the heat equation:  
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�ܿ ݅ ߴ = ݇݅ ߴ2݀ 2ݔ݀݅
+ ܴ݅  (2-88) 

The strong form (2-85) is further transferred into weak form by introducing an arbitrary 

temperature field, denoted as , and by applying the virtual work laws: ׬ ݅ߴ  �݅ܿ݅ ݅ ߴ − ߴ2݀݅݇ 2ݔ݀݅
− ݔ݀ ܴ݅ = 0

0݈
 (2-89) 

After integration by part, we can finally obtain the following weak form: ׬ ݅ܿ݅�݅ߴ ݔ݀݅ ߴ + ׬ ߴ݀ ݔ݀݅ ݇݅ ߴ݀ ݔ݀݅ ݔ݀ = ׬ 0݈0݈0݈ݔܴ݀݅݅ߴ
  (2-90) 

We consider a 2-node truss-bar element. The nodal values of temperature and the weighting                                              

temperature at node i are denoted as dϑi and wi, respectively. dand w denote the real and the 

arbitrary nodal temperature vector, respectively. For a 2-node element, we have: ܌� =  ݀1݀2

  ;� = 2ݓ1ݓ 
 , 

The real and weighting temperature fields along the element are constructed with                                             

interpolation shape functions. Furthermore, the jump of temperature gradient at the localized 

failure point, is represented by an additional shape function: 

= ݔ ݅ߴ 1=2ܽ(ݐ)ߴܽ݀ ݔ ܰܽ  + 2ߙ ݔ 2ܯ
 (91-2) (ݐ)ݐ

where ܽܰ(ݔ) and (ݔ)2ܯ are defined in (2-49) and illustrated in Figure 2-6 for a two-node truss-

bar element, whereas 2ߙ
 is the variable controlling the „jump‟ in temperature gradient. We (ݐ)ݐ

note that (ݐ)݈ߠ =
1

2
1ߠ݀  (ݐ) + +  ݐ 2ߠ݀ ݈ߠ where ,(ݐ)2ߙ  is the temperature at the interface (at the 

middle of the element). 

Apply the Fourier laws to the localized point, we have: 

= ݔߜ ܳ  2ݔ݀ߴ2݀  ݔ݇−
= ݔ  2݀  ݔ݇− 2ݔ݀ ݔ ܰܽ

+ ݐ ߴܽ݀
2ߙ ݔߜ       2ݔ݀ ݔ 2ܯ2݀

=  ݐ ݐ 2ߙ ݔ݇−
  ݔߜ ݐ ݐ
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→  ܳ = 2ߙ ݔ݇−
 (92-2)  ݐ ݐ

where ݇ݔ  denotes the heat conductivity coefficient at the localized failure. By combining 

equation (2-92) with equation (2-86), we can infer the equation for 2ߙ
= ܳ   :(ݐ)ݐ 2ߙ ݔ݇−

= ݐ ݐ ܿ݁݉  ܦ ݄ → 2ߙ
= ݐ ݐ

ܿ݁݉  ܦ  (93-2)  ݔ݄݇

The iso-parametric interpolation functions are used for the weighting temperature field: ݔ ߴݓ = ߴܽݓ ݔ ܰܽ  (2-94) 

By taking into account the interpolation of real and weight temperature fields, the weak form (2-

90) is finally reduced to: ׬ ݅ܿ݅� ݔ ܰܽ  ߴܽ݀  ݔ ܰܽ + + ݐ 2 ߙ ݔ 2ܯ݅ܿ݅� ݔ ܰܽ ߴܽ݀ ݔ ܽܤ݅݇ ݔ ܽܤ +Ω݅݁ݔ݀  ݐ 2ߙ ݔ 2ܩ݅݇ ݔ ܽܤ = ߴܽܳ  (2-95) 

Finally, the finite element equations to be solved for the “thermal” phase are given byμ 1=݁ܣ
݈ܰ݁ + ܍�܌܍�  2݁ߙ܍۾

 + ܍�܌܍� + = 2݁ߙ܍� 1=݁ܣ
݈ܰ݁  ૚  (2-96)�ۿ 

where �22ݔ
݁ = ׬  ݅ܿ݅� ݔ ܰܽ ܽܰ � ݔ  ݅݁ 2ݔ2�  ; ݔ݀

݁ =
݈݁
24
 7�1ܿ1 + �2ܿ2 2(�1ܿ1 + �2ܿ2)

2(�1ܿ1 + �2ܿ2) �1ܿ1 + 7�2ܿ2
  (2-97) 

2ݔ1۾
݁ = ׬  � ݔ 2ܯ݅ܿ݅� ݔ ܰܽ ݅݁ 2ݔ1۾  ; ݔ݀

݁ = − ݈݁
24
 2�1ܿ1 + �2ܿ2�1ܿ1 + 2�2ܿ2

  (2-98) 

2ݔ2�
݁ = ׬  � ݔ ܽܤ݅݇ ݔ ܽܤ ݅݁ 2ݔ2�;ݔ݀ 

݁ =
 ݇1+݇2 

2݈݁  1 −1−1 1
  (2-99) 

2ݔ1�
݁ = ׬  � ݔ 2ܩ݅݇ ݔ ܽܤ ݅݁ 2ݔ1�;ݔ݀ 

݁ =
݇1−݇2

2݈݁  1−1
  (2-100) 

1ߴۿ 2ݔ1
= ߴܽܳ 1ߴۿ; 2ݔ1

=
݈
8݁
 3ܴ1 + ܴ2ܴ1 + 3ܴ2

  (2-101) 

There are many methods capable of solving the time-dependent equation (2-96) (see [17]). In 

this paper, the Newmark integration scheme is chosen. Assuming that the heat transfer problem 

lasts for a duration [0,T], this duration can be divided into n increments: [t0=0, t1.., tk, ..tn-1, tn =T] 

with the time step h = tk+1 – tk.  

By considering the equation of Newmark:   Δࢊ ϑ = Δ࢜ =
hߚߛ
Δࢊϑ  (where Ȗ and ȕ are the 

Newmark coefficients) and by linearization, equation (2-96) becomes: 
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1=݁ܣ
݈ܰ݁ ݁�ݐΔߚߛ   + = ߴ܌Δ ࢋ� 1=݁ܣ

݈ܰ݁ ࢑�    (2-102) 

where the residuals are computed by the following equation  �݇ = 1ߴۿ ߴ݇ ܌݁�− − 2݇ ߙ݁۾ ߴ݇܌݁�− − 2݇ߙ݁�  (2-103) 

Once �ߴࢊ  is known, the nodal temperature at the next time step can be updated by the formula: ߴ܌  
݇+1 = ߴ݇܌ + ߴ܌�  (2-104) 

We note that the  nodal temperature received in equation (2-104) should also be added the 

increment of temperature due to structural heating (adiabatic condition) which was explained in 

equation (2-57).  

2.4 Numerical simulations 

2.4.1 Simple tension imposed temperature example with fixed mesh 

In this section we consider several numerical examples in order to illustrate the satisfying 

performance of the proposed model. We consider a steel bar 5 mm long. The bar is built-in at left 

end and subjected to an imposed displacement at right end. The imposed displacement increases   

1.6 ×10-4 mm in each step. Simultaneously, right end of the bar is heated and its temperature is 

raised from 00C to 10000C, with 100C increase in each step. The temperature at left end is kept 

equal to 0oC. The loading increases until localized failure of the bar. The problem geometric data 

and loading program are described in Figure 2-7and Figure 2-8, respectively. 

 

Figure 2-7. Bar subjected to imposed displacement and temperature applied simultaneously 

૚࢛ = ૙ 

�૚ = ૙૙� �૛ = θ(t) 

૛࢛ =  � (ܜ)ܝ

,૚ࢋ� ࢒
=  ૛.�࢓࢓ 

,૛ࢋ� ࢒ = ૛.� ࢓࢓ 

� = ૚ 
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Figure 2-8. Time variation of imposed displacement and temperature 

The problem is subsequently considered for three different variations of material properties: (i) 

the material properties are independent of temperature, (ii) the material properties are linearly 

dependent on temperature and (iii) the material properties are non-linearlydependent on 

temperature (following suggestion given by regulation of Eurocode [6])  

2.4.1.1 Material properties independent on temperature  

In this case, the material properties of the bar are assumed to be constant with respect to any 

change in temperature. The chosen values for material parameters are given in Table 2-1. 
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Table 2-1. Material properties of steel bar 

Material Properties Value Dimension 

Young modulus (E) 205000 MPa 

Initial yield stress (�ݕ) 250 MPa 

Ultimate stress (�ݑ) 300 MPa 

Plastic hardening modulus (Kp) 20000 MPa 

Localized softening modulus (K  ) -30000 MPam-1 

Mass Density (�) 7.865 10-9 Ns2mm-4 

Thermal conductivity (k) 45 N s-1K-1 

Heat specific (c) 0.46 109 mm2s-2K-1 

Thermal elongation(ߙ) 0.00001  

The computed results for stress-strain curves in two sub-domains are presented in Figure 2-9, 

while the force-displacement curve of the bar is given in Figure 2-10. In Table 2-2 and Figure 

2-11, we show the resulting time evolution of temperature and its distribution along the bar. For 

this case with material properties independent on temperature, we can conclude that there is no 

difference in the strain values between two sub-domains. The „jump‟ in temperature gradient 

 which appears at localized failure point, also remains very small. The computed ,(݄ݐߙ)

dissipation due to plasticity in fracture process zone is 36.63Nmm, while the dissipation due to 

localized failure is 29.44Nmm. In summary, the total mechanical dissipation in the bar is equal to 

66.07Nmm. 
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Figure 2-9. Stress– strain curves in two sub-domains 

(blue line for the 1st sub-domain, red square for the 2
nd

 sub-domain) 

 

Figure 2-10. Force – displacement curve of the bar 
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Table 2-2.Time Evolution of Temperature along the Bar 

Time 

 at ߴ

x =0 

 at ߴ

x=0.25le 

 at ߴ

x = 0.5le 

 at ߴ

x=0.75le 

 at ߴ

x = le Δߴ 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.0000 25.0000 50.0000 75.0000 100.0000 0.0000 

0.2 0.0000 50.0000 100.0000 150.0000 200.0000 0.0000 

0.3 0.0000 75.0000 150.0000 225.0000 300.0000 0.0000 

0.4 0.0000 100.0000 200.0000 300.0000 400.0000 0.0000 

0.5 0.0000 125.0000 250.0000 375.0000 500.0000 0.0000 

0.6 0.0000 150.0000 300.0000 450.0000 600.0000 0.0000 

0.7 0.0000 175.0005 350.0010 525.0005 700.0000 0.0010 

0.8 0.0000 200.0007 400.0014 600.0007 800.0000 0.0014 

0.9 0.0000 225.0008 450.0015 675.0008 900.0000 0.0015 

1 0.0000 250.0008 500.0016 750.0008 1000.000 0.0016 

where �ߴ = 0.5݈݁=ݔߴ − 0=ݔߴ)0.5 +  (݈݁=ݔߴ

 

Figure 2-11. Distribution of temperature (
o
C) along the bar at chosen values of time 
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Figure 2-12. Evolution of Δ � versus time (in 
0
C) 

2.4.1.2 Material properties are linearly dependent on temperature 

In this example, the mechanical material properties of the steel bar chosen in the first example 

(see Table 2-1) are assumed to hold only at reference temperature (equal to 00C). For other 

temperature values, they vary linearly according to the following expression:  

initial yield stress:  �(ߠ)ݕ = 250 1 −  MPa  ߠ0.001

ultimate strength:  �ߠ ݑ = 300 1 −  ܽܲܯ  ߠ0.0015

Young‟s modulusμ  (ߠ)ܧ = 2.05 × 105 1 −  ܽܲܯ  ߠ0.0008

plastic hardening modulus: (ߠ)݌ܭ = 2 × 104 1 −  ܽܲܯ  ߠ0.0008

localized softening modulus: ߠ   ܭ = −3 × 104 1 −  aܲܯ  ߠ0.0008

The thermal material properties are independent on temperature and equal to those in the first 

example. The resulting stress-strain curves in two sub-domains and resulting force-displacement 

diagram are presented in Figure 2-13 and Figure 2-14, respectively. 
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Figure 2-13. Stress-strain curves in two sub-domains 

(blue line for the 1st sub-domain, red square for the 2
nd

 sub-domain) 

 

Figure 2-14. Force displacement curve 

In this example, the total plastic dissipation and the total localized dissipation are 14.08Nmm and 

13.82Nmm, respectively. Thus, the total mechanical dissipation is equal to 27.90Nmm. 
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Table 2-3.Time evolution of temperature along the bar 

Time 

 at ߴ

x =0 

 at ߴ

x=0.25le 

 at ߴ

x = 0.5le 

 at ߴ

x=0.75le 

 at ߴ

x = le Δϑ 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1000 0.0000 25.0000 50.0000 75.0000 100.0000 0.0000 

0.2000 0.0000 50.0000 100.0000 150.0000 200.0000 0.0000 

0.3000 0.0000 75.0000 150.0000 225.0000 300.0000 0.0000 

0.3500 0.0000 87.5000 175.0000 262.5000 350.0000 0.0000 

0.4000 0.0000 100.0000 199.9999 300.0000 400.0000 -0.0001 

0.4500 0.0000 112.5002 225.0005 337.5002 450.0000 0.0005 

0.5000 0.0000 125.0004 250.0007 375.0004 500.0000 0.0007 

0.5500 0.0000 137.5004 275.0008 412.5004 550.0000 0.0008 

0.6000 0.0000 150.0004 300.0008 450.0004 600.0000 0.0008 

0.6300 0.0000 157.5004 315.0008 472.5004 630.0000 0.0008 

where �ߴ = 0.5݈݁=ݔߴ − 0=ݔߴ)0.5 +  (݈݁=ݔߴ

 

Figure 2-15. Evolution of temperature (
o
C) along the bar in time 
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Figure 2-16. Evolution of Δϑ versus time (in 
0
C) 

From the results presented in the figures above, we can conclude that the temperature variations 

deeply influence the behavior of the bar.  In particular, the displacement at the end of the bar 

when failure occurs reduces from 0.016mm to 0.011mm, the initial yield stress falls down to 

approximately 225MPa from 250MPa and so the ultimate strength reduces from 300MPa to 

about 220MPa. The total dissipation in this example is also reduced, from 66.07Nmm to 

27.90Nmm. Figure 2-13indicates that the variation of temperature field leads to a significant 

difference in the material behavior and computed stress-strain curves in two parts of the bar. The 

“jump” in temperature gradient accompanying localized failure remains relatively small. 

2.4.1.3 Material properties non-linearly dependent on temperature (Eurocode 1993-1-2 [6]) 

In Eurocode1993-1-2 (see[6]), the material properties of steel bar subjected to thermal loading 

are not constant but dependent on temperature as multi-linear functions. Based on those 

regulations, evolution of mechanical properties as functions of temperature can be established as 

follows: 

initial yield stress:  �(ߴ)ݕ = 250  1 − ݕ�߱ ߴ  − 20   MPa 

ultimate strength:  �ߴ ݑ = 300  1 ݑ�߱− ߴ  − 20   MPa 

Young‟s modulusμ  (ߴ)ܧ = 2.05 × 105 1 − ߴ ܧ߱ − 20  MPa 

plastic hardening modulus:  (ߴ)݌ܭ = 2 × 104  1 − ݌ܭ߱ ߴ  − 20   MPa 

localized softening modulus: ߴ   ܭ = −3 × 104  1 − ߴ   ܭ߱ −  Paܯ   20
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where ߱∗ are the temperature dependent coefficients. The values of the temperature dependent 

coefficientsfor yield stress, ultimate strength and Young‟s modulus are taken from Eurocode 

1993-1-2 (see[6]). The corresponding values of coefficients for plastic hardening modulus and 

localized softening modulus are taken the same as the one for Young‟s modulus. All the values 

used for these coefficients are presented inTable 2-4. 

Table 2-4. Temperature dependent coefficients ϑ(0C) ω�ݑ  ω�ݕ  ωܧ  ω݌ܭ  ωܭ   

0 0.00000 0.00000 0.00000 0.00000 0.00000 

20 0.00000 0.00000 0.00000 0.00000 0.00000 

100 0.00000 0.00000 0.00000 0.00000 0.00000 

200 0.00000 0.00107 0.00056 0.00056 0.00056 

300 0.00000 0.00138 0.00071 0.00071 0.00071 

400 0.00000 0.00153 0.00079 0.00079 0.00079 

500 0.00046 0.00133 0.00083 0.00083 0.00083 

600 0.00091 0.00141 0.00119 0.00119 0.00119 

700 0.00113 0.00136 0.00128 0.00128 0.00128 

800 0.00114 0.00122 0.00117 0.00117 0.00117 

900 0.00107 0.00109 0.00106 0.00106 0.00106 

1000 0.00098 0.00099 0.00097 0.00097 0.00097 

1100 0.00091 0.00091 0.00091 0.00091 0.00091 

1200 0.00085 0.00085 0.00085 0.00085 0.00085 
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Figure 2-17.Temperature dependent coefficients (according to [6]) 

The evolution of thermal properties is also taken from Eurocode1993-1-2.  

Thermal elongation  

ߙ =  1.2 × ܽߴ10−5 + 0.4 × 2ܽߴ10−8 − 2.416 × 10−4, ܥ200݂݅ ൑ ܽߴ < ܥ7500
1.1 × 10−2 , ܥ7500݂݅ ൑ ܽߴ < ܥ8600

2 × ܽߴ10−5 − 6.2 × 10−3, ܥ8600݂݅ ൑ ܽߴ < ܥ12000   
Specific heat  

ܿ =

    
  
   425 + 7.73 × ܽߴ10−1 − 1.69 × 2ܽߴ10−3 + 2.22 × 3ܽߴ10−6 ܭ݃݇ܬ ܥ200݂݅   ൑ ܽߴ < ܥ6000

666 +
13002

738 − ܽߴ ܭ݃݇ܬ ܥ6000݂݅                  ൑ ܽߴ < ܥ7350
545 +

ܽߴ17820 − 731

ܭ݃݇ܬ ܥ7350݂݅                 ൑ ܽߴ < ܥ9000
650

ܭ݃݇ܬ ܽߴ݂݅                      ൒ ܥ9000
  

Thermal conductivity 

݇ =   54 − 3.33 × ܽߴ10−2 ܭ݉� , ܥ200 ݂݅ ൑ ܽߴ < ܥ8000
27.3

ܭ݉� , ܥ8000 ݂݅ ൑ ܽߴ ൑ ܥ12000   
The main results obtained considering those evolutions are described subsequently in terms of 

the stress-strain curves, force-displacement diagram and corresponding temperature variations.  
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Fig.17 Stress-strain curvesfor two sub-domains ( 

 

Figure 2-19. Force-displacement diagram for the bar 
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Figure 2-18. Stress-strain curvesfor two sub-domains 
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Table 2-5. Distribution of temperature along the bar 

Time 

 at ߴ

x =0 

 at ߴ

x=0.25le 

 atߴ

x = 0.5le 

 at ߴ

x=0.75le 

 atߴ

x = le Δߴ 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0500 0.0000 12.5000 25.0000 37.5000 50.0000 0.0000 

0.1000 0.0000 25.0000 50.0000 75.0000 100.0000 0.0000 

0.1500 0.0000 37.5000 75.0000 112.5000 150.0000 0.0000 

0.2000 0.0000 49.9998 99.9996 149.9998 200.0000 -0.0004 

0.2500 0.0000 62.5020 125.0041 187.5020 250.0000 0.0041 

0.3000 0.0000 75.0053 150.0106 225.0053 300.0000 0.0106 

0.3500 0.0000 87.5094 175.0188 262.5094 350.0000 0.0188 

0.3900 0.0000 97.5133 195.0265 292.5133 390.0000 0.0265 

where �ߴ = 0.5݈݁=ݔߴ − 0=ݔߴ)0.5 +  (݈݁=ݔߴ

 

Figure 2-20. Distribution of temperature (
0
C) along the bar due to time 
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Figure 2-21. Evolution of Δϑ vs time 

where �ߴ = 0.5݈݁=ݔߴ − 0=ݔߴ)0.5 +  (݈݁=ݔߴ

Figure 2-18 clearly shows the large difference in strain between the two sub-domains, both 

before and after the initiation of localized failure. Mathematically, this difference is due to 

different values of 1݉ߙ  and 2݉ߙ  (see (2-51)). Before the initiation of localized failure, the 

difference in temperature will lead to a difference in tangent modulus between two sub-domains, 

which results in the appearence of 2݉ߙ  which represents the difference in strain between the two 

sub-domains. After localized failure occurs, 1݉ߙ  increases and contributes to the different 

behaviors in the two parts of the bar. 

From Table 2-5 and Figure 2-20, we can see that the temperature distribution is nonlinear. Its 

gradient changes at the middle of the bar. This change can be computed through 2ߙ (see equation 

(2-92)). It is noted that the magnitude of 2ߙ increases and then decreases with time (see Table 

2-5and Figure 2-20). However, Figure 2-20also shows that the change in temperature gradient is 

relatively small in comparison with the temperature at the localized failure point (the maximum 

ratio of 
Δߴߴ ݈   ( ݈ߴ  is the temperature of the localized point) is approximately 0.0136%.), and 

therefore does not significantly contribute to the final results. 

In this example, once again, we observe a reduction in the strength of the bar: the maximum 

displacement that can be applied to the bar now reduces to roughly 0.006 mm from 0.010 mm 

and 0.016 mm in the second and the first example, respectively. 

The total mechanical dissipation along the bar is significantly smaller than the second and the 

first example (15.01Nmm in comparison to 27.90Nmm and 66.07Nmm). The major contribution 
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comes from the localized dissipation: 10.55 Nm in comparison with the total plastic dissipation: 

4.47Nm. 

2.4.2 Mesh refinement, convergence and mesh objectivity 

In this example, we study the influence of the chosen number of elements upon the computed 

final results.  The geometry description is given in Figure 2-22. 

 

 

We consider a steel bar built-in at left end and subjected to an imposed displacement at right end 

(increasing linearly to 2mm). Simultaneously, right end of the bar is heated and its temperature is 

raised from 00C to 1000C. The temperature of left end is kept constant and equal to 0oC. The 

material properties of the bar are considered as temperature independent and shown in Table 2-6. 

Table 2-6. Material properties 

Material Properties Value Dimension 

Young modulus (E) 205000 MPa 

Initial yield stress (�ݕ) 250 MPa 

Ultimate stress (�ݑ) 300 MPa 

Plastic hardening modulus (Kp) 20000 MPa 

Localized softening modulus (K  ) -45 MPam-1 

Mass Density (�) 7.865 10-9 Ns2mm-4 

Thermal conductivity (k) 45 N s-1K-1 

Heat specific (c) 0.46 109 mm2s-2K-1 

Thermal elongation(ߙ) 0.00001  

u1 = 0 

ϑ1 = 00C ϑ2 = ϑ(t) 

u2 = u(t) � 

l = 1m 

A = 1 n elements 

Figure 2-22.Bar subjected to imposed loading and imposed temperature 
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The results are again illustrated by using several figures. In particular, Figure 2-23shows the load 

– displacement diagram of the bar computed by using 3, 5, 7 and 9 elements. It is noted that the 

computed curve after localized failure is not dependent on the chosen mesh (see Figure 

2-23).This result proves the convergence of the numerical solution with respect to mesh 

refinement (see[17]). 

 

 

2.4.3 Heating effect of mechanical loading 

In this example, we would like to illustrate the heating effect produced by mechanical dissipation 

in a bar when localized failure occurs. Consider a steel bar of 10mm long, fixed at left end and 

subjected to an increasing displacement (0.045mm/s) at right end until collapse. The initial 

temperature is constant along the bar and equal to 00C. Material properties of the bar are given 

inTable 2-1. Due to a problem in manufacturing, the ultimate stress at the middle point reduces 

to 299MPa instead of 300MPa in other part (see Figure 2-24).   

Figure 2-23. Load-displacement diagram with different number of elements 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2  

50 

100 

150 

200 

250 

300 

- 5 elements 

Force (N) 

Displacement (mm) 

+ 7 elements 

* 9 elements 



Localized Failure for Coupled Thermo-Mechanics Problems 

63 

 

 

 

The problem is solved with two different meshes: 5 elements and 9 elements. In these two 

meshes, the middle element represents the zone with smaller ultimate stress (�ݑ =  .(ܽܲܯ299

The localized failure will therefore occur in this element. The computed load-displacement 

diagram of the bar is given in FigureFigure 2-25, while the evolution of temperature in the bar is 

shown inFigure 2-26 and Figure 2-27. 

 

Figure 2-25. Load-displacement curve 

The computed results clearly show the heating effect produced by the mechanical dissipation. 

Namely, the plastic dissipation equals heat supply leading to temperature increase. Initially, the 

dissipation in FPZ is equally distributed along the bar so that the temperature at every part of the 

bar remains the same. However, with the start of localized failure, additional dissipation at 
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Figure 2-24. Description of the third example and its mesh 
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failure point acts as a concentrated heat supply. This further leads to a heat transfer process in the 

bar and results in the evolution of temperature, as shown inFigure 2-26 and Figure 2-27.  

 

Figure 2-26. Temperature evolution along the bar before and after the localized failure occurs 

(computed with 5 elements mesh) 

\  

Figure 2-27. Temperature evolution along the bar before and after the localized failure occurs 

(computed with 9 elements mesh) 

2.5 Conclusions 

In this chapter, a novel localized failure model with thermoplastic coupling for heterogeneous 

material is introduced. The model is capable of modeling the behavior of material subjected to 

mechanical and thermal loading applied simultaneously. We have shown that very careful 
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considerations of both theoretical formulation and finite element implementation are needed in 

order to make such a development successful. The first main novelty of the proposed model with 

respect to number of previous works is its capability to represent the mechanical behavior of the 

material brought to localized failure and to account appropriately for the temperature induced 

changes in material properties as well as for the heat conduction due to mechanical dissipation at 

the localized failure surface. 

The second important novelty concerns the optimal choice of finite element approximation 

capable of accommodating the localized failure modes for coupled thermoplastic model. The 

latter requires a careful combination of the displacement discontinuity to handle the localized 

failure mode, the strain discontinuity to handle the material heterogeneities induced by the 

heterogeneous temperature field along with the temperature dependence of material properties, 

and the temperature gradient jump at the localized failure surface to account for the 

corresponding discontinuity of heat flux. The finite element interpolations of this kind have been 

elaborated for 1D case of 2-node truss-bar element. 

The solution procedure for this class of problems exploits the adiabatic operator split. This 

implies that the problem is first solved formechanics part (with adiabatic condition), and then for 

heat transfer part. The former delivers the values of nodal displacementsand internal variables, 

whereas the latter delivers the update of temperature field and the corresponding value of the 

jump in the heat flux at the localized failure surface.It was shown that such a split provides the 

most convenient implementation, and computational efficiency due to symmetry of tangent 

operators. 

The numerical examples shave shown that the temperature dependence of material properties 

greatly influence the behavior of the bar. The most detailed study of this kind is performed in the 

first example, showing that the bar properties linearly dependent on temperature can significantly 

reduce the resistance of the truss-bar due to temperature increase. The same applies for non-

linear variation of properties with respect to temperature, as advocated in Eurocode1993. The 

first example also shows that the temperature dependent properties can lead to large difference in 

strain(even for the same stress value) in two sub-domains of a single truss-bar element separated 

by the localized failure point. 
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3 Behavior of concrete under fully thermo-mechanical coupling conditions 

3.1 Introduction 

In the previous chapter, we have studied on the thermo-elastoplastic with softening behavior of 

steel, which was presented in one-dimensionalcase to clarify the theoretical model, as well as the 

numerical solution for the problem. That model can be applied to model the behavior of the 

rebarin reinforced concrete structure. To modeling the behavior of general reinforced concrete 

structure, one have also to study on the thermo-mechanical behavior of the concrete material. 

Previous works on the topic were carried out, for example see Galerkin et al.[45], Baker and de 

Borst [36]. However, these works only consider the continuum damagebehavior and do not 

consider the “ultimate” response. Futhermore, they do not provide a clear numerical solution for 

the problem.  

In this chapter, their two remaining deficiencies of problem will be removed. We first introduce 

a new thermo-damage model, which is capable of modeling not only the continuum damagebut 

also the softening behavior of concrete under thermo-mechanical coupling effect. By that way, a 

united model can be applied to the hole concrete structure without “pre-chosing” a localized 

failure region for the modeling structure ([40], [38]). The second novelty presented in this 

chapter is a numerical solution for the problem, which is based on the “adiabatic” splitting 

procedure and the embedded-discontinuity finite element method. 

The outline of this chapter is as follows. In the next two sections, we introduce the theoretical 

developments of the problem, which concentrate on the propagation of thermal effects through 

the localized failure (the marco cracks). The discrete approximation of the problem and its 

numerical solution using finite element method for the problem are presented in section 3.4. 

Several illustrative examples are presented in section 3.5, followed by a conclusion in section 

3.6. 
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3.2 General framework  

3.2.1 General continuum thermodynamic model 

Several authors contributed to the thermo-damage coupling model, we can cite among others 

Baker and de Borst [36], or Ngo et al.  [44].  

The starting point is the local form of the first principle of thermodynamics for the case of 

thermo-mechanical inelastic response [17]:  

),( e
er εεσq     (3-1) 

Where r is the internal heat supply, q is the heat flux, σ  is the stress field, ε  is the strain field, e 

is the internal stored energy and e  is the reversible part of entropy (   denotes the time rate of 

the variable  ). 

By following ([33], [42], [36]), the entropy is considered as the composition of the reversible 

part (or “elastic” entropy) and irreversible part (or “inelastic” entropy): 

de     (3-2) 

By the Legrendre transformation, the internal stored energy can be expressed in terms of the free 

energy  : 

 e
e    (3-3) 

where   denotes the absolute temperature of the media.  

In thermo-damage framework, we can assume as the most generally accepted ([36], [44]) that 

),,,(  Dε  is the function of the state variables: the total strain ε , the temperature  ,  the 

compliance tensor D and the hardening variable  . 

The Clausius-Duhem inequality for the model is written as:  

  ee
eD  εσεσint0  (3-4) 

  


  













 D

D
ε

ε
σ deee

Dint0  (3-5) 

In the case of “elastic” process, where 0D  and 0 , the Clausius-Duhem inequality becomes 

equal and therefore, the constitutive equations for the stress and the “elastic” entropy can be 
established: 
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ε
σ 

 
  (3-6) 


 
e

  
(3-7) 

and the dissipation equation can also be written:  

d
D 


 


 D

D
int    (3-8) 

Also, by applying equation (3-3) and the constitutive equations (3-6), (3-7), the first principle of 

thermodynamics can be rewritten: 

  ee
r  εσq   




 ee
r  





 


 D
D

εσ
ε

q )(  

e
r 


 


 D

D
q   (3-9) 

We also define of the second order tensor β  which represents the relation between stress and 

temperature, the heat capacity coefficient c  and the tangent modulus C (see [44]):  

εε
σβ 




 



2

:
e

  (3-10) 

2

2

: 






 





 e
e

e
c  (3-11) 

1
2

: 


 D
εεε

σ
C


  (3-12) 

Note that the tangent stiffness tensor C is the inverse of the compliance damage tensor D. From 

equation (3-10) and equation (3-12), we have 

αD
ε

ε
σβ 1





 


  (3-13) 

Where 
 εα :  is the thermal expansion.  

Note that in thermo-mechanical problem, the strain field is the composition of the mechanical 

strain ( mε ) and the thermal strain ( ε ): 

εεε  m   (3-14) 

where the thermal strain is computed from the temperature and the thermal expansion:  
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 0  αε   (3-15) 

The free energy potential is chosen as the composition of mechanical energy ( m ) and the 

thermal energy ( t ): 

   
    

t
m

cmm



 


  
0

0 ln
2

1 εDε 1

 

(3-16) 

   
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Where ϑ0 is the reference temperature and )(  is the hardening energy. 

With this definition of the free potential, the constitutive equation for stress and entropy can be 

re-written:  
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The stress-like variable q  associated to the hardening variable   and Y to the compliance 

damage tensor D are defined as:  
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The internal dissipation of the media leads to the final result:  

d
qD    DYint   (3-22) 
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where mechD  and therD  denote the mechanical and the thermal part of dissipation, respectively. 

The damage threshold defining the elastic domain is chosen (see [25]) as:  

   q
E

q f

e   1
,,0 σDσσ    (3-24) 

Where D
e denotes the “thermo-mechanical” undamaged elastic compliance, f denotes the 
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damage limit stress and d

d
q

  denotes the stress-like variable associated to   (as introduced 

above) 

Considering the second principle of thermodynamics and the principle of maximum inelastic 

dissipation we obtain the following evolution equations for internal variables:  
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Where,   is the Lagrange multiplier.  

Considering equations (3-1) and (3-9) the system of local balance equation finally consists of the 

force balance equation and the energy conservation equation (see [42], [36]).  
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From the state equation (β0), we can compute the “elastic” entropy evolutionμ 
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(3-29) 

This equation, combined with equation (2), gives the following balance equations: 
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where 

  0))(()(:),,(    αεαDDDεαDDε 111 F  (3-31) 

is the structural heating (see[42], [36]), and  

ααD 1 )(:~~   cc  (3-32) 

is the „modified‟ heat conduction of the material. 
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3.2.2 Localized failure in damage model 

3.2.2.1 Discontinuity of displacement field 

 

Figure 3-1. Localized failure happens at crack surface  and the “local” zone 

In quasi-brittle materials, micro-cracks appear in the fracture process zone and will further 

coalesce to generate macro crack. We assume in the following that such a failure happens in a 

“local” zone x  (see Figure 3-1). The failure can be represented by a strong discontinuity in the 

displacement field across the surface x passing through point x (see [29], [52], [25], [24]), 

which finally allows us to write the displacement field in the “local” zone x  as follows:  

)]()()[(),(ˆ),( xxuxuxu  x
ttt   (3-33) 

where )(tu  is the “jump” of displacement across the crack surface x (considered as constant in 

x ), )(x
x denotes the Heaviside function and )(x is a smooth function being 0 on  x and  1 

on  x  (where  x and  x  are the boundary of two domains of the element separated by the 

crack). 
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The infinitesimal strain which corresponds to this displacement is given by:  
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where  s  is the symmetric part of   . 

We also note that    
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unit normal vector, then: 
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The infinitesimal strain at the “local” zone can then be divided into a regular part and a singular 
part as: 

x
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where:   ss
ttt )()(),(ˆ),( xuxuxε   (3-38) 

and 

s
tt ))(()( nuε   (3-39) 

3.2.2.2 Localized Free Energy  

From the state equation (3-16) we can obtain the strain field in terms of the stress field as: 
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(3-40) 

By taking into account that the stress field must be bounded and assuming that there is no 

thermal dilatation on the discontinuity
x , the damage compliance tensor should be decomposed 

into a singular part and a regular part (see [24], [25]):  

x
DDD      (3-41) 

so that:  
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xx  \  
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on 

x  

The appearance of a “singular” part of the damage compliance tensor D  leads to the 

introduction of “singular” part of hardening variable  , which controls the damage condition of 

the material at the localization zone. Therefore, the hardening variable   should also be split into 

two parts: 

x   (3-42) 

The decomposition of these state and internal variables allows us to write the decomposition of 

the free energy into a regular part   associated to the bulk and a singular part  associated to 
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the discontinuity x : 
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By denoting   1
1

  nDnQ  the internal variable for describing the damage response at the 

discontinuity (see [25]), we have the form of the singular part of free energy:           
ttm uQuQu 1
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1
,,    (3-44) 

We note here that the „thermal‟ energy does not appear in the singular part of the free energy (see 

equation (3-44)), it is due to the assumption that there is no material (and therefore no heat 

conductor) in the crack.   

3.2.2.3 The dissipation and the evolution laws of internal variables 

The dissipation of the material is computed by the equation  
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Note that the decomposition of the free energy and the strain lead to the decomposition of 

entropy, so that equation (43) can be rewritten:  
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(3-46) 

The singular part of dissipation is:  
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where 
x   denotes the temperature at the localized failure zone.  

The formulation of singular part of internal dissipation allows us to find out the constitutive 

equation for the singular part of state variables:  
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Singular parts of internal variables can also be computed:  
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(3-51) 

These state equations allow us to write the singular part of the internal dissipation in a similar 

manner: 
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Where mechD  and therD  denote the mechanical part and the thermal part of the singular part of 

internal dissipation. 

Next step is to choose a failure criterion for the discontinuity, for that purpose, we base our work 

on the multi-surface criterion proposed in (see [25]):  
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where f is the given fracture stress, 
s is the limit value of shear stress on the discontinuity and 
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q is the stress-like variable describing strain softening. Note that the two failure functions are 

coupled through the stress-like variable q . We note that equation (3-53)1 controls the crack 

criteria due to the normal stress (mode I) and equation (3-53)2 controls the failure happen due to 

shear stress (mode II).  

The principle of maximum dissipation has to be enforced under the two constraints: 01  and 

02  , by introducing two Lagrange multipliers 1 and 2 and applying the Kuhn Tucker 

optimality condition. With such a process, the evolutions of the singular parts of the internal 

variables are computed as: 
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3.2.3 Discontinuity in the heat flow 

The previous section 3.2.2.3 describes the thermodynamical ingredients of the model associated 

to the displacement discontinuity. This leads to a damage model linking, on the „crack‟ surface, 
the traction t to the displacement jump u . Therefore, the crack surface is not a traction free 

surface but a cohesive crack. 

In that sense, the temperature at the crack surface x  can be considered as continuous whereas 

the heat flux is considered as discontinuity. 

xx

H qqq   (3-57) 

where 
xq denotes the jump in heat flux through the crack interface. 

With such an assumption, we obtain:  
xx

  nqqq  (3-58) 

The local balance equation given in (3-28)b then decomposed into two main equation concerning 

the heat transfer equation in the bulk and in the localized failure zone:  

In the bulk:  
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(3-59) 

In the localized failure zone: 

mechD
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 nq  (3-60) 

Equation (3-60) allows us to concludeμ there is a “jump” in heat flux at the mechanical localized 
failure zone. This conclusion is similar to the conclusion of Armero and Park for plastic shear 

layer (see [39]) and Ngo et al. for general plasticity problem ([53]).
  

3.2.4 System of local balance equation  

The system of balance equations has the similar form as for the continuum model: 
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which consists of the force equilibrium equation and the energy balance equation. However, we 

note that at localized failure zone, the balance equations are represented in the following form:  

Force equilibrium equation (Cauchy condition):  
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xx   tnσ  (3-61) 

Energy balance equation (see equation 3-60): 
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These equations allow us to write the local system equation fulfilled by the fully coupled 

localized problem:  
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Where     0))(()(,    αεαDDDεαDε 111 F  is the structural heating due 

to the continuum damage and c~~   is the modified heat conduction as already introduced. 

3.3 Finite element approximation of the problem   

3.3.1 Finite element approximation for displacement field 

We present the finite element interpolations corresponding to a triangular three-node element 

(CST) for which the displacement “jump” is considered as constant. The displacement 
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discontinuity is taken into account by introducing an additional shape function )(xM1 , then the 

following approximation is considered for the displacement field:  

 tM1

N

a

aa

nodes

uxdxNxd )()()(
1

   (3-63) 

where Na(x) is the vector of isoparametric shape function for CST element, 
ad  is the vector of 

displacement at node a, u is the vector of displacement “jump” and M1(x) is the additional shape 

function with unit “jump” on x , represented in Figure 3-2.  

The strain field interpolation therefore becomes: 

   uxGdxBxε 1r 
nodesN

a

aat
1

),(   (3-64) 

where    xLNxB aa   and    xLxG1r 1M , L denotes the matrix form of the strain-

displacement operator s . Due to the form of M1(x), G1r(x) is decomposed into a regular part 

and a singular part as: 

     
x xGxGxG rrr 111   (3-65) 

 

( x  denotes the discontinuity surface, n


 and m


the unit normal and tangential vectors to x ) 

 

 

3.3.2 Finite element interpolation function for temperature  

Equation (3-60) shows that there is a “jump” in heat flux through the cracking surface due to the 
localized mechanical dissipation and also indicates a different evolution of temperature on each 

x  

m


 

n


 

1 
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3 

Figure 3-2. Additional shape function M1(x) for displacement 

discontinuity 
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side of the discontinuity surface due to thermo-mechanical dissipation. This evolution should be 

taken into account in the interpolation function for temperature (see Figure 3-3).  

           xdxNxxx 2
1

2 MMdN
nodesN

a

aa    
(3-66) 

Where 
ad denotes the temperature at node a,  x

aN  is the iso-parametric shape function,  is the 

evolution of temperature at the localized failure point related to the heat flux “jump” on x , 

 x
2M  is an additional shape function (see Figure 3-3) ; the latter allows to take into account the 

different evolution of temperature on each side of the discontinuity due to the modification in 

heat conduction produced by the discontinuity x  and the localized mechanical dissipation 

taking place on x . 

 

 

If we assume that the crack line is passing through the gravity point (x6,y6) of the triangular 

three-node element then  x
2M has the following form:  
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where  (x1,y1); (x2,y2) and (x3,y3) are the coordinates of the three nodes, (x4,y4), (x5,y5) are the 

coordinate of the point at the intersection of the crack line and the element edges and z4 is 

defined as: 
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(3-69) 

 

3.3.3 Finite element equation for the problem   

We start from the strong form of equilibrium equation for the thermomechanical problem 

(equation (3-62)) 
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 (3-70) 

We note that this equation is time dependent (in particular, the thermal transfer process is non-

stationary), so the problem should be solved by time linearization method. In particular, the 

whole process is divided into many time steps (Δݐ), and the problem turns into identifying the 

mechanical and thermal variables at the next time step (n+1) by assuming that the mechanical 

and thermal variables at the current time step (n) are already known. This linearization method 

will be discussed in detail in the following.  

3.3.3.1 For mechanical balance equation 

For mechanical balance equation (70)1, by applying incompatible mode method (see [17], [18], 

[25]), we can establish the following form of the discretized equation: 
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where          
x

e
vver

e

rv d
A

x    xGxGxGGxG 11111

1 is the “modified” interpolation 

function of “virtual” strain, which is chosen different from the interpolation function of “real” 

strain  xG r1  in order to satisfy the “patch test” (see [18]) and     e

Te
dtf

xe

    ,
/int εB .  

By taking into account the interpolation function of strain and temperature:    tt r uGBdε 1 , 

   
2Mta  dN ,     


1

2 xdxN Maax
 , equation (72) can be brought to the linearized 

form: 
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3.3.3.2 For thermal balance equation 

The thermal balance equation is taken from equation (3-70)2 :   

 
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 x
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mech /,,~~  

` 

(3-73) 

By applying the Fourier laws  kq for this problem, we have: 

at continuum domain: xx  /x : 

 2 kk qq  (3-74) 

at the crack surface x : 
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(3-75) 

where k is the heat conductivity coefficient of the material at continuum domain and 
x

k  is the 

heat conductivity coefficient at the localized failure zone. 

By combining equation (75) and equation (73)b, we obtain the equation to determine Ȝμ  

x
k

Dmech


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(3-76) 

If we introduce  xw  the virtual temperature field and using the Fourier equation for heat flux 

 kq then the weak form of equation (74)a becomes: 
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If the iso-parametric interpolation function is used for the virtual temperature 

   wNx  aa wNw  then we can establish discrete version of this equation as follows: 
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(3-78)

 

Note that this equation should be valid for any value of virtual temperature, thus we have:  
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(3-79) 

where 
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By applying the Euler backward integration for time-dependent equation
 
and by linearization, 

equation (3-79) becomes: 
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where  ,  are the Newmark coefficients (see [17]) and  
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Equation (73) and equation (86) allow us to form a system of four equations for four unknowns

1111 ,,,   nnnn dud . Several procedures were introduced to solve this system (see [54], 

[45], [45], [47], [46], [50])]. In this work, we apply an approximation procedure, namely the 

“adiabatic” splitting procedure, in order to solve the equation faster with guaranty of stability of 

the numerical scheme (see [46], [50]). 

3.4 Operator split solution procedure 

In this procedure, the total process is split into “mechanical” process and “thermal” process. 
θarticularly, in the “mechanical” process, the force balance equation is solved while considering 
that the temperature rising is due to the structural heating only (or adiabatic condition). On the 

other hand, for the “thermal” process, we compute the “remaining” evolution of the temperature 
due to the internal heat supply r and mechanical dissipation Dmech. The jump in heat flow due to 

the localized mechanical dissipation is also considered in this process. This procedure allows us 

to split equation (3-70) into two separated equations for mechanical process and for thermal 

process and was proved to provide a stable approximation solution for differential equation 

system (see [46], [50]).    
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The overall scheme of adiabatic splitting operation is described in Figure 3-4.  

 

 

We present in the following the different steps of the adiabatic scheme in detail beginning by the 

“mechanical process”. 

3.4.1 Mechanical process  

3.4.1.1 Mechanical process in continuum damage  

In this part, we go back to the theoretical formulation to highlight the modification induced by 

the adiabatic condition considered in our numerical scheme. The evolution of the temperature 

due to structural heating (equation (3-87)b) is established for adiabatic condition by the equation:  
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Figure 3-4. “Adiabatic” splitting procedure. 
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From equation (3-26), we have σD
σσ
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 intD , therefore, the time evolution of 

temperature due to ‘adiabatic’ condition can be written:  
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From the constitutive equation (18) we can estimate the stress evolution:  
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If a damage loading is considered, the consistency condition 0  gives: 
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If we assume that the damage threshold is temperature independent and given that  
2

2


q  

then this equation further leads to:  
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By applying the time evolution of hardening variable (3-23): 
q
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We can thus deduce the corresponding value of the Lagrange multiplier for adiabatic condition: 
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The rate form of the constitutive equation which can be used to compute the evolution of each 

internal variable is finally given for mechanical part as: 
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 (3-96) 

Or in short:  

εCσ ad    (3-97) 

Before carrying out the global computation, we have to estimate some ingredients including: 

mechanical internal variables, „adiabatic‟ tangent modulus (Cad) and updated stress. These 

computations should be performed at the element level, or in other word, at the local level. An 

algorithm to calculate these variables by using „return-mapping‟ algorithm (see [51])is 

introduced in Figure 3-5. 
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Figure 3-5. Local computation for mechanical part 

 



Localized Failure for Coupled Thermo-Mechanics Problems 

 

87 

 

3.4.1.2 Mechanical process at localized failure  

The localized failure in this case happens due to mechanical loading only. The irregular part of 

the Lagrange multiplier is determined from the consistency condition: 01  and/or 02  which 

leads to: 
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Strong failure due to shear stress: 00 22
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Where   KqKq   (for linear isotropic softening) 

The evolution of traction can be established from the state equation (3-45): 
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These equations finally lead to the following expressions for Lagrange multipliers: 
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And the rate constitutive equation between traction and “jump” in displacement can be 
established:  
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(3-102) 

uCt   ad  (3-103) 

3.4.1.3 Finite element method for “mechanical” process 

By applying the “adiabatic” spitting procedure, we can establish the evolution of stress and 

traction due to the evolution of strain and displacement “jump” with “adiabatic” tangent modulus 
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(equation (3-97) and (3-104)). This allows us to write the linearization form of equation (3-72) 

without the temperature evolution: 
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(3-108) 

where 
e

x
l is the length of the crack for the consider element.  

Equation (3-104) can be solved by an operator split, where 1 nu  is solved at the element level 

and 1 nd is solved at the global level (see [25]). By that way, from equation (3-104)2 we can 

compute:  
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By using static condensation at the element level, the system (3-104) is reduced to: 
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is the modified element tangent stiffness. 

3.4.2 Thermal process 

ηnce the “mechanical” process is solved, the mechanical dissipation and the evolution of the 
displacement “jump” are known. We can introduce these values to the equation (3-83) to solve 

the “remaining” evolution of temperature and also the “jump” in the heat flow through the crack 
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surface. Note that the evolution of temperature in this process is due to mechanical dissipation, 

internal heat supply and external heat source (and does not include the structural heating, which 

was computed before in the “mechanical” process). We obtain then the following form for 
equation (3-85) 
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Where n

mechD  and n

mechD  denote the regular part and the singular part of the mechanical 

dissipation at time step „n‟. 
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3.5 Numerical Examples  

In this section, several illustrative numerical examples are presented in order to show the 

capability of the proposed model. In these examples, the material properties of concrete are 

temperature dependent with the relations taken from Nielsen et al. (see [55]) and Eurocode 1992 

(see [7]). In particular, the following equations are used:  

For Young modulus:  
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For hardening modulus: 
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For facture stress:  
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The same relation is used for tensile stress:  
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For specific heat  
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For mass density  
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 (3-122) 

and for thermal conductivity (upper limit)  
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00
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120020
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100

2451.02 


 
 (3-123) 

All computations are performed by a research version of the finite element analysis program 

FEAP (see [56], [57]).  

3.5.1 Tension Test and Mesh independency 

We consider here a concrete plate (300mm – 200mm) fixed in its left edge. Material properties at 

the reference temperature (200C) are given in Table 3-1.  

Table 3-1. Material Properties 

Material Properties  Values Units 

Young modulus (
C

E 020
) 38000 MPa (N/mm2) 

Fracture stress (
Cf

020,
 ) 2.00 MPa (N/mm2) 

Isotropic hardening modulus (
C

K 020
) 4000 MPa (N/mm2) 

Tensile stress 
Cf

020,
  3.00 MPa (N/mm2) 

Mass density (
C020

 ) 2.5×10-6 kg.mm-3 

 

3.5.1.1  Mesh independency  

We start by studying the mesh independency of the proposed strategy. To that end, the problem 

is solved with two different meshes: a coarse mesh (15x5x2 elements) and a fine mesh (24x10x2 

elements) in order to show the mesh independency of the method. The concrete plate is subjected 

to an increasing imposed displacement at the right edge, which increases from 0 mm to 0.2 mm 

in 100s and then decreases back to 0 mm also in 100 s. In order to drive the localization (the test 

performed is homogeneous), a material defect at the middle of the bottom edge (by reducing 
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from 3.0 MPa to 2.9 MPa the ultimate strength). Received results are showed in Figure 3-6, 

Figure 3-7, Figure 3-8 and Figure 3-9. 

  

Coarse mesh Fine Mesh 

Figure 3-6. Temperature distribution in the plate at t = 20s 

   

  

Coarse mesh Fine Mesh 

Figure 3-7. Temperature distribution in the plate at t = 52.4s 

 

  

Coarse mesh Fine Mesh 

Figure 3-8. Temperature distribution in the plate at t = 100s 
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Coarse mesh Fine mesh 

Figure 3-9. Load/Displacement Curve for the coarse and the fine mesh 

 

 

Figure 3-6, Figure 3-7 and Figure 3-8 describe the evolution of temperature during the loading 

process at the plate, while the load/displacement curve of the plate is plotted in Figure 3-9 and 

the relationship between the traction and the crack opening in the localization failure at the 
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Figure 3-10. Traction - Crack Opening relation at the localized failure 
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middle of the bottom edge is shown in Figure 3-10. 

We can find out in Figure 3-6 that: for the loading state corresponding to t = 20s, the plate works 

in continuum damage threshold, the damage is uniformly distributed in all the material which 

leads to the uniform distribution of temperature; after that at t = 52.4s, the localization failure 

happens on the defect (at the middle of the bottom edge) and the localized mechanical 

dissipation becomes a heat source which helps raising the temperature at this position; the 

localization failure then propagates from the defect to the top edge of the plate and the 

temperature continues to rise and transfer from the localization zone to the neighbor zone (Figure 

3-7). At the final loading state (t = 100s) (see Figure 3-8), the final crack line exists through the 

height of the plate with the direction perpendicular to the principal stress, the temperature raising 

due localization is largest at the defect ( C
035.0 ) and smaller at the middle of the plate (

C
025.0 ). These values are relative small but much larger than the temperature raising due 

to “continuum” mechanical dissipation, which is C
04103.2   ( see Figure 3-6 and Figure 

3-7) 

Figure 3-9 and Figure 3-9 show the perfect „match‟ of the load/displacement curve and the 

between traction/crack opening curve taken for the two meshes.  It is clear from these figures 

that the mechanical behavior of the concrete plate does not depend on the mesh. These results 

prove the mesh-independency of the method.  

3.5.1.2 Concrete plate subjected to coupling thermo-mechanical loadings  

In this test, we consider the behavior of the concrete under two others thermo-mechanical 

loading cases. For the first loading case, the plate is simultaneously subjected to an imposed 

displacement at the right edge (increasing with the velocity 0.002 mm/s) and an imposed 

temperature applied at the bottom edge (increasing with the velocity 50C/s). For the second 

loading case, the plate is firstly heated at its bottom until 5000C and then submitted to an 

imposed displacement at the right edge (with the velocity = 0.002 mm/s). Figure 3-11 shows the 

load/displacement curves of these two thermo-mechanical loading cases in comparison to the 

mechanical loading case introduced in section 3.5.1.  
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Figure 3-11 clearly illustrates the effect of temperature loading on the mechanical behavior of the 

concrete plate. The „mechanical‟ bearing resistance of the concrete plate significantly reduces for 
the two thermo-mechanical loading cases in comparison to the mechanical loading case. In 

particular, the imposed displacement which leads to localized failure in the plate reduce from 

0.115 mm in the mechanical loading case to 0.086 mm in the first thermo-mechanical loading 

case and then to 0.038 mm in the second thermo-mechanical loading case. This is the 

consequence of the reduction of material properties of concrete in high temperature as well as the 

effect of thermal stress in the plate.  

3.5.2 Simple bending test  

We consider a short beam (h =200mm, l=200mm) fixed at its left edge. The material properties 

are the same as for the first example (see Table 1). Two loading cases are considered for this 

example: (1) the beam is submitted to mechanical loading only, in which the right edge is 

submitted to vertical imposed displacement (increasing from 0mm to 0.16mm in 100s and then 

reduces to 0mm in also 100s); (2) the beam is submitted to mechanical loading as in the first 

loading case and also an imposed temperature at its fixed edge (which increasing from 00C to 
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0 

100 

200 

300 

400 

500 

600 

Displacement (mm) 

Force (N/mm) 

Thermo-mechanical loading (case 2) 

Thermo-mechanical loading (case 1) 

Mechanical loading only 

Figure 3-11. Load/ Displacement Curve of the plate in thermo-mechanical loadings 
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5000C in 100s and then decreasing to 00C in another 100s). 

Figure 3-12 shows the temperature evolution for the first loading case, in which we can figure 

out the evolution of temperature due to continuum damage (at t =10s) and due to localization 

failure (at t =89.5s and t = 100s). We note that the temperature is mainly distributed in the fixed 

edge of the beam (where the stress is large). The value of temperature is very small when the 

beam is working in the continuum damage behavior but significantly increases when localized 

failure happens (from C
06

max 1075.1   at t = 10s to C
0

max 157.0  at t = 89.5s then to 

C
0

max 22.0  at t = 100s). It is also interesting to note that the temperature continue to rising in 

the beam in the unloading state (see Figure 3-12). The remaining temperature will further lead to 

the existing of the remaining stress in the beam after unloading (as showed in Figure 3-14).  

The temperature evolution in the beam for the second loading case is presented in Figure 3-13. 

The temperature remaining in the beam in this case is different to the temperature remaining in 

the first loading case and is mainly due to the temperature propagation from the external heat 

source.  

In both two cases, the initial cracks are detected in the bottom-left zone of the beam, where the 

maximum principle stress is greatest (see Figure 3-14 and Figure 3-15). The crack then 

propagates into the middle fiber of the beam in the vertical direction. This phenomena is really 

suitable to the expected behavior of the beam in bending.  

The load-displacement curves for both loading cases are plotted in Figure 3-16. We can again 

identify the contribution of temperature loading in the mechanical response of the beam in the 

elastic state, the continuum damage state and also the localized failure state. In particular, this 

figure clearly shows that the bending resistance of concrete beam significantly reduces when 

submitted to thermal loading.  

  

  



Localized Failure for Coupled Thermo-Mechanics Problems 

 

97 

 

    

t= 10s (loading state) t =89.5s (loading state) 

     

t =100s (final loading state) t = 200s (final unloading state) 

Figure 3-12. Temperature evolution in the plate for the first loading case (0C) 

    

t = 100 s ( final loading state) t = 200 s ( final unloading state) 

Figure 3-13. Temperature evolution in the plate for the second loading case (
0
C) 
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t = 10s (final loading state) 

  

t = 20s (final unloading state) 

Figure 3-14. Evolution of maximum principal stress for the first loading case (MPa) 

  

t = 10s (final loading state) 
  

t = 20s (final unloading state) 

Figure 3-15. Evolution of maximum principal stress for the second loading case (MPa) 

 

Figure 3-16. Load/ Displacement curve for 2 loading cases 
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3.5.3 Concrete beam subjected to thermo-mechanical loads  

In this example, we study a concrete plate (500 x 250 mm) submitted to a jack load and fire 

loading. The material properties of the plate are given in Table 3-1 and the configuration of the 

test is described in Figure 3-17. In terms of mechanical loading, the plate is subjected to an 

imposed vertical displacement (increasing by -0.003 mm per second in 20s and then decreasing 

by -0.003 in also 20s) at the top edge. At the same time, the plate is also submitted to a fire 

loading, which leads to an imposed temperature at the middle zone of the bottom edge 

(increasing by 40C per second in 20s and then decreasing by 40C per second in also 20s).  

.  

 

 

The evolution of maximum principal stress and temperature in the plate due to time are described 

in Figure 3-18. From Figure 3-18, we note that the initial crack appears in the top-left point of 

the plate where the maximum principal stress is largest (t =10s) and then propagates downward 

(see t =12s, t = 20s). The second crack is detected near the bottom edge of the plate (about 275 

mm from the left edge) about 8 seconds later than the initial crack (t=18s). Due to time, the 

second crack becomes bigger and propagates upward to the middle of the plate (see Figure 3-19). 

The mechanical and thermal state of the plate at the final loading stage (t=20s) and after 

unloading (t=40s) are plotted in Figure 3-19 and Figure 3-20. We note that after unloading, the 

cracks are completely closed but the temperature and the „thermal‟ stress is still exist in the plate.  

300 mm 

200 mm 

500 mm 

200 mm 

Figure 3-17. Example configuration 
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 Maximum principal stress at t = 8 s Temperature distribution at t = 8s 

  
 Maximum principal stress at t = 10 s Temperature distribution at t = 10s 

  
 Maximum principal stress at t = 12 s Temperature distribution at t = 12s 

  
 Maximum principal stress at t = 18 s Temperature distribution at t = 18s 

Figure 3-18. Evolution of maximum principal stress and temperature due to time 
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Maximum principal stress Temperature distribution 

 

 
Deformed shape and crack pattern Crack Opening Width 

Figure 3-19. State of the plate at the final loading stage (t = 20s) 

  
Maximum principal stress Temperature distribution 

Figure 3-20. Mechanical and Thermal state of the plate after unloading (t=40s) 
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Figure 3-21 shows the relation between the vertical reaction at the right support with the 

deflection of the plate at the middle of the bottom and with the imposed displacement. It is 

interesting to note that the curve does not return to the origin after unloading, it means that the 

vertical reaction of the support still exist after unloading. This vertical reaction corresponds to 

the remaining „thermal‟ stress in the plate. This figure clearly shows the contribution of 

temperature loading into the mechanical behavior of the structure. 
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Figure 3-21. Reaction/ Deflection curve 



Localized Failure for Coupled Thermo-Mechanics Problems 

 

103 

 

3.6 Conclusion 

We have introduced in this chapter a new localized failure model with themo-damage coupling 

for concrete material. The main contribution consists in the ability of the model to describe the 

softening behavior of the material at localization failure zone, which is necessary to estimate the 

load limitation of the structure under the fully thermo-mechanical loading. Both theoretical 

formulation and solution procedure for the problem were carefully considered in order to make a 

successful development. The theoretical formulation proved that there is a “jump” in heat flux 

through the cracking surface when localized failure happens due to mechanical loading, which is 

represented by a “jump” in displacement field. These “discontinuity” values of displacement and 

heat flux were modeled in the framework of the embeded-discontinuity finite element method. 

The solution procedure for the problem exploits the adiabatic operator split. This implies that the 

problem is first solved for mechanical part (with adiabatic condition), and then for thermal part 

(or heat transfer problem). The theoretical development and the numerical solution were carried 

out for general two-dimensional problems. Three most general examples concerning the traction 

test and the bending test were performed and discussed to illustrate the capabilities of the 

proposed approach. 

The received results illustrate the considerable effect of temperature loading on the mechanical 

response of concrete structure. In particular, one can infer that the mechanical resistance of the 

structure significantly reduces when it is subjected to thermal loading at the same time. On the 

constrary, the mechanical loading also leads to the thermal response of the structure. Whereas, 

the temperature of the concrete at damage and/or localized failure zone increases due to the 

appearance of mechanical dissipation and structural heating.   
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4 Thermomechanics failure of reinforced concrete frames  

4.1 Introduction 

In this chapter we present a new model for computing the nonlinear response of reinforced 

concrete frames subjected to coupled thermomechanical loads. The first major novelty of the 

model is its ability to account for both bending and shear failure of the reinforced concrete 

frames. The second novelty concerns the model capability to represent the total degradation of 

the material properties due to high temperature and the thermal deformations. These nouvelties 

will be introduced in this chapter by the following sequence. In section 4.2, we studied the 

degradation of mechanical resistance of the reinforced concrete cross-section under bending 

moment, shear force and axial loading due to temperature increase. These degradations was 

studied based on the „layer‟ method in the framework of Modified Compression Theory 

proposed by Vecchio and Collins (see [41],[58],[59]) but was extended to include the 

temperature dependence of material properties and the stress-strain condition due to thermal 

loading. In this method, the cross-section is divided into layers, which are small enough to 

assume uniform stress and strain condition and constant temperature in all over the layer.  By 

that way, the reduction of material properties due to temperature at each layer isconsidered and 

accumulated into the degradation of overall resistance of the cross-section. The thermal strain 

due to temperature gradient at each layer is also taken into account to estimate the total 

deformation of the cross-section and to compute the total stress at each layer. The latter 

contributes in total response of the section, especially for high temperature typical of fire 

loading. In section 4.3, we introduce the finite element method to provide an efficient 

computational frameworkusing the stress-resultant constitutive model of reinforced concrete 

beam element. The latteris then used for limit load computations of the reinforced concrete frame 

structures subjected to combined mechanical loading and fire. Several numerical examples will 

be introduced and discussed in section 4.4 to prove the capablity of the proposed method.  
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4.2 Stress-resultant model of a reinforced concrete beam element subjected to 

mechanical and thermal loads. 

4.2.1 Stress and strain condition at a position in reinforced concrete beam element under 

mechanical and temperature loading. 

Table 4-1. List of symbols for thermomechanical model 

Symbol Meaning 

θ Angle of principal direction (for both deformation and stress condition) 

ıx Normal stress in x direction (longitudinal direction) 

ıy Normal stress in y direction (tranverse direction) 

Ĳ Shear stress  

ı1 1st (maximum) principal stress  

ı2 2nd (minimum) principal stress 

εxm Mechanical normal strain in x direction (longitudinal direction) 

εym Mechanical normal strain in y direction (tranverse direction) 

γ Shear strain  

ε1 1st (maximum) principal strain 

ε2 2nd  (minimum) principal strain 

ıxt Thermal stress in x direction (longitudinal direction) 

ıyth Thermal stress in y direction (tranverse direction) 

εxth Thermal strain in x direction (longitudinal direction) 

Consider a reinforce concrete beam element subjected to mechanical loading and thermal loading 

(see Figure 4-1) 
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Figure 4-1. Mechanical loading and fire acting on reinforced concrete element 

In this element, beside the mechanical deformation, a thermal strain is also acting. The total 

strain is then the sum of mechanical strain and thermal strain:  

thm    (4-1) 

Figure 4-2 represents the thermal stress and strain condition at a given point in the element. 

0  

Figure 4-2. Thermal stress and thermal strain condition 

The thermal strain of concrete depends on the temperature and the kind of aggregates [7], such 

that we have for calcareous aggregates 
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(4-2) 

for siliceous aggregates:  
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(4-3) 

The thermal strain of steel also depends on the temperature [7]:  
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(4-4) 

Noted that we have assumed that the normal part of the thermal strain and  thermal stress in the 

transverse direction of the element is equal to zero (łyth=0 and Ńyth=0, see Figure 4-2). A similar 

assumption also applies to mechanical stress and strain; in particular, the normal part of 

mechanical stress and mechanical strain are also ignored ( 0y , 0y ). This assumption is 

sometimes declared by „no interactive compression between longitudinal layers of the element‟ 

or „the depth of the cross-section is constant after loading‟, which is a well-known and widely 

accepted hypothesis in beam analysis.  Due to this assumption, only the longitudinal strain (łx) 

and the shear strain (Ȗ) are considered as non-zero strain components of the beam element (see 

Figure 4-3).  

 

 

The total stress and strain condition at a point in reinforced concrete beam element can be 

represented by a Mohr circle (see Figure 4-4). 
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Figure 4-3. Total stress and strain condition at a position in beam element (εy=0 and ıy=0) 
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The angle giving the orientation of the principal directions can then be defined according to: 


 
x

2
2tan

 
(4-5) 

The maximum value of principal strain is: 
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(4-6) 

The mimimum value of principal strain is: 
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(4-7) 

We note that in this case, the maximum strain is always positive and the minimum strain is 

always negative.  

Once the strain components are known, we can compute the corresponding stress components by 

using the constitutive equation between principal stress and principal strain (assuming that the 
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Figure 4-4. Mohr circle representation for strain and stress condition at a point in beam 

element 
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principal directionsfor strain and stress are the same).  The constitutive equation between 

principal stress and principal strain of concrete and rebaris dependent on the temperature; it 

canbe approximated by a number of mathematical equations (see [59],[7] ,[9],[11],[60], [61], 

[55]). In the following, some typical relationships are introduced:
 

Concrete 

The mechanical stress-strain constitutive equation for concrete in compression can be computed 

by the following equation (see [10]) (see Figure 4-5):  
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(4-8) 

where      62
max 1004.06025.0  TTT  

The compressive strength of concrete is dependent on temperature [7]: 
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(4-9) 

where '
cf  is the compressive strength of concrete at room temperature (200C) 
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Figure 4-5. Relation between compressive stress and strain of concrete due to tempeture[10] 

The negative principal stress of concrete can also be computed from the negative principal strain 

by the equations of Vecchio and Collins (see [61]), which are widely used in American building 

codes (see[9], [12]). In which, the minimum principal stress is computed by the equation:  
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(4-11) 

The principal stress-strain relation of concrete in tension can be computed by following the 

suggestion of Vecchio and Collins (see [61]):  
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The Young modulus of concrete (Ec(T)) also depends on the temperature (see[55]): 
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(4-13) 

where Ec is the Young modulus of concrete at room temperature. 

The crack limit of concrete in tension fcr(T)  also depends on the temperature [7]:  
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(4-14) 

where crf  is the crack limit of concrete at room temperature and, if there is no experiment value, 

can be compute from the compressive strength of concrete (see [9]): '62.0 ccr ff   

Steel rebar 

For reinforcement bar, a bi-linear mathematical model is usually used for both compression and 

tension condition (see Figure 4-6): 
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(4-15)  

The yield stress fy(T) of rebar is a function of the temperature [7]: 
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(4-16) 

 

Figure 4-6. Stress- strain relationship of rebar in different temperature 

By using the constitutive equation for concrete and steel rebar described above, we can obtain 

the principal stresses due to the principal strain, at a given considered position. Assuming that 

the angle of the principal stress axis is the same as to the angle of the principal strain, we can 

estimate the longitudinal normal stress (Ńx) and the shear stress (v) by using the Mohr circle for 

stress condition (see Figure 4-4): 

The shear stress:  

    2sin2
21   (4-17) 

The longitudinal stress: 

  2tanx  (4-18)  

4.2.2 Response of a reinforced concrete element under external loading and fire loading. 

The mechanical response at the cross-section level is defined with respect to the generalized 

deformations (in th e given section) represented by the curvature ț, the longitudinal strain łx at 

the middle of the section and the sectional shear deformation Ȗ. We can further apply the „layer‟ 

method (see[41], [15], [13]), where the cross-section is divided into a number of layers across the 
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beam depth. Each layer is assumed to be thin enough to allow for uniform distributions of stress, 

strain and temperature (see Figure 4-7). 

 

 

We denote the layer width and height as bci and hci, the longitudinal stress as ıcxi and the distance 

from the middle of the layer to the top of the cross-section of concrete layer „ith‟ as yci; 

furthermore, we denote the steel bar area
sxja , the longitudinal stress ısxj and the distance from the 

middle of the rebar element to the top of the cross section of the rebar element „jth‟ as ysj, we can 

establish the following set of equilibrium equations:  
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Mu 

Nu 

Axial Force and Moment Concrete layer and Rebar  
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ț 
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y  

łxm 

Temperature Gradient 
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 Shear  Force 

Vu 

Parabol shear  strain distribution  

Ȗ 

ń 

Figure 4-7. Response of reinforced concrete element under mechanical and thermal loads 
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(4-19) 

where y  is the distance from the neutral axis (where 0x ) to the top of the cross-section. 

This system allows us to compute the response of the cross-section, and in particular curvature, 

longitudinal strain and shear deformation, at a given force and temperature loads; the following 

procedure is used (see Figure 4-8): 
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NO: Adjust y and κ 
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Compute longitudinal strain distribution ( test

xi ) from assuming curvature test  and position 

of neutral axis ( test
y ) with plane section hypothesis (figure 7) 

Estimate the stress condition (  ,, 21 ii ) of each layer from the strain condition (  ,, 21 ii ) 

by the principal stress-strain contitutive equation (8 to 16). Compute the longitudinal stress  
( test

xi ) and the shear stress ( test

iv ) for each layer (equation 17 and 18) 
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Check: N= Nu  and M = Mu 

END 

Compute temperature distribution along the cross-section: Tci; Tsj 

Specific section mechanical loading: Mu, Nu, Vu 

Assume parabol shear strain distribution: max (figure 7) 

Estimate the strain condition (  ,, 21 ii ) at layer „ith‟ from test

xi , test

i  and with the 

assumption that 0y (depth of the layer remains the same after loading) 

 

Check: V = Vu   
NO: Adjust Ȗxy 

Figure 4-8. Procedure to determine the mechanical response of RC beam element 
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4.2.3 Effect of temperature loading, axial force and shear load on mechanical moment-

curvature response of reinforced concrete beam element. 

By applying the procedure illustrated inFigure 4-8, we can establish the moment-curvature 

relation for a reinforced concrete beam element, by fixing the temperature loading, the shear 

loading, the axial force and tracking the increase of the internal moment (M) proportional to the 

increase of the curvature (κ).  

Figure 4-11shows the degradation of the moment-curvature response of a rectangular reinforced 

concrete beam exposed to ASTM 119 fire acting on the bottom (see Figure 4-9) in case external 

axial force and shear force equals to zero (pure bending test) (Nu = 0, Vu =0). The temperature 

profile of the RC beam subjected to fire loading increases due to time (Figure 4-10-[11]).When 

temperature increases, the strength of materials (concrete and rebar) decreases and leads to the 

degradation of moment-curvature resistance of the element.  

 

Figure 4-9. Cross-section and Dimensioning of the consider reinforced concrete element 

 

 

Figure 4-10. Evolution of temperature profile due to time[11] 
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Figure 4-11. Dependence of moment-curvature with time exposure to fire ASTM119 

Figure 4-12 illustrates the evolution of bending resistance of the frame with an increase of the 

axial compression.  

 

Figure 4-12. Dependence of moment-curvature on axial compression 

Figure 4-13 expresses the reduction of the bending resistance when shear load increases at four 

instants: t =0h, t=1h, t=2h and t=3h. 
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Figure 4-13. Dependence of moment-curvature response on shear loading 

From Figure 4-11 to Figure 4-13, we have indicated that the moment-curvature curve can 

approximately be represented by a multi-linear curve (see [62]) with the „crack‟ moment εc, the 

„yield‟ moment My, the „ultimate‟ moment εu and the corresponding values of curvature: c , 

y , u . The „crack‟ moment is obtained at the state where the tensile fiber of concrete starts to 

crack. The „yield‟ moment is the moment acting on the cross section to make the tensile rebar 

starts to yield. The peak resistance of the beam is reached when both the tensile rebar yields and 

the concrete the compressive fiber collapses to make the „ultimate‟ bearing state of the beam. 

From this state on, the „bending hinge‟ occurs at the cross-section and the bending resistance of 

the cross-section starts to decrease with further curvature increase (see Figure 4-14).  
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Figure 4-14. Multi-linear moment-curvature model of the reinforced concrete beam in bending 

4.2.4 Compute the mechanical shear load – shear strain response of a reinforced concrete 

element subjected to pure shear loading under elevated temperature 

There can be several positions in frame structure where moment and axial force are small enough 

in comparison to shear force (for example, at the place on the top of the pin support), at such a 

position, the failure of the frame is due to shear force rather than bending moment. The shear 

strength of reinforced concrete element is normally assumed to be the total of the concrete 

component and stirrups component; it can be computed by the proposed general algorithm 

shown in Figure 4-8or by applying the compression field theory. In this theory, the shear 

resistance of the beam is considered by assuming that the longitudinal strain of the cross-section 

is equal to zero. This model implies that the angle of the principal stress and strain is equal to 

450C: 

0452tan
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(4-20) 

The maximum and the minimum strains are opposite in sign and equal in magnitude: 
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The principal stress can be computed from principal strain for concrete and steel bar by applying 

equations from equation (4-8) to equation (4-16). The shear stress therefore can be computed 

from the shear strain and the temperature at each concrete layer and/or rebar element:  

   iiimimii TfTfv ,,11    (4-23) 

 

Figure 4-15. Stress components of reinforced concrete subjected to pure shear loading 

The equilibrium equation for shear force:  
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Where d is the „effective‟ depth of reinforced concrete cross section subjected to shear load, s is 

the stirrups‟ spacing, Asv is the area of stirrup and sv  is the stress in the stirrups corresponding 

to the considered shear strain.  For pure shear test ( 045 ), equation (4-24) becomes:  

θ 

vci 

Layer i 

Layer i-1 

Layer i+1 

Ń1ci 

Ńysk 

Ńysk 

d 

dcotan(θ) 

Vu 

Stress condition Stress condition in concrete Stress condition in stirrups 

s 



Localized Failure for Coupled Thermo-Mechanics Problems 

 

121 

 

svsvcici

N

i

ciscu A
s

d
hbVVV

c   1  
(4-25) 

From the equation (4-23) to (4-25), we can estimate the corresponding shear force (Vu) of a 

given shear deformation (Ȗ), which allows us to draw the shear force–shear strain diagram in a 

given cross-section.  

Figure 4-16 shows the reduction of shear resistance of the RC element given in Figure 4-9when 

subjected to fire ASTM119. 

 

Figure 4-16. Mechanical shear force- shear deformation diagram 

With a similar approximation already usedfor the moment-curvature curve, we also introduce a 

multi-linearresponse forthe shear resistance of a reinforced concrete element (see Figure 3-16 for 

illustration). In the next section, we show how to apply these stress-resultant models inthe finite 

element analysis of reinforced concrete frame structure subjected to combined mechanical and 

thermal loads, by using the Timoshenko beam element.  
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4.3 Finite element analysis of reinforced concrete frame 

4.3.1 Timoshenko beam with strong discontinuities 

 

Figure 4-17. Beam under external loading and fire 

We consider a straight Timoshenko beam of length land cross-section A. The beam is submitted 

to distributed axial load f(x), transverse load q(x), bending moment m(x), the concentrated forces 

F, Q and C. The beam is also exposed to fire loading. We denote as Γu and Γq the set of points in 

(0,l) where displacements and forces are prescribed, respectively (seeFigure 4-17). We consider 

a point x,  lx ,0 , on the beam neutral axis, and denote as         xxvxux ,,u  the 

generalized displacements (namely the longitudinal displacement, transverse displacement and 

rotation) at that point. With such a notation, the generalized strains at point xare obtained by 

taking into account the standard Timoshenko beam formulations:  
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(4-26) 

Denoting as N, V and M respectively the axial force, transverse shear force and bending 

moment, the strong form of the local equilibrium can be written as: 

Q 
C 

F Γu 

f(x) Γq 

q(x) m(x) 
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(4-27) 

The corresponding weak form for the standard Timoshenko beam model can then be written as:  

   l
T

l
TT

FdxBfdx
0 0

wwσ 
 

(4-28) 

Where σ is the stress-resultant vector (  TMVNσ ), w is a virtual generalized 

displacement ( 0Vw  where      uonandlHRlV  0,0,0: 13
0 www ),  Tmqf ,,f  is 

the vector of distributed load  TCQF ,,F the vector of concentrated forces.  

In order to represent the development of localized failure mechanism or „plastic hinge‟ in a 

reinforced concrete beam, we consider discontinuity in the generalized displacement field at a 

particular point xc of the neutral-axis. Indeed, a plastic hinge that is no more than a narrow zone 

where plastic behavior concentrates leading to a very localized dissipation, at the scale of the 

beam, can simply be interpreted as a discontinuity of the generalized displacement field. In that 

case, the generalized displacement u is now decomposed into a regular part and a discontinuous 

part as: 
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(4-29) 

where   ,, vuα  is the displacement jump at point cx and 
cx is the Heaviside function 

defined by   0 x
cx

 for cxx  and   1 x
cx

for cxx  . A graphic illustration of the beam 

kinematics is presented inFigure 4-18. 
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Figure 4-18. Kinematic of beam element 

With such a representation, taking into account the essential boundary conditions on Γu involves 

the use of both u and α . We introduce a regular differentiable function  x being 0 at x = 0 and 

1 at x = l. The generalized displacement field can then be rewritten as: 

        xxxx
cx  αuu ~

 
(4-30) 

where  xu~  is given in terms of  xu  and α  as: 

     xxx αuu ~
 (4-31) 

It has to be noticed that, with this decomposition, taking into account the essential boundary 

conditions only involves the regular displacement field  xu~ . This is of great importance for the 

finite element implementation of such a model.  

Due to the discontinuous feature of the displacement field, the generalized strain field is singular 

and given as: 

      xxx
cxαuεε   

(4-32) 

where  x
cx  is the Dirac delta function. We can write this result in an equivalent form: 
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(4-33) 

where G is equal to   xL , L being the displacement-to-strain operator. 

Practically, there is no need to define precisely the function  x , only its derivative is needed. 

Indeed, in the finite element implementation, the interpolation of displacement is considered in 

its standard form whereas the strain field is locally enriched in each finite element to take into 

account the influence of a displacement discontinuity. This point is discussed in the next section. 

4.3.2 Stress-resultant constitutive model for reinforced concrete element 

In this article, the stress-resultant models are used to describe the behavior of reinforced concrete 

beam element. Two different failure modes are considered here: one is related to bending failure 

giving rise to a rotation discontinuity (or bending „hinge‟) and the other one is related to shear 

failure accompanied by a vertical displacement discontinuity (or shear „hinge‟) (see[20],[19]). 

For both models, a plasticity-type formulation is chosen. 

4.3.2.1 Model for bending failure 

Relaying upon the generalized procedure for the classical plasticity (see [17]), we consider the 

following main modeling gradients: 

• additive decomposition of the curvatureμ 

pe    (4-34) 

where e  denotes the elastic part of the curvature and p denotes the plastic part of the 

curvature. 

• Helmholtz free energyμ 

     eee
EI

2

1
,

 
(4-35) 

where E is the homogenized Young modulus of the reinforced concrete beam, I is the cross-

section inertia and Ξ is the hardening potential written in terms of the hardening variable ξ. 

• yield functionμ 
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   qMMqM y  ,
 

(4-36) 

where 
yM demotes the elastic limit moment, qis the stress-like variable associated to the 

hardening variable ξ. 

The use of the second principle of thermodynamics for elastic case provides constitutive 

equations: 

   KIqEIEIM
ep  ;  (4-37) 

where we have considered a linear hardening law with KI the hardening parameter. Moreover, by 

considering the principle of maximum plastic dissipation, the evolution law and constitutive 

equations are obtained as: 
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and  
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(4-39) 

along with the loading/unloading conditions 0,0,0    and consistency condition 

0 . 

Due to the activation of different dissipative (irreversible) mechanisms in the materials that 

constitute the reinforced concrete, different stages of the bulk behavior have to be reproduced. 

To that end, we consider two different subsequent yield functions of the type presented in 

equation (4-36) to describe the bulk hardening part for bending response (see Figure 4-19). 

Those two functions are characterized by different limit values and hardening parameters: 

• the first yield function is used to describe the behavior when the first cracks occur in concrete, 

with nonlinearities and dissipation appearing in the beam: 
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   cccc qMMqM  ,
 

(4-40) 

where Mc corresponds to the elastic limit of the beam (when first concrete crack appears) and 

IKqc 1 is the stress-like variable associated to hardening with K1I  the hardening parameter; 

• the second phase is characterized by the yielding of steel rebars. The corresponding yield 

function is given by: 

   
yyyy qMMqM  ,

 
(4-41) 

where My denotes the bending moment corresponding to the yielding of steel rebar and 

IKq yy  with K2Ithe hardening parameter. 

The softening part of the behavior is controlled by the following yield condition: 

    0,  qMMqM uxx cc  
(4-42) 

where Mxc denotes the bending moment on the discontinuity at xc, Mu is the ultimate bending 

moment value and q  is the stress-like variable associated to softening. Here again, as for the 

bulk, we consider a linear softening, so that we have: IKq  with 0K . 

It has to be noticed here that, due to the rigid behavior of the plastic hinge at xc, the equivalent 

total strain αθ and the plastic strain are equal. αθis then interpreted as a plastic strain and its 

evolution is given by: 

  


 



q

andMsign
M  

(4-43) 

where   is the plastic multiplier associated to the plastic hinge behavior. The constitutive 

equation is then given by: 

 IKM
cx 

 
(4-44) 

A representation of the bulk and discontinuity behavior is given inFigure 4-19, which is similar 

to what had been explained inFigure 4-14, expect the fact that the softening behavior of the 
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model is represented by a moment-rotation curve instead of the moment-curvature curve. All the 

parameter of the model can be identified by the layer method as already explained in Section 4.2. 

 

Figure 4-19. Moment-curvature relation for bending stress-resultant model 

4.3.2.2 Model for shear failure 

The model for shear failure, similar to the bending failure model, is also based upon the classical 

plasticity formulation. Thus, the shear strain is assumed to be the composition of elastic part and 

plastic part: 

pe    (4-45) 

The Helmholtz free energy is now given by: 

   vv

ee

v

e

v GA  
2

1
,

 
(4-46) 

where G is the equivalent shear modulus and A is the area of the beam cross-section. We 

consider, for the case of shear failure, two different regimes for the bulk behavior. The first 

regime corresponds to the elastic response and the second to the hardening regime. Those 

regimes are separated by the yield function: 
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    0,  vyvv qVVqV  
(4-47) 

where 
yV denotes the elastic limit, 

vq denotes the stress-like variable which controls the yield 

limit: vvv AKq   

The state equations, evolution equations and constitutive equations are now of the following 

form: 

  ep
GAGAV    (4-48) 

and  

  v

v

v
vvv

v
v

p

q
andVsign

V
  




 
(4-49) 
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
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(4-50) 

As regards to the plastic hinge in shear, the same kind of modification as the one already 

presented for the bending failure is introduced but with respect to vertical displacement 

discontinuity. The corresponding yield function is now given by: 

    0,  vuxvx qVVqV
cc  

(4-51) 

where 
cxV  denotes the shear load at the discontinuity point xc, Vuis the ultimate shear load value 

and finally vq denotes the stress-like variable thermodynamically conjugate to the softening 

variable v : vvv AKq   (if we consider linear softening). The shear hinge model is also rigid-

plastic, and the displacement discontinuity v  is interpreted as an equivalent plastic strain. 

Hence, the corresponding constitutive equation for softening response in shear failure can be 

written as: 

vvx AKV
c

 
 

(4-52) 

A representation of the shear behavior (bulk and discontinuity) is given inFigure 4-20. 
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Figure 4-20. Shear load-shear strain relation for shear stress-resultant model 

4.3.3 Finite element formulation 

4.3.3.1 Finite Element interpolations and global resolution 

The finite element implementation of the model presented herein is based upon the incompatible 

mode method (see [18]). The use of such a technique ensures that the enrichment with a 

generalized displacement jump remains local, and that no additional degrees of freedom are 

required at the global level of the solution the procedure. We present subsequently the key points 

of the finite element implementation and the added interpolation shape functions used in our 

case. 

We consider a standard two-node Timoshenko beam finite element. The classical interpolation 

for such an element is then given by: 

                  Ndu 
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h
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(4-53) 

where 
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(4-54) 

and d is the vector of generalized displacement defined as: 

 Tvuvu 222111 d  (4-55) 

The standard interpolation of the generalized strain is then given by: 

                      Bdε 
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(4-56) 

with 
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
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(4-57) 

In order to take into account the generalized displacement discontinuity, we consider the 

incompatible mode method to enhance the strain field. To that end, the displacement 

interpolation is considered in its standard form whereas the strain field is locally enriched in each 

finite element to take into account the influence of the discontinuity. We thus obtain the 

following result for discretized strain measure: 

       
cxrr

h
xdxBxx ααGαGdBε 

      
(4-58) 

Where rG is a discrete representation of the function G introduced in equation(3-41). A 

possibility to choose the interpolation function rG  is to consider the discrete displacement from 

which the strain derives. In that case, considering equation (3-29) and the fact that the regular 

part u can be interpolated with standard shape functions, we obtain: 

     
cx

h
HxNxNx αddu  2211         

 (4-59) 
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Where 
id  is the vector of nodal regular part of generalized displacement for node i. Due to the 

properties of the interpolation functions and of the Heaviside function 
cxH , we obtain for the 

total nodal displacements at node 1 in position x1 and at node 2 in position x2: 

  111 ddu x
h  and    αddu  222x

h

      (4-60) 

so that the expression in (4-59) can be rewritten as: 

        xxNxNx
cx

h  ααddu 2211  
(4-61) 

          xNxxNxNx
cx

h

22211  αddu
 

(4-62) 

We choose then for function  x  in (4-30), the function  xN2 being 1
C  and equal to 0 at x1 and 

to 1 at x2. With such a choice, the function 
rG is given by: 

 
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(4-63) 

To build the weak form of the equilibrium equation, we consider the Hu-Washizu three-field 

principle as usually done for incompatible mode method. 

To that end, we use the same kind of interpolations for the virtual strain field * : 

         
cxvv xxxxx ****** ββGdBβGdBε 
     

(4-64) 

where *d  and *β denote the virtual nodal generalized displacement and virtual displacement 

jump, respectively. With such interpolations, the weak form introduced in (4-28) leads to a set of 

two equations that can be placed within the framework of incompatible mode method: 
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*

*

0
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0*

σGβ

FdfNdσBd T*

      

(4-65) 

Considering the standard finite element assembly procedure, we obtain: 
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(4-66) 

Where 

 ele
dx

0

int, σBf T , FfNf T   elexte
dx

0

,

       
(4-67) 

The first equation is the standard weak form of the equilibrium equation written concerning the 

whole structure. The second equation, on the contrary, is local and written independently in each 

element where a discontinuity has been introduced ( 
elemN  denotes the set of elements enriched 

with a discontinuity). 
cx

σ represents the value of the stress-resultant vector at point xc where the 

discontinuity is introduced, this term arises in the equation due to the singularity of virtual strain 

field (
c

e

c x

l

x dx σσ 0  ). This second equation can be interpreted as the weak form of the stress-

resultant continuity across the localized failure point. 

Remark: Function Gv is chosen, as suggested in the modified version of incompatible mode 

method [18], in order to ensure the patch test, namely the verification of the second equation in 

equation (4-66) for constant stress-resultant σ. We obtain then: 

      el

r

e

rv dxx
l

xx
0

1
GGG

        
(4-68) 

which gives in our case (Timoshenko beam element with only one integration point):  

   xx rv GG   

4.3.3.2 Local resolution 

Denoting as ithe iteration for time step n+1 of ζewton‟s iterative procedure, providing the 

corresponding iterative updates     i

n

i

n

i

n 1
1
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i

n

i

n 1
1
11   ααα , the linearized 

version of equation (4-66) is given by: 
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Here, we have adopted the following notations: 
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,
1 GCGH      (4-71) 

where  i
n 1, dK and  i

n 1, αK are the consistent tangent stiffness for the discontinuity: 
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(4-72) 

and  ian

n

,
1C denotes the consistent tangent modulus for the bulk material obtained as a discretized 

version of the tangent modulus given in equation (4-39) and equation (4-50): 
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n

ian

n

i

n 1
,
11   εCσ  (4-73) 

with σ  and ε  the generalized stress and strain, respectively. 

The solution of the set of two equations in equation system (4-69) is obtained by taking 

advantage of the local nature of the second equation, and the fact that it can be solved 

independently in each localized element. For that purpose an operator splitting technique is used. 

First, for a given nodal displacement increment  i
n 1d at iteration I of the global Newton 

procedure, the increment of displacement jump  i
n 1α is sought by iterating in each localized 

element upon the local equation   0,
1 ie

nh (see equation (4-69)b). At the end of the local solution, 

we then perform the static condensation at the element level, and carry on to solve the global part 

of the Finite Element equilibrium equations: 

       ie

n

exte

n

N

e

i

n

ie

n

N

e
AA
elemelem

,int
1

,
1

1
1

,
1

1

ˆ 
 ffdK

 
(4-74) 

where 
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(4-75) 

is the element tangent stiffness modified by the static condensation. 
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We note in passing that the yield functions used in this work are totally uncoupled, so that the 

vector equation in equation (4-66)b can be treated as a collection of corresponding scalar 

equations. In the following, we present the resolution of such a scalar equation in a general form 

without specifying the superscript M or V related to, respectively, bending or shear. 

As already mentioned, the behavior on the discontinuity is rigid-plastic. Indeed, the displacement 

jump is no more than a plastic displacement at discontinuity, with no elastic part contributing to 

the displacement jump. Dueto this feature, it is not possible to compute trial tractions 
tr

xc

σ as 

usuallydone for return-mapping algorithm (
cx

σ denotes either 
cxM or 

cxV ). 

We have chosen here to use the local equilibrium equation (4-66b) to compute the trial tractions 

values for a given set of nodal displacements  i
n 1d . For a one point integration Timoshenko beam 

element, this local equation is very simple and reduces to the strong form of the traction 

continuity across the localized failure point; that is:  ,dσσ 
cx

where  ,dσ is the 

corresponding generalized stress computed in the bulk. Moreover, we note that the activation of 

the discontinuity is accompanied with softening, which involves elastic unloading of the bulk so 

that the bulk and discontinuity internal variables cannot evolve simultaneously. 

With this remarks in hand, the sketch of the algorithm can be given as follows: 

• first compute the trial traction value by using equation (4-66b) and considering no evolution of 

the internal variables: α, . 

nnnn    11 ,  (4-76) 

thus obtain the corresponding trial values of stress resultants: 

  p

n

tr

nr

i

n
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n

tr

nxc
εαGBdCσσ   1111,  

(4-77) 

• then check the  value of yield function  tr

n

tr

nx

tr

n q
c 11,1 ,   σ at discontinuity. 

– if 01  trn , the trial state is admissible, no evolution of the internal variables is needed. In that 

case, the consistent tangent stiffness for the discontinuity (see equation (4-72)) is such that:
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,
1,1,   FKd , the element tangent stiffness is thus, in case of an elastic loading or unloading 

of the discontinuity not modified. 

– if 01  trn , evolution of internal variables should be computed. To that end, the Newton 

iterative procedure is used to obtain the value of 1nα  and 1n  ensuring   0, 11,   nnx q
c

σ where 

1, nxc
σ  is computed using equation (4-66b). We obtain finally  tr

nxnnn c
sign 1,11   σαα  and

11   nnn   where the Lagrange multiplier 1n is obtained as: 
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(4-78) 

The actual value of the traction on the discontinuity is then given by: 

 tr

nxr

e

n

tr

nxnx ccc
signC 1,11,1,   σGσσ 

 
(4-79) 

In that case, the tangent stiffness associated to the discontinuity is given by:    i
n

i

n K 11,  K and 

  01, i

ndK . 
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4.4 Numerical example 

4.4.1 Simple four-point bending test 

We consider here a simple reinforced concrete beam subjected to ASTM 119 fire (see[11]) at its 

bottom and also subjected to external mechanical loads applied in the vertical direction (see 

Figure 4-21). 

 

 

Figure 4-21. Simple reinforced concrete beam subjected to ASTM 119 fire and vertical forces 

The beam was formed by carbonate concrete with compressive strength MPafc 30'  , 

longitudinal reinforced by 2 reinforcement bars D14 on the top and 3bars D20 on the bottom. 

The concrete cover thickness is 40 mm. The beam is also transverse reinforced by D10 stirrups 

with the spacing of 125 mm. The yield limit of steel is 400MPa.  

Using the layer method described in section 3-2, we can identify the stress-resultant models for 

bending failure and shear failure at different instants of fire loading program (see Figure 4-22 

and Figure 4-23). 
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Figure 4-22. Reduction of bending resistance due to time exposing to fire ASTM 119 

The corresponding values of material parameters for bending model are given inTable 4-2. 

Table 4-2. Bending model parameters for different instants of fire loading program 

Parameters t =0h t =1h t =2h t=3h 

Young Modulus (kN/m
2
) 2708121 2835722 2644230 1324882 

Hardening Modulus K1 (kN/m
2
) 795440.3 773984.9 540969.6 279660.4 

Hardening Modulus K2(kN/m
2
) 433372.2 404203.2 99201.84 177893.4 

Softening Modulus K (kN/m) -66943.8 -34230.2 -79727.8 -40232.5 

Crack shear Mc (kN) 42.3144 44.30815 41.3161 41.40257 

Yield shear My (kN) 87.15347 177.3368 134.2953 76.36012 

Ultimate shear Mu (kN) 192.5736 189.9682 137.3953 81.91929 
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Figure 4-23. Reduction of shear resistance due to time exposing to fire ASTM 119 

The corresponding parameters for shear failure model are presented in Table 4-3.  

Table 4-3. Parameters of shear model at different instants of fire loading program 

Parameters t =0h t =1h t =2h t=3h 

Shear Modulus (kN/m
2
) 26892218 21686667 19600983 17267528 

Hardening Modulus K1 (kN/m
2
) 26892218 21690899 19520350 17267528 

Hardening Modulus K2(kN/m
2
) 26892218 21114573 3850031 8273086 

Softening Modulus K (kN/m
2
) -1208592 -743844 -444255 -310832 

Crack shear Vc (kN) 40.33833 32.53 29.40148 25.90129 

Yield shear Vy (kN) 161.3533 130.139 371.9836 284.9142 

Ultimate shear Vu (kN) 443.7216 415.1858 391.0413 371.7816 
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Figure 4-24 shows the relation between the load P and the deflection in the middle of the beam 

exposed to fire loading at times t=0h, t=1h, t=2h and t=3h. 

 

Figure 4-24. Force/displacement curve of the beam at different instants of fire loading program 

We note that after a long exposure to fire loading, the bearing resistance of the beam is 

significantly reduced.In particular, after one hour fire exposure, the ultimate load of the beam 

reduces from 185.27 kN to 180.31 kN; then after two hours, the ultimate load reduces to 130.48 

kN and it finally reduces to 79.767 kN after three hours exposure to ASTM 119 fire (seeFigure 

4-25).  
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Figure 4-25. Reduction of ultimate load due to fire exposure 

4.4.2 Reinforced concrete frame subjected to fire 

We consider a two- storey frame with geometry given in Figure 4-26. The material properties are 

listed in Table 4-4. Each of the two columns of the frame is subjected to a compressive load 

equal to 700kN acting on the top of the column. A horizontal force Q acts on the right edge of 

the second storey leading to imposing a horizontal displacement of the frame. Two reinforced 

concrete beams corresponding to the spans of the frame are submitted to ASTM119 standard fire 

(see[11]) on their bottom. Figure 4-27shows the evolution of temperature of the beam that 

hasbeen submited to fire for one, two and three hours. 
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Figure 4-26. Two-story reinforced concrete frame subjected to loading and fire 
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Table 4-4. Material properties 

Concrete Properties 

Modulus of Elasticity Ec 26889.6 N/mm2 

Compression Strength fcc 30 N/mm2 

Steel Properties  

Yield Stress fsy 400 N/mm2 

 

Figure 4-27. Temperature profile of the reinforced concrete beam due to time of fire 

Since the columns are highly compressed with a 700kN force, their bending resistance is much 

greater than the bending resistance of the beam. The bending model of the column at room 

temperature (no fire acting) is given in Figure 4-28.  
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Figure 4-28. Moment-curvature model for column 

The shear model of the column is given in Figure 4-29 

  

Figure 4-29. Shear failure model of the column 

Figure 4-30 represents the degradation of moment-curvature curve of the beam after one, two 

and three hours exposing to fire.  
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Figure 4-30. Degradation of bending resistance of reinforced concrete beam versus fire 

exposure 

Figure 4-31 illustrates the reduction of the overall response of the frame due to fire by plotting 

the relationship between horizontal force Q with the horizontal displacement of the top beam at 

different times: t= 1 hour, t = 2 hours and t = 3 hours. 

 

Figure 4-31.Horizontal force/displacement curve of two-story frame at different instants of fire 
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We can note, in particular, that the ultimate horizontal load of the reinforced concrete frame  

decreases from  308.52kN to 251.46kN and then to 180.01kN after one hour, two hours and three 

hours submitted to fire. This is the result of the degradation of the material properties due to high 

temperature and also due to the thermal effect on the beam.  

4.5 Conclusion 

In this chapter we have developed a method to calculate the behavior of reinforced concrete 

frame structure subjected to fire, with combined thermal and mechanical loads The main novelty 

of the proposed method is its capability of taking into account the thermal loading and the 

degradation of material properties due to the temperature in determining the ultimate load of the 

reinforced concrete frame. Moreover in the proposed method, we consider not only the bending 

failure but also the shear failure of the reinforced concrete structure. This is also a new 

contribution in solving the resistance of reinforced concrete frame exposure to fire and thermal 

effect. The finite element approach presented for this kind of problem can provide the correct  

representation of the localized failure of the reinforced concrete structure. Two most frequent  

failure mechanisms are treated separately in order to provide the most robust computational  

procedure. The numerical examples we have presented here confirmed a very satisfying results  

provided by proposed methodology. The introduced method migh also be used to compute the 

remaining resistance of a damaged structure after being subjected to fire loading, which gives the 

answer to the question if the damaged consctruction can continue working or not. This proposed 

strategy is the first important step towards fully coupled thermomechanical problems to achieve 

reliable description of the structural resistance for different thermal load programs and eventual 

sudden regime change in the exposure to fire.  
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5 Conclusions and Perpectives 

5.1 Main contributions 

In this thesis, we have discussed the general behavior and also the localized failure of steel, 

concrete and reinforced concrete structures under extreme thermo-mechanical conditions. The 

main contributions concerns both aspects of model theoretical formulation and its numerical 

implementation.  

In terms of theoretical aspect, new thermo-mechanical models for steel and concrete material 

were carried out, providing much better understanding of the interaction between mechanical 

response and thermal response of the structure. First, the mechanical dissipation and structural 

heating due to inelastic (and/or localized failure) mechanical response will lead to an increase of 

the temperature and inversly, the thermal loads and tempertaure gradient will result in a 

considerable amount of stress, strain and/or displacement. We have also proved, based on the 

local balance equation of energy, that the thermal propagation through a localized failure region 

will result in a „jump‟ in the heat flow, or a change in the temperature gradient, in the 

localization zone.  

In terms of numerical solution, a detailing „adiabatic‟operator split procedure was developed and 

applied to solve the present multi-physical problem. Here, the coupled thermo-mechanical 

problem is divided into „mechanical‟ process and „thermal‟ process with the „adiabatic‟ 

constraint condition. The „mechanical‟ process is solved first with the „adiabatic‟ tangent 

modulus (taking into account the evolution of temperature due to structural heating) to compute 

the mechanical internal variables of the model as well as the mechanical dissipation. Then, the 

„thermal‟ process is solved latter based upon a modified form of the classical heat transfer 

equation with a corresponding mechanical dissipation acting as an additional heat supply. The 

„discontinuity‟ (or a „jump‟) in displacement field and also the „jump‟ in the heat flow at the 

localized failure zone are modeled by additional interpolation functions and are determined at the 

element level of the operator splitting procedure applying for „mechanical‟ process and „thermal‟ 

process, respectively. All the problems were solved in the framework of the embedded-

discontinuity finite element method by using the research version of the finite element analysis 

program FEAP (see [56], [57]).  
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The thesis also provided a method to estimate the „ultimate‟ resistance of a reinforced concrete 

structure under fire loading. In this method, the structure is considered to be an assembly of 

many one-dimensional elements such as : frames, beams and columns, which can be modeled by 

Timoshenko beam element. Main novelties of the method are: 1) capability of taking into 

account the shear failure (along with the bending failure) into the overal failure of the structure  

and 2) capability of taking into account the thermal effect on the total response of the structure. 

Both of these two novelties play important roles in analysing the degradation of the reinforced 

concrete frame under fire accidents.  

5.2 Perpectives 

Despite several contributions, one can identify in this thesis a number of deficiencies to be 

completed and improved. Chief among them is the need of taking into account the thermo-

mechanical behavior of bonding interface between steel bar and concrete in the total response of 

the reinforced concrete structure. How does the bonding interface response under the thermal 

loading? How does this response influence the total response of the reinforced concrete 

structure? These challenge questions might be studied in the future based on the previous works 

of Tran & Sab (see [37]), Davenne et al.(see [63]), Boulkestous et al. (see [64], [26], [65]). 

Another development can be expected from this study is to widen the models to accumulate 

other behaviors such as the creep and shrinkage of concrete due to age and humidity, as well as 

the fatigue and/or buckling behavior of the steel (see [66]). Last but not least, the idea of 

extending the proposed theoretical model and the numerical solution to compute the dynamic 

response of the structure is also a good direction to go.  
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