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Abstract	

This research focuses on carbon emission-reduction issues in an area where the 

government imposes emission-reduction policies on local manufacturers. Policymaking 

problems for the government and production planning problems for the manufacturers are 

investigated with Operations Research/Management Science (OR/MS) approaches. Two 

types of emission-reduction policies, including emission-cap regulation policy and emission 

cap-and-trade scheme, are addressed.  

We first discuss manufacturers’ long-term strategic decision problem under the 

government-imposed emission-cap regulation policy. With the objective of maximizing the 

manufacturers’ profits, Stackelberg game model is formulated to optimize their decisions on 

carbon footprint, wholesale price and retailer selection. The problem is proven to be 

NP-hard and a hybrid algorithm is developed to solve the model. 

We then investigate manufacturers’ medium-term production planning to minimize the 

total production and inventory holding cost, by considering emission-reduction constraints 

through technology selection, some of the technologies being green. The problems are 

shown to be polynomially solvable. 

Based on these results, we study the government’s policymaking problems to maximize 

the social welfare of the area. Stackelberg game models are formulated to optimize the 

emission-reduction policies by anticipating manufacturers’ operational decisions in 

response to the governmental policies. Hybrid algorithms are developed to solve the 

problems.  

For each studied problem, numerical analyses are conducted to evaluate the algorithms. 

The computation results show that the algorithms developed in this research are effective. 

Some interesting and valuable managerial insights are drawn from computational results 

and sensitivity analyses. 

Keywords: Carbon emission reduction, policymaking, production planning, retailer 

selection, game theory, OR/MS approach, algorithms 
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Résumé		

Cette étude porte sur la réduction de l’émission de gaz à effet de serre dans une région où 

le gouvernement cherche à établir des politiques de régulation des industriels locaux. La 

définition de politiques de régulation pour le gouvernement et la planification de la 

production pour les industriels sont étudiées à l’aide des méthodes issues de la recherche 

opérationnelle et de la science de management (OR/MS). Nous considérons deux types de 

politiques de régulation : la politique de quotas et la politique de droits d’émission 

échangeables sur le marché.  

Nous considérons d’abord le problème stratégique d’un industriel soumis à un quota 

d’émission. Afin de maximiser son profit, nous construisons des modèles de jeux de 

Stackelberg pour optimiser l’empreinte carbone du produit, le prix de gros et la sélection de 

détaillants. Le problème est démontré NP-difficile et un algorithme hybride est développé 

pour le résoudre. 

Nous étudions ensuite la planification de la production en moyen terme pour minimiser le 

coût total de production et de stockage, en prenant en compte les contraintes liées à la 

réduction d’émission à travers une sélection de technologies dont certaines sont vertes. 

Nous démontrons que ces problèmes peuvent être résolus en temps polynomial. 

A partir de ces résultats, nous étudions la définition de politiques de réduction d’émission 

par le gouvernement afin de maximiser le bien-être sociétal de la région. Des modèles de 

jeux de Stackelberg sont formulés pour optimiser les paramètres de ces politiques, en 

anticipant les décisions opérationnelles des industriels locaux en réaction à ces politiques. 

Des algorithmes hybrides sont proposés pour résoudre le problème.  

Pour chaque problème étudié, nous menons des expériences numériques pour évaluer les 

algorithmes développés. Les résultats expérimentaux montrent l’efficacité de ces 

algorithmes. Ils permettent aussi, grâce à des analyses de sensibilité, de tirer des 

renseignements managériaux intéressants. 

Mots clés : Réduction d’émission carbone, définition de politiques, planification de la 

production, sélection de détaillants, théorie des jeux, recherche opérationnelle, algorithmes 
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.  Research Background 

Environmental issues become worldwide concerns as the increasing amount of CO2 and 

other greenhouse gases (GHG) causes the phenomenon of global warming, which has 

serious effects on social and economic development around the world (Barreto and 

Kypreos, 2004). The international community has been trying to reach a consensus on 

carbon emission reduction, and some countries committed to international pledges to 

reduce or limit the growth of emissions by 2020 in the Copenhagen Accord in 2009 (see 

Table 1.1). These pledges are expected to be followed by multiple efforts to establish and 

implement domestic emission-reduction policies in these countries. For instance, the 

Chinese government pointed out, “in the face of global warming, we must develop low-

carbon economy, industry and lifestyle”. Some other countries have also realized that low-

carbon economic growth must be integrated into their overall national development 

strategies (Baeumler et al., 2012).  

Table 1.1 Emission-reduction pledges under Copenhagen Accord 

Country  Commitment to limit emissions by 2020, relative to various base years 

Australia 

 

5% to 25% below 2000 level; 

Moving above 5% is conditional on a global, comprehensive agreement. 

China  

 

40% to 45% cut to 2005 emissions intensity level; 
Increase the proportion of non-fossil fuels used in primary energy consumption to 

15%, and increase forest coverage by 40 million hectares and forest stock volume by 

1.3 billion cubic meters relative to 2005. 

Germany 

 

20% to 30% below 1990 level; 

Moving above 20% is conditional on a global agreement for the period beyond 2012. 

India  20% to 25% cut to 2005 emissions intensity level. 

Japan 

 

25% below 1990 level; 

Conditional on all major economies joining a „fair and effective international 
framework with ambitious targets‟. 

New Zealand  10% to 20% below 1990 level, conditional on a global, comprehensive agreement. 

South Korea 30% below business as usual level. 

United Kingdom 20% to 30% below 1990 level. 

Moving above 20% is conditional on a global, comprehensive agreement for the period 

beyond 2012. 

United States  17% below 2005 level. 

Source: Productivity-Commission (2011). 
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On the other hand, population is more and more concerned about environmental issues. 

As consumers, people are more and more aware of the environment effects of the products 

and the service they buy in addition to their prices. For these purposes, more and more 

retailers are providing carbon emission information on the products. 

Governments are playing critical roles in reducing carbon emissions through emission-

reduction policies. However, placing the burden of responsibility on the governments to 

reduce emissions does not preclude industrial or individual responsibility (Soete, 2007). As 

shown in Figure 1.1, carbon emissions are generated over the whole supply chain satisfying 

customer demands. In more detail, carbon is emitted directly from energy consumption in 

each stage and indirectly from transportation activities connecting different stages in a 

supply chain. These stages include various partners involved in the supply chain, such as 

suppliers, manufacturers, distribution centers and retailers. Driven by governmental 

emission regulations and customers‟ green-awareness, all partners who emit carbon in such 

a supply chain are unavoidably involved in emission reduction.  

 

Figure 1.1 Carbon emissions in supply chain (Product carbon footprint) 

Efforts in carbon emission reduction are expected to slow down the climate change rate, 

but this requires long term investment and a sacrifice of short term benefits. As a 

consequence, emission reduction is in fundamental contradiction with economic growth 

(AGF, 2010). Governments in different countries are facing a trade-off between their 

national economic and environmental interests. This explains why some countries refused 

to sign the Kyoto Protocol and why the Copenhagen Accord failed to be formally adopted 

Suppliers Manufacturer
Distribution 

center
Retailers Customers

Transportation

Energy Supplier
CO2 CO2 CO2 CO2

CO2

CO2

Government-imposed emission-reduction policies

Environmental 
consciousness

Force

Incentives
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by COP15 (The 15th Conference of the Parties). For countries that committed emission 

reduction, their governments must establish appropriate policies to achieve their reduction 

targets at reasonable economic expense levels. On this viewpoint, the decision metric of 

governments should be the maximal social welfare including both economic and 

environmental utilities.  

Given certain governmental emission-reduction policies, manufacturers who emit carbon 

in production are unavoidably concerned. Since governmental regulations pose significant 

constraints on manufacturers‟ production, a credible production and operation strategy that 

considers the emission limitation in production is essential to business success, especially 

for heavy-duty industries, such as thermal power, petroleum, steel, and cement industries. 

These manufacturers have to consider governmental policies when making their long-term 

strategic or medium-term operational decisions, since these policies may significantly 

influence their decisions and further affect their profits or costs. In contrast, manufacturers‟ 

decisions bring economic income and consume emissions distinctly, furthermore, affect the 

social welfare. Therefore, it is important to optimize the government‟s and the 

manufacturers‟ decisions to ensure social objectives and industrial benefits. 

.  Problem Description 

With regard to the emission-reduction issues, at least two issues should be investigated: 

governments‟ policymaking decision problem and manufacturers‟ production decision 

problem. As discussed in Literature Review in the coming chapter, few studies focus on 

governments‟ emission-reduction policymaking issues, and almost none of them consider 

the operational reaction of the policy receptor (e.g., the manufacturers considered in this 

research). Moreover, most of the literature contributes to the research area of economics. 

Different from the existing research, we use model-based Operations 

Research/Management Science (OR/MS) approaches to discuss the decision processes and 

optimize the decisions of every stakeholder. This research focuses on governments‟ 

policymaking problems (i.e., how to establish or adjust an emission-reduction policy) and 

manufacturers‟ production decision problems (i.e., how to cope with regulations from 

government and pressure from customers).  

More specifically, this research considers the emission-reduction issues involving a local 

Рovernment and multiple manufacturers (i.e., manufacturinР companies) in a local reРion, 
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in which all manufacturers plan their production under emission-reduction policies imposed 

by the government. It studies how the government determines her emission-reduction 

policies with an objective of maximizing the social welfare of the region, and how the 

manufacturers optimize their production planning under governmental policies with 

objectives of maximizing (resp. minimizing) their profits (resp. costs). 

The decisions of the government and the manufacturers are briefly illustrated in Figure 

1.2. The government first sets her emission-reduction policies to limit manufacturers‟ 

emissions and then manufacturers optimize their decisions to satisfy both the customer 

demands and the emission regulations. The government can observe the manufacturers‟ 

reactive decisions and assess the economic incomes and environmental impacts of the 

emissions related to the manufacturers‟ decisions. The government aims to maximize the 

social welfare of the region, while the manufacturers pursue their maximal profits or 

minimal costs. The optimal decisions of both the government and manufacturers can be 

obtained through this dynamic decision process.  

Economic 
impacts

Environmental 
impacts

Government:
Policymaking to capture social objectives (social welfare) 

Manufacturers:
Business decision making to capture industrial benefits

Emission-reduction 
policies

Strategic decisions
or

Operational decisions

 

Figure 1.2 Decision processes of government and manufacturers 

In the decision process, the government‟s policies influence manufacturers‟ decisions 

significantly. In contrast, the social welfare depends on manufacturers‟ decisions. 

Therefore, it is important to consider the reactive decisions of the manufacturers when 

establishing an emission-reduction policy. This research focuses on this practical issue and 

investigates the decision problems for the government to establish emission-reduction 

polices, and for manufacturers to optimize their production planning under the government-

imposed polices. In what follows, these decision problems are described in more detail 
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from the viewpoints of the government and the manufacturers, respectively.  

Decision problems for the government 

This research considers the policymaking decision problem for a local government, who 

has exclusive decision power over a local region, such as a province and a city. The 

government determines her emission-reduction policies to regulate the production 

emissions of all manufacturers located in this region. The government has dual objectives 

when implementing an emission-reduction regulation: economic growth and environmental 

improvement. We indicate this dual-objective problem by a concept of social welfare 

consisting of economic and environmental utilities. In this regard, the decision problem of 

the government is to establish optimal policies to maximize the social welfare of the region. 

The decision problem of the government can be briefly summarized as follows.  

TСe Рovernment’s decision problem is to optimally establisС emission-reduction policies 

witС an objective of maximizinР social welfare of tСe local reРion.  

In practice, two basic types of policy instruments, including regulatory instruments and 

economic instruments, are adopted for emission reduction by governments. ReРulatory 

instruments are specific laws and regulations to limit emissions by force, such as emission 

caps, generation performance standards and emission standards. Economic instruments are 

economic incentives that generate voluntary emission reduction, such as emission taxes, 

subsidy policies and emission-allowance trading schemes.  

Regulatory instruments have been widely applied. For example, many local governments 

in China have set up carbon emission maximums in their region to meet the national goal of 

adherence with the central Chinese government. In the USA, most states have similar 

regulatory instruments (Stavins, 1997; NAM, 2012). European countries also established 

EU Emissions Trading System (EU ETS) as a basic platform to reduce industrial carbon 

emissions (European-Commission, 2012). Some countries or regions adopted a 

combination of these two instruments. In China, some major cities and provinces such as 

Beijing, Shanghai, and Guangdong initiated emission trading programs in early 2012 

(Xinhuawang, 2012). In the USA, California has already built an emission trading system 

in 2012, and other western states have also been planning an emission trading scheme 

(Burtraw et al., 2012). Therefore, it may be expected that governments are now trying to 

develop more comprehensive policies to address the complexities of carbon emission 

reduction.  
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To summarize, this research considers two typical and practical emission-reduction 

policies for the government to limit or reduce the manufacturers‟ emissions: emission-cap 

regulation policy and emission cap-and-trade scheme.  

Emission-cap regulation policy: In consideration of environmental bearing capacity, 

governments tend to limit the total amount of carbon emissions (i.e., an emission cap) in 

certain duration. An emission-cap regulation policy is favored by governments, since it is 

simple to establish and easy to handle. When the government sets such mandatory emission 

caps for the manufacturers, the manufacturers have to adjust their production planning and 

implement more environment-friendly or greener production technologies, to comply with 

these caps, since significant legal penalties are imposed otherwise. Note that, in this 

research, the concept of emission cap is different in long-term and medium-term planning 

of the manufacturers. For long-term planning, the government uses an emission cap to 

control the manufacturers‟ total emissions over the whole planning horizon. For medium-

term planning, the government sets emission caps to limit the manufacturers‟ emissions in 

each period, in order to consider the environmental bearability of the region. 

An emission-cap regulation policy may bring negative economic utilities since the 

manufacturers have to adopt more expensive production technologies or simply reduce 

production to comply with the emission caps. Therefore, besides pursuing positive 

environmental utilities, the government should also consider the negative economic utilities 

caused by emission reduction and set emission caps appropriately for the manufacturers to 

maximize social welfare of the region. In this regard, tСe Рovernment’s decision problem on 

tСe emission-cap reРulation policy is to optimize tСe emission cap for eacС manufacturer 

witС an objective of maximizinР tСe social welfare of tСe local reРion.  

A successful emission-cap regulation policy relies on a strict but feasible emission cap 

that facilitates the best balance between emission reduction and economic effects. A cap set 

too high has no effects on environment improvement, but a cap set too low hinders the 

profitability of manufacturers if they find it too expensive to use green technologies.  

Emission cap-and-trade scheme: Emission cap-and-trade scheme is a market-based 

emission-reduction policy, in which manufacturers are allowed to trade their emission 

allowances that are initially allocated by the government. Such a scheme is popular and 

effective in regulating carbon and other emissions in some countries or areas (Dowdey, 

2012).  
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Under such an emission cap-and-trade policy, based on total allowances of the region, the 

government allocates some initial emission allowances (called emission cap in EU ETS) to 

all manufacturers in the region, and these emission allowances are tradable emission 

permits (or credits) which authorize emission rights to their holders. Note that, in order to 

distinguish the concept in the emission-cap regulation policy from that in the emission cap-

and-trade scheme, we use the concept “initial emission allowance” to represent “emission 

cap”, which is commonly used in EU ETS. Manufacturers have to reduce their emissions or 

purchase carbon credits if they anticipate a shortage of emission allowances, and they can 

also sell or bank their allowances if they anticipate a surplus. In this research, it is assumed 

that manufacturers sell out all their spare allowances at the end of a planning horizon. For 

each year, a manufacturer must surrender enough allowances to cover all of his emissions, 

otherwise heavy fines are imposed by the government (European-Commission, 2012). 

This research presents an allowance allocation mechanism to fulfill the initial emission 

allocation, where the government first sets an emission-reduction target (i.e., a percentage 

of emission reduction), and then allocates initial emission allowances to each manufacturer 

based on this target and the reduction baseline. It assumes that the emission trading market 

is efficient, such that the demand and supply information of emission allowances is 

available to all manufacturers in the region. All manufacturers plan their production 

according to the amount of initial and trading emission allowances they hold on hand and 

the carbon price. In this regard, tСe Рovernment’s decision problem on tСe emission cap-

and-trade scСeme is to optimize tСe emission-reduction tarРet witС an objective of 

maximizinР social welfare of tСe reРion.  

A successful emission cap-and-trade scheme requires appropriate emission-allowance 

allocation to the manufacturers at the beginning of the planning horizon. If the initial 

allowances are too high, for instance, it will not have any effect on emission reduction. This 

is exactly what happened on the EU ETS from 2005 to 2007, when the level of initial 

emission allowances in 2007 increased by 8.3% from those verified emissions level in 

2005, and carbon emissions actually went up (Rizos, 2011).  

Decision problem for manufacturers 

From the manufacturers‟ perspective, the decision problem is to optimize their production 

planning under a government-imposed emission-reduction policy. It is assumed that the 

manufacturers are homogenous in the same industry. Each manufacturer is equipped with a 
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green and a regular production technologies and can cope with the emission limitation by 

choosing different technology for production. A regular technology normally emits carbon 

dioxide at a relatively high level. In other words, producing one unit product with a regular 

technology emits more carbon but cost less than with a green technology. Under given 

governmental policy, manufacturers are encouraged to optimize the combination of both 

technologies to achieve the best balance between carbon emissions and total production 

costs. 

TСe manufacturer’s decision problems are to optimize Сis lonР-term and medium-term 

planninР under tСe Рovernment-imposed emission-reduction policies, witС objectives of 

maximizinР tСeir profits for lonР-term strateРic planninР, and minimizinР tСe production 

and operation costs for medium-term operational planninР. 

Long-term planning: In a long-term planning, manufacturers focus on decisions such as 

product designs, equipment and process choices, partner selection, and resource planning 

(Enderle and Tavis, 1998). This research considers a manufacturer‟s strategic decisions for 

a 2-4 year long-term planning.  

The manufacturer has a variety of retailers, through whom he supplies products to various 

geographic markets, while each retailer faces customers who are both price-sensitive and 

green-aware. Under an emission-cap regulation policy, the manufacturer‟s production 

emissions are limited and might not well satisfy all candidate retailers willing to sell his 

products, but under an emission cap-and-trade scheme the manufacturer might also refuse 

the retailers that cannot bring profits to him, although he could get over the emission 

limitation through allowance trade. Thus, it is important to select appropriate retailers for 

cooperation in a long-term planning.  

TСe manufacturer’s decision problem for a lonР-term planninР is to optimize tСe carbon 

footprint, tСe wСolesale price of Сis product, and retailer selection under tСe Рovernment-

imposed emission-reduction policy witС an objective of maximizinР Сis profit.  

Medium-term planning: In a medium-term planning, manufacturers focus on 

operational decisions such as material planning, technology arrangement, production 

quantities, and lot sizing (Enderle and Tavis, 1998), aiming to satisfy customer demand 

requirements and government-imposed emission-reduction policies. This research considers 

a manufacturer‟s operational decisions for a one-year medium-term planning.  

Under governmental policies, the manufacturer should appropriately plan his production 
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and choose technology for production in each period to cope with the emission constraints 

and reduce production and operation costs. 

TСe manufacturer’s decision problem for a medium-term planninР is to optimize Сis 

production planninР and tecСnoloРy selection under tСe Рovernment-imposed emission-

reduction policy witС an objective of minimizinР Сis overall cost. Particularly, under tСe 

emission cap-and-trade scСeme, tСe decision on emission-allowance trade sСould also be 

considered. 

Consistent with the above problem description, this research is divided into two parts. 

The first part addresses the decision problems for a manufacturer in response to the 

government-imposed emission-reduction policy. More specifically, decision problems for 

long- and medium-term planning are investigated, respectively. The second part 

investigates the emission-reduction policymaking problems for a local government. The 

specific research questions are summarized as follows. 

Part I: tСe manufacturers’ decision problems under Рovernment-imposed emission-

reduction policies 

1. How should manufacturers design the carbon footprint of their products when facing 

green-aware customer demands? 

2. How should manufacturers price their products?  

3. How should manufacturers select retailers to sell their products in retail markets? 

4. How should manufacturers optimize production planning? 

5. Which technology should manufacturers choose for production in each period?  

Note that questions 1-3 are involved in a long-term planning problem while questions 4-5 

are involved in a medium-term planning. 

Part II: tСe Рovernment’s policymakinР decision problems considerinР tСe manufacturers’ 

reactive operational decisions 

6. How should governments establish an emission-cap regulation policy? 

7. How should governments draft emission-reduction targets or allocate initial emission 

allowances under an emission cap-and-trade scheme?  
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8. How to optimize the market-based carbon price under an emission cap-and-trade 

scheme? 

.  Contributions 

This research aims at developing mathematical approaches and solution methodologies to 

solve the emission-reduction issues. The findings in this thesis could be applied by 

governments for establishing emission-reduction policies as well as by manufacturers for 

determining production planning under these policies.  

The decision problems for both the government and the manufacturers are analyzed and 

formulated by model-based Operation Research/Management Science (OR/MS) 

approaches. The specific contributions of the thesis are summarized as follows. 

Part I studies a manufacturer’s decision problems botС in strateРic and operational levels. 

On tСe strateРic level, we optimize the manufacturer‟s corporate decisions on product 

design, product pricing and retailer selection. The decision problems are formulated as 

integrated Stackelberg game models incorporating government-imposed emission-reduction 

policy. 

The price-sensitive and green-aware demand of the product is discussed in this research. 

The green feature is considered in product design (i.e., to determine the carbon footprint of 

the product). The manufacturer‟s production is driven by the customer demand that is a 

function of the retail price and carbon footprint of the product. However, in the literature, 

the market forces (i.e., the feature of customer driving) are largely ignored on emission-

reduction issues (Tang and Zhou, 2012).  

The retailer selection problem is analyzed under a frame of Stackelberg game, so that the 

decision process between the manufacturer and the retailers can be well described. 

Moreover, with such a game model, maximal profits of both the manufacturer and the 

selected retailers could be achieved. The existing studies on partner selection focus mostly 

on the benefits of either the system coordinations or the different power structures among 

the stakeholders, whereas largely ignoring the benefits of both sides. Nevertheless, little 

literature on partner selection considers environmental issues in OR/MS research area. 

The model formulated in this reserch is proved to be NP-hard. A hybrid algorithm taking 

the advantages of genetic algorithm, dynamic programming approach and analytical 
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analysis method is developed to deal with this difficulty and solve the model efficiently. 

On tСe operational level, the manufacturer‟s decisions on production planning and 

technology selection are optimized, considering two types of emission-reduction policies, 

respectively.  

The manufacturer‟s production in each period is constrained by a mandatory emission 

cap either imposed by the government in an emission-cap regulation policy or limited by 

the environmental bearing capacity in an emission cap-and-trade scheme. Therefore, the 

manufacturer should balance the production cost and emissions through a technology 

selection strategy, and optimize his production planning to minimize the overall cost. 

Particularly, under an emission cap-and-trade scheme, the allowance trading strategy is 

optimized for the manufacturer. The equivalent global production cost function of the 

manufacturer is non-continuous, which makes it difficult to solve our models (Keha et al., 

2006). However, we develop a dynamic programming algorithm to solve the proposed 

models in polynomial time, based on mathematical properties we prove.  

The studies closest to this research are the single item lot sizing problem. Although some 

researchers begin to pay attention to the problem incorporating emission issues, few of 

them consider either technology selection or production capacity (i.e., emission cap). We 

fill the gap in the research area and develop a polynomial algorithm to enhance the research 

on lot sizing problem. 

Part II studies a Рovernment’s policymakinР problems reРardinР two types of emission-

reduction policies, respectively. 

The government establishes or adjusts her emission-reduction policies with an objective 

of maximizing the social welfare consisting of economic and environmental utilities. The 

policymaking problems are analyzed and formulated as Stackelberg game models. With the 

models, the government can optimize her decisions by taking advantages of observing the 

manufacturers‟ reactive operational decisions, which directly determine the social welfare 

of the region. The mathematical models are at their advantages for analyzing the decision 

process between the government and the manufacturers, and for optimizing the decisions of 

multiple parties.  

Under the emission cap-and-trade scheme, particularly, Cournot game competition model 

is formulated to optimize the market-based carbon price. Since the mathematical models are 
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non-concave and analytically intractable, hybrid algorithms are developed to solve the 

models efficiently. 

In this research, model-based OR/MS approaches are applied to analyze and optimize the 

government‟s emission-reduction policies. The exising studies on emissions reductions 

mainly focus on the impacts of governmental policies, whereas largely ignoring how to 

establish or adjust such policies to improve the social welfare. Moreover, none of them 

considers such practical issues that the manufacturers‟ reactive operational decisions should 

be considered when the government establishes her emission-reduction policies. 

.  Thesis Outline  

This thesis is organized as follows. 

Chapter 2 provides a literature review of the related research. The gaps between the state 

of the art and the need of the real world are identified, and the relevance of the research is 

also pointed out.  

Chapter 3 investigates the manufacturer‟s long-term strategic decision problems under an 

emission-cap regulation policy. More precisely, the manufacturer‟s decisions on carbon 

footprint, wholesale price and retailer selection are optimized by a Stackelberg game 

model. The objective is to maximize the manufacturer‟s profit. 

Chapter 4 discusses the manufacturer‟s medium-term operational decision problems 

considering two types of government-imposed emission-reduction policies, respectively. 

We optimize the manufacturer‟s decisions on production planning and technology selection 

for a finite production planning horizon. In particular, the allowance trading strategy is 

considered under emission cap-and-trade scheme. The objectives are to minimize overall 

costs of the planning horizon.  

Chapter 5 is devoted to optimize the government‟s policymaking decisions on emission-

reduction policies to maximize the social welfare of a local region. The emission caps and 

emission-reduction target are optimized for the emission-cap regulation policy and the 

emission cap-and-trade scheme, respectively.  

Chapter 6 draws some conclusions of this research and discusses some potential future 

research directions. 
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Chapter 2 

 

Literature Review 

This chapter reviews the literature related to our research. As discussed in the previous 

chapter, the focus is on governments and manufacturers‟ decision problems in consideration 

of emission-reduction issues. As shown in Figure 2.1, studies on environment-related 

operations management and emission-reduction policies are most relevant to this work.  

We first review relevant Operations Research/Management Science (OR/MS) research 

works incorporating environmental issues (especially carbon emission issues). Then, we go 

over the literature on emission-reduction policies with regard to our research.  

This chapter is organized as follows. Section 2.1 classifies the OR/MS research works 

into strategic and operational levels. On the strategic level, the research regarding partner 

selection and sustainable product design is reviewed. On the operational level, the research 

on production planning and technology selection is investigated. Note that technology 

selection on operational level is most relevant to the production planning problem with 

multiple production modes. Section 2.2 briefly reviews the literature on emission-reduction 

policy and points out the research gaps. 

Strategic issues Operational issues

Product design

Partner selection

Supply chain design

Manufacturing process 
Technology choice

... 

Production planning

Technology/mode selection

Procurement management

Reverse supply chain 
operations

...

Policy optimization Policy analysis

Optimization of emission-
reduction policies

...

Policy comparison

Environmental impacts

Social costs of 
emission reduction

...

represents the issues focused in this research. Note that both governments’and manufacturers’decision problems 
are studied by OR/MS methods.

Emission-reduction issues

Interactive decision 
process 

Manufacturers’decision problems
Environmental operations management

Governments’decision problems
Emission-reduction policies

 

Figure 2.1 Framework of literature related to our research 
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.  Environmental Operations Management 

This section reviews relevant literature regarding manufacturers‟ decision problems. The 

closest studies are related to sustainable operations management (Kleindorfer et al., 2005) 

or sustainable supply chain (Linton et al., 2007; Seuring and Müller, 2008; Tang and Zhou, 

2012), which contribute to the operations management research on environmental issues 

with Operations Research/Management Science (OR/MS) methods (Bloemhof-Ruwaard et 

al., 1995). Among these works, Seuring and Müller (2008) and Tang and Zhou (2012) 

provide brief research review from different viewpoints and classifications. 

We review recent OR/MS research works related to this research in the following way, in 

which the literature is classified based on whether a strateРic or operational issue is 

investigated. The strategic (resp., operational) issue is related to the long-term (resp., 

medium-term) planning decision problems for the manufacturer in this research. More 

specifically, the strategic issue includes sustainable product design and partner selection, 

while the operational issue includes production planning and technology (or mode) 

selection.  

In the following subsections, the first part (Subsections 2.1.1 and 2.1.2) deals with 

various strategic issues including partner selection and sustainable product design. The 

second part (Subsections 2.1.3) examines the operational issues consisting of production 

planning as well as technology selection. 

. .  Partner Selection  

Under emission-reduction regulations imposed by the government, manufacturers face 

retailer selection issues since 1) appropriate retailers who bring profits to them should be 

selected for cooperation; 2) they may not supply all retailers willing to sell their products 

because of their limited production capacity caused by emission limitation. The relevant 

literature is mainly on partner selection issues in supply chain.  

There are vast majority of studies concerning partner selection, especially 

supplier/vendor selection. To classify them, a first distinction can be made by considering 

whether single sourcing where demands are procured from the best supplier or multiple 

sourcing where they are split and satisfied by several suppliers (de Boer et al., 2001). In 

addition, as reported by Aissaoui et al. (2007), another distinction can be made by 
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considering whether the model involves a single item or multiple items. The framework of 

literature regarding partner selection can be briefly classified and stated by Figure 2.2. 

represents the issues focused in this research. 

Partner selection

Supplier selection

Multiple sourcesSingle source

Multiple itemsSingle itemMultiple itemsSingle item

 

Figure 2.2 Framework of literature regarding partner selection 

Contemporary OR/MS research offers a range of methods and techniques that may 

support the supplier-selection decision makers in dealing with the complicated decisions. 

The vast majority of the decision models applied to the supplier selection are multi-criteria 

approaches and mathematical programming methods.  

This subsection investigates the existing studies regarding supplier selection from a 

technique-oriented perspective, such that studies are classified into multi-criteria and 

mathematical programming based approaches. In addition, game theories are often applied 

to analyze multi-player decision process in supply chain. Research related game theory in 

supply chain is also investigated in this section. In what follows, literature is reviewed 

based on this classification. 

. . .  Multi-criteria Approaches 

The selection process involves the determination of quantitative and qualitative 

factors so as to select the most appropriate suppliers for cooperation, which ensure 

business competitiveness and sustainability. Consequently, the partner selection requires 

the consideration of multiple factors or criteria, and hence multi-criteria decision-

making approaches are intensively investigated and applied both in academic research 

and in practice. 

A large number of multi-criteria approaches have been proposed for supplier selection 

since its first discussion by Dickson (1966), such as Analytic Hierarchy Process (AHP), 

Data Envelopment Analysis (DEA), Fuzzy Set Theory (FST), Simple Multi-Attribute 

Rating Technique (MART), etc (de Boer et al., 2001; Aissaoui et al., 2007; Wan Lung, 

2008; Ho et al., 2010). In what follows, we briefly introduce these approaches applied in 

partner selection. 
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a. Analytic (ierarchy Process A(P  

AHP is one of the most intensively used multi-criteria decision-making approaches, 

which considers both tangible and intangible factors in a hierarchical manner (Saaty, 1990). 

It provides a simple but systemic multi-criteria evaluation method for supplier selection. 

The main idea is to rank suppliers by pairwise comparisons based on the score of the 

candidate alternatives. AHP structures a multi-objective and multi-criteria problem 

hierarchically, and then each level of the hierarchy separately is investigated (Liu and Hai, 

2005; Vaidya and Kumar, 2006).  

AHP is widely applied in supplier selection, such as Ghodsypour and O'Brien (1998), 

Akarte et al. (2001), Chan (2003), Liu and Hai (2005) and so on. Some studies integrate 

AHP with some other approaches to solve the supplier selection problem. Wang et al. 

(2004) integrate AHP and preemptive goal programming model to investigate a supplier 

selection problem considering both qualitative and quantitative factors. AHP is also 

integrated with FST, DEA and some mathematical programming methods for supplier 

selection (Kilic, 2013; Pang and Bai, 2013; Shaw et al., 2013). 

b. Data Envelopment Analysis DEA  

DEA has been proved to be an excellent tool in evaluating the performance of decision-

making units since its outstanding ability to handle multiple conflicting attributes. The main 

disadvantages of DEA models are the ignored hierarchy and dependencies among criteria 

(Wu and Olson, 2010; Falagario et al., 2012).  

Because of the advantages of DEA, a large number of studies contribute to supplier 

selection and its related problems, such as Liu et al. (2000), Talluri and Narasimhan (2004), 

Saen (2006), Wu (2009), etc. In addition, some literature develops evaluation and selection 

models based on integrated approaches of DEA (Ramanathan, 2007; Saen, 2007; Ha and 

Krishnan, 2008). 

c. Fuzzy Set Theory FST   

Fuzzy set theory was first introduced by Zadeh to solve problems involving the absence 

of sharply defined criteria (Zadeh, 1965). FST is widely applied to investigate supplier 

selection problem, in which linguistic values are used to evaluate the supplier‟s 

performances instead of numerical values (Bevilacqua and Petroni, 2002). The 

disadvantage of FST models are the difficulty of evaluating membership function and the 
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presence of various ways of determining fuzzy rules (Ekici, 2013). 

In addition, as an important variant of fuzzy theory, fuzzy AHP methods are proposed to 

solve various types of supplier selection problems (Kahraman et al., 2003). Fuzzy AHP 

apply the concepts of fuzzy set theory and hierarchical structure analysis to present 

systematic approaches in selecting or justifying alternatives (Bozbura et al., 2007). A lot of 

research with regards to suppler selection solved by FST methods can be found in the 

existing literature, such as (Lee et al., 2009) Ordoobadi (2009), Amid et al. (2011), Zeydan 

et al. (2011), Chan et al. (2008), Chan and Kumar (2007), Pang and Bai (2013), etc.  

In addition to these methods, some multi-criteria approaches such as Analytic network 

process (ANP) (Jharkharia and Shankar, 2007), Cluster Analysis (CA) (Weber et al., 1991), 

Case-Based Reasoning (CBR) (Watson and Marir, 1994), Simple Multi-Attribute Rating 

Technique (SMART) (Ho et al., 2010), and Multi-Attribute Utility Theory (MAUT) (Min, 

1994; Sanayei et al., 2008) are also widely applied for supplier selection. 

. . .  Mathematical Programming  

Given an appropriate decision setting, mathematical programming allows the decision-

maker to formulate the decision problem as a mathematical model in order to maximize or 

minimize the objective by optimizing the variable(s) (e.g. the selection decision and the 

order allocation corresponding to each supplier). The mathematical programming approach 

has the advantages to well describe the real issues and obtain the satisfied solutions due to 

their ability to find a balance among some different, even conflicting, criteria.  

Among such approaches, the following models are most commonly used in supplier 

selection: linear, mixed integer, multi-objective and goal programming models. In what 

follows, we investigate these approaches used in the existing literature. 

a. Linear Programming LP  

Linear programming is applied to solve a large variety of problems after it was first 

developed by Kantorovich in 1939 (Kantorovich, 1940), especially its most common 

application on resources allocation. As a variant of resource allocation, supplier selection 

problem is extensively investigated with LP models in literature. 

Stanley et al. (1954) develop a mathematical discipline of linear programming to evaluate 

bids for government procurement. With their mathematical model, the over-all cost of the 
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government is minimized by choosing appropriate contracts. Ghodsypour and O'Brien 

(1998) integrate analytical hierarchy process and linear programming to discuss tangible 

and intangible factors in selecting the best suppliers and allocating optimal order quantities 

to them. Their model is suitable for supplier selection with and without capacity constraints. 

Talluri and Narasimhan (2003) consider performance variability measures in evaluating 

alternative suppliers. They propose a max-min productivity-based approach to identify the 

supplier groups for effective selection. Their decision model is transformed into two linear 

programming models, which aim to maximize the performance of a supplier against the 

best target measures set by the buyer. Ng (2008) proposes a weighted linear programming 

model for the supplier selection to maximize the scores of suppliers. Similar to AHP, the 

decision makers need to determine the weightings of criteria of suppliers. 

Most of the earlier models just focus on cost, quality and lead time issues, but not pay 

enough attention to carbon emission on supplier evaluation. Shaw et al. (2012) is the first 

group of researchers considering environmental sustainability in supplier selection problem. 

An integrated approach is proposed for supplier selection, where fuzzy-AHP and fuzzy 

linear programming is used to formulate their problem.  

b. Mix )nteger Programming M)P  

In regard to integer programming models, Kasilingam and Lee (1996) propose a mixed-

integer programming model for a firm to select vendors by determining order quantities to 

minimize the costs of purchasing, transportation, receiving poor quality parts. Degraeve et 

al. (2000) formulate a supplier selection model based on the Total Cost of Ownership 

(TCO). With the real world data and case study, they point out that the model within 

inventory management is useful to reduce the costs of the system. Ghodsypour and O‟Brien 

(2001) present a mixed-integer nonlinear programming model to solve the multiple 

sourcing problems in vendor selection focusing on minimizing the total cost. They 

transform the model into a pure non-linear programming by branching the integer variables, 

and substituting their values in the programming, and then solve the problem by Excel 

Solver.  

Talluri (2002) proposes a 0-1 integer linear programming model to evaluate alternative 

supplier bids based on ideal targets set by the buyer, and to select the best bid aiming to 

achieve lowest cost. Except for focusing on the benefit of the buyer, the model also 

provides effective negotiation strategies for unselected supplier bids to make them 
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competitive. Murthy et al. (2004) consider the vendor selection problem in a make-to-order 

supply chain. In their approach, a 0-1 integer linear programming model is formulated to 

minimize sourcing and purchasing costs under the capacity constraint. To solve the 

problem, they develop a heuristic procedure based on Lagrangian relaxation.  

Hong et al. (2005) consider a multi-period procurement problem and present a mixed-

integer programming model for the supplier selection problem. The model is to determine 

the optimal number of suppliers in a planning horizon and the optimal order quantity in 

each period, aiming to maximize the revenue of the buyer. In their model, suppliers‟ supply 

capacity and customer demands over a period are considered as varying features. Cao and 

Wang (2007) propose a two-stage combinatorial optimization model for vendor selection 

issues. They develop a solution procedure to find the exact optimal solution of their model 

based on some properties of optimal solutions.  

Che et al. (2009) discuss a cooperator selection and industry assignment problem in 

supply chain networks. Based on the line balancing technology, they formulate a 

mathematical model, and a genetic algorithm is adopted with an objective of minimizing 

the total delivery delay loss. Li et al. (2009) study a supplier selection problem considering 

the supply contract within non-stationary stochastic price and demand. They show that the 

duration of the contract is an import factor for the replenishment policy and selection 

decision.  

Mendoza and Ventura (2010) develop a mathematical model for supplier selection and 

inventory control problems in a serial system. Their model is used to select the suppliers for 

the manufacturer and allocate orders to the selected suppliers. Recently, Zhang and Zhang 

(2011) and Mansini et al. (2012) consider the quantity discounts and constrained order 

quantities in the supplier selection problem.  

c. Multi-objective Programming MOP   

Multi-objective programming allows the decision makers to have a heap of objective 

functions. MOP is widely used in supplier selection because a MOP model is effective 

in dealing with multiple and conflicting objectives. Weber and Current (1993) focus on 

a procurement issue and optimize the decisions of supplier selection and order 

quantities for the selected suppliers. A multi-objective programming model is 

formulated to analyze the tradeoffs among multiple criteria involved in the supplier 

selection problem.  
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Hammami et al. (2003) propose a MOP model to select partners for an engineering 

project. In their model the submitted bids are evaluated with on quality, cost and delivery 

time considerations. In the model, multiple activities in the same bid and indirect-

coordination cost of the buyer are not allowed. Liao and Rittscher (2007) develop a MOP 

model considering supplier selection, procurement lot sizing and carrier selection decisions 

over a multi-period planning horizon, with an objective of minimizing the total logistic cost 

including the purchasing cost, the ordering cost, the inventory holding cost and the 

transportation cost and the late deliveries. In their model, capacity is considered over a 

whole planning horizon. 

By considering multiple items, Narasimhan et al. (2006) discuss a procurement problem 

where a buyer purchases multiple products from the multiple suppliers, considering the 

products‟ different stages of the product life cycles (PLCs). They propose a MOP model to 

optimize supplier selection based on the relative importance of the criteria across multiple 

products over their PLC. Wadhwa and Ravindran (2007) formulate the supplier selection 

problem as MOP models. A sourcing network is considered, in which one or more buyers 

procure multiple items from different suppliers. Three objectives, including price, lead-time 

and rejects, are considered in the model. They apply their models in a realistic example to 

compare and illustrate the results of different models. 

Some studies integrate MOP with some other approaches to investigate supplier 

selection problem. Wu et al. (2009) integrate an analytic network process (ANP) 

approach and mix-integer multi-objective programming (MIMOP) method and 

formulate their problem as a two-stage approach, called ANP-MIMOP model. ANP is 

used to calculate the priorities of different criteria for supplier selection, while a 

MIMOP method is applied to determine the supply chain structure and the optimal 

allocation of order quantities based on the priorities obtained in the first stage. Wu et al. 

(2010) consider the risk factors in the supplier selection problem and propose a fuzzy 

multi-objective programming model to solve their problem. Jolai et al. (2013) propose a 

multi-objective mixed integer nonlinear programming model to investigate a supplier 

selection and order allocation problem, where a buyer orders multiple products from 

several suppliers in multi-period planning horizon. Dual objectives, consisting of 

maximizing the total quantities of purchase from suppliers and minimizing the total cost 

of purchase, are required by the buyer.  
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d. Goal Programming GP  

As a branch of multi-objective programming optimization, goal programming (GP) is 

widely applied in partner selection. Karpak et al. (1999) discuss a supplier selection 

problem of a US original equipment manufacturing company. They formulate the problem 

as a goal programming model considering multi-criteria decisions. The objective is to select 

appropriate suppliers and allocate purchase orders among them with objectives of 

minimizing product acquisition costs and maximizing total product quality and delivery 

reliability. Wang et al. (2004) integrate applied AHP method and GP model to study a 

supplier selection and order allocation problem, where AHP is used to choose a supplier 

selection strategy and then a pre-emptive goal programming (PGP) model is applied to 

optimize the purchase orders of the selected suppliers. 

Pati et al. (2008) formulate a mixed-integer goal programming model to determine the 

facility location selection strategy considering a decision making framework of the multi-

item, multi-echelon and multi-facility. Chang et al. (2013) integrate multi-choice and multi-

segment goal programming to solve a supplier selection problem considering imperfect-

quality and price-quantity discounts.  

A great group of studies that integrate GP models with multi-criteria approaches (e.g., 

AHP, ANP, FST, etc.) can be found in the existing literature (Büyüközkan and Çifçi, 2011; 

Azadi et al., 2013; Ho et al., 2013; Wang et al., 2013). In these works, the multi-criteria 

approaches are commonly applied to score and identify the appropriate partner(s), while GP 

models are in charge of other decisions, such as order quantity allocation. 

. . .  Game Theory in Supply Chain  

Game theories are useful to analyze the decision process when multiple players are 

involved in partner selection issues. However, few mathematical models within game 

theory that deal with the partner selection issues are formulated in the previous 

literature, although game theory has been widely used to analyze the interactive 

decision processes among firms in a supply chain (Wang and Parlar, 1994; Wang and 

Gerchak, 2001; Granot and Sošić, 2003; Cachon and Netessine, 2004; Slikker et al., 

2005; Cai and Kock, 2009).  

Wu et al. (2005) study the coordination in a one-vendor and one-retailer supply 

chain under a VMI (vendor managed inventory) contract. According to the contract, 
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the vendor, as a Stackelberg leader, manages the retailer‟s inventory and bears 

inventory holding cost; the retailer sells goods and determines the retail prices. Their 

results suggest that such a contract achieve optimal profit coordination between the 

vendor and the retailer, where the vendor and retailer freely interact between the 

vendor and its retailer.  

Bichescu and Fry (2009) analyze a decentralized supply chain operating with a VMI 

agreement and a continuous review inventory policy. Among different channel power 

relationships, they find that when the vendor acts as the Stackelberg leader, the system 

incurs the lowest costs. Their findings also indicate that power concentration at the retailer 

leads to a higher cost than a system where the vendor is the leader. However, such a system 

is more efficient than those where power is equally distributed between the vendor and the 

retailer.  

Yu et al. (2009) study a pricing problem in an inventory system where one manufacturer 

serves multiple retailers. In the system, the manufacturer purchases materials to produce 

products, and distributes them to the retailers. The retailers buy the products from the 

manufacturer at a wholesale price, and sells them at retail prices. Under the Stackelberg 

game frame, the manufacturer knows the retailers‟ complete information. The manufacturer 

also knows how to utilize the information to maximize his profit. Their analyses also show 

that both the manufacturer and the retailer can improve their profits using a cooperative 

contract. 

Viswanathan (2009) models discount pricing decisions in a vendor-buyer supply chain 

using Stackelberg game. The results show that the leader‟s optimal conditional strategy 

leads to a perfect coordination for the whole system. Chen et al. (2010) deal with 

coordination problems in a separated distribution system. By modeling decision -making 

with a Stackelberg game in cooperative and non-cooperative settings, they find that the 

non-cooperative decentralization leads to a higher retail price, less inventory and 

channel-wide profit. 

By considering supplier selection issues, Talluri (2002) use game theory to analyze 

the negotiation of bid selection and proposes an integer programming model to help the 

buyer to select optimal set of bids that satisfy its demand requirements. Their results 

show that the model also assists in proposing effective negotiation strategies for 

unselected sellers enhancing their competitiveness. Laaksonen et al. (2009) model the 
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real cost structures of customer-supplier relationships through a trust game theory. They 

provide empirical data regarding the potential benefits of interfirm trust in three 

different relationships of an actual supply-chain. Results show interfirm trust can 

decrease the transaction costs of the relationship and provide competitive advantage for 

partner selection.  

. . .  Summary of Literature Review on Partner Selection  

A summary of studies reviewed in this sebsection regarding supplier seclection is given in 

Table 2.1, in which the literature is classified according to the detailed reivews in the 

previous subsections. Among these studies, multi-criteria appoaches and mathematical 

programing methods are extensively applied to investigate the supplier selection problem. 

However, little literature focuses on retailer selection.  

Nevertheless, even for the supplier selection issues, most of the studies only consider the 

optimal objective of the buyer. Few papers like Gheidar Kheljani et al. (2009) consider the 

costs of both the suppliers and the buyer with an objective of minimizing the overall costs 

of the supply chain. The literature considering game theory focuses on either supply chain 

coordinations or different power structures between the vendor and retailers. There is an 

implicit assumption underlying these studies: supply chain partners (i.e., vendors and 

retailers) are pre-determined. In this regard, partner selection is rarely combined with game 

theory.  

This research is different from the existing studies, it considers a retailer selection 

problem for a manufacturer, where retailers can optimize their decisions via reacting to the 

vendor‟s decisions and the manufacturer can observe the reactions of the retailers under a 

frame of Stackelberg game. Both the manufacturer and selected retailers can maximize their 

individual profits through retailer selection.  

In addition, although researchers are paying more and more attention on sustainble 

supply chain and green supplier selection, most of them apply multi-criteria approaches, 

such as AHP and FST (Lee et al., 2009; Büyüközkan and Çifçi, 2011; Shaw et al., 2013). 

To the best of our knowledge, few studies on partner selection discuss environmental 

issues with mathematical programmig methods. Thus, this research tries to fill up these 

gaps.  
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Table 2.1 Summary of approaches for partner selection 

Multi-criteria approaches  

 single sourcing multiple sourcing 

 single item multiple items single item multiple items 

AHP 

Ghodsypour 
and O'Brien 
(1998),  
Chan (2003) 

 Akarte et al. (2001), Liu and Hai 
(2005), Pang and Bai (2013), 
Shaw et al. (2013)* 

Wang et al. (2004) 
 Kilic (2013) 

DEA 
  Liu et al. (2000), Talluri and 

Narasimhan (2004), Wu (2009), 
Ramanathan (2007) 

Saen (2006), Saen (2007), 
Ha and Krishnan (2008) 

FST 

  Pang and Bai (2013), (2011)*, 
Lee et al. (2009)* 

Kilic (2013), Ordoobadi 
(2009), Amid et al. (2011), 
Zeydan et al. (2011), Chan 
et al. (2008), Chan and 
Kumar (2007) 

Mathematical programming models 

 single sourcing multiple sourcing 

 single item multiple items single item multiple items 

LP 
  Stanley et al. (1954), Talluri and 

Narasimhan (2003), Ng (2008), 
Shaw et al. (2012) 

Chappell (1974) 

MP 

Talluri (2002)  Ghodsypour and O‟Brien (2001), Cao 
and Wang (2007), Che et al. (2009), Li 
et al. (2009), Mendoza and Ventura 
(2010), Hong et al. (2005) 

Kasilingam and Lee (1996), 
Degraeve et al. (2000), 
Murthy et al. (2004), Mansini 
et al. (2012) 

MOP 

  Wu et al. (2010), Weber and 
Current (1993), Liao and Rittscher 
(2007), Wu et al. (2009), Hammami 
et al. (2003), Hajidimitriou and 
Georgiou (2000) 

Wadhwa and Ravindran 
(2007), Narasimhan et al. 
(2006), Jolai et al. (2013) 

GP 

  Azadi et al. (2013), Ho et al. 
(2013) 

Karpak et al. (1999), Wang 
et al. (2004), Pati et al. 
(2008), Wang et al., 2013, 
Wang et al. (2013) 

Game models used in supply chain 

 partner selection non selection 
at the side of buyer Talluri (2002), 

 Laaksonen et al. 
(2009) 

Wu et al. Wu et al. (2005), Bichescu and Fry 
Bichescu and Fry (2009), Yu et al. (2009), 
Viswanathan Viswanathan (2009), Tyan and Wee 
(2003), Netessine and Rudi (2004), Chen et al. 
(2010) 

at the side of supplier   
overall benefits of the system  Gheidar Kheljani et al. (2009) 

Note: * indicates that environmental feature is considered in supplier selection.  
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. .  Sustainable Product Design 

Sustainable product design in terms of carbon footprint is a necessary and important 

instrument to satisfy environmentally conscious customer demands and government 

regulation policies. Plenty of literature can be found in this topic, most of which focus on 

the functional design, manufacturing process design, material selection and so on. But, few 

OR/MS related works can be found on sustainable product design (Tang and Zhou, 2012).  

However, we can find some model-based studies regarding product design. Skerlos et al. 

(2006) investigate the challenges to sustainable product design with regard to business 

incentives and sustainable design metrics. Two cases are presented and studied in starkly 

different approaches: empirical observation and quantitative modeling. Their results show 

that mathematical approach provides valuable supports for the development of government 

policies facilitating sustainable design. They point out that a successful sustainable design 

needs good consideration of the balance between public and private interests in the course 

of satisfying customer and other direct stakeholder interests.  

In the context of environmentally-aware market and emission-reduction policies, a good 

sustainable product design requires full trade-offs among functional performance, 

environmental impact (Linton et al., 2007) and economic success (Bloch, 1995). Park and 

Seo (2006) develop a knowledge-based approximate life cycle assessment system 

(KALCAS) to evaluate the environmental impacts of product design alternatives. They try 

to seek an approximate life cycle assessment of product design alternatives with solid 

models in a collaborative design environment. Eichner and Pethig (2001) develop a general 

equilibrium model to analyze green design process and aim to investigate the impacts of 

policy instruments on the product design. Similar to Park and Seo (2006), the 

environmental factor is considered in their research. 

With regard to the product design for manufacturing, Gupta et al. (2011) focus on the 

product design and present a framework to develop comprehensive product metrics for 

sustainable manufacturing and perform a priority evaluation of these metrics. A case study 

is provided to illustrate influencing factors for electronic products with an analytic 

hierarchy method. Wang and Tseng (2011) present a methodological framework that applies 

modular design methodology to manage product end-of-life strategy systematically. Their 

objective is to maximize manufacturers‟ total value recovered from various product end-of-

life strategies. They provide examples to demonstrate the applicability and effectiveness of 
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the developed methodology.  

Different from Gupta et al. (2011) and Wang and Tseng (2011), Cachon and Swinney 

(2011) consider the customer response and investigate the issue of whether quick response 

and enhanced design are complements or substitutes in fast fashion product design. They 

develop a model of such issue and compare its performance among three alternative 

systems (i.e., quick-response-only alternative, enhanced-design-only and traditional 

systems). Their results show that it is important to consider the force of the market for 

product design. Kim and Chhajed (2002) also consider customer reaction or market force 

for product design. They derive a measure of multi-dimensional customer preference and 

offer insights into the optimal product design considering multiple attributes. A 

mathematical model is formulated to optimize producer‟s decisions on product pricing and 

product attributes for deferent segment markets, with an objective of maximizing 

producer‟s profit. However, a horizontal product line is based on different ranking of 

quality dimensions for different types of customers, which needs not to be considered in our 

research. 

 With regard to the multiple attributes for product design, Krishnan and Zhu (2006) study 

development intensive products (designing a special class of products) for which the fixed 

costs of development far outweigh the unit-variable costs. Their results show that the 

traditional approach to product-line design developed for variable cost-intensive products 

does not carry over to development intensive products. For example, additional quality 

dimensions such as a product‟s usability that the low-end customer segment cares about 

should be identified to win a low-end emerging market. After the research, Krishnan and 

Ramachandran (2011) consider customers‟ utility in product design. They develop an 

integrated pricing and design approach to improve both firm profitability and consumer 

welfare through a modular upgradable architecture. 

In the consideration of market force, Williams et al. (2011) investigate the impacts of 

retail channel structures on product design. They present a strategic framework that enables 

manufacturers to anticipate retailers‟ reactions to manufacturers‟ new designs in terms of 

retail and wholesale prices. Such a strategy helps manufacturers to understand how 

different channel structures impact the engineering design. In our research, a similar 

process is achieved by Stackelberg game analysis frame, in which the manufacturer 

observes costumers‟ reaction to his product design (i.e., carbon footprint) though retailers‟ 
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demand function. However, Williams et al. (2011) do not consider the environmental 

factors in the product design. 

Considering the green feature (i.e., production emissions) of a product as one quality 

attribute, Chen (2001) studies the green product design under the consideration of the 

interactions among the customers‟ preferences, the producer‟s product strategies, and the 

governments-imposed environmental standards. They develop a quality-based model to 

analyze the strategic policy of product design with conflicting traditional and environmental 

attributes. Customers‟ preferences regarding ordinary and green product and producer‟s 

strategic decisions regarding products‟ quantity, quality and price are considered in their 

model. To the best of our knowledge, Chen (2001) is one of the few works considering 

green feature of a product as one quality attribute for the product design in the OR/MS 

research. 

In summary, a large stream of literature investigates the impacts of the environmental 

policies on the sustainable product design (Eichner and Pethig, 2001; Park and Seo, 2006; 

Linton et al., 2007), but the force of market is not considered. Another important stream of 

studies consider customer reaction and market force in product design (Kim and Chhajed, 

2002; Cachon and Swinney, 2011). However, the environmental factors are not involved in 

their works. In these studies, to the best of our knowledge, very few of them investigate the 

product design in consideration of both the environmental policies and the market force.  

It should also be pointed out that our research is different from the existing literature. The 

major difference is that the government-imposed emission regulations are considered. Due 

to such regulations, the production of the manufacturer is limited by a capacity, which 

makes the problem more challenging (an NP-hard problem) but provides some interesting 

managerial insights.  

In addition, this research assumes that the customer demands are both price-sensitive and 

green-aware, i.e., a trade-off between price and carbon footprint of the product should be 

made for product design. In other words, market force identified by the price and carbon 

footprint is considered in this research. 

. .  Production Planning  

Production planning is commonly identified by the length of the planning horizon taken 

into account: long-term, medium-term and short-term production planning. Long-term 
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planning usually focuses on the strategic decisions such as process and supply chain design, 

and equipment, resource facility choice, pursuing long-term benefits. Medium-term 

planning often determines production quantities and timing over a finite planning horizon, 

in order to minimize (resp. maximize) overall costs (resp. profits) while satisfying customer 

demands and capacity constraints. In short-term planning, day-to-day operational planning 

decisions are involved, such as job sequencing and material control. 

This research mainly focuses on medium-term production planning considering 

manufacturing planning and inventory management (Gelders and Van Wassenhove, 1981; Mula 

et al., 2006). More specifically, the most relevant literature to ours is the lot sizing problem 

(LSP). The problem starts with the demand which is time-varying (also called dynamic 

demand). This demand is obtained from forecasting, or computed under MRP (material 

requirement planning) framework, and assumed to be deterministic. Lot sizing decisions consist 

of determining the production quantity of each type of products, so as to minimize production 

and inventory costs. It is important for a manufacturer to make appropriate lot sizing decisions 

to improve his performance and enhance his competitiveness. In what follows, we mainly 

review the literature regarding the lot sizing problem.   

The research on lot sizing problem had been widely extended after it was first discussed 

by Wagner and Whitin (1958). The existing works can be classified into several groups 

according to the following features, which distinctly affect the modeling and complexity of 

the problem.  

 Planning horizon : finite or infinite 

 Number of levels: single or multiple level(s) 

 Number of items: single or multiple item(s) 

 Capacity constraints: uncapacitated or capacitated 

 Demands: deterministic or stochastic 

 Setup structure: with or without setup cost/time 

 Inventory shortage: with or without backlogging/lost sales 

 Production mode: single or multiple mode(s) 

Furthermore, the cost (production and inventory costs) structure plays vary important role 

in solving these problems. A large number of works on lot sizing problem and its variants 

can be found in literature. Figure 2.3 shows the framework of the literature on production 

planning related to this research. We concentrates the literature review on the single-item 
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lot sizing problem (see Subsection 2.1.3.1), which is closest to our research. In addition, a 

brief review on multi-item lot sizing problem is also addressed to make comparison (see 

Subsection 2.1.3.2). In particular, some variants related to this research are also investigated 

briefly, including the lot sizing problem with multiple production modes, piecewise cost 

structure and emission constraints (see Subsection 2.1.3.3).  

represents the issues focused in this research. 

Medium term

Lot sizing problem

Multiple itemsSingle item

CapacitatedUncapacitated

Multiple modesSingle mode

Production planning

Short termLong term

Multiple levelsSingle level

Non emission constraint

Emission constraint

 

Figure 2.3 Framework of literature on production planning 

. . .  Single-item Lot Sizing Problem 

This subsection investigates the single-item lot sizing problem (SI-LSP). We first briefly 

review the uncapacitated single-item lot sizing problem (USI-LSP), and then go over the 

capacitated single-item lot sizing problem (CSI-LSP). 

a. Uncapacitated Single-item Lot Sizing Problem 

a.  Mathematical Model 

The classical uncapacitated single-item lot sizing problem (USI-LSP) aims to determine 

single-item production planning, including the quantity and the timing for production, to 

satisfy deterministic but dynamic demand with an objective of minimizing the total costs, 

consisting of production and inventory costs, over a multi-period planning horizon. 

Different from USI-LSP model, the well-known economic order quantity (EOQ) model 

(Harris, 1990) requires that demand is at a stationary rate and the planning horizon is 

infinite, although EOQ is also used to balance the fixed order and the inventory costs. 
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a.  Algorithms 

Wagner and Whitin (1958) first present an O(T2) dynamic programming algorithm (W-W 

algorithm) to find an optimal solution for an uncapacitated lot sizing problem, where T is 

the number of periods in a planning horizon. After their work, researchers develop plenty of 

algorithms for solving problem and its variants, most of which are running in polynomial 

time. 

Some works lower the computation burden of the W-W algorithm, such as Zabel (1964) 

and Eppen et al. (1969), but their improvements do not affect the worst-case computational 

complexity. However, researchers reduce the complexity to O(TlogT), which is 

independently obtained by Federgruen and Tzur (1991) and Wagelmans et al. (1992). 

Aggarwal and Park (1993) further improve it to O(T) by a Monge matrix-search algorithm. 

The variants of USI-LSP are extensively studied. Zangwill (1966) consider a USI-LSP 

model with backlogging and production series and present O(T2) and O(T4) dynamic 

programming algorithms to solve the models respectively. Loparic et al. (2001) discuss a 

variant of the W-W model involving lost sales instead of fixed demands, and lower bounds 

on stocks. They develop as a dynamic programming algorithm to solve the model and give 

a complete description of the convex hull of solutions. Different from Loparic et al. (2001), 

Aksen et al. (2003) present an uncapacitated single-item lot-sizing model with lost sales, in 

which production cost and selling price are assumed to be time-varying. An O(T2) dynamic 

programming algorithm is developed to find optimal solutions. Note that lost sales can be 

conceptually considered as quantity subcontracted or outsourced, while the latter practice is 

a common place in today‟s globalized economy. Models considering outsourcing are 

studied in Chu and Chu (2007). 

Another stream of variants considers the time windows in lot sizing problem. Lee et al. 

(2001) study a dynamic lot-sizing problem considering demand time windows and 

backlogging. The O(T2) and O(T3) polynomial algorithms are developed to solve the 

problems without and with backlogging respectively. Similar to Lee et al. (2001), Hwang 

and Jaruphongsa (2006) also discuss a time-window lot-sizing problem, but speculative 

motive cost is considered in their model: the sum of the unit production and the inventory 

holding costs of a period is lower than the unit production cost of the next period. An 

O(nT3) algorithm is provided to find optimal solutions, where n is the number of demands. 

Some other variants of USI-LSP like bounded inventory (Gutiérrez et al., 2003; Chu and 
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Chu, 2007; Chu et al., 2012), perishable inventory (Hsu, 2000) and bounded order (Okhrin 

and Richter, 2011a) are also intensively investigated in the recent literature. 

b. Capacitated Single-item Lot Sizing Problem 

b.  Mathematical Model 

Different from its uncapacitated counterparts, capacitated single-item lot sizing problems 

(CSI-LSP) are characterized by the fact that the production quantity is limited in each 

period. In most production facilities, it is not realistic to assume that production capacity is 

infinite (or large enough to satisfy all the demands). Thus, it is important to consider the 

production capacity when determining the production plan.  

b.  Complexity 

The complexity of CSI-LSP is investigated by Florian et al. (1980) and Bitran and 

Yanasse (1982). According to Bitran and Yanasse, the complexity of the CSI-LSP depends 

mainly on the parameter structure α/ / / , where α, , , and  specify the structures of the 

setup cost, holding cost, production cost and capacity, respectively. The values of α, ,  

and  are identified by G, C, ND, NI and Z that represent general structure, constant, non-

decreasing (over time), non-increasing (over time) and zero, respectively. For example, the 

notation NI/ND/C/G indicates a family of problem where the setup cost sequence is non-

increasing over time, the unit holding cost is non-decreasing over time, the unit production 

cost is constant and the set of capacities are not restricted to any pre-specified pattern. 

Generally, the problem is NP-hard (Florian et al., 1980; Bitran and Yanasse, 1982), 

although some special cases can be solved polynomially, such as G/G/G/C, NI/G/NI/ND, 

NI/G/NI/C, C/Z/C/G, and ND/Z/ND/NI. However, it is not NP-hard in strong sense and 

pseudo-polynomial algorithm is developed for general case by Chen et al. (1994b). 

b.  Algorithms 

Plenty of algorithms can be found in literature for solving CSI-LSPs. Exact algorithms 

are developed for polynomial and NP-hard cases. For the latter, the best algorithm that we 

can seek for are pseudo-polynomial since its NP-hardness. In addition, some heuristics also 

can be found in literature.   

For special cases, dynamic programming is the most common approach to solve problem 

in polynomial time. For the G/G/G/C case, the general problem was solved by Florian and 
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Klein (1971) using an O(T4) algorithm. Hoesel and Wagelmans (1996) improve the result to 

O(T3) when the production costs are concave and the holding costs are concave linear 

piecewise instead of linear. Bitran and Yanasse (1982) show the cases of NI/G/NI/ND, 

NI/G/NI/C, C/Z/ND/NI and ND/Z/ND/NI can be solve by O(T4), O(T3), O(TlogT) and O(T) 

algorithms. Chung and Lin (1988) and Heuvel and Wagelmans (2006) independently 

improve the complexity of the NI/G/NI/ND case to O(T2). In particular, a geometric 

algorithm based on dynamic programming is developed by Heuvel and Wagelmans. Baker 

et al. (1978) and Lotfi and Yoon (1994) consider CSI-LSP models with concave cost 

functions. Branch and Bound algorithms are proposed to solve their problems. 

Besides special cases cited above, plenty of polynomial algorithms are developed for the 

variants of the standard CSI-LSP.  

Bounded inventory: Inventory limitation occurs in many real life lot sizing problems. 

Love (1973) considers the upper bounds of inventory and develop an O(T3) dynamic 

programming algorithm for solving the model. The similar problem is also discussed by 

Pochet and Wolsey (1993). They consider that multiple batches of constant production 

capacity are available, while requiring a set-up cost. An O(T3) algorithm is presented to find 

the optimal solutions. Sandbothe and Thompson (1993) discuss a lot size model with 

production capacity and storage capacity. A forward dynamic programming algorithm is 

developed and solves the problem in O(T3) time.  

Time windows constraints: Jaruphongsa et al. (2004a) study a two-echelon dynamic 

lot-sizing model with demand time windows. They respectively consider the effects of 

backlogging to the model and provide O(T3) and O(T5) algorithms to solve the models 

without or with backlogging. Different from their previous work, Jaruphongsa et al. 

(2004b) discuss a lot-sizing model with delivery time window and warehouse space 

capacity constraints, where delivery time windows and capacity of the warehouse are 

limited. To optimally solve the model, an O(T3) algorithm is developed based on 

dynamic programming approach. Hwang et al. (2010) investigate a capacitated single 

item lot-sizing problem with production time windows, in which n types of demands 

(similar to n-item demand) are involved in production. They propose an O(nT3) 

dynamic programming algorithm to solve the model. 

Bounded order quantity. Okhrin and Richter (2011b) explore a capacitated single-item lot 

sizing problem considering minimum order quantity (i.e., the produced quantity must be 
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greater than a minimum order quantity and less than the production capacity). The 

production and inventory costs are linear. An O(T3) dynamic programming algorithm is 

developed to find optimal solutions. Different from Okhrin and Richter, Hellion et al. 

(2012) consider a similar problem but the production and inventory costs are concave. They 

propose an O(T3) algorithm to solve the problem optimally. 

Table 2.2 Summary of algorithms for capacitated single-item lot sizing problem 

Polynomial Algorithm 

Special 
cases  

Problem Complexity Authors Techniques 
NI/G/NI/ND  O(T4)  Bitran and Yanasse (1982) DP 

O(T2) Chung and Lin (1988)  
Heuvel and Wagelmans (2006) 

DP 
DP, geometric algorithm 

NI/G/NI/C  O(T3)  Bitran and Yanasse (1982) DP 
C/Z/ND/NI  O(TlogT)  Bitran and Yanasse (1982) DP 
ND/Z/ND/NI O(T)  Bitran and Yanasse (1982) DP 
G/G/G/C O(T4)  

O(T3) 
Florian and Klein (1971)  
Hoesel and Wagelmans (1996) 

DP  
DP, greedy algorithm 

- - Baker et al. (1978)  
Lotfi and Yoon (1994) 

B&B 
B&B, graph search 

Variants 

bounded 
inventory 

O(T3) Love (1973) 
Pochet and Wolsey (1993) 
Sandbothe and Thompson (1993) 

DP  
DP  
DP 

time windows 
constraints 

O(T3) &O(T5) 
O(T3) 
O(nT3)* 

Jaruphongsa et al. (2004a) 
Jaruphongsa et al. (2004b)  
Hwang et al. (2010) 

DP  
DP  
DP 

 bounded order 
quantity 

O(T3) 
O(T3) 

Okhrin and Richter (2011b)  
Hellion et al. (2012)  

DP  
DP 

Pseudo-polynomial  
Problem Complexity Authors Techniques 

general cost function O(T2c̄d̄)  Florian et al. (1980) DP 
piecewise linear costs O(T2q̄d̄) Shaw and Wagelmans (1998) DP 
alternative machines -- Akbalik and Penz (2009) DP 
Heuristics 
Gavish and Johnson (1990), Trigeiro et al. (1989), Roundy (1989), (1986), Zhang et al. (2012), Trigeiro 
et al. (1989), Chubanov and Pesch (2012). 
Note: *n is type of demand involved in production. c̄, d̄ and q̄ are the average capacity, demand and number 
of pieces required to represent the production cost functions, respectively. 

In the literature, pseudo-polynomial algorithms also play important roles in pursuing 

exact solutions for the NP-hard cases. Florian et al. (1980) discuss a CSI-LSP model 

with general (not necessarily linear) cost function. The problem is NP-hard and they 

suggest a pseudo-polynomial algorithm with time complexity O(T2c̄d̄), where c̄ and d̄ 

are the average capacity and demand, respectively. More specifically, Shaw and 

Wagelmans (1998) consider a problem with piecewise linear production costs and 
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general holding costs. They present a dynamic programming procedure with complexity 

O(T2q̄d̄), where q̄ is the average number of pieces required to represent the production 

cost functions. Chen et al. (1994b) propose a dynamic programming algorithm that can 

deal with the most general problem (i.e., G/G/G/G case). Recently, Akbalik and Penz 

(2009) propose an exact pseudo-polynomial algorithm to solve a capacitated single-item 

lot sizing problem considering alternative machines and piecewise linear production 

costs. 

Except for the exact algorithms, some heuristics also contribute much solving capacitated 

single item lot sizing problem efficiently, such as Gavish and Johnson (1990), Trigeiro et al. 

(1989), Roundy (1989), (1986), Zhang et al. (2012), Trigeiro et al. (1989) and Chubanov 

and Pesch (2012). A summary of algorithms for capacitated single-item lot sizing problem 

is given by Table 2.2. 

. . .  Multi-item Lot Sizing Problem 

This subsection addresses the multi-item lot sizing problem (MI-LSP). Similar to 

single-item lot sizing problem, MI-LSP can be classified into two groups based on 

whether or not the production capacity is considered. In this section, we mainly focus 

on the capacitated multi-item lot sizing problem and provide a brief review.  

a. Mathematical Model 

Different from CSI-LSP, capacitated multi-item lot sizing problem (CMI-LSP) is 

characterized by the fact that multiple items need to be produced but a limited production 

capacity is imposed in each period should be considered. The problem is to determine the 

production quantity and timing for each item with minimal cost.  

b. Algorithms 

As referred in the previous subsection, general CSI-LSP has been proven to be NP-

hard. CMI-LSP is NP-hard in the strong sense (Chen and Thizy, 1990). That‟s to say, it is 

unlikely to be able to develop any effective algorithms to find optimal solution for this 

problem. As a consequence, most algorithms are heuristics in the existing literature, 

except for a spot of well-known exact methods such as Barany et al. (1984) and Eppen 

and Martin (1987). These heuristic algorithms can be classified into three categories: 

common-sense or special-purpose heuristics, mathematical programming-based heuristics 
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(Maes and Van Wassenhove, 1988; Karimi et al., 2003) and metaheuristics (Jans and 

Degraeve, 2007a).  

Common-sense or special-purpose Сeuristics: This category can be further classified 

into two groups, i.e., period-by-period Сeuristics and improvement Сeuristics. The first 

group of heuristics works from period 1 to T and is a single-pass constructive 

algorithm, in which a feedback scheme is dynamically adopted to make the 

constructed solution feasible; while the second group of heuristics starts with an initial 

solution (generated randomly) for the overall planning horizon, and then generate a 

better feasible solution in a greedy way (Maes and Van Wassenhove, 1988). The 

period-by-period heuristics are simple and effective, therefore, are extensively 

investigated and used in academic research and practice. Some algorithms can be 

found in literature, such as Dogramaci et al. (1981), Maes and Van Wassenhove 

(1986), Quadt and Kuhn (2009) and Li et al. (2011). The improvement heuristics are 

widely studied in literature CMI-LSP and its variants, such as Park (2005), Boctor and 

Poulin (2005) and Wu et al. (2013). 

εatСematical proРramminР-based Сeuristics: This category of heuristics commonly 

applies mathematically programming procedure to generate a feasible solution and improve 

it for obtaining an approximate solution. The mathematical programming-based heuristics 

most commonly used in literature include B&B-based heuristics (Gelders et al., 1986; 

Hindi, 1995b; Absi and Kedad-Sidhoum, 2008), relaxation heuristics (mainly including LP 

relaxation (Almada-Lobo et al., 2007) and Lagrangean relaxation (Caserta and Rico, 2009; 

Zhang et al., 2012)) and some other heuristics (Özdamar and Barbarosoglu, 2000; Hindi et 

al., 2003; Federgruen et al., 2007; Absi et al., 2013b). 

εetaСeuristics : Researchers paid much attention on meta heuristics in the past decades 

since these heuristics are commonly effective to solve optimization. For the lot sizing 

problem, especially for CMI-LSP, metaheuristics are intensively applied to deal with the 

NP-hardness of the problems. Some meta heuristics such as Genetic Algorithm (Özdamar 

and Birbil, 1998; Kämpf and Köchel, 2006; Li et al., 2007), Simulated Annealing 

(Barbarosoğlu and Özdamar, 2000), Tabu Search (Hindi, 1995a, 1996; Karimi et al., 2005; 

Toledo et al., 2011), and their integrated/hybrid algorithms (Özdamar and Barbarosoğlu, 

1999; Özdamar and Barbarosoglu, 2000; Xie and Dong, 2002) are widely used for finding 

approximate solutions for CMI-LSP. 
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. . .  Variants of Lot Sizing Problem 

To support our research, some other related variants of lot sizing problem need to be 

covered in literature review. In what follows, we investigate the lot sizing problems with 

piecewise cost structure, multiple production modes and emission constraints, respectively. 

a. Piecewise Cost Structure  

The cost structure is an important distinguishing feature for lot sizing problem, and has a 

significant influence on the solution methodology. In our research, the cost function is non-

continuous but piecewise linear in each continuous portion. Thus, this subsection 

investigates the studies where piecewise cost structure is considered. 

To the best of our knowledge, Love (1973) first discuses a lot sizing model with 

piecewise cost structure. A single item production planning problem is discussed with 

deterministic demands and separable piecewise concave production cost. An efficient 

algorithm based on network flow is developed to find the optimal solution. Swoveland 

(1975a) considers a multi-period production planning model with piecewise concave 

production and holding cost. A property extended from Florian and Klein (1971) is 

presented to solve the model. Chen et al. (1994a) propose a continuous dynamic 

programming approach for lot size models, in which production and inventory cost 

functions are assumed to be piecewise linear. Their approach can deal with cost functions 

such that convexity, concavity or monotonicity is not necessary. But their algorithm is 

pseudo-polynomial. 

Diaby and Martel (1993) study a lot sizing model for multi-echelon distribution system, 

in which general piecewise linear procurement cost is considered. A mixed integer linear 

programming model is formulated and solved by Lagrangian relaxation-based procedure. 

Chan et al. (2002) consider a lot-sizing problem with a special class of piecewise linear 

ordering costs so-called all-unit discount cost function, which is a non-decreasing function 

of the amount shipped and the marginal cost is non-increasing. They prove this problem to 

be NP-hard. Akbalik and Penz (2009) study a capacitated single item lot sizing problem, in 

which alternative machines are used for the production and the production cost on each 

machine is piecewise linear. They prove that the problem is NP-hard and propose a pseudo-

polynomial dynamic programming algorithm to solve it. Akbalik and Rapine (2012) study a 

capacitated lot sizing problem with constant capacity constraint and stepwise cost structure. 
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They present several properties for the general problem and develop polynomial algorithms 

to solve their problem. 

In summary, most of polynomial algorithms developed for the lot sizing models with 

piecewise cost structure are based on the assumption that the cost function is piecewise 

concave. Without this assumption, some pseudo-polynomial and heuristic algorithms are 

provided for finding exact or approximate solutions. Different from the existing literature, 

due to the emission constraint considered in our research, the production cost function is 

non-continuous piecewise linear function, which makes the models difficult to solve (Keha 

et al., 2006). However, we develop a dynamic programming algorithm to solve the model in 

polynomial time, thanks to the mathematical property we prove. 

b. Multiple modes 

The technology selection problem in this research corresponds to lot sizing problem with 

multiple modes. From the viewpoint of operational issues, technology selection is to 

determine which equipped technology should be used for production, i.e., choose 

production mode/modes for each production period over a planning horizon. Under 

emission-reduction policies, technology selection is a consideration of the balance between 

carbon emissions and production cost.  

A lot of works have been done in technology selection for strategic investment 

incorporating environmental policies (Carraro and Soubeyran, 1996; Goyal and Netessine, 

2007; Fischer and Newell, 2008; Boyabatli and Toktay, 2011a; Boyabatli and Toktay, 

2011b). However, only little literature focuses on the operational issues that how to arrange 

these equipped technologies in production. Gong and Zhou (2011) study a multi-period 

production planning problem with emission trading scheme. The emissions trading, 

technology choice, and production strategies are optimized to minimize the overall costs. 

Hoen et al. (2010) evaluate the effects of different emission regulations on the companies‟ 

transport mode selection strategies, which based on the trade-off between inventory, 

transport, and emission costs. Their results show that even though significant emission 

reduction can be achieved by different transportation mode selection strategies, the decision 

depends on the regulation policies.  

Some other literatures are related to our research. Cheng and Duran (2004) consider 

multi-mode transportation (pipelines and tankers), stochastic crude oil 

inventory/transportation problems. They develop a decision support system to investigate 
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and improve a solution based on discrete-event simulation. Jaruphongsa et al. (2005) 

generalize a classical lot sizing model by considering multi-mode replenishment. They 

develop a polynomial algorithm based on the network flows for a two-mode scenario. The 

setup cost and the replenishment capacity are not considered in their model. Sandra Duni 

(2009) discuss a lot sizing problem with multi-mode replenishment. The firm‟s decisions 

includes: the timing for an order, the choice of shipment modes, and the order size for each 

mode. They formulate the problem as a mixed-integer programming model and develop a 

primal-dual algorithm to generate tight lower and upper bounds.  

In summary, only few studies (Jaruphongsa et al. (2005) and Sandra Duni (2009)) 

consider the a lot sizing problem with multiple modes. Although some relevant studies 

regarding technology selection on operational level can be found in the existing literature, 

few works consider the environmental issues. 

c. Emission Constraints 

As investigated in existing literature, few studies (almost none) consider environmental 

issues when studying multi-period production planning problem (or lot sizing problem). 

However, some related brief reports can be found in the recent academic conference. To the 

best of our knowledge, Absi et al. (2010) first address a lot sizing model with emission 

constraints. In their model, they focus on a multi-item lot sizing problem, in which 

production is constrained by limit emissions. Montréal (2011) presents a lot sizing model 

considering emission constraint. They address the constraint by emission in both production 

and inventory and declare a global restriction over all periods. Setup cost is not included in 

their model. Heuvel et al. (2011) give a multi-objective economic lot-sizing model with 

emission and setup cost. Different with Montréal (2011), they consider the emission 

constraint in each period and the global horizon. The problem is shown to be NP-complete 

and some special classes can be solved in polynomial time. 

Recently, Absi et al. (2013a) present a series of lot sizing models with four different kinds 

of emission constraints. The four types of carbon emission constraints are: periodic carbon 

emission constraint, cumulative carbon emission constraint, rolling carbon emission 

constraint and global carbon emission constraint. For the first model, they provide a 

polynomial algorithm for finding the optimal solutions. However, the production in their 

model actually is not capacitated. They prove the latter three models to be NP-hard but not 

give any algorithms. 
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Some other literatures are related to this research, Hua et al. (2011) study the 

inventory and order policies under a carbon emission trading mechanism. They use an 

EOQ model to obtain the optimal order quantity considering emission trade. They also 

analyze the impacts of carbon trade, carbon price and emission cap on ordering 

decisions. Gong and Zhou (2011) investigate the production planning and emission 

trading problem in a dynamic production system, in which a manufacturer produces a 

single product to satisfy random customer demand. They optimize the inventory control 

and technology selection policies, and the emission trade policies for a finite planning 

horizon. Benjaafar et al. (2012) propose a series of traditional lot sizing models to 

illustrate the impact of carbon emission concerns on the operational decisions of 

procurement and production planning. Their results show that operational adjustments 

alone may lead in some cases to significant emission reduction without significant 

increases in costs.  

In summary, although researchers are paying more and more attention to environmental 

issues on the research of production planning (i.e., lot sizing problem), little literature 

considers emission regulations on operational decision issues. More specifically, few 

studies investigate the technologies selection issues (i.e., multi-mode production) under the 

consideration of emission-regulation constraints (especially when production limitation is 

involved).  

. . .  Summary of Literature Review on Production Planning 

With regard to lot sizing problems with piecewise cost structure, concavity is 

required by most studies when developing polynomial algorithms for the related 

models. In this research, the production cost is even non-continuous due to the 

emission constraint in production, thus a new algorithm is needed to develop for the 

proposed problem. 

Regarding the production planning problem with multiple modes, only few studies, like 

Jaruphongsa et al. (2005) and Akbalik and Rapine (2012), consider that multiple (or two) 

production/replenishment modes may be used in production. Nevertheless, the former does 

not consider setup costs and replenishment (i.e., production) capacity in model; the latter 

proposes a pseudo-polynomial algorithm.  

In addition, to the best of our knowledge, few works consider the environmental 
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issues in operational decisions of production planning. Only brief reports can be found 

in the recent academic conference (Absi et al., 2010, 2011; Heuvel et al., 2011; 

Montréal, 2011). After these groundbreaking discusses, some related studies can be 

found in the recent literature, like Benjaafar et al. (2012) and Absi et al. (2013a). The 

former proposes a series of traditional lot sizing models and solve them by CPLEX; the 

latter develops a polynomial algorithm to solve their model but production capacity is 

unlimited. Table 2.3 provides a brief summary of the literature most relevant with our 

research.  

Table 2.3 Summary of studies most relevant with this research  
 Emission issues Multi-mode production 
uncapacitated 

Lot sizing 

problem 

Montréal (2011) 
Benjaafar et al. (2012) 

Sandra Duni (2009), Jaruphongsa et al. 
(2005), Sandra Duni (2009) 

Absi et al. (2013), Gong and Zhou (2011)  
capacitated 
Lot sizing 

problem 

Benjaafar et al. (2012) Akbalik and Penz (2009) 
 (pseudo-polynomial algorithm) 

Our contribution  

This research studies the production planning problem in consideration of the 

emission constraint and can be formulated as a capacitated model with multiple modes, 

in which the production cost function is non-continuous. Although the emission 

constraint makes the model difficult to solve, we try to develop a polynomial dynamic 

programming algorithm to find the optimal solutions. 

.  Emission-Reduction Policies 

In this section, we review relevant research regarding governments‟ decision problem that 

how to establish or adjust the emission-reduction policies. By examining the literature on 

environmental issues and their related policies in OR/MS research, little research focuses 

on adjusting or optimizing the existing policies for governments, especially local 

governments, although there is massive literature incorporating environmental concerns in 

economics, dating back to at least the 1970s.  

An important stream of literature is to investigate the differences and the impacts of 

different policy instruments (Wu and Babcock, 1999; Löschel, 2002; Hepburn, 2006; 

Sambodo, 2010; Parag et al., 2011). There is a large number and diverse range of 

emissions-reduction policies in place or in the process of being implemented (Productivity-
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Commission, 2011). These policies could be classified as being either reРulatory or 

economic, i.e., direct reРulatory and incentive-based instruments, respectively. Some most 

common policies are given in Table 2.4.  

Table 2.4 Taxonomy of emissions-reduction policies  

Direct regulatory instruments Incentive-based instruments 
Mandatory emission cap 
Renewable energy certificate scheme 
Electricity supply or pricing regulation 
Technology standard 
Performance Standard 
Fuel content mandate 
Energy efficiency regulation 

Emissions trading scheme (e.g., cap-and-trade) 
Emissions tax  
Fuel or resource tax  
Emissions abatement subsidy 
 
 
 

Source: Productivity-Commission (2011) and Goulder and Parry (2008). 

These studies provide plenty of valuable findings such as the social costs of carbon and 

its reduction (Pearce, 2003), social welfare related to emission reduction (Malueg, 1990; 

Hediger, 2000; Moledina et al., 2003), efficiency of these policies on emission reduction 

(Wu and Babcock, 1999; Böhringer et al., 2012), policy instrument choice (Goulder and 

Parry, 2008; He et al., 2009), etc. 

Another important stream of literature focuses on allowance/carbon credit trading issues. 

This is due to the fact that cap-and-trade schemes are the most popular way to regulate 

emissions (Dowdey, 2012). A lot of work emerges in this research area, especially related to 

allowance allocation (Burtraw et al., 2005; Hahn and Stavins, 2010; Zhao et al., 2010) and 

carbon price (Keeler, 2004; Ho et al., 2008; Feng et al., 2011).  

Some other literature related to economics and politics of carbon emissions/climate 

change also has an important position in the research regarding emission-reduction policies 

(Hausker, 1992; Baron, 1995; Griffin, 2003; MacKenzie, 2009).  

Government policies can provide regulations or incentives into the market, but the 

problem of quantifying the impact of specific government policies on business decisions is 

not yet well-studied (Skerlos et al., 2006), especially on operational decisions (Benjaafar et 

al., 2012). Nevertheless, there are few quantitative models that deal with the policy 

adjustment/optimization issues under the consideration of firms‟ operational reaction to 

these policies.  

This research tries to fill this gap. We analyze a local government‟s decisions on 

optimizing emission-reduction policies appropriately and manufacturers‟ operational 
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decisions by a Stackelberg game frame, with which the government can adjust her policies 

dynamically by observing the optimal reaction of manufacturers. The problem is 

formulated as an integrated mathematical model with OR/MS approach. 
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Chapter 3 

 

Carbon Footprint, Wholesale Price and Retailer 

Selection for Manufacturer under Carbon Emission-

Reduction Policy 

This chapter focuses on long-term strategic decision problems for a manufacturer under 

the emission-cap regulation policy imposed by the government. More specifically, the 

decisions on carbon footprint, wholesale price and retailer selection are optimized with the 

objective of maximizing the profit under an emission-reduction policy. 

Section 3.1 describes the problem in detail and defines the notation used in this chapter. 

Section 3.2 formulates a Stackelberg game model for the problem and develops a hybrid 

algorithm to solve the proposed model. Section 3.3 conducts some numerical examples and 

provides sensitivity analysis to illustrate the application of the models and algorithms. 

Section 3.4 summarizes this chapter. 

 



Chapter 3 

46 

.  Problem Description and Notation 

. .  Problem Description 

This chapter seeks to optimize a manufacturer‟s long-term (e.g., 2-4 years) decisions 

including carbon footprint, retailer selection as well as wholesale price under a 

government-imposed emission-cap regulation policy. The overall objective is to maximize 

the manufacturer‟s profit.  

The manufacturer produces a single type of product and distributes these products to 

multiple retailers at the same wholesale price. The manufacturer charges transportation 

costs to the retailers which are determined according to the retailers‟ geographic distance 

from the manufacturer, and might provide retailers with market promotion fees. The 

manufacturer also has complete information on the demand of his potential retailers when 

deciding the wholesale price. Retailers are able to set retail prices when serving their 

customers that are both price-sensitive and green-aware. The demand is function of the 

retail price and carbon footprint. Thus, price and carbon footprint are the only two 

distinguishing features of this functionally homogenous product. In this research, the 

carbon footprint of a product is measured by the emissions from producinР one unit 

product. 

It is assumed that the manufacturer is equipped with two production technologies: 

reРular tecСnoloРy and Рreen tecСnoloРy noted as tecСnoloРy-r and tecСnoloРy-Р, 

respectively. Green technology reduces the manufacturer‟s carbon emissions but creates 

higher costs per product. Therefore, the manufacturer has an incentive to use a combination 

of both technologies to achieve the optimal balance between carbon emissions and total 

production costs. To serve customers‟ needs, the manufacturer has to switch to green 

production from regular production if he is incurring a shortage of carbon emission permits 

due to government-imposed emission-reduction policy. Let m denote the percentaРe of 

products produced witС tСe Рreen tecСnoloРy in a long-term planning, er and eР the 

emissions from producinР one unit product witС tСe reРular and Рreen tecСnoloРies, 

respectively Then, the carbon footprint of unit production can be measured by 

(1 )
m r m g

e e   . In the long-term planning, therefore, the manufacturer can determine the 

carbon footprint by m, since er and eР are constant. 
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The manufacturer‟s production capacity is restricted by a mandatory emission cap 

imposed by the government, and therefore he has to choose retailers from those who are 

willing to cooperate. For the sake of convenience, such cooperation between the 

manufacturer and his retailers is denoted as a buy-sell system. It is assumed that there are 

sufficient retailers willing to join the system. In this case, the manufacturer has to make a 

selection decision on the potential retailers. In brief, during long-term planning, the major 

decisions for the manufacturer include the percentage of products produced by the green 

technology (i.e., carbon footprint), the wholesale price, and retailer selection.  

The decision problem is formulated as a two-stage Stackelberg game model, where the 

manufacturer and retailers pursue their respective maximal profit. In the Stackelberg game, 

the manufacturer, as a leader, selects retailers who bring profit, while the retailers, as 

followers, are willing to join the system only when retailing is profitable.  

The manufacturer tries all of his possible alternative decisions and receives responses 

from his candidate retailers. And then he chooses the one that generates maxima profit as 

the optimal solution where all selected retailers bring profits to him. The buy-sell system 

can be built with two-stage dynamic interactions between the manufacturer and the 

candidate retailers. The decision processes are presented briefly as follows.  

The manufacturer first assigns a set of values to the carbon footprint and the wholesale 

price, and then he receives all retailers‟ reactions. Each retailer determines whether to 

cooperate or not, and determines her prospective retail price if she does. The manufacturer 

then is able to know the retail prices for all cooperating retailers, and can calculate the total 

profit from this set of values. Then the manufacturer can repeat this process by assigning a 

different set of values until it reaches an optimal decision when any deviation fails to his 

profit. The system reaches a so-called Stackelberg equilibrium when it reaches the optimal 

situation. At this point, neither the manufacturer nor the retailers are willing to deviate from 

the equilibrium as this equilibrium is optimal for both parties in the system.  

A mathematical model is formulated for this problem, but it is necessary to explain the 

notation before being described.  

. .  Notation 

The notation used throughout this chapter is as follows: 

Parameters
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n total number of potential retailers 

E  government-imposed emission cap for a long-term planning of the 

manufacturer 

er, eР emissions from producing one unit product only using the regular and green 

technologies, respectively 

pr, pР cost of producing one unit product by only using the regular and green 

technologies, respectively 

Ki a constant in the demand function for retailer i, representing market scale, i = 

1,…, n 

ai price elasticity of retailer i‟s demand rate, i = 1,…, n 

bi carbon-footprint elasticity of retailer i‟s demand rate, i = 1,…, n ��i market investment of the manufacturer at the side of retailer i, i = 1,…, n θi transportation cost for shipping one unit product from the manufacturer to 

retailer i 

Decision variables of tСe manufacturer 

xi

 

binary variable indicating whether retailer i is selected. xi = 1 if retailer i is 

selected, and xi=0 otherwise. i = 1,…, n 

cp wholesale price of the product set by the manufacturer 

m percentage of products produced by the green technology, 0 < m ≤ 1 

Decision variables of eacС retailer
 

yi binary variable indicating whether retailer i is willing to join the system. yi=1 if 

retailer i decides to enter the system, and yi=0, otherwise. i = 1,…, n 

pi

 
retail price of retailer i, i = 1,…, n 

Intermediate quantities 

πm net profit of the manufacturer 

πi net profit of retailer i, i = 1,…, n 

Qm total demand of the selected retailers, which also is the total production 

quantity of the manufacturer 

Рm (Qm, e) production cost of the manufacturer as a function of production quantity Qm 

and carbon footprint of the product e 
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Di(pi, e) demand rate of retailer i as a function of retail price ip  and carbon footprint 

of the product e, i = 1,…, n 

Rm revenue of the manufacturer 

TCm total cost of the manufacturer 

Note that all xi‟s, yi‟s and pi‟s (i=1,…, n) form vectors x, y and p, respectively.  

.  Problem Formulation and Solution Methodology  

This section studies the manufacturer‟s decision problem for a long-term planning under 

the emission-cap regulation policy. The problem is first formulated as a Stackelberg game 

model, and then a hybrid algorithm is developed to solve the model based on the decision 

analysis of the manufacturer and retailers.  

. .  Mathematical Model 

. . .  Mathematical Formulation  

The problem described above suggests the manufacturer can achieve optimal decisions 

by a Stackelberg game, in which he is able to observe the optimal responses of the potential 

retailers. In this game, the manufacturer makes decisions first and then retailers follow by 

optimal reactions. To formulate such a mathematical model, we first derive the objective 

function of the manufacturer and some constraints of his decisions.  

Since carbon emissions result from productions by the manufacturer, „„emissions per unit 

of production‟‟ is a normal indicator of environmental quality in many industries 

(Sundarakani et al., 2010). In lieu with Yalabik and Fairchild (2011), we similarly assume 

there is a negative relationship between the carbon footprint and customer demand when all 

things else are equal. Without loss of generality, we also assume consumers are price-

sensitive. We, thus, define the demand function of retailer i by the following linear form 

 ,i i i i i iD p e K a p be   , Equation Chapter 3 Section 2(3.2.1) 

Substituting (1 )
m r m g

e e e     into Eq. (3.2.1), we have 

 , (1 )
i i m i i i i m r m g

D p K a p b e e         . (3.2.2) 
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where Ki is a constant representing retailer i‟s market scale. ai and bi represent the price 

elasticity and carbon-footprint elasticity of the product on customer demand, respectively. 

The price elasticity gives the percentage change in quantity demanded in response to a one 

percent change in price. The price elasticity implies the sensitivity to the product price, and 

has a negative relationship with the customer demand. The carbon-footprint elasticity 

implies the preference of the customers on green products. The higher the carbon-footprint 

elasticity, the greener product the customers prefer to select. (1 )
m r m g

e e e     is the 

carbon footprint of the product, which implies that a higher the percentage of products 

produced by the green technology is required for a greener product. Note that we use e in 

our research to represent the carbon footprint of product. As stated in the problem 

description, a green technology has to be involved in production. m is, therefore, set to be 0 

< m ≤ 1, i.e., the production turns to be infeasible if m= 0.  

The production cost of the manufacturer is a function of m. Then, the production cost 

function is given by 

 , (1 )
m m m m r m g m

g Q p p Q       , (3.2.3) 

where  
1

,
n

m i i i mi
Q x D p   is the total demand from selected retailers and is equal to the 

total production quantity. With the production cost function, the manufacturer has to 

tradeoff between his production cost and the carbon footprint by m. 

The net profit of the manufacturer equals revenue minus total costs. The revenue comes 

from the payment from the retailers purchasing the product at a wholesale price cp, which is 

calculated by 

 
1

,
n

m i i i m pi
R x D p c . (3.2.4) 

The total cost includes production cost, transportation cost, and market promotion 

investments as illustrated by 

1 1 1

( , ) (1 ) ( , )
n n n

m i i i m m r m g i i i m i i i

i i i

TC x D p p p x D p x     
  

          

   
1 1

( , ) (1 )
n n

i i i m m r m g i i i

i i

x D p p p x    
 

              (3.2.5) 



Chapter 3 

51 

According to above analysis, we obtain the objective function of the manufacturer: 

 
1 1 1

( , ) ( , ) (1 )
n n n

m i i i m p i i i m m r m g i i i

i i i

x D p c x D p p p x      
  

            

1 1

( , ) (1 ) .
n n

i i i m p m r m g i i i

i i

x D p c p p x    
 

               (3.2.6) 

We then formulate the Stackelberg game model, consisting of mixed-integer linear 

programming models at two levels (i.e., two Sub-models). The mathematical model, called 

Model MR-3-I, is stated as follows. 

TСe upper level for the manufacturer to make decisions can be achieved by the first Sub-

model (named Sub-model M), including Eqs.(3.2.7)-(3.2.10). In this Sub-model, the 

manufacturer maximizes his net profit by optimal decisions on cp, m and x, from observing 

the optimal reactive decisions of the retailers. 

Sub-model M: 

Maximize
 
   

1 1

, , ( , ) (1 ) ,x
n n

m p m i i i m p m r m g i i i

i i

c x D p c p p x      
 

           (3.2.7) 

Subject to   
1

( , ) (1 )
n

i i i m m r m g

i

x D p e e E  


     ,       (3.2.8) 

                    , {0,1}, 1, ,i i ix y x i n    , (3.2.9) 

                   
0, 0 1

p m
c    , (3.2.10) 

where the objective function (3.2.7) maximizes the profit for the manufacturer. Constraint 

(3.2.8) implies that production is strictly limited by the government-imposed emission cap. 

Constraint (3.2.9) suggests that the manufacturer can accept/decline a retailer only when the 

retailer is willing to join in the system. Constraint (3.2.10) gives the bounds of the 

wholesale price and the percentage of products produced by the green technology.  

TСe lower level for each retailer to make decisions can be achieved by the second Sub-

model (named Sub-model R), including Eqs.(3.2.11)-(3.2.14). In this Sub-model, each 

retailer maximizes his net profit by determining optimal pi and yi, according to the decisions 
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of the manufacturer on cp and m. 

Sub-model R: 

Maximize   ( , ) ( ) (1 ) ,
i i i i i p i i i i m r m g

y p y p c K a p b e e           (3.2.11) 

Subject to  ( ) 0
i i p

y p c  , (3.2.12) 

                  ( , ) 0i i i my D p   , (3.2.13) 

                  ={0,1}, 0i iy p  . (3.2.14) 

where the objective function (3.2.11) maximizes the profit of each retailer. Constraints 

(3.2.12) and (3.2.13) respectively ensure that the retail price is larger than the wholesale 

price and the demand is positive if a retailer decides to join the system. The bounds of the 

decision variables are constrained by constraint (3.2.14).  

With Model MR-3-I, our objective is to find the optimal strategy (cp, m, x, y, p) that 

maximizes the profits of the manufacturer  , ,
m p m

c  x  and each selected retailer 

( , )i i iy p  simultaneously. 

. . .  Problem Complexity  

In this subsection, the following theorem is first given to show the NP-hardness of the 

problem, and then the difficulties to solve the proposed model are pointed out. 

Theorem 3.2.1 Optimally solvinР x is already NP-Сard, even wСen tСe variables of all 

otСer variables are known. In otСer words, solvinР εodel εR-γ-I is NP-Сard. 

Proof. Let us omit the decisions variables cp and m, and just consider the retailer selection 

problem. That‟s to say, the decision variables y, p, cp and m are fixed.  

Then, the decision for the manufacturer is reduced to solely selecting the candidate 

retailers into the system under the emission allowance limitation. Simultaneously, the 

problem is simplified into a 0-1 Knapsack Problem, which has been proven to be NP-Сard 

(Gary and Johnson, 1979). The proof is complete.                                                               ■ 
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The theorem above implies that the proposed Stackelberg model is difficult to solve. 

Even worse, in the model, solving x should be repeated many times. Because the reaction 

of the retailers changes with a change in the manufacturer‟s decision on cp and m in order 

to obtain the Stackelberg equilibrium. The objective function (3.2.7) is not concave in cp 

and m since the function value may increase or decrease with y and x as shown in our 

numerical examples. The reason embedded is that y and x are not continuous, which makes 

1

n

i i ii
x y D  discontinuous.  

In the following sections, we analyze properties of optimal solutions and develop a 

hybrid algorithm to cope with the NP-hardness and the non-concavity of the considered 

model. 

. .  Solution Methodology 

This section analyzes optimal decisions for both the manufacturer and each retailer, 

respectively. Based on the these analyses, the retailers‟ decision variables p and y can be 

obtained analytically, while the manufacturers‟ decision variables cp and m can be 

computed numerically by genetic algorithm (GA) since x can be optimally solved by 

dynamic programming (DP) for any given values of cp and m. Finally, all variables are 

obtained by a hybrid algorithm integrated these methods.  

. . .  Optimal Decisions of Retailers 

Retailers‟ decisions are presented by Sub-model R. The decisions of retailers depend 

upon the decisions of the manufacturer, thus the following analysis for optimal y* and p* is 

based on any given cp or m.  

For a retailer to enter the system, i.e. yi =1, the necessary and sufficient condition is that 

(pi −cp)Di(pi, m) is maximized and furthermore both (pi − cp) and Di(pi, m) should be 

strictly positive. 

To maximize (pi −cp)Di(pi, m) =  ( ) (1 )
i p i i i i m r m g

p c K a p b e e        , a concave 

function of pi, the unique optimal retail price in reaction to the wholesale price cp and the 

carbon footprint m, is given by 

  *( , ) (1 ) / / 2
i p m p i i m r m g i

p c c K b e e a         .      (3.2.15) 



Chapter 3 

54 

Thus, the corresponding optimal demand rate of retailer i is given by 

 * *( , ) ( ( , )) (1 ) 2
i p m i i p m i i p i m r m g

D c D p c K a c b e e           .      (3.2.16) 

yi is also a function of cp and m, denoted as *( , )i p my c  . The retailer i is willing to enter 

the system (i.e., *( , ) 1i p my c   ) if and only if the two conditions *( , ) 0i p m pp c c    and 

*( , ) 0i p mD c    are met. From Eq. (3.2.15), we can see that these two conditions are 

identical.  

By taking into account Eqs. (3.2.15) and (3.2.16), these conditions suggest: 

 * 1 if  (1 ) ,
( , )

0 otherwise. 

p i i m r m g i

i p m

c K b e e a
y c

          
      (3.2.17) 

. . .  Optimal Decisions of the Manufacturer 

Given that the manufacturer can dynamically optimize his decisions from observing the 

optimal responses of retailers, we analyze manufacturer decisions by taking advantage of 

those analytical decisions of retailers.  

Substituting Eqs. (3.2.15)-(3.2.17) into Eq. (3.2.6), we obtain the manufacturer‟s actual 

objective function: 

' *

1 1

( , ) (1 ) .
n n

m i i p m p m r m g i i i

i i

x D c c p p x     
 

               (3.2.18) 

where *( , )i p mD c  given by (3.2.16) is the optimal decision of retailer i, which can be 

observed by the manufacturer and is constant for any given cp and m. 

Then, the decision model of the manufacturer Sub-model M can be reformulated into 

Sub-model M-I as follows. 

Sub-model M-I 

Maximize  ' *

1 1

, , ( , ) (1 ) ,x
n n

m p m i i p m p m r m g i i i

i i

c x D c c p p x      
 

        
  

(3.2.19) 
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Subject to    *( , ), 0,1 , 1, ,i i p m ix y c x i n    , (3.2.20) 

                   

*

1

( , ) (1 ) ,
n

i i p m m r m g

i

x D c e e E  


    
      (3.2.21) 

                 
0, 0 1

p m
c    , (3.2.22) 

Observing the model above, the remaining work is to solve the manufacturer‟s decisions 

cp, m and x. As referred the complexity and difficulty of solving the model, we have to 

know cp and m numerically in order to obtain the value of x. Furthermore, as soon as cp 

and m are known, a corresponding optimal value of x can be obtained by solving a 

knapsack problem.  

Therefore, the optimal strategy requires optimal values of cp and m. Unfortunately, it is 

impossible to get an analytical expression of '
m

  in function of cp and m, because it is 

impossible to write the analytical expression of x. Thus, cp and m, need to be solved 

numerically.  

Once the values of cp, m, y* and p* are obtained, we can substitute them into Sub-model 

M-I and obtain a typical knapsack-problem, which is given by the following model, 

namely, Sub-model M-II. 

Sub-model M-II 

Maximize  
*

'

1
( , ) 1

, ,

i p m

m p m i i

i n

y c

c A x


 

  
 x       (3.2.23) 

Subject to   

*

*

1
( , ) 1

( , ) (1 )

i p m

i i p m m r m g

i n

y c

x D c E e e


  

  
     ,       (3.2.24) 

where *(1 ) ( , )
i p m r m g i i p m i

A c p p D c             
is constant. The remaining problem 

is a classical knapsack problem: the candidate retailers for selection in the buy-sell system 

correspond to the candidate items for selection in a knapsack problem. Their optimal 

demand rates (i.e., *( , )i p mD c  ) correspond to the volumes of items while the production 

capacity (i.e., (1 )
m r m g

E e e     ) of the manufacturer corresponds to the capacity of 
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the knapsack. The value of each item (retailer) i is given by Ai. Thus, Sub-model M-II is a 

0-1 Knapsack Problem which is NP-Сard (Gary and Johnson, 1979).  

Fortunately, the NP-hardness caused by the variable x is not in the stronР sense. Thus, we 

have an opportunity to solve x*(cp, m) in pseudo-polynomial time by using a dynamic 

programming (DP) algorithm (Martello et al., 1999), which is discussed in detail in the next 

section. 

. . .  Hybrid Algorithm 

In light of the complexity of our problem, a hybrid algorithm is developed to solve the 

proposed model, coping with the NP-hardness, non-concavity, and analytical intractability 

of the model. In the hybrid algorithm, an intelligent algorithm, genetic algorithm (GA), is 

introduced to solve cp and m numerically. The retailer-related decision variables are solved 

analytically, and the manufacturer-related decision variables x are optimally solved by a 

dynamic programming algorithm.  

Genetic Algorithm for Computing cp and βm 

Observing that only two decision variables, cp and m, need to be solved numerically, we 

are encouraged to introduce an intelligent algorithm GA to solve these two variables cp and 

m. GA can search optimal or near-optimal values cp and m in a numerical way, which 

helps us get rid of the difficulty of nonconcavity; GA is very powerful for finding a global 

near optimum efficiently (Liu, 1998; Akyol and Bayhan, 2007; Solnon et al., 2008) and can 

escape from local optima by feeding new inputting values of cp and m, which can 

overcome the multimodality of the objective function. 

In GA, a population of chromosomes is generated and evolves toward optimal solutions. 

A chromosome corresponds to a solution of Model GM-I. The initial population is 

commonly generated randomly (Joines et al., 1995). The chromosomes in subsequent 

generations are produced by using selections, mutations, and crossovers. The quality of a 

chromosome is evaluated by a fitness function. The fitness function is defined by the 

objective function Eq. (3.2.7). By using the fitness function, the chromosomes can be 

ranked from good to bad ones. The random generation of chromosomes for the initial 

population is the first step to avoid local optima. In this research, we use the well-known 

GA Toolbox of Matlab 2012b to code and solve the two variables cp and m. 

A chromosome in GA is characterized by the decision variables (cp, m), which are the 

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
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wholesale price and the percentage of the green technology applied in production, 

respectively. The initial chromosomes are randomly generated with a population size of 80. 

The chromosomes in the subsequent generations are generated by three genetic operators: 

operations of selection, crossover, and mutation.  

Firstly, GA elitist selection is used to generate chromosomes for next generations. An 

elitist strategy (Onwubolu and Muting, 2001) is used for selection operator to ensure that 

the best chromosomes (with a ratio of 2%) can survive in the evolution. Some elite 

solutions that give good fitness function values in the current generation are selected and 

directly included in the next generation.  

Next, GA crossovers are used to produce some chromosomes for the next generation. In a 

GA crossover, a pair of chromosomes is selected as parents with probability 0.2 to generate 

two offspring (i.e., two chromosomes) for the next generation. In the crossover operator, 

once a pair is selected, some chromosome genes of one parent are randomly selected as 

crossover points (Poon and Carter, 1995), and are used to swap genes with the 

corresponding ones of the other parent. The better the fitness value a chromosome has, the 

larger the chance that the chromosome will be selected as a parent. The crossover operation 

is often considered to find local optima.  

Thirdly, an offspring will be also generated by a mutation operation to jump out the 

current local optima. We set the probability of mutation by 0.5. The mutated gene is 

randomly reset within the initial bounds. When the next generation population of 

chromosomes is produced, they will be evaluated by the fitness function. Mutation 

operations aim at producing new offspring chromosomes to diversify the populations to 

avoid falling into local optima.  

In the last generation, the chromosome, giving the maximum value of objective 

function Eq. (3.2.7), is selected as the final solution of Model MR-3-I. The criterion 

used for terminating the algorithm is a convergence accuracy of 1.0×10-6 for the 

fitness function. 

Dynamic Programming Algorithm for Solving x 

As referred in Section 3.2.2.2, with given cp and m, we can solve the decision variables x 

with a dynamic programming algorithm. An algorithm developed by Dasgupta et al. (2006) 

to solve the 0-1 knapsack problem is adopted in our algorithm. As suggested by Dasgupta 

et al. (2006), the results recorded in a two-dimensional table mapping all candidate retailers 
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and emission-cap limitation. In this case, if the emission cap is given, we can look up to 

determine which retailers should be selected in one column of the table. The algorithm is 

introduced in detail as follows.  

Let k (k=0,…,n) denote the stage which corresponds to the kth (k≠0) retailer and 0 is used 

for initialization, and *[ ]
k

w  denote the evaluation function representing the maximal profit 

of the manufacturer with given emission limitation w at stage k. For the sake of 

convenience, we let (1 )
m r m g

W E e e         be the total production capacity. Based 

on the objective function (3.2.23) (omitting mS ), we then get the following recursive 

function: 

* * *
1

{0,1}
( ) max { + ( ( , ) )}, 1,..., ,

k

k k k k k p m k
x

w A x w D c x k n      (3.2.25) 

with *
0 ( )w =0 for any [0, ]w W , and *

1( ( , ) ) = 0k k p m kw D c x    whenever 

*( , ) 0k p m kw D c x  . 

The optimization at stage 1k   based on a known optimal solution at stage k−1 can be 

realized via solving * * *
1

{0,1}
( ) max { + ( ( , ) )}

k

k k k k k p m k
x

w A x w D c x    . 

If *( , )k p mw D c   and * * *
1 1+ ( ( , )) ( )k k k k p m kA w D c w     , we have  

*( )
k

w = * *
1+ ( ( , ))k k k p mA w D c    with *

k
x =1. (3.2.26) 

Otherwise, 

*( )
k

w = *
1( )

k
w   with *

k
x =0. (3.2.27) 

The optimal solution x* and the related *( )
n

W  can be realized by the DP algorithm, 

named Algorithm-3-DP, as introduced above. The pseudo-codes of Algorithm-3-DP are 

given in Figure 3.1. 

In the dynamic programming algorithm presented above, the time complexity is *

1
( , ) (1 )

n

i p m m r m gi
y c E e e        . According to our computational experiments, 

this algorithm is quite efficient. It is very accurate with the above mentioned granularity of 
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1 for discretizing (1 )
m r m g

E e e      in our numerical examples.  

Algorithm- -DP 

Step 1 Initialization 

      Let *( ) 0w   for all [0, ]w W  

Step 2 Computing all *( )
k

w   

           Compute all possible *( )
k

w  

       For k = 1 to n  

            For w = 0 to W 

              Compute *( )
k

w  with Eqs. (3.2.28)-(3.2.29). 

           End For 

       End For 

Step 3 Outputting optimal solutions and results 

      Output optimal x* corresponding to *( )
n

W  

Figure 3.1 Pseudo codes of Algorithm-3-DP  

The Procedures of Hybrid Algorithm 

In the analysis above, the optimal strategies of the retailers are solved analytically, cp 

and m are obtained numerically by GA, and x is solved optimally by a dynamic 

programming algorithm for given values of cp and m. Thus, we are encouraged to 

develop a hybrid algorithm, named Algorithm-3-Hybrid, to solve our proposed model 

efficiently. The procedures of Algorithm-3-Hybrid are given in Figure 3.2. 

As shown in Figure 3.2, our algorithm is designed to effectively use the advantages of 

various methods. Considering the non-concavity of the objective function (3.2.7) and 

constraint (3.2.8), we present GA to solve cp and m (see Subsection 3.2.3.1 in detail). We 

first generate cp and m, and update y* and p* analytically (see Subsection 3.2.3.1 in detail). 

Meanwhile, x* is updated by Algorithm-3-DP (see Subsection 3.2.3.2 in detail). Finally, the 

global near-optimal values of cp and m are obtained, and y*, p* and x* are updated 

simultaneously.  

Note that because our problem uses GA to calculate the decision variables of cp and m, 

the optimality of the final solution cannot be guaranteed in a finite number of iterations. 
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However, our hybrid algorithm obtains near-optimal solutions efficiently in a finite number 

of iterations. 

Step 6: Update cp and m by GA

Step 7: Output the best solutions c*
p and *

m, 

x
*, y* and p*,  and the maximal profit  πm

No

Yes

Step 5: Is GA termination 
condition satisfied?

Step 1: Initialize cp and m by GA

Step 2: Compute optimal y* and p* 
analytically

Step 3: Compute optimal x*by 
Algorithm-3-DP

Step 4: Compute the maximal πm

 

Figure 3.2 Procedures of Algorithm-3-Hybrid  

.  Numerical Examples  

This section conducts some numerical experiments to evaluate our models developed 

under emission-cap regulation policy. For long-term planning decisions of the 

manufacturer, it is intuitive that retailer selection and the carbon footprint play important 

roles in the performance. Generally, retailer selection strategy leads to higher 

performance than non-selection strategy does. We thus try to analyze our problem through 

retailer selection strategy, carbon footprint of the product, and some other parameters. All 

the following examples are solved with the same computational parameters in the DP and 

GA. 

We consider an example of a manufacturing company, whose production is constrained 

by a government-imposed emission-cap regulation policy. There are ten candidate retailers 

located in geographically separate costumer markets, for the manufacturer to select and 

build his buy-sell system. The emission cap is E  = 8 thousand tons. The parameter values 

for the manufacturer are given as follows. 

The unit production costs: 
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pr = 60 dollars per ton, 

pР = 80 dollars per ton.  

The emissions of unit product:  

er = 2 tons CO2 per ton products,  

eР = 1 ton CO2 per ton products.  

The values for retailer-related parameters are given in Table 3.1. 

Table 3.1 Parameter values of 10 candidate retailers 

i Ki ai bi ωi i 

1 14500 91 2800 13000 12 
2 13000 79 800 10000 17 
3 17500 120 1720 16000 20 
4 21000 123 1100 12000 11 
5 12000 96 1600 14000 25 
6 13000 75 1650 8000 15 
7 14600 80 2400 21000 20 
8 11000 106 1720 8000 18 
9 19000 81 2300 25000 46 
10 14000 52 3200 15000 15 

. . .  Computational Results  

The numerical tests are conducted 10 times and the relevant results are provided as 

follows. The average profit of the manufacturer in the 10 tests is 1.8732×105 dollars as 

shown in Table 3.2. Our hybrid algorithm converges with a high robustness.  

As seen from Table 3.2, the maximal gap of the objective value is only 0.007%. Thus, we 

just give the solutions of the “best” test, in which the profit of the manufacturer is 

1.8733×105 dollars. His optimal decisions are: x = (0, 1, 0, 1, 0, 1, 0, 0, 0, 1), cp
*= 122.18 

dollars, m
*= 40.53%. Four retailers, including 2, 4, 6 and 10, are selected by the 

manufacturer into his system. The retailers‟ decisions are: y*= (1, 1, 1, 1, 0, 1, 1, 0, 1, 1) and 

p*= (-, 135.30, -, 139.33, -, 130.22, -, -, -, -, 146.64). The profits of the retailers are shown 

in the 2nd row of Table 3.3.  

Resulting from the non-selection strategy, the manufacturer‟s maximum profit is 

1.61×105 dollars at cp
*= 137.53 dollars and m

*= 92.50%. Note that non-selection strategy 
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implies that all retailers willing to join in the system are selected by the manufacturer, i.e., 

xi‟s are omitted for consideration. The ten retailers‟ profits are given in the 3rd row of Table 

3.3. The values in the last row of Table 3.3 are the selected retailers‟ profit increase due to 

retailer selection. 

Table 3.2 Maximal profit of the manufacturer (×105 dollars) 

Test No. 1 2 3 4 5 6 7 8 9 10 Average 

πm 1.8733 1.8733 1.8733 1.8732 1.8732 1.8731 1.8733 1.8733 1.8733 1.8733 1.8732 

Gap(%)* 0.002 a 0.002 0.002 0.000 0.000 -0.007 b 0.002 0.002 0.002 0.002 0 

*Gap=(πm−Average)/Average; a and b are the best and worst objective values in the 10-time tests, 
respectively. 

Table 3.3 Profits of retailers πi (thousand dollars) 

i 1 2 3 4 5 6 7 8 9 10 

WitС selection 0(0.68) * 13.58 0(0.02)  36.15 0(-13.55) 4.84 0(3.11) 0(-51.97) 0(91.18) 31.10 

WitСout  selection 0 5.20 -1.46 17.22 -22.05 2.85 3.36 -69.11 90.21 56.70 

Change(%) - 61.72 - 52.37 - 41.08 - - - -82.31 
* The values in “( )” are the retailers‟ profits at the optimal wholesale price (cp*): $1615.65if selected. 
Note. In the both cases, the manufacturer has used up his capacity. 

With the computational results, we draw some conclusions as follows. 

(1) The manufacturer can benefit from retailer selection. As seen from the results, the 

manufacturer‟s profit increases significantly from 1.61×105 to 1.87×105 dollars, 

an increase of more than 15%, as a result of retailer selection such that the 

retailer most profitable to him is selected into the system. 

(2) The profits of the selected retailers may significantly change due to retailer 

selection of the manufacturer. For example, as shown in Table 3.3, the profits of 

some retailers (retailers 2, 4 and 6) increase by more than 60%, but retailer 10 

incurs a decrease by more than 80%. The manufacturer only cares about his 

profit and determines the wholesale price and carbon footprint to maximize his 

profit, but these decisions does not always benefits the retailers as shown in Eq. 

(3.2.18). 

(3) The carbon footprint of the product may be significantly influenced by the 

retailer selection strategy. When the retailer selection strategy is considered, 

the optimal percentage of products produced by the green technology 
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drastically decreases from 92.50% to 40.53%. This decrease results from 

eliminating the retailers bringing negative or few profits to the manufacturer. 

Furthermore, this decrease will be more remarkable under a severe emission 

regulation policy.  

(4) The most profitable retailers may not be selected. This is because the 

manufacturer cares about his profitability instead of the retailers‟. For example, 

retailer 9 is refused by the manufacturer even though it brings the most profit 

overall. 

(5) As production is constrained by emission cap, the manufacturer excludes the 

retailers who are less profitable to him than those selected. To realize this, the 

manufacturer, for example, in Table 3.3, excludes retailers 7 and 9 otherwise the 

manufacturer would have to costly lower down the wholesale price from 137.53 

to 122.18 dollars.  

. . .  Sensitivity Analysis  

In this section, we provide sensitivity analysis for parameters used in our model. Under 

the emission-cap regulation policy, by intuition, the government-imposed emission cap Ē 

and the carbon-footprint elasticity bi are two important factors influencing the decisions 

of the manufacturer, thus we conduct sensitivity analysis for these two parameters as 

follows. 

Emission cap 

The emission cap may affect the manufacturer‟s wholesale price, carbon footprint 

of product, and the number of selected retailers, thus it may significantly influence 

the profit of the manufacturer. To explore these effects, we vary the values of 

emission cap E  from 2000 (a low value) to 40000 (a high value) in our model to 

identify the corresponding changes to the above parameters. The results are shown in 

Figure 3.3.  

As a general trend, an increase in emission cap results in an increase in the optimal 

number of retailers, the manufacturer‟s maximum profit, and actual emissions.  
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  (a) Impacts on profit of the manufacturer                         (b) Impacts on numbers of selected retailers 

          

               (c) Impacts on the wholesale price                                (d) Impacts on the actual emissions and m 

Figure 3.3 Impacts of emission cap Ē 

From the results in Figure 3.3, we find some interesting managerial insights. 

(1) The profit of the manufacturer is significantly influenced by the emission cap. 

When the emission cap is at a high level, the manufacturer can increase his 

profit by lowering down his wholesale price to sell more products (i.e., select 

more retailers into the system), or decreasing the percentage of green 

technology used in production. As shown in Figure 3.3(a), (b) and (c), when 

the emission cap goes up from 2 to 10 thousand tons, the manufacturer 

drastically increases his profit from 9.05×104 to 2.07×105 by decreasing his 

wholesale price from 152.55 to 114.20 dollars, selecting retailers from 2 to 4, 

and decreasing the percentage of the green technology used in production 

from 100% to 6.33%. 

(2) It is unreasonable to expect the manufacturer to select all candidate retailers 

even if the emission cap is high enough. Some retailers may not be selected 

because a profitable retailer may be not profitable to the manufacturer or a 

retailer cannot gainfully operate. As shown in Figure 3.3(a) and (b), 
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although the emission cap increases after Ē = 18 thousand tons, the 

manufacturer declines selecting more than 6 retailers. Furthermore, if the 

emission cap is relatively low compared to the number of the retailers, as 

shown in Figure 3.3(b), more retailers are selected with Ē increasing from 2 

to 6 thousand tons.  

(3) The optimal production quantity (i.e., the actual emissions) heavily depends on 

the candidate retailer‟s contribution to the manufacturer‟s profit instead of their 

own profitability. If the emission cap is ample but retailers profitable to the 

manufacturer are few, it is unwise for him to produce at the full emission cap. As 

shown in Figure 3.3(d), if Ē=40 thousand tons, only a half utilization is enough 

for maximizing the manufacturer‟s profit. 

Carbon-footprint elasticity 

As shown in Eq. (3.2.2), the demand of retailer may be greatly influenced by the carbon-

footprint elasticity bi. The carbon-footprint elasticity presents the preference of the 

customer on the green production, i.e., the higher the carbon-footprint elasticity, the greener 

product the customers prefer to select.  

For the carbon-footprint elasticity bi, we randomly take a retailer who is rejected in the 

basic example in Section 3.4.1.1: retailer 1. If we change the price elasticity b1 of retailer 1 

from 1800 to 800 (the lowest value in the 10 candidate retailers), the manufacturer‟s 

optimal decisions become x*= (1, 1, 0, 1, 0, 1, 0, 0, 0, 1), i.e., retailer 1 is selected into the 

system. This is because smaller carbon-footprint elasticity implies customers are less 

sensitive to the change of carbon-footprint. With retailer 1 selected, the manufacturer gets 

an additional demand of d1= 904.03 tons for his product. Consequently, retailer 1‟s profit 

increases to 8.98 thousand dollars. The manufacturer‟s profit also increases to 2.04×105 

dollars, by 9.09%. That‟s to say, both the manufacturer and the retailer may benefit from 

this change. 

Let a customer market within high (resp. low) carbon-footprint elasticity denote 

СiРС-end (resp. low-end) customer market 1 . Then we can obtain some interesting 

managerial insights. From the sensitivity analysis of bi above, we find that the 

manufacturer studied in our numerical examples prefers to provide product to a low-

                                                 
1 A high-end customer market implies the customers prefer to the greener product. That is, the customer 

demand increases when the percentage of green technology used in production m increases. 
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end customer market. As seen from the analysis above, the manufacturer benefits 

drastically from adding a new low-end customer market (i.e., retailer 1) into the 

system. For the manufacturer, thus, it is important to choose the “right” markets for 

his product. Moreover, pricing his product appropriately for such markets is also 

critical for him to maximize his profit. 

.  Conclusion  

This chapter studies long-term strategic decision problems for a manufacturer, whose 

production is limited by the government-imposed emission-cap regulation policy. The 

objective is to maximize the profit of the manufacturer by optimally determining the carbon 

footprint and wholesale price of the product as well as retailer selection.  

The problem is formulated as a Stackelberg game model which is proved to be NP-

hard, non-continuous and analytically intractable. In order to deal with these 

difficulties, we develop a hybrid algorithm (named Algorithm-3-Hybrid), combining 

genetic algorithm, dynamic programming approach and analytical methods to solve 

the model. 

Some numerical experiments are conducted to show the application of our 

proposed models and the algorithms. The computational results show that the hybrid 

algorithm can efficiently find near optimal solutions and converges with a high 

robustness.  

Furthermore, some valuable managerial insights are obtained from the sensitivity 

analysis, which is briefly outlined below. 

(1)  The manufacturer can benefit from retailer selection under the emission-cap 

regulation policy. An appropriate retailer selection strategy can help the 

manufacturer to maximize his profit by selling his products to the “right” 

retailers and cope with the emission limitation imposed by the 

government.  

(2)  The governmental emission cap and customers‟ green preference significantly 

affect the carbon footprint of the product. Thus, to optimize the carbon footprint 

may make the manufacturer more profitable while satisfying the customer 

demands and the emission regulation.  

(3)  It is important for the manufacturer to choose either low-end or high-end markets 
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to sell his product and to price his product appropriately for these markets. 

Furthermore, an optimal differential pricing strategy implemented through his 

retailers can make the manufacturer more competitive in green-awareness 

markets. 
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Chapter 4 

 

Production Planning and Technology Selection for 

Manufacturer under Carbon Emission-Reduction 

Policy 

This chapter focuses on medium-term operational decision problems for a manufacturer 

under government-imposed emission-reduction policies. It seeks to minimize the overall 

costs by optimizing the manufacturer‟s decisions on production planning and technology 

selection considering two types of emission-reduction policies, respectively.  

Section 4.1 describes the problems in detail and defines the notation used in this chapter. 

Section 4.2 discusses the problem under the emission-cap regulation policy. The problem is 

formulated as a mixed integer linear programming (MILP) model and a polynomial 

algorithm is developed to solve it. Section 4.3 investigates the problem under the emission 

cap-and-trade scheme, in which an emission-allowance trading strategy is considered in the 

decision problem. A new model is formulated and proven to be solvable by the polynomial 

algorithm developed in Section 4.2. Section 4.4 conducts some numerical experiments to 

illustrate the evolution of the solutions in function of key parameters to draw some 

interesting managerial insights. Section 4.5 summarizes this chapter. 
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.  Problem Description and Notation 

. .  Problem Description 

This chapter aims to optimize a manufacturer‟s medium-term decisions under two types 

of government-imposed emission-reduction policies: emission-cap regulation policy and 

emission cap-and-trade scheme. His decisions include production planning and technology 

selection with an objective of minimizing the overall costs over a finite production planning 

horizon (e.g., one year including 12 months/periods).  

As introduced in the previous chapter, two types of technologies are available for the 

manufacturer: the regular technology (tecСnoloРy-r) and the green technology (tecСnoloРy-

Р). By definition, technology-g generates fewer emissions than technology-r per unit 

production, but leads to higher setup cost and unit production cost. In each period, either 

one or both technologies can be chosen for production. Therefore, it is necessary for the 

manufacturer to optimize his decision on technology selection for each production period to 

seek a balance between emissions and cost. 

It is assumed that the manufacturer serves a market with deterministic customer demand. 

Therefore, demand shortage and backlogging are not considered. On-hand inventory is used 

to streamline production, while inventory cost function is assumed to be linear. Without 

loss of generality, the initial and end inventory levels are assumed to be zero in the planning 

horizon.  

The manufacturer‟s production emissions in each period are constrained by government-

imposed emission-reduction policy: either a mandatory emission cap set by the government 

under the emission-cap regulation policy or an emission limitation related to the 

environmental bearing capacity under the emission cap-and-trade scheme. Note that the 

environmental bearing capacity is due to some particular features of environment, such as 

ultimate bearing capacity and irreversible degradation (Le Kama et al., 2010). 

Consequently, the manufacturer faces challenges in optimizing his production planning 

under these emission constraints.  

In order to minimize the overall costs over a planning horizon, in each period the 

manufacturer should determine production quantity, manage inventory level, and choose 

appropriate technology for production. An optimal production planning reduces the 
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operating costs to a minimal level that fully satisfies customer demands without any 

shortage or backlogging. Moreover, an optimal technology selection provides the best 

balance between production cost and emissions. These optimal operational decisions enable 

the manufacturer to minimize his overall costs and satisfy the government-imposed 

emission regulations. 

This chapter investigates this practical decision problem under each emission-reduction 

policy. Under the emission cap-and-trade scheme, particularly, the manufacturer possesses 

tradable initial emission allowances. Besides the emission-cap constraint for each period, 

his production emissions over the planning horizon are limited by on-hand emission 

allowances, but he can choose to buy or sell emission allowances from or to the carbon 

market.  

In order to formulate the problem mathematically, we define the notation used in this 

chapter as follows.  

. .  Notation 

The notation used throughout this chapter is listed as follows: 

Parameters
 

T number of periods involved in a production planning horizon  

μ emission cap set by the government for each production period 

R emission limitation in each period related to environmental bearing capacity of 

the area where the manufacturer is located 

er, eР emissions from producing unit product with technology-r and technology-g, 

respectively. er > eg >0 

pr, pР unit production cost using technology-r and technology-g, respectively. 0<pr < pg 

sr, sg setup cost using technology-r and technology-g, respectively. 0<sr< sg. 

dt customer demand of period t, dt >0 

Сt unit holding cost of period t 

E initial emission allowances over a planning horizon  

Decision variables  
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xtr, xtР

 

production quantity with technology-r and technology-g in period t, 

respectively.  

 quantity of trading emission allowances. If >0, the manufacturer buys  
emission credits, otherwise, he sells −  emission allowances. 

Intermediate quantities 

Et emission level of period t, Et = erxtr+ egxtg  

It inventory level at the end of period t 

F(·) total cost function over a production planning horizon  

Р(·) production cost function, which is a function of production quantity at any 

period  

f (·) actual production cost (including emission cost), which is a function of 

production quantity at any period 

(·) cost/revenue of emission allowance trade, which is a function of emission-

allowance trading quantity 

Furthermore, let xt = xtr + xtg and denote xr, xg and x as the vectors of xtr‟s, xtg‟s and xt‟s, 

respectively. 

.  Emission-Cap Regulation Policy 

This section studies the medium-term operational decision problem under the 

emission-cap regulation policy. The problem is formulated as a MILP and a 

polynomial algorithm is developed to solve the proposed model based on some 

properties of optimal solutions.  

One of the crucial steps is to draw an equivalent global production cost function 

involving two candidate production technologies.  

. .  Mathematical Formulation 

By defining 
1 if 0

( )
0 if 0

x
x

x
    , the problem can be formulated as a model, named Model 

M-4-I, as follows. 
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Model M-4-I 

Minimize
 

1 1

( , ) ( ) ( )
T T

r g r tr g tg r tr g tg t t

t t

F s x s x p x p x h I 
 
       x x  Equation Chapter 4 Section 2(4.2.1) 

Subject to  1 , 1,..., ,
t t t tr tg

I d I x x t T      (4.2.2) 

                  , 1,..., ,
r tr g tg

e x e x t T    (4.2.3) 

                  0,TI   (4.2.4) 

                  , 0, 0, 1,..., ,
tr tg t

x x I t T    (4.2.5) 

where the objective function (4.2.1) consists of two terms: production cost and inventory 

cost. Constraint (4.2.2) ensures that inventory is balanced. Constraint (4.2.3) limits the 

production emissions by the emission cap in each period. Constraint (4.2.4) sets the end 

inventory to zero. The bounds of the decision variables are constrained by Eq. (4.2.5). 

This model can be transformed into a MILP model by introducing two series of binary 

decision variables ytr‟s and ytg‟s such that and ytr = 1 (resp. ytg = 1), if and only if 

technology-r (resp. technology-g) is used in period t. The model can be rewritten as 

follows. 

Minimize
 

1 1

( , )
T T

r g r tr g tg r tr g tg t t

t t

F s y s y p x p x h I
 
       x x  (4.2.6) 

Subject to  1 , 1,..., ,
t t t tr tg

I d I x x t T      (4.2.7) 

                  , 1,..., ,tr trx My t T   (4.2.8) 

                  , 1,..., ,
tg tg

x My t T   (4.2.9) 

                  , 1,..., ,
r tr g tg

e x e x t T    (4.2.10) 

                  0,TI   (4.2.11) 

                  , 0, , {0,1}, 0, 1,..., ,
tr tg tr tg t

x x y y I t T     (4.2.12) 
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where ε is an arbitrarily large number. 

The cost function (i.e., Eq.(4.2.6)) is a classical expression as in existing research 

(normally within a single technology), such as lot sizing problem (Wagner and Whitin, 

1958; Brahimi et al., 2006; Jans and Degraeve, 2007b), scheduling problem (Schutten, 

1996; Drexl and Kimms, 1997; Kolisch and Padman, 2001), and some other 

optimization problems (Beck and Fox, 1994; Cachon, 1999; Erenguc et al., 1999). 

However, this function does not match our research well since it is intricate to 

determine xtr and xtg simultaneously. Thus, in what follows, we try to explore some 

properties of the problem and reformulate this production cost function into the actual 

function including only one decision variable xt. As a consequence, we can separately 

optimize the decisions of production planning and the technology selection. 

By a variable substitution xt = xtr + xtg in Model M-4-I, we have xtg = xt − xtr. Then, Model 

M-4-I can be rewritten as follows. 

Model M-4-I-T 

Minimize
 

1 1

( , ) ( ) ( ) ( )
T T

r r tr g t tr r tr g t tr t t

t t

F s x s x x p x p x x h I 
 
         x x  (4.2.13) 

Subject to  1 , 1,..., ,t t t tI d I x t T     (4.2.14) 

                  ( ) , 1,..., ,
r tr g t tr

e x e x x t T     (4.2.15) 

                  0,TI   (4.2.16) 

                  0 , 1,..., ,tr tx x t T    (4.2.17) 

                  0, 1,..., .tI t T   (4.2.18) 

From Model M-4-I-T, it can be seen that xtr‟s only appear in the first term of the objective 

function and in constraints (4.2.15) and (4.2.17). At any optimal solution, for any given xt, 

the value of xtr must be such that the sum of the first term of the objective function is 

minimized and the constraints (4.2.15) and (4.2.17) are satisfied. 

As a consequence, the problem can be decomposed into two subproblems: 
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 the first subproblem is to compute the optimal value of xtr for any given xt, such 

that the sum of the first term of the objective function is minimized while 

satisfying the constraints (4.2.15) and (4.2.17). 

 the second subproblem is to compute the optimal values of xt‟s. 

In fact, the first subproblem is a technology selection problem, while the second 

subproblem is a production planning problem. Note that the first subproblem, i.e., the 

technology selection problem, is parameterized by xt (i.e., the production quantity of period 

t). More specifically, these two subproblems can be rewritten as follows. 

The technology selection problem M-4-TS: 

Model M-4-TS 

0
( )

( ) min ( ) ( ) ( )
tr t

r tr g t tr

t r tr g t tr r tr g t tr
x x

e x e x x

g x s x s x x p x p x x


    

         (4.2.19) 

The production planning problem M-4-PP-I: 

Model M-4-PP-I 

Minimize
 

1 1

( ) ( )
T T

t t t

t t

F g x h I
 

   x  (4.2.20) 

Subject to  1 , 1,..., ,t t t tI d I x t T     (4.2.21) 

                  0,TI   (4.2.22) 

                  0 , 1,..., ,
t g

x e t T    (4.2.23) 

                  0, 1,..., ,tI t T   (4.2.24) 

The production planning problem M-4-PP is a classical lot sizing problem but the production 

cost function Р(·) is obtained by solving the problem M-4-TS. It might be solved in polynomial 

time if Р(·) has some good properties such as continuous concave piecewise linear function (see 

Chu and Chu (2007)). However, as it will be shown hereafter, the production cost function Р(·) 

does not have such properties. Actually, the equivalent global production cost function (still 
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called production cost function hereafter, for the sake of simplification) is even not continuous, 

which makes our model difficult to solve. Nevertheless, thanks to mathematical properties we 

prove, the problem is shown to be polynomially solvable. 

. .  Solving Technology Selection Problem 

As can be seen, the problem M-4-TS is period-independent. We therefore drop subscript 

t. For the sake of simplification, xtr is further simplified into z. As a consequence, problem 

M-4-TS can be further rewritten as  

0
( )

( ) min ( ) ( ) ( ) .
r g

r g r g
z x

e z e x z

g x s z s x z p z p x z


    

         (4.2.25) 

Note that Р(x) is defined only when 0  x  μ/eР, since otherwise it is impossible to 

simultaneously satisfy the constraints 0  z  x and ( )
r g

e z e x z    .  

Furthermore, it is easy to obtain Р(0) = 0 by the definition. Therefore, in the remainder, 

we just consider the case 0 < x  μ/eР. 

Let ( , ) ( ) ( ) ( )
r g r g

x z s z s x z p z p x z       , with 0  z  x. Whenever 

( )
r g

e z e x z     or [0, ]z x ,  (x, z) is set to be +∞, without loss of generality. 

Particularly, we have ( , ) ( )
r g r g

x z s s p z p x z     , when 0< z < x. 

With the definition, we have  

0
( )/( )

( ) min ( , ), min ( , ), ( ,0) ,
g r g

z x
z e x e e

g x x x x z x

    

      
 (4.2.26) 

where the three terms in the braces on the right side of Eq. (4.2.26) represent minimal 

production costs when only technology-r, both technologies, and only technology-g are 

chosen for production, respectively. In what follows, we analyze the minimal production 

cost Р(x) according to the value of x. 

If 0<x μ/er, we have ( , ) ,r rx x s p x  ( ,0) ,
g g r r

x s p x s p x     and ( , )
r g

x z s s   

( ) ( ) ,
g g r r g g g r r g r r r

p x p p z s s p x p p x s s p x s p x              when 0<z<x. 

Therefore, we obtain ( ) r rg x s p x  . 
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If μ/er<x μ/eР, we have ( , ) ,x x   ( ,0) ,
g g

x s p x   and ( , )
r g g

x z s s p x  
( )

g r
p p z   is a decreasing function of z, when 0<z<x. The second term of Р(x), i.e., 

0
( )/( )

min ( , ),
g r g

z x
z e x e e

x z

    
 gets the minimal value when z gets the maximal value, i.e., 

( ) ( ),
g r g

z e x e e    which gives ( ) min[ , ].g r g r r g

g g r

r g r g

p p p e p e
g x s p x s x

e e e e
        

Therefore, let ( ) [ ( )]
g r r g g g r

x e s e e e p p    , we obtain  

,                                               ,

( )
,      / .

g g g

g r g r r g

r g r

r g r g

s p x x x e

p p p e p eg x
s s x e x x

e e e e


 

            
  

From the analysis above, it can be seen that the production cost Р(x) is a piecewise non-

decreasing linear function of x on [0, μ/eР]. As a consequence, the actual production cost 

function Р(x) can be formulated as follows. 

( )

( )

( ),    ,
( )

( ),    otherwise.

a

r g

b

g x e x e
g x

g x

      (4.2.27) 

where ( ) [ ( )]
g r r g g g r

x e s e e e p p    , ( ) ( )a
g x  and ( ) ( )b

g x  are given by Eqs. (4.2.28) 

and (4.2.29) as follows.  

( )

0,                                                          0,

,                                               0 ,

( ) ,      ,

,              

r r r

g r g r r ga

r g r

r g r g

g g

x

s p x x e

p p p e p e
g x s s x e x x

e e e e

s p x


 


  

       
                                  ,

,                                                          otherwise.

g
x x e

  

 (4.2.28) 

( )

0,                  0,

,      0 ,
( )

,     ,

,                 otherwise.

r r rb

g g r g

x

s p x x e
g x

s p x e x e


 
       

 (4.2.29) 

In a production period, if two technologies are used for production, the optimal 
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production quantity of each technology is given by 

*

*

( ) ( ) ( ),

( ) ( ) ( ).

tr g r g

tg r r g

x x e x e e

x x e x e e




      
 (4.2.30) 

For the sake of readability, the production cost function is described by the curves as 

shown in Figure 4.1. 

µ/er xx�

g(x)

sg

sr

sr+sg−
µ(pg−pr)/(er−eg)

0 µ/eg

µ/er < x� < µ/eg

µ/er x

g(x)

sg

sr

0 µ/eg

x� ≤  µ/er  or  x� ≥  µ/eg

 

Figure 4.1 The production cost curves  

From Eq. (4.2.27) and Figure 4.1, it can be seen that the cost function is non-continuous, 

which makes it difficult to solve the production planning problem M-4-PP (Keha et al., 

2006). However, we try to develop a dynamic programming algorithm and solve Model M-

4-PP in polynomial time. 

. .  Solving Production Planning Problem  

In this subsection, the problem is decomposed into a series of subproblems (i.e., 

subplans). Then, a subplan is further decomposed into two smaller subintervals, which can 

be calculated recursively in polynomial time. Finally, a polynomial dynamic programming 

algorithm is developed based on multi-level decomposition to solve the model. 

. . .  Decomposing a Plan into Subplans 

For the sake of convenience, we first give some necessary definitions which will be 

helpful to analyze the problem as follows. 

Normal period: If {0, , }
t r g

x e e  , we call t a normal period. In a normal period, 

eitСer a sinРle tecСnoloРy is used for production and emissions are equal to tСe emission 

cap, or tСere is no production. 
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Singular period: If {0, , }
t r g

x e e  , we call t a sinРular period.  

Zero Inventory Point: If It = 0, we call t a zero inventory point. TСere are at least two zero-

inventory periods for any feasible production plan since I0 = IT = 0 is assumed. 

Subplan: A production plan can be decomposed into a series of subplans (i, k), 0 ≤ i < k ≤ 

T, in wСicС periods i and k are two adjacent zero-inventory points. An subplan beРins witС 

a production period and ends witС a zero-inventory period from i+1 to k, satisfyinР tСe 

demands di+1, ..., dk. 

By the definition of subplan, it can be seen that whatever an optimal solution of a subplan 

is found, the inventory in each period, except for the last one, is positive. The concept of 

subplan (i.e., subproblem) is critical to develop our algorithm because only these 

subproblems need to be considered in a dynamic programming approach.  

Now, let us consider an optimal subplan (i,k) which satisfies the demands di+1, ..., dk with 

minimal cost. Let C(i, k) denote the minimal cumulative production and inventory cost of 

the subplan, and F(k) denote the minimal total cost of satisfying the demands d1,..., dk such 

that the inventory level at the end of k is zero. Then, the proposed model can be solved by a 

dynamic programming approach as follows. 

By the definition, we have the following initial condition and recursive equation: 

0

(0) 0,

( ) min{ ( ) ( , )}, 1,..., .
i k

F

F k F i C i k k T 

     (4.2.31) 

With the recursive equations, the optimal solutions can be obtained by F(T) in O(T2) time 

after all C(i,k)‟s are known. Therefore, the challenge and critical work to solve the problem 

is to calculate all possible C(i,k)‟s efficiently. In what follows, we show how to calculate 

the cumulative costs of subplans in polynomial time, and develop a polynomial dynamic 

programming algorithm to solve the model. 

Even though the actual production cost function is not continuous, it is piecewise concave; i.e., 

each continuous part is a concave function. According to the theorem proposed by (Swoveland, 

1975b), we can obtain the following property for a subplan considered in this research. 

Theorem 4.2.1 TСere is an optimal solution sucС tСat eacС subplan contains at most one 

sinРular period.  
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With the property of subplan, a subplan can be decomposed into two smaller subintervals, 

which can be calculated polynomially. Consequently, the cumulative cost of a subplan can 

be calculated in polynomial time. In the remainder of this subsection, we show how to 

decompose a subplan into subintervals and calculate the cumulative costs of the 

subintervals polynomially. 

. . .  Decomposing a Subplan into Subintervals 

According to Theorem 4.2.1, we consider the case that there exists one singular period in 

a subplan. In other words, there is an optimal solution such that all production periods in 

each subplan are normal periods except for one singular period. Note that a singular will be 

excluded automatically when it generates more cost than it is not included in a subplan, 

according to the minimization theory. Based on this structure of optimal solutions, we can 

decompose a subplan into two polynomially solvable subintervals as introduced below. 

Let us consider a subplan (i, j, k), 0 ≤ i < j ≤ k ≤ T, such that all production from i+1 to 

j−1and from j+1 to k are normal periods, and period j is a singular period which may be 

executed by any kinds of production. In other words, such a subplan can be decomposed 

into two subintervals and a singular period j. For the sake of convenience, let (i, j−1) and (j, 

k) denote these two subintervals, respectively. Note that zero inventory point does not exist 

in a subinterval except for periods i and k. 

Let c(i, j, k) denote the minimal cumulative production and inventory cost of subplan (i, j, 

k), in which there exists exact one singular period j. Some other definitions are given as 

follows. 

For subinterval (i, j−1), let αi, j−1(mr, mР) denote the minimal cumulative production and 

inventory cost from i+1 to j−1, with mr and mР being the numbers of normal periods using 

technology-r and technology-g, respectively. 

For subinterval (j, k), let j, k(nr, nР) denote the minimal cumulative production and 

inventory cost from j+1 to k, with nr and nР being the numbers of normal periods using 

technology-r and technology-g, respectively. 

For sinРular period j, let Yi, j, k (mr, mР, nr, nР) denote the production and inventory cost of 

period j. The production quantity xj and the inventory level Ij correspond to the numbers of 

normal periods in the two subintervals. 

By the definition of αi, j−1(mr, mР) and j, k(nr, nР), we can calculate both of them 
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recursively. Whereafter, Yi, j, k (mr, mР, nr, nР) can be computed by the production cost function 

(4.2.27), according to the production quantity xj of period j. Then, the cumulative cost of 

subplan (i, j, k) can be obtained by c(i, j, k) = αi, j−1(mr, mР) + j, k(nr, nР) + Yi, j, k (mr, mР, nr, nР).  

Therefore, the remaining work is to calculate the minimal cumulative costs of the 

subintervals and the cost of the singular period. 

. . .  Calculating Minimal Cumulative Costs of Subintervals 

a. Minimal Cumulative Cost of Subinterval i, j− : i, j-1 mr, mg . 

Let αi, s(mr, mР) denote the minimal cumulative production cost and inventory cost from 

i+1 to s, with mr and mР normal periods using technologies r and Р, respectively. We have 

the following relationships: 

0,

0,

0 ,

r

g

r g

m

m

m m s i

      
 (4.2.32) 

where mr + mР = 0 implies i = s, and the subinterval is not included in the subplan, because 

i+1 must be a production period. 

The inventory level at the end of s is Is = mr μ/er + mР μ/eР – di,s. We must have Is > 0 if s 

≠ k, since backlogging is not allowed and zero inventory point only exists at periods i and k.  

Firstly, we initialize the minimal cumulative cost of subinterval (i, s) by the definition 

of αi, s(mr, mР), as follows.  

  0,       0,
, ,

,    otherwise.

r g

i i r g

m m
m m     (4.2.33) 

Then, αi, s (mr, mР) can be calculated by the following recursive equations as follows. 

      
1

1

1

,                                                                   0,

, ,
, ,

min , 1, ,   otherwise.

, , 1 ,

s

s s i s r g

i s r g

s s r r r i s r g

s s g g g i s r g

I

h I m m

m m
h I s p e m m

h I s p e m m

  
 







                

 (4.2.34) 
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In the first case of Eq.(4.2.34), if Is < 0, the solution is infeasible and αi,s(mr, mР) is set to 

be +∞. The second case consists of three subcases, in which СsIs is the holding inventory 

cost of period s and αi, s−1(∙,∙) is the minimal cumulative cost from i+1 to s−1. For the first 

subcase, there is no production at period s. For the second subcase, s is a normal period 

using technology-r. For the third subcase, s is a normal period using technology-g. It is easy 

to see that, for any feasible mr, mР and 0 ≤ i ≤ s ≤ T, all possible αi,s(mr, mg)‟s can be 

calculated in a computation time of O(T4). 

b. Minimal Cumulative Cost of Subinterval j, k : j, k nr, ng , 

By the definition, t, k(nr, nР) is the minimal cumulative production and inventory cost 

from j+1 to k, with nr and nР normal periods using technologies r and Р, respectively. For 

any period t, 0 ≤ j+1 ≤ t ≤ k ≤ T, we have the following relationships of nr and nР. 

0,

0,

0 .

r

g

r g

n

n

n n k t

      
 (4.2.35) 

Different with the subinterval (i, s), there may be no production in (t, k), i.e. nr + nР may 

equal to 0. 

The inventory level at the end of period t−1 is It−1 = dt,k − nrμ/er − nРμ/eР. Then, we can 

calculate all possible t,k(nr, nР)‟s recursively. The initial and recursive equations are given 

by Eqs. (4.2.36) and (4.2.37) as follows. 

 ,

0,       0,
,

,    otherwise.

r g

k k r g

n n
n n     (4.2.36) 

     
1

1 1,

,
1 1,

1

,                                                                                       0 ,

( ) , ,
,

min ( ) 1, ,

( )

t

t t t t k r g

t k r g

t t r t r r r t k r g

t t g t g g g t

I

h I d n n

n n
h I e d s p e n n

h I e d s p e

   
  


 

 

 

 
       
      1,

 otherwise.

, 1 ,
k r g

n n

      

(4.2.37) 

In the first case of Eq. (4.2.37), if It−1 ≤ 0 or It ≤ 0(t ≠ k), the solution is infeasible and 

t,k(nr, nР) is set to be +∞. The second case consists of three subcases, in which 

1 1 1, and
t t t r t g t

I d I e d I e d        are the holding inventory costs and t+1,k(∙,∙) is the 



Chapter 4 

83 

minimal cumulative cost from t+1 to k. The three subcases imply that there is no 

production, full emission production with technology-r and full emission production with 

technology-g in period t, respectively.  

With the recursive equations, all possible t,k(nr, nР)‟s can be computed in O(T4) time. 

c. Cost of the Singular Period j: Yi, j, k mr, mg, nr, ng  

The production quantity of period j is xj = di,k−[(mr+nr) μ/er+(mР+nР) μ/eР], the inventory 

level at the end of the period is Ij = Ij−1 + di,k−[(mr+nr) μ/er+(mР+nР) μ/eР]−dj, and it must be 

Ij > 0 if j ≠ k.  

Yi,j,k (mr, mg, nr, ng) can be calculated by the production cost function Рj(xj) (see Eq. (4.2.27)), 

and the related production quantity of each technology can be obtained by Eq.(4.2.30). If 

the constraints are not satisfied, the solution is infeasible and the cumulative cost is set to be 

+∞.  

Then, the cost of period j is be given by  

  
 , , 

( ), 0 , and 0( ),
, , ,

, otherwise.

j j j j g j r j

i j k r g r g

h I g x x e x e I j k
Y m m n n

         (4.2.38) 

In subplan (i, j, k), nР can be determined by the given mr, mР and nr. Let Q = di,k − [(mr + 

nr)μ/er + mРμ/eР] and P = μ/eР, then we have nР =  Q P   . We, thus, can compute all 

possible Yi, j, k (mr, mg, nr, ng)‟s in O(T6) time. 

Up to now, the minimal cumulative costs of the subintervals and the cost of the singular 

period are calculated polynomially. Then, we can calculate the minimal cumulative cost of 

the subplan (i, j, k), 0 ≤ i < j ≤ k ≤ T, as follows. 

For any given subplan (i, j, k), its minimal cumulative cost is 

        1 , , , ,
,

, , min , , , ,  ,  ,  
r g

r g

i j r g j k r g i j k r g r g
m m

n n

c i j k m m n n Y m m n n     (4.2.39) 

where mr, mР, nr and nР are constrained by Eqs. (4.2.32) and (4.2.35), 0 ≤ mr + mg + nr + ng ≤ 

k−i, and the relationship nР =  Q P   . Since αi, j−1(mr, mР) and j, k(nr, nР) can be computed 

in O(T4) time, and Yi, j, k (mr, mР, nr, nР) can be computed in O(T6) time, all possible c(i, j, 

k)‟s can be computed in O(T6) time. 
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Recall that the model can be solved by a dynamic programming approach with the 

recursive equations Eq.(4.2.31), thus, we try to develop a polynomial dynamic 

programming algorithm using the computational results of c(i, j, k). 

We reformulate the recursive equation (4.2.31) into the following equations: 

0

(0) 0,

( ) min { ( ) ( , , )}, 1,..., .
i j k

F

F k F i c i j k k T  

     (4.2.40) 

In the new recursive equations, the optimal solution can be obtained by F(T) in O(T3) 

time after the computation of all possible c(i, j, k)‟s, which needs O(T6) time. Therefore, the 

overall complexity to find the optimal solution is O(T6). 

The pseudo codes of the dynamic programming algorithm, named Algorithm-4-PDP, are 

given in Figure 4.2 . 

Algorithm-4-PDP  

Step 1 Initializing F(k) 
            /*Initializing tСe total cost F(k)*/ 

           Initialize F(0) = 0 

Step 2 Solving subplan (i, j, k) 
            /*computing the minimal cumulative cost c(i, j, k) */ 

            a) Decomposing subplan into subintervals 

                Decompose (i, j, k) into subintervals (i, j−1) and (j, k) by a singular period j. 

            b) Calculating minimal cumulative costs of subintervals 

                Calculate the minimal cumulative cost of subinterval (i, j−1): αi, j−1(mr, mР); 

                Calculate the minimal cumulative cost of subinterval (j, k): j, k(nr, nР); 

                Calculate the minimal cost of singular period j: Yi, j, k (mr, mР, nr, nР). 

            c) Calculating minimal cumulative cost of subplan (i, j, k) 

                Calculate all possible c(i, j, k)‟s. 
Step 3 Solving the problem globally  
            /*Computing the objective function dynamically)*/ 

            Calculating all possible F(k) by Eq.(4.2.40). 
Step 4 Outputting results 

            Output optimal solutions corresponding to F(T). 

Figure 4.2 Pseudo codes of Algorithm-4-PDP 
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.  Emission Cap-and-Trade Scheme 

In the previous section, we study the manufacturer‟s operational decisions on production 

planning and technology selection under the emission-cap regulation policy. Subsequently, 

this section studies the problem under the government-imposed emission cap-and-trade 

scheme.  

Under such a scheme, the manufacturer‟s production is constrained both by the on-hand 

emission allowances over the planning horizon and by the environmental bearing capacity 

in each period. The manufacturer obtains some tradable initial emission allowances at the 

beginning of the planning horizon. The on-hand emission allowances imply the quantity of 

carbon he can legally emit or sell in the planning horizon. However, he can also purchase 

carbon credits from the carbon market if necessary. In either case, the manufacturer must 

surrender enough allowances to cover all his emissions during the planning horizon, 

otherwise heavy fines are imposed. His production emissions in each period are also 

constrained by a constant emission cap. Different from the emission-cap regulation policy, 

the emission cap in such scheme is subject to the environmental bearing capacity of the area 

the manufacturer is located. 

In addition to production planning and technology selection, the emission allowance 

trading strategy should be considered under such a scheme. In the remainder of this section, 

we first formulate the problem as a mathematical model, and then analyze the solution 

methodology of the model. 

. .  Mathematical Model 

The manufacturer receives an amount of initial emission allowances E at the beginning of 

the production planning horizon, and he may either buy carbon credits from the carbon 

market or sell spare allowances to the others at a price of .  

Let ( )Γ   denote the cost/revenue of buying/selling   carbon credits. ( ) 0Γ    implies 

that the manufacturer has to pay ( )Γ   to buy additional carbon credits  , ( ) 0Γ    means 

he can receive a revenue of ( )Γ   from selling his spare allowances  . Then, the 

cost/revenue function can be given by 

( ) , .Γ R          Equation Chapter 4 Section 3(4.3.1) 
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When all xtr‟s and xtР‟s are known, the quantity of trading carbon allowances in the 

planning horizon is  

 
1

( , ) .x x
T

r g r tr g tg

t

e x e x E


    (4.3.2) 

The cost function, thus, can be formulated as follows. 

 
1

1

( , ) ( ) ( )

.

T

r g r tr g tg r tr g tg t t

t

T

r tr g tg

t

F s x s x p x p x h I

e x e x E

 






      
     




x x

 

(4.3.3)

 

As can be seen from Eqs. (4.3.2) and (4.3.3), the allowance trading decision variable   is 

omitted and replaced by the variables xtr‟s and xtР‟s. Note that the emission constraint over 

the planning horizon, i.e.,  1

T

r tr g tgt
e x e x E     , is removed and integrated into the 

objective function (4.3.3), since it can be easily proven that the inequality relationship must 

be equality at optimum.  

Similar to Model M-4-I in the previous section, we formulate the problem as a following 

model, named Model M-4-II, as follows. 

Model M-4-II 

Minimize 

   
1

1

( , ) ( ) ( )

,

x x
T

r g r tr g tg r tr g tg t t

t

T

r tr g tg

t

F s x s x p x p x h I

e x e x E

 






      
  

  

(4.3.4)

 

Subject to  1 ,
t t t tr tg

I d I x x     (4.3.5) 

                  ,
r tr g tg

e x e x R   (4.3.6) 

                  0,TI   (4.3.7) 

                  , 0, 0, 1,..., ,
tr tg t

x x I t T    (4.3.8) 
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where the objective function (4.3.4) consists of two terms. The first term includes the 

production cost and the inventory cost, and the second term represents the cost or revenue 

related to the emission allowance trade. Constraint (4.3.5) ensures that inventory is 

balanced. Constraint (4.3.6) limits production emissions with the emission cap in each 

period. Constraint (4.3.7) defines the initial and end inventory level of the planning horizon. 

The bounds of the decision variables are constrained by Eq. (4.3.8).  

. .  Solution Methodology 

In this section, we analyze the problem based on a reformulation technology and show 

that the proposed model can be solved by Algorithm-4-PDP developed in the previous 

section. 

In the second term of the objective function (4.3.4), let  1

T

r tr g tgt
e x e x    denote 

emission cost. If the manufacturer‟s total emissions of the planning horizon exceeds the 

initial emission allowances, i.e.,  1
,

T

r tr g tgt
E e x e x  he has to buy 

 1

T

r tr g tgt
e x e x E    units carbon credits from the market to satisfy his demands, and pay 

an emission cost of   1

T

r tr g tgt
e x e x E    . If  1

T

r tr g tgt
E e x e x  , he can sell 

 1

T

r tr g tgt
E e x e x   units spare emission allowances to others through the market, and 

receive a revenue of   1

T

r tr g tgt
E e x e x   .   

In the objective function, −E  is a� constant independent of the decision variables and 

hence can be removed. Now, let us integrate the emission cost into the production cost 

function Р(x), and consider a so-called actual production cost, which consists of the 

production cost and the emission cost. Under this cost structure, the manufacturer pays the 

cost for all his production emissions, but all initial emission allowances allocated by the 

government are considered as revenues. The actual unit production costs of the technology-

r and technology-g, i.e., rp  and 
g

p , are given as follows. 

,

.
r r r

g g g

p p e

p p e




       (4.3.9) 

Similar to Section 4.2, the problem can be decomposed into two subproblems: technology 
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selection problem and production planning problem. But, the problem cannot be solved by 

simply replacing , pР and pr by R, 
g

p  and 
rp , respectively. Because it is possible that rp  

g
p  due to the parameter , while pР > pr is a necessary assumption when solving the 

problem. 
However, the same method presented 4.2 can be used to analyze the technology selection 

problem for the case rp  
g

p . Let f(x) denote as the production cost function under the 

emission-trade scheme. Similar to the production cost structure Р(x), we can obtain the 

function f(x) as follows. 

If 
g r

p p  ,  

( )

( )

( ),    ,
( )

( ),    otherwise.

a

r g

b

f x R e x R e
f x

f x

    (4.3.10) 

If 
g r

p p  ,  

( )

( )

( ),    ,
( )

( ),    otherwise.

c

r

b

f x x R e
f x

f x

   (4.3.11) 

where ( ) [ ( )]
g r r g g g r

x R e s e e e p p      and ( ) ( ).
g r r g

x s s p p     ( ) ( ),a
f x

( ) ( )b
f x  and 

( ) ( )c
f x  are given by Eqs. (4.3.12) - (4.3.14) as follows. 

( )

0,                                                          0,

,                                               0 ,

( ) ,      ,

,        

r r r

g r g r r ga

r g r

r g r g

g g

x

s p x x R e

p p p e p e
f x s s R x R e x x

e e e e

s p x


  

          
                                        ,

,                                                          otherwise.

g
x x R e

  

 (4.3.12) 

( )

0,                  0,

,      0 ,
( )

,     ,

,                 otherwise.

r r rb

g g r g

x

s p x x R e
f x

s p x R e x R e

       
 (4.3.13) 
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( )

0,                  0,

,      0 ,
( )

,     ,

,                 otherwise.

r rc

g g g

x

s p x x x
f x

s p x x x R e

         
 (4.3.14) 

In ( ) ( ),a
f x  i.e., Eq. (4.3.12), if two technologies are used for production, the optimal 

production quantity of each technology is 

*

*

( ) ( ) ( ),

( ) ( ) ( ).

tr g r g

tg r r g

x x R e x e e

x x e x R e e

      
 (4.3.15) 

For the sake of readability, the actual production cost function is described by the curves 

as shown in Figure 4.3. 
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r
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( )
g r

ii p p 
 

Figure 4.3 The actual production cost curves  

Through the cost transformation, the unit production cost and emission cost are integrated 

into the actual cost function ( )f x . Therefore, the total emission cost  1

T

r tr g tgt
e x e x    in 

the objective function (i.e., Eq. (4.3.4)) can be transformed into the total actual production 
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cost 
1

( )
T

tt
f x . Then, the production planning problem M-4-PP-II can be formulated as 

follows. 

Model M-4-PP-II 

Minimize
 

1 1

( ) ( ) ,x
T T

t t t

t t

F f x h I E
 

      (4.3.16) 

Subject to  1 , 1,..., ,t t t tI d I x t T     (4.3.17) 

                  0,TI   (4.3.18) 

                  0 , 1,..., ,
t g

x R e t T    (4.3.19) 

                  0, 1,..., .tI t T   (4.3.20) 

In Model M-4-PP-II, observing E  is a constant and all constraints are the same to Model 

M-4-PP-I, thus, we can solve the model by Algorithm-4-PDP developed in the previous 

section. In other words, the proposed model, considering the emission cap-and-trade 

scheme, can be also solved in polynomial time.  

.  Numerical Examples  

In this section, we conduct some numerical examples to illustrate the application of the 

model and the algorithm studied under each policy. It is intuitive that the emission cap and 

carbon price have significant influences on operational decisions. Therefore, sensitivity 

analysis is provided to explore these influences.  

. .  Emission-Cap Regulation Policy 

We consider an example of a manufacturer, whose production is constrained by the 

government-imposed emission-cap regulation policy. He needs to arrange his one-year 

production planning (12 periods/months). The monthly demands are given in Table 4.1. The 

emission cap is μ = 20 thousand tons. Some other parameters are given as follows.  

The setup costs: 



Chapter 4 

91 

sr = 90 thousand dollars per setup, 

sР = 200 thousand dollars per setup.  

The unit production costs: 

 pr = 60 dollars per ton, 

pР = 80 dollars per ton.  

The emissions of unit product:  

er = 2 tons CO2 per ton products,  

eР = 1 ton CO2 per ton products.  

The inventory holding cost:  

Сt = 2 dollars per ton per month. 

Table 4.1 Monthly demands (thousand tons) 

Period 1 2 3 4 5 6 7 8 9 10 11 12 

dt 11 18 7 14 10 12 17 13 4 8 23 11 

The computational results are given in Section 4.4.1.1. We provide sensitivity analysis of 

the emission cap and explore some valuable managerial insights in Section 4.4.1.2. 

. . .  Computational Results 

Resulting from the computation, the minimal cost is 11.56 million dollars; the total 

carbon emissions in one year are 216.00 thousand tons. Some other results are given in 

Table 4.2.  

Table 4.2 Computational results (I) 

Period 1 2 3 4 5 6 7 8 9 10 11 12 

xt 20 10 10 20 0 8+4* 17 19 10 10 10 10 

It 9 1 4 10 0 0 0 6 12 14 1 0 

Emissions 20 20 20 20 0 20 17 19 20 20 20 20 

Tech. Selection g r r g - r & g* g g r r r r 
*The production in period 6 should be executed by both technology-r and technology-g with an amount 
8 and 4 thousand tons, respectively.  

The results show that the emission cap is not very tight for the manufacturer. As the 

results shown in Table 4.2, the regular technology and the green technology are used 7 and 
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5 times, respectively. Note that both technologies are used simultaneously in period 6. The 

regular technology is used more frequently than the green technology.  

The manufacturer always tries to use out the emission permits in each period under the 

emission-cap regulation policy. As can be seen in Table 4.2, emissions in 9 periods are 

equal to the emission cap in the 12-period planning horizon.  

. . .  Sensitivity Analysis  

By intuition, the government-imposed emission cap has direct and significant influences 

on the operational decisions on production planning and technology selection. We provide 

some sensitivity analysis to explore these influences as follows. 

We change the emission cap μ from 15 (a low level) to 55 (a high level) thousand tons. 

Note that, an emission cap that is more than 55 thousand tons cannot constrain the 

manufacturer‟s production emissions any more. As can be seen in Figure 4.4 , the results 

show the emission cap has significant impacts on, the total cost, the total emissions and 

technology selection.  

    
      (a) Impacts on cost                (b) Impacts on total emissions         (c) Impacts on technology selection 

Figure 4.4 Impacts of emission cap 

With the results, we draw some conclusions as follows. 

(1)  The emission cap has significant influences on the production planning and the 

total cost. As seen in Figure 4.4 (a), the manufacturer cannot produce any more 

when the emission cap is lower than 15 thousand tons. When the emission cap 

increases from 15 to 25 thousand tons, the total cost decreases drastically by 

(13.26−10.39)/13.26 = 21.64%. This is because, an optimal technology selection 

strategy may help the manufacturer to obtain a best balance between the 

emissions and the production cost, while an optimal production planning may 

help him to minimize the production and inventory costs over a finite production 

planning. 
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(2)  The curves of both the total actual emissions and the total cost are not smooth. 

The reason is that the production cost function is piecewise. This implies that the 

proposed model is difficult to solve. 

(3)  The manufacturer always tries to use up the permitted emissions when the 

emission cap is relatively tight. From the results in Figure 4.4 (b), we can see that 

the total emissions are close to the emission cap when it is less than 25 thousand 

tons. But the emission cap will be invalid when it goes too high. As shown in the 

Figure 4.4 (a) and (b), the cost cannot be reduced any more when the emission 

cap is more than 53 thousand tons; the total emissions will not increase when the 

emission cap exceeds 29 thousand tons. 

(4)  The manufacturer does not have motivation to use green technology when the 

emission cap is too high. As we can see in Figure 4.4 (c), no green technology 

will be used if the emission cap is up to 29 thousand tons.  

. .  Emission Cap-and-Trade Scheme 

In this section, we conduct a numerical example to show the application of our model for 

the emission cap-and-trade scheme studied in Section 4.3. In the example, we set all 

manufacturer-related parameters to the same values as those in Section 4.4.1. In order to 

make comparisons with the emission-cap regulation policy, we set the environmental 

bearing capacity to the same as the emission cap in Section 4.4.1, i.e., R = µ = 20 thousand 

tons. Some other parameters specially used in Model M-4-II are given as follows. 

The initial emission allowances for a planning horizon:  

E = 200 thousand tons. 

The carbon price:   

 = 15 dollars per ton CO2. 

The actual unit production cost: 

p'r = pr + er  = 60 + 2*15 = 90 thousand dollars per ton, 

p'Р = pР + eР  = 80 + 1*15 = 95 thousand dollars per ton.  

. . .  Computational Results 

The results show that the minimal cost is 12.13 million dollars; the total carbon emissions 
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are 208.00 thousand tons. The manufacturer needs to buy 8.00 thousand tons carbon credits 

from market to satisfy his production. Some other related results are given in Table 4.3.  

Table 4.3 Computational results (II)  

Month 1 2 3 4 5 6 7 8 9 10 11 12 

xt 20 10 10 20 0 12 17 19 10 10 10 10 

It 9 1 4 10 0 0 0 6 12 14 1 0 

Emissions 20 20 20 20 0 12 17 19 20 20 20 20 

Tech. Selection g r r g - g g g r r r r 

 

. . .  Sensitivity Analysis  

This section analyzes the impacts of carbon price on the manufacturer‟s decisions. Note 

that similar results can be obtained from the sensitivity analysis of emission cap (i.e., 

environmental bearing capacity) to those under the emission-cap regulation policy, thus we 

it omit here. The carbon price is changed from 10 to 50 dollars per ton. The results are 

given in Figure 4.5. 

     

  (a) Impacts on cost                   (b) Impacts on emissions             (c) Impacts on technology selection 

Figure 4.5 Impacts of carbon price 

With the results shown in Figure 4.5, we draw some interesting observations follows. 

(1)  The carbon price affects the cost of the manufacturer remarkably, especially when 

he suffers from a high production cost of the green technology. When the carbon 

price increases from 10 to 50 dollars per ton, the cost of the manufacturer varies 

in a narrow range from 10.96 to 12.33 million dollars with a percent of 15.50%, 

as shown in Figure 4.5(a). That is because the manufacturer uses green 

technology more frequently when the carbon price increases (see Figure 4.5(c)) to 

reduce the quantity of carbon credits to buy, even sell his spare emission 

10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

10 18 26 34 42 50

T
ot

al
 c

os
t  

 (m
ill

io
n 

do
lla

rs
)

-60

-50

-40

-30

-20

-10

0

10

20

30

100

120

140

160

180

200

220

10 20 30 40 50 T
ra

di
ng

 c
ar

bo
n 

cr
ed

its
  (

th
ou

sa
nd

 to
ns

T
ot

al
 e

m
is

si
on

s 
 (

th
ou

sa
nd

 to
ns

)

Total emissions

Trading carbon 
credits

0

2

4

6

8

10

10 20 30 40 50

T
he

 n
um

be
rs

  o
f t

ec
hn

ol
og

y 
us

ed

Tech. r
Tech. g
Tech. r&g



Chapter 4 

95 

allowances (see Figure 4.5(b)). If we increase the unit production cost of the 

green technology to 160 dollars per ton, the cost will increase remarkably by 

39.08%.  

(2)  The emissions decrease drastically when the carbon price goes up. As shown in 

Figure 4.5(b), when the carbon price increases from 14 to 24 dollars per ton, the 

emissions decrease from 218 to 161 thousand tons by 26.15%. However, the 

results also show that the emissions and technology selection strategy may remain 

the same when changing the carbon price (see Figure 4.5(b)). The reason is the 

setup cost: when the increase of carbon price is not large enough, the cost of 

switching to green technology (i.e., incurring higher setup cost) is higher than the 

cost of buying carbon credits even though the carbon price goes up. 

(3)  The green technology is used more frequently when the carbon price goes up. As 

seen from Figure 4.5(c), the number of periods using green technology increases 

remarkably when the carbon price increases from 14 to 22 dollars per ton. That is 

because the manufacturer tries to avoid high cost of buying carbon credits or to 

obtain more revenues from sell more emission allowances by using the green 

technology more frequently to reduce emissions. 

.  Conclusion  

This chapter studies the manufacturer‟s medium-term operational decision problem under 

two types of government-imposed emission-reduction policies, including emission-cap 

regulation policy and emission cap-and-trade scheme. The objective is to minimize the 

overall costs over a finite planning horizon.  

The decision problems are formulated as MILP models which are difficult to solve. The 

manufacturer‟s production is capacitated caused by the emission limitation. However, he 

can control emissions by a technology selection strategy, where two candidate technologies 

with setup costs could be chosen for production. The equivalent production cost functions 

turn to be non-continuous due to the emission limitation and technology selection, and 

bring difficulties in solving the models. 

However, a polynomial dynamic programming algorithm (i.e., Algorithm-4-PDP) is 

developed to solve the models in O(T6) time. In the algorithm, a multi-level decomposition 

approach is used to reconstruct the structure of solutions and conquer the difficulties 
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brought from the special cost function. In particular, under the emission cap-and-trade 

scheme, the model is reformulated into an “emission-cap regulation model” by integrating 

the emission-trading constraint into the objective function and therefore can be solved by 

Algorithm-4-PDP. 

Some numerical examples are conducted to show the application of our models and the 

algorithm. From the results of these examples, we explore some valuable managerial 

insights, which are briefly lined as follows. 

(1)  The technology selection and production planning strategy is significantly 

affected by emission cap. Therefore, the cost of the manufacturer increases 

drastically when the government implements a severe regulation policy. As 

shown in the numerical example, the cost increases by 21.64% when the emission 

cap lowers from 25 to 15 thousand tons.  

(2)  The technology selection strategy may remain the same when changing the 

carbon price under the emission cap-and-trade scheme. This is because the green 

technology will be used more often only if it generates more profit than setup 

cost. 

(3)  An emission cap-and-trade scheme may promote manufacturer self-motivated 

emission reduction. This is because technology innovation will be promoted in 

such a scheme. 

In conclusion, the manufacturer may be much more flexible in optimizing his operational 

decisions and may benefit more from these optimizations under the emission cap-and-trade 

scheme than under the emission-cap regulation policy. Moreover, an emission-reduction 

policy within emission allowance trade is more effective to achieve the emission-reduction 

target.   
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Chapter 5 

 

Carbon Emission-Reduction Policy for Government 

This chapter focuses on emission-reduction issues in a local region and investigates 

policymaking decision problems for a local government. It seeks to maximize the social 

welfare of the local region by optimizing the government‟s emission-reduction policies. 

Both emission-cap regulation policy and emission cap-and-trade scheme are considered in 

our research.  

Section 5.1 describes the problem in detail and defines the notation used in this chapter. 

Section 5.2 studies the decision problem of optimizing the emission-cap regulation policy. 

The problem is formulated as a Stackelberg game, and a hybrid algorithm is developed to 

solve the proposed model. Section 5.3 discusses the scenario of emission cap-and-trade 

scheme. Section 5.4 conducts some numerical experiments to illustrate the application of 

the models and the algorithms proposed in this chapter. Section 5.5 summarizes the 

research of this chapter. 
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.  Problem Description and Notation 

. .  Problem Description 

This chapter aims to optimize a local government‟s policymaking decisions on emission-

reduction policies with the objective of maximizing the social welfare of the local region. 

The government‟s decisions include the emission cap for each manufacturer in the 

emission-cap regulation policy and the emission-reduction target under emission cap-and-

trade scheme. 

In practice, green technologies cost more than the regular ones, but the regular 

technologies emit more emissions than the green ones. That is, emission reduction is at the 

price of paying economic costs. However, in recent decades, governments pay more 

attention to sustainable development from the viewpoint of the society. Sustainable 

development is a normative concept which involves tradeoffs among social, ecological and 

economic objectives, thus it is required to sustain the integrity of the overall system 

(Hediger, 2000).  

In this chapter, emission-reduction policies are analyzed and studied from the 

perspective of social welfare, which consists of economic and environmental utilities. 

Note that the social utilities considered in our research are just parts of the numerous and 

various utilities of a society. The social welfare may be influenced significantly by the 

emission-reduction polices: a severe emission-reduction policy may reduce emissions to a 

relatively low level (i.e., increase environmental utilities) at the price of raising costs of 

manufacturers (i.e., decrease economic utilities); in contrast, an easy policy may increase 

economic utilities at the cost of losing some environmental utilities. Therefore, a 

successful emission-reduction policy requires a good balance between the economic 

utilities and the environmental utilities.  

This chapter focuses on this practical problem and seeks to maximize the social welfare 

of a local region by optimizing the government‟s emission-reduction policies. In such a 

region, there are multiple homogenous manufacturers belonging to the same industry. They 

produce homogenous products emitting carbon dioxide but serve different retail markets. 

All manufacturers make their medium-term production planning under the government-

imposed emission-reduction policies.  
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The manufacturers‟ operational decisions depend on the emission-reduction policies, 

while the social welfare could be influenced by the manufacturers‟ decisions responding to 

the government‟s policies. Therefore, the government has to anticipate the manufacturers‟ 

reactions when imposing such policies. In our research, a frame of Stackelberg game is 

used to discuss the decision process of the government and the manufacturers, which is 

briefly introduced as follows. 

In the Stackelberg game, the government acts as a leader and sets the emission-

reduction policies, while the manufacturers act as followers and optimize their 

operational production planning under the emission-reduction policies imposed by the 

government. The government dynamically adjusts her policies and observes the 

manufacturers‟ optimal responses till the maximal social welfare is achieved. In this 

chapter, we study two types of emission-reduction policies, i.e., emission-cap 

regulation policy and emission cap-and-trade scheme, in Section 5.2 and Section 5.3, 

respectively.  

In Section 5.2, we investigate the government‟s policymaking problem regarding the 

emission-cap regulation policy. In such a policy, the government determines emission cap 

for each manufacturer in the region to limit the manufacturers‟ missions related to their 

production activities. As referred in Chapter 4, each manufacturer‟s production emissions in 

each period are limited by a constant emission cap set by the government. For the sake of 

simplicity, we assume that the numbers of periods in a planning horizon of all 

manufacturers are the same, e.g., a one-year planning horizon including 6 periods.  

The emission caps for all manufacturers could be optimally determined under a 

Stackelberg game frame. The government first sets an emission cap for each manufacturer, 

and then all manufacturers plan their production optimally according to the emission caps. 

By observing or anticipating the responses of the manufacturers, the government computes 

the social welfare and adjusts the values of emission caps dynamically to improve the social 

welfare. These interactive decisions between the government and the manufacturers 

continue till the Stackelberg equilibrium is achieved. At the equilibrium point, the social 

welfare cannot be improved anymore. The policy is optimal (i.e., the emission caps are 

optimal) and the social welfare is maximal at this point. 

The problem is formulated as a two-level Stackelberg model. In the model, the 

government maximizes the social welfare by optimizing emission caps with the first level 
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of the model; the manufacturers minimize their overall costs by optimizing their production 

planning with the second level of the model, according to the emission caps set by the 

government. The optimal decisions of both the government and the manufacturers are 

obtained when the Stackelberg equilibrium is achieved. A hybrid algorithm is developed to 

find such equilibrium. 

In Section 5.3, we discuss the government‟s policymaking decisions regarding the 

emission cap-and-trade scheme. In such a scheme, the government allocates initial 

emission allowances to each manufacturer in the region, according to the reduction 

baseline and emission-reduction target. The reduction baseline is the amount of average 

emissions of the industry when only regular technologies are used for production, while 

the emission-reduction target is the percentage reduction of emissions of the region. That 

is, for certain duration (i.e., the demand scales and average emissions are known), the 

initial emission allowances allocated to the manufacturers only depend on the emission-

reduction target.  

In the emission cap-and-trade scheme, initial emission allowances are tradable. 

Manufacturers can buy (or sell) emission allowances (or carbon credits) from (or to) 

each other in the region as needed. By the end of each year all manufacturers must 

surrender enough allowances to cover all their emissions, otherwise heavy fines are 

imposed. In our research, we consider a finite production horizon and assume that 

each manufacturer sells all their spare allowances at the end of each year. The carbon 

price is determined by all manufacturers and formed based on market (European-

Commission, 2012). In our research, a Cournot competition model is used to analyze 

and optimize the carbon price, which depends on the manufacturers‟ on-hand initial 

emission allowances. 

From the analysis above, we can see that the social welfare depends on the emission-

reduction target set by the government. Therefore, the maximal social welfare of the local 

region can be achieved by optimizing the emission-reduction target. Similar to the 

mathematical model formulated in Section 5.2, a two-level Stackelberg model is presented 

to solve the problem in this section.  

In the model, the government first sets a value of the emission-reduction target and 

allocates the initial emission allowances to each manufacturer. Then, the equilibrium 

carbon price is computed by the Cournot competition model. Meanwhile, all 
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manufacturers react to the government‟s decisions and optimally determine their 

production planning. The government observes the responses of the manufacturers and 

adjusts the emission-reduction target dynamically till the maximal social welfare is 

achieved.  

. .  Notation 

The notation used throughout this chapter is as follows: 

Parameters
 

ε number of manufacturers in the local region 

 a parameter indicating the environment impacts caused by carbon emissions 

Ri environmental bearing capacity in each period of the area manufacturer i is 

located, i=1,…, ε 

αec weight of economic utility in the social welfare 

ev weight of environmental utility in the social welfare 

φecou coefficient of the economic utility, which corresponds to profits  

φenvu coefficient of the environmental utility, which corresponds to carbon emissions 

Pi product price of manufacturer i, i=1,…, ε 

Decision variables of tСe Рovernment
 

i  emission cap set to manufacturer i in each period. = ( )1 Mu ,...uμ   

ϕ emission-reduction target, which is a percentage of emission reduction related 

to the baseline 

IEi initial emission allowances in a planning horizon allocated to manufacturer i, 

i=1,…, ε  

Decision variables of tСe manufacturers 

xitr, xitР

 

production quantities with respective technology-r and technology-g of 

manufacturer i in period t. xitr ≥ 0 and xitg ≥ 0, i=1,…, ε 

i  trading quantity of emission allowances of the manufacturer i, i=1,…, ε 

OtСer variable 

 carbon price formed in market 
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Functions 

WР social welfare consisting of economic and environmental utilities 

πi profit of manufacturer i over a planning horizon, i=1,…, ε 

AEi  actual emissions of manufacturer i in a planning horizon within T periods 

TIE total initial emission allowances allocated to all manufacturers, 
1

M

ii
TIE IE

TAE total actual emissions of all manufacturers. 
1

M

ii
TAE AE  

( )ecouΦ   economic utility of social welfare, which is a function of the manufacturer‟s 

profit  

( )envu   environmental utility of social welfare, which is a function of total carbon 

emissions TAE 

Fi overall cost of manufacturer i in a planning horizon, i=1,…, ε 

( )i i   cost/revenue of the manufacturer i regarding the emission allowance trade, 

i=1,…, ε 

Note that the notation related to the decisions of the manufacturer i is the same as in 

Chapter 4, each of which is added a subscript i (i=1,…,ε), e.g., dit represents the demand 

of manufacturer i in period t. 

.  Emission-Cap Regulation Policy 

In this section, we study the policymaking decision problem for the government 

regarding the emission-cap regulation policy. The government needs to optimally determine 

the emission cap for each manufacturer to maximize the social welfare of the region. The 

emission cap for each manufacturer cannot exceed the environmental bearing capacity of 

the area the manufacturer is located.  

We formulate the problem as a two-level Stackelberg game model in Section 5.2.1, and 

develop a hybrid algorithm to solve the problem in Section 5.2.2. 

. .  Mathematical Model  

. . .  Mathematical Formulation 

A social welfare function commonly used in literature is the utilitarian welfare function, 
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in which the social welfare is equal to the sum of individual utilities (Karp, 1992). This 

research considers two types of utilities: the positive economic utility benefiting from the 

profits and the neРative environmental utility caused by the damages of carbon emissions 

emitted by the manufacturers in the local region.  

The social welfare function is given by 

   g ec ecou ev envuW Φ Φ      Equation Chapter 5 Section 2(5.2.1) 

where ( )envuΦ   is the economic utility which depends on the total profits of all 

manufacturers. ( )envuΦ   is the environmental utility caused by carbon emissions. αec and ev 

are the weights of economic and environmental utilities in the social welfare, respectively. 

Note that we must have αec + ev < 1, since only two types of utilities of the social welfare 

are considered in our research. 

According to (Honma, 2005), the relationship between the environmental damage 

(denoted by 
env ) and the amount of emissions must verify:  

2

2

0,

0.

env

i

env

i

AE

AE

  
 (5.2.2) 

These relations indicate that both the environmental damage and the marginal damage 

will increase when increasing emissions. Without loss of generality, some researchers use 

nonlinear function to represent this relationship, such as quadratic environmental damage 

(Weber and Neuhoff, 2010), exponential environment consumption (Le Kama et al., 

2010).  

In this research, the neРative environmental utility (i.e., the environmental damage) 

caused by the emissions of manufacturer i is defined as  exp ( )
envu i i

AE T R    . Then, 

the environmental utility of the local region can be given by 

1

exp ,
M

i
envu envu

i i

AEΦ
T R




      (5.2.3) 

where  is a parameter representing the environmental impacts caused by carbon emissions. 
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The higher , the more damage the environment suffers from the same amount of 

emissions. φenvu is a coefficient representing the relationship between the environmental 

utility and the environmental damage. 

It is assumed that the price of each manufacturer‟s product is known in a medium-term 

planning, then, the profit function of manufacturer i in a finite planning horizon T is given by 

1

T

i i it i

t

Pd F


   (5.2.4) 

where Pi is the product price of the manufacturer i. Fi is the cost of the manufacturer i over 

the planning horizon. Since 
1

T

i itt
Pd is a constant, to maximize πi is to minimize the cost 

Fi, according to the maximal theory.  

Then, the economic utility of the region can be given by 

1

M

ecou ecou i

i

Φ  


   (5.2.5) 

where φecou is a coefficient representing the relationship between the economic utility and 

the profits of the manufacturers. 

According to the problem description, we formulate the problem as a two-level 

Stackelberg game model, named Model GM-5-I. The mathematical model includes two 

levels, i.e., the upper level and the lower level.  

TСe upper level for the government to make decisions is achieved by the first Sub-model 

(named Sub-model G), including Eqs. (5.2.6)-(5.2.7). With Sub-model G, the government 

maximizes the social welfare by determining μi‟ optimally, by observing the best responses 

of manufacturers. 

TСe lower level for each manufacturer to make decisions is achieved by the second Sub-

model (named Sub-model M), including Eqs. (5.2.8)-(5.2.12). With Sub-model M, 

manufacturer i minimizes his overall costs of a planning horizon T, according to the 

emission cap μi set by the government.  

Model GM-5-I is formulated as follows.  
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Model GM-5-I: 

Maximize   
1 1 1 1

( )
( ) ( ) exp

M T M M
i i

g ec ecou i it i i ev envu

i t i i i

AE
W Pd F

T R

   
   

              xμ x ,   (5.2.6) 

Subject to   0 i iR  , (5.2.7) 

                   (Decisions of manufacturer i with given μi) 

                    Minimize   
1 1

( ) ( , )
T T

i ir ig i itr itg it it

t t

F g x x h I
 

  x , x , (5.2.8) 

                    Subject to  ( 1) ,
it it i t itr itg

I d I x x     (5.2.9) 

                                     ,
ir itr ig itg i

e x e x    (5.2.10) 

                                     0,iTI   (5.2.11) 

                                     , 0, 0, 1,..., ,  1,..., .
itr itg it

x x I t T i M     (5.2.12) 

In Sub-model G, the objective function (5.2.6) maximizes the social welfare, which 

consists of the economic utility (the first term) and the environmental utility (the second 

term). iF  is the minimal overall cost and AEi is the total emissions of manufacturer i in a 

planning horizon, respectively. Note that both of them depend on the decision variable xir = 

(xir1,…,xirT) and xiР = (xiР1,…,xiРT). The percentages of economic utility and environmental 

utility in the social welfare are given by the weights αec and ev, respectively. Constraint 

(5.2.7) ensures that the emission cap of each period does not exceed the environmental 

bearing capacity of the area the manufacturer is located. 

In Sub-model M, the objective function (5.2.8) minimizes the overall cost of 

manufacturer i. Constraint (5.2.9) ensures that inventory is balanced. Constraint (5.2.10) 

ensures the production emissions of the manufacturer do not exceed the emission cap in 

each period. Constraint (5.2.11) sets the initial and end inventory to be zero. The bounds of 

the decision variables are constrained by Eq. (5.2.12). 

With Model GM-5-I, our objective is to find the optimal strategy (μ*, xi
*) that maximizes 
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the social welfare WР(µ), meanwhile, manufacturer i‟s overall cost Fi(xi) is minimized with 

the given μi. Note that we have xi
*= (xiР

*, xiР
*). Subsequently, the remaining work is to 

develop an efficient algorithm to solve the mathematical model. 

. . .  Problem Complexity 

Model GM-5-I provides a way to obtain optimal solutions by utilizing a dynamic 

decision process:  

The government first sets a group of values μ = (μ1, …, μM). Then, each manufacturer 

reacts to μi and determines optimal x*
i. The government calculates the social welfare 

WР(µ) according to the responsive decisions x*
i, and tries all possible μ to improve 

WР(µ). All manufacturers are involved in the dynamic decisions and follow the 

government‟s decisions. This dynamic process will not stop until the Stackelberg 

equilibrium is achieved. At the Stackelberg equilibrium, the government cannot improve 

the social welfare anymore; meanwhile, the manufacturers minimize their costs within 

the government‟s given decisions.  

In the Stackelberg game model, for any given μi, any manufacturer i‟s decision problem 

(i.e., Sub-model M) can be solved by Algorithm-4-PDP, a polynomial algorithm proposed 

in the Chapter 4. That is to say, xi
* can be polynomially computed with given μi. Therefore, 

the remaining work is to find the optimal μ*.  

Before developing an algorithm to solve our problem, let us analyze the complexity of 

the model. Some simulations of the decision variables μ are conducted, in which we 

consider the scenario with only one manufacturer in the region and the results are given in 

Figure 5.1.  

As shown in Figure 5.1, both curves in (a) and (b) are non-continuous but multimodal. In 

Figure 5.1(a), the profit curve is not smooth with the changes of μi. In Figure 5.1(b), we can 

see that the total emissions do not vary smoothly when varying μi. That‟s because the 

optimal emissions in each period may not be equal to the emission cap. These two reasons 

also explain why the social welfare curve is not smooth, and is multimodal (see Figure 

5.1(c)). In other words, the objective function (5.2.6) is not concave in μi, since the 

objective value may go up and down with the change of the manufacturer i‟s decision 

variables xi, which makes Fi(xi) and ( )i iAE x discontinuous.  



Chapter 5 

107 

  

      (a) The impacts on profit πi         (b) The impacts on actual emissions AEi    (c) The impacts on social welfare WР 

Figure 5.1 Simulations of the objective function by changing μi 

The analysis above shows that it is analytically intractable to solve the proposed model; 

even worse, to the best of our knowledge, it is impossible to solve μ with some 

combinatorial optimization approaches. Thus, we are encouraged to develop a hybrid 

algorithm to deal with these difficulties. 

. .  Solution Methodology 

As referred in the previous section, the decision variables xi for each manufacturer i 

can be solved by Algorithm-4-PDP; the decision variables μ are analytically intractable, 

and cannot be solved by existing optimization methods. In the light of the complexity of 

our problem, an algorithm, which can cope with the nonconcavity and analytical 

intractability, is required to solve the proposed Stackelberg game model.  Thus, the 

variables μ needs to be computed numerically, and develop a hybrid algorithm to solve 

the problem. 

In the hybrid algorithm, GA is used to search the optimal or near optimal μ in numerical 

way, which can overcome the drawbacks of nonconcavity and multimodality of the 

objective function. Algorithm-4-PDP is in charge of solving xi with given μi generated by 

GA. The global optimal strategy (μ*, xi
*) is obtained when the terminated condition of GA 

is satisfied. 

. . .  Genetic Algorithm for Computing μ 

In GA, a population of chromosomes is generated and evolves toward optimal 

solutions. A chromosome corresponds to the solutions of Sub-model G. The initial 

generation of the population is commonly generated randomly (Joines et al., 1995). The 

chromosomes in subsequent generations are produced by using selections, mutations, 

and crossovers. The quality of a chromosome is evaluated by a fitness function. The 

pr
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fitness function is defined by the objective function (5.2.6) plus some costs for 

penalizing the constraint violations. That is, a sufficiently heavy penalty will be 

imposed if constraint (5.2.7) is violated. By using the fitness function, the chromosomes 

can be ranked from good to bad ones.  

A solution corresponding to decision variables μi‟s is represented by a chromosome in 

GA, where μi is the emission cap set to manufacturer i. The chromosomes in the 

generations afterwards are generated by three genetic operators, i.e., operators of selection, 

crossover and mutation. All parameters of these genetic operators are set to the same as 

those of the GA used in Section 3.2.2.3. Note that GA is similar to the one used in Chapter 

3, so it is not described in detail here. 

. . .  Hybrid Algorithm 

Up to now, the variables μ and xi are solved by GA and Algorithm-4-PDP, respectively. 

We, therefore, present a hybrid algorithm combining these two algorithms to find the global 

optimal strategy (μ*, xi
*).  

In the hybrid algorithm, GA is in charge of solving μ as outer loop of the algorithm; 

meanwhile, Algorithm-4-PDP is in charge of solving xi as inner loop with the given μi 

generated by GA. The detailed procedures of the hybrid algorithm are given in Figure 5.2. 

We first randomly generate a group of chromosomes representing solutions (μ1, …, με). 

Under the given (μ1, …, με), we compute the optimal x*
i (i.e., x*

ir and x*
iР) by Algorithm-4-

PDP and obtain the minimal Fi and the related emissions AEi. Meanwhile, we can compute 

the social welfare WР by Eq. (5.2.6).  

Then, we update the chromosomes from generation to generation. In each generation, 

(μ1, …, με) are dynamically updated by the three genetic operators. With the given (μ1, …, 

με) updated in each generation, x*
i and WР are also updated. These processes continue until 

the termination condition of GA is satisfied, i.e., a convergence accuracy of 1.0×10-6 for the 

fitness function is achieved.  
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Step 5: Update (μ1,…, μM) by 
GA

Step 6: Output the best solutions (μ*
1,…, μ*

M),    
(x*

itr, x
*

itg)  and the maximal social welfare Wg 

No

Yes

Step 4: Is GA termination 
condition satisfied?

Step 1: Initialize  (μ1,…, μM) by GA

Step 2: Compute optimal (x*
ir, x

*
ig) by 

Algorithm-4-PDP and obtain Fi and AEi  

Step 3:  Calculate the social welfare 
Wg(μ) by Eq. (5.2.6) 

 

Figure 5.2 Procedures of Algorithm-5-Hybrid-I 

.  Emission Cap-and-Trade Scheme 

In the previous section, we study the government‟s policymaking problem for a local 

government regarding the emission-cap regulation policy. Subsequently, this section 

considers the problem regarding the emission cap-and-trade scheme. We seek to maximize 

the social welfare of a local region by optimizing the emission-reduction target set by the 

government. 

In the emission cap-and-trade scheme, the government sets an emission-reduction target 

(i.e., a percentage of emission reduction) and allocates tradable initial emission allowances 

to each manufacturer in the region. The government pays attention to the environmental 

issues and pursues a positive emission-reduction target in each year, i.e., ϕ>0.  

 An allowance allocation mecСanism is used to allocate the initial emission-allowance to 

manufacturers, which is based on the emission-reduction baseline and the emission-

reduction target. The emission-reduction baseline is defined as the amount of average 

emissions of the industry when only regular technologies are used for production. For 

example, if the average emissions of producing one ton product by regular technologies 

(i.e., without using green technologies) in the industry are 2 tons CO2, the demand scale 

(represented by the customer demand) of a manufacturer is 100 tons, and the emission-
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reduction target for one year is 10%, then the initial emission allowances allocated to the 

manufacturer are 2×100×(1−10%) = 180 tons.  

With tradable initial allowances, the manufacturers optimize their production planning 

and trade them with others in the region. All manufacturers share their emission-allowance 

demand information with each other, and the carbon price is market-based and formed 

automatically in the market. The optimal carbon price, i.e., equilibrium carbon price, can 

be obtained by solving a Cournot competition model.  

According to the equilibrium carbon price, the manufacturers plan their production 

optimally. Similar to Section 5.2, all manufacturers plan their production over a horizon 

with the same number of periods. The government computes the social welfare by 

observing the reactive decisions of all manufacturers. In the same way as for the emission-

cap regulation policy, the government maximizes the social welfare by dynamically 

determining the emission-reduction target under a Stackelberg game frame.  

In summary, we solve our problem using a two-stage Stackelberg game model. In the 

model, the government determines the value of ϕ, and allocates initial emission allowances 

IEi to each manufacturer i by the allowance allocation mechanism. Then, all manufacturers 

react to IEi and trade their allowances in the market at an equilibrium carbon price. 

Meanwhile, each manufacturer optimizes his production planning x*
i optimally, and the 

government computes the social welfare WР with the responses of the manufacturers‟ 

decisions x*
i. The government changes ϕ to improve WР until it cannot increase anymore. 

The Stackelberg equilibrium is achieved by the dynamic decision process, and the optimal 

decisions of both the government and the manufacturers are obtained. 

The remainder of this section is organized as follows. Our problem is formulated in 

Section 5.3.1, and Section 5.3.2 presents the solution methodology for the proposed 

model. 

. .  Mathematical Model  

According to the emission allocation mechanism introduced above, the initial emission 

allowances allocated to manufacturer i are given by 

1 1 1 1 1

(1 )
M T M T T

i ir it it it

i t i t t

IE e d d d
    

         Equation Chapter 5 Section 3(5.3.1) 
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Eq. (5.3.1) implies that the initial emission allowances for a manufacturer depend on the 

average emissions of unit production with the regular technologies (i.e., without using 

green technology) in the industry and the market scale (i.e., the customer demand) of the 

manufacturer.  

After all manufacturers obtain their initial emission allowances IEi, they plan their 

production and evaluate whether their allowances are enough for production (i.e., the 

spare amount for selling or the shortage to buy). They buy or sell allowances through 

the carbon-credit trading market in the local region, and the total tradable and available 

allowances in the market are 
1

M

ii
TIE IE . The manufacturers adjust production 

planning to control their production emissions according to the market-based carbon 

price. The initial emission allowances will be consumed as many as possible but not 

exceed TIE.  

In what follows, we discuss how to use a Cournot competition model (Cournot and 

Fisher, 1897) to obtain the equilibrium carbon price. The processes of optimizing such a 

carbon price can be analyzed under a frame of Cournot competition game: the total initial 

emission allowances correspond to the total demands of a market in a classical Cournot 

competition model; the actual emissions of the manufacturers correspond to the production 

quantities of firms; the carbon price corresponds to the price of the homogeneous product 

of firms; each manufacturer‟s decision on actual emissions (depending on the decisions of 

production planning) affects the carbon price; the optimal carbon price is achieved when 

the total actual emissions of all manufacturers are equal to the total initial emission 

allowances allocated to them. 

It can be seen that the process to obtain the equilibrium carbon price is to re-allocate the 

total initial emission allowances to the manufacturers by adjusting the carbon price 

optimally. The equilibrium carbon price will be achieved when the total actual emissions 

are equal to the total initial emission allowances, i.e., 
1

M

ii
TAE AE TIE  .  

In the Cournot competition model, feasible 
i

AE  is obtained when minimal ( )xi iF  is 

achieved with given  (briefly shown in Eq. (5.3.2)), and the equilibrium carbon price * 

can be obtained when TAE TIE . 
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1 1 1 1 1 1 1 1
1

2 2 2 1 2 2 2 2
1

1

: min ( ) ( ) ,

: min ( ) ( ) ,

                      ...

: min ( ) ( ) .

T

t t t t

t

T

t t t t

t

T

M M M Mt Mt Mt Mt M

t

AE F f x h I IE

AE F f x h I IE

AE F f x h I IE












                  





x

x

x

   (5.3.2) 

Note that, in this research, the total actual emissions may not be exactly to the total initial 

emission allowances because of the discreteness of the manufacturers‟ decision problem. 

That‟s to say, there may be some allowances that cannot be sold out and are kept in the 

hands of the manufacturers, i.e., the total actual emissions may be strictly less than the total 

initial emission allowances (i.e.,
 TAE TIE ). Thus, in the next section, an ϵ-approximate 

optimal solution (on carbon price) is obtained by an algorithm based on dichotomy method 

and Algorithm-4-PDP. 

In the emission cap-and-trade scheme, the initial emission allowances are freely allocated 

to manufacturers. Therefore, in the function of the social welfare, these economic utilities 

contributed by the initial emission allowances that are not sold out and kept in the hands of 

manufacturers should be deducted from the total utility. Then, the economic utility is  

1

( )
M

ecou ec ecou i

i

U TIE TAE   


      .   (5.3.3) 

According to the Eqs. (5.2.3), (5.2.4) and (5.3.3), the welfare function is given as follows. 

 1 1
1 1 1 1

exp
M T M M

M M i
g ec ecou i it i i i ev envui i

i t i i i

AE
W Pd F IE AE

T R

        
                  .  (5.3.4) 

According to the analysis above, the government decision problem is to optimize the 

emission-reduction target ϕ. The carbon price  is optimally computed by the Cournot 

competition model based on the initial emission allowances IEi‟s. For the decision of each 

manufacturer i, only the decision variable xi (i.e., i can be represented by xi) need to be 

computed according to Theorem 4.3.1 and the mathematical model in Section 4.3.1. The 

decision model of each manufacturer is the same as Model M-4-II-S. 

Then the problem can be formulated as the following Stackelberg game model, named 
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Model GM-5-II. In the model, the government‟s decisions are achieved by Eqs. (5.3.5)-

(5.3.7), named Sub-model G, while each manufacturer i‟s decisions are achieved by Eqs. 

(5.3.8)-(5.3.12), named Sub-model M.  

Model GM-5-II: 

Maximize  

 

 1 1
1 1 1

1

( ) ( ) ( )

( )
exp ,
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ev envu
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Subject to   0  , (5.3.6) 

                    
1 1 1 1 1

(1 ) ,
M T M T T

i ir it it it

i t i t t

IE e d d d
    

         (5.3.7) 

                        Optimize the equilibrium carbon price * by Cournot competition model  

                         with given iIE  

                    (Decisions of manufacturer i with given * and IEi ) 

                    Minimize   *

1 1

( ) ( , )
T T

i ir ig i itr itg it it i

t t

F f x x h I IE 
 

   x , x , (5.3.8) 

                    Subject to  ( 1) ,
it it i t itr itg

I d I x x     (5.3.9) 

                                     ,
ir itr ig itg i

e x e x R   (5.3.10) 

                                     0,iTI   (5.3.11) 

                                     , 0, 0, 1,..., ,  1,..., .
itr itg it

x x I t T i M     (5.3.12) 

In Sub-model G, the objective function (5.3.5) is to maximize the social welfare 

including two parts. The first part is the economic utility benefitting from the profits of the 

manufacturers; the second part is the negative environmental externality caused by the 
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carbon emissions. αec and ev are the weights of economic and environmental utilities in the 

social welfare, and we have αec + ev <1. Constraint (5.3.6) ensures that the emissions 

reduction must be implemented each year. Eq. (5.3.7) provides the way to allocate initial 

emission allowances.  

Sub-model M is identical to Model M-4-II-S, thus we omit the details here. 

As can be seen, similar to Model GM-5-I in the previous section, Model GM-5-II is also 

difficult to be solved. We, therefore, present a hybrid algorithm to deal with the difficulties 

by solving ϕ numerically. 

. .  Solution Methodology 

In the two-stage Stackelberg game model, the initial emission allowances for 

manufacturers IEi‟s are calculated by Eq. (5.3.7) with any given ϕ. With given IEi‟s, the 

equilibrium carbon * can be obtained by the Cournot competition model (i.e., (5.3.2)). 

Simultaneously, the minimal cost of the manufacturer *( )x
i i

F  and the related emissions 

*( )
i i

AE x  can be computed by Algorithm-4-PDP. Then, the social welfare WР can be 

calculated by objective function (5.3.5) with *( )x
i i

F and *( )
i i

AE x . In order to find the 

global optimal ϕ, we must try all possible ϕ numerically till WР cannot be further improved. 

In the remainder of this section, we present a hybrid algorithm to solve all variables 

analyzed above. In the algorithm, GA is used to solve ϕ numerically; an algorithm based on 

dichotomy is developed to solve the Cournot competition model and obtain the optimal *; 

and Algorithm-4-PDP is used to solve the manufacturers‟ decisions. 

The following property will be helpful to solve the Cournot competition model. 

Theorem 5.3.1. For any manufacturer, in an optimal production planninР, Сis actual 

emissions are non-increasinР witС tСe increase of carbon price. 

Proof. The property can be proven by contradiction. Assume that there are two carbon 

prices  and ′ > , such that the actual emissions under  is strictly less than those under ′.  

Let x and x′ be the production plans under  and ′, AE and AE′ be the actual emissions 

under  and ′. By the assumption, we have AE < AE′. 

The costs corresponding to optimal production planning x (resp. x′) under carbon price  

(resp. ′) are: C1 = F(x) + (AE −IE)  and C2 = F(x′) + (AE′ −IE) ′. The costs corresponding 
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to production planning x′ (resp. x) under carbon price  (resp. ′) are: C3 = F(x′) + (AE′ −IE)  and C4 = F(x) + (AE −IE) ′. 

By the optimality of x and AE under , and x′ and AE′ under ′, we have C3  C1 and C4 

 C2. Then, we have that following inequalities: 

F(x′) + (AE′ −IE)  F(x) + (AE −IE)  

F(x) + (AE −IE) ′  F(x′) + (AE′ −IE) ′ 

By summing up these two equalities, we obtain: 

(AE′ −IE)  + (AE −IE) ′ �(AE −�IE)  + (AE′ −�IE) ′, 

The equality above implies (AE′ −� IE)(  − ′) � 0, which is in contradiction with the fact 

that AE < AE′ and ′> .                                                                                                         ■ 

With Theorem 5.3.1, the following corollary can be directly obtained, which indicates the 

relationship between the total actual emissions and the total initial emission allowances in 

the local region. 

Corollary 5.3.1. In tСe local reРion, tСe total actual emissions are non-increasinР witС tСe 

increase of carbon price. 

Corollary 5.3.1 tells us that the total actual emissions of manufacturers are negatively 

correlated to carbon price. With the property, an ϵ-approximate optimal solution can be 

obtained by dichotomy. We, thus, develop an algorithm, named Algorithm-5-CarbonPrice, 

to solve the Cournot competition model. In the algorithm, Algorithm-4-PDP is used to 

calculate the manufacturers‟ optimal decisions with a given , and a dichotomy method is 

used to find a ϵ-approximate optimal  globally.  

The detailed procedures of the algorithm are shown in Figure 5.3. We first initialize the lower 

and upper bounds of the carbon price  by ( LB, UB). Then, we test the middle of the interval 

( LB, UB), i.e., mid = ( UB − δB)/2, and obtain the actual emissions of each manufacturer i under 

mid by Algorithm-4-PDP. Subsequently, the total emissions of all manufacturers TAEmid is 

calculated, We update the bounds ( LB, UB) and obtain the optimal carbon price *= ( UB − δB)/2 

till the terminate condition (i.e., UB − δB < ϵ) is satisfied (i.e., the interval containing the 

optimal carbon price is narrow enough), or the total emissions of all manufacturers under mid 

are equal to the total initial emission allowances (i.e., TAEmid = TAE).  
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Step 6: *
 = ( UB− LB)/2

Step 7: Output the best solution  * 

No

Yes

Step 1: Initialize the lower and upper 
bounds of : ( LB, UB)

Step 3: Let mid = ( UB− LB)/2 and compute total  
emissions of all manufacturers TAEmid under mid

Step 5: Reset ( LB, UB)

If Emid  < E, γUB ← γmid，

Else (i.e., Emid  > E),γLB ← γmid.

Step 2: UB− LB <  ?

No

Step 4: TAEmid  = TAE ?
Yes

 

Figure 5.3 Procedures of Algorithm-5-CarbonPrice 

Up to now, all variables except ϕ are solved. As referred in the analysis above, ϕ needs to 

be solved numerically. Observing only one variable needs to be computed numerically, we 

use GA to solve ϕ. In GA, all parameters used are set to the same values as the GA of 

Algorithm-5-Hybrid-I. Then, a hybrid algorithm is developed to compute the values of all 

variables. In the algorithm, Algorithm-4-PDP and Algorithm-5-CarbonPrice are in charge 

of computing xi and , respectively. GA is used to solve ϕ.  

The procedures of the hybrid algorithm are given in Figure 5.4. Firstly, a group of 

chromosomes including one gene ϕ are randomly generated by GA. Under the given ϕ, the 

initial emission allowances are computed by Eq. (5.3.1). The optimal carbon price * can be 

computed by Algorithm-5-CarbonPrice and the optimal x*
i (i.e., x*

ir and x*
iР) can be 

obtained by Algorithm-4-PDP. Meanwhile, the optimal trading allowance quantity *, the 

minimal Fi and the related emissions 
i

AE are obtained. With Fi and 
i

AE , we can compute 

the social welfare WР by Eq. (5.3.5).  

Then, the chromosomes with value ϕ are updated from generation to generation. In each 

generation, ϕ are dynamically updated by the three genetic operators. With the given ϕ 

updated in each generation, x*
i, * and WР are also updated. These processes continue until 

the termination condition of GA is satisfied.  
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Step 8: Update ϕ by GA

Step 9: Output the best solutions ϕ*
, (x*

itr, 
x

*
itg), 

*
i and the maximal social welfare Wg

No

Yes

Step 7: Is GA termination 
condition satisfied?

Step 1: Initialize ϕ by GA

Step 2: Compute the initial emission 
allowances Ei by Eq. (5.3.1)

Step 3: Compute optimal *by 
Algorithm-5-CarbonPrice

Step 5: Compute optimal *
i  and 

related Fi and AEi 

Step 6:  Calculate the social welfare 
Wg(ϕ) by Eq. (5.3.5) 

Step 4: Obtain optimal (x*
ir, x

*
ig) by 

Algorithm-4-PDP

  

Figure 5.4 Procedures of Algorithm-5-Hybrid-II 

.  Numerical Examples  

In this section, we provide some numerical examples to show the application of the 

mathematical models and algorithms studied in this chapter. The numerical examples 

include two types of emission-reduction policies, i.e., emission-cap regulation policy and 

emission cap-and-trade scheme. The computational results and sensitivity analysis are 

discussed in Section 5.4.1 and Section 5.4.2, respectively. 

. .  Emission-Cap Regulation Policy 

We conduct a numerical example to test and analyze the emission-cap regulation policy 

studied in Section 5.2. The example involves 3 manufacturers (A, B and C) in the same 

industry in a local region. They produce a homogenous product and serve different retail 

markets. The government tries to establish an emission-cap regulation policy to maximize 

the social welfare of the local region. Therefore, she needs to optimally set the emission 
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caps for the three manufacturers.  

The manufacturers plan their production over a one-year planning horizon including 6 

periods (2 months/period). The values of government-related and manufacturer-related 

parameters are randomly generated. The parameter values of government are given in Table 

5.1. The demands to three manufacturers are given in Table 5.2, and some other parameters 

are given in Table 5.32. 

Table 5.1 Parameter values of the government 

Parameters  αec ev φenvu φecou 

Value 1.8 0.5 0.3 1×e-6 1 

Table 5.2 Demands to the manufacturers (thousand tons) 

dit 1 2 3 4 5 6 

A 5 7 10 4 8 11 

B 10 12 9 11 9 13 

C 11 18 17 11 16 12 

Table 5.3 Parameter values of the manufacturers 

i Ri(×103) Pi sir (×103) siР (×103) pir piР eir eiР Сit 

A 13 110 50  150 30 55 1.6 0.8 4.0 

B 18 105 60 180 25 50 1.8 1.0 3.5 

C 25 100 80 250 20 45 2.0 1.1 3.0 

The computational results are given in Section 5.4.1.1. In section 5.4.1.2, we 

perform some sensitivity analysis to draw some interesting and valuable managerial 

insights. 

. . .  Computational Results 

We test our example 10 times and give the related results as follows. The average social 

welfare in the 10 tests is 1.643 as shown in Table 5.4. The hybrid algorithm converges with 

                                                 
2 The units of measurement of these parameters are given as follows. the demand (dit): tonne; the setup cost 

(sir and sir): dollars per setup; the unit production costs (pir and piР): 80 dollars per tonne; the emissions of unit 
product (eir and eiР): tonne CO2 per tonne products; the inventory holding cost (Сit): dollars per tonne per 
month. 
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a high robustness. As seen from Table 5.4, the maximal gap of the objective value is only 

0.56%. Thus, we just give the key results of the “best” test, in which the social welfare is 

1.653. The optimal emission caps for the manufacturers are 8.19, 14.14 and 22.49 thousand 

tons, respectively. The numbers of technologies used by the manufacturers are given in 

Table 5.5.  

Table 5.4 Social welfare  

Test No. 1 2 3 4 5 6 7 8 9 10 Average 

WР 1.637 1.644 1.641 1.644 1.643 1.645 1.644 1.643 1.653 1.641 1.643 

Gap(%)* -0.40a 0.04 -0.16 0.05 -0.02 0.08 0.06 -0.04 0.56b -0.16 0 

*Gap=(WР−Average)/Average; a and b are the worst and best objective values in the 10-time tests. 

Table 5.5 Numbers of the technologies used by the manufacturers  

Tech. Selection r g r & g 

A 3 3 0 

B 3 3 0 

C 4 2 0 

 

Among the three manufacturers, manufacturer A produces in the greenest way since 

either his regular or green technology yields the least carbon emissions than the others. As 

shown above, the emission caps for the manufacturers are 8.19, 14.14 and 22.49 thousand 

tons, which are 64.28%, 80.24% and 91.10% of the environmental bearing capacity of the 

area they are located. This implies that, under such an emission-cap regulation, the 

government can benefit more from the greener manufacturers since their emission-

reduction costs are less than those who need to spend high cost on emission reduction. The 

results in Table 5.5 also indicate this trend. The less green manufacturer C uses regular 

technology in 4 periods and the greener one (manufacturer A) only uses regular technology 

in 3 periods. However, it is unfair to the manufacturers who perform more efficiently in 

emission reduction. We, thus, expect that it will be better in the emission cap-and-trade 

scheme since they can benefit from the emission reduction by selling their spare emission 

allowances.  

. . .  Sensitivity Analysis  

The parameter  represents the government‟s decision preference on the emission 
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reduction. If she prefers environmental utility in the social welfare, she should set  with a 

relatively high value to control carbon emissions at a low level. For the sake of 

convenience, we call an emission-reduction policy a severe reРulation policy when  is set 

at a relatively high level. In contrast, we call it an easy reРulation policy. 

In this section, sensitivity analysis of the parameter  is conducted to explore some 

managerial insights. The value of  is changed from 1.0 (a low value) to 3.0 (a high value) 

to detect the corresponding changes. 

Table 5.6 Numbers of the technologies used by three manufacturers (  = 2.0)  

Tech. Selection r  g r & g 

A 1 4 1 

B 3 3 0 

C 4 2 0 

The results in Table 5.6 show the numbers of technologies used by the 

manufacturers when  is equal to 2.0. Compared with the technology used in the 

scenario of  = 1.8 (see Table 5.5), only manufacturer A uses two more times of green 

technology among three manufacturers. This implies that the government prefers to  

set a tighter emission cap for the greener manufacturer A since he spends the least cost 

on reducing the same amount of emissions among the three manufacturers. As referred 

in the previous section, it is unfair to the manufacturer who performances more 

efficiently in emission reduction. 

              
           (a) Impacts on social welfare                                         (b) Impacts on costs and actual emissions 

Figure 5.5 Impacts of parameter  (I) 
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Some other results are given in Figure 5.5, which show that the parameter  has 

significant influences on the social welfare, total costs, total emissions and emission caps. 

With the results, we draw some conclusions as follows. 

(1)   significantly influences the social welfare. As can be seen from Figure 5.5 (a), 

the social welfare turns to be negative when  goes up to 2.4. The reason is that 

the production costs of the manufacturers increase drastically under a severe 

regulation policy. 

(2)  Emission reduction cannot be achieved by increasing  if it is at a high level. 

When  is set to a high-level value, the economic utility decreases, i.e., the cost 

goes up, more quickly than the incremental environmental utility benefiting from 

the emission reduction. As shown in Figure 5.5 (b), when  is higher than 2.4, the 

manufacturers refuse to further reduce emissions and the emissions increase since 

the emission-reduction cost is too high. 

. .  Emission Cap-and-Trade Scheme 

In this section, we provide a numerical example to show the application of the model 

and algorithm for the emission cap-and-trade scheme studied in Section 5.2. In the 

example, three homogenous manufacturers in the same industry are involved. The 

government tries to establish an emission cap-and-trade scheme by optimally 

determining the emission-reduction target and aims to maximize the social welfare of 

the local region. In the example, the parameters are identical those used in Section 

5.4.1.  

. . .  Computational Results 

The example is tested 10 times and the related results are provided as follows. Results 

show that the hybrid algorithm converges to the global maximum with a high robustness 

since only one variable ϕ needs to solve numerically.  

The social welfare is WР = 1.763, and the equilibrium carbon price is  = 38.13 dollars per 

ton. However, the optimal emission-reduction targets ϕ in these tests may be different due 

to the fact that the problem involved integer decision variables. They remain unchanged for 

insignificant variation of some parameters. The optimal ϕ obtained in the 10 tests are given 

in Table 5.7.  



Chapter 5 

122 

Here we just give some key results of the first test, in which the optimal emission-

reduction targets ϕ = 31.39%. The initial emission allowances for the three manufacturers 

are 57.33, 81.53 and 108.29 thousand tons, respectively. The actual emissions of the 

manufacturers are 56.84, 80.84 and 107.37 thousand tons. The trading emission allowances 

of the manufacturers are −10.84, 7.16 and 1.27 thousand tons, which implies that 

manufacturers B and C should buy carbon credits from manufacturer A. The total spare 

allowances that remain in the hands of the manufacturers (cannot be sold out) are 2.42 

thousand tons, which is 0.99% of the total initial emission allowances. The numbers of 

technologies used by the three manufacturers are the same in 10 tests, which are given in 

Table 5.8.  

Table 5.7 Optimal emission-reduction targets 

Test No. 1 2 3 4 5 6 7 8 9 10 Average 

ϕ(%) 31.39 30.23 32.00 32.00 28.87 30.73 30.51 32.00 31.13 30.61 30.95 

Table 5.8 Numbers of the technologies used by three manufacturers  

Tech. Selection 0* r g r & g 

A 2 2 2 0 

B 1 3 2 0 

C 0 3 3 0 

*There is no production in such a period. 

. . .  Sensitivity Analysis  

In this section, sensitivity analysis is conducted with respect to the variable ϕ. Note that 

similar results can be obtained from the sensitivity analysis of  to those under the 

emission-cap regulation policy, thus we it omit here.  

Similar to  in Section 5.4.1, we call the emission-reduction policy a severe reРulation 

policy if ϕ is high enough to limit the emissions at a low level. In contrast, we call it an easy 

reРulation policy.  

The values of ϕ is changed from 0.10 (a low value) to 0.45 (a high value) to observe the 

corresponding changes. All results are given in Figure 5.6.  
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                  (a) Impacts on social welfare                                                         (b) Impacts on costs  

            
 (c) Impacts on actual emissions                                            (d) Impacts on the carbon price 

Figure 5.6 Sensitivity of variable ϕ 

Based on the results, some managerial insights are obtained as follows. 

(1)  The emission-reduction target ϕ significantly influences the social welfare. 

However, the social welfare may remain the same when ϕ is set to be different but 

adjacent values, since the discreteness of our problem (caused by the setup cost). 

This may also explain that the optimal ϕ could be different in 10 tests, even 

though the social welfare converges to the same value. As can be seen from 

Figure 5.6(a), maximal social welfare keeps at 1.44 when ϕ changes from 0.15 to 

0.20. Figure 5.6(c) and (d) also tell the truth that both the actual emissions and the 

carbon price remains the same when ϕ increases from 0.15 to 0.20. This is 

because the optimal production planning does not change when ϕ changes from 

0.15 to 0.20. 

(2)  The emission-reduction target ϕ has significant influence on the carbon price. This 

is because ϕ directly affects the total initial emission allowances, which influences 

the carbon price significantly. As shown in Figure 5.6(d), the carbon price 

increases drastically from 18.84 to 34.10 dollars per ton by more than 80% when 

ϕ increases from 10% to 15%.  
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.  Conclusion  

This chapter studies policymaking decision problems for a local government on 

optimizing carbon emission-reduction policies, aiming to maximize the social welfare 

of a local region. Two types of social utilities, i.e., economic utility and environmental 

utility, are considered in the social welfare. Generally, a severe emission-reduction 

policy may increase environmental utilities at the cost of decreasing economic utilities. 

However, an easy emission-reduction policy may increase the economic utilities at the 

cost of damaging the environment. Thus, the government should make a tradeoff 

between these two utilities by determining her emission-reduction policy appropriately.  

To help the government optimize her emission-reduction policies, Stackelberg game 

models are formulated to describe and analyze the decision process between the 

government and the manufacturers. With the game models, the government can take the 

advantage of the leadership in observing the manufacturers‟ operational decisions 

reactive to her policymaking decisions. But the models are difficult to solve because of 

their non-convexity and non-continuity. To deal with these difficulties in solving the 

problem, hybrid algorithms combining genetic algorithm and polynomial dynamic 

algorithm are developed for the models. In particular, Cournot competition models are 

formulated to optimize the market-based carbon price under the emission cap-and-trade 

scheme. 

Some numerical examples are conducted to show the application of our proposed models 

and the algorithm. From the results of these examples, we derive some valuable managerial 

insights, which are briefly listed as follows. 

(1)  The government can achieve the emission-reduction target by raising the value of 

 (a parameter representing the government‟s force on emission reduction), but it 

does not work when it goes up to a high level. In other words, a severe emission-

cap regulation policy cannot be expected to achieve a high-level emission-

reduction target.  

(2)  Under severe regulation policy with emission cap-and-trade scheme, the 

manufacturers, who perform more efficiently on emission reduction, are 

encouraged to use their green technologies more frequently and may benefit from 

selling their emission allowances. 

(3)  Sustained emission reduction can be achieved under the emission cap-and-trade 
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scheme, and it may be also conducive to promote technology innovation. Thus, a 

cap-and-trade scheme, which is a market-based approach of providing economic 

incentives, is an efficient and effective policy instrument for emission reduction.  
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.  Conclusions 

Carbon emission reduction now becomes a consensus among the international 

community. This research focused on emission-reduction issues of a local region, in which 

a local government regulates manufacturers whose production emits carbon dioxide. We 

investigated emission-reduction policymaking decision problems for the government and 

production decision problems for the manufacturers, who are regulated by the government-

imposed emission-reduction policies. Two types of emission-reduction policies, including 

emission-cap regulation policy and emission cap-and-trade scheme, were considered in this 

research. Model-based OR/MS research approaches were used to analyze and study these 

proposed problems.  

Chapter 3 discussed a manufacturer‟s long-term strategic decision problems considering 

government-imposed emission-reduction policies. A Stackelberg game model was 

formulated to optimize the manufacturer‟s decisions on carbon footprint, wholesale price 

and retailer selection.  

The problem is difficult to solve since it was proven to be NP-hard, non-concave, and 

analytically intractable. A hybrid algorithm was developed to deal with these difficulties. 

The proposed algorithm combines analytical methods, genetic algorithm and dynamic 

programming algorithm. 

Numerical examples were conducted to illustrate the application of the model and the 

algorithm. The results show that the hybrid algorithm can efficiently find near-optimal 

solutions and converges with a high robustness. Some interesting and valuable managerial 

insights were obtained from the computational results and sensitivity analysis. The most 

important of them are shown as follows. 

 An optimal retailer selection strategy may help the manufacturer not only to 

maximize his profit by selling his products to the “right” retailers, but also to cope 

with the governmental emission regulations.  

 An optimal differential pricing strategy implemented through his retailers may 

make the manufacturer more profitable and competitive in green-awareness 

markets. 

 The government-imposed emission cap and customers‟ green preference have 

significant influences on the carbon footprint of the manufacturer‟s product. 
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Therefore, determining the carbon footprint appropriately may provide the 

manufacturer with a good balance among the customer demands, governmental 

emission regulations and production cost. 

Chapter 4 investigated a manufacturer‟s medium-term operational decision problems 

considering government-imposed emission-reduction policies. MILP models were 

formulated to optimize the manufacturer‟s decisions on technology selection and 

production planning under both emission-reduction policies, respectively. The objectives 

are to minimize overall costs over a finite production planning horizon. 

The models are difficult to solve due to the special cost structure in the models which 

involve non-continuous production cost functions. However, a polynomial dynamic 

programming algorithm was developed based on a multi-level decomposition approach. 

With the approach, a production plan is decomposed into a series of subplans that can be 

further decomposed into smaller subintervals. The subintervals include several kinds of 

production periods that are identified by the specified segments in the production cost 

function. The proposed algorithm can solve the problems under both policies in O(T6) time, 

where T is the number of periods involved in the planning horizon. More specifically, a 

reformulation approach is used to analyze the model under the emission cap-and-trade 

scheme.  

Some interesting observations were obtained from numerical experiments: 

 An optimal technology selection and production planning strategy may help the 

manufacturer to obtain a good balance among emissions, production cost and 

inventory cost under government-imposed emission-reduction policies. Therefore, 

the manufacturer cannot only cope with the governmental emission regulation but 

also minimize his overall costs by this optimization. 

 The technology selection strategy may remain the same when changing the 

carbon price under the emission cap-and-trade scheme. This is because the green 

technology will be used more often only if it generates more profit than setup 

cost.  

 A market-based regulation policy has its advantages of promoting manufacturer 

self-motivated emission reduction. 

Chapter 5 optimized the government‟s policymaking decisions on emission-reduction 

policies, aiming to maximize the social welfare of the local region. With a frame of 
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Stackelberg game, the government can dynamically improve the social welfare by taking 

the advantage of observing the manufacturers‟ optimal reactions regarding operational 

decisions.  

Stackelberg models were formulated to optimize the decisions on emission caps and 

emission-reduction-target for the emission-cap regulation policy and the emission cap-and-

trade scheme, respectively. These models are difficult to solve since their non-convexity 

and non-continuity. However, we developed hybrid algorithms combining genetic 

algorithm and polynomial dynamic algorithm to solve the problems. Particularly, an initial 

emission allowance allocation mechanism was presented for the government to allocate 

initial emission allowances to the manufacturers, and a Cournot competition model was 

formulated to optimize the carbon price under the emission cap-and-trade scheme.  

Numerical experiments were conducted to illustrate the application of the models and the 

algorithms. With the computational results and sensitivity analysis, we obtained some 

interesting managerial insights: 

 An emission-cap regulation policy may be unfair for those manufacturers who 

perform more efficiently in emission reduction. In contrast, a market-based 

emission cap-and-trade scheme could deal with this unfairness and allow the 

manufacturers great flexibility on emission reduction. 

 Manufacturers who perform more efficiently on emission reduction may benefit 

from selling their emission allowances under a severe regulation policy under an 

emission cap-and-trade scheme. They are encouraged to use green technology 

more frequently. 

 A market-based emission cap-and-trade scheme is more effective on emission 

reduction than an emission-cap regulation policy since it could promote sustained 

emission reduction by market-driven technology innovation.  

.  Future Research 

Emission-reduction issues are receiving increasing attention from the academic 

community due to the opportunities and challenges they offer in OR/MS area. In this thesis, 

we have investigated the government‟s policymaking decision problems regarding 

emission-reduction policies and the manufacturers‟ operational decision problems under 

these policies. The results show that these problems could be well solved using OR/MS 
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approaches. However, there is still enough room for conducting further research. In what 

follows, we discuss some potential research questions that seems to be interesting from 

both theoretical and practical perspectives.  

In chapter 3, several research questions regarding long-term strategic decisions are 

interesting and worthwhile to investigate. The following two research topics seem to be 

promising. 

Sustainable supplier selection: Sustainable supply chain pays attention to carbon 

footprint across a whole supply chain, while we just considered the carbon emissions at the 

side of the manufacturer in our research. It might also be interesting to investigate the 

carbon footprint at the upstream of the supply chain and reduce emissions of the total 

product life cycle. We discussed the retailer selection for the manufacturer to select 

customer markets. However, it may also prove worthwhile to investigate green supplier 

selection when determining the carbon footprint of products. These suppliers might be 

distinguished in some features such as carbon emissions of their materials, transportation 

cost, ordering cost, even the emissions in transportation and so on. The manufacturer 

should trade off the cost and emissions of each supplier and select some of them to make 

him most profitable. 

Multi-product demand structure: In practice, manufacturers often face various 

customer markets. For example, customers have distinct preferences on the green feature of 

the same functional products. To well serve and satisfy their customers, manufacturers 

would produce multiple products which have the same functionalities but different in 

carbon footprint. In our research, a single product is considered and distinguished only by 

the carbon footprint. In the multi-product demand structure, manufacturers could provide 

multiple products in different markets and maximize their profits through appropriately 

determining the carbon footprint related to their customer markets. It also might be 

worthwhile to investigate the existing literature regarding product and market segment in 

order to formulate and solve the manufacturer‟s decision problem with multi-product 

demand structure. 

In chapter 4, several research questions regarding medium-term operational decisions are 

interesting and worthwhile to investigate. Two research topics are addressed as follows. 

Production planning with pricing: In our research, the demand of the product is 

deterministic in medium-term production planning. It is also interesting and practical to 
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consider the customers are price-sensitive and green-aware as discussed in long-term 

planning in Chapter 3. The closest literature to this topic is some research on joint lot sizing 

and pricing decisions (Abad, 2003; Khouja, 2006), but almost none of them consider 

technology selection (or operation/production mode selection) issues. It could be expected 

to explore some efficient algorithm to solve the problem, since little research in the 

literature contributes on the algorithm even if technology selection is not investigated. 

Nevertheless, the results may help manufacturers to maximize their profits by reacting to 

the customer demands flexibly. 

Production planning with multi-product: As discussed above in “Multi-product 

demand structure”, it also might be worthwhile to explore such a demand structure for 

manufacturers‟ medium-term operational decisions. Multi-item lot sizing problem is an 

important stream of literature in production planning, but, to the best of our knowledge, the 

existing research pays little attention on either the environmental issues or technology 

selection. However, it will bring great challenges to develop efficient algorithms to solve 

the problem since a general multi-item lot size model is proven to be NP-hard (Afentakis 

and Gavish, 1986). Thus, it will be encouraged to investigate some heuristic algorithms to 

deal with these difficulties. 

To complete the research of Chapter 5, it might be interesting to discuss policymaking 

decision problems in which product-market competition is considered in operational 

manufacturers‟ decisions.  

Product-market competition: In the product-market competition scenario, customers 

can choose products among the manufacturers, while the manufacturers should determine 

the price and carbon footprint of their products appropriately to compete one with another 

in the markets. In this situation, it is expected to be much fairer for the government to 

impose emission-reduction polices on the manufacturers in her administrated region, since 

the emission cap or the initial emission allowances are set or allocated according to the 

manufacturers‟ demands, which depend on the manufacturers‟ production capacity and 

competition ability. However, due to the reactive decision process between the government 

and manufacturers, the complexity of the problem may make it difficult to solve.  
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