
HAL Id: tel-00978472
https://theses.hal.science/tel-00978472

Submitted on 14 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Crypto-processor – architecture, programming and
evaluation of the security

Lubos Gaspar

To cite this version:
Lubos Gaspar. Crypto-processor – architecture, programming and evaluation of the security. Other
[cond-mat.other]. Université Jean Monnet - Saint-Etienne, 2012. English. �NNT : 2012STET4023�.
�tel-00978472�

https://theses.hal.science/tel-00978472
https://hal.archives-ouvertes.fr

Thèse

pour obtenir le grade de docteur

de Université Jean Monnet

Discipline : Image, Vision, Signal

Équipe : Systèmes Embarques Sécurisés

Crypto-processeur – architecture,
programmation et évaluation de la

sécurité

Lubos Gaspar

La thèse a été soutenue le 16 Novembre, 2012 avec le jury suivant

Ingrid Verbauwhede KUL, Belgium Rapporteur
Lionel Torres LIRMM, France Rapporteur
François-Xavier Standaert UCL, Belgium Examinateur
Tim Güneysu RUB, Germany Examinateur
Yannick Teglia STM, France Examinateur
Lilian Bossuet LaHC, France Examinateur
Viktor Fischer LaHC, France Directeur de thèse
Florent Bernard LaHC, France Codirecteur de thèse

PhD Thesis

presented to obtain the doctor degree

of Jean Monnet University

Speciality: Image, Vision, Signal

Group: Secure Embedded Systems

Crypto-processor – architecture,
programming and evaluation of

the security

Lubos Gaspar

The thesis was defended on November 16th, 2012 in front of the following

committee

Ingrid Verbauwhede KUL, Belgium Reviewer
Lionel Torres LIRMM, France Reviewer
François-Xavier Standaert UCL, Belgium Member
Tim Güneysu RUB, Germany Member
Yannick Teglia STM, France Member
Lilian Bossuet LaHC, France Member
Viktor Fischer LaHC, France Supervisor
Florent Bernard LaHC, France Joint Supervisor

Résumé

Les architectures des processeurs et coprocesseurs cryptographiques se montrent
fréquemment vulnérables aux différents types d’attaques ; en particulier, celles qui
ciblent une révélation des clés chiffrées. Il est bien connu qu’une manipulation des
clés confidentielles comme des données standards par un processeur peut être consi-
dérée comme une menace. Ceci a lieu par exemple lors d’un changement du code
logiciel (malintentionné ou involontaire) qui peut provoquer que la clé confidentielle
sorte en clair de la zone sécurisée. En conséquence, la sécurité de tout le système
serait irréparablement ménacée. L’objectif que nous nous sommes fixé dans le travail
présenté, etait la recherche d’architectures matérielles reconfigurables qui peuvent
fournir une sécurité élevée des clés confidentielles pendant leur génération, leur en-
registrement et leur échanges en implantant des modes cryptographiques de clés
symétriques et des protocoles.

La première partie de ce travail est destinée à introduire les connaissances de
base de la cryptographie appliquée ainsi que de l’élécronique pour assurer une bonne
compréhenension des chapitres suivants.

Deuxièmement, nous présentons un état de l’art des menaces sur la confiden-
tialité des clés secrètes dans le cas où ces dernières sont stockées et traitées dans
un système embarqué. Pour lutter contre les menaces mentionnées, nous proposons
alors de nouvelles règles au niveau du design de l’architecture qui peuvent augmenter
la résistance des processeurs et coprocesseurs cryptographiques contre les attaques
logicielles. Ces règles prévoient une séparation des registres dédiés à l’enregistrement
de clés et ceux dédiés à l’enregistrement de données : nous proposons de diviser le
système en zones : de données, du chiffreur et des clés et à isoler ces zones les unes des
autres au niveau du protocole, du système, de l’architecture et au niveau physique.

Ensuite, nous presentons un nouveau crypto-processeur intitulé HCrypt, qui in-
tègre ces règles de séparation et qui assure ainsi une gestion sécurisée des clés. Mises
à part les instructions relatives à la gestion sécurisée de clés, quelques instructions
supplémentaires sont dédiées à une réalisation simple des modes de chiffrement et
des protocoles cryptographiques.

Dans les chapitres suivants, nous explicitons le fait que les règles de séparation
suggérées, peuvent également être étendues à l’architecture d’un processeur généra-
liste et coprocesseur. Nous proposons ainsi un crypto-coprocesseur sécurisé qui est
en mesure d’être utilisé en relation avec d’autres processeurs généralistes. Afin de
démontrer sa flexibilité, le crypto-coprocesseur est interconnecté avec les processeurs
soft-cores de NIOS II, de MicroBlaze et de Cortex M1.

Par la suite, la résistance du crypto-processeur par rapport aux attaques DPA
est testée. Sur la base de ces analyses, l’architecture du processeur HCrypt est mo-
difiée afin de simplifier sa protection contre les attaques par canaux cachés (SCA)
et les attaques par injection de fautes (FIA). Nous expliquons aussi le fait qu’une
réorganisation des blocs au niveau macroarchitecture du processeur HCrypt, aug-
mente la résistance du nouveau processeur HCrypt2 par rapport aux attaques de
type DPA et FIA.

Nous étudions ensuite les possibilités pour pouvoir reconfigurer dynamiquement
les parties sélectionnées de l’architecture du processeur – crypto-coprocesseur. La
reconfiguration dynamique peut être très utile lorsque l’algorithme de chiffrement ou
ses implantations doivent être changés en raison de l’apparition d’une vulnérabilité.

vi

Finalement, la dernière partie de ces travaux de thèse, est déstinée à l’exécution
des tests de fonctionnalité et des optimisations stricts des deux versions du crypto-
processeur HCrypt.

Abstract

Architectures of cryptographic processors and coprocessors are often vulnerable
to different kinds of attacks, especially those targeting the disclosure of encryption
keys. It is well known that manipulating confidential keys by the processor as
ordinary data can represent a threat: a change in the program code (malicious or
unintentional) can cause the unencrypted confidential key to leave the security area.
This way, the security of the whole system would be irrecoverably compromised. The
aim of our work was to search for flexible and reconfigurable hardware architectures,
which can provide high security of confidential keys during their generation, storage
and exchange while implementing common symmetric key cryptographic modes and
protocols.

In the first part of the manuscript, we introduce the bases of applied cryptogra-
phy and of reconfigurable computing that are necessary for better understanding of
the work.

Second, we present threats to security of confidential keys when stored and
processed within an embedded system. To counteract these threats, novel design
rules increasing robustness of cryptographic processors and coprocessors against
software attacks are presented. The rules suggest separating registers dedicated
to key storage from those dedicated to data storage: we propose to partition the
system into the data, cipher and key zone and to isolate the zones from each other
at protocol, system, architectural and physical levels.

Next, we present a novel HCrypt crypto-processor complying with the separa-
tion rules and thus ensuring secure key management. Besides instructions dedicated
to secure key management, some additional instructions are dedicated to easy real-
ization of block cipher modes and cryptographic protocols in general.

In the next part of the manuscript, we show that the proposed separation princi-
ples can be extended also to a processor-coprocessor architecture. We propose a se-
cure crypto-coprocessor, which can be used in conjunction with any general-purpose
processor. To demonstrate its flexibility, the crypto-coprocessor is interconnected
with the NIOS II, MicroBlaze and Cortex M1 soft-core processors.

In the following part of the work, we examine the resistance of the HCrypt cryp-
toprocessor to differential power analysis (DPA) attacks. Following this analysis, we
modify the architecture of the HCrypt processor in order to simplify its protection
against side channel attacks (SCA) and fault injection attacks (FIA). We show that
by rearranging blocks of the HCrypt processor at macroarchitecture level, the new
HCrypt2 processor becomes natively more robust to DPA and FIA.

Next, we study possibilities of dynamically reconfiguring selected parts of the
processor - crypto-coprocessor architecture. The dynamic reconfiguration feature
can be very useful when the cipher algorithm or its implementation must be changed
in response to appearance of some vulnerability.

Finally, the last part of the manuscript is dedicated to thorough testing and
optimizations of both versions of the HCrypt crypto-processor.

Architectures of crypto-processors and crypto-coprocessors are often vulnerable
to software attacks targeting the disclosure of encryption keys.

The thesis introduces separation rules enabling crypto-processor/coprocessors to
support secure key management. Separation rules are implemented on novel HCrypt
crypto-processor resistant to software attacks targetting the disclosure of encryption
keys.

Acknowledgements

First and foremost, I would like to thank Diana, the most beautiful discovery
I have made, for her unconditional love, encouragement, patience, help and for
reminding me that there is much more to life than study. I dedicate this dissertation
also to my parents Vladimir, Emilia and my brother Vladimir who have given me
their unequivocal support throughout, as always, for which my mere expression of
thanks likewise does not suffice.

I am very grateful to the dissertation reviewers Lionel Torres and Ingrid Ver-
bauwhede for their time spent on reading the thesis and their valuable comments,
and also to all dissertation committee members for their valuable effort and time:
Florent Bernard, Lilian Bossuet, Viktor Fischer, Tim Güneysu, François-Xavier
Standaert, Yannick Teglia, Lionel Torres and Ingrid Verbauwhede.

This thesis would not have been possible without help, guidance, support and
patience of my principal supervisor, professor Viktor Fischer. He is the one who
has given me many invaluable advices on both an academic and a personal level,
dedicated a great portion of his time to reading and correcting all my works, and
enabled me to meet many great people in cryptography research domain. For all
this and much more, I am greatly indebted to him. Thank you sir, dakujem!

Many thanks go to my second supervisor, Florent Bernard, for his good advice,
friendship and help on the administration battlefield. I am especially grateful to all
other colleagues in the Secure Embedded Systems group for making my days much
brighter, for creating pleasant working environment in the laboratory, and for help-
ing me to improve my French: Alain Aubert, Pierre Bayon, Nathalie Bochard, Lilian
Bossuet, Pierre-Louis Cayrel, Karim Cherkaoui, Robert Fouquet, Patrick Haddad,
Abdourhamane Idrissa, Tania Richmond and Boyan Valtchanov. I also thank the
research and staff members of the Laboratoire Hubert Curien in Saint-Etienne.

This work, in the frame of the project SecReSoC (ARPEGE 2009 program,
ANR-09-SEGI-013), would not have been possible without the support of the ANR
(French National Research Agency). I thank also to the SecReSoC team members:
Benoît Badrignans, Lyonel Barthe, Pascal Benoit, Pascal Cotret, Jean-Luc Danger,
Florian Devic, Viktor Fischer, Guy Gogniat, Houssem Maghrebi and Lionel Torres.

I thank Tim Güneysu for inviting me to Bochum, for fruitful discussions and
many good advices. I would like to acknowledge all the members of the EMSEC
and Hardware security groups.

I acknowledge Marek Repka from Slovak Technical University of Bratislava for
excellent cooperation and many passionate discussions producing interesting scien-
tific results.

I could not have obtained excellent practical knowledge in complex PCB designs
without guidance and support of Micronic company in Trebejov, Slovakia.

This way I would also like to express my sincere gratitude to Milos Drutarovsky
from Technical University of Kosice in Slovakia for introducing me into the great
world of cryptography, microprocessors, and FPGAs during my master studies.

Last but by no means least, I would like to thank to all my friends in Saint-
Etienne for all those great unforgettable moments we had during many different
social events, sports activities and trips. Thank you Ali, Alius, Anton, Christina,
Claire-Marie, Fanny, Hassan, Iseline, Johanns, Johari, Katka, Laura, Lina, Maggie,
Mathias, Max, Merike, Monika, Montse, Noelia, Omar, Rosaura, Sandra, Sergey,
Silvia, Sona, Tomek, Tristan, Zdenka and many others!

Contents

Résumé v

Abstract vii

Acknowledgements ix

List of Figures xv

List of Tables xvii

Glossary xix

1 Introduction 1

1.1 Flexible Security and Hardware Implementations 1
1.2 Objectives of the Thesis . 2
1.3 Contribution . 2
1.4 Thesis Preview . 3

2 Theoretical and Technological Background 5

2.1 Secure Communications . 6
2.2 Symmetric Key Cryptography . 7

2.2.1 Block Ciphers . 7
2.2.2 Stream Ciphers . 16

2.3 Hash Functions . 17
2.3.1 MD5 Hash Function . 18

2.4 Generation of Random Numbers . 18
2.4.1 Hardware Random Number Generators 20
2.4.2 LFSR-based PRNG . 21
2.4.3 PLL-based TRNG . 21

2.5 Key Management . 22
2.5.1 Security Levels and Key Management 24
2.5.2 Participating Parties . 26
2.5.3 Threat Model . 26
2.5.4 Key Establishment Protocols 27

2.6 Implementation of Cryptographic Hardware in FPGAs 29
2.6.1 Field-Programmable Gate Arrays (FPGAs) 29
2.6.2 Development of Hardware Functions for FPGAs 30
2.6.3 FPGA Classes and Families 31
2.6.4 Technology Limits . 32
2.6.5 Isolation Design Flow in Xilinx FPGAs 32

2.7 Partial Hardware Reconfiguration and Security 33

xii Contents

2.7.1 Partial Reconfiguration . 33
2.7.2 Security Aspects of the Partial Reconfiguration 34

3 Crypto-processor with Secure Key Management 37

3.1 Crypto-processors - State of the Art 38
3.1.1 Security Issues of the Cryptographic Software Implementations 39
3.1.2 Cryptographic Hardware Architectures and their Security . . 40

3.2 New Rules for Securing Key Management 43
3.2.1 Separation at Protocol Level 44
3.2.2 Separation at System Level 45
3.2.3 Separation at Architectural Level 45
3.2.4 Separation at Physical Level 46

3.3 Crypto-processor Design . 47
3.3.1 Hardware Architecture . 48
3.3.2 Implementation of HCrypt in FPGA 50
3.3.3 Programming Means . 51
3.3.4 Communication Protocol . 56

3.4 Implementation Results . 58
3.4.1 Cost Evaluation . 58
3.4.2 Simulation . 58
3.4.3 Hardware Tests and Benchmarks 60

3.5 Discussion . 62
3.6 Conclusions . 62

4 Crypto-coprocessor with Secure Key Management 65

4.1 Crypto-coprocessors - State of the Art 66
4.2 New Rules for Securing Key Management 67

4.2.1 Separation at Protocol Level 67
4.2.2 Separation at System Level 68
4.2.3 Separation at Architectural Level 68
4.2.4 Separation at Physical Level 69

4.3 Extension of Separation Rules to Crypto-coprocessors 69
4.4 Interfaces between GPP and the HCrypt-C Crypto-coprocessor . . . 70

4.4.1 Internal Processor Bus . 70
4.4.2 Dedicated Coprocessor Bus 71
4.4.3 Peripheral Bus . 71

4.5 Design of the Crypto-coprocessor/Processor Pairs 71
4.5.1 Altera NIOS II GPP with HCrypt-C Crypto-coprocessor . . . 72
4.5.2 Xilinx MicroBlaze GPP with HCrypt-C Crypto-coprocessor . 73
4.5.3 ARM Cortex M1 GPP with HCrypt-C Crypto-coprocessor . . 77

4.6 Implementation Results . 79
4.6.1 Cost Evaluation . 79
4.6.2 Hardware Tests and Benchmarks 81

4.7 Discussion . 82

Contents xiii

4.8 Conclusions . 83

5 Protecting Crypto-processors Against SCA at Macroarchitecture

Level 85

5.1 Side-Channel Attacks . 86

5.1.1 Power Analysis Attacks . 86

5.1.2 Countermeasures . 88

5.2 Crypto-processor with Zero-cost Countermeasures against SCA . . . 90

5.2.1 Introduction . 90

5.2.2 Design of SCA and FIA Resistant HCrypt Version 99

5.2.3 Evaluation of the HCrypt2 Security Against SCA and FIA . . 104

5.2.4 Implementation Results . 105

5.2.5 Discussion . 107

5.3 Conclusions . 109

6 Partial Reconfiguration of Crypto-processors 111

6.1 FPGA Reconfiguration and Security Aspects 112

6.1.1 FPGA Bitstream Protection 112

6.1.2 IP Bitstream Security in Partially Reconfigurable System . . 114

6.2 Separation Rules Involving Partial Reconfiguration 116

6.2.1 Total Reconfiguration Versus Partial Reconfiguration of the
Device . 117

6.2.2 Validation of the Principle of HCrypt-C Partial Reconfigura-
tion in SRAM FPGAs . 118

6.2.3 Reconfiguration of HCrypt-C Crypto-coprocessor in FPGAs
Containing Hardwired GPPs 119

6.3 Design of the Reconfigurable HCrypt-C 119

6.3.1 Reconfigurable Cipher Zone Modules 120

6.3.2 Reconfiguration Control Unit 122

6.4 Implementation Results . 123

6.4.1 Cost Evaluation . 123

6.5 Discussion . 126

6.6 Conclusions . 128

7 Summary of Contributions and Conclusions 131

7.1 Summary of Contributions . 131

7.2 Conclusions . 132

7.3 Perspectives . 133

List of Publications 135

Bibliography 137

xiv Contents

Appendix A: Introduction 153

A.1 Sécurité Flexible Implémentations Matérielles 153
A.2 Objectifs de la Thèse . 154
A.3 Contribution . 155
A.4 Structure de la Thèse . 155

Appendix B: Aperçu des Contributions et Conclusions 157

B.1 Aperçu des Contributions . 157
B.2 Conclusions . 158
B.3 Perspectives . 160

Appendix C: Résumé de Thèse 161

C.1 Chapitre 1 : Introduction . 161
C.1.1 Objectifs de la thèse . 161
C.1.2 Contribution . 162

C.2 Chapitre 2 : Approche Théorique et Technologique 162
C.3 Chapitre 3 : Crypto-processeur avec une Gestion Sécurisée des Clés . 163
C.4 Chapitre 4 : Crypto-coprocesseur avec une Gestion Sécurisée des Clés 164
C.5 Chapitre 5 : Protection des Crypto-processeurs contre les SCA au

niveau Macroarchitecture . 164
C.6 Chapitre 6 : Reconfiguration Partielle des Crypto-processeurs 165
C.7 Chapitre 7 : Résumé de la Contribution et des Conclusions 166

C.7.1 Aperçu des Contributions . 166
C.7.2 Perspectives . 166

List of Figures

2.1 Structure of the Data Encryption Standard cipher (DES) 9
2.2 Structure of the Advanced Encryption Standard (AES) cipher with

128-bit key: Encryption (A), Decryption (B), Key expansion (C) with
Function (D) . 11

2.3 Division of input/output data blocks and internal state array 11
2.4 ShiftRows transformation performing left rotation of rows by one,

two or three bytes . 12
2.5 InvShiftRows transformation performing right rotation of rows by

one, two or three bytes . 12
2.6 Electronic Code Book encryption block cipher mode of operation . . 13
2.7 Cipher Block Chaining encryption block cipher mode of operation . . 14
2.8 Cipher Feedback encryption block cipher mode of operation 14
2.9 Output Feedback encryption block cipher mode of operation 15
2.10 Counter encryption block cipher mode of operation 16
2.11 CMAC block cipher mode for authentication (part A) and a detailed

computation of the K1 (part B) . 17
2.12 MD5 hash function structure (part A) and architecture of one step

(part B) . 19
2.13 A 128-bit Galois Linear Feedback Shift Register capable of generating

maximal length sequences . 22
2.14 TRNG based on one (part A) or two PLLs (part B) 23

3.1 Four different types of the hardware cryptographic engines 41
3.2 Separation of key storage and data storage at system level for crypto-

processor . 46
3.3 HCrypt architecture divided into data, cipher and key zones 48
3.4 FlexASM two-pass compilation flow chart 54
3.5 Authenticated key update Communication protocol between two de-

vices . 57
3.6 Structure of the packet supported by HCrypt 58
3.7 HCrypt simulation procedure . 59
3.8 HCrypt hardware test setup . 61

4.1 Separation of key storage and data storage at system level for crypto-
coprocessor . 69

4.2 Cryptographic system containing the HCrypt-C crypto-coprocessor
interconnected with the GPP through the wrapper block 70

4.3 HCrypt-C crypto-coprocessor implementation 72
4.4 NIOS II interconnected with the HCrypt-C crypto-coprocessor wrap-

per via the internal processor bus . 73

xvi List of Figures

4.5 MicroBlaze interconnected to the HCrypt-C crypto-coprocessor wrap-
per via a dedicated processor bus (i.e. FSL) 77

4.6 Floorplan of MicroBlaze divided into processor, cipher and key zones
placed in isolated physical blocks (cipher and key zones are part of
HCrypt-C) . 78

4.7 Cortex M1 interconnected to HCrypt-C wrapper via peripheral bus . 78
4.8 General-Purpose Processor system hardware test setup 82
4.9 Security module with CBC decryption mode backdoor 84

5.1 Architecture of the AES cipher with the 128-bit folded datapath . . 93
5.2 Architecture of the AES decipher with the 128-bit folded datapath . 96
5.3 HCrypt2 with parallel cipher-cipher architecture 100
5.4 HCrypt2 communication protocol between two devices 104

6.1 Separation rules including partial reconfiguration capability with re-
configuration of the cipher zone only 117

6.2 Separation rules including partial reconfiguration capability with re-
configuration of the processor, cipher and key zone 118

6.3 MicroBlaze interconnected to Reconfigurable HCrypt-C crypto-coprocessor
extension via the FSL bus wrapper 120

6.4 Reconfigurable cipher zone containing the AES cipher, decipher and
TRNG (AES reconfigurable module) 121

6.5 Reconfigurable cipher zone containing the DES cipher unit, decipher
unit and TRNG (DES reconfigurable module) 121

6.6 Empty reconfigurable cipher zone containing only partition pins (empty
black-box reconfigurable module) . 122

6.7 Architecture of the Reconfiguration Control Unit 123
6.8 Hardware test setup of the Secure General-Purpose Processor with

reconfigurable HCrypt-C crypto-coprocessor 126

List of Tables

2.1 The comparison of basic block cipher modes of operation providing
confidentiality [1] and authenticity [2] 13

2.2 Configuration of a TRNG based on two PLLs for Xilinx Virtex-6
FPGAs . 23

2.3 Basic key establishment protocols and their properties as classified in
[3] . 28

3.1 Overview and performance of some GPPs customized for implemen-
tation of cryptographic algorithms 42

3.2 Summary of characteristics of customized GPPs 42
3.3 Overview and performance of some crypto-processors 43
3.4 Summary of characteristics of selected crypto-processors 44
3.5 The dedicated instruction set . 52
3.6 Block encryption modes . 53
3.7 Instruction set definition file example 55
3.8 Utilization of resources in XC6VLX240T 59
3.9 Number of clock cycles required for the packet processing 60
3.10 Dependence of maximum throughputs on number of 128-bit data

blocks in the packet . 60

4.1 Different implementations of crypto-coprocessors 67
4.2 Summary of crypto-coprocessors’ characteristics 68
4.3 HCrypt-C crypto-coprocessor instructions in NIOS II 74
4.4 Simplified CFB deciphering block mode example on NIOS II 75
4.5 Simplified CFB deciphering block mode example on MicroBlaze . . . 76
4.6 Simplified CFB deciphering block mode example on Cortex M1 . . . 80
4.7 Utilization of FPGA resources by tree processors with the HCrypt-C

crypto-coprocessor containing the AES cipher 81

5.1 Power analysis attacks on an AES cipher and decipher 98
5.2 Possibilities of physical attacks on the HCrypt1 crypto-processor . . 99
5.3 The modifications of the HCrypt1 instruction set 102
5.4 Possibilities of physical attacks on the HCrypt2 crypto-processor . . 105
5.5 Implementation results of HCrypt1 and HCrypt2 in Xilinx Virtex-6 . 106
5.6 Number of clock cycles required for the packet processing 106
5.7 Dependence of maximum throughputs on number of 128-bit data

blocks in the packet . 107

6.1 Utilization of Reconfigurable MicroBlaze and compared FPGA re-
sources by tree processors with the HCrypt-C crypto-coprocessor con-
taining the AES cipher . 124

xviii List of Tables

6.2 Comparison of three versions of the reconfigurable module (RM) in
an extended MicroBlaze system . 124

6.3 The maximum data throughput comparison of three static system
featuring AES cipher zone and reconfigurable MicroBlaze system fea-
turing AES, DES and empty black-box reconfigurable cipher zones . 126

6.4 ICAP throughput (left) and comparison of three reconfigurable mod-
ule sizes and configuration time length (right) 127

Glossary

ADD: Addition
AES: Advanced Encryption Standard
AES-NI: Advanced Encryption Standard - New Instructions
AHB: Advanced High-performance Bus
ALM: Adaptive Logic Module (In Altera Stratix-II)
ALU: Arithmetic Logic Unit
AMK: Authentication Master Key
ANSI: American National Standards Institute
APB: Advanced Peripheral Bus
ASIC: Application Specific Integrated Circuit
BB: Bitstream Bus
BRAM: Block RAM (in Xilinx Virtex)
CBC: Cipher Block Chaining
CBC-MAC: Cipher Block Chaining - Message Authentication Code
CC: Common Criteria
CCM: Counter mode with CBC-MAC
CDONE: Configuration Done flag
CFB: Cipher FeedBack mode
CIP: Cipher
CLB: Configurable Logic Block (in Xilinx Virtex)
CLK: Clock signal
CMT: Clock Management Tile (in Xilinx Virtex)
CLR: Clear
CMAC: Cipher Block Chaining Message Authentication Code
CMOS: Complementary Metal Oxid Semiconductor
CMP: Compare
CPA: Correlation Power Analysis
CPU: Central Processing Unit
CSEL: Configuration Select
CSK: Ciphered Session Key
CSP: Critical Security Parameter
CSTART: Configuration Start
CT: Ciphertext
CTI: Ciphertext Input
CTO: Ciphertext Output
CTR: Counter mode
CTRL: Control
DCM: Digital Clock Manager (in Xilinx Virtex)

xx Glossary

DEC: Decrement
Decip: Decipher
DES: Data Encryption Standard
DFA: Differential Fault Analysis
DFF: D Flip-Flop
DH: Diffie-Hellmann
DI: Data Input
DLL: Delay-Locked Loop (in Xilinx FPGAs)
DO: Data Output
DPA: Differential Power Analysis
DPRAM: Dual Port RAM
DRM: Digital Rights Management
DRNG: Deterministic Random Number Generator
DRP: Dual-Rail Precharge logic
DSP: Digital Signal Processing
DVLD: Data Valid flag
EAL: Evaluation Assurance Level (in CC)
ECB: Electronic Code Book
ECC: Elliptic Curve Cryptography
EM: Encryption Modes
EMA: Electromagnetic Analysis
ENA: Enable signal
FF: Flip-Flop
FIA: Fault Injecition Attacks
FIFO: First In First Out
FIPS: Federal Information Processing Standard
FP: Fingerprint (in communication protocol)
FPGA: Field Programmable Gate Arrays
FSL: Fast Simplex Link
GCD: Greatest Common Divisor
GCM: Galois/Counter Mode and GMAC
GPP: General-Purpose Processor
HCrypt: Hubert Curien Crypto-processor
HCrypt-C: Hubert Curien Crypto-coprocessor
HD: Hamming Distance
HMAC: Keyed-Hashing MAC
HRNG: Hybrid Random Number Generator
HW: Hamming weight (in SCA)
IAP: In-Application Programmability (in Microsemi SmartFusion)
ICAP: Internal Configuration Access Port (in Xilinx Virtex)
ID: Identification Code
I/F: Interface
INC: Increment
I/O: Input/Output

Glossary xxi

IP: Intellectual Property (in general)
IV: Initialization Vector
IVT: Isolation Verification Tool
JTAG: Joint Test Action Group
KI: Key Input
KO: Key Output
LAB: Logic Block Array (In Altera Stratix-II)
LFSR: Linear Feedback Shift Register
LUT: Look-Up Table
MAC: Message Authentication Code
MC: Mix Columns (in AES)
MCCP: Multi-Core Crypto-Processor
MD5: Message Digest algorithm 5
MIM: Man In the Middle
MK: Master Key
MMCM: Mixed-Mode Clock Management
MPSoC: Multi-Processor System on Chip
NIST: U.S. National Institute of Standards and Technology
NSA: U.S. National Security Agency
OFB: Output FeedBack
PBB: Partial Bitstream Bus
PC: Personal Computer
PC1: Permutation Choice 1 (in DES)
PC2: Permutation Choice 2 (in DES)
PIP: Programmable Interconnect Points
PK: Public Key
PLL: Phase Locked Loop
PM: Personalization Module
PP: Partition Pin
PR: Partial Reconfiguration
PRNG: Pseudo-Random Number Generator
PRP: Partial Reconfiguration Port
PSK: Protected Session Key
PT: Plaintext
PTI: Plaintext Input
PTO: Plaintext Output
RAM: Random Access Memory
RC: Resistor-Capacitor oscillator
Rcon: Remote Constant (in AES)
RCU: Reconfiguration Control Unit
RD: Read
RK: Round Key
RM: Reconfigurable Module
ROL: Rotation to Left

xxii Glossary

ROM: Read-Only Memory
RP: Reconfiguration Port
RSA: Rivest Shamir Adleman algorithm
SB: SubBytes operation (in AES)
SCA: Side-Channel Attack
SCC: Single Chip Crypto
SHA: Secure Hash Algorithm
SK: Session Key (in general)
SKF: Secure Key Flash
SL: Shift to Left (in DES)
SoC: System on Chip
SPA: Simple Power Analysis
SPP: Specific-Purpose Processor
SR: Shift Rows (in AES)
SRAM: Static RAM
STS: Station-to-Station protocol
TBM: Trusted Bus Macro
TDEA: Triple Data Encryption Algorithm
TDPRAM: True Dual Port RAM
TE: Trusted Entity
TERO: Transition Effect Ring Oscillator
TOE: Target Of Evaluation (in CC)
TPM: Trusted Platform Module
TRNG: True Random Number Generator
USB: Universal Serial Bus
VHDL: VHSIC Hardware Description Language
VHSIC: Very-High-Speed Integrated Circuit
WR: Write
VLIW: Very Long Instruction Word
XOR: Exclusive OR

Chapter 1

Introduction

1.1 Flexible Security and Hardware Implementations

Nowadays, demands of data security are increasing, especially after introduction
of wireless communications to the masses. Technologies like WIFI, Bluetooth,
UMTS,. . . are all widely used. Moreover, usage of portable devices is skyrocket-
ing. Particularly, in this lucrative market sector combination of reconfigurable, low
power logic solution with embedded crypto-processor (hardware accelerator) and
random number generator are extremely attractive. Furthermore, if being able to
guarantee security on physical implementation level (concept of the black/red zone
separation) as well as other countermeasure techniques, these solutions can surpass
ordinary consumer electronics application to be used in avionics, automotive and
military applications featuring higher security needs.

Hardware cryptographic systems must fulfill contradictory requirements: fast
parallel structures implementing computationally extensive cryptographic functions
must coexist with complex sequential structures used to implement cryptographic
algorithms such as cipher modes, key management operations and cryptographic
protocols. Implementation of cryptographic algorithms and protocols in hardware
necessitates employing many complex state machines that make the logic vulnerable.
Furthermore, upgrades of hardwired logic can become complicated, long and expen-
sive. On the other hand, security of the system itself and protection of confidential
data is often underestimated.

The most common solution consists in the use of a general-purpose processor
employing one or more cryptographic coprocessors. This solution permits to imple-
ment sequential algorithms (that evolve very frequently as a consequence of attacks
and/or evolution of standards) by the processor program, while the tasks that can
be executed in parallel are implemented in the coprocessor placed inside the same
logic device. However, this solution brings some difficulties concerning the system
security: first, the general-purpose processor manipulates the keys as ordinary data
and modification (intentional or unintentional) of the program memory contents
can enable reading the keys in clear outside the system; second, the use of general-
purpose processors does not permit to isolate efficiently the red (unprotected) and
black (protected) communication zones inside the device.

One problem concerning the use of a general-purpose processor in cryptographic
applications is related to the speed limitation caused by the bus width: data and bus
size (usually 32 bits) limits considerably the performance of the system. Another
problem related to the use of general-purpose processors in cryptographic systems

2 Chapter 1. Introduction

and their speed concerns the complexity of the instruction set: processors aimed
at cryptographic applications (completed by cryptographic coprocessors) do not
need a complex instruction set that is necessary in general-purpose processors and
optimization (minimization) of the instruction set could increase the speed of the
system. The design of dedicated processors with dedicated instruction set is espe-
cially interesting in the case of emerging application areas based on Multi-Processor
System-on-Chip (MPSoC).

1.2 Objectives of the Thesis

In order to fulfill aforementioned, often contradictory, requirements on the crypto-
graphic system, French National Research Agency (ANR) founded the Secured Re-
configurable System on Chip project (SecReSoC) proposed by the Secure Embedded
Systems research team of the Hubert Curien Laboratory. The aim of SecReSoC was
to examine security aspects of MPSoC, and to demonstrate the final MPSoC system
implemented in a Field Programmable Gate Array (FPGA). The work presented in
this thesis is done in the framework of the SecReSoC project, and its objectives were
defined as follows:

1. Propose a new architecture of the crypto-processor that includes cipher block
as an independent module and that allows secure separation of data and key
registers.

2. Optimize the architecture of the Arithmetic Logic Unit (ALU) for operations
used by cryptographic protocols and cipher modes.

3. Propose an instruction set providing separate data and key processing.

4. Propose at least one version of the cipher core including countermeasures
against side-channel attacks.

5. Propose some efficient solution enabling easy adaptation of the assembler to
the modification/evolution of the instruction set.

6. Integrate all elements necessary for secure programming and reconfiguration
into the structure of the crypto-processor.

7. Evaluate the security level of the proposed crypto-processor.

1.3 Contribution

The thesis not only achieves all aforementioned objectives, but also proposes novel
principles, design rules and architectures enabling secure key management on crypto-
graphic processors or even general-purpose processors (extended with secure crypto-
graphic coprocessors). The developed cryptographic processors (further just crypto-
processors) and cryptographic coprocessors (further just crypto-coprocessors) can

1.4. Thesis Preview 3

be directly used in practice. A part of the research work is also dedicated to coun-
termeasures against side-channel attacks and protection of a totally or partially
reconfigurable system. This work does not propose partial solutions, but its out-
come is a fully functional and tested HCrypt cryptographic processor and HCrypt-C
cryptographic coprocessor in many variations focused on a specific objective.

Every specific problem in this research work is preceded by an extensive study
of the state-of-the-art work which is summarized in every chapter of this thesis.

1.4 Thesis Preview

The manuscript describes the work progress during the thesis in chronological order.
Chap. 3–6 constitute the core of the research work.

The objective of Chap. 2 is to introduce the theoretical background which is es-
sential for further understanding of the thesis. First, basic cryptography objectives
for secure communications are listed. Next, most important symmetric key crypto-
graphic algorithms (i.e. DES, AES, block cipher modes, etc.) are described, followed
by hash functions and random number generators. Subsequently, key management,
assumed participating parties and all involved security threats are presented. Conse-
quently, important key establishment schemes are briefly introduced and compared.
The second part of Chap. 2 is dedicated to FPGAs and corresponding advanced
design flows.

Chap. 3 starts by summarizing the state-of-the-art related to cryptographic pro-
cessors. Security issues of cryptographic software implementations are discussed
first, followed by overview on cryptographic hardware architectures. Further, novel
separation rules for secure key management are presented. These rules are im-
plemented on original HCrypt crypto-processor. Subsequently, its hardware and
software design, and communication protocol is described, followed by simulations,
and hardware tests. Finally, HCrypt properties and implementation results are
discussed.

Chap. 4 is oriented on cryptographic coprocessors with secure key manage-
ment. After introducing the work that has been conducted in the study of crypto-
coprocessors, slight modifications of separation rules for crypto-coprocessors are
proposed. These separation rules are applied on the HCrypt-C crypto-coprocessor.
Subsequently, most common interface topologies for interconnection of a coprocessor
to a general-purpose processor are described. Next, three different general-purpose
processors are extended by HCrypt-C and their design and results are given.

Side-channel analysis attack (SCA) threat is considered in Chap. 5. After in-
troducing state-of-the-art in hardware attacks, an extensive security analysis of the
AES cipher and HCrypt is given. The HCrypt security analysis uncovers secu-
rity vulnerabilities when considering SCA, and so the HCrypt2 crypto-processor is
designed. HCrypt2 implements new countermeasures (zero-cost countermeasures).
The HCrypt2 security analysis confirms increased robustness to SCA. HCrypt2 de-
sign and results are presented and evaluated.

4 Chapter 1. Introduction

Chap. 6 contemplates an FPGA-specific advanced technique – partial reconfig-
uration flow. First, reasons for using this technique are discussed. Next, the work
that has been done in the field of partially reconfigurable system is presented. Sub-
sequently, separation rules in conjunction with partial reconfiguration are given. A
total and partial reconfiguration of an FPGA and corresponding security implica-
tions are discussed. Finally, a partially reconfigurable HCrypt-C crypto-coprocessor
is described and tested using three different partial configurations.

Finally, Chap. 7 summarizes all important contributions, proposals and conclu-
sions. It also presents new challenges and perspectives that can be a subject of
future studies.

Chapter 2

Theoretical and Technological

Background

Contents

2.1 Secure Communications . 6

2.2 Symmetric Key Cryptography 7

2.2.1 Block Ciphers . 7

2.2.2 Stream Ciphers . 16

2.3 Hash Functions . 17

2.3.1 MD5 Hash Function . 18

2.4 Generation of Random Numbers 18

2.4.1 Hardware Random Number Generators 20

2.4.2 LFSR-based PRNG . 21

2.4.3 PLL-based TRNG . 21

2.5 Key Management . 22

2.5.1 Security Levels and Key Management 24

2.5.2 Participating Parties . 26

2.5.3 Threat Model . 26

2.5.4 Key Establishment Protocols 27

2.6 Implementation of Cryptographic Hardware in FPGAs . . 29

2.6.1 Field-Programmable Gate Arrays (FPGAs) 29

2.6.2 Development of Hardware Functions for FPGAs 30

2.6.3 FPGA Classes and Families 31

2.6.4 Technology Limits . 32

2.6.5 Isolation Design Flow in Xilinx FPGAs 32

2.7 Partial Hardware Reconfiguration and Security 33

2.7.1 Partial Reconfiguration . 33

2.7.2 Security Aspects of the Partial Reconfiguration 34

This chapter introduces basic knowledge concerning cryptography for secure
communications, FPGA technology and advanced design flows. It is necessary for
better understanding of the following parts of the manuscript.

6 Chapter 2. Theoretical and Technological Background

2.1 Secure Communications

In general, secure communication can be achieved by two methods: 1) steganogra-
phy 2) cryptography. Steganography exploits different methods for hiding a secret
message inside an insecure message. The secret message can be hidden in digital
data like images, videos, music, etc. On the contrary, cryptography does not try to
hide the secret message (plaintext) from the attacker, but rather to transform it to a
meaningless message (ciphertext) using a key. This transformation is performed by
a cipher. Only the owner of the key can transform the ciphertext message back to its
plaintext version. The attacker, however, may have knowledge of the ciphering al-
gorithm and try to recover the confidential key or the plaintext using cryptanalysis.
For this reason, security should not be based on the confidentiality of the ciphering
algorithm, but only on the confidentiality of the key. This Kerckhoffs’s principle
has a practical reason, because it is easier to change the confidential key than to
redesign the ciphering algorithm in case of their disclosure.

Different objectives have been defined for cryptography [4], [5], [6]. The following
are the four cryptography objectives defined by Menezes et al. [3]:

1. Confidentiality is a service used to keep the content of information from all
but those authorized to have it. Secrecy is a term synonymous with confiden-
tiality and privacy. There are numerous approaches to providing confidential-
ity, ranging from physical protection to mathematical algorithms which render
data unintelligible.

2. Data integrity is a service which addresses the unauthorized alteration of
data. To assure data integrity, one must have the ability to detect data ma-
nipulation by unauthorized parties. Data manipulation includes such things
as insertion, deletion, and substitution.

3. Authentication is a service related to identification. This function applies
to both entities and information itself. Two parties entering into a communi-
cation should identify each other. Information delivered over a channel should
be authenticated as to origin, date of origin, data content, time sent, etc. For
these reasons this aspect of cryptography is usually subdivided into two ma-
jor classes: entity authentication and data origin authentication. Data origin
authentication implicitly provides data integrity (for if a message is modified,
the source has changed).

4. Non-repudiation is a service which prevents an entity from denying previ-
ous commitments or actions. When disputes arise due to an entity denying
that certain actions were taken, a means to resolve the situation is necessary.
For example, one entity may authorize the purchase of property by another
entity and later deny such authorization was granted. A procedure involving
a trusted third party is needed to resolve the dispute.

This work is focused especially on secure key management in logic devices. The
confidential keys are essential piece of information for many cryptographic primitives

2.2. Symmetric Key Cryptography 7

and algorithms for fulfilling the described four objectives of cryptography. Next, we
describe the cryptographic primitives, algorithms and protocols that are necessary
for better understanding of this work.

2.2 Symmetric Key Cryptography

The symmetric key cryptography utilizes the same key for both encryption and
decryption. Contrary to the symmetric key cryptography, the asymmetric key cryp-
tography is based on two different keys. One key is confidential and is called private
and the second is freely distributed and is called public. This work concerns only
the symmetric key cryptography and so the asymmetric key cryptography will not
be further considered.

The use of the symmetric key cryptography in military dates back to the Ro-
man empire when the emperor Julius Caesar used a special cipher for his private
correspondence. The Caesar cipher is very simple. Each letter in the message has
to be substituted by another letter shifted in the alphabet by 3 letters.

Before the digital era, the cryptographic algorithms operated on letters. The
digital era allowed to encode any piece of information by a set of bits, and so the
ciphering started to be performed on bits. The ciphers that operate on an infinitely
long bit sequence are called stream ciphers. The opposite are the block ciphers
which operate on a constant number of bits (blocks).

2.2.1 Block Ciphers

Block ciphers can be divided into two classes: substitution ciphers and transposition
ciphers.

The substitution ciphers replace the symbols by other symbols using some algo-
rithm or substitution tables. Substitution tables may be defined by the ciphering
algorithm or calculated from the key. The Caesar cipher is a typical substitution
cipher. The transposition ciphers are rather based on changing the order of symbols
in the block (symbol permutations) according to some key-dependent algorithm.
Substitution or transpositions ciphers do not provide sufficient security. However, if
the two are combined together they can provide a very high level of security.

Two important properties of the block ciphers are confusion and diffusion. Con-
fusion makes the relationship between the plaintext and ciphertext as complex as
possible. The substitution operation significantly increases confusion. To achieve
high confusion, the substitution transformation should be non-linear. A unit per-
forming substitution is called S-box. Diffusion, however, spreads or rearranges the
plaintext bits over the ciphertext. This way any redundancy in the plaintext can be
effectively spread out (diffused) over the ciphertext. Diffusion can be increased by
transposition operation. Operations used in modern ciphers can be categorized as
those increasing confusion or diffusion.

Next, some modern standardized ciphering algorithms will presented.

8 Chapter 2. Theoretical and Technological Background

2.2.1.1 Data Encryption Standard (DES)

The Data Encryption Standard (DES) was developed in the 1970s by IBM in coop-
eration with the National Security Agency (NSA) of the USA and published as the
Federal Information Processing Standard 46 (FIPS-46) [7]. DES is based on another
cipher developed by Horst Feistel. For this reason, DES is based on the so called
Feistel scheme.

DES is a block cipher which uses a 56-bit long symmetric key and operates on
64-bit data blocks. The transformation of a plaintext block to a ciphertext block is
performed in 16 rounds. The structure of the DES cipher is depicted in Fig. 2.1.
First, a 64-bit data block is transformed into two 32-bit state words by Initial
Permutation (IP). The less significant 32-bit word (right word) passes directly to
the next round to the left word position. The more significant 32-bit word (left
word) is XOR-ed with the output of the F-function (see the part B in Fig. 2.1) and
the result passes into the next round to the right word position. This algorithm
is repeated for every round except the last round where the two words are not
swapped. Finally, the last two 32-bit words in the last round are transformed into
the ciphertext by the Final Permutation (FP).

The structure of the F-function is illustrated in the part B in Fig. 2.1. The
F-function loads a 48-bit subkey (SK) and a 32-bit right state word (R). In order to
match two bus widths, the 32-bit state word is expanded into 48-bits by the Expan-
sion permutation (E) by duplicating half of the bits. The expanded value is added
with the subkey and the resulting 48-bit word enters the substitution part. The
substitution function is represented by eight different parallel substitution blocks
(S-boxes). Each S-box substitutes six bits with four bits. The resulting substituted
values form a 32-bit word which is subsequently transformed by the Permutation (P)
to form an output of the F-function. S-boxes together with E and P permutations
contribute to high confusion and diffusion, respectively.

48-bit subkeys are generated by the key expansion function (see the part C in
Fig. 2.1). Although a 64-bit secret key word enters the key expansion function, 8
bits are removed by the Permutation Choice 1 (PC1) forming a 56-bit secret key
divided into two 28-bit halves. These halves are further processes separately. Each
half is shifted to left (SL) by one or two bits (depends on the round). The two
shifted words are processed by the Permutation Choice 2 (PC2) generating a 48-bit
subkey.

The DES deciphering operation uses the same round structure. The only dif-
ference is that subkeys are used in reversed order, i.e., subkeys sk(16), sk(15, . . . ,
sk(2, sk(1) are used in rounds 1, 2, . . . , 15, 16, respectively. More details about DES
cipher can be found in the FIPS-46 standard [7].

2.2.1.2 Triple DES

DES was proved to be vulnerable and feasible attacks were demonstrated in 90-ties.
For this reason, the FIPS-46 standard was expanded with a so called Triple Data
Encryption Algorithm (TDEA).

2.2. Symmetric Key Cryptography 9

IP

F

F

F

FP

sk
(16)

sk
(2)

sk
(1)

E

S1 S2 S8

P

PC1

SL
(1)

SL
(1)

PC2

SL
(2)

SL
(2)

PC2

SL
(16)

SL
(16)

PC2

sk
(i)

sk
(1)

sk
(2)

sk
(16)

R
(1)

R
(i)

f
(1)

f
(i)

Data IN Key IN

Data OUT

28 28
2828

2828

48

64

48
32

48

48

32

32

3232

32
32

32

64

48

32

64

A) B) C)

Figure 2.1: Structure of the Data Encryption Standard cipher (DES)

TDEA uses three DES ciphers connected in series. The ciphertext (CT) can
be obtained from plaintext (PT) as follows: CT = EK3(DK2(EK1(PT))). The
decryption can be performed as follows: PT = DK1(EK2(DK3(CT))). E represents
a DES encryption operation while D represents a DES decryption operation. K1, K2

and K3 represent three 56-bit secret keys which can be either independent (TDEA
option 1), K1 = K3 are independent from K2 (TDEA option 2), or all three keys
are identical (TDEA option 3).

The TDEA option 1 is the strongest because the effective key length reaches
168 bits, followed by options 2 and 3. Unfortunately, TDEA operates with 48
rounds (three ciphers per 16 rounds) which can significantly decrease performance
if a pipeline implementation is not possible.

2.2.1.3 Advanced Encryption Standard (AES)

Although the TDEA was not broken and was accepted as a standard in FIPS-46-3
[7], successful attacks on DES initiated a search for a new encryption standard.
The Rijndael cipher was selected in a competition for Advanced Encryption Stan-
dard (AES) and standardized in 2001 as Federal Information Processing Standard
197 (FIPS-197) [8]. Nowadays, only AES is considered as sufficiently secure and
recommended for data protection.

The structure of AES with a 128-bit key is depicted in Fig. 2.2 (for details on
longer key versions see FIPS-197[8]). The ciphering is carried out in 11 rounds.

10 Chapter 2. Theoretical and Technological Background

Data enters the cipher in 128-bit blocks. Each block is divided into 16 bytes
(in0, in1, . . . , in15). The internal state of the cipher can be described by a matrix
consisting of four rows and four columns as shown in Fig. 2.3. Four bytes of each
column form a 32-bit word. The resulting data are organized 128-bit blocks.

The encryption algorithm uses four main operations that are applied on the state
array: SubBytes, ShiftRows, MixColumns and AddRoundKey. The SubBytes trans-
formation substitutes each byte in the state array with a different byte according
to a substitution table (S-box tables can be found in the standard [8]). ShiftRows
performs byte transposition of the state array as illustrated in Fig. 2.4. The Mix-
Columns transformation operates on 32-bit words in columns (w0, w1, w2, w3). Mix-
Colums performs a modular multiplication of a state word, expressed in a polynomial
form s(x), with a constant polynomial a(x) = {0316}x

3+{0116}x
2+{0116}x+{0216}.

More details on the modular multiplication can be found in [8]. The AddRoundKey
operation is very simple, because it performs only bit-wise XOR operation between
state bits and round key bits.

Unlike DES, the decryption algorithm in AES uses different operations: In-
vSubBytes, InvShiftRows, InvMixColumns and AddRoundKey. The InvSubBytes
transformation substitutes each state byte with another byte according to a sub-
stitution table (InvS-box tables can be found in the standard [8]). InvShiftRows
performs byte transposition of the state array as illustrated in Fig. 2.5. The In-
vMixColumns transformation operates on 32-bit words. It performs a modular mul-
tiplication of a state word polynomial s(x) with a constant polynomial a−1(x) =

{0B16}x
3 + {0D16}x

2 + {0916}x+ {0E16}. Another difference with the encryption
algorithm is the necessity to precompute all round keys before the decryption can
begin. During the decryption, round keys are used in the inverse order.

The byte substitution operations together with MixColumns provide very high
confusion while ShiftRows together with MixColumns provide excellent diffusion.

The key expansion (see the part C in Fig. 2.2) generates 128-bit round key from
the input secret key. This transformation is mainly based on modular addition
(XOR). A non-linearity is introduced by the SubWord operation in Function (F).
F operates on 32-bit words using left rotation on bytes, SubWord substitution and
modular addition of an Rcon constant (see [8]).

2.2.1.4 Block Cipher Modes of Operation

Up to now, we have assumed only operations on one data block. However, when
more data blocks have to be processed, so called block cipher modes of operation
must be implemented. Block cipher modes use only a single key and some requires
also an initializing vector (IV). If the last data block is smaller than the cipher
block size, it must be extended by appropriate padding data. Block cipher modes
of operation can provide confidentiality, authenticity or both.

Block cipher modes of operation were first standardized for DES cipher as FIPS-
81 [9]. The standard included only ECB, CBC, OFB and CFB mode. After the
standardization of AES in 2001, new standard SP800-38A [1] for block cipher modes

2.2. Symmetric Key Cryptography 11

R
o
u
n
d
 9

R
o
u
n
d
 1

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

R
o
u
n
d
 9

SubBytes

ShiftRows

MixColumns

AddRoundKey

R
o
u
n
d
 1

0

SubBytes

ShiftRows

AddRoundKey

R
o
u
n
d
 1

0

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns

R
o
u
n
d
 1

InvMixColumns

AddRoundKey

InvSubBytes

InvShiftRows

AddRoundKey

InvSubBytes

InvShiftRows

AddRoundKey

RK
(0)

RK
(1)

RK
(9)

RK
(10)

RK
(0)

RK
(1)

RK
(9)

RK
(10)

Plaintext Plaintext

Ciphertext Ciphertext

128
128

128

F

F

F

MSW

LSW

Key
MSWLSW

RotWord

SubWord

Rcon

FINFOUT

FIN

FOUT

A) B) C) D)

32

128

32

Figure 2.2: Structure of the Advanced Encryption Standard (AES) cipher with
128-bit key: Encryption (A), Decryption (B), Key expansion (C) with Function (D)

in0

in1

in2

in3

in4

in5

in6

in7

in8

in9

in10

in11

in12

in13

in14

in15

s0,0

s1,0

s2,0

s3,0

s0,1

s1,1

s2,1

s3,1

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,3

s3,3

out0

out1

out2

out3

out4

out5

out6

out7

out8

out9

out10

out11

out12

out13

out14

out15

MSB

LSB LSB

MSB

LSB

Input bytes State array Output bytes
w0 w1 w2 w3

Figure 2.3: Division of input/output data blocks and internal state array

12 Chapter 2. Theoretical and Technological Background

s0,0

s1,0

s2,0

s3,0

s0,1

s1,1

s2,1

s3,1

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,3

s3,3

LSB

w0 w1 w2 w3

s0,0

s1,1

s2,2

s3,3

s0,1

s1,2

s2,3

s3,0

s0,2

s1,3

s2,0

s3,1

s0,3

s1,0

s2,1

s3,2

LSB

w0 w1 w2 w3

ShiftRowss s’

Figure 2.4: ShiftRows transformation performing left rotation of rows by one, two
or three bytes

s0,0

s1,0

s2,0

s3,0

s0,1

s1,1

s2,1

s3,1

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,3

s3,3

LSB

w0 w1 w2 w3

s0,0

s1,3

s2,2

s3,1

s0,1

s1,0

s2,3

s3,2

s0,2

s1,1

s2,0

s3,3

s0,3

s1,2

s2,1

s3,0

LSB

w0 w1 w2 w3

InvShiftRowss s’

Figure 2.5: InvShiftRows transformation performing right rotation of rows by one,
two or three bytes

was published. This standard contains the ECB, CBC, OFB, CFB and CTR mode.
However, the block cipher modes presented in SP800-38A [1] provide only con-

fidentiality. A CMAC mode providing authenticity is described in SP800-38B [2].
Other modes providing both authenticity and confidentiality were standardized.

The CCM mode is described in SP800-38C [10] and GCM in SP800-38D [11].
Next, we describe five most important basic block cipher modes operating on

128-bit blocks and providing confidentiality and one mode providing authenticity.
We assume that the last data block is complete and does not require padding. For
the sake of simplicity these block modes are presented using the AES cipher or
decipher. These modes are also compared in Tab. 2.1.

Electronic Code Book (ECB) The most simple mode is the Electronic Code
Book (ECB) block cipher mode (see Fig. 2.6) described in SP800-38A [1]. Encryp-
tion requires to apply the AES cipher on all data blocks using the same secret key.
Decryption, on the other hand, uses the AES decipher with the same secret key.

The advantage of the ECB mode is its high speed because of the possibility
to compute multiple blocks in parallel. Moreover, errors in one data block do not
propagate to other ciphertext data blocks. The main disadvantage is the inability
to hide data patterns. Especially this effect can be visible when enciphering images
which contain bigger patterns with the same color. For this reason the ECB mode
is recommended only for independent data blocks (e.g. key encryption).

2.2. Symmetric Key Cryptography 13

Table 2.1: The comparison of basic block cipher modes of operation providing con-
fidentiality [1] and authenticity [2]

ECB CBC CFB OFB CTR CMAC

Decipher is required yes yes no no no no

Error propagation 1a,b all remain.a, 2b all remain.a, 2b 1a, b 1a, b MAC

Parallel execution yes noa, yesb noa, yesb noa, b yesa, b no

IV is required no yes yes yes yes no

Data pattern problem yes no no no no —

a Number of output blocks influenced by an error in an input block or IV in case of encryption.
b Number of output blocks influenced by an error in an input block or IV in case of decryption.

CIP

Plaintext

Ciphertext

CIP

Plaintext

Ciphertext

CIP

Plaintext

Ciphertext

Key

ENCRYPTION

CIP
-1

Ciphertext

Plaintext

CIP
-1

Ciphertext

Plaintext

CIP
-1

Key

DECRYPTION

Plaintext

Ciphertext

Figure 2.6: Electronic Code Book encryption block cipher mode of operation

Cipher Block Chaining (CBC) The Cipher Block Chaining (CBC) block cipher
mode is illustrated in Fig. 2.7 and details can be found in SP800-38A [1]. Unlike
the ECB mode, the CBC mode requires an Initialization Vector (IV). The ciphering
starts by XOR-ing the first plaintext block with the IV. The result is encrypted by
AES to form the first ciphertext block. The same ciphertext block is XOR-ed with
the next plaintext block and the result is encrypted again to form another ciphertext
block.

In case of decryption, the first ciphertext is decrypted by the AES decipher
and XOR-ed with IV forming the first plaintext block. Next, the second ciphertext
block is decrypted by the AES decipher and the result is XOR-ed with the previous
ciphertext block forming the second plaintext block.

Interestingly, an error in the plaintext or IV influences all ciphertext blocks
during encryption. If an error occurs in a ciphertext block or IV, this error influences
only two consecutive blocks during decryption. Unlike the data pattern problem in
ECB mode the CBC mode achieves indistinguishability of the ciphertext from the
random bits.

Cipher Feedback (CFB) The Cipher FeedBack (CFB) block cipher mode is
illustrated in Fig. 2.8 and details can be found in SP800-38A [1]. Similarly to the
CBC mode, the CFB mode utilizes the IV. The IV is encrypted by AES and the

14 Chapter 2. Theoretical and Technological Background

CIP

Plaintext

+
Init.Vector

Ciphertext

CIP

Plaintext

+

Ciphertext

CIP

Plaintext

+

Ciphertext

Key
CIP

-1

Cipertext

+
Init.Vector

Plaintext

Key
CIP

-1

Cipertext

+

Plaintext

CIP
-1

Cipertext

+

Plaintext

ENCRYPTION DECRYPTION

Figure 2.7: Cipher Block Chaining encryption block cipher mode of operation

ENCRYPTION DECRYPTION

CIP

Init.Vector

+
Plaintext

Key
CIP

+
Plaintext

Ciphertext Ciphertext

CIP

+
Plaintext

Ciphertext

CIP

Init.Vector

+

Key
CIP

+
Ciphertext

Plaintext Plaintext

CIP

+

Plaintext

Ciphertext Ciphertext

Figure 2.8: Cipher Feedback encryption block cipher mode of operation

result is XOR-ed with the first plaintext block to form the ciphertext. The resulting
ciphertext block is encrypted by AES and the result is XOR-ed with the second
plaintext block forming the second ciphertext block.

Unlike the ECB and CBC modes, the CFB mode uses AES cipher (not decipher)
for decryption. This way the AES cipher can be shared by both encryption and
decryption resulting in cheaper implementation. The IV is encrypted by AES and
the result is XOR-ed with the first ciphertext block forming the fist plaintext block.
The first ciphertext block is also encrypted by AES and the result is XOR-ed with
the second ciphertext block forming the second plaintext block.

Similarly to CBC, an error in a plaintext block influences all remaining ciphertext
blocks during encryption. On the contrary, an error in a ciphertext influences only
the actual and subsequent plaintext blocks during decryption. Similarly to the
CBC mode, the ciphertext output is indistinguishable from random bits. Although
encryption is highly serial, decryption can be well parallelized resulting in much
higher performance. An interesting property is a so called self-synchronization which
enables to effectively synchronize decryption after a bit or byte error. However, this
property holds only for CFB-8 and CFB-1 modes (working with 8-bit or 1-bit data
blocks, respectively).

Output FeedBack (OFB) The Output FeedBack (OFB) block cipher modes is
shown in Fig. 2.9 and details can be found in SP800-38A [1]. Unlike all previously
described block cipher modes, the cipher in the OFB mode does not encrypt input

2.2. Symmetric Key Cryptography 15

ENCRYPTION DECRYPTION

CIP

Init.Vector

+
Plaintext

Key
CIP

+
Plaintext

Ciphertext Ciphertext

CIP

+
Plaintext

Ciphertext

CIP

Init.Vector

+
Ciphertext

Key
CIP

+
Ciphertext

Plaintext Plaintext

CIP

+
Ciphertext

Plaintext

Figure 2.9: Output Feedback encryption block cipher mode of operation

data blocks but rather the IV and successive outputs of the cipher. The IV is first
encrypted by AES and the resulting block is XOR-ed with the first plaintext block
to form the first ciphertext block. The cipher output block is encrypted again and
the result is XOR-ed with the second plaintext block to form the second ciphertext
block.

Decryption is very similar. The generated cipher values are XOR-ed with ci-
phertext blocks forming plaintext blocks.

An error in an input data block propagates only to the resulting output block.
However, if the IV is corrupted all output blocks are corrupted.

A parallel execution is not possible because the IV must be chained through
all cipher blocks. However, if the IV is known soon enough prior to OFB execu-
tion and is not changed too often, the cipher outputs can be precomputed. These
precomputed blocks only need to be XOR-ed with the corresponding plaintext or
ciphertext. This XOR-ing operation can be performed in short time, and moreover,
it can be parallelized.

Counter Mode (CTR) The Counter (CTR) block mode of operation is depicted
in Fig. 2.10 and details can be found in SP800-38A [1]. Unlike the OFB mode, the
CTR mode does not chain the ciphering but only encrypts the counter values. The
counter must be initialized with the IV. The encryption starts by enciphering the
IV by AES. The result is XOR-ed with the first plaintext block forming the first
ciphertext block. Next, the IV is incremented and encrypted. The result is XOR-ed
with the second plaintext block forming the second ciphertext block.

The decryption is almost the same as encryption. The only difference is that the
AES output is XOR-ed with a ciphertext block forming a plaintext block.

The biggest advantage of the CTR over most block cipher modes is the possibility
to precompute all cipher output blocks in a short time in parallel. These data can be
simply XOR-ed with the plaintext or ciphertext in case of encryption or decryption,
respectively. Because it is possible to parallelize both encryption and decryption the
CTR mode achieves very high performance. If an error is introduced into an input
plaintext or ciphertext block this error influences only one output block. However,
if an error is introduced into the IV, all output blocks will be completely changed.

16 Chapter 2. Theoretical and Technological Background

ENCRYPTION

CIP

IV

+
Plaintext

Key
CIP

+
Plaintext

Ciphertext Ciphertext

CIP

+
Plaintext

Ciphertext

IV+1 IV+n

DECRYPTION

CIP

IV

+
Ciphertext

Key
CIP

+
Ciphertext

Plaintext Plaintext

CIP

+
Ciphertext

IV+1 IV+n

Plaintext

Figure 2.10: Counter encryption block cipher mode of operation

CBC Message Authentication Code (CMAC) Although all previously pre-
sented block cipher modes provide confidentiality, the verification of authenticity is
not directly possible. The CBC Message Authentication Mode (CBC-MAC) can be
used for authentication. A version of CBC-MAC mode called CMAC was standard-
ized and published in SP800-38B [2]. The structure of CMAC is given in Fig. 2.11.
For the sake of simplicity, the message is assumed to be divided into n complete
128-bit blocks and the resulting MAC is also a 128-bit value. For this reason, the
structure presented in Fig. 2.11 is simplified for this particular case.

The first message block is encrypted by AES and the result is XOR-ed with the
next message block. The result is encrypted again and so on. The only difference
from the CBC-MAC is when processing the last message block. If we assume that
the last (n-th) message block is complete, it must be XOR-ed not only with the
previous encrypted data but also with a subkey K1 (see the part B in Fig. 2.11).
The calculation of K1 involves a simple left shift and XOR-ing with a constant. The
MAC is the result of the last encryption.

The most important property is the error propagation. If a 1-bit error is inserted
into the message, all MAC bits are influenced. Moreover, length of the MAC word
(i.e. 128 bits) ensures that it is almost impossible to find other message resulting
in the same MAC. For this reason, CMAC perfectly guarantees authenticity of data
and their owner (the holder of the key).

2.2.2 Stream Ciphers

Unlike the block ciphers, stream ciphers operate on individual bits. One interesting
property of the stream ciphers is the zero error propagation. In other words, if a
particular bit of the plaintext is corrupted, the error will influence only the corre-
sponding ciphertext bit. For this reason, stream ciphers are used for infinitely long
bit streams transported via a noisy channel. Stream cipher can achieve very high
encryption speed. A disadvantage of stream ciphers is the small level of diffusion.
The encryption of the plaintext bits involves a very simple operation (i.e. exclusive
or). This transformation uses one plaintext bit and one bit of the keystream as its
inputs and produces one ciphertext bit. The keystream can be random or it can be
a pseudorandom sequence generated by a special key-dependent function. Since the

2.3. Hash Functions 17

CIP

M2M1

CIP

Mn-1

CIP CIP

Mn

MAC

K1
CIP

Key

Key 00..0016

CMP <<1

0
0
..0

0
8
7

16

128 1

128

0

1

0

A) B)

+ +

+

Figure 2.11: CMAC block cipher mode for authentication (part A) and a detailed
computation of the K1 (part B)

keystream must not involve the secret key directly, keystream generation must start
using an initial small keystream (called initialization vector or seed).

An interesting example of a stream cipher is the Vernam cipher which uses
the exclusive-or operation as an encryption function. If the keystream sequence is
random and it is never repeated (its length is the same as plaintext) it is called a
one-time pad. A unique feature of the one-time pad cipher is its unbreakableness.
The biggest disadvantage of the one-time pad is the key exchange which can involve
physical transportation of the keystream material.

2.3 Hash Functions

A MAC can be generated using block ciphers but also using hash functions. A cryp-
tographic hash function is a one-way function that processes a message and produces
a hash (sometimes called message digest or digital fingerprint). Cryptographic hash
functions must fulfill the following criteria as defined in [3]:

• Preimage resistance — for all pre-speficied outputs, it is computationally
infeasible to find any input which hashes to that output

• 2nd-preimage resistance — it is computationally infeasible to find any
second input which has the same output as any specific input

• collision resistance — it is computationally infeasible to find any two dis-
tinct inputs with the same hash

Many cryptographic hash functions exist (i.e. MD4 [12], MD5 [13], SHA-1 [14],
SHA-2 [15], etc.) and more details can be found in [3]. Important to mention is the
Keccak algorithm – the winner of the SHA-3 competition organized by NSA [16].
For better understanding of our work we briefly introduce the MD5 cryptographic
hash function.

18 Chapter 2. Theoretical and Technological Background

2.3.1 MD5 Hash Function

The MD5 hash function is based on the Merkle-Damgård construction. The func-
tion operates with 512-bit message blocks and produces a 128-bit digital fingerprint.
MD5 uses padding data P so that the message length L is divisible by 512. Con-
catenation (|| symbol) of a padding value P to a message M results in a complete
message M

′

:
{M

′

} = {M}||{P} = {M}||{100...002}||{L} (2.1)

The constant 100...002 has as many zero bits as required to fill the last message
block to 448 bits. The last 64 bits are reserved for message length information L.

The structure of the MD5 hash function is illustrated in the part A in Fig. 2.12.
The MD5 computation is performed in four rounds and each round consists of 16
steps. A 128-bit hash state hi is divided into four 32-bit words denoted as A, B, C
and D. The initial value h0 is an initialization vector which is defined as:

h0 = 67452301EFCDAB8998BADCFE1032547616 (2.2)

After entering the round block, four 32-bit words are processed in 16 steps. One
such step is shown in the part B in Fig. 2.12. Depending on the round, one of the
functions is applied on the B, C and D words. Functions use XOR (⊕), AND (.),
OR (+), and negation (B̄) binary operators. Subsequently, a ⊞ block performs the
addition modulo 232 operation. The X[k] is k-th 32-bit word of the processed message
block Mi. The K[i] input represents a i-th 32-bit constant in table T containing 64
such words. The RLs block performs a left rotation by s bits. The resulting 32-bit
words are returned back to registers to start another step. When all 16 steps are
completed new round is started. After completing all rounds, the four resulting
words are added modulo 232 to the previous four words of hi to form hi+1. If the
message is finished the resulting 128-bit word represents a calculated hash value.
However, if all message blocks have not been processed yet, the whole MD5 process
repeats for the next 512-bit message block. More details on ordering of X[k] and
K[i], the T table, and the s parameter can be find in the MD5 standard [13].

2.4 Generation of Random Numbers

Random number generators (RNG) are cryptographic primitives in cryptographic
systems used for generation of ephemeral keys, initialization vectors, padding values,
random masks for countermeasures, etc. RNG must meet certain basic requirements:

• To give unpredictable output data

• To guarantee good statistical properties of output data

• To be inherently secure, robust and resistant to attacks

• If possible, to test generated values on line by generator specific tests

2.4. Generation of Random Numbers 19

F, K[1-16], X[i]

16 steps

G, K[17-32], X[i]

16 steps

H, K[33-48], X[i]

16 steps

I, K[49-64], X[i]

16 steps

+ + + +

A B C D

A B C D

A B C D

32

B C D

A B C D

hi

X[k]

hi+1

A

Mi

512

A B C D

+

+

+

<< RLS

+

A B C D

f

K[i]

One step
128

128

Round j

1

2

3

4

Logic function f

F = (B.C)+(B.D)

G = (B.D)+(C.D)

H = B C D
I = C (B+D)

A) B)

32

+

+ +

y

Figure 2.12: MD5 hash function structure (part A) and architecture of one step
(part B)

20 Chapter 2. Theoretical and Technological Background

2.4.1 Hardware Random Number Generators

Three basic RNG types are used in cryptography:

A Deterministic (pseudo-) random number generators (DRNGs or PRNGs)

B Physical (true-) random number generators (TRNGs)

C Hybrid random number generator (HRNGs)

PRNGs are very common because of their relatively straightforward structure
and high performance. For example, PRNGs can be used for generation of a
keystream used in stream ciphers. However, PRNG output is generated using exact
mathematical formula, and if the generated sequence is not long enough, or the
attacker has knowledge about the DRNG structure, attacks are feasible. Especially
if the sequence is not long enough, it can be recorded and replayed afterwards.

TRNGs exploit analog physical processes as source of randomness. This phys-
ical process must be uncontrollable so that attacker cannot control the generation
of output values, which are thus unpredictable. In general, TRNGs achieve lower
performance than DRNGs. Their performance is influenced by the spectrum of the
noise source and by the randomness extraction principle. The statistical character-
istics depend on the noise source and the method used for extraction of randomness.
However, the fluctuations of physical processes may affect statistical characteristics
negatively. For this reason, TRNG output data may be cryptographically post-
processed to maintain good statistical characteristics. Most common sources of
randomness in logic devices are clock period jitter, setup & hold time violations,
thermal noise, true dual port RAM write collision and others. More details can be
found in [17].

HRNGs are a combination of the TRNG and PRNG. The TRNG repeatedly
generates an unpredictable seed that initializes PRNG. PRNG generates random
number at high speed, while TRNG prepares a new seed. HRNGs represent a
tradeoffs between the predictability and speed.

Many different statistical tests for PRNGs exist and some of them were also
adapted for TRNGs. Early in the testing phase, designers prefer to test TRNGs
using FIPS-140-1 [18] or FIPS-140-2 [19] statistical tests. The small size of testing
samples is an advantage of these tests. However, these tests are not sufficient and
more complex tests are also necessary. Very common test suites are NIST SP800-22
[20] or DIEHARD [21].

The main disadvantage of the aforementioned statistical test suits is their in-
ability to distinguish pseudorandomly generated data from truly random data. The
response to this problem was the AIS-31 methodology that was proposed in 2001
and updated in 2011 [22], [23].

Many interesting RNG exist that can be implemented in logic devices. The
most common TRNGs are based on ring oscillators [24, 25, 26]. The outputs of
independent ring oscillators are usually sampled by a reference clock.

2.4. Generation of Random Numbers 21

Sunar et al. proposed a TRNG composed of 114 ring oscillators (each includes 13
inverters) [27, 28]. Their outputs are XOR-ed and sampled by a D Flip-Flop (DFF).
This principle was later improved by Wold and Tan by adding a DFF into output of
each ring oscillator [29]. A first practical application of Sunar’s TRNG was proposed
by Schellekens et al. [30]. Other interesting TRNGs based on ring oscillators were
proposed by Bucci et al. [24, 31], Kohlbrenner and Gaj [32], Tkacik [33] and many
others. A very interesting TRNG called Transition Effect Ring Oscillator (TERO)
was proposed by Varchola and Drutarovsky [34]. More detail on TRNGs and many
other principles are comprehensively described in [17].

Next, we briefly present one PRNG and one TRNG that were used in this work.

2.4.2 LFSR-based PRNG

The Linear Feedback Shift Registers (LFSRs) are very simple PRNGs that can
be easily implemented in hardware. Main advantages of LFSRs are the ability
to produce sequences with large periods and very good statistical characteristics.
LFSRs can be analyzed easily using algebraic techniques.

A LFSR consists of N memory elements, where each stores one bit. These
elements are chained one after another. The second part of the LFSR is the feedback.
A feedback part can be described by a linear equation which combines outputs of
certain memory elements and produces a feedback value. The feedback value forms
an input to the first memory element. If the LFSR feedback is described by a
primitive polynomial, LFSR will generate a maximal sequence (every possible state
except the zero state). Before the generation starts, all memory elements must be
initialized. The initialization data is called a seed.

Two typical LFSR topologies exist: Fibonacci and Galois. In general, Fibonacci
LFSRs requires slightly smaller chip area than Galois LFSRs. On the contrary,
Galois LFSRs achieve higher speed because of smaller delays in the feedback chain.
A 128-bit Galois LFSR is depicted in Fig. 2.13 and its feedback equation y = f(x)

is given in Eq. 2.3.

y = x128 + x99 + x59 + x31 + x9 + x7 + 1 (2.3)

Notice that the position of every XOR element before a memory element is exactly
indicated in Eq. 2.3 by the power of a corresponding polynomial term. For instance,
an input to the 31st memory element, indicated as x31, is calculated as XOR between
the outputs of the 30th and 127th memory elements. More details on LFSRs can
be found in [35].

2.4.3 PLL-based TRNG

Phase-Locked Loops (PLLs) are common hardware primitives used for generation
of chip clock signals. Fischer and Drutarovsky have proposed to use the jitter of the
clock signal generated by the PLL as a source of randomness [36] (see the part A
in Fig. 2.14). This randomness can be extracted by a DFF which samples the PLL

22 Chapter 2. Theoretical and Technological Background

1

0 6 7 8 9 30 31 58 59 98 99 127

128

LFSR_out

Figure 2.13: A 128-bit Galois Linear Feedback Shift Register capable of generating
maximal length sequences

output clock signal clj on each rising edge of the PLL input clock signal clk. The
relationship between the two clock signals can be described by Eq. 2.4 where KM

and KD represent PLL multiplication and division factors, respectively.

FOUT = FIN
KM

KD
(2.4)

The sampling of the clj signal by clk generates a patter in the DFF output with
period TQ is

TQ = KDTclk = KMTclj . (2.5)

This patters contains a random bit and its extraction requires XOR-ing all bits of
the pattern by the Decimator. During the period TQ, KD rising edges of the clk

signal occur, resulting in KD bits in the pattern. One random bit can be present in
the pattern only if the following condition is fulfilled:

σjit = MAX(∆Tmin) =
Tclk

4KM
GCD(2KM ,KD) =

Tclj

4KD
GCD(2KM ,KD) (2.6)

The GCD represents Greatest Common Divisor. In other words, the generator can
be more sensitive to jitter if KD is odd and as high as possible while the period Tclj

is as small as possible.
The PLL-based generator can be significantly improved if two PLLs are used

[37] (see the part B in Fig. 2.14). The PLL1 generates the cljrng clock signal while
the PLL2 generates clkrng signal. User clock signal (clkusr) can be also extracted
from PLL2. More details on both PLL-based TRNGs can be found in [36, 37, 17].

An example of a configuration of a TRNG based on two PLLs for Xilinx Virtex-6
FPGAs is summarized in Tab. 2.2.

2.5 Key Management

One of the most important issues in secure communications is the management of
confidential keys. Key management involves techniques, protocols and schemes for
establishment and use of necessary keying material between authorized communi-
cation parties. Key management may involve, but are not limited to, the following
tasks:

2.5. Key Management 23

PLL
Decimator

(KD)

clj D Qclk

CLK

TRNG_OUT

PLL1
Decimator

(KD)

cljrng

D Qclk

CLK

TRNG_OUT

PLL2

A)

B)

clkrng

clk

clkusr

Figure 2.14: TRNG based on one (part A) or two PLLs (part B)

Table 2.2: Configuration of a TRNG based on two PLLs for Xilinx Virtex-6 FPGAs

Name FIN[MHz] KM Divider KD FVCO[MHz] Output div. FOUT[MHz]

PLL1 cljrng 200 55 7 — 1571.318 1 1571.318

PLL2
clkrng

200 31 7 217 885.712
4.5 196.825

clkusr 9 98.412

1. Pre-initialization of long-term confidential keys, may involve manual distri-
bution by a trusted entity

2. Generation of ephemeral (short-term) confidential keys

3. Distribution of ephemeral keys among all authorized communication parties

4. Installation of ephemeral keys involving their authentication in all authorized
parties

5. Updates or destruction of ephemeral keys in case of their expiration or
presence of security risks

6. Storage of both long-term and ephemeral keys in a secure isolated environ-
ment

7. Use of confidential keys for protections of other keys or data

Secure key management is a key management that is robust against various types
of attacks (i.e. software attacks, protocol attacks, etc.).

Next, we explain key management security requirements as proposed by FIPS-
140-2 [19], summarize assumed participating parties and the threat model, and
propose a protocol ensuring secure key management.

24 Chapter 2. Theoretical and Technological Background

2.5.1 Security Levels and Key Management

Key management is an essential element of every cryptographic module. Thus,
security requirements proposed in FIPS-140-2 [19] for cryptographic modules have
direct impact on key management and its security. Next, the four security levels as
defined in FIPS-140-2 [19] are described. Note that security levels 3 and 4 require
that secret keys are exchanged via a secure channel separated from data channels.
If it is not possible, secret keys must be encrypted when exchanged to fulfill these
criteria. Our aim is to propose such key management techniques where secret keys
are encrypted when exchanged, and are isolated from data when stored or threated
in clear. This way, security levels 3 and 4 can be reached.

Security level 1: provides the lowest level of security. Basic security requirements
are specified for a cryptographic module (e.g., at least one Approved algorithm or
Approved security function shall be used). No specific physical security mecha-
nisms are required in a Security Level 1 cryptographic module beyond the basic
requirement for production-grade components. An example of a Security Level 1
cryptographic module is a personal computer encryption board.

Security Level 1 allows the software and firmware components of a cryptographic
module to be executed on a general purpose computing system using an unevaluated
operating system. Such implementations may be appropriate for some low-level
security applications when other controls, such as physical security, network security,
and administrative procedures are limited or nonexistent. The implementation of
cryptographic software may be more cost-effective than corresponding hardware-
based mechanisms, enabling organizations to select from alternative cryptographic
solutions to meet lower-level security requirements.

Security level 2: Security Level 2 enhances the physical security mechanisms of
a Security Level 1 cryptographic module by adding the requirement for tamper-
evidence, which includes the use of tamper-evident coatings or seals or for pick-
resistant locks on removable covers or doors of the module. Tamper-evident coatings
or seals are placed on a cryptographic module so that the coating or seal must be
broken to attain physical access to the plaintext cryptographic keys and critical se-
curity parameters (CSPs) within the module. Tamper-evident seals or pick-resistant
locks are placed on covers or doors to protect against unauthorized physical access.

Security Level 2 requires, at a minimum, role-based authentication in which a
cryptographic module authenticates the authorization of an operator to assume a
specific role and perform a corresponding set of services.

Security Level 2 allows the software and firmware components of a cryptographic
module to be executed on a general purpose computing system using an operating
system that

• meets the functional requirements specified in the Common Criteria (CC)
Protection Profiles (PPs) listed in Annex B and

2.5. Key Management 25

• is evaluated at the CC evaluation assurance level EAL2 (or higher).

An equivalent evaluated trusted operating system may be used. A trusted op-
erating system provides a level of trust so that cryptographic modules executing
on general purpose computing platforms are comparable to cryptographic modules
implemented using dedicated hardware systems.

Security level 3: In addition to the tamper-evident physical security mechanisms
required at Security Level 2, Security Level 3 attempts to prevent the intruder from
gaining access to CSPs held within the cryptographic module. Physical security
mechanisms required at Security Level 3 are intended to have a high probability of
detecting and responding to attempts at physical access, use or modification of the
cryptographic module. The physical security mechanisms may include the use of
strong enclosures and tamper detection/response circuitry that zeroizes all plaintext
CSPs when the removable covers/doors of the cryptographic module are opened.

Security Level 3 requires identity-based authentication mechanisms, enhancing
the security provided by the role-based authentication mechanisms specified for
Security Level 2. A cryptographic module authenticates the identity of an operator
and verifies that the identified operator is authorized to assume a specific role and
perform a corresponding set of services.

Security Level 3 requires the entry or output of plaintext CSPs (including the
entry or output of plaintext CSPs using split knowledge procedures) be performed
using ports that are physically separated from other ports, or interfaces that are
logically separated using a trusted path from other interfaces. Plaintext CSPs may
be entered into or output from the cryptographic module in encrypted form (in
which case they may travel through enclosing or intervening systems).

Security Level 3 allows the software and firmware components of a cryptographic
module to be executed on a general purpose computing system using an operating
system that

• meets the functional requirements specified in the PPs listed in Annex B with
the additional functional requirement of a Trusted Path (FTP_TRP.1) and

• is evaluated at the CC evaluation assurance level EAL3 (or higher) with the
additional assurance requirement of an Informal Target of Evaluation (TOE)
Security Policy Model (ADV_SPM.1).

An equivalent evaluated trusted operating system may be used. The implemen-
tation of a trusted path protects plaintext CSPs and the software and firmware
components of the cryptographic module from other untrusted software or firmware
that may be executing on the system.

Security level 4: Security Level 4 provides the highest level of security defined
in this standard. At this security level, the physical security mechanisms provide a
complete envelope of protection around the cryptographic module with the intent

26 Chapter 2. Theoretical and Technological Background

of detecting and responding to all unauthorized attempts at physical access. Pen-
etration of the cryptographic module enclosure from any direction has a very high
probability of being detected, resulting in the immediate zeroization of all plaintext
CSPs. Security Level 4 cryptographic modules are useful for operation in physically
unprotected environments.

Security Level 4 also protects a cryptographic module against a security compro-
mise due to environmental conditions or fluctuations outside of the module’s nor-
mal operating ranges for voltage and temperature. Intentional excursions beyond
the normal operating ranges may be used by an attacker to thwart a cryptographic
module’s defenses. A cryptographic module is required to either include special en-
vironmental protection features designed to detect fluctuations and zeroize CSPs, or
to undergo rigorous environmental failure testing to provide a reasonable assurance
that the module will not be affected by fluctuations outside of the normal operating
range in a manner that can compromise the security of the module.

Security Level 4 allows the software and firmware components of a cryptographic
module to be executed on a general purpose computing system using an operating
system that

• meets the functional requirements specified for Security Level 3 and

• is evaluated at the CC evaluation assurance level EAL4 (or higher).

An equivalent evaluated trusted operating system may be used.

2.5.2 Participating Parties

For the sake of simplicity, we assume the following participating parties:

Trusted Entity represents an authority which generates and manually distributes
long-term confidential keys or other necessary secret in a secure way to all partici-
pating parties.

Communication partners generate ephemeral keys and exchange them securely
(using long-term keys). During the exchange, both confidentiality and authenticity
of ephemeral keys must be guaranteed. Communication partners use ephemeral keys
to protect data during their exchange.

Adversaries try to gain access to long-term or ephemeral keys. The attacks can
be performed either locally or remotely.

2.5.3 Threat Model

Local attacks may include, but are not limited to, physical, side-channel and fault-
injection attacks. On the contrary, software or protocol attacks may be carried out
remotely.

2.5. Key Management 27

Adversary that is passively observing the communication between communica-
tion partners is called eavesdropper. Key establishment protocols ensuring confi-
dentiality of the transported keying material is a sufficient countermeasure against
eavesdropping. More dangerous is the Man In the Middle (MIM) active attack,
where the attacker interrupts the communication imperceptedly and pretends to be
one of the communication partners to others. To protect against this threat, key
establishment protocols must provide confidentiality and authenticity of exchanged
keys.

Software attacks can be potentially dangerous, because they allow to remotely
modify execution of software that operates with confidential data. Software attacks
and protocol attacks including MIM are assumed in all systems presented in this
work.

Side-channel attacks exploit data leaked from physical devices during execution
of cryptographic algorithms. This leaked data can be used to recover confidential
keys. This threat is assumed and countermeasures are presented in Chap. 5.

Bitstream attacks try to reverse-engineer, tamper or replace configuration data
of programmable gate arrays. Protection of configuration data are assumed in all
presented systems. Special attention is given to attacks on so called partial bit-
streams that are assumed in Chap. 6.

2.5.4 Key Establishment Protocols

Before the secure data exchange can be initiated, all communication counterparts
must agree upon and exchange keys securely. The solution to this key distribu-
tion problem are key establishment protocols. Key establishment protocols can be
based on symmetric cryptography algorithms, asymmetric cryptography algorithms
or their combination.

Key establishment may involve pre-initialization of a shared secret, key agree-
ment or key transport, and key updates. Key pre-initialization requires manual
distribution of a necessary shared secret to all parties. Afterwards, key transport
or key agreement protocols can be used to establish an ephemeral key secret (i.e.
session key). During key transport, one party creates a new session key and sends
it to other parties. On the contrary, during key agreement a shared secret is de-
rived by the parties as a function of information contributed by each, such that no
party can predetermine the resulting value of the key [3]. To provide some degree
of assurance regarding the identity of communication parties, an authenticated key
establishment protocol can be used.

Basic key establishment protocols and their properties are summarized in Tab. 2.3.
Key establishment protocols based on symmetric cryptography algorithms re-

quire at least the following key hierarchy:

1. Master keys are the highest-level secret keys. They are pre-initialized in the
system by a trusted entity. Master keys are transported and stored in clear
and so their isolation and protection is of utmost importance.

28 Chapter 2. Theoretical and Technological Background

Table 2.3: Basic key establishment protocols and their properties as classified in [3]

Type Protocol (properties)

Key transport protocol Point-to-point key update (no server)

based on symmetric encryption Our protocol in Sec. 2.5.4.2 (no server, key authentication)

Shamir’s no key protocol (no server)

Kerberos authentication protocol (server based)

Needham-Shroeder shared-key protocol (server based)

Otway-Rees (server based)

Key transport protocol Basic PK encryption (1-pass) (no entity authentication)

based on asymmetric encryption X.509 (2-pass) -timestamps (mutual entity authentication)

X.509 (3-pass) -random (mutual entity authentication)

Beller-Yacobi (4-pass) (mutual entity authentication)

Beller-Yacobi (2-pass) (unilateral entity authentication)

Key agreement protocol Blom’s symmetric key pre-distribution system

based on symmetric encryption

Key agreement protocol Diffie-Hellman (entity authentication)

based on asymmetric encryption ElGamal key agreement (key entity authentication)

Station-to-Station (mutual entity authentication)

2. Session keys are ephemeral secret keys that are generated by a TRNG and are
used for data protection. Session keys must be protected during their exchange
by master keys. After their expiration, new session keys must be generated
and exchanged to replace the expired ones.

2.5.4.1 Point-to-point Key Update Protocol

The Point-to-point key update protocol is a very simple key transport protocol
that enables to exchange session keys SK. This protocol does not support key
authentication. The protocol makes use of a pre-initialized master key MK and
involves communication parties A and B.

A session key SK is generated by A, encrypted (E) using master key MK and sent
to communication partner B. B posseses the same MK which is used for decryption
of the received session key SK. E represents a symmetric-key cipher.

A → B: EMK(SK) (2.7)

Although this protocol provides confidentiality, B cannot verify if the sender is
really A or a man-in-the-middle adversary. For this reason, we propose a simple
authenticated version of this protocol.

2.5.4.2 Authenticated Point-to-point Key Update Protocol

The man-in-the-middle attacks can be avoided only if the transported session key is
also authenticated. Instead of only one pre-initialized master key, we propose two

2.6. Implementation of Cryptographic Hardware in FPGAs 29

master keys: encryption master key MKENC and authentication master key MKAUT.
A session key SK is generated by A. Subsequently, SK is encrypted by MKAUT

forming a session key fingerprint FPA. The session key together with its fingerprint
are encrypted by MKENC and send to B. B decrypts the message using pre-initialized
MKENC to obtain SK and FPA. Next, B calculates the session key fingerprint FPB

by encrypting the SK with the pre-initialized MKAUT. The authenticity of the SK

is confirmed if the two fingerprints (FPA and FPB) are matching.

A → B: EMKENC
(SK,EMKAUT

(SK)) (2.8)

To prevent reply attacks a timestamp or sequence number might be included in
the encrypted portion.

2.6 Implementation of Cryptographic Hardware in FP-

GAs

2.6.1 Field-Programmable Gate Arrays (FPGAs)

FPGAs are more and more common not only for prototyping but also in customer
devices. This trend can be observed especially in cryptography, where FPGAs con-
stitute often a part of cryptographic modules, secure network routers, military de-
vices and other devices requiring high security and hardware acceleration. FPGAs
are suitable for cryptography for their high level of parallelism and flexibility.

When compared to Application Specific Integrated Circuits (ASICs), FPGAs are
flexible, very cheap for small or middle production series and hardware updates are
straightforward. On the other hand, logic designs implemented in FPGAs operate
on much lower frequencies than those implemented in ASICs. FPGAs also consume
more power.

In their nature, FPGAs are integrated circuits that are composed of a config-
urable logic fabric and wires interconnected with configurable switches. By configur-
ing these FPGA primitives in a certain way, FPGA can perform hardware functions.
The ability to perform any hardware function predestine FPGAs for rapid proto-
typing (hardware emulation and testing) of future ASIC circuits. The configuration
data are transferred to FPGA as a sequence of configuration bits called FPGA
bitstream.

In addition to configurable primitives, modern FPGAs contain additional em-
bedded hardwired units. Usually, FPGAs contain the next hardwired blocks:

PLLs are essential parts in all digital circuits. PLLs may be used for multi-
plication/division of clock frequency, phase shifts, deskewing, jitter cancellation,
generation of random numbers and others.

RAM blocks represent static memory blocks with sizes not exceeding several
kbits (e.g. 36 kb). These memory blocks can be concatenated to form bigger

30 Chapter 2. Theoretical and Technological Background

memory units. Recently, Dual Port RAMs (DPRAM) and True Dual Port RAMs
(TDPRAMs) are embedded. DPRAMs include two interfaces, one for writing and
one for reading. This allows simultaneous reads and writes of data stored in two
different memory locations. TDPRAMs include two independent access ports to the
same memory content. This way each port can read from or write to any location in
the memory array. If the same memory location is accessed parallely it may result
in collisions.

Digital Signal Processing (DSP) blocks are blocks usually implementing com-
plex hardwired adders, subtracters and multipliers. DSP blocks can operate on much
higher frequencies than equivalent implementations in logic.

Microprocessor usually requires significant amount of logic resources to be im-
plemented in logic fabric. Thus, some FPGA devices may contain hardwired micro-
processor (i.e. Cortex M1/M3, ARM7, PowerPC, etc.).

Configuration circuitry involves configuration controller and configuration in-
terfaces including the JTAG interface. Moreover, symmetric block cipher and secure
key storage may be embedded to ensure security of private configuration bitstreams.

Fast transceivers are special embedded blocks which may contain PLLs, serial-
izers, deserializes, equalization circuits and other parts. Transceivers can be used
to implement fast serial communication interfaces like gigabit ethernet, serial ATA,
HDMI and others.

Other blocks e.g., PCI Express interface, Ethernet interface, Analog blocks, etc.

2.6.2 Development of Hardware Functions for FPGAs

With the introduction of computers to hardware design, traditional procedures were
replaced by comfortable hardware design suites. Design starts by describing a hard-
ware function using a specific hardware language. The most common are the fol-
lowing two languages:

VHDL language: VHDL stands for VHSIC Hardware Description Language,
where VHSIC means Very-High-Speed Integrated Circuits. Interestingly, VHDL
was originally developed by U.S. Department of Defense for simulation of complex
digital systems.

Verilog HDL language: Verilog is an open standard which is based on C syntax.
Verilog and VHDL have different syntax but very similar functionality. Only VHDL
will be considered further on.

2.6. Implementation of Cryptographic Hardware in FPGAs 31

FPGA design flow

The FPGA design flow includes synthesis of the VHDL code to netlists, placement
(allocation of FPGA logic fabric resources for the hardware design), routing (se-
lection of FPGA interconnections) and generation of the FPGA programming files.
Optionally, functionality of a hardware design can be simulated before being tested
in an FPGA. Powerfull design tools are available from all FPGA vendors.

2.6.3 FPGA Classes and Families

Depending on how a configuration is stored in an FPGA, thee different FPGA classes
can be distinguished: Flash-based, Antifuse-based or SRAM-based.

2.6.3.1 Flash-based FPGAs

In Flash-based FPGAs all configurable switches are constructed using a flash tech-
nology resulting in a non-volatile FPGA. As a consequence, such FPGAs can be
configured many times and can retain their configuration even if they are discon-
nected from the power source. Moreover, flash technology allows to change the
FPGA configuration when necessary. Flash-based FPGAs are predominantly pro-
duced by Microsemi (former Actel).

2.6.3.2 Antifuse-based FPGAs

Antifuse-based FPGAs contain one-time-programmable switches based on antifuse
technology. Unlike Flash-based FPGAs, Antifuse-based FPGAs can be configured
only once. On the other hand, these devices are fault tolerant and resistant to
radiation, and so they are often used in air&space industry. These FPGAs are
mostly produced by Microsemi.

2.6.3.3 SRAM-based FPGAs

Unlike previous two FPGA classes, SRAM-based FPGAs store configuration in a
configuration RAM. However, RAM contents cannot be maintained if power is dis-
connected. For this reason, an external non-volatile memory is necessary. After
each power-up, FPGA must load a configuration bitstream from an external config-
uration memory. SRAM-based FPGAs have the biggest FPGA market share and
the most important produces are Xilinx and Altera.

Remark: To mitigate the disadvantage of SRAM-based FPGAs, some FPGAs
may contain a configuration flash memory chip in the same package with the FPGA
chip. After power-up, FPGA accesses the flash and loads the configuration from it.
In fact, this solution only minimizes device costs and required space on the circuit
board.

32 Chapter 2. Theoretical and Technological Background

Considered FPGA Families

Further on we will consider only the following FPGA families: Microsemi Fusion
[38], Microsemi SmartFusion [39], Altera Stratix-II [40], Xilinx Virtex-5 [41] and
Xilinx Virtex-6 [42].

2.6.4 Technology Limits

The necessity to protect secret keying material stored within FPGA devices forces
FPGA manufacturers to implement different protection techniques. One such tech-
nique proposed in TEMPEST specification [43] suggests to create red (containing
sensitive plaintext data material, or secret keys in clear) and black (ciphertext, se-
cret keys are encrypted) zones that should be implemented in two different chips. If
they must be in the same package, there must by an air gap between the two chips
to protect data in the red zone.

However, if a single chip FPGA is used for security applications, air gaps cannot
be creates and tradeoffs must be searched. The first and the simplest idea is to
separate red logic from the black logic in the FPGA. The logic blocks between the
red and black zones must not be used, so that the logic is separated by an imaginary
gaps formed from these unused blocks. This can be done in all aforementioned
FPGAs using FPGA-specific design constraints.

Unfortunately, logic separation is necessary but not sufficient. In addition to
logic separation, routing resources crossing from one zone to another must be limited
to a certain extent and special routing macros must be used for crossing the borders.
However, this is not possible in all FPGAs. Manual routing is not supported in
Microsemi FPGAs. Altera Stratix-II supports manual routing to a certain extent.
Xilinx Virtex-5 and -6 devices enable designers to select routing quite precisely.
Moreover, set of constraints and flows is available to control routing automatically.
To facilitate all this effort, Xilinx has proposed so called Isolation Design Flow.

2.6.5 Isolation Design Flow in Xilinx FPGAs

The Isolation Design Flow (a part of the Single Chip Crypto project) allows to
control placement of logic, routing, insertion of trusted bus macros, external isolation
of I/O bank, etc. The flow is supported by the Xilinx PlanAhead software. Note
that a partial reconfiguration license is necessary for the isolation design flow in the
PlanAhead tool.

First of all, VHDL design must be divided into security zones. Each zone must be
synthesized separately forming separate netlists. All these netlists must be loaded
into the PlanAhead tool. Each netlist is placed into a logic partition. The sep-
aration to partitions ensures that logic in each partition is synthesized separately.
Next, a partition is placed into a physical block which encompasses logic and routing
resources, BRAMs, DSPs, and other blocks. To isolate physical blocks and corre-
sponding routing resources from each other, special constraints must be applied
to each physical block. As a result, the logic is located inside the corresponding

2.7. Partial Hardware Reconfiguration and Security 33

physical blocks, routing resources are used only inside the physical blocks, and only
authorized routes may cross the border via trusted bus macros.

The isolation fence between two neighboring zones is composed of unused CLB
blocks. The fence must be at least one CLB wide.

The verification of all stringent isolation constraints can be carried out using
Isolation Verification Tool (IVT). IVT was a result of cooperation between Xilinx
and NSA. IVT can be used to verify if a fence between two neighboring physical
blocks is wide enough, if unauthorized routing resources do not cross physical block
border or isolation fence, if package pins corresponding to two different physical
blocks are not adjacent or not in the same bank (powered from the same power
pins), and many other constraints. If the verification process is successful, IVT
tool generates a certificate. This certificate can be supplied with the device to
certification authority as a proof.

More details on the Isolation Design flow and the Single Chip Crypto technology
(SCC) are explained in [44] and [45].

2.7 Partial Hardware Reconfiguration and Security

In general, FPGA configuration modifications require to reconfigure the entire FPGA
device. However, certain FPGA families support a so called partial reconfiguration
which enables to modify only selected (reconfigurable) parts of the FPGA configu-
ration and all other parts (static) remain intact. Moreover, partial reconfiguration
can be performed while static parts are still operating (dynamic reconfiguration).

2.7.1 Partial Reconfiguration

The Partial Reconfiguration technology (PR) is supported by Xilinx Virtex-4, -5 and
-6. Spartan-6 supports only difference-based partial reconfiguration, which allows
only limited changes of the configured logic [46]. The partial reconfiguration flow is
also supported by Altera Stratix V, Aria V and Cyclone V [47]. Since Altera design
tools with support of partial reconfiguration are not available at the moment, we
will further consider only Virtex-5 or Virtex-6 FPGAs.

2.7.1.1 Partial Reconfiguration Flow

The implementation of PR is similar to the isolation design flow. First, a VHDL
design must be divided into blocks. Blocks that are intended to be reconfigurable
must be synthesized separately. If more variants (reconfigurable modules) to the
same reconfigurable block exist, each must be synthesized to its own netlist. These
netlists are imported to the PlanAhead tool. All static logic netlists are placed
into static partitions. All reconfigurable module netlists are placed to the same
reconfigurable partition. Only one reconfigurable module can be active at a time.

Next, physical blocks are created and each partition is mapped to one of them.
Physical blocks containing reconfigurable partitions are considered reconfigurable

34 Chapter 2. Theoretical and Technological Background

and the other ones static. Very important are timing constraints. It is highly
recommended to manually define timing constraints for signals and buses intercon-
necting static and reconfigurable partitions. When the design is prepared, it can be
implemented to an FPGA. The design implementation phase involves a synthesis,
logic optimizations, timing optimizations, placement and routing.

During placement phase, an additional proxy logic is placed into each reconfig-
urable partition. This logic is placed in such locations where signals or buses enter or
leave the physical block containing a reconfigurable partition. The input and output
of the reconfigurable partition formed by proxy logic are called partition pins. Par-
tition pins are connected directly to reconfiguration bus macros, which interconnect
reconfigurable physical blocks with static ones.

If no module is needed a black-box reconfigurable module can be generated and
activated instead. Black-box reconfigurable modules contain only partition pins.

Finally, a complete FPGA bitstream and several partial bitstreams can be gen-
erated. Complete FPGA bitstream contains also one reconfigurable module (the
one that was active). Each partial bitstream contains one reconfigurable module.

More information about partial reconfiguration flow can be found in [48].

2.7.1.2 Configuration of Partial Bitstreams

After power up, an FPGA loads a complete FPGA bitstream and activates the
FPGA. Default reconfigurable module is a part of the complete bitstream, and so it
is configured by default. When the active reconfigurable module is replaced, FPGA
loads the partial bitstream to the reconfigurable partition and activates it.

Unlike complete bit files, partial bit files do not include the bitstream header.
Configuration of the partial bitstream can be controlled either via an external

configuration interface (e.g. by an external microcontroller) or via an internal con-
figuration interface (i.e. a static logic). External configuration interfaces are, e.g.,
the SelectMAP or JTAG interface. Internal configuration interface is called Internal
Configuration Access Port (ICAP).

When the partial bitstream is configured using ICAP, a microcontroller or a
state machine in the static logic is necessary to fetch a partial bitstream and control
the configuration progress via ICAP.

2.7.2 Security Aspects of the Partial Reconfiguration

Although, encryption of complete bitstreams was introduced long time ago, partial
bitstream encryption (using hardwired cipher) is supported only by the Virtex-6
family. However, a work-around exists for Virtex-5: an encrypted partial bitstream
is transferred to the FPGA, decrypted by a cipher in static logic (not hardwired
cipher) and configured as an unencrypted bitstream via ICAP.

When a partial bitstream is decrypted and authenticated using hardwired AES
and HMAC units, the partial bitstream is activated only if authentication succeeds.
However, if a partial bitstream is decrypted in the static logic and configured as

2.7. Partial Hardware Reconfiguration and Security 35

an unencrypted bitstream, authenticity and integrity of the partial bitstream is
not guaranteed. After being configured, such corrupted bitstream may not only
operate incorrectly but also modify static logic or even damage FPGA. For this
reason, partial bitstream should also be authenticated in the static logic before
entering ICAP. Other more risky approach is to access internal status registers after
configuration and verify if the configured bitstream CRC passed.

Chapter 3

Crypto-processor with Secure Key

Management

Contents

3.1 Crypto-processors - State of the Art 38

3.1.1 Security Issues of the Cryptographic Software Implementations 39

3.1.2 Cryptographic Hardware Architectures and their Security . . 40

3.2 New Rules for Securing Key Management 43

3.2.1 Separation at Protocol Level 44

3.2.2 Separation at System Level 45

3.2.3 Separation at Architectural Level 45

3.2.4 Separation at Physical Level 46

3.3 Crypto-processor Design . 47

3.3.1 Hardware Architecture . 48

3.3.2 Implementation of HCrypt in FPGA 50

3.3.3 Programming Means . 51

3.3.4 Communication Protocol . 56

3.4 Implementation Results . 58

3.4.1 Cost Evaluation . 58

3.4.2 Simulation . 58

3.4.3 Hardware Tests and Benchmarks 60

3.5 Discussion . 62

3.6 Conclusions . 62

In this chapter, we explain why cryptographic software implementations must
be protected at hardware level in order to be secure against software attacks. Then
we present state-of-the-art hardware cryptographic architectures and explain their
advantages and disadvantages. Subsequently, the novel separation rules, that enable
cryptographic processors to support secure key management, are presented. These
rules are demonstrated on the novel HCrypt crypto-processor.

38 Chapter 3. Crypto-processor with Secure Key Management

3.1 Crypto-processors - State of the Art

Not so long time ago, information security was considered only by the military world.
However, during the last 40 years we could witness slow integration of cryptography
into our everyday life. Starting with the standardization of DES in 1976 [7], recom-
mended for protection of classified US government documents, cryptography spread
to telecommunications, avionics, banking and recently to Internet world. The in-
crease of cryptographic processing forced developers to focus on a special hardware
for cryptography. The typical example is the DES cipher, which was designed to
be extremely efficient when implemented in hardware. With the introduction of
first general-purpose processors (GPPs) and the rapid increase of their computa-
tional power, implementations of cryptographic algorithms in software became an
affordable solution.

Nowadays, there are many cryptographic solutions, which differ in many as-
pects like throughput, flexibility, cost, security, time-to-market, etc. Not so long
time ago, cryptographic algorithms were implemented either in software executed
by hard GPPs (e.g. Intel Pentium), or in hardware implemented in ASICs. Imple-
mentations in hard GPPs are cheap and easy to update. In contrast, execution of
complex cryptographic algorithms is very time-consuming therefore GPPs are not
suitable for high-performance cryptographic applications. From the security point
of view, GPPs are often vulnerable to hardware or software attacks. Although some
monitoring software and firewalls can be used to increase security, GPPs are in
general not suitable for security applications.

Designers have been searching for ways to overcome performance problems on
GPPs while maintaining lower costs. The best solution is the addition of a co-
processor that will be responsible for the acceleration of high-performance cryp-
tographic algorithms. However, coprocessors are not flexible enough, and when a
cryptographic algorithm has to be updated the whole crypto-coprocessor has to be
changed. Cryptographic coprocessors are usually not protected against any kind
of attack, because their sole task is to provide the acceleration of computations.
On the other hand, there have been commercial attempts to build a secure crypto-
coprocessor called Trusted Platform Module (TPM) [49]. The TPM was designed to
be resistant to various attacks and to provide root of trust, so that only authorized
software could run on the GPP. However, security issues were discovered [50] and
attacks were carried out [51] on the TPM.

In order to achieve higher performance, designers have implemented complex
cryptographic algorithms in ASICs. ASICs are very attractive for the big product
series, but the extremely high initial costs prevent their use for small series. More-
over, every detail of the design has to be carefully considered, in order to reduce
the non-recurring engineering costs (i.e. one-time cost to research, develop and test
the ASIC). Otherwise, high costs could prevent its introduction to the market. This
increasing pressure initiated a search for alternative ways to implement cryptogra-
phy. Hardware attacks are usually mitigated by using hardware countermeasures.
However, when these countermeasures become obsolete updates are not possible.

3.1. Crypto-processors - State of the Art 39

In the last decade, cryptographic algorithms were more frequently implemented
in FPGAs. FPGAs can be SRAM-based or flash-based. SRAM-based devices keep
their configuration in a volatile configuration SRAM, so the device has to be config-
ured after every power-up. In contrast, Flash-based FPGAs store their configuration
in internal flash memory so device configuration does not have to be configured af-
ter power-up again. FPGAs are very suitable for many cryptographic algorithms
[52], [53]. Because of their high parallelism, high-performance data security algo-
rithms can be significantly accelerated when compared to software implementations.
Moreover, most FPGAs can be reprogrammed therefore hardware updates are cheap
and easy to perform in place or even remotely [54]. Furthermore, FPGA manufac-
turers have recently introduced partial dynamic reconfiguration features in high-
performance FPGA families [55], [48]. These features allow to update only a part of
the circuit remotely while the rest is operating without interruption. More aspects
of the partial reconfiguration security will be discussed in Chap. 6.

With the spread of FPGAs, many new interesting architectures have been in-
troduced in the data security field. These architectures either reused old strategies
developed for GPPs or ASICs, or introduced completely new revolutionary designs
exploiting all the FPGA features (i.e. reconfigurability, parallelism, hardwired DSP
blocks, several clock domains, etc.). Huge number of fine-grain resources and em-
bedded memory blocks enable an implementation of soft GPPs inside the FPGA.
Consequently, cryptographic algorithms can be implemented in software and ex-
ecuted by a soft GPP (further just GPP). This allows designers to achieve very
interesting cost-security-performance tradeoffs.

Next, we will present security drawbacks of cryptographic software implemen-
tations. Then, a classification of cryptographic hardware implementations will be
presented and the security of the current crypto-processor architectures will be com-
pared.

3.1.1 Security Issues of the Cryptographic Software Implementa-
tions

At the time when DES was introduction, the unprecedented strength of this cipher
eliminated all the brute-force attack attempts, so the attackers were searching for
other ways to get classified data. One such way was to attack the GPP software
implementation by modifying the enciphering algorithm or replacing the secret key.
In such case, just a simple swap of two consecutive instructions can lead to a transfer
of the secret keys out of the processor. On the other hand, the instruction swap is
relatively easy to detect. Better software attack was suggested by Kocher in 1996:
“RAM cache hits can produce timing characteristics” [56]. In 2002 Page et al. carried
out first studies about how to use the cache memory as a cryptanalytic side-channel
[57]. In 2005 Percival et al. demonstrated a cache-timing attack on RSA [58]. In
the same year a cache-timing attack on AES was demonstrated by Bernstein et al.
[59]. This attack has been improved by Bangerter et al. [60], who has proclaimed
that only 100 plain-text messages and 3 minutes of post-ciphering computation were

40 Chapter 3. Crypto-processor with Secure Key Management

needed to recover the confidential key on Intel Pentium M 1.5GHz. Moreover, this
attack is hard to detect because change of AES computation time is negligible.

As the number of attacks was rising, government organizations have asked for a
better protection of the software itself. All these attacks led to numerous works in
the countermeasure design research field. In 2006 Osvik et al. have proposed several
countermeasure techniques [61]. Some other countermeasures have been proposed
in [60], [59] and [62], however there are still certain drawbacks and tradeoffs that
must be dealt with. Even though, no countermeasure could be completely resistant
to cache-timing attacks. Each proposed countermeasure had a weakness, which can
be exploited by an attacker to disclose the secret keys. Clearly, the protection of
a critical software by another software, while both are running on the same GPP,
is not a sufficiently secure solution. If a software has to be secure, it has to be
protected at hardware level.

3.1.2 Cryptographic Hardware Architectures and their Security

Many architectural configurations can exist and the frontiers between them are
not always clear. Considering aspects like the extent of modifications of the GPP
architecture, hardware acceleration, capability to perform general-purpose tasks (in-
dependence), flexibility, size, etc. hardware cryptographic architectures can be clas-
sified as follows:

• Customized GPP

• Cryptographic processor (crypto-processor)

• Cryptographic coprocessor (crypto-coprocessor)

• Cryptographic array (crypto-array)

These four different architecture types are illustrated in Fig. 3.1. Next, we
will explain differences between these approaches, compare their advantages and
disadvantages and preset some work that has been done in this area. This chapter
will concentrate mostly on cryptographic processors and Chap. 4 will be dedicated
to cryptographic coprocessors. The cryptographic arrays are out of the scope of this
work. More details on crypto-arrays can be found in [63].

3.1.2.1 Customized GPP

The typical implementation of the customized GPP is shown in Fig. 3.1 part a).
Under customized GPPs one can understand a general-purpose processor that is
modified in order to be capable of performing cryptographic tasks more efficiently.
This GPP includes special functional units that are capable of executing dedicated
cryptographic operations (i.e. AES substitution operation, Montgomery multiplica-
tion, etc.). Each cryptographic function is represented as a custom instruction. All
custom instructions form a custom instruction set. Secret keys are stored in the data

3.1. Crypto-processors - State of the Art 41

Main
memory

Crypt. ins.

{Ki}

Main

CPU

ALU Crypto

ALU

Main
memory

HW conf.

{Ki}

Main

CPU

I/O I/O

HW crypto core 1

HW crypto core 2

HW crypto core 3

Main
memory

Main

CPU

I/O

Crypto

ALU

Instr.

Mem.

{Ki}

Crypto-proc.

(Reconfigurable area)

Main
memory

HW conf.

{Ki}

Main

CPU

I/O

Crypto-array

a) Customized GPP b) (Reconfigurable) Hardware crypto-coprocessor

c) Crypto-processor d) Crypto-array

Figure 3.1: Four different types of the hardware cryptographic engines

memory and are treated as a regular data. For this reason, software attacks repre-
sent a considerable threat. This solution offers higher throughput than unmodified
GPPs, because cryptographic operations are partly accelerated in hardware.

When designing a custom instruction set, the main problem is to find a set
of elementary functions that could be used to implement different cryptographic
algorithms (DES, AES, RSA, ECC, etc.). If cryptographic operations are broken
to elementary ones in a too large extent (e.g. addition, binary operations, etc.),
the performance will be comparable with the regular GPP’s one. Therefore, the
selection of a custom instruction set has to be carefully considered. Only then
the resulting system can represent a well balanced software-hardware architecture
capable of much higher performance than the pure software implementation. This
fact has been demonstrated on a 32-bit Xtensa processor [64].

Several authors have proposed a customized GPP optimized for efficient AES
computations [65], [66], [67], [68], [69]. Typical commercially available solutions are
CryptoBlaze from Xilinx [70] or the AES New Instructions (AES-NI) incorporated
in the new Intel processors [71]. Tab. 3.1 gives an overview of above mentioned
customized GPPs. Tab. 3.2 gives their characteristics in more details.

A very interesting customized GPP is SecretBlaze proposed by Barthe et al. [72].
SecretBlaze is open-source and it is designed to be robust to side-channel attacks.
Its flexible architecture allows to find tradeoffs between its size and security.

Unfortunately, no customized GPP architecture that would be resistant either
to software or various hardware attacks was presented up to now. Secret keys are
typically transferred unencrypted into the system together with regular data and
the keys are stored unprotected in common data registers. Only a simple swap of
two instructions can lead to their disclosure.

42 Chapter 3. Crypto-processor with Secure Key Management

Table 3.1: Overview and performance of some GPPs customized for implementation
of cryptographic algorithms

Name Target Cip.
Mbps/MHz

Fmax ASIC gates

[ref] technology mode in MHz area

Custom Xtensa Xtensa
AES-ECB 0.11 188 -

[64] 0.18 µm

Sbox instruction Alpha
AES-ECB 0.05 600 -

[65] 21264

Inst. set ext. ASIC
AES-ECB 0.57 250

16 KG

[66] 0.13 µm 0.08 mm2

CryptoBlaze CPLD
AES-ECB ? ? -

[70] CoolRunner

Intel AES inst. Intel core
AES-ECB 0.78 2670 -

[71] 32 nm

Table 3.2: Summary of characteristics of customized GPPs
Name Year Supported Processing Key Number of Hardware Main

[ref] publ. algorithms architecture storage crypto cores reconfig. applic.

Custom Xtensa
2002

DES, 3DES, 32-b Xtensa In main
1 crypto ALU no

Wireless data

[64] AES, RSA RISC cust. ALU memory security

Sbox instruction
2000

3DES, IDEA, Sbox dedic. In main 1 Sbox look-
no

IPSEC,

[65] AES candid. ALU memory up table VPN

Inst. set ext.
2005 AES

Cust. SPARC-V8 In main 1 Sbox, MixCols,
no

Embedded system

[66] 32b LEON-2 memory ShiftRows unit data security

CryptoBlaze
2003

AES Custom 8-b In main Sbox, GF
yes

FPGA system

[70] RSA Xilinx PicoBlaze memory multiplier unit data security

Intel AES inst.
2010 AES Intel IA-32

In main
1 AES ALU no

IPSEC

[71] memory VPN

3.1.2.2 Crypto-processor

The border between the crypto-coprocessor and crypto-processors is not always
clear in the scientific publications [63] (see Fig. 3.1 parts b and c respectively).
We consider the crypto-processor as a specific-purpose processor. This processor is
programmable and contains one or more ALUs optimized for cryptography. Keys
are stored inside the crypto-processor. It can also be connected to a GPP. On
the other hand, the crypto-coprocessor contains one or several implementations of
cryptographic functions. The crypto-coprocessor is not programmable but has to
be controlled by a master GPP. Moreover, secret keys are not stored in the crypto-
coprocessor, but rather in the GPP’s register file.

Since crypto-processor is a special-purpose processor, its instruction set is usu-
ally more restricted than that of the GPP. For this reason it is not completely
independent from the GPP and needs to be completed by a powerful GPP. Crypto-
processor computational parts (ALUs) can be reconfigured in order to increase flex-
ibility. Since a crypto-processor is more independent from the GPP than a crypto-
coprocessor, more computations are moved from a GPP to a crypto-processor which
leads to a better distribution of tasks in the multi-processor system. This task shar-

3.2. New Rules for Securing Key Management 43

Table 3.3: Overview and performance of some crypto-processors
Name Target Cipher

Mbps/MHz
Fmax FPGA ASIC gates

[ref] technology mode in MHz slices RAM area

CryptoManiac ASIC
AES-ECB 1.42 360 - - 1.93 mm2

[74] 0.25 µm

CCProc 1 core ASIC
AES-ECB 1.62 250 - -

93 KG

[76] 0.13 µm 5.3 mm2

CCProc 4 cores FPGA
AES-ECB 6.40 95 18045 ? -

[77] XCV4LX200

Cryptonite FPGA
AES-ECB 5.62 100 1748 32 KB -

[78] XCV2P30

MCCP FPGA AES-CCM 4.43
192 8110 7 MB -

[79] XCV4SX35 AES-GCM 9.91

HCrypt FPGA
AES-CFB 8.22 100 1422 148.5 KB -

[80] XCV6LX240T

ing increases overall system throughput.
Many interesting contributions can be found in the crypto-processors research

field: from simple processors to complex VLIW architectures. A crypto-processor
aimed at construction of radio systems is presented in [73]. Several publications have
been dedicated to complex VLIW (Very Long Instruction Word) crypto-processors.
The crypto-processors capable of executing four 32-bit instructions in parallel are
CryptoManiak [74], [75], or those developped under the CCProc Project [76], [77].
Other VLIW processor capable of executing two 64-bit instructions in parallel have
been described in [78].

A very interesting concept was proposed by Grand et al. [79]. It is aimed at
the software defined radio. This multi-core crypto-processor (MCCP) is capable of
processing several communication channels at the same time. Unlike the previously
mentioned architectures, MCCP contains a key memory for secure storage of secret
keys. This memory can be initialized via a dedicated key channel. However, keys
cannot be generated or exchanged securely.

Tab. 3.3 gives an overview of basic crypto-processor architectures. Tab. 3.4
gives their cryptographic characteristics in more details. Curiously, none of the
mentioned architectures is able to provide secure key management. Secure key
management includes the generation of truly random keys, their secure storage
inside a dedicated key memory and their secure exchange. Our main objective
is to search for such crypto-processor architectures that will support secure key
management while maintaining high performance of cryptographic algorithms. We
will further denote such crypto-processor as secure crypto-processor. In this chapter
we present the novel HCrypt crypto-processor supporting secure key management
that was published in [80], [63]. For the sake of completeness, our work is already
included in Tab. 3.3 and 3.4.

3.2 New Rules for Securing Key Management

We have explained that in order to counter software attacks, secret keys must not
be stored in clear in user data registers. For this reason, it is essential to physically

44 Chapter 3. Crypto-processor with Secure Key Management

Table 3.4: Summary of characteristics of selected crypto-processors
Name Year Supported Processing Key Number of Hardware Main

[ref] publ. algorithms architecture storage crypto cores reconfig. applic.

CryptoManiac
2001

AES, DES, 4-wide 4 Stage Int. shared 4 crypto ALUs
no

IPSEC,

[74] 3DES VLIW processor data memory by processor VPN

CCProc
2008

AES VLIW based In main 4 Sbox
no

Symm. encr.

[76] candid. processor memory clusters accelerator

Cryptonite
2004

AES, DES, 2*64-bit In main Two dedicated
no

IPSEC,

[78] MD5 dedicated ALU memory ALUs VPN

MCCP
2011

AES, SHA, Multi-core In dedic. 2 - 8 reconf.
yes

Software

[79] others processor register crypto cores def. radio

HCrypt
2010

AES ECB,. . . 2*128-bit In dedic. 2 AES ciphers
yes

Network

[80] CBC-MAC, dedic. ALU secure reg. or deciphers secur., VPN

separate the place where the secret keys are stored from the place where user data
are stored and processed. This separation must be achieved at several levels while
the aspects of the system like security level, speed, size/cost and flexibility have
to be considered. Next, we will present basic design rules increasing robustness of
cryptographic processors against software attacks resulting in architecture that is
secure by design. In order to fulfill the highest security requirements, the separation
must be realized at four levels:

• protocol level

• system level

• architectural level

• physical level

We have presented the separation rules in [80], [81], [82] and [83]. Next, we will
describe these levels and their principles in more details.

3.2.1 Separation at Protocol Level

High security of confidential keys can be achieved only with robust cryptographic
protocols. Prior to data exchange, secret keys must be generated and securely ex-
changed between both communication counterparts. While being exchanged, their
confidentiality and authenticity must be guaranteed. Indeed, if the keys were deci-
phered outside the security perimeter of the crypto-processor, they could be exposed
to software attacks. Thus, secret keys have to be deciphered and authenticated in
a protected part of the crypto-processor, and never leave this area in clear. These
keys can be used for data enciphering/authentication but still inside the protected
unit.

The protocol must clearly separate key management and data processing tasks.
It must also determine how and by which blocks the tasks are performed. The
separation of tasks can be provided at the instruction set level. Security critical
tasks (i.e. key generation/transmission/reception, data enciphering/deciphering,

3.2. New Rules for Securing Key Management 45

authentication, etc.) must be performed using dedicated instructions, while security
uncritical tasks can be carried out by general-purpose instructions.

Finally, the key structure must be defined. If a hierarchical key structure is used,
higher-level keys (i.e. master keys) are used to encipher and authenticate lower-level
keys (i.e. session keys). The low-level keys are then used for data protection.

When considering side-channel attacks, the protocol must specify precisely the
session key lifetime. If the session key is updated often enough, the attacker cannot
gather enough information leakage to perform a successful attack. This simple
approach can protect session keys very effectively.

3.2.2 Separation at System Level

The separation rules at system level are illustrated in Fig. 3.2. The rules suggest
to create three zones: a data zone, a cipher zone and a key zone. The data are
exchanged between the data zone and the cipher zone across the data bus (in black
in Fig. 3.2). Encrypted session keys are also transported through this data bus when
being exchanged with other communication counterparts. No way for accessing the
key memory from the data zone must exist.

The data zone comprises data registers, ALU and blocks, which are responsible
for performing block cipher modes and the packet management. No element from
the data zone must have access to secret keys in clear.

Keys are stored in clear in a dedicated memory located in the key zone. The
key memory has a hierarchical structure and is separated from the data zone by the
cipher. All the keys are transferred between the cipher and the key memory via the
key memory bus (in grey in Fig. 3.2), except for master keys that are introduced
into the memory via separated input during device initialization. This bus must
be completely separated from the data bus (in black) interconnecting the data zone
with the cipher zone. It is essential that physical paths letting secret keys to pass
in clear from the key memory bus to the data bus must not exist. This condition is
very important from the security point of view, because it guarantees the separation
of the key and data zones.

Before enciphering/deciphering data blocks and keys, the cipher is initialized
with a selected key (a session key or higher level key) via the cipher key bus (in
white in Fig. 3.2). The key selection is controlled by the processor’s control unit
through the control bus. The key address space must be completely covered – no
unused key address can remain.

The principle of creation of security zones is independent from the type of enci-
phering algorithm – any symmetric key block cipher can be used.

3.2.3 Separation at Architectural Level

To achieve efficient separation of security zones, the data bus, the key memory bus
and the cipher key bus cannot cross more than one security fence. Bus multiplexers
directing the flow of data must be arranged in such a way that, even if their control

46 Chapter 3. Crypto-processor with Secure Key Management

Data

bus

Key
memory

bus
CIPHER/TRNG

1. Data zone 2. Cipher zone 3. Key zone

Physical separation fences Cipher key bus

KEY STORAGE

C
ry

p
to

-p
ro

c
e

s
s

o
r

Control bus
Master

key

input

Data
registers

ALU

CTRL

Figure 3.2: Separation of key storage and data storage at system level for crypto-
processor

is violated, no physical path can be created for keys to escape from the key zone.
Note that in order to send keys to the data output bus, there is no other solution
than to send them via the cipher.

Interfaces between partitions must be designed to respect special constraints:
data buses must be unidirectional and communications must be controlled only by
the crypto-processor’s control unit. A straightforward interface design simplifies
implementation of bus macros in partial reconfiguration or physical isolation design
flows.

3.2.4 Separation at Physical Level

For the highest security, separation at physical level has to be implemented at two
levels:

• logic placement level

• routing level

3.2.4.1 Physical Separation at Logic Placement Level

In order to physically separate the security zones and to maintain this separation
after the synthesis, each zone must be placed in a separate logic partition which
is mapped to a separate physical block. These physical blocks must not overlap,
otherwise this separation cannot be guaranteed after synthesis.

3.2.4.2 Physical Separation at Routing Level

Higher level of physical separation, and thus security, can be achieved if besides
physical separation of functionnal blocks, the routing resources do not cross freely
the boundaries of these blocks. For this reason, an empty area (insulation fence)
is created at the border of the two neighboring zones (see Fig. 3.2) placed in two
different physical blocks. Only selected signals can cross this fence. This counter-
measure minimizes the possibility of the loss or corruption of secret keys by residual

3.3. Crypto-processor Design 47

electromagnetic radiation from the protected zone (i.e. key zone) to the unprotected
zone (i.e. data zone). This physical insulation principle is recommended by NSTISS
in its Red/Black installation guidance [43]. This guideline is followed in Xilinx
SCC design tools [44]. Moreover, the use of both separation at logic placement and
routing level is suggested by NSA in [45].

3.3 Crypto-processor Design

It is clear that secret keys can be effectively protected within the device only if hard-
ware countermeasures are implemented. Software countermeasures have not proved
to be effective. In this chapter, we will explain the work concerning the design of
the unique hardware architecture that can guarantee secure key management. The
stringent separation rules are the corner-stone of the novel HCrypt crypto-processor
concept. HCrypt is a specific-purpose processor optimized for execution of crypto-
graphic algorithms that supports secure key management. However, the separation
rules established for HCrypt can also be applied in any other crypto-processor de-
sign. Next, we will explain the structure of the unique HCrypt crypto-processor,
discuss its security, present implementation results and finally test its operation.
HCrypt was first presented in [80] and [63]. However, the presented version was
designed only to prove the concept and was not optimized for performance. Further
on, we will present only the optimized version which will be denoted as HCrypt.

When designing a specific-purpose cryptographic processor with secure key man-
agement, the objective is to physically separate registers and buses carrying keys
from those carrying data. The proposed architecture must ensure that secret keys
cannot leave processor unencrypted. For this reason, two sets of registers should be
implemented, so that keys and data would be stored separately. In order to achieve
higher performance, the processor has a 128-bit datapath.

HCrypt exchanges data with external/internal environment using input/output
FIFOs. The processor is able to implement a serial communication protocol using
packets. It permits to analyze and create packets efficiently. Data processing opera-
tions needed for implementation of cipher modes are carried out in a special-purpose
ALU that constitutes an important part of the processor.

For security reasons, the key lifetime should be limited (the same key should
be used only for a limited amount of data). One of adopted solutions is to use
two hierarchical key levels: master keys and session keys. The session keys are
generated inside the system and are used for data enciphering. In order to enable
data deciphering, a session key has to be exchanged with the communication party.
It is therefore enciphered by the master key (shared with the party) and sent together
with the encrypted data. In order to generate session keys inside the system, a true
random number generator is embedded in the crypto-processor.

Although the cipher/decipher blocks should be included in the processor’s data-
path, they are considered as trusted black boxes in our project. In our implemen-
tation the AES cipher and decipher were used for testing purposes.

48 Chapter 3. Crypto-processor with Secure Key Management

R1

R2
..
.

Rn

CTo

CTi
PTi

PTo

Data
I/O 1. Data zone

Input
FIFOs

Output
FIFOs

H
C

ry
p

t

ALU

TRNG

Master

key

register

2. Cipher zone 3. Key zone

Master Key
 input

Session

key

register

Data bus Key memory
bus

Cipher key
bus

LEGEND:

128

128

128

32/128

M3

M1

M2

CIPHER

DECIPHER

Figure 3.3: HCrypt architecture divided into data, cipher and key zones

Considering many design constraints like performance, size, security, flexibil-
ity and programmability necessitates making many crucial decisions resulting in
unique balanced hardware architecture. Moreover, a specific-purpose processor with
its specific-purpose instruction set requires development of essential software tools
(i.e. assembler, etc.), which rises the complexity of the whole project even more.
Next, we will present the hardware architecture of the HCrypt crypto-processor, the
instruction set, the programmer’s model and the software development tools.

3.3.1 Hardware Architecture

The HCrypt crypto-processor consists of three security zones as depicted in Fig. 3.3.

3.3.1.1 Data Zone

The datapath is the most area- and performance-critical part of the crypto-processor.
It consists of data busus, data registers and an ALU. Data registers are implemented
in four 32 bits wide TDPRAM RAM blocks in parallel. They are accessible through
two 128-bit data ports. The ALU has a 128-bit datapath. It carries out all arithmetic
and logic operations (XOR, CMP, ROL, CLR, INC, DEC, ADD, etc.) necessary for
implementation of most encryption block cipher modes. The authentication modes
are not taken into account yet, but can be implemented easily in the future. The
HCrypt datapath is optimized for Xilinx Virtex-5 and Virtex-6 FPGAs.

There are four input/output FIFOs in the current version of the processor. They
serve as input/output data ports, which convert 32-bit data words into 128-bit
words used inside the crypto-processor and vice versa. Additionally, the FIFOs
allow to interface external clock domains with the internal clock domain of the
crypto-processor. The use of externally clocked 32-bit interface is very beneficial
if HCrypt is interconnected with other 32-bit processor system running on its own

3.3. Crypto-processor Design 49

clock frequency.
The control logic is responsible for instruction fetching, decoding and execution.

Instructions are carried out in 1, 2, 3, 4 or more clock cycles, depending on the
type and complexity of the operation. The pipelining is not implemented, since
much more resources would be required and speed increase would not be adequate.
However, the pipelining can be implemented in future versions of HCrypt. On the
other hand, special two-cycle instructions can be used to start cipher or decipher
and then continue the execution of subsequent instructions while cipher/decipher
is operating. This feature can be excellently used for an implementation of block
cipher modes, where some instructions like branching, exclusive or, decrementation,
etc., can be executed in parallel with the ciphering. This way one full CFB loop can
be performed in 14 clock cycles only. Moreover, when the cipher/decipher output
is required by an instruction (e.g. XOR) the instruction waits until cipher output
is available. Instructions are 32-bit wide. Current instruction set consists of 29
instructions.

The program is stored in the program memory that is initialized by an external
32-bit interface. The program memory is implemented as one DPRAM block capable
of storing 1024 instructions long HCrypt software. The program memory can be
expanded if necessary (by concatenating two or more memory blocks).

3.3.1.2 Cipher Zone

Note that multiplexers included in the datapath are organized in such a way, that un-
intentional or intentional transfers of unencrypted keys outside the crypto-processor
would never be possible.

Any trusted symmetric-key enciphering algorithm with 128-bit datapath can be
implemented in HCrypt. For this particular implementation AES standard has been
chosen. The cipher and decipher have two separate inputs (data and key) and one
output (data). Due to iterative nature of the datapath (folded datapath), encipher-
ing or deciphering is carried out in 11 clock cycles. All data and key inputs/outputs
are registered in the cipher/decipher.

Although a TRNG is implemented for the final testing, a PRNG was used during
HCrypt development to simplify the placement and routing processes. However,
PRNG cannot be used in the final HCrypt version for its predictability and must
be replaced by a TRNG as for instance PLL-based TRNG presented in [36].

3.3.1.3 Key Zone

Key memory bus and key registers for the key management are shown in Fig. 3.3.
The master key (aimed at session key enciphering/deciphering) is stored in the
Master key register. This register is capable of storing two 128-bit keys: one for
enciphering and one for deciphering. This register is implemented in the logic area
of the FPGA. Before the operation, the master key has to be initialized in the
crypto-processor via a 32-bit separated dedicated bus by the trusted entity.

50 Chapter 3. Crypto-processor with Secure Key Management

The session key registers are implemented using two 128-bit DPRAM blocks.
Session keys can be generated inside the processor using the embedded TRNG or
they can be received by the crypto-processor in an enciphered form (protected by
the master key) and subsequently deciphered using the master key. If generated
inside the processor, the session key has to be enciphered using a master key and
sent out according to the protocol.

3.3.2 Implementation of HCrypt in FPGA

The physical separation can be achieved only if each zone of the crypto-processor is
placed in a separate logic partition, where each partition is mapped into an isolated
physical block. Furthermore, each physical block has to be isolated from all other
blocks by at least one line of unused grounded CLB blocks. Buses crossing this iso-
lation area must be routed through dedicated trusted bus macros which guarantee
preservation of required physical isolation. However, all these advanced design flows
are highly dependent on the target FPGA family. In search of the suitable candidate
for HCrypt crypto-processor Xilinx Virtex-6 FPGA has been chosen, since it sup-
ports all mentioned design flows. For this reason this FPGA is further considered
in this work. Other options include older Virtex families and recently the physi-
cal isolation flow has become available for the Altera Cyclone III LS family [84].
Nevertheless, the HCrypt crypto-processor can be ported to these FPGAs easily.

3.3.2.1 Physical Separation at Logic Placement Level

The HCrypt crypto-processor implementation is divided into three logic partitions
(i.e. data, cipher and key) using the Xilinx PlanAhead development tool. Each
partition is placed in a separate physical block. The shape and location of the
physical blocks is carefully chosen so that sufficient number of logic, routing and
hard-wired resources is present in the block. Moreover, it is recommended to slightly
enlarge physical blocks to simplify and shorten the placement and routing processes.

3.3.2.2 Physical Separation at Routing Level

As explained before, high security can be achieved only if crypto-processor zones are
carefully isolated from each other. The SCC design flow enables this isolation and
implementation is carried out using the Xilinx PlanAhead development tool. First,
a reset global signal is routed between physical blocks through Trusted Bus Macros
(TBM) and a manually placed buffer is required for every such partition output.
Global clock network is the only exception allowed to cross isolation fence without
the use of TBMs. Second, special constraints for the physical blocks are set in the
PlanAhead tool to ensure that only the selected wires cross the isolation fence.

The isolation effectiveness has to be verified using Xilinx IVT. This tool verifies if
all stringent isolation constraints are met, and if so, IVT generates a special isolation
certificate. This certificate can be further used as a proof of correct isolation design.

3.3. Crypto-processor Design 51

The HCrypt has been designed using the SCC flow, tested using IVT and finally
the isolation certificate has been successfully obtained.

3.3.3 Programming Means

When a secure crypto-processor is developed, not only a careful hardware design but
also a software development flow must be considered. Besides common instructions,
the instruction set takes advantage of the processor specific structure. Namely, it
uses different instructions for handling ordinary data and keys. Also, arithmetic and
logic instructions are optimized for implementing common cryptographic functions
and modes.

3.3.3.1 Instruction Set

The instruction set is divided into four main groups:

• Data transfer instructions: data manipulation between data registers and in-
put/output FIFOs

• Instructions for key generation and transport between ordinary data registers
and key data registers

• Data processing instructions: optimized for implementation of cipher modes
and key management

• Control instructions: aimed at the program control (branching)

The most important instructions of the proposed instruction set with respect to
this grouping are shown in Tab. 3.5.

This instruction set natively supports basic block cipher modes (i.e. CFB, OFB,
CTR, CBC-MAC, etc.). The operation of the crypto-processor can be illustrated on
the program examples in Tab. 3.6 that realize various basic encryption modes. In
this table, PTI represents PlainText Input, PTO PlainText Output, CTI CipherText
Input and CTO CipherText Output.

CBC Encryption Block Cipher Mode Example The code illustrated in Tab. 3.6
(part A) enables to encipher the packet consisting of N 128-bit data blocks (N is
given in the first data block in the packet) in the CBC mode (see NIST SP 800-38A,
p. 10 [1]). However, the CBC mode requires decipher unit in case of deciphering.
Although HCrypt includes decipher unit, it is aimed only for protection of session
keys and not data. For this reason the CBC block cipher mode cannot be fully
implemented. On the other hand, the CBC mode implementation on HCrypt can
be used for authentication (i.e. the CBC-MAC authentication mode) where only
the cipher unit is necessary.

52 Chapter 3. Crypto-processor with Secure Key Management

Table 3.5: The dedicated instruction set
A) Data transfer instructions

Instruction Cycles Description

init #, rx 5 Initialize Rx with a 128-bit constant

mov PTI, rx 1 Get one block from plain-text input FIFO and put it to Rx

mov rx, PTO 2 Put data from data reg. Rx to the plain-text output FIFO

mov CTI, rx 1 Get one block from cipher-text input FIFO to data register Rx

mov rx, CTO 2 Put data from data register Rx to cipher-text output FIFO

mov rx, ry 2 Move the contents of data register Rx to data register Ry

mov32 rx, ry 7 Move the least significant 32 bits from Rx to Ry and clear all higher Ry bits

B) Instructions for key generation and manipulation

Instruction Cycles Description

genk kx ≥ 12 Generate the key and save it in the key data register Kx

getk rx, ky 13 Decipher encrypted key from data reg. Rx to key reg. Ky

putk kx, ry 13 Encipher the key from key reg. Kx to data reg. Ry

autk rx, kx 13 Validate key from key reg. Kx if its fingerprint matches one in Rx

C) Data processing instructions

Instruction Cycles Description

enc rx, kx, ry 13 Encipher the contents of Rx with key Kx and save it in Ry

xor rx, ry, rz 2 Rx XOR Ry and save the result to Rz

add rx, ry, rz 3 Rx + Ry and save the result to Rz

inc rx, ry 3 Increment Rx and save the result to Ry

dcr rx, ry 3 Decrement Rx and save the result to Ry

clr rx 1 Clear Rx

cmp rx, ry 2 Compare Rx with Ry, set the flag Z accordingly

cmp32 rx, ry 2 Compare the least significant 32 bits of Rx and Ry, set the flag Z accordingly

rol32 rx, ry 2 Rotate 128-bit word in Rx by 32-bits to the left and store in Ry

D) Control instructions

Instruction Cycles Description

nop 1 No operation

goto addr. 1 Unconditional branching

bneq addr. 1 Conditional branching if not equal (Z = 0)

bdie addr., PTI 1 Branch if input plain-text FIFO is empty

bdie addr., CTI 1 Branch if input cipher-text FIFO is empty

bdof addr., PTO 1 Branch if output plain-text FIFO is full

bdof addr., CTO 1 Branch if output cipher-text FIFO is full

call addr. 1 Save return address to stack, branch to function

ret 1 Branch to return address loaded from stack

3.3. Crypto-processor Design 53

Table 3.6: Block encryption modes

A) CBC encryption mode

mov PTI, r3 ;Get N from PTI→R3

mov PTI, r1 ;Get IV from PTI→R1

mov r1, CTO ;Send IV to CTO

cbce: mov PTI, r2 ;Get data block from PTI→R2

xor r1, r2, r2 ;R1 XOR R2→R2

enc r2, kx, r1 ;Encipher R2→R1

mov r1, CTO ;R1→CTO

dcr r3, r3 ;Decrement R3 (R3 - 1→R3)

bneq cbce ;Branch to cbce if not zero

B) CFB encryption mode

genk kx ;Generate new session key

putk kx, r1 ;Encipher session key and put it to R1

mov r1, CTO ;Send session key to CTO

mov PTI, r3 ;Get N from PTI→R3

mov PTI, r1 ;Get IV from PTI→R1

mov r1, CTO ;Send IV from R1 to CTO

cfbe: enc r1, kx, r2 ;Encipher R1→R2

mov PTI, r1 ;Get plain-text block from PTI→R1

xor r2, r1, r1 ;R2 XOR R1→R1

mov r1, CTO ;Put R1 to CTO

dcr r3, r3 ;Decrement R3 (R3 - 1→R3)

bneq cfbe ;Branch to cfbe if not zero

CFB Encryption Block Cipher Mode Example The code illustrated in Tab. 3.6
(part B) enables to generate the session key that is then used to encipher the packet
consisting of N 128-bit data blocks in the CFB mode (see NIST SP 800-38A, p. 12
[1]). In this case, CFB is fully supported since for both enciphering and deciphering
operations cipher unit is sufficient.

3.3.3.2 FlexASM Assembler

HCrypt’s complex instruction set makes writing programs in machine code more
difficult. Long machine code is only hardly readable. For the sake of simplicity,
HCrypt software can be written in a simple assembly code. This code can be trans-
lated to a machine code using an assembler tool. In order to address this issue, we
developed a processor-specific assembler (compiler) tool.

The whole compilation process is illustrated by the flow chart depicted in Fig. 3.4.
FlexASM is a two-pass assembler. In the first pass, all labels in the code are exam-
ined, and if not previously found, labels are stored in a table. In the second pass,
labels are replaced by their numeric representations and instructions are translated

54 Chapter 3. Crypto-processor with Secure Key Management

Read one line of
source code

Access .asm file

Save label

to table +

increase

address

Increase

address

Save label

to table

Last Line?
2

ND
 pass

Recognize tokens
 in the line

(exclude comments)

OPCODE

+ LABEL

OPCODE LABEL

YES

NO

Read one line of
source code

Last Line?

Recognize token
function

(exclude comments)

LABEL +

OPCODE

OPCODE

LABEL

YES

Convert
whole opcode

to hex
number

Convert
labels to
number

NO

Label instead
of operand?

YESSave opcode
number to

instruction table

Reorder
instruction table

according to
memory address

Generate
output files

END

START

NO

1
ST

 PASS 2
ND

 PASS

Figure 3.4: FlexASM two-pass compilation flow chart

into the machine code. During initial scanning phase, source code lines are read
and divided into tokens and unnecessary parts (i.e. white spaces, comments) are
removed. A token is a sequence of characters that are treated as a single unit. Con-
sequently, tokens are examined and treated according to their function (e.g. label
are stored in the label table, instruction mnemonics are translated into their op-
code representation, etc.). During the second pass, translated instruction words are
stored in the instruction table. Finally, the instruction table is reordered according
to the corresponding memory address and output files are generated.

Unlike other assemblers, FlexASM has a programmable instruction set which is
defined in a separate text file and passed to FlexASM as an input argument. The
example of an instruction set definition file is illustrated in Tab. 3.7. Each instruction
must be defined by corresponding necessary parameters like a mnemonic, opcode,
number of operands (#opr) and a definition of each operand. Optionally, comments
can be inserted into the file preceded by the semicolon character (;). Each operand
is defined by two values: its size (in number of occupied bits) and its shift (position
in an instruction word).

For example, the enc instruction has three operands. Operand A occupies 8
least significant bits since its shift is 0. Operand B occupies also 8 bits and it is
shifted by 8 bits to the left. Finally, operand C occupies also 8 bits and it is shifted
by 16 bits to the left. In this example, the operand A represents register containing

3.3. Crypto-processor Design 55

Table 3.7: Instruction set definition file example

; ========= CONTROL ========

; MNEMONIC OPCODE #OPR OPA OPB OPC ; COMMENT

nop 0x00000000 0 0 0 ; no operation

goto 0x01000000 1 12 0 ; unconditional jump

; . . .

; ===== ALU OPERATIONS =====

xor 0x10000000 3 8 0 8 8 8 16 ; A xor B -> C

clr 0x11000000 1 8 16 ; 0 -> C

cmp 0x12000000 2 8 0 8 8 ; if A=B, 1->Z else 0->Z

; . . .

; === SECURITY OPERATIONS ===

enc 0x30000000 3 8 0 8 8 8 16 ; encrypt data(A) with SK(B) -> C

; . . .

input data to be ciphered with the session key. The session key register is defined
by operand B. After the enciphering operation is finished, results are stored into
destination register defined by operand C.

Second input argument is the HCrypt source code file. The compilation can be
started by the console command FlexASM.exe <inst_set.txt> <source_code.asm>.
FlexASM translates the assembly code into the machine code, while generating .raw,
.c, .hex, .lst and .tab output files. The .raw file is a text file that contains one 32-
bit instruction word per line. This format is very suitable since the file can be
easily read by a test bench file during HCrypt simulation. If HCrypt software is
initialized by an external processor, HCrypt software can be a part of the processor
source code. For this reason, .c file containing an array of all instruction words is
also generated by the FlexASM. Afterwards, this array can be copied&pasted to the
processor’s c-code source file. If HCrypt source code is a part of an FPGA bitstream,
a RAM containing HCrypt software can be initialized with a .hex file compatible
with the Intel-Hex standard. For debug purposes, list (.lst) and table (.tab) files are
generated too. The list file contains a compilation report. The label table and the
instruction table are summarized in the table file.

The FlexASM assembler was written in the standard ANSI C language and
compiled using Borland Builder C++ 6.0. Due to its ANSI C compliance, FlexASM
can be compiled by any other compatible compiler under any operating system. The
assembler is a console application since it does not have a graphic user interface.

Although FlexASM was developed to facilitate work with the HCrypt crypto-
processor, its high flexibility allows its use with other embedded processors. More-
over, FlexASM source code is freely available and thus easily modifiable if further
flexibility is required. These features make it a very convenient tool for rapid low-
level software development.

56 Chapter 3. Crypto-processor with Secure Key Management

3.3.4 Communication Protocol

In order to achieve secure key management, a robust cryptographic protocol is es-
sential. The cryptographic protocol has to clearly define all necessary steps to
ensure that session keys are exchanged and authenticated correctly. The session
key exchange but also data has to be protected by the encryption, and the data
authenticity has to be guaranteed. The communication protocol implementation is
supported by the HCrypt software and all security critical operations are carried
out by dedicated instructions.

We present an example of the cryptographic protocol for communication between
Alice (A) and Bob (B) (see Fig. 3.5) in order to illustrate efficiency of the proposed
structure. The key exchange part of this protocol is based on the authenticated
point-to-point key update protocol described in Sec. 2.5.4.2. In practice, any other
common cryptographic protocol can be implemented.

Tasks 1, 2, 3, 8 and 9 are performed solely in the protected area (cipher and
key zone) and tasks 5, 6, 7 are executed only in the unprotected area (data zone).
Tasks 4 and 10 represent iterative implementation of encryption modes (EM) per-
formed partly by the unprotected area (registering and xor-ing of subsequent data
blocks) and partly by the protected area (enciphering E and deciphering E−1). In
this protocol, we assume that a Trusted Entity TE pre-initialized the same enci-
phering (MK) and the same authentication (AMK) master keys to both devices,
and that the keys are saved in their master key registers (protected area). The key
exchange protocol is based on the symmetric key cryptography. In the first step,
the device starting the communication (A), generates a new Session Key SK: the
unprocessed session key CSK is generated by the TRNG, then it is post-processed
cryptographically in the decipher using the master key MK and saved in clear in
the session key memory (Task 1 in Fig. 3.5). Next, the session key SK is enciphered
using master key MK and transferred to the unprotected area (Task 2). Finally,
a digital fingerprint FPA is generated by enciphering SK using the authentication
master key AMK (Task 3).

When both the session key SK and its fingerprint FPA are generated, Task 4
can be executed in a loop: data blocks (DATAi) are sent from the data zone to the
cipher zone, where they are enciphered using SK and sent back to the data zone
as CDATAi. ALU combines input and output blocks according to the encryption
mode algorithm (EM) and computes MCDATAi. Finally, packet P containing
the enciphered session key CSK, its fingerprint FPA, and enciphered data blocks
MCDATAi is created (Task 5). The packet is sent to device B (Task 6). The
crypto-processor on the side B receives the packet P (Task 7) and extracts the
enciphered session key CSK and its digital fingerprint FPA. The key is then sent
to the cipher zone, where it is deciphered using the master key MK and stored in
the session key memory (Task 8). A fingerprint FPB of the session key SK using
the master authentication key AMK (Task 9) is generated and sent back to the
data zone, where it is compared with the received fingerprint FPA (Task 10). If
FPA and FPB are the same, the session key is authenticated and can be used for

3.3. Crypto-processor Design 57

Side Bob
7. RECEIVE(P)

8. SK = E
-1

MK(CSK)

10. IF FPA = FPB THEN

 Loop {

 CDATAi = EM
-1

(MCDATAi);

 DATAi = ESK(CDATAi); }
9. FPB = EAMK(SK)

Side Alice
1. SK = E

-1
MK(TRNG(·))

2. CSK = EMK(SK)

3. FPA = EAMK(SK)

4. Loop { CDATAi = ESK(DATAi);

 MCDATAi = EM(CDATAi); }

6. SEND(P)

5. P = {CSK | FPA | MCDATA}

Figure 3.5: Authenticated key update Communication protocol between two devices

data enciphering/deciphering (the loop in Task 10).

The packet, compatible with the communication protocol, can have the straight-
forward structure as depicted in Fig. 3.6. Packets sent to HCrypt for processing are
called Command packets and packets created by HCrypt and sent out are called
State packets. Structure of both packet types is very similar.

Each packet begins with a Preamble. The Preamble is a 32-bit special character
sequence which enables HCrypt to recognize the packet header and synchronize to it.
Afterwards, a 32-bit Command word is examined. The command word can specify if
a session key is a part of the packet and needs to be deciphered or a session key is not
a part of the packet and needs to be generated. The command word can also specify
whether data have to be enciphered or deciphered. The command word is followed
by a 32-bit Block mode word that specifies which cipher block mode (e.g. ECB,
CFB, CBC-MAC, etc.) HCrypt has to perform on the packet data. The last 32-bit
word in the packet header which specifies how many 128-bit data blocks are in the
packet. The header is followed by the 128-bit enciphered Session key (if specified
in the Command word). Session key needs to be deciphered to be used for data
protection. Since session key authenticity has to be provided, additional 128-bit
Session key fingerprint is included in the packet. If a session key is authenticated, it
can be stored in the session key register and used for data protection. These initial
packet information is followed by 128-bit Data blocks which are processed according
to the header settings. Finally, the packet is terminated by a 128-bit Footer word,
which can be optionally used for the packet integrity check.

As a reaction to the command packet, HCrypt responds back by generating the
state packet. Besides the preamble and number of 128-bit data packets, packet
header contains two 32-bit state words specifying what kind of operation has been
carried out on data (i.e. enciphering/deciphering, block cipher mode). State words
also indicate if the operation was successful. Besides the 128-bit header word, all
other parts of the packet are the same as in command packets.

Since the packet header can be broken into four 32-bit words, each containing a
different piece of information, HCrypt includes some necessary instructions capable
of operating on 32-bit words (i.e. 32-bit left rotation, 32-bit move operation and
comparison of 32 least significant bits).

58 Chapter 3. Crypto-processor with Secure Key Management

HEADER (128b) SESSION KEY (128b)
SESSION KEY

FINGERPRINT (128b)

128b DATA BLOCKS

(N x 128b)

FOOTER

(128b)

Packet

start

Packet

end

PREAMBLE (32b) STATE1 (32b) STATE2 (32b)
N=NUMBER OF 128b

DATA BLOCKS (32b)

128 96 64 32 0

State packet header structure

PREAMBLE (32b) COMMAND (32b) BLOCK MODE (32b)
N=NUMBER OF 128b

DATA BLOCKS (32b)

128 96 64 32 0

Command packet header structure

Full packet structure

Figure 3.6: Structure of the packet supported by HCrypt

3.4 Implementation Results

HCrypt was described in VHDL language and implemented in Xilinx Virtex-6
XC6VLX240T FPGA (Xilinx ML605 board) using Xilinx ISE Web ver. 12.4. The
system utilizes just fine-grain FPGA resources and embedded RAMs/FIFOs. The
functionality was simulated using the Xilinx ISim tool. Subsequently, timing sim-
ulation as well as hardware tests were carried out. During hardware tests, a small
Cypress USB module was used for interconnecting HCrypt with a PC. Next, we
present the resource utilization report and results of the simulation and the hard-
ware test.

3.4.1 Cost Evaluation

Utilization and distribution of HCrypt resources is illustrated in Tab. 3.8. These
resources do not include USB interface since its size is negligible and it was used
only during tests in hardware. Note that the AES decipher (see Fig. 5.2) requires
50% more logic resources than the cipher (see Fig. 5.1). This difference is a result
of an additional 128-bit XOR block and a more complex InvMixColums block (see
InvMixColumns decompositioncan in [85]) present in the AES decipher.

3.4.2 Simulation

The HCrypt simulation is very important, because it can easily uncover errors in the
processor’s complex design and also helps the user to debug the HCrypt software.
Cycle-accurate simulation enables to estimate HCrypt’s maximum theoretical data
throughput for current software by calculating the number of clock cycles needed
for critical parts of the code (i.e. loops). If big data packets are processed, time

3.4. Implementation Results 59

Table 3.8: Utilization of resources in XC6VLX240T

Slices RAM kb

TOTAL 1422 100.0% 1188 100.0%

→ Crypto-Proc. 877 61.7% 828 69.6%

→ AES Cipher 216 15.2% 180 15.2%

→ AES Decipher 329 23.1% 180 15.2%

HCrypt

under

test

Testbench

Data

zone

Cipher

zone

Key

zone

ControlHCrypt

Clock generator

Software/
Master key
initialzation

Data
sequencer

HCrypt sw. file

Master key file

Input
packet file

Output
packet file

Figure 3.7: HCrypt simulation procedure

spent to process overhead information (i.e. header, footer, session key and session
key fingerprint) is negligible to the time spent to process data. In this case, it is
the most important to optimize critical loops for data processing. On the other
hand, data throughput can decrease significantly if the packet size is small and the
overhead impact is significant. In this case not only data processing loops, but also
all header and footer processing need to be optimized.

HCrypt simulation was performed using the Xilinx ISim tool. First, simulator
read and compiled all HCrypt VHDL files including a test bench. Subsequently,
simulation was carried out and selected HCrypt signals were displayed in the wave-
form. During the simulation process, information messages were displayed in the
simulator transcript window.

The HCrypt simulation procedure is illustrated in Fig. 3.7. The corner-stone of
the HCrypt simulation is a complex Test bench. First, the test bench read HCrypt

software file containing HCrypt instruction words and initialized HCrypt program
memory. Note that the software file has a .raw file format and it was generated by
the FlexASM tool. Second, the Master key file was accessed and the master key
was transferred into the master key register. When the initialization of both HCrypt
software and its master key was finished, HCrypt started to execute its software.
HCrypt operation was simulated by reading packets from the Input packet file and
writing resulting packets to the Output packet file. Moreover, HCrypt instruction
flow and timing information were given in a form of messages that were displayed
in the simulator transcript window.

Tab. 3.9 shows how many clock cycles are required to carry out different packet
processing operations. In this example, data are processed using the CFB block

60 Chapter 3. Crypto-processor with Secure Key Management

Table 3.9: Number of clock cycles required for the packet processing

Packet overhead Data

Header decoding Key decryption Key authentication Other One 128-bit CFB loop

Clk. cycles 34 12 13 30 14

Table 3.10: Dependence of maximum throughputs on number of 128-bit data blocks
in the packet

128b data blks. 1 2 4 6 8 10 12 14 16

Packet data in kb 0.125 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Packet speed in Mb/s 535.4 572.2 626.0 663.4 691.0 712.1 728.8 742.3 753.5

Data speed in Mb/s 107.1 190.7 313.0 398.1 460.6 508.6 546.6 577.4 602.8

Packet overhead in % 80 66.6 50.0 40.0 33.3 28.6 25.0 22.2 20.0

128b data blks. 20 32 50 64 100 128 256 512 1024

Packet data in kb 2.5 4.0 6.25 8.0 12.5 16.0 32.0 64.0 128.0

Packet speed in Mb/s 771.0 801.9 824.0 833.4 846.4 851.7 861.5 866.7 869.3

Data speed in Mb/s 642.5 712.8 762.9 784.4 813.8 825.8 843.3 859.9 865.9

Packet overhead in % 16.7 11.1 7.4 5.9 3.8 3.0 1.5 0.8 0.4

cipher mode (see Sec. 2.2.1.4). Here, the CFB loop constitutes a critical loop.
The simulation clock frequency was set to 100 MHz. Using this accurate timing

information, maximum packet and data throughputs could be calculated. The max-
imum throughputs are displayed in Tab. 3.10. The maximum packet throughput
(with packet overhead), when processing 1024 data words in the packet, reaches
869.3 Mb/s if HCrypt operates at the clock frequency of 100 MHz. The data
throughput (without packet overhead: header, session key, fingerprint and footer)
reaches 865.9 Mb/s when processing 1024 data words.

3.4.3 Hardware Tests and Benchmarks

Although simulation is very important for debugging initial design errors, the hard-
ware test can definitely prove the system functionality and show the real system
performance. The hardware tests setup is depicted in Fig. 3.8. HCrypt together
with the USB interface was configured inside an FPGA which was interconnected
with the Cypress USB module. The USB module communicated with the PC con-
taining the Cypress USB driver and a benchmark application.

Two frequency domains were present in the FPGA. HCrypt was operating at the
100 MHz internal clock frequency as well as all its internal parts including hte AES
cipher and decipher units. The USB interface was operating at the 48 MHz clock
frequency. Synchronization between the USB interface and HCrypt clock domains
was provided by the HCrypt Input/Output FIFOs.

3.4. Implementation Results 61

Data

zone

Cipher

zone

Key

zone
USB

I/F

PLL

HCrypt

MK
init

DATA

BUS

Cypress USB

driver

Master

key file

Output

packets file

Crypress USB 2.0

(FX2LP)

PC - OS

FPGA

VHDL design

Input

packets file

Benchmark

application

HCrypt

software file

Oscillator

FPGA

board

Control
SW
init

USB module

Figure 3.8: HCrypt hardware test setup

The whole testing process started by initializing HCrypt with its software and
the master key. The HCrypt software, generated by the FlexASM assembler, was
stored in the HCrypt software file on the PC. The benchmark application accessed
this file and transferred all instruction words through the USB module to the FPGA.
Subsequently, the USB interface received instruction words and initialized HCrypt
program memory. When the program initialization was finished, the benchmark
application accessed the Master key file and transferred the master key to the FPGA.

When the master key was present in the master key register, HCrypt started to
execute its program code and waited for input packets. The PC application read
the Input packet file and sent packets to HCrypt input FIFO. HCrypt decoded the
packet header, extracted and deciphered session keys and carried out 128-bit CFB
block cipher mode on packet data (1024 word of 128-bit size each). Subsequently
new packet containing results was sent back to the PC. The benchmark application
read the resulting packet, verified it and saved it to the Output packet file.

Unfortunately, the maximum bandwidth of the USB interface was far below the
HCrypt’s throughput. For this reason, the whole packet was first stored in the FPGA
embedded RAM and only then it was sent to HCrypt. Results were stored in the
same embedded RAM memory and then sent to the PC. The USB interface entity
included a small counter for embedded testing which was active during HCrypt
computations. The counter value was sent to the PC for the speed evaluation.

In order to reach the clock frequency of 100 MHz, extra timing constraints were
required in the PlanAhead to shorten critical paths. Finally the maximum data
throughput reached 824.7 Mb/s and the packet throughput reached 827.9 Mb/s.

62 Chapter 3. Crypto-processor with Secure Key Management

3.5 Discussion

The main difficulty concerning the portability of the proposed VHDL code is related
to the arrangement of FPGA-specific embedded memory blocks. As mentioned
above, HCrypt was mapped to Xilinx Virtex-6 device where each TDPRAM block
has two 32-bit input and output ports. However, in Altera Stratix II FPGA each
TDPRAM block has two 16-bit input and output ports, thus twice more memory
blocks have to be instantiated in order to maintain the same width of the datapath
(128-bit). Moreover, when adapting to Microsemi Fusion or SmartFusion devices,
where each embedded TDPRAM block has two 8-bit input and output ports, 16
memory block have to be instantiated to maintain the same width of the datapath.

Resource distribution report showed that the most logic resources are dedicated
to the ALU. On the contrary, the most embedded RAM blocks were used for In-
put/Output FIFO instantiations, in order to interconnect 32-bit external buses with
128-bit internal datapath with different clocks.

It has been observed that current AES cipher and decipher blocks constitute
the longest critical path, therefore optimization of the cipher can result in bet-
ter performance. Some long critical paths were also reported in the ALU (i.e.
adder/subtracter unit), thus this part has to be optimized in the future as well.

The obtained maximum real data throughput of 824.7 Mb/s was close to the
maximum theoretic data throughput of 865.9 Mb/s. The reason could be in the
inaccurate simulation model of I/O FIFOs which does not match exactly the real
behavior of the embedded FIFO block.

Crypto-processor solution offers high flexibility. A straightforward software mod-
ification enables rapid implementation of cipher modes. Higher flexibility can be
achieved only by hardware modifications which are not easy to carry out. However,
partial reconfiguration technique can be used to modify or replace the whole HCrypt
security blocks (i.e. cipher/decipher) thus raising flexibility even more.

In the first HCrypt version, only software attacks on the key management were
considered. However, side-channel attacks represent a serious threat nowadays and
must not be neglected. For this reason, countermeasures needed to be implemented
in next HCrypt versions. We deal with this threat in Chap. 5 and propose counter-
measures, raising the resistance to side-channel attacks for no extra cost.

3.6 Conclusions

In this chapter, we have shown how crypto-processors supporting secure key man-
agement can be constructed. Keys can be safe inside the device only if they are well
separated from the data processing part. Thus, for achieving secure key manage-
ment, novel separation rules have been proposed. These rules suggest separation at
protocol, system, architectural and physical level. If they are carefully respected,
confidential keys will be protected against software attacks in the future devices, so
these devices will become secure by design.

3.6. Conclusions 63

The separation rules are the corner-stone of the new HCrypt crypto-processor.
HCrypt has a 128-bit wide datapath, embedded AES cipher, AES decipher and a
TRNG, and an instruction set optimized for block cipher modes and packet man-
agement. HCrypt is divided into data, cipher and key zone each having different
security privilege. The most secure is the key zone, where secret keys are stored
in clear. HCrypt protects data using the generated session keys. The session keys
must be securely exchanged prior to data exchange using the master keys. Master
keys are transferred to HCrypt via dedicated 32-bit bus. HCrypt operation, secu-
rity, programmability have been demonstrated and throughput have been measured.
Hardware tests indicated data throughput of 824.7 Mb/s, while HCrypt exchanged
session keys and processed data in packets using 128-bit CFB block encryption
mode.

Important issue during the HCrypt design was the development of programming
means. First, software code written in the machine code became long and hardly
readable. Second, frequent changes in the HCrypt instruction set made software
modifications difficult. For this reason a novel flexible assembler tool – FlexASM
has been developed. Advantage of FlexASM is the possibility to define instruction
set in a text file.

Presented separation rules consider only software attacks against key process-
ing and storing. However, side-channel attacks represent also a considerable threat
and must not be neglected. These attacks will be further examined and an exten-
sion to security rules, considering also side-channel attacks, will be presented and
demonstrated in Chap. 5.

If data throughput is very high, not only session keys, but also master keys re-
quire to be regenerated from time to time, so that an attacker will not be able to
collect enough leaked information for a successful attack. We suppose that mas-
ter keys are installed to the device by a trusted entity. However, frequent master
key changes raise significantly device transportation costs. Indeed, the master key
exchange is an open problem and can be presumably simplified using asymmetric
cryptography in the future.

The work presented in this chapter was publised in [80], [63]. In order to support
public discussion about these interesting issues and to motivate public to further
testing of separation rules, HCrypt VHDL project is freely available at SecReSoC
project web page: http://labh-curien.univ-st-etienne.fr/secresoc/

Chapter 4

Crypto-coprocessor with Secure

Key Management

Contents

4.1 Crypto-coprocessors - State of the Art 66

4.2 New Rules for Securing Key Management 67

4.2.1 Separation at Protocol Level 67

4.2.2 Separation at System Level 68

4.2.3 Separation at Architectural Level 68

4.2.4 Separation at Physical Level 69

4.3 Extension of Separation Rules to Crypto-coprocessors . . . 69

4.4 Interfaces between GPP and the HCrypt-C Crypto-coprocessor 70

4.4.1 Internal Processor Bus . 70

4.4.2 Dedicated Coprocessor Bus 71

4.4.3 Peripheral Bus . 71

4.5 Design of the Crypto-coprocessor/Processor Pairs 71

4.5.1 Altera NIOS II GPP with HCrypt-C Crypto-coprocessor . . . 72

4.5.2 Xilinx MicroBlaze GPP with HCrypt-C Crypto-coprocessor . 73

4.5.3 ARM Cortex M1 GPP with HCrypt-C Crypto-coprocessor . 77

4.6 Implementation Results . 79

4.6.1 Cost Evaluation . 79

4.6.2 Hardware Tests and Benchmarks 81

4.7 Discussion . 82

4.8 Conclusions . 83

In Chap. 3 we have shown that there are no customized GPP or crypto-processor
systems that support the secure key management. For this reason we have pro-
posed original separation rules and demonstrated them on the novel HCrypt crypto-
processor. However, sometimes it could be useful to use a powerful GPP in con-
junction with a crypto-coprocessor. Next, we will examine the existing crypto-
coprocessor architectures considering different aspects and try to adapt the previ-
ously proposed separation rules to the design of a novel crypto-coprocessor.

66 Chapter 4. Crypto-coprocessor with Secure Key Management

4.1 Crypto-coprocessors - State of the Art

Cryptographic coprocessor is a module outside of the GPP that accelerates cryp-
tographic computations. This module is controlled by the GPP. Cryptographic
functions inside the module are implemented in a very efficient way and so the
throughput is very high. Secret keys are not stored in the crypto-coprocessor mem-
ory, but are stored as data in the processor data registers or main memory. If the
crypto-coprocessor is implemented in FPGA, parts of the crypto-coprocessor can be
reconfigured during the system operation. This technique increases the flexibility of
the crypto-coprocessor while reducing its size.

In Chap. 3 we have dealt with crypto-processors. In order to differentiate be-
tween terms crypto-coprocessor and crypto-processor, we define crypto-coprocessors
as follows: A crypto-coprocessor contains one or several implementations of cryp-
tographic functions. The crypto-coprocessor is not programmable, but has to be
controlled by a master GPP.

A lot of work has been done in the field of crypto-coprocessors. One of the first
DES crypto-coprocessors was published by Verbauwhede et al. [86]. It contained
four write-only key registers and supported four basic block cipher modes, MAC
generating functions and a Random Generation Function (RGF). The first Rijndael
crypto-coprocessor (i.e. processes up to 256-bit data blocks) was proposed by Kuo
et al. [87] and after silicon fabrication it ran faster than estimated [88].

A single-core AES crypto-coprocessor connected to the LEON processor has
been described in [89], [90] and [91]. This work has given one very interesting
conclusion. Although hardware acceleration is significant, the communication inter-
face creates bottlenecks and thus reduces system performance. The CryptoBooster
crypto-coprocessor is dedicated to acceleration of the IDEA algorithm [92].

Multi-core AES crypto-coprocessors controlled by the MOLEN processor [93] are
given in [94] and [95]. Another multi-core high-performance AES crypto-coprocessor,
presented in [96], is composed of several AESTHETIC crypto-coprocessors described
in [97]. A secure and non-secure version of AES crypto-coprocessor were imple-
mented in silicon and their resistance to side-channel attacks was compared in [98].
Very interesting is the SAFES multi-core crypto-coprocessor proposed by Gogniat
et al. [99]. SAFES concentrates not only on performance but also on overall system
security. This security is provided by special units like Bus monitor, Clock monitor,
Channel monitor, Power monitor etc.

The comparison of these crypto-coprocessor architectures can be found in Tab. 4.1
(the implementation differences) and in Tab. 4.2 (cryptographic engine differences).

Although this work is concentrated on the symmetric keys cryptography, some
crypto-coprocessor systems were proposed for asymmetric key cryptography [100],
[101] or combination of both symmetric and asymmetric key cryptography [102],
[103].

However, all the mentioned crypto-coprocessors were oriented on performance.
Not much work has been dedicated to protection of critical data from software
attacks. Before entering crypto-coprocessor, the secret keys pass through the main

4.2. New Rules for Securing Key Management 67

Table 4.1: Different implementations of crypto-coprocessors
Name Target Cipher

Mbps/MHz
Fmax FPGA ASIC gates

[ref] technology mode in MHz slices RAM area

AES Processor ASIC
AES-ECB 11.60 295 - -

73 KG

[89], [90] 0.18 µm 0.73 mm2

CryptoBooster FPGA
IDEA-ECB 16 33 ? ? -

[92] XCV1000

AESTHETIC ASIC AES-ECB
12.80 66 - -

200 KG

1 core [97] 0.25 µm AES-CBC 6.29 mm2

AESTHETIC FPGA AES-ECB
36.80 50 27561 0 -

3 cores [97] XCV2V6000 AES-CBC

CrCU FPGA
AES-ECB 0.59 100 847 216 KB -

[94] XCV2VP30

AES-MS 2 cores FPGA AES-ECB
25.60 100 2161 432 KB -

[95] XCV2VP30 AES-CBC

SAFES FPGA
AES-ECB 10.60 37.8 2192 0 -

[99] XCV2VP30

Rijndael ASIC
Rijndael-ECB 18.60 100.0 - -

173 KG

[87] 0.18 µm 3.96 mm2

Rijndael2 ASIC
Rijndael-ECB 15.23 154.0 - -

173 KG

[88] 0.18 µm 3.96 mm2

AES-WDDL ASIC
AES-ECB 14.69 69.0 - -

596 KG

[98] 0.18 µm 5.95 mm2

DES coproc. ASIC
DES-ECB 2.5 12.0 - -

18 Ktrans.

[86] 2.4 µm 25.0 mm2

GPP. During this transfer, the secret keys are temporarily stored in the GPP data
registers. This is the right moment for the attacker to exploit. If he succeeds
to modify the GPP software, the keys can be easily transferred out of the GPP.
Clearly, security perimeter must not exceed the crypto-coprocessor border and as a
consequence secret keys must never enter the GPP in clear. Next, we will present
secure crypto-coprocessor supporting secure key management.

4.2 New Rules for Securing Key Management

The separation rules presented in Sec. 3.2 can also be applied on cryptographic
coprocessors. In order to counter software attacks, secret keys must not be stored in
clear in the GPP data registers. For this reason it is essential to physically separate
the place where the secret keys are stored from the GPP where data are stored
and processed. Next, we explain the differences, from the crypto-processor case,
that must be considered when applying separation rules on crypto-coprocessors to
guarantee secure key management on GPP systems.

4.2.1 Separation at Protocol Level

The goal of the protocol is to define how to protect secret keys during their gen-
eration, storage and exchange. Exchanged keys can be considered protected only
if their confidentiality and authenticity is guaranteed. Indeed, if the keys were de-
ciphered in the GPP using a software decipher, they could be exposed to software
attacks. Thus, secret keys have to be deciphered and authenticated in a dedicated
unit, outside the GPP in a crypto-coprocessor, and never leave this unit in clear.

68 Chapter 4. Crypto-coprocessor with Secure Key Management

Table 4.2: Summary of crypto-coprocessors’ characteristics

Name Year Supported Processing Key Number of Hardware Main

[ref] publ. algorithms architecture storage crypto cores reconfig. applic.

AES processor
2004

AES-ECB, CCM, Cust. SPARC-V8 Embedded key 1 full hardware
no

IPSEC,

[89], [90] CBC-MAC 32b LEON-2 register AES engine VPN

CryptoBooster
1999

IDEA, Hardware Session 1 full hardware
yes

Network

[92] DES reconf. core memory blk. cip. engine security

AESTHETIC
2009

AES-ECB, Host process. + Embedded key 1 to 3 full
yes

Network

[97] CBC hw. AES acceler. generator reg. AES engines security

CrCU
2006

AES-ECB, CBC Molen process.+ Embedded key CrCU number
no

Trusted

[94] SHA-128/256 several AES cores register not limited computing

AES-MS
2008

AES-ECB Molen processor Embedded key 2 AES
no VPN

[95] AES-CBC + two AES cores register cores

SAFES
2008

AES, SHA, Reconf. hardw. Embedded key 4 parallel
yes

Embedded

[99] others accelerator register crypto primitives system security

Rijndael
2001 Rijndael-ECB

hw. Rijndael Embedded key 1 full Rijndael
no

Embedded

[87] full core register hw. engine system security

Rijndael2
2003 Rijndael-ECB

hw. Rijndael Embedded key 1 full Rijndael
no

Embedded

[88] full core register hw. engine system security

AES-WDDL
2006

AES-ECB, OFB, hw. AES, Embedded key 1 full AES
no

Embedded

[98] CBC-MAC WDDL impl. register hw. engine system security

DES coproc.
1991

ECB, CBC, OFB hw. DES core, Embedded key 1 or 3 DES
no

Trusted

[86] CFB, MAC, RGF mode logic registers cores in series computing

The protocol must clearly separate key management and data processing tasks
and determine by which blocks the tasks are performed. In fact, security-critical
tasks (i.e. key generation/transmission/reception, data enciphering/deciphering,
authentication, etc.) must be performed using dedicated crypto-coprocessor instruc-
tions, while security-uncritical tasks can be provided by general purpose instructions.

The higher-level keys must never leave the protected area inside inside the
crypto-coprocessor, while the lower-level keys can leave this area in encrypted form
and be processed by the GPP.

4.2.2 Separation at System Level

The principle of the separation at the system level is illustrated in Fig. 4.1. Unlike
the crypto-processor system concept, the data zone is replaced by a complete GPP
outside of the crypto-coprocessor. The remaining cipher and key zones are included
inside the crypto-coprocessor and are the same as presented in Chap. 3, so the same
principle holds for the both cases.

4.2.3 Separation at Architectural Level

Similarly to the crypto-processor, in case of the crypto-coprocessor the same rules
have to be applied for the separation at the architectural level. Moreover, interfaces
between partitions must be designed to respect special constraints: data buses must
be unidirectional and the communications must be controlled only by the GPP. A
straightforward interface design simplifies implementation of bus macros in partial
reconfiguration or physical isolation design flows.

4.3. Extension of Separation Rules to Crypto-coprocessors 69

General-purpose

processor

Data

bus

Key
memory

bus
CIPHER/TRNG

1. Data zone 2. Cipher zone 3. Key zone

Physical separation fences Cipher key bus

KEY STORAGE

C
ry

p
to

-c
o

p
ro

c
e

s
s

o
r

Control bus Master

key

input

Figure 4.1: Separation of key storage and data storage at system level for crypto-
coprocessor

4.2.4 Separation at Physical Level

The way how to separate secret key storage from the GPP at physical level is the
same as in the case of crypto-processors.

4.3 Extension of Separation Rules to Crypto-coprocessors

The presented HCrypt crypto-processor is a very good choice when the system is
developed from the scratch. On the other hand, when the system cost and com-
patibility is considered, a GPP in conjunction with a cryptographic coprocessor
represents a very interesting tradeoff. In this case GPP can perform all general
tasks and the crypto-coprocessor performs security related tasks only (i.e. encipher-
ing, deciphering, key management). Furthermore, stringent separation constraints
are required only within the crypto-coprocessor unit and no GPP operation can
lead to a disclosure of confidential keys stored in the crypto-coprocessor. This new
concept can be used for managing the keys by any GPP in a secure way.

Next, we present the crypto-coprocessor that could be interfaced with any GPP
IP implemented in FPGA. This particular secure crypto-coprocessor supporting
secure key management will be further denoted as HCrypt-C.

The GPP in conjunction with the HCrypt-C crypto-coprocessor is depicted in
Fig. 4.2. Before interconnecting HCrypt-C with the GPP, HCrypt-C interfaces have
to be adapted to the GPP interface. For this reason, a bus translation unit (further
referred as a wrapper) has to be inserted between HCrypt-C and the GPP interface.
However, for every GPP interface a different wrapper block has to be implemented.
In case of different GPP and HCrypt-C interface bus widths, the wrapper is respon-
sible for synchronization of transfers on both sides. Accordingly, control instructions
from the GPP interface have to be translated to HCrypt-C control signals.

Next, we describe three most common interface types and discuss their advan-
tages and disadvantages.

70 Chapter 4. Crypto-coprocessor with Secure Key Management

HCrypt-C

MKin

Ctrl

OUT

IN

Wrapper

32b to

128b

128b

to 32b

Master Key

Ctrl

In
te

rf
a

c
eGPP

interface
General-

Purpose

Processor

Figure 4.2: Cryptographic system containing the HCrypt-C crypto-coprocessor in-
terconnected with the GPP through the wrapper block

4.4 Interfaces between GPP and the HCrypt-C Crypto-

coprocessor

The data interface between the HCrypt-C crypto-coprocessor and the processor
plays very important role in the system design. When considering the architecture,
a tradeoff has to be found between the performance, area and security criteria.
Unfortunately, this can lead often to contradictory requirements.

Overall system performance depends on the interface type and parameters, such
as bus width and latency. When managing keys, small data blocks are exchanged
between the processor and the HCrypt-C crypto-coprocessor and pipelining is not
efficient. In order to achieve higher performance, it is the best to suit the bus width
to the cipher width. Unfortunately, this is not always possible.

From the security point of view, point-to-point communication is in general more
secure than point-to-multipoint communication, because data are exchanged only
between two units, and other peripherals are not physically connected.

When using a point-to-multipoint interface, the bus is shared among all com-
munication counterparts, and data exchanged between HCrypt-C and the processor
can be potentially eavesdropped by other peripherals. In this case, some techniques,
such as small firewalls protecting each peripheral on the bus [104], can be used.

Examining the organization of current systems, one can distinguish the follow-
ing three types of interconnections between the GPP and the coprocessor, while
considering aspects like latency, width, topology, security, cost, etc.

4.4.1 Internal Processor Bus

In this case, the crypto-coprocessor is included in the processor data-path, so it
becomes its module. Data pass to this module directly from registers as operands.
Results are returned to the registers. The module is controlled directly by the pro-
cessor control unit through a dedicated control bus. The advantage of this solution
is in its minimal latency which leads to very high performance. Unfortunately, the
crypto-coprocessor is a part of the processor’s critical path, and therefore it can
slow the whole system down. A high security level is naturally achieved by the
point-to-point connection nature.

4.5. Design of the Crypto-coprocessor/Processor Pairs 71

4.4.2 Dedicated Coprocessor Bus

Here, the crypto-coprocessor is not included in the processor data-path, but it is
connected through a fast internal bus (often a coprocessor bus), running mostly at
the same clock frequency as the processor core. This bus enables direct access to the
processor registers thus minimizing communication latency, although the latency is
higher when compared to the previous topology. Considering the connection between
a single crypto-coprocessor and a processor, the connection has a point-to-point
nature therefore high security level is maintained.

4.4.3 Peripheral Bus

In this way of interconnection, the crypto-coprocessor is connected to the processor
through a bus using a point-to-multipoint connection. In the best case, the crypto-
coprocessor is connected directly to a high-performance system bus, otherwise data
are transferred across one or several bus bridges increasing the latency. Further-
more, because bus is shared between all system units, performance is significantly
decreased. From the security point of view, a point-to-multipoint bus is less suitable
for security applications because data transfers between the security unit and the
processor can be potentially eavesdropped by other units connected to the same bus.

4.5 Design of the Crypto-coprocessor/Processor Pairs

The stringent separation rules are the corner-stone of the novel HCrypt-C crypto-
coprocessor concept. The implementation of HCrypt-C is illustrated in Fig. 4.3 and
three separated security zones (the processor interface, the cipher, and the key zone)
can be clearly distinguished. HCrypt-C has a 128-bit wide datapath. Similarty to
HCrypt, three buses are used: a data bus (in black), a key memory bus (in gray)
and a cipher key bus (in white). Separation rules are strictly applied: key buses
never pass through the processor interface zone and data buses never pass through
the key zone. Secret keys can never leave the key zone without passing through the
cipher.

As presented in Sec. 4.2, any enciphering algorithm can be used in HCrypt-C.
In order to validate the system architecture, we use a 128-bit AES, because it is the
most common currently used algorithm.

Similarly to the HCrypt crypto-processor concept, keys are organized in two
hierarchical levels: high-level master keys and low-level session keys. Session keys
are generated inside HCrypt-C by a TRNG and post-processed by the decipher
core or received from the processor and deciphered and authenticated using master
keys. For the sake of simplicity, a PRNG has been implemented, but any TRNG
principle can be used in the real application. Session keys are used only for data
enciphering/deciphering (using cipher modes) and authentication (e.g. using CBC-
MAC mode).

Special care has been taken (i.e. each zone is placed to separate physical block,

72 Chapter 4. Crypto-coprocessor with Secure Key Management

Master
Key
input

H
C

ry
p

t-
C

 c
ry

p
to

-c
o

p
ro

c
e

s
s

o
r

IN

OUT

Instr
CTRL

Data bus Key memory bus Cipher key bus

DECIPHER

CIPHER

TRNG

Master

key

memory

Session

key

memory

Figure 4.3: HCrypt-C crypto-coprocessor implementation

synthesis attributes, etc.) to force synthesis tools to respect physical separation of
zones so that design maintains its natural division even after synthesis.

Since HCrypt-C complies with stringent separation rules, it is secure by design,
and no software or protocol attacks can result in disclosure of secret keys. For
this reason, any protocol can be implemented, while the key protection remains the
same. Of course, the proposed solution will not resist protocol attacks that do not
target secret keys, such as service denial attacks. These should be dealt with at the
software level, which is beyond the scope of this work.

Next, we present three different ways how the HCrypt-C crypto-coprocessor
can be interconnected with GPPs and we illustrate this concept on thee different
processor implementation examples:

1. Altera NIOS II – Internal processor bus interconnection is used

2. Xilinx MicroBlaze – Dedicated coprocessor bus interconnection is used

3. ARM Cortex M1 – Peripheral bus interconnection is used

4.5.1 Altera NIOS II GPP with HCrypt-C Crypto-coprocessor

This kind of GPP and HCrypt-C interconnection was implemented in the Altera
NIOS II processor, as illustrated in Fig. 4.4. HCrypt-C communicates with NIOS
II using a wrapper. Control instructions are passing to the wrapper directly from
the processor control unit. In this case, all HCrypt-C operations are implemented
as custom instructions of the processor. NIOS II custom instruction technique
enables users to include a custom unit into the processor’s datapath. This way, the
processor’s critical path is extended by the datapath of HCrypt-C, what affects the
processor maximum clock frequency.

Special constraints are applied on the design, so that all three security zones will
remain separated from each other after the synthesis and placement.

4.5. Design of the Crypto-coprocessor/Processor Pairs 73

Data
registers

ALU

Control
unit

A
B

ALU

OUT

N
IO

S
 I
I

Master
Key

32

Ctrl
I/O

A

B

Y W
ra

p
p

e
r

32

32

D
e
s
e
ri

a
li
ze

r

(2
x3

2
b
 t
o
 1

2
8
b
)

32

32
128

S
e

ri
a

li
z
e

r

(1
2

8
b

 t
o

 3
2

b
)

HCrypt-C

MKin

Ctrl

128 32

Control unit

Wrapper

A

B
Y

Ctrl

In

Ctrl

Out

Master Key 32

Figure 4.4: NIOS II interconnected with the HCrypt-C crypto-coprocessor wrapper
via the internal processor bus

4.5.1.1 Wrapper Structure

The communication link between NIOS II and HCrypt-C, the wrapper interface,
is depicted in the right part of Fig. 4.4. Data are moved in 32-bit words from
the NIOS II registers into deserializer which outputs full 128-bit word. Since two
NIOS operands are available, 64 bits of data can be transported to the HCrypt-
C deserializer at once. Results are stored in the Serializer of which the output is
returned back to NIOS II registers in a form of four 32-bit words. Both the serializer
and deserializer are implemented in logic.

Since control signals can be provided to HCrypt-C directly from the processor’s
control unit, only a simple control unit is necessary to derive HCrypt-C control
signals. HCrypt-C operation can be monitored using status flags provided by the
wrapper control unit.

4.5.1.2 Software

The NIOS II software was written in the ANSI C code using the Eclipse development
environment. All NIOS II custom instructions are listed in Tab. 4.3 and a 128-bit
CFB deciphering mode example is illustrated in Tab. 4.4.

4.5.2 Xilinx MicroBlaze GPP with HCrypt-C Crypto-coprocessor

In contrast with the previous solution, the instruction set does not need to be cus-
tomized if the HCrypt-C crypto-coprocessor is connected to the processor’s register
file via a dedicated coprocessor bus. Interconnection of HCrypt-C with the processor
using the coprocessor bus is depicted in Fig. 4.5. The system consists in the Xilinx
MicroBlaze processor, HCrypt-C and the wrapper. The MicroBlaze architecture
features the high-performance 32-bit Fast Simplex Link (FSL), aimed at interfacing
external modules with the processor registers. According to this standard, the FSL
bus has to be routed via FIFOs. Despite the fact that the FIFOs insert additional

74 Chapter 4. Crypto-coprocessor with Secure Key Management

Table 4.3: HCrypt-C crypto-coprocessor instructions in NIOS II

A) Data transfer instructions

Instruction Description

void W0_WR (int D0) Send 32 most significant bits D0 to HCrypt-C deserializer

void W1_WR (int D1) Send 32 bits D1 to HCrypt-C deserializer

void W2_WR (int D2) Send 32 bits D2 to HCrypt-C deserializer

void W3_WR (int D3) Send 32 least significant bits D3 to HCrypt-C deserializer

void W01_WR (int D0, int D1) Send 64-bit upper half D0D1 to HCrypt-C deserializer

void W23_WR (int D2, int D3) Send 64-bit lower half D2D3 to HCrypt-C deserializer

int W0_RD (void) Read 32-bit most significant word from HCrypt-C serializer

int W1_RD (void) Read 32-bit word from HCrypt-C serializer

int W2_RD (void) Read 32-bit word from HCrypt-C serializer

int W3_RD (void) Read 32-bit least significant word from HCrypt-C serializer

B) Instructions for data protection and key management

Instruction Description

void genk (int Kx) Generate the key and save it to session key register Kx

void getk (int Kx) Decipher encrypted key from deserializer to session key register Kx

void putk (int Kx) Encipher the key from session key register Kx to serializer

void enc (int Kx) Encipher data from deserializer to serializer with ses. key in Kx

latencies, they separate the processor and HCrypt-C clock domains, so that HCrypt-
C can run at a higher clock frequency than the processor. This way the processor’s
critical path is not extended by the critical path of HCrypt-C.

4.5.2.1 Wrapper

The wrapper interfacing HCrypt-C to the FSL buses is illustrated in the right part of
Fig. 4.5. Data are moved to and from HCrypt-C wrapper using two separate 32-bit
FSL buses (i.e. FSL0 and FSL1). Unfortunately, the FSL standard does not define
the control interface, so before each operation, a 32-bit control instruction word has
to be sent to HCrypt-C via the FSL FIFOs. Extraction of the control instruction
word from the FIFO output (in FSL0) and inclusion of the 32-bit state word to the
FIFO input (in FSL1) is performed by the FSL slave units. To recreate a 128-bit
data word in the deserializer, four 32-bit words have to be transported via an FSL
bus. In total at least five 32-bit bus transfers have to occur in order to move one
128-bit word from the MicroBlaze data register to the deserializer leading to lower
performance than in the case of NIOS II. In contrast to NIOS II, only one 32-bit
word can be sent to the wrapper at a time resulting in decreased performance.

4.5. Design of the Crypto-coprocessor/Processor Pairs 75

Table 4.4: Simplified CFB deciphering block mode example on NIOS II
Blks = CTI; // Read number of data blocks

// Send encrypted session key to HCrypt-C

W01_WR(CTI0, CTI1); // Encrypted session key (high 64b)

W23_WR(CTI2, CTI3); // Encrypted session key (low 64b)

// Decipher session key and store it to session key register

GETK(0x00000000); // Decipher session key to register SR0

// Load IV from input Cipher-text FIFO

CT0 = CTI; // Load the most significant 32b word

CT1 = CTI; // Load 32b word

CT2 = CTI; // Load 32b word

CT3 = CTI; // Load the least significant 32b word

// CFB data deciphering loop

for (i=0; i<Blks; i++)

{

// Encipher cipher-text with SR0

W01_WR(CT0, CT1); // Send data cipher text hword to HCrypt-C

W23_WR(CT2, CT3); // Send data cipher text lword to HCrypt-C

ENC (0x00000000); // Encipher cipher text using key in SR0

DW0 = W0_RD(); // Read out results from HCrypt-C

DW1 = W1_RD(); // Read out results from HCrypt-C

DW2 = W2_RD(); // Read out results from HCrypt-C

DW3 = W3_RD(); // Read out results from HCrypt-C

// Load new cipher-text from input Cipher-text FIFO

CT0 = CTI;

CT1 = CTI;

CT2 = CTI;

CT3 = CTI;

// Send XOR results to output Plain-text FIFO

PTO0 = DW0 ˆ CT0;

PTO1 = DW1 ˆ CT1;

PTO2 = DW2 ˆ CT2;

PTO3 = DW3 ˆ CT3;

}

4.5.2.2 Software

The MicroBlaze software was written in the ANSI C code using the Eclipse devel-
opment environment. Contrary to the NIOS II system, no custom instructions have
to be defined. The FSL bus can be accessed using only two MicroBlaze instructions:
putfslx and getfslx. By using these two instructions, all the HCrypt-C commands can
be described as short functions. A simplified example of the 128-bit CFB decryption
block mode implemented on MicroBlaze is shown in Tab. 4.5.

76 Chapter 4. Crypto-coprocessor with Secure Key Management

Table 4.5: Simplified CFB deciphering block mode example on MicroBlaze
// Definition of instructions

#define iWR2DES() (0x00000000)

#define iRDSER() (0x00010000)

#define iENC(sreg) (0x00030000 + sreg)

#define iGETK(sreg) (0x00040000 + sreg)

. . .

// Definition of instruction function macros

#define W0123_WR(w0,w1,w2,w3) ({ \

putfslx(iWR2DES(),0, FSL_NONBLOCKING_CONTROL); \

putfslx(w0, 0, FSL_NONBLOCKING); putfslx(w1, 0, FSL_NONBLOCKING); \

putfslx(w2, 0, FSL_NONBLOCKING); putfslx(w3, 0, FSL_NONBLOCKING); \

})

#define W0123_RD(w0,w1,w2,w3)({ \

putfslx(iRDSER(), 0, FSL_NONBLOCKING_CONTROL); \

getfslx(w0, 0, FSL_DEFAULT); getfslx(w1, 0, FSL_DEFAULT); \

getfslx(w2, 0, FSL_DEFAULT); getfslx(w3, 0, FSL_DEFAULT); \

})

. . .

Blks = CTI; // Read number of data blocks

// Send encrypted session key to HCrypt-C

W0123_WR(CTI0, CTI1, CTI2, CTI3);

// Decipher session key and store it to session key register SR0

putfslx(iGETK(0), 0, FSL_NONBLOCKING_CONTROL);

// Load IV from input Cipher-text FIFO

CT0 = CTI; // Load the most significant 32b word

CT1 = CTI; // Load 32b word

CT2 = CTI; // Load 32b word

CT3 = CTI; // Load the least significant 32b word

// CFB data deciphering loop

for (i=0; i<Blks; i++)

{

// Encipher cipher-text with SR0

W0123_WR(CT0, CT1, CT2, CT3); // Send data cipher text to HCrypt-C

putfslx(iENC(0), 0, FSL_NONBLOCKING_CONTROL);

W0123_RD(&DW0, &DW1, &DW2, &DW3); // Read results from HCrypt-C

// Load new cipher-text from input Cipher-text FIFO

CT0 = CTI;

CT1 = CTI;

CT2 = CTI;

CT3 = CTI;

// Send XOR results to output Plain-text FIFO

PTO0 = DW0 ˆ CT0;

PTO1 = DW1 ˆ CT1;

PTO2 = DW2 ˆ CT2;

PTO3 = DW3 ˆ CT3;

}

4.5. Design of the Crypto-coprocessor/Processor Pairs 77

D
e

s
e

ri
a

li
z
e

r

(3
2

b
 t
o

 1
2

8
b

)

128

S
e

ri
a

li
z
e

r

(1
2

8
b

 t
o

 3
2

b
)

HCrypt-C

MKin

Ctrl

128 32

Control unit

Wrapper

A Y

Master Key 32

32

Data

registers

ALU

Control

unit

A B

ALU

OUTM
ic

ro
B

la
z
e 32

F
IF

O
F

IF
O

FSL0

FSL1

Master
Key

A

Y

W
ra

p
p

e
r32

32

F
S

L
0
 S

L
A

V
E

F
S

L
1
 S

L
A

V
E

Figure 4.5: MicroBlaze interconnected to the HCrypt-C crypto-coprocessor wrapper
via a dedicated processor bus (i.e. FSL)

4.5.2.3 Physical Isolation of Security Zones

According to presented separation rules higher security can be achieved if not only
a physical separation at the logic placement level but also a physical isolation at the
routing level is implemented. The Xilinx Virtex-6 supports the Secure Chip Crypto
technology, which enables to implement the physical isolation of physical blocks on
a single chip.

First, system is partitioned into the processor, cipher and key zones while each
zone is compiled independently resulting in one separate netlist group per zone.
Next, each netlist group is placed in a separate logic partition and each partition is
mapped into a separate physical block using the Xilinx PlanAhead software. One
must ensure that enough resources are present in physical blocks and it is recom-
mended to slightly enlarge physical blocks to simplify the placement and routing.
The FPGA floorplan containing all the three physical blocks is illustrated in Fig. 4.6.
More detailed floorplan can be acquired using Xilinx FPGA editor.

Before concluding that the physical isolation has been achieved, a design verifi-
cation has to be carried out using the Xilinx IVT.

4.5.3 ARM Cortex M1 GPP with HCrypt-C Crypto-coprocessor

The most common general solution for interfacing GPP with HCrypt-C is to access
the crypto-coprocessor via a point-to-multipoint peripheral bus. This communica-
tion is less secure than the point-to-point communications mentioned before, how-
ever, it is available for all GPPs. For example, this is the only solution that can be
applied in Microsemi FPGAs featuring the Cortex M1 processors and the AHB bus
[105] as it is illustrated in Fig. 4.7. Like in the previous two examples, the system
is divided into the protected cipher and key zones, enclosed inside HCrypt-C, and
the unprotected processor zone.

Although the AHB bus does not include an instruction interface, an address bus
can be used to pass instructions to HCrypt-C in parallel with data. On the other
hand, the AHB bus is shared among several often accessed bus slaves (program flash

78 Chapter 4. Crypto-coprocessor with Secure Key Management

KEY

ZONE

CIPHER ZONE

MICROBLAZE PROCESSOR ZONE

Figure 4.6: Floorplan of MicroBlaze divided into processor, cipher and key zones
placed in isolated physical blocks (cipher and key zones are part of HCrypt-C)

CORE

AHB bus
masterC

o
rt

e
x

 M
1

Program
(FLASH)

RAM
(SRAM)

USB
interface

Ext. mem.
ctrl

Wrapper

USB I/O
BUS16 Memory

 bus

AHB

Master
Key

D
e
s
e
ri

a
li
ze

r

(3
2
b
 t
o
 1

2
8
b
)

128

S
e
ri

a
li
ze

r

(1
2
8
b
 t
o
 3

2
b
)

HCrypt-C

MKin

Ctrl

128

Control unit

Wrapper

Master Key 32

A
H

B
 S

L
A

V
E 32

32

Figure 4.7: Cortex M1 interconnected to HCrypt-C wrapper via peripheral bus

memory, RAM, etc.), therefore data exchange rate with HCrypt-C is decreased.
Special constraints and separate netlists must be generated in order to keep all

three security zones separate from each other. Physical isolation is not supported by
Microsemi FPGAs and so routing cannot be controlled. This way only separation
at the logic level is possible.

4.5.3.1 Wrapper

The wrapper interfacing the HCrypt-C crypto-coprocessor to the AHB bus is illus-
trated in the right part of Fig. 4.5. The HCrypt-C wrapper includes the AHB slave
unit which reads out data targeted for HCrypt-C and decodes HCrypt-C instruc-
tions from the AHB address bus. This way, in contrast to the MicroBlaze system, no
control words have to be send via the data bus. On the other hand the AHB bus is
shared among the program flash memory, RAM memory and other peripherals lead-
ing to lower performance. Since only one 32-bit data word can be transferred into
the HCrypt-C wrapper at a time, four 32-bit words in series have to be transported

4.6. Implementation Results 79

to the deserializer to recreate a 128-bit data word.

4.5.3.2 Software

The Cortex M1 software was written in the ANSI C code using the Eclipse devel-
opment environment. Contrary to the NIOS II system, no custom instructions have
to be defined. Since the HCrypt-C wrapper is connected as a slave peripheral and
instructions are moved via an address bus, every HCrypt-C instruction is viewed as
one virtual register in the processor’s memory space reserved for HCrypt-C. When
an operation is executed, a certain virtual register has to be addressed (to pass
an instruction via the address bus). For this reason all HCrypt-C instructions are
described as short macros in the c code. A simplified example of the 128-bit CFB
decryption block mode implemented on Cortex M1 is shown in Tab. 4.6.

4.6 Implementation Results

The three processors extended by HCrypt-C crypto-coprocessor containing the AES
cipher, decipher and TRNG were described in VHDL and mapped to three FPGA
families. The NIOS II system was implemented in Altera NIOS II evaluation board
featuring Stratix II device EP2S60F672C5ES. The project was compiled and mapped
to the selected device using Quartus II version 9.2. The MicroBlaze system and its
HCrypt-C crypto-coprocessor extension were implemented in Xilinx ML605 evalua-
tion kit featuring Virtex-6 device XC6VLX240TFF1156. For synthesis and mapping,
ISE version 12.4 was used. The isolation of the three security zones was verified by
Xilinx IVT and no isolation violations were reported. The Cortex M1 system and
its extension were implemented in the Microsemi Fusion embedded development kit
board featuring the Microsemi Fusion device M1AFS1500-FGG484. The project was
compiled and mapped to the selected device using Libero version 8.5 SP2. Besides
the processor and HCrypt-C crypto-coprocessor extension, a small block contain-
ing a 16-bit data interface to the external Cypress USB device CY7C68013A was
embedded in all systems. It was used only for testing purposes and it does not con-
stitute an inherent part of the system. For this reason it is not included in further
resource utilization reports. Next, we present the resource utilization report and
results of the hardware tests.

4.6.1 Cost Evaluation

The implementation results concerning the logic area and the memory requirements
are presented in Tab. 4.7. The area is expressed in a number of occupied ALMs for
the Altera family, Slices for the Xilinx family and Tiles for the Microsemi family.
For comparison, we recall that one ALM in the Altera Stratix II family contains
two 4-input LUTs and two Flip-Flops (FFs). One Slice in the Xilinx Virtex-6 family
contains four 6-input LUTs and eight FFs. One Tile in the Microsemi Fusion family
contains either one 3-input combinatorial function or one FF. Therefore, the results

80 Chapter 4. Crypto-coprocessor with Secure Key Management

Table 4.6: Simplified CFB deciphering block mode example on Cortex M1
// Definition of instructions

#define SM_ADDR 0x40000000

#define iWR2DES() (0x00000000)

#define iRDSER() (0x00010000)

#define iENC(sreg) (0x00030000 + sreg)

#define iGETK(sreg) (0x00040000 + sreg)

#define iSTATUS(reg)(0x00070000 + reg)

. . .

// Definition of instruction function macros

#define SMWR(INSTR,VALUE)(*((uint32_t volatile *)(SM_ADDR + INSTR)) = (VALUE))

#define SMRD(INSTR) (*((uint32_t volatile *)(SM_ADDR + INSTR)))

#define W0123_WR(w0,w1,w2,w3) ({ \

SMWR(iWR2DES(),w0); SMWR(iWR2DES(),w1); \

SMWR(iWR2DES(),w2); SMWR(iWR2DES(),w3); \

})

#define W0123_RD(w0,w1,w2,w3) ({ \

w0 = SMRD(iRDSER()); w1 = SMRD(iRDSER()); \

w2 = SMRD(iRDSER()); w3 = SMRD(iRDSER()); \

})

. . .

Blks = CTI; // Read number of data blocks

// Send encrypted session key to HCrypt-C

W0123_WR(CTI0, CTI1, CTI2, CTI3);

// Decipher session key and store it to session key register SR0

SMWR(iGETK(0), 0);

// Load IV from input Cipher-text FIFO

CT0 = CTI; // Load the most significant 32b word

CT1 = CTI; // Load 32b word

CT2 = CTI; // Load 32b word

CT3 = CTI; // Load the least significant 32b word

// CFB data deciphering loop

for (i=0; i<Blks; i++)

{

// Encipher cipher-text with SR0

W0123_WR(CT0, CT1, CT2, CT3); // Send data cipher text to HCrypt-C

SMWR(iENC(0), 0);

while(SMRD(iSTATUS(0))==0); // wait for ENC to finish

W0123_RD(&DW0, &DW1, &DW2, &DW3); // Read results from HCrypt-C

// Load new cipher-text from input Cipher-text FIFO

CT0 = CTI;

CT1 = CTI;

CT2 = CTI;

CT3 = CTI;

// Send XOR results to output Plain-text FIFO

PTO0 = DW0 ˆ CT0;

PTO1 = DW1 ˆ CT1;

PTO2 = DW2 ˆ CT2;

PTO3 = DW3 ˆ CT3;

}

4.6. Implementation Results 81

Table 4.7: Utilization of FPGA resources by tree processors with the HCrypt-C
crypto-coprocessor containing the AES cipher

NIOS II Cortex M1 MicroBlaze

ALMs RAM kb Tiles RAM kb Slices RAM kb

System total 2531 243.9 15053 216.0 1954 1206.0

→ Processor 1204 187.9 9433 104.0 1350 774.0

→ HCrypt-C 1327 56.0 5620 112.0 604 432.0

Ext. overhead 110.2% 29.8% 59.6% 107.7% 44.7% 55.8%

cannot be directly compared. The memory requirements are given in kbits for all
technologies. For clarity, we present the results for the processor and for its HCrypt-
C crypto-coprocessor extension separately.

4.6.2 Hardware Tests and Benchmarks

System functionality can be proved and real performance obtained only by hard-
ware tests. The setup used for the hardware tests is explained in Fig. 4.8. In each
test a corresponding processor with its HCrypt-C crypto-coprocessor were used. In
contrast to the HCrypt hardware test, the GPP software resided either in the RAM
memory filled during the FPGA configuration process (in case of NIOS II and Mi-
croBlaze) or in the embedded Flash memory filled during the configuration process
(in case of Cortex M1). The processor system together with the USB interface
were configured inside an FPGA which was interconnected with the Cypress USB
module. The USB module communicated with the PC containing the Cypress USB
driver and a benchmark application.

In order to compare the achieved throughput fairly, the clock frequency of all
three systems was set to 50 MHz. The throughput was evaluated by transferring
packets from the PC to the FPGA (and vice versa) via the USB interface. The com-
munication protocol, packet structure and testing procedure are similar to those used
for the HCrypt tests (see Sec. 3.3.4). The whole testing process started when the
benchmark application accessed the Master key file and transferred the master key
to the FPGA. When the master keys were present in HCrypt-C, the PC application
read the Input packet file and sent data packets to the GPP data input. Each packet
contained an encrypted session key, its digital fingerprint and five 128-bit payload
blocks. Packets were analyzed in the processor, which then sent the session key and
its fingerprint to HCrypt-C. Once the key was decrypted and authenticated, the
processor sent data blocks to be decrypted. Subsequently, the processor recreated
new packets containing received decrypted data and sent them back to the PC.
The benchmark application read the resulting packet, verified it and saved it to the
Output packet file. When implementing this complete protocol, the NIOS II-based
system achieved the overall throughput of 25.1 Mb/s, the MicroBlaze-based system
achieved 18.4 Mb/s and the Cortex M1 system achieved 12.2 Mb/s.

82 Chapter 4. Crypto-coprocessor with Secure Key Management

USB

I/F

PLL

MK
init

DATA

BUS

Cypress USB

driver

Master

key file

Output

packets file

Crypress USB 2.0

(FX2LP)

PC - OS

FPGA

VHDL design

Input

packets file

Benchmark

application

Oscillator

FPGA

board

USB moduleHCrypt-C

Wrapper

GPP

Figure 4.8: General-Purpose Processor system hardware test setup

4.7 Discussion

Area requirements for NIOS II, MicroBlaze and Cortex M1 extensions from Tab. 4.7
seem to be different. This is due to differences between ALMs, Slices and Tiles and
also because of the size of processors. In the Altera FPGA, the HCrypt-C area is
similar to that of the NIOS II (1327 vs. 1204 ALMs giving 110%). However, since
HCrypt-C included both AES cipher and decipher cores, we can conclude that the
sole security extension cost due to the separation of zones is negligible. On the other
hand, the MicroBlaze processor occupies bigger area and the HCrypt-C overhead is
only 45%. The separation cost remains negligible. In Cortex M1 system, HCrypt-C
represents a 60% overhead, therefore its cost remains negligible.

The MicroBlaze processor with its HCrypt-C extension achieves 73% of the
throughput of the NIOS II. This is caused by the FSL bus protocol (data and con-
trol words), compared to the straightforward custom instruction implementation in
NIOS II. This difference could be reduced in the MicroBlaze system if data were
transferred to HCrypt-C using DMA. The FSL bus would serve only for transporting
instructions to HCrypt-C. Moreover, the Cortex M1 processor with its HCrypt-C ex-
tension achieves only 49% of the throughput of the NIOS II implementation. This is
because of the nature of the AHB bus that is shared among all communicating units.
Therefore access of HCrypt-C to the AHB bus is multiplexed with the flash memory,
RAM and I/O (USB). This fact limits significantly overall system performance.

Another useful aspect of comparing the three processor extensions is the system
design complexity. When interfacing the NIOS II processor with HCrypt-C, sev-

4.8. Conclusions 83

eral actions are needed: 1) the processor data path and control signals are output
from the processor; 2) a wrapper containing simple control interface and data bus
translation interface has to be implemented; 3) the wrapper with the HCrypt-C
unit has to be interfaced with the NIOS II processor using the SOPC builder soft-
ware; 4) custom instructions have to be generated and described in the software
implementation. We can conclude that the design is relatively complex, but as a
result, HCrypt-C is closely tied to the processor and thus the system maintains high
performance. Connecting HCrypt-C to the MicroBlaze processor is simpler at the
hardware level, but more complex at the protocol level: more complex state ma-
chine has to be implemented in the wrapper to pick up a control instruction from
the data stream transported via the Fast Simplex Link. Because of this fact, the
overall throughput of the system is significantly lower. Connecting HCrypt-C via
a peripheral bus is the most general solution. Once the data interface is designed,
the HCrypt-C can be reused with any processor featuring a common peripheral bus.
However, in this case, the throughput of the system is the lowest.

Timing violation attacks that were carried out (i.e. overclocking causes timing
violations in control logic) revealed a vulnerability in the CBC decryption mode (see
Fig. 4.9). In fact, the Decipher data output was connected to HCrypt-C output via
a multiplexer. Such architecture violated separation rules, because an intentional
or unintentional fault in a multiplexer control signal could redirect session keys in
clear out of the cipher zone. This backdoor was eliminated by disconnecting the
Decipher output from the output of HCrypt-C. Nevertheless, the CBC decryption
mode is often used nowadays and its secure implementation remains an open prob-
lem. After eliminating the backdoor, timing violation attacks against all processor
implementations were not successful. The implemented protocol and architectural
separations of the key and processor zones were therefore shown to be efficient. To
further increase the security level, the security zones were physically isolated in the
MicroBlaze case. However, the physical isolation flow is an advanced flow since
very hard constraints have to be met and searching for tradeoffs requires expert
knowledge. If the physical block sizes and their arrangement are not chosen well,
the placement and routing phases can be computed for several hours. Despite all
these obstacles, the physical isolation between the security zones was achieved and
a verification certificate was generated as a proof.

The principle presented in this report can be extended to any GPP, since we
showed that the HCrypt-C crypto-coprocessor can be accessed as an ordinary pe-
ripheral. However, we can expect that the best solution would be to use an open
source GPP and to include HCrypt-C in the processor’s data path as it was the case
with the NIOS II processor.

4.8 Conclusions

In this chapter we have shown how a crypto-coprocessors supporting secure key
management can be constructed. For cost-critical applications requiring also ex-

84 Chapter 4. Crypto-coprocessor with Secure Key Management

Master
Key
input

H
C

ry
p

t-
C

 c
ry

p
to

-c
o

p
ro

c
e

s
s

o
r

IN

OUT

Instr

Master

key

memory

CIPHER

TRNGCTRL

Data bus Key memory bus Cipher key bus

for CBCDEC = Backdoor!

DECIPHER

Session

key

memory

Figure 4.9: Security module with CBC decryption mode backdoor

ecution of general-purpose instructions we proposed HCrypt-C crypto-coprocessor
extension to any GPP. This crypto-coprocessor respects all stringent separation rules
thus enabling secure key management on GPPs. The HCrypt-C crypto-coprocessor
is divided into the data, cipher and key zone each having different security privileges.
This crypto-coprocessor has the 128-bit wide datapath, embedded AES cipher, de-
cipher and TRNG. Similarly to HCrypt, master keys are transferred via a dedicated
32-bit bus. HCrypt-C can be interconnected with a processor using an internal pro-
cessor bus, a dedicated coprocessor bus or a peripheral bus. All three bus types
were compared and demonstrated on the three processor implementations. Altera
NIOS II, Xilinx MicroBlaze and ARM Cortex M1 were extended by HCrypt-C. The
operation, security and throughput of all the three processor systems were tested.
The tests indicated that the data throughput of NIOS II was 25.1 Mb/s, MicroBlaze
was 18.4 Mb/s and Cortex M1 was 12.2 Mb/s, while each system exchanged session
keys and processed data in packets using the 128-bit CFB block encryption mode.

Flexibility of the crypto-coprocessor can be significantly increased if some of its
parts are upgradeable (i.e. cipher, TRNG, etc.). The solution to this issue is a
partial reconfiguration technology. This technology allows to reconfigure the whole
cipher zone. However, with the implementation of the partial reconfiguration new
security challenges arise. These challenges will be further examined and solutions
will be proposed in Chap. 6.

The presented processors with the HCrypt-C crypto-coprocessor extension were
published in [81], [82], [83] and [106].

Chapter 5

Protecting Crypto-processors

Against SCA at

Macroarchitecture Level

Contents

5.1 Side-Channel Attacks . 86

5.1.1 Power Analysis Attacks . 86

5.1.2 Countermeasures . 88

5.2 Crypto-processor with Zero-cost Countermeasures against

SCA . 90

5.2.1 Introduction . 90

5.2.2 Design of SCA and FIA Resistant HCrypt Version 99

5.2.3 Evaluation of the HCrypt2 Security Against SCA and FIA . 104

5.2.4 Implementation Results . 105

5.2.5 Discussion . 107

5.3 Conclusions . 109

Most of contemporary cryptographic algorithms are robust against statistical
cryptanalyses (i.e. linear, differential) as well as algebraic cryptanalyses. However,
problems can arise when these algorithms are implemented in physical devices. Es-
sentially, physical processes related to computations of cryptographic algorithms
within the device can be partly observed from outside the device and can be con-
sidered as a valuable leaking information. New methods have to be constantly
developed to suppress the impact of these physical phenomena and thus to protect
the valuable information stored and processed inside the cryptographic devices.

This chapter will first explain what are side-channel attacks and what work has
been done so far to protect the cryptographic devices from them. Next, a detailed
security analysis of the AES cipher will be provided. The analysis of the AES ci-
pher is essential for the HCrypt security analysis. Contrary to the threat model in
previous chapters, the HCrypt security analysis will be focused not only on the soft-
ware attacks, but also on the side-channel and fault injection attacks. Considering
these analyses, we will propose the novel zero-cost countermeasures against SCA
for crypto-processors and crypto-coprocessors. The zero-cost countermeasures will
be included in an extended version of separation rules and further demonstrated on
the HCrypt2 implementation.

86
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

5.1 Side-Channel Attacks

Side-channel attacks are passive non-invasive physical attacks on physical crypto-
graphic systems which exploit different information leakage sources with the aim to
disclose the secret keys processed within the cryptographic device. The leaked infor-
mation is directly related to changes of physical quantities like time, power, intensity
of electromagnetic field, light intensity, etc. Therefore the sources of information
leakage are mainly:

• computational time of a cryptographic algorithm,

• power consumption,

• electromagnetic radiation,

• acoustic vibrations,

• light emission

Side-channel attacks were not given much attention until 1996 when Kocher et
al. first published timing attacks [56]. Authors suggested to measure the computa-
tion time of cryptographic algorithms in order to gain necessary information about
the secret keys that were involved in the computation. Another breakthrough came
in 1998 when Kocher et al. proposed to use the dynamic power consumption of the
electronic circuit as a side-channel for attacking cryptographic device [107]. Dy-
namic power consumption of a CMOS cell depends on its input and output state
transitions (0 → 1, 1 → 0). Two power analysis methods were presented: Simple

Power Analysis (SPA) and Differential Power Analysis (DPA) [107]. Electromag-
netic analysis attacks (EMA) are very similar to power attacks. EMA attacks were
first demonstrated in 2001 by Gandolfi et al. [108] and Quisquater et al. [109].
The sources of information leakage are the dynamic changes of electromagnetic field
related to changes of current passing through a CMOS cell during transitions. Con-
trary to the power analysis attacks, an antenna moving over the circuit’s surface
allows to precisely select the area where the most information is leaked from the
circuit.

5.1.1 Power Analysis Attacks

The discovery of the power analysis attacks led to numerous successful attempts to
reveal secret information from various kinds of security devices. Smart card security
breaches were demonstrated in [110], [111], [112], etc. The first successful attack
against the ASIC hardware implementation of AES was performed by Ors et al.
[113]. In 2003 Standaert et al. have warned that cryptographic implementation in
FPGAs can be also attacked [114]. Soon after, in 2004, his team has demonstrated
that DES and AES implementations in FPGAs are also easily breakable [115], [116].
Since then, many attack improvements have been proposed.

5.1. Side-Channel Attacks 87

The power analysis attack begins with the power consumption measurement.
The most common way is to connect a shunt resistor to power or ground lines of the
measured circuit and to record the voltage drop along the resistor by a digital oscil-
loscope. The power traces recorded by the oscilloscope are subsequently processed
on the PC.

In addition to recorded traces containing the key information leakage, the at-
tacker must select an appropriate power leakage model that involves key hypotheses.
The correct key hypothesis can be recognized from the power traces using a distin-
guisher.

5.1.1.1 Leakage Models

The second phase of the attack is to describe transitions inside the circuit by an
appropriate leakage model. The leakage model serves to estimate the change of
power consumption of the device according to expected data-dependent transitions
within the circuit. The estimated power consumption can be compared to the
measured power consumption. The attack can be successful only if the similarity is
high enough. Several leakage models exist and the most common are the Hamming
Weight (HW) and the Hamming Distance (HD) models.

Hamming weight power model

The simplest leakage model is the Hamming weight model. This model assumes
that the power consumption is proportional to the number of register bits set to
logic one. For example if an 8-bit register is set to the state (1100 0101)2, the
corresponding Hamming weight is 4. However, the HW model is not sufficiently
precise, because the power consumption depends more on number of bit transitions
than the actual state. Therefore, the attacker will probably use the HW model if
only one of two consecutive register states is known. If both consecutive register
states are known, the attacker can use more accurately the Hamming distance power
model.

Hamming distance power model

This model exploits bit transitions causing dynamic power consumption. For its
higher accuracy it is more preferred than the HW model. The HD of two consecutive
states a and b can be described as

HD (a, b) = HW (a⊕ b) (5.1)

where ⊕ denotes bit-wise exclusive-or operation. HD can be also understood as
a number of bit transitions. For instance if the state before the transition a =
(1100 0101)2 and the state after the transition b = (0101 1111)2 then the corre-
sponding HD equals to HW [(1001 1010)2] = 4.

88
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

5.1.1.2 Distinguishers

The last phase of the attack is to find the dependency between the leakage model and
information contained in the measured power traces. This operation is performed
by algorithms called distinguishers. The role of distinguishers is to distinguish the
correct key hypothesis from all other incorrect ones. The strength of the particular
distinguisher is in its ability to find the correct key hypothesis using as few power
traces as possible. The first proposed distinguishers were the Simple Power Analysis

and Differential Power Analysis described by Kocher et al. in [107].

The success of power analysis attacks increased due to new improvements. Gen-
eralized multiple-bit DPA was proposed by Messerges et al. [117], Template Attacks
by Chari et al. [118], Correlation Power Analysis (CPA) by Brier et al. [119], Par-
tition Power Analysis by Le et al. [120], Mutual Information Analysis by Gierlichs
et al. [121] and more.

5.1.2 Countermeasures

The discovery of DPA quickly uncovered vulnerabilities of nearly all cryptographic
devices of that time and led to desperate research effort, both academic and in-
dustrial, to protect the cryptographic systems. This was the time when the first
countermeasures against power analysis attacks came to light. Today many coun-
termeasures have been presented reaching from a simple key update to complex
dual-rail pre-charge logic. A very good studies comparing some countermeasures
were presented by Mangard [122] and Güneysu et al. in [123]. Next, we present the
most common countermeasures.

5.1.2.1 Key Update

The attack can be successful only if the attacker can collect enough power traces
corresponding to a certain number of encipherings using the same secret key. How-
ever, if the key is updated often enough, the attacker may not be able to acquire a
sufficient number of power traces. The solution is to use an ephemeral secret key (i.e.
session key), which is regenerated after its expiration time. On the other hand, this
countermeasure requires other means for distribution of the new generated session
key. Both the symmetric-key and asymmetric-key cryptographic algorithms can be
used for this purpose. The symmetric-key algorithms require another higher-level
secret key (i.e. master key) to secure the distribution of the session keys. The
asymmetric-key algorithms require a pair of keys (i.e. private and public keys) to
protect session key exchange. In both cases, it is not worth for the attacker to at-
tack the ephemeral session keys, but rather to concentrate his effort on disclosing
the master or private key. To thwart attacks on these highly confidential keys, other
countermeasures must be applied in the device. The key update countermeasures
were considered in [124], [125].

5.1. Side-Channel Attacks 89

5.1.2.2 Generation of Noise

The objective of using noise generators is to introduce data independent noise to
power consumption. Additional noise reduces the signal to noise ratio and forces
the attacker to collect more power traces. One principle suggests to configure all the
unused FPGA logic blocks to shift registers. Constant shifting will increase power
consumption and thus the noise level. Another way is to exploit write collisions
of embedded TDPRAMs [126]. A high consumption can be caused also by short
circuits in FPGA switch boxes [127]. However, it has been shown that efficiency
of the noise generators is very small [123]. Depending on the applied principle, the
noise generators can be very expensive in terms of circuit resources. For their low
effectiveness and high price, they are not recommended.

5.1.2.3 Random Execution Length

An interesting approach for countering side-channel attacks is to insert random
dummy cycles during the execution of a cryptographic algorithm. This way, the
attacker must use more complex filtering to remove all misalignments caused by
randomization. However, practical attacks exist [128], [129]. Random length of the
execution can also be achieved if the clock period is not constant. This interesting
approach was proposed and tested in [123]. Author suggests to exploit features
of modern digital clock management units like clock multiplexing and multi-phase
shifting. Although these approaches may not significantly increase number of re-
quired resources, the extra penalty is the speed decrease.

5.1.2.4 Data Masking

Masking is probably the most common countermeasure in current devices. The aim
of the masking is to insert randomness into security-critical computations in such a
way that data are changed and so the leaked information will completely disappear
in the obtained power traces. Masking can be performed on the bit level [130] and
word level. However, masking on the word level is vulnerable to high-order power
analysis attacks [117]. Masking involves application of a mask m to data word a

using a masking operator (i.e. modular addition, modular multiplication, exclusive
or, etc.). For instance, if the masking operator is the exclusive or, the masked data
has the form am = a ⊕ m. Only the masked data can be processed together with
the secret key. Before the output data is ready, it has to be unmasked. Masking
can also involve a random pre-charge phase. This phase involves initialization of
all registers in the circuit with random values before and after the data word a was
processed. This interesting approach prevents the attacker to use the Hamming
distance model, since one of the two consecutive states is random. However, a
new mask has to be used per every data word in order to prevent second order
power analysis attacks. This can be an issue, since random number generators are
usually not able to generate truly random numbers with throughput higher than

90
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

1-2 Mb/s. Despite its high effectiveness, masking is usually very expensive and
reduces significantly the performance of the cipher [131], [62].

5.1.2.5 Data hiding

Unlike the masking, the data hiding technique does not change the data. The main
idea of data hiding is to make the power consumption as constant as possible for
different input data. This can be achieved with the so called Dual-Rail Pre-charge
logic (DRP). The DRP replaces classic single-rail cells by dual-rail cells, where each
input of the dual-rail cell is composed of two complementary wires (carrying data
value by one wire and its inverse value by the other wire). The DRP cell output is
also composed of two complementary wires carrying an output value and inverted
output value. In addition to dual-rail cells, complementary wires have to be im-
plemented as symmetrically as possible in the circuit to provide constant power
consumption independent from the processed data [132], [133], [134]. Implementa-
tion of symmetrical routes is not straightforward in ASICs, but almost impossible
in FPGAs. Moreover, if a pre-charge phase is implemented, each time the circuit
is switched into the pre-charge phase, both wires are initialized either with one or
zero value (no complementarity during the pre-charge).

The DRP techniques were studied in [135], [136]. Other variants including mask-
ing, three phase dual-rail, balanced cell DRP, etc. were proposed in [130], [134],
[137]. Although very resistant to power analysis attacks, the DRP increases the
implementation of the cipher to at least a double size. When masking is imple-
mented together with DPR, the overhead can reach 450% [138]. Because of the
speed and size penalties, the DRP remains very expensive for chip manufacturers,
so its cost-effectiveness is considerably low.

We have shown that none of the today’s countermeasures is perfect and tradeoffs
between the security, size, speed and power consumption have to be always searched
to achieve sufficient cost-effectiveness. All presented countermeasures try to hide key
information in the power leakage. However, the attacker needs to construct also a
good power leakage model to be able to distinguish the correct key hypothesis with
the same success rate. Interestingly, no countermeasure has been proposed that
would prevent the attacker from constructing an effective power leakage model up
to now. We believe that there are ways to reorganize the architecture in a such way
that the attacker would need more power traces to recover the secret key with the
same success rate. Next, we explain these countermeasures.

5.2 Crypto-processor with Zero-cost Countermeasures against

SCA

5.2.1 Introduction

The first version of the HCrypt crypto-processor [80] (it will be called HCrypt1
throughout this chapter) is presented in Chap. 3. The main feature of the HCrypt1

5.2. Crypto-processor with Zero-cost Countermeasures 91

crypto-processor obtained at the macroarchitecture level was the resistance against
software attacks targeting disclosure of secret keys. It was supposed that the coun-
termeasures against hardware attacks such as side-channel attacks and Fault Injec-
tion Attacks (FIA) could be implemented independently from the HCrypt1 macroar-
chitecture inside embedded cipher and decipher blocks at the microarchitecture level.
Since both cipher and decipher processed session keys using the master key, it was
necessary to protect both cipher and decipher against SCA and FIA. It turned
out that efficient countermeasures could be the main obstacle for protection of the
crypto-processor against hardware attacks.

The aim of the work described in this chapter is to propose a new evolution
of the HCrypt1 macroarchitecture maintaining high level protection against soft-
ware attacks and increasing robustness against SCA and FIA. One of the main
advantages of the proposed architecture illustrated on the new HCrypt2 crypto-
processor is that besides high macroarchitecture level protection against software
and side-channel attacks, it simplifies implementation of common data hiding and
data masking techniques as protection against SCA at microarchitecture level.

Unfortunately, HCrypt1 security does not depend only on its macroarchitecture.
The SCA exploits physical phenomena related to HCrypt microarchitectural prop-
erties. However, the internal structure of the cipher and decipher units must be
considered when analysing HCrypt microarchitectural properties. For this reason,
the cipher and decipher cannot be considered as black-box units any longer, and
so their ciphering and deciphering algorithms must be selected. For the sake of
simplicity, we chose the AES standard [8], and so the AES cipher and AES decipher
will be considered further on in this chapter.

5.2.1.1 Evaluation of the AES Core Security Against SCA

The aim of the security evaluation is to determine how difficult it is for the attacker
to recover the secret key used for the enciphering. We assume that the attacker does
not have any knowledge about the transistor/cell netlist of the AES cipher. On the
other hand, we suppose that the attacker knows the cryptographic algorithm to be
attacked and its implementation.

The goal of the attacker is to obtain the secret key. For this reason, he will
try to exploit data-dependent power consumption. In order to construct the data-
dependent power consumption hypotheses, key-dependent intermediate results are
needed. The most common technique for the construction of hypotheses, considering
the data-dependent power consumption, is to use HW or HD power models.

Furthermore, we assume that the attacker has an access only to a limited amount
of the leaked information. Thus, the adversary is not allowed to fix some bytes
to simplify the cryptanalysis, and no viable methods can be used to decrease the
complexity of the hypotheses creation.

Finally, we suppose that the adversary will attack the AES cipher implemented
in FPGA, and that S-boxes are implemented using embedded RAM blocks. We will
suppose that the adversary can choose either HW or HD power model, but he prefers

92
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

HD power model, because it fits the real power consumption better. Let us assume
that the attacker can attack either the first or the last AES round key. In each case,
we will analyze the complexities of the HD and HW power model construction.

The further security evaluation of the AES cipher and decipher units requires a
short description of both architectures.

AES cipher architecture

The architecture of the AES cipher is illustrated in Fig. 5.1. High throughput is
provided by a 128-bit wide datapath. The folded structure of the datapath performs
one enciphering in 11 clock cycles. 16 parallel 8-bit substitution tables (S-boxes) are
implemented in 8 TDPRAM blocks. These embedded RAMs are synchronous, and
so their internal registers serve also to register round state value. ShiftRows oper-
ation is implemented solely by routing resources. Four parallel 32-bit MixColumns
units are implemented in logic. Input plain-texts and output plain-texts are regis-
tered using DFF. Round keys are generated by the Key expansion unit, which has
also 128-bit folded datapath and computes one round key per one clock cycle.

Let us denote ShiftRows (SR) and InvShiftRows (SR−1) operations applied to
the byte i, j of the AES state as

SR (i, j) = (i, j − i (mod 4)) (5.2)

SR−1 (i, j) = (i, j + i (mod 4)) (5.3)

Let the input data register contains the m-th plaintext block pt(m). This block
is XORed with the round key k(0) producing the state x(0) = pt(m) ⊕ k(0). Since
the round counter is initialized to zero (r = 0), the sum propagates to the S-
box input. The SubBytes operation (SB) is carried out at the beginning of the
next clock cycle (r = 1), producing SB(x(0)). Subsequently, after ShiftRows, the
MixColumns operation (MC) is applied. The output of the MixColumns w(r) =

MC
(

SR
(

S(pt(m) ⊕ k(0))
))

is selected by the multiplexer (since r = 1), XORed
with the round key k(1), producing a new state x(1) = w(1) ⊕ k(1). The state x(1)

propagates to the S-box input, and the SubBytes operation is applied again in the
subsequent clock cycle, etc.

In the last round (r = 10), the cipher-text can be described as

ct(m) = x(10) = w(10) ⊕ k(10) = SR
(

SB(x(9) ⊕ k(9))
)

⊕ k(10) (5.4)

where ct(m) is registered in the output data register (the MixColumns function is
not performed in the last round). At the same time the round counter resets to
r = 0, and the input register outputs the next plaintext block pt(m+1). Input and
output registers are enabled only during the last clock cycle (r = 10).

Known cipher output cipher-text attack

We recall that the attacker needs to know two consecutive values of certain reg-
ister output in order to construct usable HD power hypotheses. Let us assume that

5.2. Crypto-processor with Zero-cost Countermeasures 93

1
6
xS

B
O

X

(8
xT

D
P

 R
A

M
)

D

ENA

Q

D

ENA

Q

start == ‘1’

start== ‘1’

S
h

if
t
ro

w
s

M
ix

 c
o

lu
m

n
s

10

1..9

0

Round

key

DI

KI
Key

expansion
D

ENA

Q

round==10

round

DO

128

128

128

x
(r) SB(x

(r)
)w

(r)

k
(r)

pt
(m)

ct
(m)

Figure 5.1: Architecture of the AES cipher with the 128-bit folded datapath

the attacker has access only to the cipher output (cipher-texts). The best register
candidates are the internal registers of the embedded RAMs implementing S-boxes.
The RAM registers are used to register the RAM inputs (control, address and data)
before being used to access the memory matrix. These registers are the best source
of leakage, because they are all producing the key-dependent dynamic power con-
sumption triggered by the clock rising edge. Since S-box RAM input x(r) is mirrored
to the output of its internal registers after the clock rising edge, we have to construct
the hypotheses for the S-box input x(r). The key expansion will not be considered
in this analysis.

In order to construct the HD power model, we need to find two consecutive values
of the S-box register. The value of the S-box input x(10) in the last round (r = 10)
corresponds to the cipher-text ct(m) that will be registered by the output register
at the end of this round. However, this cipher-text ct(m) will be also registered
by the embedded RAM (further referenced as S-box). The next step is to track a
value that was stored in the S-box register before the ct(m) value was registered.
For tracking the value, some part of the key has to be guessed. In fact, the 32-bit
MixColumns operation is not involved in the last round, thus the narrowest is the S-
box operation and it is performed on 8 bits. For this reason, only 28 key hypotheses
k
(10)
i,j are required and the attacker needs to distinguish the correct hypothesis from

the 255 incorrect hypotheses only. The 8 bits of the previous value stored in the
S-box register are

x
(9)
i,j = SB−1

(

k
(10)
i,j ⊕ ct

(m)
i,j

)

(5.5)

Having both the actual and previous S-box register values, we can construct the
Hamming distance power model:

H
k
(10)
i,j

= HD
(

SB−1
(

k
(10)
i,j ⊕ ct

(m)
i,j

)

, ct
(m)
SR−1(i,j)

)

(5.6)

Other alternative is to construct a Hamming weight power model. Although
easier to construct, the 8-bit key hypothesis is required, its precision is much lower

94
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

and so much more traces are required to achieve the same success rate as with the
Hamming distance power model. The HW power model requires only one state
value and so Eq. 5.5 can be used. The HW power model is

H
k
(10)
i,j

= HW
(

x
(9)
i,j

)

= HW
(

SB−1
(

k
(10)
i,j ⊕ ct

(m)
i,j

))

(5.7)

We can see that only 28 key hypotheses are required for construction of the HD
power model.

Next, we show that it is much more difficult to attack the cipher if only input is
known.

Known cipher input plain-text attack

In some cases, the attacker does not have a direct access to the cipher output
cipher-text and he has to use the cipher input data to recover the secret key. To
construct the HD power model, two consecutive register states have to be found.
Like in the previous scenario, the S-box input register is suitable for the attack.
After starting the enciphering, a plain-text pt(m) is XORed with the k(0) producing
the state value x(0). In the next round (r = 1), the state value is substituted
by the S-box operation, the ShiftRows operation is applied, transformed by the
MixColumns operation (applied on 32-bit words) and XORed with the next round
key k(1) producing the new state value x(1). This way we can find two consecutive
states bytes x(0) and x(1) stored by the S-box registers. However, the attack is not
as simple as in the previous case. The computation of at least one byte of the x(1)

value necessitates involvement of the 32-bit MixColumns operation and the addition
of the round key (for r = 1). Thus, at least 32 bits of the round key k(0) have to
be guessed to calculate the 32-bit MixColumns operation, and also at least 8 bits of
the round key k(1) have to be guessed to obtain a one byte of the state value x(1).
Before the HD power model can be constructed, we need to find the equation for
the 32-bit output word w

(1)
∗,j of the j − th MixColumns block

w
(1)
∗,j = MC

(

SB
0≤i≤3

(

pt
(m)
SR−1(i,j)

⊕ k
(0)
SR−1(i,j)

)

)

, (5.8)

where the asterisk symbol denotes all values for i. The last step is to select one
byte (i−th) out of the 32-bit word w

(1)
∗,j and determine a byte of the next state value

as x
(1)
i,j = w

(1)
i,j ⊕ k

(1)
i,j . The computation of the i − th byte of the new state value

requires an 8-bit round key hypothesis in round r = 1. The resulting HD power
model is

H
k
(0)

SR−1(∗,j)
,k

(1)
i,j

= HD
(

w
(1)
i,j ⊕ k

(1)
i,j , pt

(m)
SR−1(i,j)

⊕ k
(0)
SR−1(i,j)

)

, (5.9)

and requires guessing four bytes of the round key k(0) in round r = 0 and one byte
of the round key k(1) in round r = 1. Thus the complexity of the HD power model
necessitates at least 240 key hypotheses and the attacker have to distinguish the
correct hypothesis from the remaining 240− 1 incorrect ones. Naturally, much more

5.2. Crypto-processor with Zero-cost Countermeasures 95

power traces are required to distinguish the correct key hypothesis with the same
success rate than in the known cipher output case.

Similarly to the previous case, the HW power model can be constructed. Al-
though only the 8-bit key hypothesis is required, the HW power model is not as
precise as the HD power model and so much more power traces are required to
achieve the same success rate. The HW power model requires only one state value
(i.e. x(0)). The HW power model for i, j byte of the state value is

H
k
(0)
i,j

= HW
(

x
(0)
i,j

)

= HW
(

k
(0)
i,j ⊕ pt

(m)
i,j

)

(5.10)

One way to prevent the attacker from constructing the HD power model is to
insert a random pre-charge phase, so that a random value is inserted between two
consecutive state values. However, this approach necessitates additional resources
and the cipher throughput is significantly lower. Interestingly, hiding the cipher
output data from the attacker can be seen as some kind of countermeasure (i.e.
when processing a session key using a master key), since much more plain-texts have
to be ciphered with the same secret key. Moreover, this countermeasure requires no
additional resources and the throughput is maintained, thus it can be considered a
zero-cost countermeasure.

AES decipher architecture

The architecture of the AES decipher is shown in Fig. 5.2. Similarly to the
AES cipher architecture, the AES decipher features the 128-bit folded datapath
capable of deciphering one 128-bit cipher-text in 11 clock cycles. 16 parallel 8-bit
inverse substitution tables (InvS-boxes) are implemented in 8 TDPRAM blocks.
Registration of the round state is carried out by InvS-box embedded synchronous
RAMs. InvShiftRows operation is implemented solely by the routing resources.
Four parallel InvMixColumns units are implemented in logic. Input cipher-texts
and output plain-texts are registered using DFFs. Round keys are generated by
the Key expansion unit, which has also 128-bit folded datapath and computes one
round key per one clock cycle.

Let the input data register contains the m-th cipher-text block ct(m). This block
is XORed with the round key k(10) (round keys are in reversed order) producing the
state x(0) = pt(m) ⊕ k(10). Since the round counter is initialized to zero (r = 0),
the sum propagates to the InvS-box input. The InvSubBytes operation (SB−1) is
carried out at the beginning of the next clock cycle (r = 1), producing SB−1(x(0)).
Subsequently, after InvShiftRows (SR−1) a round key k(9) is added producing the
w(1) = SR−1

(

SB−1
(

ct(m) ⊕ k(10)
))

⊕ k(9). Finally, the InvMixColumns transfor-
mation (MC−1) is applied, its output is selected by the multiplexer (since r = 1)
and the new state value x(1) = MC−1

(

w(1)
)

is calculated. The state x(1) propa-
gates to the InvS-box input, and the InvSubBytes operation is applied again in the
subsequent clock cycle, etc.

96
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

1
6
xI

n
vS

B
O

X

(8
xT

D
P

 R
A

M
)

D

ENA

Q

D

ENA

Q

start == ‘1’

start == ‘1’

In
v.

 S
h
ift

 r
o
w

s

Inv Mix
columns

1

0

Round key

DI

KI Key

expansion

D

ENA

Q

round==10round == 0

DO128

128

128

x
(r)

SB
-1

(x
(r)

)

w
(r)

ct
(m)

k
(10-r)

pt
(m)

Figure 5.2: Architecture of the AES decipher with the 128-bit folded datapath

In the last round (r = 10), the resulting plain-text can be described as

pt(m) = w(10) = SR−1
(

SB−1(x(9))
)

⊕k(0) = SR−1
(

SB−1
(

MC−1
(

w(9)
)))

⊕k(0)

(5.11)
where pt(m) is registered in the output data register. At the same time the round
counter resets to r = 0, and the input register outputs the next cipher-text block
ct(m+1). Input and output registers are enabled only during the last clock cycle
(r = 10).

Known decipher output plain-text attack

Let us assume that the attacker has access only to the decipher output (plain-
texts). Similarly to the cipher implementation, the best register candidates are
the internal registers of the embedded RAMs implementing InvS-boxes (further just
InvS-box). Since InvS-box input x(r) is mirrored to the output of its internal registers
after the clock rising edge, we have to construct the hypotheses for the InvS-box
input x(r). The key expansion will not be considered in this analysis.

In order to construct the HD power model, two consecutive values of the InvS-
box register have to be found. The value at the InvS-box input x(10) in the last
round (r = 10) corresponds to MC−1

(

pt(m)
)

. At the end of the 10− th round the
w(10) value will be registered by the output data register as the plain-text pt(m) and
at the same time the value x(10) will be registered by the InvS-box internal register.
The construction of the HD power model requires also computation of one byte of
the state x(9) using the equation

x
(9)
SR(i,j) = SB

(

w
(10)
i,j ⊕ k

(0)
i,j

)

= SB
(

pt
(m)
i,j ⊕ k

(0)
i,j

)

(5.12)

Since the whole 128-bit word of the x(10) can be precomputed using the equation

x(10) = MC−1
(

pt(m)
)

(5.13)

5.2. Crypto-processor with Zero-cost Countermeasures 97

the HD power model for the decipher output can be constructed as follows

H
k
(0)
i,j

= HD
(

x
(10)
SR(i,j), SB

(

pt
(m)
i,j ⊕ k

(0)
i,j

))

(5.14)

Similarly the construction of the HD model requires 256 key hypotheses. Ac-
cordingly the Hamming weight power model can be constructed for the InvS-box
input using 8− bit key hypotheses as

H
k
(0)
i,j

= HW
(

x
(9)
SR(i,j)

)

= HW
(

SB
(

pt
(m)
i,j ⊕ k

(0)
i,j

))

(5.15)

Next, we show that it is much more difficult to attack the decipher if only the
input is known.

Known decipher input cipher-text attack

If we assume that the attacker has access only to the decipher input (cipher-
texts) he would probably try to construct the HD power model for the InvS-box
input. Unlike the known plain-text case, it is much more complex to calculate the
two consecutive state values. The state value during the 0 − th round (r = 0)
requires to guess certain number of key bits because of initial key whitening. After
propagating through InvS-boxes and InvShiftRows, another key bits have to be
guessed before the InvMixColumns transformation can be applied in the first round
(r = 1). Consequently, more than 40 key bits have to be guessed and so not
only more power traces are required, but complex computations make attack time-
consuming or even infeasible.

However, the attack could be still feasible if a sequence of cipher-texts is con-
sidered in HD power model and decipher control can be reset. First the plain-text
ct(m) is registered by the input data register. Subsequently the key k(10) is XORed
with the cipher-text producing the state x(0) in the round r = 0. This state value
is registered at the next rising edge by the InvS-box input registers. This is the
moment when the attacker has to reset the cipher’s round counter to r = 0 and
input data register has to output the next cipher-text ct(m+1). This way the new
cipher-text will be XORed with the same key k(10). The produced state value will
overwrite the previous value stored in the InvS-box input register. This change can
be exploited to construct the HD power model. Naturally, only one byte of the
secret key has to be guessed, since the same key is used with the both cipher-texts.
The HD power model involving an 8-bit key hypothesis is as follows

H
k
(10)
i,j

= HD
(

SB−1
(

ct
(m)
i,j ⊕ k

(10)
i,j

)

, SB−1
(

ct
(m+1)
i,j ⊕ k

(10)
i,j

))

(5.16)

The Hamming weight power model does not require resetting the round counter
since only one state value is required for one cipher-text. The HW power model is
as follows

H
k
(10)
i,j

= HW
(

ct
(m)
i,j ⊕ k

(10)
i,j

)

(5.17)

98
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

Table 5.1: Power analysis attacks on an AES cipher and decipher

Attack side Attack requirements

SCA1 (ciph.) Plain-Text input HD model, 240 key hypotheses at round 1 for each S-Box

SCA2 (ciph.) Cipher-Text output HD model, 28 key hypotheses at round 10 for each S-Box

SCA3 (deciph.) Cipher-Text input HD model, > 240 key hypotheses at round 1 for each S-Box

SCA4 (deciph.) Cipher-Text input HD model, 28 key hypotheses at round 1 for each S-Box

+ round counter reset at round 0

SCA5 (deciph.) Plain-Text output HD model, 28 key hypotheses at round 10 for each S-Box

To sum up, the Hamming distance power model is very difficult to construct,
because more than 40 bits of the key have to be guessed. On the other hand, the
Hamming weight power model is feasible requiring 256 key hypothesis only. If an
option to reset the cipher exists, the HD power model can be substantially simplified
to require only 8-bit key hypotheses. The complexity of HD model creation for the
AES cipher and decipher are summarized in Tab. 5.1.

The attacks can be prevented using countermeasures. However it is always more
expensive to protect the AES decipher using additional countermeasures (i.e. DRP)
than the AES cipher, because the implementation of the InvMixColumns operation
requires more logic resources than the MixColumns operation [85]. For this reason,
the AES cipher with countermeasures is preferred in cost-sensitive applications.

5.2.1.2 Evaluation of HCrypt1 Security Against SCA and FIA

According to separation rules presented in Sec. 3.2, the secret keys are well protected
against software attacks if no direct physical path exists between the key memory
and the data registers. This essential condition is met very well in HCrypt1, since
data buses never cross the cipher-key zone barrier and the key buses never cross
data-cipher zone barrier. Thus, the only way for session keys to get to data registers
is by passing via the cipher (being enciphered with the master key).

Unfortunately, the security evaluation of HCrypt1 is less positive when examin-
ing its robustness against SCA attacks. The master key is used by both cipher and
decipher and so both of them should be considered in the security analysis. The
security analysis, presented in the previous section, is essential for the evaluation of
the HCrypt1 security against physical attacks. We suppose that the attacker not
only can passively measure the power consumption of the digital circuit, but also
can choose data that enter the circuit. Furthermore, we suppose that the attacker
has the ability to manipulate with the control logic (inject faults to the control unit,
change the multiplexer select state, etc.). The objective of this work is to find a
way to protect the secret keys stored in the crypto-processor from their disclosure
despite the fact that the attacker has all mentioned capabilities.

5.2. Crypto-processor with Zero-cost Countermeasures 99

Table 5.2: Possibilities of physical attacks on the HCrypt1 crypto-processor

Operation type Equation Potential attack Target #

Session key generation SK = C
−1
MK(TRNG) FIA on M1 + SCA1 MK ①

Session key transmission OUT = CMK(SK) FIA on M2 + SCA2 MK ②

Session key reception SK = C
−1
MK(IN) SCA1 MK ③

Data enciphering OUT = CSK(IN) DFA SK ④

SCA2 SK ⑤

DFA + FIA on M3 MK ⑥

SCA2 + FIA on M3 MK ⑦

Except SCA, we would like also to draw readers’ attention to more sophisticated
physical attacks exploiting AES cipher output data. Very powerful are the Dif-
ferential Fault Analysis attacks (DFA) on AES proposed by Piret and Quisquater
[139] where the fault is injected between the last and the penultimate AES round.
Authors claim that only 2 faulty cipher-texts are necessary to break the AES. We
would like to take these attacks also into consideration in the further analyses.

Tab. 5.2 summarizes all physical attacks on HCrypt1 (presented in Sec. 3.3). The
examination of the HCrypt1 architecture (see Fig. 3.3) shows that the attacker can
gain access to the cipher data input, cipher data output and decipher data input.
It is important to note that the adversary could retrieve master key by taking
advantage of FIA on multiplexers M1, M2 and M3 (see Fig. 3.3) and observing the
first rounds of the decipher or the last round of the cipher (refer to attack ①, ②,
⑦ in Table 5.2). For instance, when M3 was targeted by FIA, the SCA2, which
is more powerful than SCA1 as requiring less key hypotheses, can be launched
on the master key. The decipher cannot be attacked at the last round (see the
SCA5 attack), because its output is stored in the session key memory, which is not
available to the attacker. Although the session key can be attacked relatively easily
(attacks ④, ⑤), it could be changed dynamically in order to avoid the adversary to
accumulate enough power traces for the SCA attack.

To sum up, the HCypt1 was resistant to software attacks, but remained vul-
nerable to SCA and FIA on master and sessions keys. Especially dangerous are
FIA on multiplexer M3 capable of replacing the session key by the master key. To
resist SCA attacks, both cipher and decipher had to be protected at the microar-
chitecture level using some data hiding or data masking techniques. Next, we will
present new macroarchitecture that increases the robustness of the crypto-processor
and simplifies also its protection at microarchitecture level.

5.2.2 Design of SCA and FIA Resistant HCrypt Version

Starting from HCrypt1 security analysis, the next objective for protecting secret
keys against SCA and FIA was to reorganize blocks of the crypto-processor in such

100
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

Data bus Key memory
bus

Cipher key
bus

2. Cipher zone 3. Key zone

Master Key
 input

LEGEND:

R1

R2

..
.

Rn

CTo

CTi
PTi

PTo

Data
I/O 1. Data zone

Input
FIFOs

Output
FIFOs

H
C

ry
p

t2

ALU

128

128

128

32/128

CIPHERD

TRNG

Master

key

register

Session

key

register

M1

HASH

C
M
P

M2

M3

CIPHERK

Figure 5.3: HCrypt2 with parallel cipher-cipher architecture

a way, that the cipher/decipher would be easier to protect and the attacker would
not have direct access to data required for the attack. The new crypto-processor,
replacing HCrypt1 in an MPSoC, had to offer the same features while reaching a
higher security level. First, in order to avoid the use of the decipher that is more
complex and more expensive to protect against side-channel attacks, we propose to
replace the decipher by another cipher and to use the two ciphers for different and
independent tasks. Second, we search for such HCrypt architecture, where only one
cipher operates with master keys. This way, only one cipher has to be protected by
expensive countermeasures. Third, because of this substantial modifications, some
new blocks must be added.

The proposed HCrypt2 crypto-processor is depicted in Fig. 5.3. It complies with
all separation rules discussed in the previous section. As its predecessor, it is divided
to data, cipher and key zones. All internal buses are 128 bits wide. Basically, data
buses can never pass to the key zone and cipher key buses to the data zone. Unlike
HCrypt1, the key memory buses are used only to transport session keys in clear
to session key register or to the Hash unit. No session key in clear can enter the
cipher data input anymore only the cipher key input. This unique feature increases
security against software attacks even more. The replacement of the decipher by
another cipher caused that session keys cannot be authenticated anymore. To allow
the authentication of session keys a Hash unit was added.

Next, we will present the hardware architecture of the HCrypt2 crypto-processor,
and explain features distinguishing HCrypt2 from its predecessor.

5.2.2.1 Hardware Architecture

The transition from the HCrypt1 to HCrypt2 architecture necessitates various changes
in data, cipher and key zones. Next, we present mostly the differences between two
crypto-processors. More details on HCrypt1 can be found in Sec. 3.3.

5.2. Crypto-processor with Zero-cost Countermeasures 101

Cipher zone

It can be observed in Fig. 5.3 that the cipher zone of the new crypto-processor
is substantially changed. It contains two ciphers working independently. The Key
Cipher (CipherK) is used solely for enciphering of session keys. In order to satisfy
separation rules, it cannot be used for session key authentication because its output
would need to be connected to the data bus. Instead, we propose to use a hashing
function for key authentication. This way, the session key cannot be read in any
way from the session key register. Note, that in case of HCrypt1, two 128-bit
master key registers were necessary (one for encryption, one for decryption). Unlike
HCrypt1, only the CipherK operates with the master key (no decryption master key
is necessary) and so only one 128-bit master key register is required in HCrypt2.

Data are enciphered only by the Data Cipher (CipherD) using stored session
keys. The new crypto-processor supports all basic block encryption modes except
for the CBC mode, because the decipher is not available. However, data can be
authenticated using the CBC-MAC mode, which requires only enciphering.

The last problem to solve is the session key generation and exchange. Session
keys that are generated in a TRNG are cryptographically protected, because before
being saved in the session key register and used for data enciphering, they are
enciphered using the master key. Therefore, protected session keys obtained at the
output of the TRNG can be exchanged using unprotected communication channel
(in our case the crypto-processor data path).

After receiving the protected session key and its fingerprint generated using a
hashing function, the receiving crypto-processor encrypts the session key, computes
the key hash value and compares it (in CMP) with the received fingerprint. If
fingerprints match, the session key is stored in the session key register. The com-
munication protocol will be presented later in this chapter.

Data zone

The HCrypt2 data zone remains the same as that of HCrypt1 expect for the con-
trol unit where several small modifications were necessary. The data zone contains
128-bit data registers, a 128-bit ALU, input/output FIFOs (converting data format
from the 32-bit internal SoC bus to a 128-bit crypto-processor data bus) and the
control logic.

The control logic responsible for instruction fetching, decoding and execution
had to be slightly modified because of changes in the cipher zone. Old instructions
using decipher are replaced or updated to support the key cipher instead. Moreover,
new instructions are necessary to control the hash unit.

Key zone

As in HCrypt1, the key zone contains session key and master key registers. The
master key register is initialized via a dedicated input. The only difference is the
absence of the storage for the authentication master key, since hashing algorithm
does not required a secret key.

102
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

Table 5.3: The modifications of the HCrypt1 instruction set

A) Modified instructions

Instruction Description

genk kx, rx, ry 1) Generate a protected session key and store it in the data register Rx,

2) Use CipherK to generate session key in clear and store it in Kx,

3) Compute the hash from the session key in clear and store it in Ry

getk rx, ry, ky, 1) Use CipherK to generate a session key in clear from the protected

session key (read from Rx) and store it in Ky

2) Compute the hash of the session key in clear and compare it with the received

hash stored in Ry and set the Authenticated flag if the two are matching

B) Removed instructions

Instruction Description

putk kx, ry Removed because its function is performed by the genk instruction

C) New instructions

Instruction Description

hash rx, ry Calculate hash of the Rx data and store it to Ry data register

gend rx Generate random data word using TRNG and store it in data register Rx

5.2.2.2 Implementation of the Crypto-processor on FPGA

Similarly to HCrypt1, all three zones have to be placed into a separated logic par-
tition, and each partition have to be mapped into an isolated physical block. Each
physical block must be surrounded by unused logic blocks (i.e. CLB). Only se-
lected wires can cross this isolation fence and interconnect the three zones. This
way the physical separation at routing level is achieved. The two are the necessary
preconditions for highly secure design.

5.2.2.3 Programming Means

The changes in the cipher zone require changes in the HCrypt1 instruction set shown
in Tab. 3.5. First of all, instructions for key generation and manipulation (i.e. genk,
getk and putk) are updated in the control unit to support the key cipher and the new
hash unit. Moreover, the hash unit can be used optionally for data authentication,
and so a new instruction was added into the instruction set. The modifications of
the HCrypt1 instruction set are summarized in Tab. 5.3.

Since the instruction set was changed, HCrypt software must be modified too.
Such modified software can be compiled with FlexASM and the resulting machine
code can be used for VHDL simulation or real operation in FPGA hardware.

FlexASM assembler

Although the instruction set was modified, the FlexASM source code does not

5.2. Crypto-processor with Zero-cost Countermeasures 103

have to be rewritten and recompiled, because FlexASM is independent from the
processor. Actually, the processor instruction set is defined in the text file that is
read by FlexASM, and so only modifications in this file are necessary to support
HCrypt2 instruction set.

5.2.2.4 Communication Protocol

Although the robust cryptographic protocol presented for HCrypt1 (see Sec. 3.3.4)
must be modified, it must be ensured that the session keys are exchanged and
authenticated correctly. Not only session key exchange, but also data has to be
protected by encryption and data authenticity has to be guaranteed. The com-
munication protocol is implemented in HCrypt2 software, and all security critical
operations are carried out by dedicated instructions. The key exchange part of this
protocol is based on the authenticated point-to-point key update protocol described
in Sec. 2.5.4.2.

We present the example of the cryptographic protocol for communication be-
tween sides Alice (A) and Bob (B) (see Fig. 5.4) in order to illustrate efficiency of
the proposed structure. In practice, any other common cryptographic protocol can
be implemented. Tasks 1, 2, 3, 8 and 9 are performed solely in the protected area
(cipher and key zone) and tasks 5, 6, 7 are executed only in the unprotected area
(data zone). Tasks 4 and 10 represent iterative implementation of encryption modes
(EM) performed partly by the unprotected area (registering and xor-ing of subse-
quent data blocks) and partly by the protected area (enciphering E and deciphering
E−1). In this protocol, we assume that both devices were initialized by a trusted
entity TE using the same enciphering (MK) master key and that the key is saved
in master key register (protected area). The key exchange protocol is based on sym-
metric key cryptography. In the first step, the device starting the communication
(A), generates a new session key SK: the protected session key PSK is generated
by the TRNG (Task 1 in Fig. 5.4), the protection is removed by being enciphered
with the key cipher EMK using the master key MK resulting in the session key in
clear SK, which is subsequently stored in clear in the session key memory (Task 2).
Note that the session key PSK generated by the TRNG is considered protected and
so can be directly transferred to the unprotected area. Finally, a digital fingerprint
FPA is generated by the hash unit (HASH) (Task 3).

When both the session key SK and its fingerprint FPA are generated, Task 4
can be executed in a loop: data blocks (DATAi) are sent from the data zone to the
cipher zone, where they are enciphered using SK and sent back to the data zone
as CDATAi. ALU combines input and output blocks according to the encryption
mode algorithm (EM) and computes MCDATAi. Finally, packet P containing
the protected session key PSK, its fingerprint FPA, and enciphered data blocks
MCDATAi is created (Task 5). The packet is sent to device B (Task 6). The
crypto-processor on the side B receives the packet P (Task 7) and extracts the
protected session key PSK and its digital fingerprint FPA. The key is then sent to
the cipher zone, where it is enciphered using the master key MK and the resulting

104
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

Side Bob
7. RECEIVE(P)

8. SK = EMK(PSK)

10. IF FPA = FPB THEN

 Loop {

 CDATAi = EM
-1

(MCDATAi);

 DATAi = ESK(CDATAi); }
9. FPB = HASH(SK)

Side Alice
1. PSK = TRNG(·)
2. SK = EMK(PSK)

3. FPA = HASH(SK)

4. Loop { CDATAi = ESK(DATAi);

 MCDATAi = EM(CDATAi); }

6. SEND(P)

5. P = {PSK | FPA | MCDATA}

Figure 5.4: HCrypt2 communication protocol between two devices

session key in clear SK is stored in the session key memory (Task 8). A fingerprint
FPB of the session key SK is generated by the hash unit (Task 9) and compared
with the received fingerprint FPA (Task 10). If both FPA and FPB are matching,
the session key is authenticated and can be used for data enciphering/deciphering
(the loop in Task 10).

Note that the same packet structure can be used for both HCryp1 and HCrypt2.
This straightforward packet structure is depicted in Fig. 3.6 and more details can
be find in Sec. 3.3.4.

5.2.3 Evaluation of the HCrypt2 Security Against SCA and FIA

The HCrypt2 crypto-processor complies with proposed separation rules, so it is as
resistant to software attacks as its predecessor. In contrast to HCrypt1, the CipherK
is used only for the key enciphering and the CipherD only for data enciphering, de-
ciphering and authentication. This fact brings three advantages. First, the AES
decipher that is expensive to protect against hardware attacks is not needed any
more, while the AES cipher, which is used instead, is much easier to protect. Sec-
ond, both ciphers do not need the same level of protection. The CipherK that uses
a long life master key as encryption key, should be better protected. The CipherD
does not need any active protection, since session keys can be frequently regenerated
according to the information leakage. Moreover, session keys are exchanged less fre-
quently than data, and so CipherK could be much smaller (e.g. 32bit datapath,
8bit datapath). Such small cipher would be even cheaper to protect with addi-
tional countermeasures (i.e. masking, DRP, etc.). Third, the decipher and cipher
in HCrypt1 required both encryption and decryption master keys (we remind that
the decryption key is the last expanded encryption key). Unlike HCrypt1, HCrypt2
requires only one 128-bit master key register.

In the new processor, master key and session key buses are separated. The
multiplexer M3 that was security critical in HCrypt1, is not necessary in HCrypt2.
The master key is transferred only to the CipherK and only by a dedicated bus.

When considering SCA and FIA attacks on AES, it is very important that the
CipherK output is not available to the attacker. Since the DFA attacks are targeting
last cipher rounds, they are infeasible in the current crypto-processor configuration.
The same is true for known cipher-text SCA2 attacks using a Hamming distance
model that are the most easy to realize on the last cipher round. The only possibility
to attack master key is by attacking the first round of CipherK (SCA1, attack ❶ and

5.2. Crypto-processor with Zero-cost Countermeasures 105

Table 5.4: Possibilities of physical attacks on the HCrypt2 crypto-processor

Operation type Equation Potential attack Target #

Sess. key generation SK = CKMK
(TRNG) FIA on M1 + SCA1 MK ❶

Sess. key transmission OUT = TRNG - - -

Sess. key reception SK = CKMK
(IN) SCA1 MK ❷

Data Enciphering OUT = CDSK
(IN) DFA SK ❸

SCA2 SK ❹

❷ in Tab. 5.4). However, in AES, the SCA1 attack is significantly harder than SCA2
as the first round includes the MixColumns operation. The SCA and FIA attacks
against the CipherD can be countered if session keys are changed often enough in
order to prevent the attacker from gaining sufficient number of power traces. The
DFA protection of the CipherD could also be achieved by resilience properties at
protocol level or physical level [140]. Physical attacks on HCrypt2 (based on the
attacks defined in Tab. 5.1) are shown in Tab. 5.4.

To sum up, HCrypt2 is resistant to software attacks and FIA against the master
key. Moreover SCA attacks against the CipherK are more difficult to perform than
in HCrypt1. The CipherD protection depends on the key exchange protocol or on
the use of resilient operations.

5.2.4 Implementation Results

The HCrypt2 crypto-processor was described as a parameterized VHDL block us-
ing Xilinx ISE version 12.4 and mapped to Xilinx Virtex-6 XC6VLX240TFF1156
device. HCrypt2 was implemented and tested in Xilinx ML605 evaluation board.
The system utilizes just fine-grain FPGA resources and embedded RAMs/FIFOs.
The parameterized width of input/output FIFOs can be set to 32 or 128 bits. The
operation of HCrypt2 was first simulated using Xilinx ISim tool and subsequently
tested in hardware. The communication between the PC and the board was realized
via a small Cypress USB module.

Note that the proposed crypto-processor architecture is independent of the choice
of enciphering algorithm, hashing function and TRNG principle. Selection of AES
as a testing algorithm is quite natural – it is currently the most frequently used
symmetric key enciphering algorithm. Selection of the MD5 algorithm as a hashing
function was motivated by two facts: its VHDL sources are freely available and
I/O block size (128-bits) was convenient for our application. However, because of
concerns about MD5 security, the MD5 algorithm should be replaced by the new
SHA-3 algorithm (Keccak) in the final version of the crypto-processor.

106
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

Table 5.5: Implementation results of HCrypt1 and HCrypt2 in Xilinx Virtex-6

HCrypt1 HCrypt2

Cip Decip Other Total CipK CipD Hash Other Total

Slices 216 329 877 1422 216 216 371 815 1618

BRAMs(kb) 180 180 828 1188 180 180 0 828 1188

Table 5.6: Number of clock cycles required for the packet processing

Packet overhead Data

Header decod. Key decr. (by CIPK) Key auth. (HASH) Other One 128-bit CFB loop

Clk. cycles 34 12 66 30 14

5.2.4.1 Cost Evaluation

Utilization and distribution of resources, together with those of HCrypt1, are il-
lustrated in Tab. 5.5. These resources do not include USB interface since its size
is negligible and it was used only during the tests in hardware. HCrypt1 occupies
1422 slices (including AES cipher and decipher, TRNG, processor’s data path and
128-bit FIFOs, internal registers and control logic) and 1188 kb of embedded RAM
while HCrypt2 utilizes 1618 slices (including two AES ciphers, MD5 hash function,
and all other parts like in HCrypt1) and 1188 kb of embedded RAM.

5.2.4.2 Simulation

The simulation was used extensively during the design phase, when many HCrypt2
bugs were found and corrected. It was also used to debug HCrypt2 software. Fi-
nally, the simulation was used to estimate the maximum theoretical throughput of
HCrypt2, since a cycle count for all critical loops can be accurately simulated.

For the fair comparison both crypto-processors used the same protocol and the
same structure of packets. Software was slightly modified, since HCrypt2 has dif-
ferent instruction set and the new cipher zone operates differently. Since external
HCrypt1 interface stayed intact, the same test bench was used for the simulation.

First, the crypto-processor was initialized by the master key and program code.
Afterwards, packets containing the enciphered session key, its fingerprint (hash
value) and 1024 blocks of data (each block 128 bits wide) were sent to the tested pro-
cessor. The processor analyzed packets, deciphered and authenticated the received
session key and deciphered the received data blocks using the CFB cipher mode.
Next, it created new packets containing deciphered data blocks and sent them to
the test bench for verification. The simulation procedure was exactly the same as
in the case of HCrypt1 and further details can be found in Sec. 3.4.2.

Tab. 5.6 shows how many clock cycles are required to carry out different oper-
ations that packet processing requires. Data are processed using CFB block cipher
mode. The CFB loop constitutes a critical loop.

5.2. Crypto-processor with Zero-cost Countermeasures 107

Table 5.7: Dependence of maximum throughputs on number of 128-bit data blocks
in the packet

128b data blks. 1 2 4 6 8 10 12 14 16

Packet data in kb 0.125 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Packet speed in Mb/s 365.5 404.7 467.3 515.1 552.8 583.3 608.5 629.6 647.6

Data speed in Mb/s 73.1 134.9 233.6 309.0 368.5 416.6 456.3 489.7 518.1

Packet overhead in % 80 66.6 50.0 40.0 33.3 28.6 25.0 22.2 20.0

128b data blks. 20 32 50 64 100 128 256 512 1024

Packet data in kb 2.5 4.0 6.25 8.0 12.5 16.0 32.0 64.0 128.0

Packet speed in Mb/s 676.6 731.2 772.8 791.3 817.5 828.4 849.3 860.4 866.1

Data speed in Mb/s 563.8 650.0 715.5 744.4 786.0 803.3 836.2 853.7 862.7

Packet overhead in % 16.7 11.1 7.4 5.9 3.8 3.0 1.5 0.8 0.4

The simulation clock frequency was set to 100 MHz. Using this accurate timing
information maximum theoretic packet and data throughputs could be calculated.
The maximum throughputs are displayed in Tab. 5.7.

The maximum theoretic packet throughput, when processing 1024 data words
in the packet, reaches 866.1 Mb/s if HCrypt operates at the clock frequency of
100 MHz. The pure data throughput (without packet overhead) reaches 862.7 Mb/s
when processing 1024 data words.

5.2.4.3 Hardware Tests and Benchmark

The hardware tests are used to definitely prove the functionality of the system
and measure the real maximum data throughput. HCrypt2 together with the USB
interface were configured into the FPGA which was interconnected with the Cypress
USB module. The USB module communicated with the PC. The test was the same
as in the case of HCrypt1 and so further details can be found in Sec. 3.4.3.

Two frequency domains were present in the FPGA. HCrypt2 was operating at
the 100 MHz internal clock frequency as well as all its internal parts including the
AES ciphers. The USB interface was operating at the 48 MHz clock frequency. The
two frequency domains were synchronized by HCrypt2 input and output FIFOs.

In order to reach the clock frequency of 100 MHz, extra timing constraints were
required in the PlanAhead to shorten critical paths. Unlike the simulation, real
maximum data throughput reached 821.7 Mb/s. When considering not only data
but the whole packet, the maximum packet throughput was 825.0 Mb/s.

5.2.5 Discussion

Although HCrypt2 was implemented solely in Xilinx Virtex-6 FPGA, it can be
implemented in any other family from Xilinx or other vendors. However the VHDL

108
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

code portability is limited to FPGA specific resources (i.e. embedded RAMs, FIFOs,
PLLs), which have to be regenerated for every FPGA family.

The resource usage report show that most logic resources are dedicated to ALU
and processor’s data path. In HCrypt1, the decipher occupies almost 50% bigger
area than the cipher. Although the decipher was replaced by the smaller cipher
in HCrypt2, the MD5 hashing unit occupies more logic resources than the deci-
pher itself. Therefore, HCrypt2 needs 20% more area than HCrypt1. However, the
additional hashing unit (not available in HCrypt1) can be used for data integrity
checking or other cryptographic protocols. Note that if countermeasures at microar-
chitecture level (i.e. masking, hiding) were used, the HCrypt2 size increase would be
at least two-fold. This is however a very good result since only one cipher has to be
protected using these expensive countermeasures. If both the cipher and decipher
in HCryp1 included these countermeasures, the crypto-processor size increase would
be at least four-fold.

Most of embedded RAM blocks are used for implementation of Input/Output
FIFOs, that are used for data bus width conversion (if a 32-bit system bus should be
connected to the 128-bit processor bus) and clock domain separation. Other RAM
blocks are used for AES S-boxes. Utilization of the RAM memory blocks is not
optimal because AES S-box tables occupy only 4 kb out of 18 kb BRAM blocks.
However, the unused space can be used to store multiple types of S-boxes if some
data masking technique would be used as a countermeasure.

Although the payload data throughput in simulation of approximately 862.7
Mbits/s is smaller than maximum packet throughput, it includes packet overhead
and execution of the cipher modes. The obtained maximum real data throughput of
821.7 Mb/s has not reached the maximum theoretic data throughput. The reason
could be in the inaccurate simulation model of I/O FIFOs which does not match
exactly the real behavior of the embedded FIFO block. In contrast to HCrypt1, pro-
tected session key can be exchanged right after being generated by the TRNG thus
less clock cycles are required. However, the session key authentication (using the
MD5 hash unit) consumes much more clock cycles than CBC-MAC authentication
in case of HCrypt1 (66 vs. 13). However, for very long packets (1024 data words
of 128-bit size) the throughput decrease compared to HCrypt1 is negligible since
the key is exchanged and authenticated only once. The critical path of HCrypt2
is slightly longer that the one of HCrypt1. Is is probably caused by longer critical
path of the Hash unit. However, the maximum clock frequency decrease is almost
negligible. Its speed could be further increased by instruction set optimization and
parallel instruction execution (pipelining).

Currently, only basic NIST block cipher modes that do not require decipher are
supported (i.e. OFB, CFB and CTR) [1]. If some new authentication modes (i.e.
CMAC) and combined encryption and authentication modes (i.e. CCM, GCM) were
required, they could be easily implemented in the proposed crypto-processor thanks
to its flexible architecture.

Although the crypto-processor contains two ciphers, only one of them needs to
be protected against hardware attacks (the key cipher). However, since the key

5.3. Conclusions 109

cipher output is not available to the attacker, it is intrinsically more robust against
these attacks. This approach is a zero-cost countermeasure, because it increases
security of master keys without requiring any additional FPGA resources.

Protection of the data cipher will depend on the protocol and the session key
lifetime. Thanks to the availability of the key generator, session keys can be fre-
quently regenerated. Since the session keys are enciphered in the key cipher, this
cipher must be in this case better protected against side-channel attacks. Again,
its intrinsic robustness against such attacks is very useful. Nevertheless, it can be
further enhanced by other known countermeasures.

Logically, if more key hypotheses are required it is much harder to distinguish
the correct key candidate and so more information leakage is necessary to maintain
the same attack success rate. Interestingly, no study has been carried out so far
which compares these two aspects. Indeed, this is an open problem and has to
be confirmed not only by a DPA attack in hardware, but also by a theoretical
explanation including study of impact of distinguishers on the attack success rate.

5.3 Conclusions

We proposed a novel architecture for crypto-processors guaranteeing secure key man-
agement based on physical separation of registers and buses aimed at key manage-
ment from those aimed at data enciphering. The physical separation of the processor
blocks was shown to be robust against software attacks, but vulnerable to SCA and
FIA attacks.

We showed that by a tricky rearrangement of the crypto-processor blocks (while
maintaining the physical isolation of security zones according to the proposed sepa-
ration rules), the novel HCrypt2 crypto-processor is robust against software attacks,
differential power analysis and fault injection attacks.

The low cost of the proposed novel system level countermeasures makes them
very attractive in practical applications. Although they are shown to be efficient,
they can be completed by some common microarchitecture level countermeasures
based on data masking and data hiding. However, we have shown that only one of
the two ciphers needs to be protected against attacks and so it is far less expensive
to protect HCrypt2 than HCrypt1 using the same data masking or data hiding
techniques. Furthermore, the cipher protecting session keys is rarely used (only once
per packet). Thus, this cipher can be very small and this further decreases costs for
countermeasures at microarchitecture level. Moreover, only one 128-bit master key
register is required in HCrypt2 (only for enciphering) when compared to two 128-bit
master key registers in case of HCrypt1 (for enciphering and deciphering).

The novel HCrypt2 crypto-processor was simulated using Xilinx ISim and tested
in Xilinx Virtex-6 FPGA using ML605 evaluation board. However, it can be mapped
to any other FPGA or ASIC. Its VHDL source code is freely available.

HCrypt2 has reached slightly lower maximum data throughput (821.7 Mb/s)
than its predecessor (824.7 Mb/s). The reason is in longer computation of the

110
Chapter 5. Protecting Crypto-processors Against SCA at

Macroarchitecture Level

session key hash value during authentication.
Since the cryptographic part of the crypto-processor can be interfaced with the

processor using a simple data bus, the data part of the crypto-processor can be easily
replaced by a GPP such as ARM, Leon, NIOS II or MicroBlaze, while maintaining
the advantages of the proposed solution.

The work described in this chapter was done in cooperation with Télécom Paris-
Tech. It will be described in a paper and submitted to an international conference
soon.

Chapter 6

Partial Reconfiguration of

Crypto-processors

Contents

6.1 FPGA Reconfiguration and Security Aspects 112

6.1.1 FPGA Bitstream Protection 112

6.1.2 IP Bitstream Security in Partially Reconfigurable System . . 114

6.2 Separation Rules Involving Partial Reconfiguration 116

6.2.1 Total Reconfiguration Versus Partial Reconfiguration of the

Device . 117

6.2.2 Validation of the Principle of HCrypt-C Partial Reconfigura-

tion in SRAM FPGAs . 118

6.2.3 Reconfiguration of HCrypt-C Crypto-coprocessor in FPGAs

Containing Hardwired GPPs 119

6.3 Design of the Reconfigurable HCrypt-C 119

6.3.1 Reconfigurable Cipher Zone Modules 120

6.3.2 Reconfiguration Control Unit 122

6.4 Implementation Results . 123

6.4.1 Cost Evaluation . 123

6.5 Discussion . 126

6.6 Conclusions . 128

In the previous chapters, we have discussed only the possibility that an FPGA
is configured only during the power-up phase. However, if we suppose the FPGA
can be reconfigured during its run-time, new attacks can be carried out, not only
during the reconfiguration of the FPGA, but also before when the bitstream is stored
outside the FPGA. These aspects bring new challenges for the separation rules and
the secure key management. We would like to propose modifications of separation
rules that can guarantee secure key management even if parts of the system are
reconfigured during run-time.

First, this chapter familiarizes the reader with the trends in the FPGA reconfig-
uration research field with a focus on bitstream security. Second, the novel separa-
tion rules considering the FPGA reconfiguration will be presented. These separation
rules will be applied on the reconfigurable HCrypt-C crypto-coprocessor. To demon-
strate its functionality and security, the reconfigurable HCrypt-C crypto-coprocessor

112 Chapter 6. Partial Reconfiguration of Crypto-processors

will be interconnected with the MicroBlaze processor and compared with the three
static processor–coprocessor systems presented in Chap. 4.

6.1 FPGA Reconfiguration and Security Aspects

The introduction of FPGAs to market in eighties caused a boom in reconfigurable
computing. FPGA vendors (i.e. Xilinx, Altera, Microsemi, etc.), but also numerous
third-party vendors flooded the market with many intellectual property (IP) con-
figurations for various purposes. Although previously used mostly in networking,
the FPGA circuits emerged in 90-ties as a convenient platforms for implementation
of cryptographic algorithms for their flexibility and lower costs in case of small-
volume or middle-volume product series. It has become clear that the security of
cryptographic algorithms and confidential keys, stored in the FPGA bitstream, is
of paramount importance.

6.1.1 FPGA Bitstream Protection

Depending on how the configuration bitstream is stored inside an FPGA, the FPGA
devices can be Antifuse-based, Flash-based or SRAM-based. When considering the
security of the bitstream, the Antifuse-based FPGAs are the most secure, while
the SRAM-based FPGA are considered the least secure [141]. Next, we will briefly
introduce each FPGA technology while the most attention will be given to the
SRAM-based technology.

6.1.1.1 Antifuse-based FPGAs

The antifuse is a microelectronic component which permanently decreases its re-
sistance if a sufficiently high voltage is applied across its structure. This way the
antifuse is considered as programmed and thus creates a conductive connection.
The Antifuse-based FPGAs exploit this property to create conductive permanent
connections within the programmable logic fabric.

The configuration recovery is extremely difficult, because a lot of failed tries are
required to recover the configuration of one cell, while significantly damaging the
rest of the circuit. For this reason, about 800,000 Microsemi A54SX16 chips with
the same configuration are necessary to extract the whole configuration [142], [52].

Although very secure, the antifuse-based FPGA devices are only one time pro-
grammable, and thus any updates of cryptographic algorithms are not possible.
However, in security applications configuration updates may be necessary if the
security flaws are detected and implementation of additional countermeasures is
required. For this reason we will not consider antifuse-based FPGAs further.

6.1.1.2 Flash-based FPGAs

The configuration initialization to flash-based FPGAs represents the programming
of non-volatile flash switches. Unlike antifuse-based FPGAs, the Flash-based FP-

6.1. FPGA Reconfiguration and Security Aspects 113

GAs are very flexible, because the flash technology enables to reconfigure the FPGA.
Flash switches can be configured 10,000 to 100,000 times, because the accumulation
of electrons in the floating gate causes gradual rise of transistor threshold voltage
[52]. On the other hand, the flash-based FPGAs retain their configuration after be-
ing disconnected from the power source, and so they do not have to be reconfigured.

Currently, only the entire FPGA can be reconfigured. If the FPGA is config-
ured in a hostile environment, the configuration bitstream must be encrypted and
during the configuration process hard-wired AES unit decrypts the bitstream. This
approach requires to initialize a secret AES key into the FPGA in a trusted envi-
ronment. Although Microsemi FPGAs are configured from outside using the JTAG
interface, the new SmartFusion FPGA family permits to configure the FPGA from
inside by the hard-wired Cortex M3 processor. This in-application programming
approach can be used to remotely configure the FPGA in a secure way [39].

The configuration recovery is very difficult, because the attacker must determine
if the electric charge is present on each configured transistor floating gate. How-
ever, such an access to transistor floating gate necessitates removing passivation
layer without damaging the circuit. Such an operation requires a very expensive
equipment used also for the professional ASIC reverse-engineering. Afterwards, the
attacker can use microprobing to determine the charge of each floating gate, or can
power-up the chip in a vaccum chamber and observe the light emission of each flash
transistor [142]. All these techniques require a physical access to the FPGA die,
which is not always practical.

Much more dangerous are attacks that do not require depackaging. Recently,
a backdoor in the flash-based Microsemi FPGAs, known for their unprecedented
security, has been discovered by Skorobogatov et al. [143]. Authors claim that the
backdoor can be accessed via the JTAG interface and can enable the readback of the
whole FPGA configuration. The attack necessitates to try all the undocumented
JTAG commands while exploiting side-channel information leakage. In response,
Microsemi claims that for the highest security settings, the backdoor (actually an
internal testing facility) can be permanently disabled. Even though it is recom-
mended to physically protect the FPGA from outside to prevent the attacker from
accessing the JTAG interface.

6.1.1.3 SRAM-based FPGAs

The most common are the volatile SRAM-based devices. Unlike the previous two
technologies, the configuration is stored in static RAM memory cells which require
permanent power supply to retain their content. For this reason SRAM-based FP-
GAs require to be configured each time the power supply is disconnected. During the
FPGA initialization the bitstream stored in an external flash memory is transferred
to the FPGA. However, if cryptographic implementations and secret keys were part
of the bitstream, the security of these confidential data would be questionable.

Although previously claimed that FPGA layout cannot be reverse-engineered
from the FPGA bitstream, this security-by-obscurity concept was soon proved vul-

114 Chapter 6. Partial Reconfiguration of Crypto-processors

nerable, when NeoCAD company reverse-engineered the bitstream generation flow
[144, 145]. The netlist can be also recovered from the bitstream using the free soft-
ware Debit [146]. The first countermeasure against bitstream reverse-engineering
was proposed by Xilinx, where the bitstream was configured into the FPGA device
only once and then the whole FPGA was backed-up with the battery [147, 145]. This
way the FPGA did not have to be configured again. Although a sufficient security
of cryptographic algorithms and confidential keys was achieved, this solution was
very inconvenient for the short battery life (high power consumption of an FPGA).

The breakthrough came with the introduction of Xilinx Virtex-II FPGA, where
the bitstream stored in an external configuration memory is encrypted with a secret
configuration key. The configuration key is stored inside the FPGA in a RAM
memory, which is backed up by a small battery. After power-up, the encrypted
bitstream is deciphered by the hardwired 3-DES decipher using the configuration
key stored in a battery-backed RAM and configured into the FPGA. The similar
principle, based on the AES decipher, was later adopted to Virtex-4, -5, -6 and
Spartan-6 FPGAs [148].

A non-volatile polyfuse key storage has been implemented by the Altera company
in Stratix II. Altera Stratix III, IV and V feature both the non-volatile and volatile
(battery-backed) key storages [149]. Recently, Xilinx has embedded a polyfuse key
storage (i.e. eFUSE) in the Virtex-6 and Spartan-6 FPGA families. Polyfuses
operate inversely when compared to antifuses — a configured polyfuse has high
resistance. The polyfuse is much larger than the antifuse and so it is easier to
locate the polyfuse and determine its state using a scanning electron microscope.
The comparison of the eFUSE and SRAM key storage can be found in [150]. More
details on the polyfuse and antifuse technologies can be found in [151], [152].

Despite the effort of FPGA producers, recent works demonstrate that even such
security (storage of secret keys inside the FPGA) can be broken. Moradi et al.
have shown that side-channel leakage during bitstream deciphering in RAM-based
FPGAs (i.e. Xilinx) can be exploited to recover the secret configuration key stored
inside the FPGA [153], [154]. The corrections are expected not sooner than in Xilinx
Virtex-8 family. Although these attacks are feasible, their realization requires a lot
of expertise and finances, and so they will not be considered further on in this
chapter.

6.1.2 IP Bitstream Security in Partially Reconfigurable System

An interesting alternative to the full FPGA reconfiguration is the partial recon-
figuration. When a partially reconfigurable design is used, the FPGA logic fabric
is partitioned into static and reconfigurable partitions. Unlike the static partition,
which may be reconfigured only during the full FPGA configuration, the reconfig-
urable partition can be reconfigured during system operation. This unique feature
enables an in-field replacement of system parts. The partial reconfiguration is sup-
ported by Xilinx Virtex-4, -5, -6. Spartan-6 supports only difference-based partial
reconfiguration, which allows only limited changes of the configured logic [46]. The

6.1. FPGA Reconfiguration and Security Aspects 115

partial reconfiguration flow is also supported by Altera Stratix V, Aria V and Cy-
clone V [47].

One of the most common applications of the Partial Reconfiguration (PR) is
the remote update of the partial bitstream. However, PR can also give the attacker
more possibilities. The remote bitstream update enables the attacker to intercept
the new PR bitstream and to send a forged bitstream instead. For this reason,
besides the bitstream encryption, the bitstream authentication is also necessary.

The first idea to take advantage of the partial reconfiguration technology for
the secure bitstream decryption was proposed by Bossuet et al. in 2006 [155]. The
author proposed to use the partial reconfiguration to load a bitstream containing
a decipher unit first. Afterwards the decipher is used to decrypt and configure the
application bitstream stored in the external flash. This way, a user can select a
ciphering algorithm for the application bitstream protection.

This concept was later extended to support FPGA digital rights management
(DRM). DRM restricts the use of FPGA bitstreams and IP cores only in autho-
rized devices. Moreover, DRM enables an IP developer to emit licenses binded to a
specific FPGA and thus trace their IP distribution. DRM can thus very effectively
prevent overbuilding and cloning. The first attempts came in 2006 when Synplicity
released the "Open IP Encryption Flow" allowing to securely exchange and imple-
ment IP cores in FPGA development tools [156]. The scheme proposed to distribute
IP vendors’ private keys inside these development tools. However, software imple-
mentations can be easily disassembled and private keys extracted.

First hardware-based solution for IP licensing was proposed by Guneysu et al. in
2007 [157]. The authors propose to implement a publicly available personalization
module (PM) in an FPGA prior to IP core purchase. An IP vendor can use the PM to
establish a shared symmetric key in an FPGA and to bind the IP core license to the
FPGA identification code (ID) and the symmetric key. Another advantage is that
the principle can be used for FPGAs not capable of partial reconfiguration. Despite
many advantages, this solution requires modification of current FPGAs, because it
assumes the possibility to access a secure key storage (i.e. Battery-Backed RAM or
eFUSE) from the FPGA logic fabric (impossible in current FPGAs). This principle
was extended to multiple cores licensing in a single FPGA proposed by Drimer
et al. [158]. Although the principle does not require the partial reconfiguration
support in the FPGA, the design partitioning requires some features of the partial
reconfiguration design flow.

Recently, Maes et al. [159] proposed a novel licensing scheme for hardware IP
cores. The scheme requires a trusted third party, which provides a special security
module. The module is used to decipher and install protected IPs into the partially
reconfigurable area. The main advantage of this scheme is the fact that is does not
require modifications of current FPGA devices.

The SeReCon system enabling the IP protection and the IP secure remote ex-
change in partially reconfigurable FPGAs was proposed by Kepa et al. [160, 161,
162]. First, the system is loaded into a static partition of the FPGA and it creates
a root of trust. During the IP exchange process, SeReCon deciphers the IP, verifies

116 Chapter 6. Partial Reconfiguration of Crypto-processors

its digital signature, re-encrypts its bitstream and stores it in an unprotected exter-
nal repository. When needed, the IP is loaded from the repository, deciphered and
authenticated inside SeReCon, and configured into the reconfigurable partition via
the ICAP port. SeReCon carefully monitors the access to the ICAP port so that
only authorized IP cores can be configured.

In some cases the attacker may want to prevent the FPGA from updating its
old IP bitstream (i.e. with security flaws) to a newer version (i.e. without security
flaws). This kind of an attack, where the attacker interrupts a bitstream update
and replaces a new bitstream with the old one, is called a replay attack. Replay
attacks on FPGA bitstream were thoroughly studied and solutions were proposed
by Devic et al. [163].

However, none of the above mentioned works considered secure key management
and storage. The aim of our work is to increase the flexibility of the HCrypt-C
crypto-coprocessor (see Chap. 4) by reconfiguring its cipher zone, while maintaining
the unprecedented robustness to software attacks. This modification requires the
extension of the separation rules introduced in Sec. 4.2. Similarly to SeReCon we
would like to protect the access to the reconfiguration port (ICAP). Our original
reconfigurable crypto-coprocessor architecture will enable GPPs to support secure
key management and to facilitate remote updates of the ciphering algorithm and
TRNG.

6.2 Separation Rules Involving Partial Reconfiguration

The separation rules presented in Sec. 4.2 suggest to separate the key memory from
the GPP at protocol, system, architectural and physical levels. To simplify the
separation, the system is partitioned into processor, cipher and key zones. Moreover,
straightforward interfaces between two adjacent zones facilitate the physical isolation
of these zones, using dedicated insulation fences, and simplifies the implementation
of trusted bus macros. Furthermore, the fence separating the key zone from the
cipher and processor zones can be used during partial reconfiguration of the system
when updating the processor or the cryptographic algorithm, while maintaining the
key memory contents unchanged. A straightforward interface design also simplifies
implementation of bus macros in partial reconfiguration design flow.

Fortunately, the physical isolation design flow is similar to the partial reconfig-
uration one. Indeed, only a small effort is necessary when implementing partially
reconfigurable logic in the device [164].

Upgrading the part of the hardware configuration using the dynamic partial
reconfiguration technology is particularly interesting for many cryptographic ap-
plications. Next, we analyze the benefits and implications of a full and partial
reconfiguration.

6.2. Separation Rules Involving Partial Reconfiguration 117

General-purpose

 processor

Data
bus

Control bus

CIPHER/TRNG KEY MEMORY

RECONFIGURATION
CONTROL UNIT

Reconfigurable area

H
C

ry
p

t-
C

 c
ry

p
to

-c
o

p
ro

c
e

s
s

o
r

Static areaStatic area

Master
key input

1. Data zone 2. Cipher zone 3. Key zone

Partial
Bitstream

bus

Key
mem.
bus

Cipher key
bus

P
R

P

Figure 6.1: Separation rules including partial reconfiguration capability with recon-
figuration of the cipher zone only

6.2.1 Total Reconfiguration Versus Partial Reconfiguration of the
Device

Cryptographic modules based on symmetric key cryptography must share the same
cryptographic key. If the device has been totally reconfigured, the key must be
reinitialized. This must be done in a secure environment. Remote key initialization
is very dangerous, because the master key cannot be enciphered without any other
key and must consequently be transferred in clear. The initialization key cannot be
included in the reconfiguration bitstream, because compromising one device would
compromise the whole set of devices. Partial device reconfiguration is a better
solution for single chip cryptographic applications: the master key can be initialized
once in a protected environment and then stored in a static logic partition. During
device upgrades, the key is kept the same and only partially reconfigurable blocks
and the GPP software are allowed to be changed.

When dividing the system into static and reconfigurable partitions, the approach
proposed in Sec. 4.2 for separating buses, key memory, cipher and processor zones
is very useful, because communication interfaces between future static and recon-
figurable partitions can be easily managed. There are two solutions for partitioning
cryptographic system in Fig. 4.1: a) the key zone and processor zones are static and
only the cipher zone is reconfigurable; b) the key zone (or at least the master key
memory) is kept static and the rest of the device is dynamically reconfigurable. In
both solutions, the cipher zone belongs to the reconfigurable partition and can thus
reflect the required algorithm changes. The static area containing confidential keys
must be handled with special care to avoid unauthorized access to confidential keys
after device reconfiguration by fake reconfiguration data.

118 Chapter 6. Partial Reconfiguration of Crypto-processors

General-purpose

 processor

Data
bus

Control bus

CIPHER/TRNG KEY MEMORY

RECONFIGURATION
CONTROL UNIT

(Secure GPP)

Reconfigurable area

H
C

ry
p

t-
C

 c
ry

p
to

-c
o

p
ro

c
e

s
s

o
r

Hard-wired area

Master
key input

1. Data zone 2. Cipher zone 3. Key zone

Bitstream
bus

Key
mem.
bus

Cipher key
bus

R
P

Secure
Key Flash

Figure 6.2: Separation rules including partial reconfiguration capability with recon-
figuration of the processor, cipher and key zone

6.2.2 Validation of the Principle of HCrypt-C Partial Reconfigu-
ration in SRAM FPGAs

The first solution from the previous section can be implemented in partially recon-
figurable Xilinx FPGAs such as Virtex-5 and -6 and recently also in Altera FPGAs
(starting from the Stratix V family) as shown in Fig. 6.1. We selected the Xilinx
Virtex-6 FPGA family for our tests, because software tools for partial reconfigura-
tion for Altera technologies had not been available yet.

In order to validate the separation concept, we propose three reconfigurable mod-
ules: A) one containing the AES cipher and decipher; B) the second one containing
the DES cipher (composed of two DES cipher cores in parallel) and decipher (com-
posed of two DES deciphers in parallel); C) the third one representing an empty
black-box module.

As required, reconfigurable modules A, B and C have the same interfaces with
the surrounding static partition (containing GPP and key memory). The dimensions
of the reconfigurable partition must be set to meet the requirements of the biggest
module (the one containing the AES cipher and decipher in our case).

The reconfiguration of the reconfigurable logic area is controlled by the reconfig-
uration control unit (RCU) placed in the static partition (see Fig. 6.1). It is in charge
of transferring new logic to the reconfigurable area via a partial reconfiguration port
(PRP). The partial bitstream is transferred to the RCU via the partial bitstream
bus (PBB). Since the RCU must also ensure (by verifying bitstream integrity and
authenticity) that the reconfigurable partition was not modified by an unauthorized
person, its implementation is crucial for security. Additional techniques can be used
to increase security (e.g. zeroization of all FFs and configuration bits in the recon-
figurable area by the PRP before being configured using the new partial bitstream
[165]). The RCU can be implemented using another GPP, a dedicated processor
or a state machine, but the reconfiguration controller must be strictly separated
from the GPP controlling the communication channel. The executable code of the
RCU must be write protected to resist software attacks. Since our objective was to
demonstrate the separation concept, in this first case, we only implemented a simple

6.3. Design of the Reconfigurable HCrypt-C 119

reconfiguration controller (state machine) placed in the static logic area.

6.2.3 Reconfiguration of HCrypt-C Crypto-coprocessor in FPGAs
Containing Hardwired GPPs

Many FPGAs are not partially reconfigurable. For devices containing hardwired
GPPs featuring a non-volatile memory (e.g. MicroSemi SmartFusion FPGA), we
propose another solution that combines the possibility of hardware upgrades with
secure key management (see Fig. 6.2). The hardwired GPP can serve as a reconfig-
uration controller and confidential keys (or at least master keys) can be saved in its
non-volatile memory – secure key flash memory (SKF). In this case, the entire pro-
grammable logic fabric can serve as a reconfigurable area containing all the system
blocks (including the second GPP) except for the reconfiguration controller and the
confidential key memory. The bitstream is transferred into RCU via the bitstream
bus (BB) and the logic area is configured via the reconfiguration port (RP).

Note that all security zones and especially processor and cipher zones must
remain separate as required in Sec. 4.2. It is also of paramount importance that the
use of the hardwired GPP is strictly limited to reconfiguration tasks. In particular,
it must not be connected to the data bus of the second GPP that is in charge of
data processing, i.e. the separation rules must be maintained.

Although this solution is less flexible and slower than the one discussed above,
it still offers secure key management and high-level protection of confidential keys.
However, the use of the powerful hardwired processor for device reconfiguration will
exclude it from other tasks (and especially from communication with the cipher and
from key management). Another GPP will have to be used and implemented in the
reconfigurable zone, what makes this solution less attractive. For this reason, we
did not implement it in hardware. Next, we will give details of the implementation
of the reconfigurable HCrypt-C crypto-coprocessor.

6.3 Design of the Reconfigurable HCrypt-C

The HCrypt-C crypto-coprocessor was introduced in Sec. 4.3. The full cryptographic
system consists of the GPP and the wrapper (see Fig. 4.2). HCrypt-C is incorpo-
rated inside the wrapper together with communication interface and control unit.
The main function of the wrapper is to adapt the GPP-specific communication bus to
the HCrypt-C interface. To demonstrate its flexibility, HCrypt-C is interconnected
with Altera NIOS II using the internal processor bus, Xilinx MicroBlaze using the
FSL coprocessor bus and ARM Cortex M1 using AMBA peripheral bus. The imple-
mentation of HCrypt-C together with the three GPP implementations are presented
in Sec. 4.5. However, the partial reconfiguration technology is only supported by
Xilinx FPGAs, and so a reconfigurable version of the HCrypt-C crypto-coprocessor
will be interconnected only with the Xilinx MicroBlaze GPP.

In order to support the reconfiguration of the cipher zone, both the data and
key zone implementations have to be modified. The reconfiguration is controlled by

120 Chapter 6. Partial Reconfiguration of Crypto-processors

D
e
s
e
ri

a
liz

e
r

(3
2
b
 to

 1
2
8
b
)

128

S
e
ri

a
liz

e
r

(1
2
8
b
 to

 3
2
b
)

Reconf.

HCrypt-C

MKin

Ctrl

128 32

Control unit

Wrapper

A Y

Master Key 32

32

Data

registers

ALU

Control

unit

A B

ALU

OUTM
ic

ro
B

la
z
e 32

F
IF

O
F

IF
O

FSL0

FSL1

Master
Key

A

Y
W

ra
p

p
e

r32

32

F
S

L
0
 S

L
A

V
E

F
S

L
1
 S

L
A

V
E

Partial
bitstream bus

Partial
bitstream bus

Figure 6.3: MicroBlaze interconnected to Reconfigurable HCrypt-C crypto-
coprocessor extension via the FSL bus wrapper

the RCU and performed via the PRP. Both RCU and PRP are located in the static
key zone. The Xilinx Virtex-6 FPGA family embeds ICAP which can be used as
the PRP. Moreover, ICAP supports bitstream decryption and authentication and
so the RCU can be significantly simplified. Several modifications are also required
in the wrapper. The RCU reads the configuration through the Partial Bitstream
Bus (PBB). The wrapper has to implement a new instruction which instructs the
RCU to select the partial bitstream and start the configuration. Moreover, new
flag indicating successful reconfiguration must be implemented in the wrapper sta-
tus register. Microblaze firmware also requires slight modification to support the
reconfiguration of the cipher zone.

The MicroBlaze interconnected to the reconfigurable HCrypt-C crypto-coprocessor
via the wrapper is shown in Fig. 6.3.

6.3.1 Reconfigurable Cipher Zone Modules

6.3.1.1 AES reconfigurable module

The AES reconfigurable module is almost identical to the original cipher zone pre-
sented in Sec. 4.5. The only difference is the addition of the partition pins and bus
macros to every signal/bus crossing from the reconfigurable cipher zone to static
zones. The AES reconfigurable module is illustrated in Fig. 6.4. The module im-
plements AES cipher and decipher, both featuring 128-bit wide folded datapath.
For the sake of simplicity, only a PRNG based on a 128-bit linear feedback shift
register is implemented instead of a TRNG. In a real system, it must be replaced
by a TRNG (e.g. PLL-based TRNG [36]). The partition pins are implemented as a
one-input LUT.

6.3.1.2 DES reconfigurable module

The DES reconfigurable module structure is very similar to the AES one. The AES
cipher and decipher are replaced by the DES cipher and decipher units. In order to

6.3. Design of the Reconfigurable HCrypt-C 121

TRNG

2. Cipher zone A

(AES)
128

AES

CIPHER

AES

DECIPHER

PP

PP

Session
key input

Master
key

input

Session
key

output

Data
output

Data
input

PP

PP

PP

Data

 bus

LEGEND:

Key

memory

bus

Cipher

key

bus

PP
Partition

Pin

Figure 6.4: Reconfigurable cipher zone containing the AES cipher, decipher and
TRNG (AES reconfigurable module)

TRNG

2. Cipher zone B

(DES)128

DES
CIPHER
(2 cores)

DES
DECIPHER

(2 cores)

PP

PP

Session
key input

Master
key

input

Session
key

output

Data
output

Data
input

PP

PP

PP

Data

 bus

LEGEND:

Key

memory

bus

Cipher

key

bus

PP
Partition

Pin

Figure 6.5: Reconfigurable cipher zone containing the DES cipher unit, decipher
unit and TRNG (DES reconfigurable module)

avoid bus conversion (note that DES operates on 64-bit data blocks), the DES cipher
unit is composed of two 64-bit DES cipher cores working in parallel (further refered
as DES cipher). Similarly, the DES decipher unit is composed of two parallel 64-bit
DES decipher cores (further refered as DES decipher). This is the necessary step to
freely interchange and fairly compare AES and DES units. Consequently, ciphering
of one 128-bit block can be accomplished in 16 clock cycles. As a consequence, this
architecture allows to execute two independent computations of a same block cipher
mode at a time. The detailed architecture of the DES reconfigurable module is given
in Fig. 6.5.

122 Chapter 6. Partial Reconfiguration of Crypto-processors

2. Cipher zone C

(empty black box)

PP

PP

Session
key input

Master
key

input

Session
key

output

Data
output

Data
input

PP

PP

PP

Data

 bus

LEGEND:

Key

memory

bus

Cipher

key

bus

PP
Paritition

Pin

Figure 6.6: Empty reconfigurable cipher zone containing only partition pins (empty
black-box reconfigurable module)

6.3.1.3 Empty black-box reconfigurable module

The last reconfigurable module is the empty black-box module. This version of
the cipher zone incorporates no FPGA resources except for the partition pins and
reconfiguration bus macros. These resources are necessary only for the compatibility
with the previous two modules. However, partition pins utilize some FPGA slices
which can be observed in the final resource utilization report. Although the empty
black-box module is used only for a comparison with the other modules and brings
no benefit to this system, its low power consumption can perfectly fit into the
power saving strategy of the low-power devices. The empty black-box reconfigurable
module is shown in Fig. 6.6.

6.3.2 Reconfiguration Control Unit

The most important element for device reconfiguration is the RCU. Since most of
its security tasks can be delegated to hardwired decipher and HMAC via ICAP, the
complexity of the RCU can be reduced to a simple state machine.

The architecture of the RCU is illustrated in Fig. 6.7. The RCU is composed
of the address counter, 32-bit to 8-bit converter and a control state machine. The
MicroBlaze sends the reconfiguration instruction to the wrapper. The wrapper sets
the configuration select signal (CSEL) and pulses HIGH the configuration start
(CSTART). When the configuration is finished, RCU asserts the configuration done
flag (CDONE). After configuration start, address counter is loaded with the bit-
stream memory address. The the state machine enables/disables counter while
monitoring the data valid memory flag (DVLD). The partial bitstream is loaded in
32-bit words and converted to 8-bit words suitable for ICAP. Note that ICAP is also
capable of 32-bit word operation but only with the unencrypted bitstream.

The bitstream authentication by the hard-wired HMAC unit prevents the at-
tacker from loading the tampered bitstream into the FPGA. In case that an ad-

6.4. Implementation Results 123

State

machine
CNT 32/8

C
S

B

32

8

ADDR

Init
Addr

Load
Ena

Done

Read

Shift

RD DVLD

R
D

W
R

B

D
IN

DATA_IN

To ICAP

Partial bitstream bus
C

S
E

L

C
S

T
A

R
T

C
D

O
N

E

To wrapper

control unit

Figure 6.7: Architecture of the Reconfiguration Control Unit

vanced error checking (per small blocks) is required, a comprehensive explanation
can be found in [166]. More details on Xilinx partial reconfiguration are provided
in the Partial reconfiguration guide [48] and Virtex-6 configuration guide [167].

For the sake of simplicity, the RCU implements an address counter with hard-
coded bitstream length. This approach is possible, because the partial bitstream file
size is constant for all reconfigurable modules. The RCU stops the reconfiguration
process when a counter reaches the end of the bitstream file. Optionally, the end
of the partial reconfiguration bitstream can be detected from the partial bitstream
itself by searching for the DESYNCH command. However, such an approach requires
deeper knowledge of the partial bitstream structure (see [167]) and so it is not
considered in this work.

6.4 Implementation Results

The extended MicroBlaze supporting reconfigurable cipher zone was described in
VHDL and mapped into Virtex-6 XC6VLX240TFF1156 device (Xilinx ML605 eval-
uation kit) using ISE (ver. 12.4). Besides the processor and its HCrypt-C crypto-
coprocessor extension, a small block containing 16-bit data interface to the external
Cypress USB device CY7C68013A was connected to the evaluation board for data
transfers from/to the PC. The USB module was also used for emulation of the non-
volatile memory, storing the partial bitstreams. The USB module was used only for
testing purposes and it does not constitute an inherent part of the system. For this
reason, it is not included in further resource utilization reports.

6.4.1 Cost Evaluation

The results of the implementation are given in Tab. 6.1. Columns 8 and 9 in Tab. 6.1
list the resources of a partially reconfigurable system based on MicroBlaze extended
by the AES reconfigurable module. The reconfiguration overhead can be observed

124 Chapter 6. Partial Reconfiguration of Crypto-processors

Table 6.1: Utilization of Reconfigurable MicroBlaze and compared FPGA resources
by tree processors with the HCrypt-C crypto-coprocessor containing the AES cipher

NIOS II Cortex M1 MicroBlaze Reconf. MBlaze

ALMs RAM kb Tiles RAM kb Slices RAM kb Slices RAM kb

System total 2531 243.9 15053 216.0 1954 1206.0 2619 1206.0

→ Processor 1204 187.9 9433 104.0 1350 774.0 1350 774.0

→ HCrypt-C 1327 56.0 5620 112.0 604 432.0 1269 432.0

Ext. overhead 110.2% 29.8% 59.6% 107.7% 44.7% 55.8% 94.0% 55.8%

Table 6.2: Comparison of three versions of the reconfigurable module (RM) in an
extended MicroBlaze system

Static Reconfigurable partition Total

part. AES DES Empty black box with AES RM

Slices 1976 643 442 264 2619

RAM kb 846 360 0 0 1206

by comparing the MicroBlaze system with the static HCrypt-C and the one with
the reconfigurable HCrypt-C crypto-coprocessor. Individual results for three dif-
ferent reconfigurable modules in the reconfigurable MicroBlaze system are listed in
Tab. 6.2. Note that the size of the system including both the static and reconfig-
urable partition containing AES in Tab. 6.2 is the same as the sum of resources
occupied by the processor and HCrypt-C in columns 8 and 9 in Tab. 6.1. However,
HCrypt-C in column 8 of Tab. 6.1 occupies more slices (1269) than the reconfig-
urable AES module in Tab. 6.2 (643), because the key memory and the wrapper of
the second module are included in the static partition.

The reconfigurable MicroBlaze system can be compared with its static extended
MicroBlaze version as well as with extended NIOS II and extended Cortex M1
(see Tab. 6.1). The area is expressed in number of occupied ALMs for Altera
family, Slices for Xilinx family and Tiles for Microsemi family. For comparison,
we recall that one ALM in Altera Stratix II family contains two 4-input LUTs and
two FFs. One Slice in Xilinx Virtex-6 family contains four 6-input LUTs and eight
FFs. One Tile in Microsemi Fusion family contains either one 3-input combinatorial
function or one FF. Therefore, the results cannot be directly compared. The memory
requirements are given in kbits for all technologies. For clarity, we present the results
for the processor and for its HCrypt-C crypto-coprocessor extension separately.

6.4.1.1 Hardware tests and benchmarks

The setup used for hardware tests was explained in Fig. 6.8. The test was very simi-
lar to the test presented in Sec. 4.6. Unlike static system tests, reconfigurable system
required modification of the USB interface so that is can emulate the non-volatile

6.4. Implementation Results 125

memory containing partial bitstream. The partial bitstream was transported from
the PC to the RCU via USB wrapper. Moreover, the PC benchmark application
was also modified to support partial bitstream files.

In order to compare the throughput with that of the three static extended pro-
cessors, the clock frequency of all four systems was fixed to 50 MHz. The throughput
was evaluated by transferring packets from the PC to the FPGA (and vice versa) via
a USB interface. The communication protocol, packet structure and testing proce-
dure are similar to those used for HCrypt testing. The whole testing process started
when the benchmark application accessed the Master key file and transferred the
128-bit AES and 128-bit DES (two 56-bit keys – one for each DES core, remaining
bits were not used) master keys to the FPGA. When master keys were present in
HCrypt-C, the PC application read the Input packet file and sent data packets to
GPP data input.

Each packet contained a cipher zone version, encrypted session key, its digital
fingerprint and five 128-bit payload blocks. The Input packet file contained 8192
packets for the AES cipher zone, 8192 packets for the DES cipher zone and 8192
packets for the empty black-box cipher zone (for testing only). Packets were ana-
lyzed in the GPP, which then sent the session key and its fingerprint to HCrypt-C.
Once the key was decrypted and authenticated, the processor sent data blocks to
be decrypted using CFB block cipher mode. Subsequently, the processor recreated
new packets containing received decrypted data and sent them back to the PC.

When all AES packets were finished and the first DES packet arrived, the Mi-
croBlaze instructed the RCU to reconfigure the cipher zone to the DES module.
The RCU requested the DES module from the USB interface, which was promptly
loaded from the PC. When the reconfiguration was completed, the MicroBlaze to-
gether with HCrypt-C continued the packet processing. The benchmark application
read the resulting AES and DES packets, verified them and saved them to the
Output packet file.

The achieved maximum real data throughput of the reconfigurable MicroBlaze
system featuring the AES reconfigurable module was 18.4 Mb/s and the DES re-
configurable module was 17.9 Mb/s. The data throughput of the empty black-box
module cannot be evaluated. The comparison of the reconfigurable module data
throughput with the other three static processors is given in Tab. 6.3. The maxi-
mum system frequency was estimated to 171.3 MHz, which is less than the maximum
system frequency of the static system estimated to 232.5 MHz.

The ICAP and USB modules were both operating at the clock frequency of
48 MHz. The maximum theoretical throughput of the 8-bit ICAP was 46,876 kB/s.
However, the USB module was capable of delivering the partial bitstream with
maximum speed of 37,648 kB/s. The partial bitstream size was 530.25 kB for all
three reconfigurable modules. The reconfiguration lasted 14.23 ms in case of AES,
14.34 ms in case of DES and 14.10 ms in case of the empty black-box reconfigurable
module. The partial reconfiguration performance results compared with the three
static processors are summarized in Tab. 6.4.

126 Chapter 6. Partial Reconfiguration of Crypto-processors

USB

I/F

PLL

MK init

DATA

BUS

Cypress USB

driver

Master

key file

Output

packets file

Crypress USB 2.0

(FX2LP)

PC - OS

FPGA

VHDL design

Input

packets file
Benchmark

application

Oscillator

FPGA

board

USB module
Reconf.

HCrypt-C

Wrapper

GPP

AES partial

bitstream

DES partial

bitstream

empty black box

partial bitstream

PBB

Figure 6.8: Hardware test setup of the Secure General-Purpose Processor with re-
configurable HCrypt-C crypto-coprocessor

Table 6.3: The maximum data throughput comparison of three static system fea-
turing AES cipher zone and reconfigurable MicroBlaze system featuring AES, DES
and empty black-box reconfigurable cipher zones

NIOS II Cortex M1 MicroBlaze Reconf. MBlaze

AES AES AES AES DES B-Box
(Mb/s) (Mb/s) (Mb/s) (Mb/s) (Mb/s) (Mb/s)

25.1 12.2 18.4 18.4 17.9 ——

6.5 Discussion

For partial reconfiguration of Xilinx FPGAs, partition pins increase the occupied
area. This effect can be observed if an empty reconfigurable block is implemented.
Note that five 128-bit buses and associated control signals must cross the reconfig-
urable partition border and each slice can implement at most four partition pins.
Since not all slices are fully utilized, the number of slices in the empty black box
is higher than required. Some extra resources are also necessary for the RCU, that
was added into the key zone. Finally, the modified wrapper consumes some extra
resources, too. All these effects can be observed when comparing two versions of the
extended MicroBlaze system (with or without partial reconfiguration of the cipher
zone): the area extension overhead with the AES cipher is 94.0% versus 44.7%. The
cost of the isolation of security zones is negligible. Interestingly, both the static and

6.5. Discussion 127

Table 6.4: ICAP throughput (left) and comparison of three reconfigurable module
sizes and configuration time length (right)

ICAP throughput AES module DES module empty black box

theoretical real size length size length size length
(kB/s) (kB/s) (kB) (ms) (kB) (ms) (kB) (ms)

46,876 37,648 530.25 14.23 530.25 14.34 530.25 14.10

reconfigurable systems require the same extra amount of the embedded memory
(55.8 %).

Note that partial reconfiguration also increases the latency of the system. How-
ever, we assume that reconfiguration is only performed occasionally (e.g. if a new
attack countermeasure has to be applied). The timing overhead of the reconfigura-
tion is thus negligible.

Since the system timing was only slightly modified, almost the same data through-
put is achieved (18.4 Mb/s). The only difference is the requirement to test if a con-
figured cipher zone module matches the one selected in the packet. The DES cipher
by its structure requires more rounds to complete the computation. This additional
latency results in lower data throughput of 17.9 Mb/s.

Although no speed penalty was observed when comparing static and reconfig-
urable HCrypt-C featuring the AES module, the insertion of the partition pins and
constrained routing (reconfiguration bus macros) lowered maximum clock frequency
(171.3 MHz). If both systems were clocked to their maximum frequency, the speed
penalty would be observable. The maximum clock frequency can be higher if extra
constraints are applied to routing resources and partition pins logic. However, a very
long compilation time (more than one day) forced us to loosen these constraints.

The size of each partial bitstream was the same (530.25 kB). The reason is
that the bitstream size does not depend on the number of used resources in the
reconfigurable area, but rather on the size and location of the reconfigurable area,
which must be the same for all reconfigurable modules.

Since both master key bus and data bus are entering the reconfigurable area,
it must be sure that direct physical connection between these buses does not exist
inside the reconfigurable area. For this reason, only approved reconfigurable modules
are allowed to configure FPGA. This issue is solved by the authentication of the
partial bitstream that is performed by the hard-wired HMAC unit.

Although the size of the partial bitstream files is the same (530.25 kB), the
time interval necessary to configure the partial bitstreams into the FPGA slightly
differs. This difference can be explained by various throughputs of the USB interface
caused by unpredictable behavior of the PC operating system. However, for the real
external bitstream memory, the configuration time would be the same.

It is clear that the architectures presented here could be further analyzed and
optimized from the point of view of performance, area and power consumption.

128 Chapter 6. Partial Reconfiguration of Crypto-processors

However, it is also clear that the security overhead due to the creation of isolation
fences and due to the application of separation rules is negligible.

Although HCrypt2 concept was described before the reconfigurable HCrypt-C
in this thesis, HCrypt2 study was conducted after reconfigurable HCrypt-C. For
this reason, the proposed solution does not provide protection against physical at-
tacks such as side-channel attacks. We assume that such countermeasures will be
included in the cipher module. Indeed, one of the main advantages of the partial
reconfigurability of the device is that the cipher module can be updated by a new
cipher version implementing countermeasures against the most recent attacks. This
approach is not possible in hardwired architectures.

The principle presented in this chapter can be extended to any GPP. One of
solutions would be to use an open source GPP and to include HCrypt-C in the
processor’s data path as was the case with the extended NIOS II processor. This
principle can be also applied to a specific-purpose processor such as the one presented
in Chap. 3 [80].

6.6 Conclusions

In this chapter, we proposed a novel reconfigurable cryptographic coprocessor that
enables secure key management using any GPP. Since the reconfiguration technology
violates separation rules presented in Chap. 3, we presented their modification for
two special cases.

First, the total reconfiguration of the flash-based FPGA was considered. Such
an FPGA must contain a hard-wired reconfiguration control unit and a non-volatile
master keys storage. The reconfiguration control unit is responsible for authenti-
cation and decryption of the FPGA bitstream and its secure initialization into the
FPGA configurable fabric. The closest existing FPGA supporting such configura-
tion is the Microsemi Smart Fusion FPGA. Although this approach enables secure
key management for the GPP in FPGA logic, the powerful hard-wired processor
(i.e. Cortex M3) is excluded from all system tasks and so this solution is not very
attractive. For this reason, this system was not implemented.

Next, the security of confidential keys stored in the partially reconfigurable sys-
tem were evaluated and a solution was proposed. The system was partitioned into
the data, cipher and key zone. Unlike the previous approach, both data and key
zones were static and only the cipher zone could be reconfigured during the system
run-time. All three security zones were isolated from each other. The security of
the partial bitstream was guaranteed by the reconfiguration control unit placed in
the key zone. We also showed that stringent security requirements can be met in
partially reconfigurable system only if the key zone is kept static.

In order to demonstrate the concept, a partially reconfigurable HCrypt-C was
proposed for the MicroBlaze system and was implemented in Xilinx Virtex-6 FPGA.
Three different variants of the cipher zone (reconfigurable modules) were tested:
AES, DES and the empty black box. In order to compare reconfigurable and static

6.6. Conclusions 129

MicroBlaze systems the AES module was configured first. The reconfigurable Mi-
croBlaze featuring the AES module is bigger than the static one: the area extension
overhead of the first type of the first module is 94.0% versus 44.7% of the second
one.

The maximum data throughput was evaluated by transferring packets from the
PC via USB interface to the MicroBlaze system and results were transferred back
to the PC. Both reconfigurable and static MicroBlaze systems containing the AES
module reached the data throughput of 18.4 Mb/s. Slightly lower performance was
achieved using the DES module (17.9 Mb/s).

The size of every reconfigurable module was 530.25 kB. The reconfiguration time
required for every module was approximately 14.20 ms.

Since reconfigurable HCrypt-C is not protected against side-channel attacks,
HCrypt2-C (including zero-cost countermeasures) must be designed in the future.
The work presented in this chapter was published in [106].

Chapter 7

Summary of Contributions and

Conclusions

This thesis presents research work that has been conducted in order to increase
security of key management performed in Multi-processor System on Chip. The
main objective was to propose a new crypto-processor architecture organized in
such a way that the key storage is securely separated from the rest of the sys-
tem. A new instruction set had to be proposed to facilitate the separation of data
and key processing operations. Moreover, crypto-processor had to be optimized for
block cipher modes and be able to exchange data and keys in packets. At least
one crypto-processor version had to contain countermeasures against side-channel
attacks. Since reconfiguration can also be a source of security weakness, its security
had to be evaluated and solution proposed. To simplify software development for
the new crypto-processor, an assembler tool was necessary. Moreover, frequent mod-
ifications of the crypto-processor instruction set required a flexible assembler. The
last objective was to evaluate the security level of the proposed crypto-processor.

The research work has reached the proposed goals, and proposed also different
small studies and solutions to various other problems.

7.1 Summary of Contributions

The most important proposals and contributions of this research work are as follows:

1. Set of separation rules enabling secure key management on cryptographic pro-
cessors and coprocessors.

2. HCrypt crypto-processor that complies with the separation rules. HCrypt is
immune to software or fault injection attacks aimed on the disclosure of secret
keys.

3. FlexASM assembler with a flexible instruction set defined in a text file.

4. HCrypt-C crypto-coprocessor guaranteeing secure key management on any
general-purpose processor.

5. Zero-cost countermeasures increasing security of crypto-processors against side-
channel attacks.

6. Secure key management on totally or partially reconfigurable systems.

132 Chapter 7. Summary of Contributions and Conclusions

All these contributions necessitated extensive studies of state-of-the-art archi-
tectures, security analyses, a lot of implementation work and thorough testing using
simulations and hardware.

7.2 Conclusions

The main contribution and proposals of this thesis is a set of separation rules, which
instructs designers how to construct cryptographic processors or coprocessors with
secure key management. If these rules are respected, the system is immune to
software and fault injection attacks targeting a disclosure of secret keys. Separation
rules suggest to partition a system to the three following zones, each with different
security privileges: data zone, cipher zone, key zone. The three zones must be
separated at protocol, system, architectural and physical levels. As a consequence,
secret keys stored in the key zone cannot pass directly to the data zone, but must
pass through the cipher (representing a physical barrier) in the cipher zone. Thus,
any software or fault injection attacks cannot disclose secret keys.

These unique separation rules were demonstrated on the novel HCrypt crypto-
processor. HCrypt is a 128-bit cryptographic processor featuring the ALU, which is
optimized for block cipher modes and packet management, two AES ciphers, true
random number generator, and secure key storage for both session and master keys.
HCrypt is divided into data, cipher and key zone each having different security
privilege. The most secure is the key zone, where secret keys are stored in clear.
HCrypt protects data by using the generated session keys. The session keys must
be securely exchanged prior to data exchange using the master keys. Master keys
are transferred to HCrypt via a dedicated 32-bit bus. We demonstrated HCrypt
operation, security, and programmability and measured its throughput. Tests in
Xilinx Virtex-5 and -6 FPGAs indicated data throughput of 824.7 Mb/s, while
HCrypt exchanged session keys and processed data in packets using the 128-bit
CFB block encryption mode.

To simplify the HCrypt software development, new FlexASM assembler tool
was created. Unlike other assemblers, an instruction set can be defined in a text file
from which it is loaded prior to the compilation of an assembly code. This feature
solved the problem of frequent modifications of HCrypt instruction set during its
development. However, FlexASM can be used for other processors as well.

Next, it was shown how crypto-coprocessors supporting secure key management
could be constructed. For cost-critical applications requiring an execution of general-
purpose instructions, we proposed the HCrypt-C crypto-processor extension to any
general-purpose processor. This crypto-coprocessor respects all stringent separation
rules, thus enabling secure key management on general-purpose processors. The
structure of the HCrypt-C crypto-coprocessor is very similar to the HCrypt crypto-
processor. It has the 128-bit wide datapath, embedded AES cipher, decipher and
TRNG. The HCrypt-C crypto-coprocessor can be interconnected with a processor
using an internal processor bus, a dedicated coprocessor bus or a peripheral bus. All

7.3. Perspectives 133

three bus types were compared, demonstrated on the three processor implementa-
tions, and tested in hardware. The Nios II achieved data throughput of 25.1 Mb/s,
MicroBlaze 18.4 Mb/s, and Cortex M1 12.2 Mb/s while each system exchanged
session keys and processed data in packets using the 128-bit CFB block encryption
mode.

In order to increase robustness to side-channel attacks, new zero-cost coun-
termeasures were proposed and demonstrated on novel HCrypt2. Unlike counter-
measures at microarchitecture level, zero-cost countermeasures are implemented on
macroarchitecture level. We showed that by a tricky rearrangement of the crypto-
processor blocks (while maintaining the physical isolation of security zones accord-
ing to the proposed separation rules), the novel HCrypt2 crypto-processor is robust
against software attacks, and more robust against differential power analysis and
fault injection attacks. Moreover, we have shown that only one of the two ciphers
needs to be protected against attacks, and so it is far less expensive to protect
HCrypt2 than HCrypt1 using the same data masking or data hiding techniques.
Furthermore, the cipher protecting the session keys is rarely used (only once per
packet). Thus, this cipher can be very small, which further decreases the cost for
countermeasures at microarchitecture level. In addition to that, only one 128-bit
master key register is required in HCrypt2 (only for enciphering) when compared
with two 128-bit master key registers in case of HCrypt1 (for enciphering and deci-
phering).

The last contribution is the extension of separation rules for the partially re-
configurable system. Two different cases are considered: a) FPGA featuring only
total reconfiguration of the logic fabric; b) FPGA supporting partial reconfiguration
technology. In order to maintain high security, crypto-processor has to include a
proposed reconfiguration control unit, secure key storage and an internal configura-
tion interface. The reconfiguration control unit must be hardwired (e.g. embedded
secure processor) in case of a totally reconfigurable system, or stored in the static
area in case of a partially reconfigurable system. The partially reconfigurable sys-
tem was implemented using the MicroBlaze processor with the HCrypt-C crypto-
coprocessor. The processor and key zones were considered static, and the cipher
zone was reconfigurable. For testing purposes, three version of the cipher zone were
tested: AES (featuring AES cipher, decipher and TRNG), DES, and empty black
box. The partial bitstream size of all three HCrypt-C versions was 530.25 kB.

7.3 Perspectives

The aim of this study was to propose a cryptographic processor that can be included
in the SecReSoC Multi-Processor System on Chip.

The completion of the system and its demonstration is another challenge. Secu-
rity of zero-cost countermeasures has to be proved by real DPA attacks.

The presented static and reconfigurable versions of HCrypt-C do not include
zero-cost countermeasures. For this reason, HCrypt2-C involving zero-cost coun-

134 Chapter 7. Summary of Contributions and Conclusions

termeasures must be designed. Such crypto-coprocessor can be better protected
against side-channel attacks and fault injection attacks.

Another challenge is the exchange of the long-term master key. Indeed, some
initial secret is essential in every cryptographic system. However, master key estab-
lishment scheme depends heavily on a target system. In our case a fully symmetric
system with manual distribution of master keys was sufficient.

An interesting challenge would be an inclusion of an asymmetric cryptographic
unit which can be used for master key distribution and packet data signatures.
Nevertheless, it is crucial to maintain a high security level.

List of Publications

International Journal Papers

1. L. Bossuet, M. Grand, L. Gaspar, V. Fischer, G. Gogniat. Architectures of flexible

symmetric key cryto engines — a survey: from hardware coprocessor to

multi-crypto-processor system on chip, to be published in the journal ACM

Computing Surveys, volume 45, number 4, December, 2013.

2. L. Gaspar, V. Fischer, L. Bossuet, R. Fouquet. Secure extension of FPGA general

purpose processors for symmetric key cryptography with partial reconfig-

uration capabilities, Published in journal ACM Transactions on Reconfigurable

Technology and Systems, volume 5, issue 3, number 16, October, 2012.

Full Papers on International Refereed Conferences

3. L. Gaspar, V. Fischer, L. Bossuet, M. Drutarovsky. Cryptographic Extension

for Soft General-Purpose Processors with Secure Key Management , In

FPL 2011: 21st IEEE International Conference on Field Programmable Logic and

Applications, pages 500-505, Chania, Greece, September 5th – 7th, 2011.

4. L. Gaspar, V. Fischer, L. Bossuet, R. Fouquet. Secure extensions of FPGA

soft core processors for symmetric key cryptography , In ReCoSoC 2011: 6th

International Workshop on Reconfigurable Communication-centric Systems-on-Chip,

pages 1-8, Montpellier, France, June 20th – 22nd, 2011.

5. L. Gaspar, V. Fischer, F. Bernard, P. Cotret, L. Bossuet. HCrypt: A Novel

Concept of Crypto-processor with Secured Key Management , In ReConFig

2010: International Conference on Reconfigurable Computing and FPGAs, pages

280-285, Cancun, Mexico, December 13th – 15th, 2010.

Short Papers on International Refereed Conferences

6. P. Cotret, J. Crenne, G. Gogniat, J-P. Diguet, L. Gaspar, G. Duc. Distributed secu-

rity for communications and memories in a multiprocessor architecture , In

RAW 2011: 18th Reconfigurable Architectures Workshop, Published in IPDPS 2012:

26th Annual International Parallel & Distributed Processing Symposium. pages 326-

329, Anchorage, Alasca, USA, May 16th – 20th, 2011.

7. L. Gaspar, V. Fischer, F. Bernard, L. Bossuet. Cryptographic NIOS II extension

with secure key management , In PhD forum of DATE 2011: Design, Automation

& Test in Europe Conference, page 1, Grenoble, France, March 14th – 18th, 2011.

8. L. Gaspar, M. Drutarovsky, V. Fischer, N. Bochard. Efficient AES S-boxes im-

plementation in non-volatile FPGAs, In FPL 2009: 19st IEEE International

Conference on Field Programmable Logic and Applications, pages 649-653, Prague,

Czech Republic, August 31st – September 2nd, 2009.

136 List of Publications

Short Paper at National Refeered Conference

9. L. Gaspar, H. Maghrebi, J-L. Danger, V. Fischer. HCrypt2 : Un cryptoprocesseur

sécurisé par conception , In SoC-SiP 2012: Le 6éme colloque du GDR System on

Chip – System in Package, pages 1-2, Jussieu, Paris, France, June 13th – 15th, 2012.

Bibliography

[1] National Institute of Standards and Technology (NIST). Special

Publication 800-38A: Recommendation for Block Cipher Modes of

Operation-Methods and Techniques. NIST, 2001. (Cited on pages xvii,
10, 12, 13, 14, 15, 51, 53 and 108.)

[2] National Institute of Standards and Technology (NIST). Special

Publication 800-38B: Recommendation for Block Cipher Modes of

Operation: The CMAC Mode for Authentication. NIST, 2005. (Cited
on pages xvii, 12, 13 and 16.)

[3] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of

applied cryptography. CRC, 1996. (Cited on pages xvii, 6, 17, 27 and 28.)

[4] G. Stoneburner, C. Hayden, and A. Feringa. Engineering princi-

ples for information technology security (a baseline for achieving

security). Technical report, DTIC Document, 2001. (Cited on page 6.)

[5] Organisation for Economic Co-operation and Development.
OECD guidelines for the security of information systems and net-

works: towards a culture of security. OECD, 2002. (Cited on page 6.)

[6] C. Perrin. What is the CIA Triad. Available at: http://www.tech

republic.com/blog/security/the-cia-triad/488, 2008. (Cited on page 6.)

[7] National Institute of Standards and Technology (NIST). FIPS-

46: Data Encryption Standard (DES). FIPS, 1977. (Cited on pages 8,
9 and 38.)

[8] National Institute of Standards and Technology (NIST). FIPS-

197: Advanced Encryption Standard (AES). FIPS, 2001. (Cited on
pages 9, 10 and 91.)

[9] National Institute of Standards and Technology (NIST). FIPS-

81: DES modes of operation. FIPS, 1980. (Cited on page 10.)

[10] National Institute of Standards and Technology (NIST). Special

Publication 800-38C: Recommendation for Block Cipher Modes of

Operation: The CCM Mode for Authentication and Confidentiality.
NIST, 2004. (Cited on page 12.)

[11] National Institute of Standards and Technology (NIST). Special

Publication 800-38D: Recommendation for Block Cipher Modes of

Operation: Galois/Counter Mode (GCM) and GMAC. NIST, 2007.
(Cited on page 12.)

138 Bibliography

[12] R. Rivest. RFC 1320: The MD4 Message-Digest Algorithm, 1992.
MIT and RSA Data Security, Inc. (Cited on page 17.)

[13] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. 1992.
(Cited on pages 17 and 18.)

[14] National Institute of Standards and Technology (NIST). FIPS

180-1: Secure Hash Standard – SHA-1. FIPS, 1995. (Cited on page 17.)

[15] National Institute of Standards and Technology (NIST). FIPS

180-2: Secure Hash Standard – SHA-2. FIPS, 2001. (Cited on page 17.)

[16] National Institute of Standards and Technology (NIST). SHA-

3 Selection Announcement. NIST, 2012. http://csrc.nist.gov/groups/ST
/hash/sha-3/sha-3_selection_announcement.pdf. (Cited on page 17.)

[17] B. Badrignans, J.L. Danger, V. Fischer, G. Gogniat, L. Torres,
et al. Security Trends for FPGAS: From Secured to Secure Reconfigurable

Systems. Springer, 2011. (Cited on pages 20, 21 and 22.)

[18] National Institute of Standards and Technology (NIST). FIPS

140-1: Security Requirements for Cryptographic Modules. FIPS,
1977. (Cited on page 20.)

[19] National Institute of Standards and Technology (NIST). FIPS

140-2: Security Requirements for Cryptographic Modules. FIPS,
1994. (Cited on pages 20, 23 and 24.)

[20] National Institute of Standards and Technology (NIST). Spe-

cial Publication 800-22: A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic Applications.
NIST, 2010. (Cited on page 20.)

[21] G. Marsaglia. DIEHARD: a battery of tests of randomness. See

http://stat.fsu.edu/geo/diehard.html, 1996. (Cited on page 20.)

[22] W. Killmann and W. Schindler. AIS-31: Functionality classes and

evaluation methodology for true (physical) random number genera-

tors. Bundesamt für Sicherheit in der Informationstechnik – BSI, 2001. (Cited
on page 20.)

[23] W. Killmann and W. Schindler. AIS-31: A Proposal for: Function-

ality classes and evaluation methodology for random number gen-

erators. Bundesamt für Sicherheit in der Informationstechnik – BSI, 2011.
(Cited on page 20.)

[24] M. Bucci and R. Luzzi. Design of testable random bit generators. In
Proceedings of the workshop on Cryptographic Hardware and Embedded Sys-

tems – CHES’05, pages 147–156. Springer, 2005. (Cited on pages 20 and 21.)

Bibliography 139

[25] S.H.M. Kwok and E.Y. Lam. FPGA-based high-speed true random

number generator for cryptographic applications. In Proceedings of

TENCON’06, pages 1–4. IEEE, 2006. (Cited on page 20.)

[26] KH Tsoi, KH Leung, and PHW Leong. Compact FPGA-based true

and pseudo random number generators. In Proceedings of the IEEE

Symposium on Field-Programmable Custom Computing Machines – FCCM’03,
pages 51–61. IEEE, 2003. (Cited on page 20.)

[27] B. Sunar, W.J. Martin, and D.R. Stinson. A provably secure true

random number generator with built-in tolerance to active attacks.
IEEE Transactions on Computers, 56(1):109–119, 2007. (Cited on page 21.)

[28] S. Yoo, B. Sunar, D. Karakoyunlu, and B. Birand. A robust and

practical random number generator, 2007. Citeseer. (Cited on page 21.)

[29] K. Wold and C.H. Tan. Analysis and enhancement of random num-

ber generator in FPGA based on oscillator rings. International Journal

of Reconfigurable Computing, 2009:4, 2009. (Cited on page 21.)

[30] D. Schellekens, B. Preneel, and I. Verbauwhede. FPGA vendor

agnostic true random number generator. In Proceedings of the conference

on Field Programmable Logic and Applications – FPL’06, pages 1–6. IEEE,
2006. (Cited on page 21.)

[31] M. Bucci, L. Giancane, R. Luzzi, M. Varanonuovo, and A. Tri-
filetti. A novel concept for stateless random bit generators in

cryptographic applications. In Proceedings of the International Sympo-

sium on Circuits and Systems – ISCAS’06, pages 4–pp. IEEE, 2006. (Cited
on page 21.)

[32] P. Kohlbrenner and K. Gaj. An embedded true random number

generator for FPGAs. In Proceedings of ACM/SIGDA International Sym-

posium on Field programmable gate arrays – FPGA’04, pages 71–78. ACM,
2004. (Cited on page 21.)

[33] T. Tkacik. A hardware random number generator. In Proceedings of

the workshop on Cryptographic Hardware and Embedded Systems – CHES’02,
pages 875–876. Springer, 2002. (Cited on page 21.)

[34] M. Varchola and M. Drutarovsky. New high entropy element

for FPGA based true random number generators. In Proceedings of

the workshop on Cryptographic Hardware and Embedded Systems – CHES’10,
pages 351–365. Springer, 2010. (Cited on page 21.)

[35] M. Goresky and A. Klapper. Algebraic Shift Register Sequences. Cam-
bridge University Press, 2012. (Cited on page 21.)

140 Bibliography

[36] V. Fischer, M. Drutarovský, M. Šimka, and F. Celle. Simple PLL-

based True Random Number Generator for Embedded Digital Sys-

tems. In Design and Diagnostics of Electronic Circuits and Systems Workshop

– DDECS’04, pages 129–136, 2004. (Cited on pages 21, 22, 49 and 120.)

[37] V. Fischer, M. Drutarovský, M. Šimka, and N. Bochard. High per-

formance true random number generator in Altera Stratix FPLDs.
In Proceedings of the conference on Field Programmable Logic and Application

– FPL’04, pages 555–564. Springer, 2004. (Cited on page 22.)

[38] Microsemi. Fusion Family of Mixed Signal FPGAs datasheet, 2012.
http://www.actel.com/documents/Fusion_DS.pdf. (Cited on page 32.)

[39] Microsemi. SmartFusion Customizable System-on-Chip (cSoC)

datasheet, 2012. http://www.actel.com/documents/SmartFusion_DS.pdf.
(Cited on pages 32 and 113.)

[40] Altera. Stratix II Device Handbook, 2011. http://www.altera.com /lit-
erature/hb/stx2/stratix2_handbook.pdf. (Cited on page 32.)

[41] Xilinx. Virtex-5 FPGA User Guides, 2012. http://www.xilinx.com
/support/documentation/virtex-5_user_guides.htm. (Cited on page 32.)

[42] Xilinx. Virtex-6 FPGA User Guides, 2012. http://www.xilinx.com
/support/documentation/virtex-6_user_guides.htm. (Cited on page 32.)

[43] J. M. McConnell. TEMPEST/2-95. NSTISSAM, 1995. http://cryptome
.org/tempest-2-95.htm. (Cited on pages 32 and 47.)

[44] Xilinx. XAPP1105: Single Chip Crypto Lab Using PR/ISO Flow with the

Virtex-5 Family for ISE Design Suite 12.1, 2011. http://www.xilinx.com/.
(Cited on pages 33 and 47.)

[45] M. McLean and J. Moore. FPGA-based single chip cryptographic

solution. Military Embedded Systems, 2007. (Cited on pages 33 and 47.)

[46] Xilinx. Difference-Based Partial Reconfiguration – XAPP290, 2007.
http://www.xilinx.com/support/documentation/application_notes/xapp290
.pdf. (Cited on pages 33 and 114.)

[47] Altera. Increasing Design Functionality with Partial and Dy-

namic Reconfiguration in 28-nm FPGAs, 2010. http://www.altera.com
/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf. (Cited on
pages 33 and 115.)

[48] Xilinx Inc. Partial Reconfiguration User Guide – UG702, 2010.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/
ug702.pdf. (Cited on pages 34, 39 and 123.)

Bibliography 141

[49] S. Bajikar. Trusted platform module (tpm) based security on note-

book pcs-white paper. Mobile Platforms Group, Intel Corporation, 2002.
(Cited on page 38.)

[50] S. Gürgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga.
Security evaluation of scenarios based on the TCG’s TPM specifi-

cation. In Proceedings of the European Symposium on Research in Computer

Computer Security – ESORICS’07, pages 438–453. Springer, 2007. (Cited on
page 38.)

[51] L. Chen and M. Ryan. Offline dictionary attack on TCG TPM weak

authorisation data, and solution. In Proceedings of the Future of Trust in

Computing conference, pages 193–196. Springer, 2009. (Cited on page 38.)

[52] T. Wollinger and C. Paar. How secure are FPGAs in cryptographic

applications? In Proceedings of Field-Programmable Logic and Applications

conference – FPL’03, pages 91–100. Springer, September 2003. (Cited on
pages 39, 112 and 113.)

[53] T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs:

State-of-the-art implementations and attacks. ACM Transactions

on Embedded Computing Systems (TECS), 3(3):534–574, 2004. (Cited on
page 39.)

[54] P. Davies. Flexible Security, 2003. Cryptography & Interoperability,
White Paper, Thales e-Security. (Cited on page 39.)

[55] Altera. FPGA Run-Time Reconfiguration: Two Approaches,
2010. http://www.altera.com/literature/wp/wp-01055-fpga-run-time-reconfig
uration.pdf. (Cited on page 39.)

[56] P. Kocher, J. Jaffe, and B. Jun. Timing Attacks on Implementa-

tions of Diffie-Hellman, RSA, DSS, and Other Systems. In Proceedings

of Advances in Cryptology – CRYPTO’96, 1109, pages 104–113. Springer,
1996. (Cited on pages 39 and 86.)

[57] D. Page. Theoretical use of cache memory as a cryptanalytic side-

channel. Department of Computer Science, University of Bristol, Tech. Rep.

CSTR-02-003, 2002. (Cited on page 39.)

[58] C. Percival. Cache missing for fun and profit. In Proceedings of the

BSDCan conference. Citeseer, 2005. (Cited on page 39.)

[59] D.J. Bernstein. Cache-timing attacks on AES, 2005. Citeseer. (Cited
on pages 39 and 40.)

142 Bibliography

[60] E. Bangerter, D. Gullasch, and S. Krenn. Cache games–Bringing

access-based cache attacks on AES to practice. In Proceedings of Con-

structive Side-Channel Analysis and Secure Design workshop – COSADE’11,
pages 215–221. CASED, 2011. (Cited on pages 39 and 40.)

[61] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and counter-

measures: The case of AES. In Proceedings of Cryptographers’ Track at

the RSA conference – CT-RSA’06, pages 1–20. Springer, 2006. (Cited on
page 40.)

[62] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A side–

channel analysis resistant description of the AES S–box. In Proceed-

ings of the workshop on Fast Software Encryption, pages 199–228. Springer,
2005. (Cited on pages 40 and 90.)

[63] L. Bossuet, M. Grand, L. Gaspar, V. Fischer, and G. Gogniat. Ar-

chitectures of flexible symmetric key crypto engines – a survey: from

hardware coprocessor to multi-crypto-processor system on chip. To

be published in ACM Computer Surveys, 45(4), December 2013. (Cited on
pages 40, 42, 43, 47 and 63.)

[64] S. Ravi, A. Raghunathan, N. Potlapally, and M. Sankaradass. Sys-

tem design methodologies for a wireless security processing plat-

form. In Proceedings of Design Automation Conference – DAC’02, 39, pages
777–782. ACM, August 2002. (Cited on pages 41 and 42.)

[65] J. Burke, J. McDonald, and T. Austin. Architectural support for

fast symmetric-key cryptography. In Proceedings of the conference on

Architectural support for programming languages and operating systems – AS-

PLOS’00, 34, pages 178–189. ACM, 2000. (Cited on pages 41 and 42.)

[66] S. Tillich, J. Großschädl, and A. Szekely. An instruction set

extension for fast and memory-efficient AES implementation. In
Proceedings of the conference on Communications and Multimedia Security –

CMS’05, pages 11–21. Springer, 2005. (Cited on pages 41 and 42.)

[67] S. Tillich and J. Großschädl. Instruction set extensions for ef-

ficient AES implementation on 32-bit processors. In Proceedings of

Cryptographic Hardware and Embedded Systems workshop – CHES’06, pages
270–284. Springer, 2006. (Cited on page 41.)

[68] P. Hämäläinen, M. Hännikäinen, and T. Hämäläinen. Review of

hardware architectures for advanced encryption standard imple-

mentations considering wireless sensor networks. In Proceedings of

the workshop on Embedded Computer Systems: Architectures, Modeling, and

Simulation – SAMOS’07, pages 443–453. Springer, 2007. (Cited on page 41.)

Bibliography 143

[69] S. Tillich and C. Herbst. Boosting AES performance on a tiny pro-

cessor core. In Proceedings of Cryptographers’ Track at the RSA conference

– CT-RSA’08, pages 170–186. Springer, 2008. (Cited on page 41.)

[70] Xilinx. CryptoBlaze: 8-Bit Security Microcontroller, September 2003. http://
www.xilinx.com/support/documentation/application_notes/xapp374.pdf.
(Cited on pages 41 and 42.)

[71] S. Gueron. Intel Advanced Encryption Standard (AES) Instructions

Set, 2010. White Paper, Intel Mobility Group, Israel Development Center.
(Cited on pages 41 and 42.)

[72] L. Barthe, L-V. Cargnini, P. Benoit, and L. Torres. Optimizing an

Open-Source Processor for FPGAs: A Case Study. In Proceedings of

the conference on Field Programmable Logic and Application – FPL’11, pages
551–556. IEEE, 2011. (Cited on page 41.)

[73] A. Martin, T.R. Newman, and D. Murotake. Development ap-

proaches for an international tactital radio cryptographic API. In
Proceedings of the Software Design Radio Technical Conference – SDR’08,
pages 1–6, 2008. (Cited on page 43.)

[74] L. Wu, C. Weaver, and T. Austin. CryptoManiac: a fast flexible

architecture for secure communication. In Proceedings of the Symposium

on Computer Architecture – ISCA’01, pages 110–119. IEEE, 2001. (Cited on
pages 43 and 44.)

[75] C. Weaver, R. Krishna, L. Wu, and T. Austin. Application specific

architectures: a recipe for fast, flexible and power efficient designs.
In Proceedings of the conference on Compilers, architecture, and synthesis

for embedded systems – CASES’01, pages 181–185. ACM, 2001. (Cited on
page 43.)

[76] D. Theodoropoulos, I. Papaefstathiou, and D. Pnevmatikatos.
Cproc: An efficient Cryptographic Coprocessor. In Proceedings of the

conference on Very Large Scale Integration – VLSI-SoC’08. Citeseer, 2008.
(Cited on pages 43 and 44.)

[77] D. Theodoropoulos, A. Siskos, and D. Pnevmatikatos. CCproc: A

custom VLIW cryptography co-processor for symmetric-key ciphers.
In Proceedings of the workshop on Reconfigurable Computing: Architectures,

Tools and Applications – ARC’09, pages 318–323. Springer, 2009. (Cited on
page 43.)

[78] R. Buchty, N. Heintze, and D. Oliva. Cryptonite–A programmable

crypto processor architecture for high-bandwidth applications.
In Proceedings of the conference on Organic and Pervasive Computing –

ARCS’04, pages 184–198. Springer, 2004. (Cited on pages 43 and 44.)

144 Bibliography

[79] M. Grand, L. Bossuet, G. Gogniat, B.L. Gal, J.P. Delahaye, and
D. Dallet. A Reconfigurable Multi-core Cryptoprocessor for Multi-

channel Communication Systems. In Proceedings of the Parallel and Dis-

tributed Processing Workshops – IPDPSW’11, pages 204–211. IEEE, 2011.
(Cited on pages 43 and 44.)

[80] L. Gaspar, V. Fischer, F. Bernard, L. Bossuet, and P. Cotret.
HCrypt: A Novel Concept of Crypto-processor with Secured Key

Management. In Proceedings of the conference on Reconfigurable Computing

and FPGAs – ReConFig’10, pages 280–285. IEEE Computer Society, 2010.
(Cited on pages 43, 44, 47, 63, 90 and 128.)

[81] L. Gaspar, V. Fischer, F. Bernard, and L. Bossuet. Cryptographic

NIOS II extension with secure key management. In PhD Forum pro-

ceedings of Data, Automation and Test in Europe conference – DATE’11.
ACM, 2011. (Cited on pages 44 and 84.)

[82] L. Gaspar, V. Fischer, L. Bossuet, and M. Drutarovsky. Crypto-

graphic extension for soft general-purpose processors with secure

key management. In Proceedings of the conference on Field Programmable

Logic and Applications – FPL’11, pages 500–505. IEEE, 2011. (Cited on
pages 44 and 84.)

[83] L. Gaspar, V. Fischer, L. Bossuet, and R. Fouquet. Secure exten-

sions of FPGA soft core processors for symmetric key cryptogra-

phy. In Proceedings of the workshop on Reconfigurable Communication-centric

Systems-on-Chip – ReCoSoC’11, pages 1–8, 2011. (Cited on pages 44 and 84.)

[84] Altera. AN 567: Quartus II Design Separation Flow, 2012. http://
www.altera.com/. (Cited on page 50.)

[85] V. Fischer, M. Drutarovsky, P. Chodowiec, and F. Gramain. In-

vMixColumn decomposition and multilevel resource sharing in AES

implementations. IEEE Transactions on Very Large Scale Integration Sys-

tems – VLSI’05, 13(8):989–992, 2005. (Cited on pages 58 and 98.)

[86] I. Verbauwhede, F. Hoornaert, J. Vandewalle, and H. De Man.
ASIC Cryptographical Processor Based on DES. In Proceedings of the

conference Euro ASIC’91, pages 292–295. IEEE, 1991. (Cited on pages 66, 67
and 68.)

[87] H. Kuo and I. Verbauwhede. Architectural optimization for a 1.82

Gbits/sec VLSI implementation of the AES Rijndael algorithm. In
Proceedings of the workshop on Cryptographic Hardware and Embedded Sys-

tems – CHES’01, pages 51–64. Springer, 2001. (Cited on pages 66, 67 and 68.)

Bibliography 145

[88] I. Verbauwhede, P. Schaumont, and H. Kuo. Design and perfor-

mance testing of a 2.29-GB/s Rijndael processor. IEEE Journal of

Solid-State Circuits, 38(3):569–572, 2003. (Cited on pages 66, 67 and 68.)

[89] A. Hodjat and I. Verbauwhede. High-throughput programmable

cryptocoprocessor. IEEE Micro magazine, 24(3):34–45, 2004. (Cited on
pages 66, 67 and 68.)

[90] A. Hodjat and I. Verbauwhede. Interfacing a high speed crypto

accelerator to an embedded CPU. In Proceedings of the Asilomar con-

ference on Signals, Systems and Computers – ACSSC’04, 1, pages 488–492.
IEEE, 2004. (Cited on pages 66, 67 and 68.)

[91] A. Hodjat and I. Verbauwhede. Area-throughput trade-offs for fully

pipelined 30 to 70 Gbits/s AES processors. IEEE Transactions on

Computers, pages 366–372, 2006. (Cited on page 66.)

[92] E. Mosanya, C. Teuscher, H. Restrepo, P. Galley, and E. Sanchez.
Cryptobooster: A reconfigurable and modular cryptographic copro-

cessor. In Proceedings of the workshop on Cryptographic Hardware and Em-

bedded Systems – CHES’99, pages 726–726. Springer, 1999. (Cited on pages 66,
67 and 68.)

[93] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis. The molen proces-

sor prototype. In Proceedings of IEEE Symposium on Field-Programmable

Custom Computing Machines – FCCM’04, pages 296–299. IEEE, 2004. (Cited
on page 66.)

[94] R. Chaves, G. Kuzmanov, S. Vassiliadis, and L. Sousa. Reconfig-

urable Cryptographic Processor. In Workshop on Circuits, Systems and

Signal Processing – CSSP’06. Citeseer, 2006. (Cited on pages 66, 67 and 68.)

[95] M. Pericas, R. Chaves, G. Gaydadjiev, S. Vassiliadis, and
M. Valero. Vectorized AES core for high-throughput secure envi-

ronments. In Proceedings of the conference on High Performance Computing

for Computational Science – VECPAR’08, pages 83–94. Springer, 2008. (Cited
on pages 66, 67 and 68.)

[96] M.Y. Wang, C.P. Su, C.L. Horng, C.W. Wu, and C.T. Huang. Single-

and multi-core configurable AES architectures for flexible secu-

rity. IEEE Transactions on Very Large Scale Integration Systems – VLSI’10,
18(4):541–552, 2010. (Cited on page 66.)

[97] C.P. Su, C.L. Horng, C.T. Huang, and C.W. Wu. A configurable

AES processor for enhanced security. In Proceedings of the Asia and

South Pacific Design Automation Conference – ASP-DAC’05, pages 361–366.
ACM, 2005. (Cited on pages 66, 67 and 68.)

146 Bibliography

[98] D.D. Hwang, K. Tiri, A. Hodjat, B.C. Lai, S. Yang, P. Schaumont,
and I. Verbauwhede. AES-Based Security Coprocessor IC in 0.18-

µm CMOS with Resistance to Differential Power Analysis Side-

Channel Attacks. IEEE Journal of Solid-State Circuits, 41(4):781–792,
2006. (Cited on pages 66, 67 and 68.)

[99] G. Gogniat, T. Wolf, W. Burleson, J.P. Diguet, L. Bossuet,
and R. Vaslin. Reconfigurable hardware for high-security/high-

performance embedded systems: the SAFES perspective. IEEE

Transactions on Very Large Scale Integration Systems – VLSI’08, 16(2):144–
155, 2008. (Cited on pages 66, 67 and 68.)

[100] B. MuthuKumar and S. Jeevananthan. Performance Enhanced Co-

Processor for Elliptic Curve Cryptography over GF (p). European

Journal of Scientific Research, 68(4):544–555, 2012. (Cited on page 66.)

[101] M. Morales-Sandoval, C. Feregrino-Uribe, R. Cumplido, and
I. Algredo-Badillo. A reconfigurable GF (2M) elliptic curve cryp-

tographic coprocessor. In Proceedings of the Southern Conference on Pro-

grammable Logic – SPL’11, pages 209–214. IEEE, 2011. (Cited on page 66.)

[102] F. Crowe, A. Daly, T. Kerins, and W. Marnane. Single-chip FPGA

implementation of a cryptographic co-processor. In Proceedings of

the conference on Field-Programmable Technology – FPT’04, pages 279–285.
IEEE, 2004. (Cited on page 66.)

[103] Y. Eslami, A. Sheikholeslami, P.G. Gulak, S. Masui, and
K. Mukaida. An area-efficient universal cryptography processor for

smart cards. IEEE Transactions on Very Large Scale Integration Systems –

VLSI’06, 14(1):43–56, 2006. (Cited on page 66.)

[104] P. Cotret, J. Crenne, G. Goniat, J-P. Diguet, L. Gaspar, and
G. Duc. Distributed security for communications and memories in a

multiprocessor architecture. In Proceedings of the International Parallel

& Distributed Processing Symposium – IPDPS’11. IEEE Computer Society,
2011. (Cited on page 70.)

[105] ARM. AMBA Specification, rev. 2.0, 1999. http://www.arm.com. (Cited on
page 77.)

[106] L. Gaspar, V. Fischer, L. Bossuet, and R. Fouquet. Secure exten-

sion of FPGA general purpose processors for symmetric key cryp-

tography with partial reconfiguration capabilities. ACM Transactions

on Reconfigurable Technology and Systems – TRETS’12, 5, September 2012.
(Cited on pages 84 and 129.)

Bibliography 147

[107] P. Kocher, J. Jaffe, and B. Jun. Introduction to

differential power analysis and related attacks, 1999.
http://www.cryptography.com/dpa/technical. (Cited on pages 86 and 88.)

[108] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis:

Concrete results. In Proceedings of the workshop on Cryptographic Hardware

and Embedded Systems – CHES’01, pages 251–261. Springer, 2001. (Cited on
page 86.)

[109] J.J. Quisquater and D. Samyde. ElectroMagnetic analysis (EMA):

Measures and counter-measures for smart cards. In Proceedings of

the conference on Smart Card Programming and Security – E-smart’01, pages
200–210. Springer, 2001. (Cited on page 86.)

[110] T. Messerges, E.A. Dabbish, and R.H. Sloan. Investigations of

power analysis attacks on smartcards. In Proceedings of the USENIX

Workshop on Smartcard Technology, pages 17–17. USENIX Association, 1999.
(Cited on page 86.)

[111] T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Examining smart-

card security under the threat of power analysis attacks. IEEE Trans-

actions on Computers, 51(5):541–552, 2002. (Cited on page 86.)

[112] S. Mangard. A simple power–analysis (SPA) attack on implemen-

tations of the AES key expansion. In Proceedings of the conference on

Information Security and Cryptology – ICISC’02, pages 343–358. Springer,
2003. (Cited on page 86.)

[113] S.B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel. Power-

Analysis Attack on an ASIC AES implementation. In Proceedings of

the conference on Information Technology: Coding and Computing – ITCC’04,
2, pages 546–552. IEEE, 2004. (Cited on page 86.)

[114] F.X. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and
J.J. Quisquater. Power analysis of FPGAs: How practical is the

attack? In Proceedings of the conference on Field Programmable Logic and

Application – FPL’03, pages 701–710. Springer, 2003. (Cited on page 86.)

[115] F.X. Standaert, S. Örs, J.J. Quisquater, and B. Preneel. Power

analysis attacks against FPGA implementations of the DES. In Pro-

ceedings of the conference on Field Programmable Logic and Application –

FPL’04, pages 84–94. Springer, 2004. (Cited on page 86.)

[116] F.X. Standaert, S.B. Örs, and B. Preneel. Power Analysis of an

FPGA. In Proceedings of the workshop on Cryptographic Hardware and Em-

bedded Systems – CHES’04, pages 30–44. Springer, 2004. (Cited on page 86.)

148 Bibliography

[117] T. Messerges. Using second–order power analysis to attack DPA

resistant software. In Proceedings of the workshop on Cryptographic Hard-

ware and Embedded Systems – CHES’00, pages 27–78. Springer, 2000. (Cited
on pages 88 and 89.)

[118] S. Chari, J. Rao, and P. Rohatgi. Template attacks. In Proceedings of

the workshop on Cryptographic Hardware and Embedded Systems – CHES’02,
pages 51–62. Springer, 2002. (Cited on page 88.)

[119] E. Brier, C. Clavier, and F. Olivier. Correlation power analysis

with a leakage model. In Proceedings of the workshop on Cryptographic

Hardware and Embedded Systems – CHES’04, pages 135–152. Springer, 2004.
(Cited on page 88.)

[120] T.H. Le, J. Clédière, C. Canovas, B. Robisson, C. Servière, and J.L.
Lacoume. A proposition for correlation power analysis enhancement.
In Proceedings of the workshop on Cryptographic Hardware and Embedded Sys-

tems – CHES’06, pages 174–186. Springer, 2006. (Cited on page 88.)

[121] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual infor-

mation analysis. In Proceedings of the workshop on Cryptographic Hardware

and Embedded Systems – CHES’08, pages 426–442. Springer, 2008. (Cited on
page 88.)

[122] S. Mangard. Hardware countermeasures against DPA–a statistical

analysis of their effectiveness. In Proceedings of Cryptographers’ Track at

the RSA conference – CT-RSA’04, pages 1998–1998. Springer, 2004. (Cited
on page 88.)

[123] T. Güneysu and A. Moradi. Generic side–channel countermeasures

for reconfigurable devices. In Proceedings of the workshop on Cryptographic

Hardware and Embedded Systems – CHES’11, pages 33–48. Springer, 2011.
(Cited on pages 88 and 89.)

[124] P.C. Kocher. Leak-resistant cryptographic indexed key update.
United States Patent 6,539,092 filed on July 2nd, 1999 at San Francisco, CA,

USA, 6, March 25th 2003. (Cited on page 88.)

[125] P. Kocher. Design and validation strategies for obtaining assurance

in countermeasures to power analysis and related attacks. In NIST

Physical Security Testing Workshop – Honolulu, 2005. (Cited on page 88.)

[126] T. Güneysu. Using Data Contention in Dual–ported Memories for

Security Applications. Journal of Signal Processing Systems, pages 1–15,
2010. (Cited on page 89.)

Bibliography 149

[127] C. Beckhoff, D. Koch, and J. Torresen. Short–circuits on fpgas

caused by partial runtime reconfiguration. In Proceedings of the confer-

ence on Field Programmable Logic and Applications – FPL’10, pages 596–601.
IEEE, 2010. (Cited on page 89.)

[128] C. Clavier, J.S. Coron, and N. Dabbous. Differential power anal-

ysis in the presence of hardware countermeasures. In Proceedings of

the workshop on Cryptographic Hardware and Embedded Systems – CHES’00,
pages 13–48. Springer, 2000. (Cited on page 89.)

[129] J.S. Coron and I. Kizhvatov. Analysis and improvement of the ran-

dom delay countermeasure of CHES 2009. In Proceedings of the work-

shop on Cryptographic Hardware and Embedded Systems – CHES’10, pages
95–109. Springer, 2010. (Cited on page 89.)

[130] T. Popp and S. Mangard. Masked dual-rail pre-charge logic: DPA-

resistance without routing constraints. In Proceedings of the workshop on

Cryptographic Hardware and Embedded Systems – CHES’05, pages 172–186.
Springer, 2005. (Cited on pages 89 and 90.)

[131] M.L. Akkar and C. Giraud. An implementation of DES and AES,

secure against some attacks. In Proceedings of the workshop on Crypto-

graphic Hardware and Embedded Systems – CHES’01, pages 309–318. Springer,
2001. (Cited on page 90.)

[132] K. Tiri and I. Verbauwhede. Place and route for secure standard

cell design. Smart Card Research and Advanced Applications VI, pages 143–
158, 2004. (Cited on page 90.)

[133] K. Tiri, D. Hwang, A. Hodjat, B.C. Lai, S. Yang, P. Schaumont,
and I. Verbauwhede. Prototype IC with WDDL and differential

routing–DPA resistance assessment. In Proceedings of the workshop on

Cryptographic Hardware and Embedded Systems – CHES’05, pages 354–365.
Springer, 2005. (Cited on page 90.)

[134] M. Bucci, L. Giancane, R. Luzzi, and A. Trifiletti. Three–phase

dual-rail pre–charge logic. In Proceedings of the workshop on Cryptographic

Hardware and Embedded Systems – CHES’06, pages 232–241. Springer, 2006.
(Cited on page 90.)

[135] K. Tiri and I. Verbauwhede. Securing encryption algorithms against

DPA at the logic level: Next generation smart card technology. In
Proceedings of the workshop on Cryptographic Hardware and Embedded Sys-

tems – CHES’03, pages 125–136. Springer, 2003. (Cited on page 90.)

[136] D. Sokolov, J. Murphy, A. Bystrov, and A. Yakovlev. Design and

analysis of dual–rail circuits for security applications. IEEE Transac-

tions on Computers, 54(4):449–460, 2005. (Cited on page 90.)

150 Bibliography

[137] M. Nassar, S. Bhasin, J.L. Danger, G. Duc, and S. Guilley. BCDL:

a high speed balanced DPL for FPGA with global precharge and no

early evaluation. In Proceedings of the conference on Design, Automation &

Test in Europe – DATE’10, pages 849–854. IEEE, 2010. (Cited on page 90.)

[138] T. Popp and S. Mangard. Implementation aspects of the DPA–

resistant logic style MDPL. In Proceedings of the International Symposium

on Circuits and Systems – ISCAS’06, pages 2913–2916. IEEE, 2006. (Cited
on page 90.)

[139] G. Piret and J.J. Quisquater. A differential fault attack technique

against SPN structures, with application to the AES and KHAZAD.
In Proceedings of the workshop on Cryptographic Hardware and Embedded Sys-

tems – CHES’03, pages 77–88. Springer, 2003. (Cited on page 99.)

[140] S. Guilley, L. Sauvage, J.L. Danger, and N. Selmane. Fault in-

jection resilience. In Proceedings of the workshop on Fault Diagnosis and

Tolerance in Cryptography – FDTC’10, pages 77–88. IEEE, 2010. (Cited on
page 105.)

[141] T. Barraza. How to Protect Intellectual Property in FPGAs

Devices – Part 1, 2005. http://eetimes.com/design/programmable-logic
/4014780/How-to-Protect-Intellectual-Property-in-FPGAs-Devices-Part-1.
(Cited on page 112.)

[142] B. Dipert. Cunning circuits confound crooks. Electronics Design Net-

work – EDN, 45(21):103–112, 2000. (Cited on pages 112 and 113.)

[143] S. Skorobogatov and Ch. Woods. Breakthrough silicon scanning

discovers backdoor in military chip. In Proceedings of the workshop

on Cryptographic Hardware and Embedded Systems – CHES’12, pages 23–40.
Springer, 2012. (Cited on page 113.)

[144] A. Lesea. jbits & reverse engineering, 2005. http://groups.google.com
/group/comp.arch.fpga/msg/821968d7dcb50277. (Cited on page 114.)

[145] S. Trimberger. Trusted design in FPGAs. In Proceedings of the Design

Automation Conference – DAC’07, pages 5–8. IEEE/ACM, 2007. (Cited on
page 114.)

[146] J-B Note and É. Rannaud. From the bitstream to the netlist. In Pro-

ceedings of the ACM/SIGDA symposium on Field programmable gate arrays

– FPGA’08, pages 264–264. ACM, 2008. (Cited on page 114.)

[147] S. Trimberger. Field-programmable gate array technology. Springer, 1994.
(Cited on page 114.)

[148] Xilinx. Xilinx: Design Security Solutions, 2012. http://www.xilinx.com
/products/technology/design-security/. (Cited on page 114.)

Bibliography 151

[149] Altera. Altera: Design Security, 2012. http://www.altera.com/devices
/fpga/stratix-fpgas/about/security/stx-design-security.html. (Cited on
page 114.)

[150] A. Lesea. IP security in FPGAs. Xilinx, 2007. http://direct.xilinx.com
/bvdocs/whitepapers/wp261.pdf. (Cited on page 114.)

[151] L. Hong. Comparison of Embedded Non-Volatile Memory

Technologies and Their Applications, white paper. Kilopass,
2009. http://www.kilopass.com/wp-content/uploads/2010/04/comparison
_of_embedded_nvm.pdf. (Cited on page 114.)

[152] W.R. Tonti. eFuse Design and Reliability. In Integrated Reliability

Workshop Final Report, 2008. Available online: http://paris.utdallas.edu
/ssiri08/Tonti_SSIRI_eFuse_V2.pdf. (Cited on page 114.)

[153] A. Moradi, A. Barenghi, T. Kasper, and C. Paar. On the vulnera-

bility of FPGA bitstream encryption against power analysis attacks:

extracting keys from xilinx Virtex–II FPGAs. In Proceedings of the

ACM conference on Computer and communications security – CCS’11, pages
111–124. ACM, 2011. (Cited on page 114.)

[154] A. Moradi, M. Kasper, and C. Paar. Black-Box Side-Channel At-

tacks Highlight the Importance of Countermeasures. In Proceedings

of Cryptographers’ Track at the RSA conference – CT-RSA’12, pages 1–18.
Springer, 2012. (Cited on page 114.)

[155] L. Bossuet, G. Gogniat, and W. Burleson. Dynamically config-

urable security for SRAM FPGA bitstreams. International Journal of

Embedded Systems, 2(1):73–85, 2006. (Cited on page 115.)

[156] A. Dauman. An Open IP Encryption Flow Permits Industry-Wide

Interoperability, 2006. http://www.asicfpga.com/site_upgrade/asicfpga
/pds/ip_pds_files/ip_encryption_wp.pdf. (Cited on page 115.)

[157] T. Guneysu, B. Moller, and C. Paar. Dynamic intellectual prop-

erty protection for reconfigurable devices. In Procedings of the Field-

Programmable Technology Conference – ICFPT’07, pages 169–176. IEEE,
2007. (Cited on page 115.)

[158] S. Drimer, T. Güneysu, M.G. Kuhn, and C. Paar.
Protecting multiple cores in a single FPGA design.
http://www.saardrimer.com/sd410/papers/protect_many_cores.pdf, 2008.
(Cited on page 115.)

[159] R. Maes, D. Schellekens, and I. Verbauwhede. A Pay-per-Use Li-

censing Scheme for Hardware IP Cores in Recent SRAM-Based FP-

GAs. IEEE Transactions on Information Forensics and Security, 7(1):98–108,
2012. (Cited on page 115.)

152 Bibliography

[160] K. Kepa, F. Morgan, K. Kosciuszkiewicz, and T. Surmacz. Serecon:

A secure dynamic partial reconfiguration controller. In Proceeding of

the IEEE Computer Society Annual Symposium on VLSI – ISVLSI’08, pages
292–297. IEEE, 2008. (Cited on page 115.)

[161] K. Kepa, F. Morgan, K. Kosciuszkiewicz, and T. Surmacz. SeRe-

Con: a secure reconfiguration controller for self-reconfigurable sys-

tems. International Journal of Critical Computer-Based Systems, 1(1):86–
103, 2010. (Cited on page 115.)

[162] K Kepa. Secure Intellectual Property Management in Reconfigurable Com-

puting Systems. PhD thesis, College of Engineering and Informatics, National
University of Ireland, Galway, 2010. (Cited on page 115.)

[163] F. Devic, L. Torres, J. Crenne, B. Badrignans, and P. Benoît. Se-

cURe DPR: Secure Update Preventing Replay Attacks for Dynamic

Partial Reconfiguration. In Proceedings of the conference on Field Pro-

grammable Logic and Application – FPL’12, pages 57–62. IEEE, 2012. (Cited
on page 116.)

[164] Xilinx Inc. Developing Secure Designs Using the Virtex-5 Family–

XAPP1134, 2011. (Cited on page 116.)

[165] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner,
T. Levin, T. Nguyen, and C. Irvine. Moats and drawbridges: An

isolation primitive for reconfigurable hardware based systems. In
Proceedings of the IEEE Symposium on Security and Privacy – SP’07, pages
281–295. IEEE, 2007. (Cited on page 118.)

[166] Xilinx Inc. PRC/EPRC: Data Integrity and Security Controller

for Partial Reconfiguration – XAPP887, 2012. http://www.xilinx.com
/support/documentation/application_notes/xapp887_PRC_EPRC.pdf.
(Cited on page 123.)

[167] Xilinx Inc. Virtex-6 FPGA Configuration User Guide –

UG360, 2011. http://www.xilinx.com/support/documentation/user_guides
/ug360.pdf. (Cited on page 123.)

Appendix A: Introduction

A.1 Sécurité Flexible et Implantations Matérielles

La sécurisation des données est aujourd’hui de plus en plus demandée, en particu-
lier avec l’essor des communications sans fil grand public. Les technologies telles que
WIFI, Bluetooth, UMTS... sont largement utilisées. De plus, l’utilisation de dispo-
sitifs portables monte en flèche. Dans ce secteur très lucratif une solution reconfigu-
rable faible coût combinant un crypto-processeur embarqué (accélérateur matériel)
et un générateur de nombres aléatoires est particulièrement attractive. La capacité
à garantir une sécurité au niveau de l’implantation physique (concept du cloisonne-
ment entre zones protégée et non-protégée) ainsi que les techniques de contremesures
ont permis de passer de l’application standard des produits électroniques à une uti-
lisation dans des domaines plus sensibles comme : l’avionique, l’automobile et les
applications militaires qui requièrent des besoins en sécurité plus élevés.

Les systèmes cryptographiques matériels doivent fréquemment implanter des al-
gorithmes parallèles rapides (chiffreurs symétriques, certains modes de chiffrement,
etc.) conjointemenet à des algorithmes très séquentiels (autres modes de chiffrement,
protocoles cryptographiques, etc.). L’implantation d’algorithmes et protocoles cryp-
tographiques dans le matériel nécessite l’utilisation de nombreuses machines d’états
complexes qui rendent la logique très instable et vulnérable. De plus, les mises à jour
de logique câblée peuvent devenir compliquées, longues et coûteuses. D’un autre
côté, la sécurité du système lui-même et la protection des données confidentielles
sont souvent sous-estimées.

La solution la plus courante consiste à utiliser un processeur généraliste combiné
à un ou plusieurs coprocesseurs cryptographiques. Cette solution permet d’implan-
ter les algorithmes séquentiels (qui évoluent très fréquemment en raison des attaques
et/ou de l’évolution des standards) dans le processeur, et les tâches pouvant s’exé-
cuter en parallèle dans le coprocesseur implanté dans le même composant logique.
Cette solution pose cependant quelques questions quant à la sécurité du système :
premièrement, le processeur généraliste manipule les clés comme n’importe quelle
donnée ordinaire et toute modification (intentionnelle ou non) du contenu de la mé-
moire programme peut permettre la lecture des clés en clair à l’extérieur du système ;
deuxièmement, l’utilisation d’un processeur standard ne permet pas d’isoler effica-
cement les zones de communication rouges (non protégées) et noires (protégées) à
l’intérieur du composant.

L’utilisation d’un processeur généraliste pour des applications cryptographiques
conduit à une perte de vitesse pour deux raisons. La première est due à la largeur de
bus : la taille du bus et des données (généralement 32 bits) limite considérablement la
performance du système. La seconde est due à la complexité du jeu instructions : les

154 Appendix A: Introduction

processeurs visant des applications cryptographiques (secondés par un coprocesseur
cryptographique) n’ont pas besoin du jeu d’instructions complexe qui est nécessaire
aux processeurs généralistes et l’optimisation (réduction) de ce jeu d’instruction
peut augmenter la vitesse du système. La conception d’un processeur dédié avec
un jeu d’instructions dédié est particulièrement intéressante dans le cas du secteur
émergeant des applications systèmes embarqués multi processeurs (Multi-Processor
System-on-Chip - MPSoC).

A.2 Objectifs de la Thèse

Afin de remplir les conditions mentionnées (souvent contradictoires) pour le système
cryptographique, l’Agence Nationale de la Recherche (ANR) a sélectionné le projet
intitulé Systèmes sur puces reconfigurables pour la sécurisation de données (SecRe-
SoC) proposé par l’équipe Systèmes Embarqués Sécurisés du laboratoire Hubert
Curien. Le but du projet SecReSoC était d’étudier les aspects sécurité d’un MPSoC
et de réaliser un démonstrateur du système MPSoC final implanté dans un compo-
sant FPGA (Field Programmable Gate Array). Le travail qui est présenté dans ce
document a été réalisé dans le cadre du projet ANR SecReSoC – ANR-09-SEGI-013.
Les objectifs envisagés sont les suivants :

1. Réaliser une analyse des architectures de processeurs embarqués de type soft-
ware (softcores) existantes afin d’étudier dans quelle mesure l’architecture du
crypto-processeur peut s’appuyer sur la transformation d’une architecture exis-
tante.

2. Proposer une nouvelle architecture du processeur permettant de séparer les
registres de données et les registres de clés confidentielles.

3. Optimiser l’architecture de l’Unité Arithmétique et Logique (UAL) pour les
opérations utilisées dans les protocoles cryptographiques et les modes de chif-
frement.

4. Proposer un jeu d’instructions permettant de traiter séparément des données
et des clés.

5. Intégrer le noyau de chiffrement et les outils de contremesures permettant
de lutter contre les différents types d’attaques dans l’architecture du crypto-
processeur.

6. Proposer un outil de programmation (compilateur) paramétrable, permettant
de faire évoluer le langage assembleur du processeur avec son jeu d’instructions.

7. Intégrer les éléments de reconfiguration et programmation sécurisés dans la
structure logique du crypto-processeur.

8. Évaluer le niveau de sécurité du crypto-processeur proposé.

Appendix A: Introduction 155

A.3 Contribution

Ce travail ne se limite pas aux objectifs susmentionnés mais propose en plus de
nouveaux principes, de nouvelles règles de conception, des analyses de sécurité et
de nouvelles architectures dédiées. Ceci permet la gestion sécurisée des clés de chif-
frement dans des processeurs cryptographiques ou même dans des processeurs gé-
néralistes (associés à un coprocesseur cryptographique sécurisé). Les processeurs
cryptographiques développés (nommés par la suite simplement crypto-processeurs)
et les coprocesseurs cryptographiques (nommés par la suite crypto-coprocesseurs)
peuvent être utilisés directement dans la pratique. Ce travail est complété par une
étude des contremesures aux attaques par canaux cachés puis par la protection du
système lors des reconfigurations totales ou partielles. Ce travail ne se contente
pas de solutions partielles mais propose un système complet avec un processeur
cryptographique HCrypt entièrement fonctionnel et testé ainsi qu’un coprocesseur
cryptographique HCrypt-C disponibles dans de nombreuses variantes dédiées à des
objectifs spécifiques.

Chaque problématique abordée dans ce travail est précédée d’une étude appro-
fondie de l’état de l’art du domaine qui est résumée en début de chaque chapitre de
cette thèse.

A.4 Structure de la Thèse

Le chapitre 2 présente les connaissances de base que doit avoir le lecteur pour une
lecture compréhensible des prochaines parties de ce document. Ce chapitre présente
d’abord les techniques cryptographiques de base pour assurer une communication sé-
curisée. Puis il décrit les principaux algorithmes de cryptographie symétrique (DES,
AES, modes de chiffrement, etc.). Ceci est suivi par une description des fonctions de
hachage ainsi que des générateurs de nombres aléatoires. Puis par une déscription
de la gestion des clés, des différents acteurs de la communication et des principales
menaces de sécurité. Les processus importants d’échange des clés sont brièvement
introduits et comparés. La deuxième partie du chapitre 2 se focalise sur les FPGAs
ainsi que sur les processus de conception avancés correspondants.

Le chapitre 3 contient un résumé de l’état de l’art des processeurs cryptogra-
phiques. Il est d’abord question des problèmes de sécurité dans les implantations
d’algorithmes cryptographiques, suivi d’une vue d’ensemble des architectures cryp-
tographiques matérielles. Ensuite, sont présentées les nouvelles règles de sépara-
tion pour la gestion des clés de sécurité. Ces règles sont implantées dans le crypto-
processeur HCrypt initial. Par la suite, son architecture matérielle et logicielle ainsi
que le protocole de communication sont décrits, suivis par les simulations et les tests
matériels. Les propriétés du HCrypt et les résultats d’implantation sont présentés.

Le chapitre 4 décrit les coprocesseurs cryptographiques avec gestion sécurisée
des clés. Après présentation de l’état de l’art des crypto-coprocesseurs, de légères
modifications des règles de séparation pour crypto-coprocesseurs sont proposées. Ces
règles de séparation sont appliquées sur le crypto-coprocesseur HCrypt-C. Sont en-

156 Appendix A: Introduction

suite présentées les topologies d’interface les plus courantes pour les interconnections
entre un coprocesseur et un processeur standard. Ensuite, trois processeurs généra-
listes différents sont associés au HCrypt-C, avec présentation des architectures et
des résultats.

Les menaces d’attaques par canaux cachés (SCA) sont étudiées dans le cha-
pitre 5. Après avoir introduit l’état de l’art des attaques matérielles, une analyse
de sécurité approfondie du chiffreur AES et du HCrypt est présentée. L’analyse
de sécurité du HCrypt fait ressortir une vulnérabilité aux SCA, c’est pourquoi le
crypto-processeur HCrypt2 est envisagé. HCrypt2 met en oeuvre de nouvelles contre-
mesures (contremesures zéro-coût). Les analyses de sécurité du HCrypt2 confirment
l’amélioration de la robustesse aux SCA. L’architecture et les résultats du HCrypt2
sont présentés et évalués.

Dans le chapitre 6 une technique avancée spécifique aux FPGA est évaluée :
la reconfiguration partielle. Ce chapitre présente tout d’abord les avantages et in-
convénients de la reconfiguration partielle, puis le travail accompli dans ce domaine.
Ensuite, des nouvelles règles de séparation en accord avec la reconfiguration partielle
sont définies. Les implications en terme de sécurité des reconfigurations totales et
partielles sont discutées. Enfin, un crypto-processeur HCrypt-C partiellement re-
configurable est décrit et testé. Cette reconfiguration partielle concerne la zone du
chiffreur décrite selon trois variantes.

Enfin, le chapitre 7 résume toutes les contributions importantes, les propositions
et les conclusions. Il présente également les nouveaux défis qui pourraient être sujets
d’études futures.

Appendix B: Aperçu des

Contributions et Conclusions

Cette thèse présente le travail de recherche qui a été conduit dans le but d’accroître la
sécurité de la gestion des clés réalisée dans les systèmes sur puce multi-processeurs.
L’objectif principal était de proposer une nouvelle architecture crypto-processeur
organisée de façon à ce que le stockage des clés soit fermement séparé du reste du
système. Un nouveau jeu d’instructions a été proposé pour faciliter la séparation des
données et des opérations de traitement des clés. De plus, le crypto-processeur doit
être optimisé pour les modes de chiffrement par blocs et doit permettre d’échanger
les données et les clés par paquets. Une des versions au moins du crypto-processeur
doit intégrer des contremesures aux attaques par canaux cachés. La reconfigura-
tion pouvant elle aussi être source de faiblesse, sa sécurité doit être évaluée et
des solutions proposées. Pour simplifier les développements logiciels pour le nou-
veau crypto-processeur, un outil assembleur était nécessaire. De plus, les fréquentes
modifications du jeu d’instructions du crypto-processeur nécessitent un assembleur
flexible. Le dernier objectif était d’évaluer le niveau de sécurité du crypto-processeur
proposé.

Ce travail de recherche atteint les objectifs mentionnés, et propose en complé-
ment différentes solutions aux problèmes variés rencontrés au cours de ces trois
années de thèse.

B.1 Aperçu des Contributions

Les contributions les plus importantes de ce travail de recherche sont les suivantes :

1. Proposition d’un ensemble de règles de séparation qui permet une gestion sé-
curisée des clés dans les processeurs et coprocesseurs cryptographiques

2. Développement du crypto-processeur HCrypt qui suit ces règles de séparation.
De plus, HCrypt résiste aux attaques logicielles ou par injection de fautes
ciblant une révélation des clés secrètes

3. Développement de l’assembleur FlexASM avec un jeu d’instructions défini dans
un fichier texte

4. Proposition d’un crypto-coprocesseur qui permet une gestion sécurisée des clés
pour chaque processeur généraliste

5. Proposition de nouvelles contremesures à bas coût qui augmentent la sécurité
du crypto-processeur contre les attaques par canaux cachés

158 Appendix B: Aperçu des Contributions et Conclusions

6. Proposition d’une gestion sécurisée des clés dans un système entièrement ou

partiellement reconfigurable

Toutes ces contributions exigeaient une étude appronfondie des architectures
existantes, une analyse de la sécurité et nécessitaient un grand nombre d’implanta-
tions, de simulations et de tests matériels.

B.2 Conclusions

Les contributions et propositions principales présentées dans cette thèse concernent
la définition d’un ensemble de règles de séparation qui aident les développeurs à
la création de processeurs et coprocesseurs cryptographiques avec gestion sécurisée
des clés. Si ces règles sont respectées, le système deviendra robuste aux attaques
logicielles ou par injections de fautes visant à une révélation des clés sécurisées. Les
règles de séparation suggèrent une division du système en trois zones de niveaux de
securite differents : la zone de données, la zone du chiffreur et la zone des clés. Ces
trois zones doivent être séparées au niveau du protocole, du système, de l’architec-
ture et au niveau physique. En conséquence, les clés sécurisées qui sont enregistrées
dans la zone des clés ne peuvent pas être directement transmises dans la zone de
données. En revanche, elles doivent passer par un chiffreur (représentant une bar-
rière physique) dans la zone du chiffreur. Ainsi, toutes les attaques logicielles ou par
injection de fautes ne peuvent pas révéler les clés sécurisées.

These unique separation rules were demonstrated on the novel HCrypt crypto-
processor. HCrypt is a 128-bit cryptographic processor featuring the ALU, which is
optimized for block cipher modes and packet management, two AES ciphers, true
random number generator, and secure key storage for both session and master keys.
HCrypt is divided into data, cipher and key zone each having different security
privilege. The most secure is the key zone, where secret keys are stored in clear.
HCrypt protects data by using the generated session keys. The session keys must
be securely exchanged prior to data exchange using the master keys. Master keys
are transferred to HCrypt via a dedicated 32-bit bus. We demonstrated HCrypt
operation, security, and programmability and measured its throughput. Tests in
Xilinx Virtex-5 and -6 FPGAs indicated data throughput of 824.7 Mb/s, while
HCrypt exchanged session keys and processed data in packets using the 128-bit
CFB block encryption mode.

Ces règles uniques de séparation ont été appliquées à un nouveau crypto-processeur
intitulé HCrypt. HCrypt est un processeur cryptographique de 128 bits contenant
l’UAL qui a été optimisée pour les modes de chiffrement et la gestion de paquets.
De plus, HCrypt comporte deux chiffeurs AES, un générateur de nombres véritable-
ment aléatoires et des mémoires sécurisées pour les clés de sessions et clés maîtres.
HCrypt est divisé en trois zones (données, chiffreur et clés) chacune avec un niveau
de sécurité différent. La zone la plus sécurisée est la zone des clés. Dans cette zone
les clés sécurisées peuvent être enregistrées en clair. HCrypt protège les données en
utilisant les clés de session éphémères. Les clés de session doivent être échangées

Appendix B: Aperçu des Contributions et Conclusions 159

de manière sécurisée avant l’échange de données utilisant les clés maîtres. Les clés
maîtres sont transmises par un bus de 32 bits dédié. Un demonstrateur du HCrypt a
été réalisé, avec évaluation de sa sécurité et sa programmabilité et mesure du débit.
Les tests, effectués dans les FPGAs Xilinx Virtex-5 et -6, atteignent un débit de
données de 824.7 Mb/s (comprenant l’échange de clés et le chiffrement des données
avec le mode CFB 128 bits).

Un nouvel outil assembleur FlexASM a été créé pour simplifier le développement
logiciel du HCrypt. Contrairement aux autres assembleurs, le jeu d’instructions peut
être défini dans un fichier texte chargé avant la compilation du code assemblé. Cette
caractéristique résout le problème des modifications fréquentes du jeu d’instructions
du HCrypt pendant son développement. FlexASM peut cependant être utilisé pour
d’autres processeurs.

Nous montrons ensuite la façon de construire les crypto-processeurs supportant
la gestion des clés. Pour les applications à coût critique nécessitant l’exécution d’ins-
tructions généralistes, nous proposons l’extension du crypto-coprocesseur HCrypt-
C à n’importe quel processeur généraliste. Ce crypto-coprocesseur respecte toutes
les règles de séparation strictes, permettant ainsi aux processeurs généralistes de
gérer les clés. La structure du crypto-coprocesseur HCrypt-C est très similaire à
celle du crypto-processeur HCrypt. Il a un bus de données de 128 bits, un chif-
freur/déchiffreur AES embarqué et un TRNG. Le crypto-coprocesseur HCrypt-C
peut être interconnecté avec un processeur utilisant un bus processeur interne, un
bus coprocesseur dédié ou un bus périphérique. Ces trois sortes de bus sont compa-
rées, évaluées sur les trois implantations de processeurs et testées dans le matériel.
Le processeur Nios II atteint un débit de données de 25.1 Mb/s, le MicroBlaze 18.4
Mb/s et le Cortex M1 12.2 Mb/s, tous échangeant les clés de session et traitant les
données par paquets en utilisant le mode de chiffrement par blocs CFB.

Dans le but d’augmenter la robustesse aux attaques par canaux cachés, de nou-
velles contremesures zéro-coût sont proposées et testées dans un nouveau HCrpt2.
Contrairement aux contremesures niveau microarchitecture, les contremesures zéro
coût sont implantées à un niveau macroarchitecture. Nous montrons que par un
réarrangement astucieux des blocs du cryptoprocesseur (tout en maintenant l’iso-
lation physique des zones de sécurité selon les règles de séparation proposées), le
nouveau crypto-processeur HCrypt2 est robuste aux attaques logicielles, et plus ro-
buste contre les DPA et les attaques par injection de fautes. De plus, nous avons
montré qu’un seul des deux chiffreurs a besoin d’être protégé contre les attaques, ce
qui rend encore moins couteuse la protection du HCrypt2 que celle du HCrypt1 en
utilisant les mêmes techniques de masquage des données. De plus, le chiffreur proté-
geant les clés de session est rarement utilisé (une seule fois par paquet). Ce chiffreur
n’a donc pas besoin d’être rapide et peut donc être très petit, ce qui diminue encore
plus le coût de cette contremesure au niveau microarchitecture. En plus de ceci, seul
un registre clé de 128 bits est nécessaire dans HCrypt2 (pour le chiffrement) par
rapport aux deux registres nécessaires au HCrypt1 (un pour le chiffrement et un
pour le déchiffrement).

La dernière contribution est l’extension des règles de séparation aux systèmes

160 Appendix B: Aperçu des Contributions et Conclusions

partiellement reconfigurables. Deux cas sont étudiés : a) les FPGA permettant uni-
quement la reconfiguration totale de la structure logique ; b) les FPGA permettant
la reconfiguration partielle. Pour maintenir un haut niveau de sécurité, le crypto-
processeur doit contenir une unité de contrôle de la reconfiguration, un stockage des
clés sécurisé et une interface de configuration interne. L’unité de contrôle de recon-
figuration doit être câblée (processeur sécurisé embarqué) dans le cas d’un système
totalement reconfigurable, ou stockée dans la zone statique dans le cas des sys-
tèmes partiellement reconfigurables. Le système partiellement reconfigurable a été
implanté à l’aide d’un processeur MicroBlaze associé au crypto-processeur HCrypt-
C. Les zones processeur et clé sont considérées statiques, alors que le chiffreur est
reconfigurable. Pour le test, trois versions de chiffreur ont été testées : AES (chif-
freur, déchiffreur et TRNG), DES et une boite noire vide. La taille du bitstream
partiel de chacune des 3 versions du HCrypt-C est de 530.25 kB.

B.3 Perspectives

Dans le cadre de ce travail, nous avons également voulu proposer un processeur
cryptographique qui peut être intégré dans le Multiprocesseur System on Chip Se-
cReSoC. La finalisation du système avec sa démonstration est un autre défi. La
sécurité relative aux contremesures à faible coût doit être éprouvée par des attaques
DPA réelles.

Les deux versions de HCrypt-C (statique et reconfigurable) présentées ici n’in-
cluent pas les contre-mesures faible coût. Pour cette raison, HCrypt2-C comportant
ces contre-mesures doit être conçu. Un tel crypto-coprocesseur offrira une meilleur
protection contre les attaques par canaux auxiliaires et les attaques par injection de
fautes.

Un autre défi concerne l’échange des clés maîtres à long terme. En effet, un secret
initial est fondamental pour chaque système cryptographique. Toutefois, le processus
d’établissement des clés maîtres dépend strictement du système cible. Dans le cas
de notre étude, un système entièrement symétrique avec une distribution manuelle
des clés maîtres a été suffisant.

Finalement, un défi intéressant pourrait se manifester dans l’intégration d’une
unité cryptographique asymétrique qui peut être utilisée pour la distribution ma-
nuelle des clés maîtres et pour les signatures des données dans les paquets. Néan-
moins, il est crucial de maintenir un niveau de sécurité élevé.

Appendix C: Résumé de Thèse

C.1 Chapitre 1 : Introduction

La sécurisation des données est aujourd’hui de plus en plus demandée, en particulier
avec l’essor des communications sans fil grand public. La capacité à garantir une
sécurité au niveau de l’implantation physique (le concept du cloisonnement entre
zone protégée et non-protégée) ainsi que les techniques des contremesures ont permis
de passer de l’application standard des produits électroniques à une utilisation dans
des domaines plus sensibles comme : l’avionique, l’automobile et les applications
militaires qui requièrent des besoins en sécurité plus élevé.

Les systèmes cryptographiques matériels doivent fréquemment implanter des al-
gorithmes parallèles rapides (c.-à.-d. chiffreurs symétriques, quelques modes de chif-
frement, etc.) avec des algorithmes très séquentiels (c.-à.-d. modes de chiffrements,
protocoles cryptographiques). Dans la plupart des cas, la logique séquentielle com-
plexe conduit à utiliser des machines d’état complexes ou exige la présence d’un
processeur ou coprocesseur cryptographique. Par contre, la sécurité du système lui-
même et la protection des données confidentielles sont souvent sous-estimées. Pre-
mièrement, le processeur généraliste manipule les clés comme les données standards.
Par conséquent, une modification des contenus de la mémoire du programme (inten-
tionnelle ou non-intentionnelle) peut rendre possible une lecture des clés en clair en
dehors du système. Deuxièmement, l’utilisation des processeurs généralistes ne per-
met pas d’isoler efficacement les zones de communication rouges (non-protégées) des
zones noires (protégées) à l’intérieur de l’appareil. Troisièmement, en ce qui concerne
l’utilisation du processeur généraliste en cryptographie, on considère les problèmes
suivants : ce sont la limitation de la vitesse (chemin de données de 32 bits, Unité
arithmétique et logique non-optimisée pour la cryptographie) et la complexité du
jeu d’instructions. Ainsi, la conception des processeurs dédiés avec un jeu d’instruc-
tions dédié est particulièrement intéressant dans le cas des champs d’application
émergents basés sur le Multiprocesseur System on Chip (MPSoC).

C.1.1 Objectifs de la thèse

Afin de remplir les conditions mentionnées (souvent contradictoires) pour le système
cryptographique, l’Agence Nationale de la Recherche (ANR) a sélectionné le projet
intitulé «Systèmes sur puces reconfigurables pour la sécurisation de données» (Se-
cReSoC). Le travail qui est présenté dans ce document a été réalisé dans le cadre
du projet ANR SecReSoC – ANR-09-SEGI-013. Les objectifs envisagés sont les sui-
vants :

162 Appendix C: Résumé de Thèse

1. Réaliser une analyse des architectures de processeurs embarqués de type soft-
ware (softcores) existantes afin d’étudier dans quelle mesure l’architecture du
crypto-processeur peut s’appuyer sur la transformation d’une architecture exis-
tante.

2. Proposer une nouvelle architecture du processeur permettant de séparer les
registres de données et les registres de clés confidentielles.

3. Optimiser l’architecture de l’Unité Arithmétique et Logique (UAL) pour les
opérations utilisées dans les protocoles cryptographiques et les modes de chif-
frement.

4. Proposer un jeu d’instructions permettant de traiter séparément des données
et des clés.

5. Intégrer le noyau de chiffrement et les outils de contremesures permettant
de lutter contre les différents types d’attaques dans l’architecture du crypto-
processeur.

6. Proposer un outil de programmation (compilateur) paramétrable, permettant
de faire évoluer le langage assembleur du processeur avec son jeu d’instructions.

7. Intégrer les éléments de reconfiguration et programmation sécurisés dans la
structure logique du crypto-processeur.

8. Évaluer le niveau de sécurité du crypto-processeur proposé.

C.1.2 Contribution

Ce travail de recherche est motivé par des besoins pratiques. Le processeur et co-
processeur cryptographique proposé fait partie d’un système réel utilisé dans le
secteur bancaire. Ce travail n’envisage pas seulement les objectifs susmentionnés
mais propose en plus des nouveaux principes, les règles de conception, les analyses
et les architectures permettant la gestion sécurisée des clés de chiffrement sur des
processeurs cryptographiques ou même sur des processeurs généralistes (élargi par
un coprocesseur cryptographique sécurisé). Une partie du travail concerne aussi les
contremesures contre les attaques par canaux cachés et se réfère aussi à la protec-
tion du système totalement ou partiellement reconfigurable. Le système proposé a
été testé et il est entièrement fonctionnel.

C.2 Chapitre 2 : Approche Théorique et Technologique

Ce chapitre présente les connaissances de base que doit avoir le lecteur pour une
lecture compréhensible des prochaines parties de ce document. D’abord, les tech-
niques cryptographiques de base pour assurer une communication sécurisée sont
décrites. Ensuite, les principaux algorithmes de cryptographie symétrique (c.-à.-d.

Appendix C: Résumé de Thèse 163

DES, AES, modes de chiffrement, etc.) sont décrits. Ceci est suivi par une des-
cription des fonctions de hachage ainsi que des générateurs de nombres aléatoires.
Par la suite, la gestion des clés, les différents acteurs de la communication et les
principales menaces de sécurité seront présentés. Ainsi, les processus importants
d’établissement des clés sont brièvement introduits et comparés. La deuxième partie
du chapitre 2 se focalisera sur les FPGAs ainsi que sur les processus de conception
avancés correspondants.

C.3 Chapitre 3 : Crypto-processeur avec une Gestion

Sécurisée des Clés

Ce chapitre est consacré à démontrer pourquoi les implantations logicielles de cryp-
tosystèmes doivent être protégées au niveau matériel afin d’être sécurisée contre les
attaques logicielles. Puis, les architectures matérielles cryptographiques actuelles se-
ront présenté avec une description de leurs avantages et inconvénients. Les nouvelles
règles de séparation pouvant permettre à un processeur cryptographique de suppor-
ter une gestion sécurisée des clés sera également proposée. Ces nouvelles règles de
séparation sont mises en evidence dans le nouveau crypto-processeur HCrypt.

HCrypt est un processeur cryptographique de 128 bits possédant une UAL qui est
optimisée pour des modes de chiffrement, la gestion de paquets, les deux chiffrements
AES, les générateurs de nombres véritablement aléatoires et le stockage sécurisé des
clés de session et des clés maîtres. HCrypt est divisé en zones : de données, de
chiffrement et de clés. Chaque zone est caractérisée par un niveau de sécurité qui
lui est propre. La zone la plus sécurisée constitue la zone dans laquelle les clés
secrètes sont enregistrées en clair. HCrypt protège les données utilisant les clés de
session générées à partir de la clé maître. Les clés de session doivent être échangées
de manière sécurisée avant l’échange de données utilisant les clés maîtres. Les clés
maîtres sont transférées au HCrypt à travers un bus dédié de 32 bits. L’opérabilité, la
sécurité et la programmabilité du HCrypt sont démontrées et le débit a été mesuré.
Les tests effectués dans les FPGAs Xilinx Virtex-5 et -6 indiquent que le débit s’élève
à 824,7 Mb/s pendant que HCrypt échange les clés de session et chiffre des données
par paquets en utilisant le mode de chiffrement CFB de 128 bits.

Afin de simplifier le développement du logiciel-HCrypt, un nouvel outil assem-
bleur FlexASM a été créé. Contrairement aux autres outils assembleurs, le jeu d’ins-
tructions est défini dans un fichier texte à partir duquel le jeu d’instructions sera
chargé avant la compilation d’un code assembleur. Ces choix permettent de résoudre
le problème concernant les modifications fréquentes du jeu d’instructions du HCrypt
pendant son développement. En outre, le FlexASM peut également être utilisé dans
d’autres processeurs.

164 Appendix C: Résumé de Thèse

C.4 Chapitre 4 : Crypto-coprocesseur avec une Gestion

Sécurisée des Clés

Les règles de séparation, présentées pour le crypto-processeur HCrypt, peuvent éga-
lement être adaptées pour le crypto-coprocesseur. Nous envisageons d’expliquer la
façon dont un crypto-coprocesseur supportant une gestion sécurisée des clés peut
être créé. Pour les applications dont les coûts jouent un rôle primordial et qui exige
aussi l’exécution d’instructions généralistes, nous proposons d’ajouter le crypto-
coprocesseur HCrypt-C au processeur généraliste. le crypto-coprocesseur mentionné,
respecte toutes les règles de séparation ; ceci permet ainsi une gestion sécurisée des
clés pour les processeurs généralistes.

L’architecture du crypto-coprocesseur HCrypt-C se montre très similaire à celle
du HCrypt. HCrypt-C est divisé en zone de données, zone du chiffreur et zone
des clés. Il est composé d’un chemin de données de 128 bits, d’un chiffreur AES
embarqué, d’un déchiffreur et d’un TRNG. Il est possible d’interconnecter le crypto-
coprocessor HCrypt-C avec un processeur utilisant un bus situé à l’intérieur du
processeur, un bus dédié à un coprocesseur ou un bus périphérique. Les trois types
de bus ont été comparés, utilisés dans les trois implantations du processeur et ont
été testés dans le matériel. Les débits de données pour les versions sécurisées des
processeurs s’élévent à 25,1 Mb/s pour le NIOS II, 18,4 Mb/s pour le MicroBlaze, et
12,2 Mb/s pour le Cortex M1. Les débits sont mesurés pendant que chaque système
échange les clés de sessions et traite les données par paquets en utilisant le mode de
chiffrement CFB de 128 bits.

C.5 Chapitre 5 : Protection des Crypto-processeurs contre

les SCA au niveau Macroarchitecture

Dans la plupart des cas, les algorithmes cryptographiques contemporains connaissent
une bonne protection contre la cryptanalyse linéaire, différentielle ou algébrique. En
effet, les problèmes apparaissent lors d’une implantation de ces algorithmes dans les
appareils électroniques. Principalement, les processus physiques qui dépendent des
calculs des algorithmes cryptographiques à l’intérieur de l’appareil peuvent partiel-
lement être observés à l’extérieur de l’appareil et peuvent être considérés comme
une fuite d’information exploitable. En conséquence, de nouvelles méthodes doivent
constamment être élaborées afin de minimiser les conséquences de ces phénomènes
physiques et protéger ainsi l’information sensible enregistrée et traitée dans les ap-
pareils cryptographiques.

Dans ce chapitre, nous expliquons le principle des attaques par canaux cachés.
De plus, nous présentons les études qui ont été menées sur la protection des circuits
cryptographiques contre les attaques par canaux cachés. Ensuite, une analyse dé-
taillée de la sécurité du chiffreur AES sera donnée. Cette analyse est fondamentale
pour l’analyse de sécurité de HCrypt. Contrairement au modèle de menace qui a été
mentionné dans les chapitres précédents, l’analyse de sécurité du HCrypt ne repose

Appendix C: Résumé de Thèse 165

pas seulement sur les attaques logicielles, mais aussi sur les attaques par canaux ca-
chés et par injection de fautes. Cette analyse débouche sur la proposition de nouvelles
contremesures à faible coût pour le crypto-processeur et le crypto-coprocesseur.

Ces nouvelles contremesures sont proposées dans la nouvelle version de HCrypt :
HCrypt2. Contrairement aux contremesures trouvées au niveau microarchitecture,
ces nouvelles contremesures sont implantées au niveau macroarchitecture. Nous
prouvons ainsi, grâce à un regroupement astucieux des blocs crypto-processeur (tan-
dis que l’on assure l’isolation physique des zones de sécurité en fonction des règles
de séparation proposées), que cette nouvelle version du crypto-processeur HCrypt2
se montre robuste contre les attaques logicielles, la DPA et les attaques par injection
de fautes. En outre, nous avons mis en évidence le fait qu’il faut seulement protéger
un des deux chiffreurs contre les attaques. Ainsi, les coûts pour une protection de
HCrypt2 sont considérablement plus bas que ceux pour protéger HCrypt1 en utili-
sant les mêmes techniques de masquage des données ou de dissimulation des données.
De plus, le chiffreur protégeant les clés de session est rarement utilisé (seulement
une fois par paquet). Par conséquent, il est possible d’avoir un chiffreur plus pe-
tit. Enfin, uniquement un seul registre des clés maîtres de 128 bits dans HCrypt2
est exigé (seulement pour chiffrer) quand cela est comparé avec deux registres des
clés maîtres de 128 bits dans le cas de HCrypt1 (pour chiffrer et déchiffrer). Pour
ces raisons, que les contremesures (au niveau microarchitecture) sont encore moins
coûteuses.

C.6 Chapitre 6 : Reconfiguration Partielle des Crypto-

processeurs

Dans les chapitres précédents, nous avons considéré uniquement la possibilité qu’un
FPGA est configuré seulement pendant le démarrage. Cependant, si nous envisa-
geons le cas d’une reconfiguration du FPGA pendant son exécution, de nouvelles
attaques peuvent se réaliser non seulement pendant la phase de reconfiguration du
FPGA, mais aussi avant le démarrage quand le bitstream est stocké à l’extérieur
du FPGA. Ces aspects posent alors de nouveaux défis par rapport aux règles de
séparation ainsi qu’à la gestion sécurisée des clés.

Dans un premier temps, ce chapitre veut familiariser le lecteur avec les tendances
actuelles que l’on trouve dans le domaine de la recherche sur la reconfiguration du
FPGA, en se focalisant sur la sécurité du bitstream. Ensuite, l’extension des règles de
séparation pour le système partiellement reconfigurable sera décrit. Nous considérons
les deux cas différents suivants : a) le FPGA ne permettant qu’une reconfiguration
totale de la logique et b) le FPGA supportant une technologie de reconfiguration
partielle. Afin de maintenir une sécurité élevée, le crypto-processeur doit inclure
une unité de contrôle pour la reconfiguration, un stockage des clés sécurisées ainsi
qu’une interface interne pour la configuration. L’unité de contrôle pour la reconfi-
guration doit être câblée (p. ex. le processeur sécurisé embarqué) dans le cas d’un
système entièrement reconfigurable ou implanté dans le secteur statique s’il s’agit

166 Appendix C: Résumé de Thèse

d’un système partiellement reconfigurable. Le système partiellement reconfigurable
a été implanté en utilisant le processeur MicroBlaze avec le crypto-coprocesseur
HCrypt-C. Les zones du processeur et des clés se trouvent dans le secteur statique
et la zone du chiffreur se situe dans le secteur reconfigurable. Pour être capable
de réaliser les tests, les trois versions de la zone du chiffreur ont été testées : AES
(contenant le chiffreur AES, le déchiffreur et le TRNG), le DES, et la boîte noire
vide. La taille du bitstream partiel pour les trois HCrypt-C s’élève à 530,25 kB.

C.7 Chapitre 7 : Résumé de la Contribution et des Conclu-

sions

Ce travail de recherche n’atteint pas seulement les objectifs mentionnés, mais intègre
en plus différentes études annexes et solutions dûes aux autres problèmes variés
rencontrés au cours de ces trois années de thèse.

C.7.1 Aperçu des Contributions

Les contributions les plus importantes de ce travail de recherche sont les suivantes :

1. Proposition d’un ensemble de règles de séparation qui permet une gestion sé-
curisée des clés dans les processeurs et coprocesseurs cryptographiques

2. Développement du crypto-processeur HCrypt qui suit les règles de séparation.
De plus, HCrypt résiste aux attaques logicielles ou par injection de fautes
ciblant une révélation des clés secrètes

3. Développement de l’assembleur FlexASM avec le jeu d’instructions défini dans
un fichier de texte

4. Proposition d’un crypto-coprocesseur qui permet une gestion sécurisée des clés
pour chaque processeur généraliste

5. Proposition de nouvelles contremesures à bas coût qui augmentent la sécurité
du crypto-processeur contre les attaques par canaux cachés

6. Proposition d’une gestion sécurisée des clés dans un système entièrement ou

partiellement reconfigurable

Toutes ces contributions exigeaient des études étendues au niveau des architec-
tures existantes, de l’analyse de sécurité et nécessitaient un grand nombre d’implan-
tations, de simulations et de tests matériels.

C.7.2 Perspectives

Dans le cadre de ce travail, nous avons également voulu proposer un processeur
cryptographique qui peut être intégré dans le Multiprocesseur System on Chip Se-
cReSoC. La finalisation du système avec sa démonstration est un autre défi. La

Appendix C: Résumé de Thèse 167

sécurité relative aux contremesures à faible coût doit être éprouvée par des attaques
DPA réelles.

Les deux versions de HCrypt-C (statique et reconfigurable) présentées ici n’in-
cluent pas les contre-mesures faible coût. Pour cette raison, HCrypt2-C comportant
ces contre-mesures doit être conçu. Un tel crypto-coprocesseur offrira une meilleur
protection contre les attaques par canaux auxiliaires et les attaques par injection de
fautes.

Un autre défi concerne l’échange des clés maîtres à long terme. En effet, un secret
initial est fondamental pour chaque système cryptographique. Toutefois, le processus
d’établissement des clés maîtres dépend strictement du système cible. Dans le cas
de notre étude, un système entièrement symétrique avec une distribution manuelle
des clés maîtres a été suffisant.

Finalement, un défi intéressant pourrait se manifester dans l’intégration d’une
unité cryptographique asymétrique qui peut être utilisée pour la distribution ma-
nuelle des clés maîtres et pour les signatures des données dans les paquets. Néan-
moins, il est crucial de maintenir un niveau de sécurité élevé.

	Résumé
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Flexible Security and Hardware Implementations
	1.2 Objectives of the Thesis
	1.3 Contribution
	1.4 Thesis Preview

	2 Theoretical and Technological Background
	2.1 Secure Communications
	2.2 Symmetric Key Cryptography
	2.2.1 Block Ciphers
	2.2.2 Stream Ciphers

	2.3 Hash Functions
	2.3.1 MD5 Hash Function

	2.4 Generation of Random Numbers
	2.4.1 Hardware Random Number Generators
	2.4.2 LFSR-based PRNG
	2.4.3 PLL-based TRNG

	2.5 Key Management
	2.5.1 Security Levels and Key Management
	2.5.2 Participating Parties
	2.5.3 Threat Model
	2.5.4 Key Establishment Protocols

	2.6 Implementation of Cryptographic Hardware in FPGAs
	2.6.1 Field-Programmable Gate Arrays (FPGAs)
	2.6.2 Development of Hardware Functions for FPGAs
	2.6.3 FPGA Classes and Families
	2.6.4 Technology Limits
	2.6.5 Isolation Design Flow in Xilinx FPGAs

	2.7 Partial Hardware Reconfiguration and Security
	2.7.1 Partial Reconfiguration
	2.7.2 Security Aspects of the Partial Reconfiguration

	3 Crypto-processor with Secure Key Management
	3.1 Crypto-processors - State of the Art
	3.1.1 Security Issues of the Cryptographic Software Implementations
	3.1.2 Cryptographic Hardware Architectures and their Security

	3.2 New Rules for Securing Key Management
	3.2.1 Separation at Protocol Level
	3.2.2 Separation at System Level
	3.2.3 Separation at Architectural Level
	3.2.4 Separation at Physical Level

	3.3 Crypto-processor Design
	3.3.1 Hardware Architecture
	3.3.2 Implementation of HCrypt in FPGA
	3.3.3 Programming Means
	3.3.4 Communication Protocol

	3.4 Implementation Results
	3.4.1 Cost Evaluation
	3.4.2 Simulation
	3.4.3 Hardware Tests and Benchmarks

	3.5 Discussion
	3.6 Conclusions

	4 Crypto-coprocessor with Secure Key Management
	4.1 Crypto-coprocessors - State of the Art
	4.2 New Rules for Securing Key Management
	4.2.1 Separation at Protocol Level
	4.2.2 Separation at System Level
	4.2.3 Separation at Architectural Level
	4.2.4 Separation at Physical Level

	4.3 Extension of Separation Rules to Crypto-coprocessors
	4.4 Interfaces between GPP and the HCrypt-C Crypto-coprocessor
	4.4.1 Internal Processor Bus
	4.4.2 Dedicated Coprocessor Bus
	4.4.3 Peripheral Bus

	4.5 Design of the Crypto-coprocessor/Processor Pairs
	4.5.1 Altera NIOS II GPP with HCrypt-C Crypto-coprocessor
	4.5.2 Xilinx MicroBlaze GPP with HCrypt-C Crypto-coprocessor
	4.5.3 ARM Cortex M1 GPP with HCrypt-C Crypto-coprocessor

	4.6 Implementation Results
	4.6.1 Cost Evaluation
	4.6.2 Hardware Tests and Benchmarks

	4.7 Discussion
	4.8 Conclusions

	5 Protecting Crypto-processors Against SCA at Macroarchitecture Level
	5.1 Side-Channel Attacks
	5.1.1 Power Analysis Attacks
	5.1.2 Countermeasures

	5.2 Crypto-processor with Zero-cost Countermeasures against SCA
	5.2.1 Introduction
	5.2.2 Design of SCA and FIA Resistant HCrypt Version
	5.2.3 Evaluation of the HCrypt2 Security Against SCA and FIA
	5.2.4 Implementation Results
	5.2.5 Discussion

	5.3 Conclusions

	6 Partial Reconfiguration of Crypto-processors
	6.1 FPGA Reconfiguration and Security Aspects
	6.1.1 FPGA Bitstream Protection
	6.1.2 IP Bitstream Security in Partially Reconfigurable System

	6.2 Separation Rules Involving Partial Reconfiguration
	6.2.1 Total Reconfiguration Versus Partial Reconfiguration of the Device
	6.2.2 Validation of the Principle of HCrypt-C Partial Reconfiguration in SRAM FPGAs
	6.2.3 Reconfiguration of HCrypt-C Crypto-coprocessor in FPGAs Containing Hardwired GPPs

	6.3 Design of the Reconfigurable HCrypt-C
	6.3.1 Reconfigurable Cipher Zone Modules
	6.3.2 Reconfiguration Control Unit

	6.4 Implementation Results
	6.4.1 Cost Evaluation

	6.5 Discussion
	6.6 Conclusions

	7 Summary of Contributions and Conclusions
	7.1 Summary of Contributions
	7.2 Conclusions
	7.3 Perspectives

	List of Publications
	Bibliography
	Appendix A: Introduction
	A.1 Sécurité Flexible Implémentations Matérielles
	A.2 Objectifs de la Thèse
	A.3 Contribution
	A.4 Structure de la Thèse

	Appendix B: Aperçu des Contributions et Conclusions
	B.1 Aperçu des Contributions
	B.2 Conclusions
	B.3 Perspectives

	Appendix C: Résumé de Thèse
	C.1 Chapitre 1 : Introduction
	C.1.1 Objectifs de la thèse
	C.1.2 Contribution

	C.2 Chapitre 2 : Approche Théorique et Technologique
	C.3 Chapitre 3 : Crypto-processeur avec une Gestion Sécurisée des Clés
	C.4 Chapitre 4 : Crypto-coprocesseur avec une Gestion Sécurisée des Clés
	C.5 Chapitre 5 : Protection des Crypto-processeurs contre les SCA au niveau Macroarchitecture
	C.6 Chapitre 6 : Reconfiguration Partielle des Crypto-processeurs
	C.7 Chapitre 7 : Résumé de la Contribution et des Conclusions
	C.7.1 Aperçu des Contributions
	C.7.2 Perspectives

