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Abstract

In optimization problems involving uncertainty, probabilistic constraints are an important
tool for defining safety of decisions. In Energy management, many optimization problems
have some underlying uncertainty. In particular this is the case of unit commitment
problems. In this Thesis, we will investigate probabilistic constraints from a theoretical,
algorithmic and applicative point of view. We provide new insights on differentiability of
probabilistic constraints and on convexity results of feasible sets. New variants of bundle
methods, both of proximal and level type, specially tailored for convex optimization under
probabilistic constraints, are given and convergence shown. Both methods explicitly deal
with evaluation errors in both the gradient and value of the probabilistic constraint. We
also look at two applications from energy management: cascaded reservoir management
with uncertainty on inflows and unit commitment with uncertainty on customer load. In
both applications uncertainty is dealt with through the use of probabilistic constraints.
The presented numerical results seem to indicate the feasibility of solving an optimization
problem with a joint probabilistic constraint on a system having up to 200 constraints.
This is roughly the order of magnitude needed in the applications.

The differentiability results involve probabilistic constraints on uncertain linear and non-
linear inequality systems. In the latter case a convexity structure in the underlying
uncertainty vector is required. The uncertainty vector is assumed to have a multivariate
Gaussian or Student law. The provided gradient formulae allow for efficient numerical
sampling schemes. For probabilistic constraints that can be rewritten through the use of
Copulae, we provide new insights on convexity of the feasible set. These results require a
generalized concavity structure of the Copulae, the marginal distribution functions of the
underlying random vector and of the underlying inequality system. These generalized
concavity properties may hold only on specific sets.
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Les contraintes en probabilité constituent un modèle pertinent pour gérer les incerti-
tudes dans les problèmes de décision. En management d’énergie de nombreux problèmes
d’optimisation ont des incertitudes sous-jacentes. En particulier c’est le cas des problèmes
de gestion de la production au court-terme. Dans cette Thèse, nous investiguons les con-
traintes probabilistes sous l’angle théorique, algorithmique et applicative. Nous donnons
quelques nouveaux résultats de différentiabilité des contraintes en probabilité et de con-
vexité des ensembles admissibles. Des nouvelles variantes des méthodes de faisceaux ”
proximales ” et ” de niveaux ” sont spécialement mises au point pour traiter des problèmes
d’optimisation convexe sous contrainte en probabilité. Ces algorithmes gèrent en par-
ticulier, les erreurs d’évaluation de la contrainte en probabilité, ainsi que son gradient.
La convergence vers une solution du problème est montrée. Enfin, nous examinons deux
applications : l’optimisation d’une vallée hydraulique sous incertitude sur les apports et
l’optimisation d’un planning de production sous incertitude sur la demande. Dans les
deux cas nous utilisons une contrainte en probabilité pour gérer les incertitudes. Les
résultats numériques présentés semblent montrer la faisabilité de résoudre des problèmes
d’optimisation avec une contrainte en probabilité jointe portant sur un système de environ
200 contraintes. Il s’agit de l’ordre de grandeur nécessaire pour les applications.

Les nouveaux résultats de différentiabilité concernent à la fois des contraintes en prob-
abilité portant sur des systèmes linéaires et non-linéaires. Dans le deuxième cas, la
convexité dans l’argument représentant le vecteur incertain est requise. Ce vecteur est
supposé suivre une loi Gaussienne ou Student multi-variée. Les formules de gradient
permettent l’application directe d’un schéma d’évaluation numérique efficient. Pour les
contraintes en probabilité qui peuvent se réécrire à l’aide d’une Copule, nous donnons de
nouveau résultats de convexité pour l’ensemble admissibles. Ces résultats requirent la
concavité généralisée de la Copule, les distributions marginales sous-jacents et du système
d’incertitude. Il est suffisant que ces propriétés de concavité généralisée tiennent sur un
ensemble spécifique.
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List of Notation

1. Rn : The set of n dimensional real numbers

2. P : A probability measure

3. E (.) : The expectation operator

4. ‖.‖ : A norm on Rn, usually the Euclidian norm.

5. mα : The mapping defining generalized Concavity (see Definition 2.5.3).

6. M(p) : The feasible set of a chance constrained decision vector (e.g., (2.2.1))

7. .T : The transpose of a matrix or vector

8. conv(M) : The convex hull of the set M .

9. kerA : The null-space of the linear operator A.

10. R
m×n : The set of m× n real matrices.

iii



Contents

Abstract i

List of Notation iii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main Contribution of this Work . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5

2.1 Measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Closedness of the Feasible Set . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Continuity of Probabilistic Constraints . . . . . . . . . . . . . . . . . . . 9

2.4 Connectedness of Feasible Set . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Convexity of the Feasible Set . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Special Cases with Convexity . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Eventual Convexity of the Feasible set . . . . . . . . . . . . . . . 15

2.6 (Local) Lipschitz Continuity . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Differentiability of Probabilistic Constraints . . . . . . . . . . . . . . . . 16

2.7.1 General Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.1 Feasible direction Methods . . . . . . . . . . . . . . . . . . . . . . 21

2.8.2 SUMT or ”penalty function methods” . . . . . . . . . . . . . . . 21

2.8.3 Interior Point Methods . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8.4 Supporting Hyperplane Method . . . . . . . . . . . . . . . . . . . 22

2.9 Related Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



2.9.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9.2 p-Efficient points . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9.3 Safe Tractable Approximations . . . . . . . . . . . . . . . . . . . 23

2.9.4 Scenario Approximations / Sample Average Approximations . . . 24

3 Theoretical Extensions 26

3.1 Semi-Infinite Individual Chance Constraints . . . . . . . . . . . . . . . . 26

3.2 Efficient Gradient Formulae : bilateral separable probabilistic constraints 31

3.3 Efficient Gradient Formulae : nonlinear probabilistic constraints with Gaus-
sian and Gaussian-like distributions . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 A gradient formula for parameter-dependent Gaussian probabilities
in the convex case . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Selected Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2.1 Gaussian distributions . . . . . . . . . . . . . . . . . . . 50

3.3.3 Gaussian-like distributions . . . . . . . . . . . . . . . . . . . . . . 51

3.3.4 Student (or T- ) distribution . . . . . . . . . . . . . . . . . . . . . 54

3.4 Eventual Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Copulae and generalized concavity . . . . . . . . . . . . . . . . . 63

3.4.2.1 Structure of the family of δ-γ-concave Copulae . . . . . 64

3.4.2.2 Tools for deriving δ-γ-Concavity of Copulae . . . . . . . 66

3.4.2.3 Estimates with Copulae . . . . . . . . . . . . . . . . . . 66

3.4.3 Eventual Convexity of the Feasible Set . . . . . . . . . . . . . . . 68

3.4.4 A generalization of Results . . . . . . . . . . . . . . . . . . . . . . 71

3.4.4.1 Improved use of Generalized Concavity of the Constraint
Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.4.2 Improved Estimates of p∗ . . . . . . . . . . . . . . . . . 72

3.4.4.3 More Copulae . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.5 A Partial Characterization of the Gaussian Copula . . . . . . . . 77

3.4.6 A Potential Application . . . . . . . . . . . . . . . . . . . . . . . 80

4 Algorithms for (convex) Probabilistic Programming 82

4.1 A proximal Bundle Method . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Designing Bundle methods for Constrained Optimization . . . . . 85

v



4.1.1.1 Initial setting . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1.2 Handling inexact oracle information . . . . . . . . . . . 87

4.1.1.3 A Non-smooth Optimization Solver for Inexact Oracles . 89

4.1.2 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.3 Link with the Original Problem . . . . . . . . . . . . . . . . . . . 97

4.1.4 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.4.1 Relation with previous work . . . . . . . . . . . . . . . . 100

4.1.5 Energy Application: Hydro Reservoir Management . . . . . . . . 102

4.1.5.1 Devising an inexact upper oracle for the constraint . . . 102

4.1.5.2 Convergence results for the application . . . . . . . . . . 104

4.1.6 Numerical experience . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.6.1 The various compared algorithms . . . . . . . . . . . . . 106

4.1.6.2 Computational results . . . . . . . . . . . . . . . . . . . 108

4.1.6.3 Feasible Start using a Slater Point and Infeasible Start . 109

4.1.6.4 Different variants of Alg.PB.SEV . . . . . . . . . . . . . . 111

4.1.7 Solution Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 A level Bundle Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.1 Some examples coming from stochastic optimization . . . . . . . . 116

4.2.2 Level Bundle Method for Exact Oracles . . . . . . . . . . . . . . . 117

4.2.2.1 Convergence analysis . . . . . . . . . . . . . . . . . . . . 123

4.2.2.2 Complexity results . . . . . . . . . . . . . . . . . . . . . 127

4.2.3 Level Bundle Method for Inexact Oracles . . . . . . . . . . . . . . 128

4.2.3.1 Inexact constrained level methods for upper oracles . . . 130

4.2.3.2 Inexact constrained level methods for upper oracles with
on-demand accuracy . . . . . . . . . . . . . . . . . . . . 131

4.2.3.3 Inexact constrained level methods for lower oracles . . . 132

4.2.3.4 Constrained level bundle methods for lower oracles with
on-demand accuracy . . . . . . . . . . . . . . . . . . . . 134

4.2.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.4.1 Benchmark Instance . . . . . . . . . . . . . . . . . . . . 137

4.2.4.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.4.3 The various compared algorithms . . . . . . . . . . . . . 139

4.2.4.4 An extensive discussion of numerical results . . . . . . . 139

vi



4.2.4.5 Comments on Parameter Settings . . . . . . . . . . . . . 145

5 Applications of JCCP in large scale Unit-Commitment through decom-
position 147

5.1 Robust Cascaded Reservoir Management . . . . . . . . . . . . . . . . . . 148

5.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.1.1.1 Problem Constraints . . . . . . . . . . . . . . . . . . . . 150

5.1.1.2 Objective function . . . . . . . . . . . . . . . . . . . . . 156

5.1.1.3 Matrix formulation . . . . . . . . . . . . . . . . . . . . . 156

5.1.2 Models for dealing with uncertainty . . . . . . . . . . . . . . . . . 157

5.1.2.1 Expectation model . . . . . . . . . . . . . . . . . . . . . 157

5.1.2.2 A Joint Chance Constraint Model (JCCP) . . . . . . . . 158

5.1.2.3 Max-P Problem . . . . . . . . . . . . . . . . . . . . . . . 160

5.1.2.4 Individual Chance Constraint Model (ICCP) . . . . . . . 160

5.1.2.5 A Robust Model . . . . . . . . . . . . . . . . . . . . . . 160

5.1.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Robust Unit-Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2.1 Problem Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2.1.1 Hydro-Thermal Unit-Commitment Problems . . . . . . . 167

5.2.1.2 A bird’s view of the structure . . . . . . . . . . . . . . . 169

5.2.2 Decomposition Methods . . . . . . . . . . . . . . . . . . . . . . . 170

5.2.2.1 Lift and Dualize . . . . . . . . . . . . . . . . . . . . . . 171

5.2.2.2 Lift and Dualize - Augmented Lagrangian . . . . . . . . 172

5.2.2.3 Diagonal Quadratic Approximation . . . . . . . . . . . . 175

5.2.3 Algorithmic and Numerical Considerations . . . . . . . . . . . . . 175

5.2.3.1 Slater Points . . . . . . . . . . . . . . . . . . . . . . . . 175

5.2.3.2 Algorithmic Considerations . . . . . . . . . . . . . . . . 177

5.2.4 Numerical Example: a (simplified) Robust Unit-Commitment Prob-
lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.2.5 Robust System-Dispatch Problem . . . . . . . . . . . . . . . . . . 178

5.2.5.1 The Thermal Generation Unit sub-problem . . . . . . . 179

5.2.5.2 Offer Demand Equilibrium constraint . . . . . . . . . . . 179

5.2.6 Numerical Example: Data and Results . . . . . . . . . . . . . . . 180

vii



5.2.6.1 Numerical Data . . . . . . . . . . . . . . . . . . . . . . . 180

5.2.6.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . 180

5.2.6.3 An extensive discussion of Numerical results . . . . . . . 181

6 Concluding Remarks 189

Bibliography 191

viii



List of Figures

3.1 Illustration of solving problem (3.3.38) with the derived gradient formula.
The right figure provides a zoom near the optimal solution. . . . . . . . . 60

4.1 Numerical Instance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Evolution of reservoir “Saut Mortier”, for the expected-value estrategy
(left) and for Alg.PB.SEV strategy (right). . . . . . . . . . . . . . . . . . 113

4.3 Comparison of Algorithm 4.2 when solving LP (4.2.17). . . . . . . . . . . 142

5.1 Trajectories of filling levels in reservoir ”Saut Mortier” and instance 2 for
100 simulated inflow scenarios. From top left to bottom right, solutions of
problems (5.1.24), (5.1.25), (5.1.27), (5.1.28), (5.1.28)-Calib and (5.1.26) . 164

5.2 Turbined volumes (m3) for instance 2. From top left to bottom right,
solutions of problems (5.1.24), (5.1.25), (5.1.27), (5.1.28), (5.1.28)-Calib.
and (5.1.26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3 Iteration Number vs. ‖x− y‖2 for Method 5.2.2.2 . . . . . . . . . . . . . 182

5.4 Turbined volumes (m3) for each reservoir of the Ain Valley. From top
left to bottom right, solutions produced by Reduced Lagrangian Dual
(§5.2.2.1.1), Augmented Lagrangian + Auxiliary Problem principle (§5.2.2.2),
Reduced Augmented Lagrangian + Auxiliary Problem principle (§5.2.2.2.2),
Reduced Augmented Lagrangian with Bundle Updating and Reduced Aug-
mented Lagrangian + DQA (§5.2.2.3) . . . . . . . . . . . . . . . . . . . 185

5.5 Turbined volumes (m3) for each reservoir of the Isere Valley. From top
left to bottom right, solutions produced by Reduced Lagrangian Dual
(§5.2.2.1.1), Augmented Lagrangian + Auxiliary Problem principle (§5.2.2.2),
Reduced Augmented Lagrangian + Auxiliary Problem principle (§5.2.2.2.2),
Reduced Augmented Lagrangian with Bundle Updating and Reduced Aug-
mented Lagrangian + DQA (§5.2.2.3) . . . . . . . . . . . . . . . . . . . . 186

ix



5.6 Thermal Generation (MW ) for each thermal unit. From top left to bot-
tom right, solutions produced by Reduced Lagrangian Dual (§5.2.2.1.1),
Augmented Lagrangian + Auxiliary Problem principle (§5.2.2.2), Reduced
Augmented Lagrangian + Auxiliary Problem principle (§5.2.2.2.2), Re-
duced Augmented Lagrangian with Bundle Updating and Reduced Aug-
mented Lagrangian + DQA (§5.2.2.3) . . . . . . . . . . . . . . . . . . . . 187

5.7 Deviations from Load. 100 Scenarios for η in eq.(5.2.22) and lower/upper
bounds derived from each of the solutions. Reduced Lagrangian Dual
(RLD), Augmented Lagrangian + Auxiliary Problem principle (AL+APP),
Reduced Augmented Lagrangian + Auxiliary Problem principle (RAL+APP),
Reduced Augmented Lagrangian with Bundle Updating (RAL+APP+Bdl)
and Reduced Augmented Lagrangian + DQA (RAL+DQA). . . . . . . . 188

x



List of Tables

4.1 Comparison of Algorithms (nnex stands for nn10x), assuming a Slater
Point available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Comparison of Algorithms (nnex stands for nn10x), infeasible starting
point. Precision of Genz’ code εg = 1e−4. . . . . . . . . . . . . . . . . . . 111

4.3 Effect of “Genz Precision” (nnex stands for nn10x), Alg.PB.SEV with K =
5e4, µ0 = 1e−6, µs = 2.0κ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . 111

4.4 Effect of noise test (nnex stands for for nn10x), Alg.PB.SEV with K =
5e4, µ0 = 1e−6, µs = 2.0κ = 0.5, tol = 0.5, and Genz precision 5e−4 . . . 111

4.5 Effect of Descent test & Stopping Criteria (αex stands for α10x). Alg.PB.SEV
with parameter setting K = 5e4, µ0 = 1e−6, µs = 2.0κ = 0.5. Precision of
Genz code is taken to be 5e−4, ρk = 0 α = 0, β = −1 + εm. . . . . . . . . 112

4.6 Effect of updating ρk and the noise test (αex stands for α10x). Alg.PB.SEV
with parameter setting K = 5e4, µ0 = 1e−6, µs = 2.0κ = 0.5, tol = 0.5.
Precision of Genz code is taken to be 5e−4 . . . . . . . . . . . . . . . . . 113

4.7 Comparison of Algorithms (nnex stands for nn10x). Precision of Genz’
code εg = 5e−4. The number of iterations at which (4.2.10) is found
infeasible is indicated in between brackets. . . . . . . . . . . . . . . . . . 140

4.8 Effect of γ (nnex stands for nn10x). Precision of Genz’ code εg = 5e−4.
The number of iterations at which (4.2.10) is found infeasible is indicated
in between brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.9 Effect of adding (4.2.17) to Step 5. (nnex stands for nn10x). Precision of
Genz’ code εg = 5e−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.10 Effect of precise Oracle. (nnex stands for nn10x). Precision of Genz’ code
εg = 1e−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.11 Comparison of Alg.PB and Alg.LB on the Isère Valley. (nnex stands for
nn10x). Precision of Genz’ code εg = 5e−4. The number of iterations at
which (4.2.10) is found infeasible is indicated in between brackets. The
indication [¬(4.2.17)] means that auxiliary problem (4.2.17) is not solved. 144

4.12 Effect of precise Oracle. (nnex stands for nn10x). Precision of Genz’ code
εg = 1e−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xi



5.1 Comparison of costs and number of violations . . . . . . . . . . . . . . . 163

5.2 Comparison of costs and number of violations . . . . . . . . . . . . . . . 163

5.3 Thermal Plant data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.4 Results for the Lift and Dualize Method . . . . . . . . . . . . . . . . . . 181

5.5 Results for the Lift and Dualize - Augmented Lagrangian Methods (The
objective function value is shown if a feasible solution is generated) . . . 182

5.6 Results for the Lift and Dualize - Augmented Lagrangian Methods - Re-
duced (The objective function value is shown if a feasible solution is gen-
erated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.7 Results for the Lift and Dualize - Augmented Lagrangian Methods - Re-
duced - Updating with Bundle Method (The objective function value is
shown if a feasible solution is generated) . . . . . . . . . . . . . . . . . . 184

5.8 Results for the Diagonal Quadratic Approximation (The objective function
value is shown if a feasible solution is generated) . . . . . . . . . . . . . . 184

xii



Chapter 1

Introduction

1.1 Introduction

Energy management optimization problems deal with decision making problems with
time spans ranging from intra-daily to several decades. Problems are as varied as:

1. computing day-ahead, the production schedule in a hydro-thermal generation sys-
tem

2. obtaining a strategy of use of water and opportunity costs for the coming year

3. computing the maintenance schedule of thermal plants

4. obtaining investment decisions

It is clear that uncertainty intervenes in each of these problems. For instance in the first
problem, the schedule is determined before observing uncertainty. Random deviations of
load, renewable generation and (partial) outages then lead to offer-demand mismatches.
These have to be dealt with appropriately. For instance, by setting spinning reserve
requirements. Uncertainty on inflows also impacts the production schedule, but may
render it infeasible. Indeed, for a fixed production schedule, excessive inflows may bring
forth violations of the upper reservoir bound. Similarly, a lack of inflows may bring forth
violations of the lower bound. As a matter of fact the earlier mentioned uncertainty
factors also make the production schedule infeasible since the offer-demand balance is no
longer satisfied. In the second and third problem, the decision taken in a specific time
stage of the problem is assumed to have knowledge of all uncertainty that has preceded
(dynamic decision making). In this aspect it differs from the first and fourth problem
wherein the decisions are taken prior to observing uncertainty (static decision making).
Dynamic decision making problems are frequently formulated as (Stochastic) Dynamic
Programming problems or as optimization problems on a scenario tree (e.g., [119, 95,
91]). This essentially renders the problem deterministic (but large scale). Formulating
constraints involving both the decision vector and a random variable is then nearly as
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easy as in the deterministic setting. This becomes more complicated when we assume
that decisions are taken prior to observing uncertainty. For example, what is meant
with x being feasible in a linear inequality system Ax ≤ b when both A and b are
random variables ? Yet, such a question has to be answered if we are to solve problem 1
highlighted above. Two fields of optimization provide a framework for giving a sensible
meaning to such a ”random inequality system”. These are Robust Optimization ([13])
and Probabilistic Programming ([181]). We shall (nearly) exclusively focus on the latter
approach. As an application we will investigate to what extent a production schedule
can be computed while integrating uncertainty on both inflows and load.

Probabilistic constraints are encountered in many engineering problems involving uncer-
tain data. We can find applications in water management, telecommunications, electricity
network expansion, mineral blending, chemical engineering etc. (e.g., [105, 155, 250, 185,
187, 246, 239]) For an overview of theory, numerics and applications of chance constraints
we refer to [51, 181, 182] and references therein.

Initiated by Charnes and Cooper [32] and pioneered by Prékopa (e.g., by his celebrated
log-concavity-Theorem [178]) the analysis of probabilistic constraints has attracted much
attention in recent years with a focus on algorithmic approaches. Without providing an
exhaustive list, we refer here to models like robust optimization [14], penalty approach
[69], p- efficient points [53, 54], scenario approximation [29], sample average approxima-
tion [168] or convex approximation [160].

In this Thesis we will investigate probabilistic constraints following the traditional (as
initiated by Prékopa) approach. We will investigate structural properties such as differen-
tiability and convexity. We will also provide two specially designed Algorithms for dealing
with (convex) optimization problems under probabilistic constraints. Globally the work
can be seen as a ”quest for tractability”. Unlike commonly stated, we firmly believe that
probabilistic programming is perfectly tractable in most/many situations of interest. To
illustrate some advances it is of interest to recall that J. Mayer (in [149]) stated that
the largest probabilistic program solved before 2000 and published had a random vector
in dimension 7. In the same work a problem in dimension 30 is solved, requiring up
to 800 minutes of CPU time. In this Thesis, we illustrate one of the algorithms on an
instance having a random vector in dimension 168. Computation time is ”only” around
350 minutes. It is likely that such large scale probabilistically constrained problems only
allow for feasible solutions because of a strong underlying correlation structure. It might
also be required that some constraints are inactive in a to be defined probabilistic sense.

This document is organized around four chapters. Chapter 2 gives an introduction to
the known theory and structural properties of probabilistic constraints. These properties
will be used frequently in the document. This chapter also helps as a guide to show how
newly derived results fit in. Extensions of theory and algorithms can be found in Chapters
3 and 4 respectively. Chapter 5 is devoted to applications in energy management. In
particular, we investigate cascaded reservoir management, robust against uncertainty on
inflows and unit-commitment, robust against uncertainty on both inflows and load.
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1.2 Main Contribution of this Work

In section 3.1 we investigate to what extent a characterization of the feasible set of
a chance constraint can be derived involving simpler chance constraints. An example
shows the interest of the suggested approach. We then provide several sufficient (but
not necessary) conditions with negative results. These results hold in particular for the
specially structured probabilistic constraints appearing in the applications of Chapter 5.
To the best of our knowledge these ideas have not been investigated yet.

Many algorithms of non-linear programming require the knowledge of (sub-)gradients of
the constraints in order to numerically solve a problem. If these constraints are prob-
abilistic constraints, we need to be able to evaluate such a gradient as efficiently as
possible. Very general differentiability statements exist ([237]) that represent the gra-
dient of a probabilistic constraint as the sum of an integral over a volume and integral
over a surface. Numerical use of these formulae appears to be quite difficult. Many other
approaches investigate special cases. These results are of interest because they link a com-
ponent of the partial derivative of a probabilistic constraint and the evaluation of another
probabilistic constraint. Frequently the latter constraint is of similar nature as the one
we took the derivative from. This means that if one is able to evaluate a probabilistic
constraint (clearly a prerequisite), one can also compute its derivative. These differentia-
bility results exist for the derivative of non-degenerate Gaussian distribution functions
[175], multi-variate Gamma distribution functions [186] and multi-variate Dirichlet dis-
tributions [221]. The results of section 3.2 (published in [244, 246]) provide efficient
gradient (and Hessian) formulae of the above type for specially structured probabilistic
constraint appearing in Energy Management Applications. These results extend [175]
to bilateral constraints involving a non-degenerate Gaussian random variable. We also
provide a result ([247]) involving the computation of the gradient of a probabilistic con-
straint with ”Gaussian Matrix Uncertainty”. The results appearing in section 3.2 were
derived with R. Henrion, A. Möller and R. Zorgati.

Differentiability of probabilistic constraints is further examined in Section 3.3 where
efficient gradient formulae are derived for probabilistic constraints involving a Gaussian
(or Student) random variable linked to the decision vector through a rather general
mapping. Special cases involve log-normal and chi-squared random variables. These
results are taken from a draft submitted with R. Henrion ([242]).

Convexity of the feasible set is an important feature in probabilistic programming. Occa-
sionally such convexity depends on the requested safety level. This is known as eventual
convexity and clearly suffices in practical applications. Early results on eventual convex-
ity were derived for specific individual probabilistic constraints [121]. Recently [110, 111]
provided new insights in eventual convexity of probabilistically constrained feasible sets.
The involved multi-variate random variable has components ”correlated” through a spe-
cially structured Copulae. The results ([240]) in Section 3.4 provide an extension of
the latter results on eventual convexity, by allowing for more Copulae and providing
lower thresholds. Such lower thresholds allow us to prove convexity for probabilistically
constrained feasible set with lower safety-levels.
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In sections 4.1 and 4.2 we provide two Bundle-Algorithms for dealing with convex con-
strained optimization problems. The constraint is an appropriate transform of the prob-
abilistic constraint making it convex. We thus (implicitly) assume that the elements
appearing in the constraint satisfy appropriate hypothesis for this to hold. We also as-
sume that the value of the constraint and a (sub-)gradient can be computed. It is not
reasonable to assume that this can be done up to arbitrary precision. The suggested al-
gorithms are designed in such a way that this imprecision is dealt with. The specific case
of probabilistic constraints led to the definition of an ”upper”-oracle and considerably
complicates convergence analysis. The results in Section 4.1 are taken from a joint work
[248] with C. Sagastizábal, whereas the results of Section 4.2 are taken from a joint work
[241] with W. de Oliveira.

Chapter 5 contains applications involving some of the largest problems featuring prob-
abilistic constraints seen in the literature so far ([149]). Especially the global unit-
commitment problem of Section 5.2 requires iteratively solving many probabilistic pro-
grams. It is intuitively felt that setting up a robust unit-commitment problem with
a probabilistic constraint on the offer-demand equilibrium leads to a tractable model.
Several decomposition approaches are suggested and experimented with on a typical ex-
ample. Making cascaded reservoir management robust against uncertainty on inflows is
investigated in Section 5.1. Those results are partially taken from [246], which is a joint
work with R. Henrion, A. Möller and R. Zorgati. Most papers on cascaded reservoir man-
agement with chance constraints consider the easier case of individual chance constraints
(e.g., [143, 63, 65, 142, 155]). Although we should consider joint chance constraints from
a robustness perspective, this only rarely done [185, 186]. Also most of these papers only
consider very simple models without serially linked reservoirs, flow delay, time series
modelling of statistical data and have random vectors in small dimension.

4



Chapter 2

Preliminaries

Chance constrained programming is the branch of Stochastic Programming dealing with
constraints of the form

P[g(x, ξ) ≥ 0] ≥ p, (2.0.1)

where x ∈ R
n is the decision vector, ξ ∈ R

m a random variable and g : Rn × R
m → R

k

a constraint mapping. The level p ∈ (0, 1) is user given and defines the preference for
safety of the decision x. The constraint (2.0.1) means that we wish to take a decision x
that satisfies the k-dimensional random inequality system g(x, ξ) ≥ 0 with high enough
probability. Such chance constraints naturally arise in engineering problems when in
usual constraints h(x) ≥ 0, h : Rn → R

k one identifies unknown parameters or random
vectors. The typical situation is one wherein h(x) := g(x,E (ξ)), e.g., E (ξ) can be
identified with a forecast of ξ. Constraints of the form (2.0.1) can then be formed upon
realizing that the forecast was not accurate enough or additional engineering securities
had to be built into h in order to account for variations in ξ.

Now two situations may arise, one wherein we consider that the distribution of ξ is
unknown, insufficiently characterized or simply we forbid ourselves to use it. In such a
situation constraints of the form (2.0.1) can be replaced by constraints of the form

g(x, z) ≥ 0, ∀z ∈ Θ, (2.0.2)

where Θ is an appropriately chosen, explicitly defined set called uncertainty set. This is a
version of ”Robust Optimization”. We refer to the book [13] and references therein for a
full treatment of this topic. In the second situation we assume that ξ is well-characterized
and that knowledge of the distribution is available. Then constraints of the form (2.0.1)
can be investigated and this is the hypothesis that we make in this Thesis. Such a
situation naturally arises when ξ has been investigated by Statisticiens or Econometrists.
Such is frequently the situation when in decision making problems sensitivity or risk
analyses are conducted. Often such analyses are based on applying an optimization tool
on a set of generated scenarios for ξ. The scenario generator is frequently based on a
time-series decomposition of ξ, at least when a temporal effect is clearly identified or
otherwise on a finely characterized distribution of ξ.
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Two conceptually different versions of (2.0.1) exist and are referred to as Individual
Chance Constraints (ICC) or Joint Chance Constraints (JCC). The equation appearing
in (2.0.1) is a version of a Joint Chance Constraint. A deduced set of Individual Chance
Constraints would be

P[gi(x, ξ) ≥ 0] ≥ pi, i = 1, ..., k, (2.0.3)

where gi refers to the i-th component of the mapping g and pi ≥ p are arbitrary choices.
The situation of (2.0.3) refers to a situation wherein we wish to satisfy each individual
equation in the random k-dimensional inequality system g(x, ξ) ≥ 0 with high enough
probability, but we make no request on the system as a whole. This loss of robustness
is compensated, in many situations, by an easier numerical and theoretical treatment.
From an engineering perspective one can also argue that (2.0.3) offers already increased
robustness with respect to solving deterministic problems wherein ξ was replaced with
a forecast, e.g., E (ξ). One readily observes that a feasible solution for (2.0.1) is feasible
for (2.0.3) and that the inverse holds whenever

∑k
i=1 pi ≥ p+ (k− 1). Despite this inner

and outer approximation of the feasible set of (2.0.1), we believe that it is worthwhile to
consider the JCC of (2.0.1). This is exactly what we will look at in this Thesis.

An important special case of (2.0.1) is one wherein x and ξ are not coupled through the
mapping g but appear separate. The mapping g is then of the form g(x, ξ) = h(x)− g̃(ξ).
The constraint (2.0.1) then becomes:

P[h(x)− g̃(ξ) ≥ 0] ≥ p (2.0.4)

and is referred to as a separable (joint) chance constraint.

Chance constraints were first formulated as ICCs by [35] and further developed in [32, 33,
34]. Joint Chance Constraints were first formulated by [152]. The field has then received
major contributions by Prékopa in the early 70s [175, 178] with in particular very general
convexity results for the feasible set of (2.0.1). Other key contributions are from Szántai
(e.g., [186, 221, 222]), Uryasev (e.g., [235]), Henrion (e.g., [97, 99, 108, 106]), Römisch
(e.g., [109, 204]), Dentcheva and Ruszczyński (e.g., [54]).

In this chapter we will sketch an overview of known results on structural properties of
probabilistic constraints of the form (2.0.1). It will serve as a guideline to show where
our results fit in.

2.1 Measurability

Even though one easily writes a constraint of the type (2.0.1) a first question consists
of its well-foundedness. In particular, for a fixed x ∈ Rn is the set {ω : g(x, ξ(ω)) ≥ 0}
measurable so that P[g(x, ξ) ≥ 0] is a meaningful composition ?

This can be answered positively in quite a general setting. For this analysis the depen-
dence on x will be neglected. Let (Ω,F ,P) be a probability space. Consider a random
vector ξ : Ω→ E, where (E,B(E)) is a topological vector space equipped with its Borel-
sigma algebra B(E). Now consider a mapping g : E → Rk. It is then clear that Borel
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measurability of g suffices for the set

{ω ∈ Ω : g(ξ(ω)) ≥ 0} ,

to be F -measurable. We can thus write

P[g(ξ) ≥ 0],

as this is now a well defined expression. In particular every upper-semi-continuous map-
ping g is Borel-Measurable.

This obvious statement hides some difficulties. In particular, it is not sufficient for g to
be concave, since not all convex sets are Borel measurable. If ξ admits a density with
respect to the Lebesgue measure, the above difficulty disappears since convex sets are
Lebesgue measurable ([133, 67]).

We can thus conclude that as long as ξ ∈ Rm appearing in (2.0.1) admits a density and
z 7→ g(x, z) is concave (or upper-semi-continuous), the constraint (2.0.1) is well-defined.
The most common forms of inequality systems g(x, ξ) ≥ 0 are those wherein g represents
a linear random inequality system of the form Ax ≥ b. Either components of A or b are
elements of the vector ξ. Measurability in this case is thus assured.

2.2 Closedness of the Feasible Set

A second question of importance is whether the feasible set

M(p) := {x ∈ R
n : P[g(x, ξ) ≥ 0] ≥ p} (2.2.1)

is actually closed. This is of-course a necessary property for any optimization problem
with a constraint of the type (2.0.1) to actually attain an optimum. This can be shown
under fairly general assumptions on the mapping g. In what follows we (trivially) gen-
eralize the known results to metric spaces and an arbitrary set of constraints. In this we
follow the work [100], but the original results are published in [190, 191, 192]. We can
also cite [203] for a result similar to Lemma 2.2.2 below.

Lemma 2.2.1. Let (E, d) be a metric space, with metric d : E ×E → R+. Consider an
arbitrary mapping h : E → R. The level sets Lt = {x ∈ E : h(x) ≥ t} are closed for all
t ∈ R if and only if h is upper semi-continuous.

Proof. Fix an arbitrary t and pick any sequence xn ∈ Lt, converging to limit x ∈ E.
Since E is a metric space, upper semi continuity of h gives

h(x) ≥ lim sup
y→x

h(y) = lim sup
n→∞

h(xn) ≥ t,

so x ∈ Lt and Lt is therefore closed. Conversely let x ∈ E be arbitrary and pick a
sequence xn → x such that

t := h(x) = lim sup
y→x

h(y) = lim
n→∞

h(xn),
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Then for arbitrary ε > 0, there exists some N with h(xn) ≥ t − ε for all n ≥ N , so
xn ∈ Lt−ε for those n. From closedness of Lt for all t this gives x ∈ Lt−ε, therefore

h(x) ≥ lim sup
y→x

h(y)− ε.

since ε > 0 is arbitrary, h is upper semi continuous.

Lemma 2.2.2. Let E,F be arbitrary metric spaces, T be an arbitrary index set and let
ξ ∈ F be a random variable. Assume furthermore that all members gt : E × F → R

of the family of mappings {gt}t∈T are (jointly) upper semi continuous. The mapping
ϕ : E → [0, 1] defined as ϕ(x) = P[gt(x, ξ) ≥ 0 ∀t ∈ T ] is then upper semi-continuous.
As a consequence, the set M(p) := {x : ϕ(x) ≥ p} is closed for all p ∈ [0, 1].

Proof. We begin by observing that M(p) = ∅ if p > 1 and M(p) = E if p < 0 and that
these sets are closed. The asserted upper semi-continuity of the mapping ϕ is therefore
equivalent with M(p) being closed as a consequence of Lemma 2.2.1.

Let p ∈ [0, 1] be arbitrary. We will show that M(p) is a closed set. To this end, pick an
arbitrary converging sequence xn ∈ M(p) with limit point x, i.e., limn→∞ xn = x, where
convergence is in E. We will show that x ∈M(p).

To this end, define

H(x) = {z ∈ F : gt(x, z) ≥ 0 ∀t ∈ T}
Ak = ∪y :dE(y,x)≤k−1H(y), k ≥ 1.

Then P[ξ ∈ H(x)] = P[gt(x, ξ) ≥ 0 ∀t ∈ T ] and in particular P[ξ ∈ H(xn)] ≥ p. We now
claim that

H(x) = ∩k≥1Ak. (2.2.2)

Clearly z ∈ H(x) implies z ∈ Ak for all k ≥ 1. To show the opposite, let z ∈ ∩k≥1Ak, be
arbitrary. Then one can find sequences zk → z, yk → x, such that zk ∈ H(yk) and from
upper semi-continuity of gt we get for each t ∈ T :

gt(x, z) ≥ lim sup
k→∞

gt(yk, zk) ≥ 0, (2.2.3)

yielding z ∈ H(x). We have thus shown (2.2.2). Since clearly Ak+1 ⊆ Ak for all k ≥ 1
it follows from standard measure theory [19] that P[ξ ∈ Ak] ↓ P[ξ ∈ H(x)]. Now pick an
arbitrary ε > 0 and k′ ≥ 0 such that P[ξ ∈ H(x)]−P[ξ ∈ Ak′ ] ≥ −ε. Such k′ can be found
according to the statements above. Since xn converges to x in E, one can moreover find
N such dE(xn, x) ≤ k′−1 for all n ≥ N . According to the definition of Ak′ this implies
that H(xn) ⊆ A′

k for n ≥ N . Altogether we obtain

P[ξ ∈ H(x)]− P[ξ ∈ H(xn)] ≥ P[ξ ∈ H(x)]− P[ξ ∈ Ak] ≥ −ε, (2.2.4)

i.e., P[ξ ∈ H(x)] ≥ p− ε. Since ε > 0 is arbitrary, P[ξ ∈ H(x)] ≥ p and x ∈M(p) as was
to be shown.
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2.3 Continuity of Probabilistic Constraints

In order to show continuity of the probabilistic constraint we require a situation wherein
no probabilistic mass is assigned to the boundary of the set {z ∈ F : g(x, z) = 0}, where
the situation is as in Lemma 2.2.2. An example of a discontinuous probability constraint
can be found in [100, Beispiel 2.1]. The following result is a straightforward extension of
[100, 190].

Lemma 2.3.1. Let E,F be arbitrary metric spaces, T be an arbitrary index set and let
ξ ∈ F be a random variable. Assume furthermore that all members gt : E × F → R of
the family of mappings {gt}t∈T are (jointly) lower semi-continuous. Assume furthermore
that the sets Nx := {z ∈ F : inft∈T gt(x, z) = 0} are P-null-sets for all x ∈ E, i.e., P[ξ ∈
Nx] = 0. The mapping ϕ : E → [0, 1] defined as ϕ(x) = P[gt(x, ξ) ≥ 0 ∀t ∈ T ] is then
also lower semi-continuous.

Proof. Fix x̄ ∈ E arbitrarily and define the mapping ginf : E × F → R as ginf (x, z) :=
inft∈T gt(x, z). The mapping ginf is then also lower semi-continuous and −ginf upper
semi-continuous. Upon applying Lemma 2.2.2 we derive

lim sup
x→x̄

P[−ginf (x, ξ) ≥ 0] ≤ P[−ginf (x̄, ξ) ≥ 0]. (2.3.1)

According to our assumption we have P[ginf (x, ξ) = 0] = 0. So combining this with
(2.3.1) yields:

lim inf
x→x̄

ϕ(x) = lim inf
x→x̄

P[gt(x, ξ) ≥ 0 ∀t ∈ T ] = lim inf
x→x̄

P[ginf(x, ξ) ≥ 0] =

= lim inf
x→x̄

P[ginf (x, ξ) > 0] = − lim sup
x→x̄

−P[ginf (x, ξ) > 0] =

= − lim sup
x→x̄

(P[ginf (x, ξ) ≤ 0]− 1) = 1− lim sup
x→x̄

P[ginf (x, ξ) ≤ 0]

≥ 1− P[ginf (x̄, ξ) ≤ 0] = P[ginf (x̄, ξ) > 0] = P[ginf (x̄, ξ) ≥ 0] = ϕ(x̄).

We have thus shown that ϕ is indeed lower semi-continuous.

Remark 2.3.2. If T is a finite set, it is sufficient to require that Nx := {z ∈ F : gt(x, z) = 0}
is a P-null set for each t ∈ T .

Upon combining Lemma 2.3.1 and 2.2.2 we thus obtain the following Theorem providing
conditions for continuity of the probabilistic constraint:

Theorem 2.3.3. Let E,F be arbitrary metric spaces, T be an arbitrary index set and
let ξ ∈ F be a random variable. Let all members gt : E × F → R of the family
of mappings {gt}t∈T be (jointly) continuous. Assume furthermore that the sets Nx :=
{z ∈ F : inft∈T gt(x, z) = 0} are P-null-sets for all x ∈ E, i.e., P[ξ ∈ Nx] = 0. The
mapping ϕ : E → [0, 1] defined as ϕ(x) = P[gt(x, ξ) ≥ 0 ∀t ∈ T ] is then also continuous.

An important specification is obtained when F = Rm:
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Lemma 2.3.4. Let E be an arbitrary metric space, T be an arbitrary index set and let
ξ ∈ Rm be a random variable having a density with respect to the Lebesgue measure. Let
all members gt : E × Rm → R of the family of mappings {gt}t∈T be (jointly) continuous.
Assume furthermore that the sets Nx := {z ∈ Rm : inft∈T gt(x, z) = 0} are Lebesgue-null-
sets for all x ∈ E. The mapping ϕ : E → [0, 1] defined as ϕ(x) = P[gt(x, ξ) ≥ 0 ∀t ∈ T ]
is then continuous.

Proof. Since ξ admits a density with respect to the Lebesgue measure it is clear that
P[ξ ∈ Nx] = 0 for all x ∈ E. We can now use Theorem 2.3.3 to conclude the proof.

2.4 Connectedness of Feasible Set

One of the last most general results we can derive is that of connectedness of the feasible
sets of constraints of the type (2.0.1).

Theorem 2.4.1. Let E,F be arbitrary metric spaces, T be an arbitrary index set and let
ξ ∈ F be a random variable. Let all members gt : E × F → R of the family of mappings
{gt}t∈T be (jointly) quasi-concave. Assume furthermore that g is max-stable, i.e., for
each x1, x2 ∈ E, one can find x3 ∈ E such that gt(x3, z) ≥ max {gt(x1, z), gt(x2, z)} for
each z ∈ F, t ∈ T . The set M(p) := {x ∈ E : ϕ(x) ≥ p} is then path-connected for each
p ∈ [0, 1], where ϕ : E → [0, 1] is defined as ϕ(x) = P[gt(x, ξ) ≥ 0 ∀t ∈ T ].

Proof. This follows directly from [97, Theorem 2.1] upon inverting the inequalities figur-
ing therein.

2.5 Convexity of the Feasible Set

For a (highly) efficient numerical treatment it is clearly of interest to know under which
conditions convexity of the feasible set for constraints of the type (2.0.1) is to be ex-
pected. Upon examining the special case wherein g(x, z) = x−z, in which the constraint
(2.0.1) directly relates to the distribution function of ξ, it is clear that concavity of
x 7→ P[g(x, ξ) ≥ 0] can’t be expected. Indeed, already one dimensional distribution func-
tions are not concave. However it is sufficient that the mapping x 7→ P[g(x, ξ) ≥ 0] is
quasi-concave for the feasible set M(p) := {x ∈ Rn : P[g(x, ξ) ≥ 0] ≥ p} to be convex.

Lemma 2.5.1. Consider the situation of (2.0.1), define ϕ : Rn → [0, 1] as ϕ(x) =
P[g(x, ξ) ≥ 0] ≥ p and let M(p) be defined as M(p) := {x ∈ Rn : P[g(x, ξ) ≥ 0] ≥ p}.
Then the feasible set M(p) is convex for all p ∈ [0, 1] if and only if ϕ is quasi-concave.

Proof. Let p ∈ [0, 1], x, y ∈M(p), λ ∈ [0, 1] all be arbitrary and form xλ = λx+(1−λ)y.
Quasi-concavity of ϕ implies ϕ(xλ) ≥ min {ϕ(x), ϕ(y)} ≥ p, showing xλ ∈ M(p). To
show the other implication let x, y ∈ Rn, λ ∈ [0, 1] all be arbitrary. Upon defining
p := min {ϕ(x), ϕ(y)} it follows that x, y ∈ M(p). Hence from convexity of M(p) we
obtain xλ ∈M(p), i.e., ϕ(xλ) ≥ p as was to be shown.
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Quasi-concavity (and further generalized) concavity has a good chance of arising in many
situations. To this end we introduce the mapping:

Definition 2.5.2. Let α ∈ [−∞,∞] and mα : R+×R+× [0, 1]→ R be defined as follows

mα(a, b, λ) = 0 if ab = 0, (2.5.1)

for a > 0, b > 0, λ ∈ [0, 1]:

mα(a, b, λ) =















aλb1−λ if α = 0
max {a, b} if α =∞
min {a, b} if α = −∞

(λaα + (1− λ)bα) 1
α else

(2.5.2)

We can now provide the definition of generalized concavity:

Definition 2.5.3. A non-negative function f defined on some convex set C ⊆ Rn is
called α-concave (α ∈ [−∞,∞]) if and only if for all x, y ∈ C, λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≥ mα(f(x), f(y), λ), (2.5.3)

where mα is as in Definition 2.5.2.

Remark 2.5.4. A function f is 0-concave if its logarithm is concave. For α 6= 0, α ∈ R,
the function f is α-concave if either fα is concave for α > 0 or fα is convex for α < 0.
Quasi-concavity refers to −∞-concavity in Definition 2.5.3.

The following lemma can be found in [51] and shows that α-concavity implies quasi-
concavity, i.e., quasi-concavity is the weakest form of ”generalized” concavity that exists.
In particular concave mappings are log-concave etc...

Lemma 2.5.5. Let mα be the mapping as defined in Definition 2.5.2. The mapping
α 7→ mα is nondecreasing and continuous.

For calculus rules with α-concavity we refer to Theorems 4.19-4.23 of [51].

Definition 2.5.6. A probability measure P defined on the Lebesgue measurable subsets of
a convex set C ⊆ E is said to be α-concave if for all Borel measurable subsets A,B ⊆ C,
λ ∈ [0, 1] we have

P[λA+ (1− λ)B] ≥ mα(P[A],P[B], λ), (2.5.4)

where λA+ (1− λ)B = {λx+ (1− λ)y : x ∈ A, y ∈ B} is the Minkowski sum of A and
B.

Remark 2.5.7. Prékopa introduced the notion of log-concave measures in [176] but the
above generalization was suggested by [21, 22].

In fact it turns out that quasi-concavity of measures relates to densities. In fact ”all”
non-degenerate quasi-concave measures must have a density:

11



Lemma 2.5.8 ([21]). If P is a quasi-concave measure on R
m and the dimension of its

support is also m, then P has a density with respect to the Lebesgue measure.

Now that we know that quasi-concave measures have densities, it is natural to wonder if
generalized concavity of such densities carries over to the measure. This turns out to be
the case as the following result shows. We also refer to [181, Chapter 4] and references
therein.

Theorem 2.5.9 ([176, 178, 22, 196]). Let C be a convex subset of Rm and let s > 0 be
the dimension of the smallest affine subspace L containing C. The probability measure
P on C is γ-concave with γ ∈ [−∞, 1

s
] if and only if its probability density function with

respect to the Lebesgue measure on L is α-concave with

α =







γ
1−sγ

if γ ∈ (−∞, 1
s
)

−1
s

if γ = −∞
∞ if γ = 1

s

(2.5.5)

Corollary 2.5.10. Let f : Rm → R be integrable and positive on a convex set C ⊆ Rm

with non-zero Lebesgue Measure. If f is α-concave on C with α ∈ [− 1
m
,∞] and positive

on the interior of C, then the measure P[A] = 1∫
C θdλ

∫

A
fdλ is γ-concave on C with

γ =







α
1+mα

if α ∈ ( 1
m
,∞)

1
m

if α =∞
−∞ if α = − 1

m

(2.5.6)

Lemma 2.5.11. Let ξ ∈ Rm be a random variable with α-concave probability distribution
Pξ, where α ∈ [−∞,∞]. Let T be an s×m constant matrix and let η ∈ R

s be the random
variable defined as η := Tξ. Then the probability distribution of η is α-concave too.

Remark 2.5.12. For the application of Theorem 2.5.9 it is important to distinguish
probability distribution and probability distribution function. The former concept relates
to the measure P defined on an appropriate σ-algebra. The latter concept is a restriction
of the measure to sets of the form (−∞, x]. In order to illustrate the difference, the log-
normal law has a probability distribution without any generalized concavity property, but
probability distribution function that is log-concave.

In applications the following theorem (proved for multivariate normal distributions in
[261]) provides a strong tool for deriving convexity of feasible sets:

Theorem 2.5.13 ([176]). Let C ⊆ Rm be a convex set and let P be a α-concave measure
defined on Lebesgue measurable subsets of C, where α ∈ [−∞,∞]. Let A be a convex
(i.e., Lebesgue measurable) subset of C and x ∈ Rm arbitrary, then x 7→ f(x) := P[A+x]
is an α-concave function.

Proof. Let x, y ∈ R
m, λ ∈ [0, 1] all be arbitrary and remark that convexity of A provides

the following invariance under the Minkowski sum A = λA + (1 − λ)A. It thus follows
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that λ(A+ x) + (1− λ)(A+ y) = A+ λx+ (1− λ)y. Upon applying the α-concavity of
the measure P we obtain:

f(λx+ (1− λ)y) = P[A+ λx+ (1− λ)y] = P[λ(A+ x) + (1− λ)(A+ y)]

≥ mα(f(x), f(y), λ).

Theorem 2.5.14 ([176]). Let ξ ∈ Rm be a random variable that induces an α-concave
probability distribution P, where α ∈ [−∞,∞]. Then its associated probability distribution
function is also α-concave.

Proof. Define the convex set A = {z ∈ Rm : z ≤ 0}. Then x, y ∈ Rm with y ≤ x⇔ y ∈
A+x. As a consequence Fξ(x) := P[ξ ≤ x] = P[ξ ∈ (A+x). The result now follows from
Theorem 2.5.13.

One of the most general concavity results is the following. It can be found in this form in
[51], but its original form is found in [177, 178] where it is specified to log-concave (i.e.,
0-concave) measures. Tamm [227] observed that quasi-concavity of the mapping g was
sufficient and concavity of g an excessive requirement. The generalization to α-concave
measures was provided by [21, 22].

Theorem 2.5.15. Let g : Rn × Rm → Rk be a (jointly) quasi-concave function and let
ξ ∈ Rm be a random variable inducing an α-concave probability distribution P. Then
the mapping x ∈ Rn 7→ G(x) := P[g(x, ξ) ≥ 0] is an α-concave function on the set
D = {x ∈ R

n : ∃z ∈ R
m with g(x, z) ≥ 0}.

Remark 2.5.16. Consider separable constraints in (2.0.1), i.e., gi(x, z) = hi(x) − z,
i = 1, ..., k where h : Rn → Rm. Then G(x) := P[g(x, ξ) ≥ 0] = P[ξ ≤ h(x)] = Fξ(h(x))
and convexity of the feasible set directly relates to the generalized concavity properties of
distribution function and (generalized) concavity properties of h.

Remark 2.5.17. Consider an individual separable constraint of the form 2.0.3 (i.e., set
k = 1 in (2.0.1)). One then easily derives that P[ξ ≤ h(x)] ≥ p is equivalent with h(x) ≥
F (−1)(p), where the latter is the generalized inverse of the one-dimensional distribution
function F . This is an explicit constraint and convexity can be deduced from properties
of h directly.

Remark 2.5.18. The strength of Theorems 2.5.9 and 2.5.15 is that many random vari-
ables actually have generalized concavity properties. Indeed we can provide the following
list of random variables having α-concave densities (see [182]):

1. Gaussian random variables have log-concave densities

2. Dirichlet distributions with parameters ϑj ≥ 1 are log-concave, whereas for ϑj ≤ 1,
they are log-convex.

3. Uniform distributions are log-concave
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4. Wishart distributions (on the set of square matrices) are log-concave

5. Beta distributions (on the set of square matrices) are log-concave

6. Multi-variate Gamma distributions are log-concave

7. The m-variate Cauchy distributions has an − 1
m
-concave density. Its distribution is

therefore quasi-concave.

8. The Pareto distribution has a − 1
m
-concave density. Its distribution is therefore

quasi-concave.

9. The multi-variate Student t-distribution has a − 1
m
-concave density. Its distribution

is therefore quasi-concave.

2.5.1 Special Cases with Convexity

Joint quasi-concavity of the mapping g appearing in (2.0.1) does not hold in all cases
of interest. This does not imply that convexity of the feasible set can’t be derived. A
particular case of interest is one wherein g(x, ξ) ≥ 0 represents a random linear inequality
system Ax ≤ b, where A is random.

The following easily derived result provides a convexity statement in such a setting

Lemma 2.5.19 ([121]). Consider the constraint of the form (2.0.1) where k = 1, g(x, z) =
zTx − b and ξ ∈ Rm is a multivariate Gaussian random variable. Then the feasible set
M(p) is convex for all p > 1

2
.

Generalizations of this result to k > 1 require special correlation structures for the
Gaussian random vector. The column version is due to [179], whereas the row version
comes from [26]:

Theorem 2.5.20. Let A be a m×n matrix having a non degenerate multivariate Gaus-
sian density in R

nm. Assume that there is a fixed covariance matrix C and a n × n (or
m×m) symmetric matrix S, such that either:

1. The columns A.j of A, satisfy

Cov (A.j, A.k) = sjkC, j, k = 1, ..., n,

2. The rows Aj. of A, satisfy

Cov (Aj., Ak.) = sjkC, j, k = 1, ...,m,

Then the set {x : P[Ax ≤ 0] ≥ p} is convex for all p ≥ 1
2
.

Proof. A very comprehensive proof can be found in [119, Theorem 2.12].
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2.5.2 Eventual Convexity of the Feasible set

As in the result by Kataoka ([121]), convexity of the feasible set M(p) cannot always be
obtained for any probability level p. From a practical perspective this is not necessarily
a problem since we are naturally looking for high p levels when formulating constraints
of the type (2.0.1). In some cases, we can show that the feasible set is convex if p is large
enough. Convexity of feasible sets with high enough p is known as eventual convexity.
Some key results on eventual convexity have been derived by [110, 111]. The following
concept plays a key role in their results.

Definition 2.5.21. The function f : R → R is called r-decreasing (r ∈ R) if it is
continuous on (0,∞) and there exist some t∗ > 0 such that t 7→ trf(t) decreases strictly
for t > t∗.

Lemma 2.5.22 ([110]). Let F : R → [0, 1] be a probability distribution function with a

γ + 1-decreasing density for some γ > 0. Then the function z 7→ F (z−
1
γ ) is concave on

(0, (t∗)−γ), with t∗ as in Definition 2.5.21. Moreover F (t) < 1 for all t ∈ R.

Definition 2.5.23. Let q ∈ (0, 1)m be arbitrary. A copula C : [0, 1]m → [0, 1] is called
log-exp concave on [q, 1] if the mapping u ∈ Rm 7→ logC(eu1, ..., eum) is concave on
[log(q), 0].

Theorem 2.5.24 ([110, 111]). Let ξ ∈ R
m be a random vector, C : [0, 1]m → [0, 1] be a

copula, and let gi : R
n → R be mappings such that

P[ξ ≤ g(x)] = C(F1(g1(x)), ..., Fm(gm(x))), (2.5.7)

where Fi are the marginal distribution functions of component i of ξ, i = 1, ...,m. If we
can find ri > 0, i = 1, ...,m such that the following three conditions hold:

1. The functions gi are (−ri)-concave

2. The marginal distribution Functions Fi are generated by (ri+1)-decreasing densities
fi with associated parameter t∗i

3. The copula C is log-exp concave on [q, 1], where q ∈ (0, 1)m is defined as qi =
Fi(t

∗
i ), i = 1, ...,m.

Then the set {x ∈ R
n : P[ξ ≤ g(x)] ≥ p} is convex for all p > p∗ := maxi=1,...,m F (t

∗
i ).

Upon exploiting the independence of the rows of a Gaussian Technology Matrix, one can
derive a formulation that allows for an indirect application of the previous result. This,
in turn, allows us to assert eventual convexity of feasible sets with Gaussian Technology
Matrices as the following result shows:

Theorem 2.5.25 ([110]). Let A be a m × n matrix having a non degenerate multi-
variate Gaussian density in R

nm with independent rows. Let b ≥ 0 be a fixed vec-
tor. The set M(p) := {x ∈ Rn : P[Ax ≤ b] ≥ p} is convex for all p > p∗, where p∗ =
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Φ(max
{√

3, u∗
}

). Here Φ is the one dimensional standard Gaussian distribution function
and

u∗ = max
i=1,...,m

4λimax[λmin]
− 3

2 ‖µi‖ .

Moreover, µi is the average vector of the i-th row and λimin, λ
i
max refer to the smallest

and largest eigenvalues of its covariance matrix Σi.

Eventual convexity will receive further attention in Section 3.4.

2.6 (Local) Lipschitz Continuity

Consider the special case of (2.0.1) wherein g(x, z) = h(x)− z, for h : Rn → Rm. In this
case the probability constraint (2.0.1) becomes

P[h(x) ≥ ξ] ≥ p. (2.6.1)

Constraints of the form (2.6.1) involve the distribution function of the random variable
ξ. The following result provides conditions under which such a distribution function is
(Locally) Lipschitz Continuous:

Theorem 2.6.1 ([51]). Let ξ ∈ R
m be a random variable admitting a density (with

respect to the Lebesgue Measure). The distribution function Fξ(x) := P[ξ ≤ x] is (locally)
Lipschitz continuous if each of the marginal distributions of ξ is (locally) Lipschitz.

The following result characterizes the situation in which the distribution function is
globally Lipschitz:

Theorem 2.6.2 ([204, 100]). Let ξ ∈ Rm be a random variable admitting a density (with
respect to the Lebesgue Measure). The distribution function Fξ(x) := P[ξ ≤ x] is Lipschitz
continuous if and only if each of the marginal distributions of ξ is essentially bounded.

Upon combining the notion of generalized concavity and under the assumption that the
random variable ξ is non-degenerate (i.e., has a non-random component) we can arrive
at an ever stronger result.

Theorem 2.6.3 ([109]). Let ξ be a random variable in Rm with quasi-concave law. Its
distribution function Fξ(x) := P[ξ ≤ x] is Lipschitz continuous if and only if none of its
components ξi ,i = 1, ...,m has zero variance.

2.7 Differentiability of Probabilistic Constraints

An important question for numerical treatment of constraints of type (2.0.1) is differ-
entiability. Indeed many optimization algorithms require a gradient. Differentiability
statements of chance constraints of the type (2.0.1) come mainly in two forms. On one
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hand we have very general differentiability statements providing rather complex char-
acterizations. On the other hand we have practical characterizations for special cases.
In the works dealing with such special cases one tries to reduce the computation of any
component of a gradient to the computation of integrals for which efficient numerical sam-
pling approaches are available. Such approaches will also receive a thorough discussion
in Sections 3.2 and 3.3.

2.7.1 General Statements

Theorem 2.7.1 ([234, 235, 237], for similar work see also [146, 147]). Let g : Rn×R
m →

Rk be a continuously differentiable function and let θ : Rn × Rm → R be a continuously
differentiable density. Pick moreover 1 ≤ l < k arbitrarily. Assume moreover that

1. The set µ(x) := {y ∈ Rm : g(x, y) ≤ 0} is bounded in a neighbourhood U of some
point x̄.

2. At x̄ all constraints gi(x̄, y) ≤ 0, i = 1, ..., k are active

3. One can a find continuous matrix function Hl : R
n × R

m → R
n×m satisfying

H(x, y)∇yg
l(x, y) +∇xg

l(x, y) = 0,

where gl(x, y) = (g1(x, y), ..., gl(x, y)) ∈ R
l.

4. The matrix function Hl has a continuous partial derivative with respect to y.

5. The gradient ∇ygi(x, y) 6= 0 on ∂iµ(x̄) := µ(x̄) ∩ {y ∈ Rm : gi(x̄, y) = 0}.

6. For each y ∈ µ(x̄), the vectors ∇ygi(x, y), i ∈ I(x, y) := {j : gj(x, y) = 0} are
linearly independent

Then the mapping ϕ(x) :=
∫

µ(x)
θ(x, y)dλ(y) = P[µ(x)] is differentiable at x̄ and

∇xϕ(x) =

∫

µ(x)

∇xθ(x, y) + divy(θ(x, y)Hl(x, y))dλ(y)

−
k
∑

i=l+1

∫

∂iµ(x)

θ(x, y)

‖∇ygi(x, y)‖
[∇xgi(x, y) +Hl(x, y)∇ygi(x, y)]dS,

where λ is the Lebesgue measure on Rm.

In Theorem 2.7.1 above one can select 1 ≤ l < k in a way that is convenient for the
application at hand. The special choices l = 0 and l = k can also be made and lead to
the following special cases (we refer to [236] for a modern version):
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Theorem 2.7.2 ([193, 200, 232, 231, 233]). With notation and conditions as in theorem
2.7.1. Let l = 0, then we have:

∇xϕ(x) =

∫

µ(x)

∇xθ(x, y)−
k
∑

i=1

∫

∂iµ(x)

θ(x, y)

‖∇ygi(x, y)‖
∇xgi(x, y)dS.

If l = k we have:

∇xϕ(x) =

∫

µ(x)

∇xθ(x, y) + divy(θ(x, y)Hk(x, y))dλ(y)

2.7.2 Special Cases

In some special cases very efficient formulae for gradients can be established. These
formulae can be derived upon considering specific densities for the random vector ξ
of (2.0.1) and/or specifically structured chance constraints. When considering chance
constraints with a separable structure as in (2.6.1), differentiability depends completely
on that of the distribution function and the mapping h.

The following general result on differentiability of distribution functions can be derived.
(For a comprehensive proof we refer to [100]).

Theorem 2.7.3 (e.g., [181]). Let ξ ∈ Rm be a random vector with density fξ : R
m → R.

Fix any z̄ ∈ Rm and consider Fξ(z) := P[ξ ≤ z]. If

ϕ(i)(t) :=

∫ z̄1

−∞
. . .

∫ z̄i−1

−∞

∫ z̄i+1

−∞
. . .

∫ z̄s

−∞
fξ(u1, ..., ui−1, t, ui+1, ..., us)du1 . . . dui−1dui+1 . . . dus,

is continuous for all i = 1, ..., s, then Fξ(z) is partially differentiable at z̄ and

∂Fξ

∂zi
(z̄) = ϕ(i)(z̄i). (2.7.1)

Remark 2.7.4. Stochastic Gradient Approaches for distribution functions of the above
form can be found in [124, 125]. In energy applications, stochastic gradient approaches
have been investigated for minimizing expected value objective functions (e.g., [59, 89]).

An important specialization Theorem 2.7.3 can be obtained if we consider Gaussian
random variables.

Lemma 2.7.5 ([175, 181]). Let ξ be an m-dimensional Gaussian random vector with
mean µ ∈ Rm and positive definite variance-covariance matrix Σ. Then the distribution
function Fξ(z) := P[ξ ≤ z] is continuously differentiable and in any fixed z ∈ Rm the
following holds:

∂Fξ

∂zi
(z) = fξi(zi)Fξ̃(zi)

(z1, ..., zi−1, zi+1, ..., zm), i = 1, ...,m. (2.7.2)
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Here ξ̃(zi) is a Gaussian random variable with mean µ̂ ∈ R
m−1 and (m − 1) × (m − 1)

positive definite covariance matrix Σ̂. Let Di
m denote the m-th order identity matrix

from which the ith row has been deleted. Then µ̂ = Di
m(µ + Σ−1

ii (zi − µi)Σi) and Σ̂ =
Di

m(Σ− Σ−1
ii ΣiΣ

T

i )(D
i
m)

T, where Σi is the i-th column of Σ.

The above result requires the Gaussian random variable to be non-degenerate, i.e., have
positive definite covariance matrix. This is an important restriction in many situations,
in particular in network design when randomness on nodes is considered. In such appli-
cations the degeneracy occurs because we multiply a non-degenerate Gaussian random
variable with a matrix having more lines than columns. The following result therefore
allows for an important generalization of Lemma 2.7.5.

Theorem 2.7.6 ([106]). Let A be a k ×m matrix. Consider a linear inequality system
Ax ≤ z and define

I(A, z) =
{

I ⊆ {1, ..., k} : ∃x ∈ R
m aTi x = zi, i ∈ I, aTi x < zi, i /∈ I

}

.

Assume that z ∈ R
m is such that Ax ≤ z is nondegenerate (i.e., rank {ai}i∈I = |I| ∀I ∈

I(A, z)). Let ξ be an m-dimensional Gaussian random vector with mean µ and positive
definite variance-covariance matrix Σ. Then the mapping ϕ(z) = P[Aξ ≤ z] is differen-
tiable at z and

∂ϕ

∂zj
(z) =

{

0 if {j} /∈ I(A, z)
fj(zj)P[A

(j)L(j)ξ(j) ≤ z(j) − A(j)w(j)] if {j} ∈ I(A, z) (2.7.3)

Here ξ(j) is a centered m − 1 dimensional Gaussian random variable with independent
components, A(j) is obtained from A by deleting row j, z(j) is defined similarly. Moreover,
L(j) is the Choleski matrix of S(j) := Σ − 1

aTj Σaj
Σaja

T

j Σ (i.e., S(j) = L(j)(L(j))T), w(j) =

µ+
zj−aTj µ

aTj Σaj
Σaj and fj the one-dimensional Gaussian density with mean µTaj and variance

aTj Σaj. Finally the inequality system A(j)L(j)y ≤ z(j) − A(j)w(j) is nondegenerate.

Other important special cases involve the computation of gradients of multi-variate
Gamma [186] and Dirichlet Distributions [221, 181]

Theorem 2.7.7 ([186, 181]). A multivariate Gamma distribution ζ ∈ Rm is defined as
ζ = Aη, where η ∈ R

2m−1 contains independent standard Gamma (with parameters ϑj)
distributed components and A is a m×2m−1 matrix with non-zero columns, Aij ∈ {0, 1}
for i = 1, ...,m, j = 1, ..., 2m − 1. Define for each i = 1, ...,m, Ii ⊆ {1, ..., 2m − 1} as
Ii = {j : Aij = 1}. Then δi ∈ Rm−1,

δik =

∑

j∈Ik∩Ii ηj
∑

j∈Ii ηj
, k = 1, ..., i− 1, i+ 1, ...,m, (2.7.4)

is an m− 1 dimensional Dirichlet Distribution with parameters

Θk =
∑

j∈Ik∩Ii
ϑj, k = 1, ..., i− 1, i+ 1, ...,m

Θm+1 =
∑

j∈∪k 6=iIk\Ii

ϑj,
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for each i = 1, ...,m. Now F (z) := P[ζ ≤ z] is partially differentiable and

∂Fξ

∂zi
(z) = P[ziδ

i
k + γk ≤ zk ∀k 6= i]

zϑi−1
i e−zi

Γ(ϑi)
, (2.7.5)

where γk =
∑

j∈Ik∩Īi ηj, k = 1, ..., i− 1, i+ 1, ...,m, is an m− 1 dimensional multivariate

gamma distribution independent of δi.

Theorem 2.7.8 ([258, 181, 88]). Let ξ ∈ Rm have a multivariate Dirichlet distribution,
i.e., have the density:

f(z1, ..., zm) =
Γ(ϑ1 + ...+ ϑm+1)

Γ(ϑ1)...Γ(ϑm+1)
zϑ1−1
1 ...zϑm−1

m (1−
m
∑

j=1

zj)
ϑm+1−1,

on the unit simplex z ∈ ∆m in dimension m (zero elsewhere). If

yi = (
z1

1− zi
, ...,

zi−1

1− zi
,
zi+1

1− zi
, ...,

zm
1− zi

) ∈ R
m−1

satisfies y(1)+ y(2) > 1 or y(1)+ y(2)+ y(3) > 1 (but y(1)+ y(2) ≤ 1) for the order-statistics
y(.), then F (z) := P[ξ ≤ z] is partially differentiable at z and

∂Fξ

∂zi
(z) = P[ξ̃ik ≤ yik, ∀k 6= i]

Γ(ϑ1 + ...+ ϑm+1)

Γ(ϑi)Γ(
∑

j 6=i ϑj)
zϑi−1
i (1− zi)

∑
j 6=i ϑj−1, (2.7.6)

where ξ̃i has an m − 1 dimensional Dirichlet distribution with parameters ϑ1, ..., ϑi−1,
ϑi+1, ..., ϑm+1.

2.8 Algorithms

In this section we provide a brief overview of known algorithms for solving optimization
problems with chance constraints of type (2.0.1). Throughout this section we will assume
that the resulting optimization problem is convex. For instance in a case where Theo-
rem 2.5.15 can be applied. We refer to [182] for schemes for each of these algorithms.
Algorithms will be discussed in details in sections 4.1 and 4.2.

For the purpose of discussion, let c : Rn → R be a convex function, providing an alter-
native equivalent representation of constraint (2.0.1), i.e., c(x) ≤ 0 if and only if (2.0.1)
holds. For instance if g is (jointly)-quasi concave and ξ has a log-normal density, we may
define c(x) := log(p)− log(P[g(x, ξ) ≥ 0]). The sub-gradient inequality then gives:

c(y) ≥ c(x) + 〈g, y − x〉 ∀y ∈ R
n, (2.8.1)

where g ∈ ∂c(x) is an arbitrary sub-gradient of the convex function c at point x ∈ Rn.
When y ∈ R

n is feasible for (2.0.1) this implies that

0 ≥ c(y) ≥ c(x) + 〈g, y − x〉 ∀y s.t. (2.0.1) holds .

Now if x ∈ Rn is moreover chosen such that c(x) = 0, this reduces to

〈g, y − x〉 ≤ 0, (2.8.2)

which is a valid inequality for all feasible solutions y ∈ Rn.
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2.8.1 Feasible direction Methods

In this method the mapping c is assumed to be continuously differentiable. In a first
stage a linear programming problem is solved in which constraint (2.8.2) appears with
an additional auxiliary variable z ∈ R also appearing in a similarly formed equation
involving the objective function:

〈g, y − x〉 −Θz ≤ 0,

where Θ is an appropriately chosen constant and x our current iterate. Let (y∗, z∗) be
the optimal solution of that linear program. In a second step we compute λ such that
x + λ(y∗ − x) is feasible. The algorithm is stopped with optimal solution y∗ whenever
z∗ = 0.

This approach is originally due to [266]. It should be noted however that Zoutendijk’s
method lacks the global convergence property as shown in [228]. We refer to the discussion
in [153] for further information. A method of feasible directions was adapted to the chance
constrained programming setting by [175], further tested in [48] and applied to a problem
from the industry in [183].

2.8.2 SUMT or ”penalty function methods”

Let ϕ : Rn → [0, 1] be defined as ϕ(x) = P[g(x, ξ) ≥ 0], where ξ and g are as in (2.0.1). In
this approach we assume that ϕ is log-concave. It then follows that x 7→ ϕ(x)− p is also
log-concave onM(p), i.e., the feasible set for (2.0.1). The idea of the log-barrier approach
is to add −sk log(ϕ(x) − p) to the objective function. The sequence

{

sk
}

k≥0
of scalar

multipliers is chosen strictly decreasing to zero. We then solve the (probabilistically)
unconstrained optimization problem and update the multipliers iteratively. Details on
SUMT approaches can be found in [73]. The application of this approach to chance
constrained programming was suggested by [177]. An application and implementation
can be found [194, 184].

2.8.3 Interior Point Methods

In this approach we add an additional slack variable w and the constraint ϕ(x)− p = w.
We then form the classic logarithmic barrier function, wherein −µ log(w) appears. The
above slack constraints are dualized in the Langrangian. We then apply the basic Interior
Point approach: we establish the KKT conditions and use Newton’s method to come up
with search directions. This method has been investigated by many authors (e.g., [252],
[205], [163], [259], etc...). One problem is that the Hessian often tends to become ill-
conditioned. This might especially be true for probabilistic constraints. It is suggested
in [182] to use the approaches of [157, 158] in order to counterbalance this effect.
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2.8.4 Supporting Hyperplane Method

In this approach we require the explicit knowledge of a Slater point xs ∈ R
n. In particular

we require ϕ(xs) > p, where notation is as in section 2.8.2. The feasible set induced by
constraint (2.0.1) needs to be convex as well. If xk is the current iterate, we use the Slater
point to form xc = λxk +(1−λ)xs in such a way that c(xc) = 0, i.e., ϕ(xc) = p. We then
add (2.8.2) to the otherwise probabilistically unconstrained-optimization problem. This
relaxation is then solved to produce the new iterate. More details on this approach are
provided in sections 4.1 and section 5.1.

The idea of using cutting planes approaches for convex optimization dates back to the
early 1960s ([123, 87, 36]). Cheney and Goldstein state in [36] that the key idea of
their approach can be traced back to E. Remez (e.g., [195]). We can also refer to [253].
The cutting plane approach was adapted to the context of joint chance constrained
programming by [185, 222].

2.9 Related Concepts

In this section we provide a brief overview of topics related to chance constrained pro-
gramming but not directly used in this Thesis. They figure here for the sake of providing
a global overview of the field.

2.9.1 Stability

A frequently formulated objection against using chance constraints of the type (2.0.1)
concerns the availability of knowledge of ξ. It is then argued that either the ξ is unknown
as a whole or at best its parameters are known up to some estimation error. It is
then natural to investigate to what extent the solutions of optimization problems with
constraints of type (2.0.1) are impacted by substituting a wrong law for ξ or picking
wrong parameters. Stability results address this question.

As an application one can consider the reduction of the sample size when ξ has a discrete
distribution and the sample would be too large for numerical treatment. Such a case is
considered in [103, 104].

For a general treatment of stability in stochastic programming problems we refer to [201].
Specific stability results for optimization problems with chance constraints are derived
in [62, 90, 107, 96, 98, 108, 118, 122, 203, 202, 212, 256].

In particular in the case of separable chance constraints of type (2.6.1) under a general-
ized concavity assumption on the distribution function, concavity of h and a compactness
(non-emptiness) assumption on the optimal solution set of the unperturbed problem one
can derive a Lipschitz continuity condition on the optimal values under small perturba-
tions of ξ ([96][Theorem 1]). Under additional, somewhat restrictive conditions, one can
also derive a Hausdorff-Hölder condition on the set of optimal solutions ([108]).
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2.9.2 p-Efficient points

The concept of p-Efficient points generalizes the notion of quantile for 1-dimensional
distribution functions. It is defined as follows:

Definition 2.9.1. Let ξ ∈ R
m be a random vector with distribution function Fξ. Let

p ∈ (0, 1) be given. A point v ∈ Rm is called a p-efficient point of the distribution
function Fξ if Fξ(v) ≥ p and no z ∈ Rm, z 6= v can be found s.t. z ≤ v and Fξ(z) ≥ p.

It is then clear that a chance constraint of the type (2.6.1) can be replaced with h(x) ∈ Ep,
where Ep denotes the set of p-efficient points for the distribution function Fξ. We refer
to [51][pages 115-122] for some properties of the set Ep.
The concept of p-efficient points was originally introduced for discrete distributions by
[180]. An enumeration method and solution approach based on a cutting plane method
was derived in [188]. The cone generation method wherein only a single p-efficient point
is generated at each iteration was developed in [54] and further considered in [254]. A
branch and bound algorithm was derived in [16] for the case wherein both x and ξ are
integer valued. We also refer to [53] (and references therein) for a modern algorithm
based on augmented Lagrangian methods using p-efficient points.

2.9.3 Safe Tractable Approximations

As highlighted throughout this section, theoretical and numerical treatment of constraints
of type (2.0.1) might be involved. A very natural idea is then to replace the constraint
(2.0.1) by constraints in a potentially higher dimensional space that imply feasibility for
(2.0.1). More specifically, following [13], we define a ”safe tractable approximation” as
follows:

Definition 2.9.2. Let S ⊆ R
n×Rl be a convex set described by explicit convex functions.

We call S a safe tractable approximation of constraint (2.0.1) if for every (x, v) ∈ S, x
satisfies (2.0.1).

Two important contributions in this field are [160, 15]. In the first work the so called
”Bernstein” Approximation is derived for fairly general probability constraints under
an independence assumption of the random vector ξ. In the second work the authors
consider chance constraints on inequalities arising in Semi-Definite programming1.

Frequently such an approximation is derived by using bounding techniques such as Ho-
effding’s bound ([115]). Such an approach is considered in [263, 264]. The obvious loss
of optimality inherent to such an approach is a serious drawback. It can be attenuated
by some ad-hoc parameter tweaking, such as deriving the safe tractable approximation
under another security level p (in (2.0.1)). These approaches could be of interest to derive
a first estimate of the optimal solution of an optimization problem with a constraint of
type (2.0.1) cheaply. One would then consider a hybrid solution approach with a first

1called linear matrix inequalities
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stage wherein one derives a good estimate x0 of the optimal solution. A second stage
dealing with (2.0.1) in an appropriate way would then be applied to obtain the optimal
solution.

2.9.4 Scenario Approximations / Sample Average Approxima-
tions

The key idea of these approaches is to replace (2.0.1) by a sampled version. To this end
let ξ1, ..., ξN be an (iid) sample of the random vector ξ. We introduce auxiliary binary
variables zi ∈ {0, 1} for i = 1, ..., N and look at the following approximation of (2.0.1):

g(x, ξi) ≥ (zi − 1)Me (2.9.1)

1

N

N
∑

i=1

zi ≥ q,

where q ≥ p, M > 0 is an appropriately chosen ”big”-M constant and e = (1, ..., 1) ∈ Rk.
Intuitively each zi corresponds to an active constraint on sample value ξi when zi = 1 and
deactivated constraints whenever zi = 0. Other than inherent difficulties due to ”big”-M
constraints this approach raises several questions. In particular to what extent can we
expect a feasible solution of (2.9.1) to be feasible for (2.0.1). A second question naturally
involves the required sample size N .

The Scenario Approximation refers to a situation wherein we pick q = 1, i.e., all binary
variables in (2.9.1) are removed. This approach was developed by [28] and extended for
large p by [159, 161]. Both works provide a result linking a given confidence level, q, and
the sample size N . Very similar links are also exhibited in [42] in the context of sampling
constraints in approximate dynamic programming. The scenario approximation approach
can alternatively be interpreted as a version of Robust Optimization with a discrete
uncertainty set. Heuristically discarding some elements of the sample has also been
investigated in [30]. The Sample Average Approximation approach (i.e., picking q < 1 in
(2.9.1)) was first investigated for Probabilistic constraints in [145]. The same approach
was traditionally used for stochastic programs with expected value objective functions
(see [215] and references therein, see also [168]). Hence [145] provide an extension of
this concept to applications involving probabilistic constraints. In particular, a a result
linking a given confidence level, q, and the sample size N is given.

In a recent paper [144] an approach is presented for specially structured problems that
allows one to do away with the big M -constraints in (2.9.1). Under additional assump-
tions on x, even the auxiliary binary variables need not be explicitly generated. This is
investigated in [220]

Even though, in all these results, we can link the required sample size N , q and a
confidence level for satisfying the actual constraint (2.0.1), N can be prohibitively large.
We note that the number of constraints in (2.9.1) is equal to Nk. Now if k = 100 and
N = 10000 this may be particularly troublesome for MIP / LP solvers, even if g(x, z)
is linear in x. Moreover, in a recent paper [102] shows that one can design problems

24



already in dimension 2, i.e., n = 2 in (2.0.1) wherein N has to be arbitrarily large in
order to have a rough estimate of the optimal solution. The results are illustrated for
the Gaussian distribution. This shows that such sample average approximations should
be used with care.

25



Chapter 3

Theoretical Extensions

We begin this chapter by investigating to what extent the feasible set induced by a joint
probabilistic constraint can be approximated by a generalization of individual proba-
bilistic constraints. In principle an infinite set of such individual probabilistic constraints
should be considered. This approach could be of interest if for a current set of constraints
and current candidate solution we can readily identify a violated constraint, which can
then be added to the problem. A second condition is that the feasible set is a better
approximation of the feasible set induced by the joint probabilistic constraint than that
generated by individual probabilistic constraints. An example shows that this second
condition could be satisfied in specific applications. We will also derive (negative) results
showing that this second point does not hold in general.

Sections 3.2 and 3.3 are devoted to deriving gradient Formulae for probabilistic con-
straints involving Gaussian random variables in one way or another. The provided for-
mulae allow for a direct application of the same sampling approach used to evaluate the
probability constraint we took the derivative of.

Whenever the feasible set for constraints of type (2.0.1) is convex when p is high enough,
we will speak of eventual convexity. For separable constraints (2.0.4) and random vari-
ables allowing for a special ”correlation” structure through the use of a Copula recent
results [110, 111] on eventual convexity exist. The results in Section 3.4 provide an ex-
tension of the latter results on eventual convexity, by allowing for more Copulae and
providing lower thresholds. Such lower thresholds allow us to assert convexity for prob-
abilistically constrained feasible set with lower safety-levels.

3.1 Semi-Infinite Individual Chance Constraints

Consider the stochastic inequality system g(x, ξ) ≥ 0 appearing in (2.0.1). It is then
clear that for each fixed ξ ∈ Rm we have g(x, ξ) ≥ 0 if and only if vTg(x, ξ) ≥ 0 for all
v ∈ Rk, v ≥ 0. This motivates the following definition:

Definition 3.1.1. Let g : Rn × R
m → R

k be a mapping and ξ ∈ R
m a random variable.
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Consider the probabilistic constraint

P[g(x, ξ) ≥ 0] ≥ p, (3.1.1)

and its feasible set M(p) := {x ∈ R
n : P[g(x, ξ) ≥ 0] ≥ p}. Let v ∈ R

k, v ≥ 0 be arbi-
trary. We call x ∈ R

n feasible for the v-Individual Chance Constraint (v-ICC) if and
only if

P[vTg(x, ξ) ≥ 0] ≥ p. (3.1.2)

We say that x ∈ Rn is feasible for the semi-infinite individual chance constraint system
if x is v-ICC feasible for each v ∈ Rk, v ≥ 0. We denote the latter feasible set by
MSI(p) :=

{

x ∈ R
n : (3.1.2) holds for all v ∈ R

k, v ≥ 0
}

.

Definition 3.1.2. Under notation of Definition 3.1.1, we say that x ∈ Rn is individual
chance constrained feasible (ICC-feasible) if and only if

P[gi(x, ξ) ≥ 0] ≥ p, i = 1, ..., k. (3.1.3)

We will denote this with x ∈M I(p).

The following Lemma shows that Definition 3.1.1 might allow for a tighter approximation
of M(p) using v-Individual chance constraints.

Lemma 3.1.3. Consider the situation of Definition 3.1.1. We have :

M(p) ⊆MSI(p) ⊆M I(p). (3.1.4)

Proof. The inclusion MSI(p) ⊆ M I(p) follows trivially. Indeed when x ∈ R
n is ICC-

feasible it is ei-ICC feasible, where ei ∈ R
k denotes the i-th standard unit vector and

i = 1, ..., k is arbitrary. Now let x ∈ Rn be such that x ∈ M(p). It then follows that a
(measurable)-set Ξ ⊆ Rm can be found with P[ξ ∈ Ξ] ≥ p and g(x, z) ≥ 0 for all z ∈ Ξ.
As a consequence, vTg(x, z) ≥ 0 for all z ∈ Ξ and v ∈ Rk, v ≥ 0. Therefore x is v-ICC
feasible for each v ∈ R

k, v ≥ 0, i.e., x ∈MSI(p).

The potential interest of Definition 3.1.1 is revealed by the following example:

Example 3.1.4. Let ξ ∈ R
2 be a random variable with a discrete distribution taking

values (2, 1),(1, 1) and (1, 2) with probability 1
5
, 3

5
, 1

5
respectively. Consider the constraint

P[ξ ≤ x] ≥ 4
5
. It is then readily observed that M I(p) = (1, 1) + R2

+ and M(p) = (2, 1) +
R2

+∪(1, 2)+R2
+. Taking v = (1

2
, 1
2
), it is clear that P[vTξ ≤ vTx] ≥ 4

5
if and only if vTx ≥

3
2
. It readily follows that MSI(p) = (1, 1) + R

2
+ ∩

{

x ∈ R
2 : vTx ≥ 3

2

}

= conv(M(p)).
This example shows that in general the inclusions in Lemma 3.1.3 are strict.

The following Lemma is trivially derived upon noting that x ∈ Rn is v-ICC feasible for
v ∈ Rk, v ≥ 0 if and only if x is λv-ICC feasible for an arbitrary λ > 0.

Lemma 3.1.5. Let ‖.‖ be an arbitrary norm in R
k. The set MSI(p) of definition 3.1.1

is invariant when restricting ourselves in its definition to all v ∈ Rk, v ≥ 0 with ‖v‖ = 1.
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The following results show that if the constraint of (3.1.1) is separable and ξ has a
(non-degenerate) symmetric log-concave density, then MSI(p) =M I(p).

Lemma 3.1.6. Let A be a m × n deterministic matrix and let g appearing in (3.1.1)
be defined as g(x, z) = Ax − z. Assume moreover that the random variable ξ ∈ Rm in-
duces a non-degenerate probability measure P, with symmetric strictly positive log-concave
density. Then for all p ∈ (1

2
, 1) we have MSI(p) =M I(p).

Proof. Let p ∈ (1
2
, 1) be fixed but arbitrary. Under the assumptions on ξ it follows that

there exists a so called floating body for P ([51, Theorem 4.33],[151]). This means that
there exists a convex compact set Cp ⊆ R

m such that

P[vTξ ≥ sCp(v)] = 1− p, (3.1.5)

where v ∈ Rm is arbitrary and sCp(v) = suph∈Cp
hTv is the support function of the set

Cp. Since ξ ∈ R
m has a density (with respect to the Lebesgue measure) it does not allow

for point masses. Hence we also have P[vTξ ≤ sCp(v)] = p. We now claim that x is v-ICC
feasible if and only if vT(Ax) ≥ sCp(v). To show this claim, fix v ∈ Rm, v ≥ 0 arbitrarily.
If x is such that vT(Ax) ≥ sCp(v) then P[vTξ ≤ vT(Ax)] ≥ P[vTξ ≤ sCp(v)] = p and so x
is v-ICC feasible. In contrast assume that x is v-ICC feasible, but that vT(Ax) < sCp(v).
We have made the assumption that the density of ξ is strictly positive. Hence the density
of vTξ is also strictly positive. In particular on the interval [vT(Ax), sCp(v)] ⊆ R. As a
consequence of this and (3.1.5):

P[vTξ ≥ vT(Ax)] > P[vTξ ≥ sCp(v)] = 1− p, (3.1.6)

i.e., P[vTξ ≤ vT(Ax)] < p. This contradicts that x is v-ICC feasible. We have thus shown
our claim.

Let v ∈ Rm now be such that ‖v‖1 = 1 and v ≥ 0. Let x ∈M I(p) be arbitrary. From the
above characterization it follows that eTi (Ax) ≥ sCp(ei) for i = 1, ...,m, where ei denotes
the i-th standard unit vector of Rm. Then,

vTAx =

m
∑

i=1

vi(e
T

i Ax) ≥
m
∑

i=1

vi(sCp(ei) ≥ sCp(
∑

i

viei),

where we have used the convexity of the mapping sCp. Using once again the above claim,
we have shown that x is v-ICC feasible. Since v was arbitrary, upon using Lemma 3.1.5,
we can conclude that x ∈MSI(p). The result then follows upon using Lemma 3.1.3.

Lemma 3.1.7. Let A be a k × m deterministic matrix. Assume moreover that the
random variable ξ ∈ R

m induces a non-degenerate probability measure P, with symmetric
log-concave density. Then for each p ∈ (1

2
, 1), there exists a convex compact set Ĉp ⊆ Rk

such that
P[vTAξ ≥ sĈp

(v)] = 1− p, (3.1.7)

for all v /∈ kerAT. Here sĈp
: Rk → R is the support function of the set Ĉp and kerAT

denotes the null-space of the matrix AT.
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Proof. Let p ∈ (1
2
, 1) be arbitrary. We can apply the floating body Theorem to the

random variable ξ and thus establish equation (3.1.5) for a convex compact set Cp ⊆ Rm.

We now define Ĉp = ACp ⊆ Rk. This set is clearly convex and compact. It remains to
establish (3.1.7). We begin by noting that for any v ∈ Rk,

sĈp
(v) = sup

k∈Ĉp

kTv = sup
h∈Cp

(Ah)Tv = sup
h∈Cp

hTATv. (3.1.8)

It directly follows that sĈp
(v) = 0 when v ∈ kerAT. Similarly we get vTAξ = (ATv)Tξ =

0. Fix an arbitrary v /∈ kerAT. From (3.1.8) and (3.1.5) we derive:

P[vT(Aξ) ≥ sĈp
(v)] = P[(ATv)Tξ ≥ sCp(A

Tv)] = 1− p,

since ATv ∈ Rm is arbitrary.

We can now establish :

Theorem 3.1.8. Let A and B be deterministic matrices of sizes k × m and k × n
respectively. Let g appearing in (3.1.1) be defined as g(x, z) = Bx−Az. Assume moreover
that the random variable ξ ∈ Rm induces a non-degenerate probability measure P, with
symmetric strictly positive log-concave density. Then for all p ∈ (1

2
, 1) we have MSI(p) =

M I(p).

Proof. Under the assumptions of the Theorem, we can apply Lemma 3.1.7 to establish
the existence of a compact convex set Ĉp ⊆ Rk such that (3.1.7) holds. We now claim
that x ∈ Rn is v-ICC feasible if and only if vT(Bx) ≥ sĈp

(v) for all v ∈ Rk. For any

v ∈ kerAT this relation is directly established from the definition of v-ICC feasibility
upon noting that sĈp

(v) = 0 in that case. We can thus restrain ourselves to v /∈ kerAT.
The proof of the claim is then identical to that of Lemma 3.1.6.

The claim having been established we can conclude the proof in a similar way as that of
Lemma 3.1.6.

Theorem 3.1.8 allows us to fully characterize the set MSI(p) for important constraints
appearing in energy management applications:

Corollary 3.1.9. Let g appearing in (3.1.1) be defined in such a way that (3.1.1) is
equivalent with:

P[a+ Ax ≤ ξ ≤ b+Bx] ≥ p, (3.1.9)

where a, b ∈ Rm and the m × n matrices A,B are deterministic. Let ξ ∈ Rm be a non-
degenerate multivariate Gaussian random variable with mean µ and variance-covariance
matrix Σ. Then for each p > 1

2
we have MSI(p) =M I(p).

Proof. The constraint appearing in (3.1.9) is equivalent with:

P[

(

I
−I

)

ξ̃ ≤
(

B (b− µ)
−A (−a+ µ)

)

x̃] ≥ p, (3.1.10)
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where x̃ ∈ R
n+1, x̃n+1 = 1 and ξ̃ ∈ R

n is a centered multi-variate Gaussian random
variable with positive definite covariance matrix Σ. The random vector ξ̃ and constraint
(3.1.10) satisfy the conditions of Theorem 3.1.8. We thus establish that M̃SI(p) = M̃ I(p)
as subsets of Rn+1. In particular for each x̃ ∈ M̃ I(p) with x̃n+1 = 1, we have x̃ ∈ M̃SI(p).
We have thus shown that MSI(p) =M I(p) as was claimed.

We end this section with an explicit characterization of bilateral individual chance con-
straints in the setting of (3.1.9) when B = A.

Lemma 3.1.10. Let g appearing in (3.1.1) be defined in such a way that (3.1.1) is
equivalent with:

P[a+ Ax ≤ ξ ≤ b+ Ax] ≥ p, (3.1.11)

where a, b ∈ Rm and the m × n matrix A are deterministic. Let ξ ∈ Rm be a non-
degenerate multivariate Gaussian random variable with mean µ and variance-covariance
matrix Σ. Then for each p > 1

2
there exist y(p), y(p) ∈ R

m such that

M I(p) =
{

x ∈ R
n : y(p) ≤ Ax ≤ y(p)

}

. (3.1.12)

Moreover the set [y(p), y(p)] is bounded.

Proof. Upon redefining a and b we may assume without loss of generality that µ = 0.
A vector x ∈ R

n satisfies (3.1.11) if and only if there exists y ∈ R
m, y = Ax and

P[a + y ≤ ξ ≤ b + y] ≥ p. It is thus sufficient to consider the case A = I. Let
i = 1, ...,m be arbitrary but fixed and let y ∈ Rm be ei-ICC feasible. By definition
we have P[ai + yi ≤ ξi ≤ bi + yi] ≥ p. It then follows from p > 1

2
that ai + yi ≤ 0

and bi + yi ≥ 0. Hence yi ∈ [−bi,−ai] and the latter set is bounded. Since ξi is a
non-degenerate Gaussian random variable, it follows from Theorem 2.5.13 that the set
of ei-ICC feasible points is convex. As a matter of fact, even M I(p) is convex, since
i = 1, ...,m is arbitrary. In particular if y1i and y2i (with y1i < y2i ) are two ei-ICC
feasible points it follows from convexity that any point in the interval [y1i , y

2
i ] is also ei-

ICC feasible. Since ξi does not have point-masses a smallest feasible yi can be found,
i.e., y(p)i := min {yi : P[ai + yi ≤ ξi ≤ bi + yi] ≥ p} is well-defined. We can define y(p)i
similarly. The lemma has been shown.

The strength of Lemma 3.1.10 is that the box [y(p), y(p)] can be computed numerically
with very high precision with for instance a dichotomy procedure. For each i = 1, ...,m,
the above proof shows that y(p)i ∈ [−bi,−ai]. By iteratively dividing this interval in
two and evaluating the Gaussian distribution function in dimension 1 we can compute
y(p)i up to (nearly) arbitrary precision. Lemma 3.1.10 has the advantage of providing

an explicit characterization of M I(p) that does not require yet a weaker characterization
involving individual unilateral constraints.
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3.2 Efficient Gradient Formulae : bilateral separable

probabilistic constraints

In energy management, probabilistic constraints of the type (2.0.1) arise naturally, but
have a special structure. We refer to [243, 245] for an investigation of these structures.
Often, the random inequality system g(x, ξ) ≥ 0 appearing in (2.0.1) is a linear inequality
system A(ξ)x ≤ b(ξ), where A(ξ) and/or b(ξ) are random. One even naturally encounters
an inequality system of the form

a+ Ax ≤ ξ ≤ b+Bx, (3.2.1)

where ξ ∈ R
m is a random vector and the vectors a, b ∈ R

m and m × n matrices A,B
are deterministic. A system of the form (3.2.1) is encountered in cascaded reservoir
management. Then, ξ represents random inflows and the constraint the fact that the
volume in a hydro-reservoir has to remain between a lower and upper bound. More
details can be found in section 5.1.

The probabilistic constraint of the form (2.0.1) associated with system (3.2.1) is:

P[a+ Ax ≤ ξ ≤ b+Bx] ≥ p. (3.2.2)

A first question of interest is the differentiability with respect to x of the constraint
appearing in (3.2.2). For instance if ξ ∈ Rm is assumed to follow a non-degenerate
multivariate Gaussian distribution. Of course, such a bilateral system can be mapped to
a unilateral one as follows:

(

I
−I

)

ξ ≤
(

B
−A

)

x+

(

b
−a

)

. (3.2.3)

According to the reformulation (3.2.3), one might be tempted to apply Lemma 2.7.5 in
order to derive a formula for the derivative. However the random vector

η :=

(

I
−I

)

ξ ∈ R
2m

appearing in (3.2.3) is degenerate. Therefore, Lemma 2.7.5 can not be applied. Clearly
the recent Theorem 2.7.6 would directly lead to a formula for the derivative. We report
here an earlier derived result ([244]) that has the advantage of not requiring the evaluation
of probabilities in dimension 2m contrary to the result appearing in Theorem 2.7.6.

Lemma 3.2.1. Let ξ be an m-dimensional Gaussian random vector with mean µ ∈ Rm

and positive definite variance-covariance matrix Σ. We define the mapping Fξ(a, b) :=
P[a ≤ ξ ≤ b] for any rectangle, i.e., a ≤ b. Let Di

m denote the m-th order identity matrix
from which the ith row has been deleted. For each y ∈ Rm, 1 ≤ i ≤ m and z ∈ R we
define yc

i(z) = Di
m(y + Σ−1

i,i (z − yi)Σi) ∈ Rm−1, where Σi is the ith column of Σ. Also

define Σcm(i) = Di
m(Σ − Σ−1

i,i ΣiΣ
T

i )(D
i
m)

T. Moreover, let fν,σ(x) be the one-dimensional
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Gaussian density with mean ν and variance σ. Then for arbitrary but fixed i = 1, ...,m,
we have:

∂

∂bi
Fξ(a, b) = fµi,σii

(bi)Fξi(bi)(D
i
ma,D

i
mb)

∂

∂ai
Fξ(a, b) = −fµi,σii

(ai)Fξi(ai)(D
i
ma,D

i
mb),

where ξi(z) ∼ N (µci1(z),Σcm(i)) ∈ Rm−1.

Proof. It is well known (e.g., [19]) that

Fξ(a, b) =
∑

j1,...,jm∈{0,1}
(−1)m+

∑m
k=1 jkΦξ(yj1 , ..., yjm), (3.2.4)

where Φξ : R
m → [0, 1] is the cumulative distribution function of ξ and

yjk =

{

ak if jk = 0
bk if jk = 1.

Let i = 1, ...,m be arbitrary but fixed and consider the partial derivative of Fξ(a, b) with
respect to bi. Then according to (3.2.4) we have:

∂

∂bi
Fξ(a, b) =

∑

j1,...,jm∈{0,1}
(−1)m+

∑m
k=1 jk

∂

∂bi
Φξ(yj1, ..., yjm).

Now if ji = 0 then bi /∈ {yj1 , ..., yjm} and ∂
∂bi

Φξ(yj1, ..., yjm) = 0. On the other hand, if
ji = 1, we derive by applying Lemma 2.7.5 that:

∂

∂bi
Φξ(yj1 , ..., yjm) =

∂

∂bi
Φξ(yj1 , ..., yji−1

, bi, yji+1
..., yjm)

= fµi,σii
(bi)Φξi(bi)(yj1, ..., yji−1

, yji+1
..., yjm),

where ξi(bi) ∼ N (µci1(bi),Σcm(i)) ∈ Rm−1 is a Gaussian random variable. Upon combining
this result with (3.2.4) we derive:

∂
∂bi

Fξ(a, b) =

=
∑

j1,...,ji−1,ji+1,...,jm∈{0,1}
(−1)m+1+

∑m
k=1,k 6=i jkfµi,σii

(bi)Φξi(bi)(yj1, ..., yji−1
, yji+1

..., yjm)

= fµi,σii
(bi)

∑

j1,...,ji−1,ji+1,...,jm∈{0,1}
(−1)m−1+

∑m
k=1,k 6=i jkΦξi(bi)(yj1, ..., yji−1

, yji+1
..., yjm)

= fµi,σii
(bi)Fξi(bi)(D

i
ma,D

i
mb).

The asserted formula for the partial derivative with respect to ai follows similarly upon
noting that ai /∈ {yj1, ..., yjm} when ji = 1.
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This result can be readily extended to derive a Formula for the Hessian ([246]):

Lemma 3.2.2. Let ξ be an m-dimensional Gaussian random vector with mean µ ∈ Rm

and positive definite variance-covariance matrix Σ. We define the mapping Fξ(a, b) :=
P[a ≤ ξ ≤ b] for any rectangle, i.e., a ≤ b. Let Di

m denote the m-th order identity matrix
from which the ith row has been deleted. For each y ∈ Rm, 1 ≤ i ≤ m and z ∈ R we
define yc

i,m(z,Σi) = Di
m(y + Σ−1

i,i (z − yi)Σi) ∈ Rm−1, where Σi is the ith column of Σ. We

will occasionally abbreviate this with yc
i
1(z). We also define

yc
i,j
2 (z,w) = (yc

i,m(z,Σi))c
j,m−1(w,Σ

cm(i)
j ),

where we have defined Σcm(i) = Di
m(Σ−Σ−1

i,i ΣiΣ
T

i )(D
i
m)

T. We define ξc
i
1(z) as the Gaussian

random variable with mean µci1(z) and covariance matrix Σcm(i). In a similar way, we

define ξc
i,j
2 (z,w) as the Gaussian random variable with mean µci,j2 (z,w) and covariance matrix

Σci,j2 := Dj
m−1(Σ

cm(i) − (Σ
cm(i)
j,j )−1Σ

cm(i)
j (Σ

cm(i)
j )T)(Dj

m−1)
T, where Σ

cm(i)
j denotes the j-th

column of Σcm(i). The following holds, for j = ĵ if ĵ < i and j = ĵ − 1 if ĵ > i:

∂2

∂aĵ∂ai
Fξ(a, b) = f

µ
ci1(ai)

j ,Σ
cm(i)
j,j

(aj)fµi,Σi,i
(ai)F

ξc
i,j
2 (ai,aj)

(Dj
m−1D

i
ma,D

j
m−1D

i
mb) ∀ĵ 6= i

∂2

∂bĵ∂ai
Fξ(a, b) =

{

−f
µ
ci1(ai)

j ,Σ
cm(i)
j,j

(bj)fµi,Σi,i
(ai)F

ξc
i,j
2 (ai,bj)

(Dj
m−1D

i
ma,D

j
m−1D

i
mb) ∀ĵ 6= i

0 ĵ = i

∂2

∂bĵ∂bi
Fξ(a, b) = f

µ
ci1(bi)

j ,Σ
cm(i)
j,j

(bj)fµi,Σi,i
(bi)F

ξc
i,j
2

(bi,bj)
(Dj

m−1D
i
ma,D

j
m−1D

i
mb) ∀ĵ 6= i,

where fν,σ(x) is the one-dimensional Gaussian density with mean ν and variance σ.
Moreover, whenever j = i and z is a or b we have:

∂

∂zi
(bi − ai)

∂2

∂z2i
Fξ(a, b) = −zi − µi

Σi,i

fµi,Σi,i
(zi)Fξc

i
1(zi)

(Di
ma,D

i
mb)

− fµi,Σi,i
(zi)(D

i
mΣ

−1
i,i Σi)

T(∇ãFξ̃c
i
1
(zi)

(ã, b̃) +∇b̃Fξ̃c
i
1
(zi)

(ã, b̃)),

where ã = Di
ma− µci1(zi), ξ̃c

i
1(zi) = ξc

i
1(zi) − µci1(zi) and b̃ is defined similarly.

Proof. The formula for the cross derivatives follow from a straight-forward second appli-
cation of Lemma 3.2.1. The diagonal terms are more subtle to derive and require the
following reformulation:

F
ξc

i
1(zi)

(Di
ma,D

i
mb) = P

(

Di
ma ≤ ξc

i
1(zi) ≤ Di

mb
)

= P

(

Di
ma− µci1(zi) ≤ ξc

i
1(zi) − µci1(zi) ≤ Di

mb− µci1(zi)
)

= F
ξ̃c

i
1(zi)

(ã, b̃).

In particular one obtains for ã(zi) = ã

ã = Di
ma− µci1(zi) = Di

ma−Di
m(µ+ Σ−1

i,i (zi − µi)Σi)

= Di
m(a− µ+ Σ−1

i,i µiΣi)−Di
mΣ

−1
i,i ziΣi,
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which together with the following identity

∂

∂zi
F
ξ̃c

i
1(zi)

(ã(zi), b̃(zi)) = ∇ãFξ̃c
i
1(zi)

(ã, b̃)Dzi ã(zi) +∇b̃Fξ̃c
i
1(zi)

(ã, b̃))Dzi b̃(zi),

an application of the chain-rule and the already established formula for 1st derivatives
gives the proposition.

Considering the probability constraint (3.2.2), its derivative can be computed according
to the following Corollary:

Corollary 3.2.3. Let ϕ : Rn → [0, 1] be defined as ϕ(x) := P[a + Ax ≤ ξ ≤ b + Bx],
where ξ ∈ Rm is a Gaussian random variable with mean µ ∈ Rm and positive definite
variance-covariance matrix Σ. Moreover a, b, A,B are as in (3.2.2). Then the mapping
ϕ is twice differentiable and we have:

∇ϕ = ∇aFξ(a, b)
TA+∇bFξ(a, b)

TB

∇2ϕ = AT∇2
aaFξ(a, b)A+ AT∇2

abFξ(a, b)B +BT∇2
baFξ(a, b)A+BT∇2

bbFξ(a, b)B,

where Fξ is defined as in Lemma 3.2.1.

One can also compute the derivative of a chance constraint wherein the inequality system
g(x, ξ) ≥ 0 of (2.0.1) is a linear inequality system A(ξ)x ≤ b with A(ξ) having a multi-
variate Gaussian distribution. The following results was derived in [247] in a (slightly)
more general form

Theorem 3.2.4. Consider the mapping ϕ : Rn → [0, 1] defined as ϕ(x) = P[A(ξ)x ≤
α(x)], where α : Rn → Rm is a differentiable mapping and A(ξ) a m×n matrix, with com-
ponents following a multi-variate Gaussian random variable in Rm×n with mean (matrix)
µ ∈ R

m×n and positive definite mn × mn covariance matrix Σ. Let x 6= 0 be arbitrary
and fixed. Then η(x) := A(ξ)x ∈ R

m is a non-degenerate multivariate Gaussian random
variable with mean µ(x) ∈ Rm, covariance matrix Σ(x) and correlation matrix R(x).

Define D̃(x) ∈ R
m as the diagonal of Σ(x) and D(x) as the diagonal matrix with vector

D̃(x)−
1
2 on its diagonal. The latter operation is to be understood element by element.

Define the mapping β : Rn → R
m as β(x) = D(x)(α(x)−µ(x)). Then ϕ is differentiable

at x and we have :

∇ϕ(x) = −
m
∑

i=1

f0,Rii(x)(βi(x))P[ξ̃
i(x) ≤ Di

mβ(x)](αi(x)− µi(x))
1

2
Σ

− 3
2

ii (x)Σiix

+
m
∑

i=1

f0,Rii(x)(βi(x))P[ξ̃
i(x) ≤ Di

mβ(x)]Σ
− 1

2
ii (x)(∇αi(x)− µi)

+
∑

1≤i<j≤m

Σ
− 3

2
ii (x)Σ

− 3
2

jj (x)[Σii(x)Σjj(x)Σ
iix− 1

2
Σij(x)[Σjj(x)Σ

iix+ Σii(x)Σ
jjx] ·

· f0,R̃i
j−1,j−1(x)

(βj(x)− µ̃i
j−1(x))f0,Rii(x)(βi(x))P[ξ̃

ij(x) ≤ Dj−1
m−1D

i
m(β(x)− µ̃i(x))]
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where for i = 1, ...,m, Di
m is defined as in Lemma 2.7.5, µi denotes the i-th row of

matrix µ and ξ̃i(x) ∈ Rm−1 is a multi-variate Gaussian random variable with mean
µ̃i(x) := Di

mR
−1
ii (x)βi(x)Ri(x) and covariance matrix

R̃i(x) := Di
m(R(x)−R−1

ii (x)Ri(x)Ri(x)
T)(Di

m)
T,

where Ri(x) denotes the i-th column of the matrix R(x). Moreover f0,σ(z) denotes the
density of a 1-dimensional Gaussian random variable with variance σ evaluated in z ∈ R.
Finally, for i, j = 1, ...,m ξ̃ij(x) ∈ R

m−2 is a non-degenerate Gaussian random variable
with mean Dj−1

m−1((R̃
i
j−1,j−1(x))

−1(βj(x)− µ̃i
j−1(x))R̃

i
j−1(x) and covariance matrix

Dj−1
m−1(R̃

i(x)− R̃i
j−1,j−1(x))

−1R̃i
j−1(x)(R̃

i
j−1(x))

T.

Again R̃i
j−1(x) denotes the j− 1-st column of matrix R̃i(x). The matrix Σij appearing in

the above expression is an n× n matrix defined as Σij
lk = Σ(i−1)n+l,(j−1)n+k, 1 ≤ l, k ≤ n.

Proof. It is convenient to reformulate ϕ. To this end we introduce the mapping T : Rn →
Rm×n:

T (x) =











xT 0 · · · 0
0 xT · · · 0
... · · · · · · ...
0 0 · · · xT











.

We also define the following matrix operation .⊙ : Rm×n → R
mn, defined as:

A⊙ =



















A11
...

A1n

A21
...

Amn



















.

It then readily follows that ϕ(x) = P[T (x)ξ⊙ ≤ α(x)]. Now η(x) := A(ξ)x = T (x)ξ⊙

follows a multi-variate Gaussian distribution with mean µ(x) = T (x)µ⊙ = µx ∈ R
m and

m×m covariance matrix Σ(x) = T (x)ΣT (x)T. This means that for any 1 ≤ i, j ≤ m one
has Σij(x) = xTΣijx, where Σij is the n × n matrix defined as Σij

lk = Σ(i−1)n+l,(j−1)n+k,
1 ≤ l, k ≤ n.

Let R(x) = D(x)Σ(x)D(x). It is then easily observed that R(x) is a correlation matrix
and that ϕ is equivalent with ϕ(x) = ΦR(x)(β(x)), where ΦR(z) denotes them dimensional
multivariate Gaussian distribution function with correlation matrix R evaluated at z ∈
Rm. Let w ∈ Rm be such that w 6= 0 but otherwise arbitrary. It is easily observed that
T (x)Tw = (w1x, ..., wmx) ∈ Rmn and as a consequence for x 6= 0, Σ(x) is positive definite.
We have thus shown that η(x) is non-degenerate as claimed.
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Now define the mapping γ : Rm×m × R
m → [0, 1] as γ(R, z) = ΦR(z). This mapping is

continuously differentiable (when R is positive definite) and we establish in this manner

∇ϕ(x) =
m
∑

i=1

∂γ

∂zi
(R(x), β(x))∇βi(x) +

∑

1≤i<j≤m

∂γ

∂Rij

(R(x), β(x))∇Rij(x). (3.2.5)

Let i = 1, ...,m be arbitrary. Differentiating βi(x) leads to

∇βi(x) = (αi(x)− µi(x))∇Σ− 1
2

ii (x) + Σ
− 1

2
ii (x)(∇αi(x)−∇µi(x)). (3.2.6)

We also readily derive

∇µi(x) = (µi1, ..., µin) = µi

∇Σ− 1
2

ii (x) = −1

2
Σ

− 3
2

ii (x)∇Σii(x) = −
1

2
Σ

− 3
2

ii (x)Σiix.

The derivative ∂γ
∂zi

(R(x), β(x)) is easily computed by applying Lemma 2.7.5 and we es-
tablish that

∂γ

∂zi
(R(x), β(x)) = f0,Rii(x)(βi(x))P[ξ̃

i(x) ≤ Di
mβ(x)], (3.2.7)

where ξ̃i(x) ∈ Rm−1 is a multi-variate Gaussian random variable with mean µ̃i(x) and
covariance matrix R̃i(x).

One can note that Rij(x) = Σ
− 1

2
ii (x)Σ

− 1
2

jj (x)Σij(x) for i, j ∈ {1, ...,m}. Taking the deriva-
tive of this expression leads to

∇Rij(x) = Σ
− 3

2
ii (x)Σ

− 3
2

jj (x)[Σii(x)Σjj(x)Σ
iix− 1

2
Σij(x)[Σjj(x)Σ

iix+ Σii(x)Σ
jjx]

Let 1 ≤ i < j ≤ m be given. From Gupta’s formula [94] we derive that

∂γ

∂Rij

(R(x), β(x)) =
∂2γ

∂zi∂zj
(R(x), β(x)). (3.2.8)

The latter second derivative can be computed by using Lemma 3.2.2 above by setting
a = −∞. We then establish that

∂2γ

∂zi∂zj
(R(x), β(x)) =

= f0,R̃i
j−1,j−1(x)

(βj(x)− µ̃i
j−1(x))f0,Rii(x)(βi(x))P[ξ̃

ij(x) ≤ Dj−1
m−1D

i
m(β(x)− µ̃i(x))].

Combining the above inequalities then yields the result.
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3.3 Efficient Gradient Formulae : nonlinear proba-

bilistic constraints with Gaussian and Gaussian-

like distributions

A probabilistic constraint is an inequality of the type

P[g(x, ξ) ≥ 0] ≥ p, (3.3.1)

where g is a mapping defining a (random) inequality system and ξ is an s- dimensional
random vector defined on some probability space (Ω,A,P). The constraint (3.3.1) ex-
presses the requirement that a decision vector x is feasible if and only if the random
inequality system g(x, ξ) ≥ 0 is satisfied at least with probability p ∈ [0, 1].

From a formal viewpoint, (3.3.1) is a conventional inequality constraint α(x) ≥ p with
α(x) := P[g(x, ξ) ≥ 0]. On the other hand, a major difficulty arises from the fact that
typically no analytical expression is available for α. All one can hope for, in general,
are tools for numerically approximating α. Beyond crude Monte Carlo estimation of
the probability defining α, there exist a lot of more efficient approaches based, for in-
stance, on graph-theoretical arguments [25], variance reduction [224], Quasi-Monte-Carlo
(QMC) techniques or sparse grid numerical integration [82]. It seems, however, that such
approaches are most successful when exploiting the special model structure (i.e., the map-
ping g and the distribution of ξ). For instance, in the special case of separable constraints
g(x, ξ) = x− ξ and of ξ having a regular Gaussian distribution (such that α reduces to a
multivariate Gaussian distribution function), Genz [83, 84] developped a numerical inte-
gration scheme combining separation and reordering of variables with randomized QMC.
Using this method, one may compute values of the Gaussian distribution function at
fairly good precision in reasonable time even for a few hundred random variables. A sim-
ilar technique has been proposed for the multivariate Student (or T-) distribution [84].
The numerical evaluation of other multivariate distribution functions such as Gamma or
exponential distribution has been discussed, e.g., in [223, 166].

For an efficient solution of probabilistically constrained problems via numerical nonlinear
optimization it is evidently not sufficient to calculate just functional values of α, one also
has to have access to gradients of α. The need to calculate gradients of probability
functions has been recognized a long time ago and has given rise to many papers on
representing such gradients (e.g., [146], [234], [126], [170], [80]). In the separable case
with Gaussian distribution mentioned above, it is well-known [181, p. 203], that partial
derivatives of α can be reduced analytically to function values α̃ of a Gaussian distribution
with different parameters. This fact has three important consequences: first it allows
one to employ the same efficient method (e.g. by Genz) available for values of Gaussian
distribution functions in order to compute gradients simultaneously; second, doing so,
the error in calculating ∇a can be controlled by that in caculating α [101]; third, the
mentioned analytic relation can be applied inductively, in order to get similar analytic
relations between function values and higher-order derivatives. Fortunately, this very
special circumstance can be extended to more general models: it has been demonstrated
in [244, 247, 106] how for general linear probabilistic constraints α(x) := P[T (x)ξ ≤
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a(x)] ≥ p under Gaussian distribution and with possibly nonregular, nonquadratic matrix
T (x) not only the computation of α (which is evident) but also of ∇a can be analytically
reduced to the computation of Gaussian distribution functions. Combining appropriately
these ideas with Genz’ code and an SQP solver, it is possible to solve corresponding
optimization problems for Gaussian random vectors in dimension of up to a few hundred
(where the dimension of the decision vector x is less influential). Applications to various
problems of power management can be found, e.g., in [244, 247, 246, 5, 106]. It seems
that the same approach can be elaborated also for the multivariate Student distribution,
whereas it would work for the Log-normal distrbution only in the special case of α(x) =
P[b(x) ≤ ξ ≤ a(x)].

When considering models which are nonlinear in ξ, a reduction to distribution functions
seems not to be possible any more. In that case, another approach, the so-called spherical-
radial decomposition of Gaussian random vectors (see, e.g., [84]) seems to be promising
both for calculating function values and gradients of α. More precisely, let ξ be an
m-dimensional random vector normally distributed according to ξ ∼ N (0, R) for some
correlation matrix R. Then, ξ = ηLζ, where R = LLT is the Cholesky decomposition of
R, η has a chi-distribution with m degrees of freedom and ζ has a uniform distribution
over the Euclidean unit sphere

S
m−1 :=

{

z ∈ R
m

∣

∣

∣

∣

∣

m
∑

i=1

z2i = 1

}

of Rm. As a consequence, for any Lebesgue measurable set M ⊆ R
m its probability may

be represented as

P[ξ ∈M ] =

∫

v∈Sm−1

µη ({r ≥ 0 : rLv ∩M 6= ∅}) dµζ , (3.3.2)

where µη and µζ are the laws of η and ζ, respectively. This probability can be numerically
computed by employing an efficient sampling scheme on S

m−1 proposed by Deák [49, 50].
More generally, one may approximate the integral

∫

v∈Sm−1

h(v)dµζ (3.3.3)

for any Lebesgue measurable function h : Sm−1 → R. In particular, for

h(v) := µη ({r ≥ 0 : rLv ∩M 6= ∅}) ,

we obtain the probability (3.3.2). In this section, we will show how - with different
functions h(v) - the same efficient sampling scheme can be employed in order to simul-
taneously compute derivatives of this probability with respect to an exterior parameter.
The results may serve as a basis for a numerical treatment of nonlinear convex probabilis-
tic constraints with Gaussian and alternative distributions via nonlinear optimization.

The formula, for the Gaussian case, that we provide in this paper was provided in a
somewhat similar form in [58, Section 9.2], but without proof. A formula similar in idea
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is given in [206] under an implicit assumption that M(x) := {z ∈ R
m : g(x, z) ≤ 0},

appearing in (3.3.2) is bounded, 0 ∈ intM(x) and an assumption that the gradients of
g with respect to z are ”non-degenerate” on the boundary of M(x). That latter means
that these gradients are not orthogonal to any ray starting at 0 hitting the boundary
of M(x). In the proof, differentiation and integration are interchanged without further
comments. In the later work [207] the same authors provide a formula identical to ours.
Again for the Gaussian case only. They moreover explicitly assume thatM(x) is bounded
and that 0 ∈ intM(x). They also request that the gradients of g with respect to z are
non-degenerate in the above way and make an additional µζ zero measure assumption.
The last assumption means that the set of directions v ∈ Sm−1 hitting the boundary of
M(x) in points where more than one component of g is active, has zero measure. This
last assumption is needed to derive a multi-variate version of the here provided formula.
However, the boundedness assumption is restrictive. For example, it rules out the use
of the formula for distribution functions. In this paper most work is devoted to the case
when M(x) is not assumed to be bounded. We moreover show that the gradients of g
with respect to z are ”non-degenerate” in the above way. If we would make the same
zero-measure assumption as in [207] our results would moreover directly extend to the
multi-variate case. However such a zero-measure assumption can not hold in general as
can be observed in [109, Figure 1]. We will therefore restrain ourselves, for now, to the
case wherein g has a single component only.

In Section 3.3.1, a rigorous justification for differentiating under the integral sign will
be given. Doing so, we arrive at sufficient conditions for continuous differentiability of
probability functions in the concave and Gaussian case as well as at an explicit integrand
in (3.3.3). In Section 3.3.2, the obtained results are applied to various examples involving
Gaussian and alternative distributions. Particular attention is paid to the multivariate
Student distribution.

3.3.1 A gradient formula for parameter-dependent Gaussian
probabilities in the convex case

In the following, we assume that g : Rn×Rm → R is a continuously differentiable function
which is concave with respect to the second argument. We define

ϕ (x) := P[g(x, ξ) ≥ 0], (3.3.4)

where ξ ∼ N (0, R).

Remark 3.3.1. We recall that convex sets are Lebesgue measurable so that the probabil-
ities in (3.3.4) are well-defined by virtue of ξ having a density.

Remark 3.3.2. If ξ has a general nondegenerate Gaussian distribution, i.e., ξ ∼ N (µ,Σ)
for some mean vector µ ∈ Rm and some positive definite covariance matrix Σ of order
(m,m), then one may define ξ̃ := D (ξ − µ), where D is the diagonal matrix with ele-

ments Σ
−1/2
ii . Then, clearly, ξ̃ ∼ N (0, R), where R is the correlation matrix associated
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with Σ. Defining g̃ : Rn × R
m → R as

g̃ (x, z) := g
(

x,D−1z + µ
)

,

(3.3.4) can be rewritten as

ϕ (x) = P

[

g̃(x, ξ̃) ≥ 0
]

,

where g̃ has the same properties as g (it is continuously differentiable and concave with
respect to the second argument). Therefore, in (3.3.4), we may indeed assume without
loss of generality, that ξ ∼ N (0, R).

By (3.3.2) and (3.3.4), we have, for all x ∈ Rn, that

ϕ (x) =

∫

v∈Sm−1

µη ({r ≥ 0 : g(x, rLv) ≥ 0}) dµζ =

∫

v∈Sm−1

e(x, v)dµζ (3.3.5)

for
e(x, v) := µη ({r ≥ 0 : g(x, rLv) ≥ 0}) ∀x ∈ R

n ∀v ∈ S
m−1. (3.3.6)

According to the possibility of evaluating (3.3.3) for instance by Deàk’s method, we can
obtain a value ϕ (x) for each fixed x. We now address the computation of ∇ϕ. It is
convenient to introduce the following two mappings F, I : Rn ⇒ Sm−1 of directions with
f inite and infinite intersection length:

F (x) :=
{

v ∈ S
m−1|∃r > 0 : g (x, rLv) = 0

}

I(x) :=
{

v ∈ S
m−1|∀r > 0 : g (x, rLv) 6= 0

}

.

The following Lemma collects some elementary properties needed later:

Lemma 3.3.3. Let x ∈ R
n be such that g(x, 0) > 0. Then,

1. v ∈ I(x) if and only if g (x, rLv) > 0 for all r > 0.

2. F (x) ∪ I(x) = Sm−1.

3. For v ∈ F (x) let r > 0 be such that g (x, rLv) = 0. Then,

〈∇zg (x, rLv) , Lv〉 ≤ −
g (x, 0)

r
.

4. If v ∈ I(x) then e(x, v) = 1, where e is defined in (3.3.6).

Proof. 1. follows from the continuity of g and 2. is evident from the definitions. The
convexity of −g with respect to the second argument yields

1

2
r 〈∇zg (x, rLv) , Lv〉 =

〈

−∇zg (x, rLv) ,
1

2
rLv − rLv

〉

≤ g (x, rLv)− g
(

x,
1

2
rLv

)

= −g
(

x,
1

2
rLv

)

≤ −1

2
g (x, 0)− 1

2
g (x, rLv) = −1

2
g (x, 0) .

This proves 3. If v ∈ I(x) then e(x, v) = µη (R+) = 1 because R+ is the support of the
chi-distribution. Therefore, 4. holds true.
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Next, we provide a local representation of the factor r as a function of x and v:

Lemma 3.3.4. Let (x, v) be such that g(x, 0) > 0 and v ∈ F (x). Then, there exist
neighbourhoods U of x and V of v as well as a continuously differentiable function ρx,v :
U × V → R+ with the following properties:

1. For all (x′, v′, r′) ∈ U × V × R+ the equivalence g(x′, r′Lv′) = 0⇔ r′ = ρx,v(x′, v′)
holds true.

2. For all (x′, v′) ∈ U × V one has the gradient formula

∇xρ
x,v (x′, v′) = − 1

〈∇zg(x′, ρx,v(x′, v′)Lv′), Lv′〉
∇xg(x

′, ρx,v(x′, v′)Lv′).

Proof. By definition of F (x) we have that g (x, rLv) = 0 for some r > 0. According to
3. in Lemma 3.3.3, we have that

〈∇zg (x, rLv) , Lv〉 ≤ −
g (x, 0)

r
< 0.

This allows to apply the Implicit Function Theorem to the equation g (x, rLv) = 0 and
to derive the existence of neighbourhoods U of x, V of v and W of r along with a
continuously differentiable function ρx,v : U × V →W , such that the equivalence

g(x′, r′Lv′) = 0, (x′, v′, r′) ∈ U × V ×W ⇔ r′ = ρx,v(x′, v′), (x′, v′) ∈ U × V (3.3.7)

holds true. By continuity of ρx,v, we may shrink the neighbourhoods U and V such that
ρx,v maps into R+ and we may further shrink U such that g(x′, 0) > 0 for all x′ ∈ U .
Now, assume that g(x′, r∗Lv′) = 0 holds true for some (x′, v′, r∗) ∈ U × V × (R+\W ).
Then, by ’⇐’ in (3.3.7), g(x′, ρx,v(x′, v′)Lv′) = 0, where ρx,v(x′, v′) ∈ W . Consequently,
r∗ 6= ρx,v(x′, v′). On the other hand, r∗, ρx,v(x′, v′) ∈ R+. This contradicts the concavity
of g with respect to the second argument and the fact that g(x′, 0) > 0. It follows
that in (3.3.7) W may be replaced by R+ which proves 1. In particular, we have that
g(x′, ρx,v(x′, v′)Lv′) = 0 for all (x′, v′) ∈ U × V , which after differentiation gives the
formula in 2.

The preceding Lemma allows us to observe the following:

Lemma 3.3.5. Let x ∈ R
n be such that g(x, 0) > 0. Then,

1. If v ∈ F (x) then there exist neighbourhoods U of x and V of v such that e(x′, v′) =
Fη(ρ

x,v (x′, v′)) for all (x′, v′) ∈ U × V , where e is defined in (3.3.6), Fη is the
cumulative distribution function of the chi-distribution with m degrees of freedom
and ρx,v refers to the resolving function introduced in Lemma 3.3.4.

2. If v ∈ I(x) then ρxk,vk (xk, vk) → ∞ for any sequence (xk, vk) → (x, v) with vk ∈
F (xk).
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Proof. By 1. in Lemma 3.3.4, we have for all (x′, v′) that g(x′, ρx,v(x′, v′)Lv′) = 0 and
g(x′, r′Lv′) 6= 0 for all r′ ∈ R+ with r′ 6= ρx,v(x′, v′). Now, (3.3.6) implies that

e(x′, v′) = µη ([0, ρ
x,v (x′, v′)]) = Fη(ρ

x,v (x′, v′))− Fη(0) ∀ (x′, v′) ∈ U × V.
Now, 1. follows upon observing that the chi-density is zero for negative arguments,
whence Fη(0) = 0. Next, let v ∈ I(x) and (xk, vk) → (x, v) with vk ∈ F (xk). If not
ρxk,vk (xk, vk) → ∞, then there exists a converging subsequence ρxkl

,vkl (xkl , vkl) → r for
some r ≥ 0. Since g(x, 0) > 0, we have that g (xkl , 0) > 0 for l sufficiently large. This
allows us to apply Lemma 3.3.4 to the points (xkl , vkl), and so we infer from 1. in this
Lemma that g (xkl , ρ

xkl
,vkl (xkl , vkl)Lvkl) = 0 for all l sufficiently large. By continuity of

g we derive the contradiction g (x, rLv) = 0 with our assumption v ∈ I(x). This proves
2.

Corollary 3.3.6. The function e : Rn × Sm−1 → R defined in (3.3.6) is continuous at
any (x, v) ∈ Rn × Sm−1 such that g(x, 0) > 0.

Proof. Let (x, v) ∈ Rn× Sm−1 with g(x, 0) > 0 be arbitrarily given. Referring to the sets
F (x) and I(x) characterized in Lemma 3.3.3, there are two possibilities: if v ∈ F (x),
then the function ρx,v is defined on a neighbourhood of (x, v) and is continuous there
by Lemma 3.3.4. Moreover, in this case, e has the representation given in 1. of Lemma
3.3.5. But with the cumulative distribution function Fη of the chi-distribution being
continuous, e is continuous too at (x, v) as a composition of continuous mappings. If, in
contrast, v /∈ F (x), then v ∈ I(x) by 2. of Lemma 3.3.3. From 4. of the same Lemma we
know that e(x, v) = 1. Consider an arbitrary sequence (xk, vk)→ (x, v) with vk ∈ S

m−1.
Since g(x, 0) > 0, we have that g(xk, 0) > 0 for k sufficiently large. Assume that not
e (xk, vk)→ 1. Then, there is a subsequence (xkl , vkl) and some ε > 0 such that for all l

|e (xkl , vkl)− 1| ≥ ε. (3.3.8)

By 4. in Lemma 3.3.3, vkl /∈ I(xkl), whence vkl ∈ F (xkl) for all l due to vkl ∈ Sm−1

and 2. in Lemma 3.3.3. Then, ρxkl
,vkl (xkl , vkl) → ∞ by 2. of Lemma 3.3.5. Since Fη is

the distribution function of a random variable, it satisfies the relation limt→∞ Fη(t) = 1.
Consequently, we may invoke 1. of Lemma 3.3.5 in order to verify that

lim
l→∞

e (xkl , vkl) = lim
l→∞

Fη(ρ
xkl

,vkl (xkl , vkl)) = 1.

This contradicts (3.3.8) and, hence, again by 4. in Lemma 3.3.3,

lim
k→∞

e (xk, vk) = 1 = e(x, v).

This proves continuity of e at (x, v).

Corollary 3.3.7. For any x ∈ R
n with g(x, 0) > 0 and v ∈ F (x) the partial derivative

w.r.t x of the function e : Rn × Sm−1 → R defined in (3.3.6) exists and is given by

∇xe(x, v) = −
χ (ρx,v (x, v))

〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv)

where χ is the density of the chi-distribution with m degrees of freedom and ρx,v refers to
the function introduced in Lemma 3.3.4.
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Proof. By 1. in Lemma 3.3.5 we have that e(x′, v′) = Fη(ρ
x,v (x′, v′)) for all x′ in a

neighbourhood of x and v′ in a neighbourhood of v. Differentiation with respect to x
yields

∇xe(x
′, v′) = χ (ρx,v (x′, v′))∇xρ

x,v (x′, v′) (3.3.9)

due to F ′
η(τ) = χ(τ) for τ > 0. In particular, ∇xe(x, v) = χ (ρx,v (x, v))∇xρ

x,v (x, v).
Now, the assertion follows from 2. in Lemma 3.3.4.

Next, we prove a relation which is the key to some desired continuity properties.

Definition 3.3.8. Let g : Rn × Rm → R be a differentiable function. We say that g
satisfies the polynomial growth condition at x if there exist constants C,κ > 0 and
a neighbourhood U(x) such that

‖∇xg (x
′, z)‖ ≤ ‖z‖κ ∀x′ ∈ U(x) ∀z : ‖z‖ ≥ C.

Lemma 3.3.9. Let x be such that g (x, 0) > 0 and that g satisfies the polynomial growth
condition at x. Consider any sequence (xk, vk) → (x, v) for some v ∈ I(x) such that
vk ∈ F (xk). Then,

lim
k→∞
∇xe(xk, vk) = 0.

Proof. First observe that ρxk,vk (xk, vk) → ∞ by 2. in Lemma 3.3.5. Referring to the
neighbourhood U(x) from Definition 3.3.8, we verify that for k sufficiently large

‖∇xg (xk, ρ
xk,vk (xk, vk)Lvk)‖ ≤ [ρxk,vk (xk, vk)]

κ ‖Lvk‖κ ≤ ‖L‖κ [ρxk,vk (xk, vk)]
κ

(3.3.10)
(recall that ‖vk‖ = 1 due to vk ∈ F (xk)). Moreover, by continuity of g, there exists some
δ1 > 0 such that g (xk, 0) ≥ δ1 > 0 for k sufficiently large. Since g (xk, ρ

xk,vk (xk, vk)Lvk) =
0 (see 1. in Lemma 3.3.4), 3. in Lemma 3.3.3 provides that

〈∇zg (xk, ρ
xk,vk (xk, vk)Lvk) , Lvk〉 ≤ −

g (xk, 0)

ρxk,vk (xk, vk)
.

Therefore,

〈∇zg (xk, ρ
xk,vk (xk, vk)Lvk) , Lvk〉 ≤ −δ1 [ρxk,vk (xk, vk)]

−1 < 0. (3.3.11)

And as a consequence

|〈∇zg (xk, ρ
xk,vk (xk, vk)Lvk) , Lvk〉| ≥ δ1 [ρ

xk,vk (xk, vk)]
−1 > 0. (3.3.12)

Using the definition χ (y) = δ2y
m−1e−y2/2 of the density of the chi-distribution with m

degrees of freedom (where δ2 > 0 is an appropriate factor), we may combine Corollary
3.3.7 with (3.3.10) and (3.3.12) in order to derive that

‖∇xe(xk, vk)‖ =
∥

∥

∥

∥

χ (ρxk,vk (xk, vk))

〈∇zg (xk, ρxk,vk (xk, vk)Lvk) , Lvk〉
∇xg (xk, ρ

xk,vk (xk, vk)Lvk)

∥

∥

∥

∥

≤

δ−1
1 ρxk,vk (xk, vk) · δ2 [ρxk,vk (xk, vk)]

m−1 e−[ρxk,vk (xk,vk)]
2/2 · ‖L‖κ [ρxk,vk (xk, vk)]

κ =(3.3.13)

δ−1
1 δ2 ‖L‖κ [ρxk,vk (xk, vk)]

κ+m e−[ρxk,vk (xk,vk)]
2/2 →k 0,

where the last limit follows from ρxk,vk (xk, vk) → ∞ and the fact that yαe−y2/2 → 0 for
y →∞, where α > 0 is an arbitrary constant. This proves our assertion.
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Remark 3.3.10. One may observe from the proof of Lemma 3.3.9 that a weaker growth
condition than that in Definition 3.3.8 (involving an exponential term) would suffice for
proving the same result. One could for instance use the following exponential growth
condition:

Let g : Rn×Rm → R be a differentiable function. We say that g satisfies the exponential
growth condition at x if there exist constants δ0, C > 0 and a neighbourhood U(x) such
that

‖∇xg (x
′, z)‖ ≤ δ0 exp(‖z‖) ∀x′ ∈ U(x) ∀z : ‖z‖ ≥ C.

and observe that the key estimate (3.3.13) of Lemma 3.3.9 becomes

‖∇xe(xk, vk)‖ ≤ δ0δ
−1
1 δ2 [ρ

xk,vk (xk, vk)]
m e−[ρxk,vk (xk,vk)]

2/2e‖L‖ρ
xk,vk (xk,vk).

The same conclusion then easily follows.

We do not put the emphasis on the weakest possible form of the growth condition but rather
on its simplicity. It should be noted however that each of the following results requiring the
polynomial growth condition hold upon requiring the above exponential growth condition
instead.

Corollary 3.3.11. Let x be such that g (x, 0) > 0 and that g satisfies the polynomial
growth condition at x. Then, for any v ∈ Sm−1 the partial derivative w.r.t x of the
function e exists at (x, v) and is given by

∇xe(x, v) =

{

− χ(ρx,v(x,v))
〈∇zg(x,ρx,v(x,v)Lv),Lv〉∇xg (x, ρ

x,v (x, v)Lv) if v ∈ F (x)
0 else

where χ is the density of the chi-distribution with m degrees of freedom and ρx,v refers to
the function introduced in Lemma 3.3.4.

Proof. Thanks to Corollary 3.3.7 and to 2. in Lemma 3.3.3 it is sufficient to show that
∇xe(x, v) = 0 for v ∈ I(x). We shall show that, for any i ∈ {1, . . . ,m}

lim
t↑0

e(x+ tui, v)− e(x, v)
t

= 0, (3.3.14)

where ui is the i-th canonical unit vector in Rn. In exactly the same way one can
show that the corresponding limit for t ↓ 0 equals zero. Altogether, this will prove that
∇xe(x, v) = 0. Assume that (3.3.14) is wrong. Since e(x, v) = 1 (by 4. in Lemma 3.3.3)
and e(x+ tui, v) ≤ 1 for all t (by definition of e as a probability in (3.3.6)), it follows that
the quotient in (3.3.14) is always non-positive and, thus, negation of (3.3.14) implies the
existence of some ε > 0 and of a sequence tk ↑ 0 such that

e(x+ tkui, v)− e(x, v)
tk

≥ ε. (3.3.15)

In particular, v ∈ F (x + tkui) for all k because otherwise v ∈ I(x + tkui) and so e(x +
tkui, v) = 1 (again by 4. in Lemma 3.3.3), thus contradicting (3.3.15). We may also
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assume that g(x + tkui, 0) > 0 for all k. Now, fix an arbitrary k and define (recall that
tk < 0)

α := inf {τ ∈ [tk, 0] |e(x+ τui, v) = 1} .
Due to e(x, v) = 1 we have that α ≤ 0. On the other hand, e(x + tkui, v) < 1 and the
continuity of e (see Corollary 3.3.6) provide that α > tk. We infer that e(x+ τui, v) < 1
for all τ ∈ [tk, α) and, hence,

v ∈ F (x+ τui) ∀τ ∈ [tk, α) (3.3.16)

(once more by 2. and 4. in Lemma 3.3.3). But then, the function

β(τ) := e(x+ τui, v)

is differentiable for all τ ∈ (tk, α) by virtue of Corollary 3.3.7 and its derivative is given
by

β′(τ) = 〈∇xe(x+ τui, v), ui〉 .
Therefore, the mean value theorem guarantees the existence of some τ ∗k ∈ (tk, α) such
that

β′(τ ∗k ) =
β(α)− β(tk)

α− tk
or equivalently

〈∇xe(x+ τ ∗kui, v), ui〉 =
e(x+ αui, v)− e(x+ tkui, v)

α− tk
.

By continuity of e and by definition of α, we have that e(x + αui, v) = 1 = e(x, v),
whence, by tk < α ≤ 0,

〈∇xe(x+ τ ∗kui, v), ui〉 =
e(x, v)− e(x+ tkui, v)

α− tk
≥ e(x, v)− e(x+ tkui, v)

−tk
≥ ε,

where the last relation follows from (3.3.15). Now, since k was arbitrarily fixed, we have
constructed a sequence τ ∗k such that tk < τ ∗k ≤ 0 such that

〈∇xe(x+ τ ∗kui, v), ui〉 ≥ ε ∀k. (3.3.17)

Since tk ↑ 0, we also have that τ ∗k ↑ 0. Moreover, v ∈ F (x+ τ ∗kui) by (3.3.16). Due to our
assumption that g satisfies the polynomial growth condition at x and due to v ∈ I(x),
Lemma 3.3.9 yields that limk→∞∇xe(xk, v) = 0 which contradicts (3.3.17). This proves
our Corollary.

Corollary 3.3.12. Let x be such that g (x, 0) > 0 and that g satisfies the polynomial
growth condition at x. Then, for any v ∈ S

m−1 the partial derivative ∇xe is continuous
at (x, v).
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Proof. Let x ∈ R
n with g(x, 0) > 0 and v ∈ S

m−1 be arbitrarily given. Let also (xk, vk)→
(x, v) be an arbitrary sequence with vk ∈ Sm−1. If v ∈ F (x), then relation (3.3.9) holds
true locally around (x, v). In particular, for k large enough,

∇xe(xk, vk) = χ (ρx,v (xk, vk))∇xρ
x,v (xk, vk)→ χ (ρx,v (x, v))∇xρ

x,v (x, v) = ∇xe(x, v),

where the convergence follows from the continuity of the chi-density and of ∇xρ
x,v as

a result of Lemma 3.3.4. Hence, in case of v ∈ F (x), ∇xe is continuous at (x, v).
Now, assume in contrast that v ∈ I(x). Then, ∇xe(x, v) = 0 by Corollary 3.3.11.
Now, assume that ∇xe(xk, vk) does not converge to zero. Then, ‖∇xe(xkl , vkl)‖ ≥ ε
for some subsequence and some ε > 0. Then, vkl ∈ F (xkl) for all l because otherwise
vkl ∈ I(xkl) and, thus, ∇xe(xkl , vkl) = 0 due to Corollary 3.3.11 (applied to xkl rather
than x; observe that the condition g (x, 0) > 0 and the polynomial growth condition at x
are open conditions, hence continue to hold true for the xkl). Now, Lemma 3.3.9 yields
the contradiction

lim
l→∞
∇xe(xkl , vkl) = 0

with ‖∇xe(xkl , vkl)‖ ≥ ε. This proves our Corollary.

Now we are in a position to state our main result:

Theorem 3.3.13. Let g : Rn×Rm → R be a continuously differentiable function which is
concave with respect to the second argument. Consider the probability function ϕ defined
in (3.3.4), where ξ ∼ N (0, R) has a standard Gaussian distribution with correlation
matrix R. Let the following assumptions be satisfied at some x̄:

1. g (x̄, 0) > 0.

2. g satisfies the polynomial growth condition at x̄ (Def. 3.3.8).

Then, ϕ is continuously differentiable on a neighbourhood U of x̄ and it holds that

∇ϕ (x) = −
∫

v∈F (x)

χ (ρx,v (x, v))

〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) dµζ(v) ∀x ∈ U.

(3.3.18)
Here, µζ is the law of the uniform distribution over S

m−1, χ is the density of the chi-
distribution with m degrees of freedom, L is a factor of the Cholesky decomposition R =
LLT and ρx,v is as introduced in Lemma 3.3.4.

Proof. Since ξ ∼ N (0, R), the probability function ϕ gets the representation (3.3.5).
With g (x̄, 0) > 0, let U be a sufficiently small neighbourhood of x̄ such that for all x ∈ U
we still have that g(x, 0) > 0 and that the polynomial growth condition is satisfied at x.
Then, the partial derivative ∇xe of the function e defined in (3.3.6) exists on U×Sm−1 by
Corollary 3.3.11 and is continuous there by Corollary 3.3.12. By compactness of Sm−1,
there exists some K > 0 such that

‖∇xe(x̄, v)‖ ≤ K ∀v ∈ S
m−1.
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Again, continuity of ∇xe on U × S
m−1 and compactness of S

m−1 guarantee that the
function α : U → R defined by

α(x) := max
v∈Sm−1

‖∇xe(x, v)‖

is continuous. Since α(x̄) ≤ K, we may assume, after possibly shrinking U , that α(x) ≤
2K for all x ∈ U , whence

‖∇xe(x, v)‖ ≤ 2K ∀x ∈ U ∀v ∈ S
m−1. (3.3.19)

From µζ(S
m−1) = 1 for the law µζ of the uniform distribution on Sm−1 we infer that

the constant 2K is an integrable function on S
m−1 uniformly dominating ‖∇xe(x, v)‖

on S
m−1 for all x ∈ U . Now, Lebesgue’s dominated convergence theorem allows us to

differentiate (3.3.5) under the integral sign:

∇ϕ (x̄) =

∫

v∈Sm−1

∇xe(x̄, v)dµζ .

As stated in the beginning of this proof, the assumptions 1. and 2. imposed in the
Theorem for the fixed point x̄ keep to hold for all x in the neighbourhood U . Therefore,
we may derive that

∇ϕ (x) =

∫

v∈Sm−1

∇xe(x, v)dµζ ∀x ∈ U. (3.3.20)

Exploiting once more the dominance argument from (3.3.19), the continuity of∇xe on U×
S
m−1 and the compactness of Sm−1 ensure by virtue of Lebesgue’s dominated convergence

Theorem that ∇ϕ is continuous. Finally, formula (3.3.18) follows directly from Corollary
3.3.11.

Remark 3.3.14. Evidently, formula (3.3.18) is explicit and can be used inside Deák’s
method in order to calculate ∇ϕ in parallel with ϕ by efficient sampling on Sm−1. For
each sampled point v ∈ S

m−1 one first has to check whether the equation g(x, rLv) = 0
has a solution r ≥ 0 at all. If not so (v ∈ I(x)), then such v does not contribute to
the (approximated) integral in (3.3.18). Otherwise (v ∈ F (x)), one has to evaluate the
integrand in (3.3.18) which amounts to finding the unique solution r ≥ 0 of the equation
g(x, rLv) = 0. In general, a few Newton-Raphson iterations should do the job.

We now want to focus our attention on the assumptions of Theorem 3.3.13. First, recall
that assuming a standard Gaussian distribution ξ ∼ N (0, R) does not mean any loss
of generality by virtue of Remark 3.3.2. Also assumption 1. of the Theorem is not
restrictive. This will come as a consequence of the following proposition:

Proposition 3.3.15. With g and ϕ as in Theorem 3.3.13, let the following assumptions
be satisfied at some x̄:

1. There exists some z̄ such that g(x̄, z̄) > 0.
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2. ϕ(x̄) > 1/2.

Then, g(x̄, 0) > 0.

Proof. As in the proof of Theorem 3.3.13 we may assume that ξ ∼ N (0, R) so that
ϕ gets the representation (3.3.5). Define the set M := {z ∈ Rm|g(x̄, z) ≥ 0}. Clearly,
M is convex and nonempty by our assumption 1. This same assumption (Slater point)
guarantees that

intM = {z ∈ R
m|g(x̄, z) > 0} .

Assume that g(x̄, 0) ≤ 0. Then 0 /∈ intM and, hence, one could separate 0 from M ,
which would mean that there exists some c ∈ Rm\{0} such that

M ⊆
{

z ∈ R
m|cT z ≥ 0

}

=: M̃.

With ξ having a centered Gaussian distribution, the one-dimensional random variable
cT ξ has a centered Gaussian distribution too and, hence, we arrive with our assumption
3. at the contradiction

1/2 = P
[

cT ξ ≥ 0
]

= P

[

ξ ∈ M̃
]

≥ P [ξ ∈M ] = ϕ (x̄) > 1/2.

The proposition means that violation of the first assumption in Theorem 3.3.13 implies
that g(x̄, z) ≤ 0 for all z or that ϕ(x̄) ≤ 1/2. A typical application of Theorem 3.3.13
is probabilistic programming where one is imposing the chance constraint ϕ(x) ≥ p with
some probability level p close to one. Since gradients of ϕ are usually calculated at or
close to feasible points (e.g. by cutting planes), the case ϕ(x̄) ≤ 1/2 is very unlikely to
occur. On the other hand, g(x̄, z) ≤ 0 for all z is a degenerate situation meaning that
there exists no Slater point for the concave function g(x̄, ·). In such situation it typically
happens that the set {z|g(x, z) ≥ 0} becomes empty for x arbitrarily close to x̄ which
would entail a discontinuity of ϕ at x̄. Then, of course, there is no hope to calculate a
gradient at all.

Finally, turning to condition 2. of Theorem 3.3.13 (growth condition) it may require some
technical effort to check it in concrete applications (see, e.g., the examples discussed in
the following section). On the other hand, we shall see in a moment that we may do
without this condition in case that the set {z|g(x̄, z) ≥ 0} is bounded. To formulate a
corresponding statement we need the following two auxiliary results:

Lemma 3.3.16. Let g : Rn × Rm → R be continuous. Moreover, let g be convex in the
second argument. Then, for any x ∈ Rn with g (x, 0) > 0 one has that I(x) = ∅ if and
only if M(x) := {z ∈ Rm|g(x, z) ≥ 0} is bounded.

Proof. Let x be arbitrary such that g (x, 0) > 0. Obviously boundedness ofM(x) implies
that I(x) = ∅, so let us assume that I(x) = ∅ and that M(x) is unbounded. Then,
there is a sequence zn with g (x, zn) ≥ 0 and ‖zn‖ → ∞. Without loss of generality,
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we may assume that ‖zn‖−1 zn → z for some z ∈ R
m\{0}. Let t ≥ 0 be arbitrary.

Then, ‖zn‖−1 t ≤ 1 for n sufficiently large. From concavity of g(x, ·), g (x, 0) > 0 and
g (x, zn) ≥ 0 we infer that g

(

x, ‖zn‖−1 tzn
)

≥ 0 for n sufficiently large. Passing to the
limit, we get that g (x, tz) ≥ 0. Thus, as t ≥ 0 was arbitrary,

g (x, tz) ≥ 0 ∀t ≥ 0. (3.3.21)

Assume that there was some τ ≥ 0 with g (x, τz) = 0. Then, again by concavity of g(x, ·)
and by g (x, 0) > 0, one would arrive at the following contradiction with (3.3.21):

g (x, tz) < g (x, τz) = 0 ∀t > τ.

Hence, actually g (x, tz) > 0 for all t ≥ 0. Putting v := L−1z/ ‖L−1z‖ - where L is the
(invertible) matrix appearing in the definition of I(x) - and observing that this definition
is correct due to z 6= 0, we derive that g (x, t ‖L−1z‖Lv) > 0 for all t ≥ 0. Since
‖L−1z‖ > 0, this implies that g (x, rLv) > 0 for all r ≥ 0. Hence the contradiction
v ∈ I(x) with our assumption I(x) = ∅. It follows that M(x) is bounded as was to be
shown.

Proposition 3.3.17. Let g be as in Lemma 3.3.16 and x̄ ∈ Rn with g (x̄, 0) > 0. If
M(x̄) is bounded, then there is a neighbourhood U of x̄ such that M(x) remains bounded
for all x ∈ U .

Proof. By continuity of g, we may choose U small enough that g (x, 0) > 0 for all x ∈ U .
If the assertion was not true, then by virtue of Lemma 3.3.16 there exists a sequence
xn → x̄ such that I (xn) 6= ∅ for all n ∈ N. By 1. in Lemma 3.3.3 this implies the
existence of another sequence vn ∈ Sm−1 such that

g (xn, rLvn) > 0 ∀r ≥ 0 ∀n ∈ N.

Without loss of generality, we may assume that vn → v̄ for some v̄ ∈ Sm−1. For each
r ≥ 0 we may pass to the limit in the relation above, in order to derive that g (x̄, rLv̄) ≥ 0
for all r ≥ 0. With the same reasoning as below (3.3.21) we may conclude that indeed
g (x̄, rLv̄) > 0 for all r ≥ 0. This means that v̄ ∈ I (x̄), whence M (x̄) is unbounded by
Lemma 3.3.16. This is a contradiction with our assumption.

Now we are in a position to state an alternative variant of Theorem 3.3.13 which does
not require the verification of the growth condition:

Theorem 3.3.18. Theorem 3.3.13 remains true if the second condition (growth condi-
tion) is replaced by the condition that the set {z|g(x̄, z) ≥ 0} is bounded. Then, (3.3.18)
becomes

∇ϕ (x) = −
∫

v∈Sm−1

χ (ρx,v (x, v))

〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) dµζ(v) ∀x ∈ U.

(3.3.22)
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Proof. As in the proof of Theorem 3.3.13, the function e is continuous on U × S
m−1

by Corollary 3.3.6 because this result does not require the growth condition to hold.
Moreover, ∇xe exists on U × Sm−1. Indeed, our boundedness assumption ensures via
Proposition 3.3.17 that - after possibly shrinking the neighbourhood U of x̄ - the set
{z|g(x, z) ≥ 0} remains bounded for all x ∈ U . Lemma 3.3.16 implies that I(x) = ∅ or,
equivalently according to 2. in Lemma 3.3.3 - that F (x) = Sm−1 for all x ∈ U . Then,
Corollary 3.3.7 yields that ∇xe exists on U × Sm−1 and is given by

∇xe(x, v) = −
χ (ρx,v (x, v))

〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) .

Since all occurring functions are continuous, the same holds true for ∇xe. Now the same
argument as in the proof of Theorem 3.3.13 allows us to derive (3.3.20) which along with
the formula for ∇xe above yields (3.3.22).

3.3.2 Selected Examples

In this section we are going to discuss some instances of the probabilistic constraint
(3.3.1) to which our gradient formulae obtained in Theorems 3.3.13 and 3.3.18 apply and
thus could be used in the numerical solution of corresponding optimization problems.

3.3.2.1 Gaussian distributions

We assume first, as before, that the random vector has a Gaussian distribution. We shall
focus on the particular model

P[〈f(ξ), h1(x)〉 ≤ h2(x)] ≥ p (3.3.23)

with nonlinear mappings f : Rm → Rl and h1 : Rn → Rl and h2 : Rn → R involving a
coupling of random and decision vector.

Proposition 3.3.19. In the probabilistic constraint (3.3.23), let f, h1, h2 be continu-
ously differentiable, let the components fi of f be convex and the components h1,i of h1
be nonnegative. Furthermore, let ξ ∼ N (0, R) have a standard Gaussian distribution
with correlation matrix R and associated Cholesky decomposition R = LLT . Consider
any x̄ with 〈f(0), h1(x̄)〉 < h2(x̄). Finally, let f satisfy the following polynomial growth
condition:

‖f(z)‖ ≤ ‖z‖κ ∀z : ‖z‖ ≥ C

for certain κ, C > 0. Then the probability function ϕ (x) := P [〈f(ξ), h1(x)〉 ≤ h2(x)]
defining the constraint (3.3.23) is continuously differentiable on a neighbourhood U of x̄
and its gradient is given by

∇ϕ (x) =

∫

v∈F (x)

χ (ρx,v (x, v)) [
〈

hT1 (x)∇f (ρx,v (x, v)Lv) , Lv
〉

]−1∇h2(x)dµζ(v)

−
∫

v∈F (x)

χ (ρx,v (x, v)) [f(ρx,v (x, v)Lv)]T ∇h1(x)
〈hT1 (x)∇f (ρx,v (x, v)Lv) , Lv〉

dµζ(v) ∀x ∈ U.
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Proof. In our setting the general function g in (3.3.4) becomes g (x, z) = −〈f(z), h1(x)〉+
h2(x). The continuous differentiability and concavity with respect to the second argument
of g are evident from our assumptions. Moreover, g (x̄, 0) > 0. As for the growth
condition, let U be a neighbourhood of x̄ on which max{‖∇h1‖ , ‖∇h2‖} ≤ K for some
K > 0. Then, taking without loss of generality, the maximum norm, we have that

‖∇xg(x, z)‖ =
∥

∥

∥
∇h2(x)− [f(z)]T ∇h1(x)

∥

∥

∥
≤ K(‖f(z)‖+ 1)

≤ ‖z‖2+κ ∀x ∈ U, z : ‖z‖ ≥ max{C,K, 2}.

Consequently, we may apply Theorem 3.3.13. (3.3.24) follows immediately from (3.3.18)
for the given form of the function g.

3.3.3 Gaussian-like distributions

We are now going to apply Theorem 3.3.13 to probabilistic constraints with random vec-
tors having non-Gaussian distributions. In a first case, we consider a linear probabilistic
constraint

P[〈η, x〉 ≤ b] ≥ p (3.3.24)

with a random vector η whose components ηi (i = 1, . . . , l) are independent and have
a χ2-distribution with ni degrees of freedom. By definition, ηi =

∑ni

k=1 ξ
2
i,k, where the

ξi,k ∼ N (0, 1) are independent for k = 1, . . . , ni. We are interested in the gradient of
the probability function ϕ(x) := P[〈η, x〉 ≤ b]. Define a Gaussian random vector with
independent components

ξ := (ξ1,1, . . . , ξ1,n1 , . . . , ξl,1, . . . , ξl,nl
) ∼ N (0, I) .

Clearly, η ∼ f(ξ), where fi(z) :=
∑ni

k=1 z
2
i,k for i = 1, . . . , l and z is partitioned in the

same way as ξ above. Then, the probability function defining (3.3.24) becomes

ϕ(x) = P[〈η, x〉 ≤ b] = P[〈f(ξ), x〉 ≤ b].

We derive the following gradient formula which does not need the verification of a poly-
nomila growth condition and which is even fully explicit with respect to the resolving
function ρx,v:

Proposition 3.3.20. In (3.3.24), let b > 0. Consider any feasible point x̄ of (3.3.24)
satisfying x̄i > 0 for i = 1, . . . , n. Then the probability function ϕ is continuously differ-
entiable on a neighbourhood U of x̄ and its gradient is given by

∇ϕ (x) = −
√
b

2

∫

v∈Sm−1

χ
(

√

b/ 〈f(v), x〉
)

〈f(v), x〉3/2
[f(v)]T dµζ(v) ∀x ∈ U. (3.3.25)

Proof. In our setting the general function g in (3.3.4) becomes g (x, z) = −〈f(z), x〉 +
b which is continuously differentiable. Since the components fi are convex, g (x, ·) is
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concave whenever x ≥ 0, which by our assumption holds true in a neighbourhood of x̄.
Evidently, the result of Theorems 3.3.13 and 3.3.18 are of local nature (differentiability
around x̄) so they actually do not need concavity of g (x, ·) for all x ∈ Rn but only for
x in a neighbourhood of x̄ which is satisfied here. Next observe that g (x̄, 0) = b > 0.
Finally, recalling that x̄i > 0 for i = 1, . . . , n, we obtain the estimate

{z|g(x̄, z) ≥ 0} = {z| 〈f(z), x̄〉 ≤ b} ⊆
{

z|
(

min
i=1,...,n

x̄i

)

∑n

i=1
fi(z) ≤ b

}

=

{

z| ‖z‖2 ≤ b

(

min
i=1,...,n

x̄i

)−1
}

,

whence the set on the left-hand side is bounded. Altogether, this allows us to invoke
Theorem 3.3.18 and to derive the validity of formula (3.3.22). We now specify this
formula in our setting. First observe that given ξ ∼ N (0, I), we have that R = I, hence
we have L = I for the Cholesky decomposition R = LLT . Next we calculate explicitly the
function ρx,v (x, v) which is the unique solution in r ≥ 0 of the equation 〈f(rLv), x〉 = b.
Now, by definition of f ,

〈f(rLv), x〉 = r2 〈f(v), x〉 = b,

whence
r =

√

b/ 〈f(v), x〉. (3.3.26)

Next, we calculate

−∇xg (x, ρ
x,v (x, v)Lv) = [f (ρx,v (x, v) v)]T

= [ρx,v (x, v)]2 [f(v)]T = (b/ 〈f(v), x〉) [f(v)]T

−〈∇zg (x, ρ
x,v (x, v)Lv) , Lv〉 = 〈−∇zg (x, ρ

x,v (x, v) v) , v〉

=

〈

n
∑

i=1

xi∇fi (ρx,v (x, v) v) , v
〉

=
n
∑

i=1

xi 〈∇fi (ρx,v (x, v) v) , v〉

= 2ρx,v (x, v)

n
∑

i=1

xi

ni
∑

k=1

v2i,k

= 2ρx,v (x, v) 〈f(v), x〉 = 2
√

b 〈f(v), x〉.

Combination of these last relations with (3.3.26) provides formula (3.3.25).

As a second instance for a non-Gaussian but Gaussian-like distribution, we consider the
multivariate log-normal distribution. Recall, that a random vector η follows a multi-
variate lognormal distribution if the vector ξ := log η (componentwise logarithm) has a
Gaussian distribution. We consider now a probabilistic constraint of type

P[〈η, x〉 ≤ h(x)] ≥ p (3.3.27)
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where η is an m-dimensional random vector with lognormal distribution and h : Rm → R

is some function. We are interested in the gradient of the associated probability function
ϕ(x) := P[〈η, x〉 ≤ h(x)]. We denote by ξ := log η the Gaussian random vector associated
with η. Without loss of generality (see Remark 3.3.2) we may assume that ξ ∼ N (0, R)
for some correlation matrix R. We denote by L the associated factor in the Cholesky
decomposition R = LLT .

Proposition 3.3.21. In the setting above, assume that x̄ satisfies x̄i > 0 for i = 1, . . . ,m.
Assume moreover that h is continuously differentiable and that h(x̄) >

∑m
i=1 x̄i. Then,

∇ϕ (x) = −
∫

{v∈Sm−1|∃i:Liv>0}

χ (ρx,v (x, v))
∑m

i=1 xie
ρx,v(x,v)Liv
i Liv

[

eρ
x,v(x,v)Lv −∇h(x)

]

dµζ(v) ∀x ∈ U.

Here, Li refers to the ith row of L and the expression ez has to be understood componen-
twise.

Proof. In our setting the general function g in (3.3.4) becomes g (x, z) = 〈−ez, x〉+h(x).
Clearly, g is continuously differentiable and concave with respect to z for all x close to
x̄ (as mentioned in the proof of Proposition (3.3.24) this weakened condition is enough
in the context of Theorem 3.3.13). Moreover, g (x̄, 0) = −∑m

i=1 x̄i + h(x̄) > 0. In order
to apply Theorem 3.3.13, it is sufficient to verify the exponential growth condition of
Remark 3.3.10 (note that the originally imposed polynomial growth condition would not
hold true here). To this aim, let U be a neighbourhood of x̄ on which ‖∇h‖ ≤ K for
some K > 0. Then, with respect to the maximum norm, we get that

‖∇xg (x
′, z)‖ ≤ ‖ez‖+ ‖∇h(x′)‖ ≤ e‖z‖ +K ≤ 2e‖z‖ ∀x′ ∈ U(x) ∀z : ‖z‖ ≥ logK.

Hence, the exponential growth condition of Remark 3.3.10 is satisfied. This allows us to
apply Theorem 3.3.13. Inserting the corresponding derivative formulae for g, we derive
that ϕ is continuously differentiable on a neighbourhood U of x̄ and its gradient is given
by

∇ϕ (x) = −
∫

v∈F (x)

χ (ρx,v (x, v))
∑m

i=1 xie
ρx,v(x,v)〈Li,v〉 〈Li, v〉

[

eρ
x,v(x,v)Lv −∇h(x)

]

dµζ(v) ∀x ∈ U.

(3.3.28)
Here, Li denotes the ith row of the Cholesky factor L. To complete the proof, we have
to verify the representation of the integration domain F (x) asserted in the statement of
this proposition. Without loss of generality, we assume the neighbourhood U of x̄ in the
formula above to be small enough that g (x, 0) > 0 and xi > 0 for i = 1, . . . ,m and for
all x ∈ U (recall that g (x̄, 0) > 0 and x̄i > 0 for i = 1, . . . ,m). We claim that for all
x ∈ U the set I(x) introduced below (3.3.6) can be written as

I(x) =
{

v ∈ S
m−1|Lv ≤ 0

}

. (3.3.29)

Indeed, let x ∈ U and v ∈ Sm−1 with Lv ≤ 0 be arbitrary. Then, for all r > 0,

g(x, rLv) = −
〈

erLv, x
〉

+ h(x) ≥ −
〈

e0, x
〉

+ h(x) = g (x, 0) > 0,
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whence v ∈ I(x) by 1. of Lemma 3.3.3. Conversely, let x ∈ U and v ∈ I(x) be arbitrary.
Then,

〈

erLv, x
〉

< h(x) for all r > 0. Define J := {i|Liv > 0}. It follows from xi > 0 for
i = 1, . . . ,m that

h(x) >
∑

i∈J
xie

r〈Li,v〉.

If J 6= ∅, then the sum on the right-hand side tends to ∞ for r → ∞ which is a
contradiction to this sum being bounded from above by h(x) for all r > 0. Consequently,
J = ∅, proving Lv ≤ 0 and, thus, the reverse inclusion of (3.3.29). Since, by definition,
F (x) = Sm−1\I(x), we may plug the information from (3.3.29) into (3.3.28) in order to
derive our asserted formula.

3.3.4 Student (or T- ) distribution

As a last application, we are going to consider probabilistic constraints of type (3.3.1),
where the random vector ξ follows a so-called multivariate Student or T- distribution.
This is an important type of distribution in particular due to its application in the con-
text of copulas. We recall that ξ ∼ T (µ,Σ, ν) - i.e., ξ obeys a multivariate T-distribution
with parameters µ,Σ, ν - if ξ = µ+ϑ

√

ν
u
, where ϑ ∼ N (0,Σ) has a multivariate Gaussian

distribution with mean µ and covariance matrix Σ, u ∼ χ2 (ν) has a chi-squared distribu-
tion with ν degrees of freedom and ϑ and u are independent [156]. We are interested in
the probability function (3.3.4) but this time for a T-variable rather than for a Gaussian
one.

Remark 3.3.22. Using the definition of a T- distribution, we may copy the arguments of
Remark 3.3.2 in order to convince ourselves that in the consideration of (3.3.4) we may
assume without loss of generality that ξ ∼ T (0, R, ν), where R is a correlation matrix.
In particular, this can be arranged without disturbing the assumption of g in (3.3.4) being
continuously differentiable and convex with respect to the second argument.

In a first step, we provide an expression for the probability function (3.3.4) in case of a
T-distribution:

Theorem 3.3.23. Let g : Rn × R
m → R be a continuously differentiable function which

is concave with respect to the second argument. Moreover, let ξ ∼ T (0, R, ν) for some
correlation matrix R. Consider a point x̄ such that g(x̄, 0) > 0. Then, there exists a
neighbourhood U of x̄ such that the probability function (3.3.4) admits the representation

ϕ (x) =

∫

v∈Sm−1

ẽ (x, v) dµζ ∀x ∈ U,

where for all x ∈ U and v ∈ S
m−1

ẽ (x, v) :=

{

Fm,ν(m
−1 [ρx,v (x, v)]2) v ∈ F (x)

1 v ∈ I(x)
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and Fm,ν refers to the distribution function of the Fisher-Snedecor distribution with m
and ν degrees of freedom. Moreover, ρx,v is as introduced in Lemma 3.3.4 and F (x) and
I(x) are defined in Lemma 3.3.3.

Proof. Let U be a neighbourhood of x̄ small enough such that g(x, 0) > 0 for all x ∈ U .
Fix an arbitrary x ∈ U . According to the definition of ξ, there exist ϑ ∼ N (0, R) and
u ∼ χ2 (ν) such that ϑ and u are independent and

ϕ (x) = P

[

g(x, ϑ

√

ν

u
) ≥ 0

]

=

∫

{(y,t)|t>0,g(x,y
√

ν
t
)≥0}

fϑ,u (y, t) dydt,

where fϑ,u denotes the joint density of the vector (ϑ, u). By independence, fϑ,u (y, t) =
fϑ (y) fu (t) where fϑ and fu are the densities of ϑ and u, respectively. In particular, with
Γ referring to the Gamma function, it holds that

fu (t) =

{ 1
2ν/2Γ(ν/2)

tν/2−1e−t/2 t ≥ 0

0 t < 0
(3.3.30)

Therefore,

ϕ (x) =

∫ ∞

0

(

∫

{y|g(x,y√ ν
t
)≥0}

fϑ (y) dy

)

fu (t) dt

=
1

2ν/2Γ (ν/2)

∞
∫

0

P

[

g(x, ϑ

√

ν

t
) ≥ 0

]

tν/2−1e−t/2dt. (3.3.31)

With M := {z ∈ Rm|g(x, z) ≥ 0} one has that, for t > 0,

P

[

g(x, ϑ

√
ν

t
) ≥ 0

]

= P

[

ϑ ∈ t√
ν
M

]

.

Since ϑ ∼ N (0, R), (3.3.2) yields that for all t > 0

P

[

g(x, ϑ

√
ν

t
) ≥ 0

]

=

∫

v∈Sm−1

µη

(

{r ≥ 0|
√
ν

t
rLv ∈M}

)

dµζ

=

∫

v∈Sm−1

µη

(

{r ≥ 0|g(x,
√
ν

t
rLv) ≥ 0}

)

dµζ ,

where η has a χ-distribution with m degrees of freedom and ζ has a uniform distribution
over Sm−1. Moreover, L is a factor of the Cholesky decomposition R = LLT . Let t > 0
be arbitrary. Assume first that v ∈ F (x). With g(x, 0) > 0, let ρx,v : Ũ × Ṽ → R+ be
the function defined on certain neighbourhoods Ũ , Ṽ of x and v, respectively. It follows
from 1. in Lemma 3.3.4 that

{r ≥ 0|g(x,
√
ν

t
rLv) ≥ 0} =

[

0,
t√
ν
ρx,v (x, v)

]

.
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If in contrast v ∈ I(x) then g(x, rLv) > 0 for all r ≥ 0, whence

{r ≥ 0|g(x,
√
ν

t
rLv) ≥ 0} = R+.

Combining this with (3.3.31), we conclude that

ϕ (x) =
1

2ν/2Γ (ν/2)

∫ ∞

0

∫

v∈F (x)

µη

([

0,
t√
ν
ρx,v (x, v)

])

dµζt
ν/2−1e−t/2dt

+
1

2ν/2Γ (ν/2)

∫ ∞

0

∫

v∈I(x)
µη (R+) dµζt

ν/2−1e−t/2dt (3.3.32)

=
1

2ν/2Γ (ν/2)

∫ ∞

0

(
∫

v∈F (x)

Fη

(

t√
ν
ρx,v (x, v)

)

dµζ + µζ (I(x))

)

tν/2−1e−t/2dt

= µζ (I(x)) +
1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2

∫

v∈F (x)

Fη

(

t√
ν
ρx,v (x, v)

)

dµζdt,

where Fη denotes the distribution function of η and we exploited that Fη(0) = 0,
µη (R+) = 1 and

1

2ν/2Γ (ν/2)

∞
∫

0

tν/2−1e−t/2dt =

∫

R

fu(t)dt = 1.

Now, let r ≥ 0 be arbitrary and let ζ have a Fisher-Snedecor (F-) distribution withm and
ν degrees of freedom. Then, ζ = (νUm) / (mUν), where Um and Uν are independent and
follow χ- squared distributions with m and ν degrees of freedom, respectively. Denoting
by Fm,ν the distribution function of ζ, we derive that

Fm,ν(m
−1r2) = P

(

U−1
ν Um ≤ ν−1r2

)

=

∫

{(τ,t)|ντ≤tr2}

fUm,Uν (τ, t) dτdt,

where fUm,Uν denotes the joint density of the vector (Um, Uν). By independence, fUm,Uν (τ, t) =
fUm (τ) fUν (t) where the single χ2-densities are defined with appropriate degrees of free-
dom in (3.3.30). It follows that

Fm,ν(m
−1r2) =

∫ ∞

0

∫ tr2/ν

0

fUν (t) fUm (τ) dτdt

=
1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2 1

2m/2Γ (m/2)

∫ tr2/ν

0

τm/2−1e−τ/2dτdt

=
1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2 1

2m/2−1Γ (m/2)

∫ r
√

t/ν

0

sm−1e−s2/2dsdt

=
1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2

∫ r
√

t/ν

0

fη(s)dsdt.

Here, we used that the variable η introduced above has a χ-distribution with m degrees
of freedom and so its density is given by

fη(s) =

{

1
2m/2−1Γ(m/2)

sm−1e−s2/2 s ≥ 0

0 s < 0
.
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Consequently,with Fη denoting the distribution function of η,

Fm,ν(m
−1r2) =

1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2Fη

(

r
√

t/ν
)

dt

=
1

2ν/2−1Γ (ν/2)

∫ ∞

0

sν−1e−s2/2Fη

(

sr/
√
ν
)

ds. (3.3.33)

Consequently, exploiting the definition ẽ in the statement of Theorem 3.3.23, putting
r := ρx,v (x, v) in (3.3.33) and applying Fubini’s theorem, we end up via (3.3.32) at

∫

v∈Sm−1

ẽ (x, v) dµζ =

µζ (I(x)) +

∫

v∈F (x)

Fm,ν(m
−1 [ρx,v (x, v)]2)dµζ =

µζ (I(x)) +
1

2ν/2−1Γ (ν/2)

∫ ∞

0

∫

v∈F (x)

sν−1e−s2/2Fη

(

sρx,v (x, v) /
√
ν
)

dµζds = ϕ (x) .

Now, we may copy the proof of Corollary 3.3.6 but with the function e there replaced by
the function ẽ introduced above and with the expression Fη(ρ

x,v (x′, v′)) in statement 1.
of Lemma 3.3.5 replaced by the expression Fm,ν(m

−1 [ρx,v (x′, v′)]2) in order to derive the
continuity of ẽ at any x ∈ U , where U is defined in the Theorem above. Next, we may
copy the proof of Corollary 3.3.7 (again with the appropriate replacements) and get the
following:

Corollary 3.3.24. For any x ∈ R
n with g(x, 0) > 0 and v ∈ F (x) the partial derivative

w.r.t x of the function ẽ : Rn × Sm−1 → R defined in Theorem 3.3.23 exists and is given
by

∇xẽ(x, v) = −2ρx,v (x, v)
fm,ν

(

m−1 [ρx,v (x, v)]2
)

m 〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) (3.3.34)

where

fm,ν(t) =

{

Γ(m/2+ν/2)
Γ(m/2)Γ(ν/2)

mm/2νν/2tm/2−1 (mt+ ν)−(m+ν)/2 t ≥ 0

0 t < 0
(3.3.35)

is the density of the Fisher-Snedecor distribution with m and ν degrees of freedom, ρx,v

refers to the function introduced in Lemma 3.3.4 and L is a factor of the Cholesky de-
composition R = LLT .

It is the equivalent of Lemma 3.3.9 that requires some additional conditions and work:

Lemma 3.3.25. Let x be such that g (x, 0) > 0 and that g satisfies the polynomial growth
condition at x with coefficient κ < ν (Def. 3.3.8). Consider any sequence (xk, vk) →
(x, v) for some v ∈ I(x) such that vk ∈ F (xk). Then,

lim
k→∞
∇xẽ(xk, vk) = 0.
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Proof. First observe that ρxk,vk (xk, vk) → ∞ by 2. in Lemma 3.3.5. The arguments of
Lemma 3.3.9 allow us to deduce that for k sufficiently large the estimates (3.3.10) and
(3.3.12) still hold. Using (3.3.35), we may combine Corollary 3.3.24 with (3.3.10) and
(3.3.12) in order to derive that

‖∇xẽ(xk, vk)‖ =

=

∥

∥

∥

∥

∥

2ρxk,vk(xk, vk)fm,ν(m
−1 [ρx,v (x, v)]2)

m 〈∇zg (xk, ρxk,vk (xk, vk)Lvk) , Lvk〉
∇xg (xk, ρ

xk,vk (xk, vk)Lvk)

∥

∥

∥

∥

∥

≤ 2νν/2
Γ (m/2 + ν/2)

Γ (m/2)Γ(ν/2)
‖L‖κ δ−1

1 ρxk,vk(xk, vk)
m+κ(1 +

ρxk,vk(xk, vk)
2

ν
)−

m+ν
2 →k 0,

where the last limit follows from ρxk,vk (xk, vk)→∞ and κ < ν.

Upon having established Lemma 3.3.25 the same arguments of Corollary 3.3.11 can be
used to show that ẽ is differentiable with respect to x and to derive a similar formula.
This can be done since the proof of Corollary 3.3.11 uses only the properties of e and we
have established the same properties for ẽ. Accordingly, ∇xẽ(x, v) is given by formula
(3.3.34) if v ∈ F (x) and ∇xẽ(x, v) = 0 if v ∈ I(x). In the same way as in Corollary 3.3.12
one establishes the continuity of ∇xẽ upon noting that fm,ν(t) defined in (3.3.35) is also
continuous. We thus arrive at the following key result, of which the proof is a verbatim
copy of that of Theorem 3.3.13 (Again e and ẽ have the same properties).

Theorem 3.3.26. Let g : Rn×Rm → R be a continuously differentiable function which is
concave with respect to the second argument. Consider the probability function ϕ defined
in (3.3.4), where ξ ∼ T (0, R, ν). Let the following assumptions be satisfied at some x̄:

1. g (x̄, 0) > 0.

2. g satisfies the polynomial growth condition at x̄ (Def. 3.3.8) with coefficient κ < ν.

Then, ϕ is continuously differentiable on a neighbourhood U of x̄ and it holds that

∇ϕ (x) =

∫

v∈F (x)

−2ρx,v(x, v)fm,ν(m
−1 [ρx,v (x, v)]2)

m 〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) dµζ(v) ∀x ∈ U.

(3.3.36)
Here, µζ is the law of the uniform distribution over S

m−1, fm,ν is the density of the
Fisher-Snedecor-distribution with m and ν degrees of freedom and ρx,v is as introduced in
Lemma 3.3.4.

In the above result, the degrees of freedom ν of ξ ∼ T (0, R, ν) imposes an important
restriction on the growth condition. Hence, on the mappings g that can be allowed
for. In Theorem 3.3.18 we were able to replace the growth condition by a boundedness
assumption. This can also be done now. Again the proof of the following result is a
verbatim copy of that of Theorem 3.3.18.
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Theorem 3.3.27. Theorem 3.3.26 remains true if the second condition (growth condi-
tion) is replaced by the condition that the set {z|g(x̄, z) ≥ 0} is bounded. Then, (3.3.36)
becomes:

∇ϕ (x) =

∫

v∈Sm−1

−2ρx,v(x, v)fm,ν(m
−1 [ρx,v (x, v)]2)

m 〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) dµζ(v) ∀x ∈ U.

(3.3.37)
Moreover this result holds for all ν ≥ 1.

Remark 3.3.28. Theorem 3.3.27 in particular covers the case when ξ follows a multi-
variate Cauchy Distribution, i.e., ξ ∼ T (0, R, 1). This case was excluded in Theorem
3.3.26.

Example 3.3.29. Let us consider the optimization problem

minx∈R2 cTx

s.t. ϕ(x) := P[ηx1
1 η

x2
2 ≤ 2] ≥ 0.8, (3.3.38)

Ax ≤ b

x ≥ 0

where η = (η1, η2) follows a log-normal law with underlying multivariate Gaussian distri-
bution having mean (0, 0) and 2 × 2 correlation matrix R with coefficient R12 = −0.88.
The cost vector c is defined as c = (−4,−1). The matrix A is given by

A =





−3
2

1
1
2
−1

1 1



 ,

b = (1
2
, 1
2
, 4).

The unconstrained optimal solution is x∗ = (3, 1). This solution turns out to be infeasible
since it only provides a probability level of 0.63 roughly. Upon defining the mapping
g : R2 × R2 → R2 as g(x, z) = − exp(x1z1 + x2z2) + 2, we can observe that the chance
constraint ϕ(x) is equivalent with ϕ(x) = P[g(x, ξ) ≥ 0]. Alternatively ϕ(x) can be
characterized as ϕ(x) = P[x1z2 + x2z2 ≤ log(2)] as the logarithm is a strictly increasing
mapping. The last characterization allows us to deduce the convexity of the feasible set
by Kataoka’s result [121] whenever p > 1

2
as in the example. The same result allows us

to show that Problem (3.3.38) is in fact equivalent with

minx∈R2 cTx

s.t. xTRx ≤ (
log(r)

Φ−1(0.8)
)2, (3.3.39)

Ax ≤ b

x ≥ 0

where Φ−1 denotes the inverse of the standard normal distribution function. The optimal
solution of (3.3.39) is readily found to be xz = (1.7250, 1.6010). One easily derives that
xs = (0.2, 0.2) is a Slater point for problem (3.3.38).
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Since the feasible set is convex, we can apply a Supporting Hyperplane method for solving
(3.3.38) directly. Theorem 3.3.13 allows us to compute a gradient if the conditions are
satisfied. Returning to our mapping g, it is easily seen that g is concave in z whenever we
impose the additional constraint x ≥ 0. Moreover g(x, 0) > 0 regardless of x ≥ 0. One
readily derives from the Cauchy-Schwarz inequality that ‖∇xg(x, z)‖ ≤ ‖z‖ exp(‖z‖ ‖x‖).
Following Remark 3.3.10 this is also a sufficient condition for Lemma 3.3.9 to hold. This
in turn applies that the polynomial growth condition of Theorem 3.3.13 can be substituted
by the above exponential growth condition. We can thus use the formula (3.3.18) for
computing a gradient of ϕ(x). The numerical sampling scheme used for the integral over
the sphere Sm−1 is the O2-estimator of Déak [50] where the uniform orthonormal system is
generated according to the ideas of [55]. We have generated a 1000 orthonormal systems.

Let k be the current iteration of the supporting hyperplane algorithm and xk the current
candidate solution. We will first compute λ > 0 such that xc = λxk + (1− λ)xs is on the
boundary of the feasible set, i.e., ϕ(xc) = p. We then add the constraint −∇ϕ(xc)Tx ≤
−∇ϕ(xc)Txc to problem (3.3.38) and solve the newly obtained problem in order to obtain
a new iterate. Each iterate xk is, a priori, infeasible and provides a lower bound on the
optimal value. Each iterate xc is feasible and provides an upper bound. We will stop the
algorithm if cTxc−cTxk

cTxk
< 0.01.

Figure (3.1) shows the results of the supporting hyperplane approach. The red ellipsoid is
the feasible set for ϕ(x) ≥ 0.8. The dashed red ellipsoid is the feasible set for ϕ(x) ≥ 0.79,
the red lines correspond to the feasible set of Ax ≤ b and the black star is the Slater point
xs. Successive iterates xk are indicated by their number and a cross, the successive feasible
points xc are indicated by circles. Finally the green lines are the generated supporting
hyperplanes and the diamond indicates the found optimal solution.
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Figure 3.1: Illustration of solving problem (3.3.38) with the derived gradient formula.
The right figure provides a zoom near the optimal solution.

The thus obtained solution is x∗ = (1.7356, 1.5959) with objective function value −8.5383,
whereas the truly optimal solution xz provides an objective function value of −8.5010.
This difference is explained by the fact that x∗ is slightly infeasible due to numerical noise.
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3.4 Eventual Convexity

Consider a constraint of the type (2.0.1), i.e.,

P[g(x, ξ) ≥ 0] ≥ p, (3.4.1)

where g : Rn × Rm → Rk is a constraint mapping, x ∈ Rn the decision vector, ξ ∈ Rm

a random variable, P its associated probability measure and p ∈ (0, 1) a pre-specified
robustness-level.

A key question in Chance Constrained Programming is the convexity of the feasible set,
i.e., of the set M(p) = {x ∈ R

n : P[g(x, ξ) ≥ 0] ≥ p}. It is well known ([51, 181, 182])
that if ξ admits a density with specific generalized concavity properties, and g is a
(jointly) quasi-concave mapping, then indeed the feasible set is convex. In many practical
applications, we have separable constraint mappings, i.e., g(x, ξ) = h(x) − ξ, where
h : Rn → R

m. The requirement of joint quasi concavity of g then can be asserted if h is
concave. Note that quasi concavity of h is not sufficient.

The latter requirement on the i-th component hi of the mapping h can be relaxed to
−αi-concavity, αi > 0 if ξ has independent components and each component ξi has a
so-called αi + 1-decreasing density ([110]). This comes at the cost of only being able
to assert convexity of M(p) for p values larger than some threshold. Such convexity is
called eventual convexity and is clearly sufficient in many practical applications when we
are looking at large p values. Independence of components of ξ is a strong requirement,
which was relaxed in a second work of the same authors [111]. Indeed, ξ can be allowed
to have a dependence structure induced by a specially structured Copula, called a log-
exp-concave Copula. Some well-known Copulae (Maximum, Independent, Gumbel) are
log-exp-concave, as shown in [111]. However, it turns out that the Clayton Copula is not
log-exp-concave.

When examining very carefully the results of [111], it appears that the link between
generalized concavity of h, individual distribution functions Fi of each component ξi,
i = 1, ...,m and the Copula is not clearly exhibited. As a result all log-exp concave
Copulae actually provide the same probability threshold. Moreover this level depends in
a way on one of the distribution functions Fi only. One can thus set up two versions of a
problem wherein only one component of ξ has the same distribution and obtain convexity
results for the same asserted probability threshold. In particular ξ can have independent
components, or components linked through an arbitrary log-exp concave Copula and the
same probability threshold is obtained. This is intuitively puzzling.

In this section, we will show that one can derive eventual convexity of the feasible set
M(p) for a larger class of Copulae. In particular, we will show that the Clayton Copula is
in this extended class. We will moreover exhibit clearly the link between the generalized
concavity properties of the mapping h, the individual distribution functions Fi, i =
1, ...,m and that of the Copula. We will also show that by adding some additional explicit
constraints to the optimization problem, defining a convex feasible set, the probability
threshold can be made to depend on the Copula. We will provide several examples
showing that one can obtain eventual convexity results for lower p values than in the
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papers [110, 111]. Finally we provide a characterization of the Gaussian Copula in the
tail and show that it decomposes as the sum of log-exp concave functions.

This section is organized as follows. We will begin by introducing some useful notation
and generalized concavity in section 3.4.1. We will define a class of Copulae containing
the class of log-exp-concave Copula and characterize this class in section 3.4.2. In section
3.4.3 we will provide our main Theorems proving eventual convexity for the feasible sets
M(p) under specific conditions on the Copula, the individual distribution functions and
constraint mappings hi, i = 1, ...,m. Section 3.4.4 provides a series of examples and
results showing that sharper bounds on the probability threshold can be obtained and
that this new class of Copulae contains strictly more Copulae than just log-exp-concave
Copulae. In section 3.4.5 we derive a characterization of the Gaussian Copula, showing
that it decomposes as the sum of log-concave functions, at least in its upper-tail. A
potential application for modelling probabilistic Constraints with Copula is provided in
section 3.4.6.

3.4.1 Notation

Throughout this section, we will apply many algebraic operations on vectors. In order
to have short notation, these are understood componentwise. As an example, for any
u ∈ Rm, eu will be defined as eu = (eu1, ..., eum). In a very similar way, we will define

u
1
γ for γ 6= 0. For a mapping h : Rm → R, u ∈ R

m 7→ h(eu) is thus understood as
u 7→ h(eu1 , ..., eum). We will also extend this short notation to one-dimensional mappings
applied to a vector. If ϕ : R→ R is a mapping, we mean ϕ(u) = (ϕ(u1), ..., ϕ(um)) when
u ∈ Rm.

Throughout this section, h : Rn → Rm will be a constraint mapping, ξ ∈ Rm an m-
dimensional random vector. The component ξi is assumed to have one dimensional
distribution function z ∈ R 7→ Fi(z) := P[ξi ≤ z], i = 1, ...,m. Finally C : [0, 1]m → [0, 1]
is a Copula, such that

P[ξ ≤ h(x)] = C(F1(h1(x)), ..., Fm(hm(x))). (3.4.2)

We will assume that the mapping (3.4.2) defines a constraint of a Stochastic optimization
problem in the following way:

minx∈Rn f(x)

s.t. P[ξ ≤ h(x)] ≥ p, (3.4.3)

for some probability level p and convex function f . This problem is assumed to be the
”Stochastic” variant of the deterministic problem

minx∈Rn f(x)

s.t. b ≤ h(x), (3.4.4)

for an appropriately chosen vector b ∈ R
m, e.g., b = E (ξ). Assuming convexity of

f , problem (3.4.4) is a convex optimization problem if and only if the mapping h has
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some generalized concavity property. It is therefore natural to make such an assumption.
Problem (3.4.3) arises, whenever problem (3.4.4) has turned out insufficiently robust
and a decision vector x accounting for uncertainty is looked for. Such left-hand side
uncertainty arises in many practical applications such as [246, 239].

In this section the set M(p) will be defined as M(p) := {x ∈ Rn : P[ξ ≤ h(x)] ≥ p},
where P[ξ ≤ h(x)] is as in equation (3.4.2).

3.4.2 Copulae and generalized concavity

In [111], the authors call a Copula C a log-exp concave Copula if and only if u ∈ [0, 1]m 7→
log(C(eu)) is a concave mapping. It therefore appears natural to provide the following
extension of this concept. We will thus speak of a δ-γ-concave Copula.

Definition 3.4.1. Let γ ∈ R be given, and let the set X(γ) be defined as X(γ) = [0, 1]m

for γ > 0, X(0) = (−∞, 0]m and X(γ) = [1,∞)m for γ < 0. Let δ ∈ [−∞,∞] be equally
given. We call a Copula C : [0, 1]m → [0, 1] δ-γ-concave if the mapping u ∈ X(γ) 7→
C(u

1
γ ) is δ-concave, whenever γ 6= 0 and u ∈ X(0) 7→ C(eu) is δ-concave whenever γ = 0.

The presence of the set X(γ) is only to have the arguments mapped in [0, 1]m, so that
we can compose with the Copula afterwards.

Remark 3.4.2. This is indeed an extension of the notion of log-exp-concave Copulae as
defined in the paper [111]. Indeed a log-exp-concave Copula is 0-0-concave in our setting.
Examples of log-exp-concave Copulae are the independent, maximum and Gumbel Copula.
The latter is an Archimedean Copula, a family of Copulae generated by a one-dimensional
function called the generator. We refer to [150] for a full characterization of generators
of Archimedean Copulae.

Remark 3.4.3. Copulae are such that C(u) = 0 if and only if there is some i = 1, ...,m
with ui = 0. Pick u ∈ [0, 1]m with C(u) = 0, some v ∈ [0, 1]m and λ ∈ [0, 1] and form
z = λu+(1−λ)v. Pick moreover an arbitrary γ > 0, it is then clear from C being a Copula

that C(z
1
γ ) ≥ 0 and from the definition of δ-concavity that mδ(C(u

1
γ ), C(v

1
γ ), λ) = 0. It

is therefore sufficient to verify δ-γ-concavity of a Copula with γ > 0 on (0, 1]m only. This
avoids the problem of degenerate arguments. Degenerate arguments are naturally avoided
when γ ≤ 0.

Remark 3.4.4. One could alternatively replace the δ-concavity requirement with a g-
concavity requirement as defined in [6] and [227]. We are however interested in eventual
convexity, i.e., convexity of all levels sets above some threshold. The notion of g-concavity
then implies quasi-concavity on that (sub)-set.

Some Copulae might not be δ-γ-concave on the whole domain X(γ) as the following
example shows:
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Example 3.4.5. Let C : [0, 1]m → [0, 1] be the Gaussian Copula, i.e., C(u) = ΦR(ϕ−1(u)),
where ΦR is the probability distribution function of a centered Gaussian random variable
in dimension m with correlation matrix R and ϕ−1 : (0, 1)→ R the inverse of a standard
normal probability distribution function in dimension 1. The mapping ϕ−1 : (0, 1)→ R is
concave on (0, 1

2
] and ΦR is log-concave ([181]). It then follows that C is 0-1-concave on

[0, 1
2
]m. Indeed, pick x, y ∈ [0, 1

2
]m, λ ∈ [0, 1]. From concavity of ϕ−1 and monotonicity

of the distribution function we get

C(m1(x, y, λ)) ≥ ΦR(m1(ϕ
−1(x1), ϕ

−1(y1), λ), ...,m1(ϕ
−1(xm), ϕ

−1(ym), λ))

≥ m0(C(x), C(y), λ).

Remark 3.4.6. The above example does not exclude a more general δ-γ-concavity prop-
erty on other sets.

This therefore motivates the following definition:

Definition 3.4.7. Let q ∈ (0, 1)m be some point and define the sets X(q, γ) as follows
X(q, γ) =

∏m
i=1[q

γ
i , 1] for γ > 0, X(q, 0) =

∏m
i=1[log(qi), 0] and X(q, γ) =

∏m
i=1[1, q

γ
i ] for

γ < 0. We call a Copula C : [0, 1]m → [0, 1] δ-γ-q-concave if the mapping u ∈ X(q, γ) 7→
C(u

1
γ ) is δ-concave, whenever γ 6= 0 and u ∈ X(q, 0) 7→ C(eu) is δ-concave whenever

γ = 0.

Remark 3.4.8. The reason the sets are of the specific form in definition 3.4.7 and not
their opposite will become apparent in Theorems 3.4.18,3.4.19 and 3.4.20.

We will introduce one last notion, wherein δ-γ-concavity holds in some asymptotic way.

Definition 3.4.9. We call a Copula C : [0, 1]m → [0, 1] asymptotically δ-concave if for
each γ > 0 there exists a point q(γ) ∈ (0, 1)m such that C is δ-γ-concave when restricted
to the set X̃(γ) = [0, q(γ)]m and moreover limγ↓0 q(γ) = 1.

3.4.2.1 Structure of the family of δ-γ-concave Copulae

At first sight it might appear that the family of δ-γ-concave Copulae is rather loose. In
particular it may appear that the δ-0-Copulae fit in rather artificially. The following
results show that this is not true and that the family is naturally ordered.

It follows from Lemma 2.5.5 that δ-concavity implies some ”descending” order, i.e., a
δ-concave mapping is also β-concave whenever β ≤ δ. It turns out that the effect of γ is
ascending as the following lemma shows.

Lemma 3.4.10. Let C : [0, 1]m → [0, 1] be a δ-β-concave Copula and let α ∈ R be given
such that β ≤ α. Then C is also δ-α-concave.

Proof. Pick any x, y ∈ [0, 1]m and λ ∈ [0, 1] arbitrarily. We begin with the special case
β = 0, and α > 0. We derive from concavity of the log-function and monotonicity of the
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exp function that:

m1(x, y, λ)
1
α = exp (

1

α
logm1 (x , y , λ)) ≥ exp (

1

α
m1 (log x , log y , λ))

= exp (m1 (
1

α
log x ,

1

α
log y , λ)) = exp (m1 (log x

1

α , log y
1

α , λ)),

where with x ∈ (0, 1]m, it follows that log(x
1
α ) ∈ X(0). Now from monotonicity of the

Copula we get

C(m1(x, y, λ)
1
α )) ≥ C(exp (m1 (log x

1

α , log y
1

α , λ)))

≥ mδ(C(x
1
α ), C(y

1
α ), λ),

which was to be shown by δ-concavity of u 7→ C(eu) and Remark 3.4.3. Now picking any

β 6= 0 and α ≥ β, we define z = x
1
α , w = y

1
α , when α 6= 0 and z = exp (x ), w = exp (y)

when α = 0. Together with x, y ∈ X(α), this implies z, w ∈ [0, 1]m. Now with β 6= 0, one

obtains zβ, wβ ∈ X(β). We then observe that m1(x, y, λ)
1
α = mα(z, w, λ), when α 6= 0

and exp (m1 (x , y , λ)) = m0(z, w, λ) when α = 0. It therefore follows from monotonicity
of the Copula combined with Lemma 2.5.5 and δ-β-concavity of the Copula that

C(m1(x, y, λ)
1
α ) = C(mα(z, w, λ)) ≥ C(mβ(z, w, λ))

≥ mδ(C(z), C(w), λ) = mδ(C(x
1
α ), C(y

1
α ), λ),

when α 6= 0 and for α = 0, we get

C(exp (m1 (x , y , λ))) = C(m0(z, w, λ)) ≥ C(mβ(z, w, λ))

≥ mδ(C(z), C(w), λ) = mδ(C(e
x), C(ey), λ),

as was to be shown.

Remark 3.4.11. This is an extension of Proposition 3 of [111] where it is shown that
0-0-concavity implies 0-1-concavity.

One can also prove this same lemma with the local δ-γ-concavity notion.

Lemma 3.4.12. Let q ∈ (0, 1)m be given and let C : [0, 1]m → [0, 1] be a δ-β-q-concave
Copula and let α be given such that 0 ≤ β ≤ α. Then C is also δ-α-q-concave.

Proof. The proof is identical to that of Lemma 3.4.10 except that we need to take care
of the domains. To this end pick x ∈ X(q, α). We begin by considering the case β = 0,

α > 0. It then follows from monotonicity of the log function and of x 7→ x
1
α , that

log x
1
α ≥ log(q). In a similar way it follows with α > β > 0 that x

β
α ≥ q, so that

β-q-concavity can be applied.

Since δ-concavity of an arbitrary mapping implies weaker concavity properties for the
same mapping, we trivially derive the following corollary:

Corollary 3.4.13. Let C : [0, 1]m → [0, 1] be a δ-γ-concave Copula and let α ≥ γ and
β ≤ δ be given. Then C is also β-α-concave.
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3.4.2.2 Tools for deriving δ-γ-Concavity of Copulae

Copulae are in particular probability distribution functions, some of them admitting
densities. The following result is therefore a trivial consequence of Theorem 4.15 [51]:

Lemma 3.4.14. Let C : [0, 1]m → [0, 1] be a Copula, admitting a density c : [0, 1]m →
[0, 1]. If the density c is α-concave for some α ≥ − 1

m
, then C is a δ-1-concave Copula

for δ = α
1+mα

.

The following Corollary follows immediately from this result

Corollary 3.4.15. Let C : [0, 1]m → [0, 1] be a Copula, admitting a density c : [0, 1]m →
[0, 1]. If the density c is such that u ∈ (−∞, 0]m 7→ c(exp (u)) is log-concave then the
Copula is 0-0-concave.

Proof. We begin by remarking that h : (−∞, 0]m → [0, 1], defined as h(u) = C(exp (u))
is also a distribution function. Since C admits a density, the density of h is given by

∂m

∂u1 · · · ∂um
h = c(eu)

m
∏

i=1

eui .

Now the logarithm of the latter function is log(c(eu)) +
∑m

i=1 ui, i.e., the sum of concave
functions, i.e., concave. It follows from Lemma 3.4.14 that h is log-concave, i.e., C is
0-0-concave.

3.4.2.3 Estimates with Copulae

Before moving to our main result, we first derive some useful auxiliary results.

Lemma 3.4.16. Let C : [0, 1]m → [0, 1] be a δ-γ-concave Copula and ∞ ≥ γi ≥ γ,
i = 1, ...,m any sequence of numbers. For any x, y ∈ [0, 1]m, λ ∈ [0, 1], the following
inequality holds

C(mγ1(x1, y1, λ), ...,mγm(xm, ym, λ)) ≥ mδ(C(x1, ..., xm), C(y1, ...., ym), λ).

Proof. Let γi ≥ γ for all i = 1, ...,m be given and pick x, y ∈ [0, 1]m and λ ∈ [0, 1] in an
arbitrary way. We begin by noting thatmγi(xi, yi, λ) ≥ mγ(xi, yi, λ) for any i ∈ {1, ...,m},
since this mapping is non-decreasing by Lemma 2.5.5. Copulae are distribution functions
and hence are increasing in increasing arguments, so we get

C(mγ1(x1, y1, λ), ...,mγm(xm, ym, λ)) ≥ C(mγ(x1, y1, λ), ...,mγ(xm, ym, λ)). (3.4.5)

Now, if γ 6= 0, the right-hand side of (3.4.5) is equal to

C(mγ(x1, y1, λ), ...,mγ(xm, ym, λ)) = C(m1(x
γ
1 , y

γ
1 , λ)

1
γ , ...,m1(x

γ
m, y

γ
m, λ)

1
γ ) (3.4.6)
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and in the case γ = 0, we get

C(m0(x1, y1, λ), ...,m0(xm, ym, λ)) =

C(exp (m1 (log x1 , log y1 , λ)), ..., exp (m1 (log xm , log ym , λ))). (3.4.7)

For z, w ∈ (0, 1], we can also derive that

m1(z
γ, wγ , λ) ∈ [min {zγ , wγ} ,max {zγ, wγ}],

when γ 6= 0 and m1(log z, logw, λ) ∈ [min {log(z), log(w)} ,max {log(z), log(w)}]. This
shows that

(m1(x
γ
1 , y

γ
1 , λ), ...,m1(x

γ
m, y

γ
m, λ)) ∈ X(γ),

when γ 6= 0 and

(m1(log x1, log y1, λ), ...,m1(log xm, log ym, λ)) ∈ X(0).

Hence, since the mappings on the right-hand side of (3.4.6) and (3.4.7) are δ-concave we
obtain the estimates

C(mγ1(x1, y1, λ), ...,mγm(xm, ym, λ)) ≥ mδ(C(x1, ..., xm), C(y1, ...., ym), λ),

as was to be shown.

Lemma 3.4.17. Let q ∈ (0, 1)m be a given point and let C : [0, 1]m → [0, 1] be a δ-γ-q-
concave Copula. Assume furthermore that ∞ ≥ γi ≥ γ, i = 1, ...,m is any sequence of
numbers. Then for any x, y ∈ [q, 1]m and λ ∈ [0, 1] the following inequality holds:

C(mγ1(x1, y1, λ), ...,mγm(xm, ym, λ)) ≥ mδ(C(x1, ..., xm), C(y1, ...., ym), λ).

Proof. Let γi ≥ γ for all i = 1, ...,m be given and pick x, y ∈ [q, 1]m and λ ∈ [0, 1] in an
arbitrary way. Using the arguments of the proof of Lemma 3.4.16 we can derive equations
(3.4.6) and (3.4.7). It remains to show that

(m1(x
γ
1 , y

γ
1 , λ), ...,m1(x

γ
m, y

γ
m, λ)) ∈ X(q, γ),

when γ 6= 0 and

(m1(log x1, log y1, λ), ...,m1(log xm, log ym, λ)) ∈ X(q, 0).

Then we can apply again the δ-concavity inequality to derive the final estimate of the
Lemma. To this end, pick z, w ∈ [q, 1] arbitrarily and consider the case γ ≥ 0. From
monotonicity of the mapping u ∈ [0, 1] 7→ uγ (or u ∈ (0, 1] 7→ log(u)), we obtain for u ≥ q
that uγ ≥ qγ (or log(u) ≥ log(q)). Altogether this impliesm1(z

γ, wγ , λ) ≥ min {zγ, wγ} ≥
qγ, i.e., m1(x

γ , yγ , λ) ∈ X(q, γ). When γ < 0, the map u ∈ (0, 1] 7→ uγ is decreasing,
so u ≥ q yields uγ ≤ qγ. This in turn implies m1(z

γ, wγ , λ) ≤ max {zγ , wγ} ≤ qγ , i.e.,
m1(x

γ, yγ , λ) ∈ X(q, γ).
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3.4.3 Eventual Convexity of the Feasible Set

As in the result by Kataoka ([121]), convexity of the feasible set M(p) cannot always be
obtained for any probability level p. From a practical perspective this is not necessarily
a problem since we are naturally looking for high p levels in problems of type (3.4.3). In
some cases, we can show that the feasible set is convex if p is large enough. Convexity of
feasible sets with high enough p is known as eventual convexity. In this section we will
show that we can derive such eventual convexity if the Copulae, individual probability
distribution functions and constraint mappings have some specific generalized concavity
properties.

In the following theorem, we will provide conditions on Copulae, individual probability
distribution functions and constraint mappings h such that eventual convexity of the
feasible set can be asserted.

Theorem 3.4.18. Let ξ ∈ Rm be a random vector with associated Copula C, and let
hi : R

n → R be functions such that

P[ξ ≤ h(x)] = C(F1(h1(x)), ..., Fm(hm(x))), (3.4.8)

where Fi are the marginal distribution functions of component i of ξ, i = 1, ...,m. Assume
that we can find αi ∈ R, such that the functions hi are αi-concave and a second set of
parameters γi ∈ (−∞,∞], bi > 0 such that either one of the following conditions holds:

1. αi < 0 and z 7→ Fi(z
1
αi ) is γi-concave on (0, bαi

i ]

2. αi = 0 and z 7→ Fi(exp z) is γi-concave on [log bi,∞)

3. αi > 0 and z 7→ Fi(z
1
αi ) is γi-concave on [bαi

i ,∞),

where i ∈ {1, ...,m} is arbitrary. If the Copula is either δ-γ-concave or δ-γ-F (b)-concave
for γ ≤ γi ≤ ∞, i = 1, ...,m, then the set M(p) := {x ∈ Rn : P[ξ ≤ h(x)] ≥ p} is convex
for all p > p∗ := maxi=1,...,m Fi(bi). Convexity can moreover be derived for all p ≥ p∗ if
each individual distribution function Fi, i = 1, ...,m is strictly increasing. In the specific
case that αi ≥ 0, γi-concavity of the distribution functions holding everywhere, for all
i ∈ {1, ...,m} and C being a δ-γ-concave Copula, the set M(p) is convex for all p.

Proof. Pick any p > p∗, x, y ∈ M(p), λ ∈ [0, 1] and i ∈ {1, ...,m} arbitrarily. Define
xλ := m1(x, y, λ). Since all Copulae are dominated by the maximum-Copula, we get:

Fi(hi(x)) ≥ min
j=1,...,m

Fj(hj(x)) ≥ C(F1(h1(x)), ..., Fm(hm(x))) ≥ p > p∗ ≥ Fi(bi). (3.4.9)

Now the latter entails
hi(x) ≥ bi. (3.4.10)

Estimate (3.4.10) also holds whenever p ≥ p∗ and Fi is strictly increasing for each i =
1, ...,m. A similar estimate is obtained for y clearly. We make a case distinction

68



1. αi < 0: In this case λhi(x)
αi + (1− λ)hi(y)αi ≤ max {hi(x)αi, hi(y)

αi} ≤ bαi
i

2. αi = 0: In this case λ log hi(x)+(1−λ) log hi(y) ≥ min {log hi(x), log hi(y)} ≥ log bi.

3. αi > 0: In this case λhi(x)
αi + (1− λ)hi(y)αi ≥ min {hi(x)αi, hi(y)

αi} ≥ bαi
i .

From monotonicity of the probability distribution function Fi, and αi-concavity of gi we
obtain

Fi(hi(x
λ)) ≥ Fi(mαi

(hi(x), hi(y), λ)) = Fi((λhi(x)
αi + (1− λ)hi(y)αi)

1
αi ), (3.4.11)

whenever αi 6= 0 and

Fi(hi(x
λ)) ≥ Fi(m0(hi(x), hi(y), λ)) = Fi(exp (λ log hi(x) + (1− λ) log hi(y))), (3.4.12)

when αi = 0. The mappings in the right-hand side are γi concave by assumption on a
specific domain. Since we have shown that our arguments map in this domain, we can
apply γi-concavity and obtain:

Fi(hi(x
λ)) ≥ mγi(Fi(hi(x)), Fi(hi(y)), λ). (3.4.13)

Since i was fixed but arbitrary, the above equation holds for all i = 1, ...,m.

A Copula is strictly increasing in its arguments, so we get from (3.4.13):

C(F1(h1(x
λ)), ..., Fm(hm(x

λ))) ≥
C(mγ1(F1(h1(x)), F1(h1(y)), λ), ...,mγm(Fm(hm(x)), Fm(hm(y)), λ)).(3.4.14)

If the Copula is δ-γ-concave everywhere then we can apply Lemma 3.4.16 to obtain:

C(mγ1(F1(h1(x)), F1(h1(y)), λ), ...,mγm(Fm(hm(x)), Fm(hm(y)), λ)) ≥
mδ(C(F1(h1(x)), ..., Fm(hm(x))), C(F1(h1(y)), ..., Fm(hm(y))), λ) ≥ p,

which together with (3.4.14) gives C(F1(h1(x
λ)), ..., Fm(hm(x

λ))) ≥ p, i.e., xλ ∈ M(p).
If the Copula is δ-γ-F (b)-concave, we have Fi(hi(x)) ≥ Fi(bi) and we can apply Lemma
3.4.17 to obtain the same expression. Altogether we have shown:

C(F1(h1(x
λ)), ..., Fm(hm(x

λ))) ≥
mδ(C(F1(h1(x)), ..., Fm(hm(x))), C(F1(h1(y)), ..., Fm(hm(y))), λ) ≥ p,

which is equivalent with C(F1(h1(x
λ)), ..., Fn(hm(x

λ))) ≥ p, i.e., xλ ∈M(p) as was to be
shown.

The asserted convexity of M(p) regardless of p under the additional assumptions regard-
ing the generalized concavity of hi and Fi (for each i = 1, ...,m) follows since one can
apply the estimates (3.4.11) and (3.4.12) for all x, y, regardless of the domains to which
hi(x) and hi(y) belong. All other estimates of this proof also carry through. Therefore,
since the request p ≥ p∗ was only needed to obtain (3.4.10), convexity of M(p) can be
shown regardless of p in that case.
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An unfortunate effect in this lemma is that p∗ depends somehow on the ”worst” dis-
tribution function Fi and it is only needed to obtain estimate (3.4.9). We can actually
sharpen the bound on p∗ as the following theorem shows:

Theorem 3.4.19. Define the set D := {x ∈ Rn : hi(x) ≥ bi, ∀i = 1, ...,m}, where bi is
as defined in Theorem 3.4.18 and we make the same assumptions on ξ, Fi and the Copula.
Then the set D is convex and D∩M(p) is convex for all p ≥ p∗ = C(F1(b1), ..., Fn(bn)).

Proof. Since the mappings hi are αi-concave for all i = 1, ...,m, the set D is indeed
convex. Now from monotonicity of the Copula and the distribution functions Fi, x ∈ D
implies C(F1(h1(x)), ..., Fm(hm(x))) ≥ p∗. Since we dispose of estimate (3.4.10), for any
x, y ∈ D, the rest of the proof of Theorem 3.4.18 carries through.

Finally, we provide one last extension of the theorem with asymptotic δ-concave Copulae.

Theorem 3.4.20. Let ξ ∈ R
m be a random vector with associated Copula C, and let

hi : R
n → R be functions such that

P[ξ ≤ g(x)] = C(F1(h1(x)), ..., Fm(hm(x))), (3.4.15)

where Fi are the marginal distribution functions of component i of ξ with unbounded
support. Assume that we can find αi ∈ R, such that the functions hi are αi-concave and
a second set of parameters γi ∈ [γ̄,∞], bi > 0, γ̄ > 0 such that either one of the following
conditions holds:

1. αi < 0 and z 7→ Fi(z
1
αi ) is γi-concave on (0, bαi

i ]

2. αi = 0 and z 7→ Fi(exp z) is γi-concave on [log bi,∞)

3. αi > 0 and z 7→ Fi(z
1
αi ) is γi-concave on [bαi

i ,∞),

for all i ∈ {1, ...,m}. If the Copula is asymptotically δ-concave, then set M(p) :=
{x ∈ Rn : P[ξ ≤ h(x)] ≥ p} is convex for all p > p∗ := maxi=1,...,m Fi(bi).

Proof. Pick x, y ∈ M(p), λ ∈ [0, 1] and i ∈ {1, ...,m} arbitrarily. Since the distribution
functions Fi are assumed to have unbounded support, it follows that Fi(hi(x)) < 1,
Fi(hi(y)) < 1 and Fi(hi(λx + (1 − λ)y)) < 1. From the definition of asymptotic δ-
concavity, it follows that one can find a γ̃ > 0 such that Fi(hi(z)) ≤ qi(γ) for all γ < γ̃,
z = x, y or z = λx + (1 − λ)y and for all i = 1, ...,m. One can pick γ̃ moreover such
that γ̃ ≤ γ̄. This shows that all arguments in the proof of Theorem 3.4.18 are in the set
X(q, γ) for γ < γ̃ and one can therefore apply that theorem to conclude the proof.

Remark 3.4.21. Our main Theorem 3.4.18 provides a link between generalized concavity
requirements on the constraint mapping g, that of the one dimensional distribution func-
tions Fi, i = 1, ...,m and that of the Copula. This link was less apparent in the earlier
results [111] since it was required to have αi < 0, γi = 1 together with δ = γ = 0. The
results presented here show that already in the setting of [111] an improvement could be
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obtained by remarking that concavity of z 7→ F (z
1
α ) for one dimensional probability distri-

bution functions F on a set K implies log-concavity on the same set. The result is clearly
an extension of those obtained in [110], since the independent Copula is 0-0-concave.

Remark 3.4.22. The advantage of Theorem 3.4.19 over Theorem 3.4.18 is that it rein-
serts the dependence of p∗ on the Copula and not just its generalized concavity property.
We will illustrate this effect in later examples. If we call p∗1 the critical level obtained
in Theorem 3.4.18 and p∗2 that of Theorem 3.4.19, then it follows always p∗2 ≤ p∗1. In-
deed picking p ≥ p∗1, x ∈ M(p) one derives from equation (3.4.10) that x ∈ D, i.e.,
x ∈M(p) ∩D. The latter set is shown to be convex whenever p ≥ p∗2, implying p∗1 ≥ p∗2.

An extension of interest is obtained only if either

1. More constraint mappings h can be allowed for. This is not truly the case, since
any α-concave mapping is in particular β-concave for some β < 0. However we
might be able to exploit better the true concavity properties of the mappings. This
is shown in section 3.4.4.1.

2. The obtained probability level p∗ is lower. This is shown in the examples of section
3.4.4.2.

3. The class of δ-γ-concave Copulae is larger than that of the log-exp-concave Copulae.
This is shown in section 3.4.4.3.

These points are illustrated in section 3.4.4 through examples and results.

One key question if probability distribution functions with the required properties of The-
orem 3.4.18 exist is answered positively already in the papers [110, 111]. It is shown that
a specific property of the density known as r-decreasingness is sufficient (see Definition

2.5.21). Indeed this property induces, through Lemma 2.5.22 concavity of z 7→ F (z−
1
r )

on a set (0, t∗)−r for some t∗ > 0.

It turns out that many distribution functions have this property and the dependence of
t∗ on r can be analytically computed for these distributions. We refer to table 1 of [111]
for those results.

3.4.4 A generalization of Results

3.4.4.1 Improved use of Generalized Concavity of the Constraint Mappings

We begin by showing that Theorem 3.4.18 allows us to exploit the true generalized con-
cavity properties of the constraint mappings h better. To this end consider the following
example:

Example 3.4.23. Consider log-concave mappings hi and a log-exp-concave Copula to-
gether with a random vector having exponentially distributed components. Let λ denote
the parameter of these exponential distributions. We can for instance take h1(x, y) =
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log(x + y) + 0.1 and h2(x, y) = log(2x + 3y) + 0.2, where hi : R
2
+ → R, i = 1, 2. In

order to be able to apply Theorem 3.4.18 and derive convexity of the set M(p) for chance
constraints structured as (3.4.2), we have to show that the mappings z 7→ F (ez) are log-
concave, i.e., z 7→ f(z) := log(1 − exp(−λez)) has to be concave. This can be shown to
hold on R. Pick x, y ∈ R and µ ∈ [0, 1] arbitrarily. From convexity of the exponential
function we get −λ exp(m1(x, y, µ)) ≥ −λm1(exp(x), exp(y), µ). A second application
then yields

− exp(−λm1(exp(x), exp(y), µ)) ≥ −m1(exp(−λ exp(x)), exp(−λ exp(y)), µ).

Altogether we get from strict increasingness of the log

log(1 + (− exp(−λ exp(m1(x, y, µ))))) ≥
log(m1(1− exp(−λ exp(x)), 1− exp(−λ exp(y)), µ)) ≥ m1(f(x), f(y), µ),

as was required. We can therefore apply Theorem 3.4.18 to show that convexity of M(p)
holds for all p levels. Since any log-concave mapping is in particular r-concave for all
r < 0, we could have also applied the earlier results obtained by [111]. Then we would
obtain convexity of the feasible set for p ≥ 1 − er−1. And this would hold for all r < 0,
yielding convexity for p > 1− e−1 = 0.63.

3.4.4.2 Improved Estimates of p∗

Following Remark 3.4.21, Theorem 3.4.18 appears in a somewhat weaker form in [110,
111]. In particular, in those papers the authors show that if a density is r+1-decreasing,

then the constraint mapping z 7→ F (z−
1
r ) is concave on some set (0, t∗r). Now this

corresponds to picking γi = 1 in Theorem 3.4.18, but log-exp concavity of Copulae
implies γ = 0, leaving room for a gap to be filled. Indeed the following Lemma is a
trivial consequence of generalized concavity:

Lemma 3.4.24. Let F : R → [0, 1] be a probability distribution function with a γ + 1-

decreasing density for some γ > 0. Then the function z 7→ F (z−
1
γ ) is α-concave on

(0, (t#)−γ), with t# ≤ t∗, where t∗ is as in Definition 2.5.21. Moreover this holds for all
α ≤ 1.

Proof. This follows trivially since α-concavity implies β-concavity for all β ≤ α on the
same set, so one can pick t# ≤ t∗, potentially degenerate t# = t∗.

An example shows that weaker concavity is actually obtained on a larger set, i.e., t# < t∗.

Example 3.4.25. We can get back to [110, example 4.1]. To this end we pick −1-concave
mappings hi. In the above cited example the specific mappings h1(x, y) =

1
x2+y2+0.1

and

h2(x, y) =
1

(x+y)2+0.1
from R2 to R are chosen. We moreover pick any 0-0-concave Cop-

ula, i.e., some log-exp concave Copula, such as for instance the independent, Gumbel
or maximum Copula. In order to be able to apply Theorem 3.4.18 and derive convex-
ity of the set M(p) for chance constraints structured as (3.4.2), we have to show that
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z 7→ F (1/z) is log-concave on some set (0, (t#)−1). Assume that F is the distribution
function of an exponential random variable with parameter λ. Then upon defining the
mapping f(z) = logF (1/z) = log (1− exp (−λ

z
)), we have to show that this mapping is

concave. To this end we will compute the first and second derivative and we obtain for
any z > 0:

f ′(z) = (1− (1− exp (−λ
z
))−1)λz−2

f ′′(z) = f ′(z)[−2z−1 + λz−2(1− exp (−λ
z
))−1].

Now z > 0 implies 0 < exp (−λ
z
) < 1, yielding (1 − exp (−λ

z
))−1) > 1 and therefore

f ′(z) < 0. So the sign of f ′′(z) depends on that of [−2z−1+λz−2(1− exp (−λ
z
))−1]. From

the above estimate we get

−2z−1 + λz−2(1− exp (−λ
z
))−1 ≥ −2z−1 + λz−2, (3.4.16)

so indeed f ′′(z) < 0 for small z (but we knew this already, since the exponential density
is 2-decreasing). It turns out that f ′′(z) = 0 if and only if exp (−λ

z
) = 1 − λ

2z
. We can

compute this z# by using for instance a dichotomy procedure (picking λ = 1, yielding
z# = 0.62750048, i.e., t# = 1.59362426). The obtained p∗ of Theorem 3.4.18 is then
equal to p∗ = 1 − exp (−λt#) = 0.7968121, which is significantly better than the earlier
obtained p∗ = 0.864. Empirically varying λ yields the result that the improved p∗ does
not depend on λ, similarly to the results obtained in [110].

We can also look at Theorem 3.4.19 and look at the set M(p) ∩
{

x ∈ Rn : hi(x) ≥ t#
}

for p ≥ p∗ = C(F1(t
#), ..., Fm(t

#)). Now this results depends on the Copula. Picking the
Maximum Copula we get p∗ = 0.7968121 as before. Picking the Independent Copula we
get p∗ = 0.79681212 = 0.6349 and the Gumbel Copula with θ = 1.1 yields p∗ = 0.652770.
The latter result does not depend on θ, at least as found empirically.

Example 3.4.26. Returning once again to [110, example 4.1] and example 3.4.25 above,
we can likewise stipulate that the components of ξ follow a standard normal distribution.
These components are linked through a log-exp concave Copula. In the paper [110] the
authors have shown that the map z 7→ Φ(1/z) is concave on (0, 1/

√
2). This then yields

a bound of p∗ = Φ( 1√
2
) = 0.921, where Φ is the probability distribution function of a

standard normal random variable in dimension 1. In order to be able to apply Theorem
3.4.18 and derive convexity of the set M(p) for chance constraints structured as (3.4.2),
we have to show that z 7→ Φ(1/z) is log-concave only. Calling f(z) = log(Φ(1/z)), we
can compute and obtain for z > 0:

f ′(z) = −z−2Φ′(z−1)Φ(z−1)−1

f ′′(z) = f ′(z−1)(−2z−1 + z−3 + z−2Φ′(z−1)Φ(z−1)−1),

where we have used that Φ′′(z−1) = −z−1Φ′(z−1). Indeed, f ′(z) < 0 for z > 0 and
f ′′(z) < 0 for z > 0 small enough. We can again numerically compute z# such that
f ′′(z#) = 0, i.e., −2z−1 + z−3 + z−2Φ′(z−1)Φ(z−1)−1 = 0 at z = z#, and obtain z# =
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0.754205. Convexity of the feasible set is then obtained for p ≥ p∗ = Φ( 1
z#
) = 0.90756,

from Theorem 3.4.18 which is only marginally better.

Applying Theorem 3.4.19 however and distinguishing Copulae allows us to obtain an
improved p∗ level for the Gumbel and Independent Copula. Indeed, then we get p∗ =
0.8334 and p∗ = 0.824 respectively.

3.4.4.3 More Copulae

The last extension that Theorem 3.4.18 allows for is that we can use more Copulae, if the
class of δ-γ-concave Copulae contains more Copulae than just log-exp-concave Copulae.
This turns out to be the case. Indeed the following Lemma shows that the Clayton
Copula is δ-γ-concave for specific δ values. It was however shown in [111] that it was not
log-exp-concave.

Lemma 3.4.27. Let θ > 0 be the parameter of the strict generator ψ : [0, 1] → R+,
ψ(t) = θ−1(t−θ − 1) of the Clayton Copula. This Copula is δ-γ-concave for all γ > 0
provided that δ ≤ −θ < 0.

Proof. The inverse of the generator is given by ψ−1(s) = (θs + 1)−
1
θ , so the Copula is

defined as C(u) = ψ−1(
∑n

i=1 ψ(ui)), where u ∈ [0, 1]m. We begin by computing the
derivatives of the generator

dψ

dt
(t) = −t−θ−1

dψ−1

ds
(s) = (θs+ 1)−

1
θ
−1 = −ψ−1(s)(θs+ 1)−1.

We will consider the mapping f(u) = C(u
1
γ )δ and have to show that it is convex. From

Remark 3.4.3 it follows that it is sufficient to consider u ∈ (0, 1]m only. This implies that

C(u
1
γ ) > 0 and in particular that f(u) and its derivatives are well defined. We therefore

fix u ∈ (0, 1]m arbitrarily and compute the first and second order derivatives of f . A
computation gives

∂f

∂uk
(u) = δC(u

1
γ )δ−1 ∂C

∂zk
(u

1
γ )

1

γ
u

1
γ
−1

k , k = 1, ...,m. (3.4.17)

When computing the derivative of the Copula, we obtain:

∂C

∂uk
(u) =

dψ−1

ds
(

m
∑

i=1

ψ(ui))
dψ

dt
(uk) = C(u)(θ

m
∑

i=1

ψ(ui)+1)−1u−θ−1
k , k = 1, ...,m (3.4.18)

Substituting altogether we get:

∂f

∂uk
(u) =

δ

γ
C(u

1
γ )δ(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−1u
− θ+γ

γ

k , k = 1, ...,m. (3.4.19)

74



Deriving a second time, we get

∂2f

∂u2k
(u) =

δ

γ
(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−1u
− θ+γ

γ

k

∂

∂uk
C(u

1
γ )δ

+
δ

γ
C(u

1
γ )δu

− θ+γ
γ

k

∂

∂uk
(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−1

+
δ

γ
C(u

1
γ )δ(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−1 ∂

∂uk
u
− θ+γ

γ

k , k = 1, ...,m.

In the first line we can just substitute (3.4.19), in the second line we obtain

∂

∂uk
(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−1 = −(θ
m
∑

i=1

ψ(u
1
γ

i ) + 1)−2θ
dψ

dt
(u

1
γ

k )
1

γ
u

1
γ
−1

k

=
θ

γ
(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−2u
− θ+γ

γ

k , k = 1, ...,m.

and in the third line,

∂

∂uk
u
− θ+γ

γ

k = −θ + γ

γ
u
− θ+γ

γ
−1

k , k = 1, ...,m. (3.4.20)

For the cross-derivative, j, k = 1, ...,m, the expression becomes:

∂2f

∂uj∂uk
(u) =

δ

γ
(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−1u
− θ+γ

γ

k

∂

∂uj
C(u

1
γ )δ

+
δ

γ
C(u

1
γ )δu

− θ+γ
γ

k

∂

∂uj
(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−1, j 6= k

In the first line one substitutes (3.4.19) with k replaced by j and the second is dealt
with similarly as before. Combining these expression we obtain for all u ∈ (0, 1]m,
k, j = 1, ...,m:

∂2f

∂u2k
(u) =

δ2 + δθ

γ2
C(u

1
γ )δ(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−2(u
− θ+γ

γ

k )2

− δ

γ

θ + γ

γ
C(u

1
γ )δ(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−1u
− θ+γ

γ
−1

k

∂2f

∂uj∂uk
(u) =

δ2 + δθ

γ2
C(u

1
γ )δ(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−2u
− θ+γ

γ

k u
− θ+γ

γ

j , j 6= k.

We have to show that the Hessian is positive semi-definite for all u ∈ (0, 1]m, we will do
this directly, by picking z 6= 0, z ∈ R

m and forming zT∇2f(u)z. The special structure
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of the above second-derivatives is as follows ∂2f
∂u2

k
(u) = α(u)x2k + βk(u) and ∂2f

∂uj∂uk
(u) =

α(u)xjxk. Now

zT∇2f(u)z =
m
∑

j=1

m
∑

k=1

zj
∂2f

∂uj∂uk
(u)zk

=
∑

j,k,j 6=k

α(u)zjxjxkzk +
m
∑

k=1

α(u)z2kx
2
k + z2kβk(u)

= α(u)
m
∑

j=1

m
∑

k=1

zjxjxkzk +
m
∑

k=1

z2kβk(u)

= α(u)(
m
∑

j=1

zjxj)
2 +

m
∑

k=1

z2kβk(u).

Substituting the above expressions, we obtain:

zT∇2f(u)z = C(u
1
γ )δ

δ2 + δθ

γ2
(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−2(

m
∑

i=1

ziu
− θ+γ

γ

i )2

− C(u
1
γ )δ

δ

γ

θ + γ

γ
(θ

m
∑

i=1

ψ(u
1
γ

i ) + 1)−1
m
∑

i=1

z2i u
− θ+γ

γ
−1

i . (3.4.21)

Now with our choice of δ, we obtain δ2 + δθ ≥ 0 and similarly − δ
γ
≥ 0. Together with

u ∈ (0, 1]m, one can see that all expressions in (3.4.21) are positive. This therefore yields
zT∇2f(u)z ≥ 0, i.e., f is a convex function, as was to be shown.

Remark 3.4.28. Numeric evidence would indicate that the Clayton Copula is also δ-
γ-concave for δ slightly bigger than −θ, but not for all δ < 0. Indeed, in dimension
2, picking δ = −0.03, θ = 0.1, γ = 0.5 and evaluating the above Hessian at the point
u = (0.96, 0.985), one obtains a negative eigenvalue.

Remark 3.4.29. We can also prove that the Clayton Copula is δ-0 concave for δ ≤ −θ.
Indeed setting f(u) = C(eu)δ one obtains for u ∈ (−∞, 0]m:

∂f

∂uk
(u) = δC(eu)δ(θ

m
∑

i=1

ψ(eui) + 1)−1e−θuk , k = 1, ...,m

and for j, k = 1, ...,m:

∂2f

∂u2k
(u) = (δ2 + δθ)C(eu)δ(θ

m
∑

i=1

ψ(eui) + 1)−2e−2θuk

− θδC(eu)δ(θ
m
∑

i=1

ψ(eui) + 1)−1e−θuk

∂2f

∂uj∂uk
(u) = (δ2 + δθ)C(eu)δ(θ

m
∑

i=1

ψ(eui) + 1)−2e−θuke−θuj , j 6= k.

And the same results follow.
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We have shown in lemma 3.4.27 that the Clayton Copula is δ-γ-concave for all γ > 0
and δ ≤ −θ. Since this Copula is not log-exp concave, the results of [111] could not be
applied. We can however use our theorem to derive convexity of feasible sets M(p). As
such we get the example:

Example 3.4.30. Consider again the same setting as that of example 3.4.23, except
that this time we use the Clayton Copula to link the components of ξ together. Since this
Copula is δ-γ-concave for any γ > 0 and δ ≤ −θ, we have to show that the mappings
z 7→ F (1/z) are γ-concave on some set (0, (t#)−1). Since results hold in particular for
γ < 1, concavity of those maps suffices. That is obtained whenever their densities are for
instance 2-decreasing. Assuming that ξ follows an exponential distribution with parameter
λ, we obtain the very rough bound p∗ = 1 − e−2 = 0.864. But we can do better, to this
end we have to show that the mapping f(z) = F (1/z)γ = (1− exp (−λ

z
))γ, is concave. A

computation gives

f ′(z) = −λγz−2(1− exp (−λz−1 ))γ−1 exp (−λz−1 )

f ′′(z) = f ′(z)[−2z−1 − (γ − 1)λz−2(1− e−λz−1

)−1e−λz−1

+ λz−2].

Applying Theorem 3.4.18, and picking for instance γ = 1
2
, one obtains z# = 0.54807,

giving the estimate p∗ = 0.8387. With γ = 0.01, one obtains z# = 0.62537 and the
estimate p∗ = 0.7979. Again p∗ does not depend on λ.

We can also apply Theorem 3.4.19 to obtain p∗ = 0.638 for θ = 0.1. This time the result
depends on θ as can be shown empirically.

3.4.5 A Partial Characterization of the Gaussian Copula

So far we have only provided examples of Archimedean Copulae with the δ-γ-concavity
property. In this section we investigate the Gaussian Copula and provide a partial char-
acterization of the δ-γ-concavity properties of this Copula.

Lemma 3.4.31. Let R be an m ×m correlation matrix. Assume furthermore that the
m×m inverse matrix is such that Q := R−1 − I has only positive components. Let δ =
mini=1,...,m maxj=1,...,mQij and define q = max

{

log(Φ(1
δ
)), log(Φ(1))

}

, then the density
of the Gaussian Copula is 0-0-concave for all u ∈ [q, 0]m, where Φ is the probability
distribution function of a standard normal random variable.

Proof. Define the mapping f : (−∞, 0]m → Rm by setting

f(u) = Φ−1(eu) = (Φ−1(eu1), ...,Φ−1(eum)),

where Φ−1 is the inverse of the standard normal distribution function. We wish to show
that the density of the Gaussian Copula wherein we substitute eu, is eventually log-
concave, i.e., the mapping u 7→ cR(e

u) is concave. Now the density cR of the Gaussian
Copula is given by

cR(u) =
1√
detR

exp (−0 .5Φ−1 (u)T(R−1 − I )Φ−1 (u)). (3.4.22)
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This boils down to showing that the mapping u 7→ f̂(u) := f(u)T(R−1−I)f(u) is convex.
We will begin by computing some derivatives. To this end, fix any u ∈ (−∞, 0]m com-
pletely arbitrarily. For convenience we will note Q := R−1 − I. We begin by computing
the first and second derivative of a component of the vector f(u), i.e., we compute the
derivatives of the 1-dimensional mapping v ∈ (−∞, 0] 7→ fi(v) for arbitrary i = 1, ...,m:

dfi
dv

(v) =
dΦ−1

dv
(ev)ev =

√
2π exp (

1

2
Φ−1 (ev)2 )ev, i = 1, ...,m, ∀v ∈ (−∞, 0]

and

d2Φ−1

ds2
(s) =

√
2π exp (

1

2
Φ−1 (s)2 )

1

2
2Φ−1(s)

dΦ−1

ds
(s)

= (
√
2π exp (

1

2
Φ−1 (s)2 ))2Φ−1(s), ∀s ∈ (0, 1).

Giving

d2fi
dv2

(v) =
d2Φ−1

ds2
(ev)evev +

dfi
dv

(v)

= fi(v)(
dfi
dv

(v))2 +
dfi
dv

(v), i = 1, ...,m, ∀v ∈ (−∞, 0].

Now we can compute the derivatives of the mapping f̂ ,

∂f̂

∂uk
(u) = 2

dfk
du

(uk)
m
∑

j=1

Qkjfj(uj), k = 1, ...,m

and the second derivatives are:

∂2f̂

∂u2k
(u) = 2

d2fk
du2

(uk)Qkkfk(uk) + 2
dfk
du

(uk)Qkk
dfk
du

(uk)

+ 2

m
∑

j=1,j 6=k

d2fk
du2

(uk)Qkjfj(uj), k = 1, ...,m

∂2f̂

∂uj∂uk
(u) = 2

dfk
du

(uk)Qkj
dfj
du

(uj), j, k = 1, ...,m, j 6= k

Substituting in the above expression the previously found identity for the second deriva-
tive of fi, we obtain

∂2f̂

∂u2k
(u) = 2

dfk
du

(uk)Qkk
dfk
du

(uk) + 2
m
∑

j=1

d2fk
du2

(uk)Qkjfj(uj)

= 2
dfk
du

(uk)Qkk
dfk
du

(uk)

+ 2
dfk
du

(uk)
2[(fk(uk) + (

dfk
du

(uk))
−1)

m
∑

j=1

Qkjfj(uj))], k = 1, ...,m
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where we have used that dfk
du
(uk) > 0 for all u ∈ (−∞, 0]m. Now picking z ∈ R

m and
forming zT∇2h(u)z, one obtains the following

zT∇2f̂(u)z = 2

m
∑

i,j=1

zi
dfi
du

(ui)Qij
dfj
du

(uj)zj

+ 2

m
∑

k=1

z2k
dfk
du

(uk)
2[(fk(uk) + (

dfk
du

(uk))
−1)

m
∑

j=1

Qkjfj(uj))],

which holds for all u ∈ (−∞, 0]m as u was chosen arbitrarily.

If we define the vector x(u) ∈ R
m as x(u) = (z1

df1
du
(u1), ..., zm

dfm
du

(um)), and the matrix

Q̃(u) as

Q̃(u)ij =

{

Qij if i, j = 1, ...,m, i 6= j

Qii + (fi(ui) + (dfi
du
(ui))

−1)
∑m

j=1Qijfj(uj)) if i = 1, ...,m

It is clear that zT∇2f̂(u)z = x(u)TQ̃(u)x(u) and zT∇2f̂(u)z ≥ 0 if and only if Q̃(u) is
positive semi-definite. Defining the vector α(u) ∈ Rm as the diagonal of Q̃(u) minus the
diagonal of Q, it is clear that Q̃(u) = Q + diagα(u), where diagα(u) is the diagonal
matrix with elements of the vector α(u). It therefore follows that the eigenvalues of Q̃(u)
are those of R−1 to which we add α(u)−1. Making sure that αi(u)−1 ≥ 0, ∀i = 1, ...,m
is therefore sufficient for Q̃(u) to be positive semi-definite. From the conditions of the
lemma it follows that

∑m
j=1Qijfj(uj) ≥ δfj∗(uj∗), ∀i = 1, ...,m, where j∗ is that element

of i-th line of Q with Qij∗ ≥ δ. Since the mapping f is strictly increasing, it follows
∑m

j=1Qijfj(uj) ≥ δfj∗(q) ≥ 1, ∀i = 1, ...,m. The choice of q also implies fj(uj) ≥
1, ∀j = 1, ...,m. Altogether we obtain αi(u) ≥ 1, i = 1, ...,m for all u ≥ q and the result
follows.

Remark 3.4.32. The condition that Q = R−1−I needs to have only positive components
is not very restrictive. For instance if m = 2, this implies that the off-diagonal element
needs to be non-positive. When m = 3 such a simple characterization is not possible any
longer. To show that cases exist satisfying the condition on Q (m ≥ 3), we can consider
as an example the three dimensional matrix with R12 = −0.9, R13 = −0.7 and R23 = 0.5.

Example 3.4.33. Let R be the correlation matrix in dimension R2 having −0.9 on the
off-diagonal. Then δ = 4.74 and q = max {−0.54,−0.17}. In fact for all 2-dimensional

matrices with off-diagonal element ρ ≤ 1−
√
5

2
, this same bound holds.

Lemma 3.4.34. Let R be an m times m correlation matrix. Assume furthermore that
the inverse matrix is such that Q := R−1 − I has only positive components. Let δ =
mini=1,...,m minj=1,...,mQij > 0 and define q = max

{

log(Φ(1
δ
)), log(Φ(1))

}

, where Φ is
the probability distribution function of a standard normal random variable. Then the
Gaussian Copula admits the following decomposition

C(eu) = C(eq) +
2m
∑

i=2

ϕi(u),
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where each function ϕi : [0, 1]
m → [0, 1] is a 0-concave probability distribution up to a

multiplicative constant, i = 2, ..., 2m. This decomposition holds for all u ∈ [q, 0]m.

Proof. In the proof of Lemma 3.4.31 we have seen that the density of the Gaussian Copula
is ”eventually” 0-0-concave. As a matter of fact, when looking at the final estimates, one
can also derive

∑m
j=1Qijfj(uj) ≥ δfj(uj), ∀i = 1, ...,m, ∀j = 1, ...,m, since this time

δ is defined differently. This shows that this density is 0-0-concave, whenever uj ≥ q
for a single j ∈ {1, ...,m}. Now let C1, ..., Cn, with n = 2m be the partition of [0, 1]m

into orthants based at q, i.e., C1 = {x ∈ (−∞, 0]m, x ≤ q}, Cn = {x ∈ (−∞, 0]m, x ≥ q}
etc... Then the density of the Gaussian Copula has been shown to be 0-0-concave on
all sets C2, ..., Cn. Furthermore each Ci is a convex set. Hence the restriction of the
density of C(eu) to each Ci, i = 2, ..., n is a log concave density by Corollary 3.4.15.
Let f̂i denote the restriction of the density of u 7→ C(eu) to Ci, i = 1, ..., n. Defining
ϕi : [0, 1]

m → [0, 1] as the integral of this restricted density f̂i, it follows by Theorem 4.15
[51] that ϕi is log-concave, i = 2, ..., n. Now clearly

C(eu) =
n
∑

i=1

∫

∏m
j=1(−∞,uj ]

f̂i(s)ds =

∫

∏m
j=1(−∞,uj ]

f̂1(s)ds+
n
∑

i=2

ϕi(u).

If u ∈ [q, 0]m, the first element is nothing else but C(eq), since C(eq) =
∫

∏m
j=1(−∞,qj ]

f̂1(s)ds =
∫

C1
f̂1(s)ds.

Example 3.4.35. Let R be the correlation matrix in dimension R2 having −0.9 on the
off-diagonal. Then δ = 4.263 and q = max {−0.526,−0.17}

3.4.6 A Potential Application

In some engineering problems in energy one easily stumbles across mixed laws in ”columns”.
In particular, offer demand equilibrium constraints in unit commitment require that we
commit a production schedule producing enough energy in most situations. However,
uncertainty is only discovered later. This uncertainty consists of load uncertainty and
uncertainty on renewable generation such as wind power. Wishing to produce enough
electricity in most situations for all time steps simultaneously would then result in a
constraint of the type

p ≤ P[ξ + η ≤ h(x)], (3.4.23)

where h : Rn → Rm is the mapping associating with a decision vector x ∈ Rn its actual
production level and ξ ∈ Rm and −η ∈ Rm are two random vectors, modeling for instance
load uncertainty and wind generation respectively. Now to show that Copulae can be used
to obtain a convex model requires an additional result. Theorem 4.2.3. of [181] (dating
back to [41, 21, 22], [213, proof in dimension 1]) indicates that the convolution of log-
concave densities is again a log-concave density. As such, picking each ξi, ηi individually
following a log-concave density, it follows that their sum follows a log-concave density,
i.e., Fi(z) = P[ξi + ηi ≤ z] is a log-concave function. If we now use a δ-γ-concave Copula

80



with γ ≤ 0 and concave functions hi(x), the set defined by (3.4.23) will then turn out to
be eventually convex. Since in practice hi is often linear, as a sum of production levels,
it will be concave. Hence we can come up with a tractable model for such a mixed law
setting.
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Chapter 4

Algorithms for (convex)
Probabilistic Programming

Optimization problems involving probabilistic constraints of type (2.0.1) can be trans-
formed into convex optimization problems under some additional assumptions. For ex-
ample if g is jointly quasi-concave and ξ has a log-concave density, then Theorem 2.5.15
allows us to assert that x 7→ log(p)− log(P[g(x, ξ) ≥ 0]) is a convex mapping. Under such
assumptions solving the probabilistically constrained optimization problem amounts to
solving a convex constrained problem. However as indicated by J. Mayer ([149]) the
probabilistic constraint, even if continuously differentiable, might be stiff. It is therefore
preferable to consider the tools from non-smooth optimization. An elementary, but con-
vincing example of this statement is the optimization of the stiff differentiable ”maxanal”
function ([20, Section 12.1.2]). It turns out that methods from smooth optimization are
outperformed by methods from non-smooth analysis (e.g., bundle methods).

Returning to optimization problems with probabilistic constraints, classically only the
supporting hyperplane method has been employed. Now the bottle-neck resides in the
computation of the (sub-)gradient. This is not only time-consuming but can also only
be done up to some precision. The latter precision can be controlled but a trade-off with
the aforementioned computational effort has to be found. These gradients can be used to
compute a linearization of the convex constraint induced by the probabilistic constraint.
However, in general, we can not assert that the derived linearization remains below the
convex mapping. The latter feature leads to the definition of a so-called upper oracle
in section 4.1. A proximal and level bundle method for dealing with convex constrained
optimization involving such upper-oracles are derived in sections 4.1 and 4.2. As a
consequence a framework is provided for solving (convex) probabilistically constrained
optimization problems efficiently.
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4.1 A proximal Bundle Method

Real-life problems are often modeled in an uncertain setting, to better reflect unknown
phenomena specific to the application. In particular, such is the case in the energy
sector; see [210]. For the numerical experience of this section1 we focus on a specific
energy problem arising in stochastic unit commitment ([31], [225], [165], [255],[246]).
This is the problem of optimally managing reservoirs of a hydro valley in the short term.

A hydro valley is a set of power plants cascaded along the same hydrological bassin. For
the considered system, part of Electricité de France mix, uncertainty is mostly related
to the amount of melted snow arriving as a streamflow to the most uphill reservoirs.
The volume of these reservoirs changes with the inflows and determines the amount
of water that can be converted into energy. After turbining water to produce power,
the upstream reservoirs release a certain volume that fills the reservoirs downstream,
and the process continues until the power plant at the bottom of the bassin. In this
interconnected context, it is important to jointly manage the generation of the cascaded
plants in a manner that not only is economical but also reliable. More precisely, it is
crucial to keep the volume of each reservoir in the valley between prescribed minimum
and maximum levels (to prevent floods, to ensure touristic activities, etc). Since it is not
realistic to ensure such conditions for every possible streamflow, satisfaction of lower and
upper bounds for the volumes can be required in a probabilistic manner.

Introduced by [32], probability constraints are quite an appealing tool for dealing with
uncertainty, because they give a physical interpretation to risk. For hydro valley man-
agement, chance constraints have been employed in [143, 63, 65, 142, 155, 265, 264, 244].
Most of these works require each component of the uncertain constraint to be satisfied in
a probabilistic sense in a separate manner. As explained in [244], a stochastic model with
such individual chance constraints may sometimes result in unreliable optimal decisions,
because there is no guarantee that the whole stochastic inequality will be satisfied with
a given probability. In this work we build upon the model in [244], with joint chance
constraints, and derive a sound numerical solution procedure, based on bundle methods,
[114, 20].

In the classical textbook [181], convexity of chance constraints is ensured for a variety of
distributions. Accordingly, for appropriate choices of the stochastic model for the inflows
(cf. Section 5.1 for details), the hydro valley management problem has the abstract form

min
x∈X⊆Rn

{f(x) : c(x) ≤ 0} (4.1.1)

for f and c finite-valued convex continuous functions and X a compact convex poly-
hedron. Even when c can be shown to be differentiable ([244]), it is reported in [149]
that joint chance constraints are occasionally sufficiently stiff for smooth optimization
methods to encounter convergence issues. Moreover in many applications c is actually
non-smooth ([106]). For this reason it is of interest to make no smoothness assumption
on c. For algorithmical purposes, given any x ∈ X , joint chance constraints (correspond-
ing to c in (4.1.1)) need to be efficiently computed, together with a gradient. Gradient

1See also section 5.1
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formulæ for multi-variate Gamma, Dirichlet, and Gaussian distributions can be found
in [186], [181, 88, 221], and [181, 106, 244], respectively. We also refer to Section 2.7.
Similarly to evaluating the function, these formulæ involve computing a probability. In
turn, the calculation of a probability amounts to compute, for any given x, an integral in
relatively high dimension (for our numerical application in Section 4.1.6, the correspond-
ing dimension is 48). For multi-variate Gaussian distributions, the code developped by
A. Genz can be used to efficiently approximate probabilities; [83, 84]. The numerical
method therein outputs values that can be as accurate as required on input, provided
enough time can be spent in the calculation. Since the numerical solution of (4.1.1) re-
quires evaluating the constraint c (and a gradient) at many trial points x, the evaluation
is not done exactly, but with some error, whose sign is unknown. As a result, and in spite
of convexity, a linearization of the form cx+〈gcx, · − x〉 with cx ≈ c(x) and gcx an approx-
imate subgradient, may locally overestimate the function c(·). An oracle providing such
linearizations will be referred to as an upper inexact oracle. This naming is somewhat
unsatisfactory because the linearizations need not overestimate the function c at all or
would only do so locally. A more verbose choice would have been locally upper inexact
oracle. This choice is also somewhat unsatisfactory as the provided linearization may
overestimate c on a rather large set. We will therefore speak of upper inexact oracles.

To circumvent this difficulty, in this section we present a bundle method specially taylored
to solve problems of the form (4.1.1) when computing f and/or c (as well as respective
gradients) is computationally heavy. The algorithm is special because it solves a con-
strained non-smooth problem based on the information provided by an inexact oracle,
possibly of upper type. This means that the oracle output provides linearizations for f
and c in (4.1.1) that are inexact and may locally overestimate the corresponding function.
The simpler case of lower oracles, yielding linearizations that always remain below the
convex function, is also considered as a corollary. The convergence analysis of bundle
methods with lower oracles is simpler, because it fits better the usual exact framework,
in which the oracle linearizations define cutting planes for the function of interest (f and
c in our case).

For unconstrained problems, bundle methods dealing with inexact oracles can be found
in [113, 219, 128, 68, 70, 46]. Most of these works consider only lower oracles; we refer
to [46] for a discussion on how such a setting considerably simplifies the convergence
analysis. For constrained problems like (4.1.1), inexact bundle methods are more rare; see
[129, 132, 44]. These works consider oracles that are either lower ones, or asymptotically
exact. In this section, we give a method suitable for the more general upper setting, and
hence, adapted to the hydro application of interest.

This section is organized as follows. Section 4.1.1 is devoted to bundle methods for
upper inexact oracles. After giving the initial bundle setting in § 4.1.1.1, the attenuation
step required for the method to converge in the presence of oracle noise is explained in
§ 4.1.1.2. The new bundle algorithm is given in full details in § 4.1.1.3. Based on Section
4.1.2 asymptotic results, Section 4.1.3 proves convergence of the method to a solution of
(4.1.1), up to the accuracy provided by the oracle. In particular, we show that for lower
oracles that are asymptotically exact, the method finds an exact minimizer whenever
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(4.1.1) has a Slater point. Since our setting is more general than previous work (cf.
the discussion in § 4.1.4.1), our approach significantly generalizes and extends results in
the literature. The specific unit-commitment application is considered in the last two
sections. Section 4.1.5 describes the hydro valley considered for the numerical tests,
formulates the joint chance constrained problem to be solved, and discusses the upper
inexact oracle employed. The different solvers used for comparison and a thorough set
of numerical tests showing the interest of the approach are given in Section 4.1.6.

4.1.1 Designing Bundle methods for Constrained Optimization

Following the lead of [211], the numerical solution of (4.1.1) is addressed by means of an
improvement function Hτ : R

n → R defined by

Hτ (y) = max
(

f(y)− τ1, c(y)− τ2
)

, for suitably chosen scalar targets τ1 , τ2 . (4.1.2)

However, unlike the exact setting considered in [211], the oracles which provide function
and subgradient values for f and c make calculations with some error. For this reason,
our method minimizes approximations of Hτ , built using oracle information computed
with some inaccuracy. For clarity, at any point x ∈ Rn the symbols f(x) and c(x) refer
to exact function values. Following [128], to denote inexact values the argument is put as
a subscript, like in fx, cx (for functions) and gfx and gcx (for subgradients). Accordingly,
given an iterate xj ∈ X , the oracle provides fxj and gfxj shortened for convenience to
f j = fxj and gj

f
= gfxj , and similarly for the c-values.

4.1.1.1 Initial setting

We assume that at any xj ∈ X , the oracle provides

f j and cj , estimates for the functional values, as well as

gj
f

and gj
c
, estimates for the respective subgradients.

(4.1.3)

Since in this oracle the signs of the errors, e.g., f(xj) − f j, are not specified, the true
function values can be either overestimated or underestimated, and similarly for the
subgradients. In particular, nothing is known on the linearizations, e.g., f j+

〈

gj
f
, · − xj

〉

,
that may locally overestimate the corresponding function, e.g., f . Further conditions
on the (possibly upper) inexact oracle will be required in what follows, as needed (cf.
(4.1.21) and (4.1.31) below).

Along the iterations the method keeps aside a reference solution called the stability
center. The current stability center is denoted by x̂k at iteration k and has function
values denoted by f̂k and ĉk. This center corresponds to some past iterate that was
singled out because it produced significant progress towards the goal of solving (4.1.1).
Progress is measured with respect to the current approximation of the improvement
function, in a sense to be made clear below.
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Specifically, the k-th inexact improvement function is

hky = max
(

fy − τ k1 , cy − τ k2
)

where

{

τ k1 = f̂k + ρk max(ĉk, 0) for ρk ≥ 0
τ k2 = σk max(ĉk, 0) for σk ≥ 0 .

(4.1.4)
In the expression above, the targets τ k are more general than those considered in [211],
which correspond to taking null penalties ρk and σk. Relations with other improvement
functions in the literature that are also covered by the setting (4.1.4) are discussed in
§ 4.1.4.1.
The oracle output is collected along iterations to form the Bundle of information

Bk = {x̂k, f̂k, ĉk} ∪
{

(xj, f j , cj, gj
f
, gj

c
) : j ∈ Jk

}

for Jk ⊂ {1, . . . , k} .

Having this information, the k-th inexact improvement function is modelled by a convex
functionMk : R

n → R which uses approximate cutting-plane functions f̌k and čk:

Mk(y) = max
(

f̌k(y)−τ k1 , čk(y)−τ k2
)

where

{

f̌k(y) = max
{

f j +
〈

gj
f
, y − xj

〉

: j ∈ Jk
}

čk(y) = max
{

cj + 〈gj
c
, y − xj〉 : j ∈ Jk

}

.
(4.1.5)

To generate iterates, the algorithm chooses a prox-parameter µk > 0 and solves the
quadratic program (QP)

xk+1 = argmin
y∈X
{Mk(y) +

1

2
µk

∥

∥y − x̂k
∥

∥

2} . (4.1.6)

As a result, xk+1 ∈ X and

xk+1 = x̂k − 1

µk
(Gk + νk) where Gk ∈ ∂Mk(x

k+1) and νk ∈ NX(x
k+1) , (4.1.7)

where NX(x
k+1) denotes the normal cone (of convex analysis) of X at the new iterate

and ∂Mk(x
k+1) the sub-gradient ofMk at x

k+1. After solving the problem, the aggregate
linearization

M
k(y) =Mk(x

k+1) +
〈

Gk, y − xk+1
〉

, (4.1.8)

which is an affine function, can be defined. Clearly, because Gk ∈ ∂Mk(x
k+1),

M
k(y) ≤Mk(y) for all y ∈ R

n . (4.1.9)

The last ingredient in the bundle method is given by the aggregate error, defined by

E
k = hkx̂k − M

k(x̂k)−
〈

νk, x̂k − xk+1
〉

. (4.1.10)

In view of (4.1.8), for any y it holds that Gk = ∇Mk(y). Therefore, because M
k(x̂k) =

M
k(y) +

〈

Gk, x̂k − y
〉

with M
k ≤Mk by (4.1.9), we derive the relation

hkx̂k − E
k ≤Mk(y) +

〈

Gk + νk, x̂k − y
〉

for all y ∈ X , (4.1.11)

where we used the fact that the term
〈

νk, xk+1 − y
〉

is nonnegative for all y ∈ X , because
νk ∈ NX(x

k+1).
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4.1.1.2 Handling inexact oracle information

Usually, the noise introduced by the inexact evaluations is deemed “too large” when the
function value at the algorithmic center is below the minimum model value (a situation
that is impossible with an exact oracle, by convexity). For our setting, this amounts to
checking if the noise measurement quantity defined below is negative:

hkx̂k −
(

Mk(x
k+1) +

1

2
µk

∥

∥xk+1 − x̂k
∥

∥

2
)

< 0 .

When the relation above holds, the algorithm maintains the model and the center, and
reduces the prox-parameter. The new iterate yields a smaller noise measurement quantity,
thus attenuating the noise induced by the inexact bundle information. For the sake of
numerical versatility, we consider here an alternative mechanism that is more general,
and checks asymptotic satisfaction of the inequality above, based on a relative criterion.
More precisely, noise is considered too large if

hk
x̂k −

(

Mk(x
k+1) + 1

2
µk

∥

∥xk+1 − x̂k
∥

∥

2
)

1
2
µk ‖xk+1 − x̂k‖2

< −βk (4.1.12)

for a parameter βk satisfying (4.1.15) below.

To measure progress towards the goal of solving (4.1.1), certain predicted decrease δk

is employed. Usual definitions for the decrease are δk = hkx̂k − Mk(x
k+1), or δk =

hk
x̂k −Mk(x

k+1)− 1
2
µk

∥

∥xk+1 − x̂k
∥

∥

2
. We consider a slightly more general variant, and let

δk = hkx̂k −Mk(x
k+1)− 1

2
αkµk

∥

∥xk+1 − x̂k
∥

∥

2
, (4.1.13)

for a parameter αk satisfying (4.1.15) below.

Since the numerator in (4.1.12) equals δk− 1
2
(1−αk)µk

∥

∥xk+1 − x̂k
∥

∥

2
, we see that detecting

the need of a noise attenuation step amounts to checking satisfaction of the inequality

δk <
1

2

(

1− (αk + βk)
)

µk

∥

∥xk+1 − x̂k
∥

∥

2
. (4.1.14)

The choice of parameters αk , βk should ensure that the nominal decrease in (4.1.16) is
nonnegative when noise is not too large. Accordingly, we suppose that

∃b > −1 and B > 0 such that βk ∈ [b, 1− αk −B] for αk ∈ [0, 2] . (4.1.15)

Only when noise is declared acceptable, that is when (4.1.14) does not hold, the algorithm
examines if the new iterate is good enough to become the next center by checking

{

either if fk+1 ≤ f̂k −mδk and ck+1 ≤ 0 when ĉk ≤ 0 ,
or if ck+1 ≤ ĉk −mδk when ĉk > 0 .

(4.1.16)
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When the relation holds, the iteration is declared serious, because it provides a new
algorithmic center: x̂k+1 = xk+1. Otherwise, the center is maintained and the iteration
is declared null.

The rationale behind (4.1.16) is to measure progress towards minimization of (4.1.1)
by focusing either in reducing the objective value without losing feasibility if the center
is approximately feasible. Otherwise, when ĉk > 0, the emphasis is put in reducing
infeasibility by checking the second condition in (4.1.16).

The parameters αk , βk in the criterion (4.1.14) make it possible to control the relation
between noise attenuation and descent, a flexibility that can help the numerical perfor-
mance of the algorithm. More specifically, to progress towards a solution, it is preferable
for the algorithm to:

- make more serious iterations, because serious iterates converge to a solution, and

- have few noise attenuation steps. Noise attenuation steps are undesirable to occur
often, because they prevent the algorithm from having “true” iterates, for which to
check the descent condition.

- However, checking (4.1.14) does not involve any f/c-oracle calculation at xk+1, and
can therefore be considered an inexpensive test.

The flexibility introduced by the additional parameters αk, βk allows the user to seek
for a trade-off between the time spent in oracle calculations and the CPU time required
for the algorithm to find a solution to (4.1.1). By (4.1.16), more serious iterations are
achieved by taking larger αk’s (yielding smaller δk’s), while a larger βk reduces the left
handside term in (4.1.14), making less likely noise attenuation. Our numerical experience
in Section 4.1.6 shows how different choices of these parameters impact the numerical
performance, both in terms of CPU time and accuracy.

We now list some consequences resulting from the various definitions above, obtained
with some simple algebraic manipulations.

First, by (4.1.8) written with y = x̂k and (4.1.13),

hkx̂k − M
k(x̂k) +

〈

Gk, x̂k − xk+1
〉

= δk +
1

2
αkµk

∥

∥xk+1 − x̂k
∥

∥

2
.

Together with (4.1.10) and (4.1.7) we see that

E
k = δk− 2− αk

2
µk

∥

∥xk+1 − x̂k
∥

∥

2
and, therefore, E

k ≤ δk at all iterations (4.1.17)

because αk ≤ 2, by (4.1.15).

Second, by adding δk to both sides of the identity (4.1.17), we see that

inequality (4.1.14) holds ⇐⇒ δk + E
k < −(αk + 2βk)

2
µk

∥

∥xk+1 − x̂k
∥

∥

2
.(4.1.18)
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4.1.1.3 A Non-smooth Optimization Solver for Inexact Oracles

We now give our bundle algorithm for solving problem (4.1.1).

Algorithm 4.1 (Proximal Bundle). We assume given an oracle computing approxi-
mate f/c values as in (4.1.3) for any x ∈ X, possibly of upper type.

Step 0 (Input and Initialization) Select a initial starting point x̂0 a stopping tol-
erance tol≥ 0, an Armijo-like parameter m ∈ (0, 1). Initialize the iteration counter
k = 0, the bundle index set J0 := {0}, and the first candidate point x0 := x̂0. Call
(4.1.3) to compute f0, c0 as well as gf

0 and gc
0. Choose the starting prox-parameter

µ0 > 0, parameters α0 , β0 satifying (4.1.15), and penalties ρ0 , σ0 ≥ 0 satisfying (4.1.20)
below.

Step 1 (Model Generation and QP Subproblem) Having the current algorithmic
center x̂k, the bundle Bk, the prox-parameter µk and the penalties ρk , σk, define the
convex piecewise linear model function Mk and compute xk+1 = argmin{Mk(y) +
1
2
µk

∥

∥y − x̂k
∥

∥

2
: y ∈ X}. Define the predicted decrease δk+1 as in (4.1.13).

Step 2 (Noise attenuation test)
If condition (4.1.14) is true, noise is too large: decrease the prox-parameter as in
(4.1.19b) below; maintain the center, the bundle, and the penalties:

(

x̂k+1,Bk+1, ρk+1, σk+1

)

=
(

x̂k,Bk, ρk, σk

)

;

choose parameters αk+1, βk+1 satisfying (4.1.15), and loop to Step1.
Otherwise, if (4.1.14) does not hold, proceed to Step 3.

Step 3 (Stopping Test and New Oracle Information) If δk+1 ≤tol then stop.
Otherwise call the oracle to obtain fk+1 , ck+1 , gf

k+1 and gc
k+1.

Step 4 (Serious step test) Check the descent condition (4.1.16). If this condition is
true, declare a serious iteration and set x̂k+1 = xk+1. Otherwise, declare a null step
and maintain the center: x̂k+1 = x̂k.

Step 5 (Bundle Management and updates) Choose a new prox-parameter µk+1

satisfying (4.1.19a) if the iteration was declared serious or satisfying (4.1.19c) whenever
the iteration was declared null. In all cases choose parameters αk+1, βk+1 satisfying
(4.1.15) and penalties ρk+1, σk+1 satisfying (4.1.20) below. Define the new bundle Bk+1,
for example by appending to the index set the last iterate information: Jk+1 = Jk ∪
{k + 1}. Increase k by 1 and loop to Step 1.

Both in Step 2 and Step 5 there is some freedom in the choice of the new bundle Bk+1.
When noise is excessive, as in Step 2, the conservative choice of keeping the same cutting-
plane models for both f and c seems reasonable. Alternative choices for managing the
bundle in Step 5 are discussed after Lemmas 4.1.2, 4.1.3, and 4.1.4, for the cases of
serious, noisy, and null iterations, respectively.

We now explain how Algorithm 4.1 handles the update of its prox-parameter µk and
penalties ρk, σk. For the prox-parameter, the update uses positive constants µmax and
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∆, as follows:

µk+1 ≤ µmax < +∞ if iteration k was declared serious (4.1.19a)

µk+1 ≤ µk −∆ < µk if iteration k resulted in noise attenuation (4.1.19b)

µk+1 ∈ [µk, µmax] if iteration k was declared null. (4.1.19c)

The rule for the penalty parameters uses a positive constant RS and is given below:

0 ≤ σk+1 ≤ 1 and ρk+1 ≥ 0 satisfy 1− σk+1 + ρk+1 ≥ RS > 0 . (4.1.20)

The main purpose of these conditions is to ensure satisfaction of the relations stated in
the proposition below.

Proposition 4.1.1 (Consequences of penalization updates). When Algorithm 4.1 uses
the rule (4.1.20) for the penalties, the following holds.

– At every iteration k,

hkx̂k = 0 if ĉk ≤ 0 and hkx̂k = ĉk(1− σk) ≥ 0 otherwise .

– At every iteration k declared null, the inequality hk
xk+1 > hk

x̂k −mδk is satisfied.

– Suppose that, in addition, the oracle (4.1.3) is bounded, in the sense that

the inexact values {fk , ck} and {
∥

∥gk
f

∥

∥ ,
∥

∥gk
c

∥

∥} (4.1.21)

are bounded for every sequence {xk} ⊂ X. Then, there exist positive constants M and
M ′ such that for any iteration k that is declared null or needing noise attenuation

Mk(x̂
k) ≤ max(M − f̂k,M) and hkx̂k ≤M ′ . (4.1.22)

Proof. From (4.1.4), it readily follows that ĉk ≤ 0 implies τ k1 = f̂k, whereas ĉk > 0 implies
τ k1 = f̂k + ρkĉ

k and τ k2 = σkĉ
k. As a consequence ĉk ≤ 0 implies hkx̂k = 0. Inversely when

ĉk > 0, we have hk
x̂k = ĉk max(−ρk, 1 − σk) = ĉk(1 − σk) ≥ 0 because σk ∈ [0, 1] and

ρk ≥ 0 by (4.1.20).

To prove the second item, let us first assume ĉk > 0. Then negating (4.1.16) and using
the above derived identity for hk

x̂k gives

hkxk+1 = max(fk+1− f̂k−ρkĉk, ck+1−σkĉk) ≥ ck+1−σkĉk > ĉk(1−σk)−mδk = hkx̂k−mδk .

When ĉk ≤ 0, negating (4.1.16) implies that either fk+1 > f̂k −mδk or ck+1 > 0. In the
first case we establish:

hkxk+1 = max(fk+1 − f̂k, ck+1) ≥ fk+1 − f̂k > −mδk ,

as was to be shown, since hk
x̂k = 0. In the second case, since k is a null step, (4.1.14) does

not hold and δk > 0 as a consequence. We thus establish hkxk+1 = max(fk+1− f̂k, ck+1) ≥
ck+1 > 0 ≥ hk

x̂k −mδk as was to be shown.
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Finally, to see (4.1.22), notice that xk ∈ X with X bounded, so (4.1.21) ensures that each
linearization fk +

〈

gk
f
, · − xk

〉

(or its c-counterpart) is bounded over X . In particular,

both f̌k(x̂
k) and čk(x̂

k) are bounded by some constantM . In view of the model definition
(4.1.5) and (4.1.4),Mk(x̂

k) ≤ max(M − τ k1 ,M − τ k2 ) = max(M − f̂k−ρk max(ĉk, 0),M −
σk max(ĉk, 0)). The bound forMk(x̂

k) follows, because the penalty terms are nonnegative
by (4.1.20). An analogous reasoning gives the bound for hkx̂k .

4.1.2 Asymptotic Analysis

We now analyse the different cases that can arise when the algorithm in Section 4.1 loops
forever, i.e., k →∞. Then only one of the following mutually exclusive cases can occur:

- either there are infinitely many serious iterates,

- or the stability center remains unchanged after a finite number of iterations. In
this case,

- either there is an infinite number of noise attenuation steps,

- or there is a finite number of noise attenuation steps and eventually only null
steps are done.

The first case is considered in Lemma 4.1.2, the second case in Lemma 4.1.3 and the last
case in Lemma 4.1.4.

Lemma 4.1.2 (Infinitely many serious iterations). Consider solving (4.1.1) with Algo-
rithm 4.1 using an oracle satisfying (4.1.3) and (4.1.21), with parameters αk, βk satisfying
(4.1.15).

Let Ks denote the set gathering indices of serious iterations. If there are infinitely many
of such indices, and the prox-parameter sequence satisfies (4.1.19a), then

hkx̂k ≤Mk(y) + o(1/k) for all y ∈ X and k ∈ Ks sufficiently large.

Proof. Consider k ∈ Ks. We first show that δk → 0. If for all serious steps we have
ck+1 > 0 then (4.1.16) implies that

ĉk+1 = ck+1 ≤ ck −mδk = ĉk −mδk , (4.1.23)

noting that δk ≥ 0, because serious steps can only take place when no noise attenuation
occurs. Since the nonincreasing sequence {ĉk}Ks is bounded below by 0, it converges.

From (4.1.23) we deduce that 0 ≤ δk ≤ ck−ck+1

m
. Since {ĉk}Ks converges this gives that

δk → 0 as Ks ∋ k →∞.

Otherwise, there is some k̄ ∈ Ks such that ĉk̄ ≤ 0. In view of (4.1.16), all subsequent
serious iterates are feasible: for each serious step k̄ ≤ k ∈ Ks we have ĉk+1 = ck+1 ≤ 0
and

f̂k+1 ≤ f̂k −mδk with δk ≥ 0 . (4.1.24)
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Thus, the nonincreasing sequence {f̂k}k̄≤k∈Ks
is either unbounded below or converges.

The first case is ruled out by (4.1.21). As for the second case, it implies that δk → 0

since 0 ≤ δk ≤ fk−fk+1

m
.

We now show that both Gk + νk → 0 and E
k → 0. Since (1 − (αk + βk)) ≥ B > 0 by

(4.1.15), the negation of (4.1.14) and (4.1.7) imply that

0← δk ≥ 1

2

(

1− (αk + βk)
)

µk

∥

∥xk+1 − x̂k
∥

∥

2
=

1

2µk

(

1− (αk + βk)
)

∥

∥Gk + νk
∥

∥

2

≥ B

2µk

∥

∥Gk + νk
∥

∥

2 ≥ B

2µmax

∥

∥Gk + νk
∥

∥

2 ≥ 0

where we used (4.1.19a) for the last inequality. As a result, both
∥

∥Gk + νk
∥

∥

2
/µk → 0

and Gk + νk → 0 as Ks ∋ k →∞.

Since αk ≥ 0 and αk + βk ≤ 1 − B by (4.1.15), we deduce that −(αk + 2βk)/2 =
−(αk +βk)+αk/2 ≥ B− 1. To show that the aggregate error goes to 0, pass to the limit
in the negation of (4.1.18) and use the above estimate to see that

lim
k∈Ks

E
k ≥ (B − 1) lim

k∈Ks

µk

∥

∥xk+1 − x̂k
∥

∥

2
.

Since by (4.1.7), µk

∥

∥xk+1 − x̂k
∥

∥

2
=
∥

∥Gk + νk
∥

∥

2
/µk and we have just shown this term

vanishes asymptotically, the error limit is nonnegative. Then E
k → 0, because E

k ≤ δk

by (4.1.17) and δk → 0.

The stated inequality holds follows from (4.1.11) by boundedness of X and the fact that
both Gk + νk and E

k → 0.

The analysis above shows that Step 5 of Algorithm 4.1 can freely manage the bundle
at serious iterations. Of course, a richer bundle yields better cutting-plane models for f
and c, so having larger index-sets Jk should improve the speed of the method (keeping
in mind that large sets Jk make the QP subproblem more difficult).

Notice also that in the inequality in Lemma 4.1.2 the remainder o(1/k) corresponds in
fact to both Gk + νk and E

k going to zero. Similar relations will hold when there is a
finite number of serious iterations, as shown below.

In the next two cases, eventually no more serious steps occur and after a finite number
of iterations the algorithmic center remains unchanged. As a result, there exists k̂ and x̂
such that x̂k = x̂ for all k > k̂. Unlike Lemma 4.1.2, the results below rely on conditions
(4.1.20), required for the penalty parameters defining the inexact improvement function
(4.1.4).

Lemma 4.1.3 (Infinitely many noisy iterations). Consider solving (4.1.1) with Algo-
rithm 4.1 using an oracle satisfying (4.1.3) and (4.1.21), with parameters αk, βk satisfy-
ing (4.1.15) and penalties as in (4.1.20).

Suppose at iteration k̂ there is a last serious iterate x̂ and let Ka denote the set gathering
indices of iterations larger than k̂ for which (4.1.14) holds and noise is deemed too large.
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If there are infinitely many of such indices and (4.1.19b) holds then

hkx̂k = hkx̂ ≤Mk(y) + o(1/k) for all y ∈ X and k ∈ Ka sufficiently large.

Proof. Consider k ∈ Ka. By (4.1.17) and (4.1.14) we obtain the following estimate

2Ek = 2δk − (2− αk)µk

∥

∥xk+1 − x̂k
∥

∥

2
< −(1 + βk)µk

∥

∥xk+1 − x̂k
∥

∥

2 ≤ 0, (4.1.25)

since βk ≥ b > −1 by (4.1.15). Since E
k ≤ 0, hkx̂k − E

k ≥ hkx̂k , and with (4.1.11) we see
that

hkx̂k ≤Mk(y) +
〈

Gk + νk, x̂− y
〉

for all y ∈ X .

Since the set X is bounded, the stated inequality would hold if Gk + νk → 0. To show
this result, first note that (4.1.10) and (4.1.8) imply that

−Ek =Mk(x
k+1) +

〈

Gk + νk, x̂− xk+1
〉

− hkx̂k ≤Mk(x̂)− hkx̂k ,

where the inequality comes from (4.1.7). Let f̂ denote the f -value computed by the
oracle at x̂. By the first item in Proposition 4.1.1, hkx̂k ≥ 0 because σk ≤ 1 by (4.1.20),

so −Ek ≤ Mk. SinceMk(x̂) ≤ max(f̂ −M, f̂) by the third item in the proposition, for
some constant M̂

−Ek ≤ M̂ for all k ∈ Ka.

From (4.1.25) and the condition βk ≥ b from (4.1.15) we obtain the inequality E
k <

−1
2
(1 + b)µk

∥

∥xk+1 − x̂k
∥

∥

2
. Moreover, using (4.1.7) and the fact that 1 + b > 0 by

(4.1.15), this means that
2

1 + b
µkE

k < −
∥

∥Gk + νk
∥

∥

2

or, equivalently, that

0 ≤
∥

∥Gk + νk
∥

∥ ≤
√

− 2

1 + b
µkE

k ≤
√

2

1 + b
µkM̂ .

Since the update in (4.1.19b) ensures that the sequence {µk}k∈Ka is strictly decreasing,
when Ka ∋ k →∞ we obtain that µk → 0 and Gk + νk → 0, as desired.

For the result above to hold, Step 2 in Algorithm 4.1 only needs the sequence {µk}Ka

to be strictly decreasing, and the left bound in (4.1.22) to hold. So, as for the case of
infinitely many serious iterations, there is freedom in how the bundle is managed when
noise is deemed too large. Since in this case there is no new oracle information, it seems
reasonable to maintain the current bundle.

In a manner similar to Lemma 4.1.2, the remainder term in Lemma 4.1.3 corresponds in
fact to Gk + νk → 0 with E

k ≤ 0.

The final result considers that there are finitely many serious and noise attenuation steps,
which implies that the algorithm makes infinitely many consecutive null steps. For this
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case, the model is required to satisfy the following conditions whenever the iteration k is
declared null:

Mk+1(y) ≥Mk(y) and (4.1.26a)

Mk+1(y) ≥max
(

fk+1 +
〈

gk+1
f

, y − xk+1
〉

− τ k1 , ck+1 +
〈

gk+1
c

, y − xk+1
〉

− τ k2
)

(4.1.26b)

The result below uses standard arguments in bundle methods [39], taking advantage
of the boundedness relations in (4.1.21) and (4.1.22) to adapt those arguments to the
inexact improvement function setting.

Lemma 4.1.4 (Infinitely many consecutive null iteration). Consider solving (4.1.1) with
Algorithm 4.1 using an oracle satisfying (4.1.3) and (4.1.21), with parameters αk, βk
satisfying (4.1.15) and penalties as in (4.1.20).

Suppose at iteration k̂ there is a last serious step, denoted by x̂ and after an iteration
k̄ > k̂ there are no more noise attenuation steps: eventually only null steps occur. Let Kn

denote the set gathering indices of iterations larger than k̄. If there are infinitely many
of such indices and both (4.1.19c) and (4.1.26) hold, then

hkx̂k = hkx̂ ≤Mk(y) + o(1/k) for all y ∈ X and k ∈ Kn sufficiently large.

Furthermore, xk → x̂ as Kn ∋ k →∞.

Proof. Consider k ∈ Kn. Once again, the stated inequality will follow from (4.1.11) by
boundedness of X , if we show that both Gk + νk → 0 and E

k → 0. In turn, these results
follow from showing that δk → 0.

To see that δk → 0, we start by expanding squares and using (4.1.7) to write the identity

2〈Gk + νk, y − xk+1〉 = 2µk〈x̂− xk+1, y − xk+1〉
= µk

∥

∥xk+1 − x̂
∥

∥

2
+ µk

∥

∥y − xk+1
∥

∥

2 − µk ‖y − x̂‖2(4.1.27)

for all y ∈ Rn. Since the function M
k is affine with gradient Gk, for all y ∈ Rn

M
k(y) = M

k(xk+1) + 〈Gk, y − xk+1〉
= M

k(xk+1) + 〈Gk, y − xk+1〉+ 〈νk, y − xk+1〉 − 〈νk, y − xk+1〉 (4.1.28)

= M
k(xk+1) +

1

2
µk

∥

∥xk+1 − x̂
∥

∥

2

+
1

2
µk

∥

∥y − xk+1
∥

∥

2 − 1

2
µk ‖y − x̂‖2 − 〈νk, y − xk+1〉

= OV
k +

1

2
µk

∥

∥y − xk+1
∥

∥

2 − 1

2
µk ‖y − x̂‖2 − 〈νk, y − xk+1〉,

where in the last equality we define OV
k := Mk(x

k+1) + 1
2
µk

∥

∥xk+1 − x̂
∥

∥

2
and use the

relation M
k(xk+1) = Mk(x

k+1) from (4.1.8) (the value OV
k is the optimal value of the
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QP subproblem (4.1.6) defining xk+1). Since νk ∈ NX(x
k+1) and y ∈ X , the term

−〈νk, y − xk+1〉 ≥ 0 and, hence, we derive from (4.1.28) that

∀y ∈ X M
k(y) +

1

2
µk ‖y − x̂‖2 ≥ OV

k +
1

2
µk

∥

∥y − xk+1
∥

∥

2
. (4.1.29)

By evaluating at y = x̂ ∈ X , using (4.1.9) and the third item in Proposition 4.1.1, there
exists some constant M̂ such that

OV
k +

1

2
µk

∥

∥x̂− xk+1
∥

∥

2 ≤ M
k(x̂) ≤Mk(x̂) ≤ M̂ .

In particular, the sequence {OVk} is bounded from above.

Assumption (4.1.26a) in (4.1.29) yields that

Mk+1(y) +
1

2
µk ‖y − x̂‖2 ≥ OV

k +
1

2
µk

∥

∥y − xk+1
∥

∥

2

for all y ∈ X . Since µk+1 ≥ µk by (4.1.19c), by evaluating the inequality above at
y = xk+2 we see that

OV
k+1 ≥ OV

k +
1

2
µk

∥

∥xk+2 − xk+1
∥

∥

2
,

and, being bounded above, the non-decreasing sequence {OVk} converges. Since the
righthand side is larger than OV

k, we conclude that

OV
k+1 −

(

OV
k +

1

2
µk

∥

∥xk+2 − xk+1
∥

∥

2
)

→ 0 and, furthermore,
∥

∥xk+2 − xk+1
∥

∥

2 → 0

(4.1.30)
because µk ≥ µk̄+1 by (4.1.19c).

Recall that condition (4.1.15) implies that δk ≥ 0 when (4.1.14) fails, i.e., no noise is
detected. The descent test also fails, so by the second item in Proposition 4.1.1,

hkxk+1 > hkx̂k −mδk = hkx̂ −mδk .

Adding δk to both terms and using the definition in (4.1.13) we obtain that

0 ≤ (1−m)δk < δk + hkxk+1 − hkx̂k

= hkxk+1 −Mk(x
k+1)− 1

2
αkµk

∥

∥xk+1 − x̂
∥

∥

2

≤ hkxk+1 −Mk(x
k+1)

= hkxk+1 −Mk+1(x
k+2) +Mk+1(x

k+2)−Mk(x
k+1) .

Writing (4.1.26b) for y = xk+2 and using the Cauchy-Schwarz inequality yields that

Mk+1(x
k+2) ≥ max(fk+1−τ k1−

∥

∥gk+1
f

∥

∥

∥

∥xk+2 − xk+1
∥

∥ , ck+1−τ k2−
∥

∥gk+1
c

∥

∥

∥

∥xk+2 − xk+1
∥

∥) .

By (4.1.21), there exists a constant Γ such that
∥

∥gk+1
f

∥

∥ ,
∥

∥gk+1
c

∥

∥ ≤ Γ and, hence,

Mk+1(x
k+2) ≥ max(fk+1 − τ k1 , ck+1 − τ k2 )− Γ

∥

∥xk+2 − xk+1
∥

∥ .
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The first righthand side term above equals hkxk+1 , by (4.1.4). Continuing and using the
definition of OVk and (4.1.19c),

0 ≤ (1−m)δk ≤ Γ
∥

∥xk+2 − xk+1
∥

∥+Mk+1(x
k+2)−Mk(x

k+1)

= Γ
∥

∥xk+2 − xk+1
∥

∥+ OV
k+1 − 1

2
µk+1

∥

∥xk+2 − x̂
∥

∥

2

−OVk + 1

2
µk

∥

∥xk+1 − x̂
∥

∥

2

= Γ
∥

∥xk+2 − xk+1
∥

∥+ OV
k+1 − OV

k − 1

2
µk

∥

∥xk+2 − x̂
∥

∥

2

+
1

2
µk

∥

∥xk+1 − x̂
∥

∥

2

= Γ
∥

∥xk+2 − xk+1
∥

∥+ OV
k+1 − (OVk +

1

2
µk

∥

∥xk+2 − xk+1
∥

∥

2
)

+
1

2
µk

(

∥

∥xk+2 − xk+1
∥

∥

2 −
∥

∥xk+2 − x̂
∥

∥

2
+
∥

∥xk+1 − x̂
∥

∥

2
)

.

Following (4.1.27), we can observe that the last three terms equal µk

〈

xk+2 − xk+1, x̂− xk+1
〉

.
By (4.1.7), µk(x̂− xk+1) = Gk + νk and, since νk ∈ NX(x

k+1) and xk+2 ∈ X ,

µk

〈

xk+2 − xk+1, x̂− xk+1
〉

=
〈

xk+2 − xk+1, Gk + νk
〉

≤
〈

xk+2 − xk+1, Gk
〉

≤
∥

∥Gk
∥

∥

∥

∥xk+2 − xk+1
∥

∥

Since Gk ∈ ∂Mk(x
k+1) ⊂ conv{gj

f
, gj

c
: j ∈ Jk}, assumption (4.1.21) implies that

∥

∥Gk
∥

∥ ≤
Γ and, hence,

0 ≤ (1−m)δk ≤ 2Γ
∥

∥xk+2 − xk+1
∥

∥+ OV
k+1 − (OVk +

1

2
µk

∥

∥xk+2 − xk+1
∥

∥

2
) .

In view of (4.1.30), the right handside above tends to zero. Since m ∈ (0, 1), δk → 0, as
desired.

The negation of (4.1.14), condition 1 − (αk + βk) ≥ B > 0 from (4.1.15), and the fact
that µk ≥ µk̄+1 from (4.1.19c) imply that

0← δk ≥ 1

2
µk̄+1B

∥

∥xk+1 − x̂
∥

∥

2 ≥ 0 ,

so xk+1 → x̂, as stated. Since by (4.1.7) Gk + νk = µk(x̂ − xk+1) and by (4.1.19c)
µk ≤ µmax, we obtain that

0 ≤ 1

µmax

∥

∥Gk + νk
∥

∥ ≤ 1

µk

∥

∥Gk + νk
∥

∥ =
∥

∥xk+1 − x̂
∥

∥→ 0 and, hence, Gk + νk → 0 .

Finally, using in (4.1.17) that αk ≥ 0 by (4.1.15) gives

0← δk ≥ E
k = δk−2− αk

2
µk

∥

∥xk+1 − x̂
∥

∥

2 ≥ δk−µk

∥

∥xk+1 − x̂
∥

∥

2 ≥ δk−µmax

∥

∥xk+1 − x̂
∥

∥

2
.

Since both righthand side terms go to zero, so does Ek and the proof is finished.
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For the result above to hold, at null steps the bundle needs to be managed in a manner
ensuring the relations (4.1.26). Condition (4.1.26b) holds if the last generated information
enters the bundle, that is,

k + 1 ∈ Jk+1 which is equivalent to having
(

xk+1, fk+1, ck+1, gf
k+1, gc

k+1
)

∈ Bk+1 .

As for (4.1.26a), the inequality is typically ensured by introducing aggregate information
in the bundle. In our improvement function setting, this can be done by splitting the
aggregate information into their f and c parts. Specifically, in view of the model definition
(4.1.5), there is a multiplier λk ∈ [0, 1] such that

Mk(x
k+1) = λk(f̌k(x

k+1)− τ k1 ) + (1− λk)(čk(xk+1)− τ k2 ) ,

and
Gk = λkGk

f + (1− λk)Gk
c with Gk

f ∈ ∂f̌k(xk+1) , Gk
c ∈ ∂čk(xk+1) .

For (4.1.26a) to hold it is then enough to take
(

xk+1, f̌k(x
k+1), čk(x

k+1), Gk
f , G

k
c

)

∈ Bk+1 .

Similar calculations can be derived for economic bundles which, in the information
(xj, f j , cj, gj

f
, gj

c
), replace the knowledge of the vector xj by two scalars, referred to as

linearization errors for f and c at x̂k. We refer to [211] for more details.

Finally, like in the case of infinitely many serious steps, the remainder term corresponds
to Gk + νk → 0 with E

k → 0. For this reason, instead of the stopping criteria in Step 3
of Algorithm 4.1, one could stop when Gk + νk is sufficiently small, as long as Ek is also
small (serious and null cases) or nonpositive (noisy case).

4.1.3 Link with the Original Problem

In Section 4.1.2 we established the limiting behaviour of Algorithm 4.1. We still need
to analyze in which sense the method converges to an approximate solution to problem
(4.1.1). It is at this stage that the oracle errors play a major role. Our results below
show what can be expected in terms of solving (4.1.1) for oracles that are of upper or
lower type. Partly assymptotically exact and exact oracles are also considered.

4.1.4 Convergence Results

We start with a general result, suitable for oracles yielding inexact linearizations that
may lie above the function. Specifically, we suppose that for any xk ∈ X the oracle
output (4.1.3) is of upper type, in the sense that errors εk at iteration k and asymptotic
error ε ≥ 0 satisfy:

∀y ∈ X
{

fk +
〈

gk
f
, y − xk

〉

≤ f(y) + εk

ck +
〈

gk
c
, y − xk

〉

≤ c(y) + εk
with ε := lim sup εk . (4.1.31)
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Theorem 4.1.5 (Asymptotic Bounds for Upper Oracles). Consider solving (4.1.1) with
Algorithm 4.1 using an oracle (4.1.3) such that (4.1.21) and (4.1.31) hold, with param-
eters αk, βk satisfying (4.1.15) and penalties as in (4.1.20). Suppose the prox-parameter
is updated according to (4.1.19), and the model satisfies (4.1.26).

When the algorithm loops forever, for any accumulation point x̄ of the (bounded) sequence
{x̂k} and its limiting inexact f/c-values and parameters (f̄ , c̄, ρ̄, σ̄) it holds that

∀y ∈ X max(c̄, 0)(1−σ̄) ≤ max
(

f(y)−f̄−ρ̄max(c̄, 0), c(y)−σ̄max(c̄, 0)
)

+ε. (4.1.32)

Moreover, :

(i) If c̄ > 0 then
∃R : ρ̄ ≥ R =⇒ c̄ ≤ c(y) + ε for all y ∈ X.

(ii) If c̄ ≤ 0 and the set Xε = {y ∈ X : c(y) ≤ −2ε} is not empty, then

f̄ ≤ f(y) + ε for all y ∈ Xε.

Proof. When the algorithm loops forever, one of the index sets Ks, Ka, Kn, defined
respectively in Lemmas 4.1.2, 4.1.3, 4.1.4, is infinite. Since x̂k ∈ X and X is compact,
for any of such sets there exists a subset K ′ such that {x̂k}k∈K′ → x̄, recalling that when
K ′ = Ka and K ′ = Kn eventually x̂k = x̂ = x̄ remains fixed. By the same three lemmas,
and the first item in Proposition 4.1.1,

max(ĉk, 0)(1− σk) = hkx̂k ≤Mk(y) + o(1/k) for all y ∈ X and k ∈ K ′ sufficiently large.

By (4.1.31), Mk(y) ≤ Hτk(y) + εk for the exact improvement function (4.1.2) written
with target τ = τ k, so

∀y ∈ X max(ĉk, 0)(1− σk) ≤ max(f(y)− τ k1 , c(y)− τ k2 ) + o(1/k) + εk . (4.1.33)

By (4.1.4), the target is τ k = (f̂k + ρk max(ĉk, 0), σk max(ĉk, 0)) and by (4.1.21) the
sequences {f̂k} and {ĉk} are bounded. Extracting from K ′ a further subsequence K if
needed, we let

f̄ = lim
k∈K

f̂k , c̄ = lim
k∈K

ĉk , ρ̄ = lim
k∈K

ρk , σ̄ = lim
k∈K

σk ,

noting that ρ̄ is not necessarily finite. Passing to the limit as K ∋ k → ∞ in (4.1.33)
yields (4.1.32).

Consider first the case c̄ > 0. Since X is bounded and both f and c are real-valued, the

constant R = 1
c̄

(

maxy∈X(f(y) − c(y)) − f̄
)

+ σ̄ is well defined and any ρ̄ > R satisfies

(ρ̄ − σ̄)c̄ > f(y) − c(y) − f̄ for all y ∈ X . Since the inequality is equivalent to having
f(y)− f̄ − ρ̄max(c̄, 0) < c(y)− σ̄max(c̄, 0), the stated results follows from (4.1.32).

When c̄ ≤ 0, (4.1.32) becomes 0 ≤ max
(

f(y)− f̄ , c(y)
)

+ε and evaluating at any y ∈ Xε

gives the final result.
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Theorem 4.1.5 states that, as long as ρk is managed as a penalty parameter (for instance
ρk+1 = 2ρk if cx̂k+1 > 0, and ρk+1 = ρk otherwise), Algorithm 4.1 will eventually detect
problem (4.1.1) as infeasible up to the accuracy ε, or it will find an approximate minimizer
in the sense stated by the second item in the theorem. For the latter to happen, the
accuracy should be small enough to ensure nonemptiness of the set Xε (noting that in
this set the factor -2 could be replaced by any value strictly smaller than -1).

We now state a refinement of this result, for the case when inaccurate linearizations
eventually stay below the functions f and c. We refer to this situation as having “lower”
oracles.

Corollary 4.1.6 (Convergence for lower oracles). In the setting of Theorem 4.1.5, sup-
pose ε = 0 in (4.1.31). If problem (4.1.1) has a Slater point and ρ̄ is sufficiently large,
then c̄ ≤ 0 and f̄ ≤ f(y) for all y feasible in (4.1.1).

Proof. The case c̄ ≤ 0 is Theorem 4.1.5(ii) with ε = 0. As for the case c̄ > 0, it is
excluded by observing that for ρ̄ sufficiently large (4.1.32) becomes

c̄(1− σ̄) ≤ max
(

f(y)− f̄ − ρ̄c̄, c(y)− σ̄c̄
)

= c(y)− σ̄c̄ ,

so 0 < c̄ ≤ c(y) for all y ∈ X , an inequality that cannot hold when y is the Slater
point.

A further refinement is possible for lower oracles that are partly asymptotically exact, see
[81], [131], [44]. Specifically, these are oracles that become progressively more and more
accurate at serious steps. We now show that, unlike the previous cases, in this situation
the penalty ρk does not need to increase to infinity when the center is deemed infeasible
(that is, when cx̂k > 0).

Corollary 4.1.7 (Convergence for partly asymptotically exact lower oracles). In the
setting of Theorem 4.1.5, suppose ε = 0 in (4.1.31) and calculations are eventually exact
for serious steps: f(x̄) = f̄ and c(x̄) = c̄. The following holds:

(i) Either (4.1.1) is feasible and c(x̄) ≤ 0 with x̄ solving (4.1.1).

(ii) Or c(x̄) > 0 and (4.1.1) is unfeasible with x̄ minimizing infeasibility.

As a result, when (4.1.1) has a Slater point, only item (i) is possible.

Proof. When c̄ ≤ 0, the first result is Theorem 4.1.5(ii), recalling that f̄ = f(x̄) and
ε = 0.

Similarly for c̄ > 0 and ρ̄ = +∞, applying the first item in Theorem 4.1.5 with c̄ = c(x̄)
and ε = 0. When c̄ > 0 and ρ̄ is finite (not necessarily larger than R in the theorem),
adding σ̄c̄ to both sides of (4.1.32) and using that ε = 0 together with the assumption
that c(x̄) = c̄ and f(x̄) = f̄ gives that

c(x̄) ≤ H(y) := max
(

f(y)− f(x̄)− (ρ̄− σ̄)c(x̄) , c(y)
)

for all y ∈ X . (4.1.34)
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In the right handside above we use the notation H(·) for the (convex) exact improvement
function (4.1.2), written with target τ = (f(x̄)+(ρ̄−σ̄)c(x̄), 0). In particular, when y = x̄
the inequality (4.1.34) becomes

0 < c(x̄) ≤ H(x̄) = max
(

−(ρ̄− σ̄)c(x̄) , c(x̄)
)

.

Since by (4.1.20) the penalties satisfy ρk ≥ RS + σk − 1 > σk − 1, this means that
−(ρ̄− σ̄) < 1 and the maximum above is attained at c(x̄) and, hence, H(x̄) = c(x̄). As
a result, (4.1.34) states that 0 ∈ ∂(H + iX)(x̄), where iX denotes the indicator function
of the set X . Being a max-function, the subgradients of H at x̄ are of the form

λgf + (1− λ)gc for λ ∈ [0, 1] with gf ∈ ∂f(x̄) and gc ∈ ∂c(x̄)
with λ ∈ (0, 1] ⇐⇒ −(ρ̄− σ̄)c(x̄) ≥ c(x̄) .

Since c(x̄) > 0 and −(ρ̄− σ̄) ≤ 1−RS < 1 by (4.1.20), the only possibility is λ = 0, i.e.,
0 ∈ ∂c(x̄) and, therefore, 0 < c(x̄) ≤ c(y) for all y ∈ X , as stated.

For completeness, and to relate our method with previous algorithms in the literature,
we finish with a result for oracles that make exact calculations. In this case, there is no
noise attenuation step and the nominal decrease (4.1.13) is defined with αk ∈ [0, 1].

Corollary 4.1.8 (Convergence for exact oracles). Consider an exact oracle: for any xj ∈
X (4.1.3) returns f j = f(xj), cj = c(xj) and subgradients gj

f
∈ ∂f(xj) and gj

c
∈ ∂c(xj).

Then Algorithm 4.1 with βk ≡ 0 never executes Step 2 (noise attenuation).

Furthermore, suppose αk ∈ [0, 1], the penalties satisfy (4.1.20), the prox-parameter is
updated according to (4.1.19a) and (4.1.19c), and the model satisfies (4.1.26). Then the
statements in Corollary 4.1.7 apply.

Proof. By convexity, an exact oracle is of the lower type, so (4.1.31) holds with ε = 0. In
particular, writing (4.1.4) and (4.1.5) with y = x̂k we see that hkx̂k ≥Mk(x̂

k). Since, by
(4.1.6), Mk(x̂

k) ≥ Mk(x
k+1) + 1

2
µk‖xk+1 − x̂k‖2, the left handside in (4.1.12) is always

nonnegative and, as long as βk ≥ 0, the algorithm will never consider noise too large
(naturally so, since for exact oracles there is no noise to be detected).

The set X is bounded and the subdifferential mapping of a convex function is locally
bounded, so (4.1.21) holds for exact oracles. Since in addition, (4.1.15) holds by taking
for example B = 1

2
= −b, Corollary 4.1.7 completes the proof.

4.1.4.1 Relation with previous work

Corollary 4.1.8 covers methods based on improvement functions already considered in
the literature for solving constrained non-smooth problems using exact or lower oracles.
More precisely, conditions (4.1.20) are satisfied by at least the following three choices:

ρk = σk ≡ 0, or ρk ≡ ρ̄ < +∞ and σk ≡ 1, or ρ̄ = +∞ and σk ≡ 0,
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corresponding to the improvement functions in [211], [2], and [129], respectively. The
first two methods were developed for exact oracles ([2] deals with nonconvex functions).
The approach suggested in [129] considers a setting corresponding to a lower oracle, and
is addressed by Corollary 4.1.7.

To decide if the iterate gives a serious step, the three methods ([211, 2, 129]) use in Step
4 a criterion based on descent of the improvement function. Namely,

if hkxk+1 = max(fk+1 − τ k1 , ck+1 − τ k2 ) ≤ hkx̂k −mδk the iteration is declared serious
(4.1.35)

(noting that the test (4.1.16) is also mentioned in [129] as a possibility). In view of
the second item in Proposition 4.1.1, the criterion (4.1.16) is stronger for null steps.
Depending on the problem, one criterion or the other might be preferable. By checking
the proofs of Lemma 4.1.2 and 4.1.4, it is not difficult to see that the asymptotic results
in Section 4.1.2 still hold with the alternative test.

It should also be mentioned that [129] uses an alternative stopping test, suitable for
unbounded feasible sets (which is not the case in (4.1.1)). More precisely, instead of
checking if δk ≤ tol, Kiwiel in [129] uses the conditions

max
{

∥

∥Gk + νk
∥

∥ , Ek +
〈

Gk + νk, x̂k
〉

}

≤ tol[129] and cx̂k ≤ 0. (4.1.36)

For bounded feasible sets in (4.1.1), (4.1.36) is equivalent to the stopping test δk ≤tol.
Indeed, following the definition of Ek in (4.1.10) and δk in (4.1.13) with αk = 0, we see
that Ek +

〈

Gk + νk, x̂k
〉

= δk +
〈

Gk + νk, x̂k+1
〉

. Using the fact that X is compact and in
particular bounded together with

∥

∥Gk + νk
∥

∥ ≤ tol[129], the stopping criteria (4.1.36)

implies that δk ≤ tol for certain modified tolerance.

Another stopping criterion is the one used in [68]:

max
{

µk

∥

∥xk+1 − x̂k
∥

∥

2
, Ek
}

≤ tol[68]. (4.1.37)

It was already mentioned that Lemmas 4.1.2, 4.1.3, 4.1.4, ensure that
∥

∥Gk + νk
∥

∥ =
µk

∥

∥xk+1 − x̂k
∥

∥→ 0. Together with (4.1.17) the stopping test δk ≤ tol implies (4.1.37)
for an appropriate tolerance tol[68]. On the other hand, keeping the prox-parameters

uniformly bounded from above in (4.1.19), together with (4.1.17) and (4.1.7) gives

δk = E
k +

2− αk

2
µk

∥

∥xk+1 − x̂k
∥

∥

2 ≤ 2max
{

E
k, µk

∥

∥xk+1 − x̂k
∥

∥

2
}

, (4.1.38)

showing that (4.1.37) also implies δk ≤ tol for an appropriately chosen tolerance tol.

Therefore, for convex problems as (4.1.1), our approach includes previous work, signifi-
cantly extending the applicability of algorithms in the literature:

– not only exact and lower oracles can be used, but also upper ones, satisfying (4.1.31);

– the criterion for serious steps can be (4.1.16) or based on the improvement function;

– the descent and noise parameters αk , βk can be chosen in any manner satisfying (4.1.15).
This versatility has a positive impact on the numerical results as shown in Table 4.4.
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– any choice for the penalty parameters ρk and σk in (4.1.4) satisfying (4.1.20) is possible.

Regarding the last item, the role/utility of the penalty in second target (in τ k2 ) is not
clear. At least in the convex setting, taking σk = 0 and forgetting about this additional
parameter seems sufficient. It is argued in [2], however, that a positive σk can be beneficial
in the numerical performance of the algorithm, so the situation may be different for
nonconvex problems.

4.1.5 Energy Application: Hydro Reservoir Management

We consider a cascaded reservoir management problem with uncertainty on inflows in
the numerical experience. Figures 4.1(a) and 4.1(b) provide two typical instances of such
a problem. Specific modelling details can be found in section 5.1 and paper [246].

Such a problem fits the following abstract structure:

minx≥0,x∈Rn 〈f, x〉
s.t. Ãx ≤ b̃ (4.1.39)

p ≤ P[ar + Arx ≤ ξ ≤ br + Arx],

where ξ ∈ Rm is a Gaussian random vector with variance-covariance matrix Σ and zero
mean (we have explicitly extracted the non-zero average in the vector ar, br ∈ Rm). This
random vector represents uncertainty on inflows and the probabilistic constraint the fact
that we are looking for a turbining schedule that keeps volume between a lower and upper
bound with high probability.

By a classical result (Theorem 2.5.13), the feasible set induced by the joint chance con-
straint (5.1.4) is convex. Moreover from the same result it follows that the function

log(p)− log(P[ar + Arx ≤ ξ ≤ br + Arx]) (4.1.40)

is a convex function.

So (4.1.39) corresponds to (4.1.1) with

f(x) := 〈f, x〉 , X := {x ∈ R
n : x ≥ 0, Ãx ≤ b̃}

and
c(x) := log(p)− log(P[ar + Arx ≤ ξ ≤ br + Arx]).

It is moreover clear that X is bounded according to (5.1.1). In this setting, the f -oracle
is exact. As for the c-oracle, it falls into the framework (4.1.31) with ε > 0, as explained
below.

4.1.5.1 Devising an inexact upper oracle for the constraint

It is shown in Lemma 3.2.1 (see also Corollary 3.2.3) that the mapping

ϕ : Rn → [0, 1] defined by ϕ(x) = P[ar + Arx ≤ ξ ≤ br + Arx]
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Figure 4.1: Numerical Instance Data
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is differentiable with gradient∇ϕ(x) = ∇âFξ(â, b̂)
TAr+∇b̂Fξ(â, b̂)

TAr, with â = Arx+ar,

b̂ = Arx+ br and Fξ : R
m×Rm → [0, 1] defined by Fξ(â, b̂) = P[â ≤ ξ ≤ b̂]. These results

can be applied since ξ is a non-degenerate (i.e., with positive definite covariance matrix)
Gaussian random variable. In the potentially degenerate case we can refer to [106].
The analysis of what follows will be completely similar as again the computation of the
gradient is reduced to evaluation mappings with a structure close to the one of ϕ above.

Accordingly, the i-th component of ∇âFξ(â, b̂) (−∇b̂Fξ(â, b̂) respectively) is equal to

−ψ(z)P[ãr + Ãrx ≤ ξ̃ ≤ b̃r + Ãrx]. In this expression, ψ is the density of a stan-
dard Gaussian random variable in 1 dimension; z a specific point depending on x, and
ãr, b̃r, Ãr, ξ̃ of ar, br, Ar are appropriate modifications of the respective objects. These
modifications depend on whether the derivative is taken with respect to â or b̂.

We see that, in order to compute one component of the gradient, one needs to evaluate
a mapping of the form Fζ(â, b̂) at specific points â ≤ b̂ ∈ R

m, with ζ ∈ R
m a non-

degenerate multi-variate Gaussian random variable. Since the evaluation of the c-function
also requires to compute a similar probability, the core of the c-oracle is to make the
involved multidimensional calculations in a fast and efficient manner. This is achieved
by using the code [83], developped by A. Genz for multivariate normal probabilities.
Having as input a requested accuracy εg > 0, the code either returns a value F̃ such

that
∣

∣

∣
F̃ − Fζ(â, b̂)

∣

∣

∣
< εg, or issues an error message, stating the impossibility of making

the calculation with the requested precision. In the latter case, it is possible to increase
the number of quasi Monte Carlo particles used in the numerical integration and make
another attempt to obtain the desired accuracy.

Since the integral approximation estimate can be larger or smaller than the exact value,
the c-linearizations may lie below or above the exact function c, noting that asymptoti-
cally exact (up to say floating point precision) calculations would be possible (although
they might considerably increase the time spent in the oracle).

4.1.5.2 Convergence results for the application

According to the model set up in this section, the objective function f of problem (4.1.1)
is linear and therefore has an exact oracle. Inexactness arises from evaluating the prob-
abilistic constraint c. The corresponding oracle may be of the upper type, because no
information is available on the sign of the incurred error, neither for the function val-
ues nor for the subgradients. However, as explained in [101], the user can control such
error, keeping it sufficiently small if desired (provided enough CPU time is spent in the
calculations).

We now derive an explicit expression for ε > 0 in (4.1.31). Consider a constant Φ > 0, for
which ϕ(xk) > Φ > 0 for all iterations k. For example, one can take as initial point x̂0 an
appropriate convex combination with the Slater point xs ∈ R

n ensuring that ϕ(x̂0) > Φ
for any given p > Φ > 0. Then, as far as serious iterates are concerned, (4.1.16) ensures
that ϕ(x̂k) > Φ. Since ε in (4.1.31) depends on the limiting behaviour, clearly one can
choose µk in (4.1.6) according to rule (4.1.19c) in such a way that ϕ(xk) > Φ also in
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null-steps.

The logarithm being a uniformly continuous mapping on [Φ, 1], X being a compact set
and ϕ : X → [0, 1] also being uniformly continuous, it is clear that for any ε′ > 0 a
precision εg can be chosen such that

∣

∣c(xk)− cxk

∣

∣ ≤ ε′ for any iteration k. As discussed
at the end end of Section 4.1.5.1, ‖∇ϕ(x)−∇ϕx‖∞ ≤ 2√

2π
‖Ar‖∞ εg, since the standard

Gaussian density ψ satisfies |ψ(z)| ≤ 1√
2π
∀z ∈ R. By the Cauchy-Schwarz inequality

and compactness of X we then obtain that

∣

∣

〈

gc(x
k), y − xk

〉

−
〈

gc
xk
, y − xk

〉∣

∣ ≤Mεg

for an appropriate constant M > 0 and any y ∈ X . We conclude that (4.1.31) holds
with ε ≥ ε′ +Mεg. Moreover, whenever εg is taken small enough, ε′ can also be made
arbitrarily small.

We are in the conditions of Theorem 4.1.5. Since in the hydro valley application it is
reasonable to assume the existence of a Slater point xs, we pick εg, the user-defined
precision of Genz’ code in such a way that c(xs) ≤ −2ε. This ensures that the set Xε in
Theorem 4.1.5 is not empty. In the setting of the theorem, let x̄ be the limiting point
generated by Algorithm 4.1.

When x̄ is infeasible according to the oracle information, c̄ > 0 and item (i) of Theorem
4.1.5 leads to the contradiction c̄ < c(xs) + ε ≤ −ε < 0. Therefore, x̄ is approximately
feasible (c̄ < 0) and satisfies the relation f̄ ≤ f(y) + ε for all y ∈ Xε by item (ii) of the
same theorem. Consequently, x̄ approximately solves (4.1.1).

4.1.6 Numerical experience

For our numerical experience, the starting point uses xd, a solution to the linear program

minx≥0,x∈Rn 〈f, x〉
s.t. Ãx ≤ b̃ (4.1.41)

ar + Arx ≤ 0, br + Arx ≥ 0,

the “deterministic” counterpart of (4.1.39) wherein the random vector ξ is replaced by its
expectation. In general xd will not be feasible for (4.1.39) (unless it solves the problem).

Since improvement functions are scale-dependent, [211], it is useful to scale the constraint.
Accordingly, we consider the constraintKp ≤ KP[ar+Arx ≤ ξ ≤ br+Arx] for some value
of K > 0. A natural choice for K would be

∣

∣

〈

f, xd
〉∣

∣. Finally rules (4.1.19a), (4.1.19c)
and (4.1.19b) are dealt with in the following way. In serious steps we take µk+1 = µk

without making any changes. When noise is detected, we take µk+1 = κµk for a parameter
κ ∈ (0, 1). Finally when null steps are made we choose µk+1 = min {µsµk, µmax} for a
parameter µs > 1.
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4.1.6.1 The various compared algorithms

We first compare the performance of several methods, including variants of Algorithm 4.1
using different choices for the parameters. More precisely, we consider:

– A configuration of Alg.4.1 with a strong noise test:

Alg.PB.SEV : σk ≡ 0 , ρk ≡ 0 , αk ≡ 1 , βk ≡ −1 + εm

with stopping test (4.1.37) and descent test (4.1.35). Here εm is the machine precision.

– A configuration of Alg.4.1 with null parameters:

Alg.PB.NUL : σk ≡ 0 , ρk ≡ 0 , αk ≡ 0 , βk ≡ 0

with stopping test (4.1.36) and descent test (4.1.35)

– The method of centers from [129], bearing some similarities with Alg. 4.1 provided
parameters are properly set:

Alg.[129] : σk ≡ 0 , ρk →∞ if {x̂k+1} infeasible , αk ≡ 0 , βk = ad-hoc

with stopping test (4.1.36) and descent test (4.1.35)

– The conic bundle method from [132]:

Alg.[132] : No σk, ρk , αk ≡ 0 , ad-hoc QP in Step 1, βk, Stop and Descent Test

– The supporting hyperplanes method from [182] (see also [253, 185, 222]):

Alg.[182] : No σk, ρk, αk, βk,

with a Linear Program in Step 1 and ad-hoc stopping and descent tests.

In both configurations of Alg.4.1 above taking RS = 1 ensures satisfaction of (4.1.20)
for any choice of ρk+1; as for (4.1.15), it suffices to take any positive B and b = βk
(constant in k). Since the conditions in Section 4.1.3 are satisfied, eventual convergence
to an approximate solution is assured with these methods.

We now describe the specific ad-hoc updates of the last three methods. To help the
comparison, the algorithms steps are numbered as in Alg. 4.1.

4.1.6.1.1 Alg.[129] Specifics The penalty ρk+1 is halved at serious steps and dou-
bled if cx̂k+1 > 0. Once a feasible stability center is found, the numerical value of this
penalty becomes irrelevant. For an additional Armijo-like parameter m′ ∈ (0, 1], the
method of centers modifies the noise management Step 2 in Alg. 4.1 as follows.

Step 2’a (Infeasible serious point) If ĉk > 0 and δk < m′ĉk, noise is too large. Decrease
the prox-parameter as in (4.1.19b), take ρk+1 = 2ρk, maintain the bundle, and loop to
Step 1 (solve a new QP subproblem).
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Step 2’b (Noise attenuation). In the other cases, that is, if ĉk ≤ 0 or δk ≥ m′ĉk,
check if condition (4.1.14) holds. If this condition holds, noise is too large. Decrease
the prox-parameter as in (4.1.19b), take ρk+1 > ρk if ĉk > 0, maintain the bundle, and
loop to Step 1 (solve a new QP subproblem).

The difference with our noise management step is in the first item: when the current
serious point is infeasible, instead of (4.1.14) the condition δk < m′ĉk is checked. Such

condition amounts to verifying if (4.1.14) holds with βk = 1− 2m′ĉk

µk‖xk+1−x̂k‖2 . Suppose such
value of βk also satisfies (4.1.15) (for example suppose m′ is sufficiently small). Then this
alternative can also be considered a special case of Algorithm 4.1, with a specific updating
of βk for infeasible serious points.

4.1.6.1.2 Alg.[132] Specifics This method is applicable when, like in our applica-
tion, the objective function in (4.1.1) is linear or quadratic: the QP subproblem approx-
imates (4.1.1) with a cutting-plane model for the constraint. Furthermore, the method
needs the knowledge of a Slater point xs for (4.1.1), which is also its starting point:
x̂0 = xs. The algorithm performs the following steps.

Step 1’ (Alternative subproblem, δk, Ek) Let (xk+1, ηk+1) be a primal-dual solution to
the QP

miny∈X⊆Rn 〈f, y〉 + 1

2
µk

∥

∥y − x̂k
∥

∥

2

s.t. čk(y) ≤ 0 .

This amounts to taking in (4.1.7), instead of subgradient Gk ∈ ∂Mk(xk+1), a vec-
tor Gk ∈ f + ηk+1∂čk(x

k+1) given by the QP optimality conditions. Taking δk :=
〈

f, x̂k − xk+1
〉

and E
k = δk − µk

∥

∥xk+1 − x̂k
∥

∥

2
ensures satisfaction of the left handside

identity in (4.1.17) with αk = 0.

Step 3’a (Stopping test) Stop if
∥

∥Gk + νk
∥

∥ ≤ tol and E
k +

〈

Gk + νk, x̂k
〉

≤ 0,

Step 3’b (Interpolation Step) If cxk+1 ≤ 0, set γk := 1, otherwise γk := −cxs
c
xk+1−cxs

.

Define x̌k := γkxk+1 + (1− γk)xs.
Step 4’ (Serious step Test) If

〈

f, x̌k
〉 〈

f, x̂k
〉

−mδk then declare a serious step, taking
as next center x̂k+1 = x̌k. Otherwise, declare a null step.

When the c-oracle is exact or lower2, each stability center will be feasible, by convexity.
When the c-oracle is of the upper type, like in our case, by the discussion in Section 4.1.5.1
it is possible to take a slightly larger γk so that ϕ(x̌k) ≥ p+εg. This is a potentially costly
fix that may require several evaluations (our implementation uses the original definition
for γk.) The analysis in [132] does not cover upper oracles, so convergence of this method
is unclear, although its numerical behaviour was reasonable for our tests.

4.1.6.1.3 Alg.[182] Specifics Like Alg.[132], the cutting-planes model for the con-
straint is built using for the c-evaluation points, points obtained from interpolating with

2In this case one requires the c-oracle to be exactly evaluated at the Slater point
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the Slater point. The difference is that now the constraint is required to be active at the
interpolation point (x0c = (1 − γ0)x0 + γ0xs satisfies cx0

c
= 0 for some γ0 ∈ [0, 1].) For a

linear objective function the algorithm performs the following steps.

Step 1’ (Linear Programming subproblem) Let xk+1 be a solution to

miny∈X⊆Rn 〈f, y〉
s.t. čk(y) ≤ 0 .

Step 3’a (Interpolation and Oracle) Determine γk ∈ [0, 1] for which xk+1
c = (1 −

γk)xk+1 + γkxs satisfies cxk+1
c

= 0. Call the c-oracle and add the linearization to the
cutting-plane model.

Step 3’b (Stopping Test and Loop) If
〈

f, xk+1
c − xk+1

〉

<
〈

f, xk+1
〉

tol then stop.
Otherwise, set k = k + 1 and loop to Step 1’.

For exact c-oracles, the method is a specialization of the cutting-plane algorithm in non-
smooth optimization, hence it converges. For inexact c-oracles, convergence results are
not known.

4.1.6.2 Computational results

We now comment some of the numerical results. The reported CPU times are to be
taken as a measure for comparing different algorithms, rather than as a measure of
performance. Our implementation does not contain several improvements and tweaks
that could optimize the code (oracle parallelization or multi-threading, for instance).
Another important issue is that computing a Slater point is very consuming in terms of
CPU time: this amounts to solving a problem as difficult as the original one (4.1.39) (i.e.,
solving (4.1.39) with objective function replaced by maximizing the probability level).

Results reported in Tables 4.1,4.2,4.3 were obtained on a HP xw6200 workstation with
8 Gb memory, whereas results of Tables 4.4, 4.6, 4.5 were obtained on a HP z600 work-
station.

The key findings are that Alg.PB.SEV

1. Does not need the explicit knowledge of a Slater point. Moreover the Bundle Algo-
rithms perform better if started in an infeasible point. Such an infeasible start can
not be performed with Alg.[182] and Alg.[132] which are definitely outperformed.

2. Provides the optimal solution and does not converge early as do Alg.[129] and
Alg.PB.NUL.

3. Is quite robust to the accuracy with which the probabilistic constraints and gradi-
ents are evaluated.
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4.1.6.3 Feasible Start using a Slater Point and Infeasible Start

In order to put all algorithms on equal foot, a first comparison supposes that a Slater
point is available to all of the methods in the benchmark. In this case, for a suitable
convex combination of xd and xs, the starting point x̂0 is always feasible (Alg.[132] starts
at xs). Computing this convex multiplier requires executing step 3’a of Alg.[182]. This
involves calling the c-oracle several times and might be costly. Table 4.1 contains the
output of all the runs, with various parameter settings for each algorithm (to decide on
the best choice of parameters for the benchmark).

The best objective function value in this test was −104162, found by Alg.PB.SEV for
different settings. When K = 1e4 Alg.PB.SEV found in 239 minutes a similar3 solution
than Alg.[182], which took approximately the same CPU time. Taking K = 5e4 the
same point is reached in only 193 minutes and with K = 1e4 that point is reached in
178 minutes. Table 4.1 shows the importance of the scaling parameter in the bundle
method. It also shows that the supporting hyperplane method reaches good points early,
but takes a very long time to converge. Basically each iteration takes approximately 15
to 20 minutes. Each bundle iteration takes less time (approximately 3 to 4 minutes per
iteration). This can be explained by the fact that the supporting hyperplane method
computes the exact interpolation. Now typically the cutting-plane method would yield
a new iterate xk far from the probability boundary P[ar + Arx ≤ ξ ≤ br + Arx] = p and
it would seem that Genz’ code takes more time on such points than on strictly feasible
points. It is also interesting to note that each stability center from the bundle methods
is feasible. Thereby empirically providing support for the initial discussion in Section
4.1.5.2. Since in this setting Alg.[129] and Alg.PB.NUL would have similar results, we did
not include them in this comparison.

The results in Table 4.2 were obtained with an infeasible starting point, x̂0 = xd from
(4.1.41), using for each algorithm the best parameter settings in Table 4.1.

For these runs, both Alg.PB.NUL and Alg.[129] modify the serious step test in Step 4,
as follows. When the current stability center is infeasible, in addition to the usual test
for acceptance, any improvement in feasibility by at least the c-oracle precision (“Genz
precision” εg) declares the current iterate a new stability center. The modification was
done to prevent the methods from stalling in the early stages of the algorithmic process
and can only be active a finite number of iterations. Alg.PB.SEV does not stall and needs
no modification. Once more, this variant is the best one in the benchmark, since it finds
a feasible point with objective function value −104153 in only 56 iterations (comparable
to the other two algorithms in the comparison). The best objective value of −104162 was
obtained at the stake of many iterations. This table shows that important speed ups can
be gained when starting with infeasible points. In particular, Alg.[182] requiring a Slater
point and reaching a feasible solution with objective function value −104154 in 2079.17
minutes (see Table 4.1) is definitely out-performed by the Bundle method settings of
Table 4.2.

The comparison above shows a strong dependence of the CPU time on the initial point,

3i.e., feasible with same objective function value
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Table 4.1: Comparison of Algorithms (nnex stands for nn10x), assuming a Slater Point
available.

method Obj. Value Nb. Iter. CPU time parameters
(mins)

Alg.[182] -103197 17 247.7 tol = 1e−2

Alg.[182] -104070 45 940.3 tol = 1e−3

Alg.[182] -104154 94 2079.17 tol = 1e−4

Alg.PB.SEV -104162 294 1028.43 K = 1e5, µ0 = 1e−6, µs = 2, κ = 0.7
Alg.PB.SEV -104160 300 1060.35 K = 2e5, µ0 = 1e−6, µs = 2, κ = 0.7
Alg.PB.SEV -104162 286 991.33 K = 5e4, µ0 = 1e−6, µs = 1.05, κ = 0.95
Alg.PB.SEV -104162 243 846.20 K = 5e4, µ0 = 1e−6, µs = 2, κ = 0.7
Alg.PB.SEV -104160 215 723.55 K = 5e4, µ0 = 1e−6, µs = 2, κ = 0.25
Alg.PB.SEV -104162 255 887.07 K = 5e4, µ0 = 1e−5, µs = 2, κ = 0.1
Alg.PB.SEV -104162 257 907.20 K = 5e4, µ0 = 1e−6, µs = 2, κ = 0.1
Alg.PB.SEV -104162 239 827.26 K = 5e4, µ0 = 1e−6, µs = 4, κ = 0.5
Alg.PB.SEV -104162 265 932.19 K = 1e4, µ0 = 1e−6, µs = 2, κ = 0.7
Alg.PB.NUL -104109 417 1686.12 K = 1e5, µ0 = 1e−6, µs = 1.05, κ = 0.95
Alg.PB.NUL -104096 402 1539.16 K = 5e4, µ0 = 1e−6, µs = 1.05, κ = 0.95
Alg.PB.NUL -104102 395 1639.40 K = 5e4, µ0 = 1e−6, µs = 2, κ = 0.7
Alg.PB.NUL -104089 277 1106.43 K = 5e4, µ0 = 1e−6, µs = 2.0, κ = 0.25
Alg.PB.NUL -104091 323 1257.09 K = 5e4, µ0 = 1e−6, µs = 4.0, κ = 0.5
Alg.PB.NUL -104078 366 1480.21 K = 1e4, µ0 = 1e−6, µs = 1.05, κ = 0.95
Alg.PB.NUL -104077 395 1591.13 K = 1e4, µ0 = 1e−6, µs = 2.0, κ = 0.7
Alg.PB.NUL -104078 278 1063.49 K = 1e4, µ0 = 1e−6, µs = 2.0, κ = 0.5
Alg.PB.NUL -104076 234 887.38 K = 1e4, µ0 = 1e−6, µs = 2.0, κ = 0.25
Alg.PB.NUL -104078 253 981.13 K = 1e4, µ0 = 1e−6, µs = 2.0, κ = 0.35
Alg.PB.NUL -104079 144 549.19 K = 1e4, µ0 = 1e−5, µs = 2.0, κ = 0.1
Alg.PB.NUL -104072 208 792.17 K = 1e4, µ0 = 1e−6, µs = 2.0, κ = 0.1
Alg.PB.NUL -104078 218 828.58 K = 1e4, µ0 = 1e−7, µs = 2.0, κ = 0.1
Alg.PB.NUL -104078 278 1126.51 K = 1e4, µ0 = 1e−6, µs = 4.0, κ = 0.5
Alg.[132] -104026 525 1933.29 K = 1, µ0 = 1e−5, µs = 1.05, κ = 0.7
Alg.[132] -104026 481 1691.07 K = 1, µ0 = 1e−6, µs = 1.05, κ = 0.7
Alg.[132] -104027 447 1749.57 K = 1, µ0 = 1e−7, µs = 1.05, κ = 0.7
Alg.[132] -104027 454 1852.24 K = 1, µ0 = 1e−8, µs = 1.05, κ = 0.7
Alg.[132] -104025 339 1311.24 K = 1, µ0 = 1e−8, µs = 1.05, κ = 0.1
Alg.[132] -104024 297 1170.13 K = 1, µ0 = 5e−9, µs = 1.05, κ = 0.1
Alg.[132] -104027 418 1602.25 K = 1, µ0 = 1e−9, µs = 1.05, κ = 0.7
Alg.[132] -104022 293 1089.25 K = 1, µ0 = 1e−9, µs = 1.05, κ = 0.1
Alg.[132] -104026 273 1030.21 K = 1, µ0 = 1e−9, µs = 1.05, κ = 0.05
Alg.[132] -104024 254 893.40 K = 1, µ0 = 1e−9, µs = 1.01, κ = 0.05
Alg.[132] -104024 254 798.32 K = 1, µ0 = 1e−9, µs = 1.01, κ = 0.01
Alg.[132] -104024 241 761.37 K = 1, µ0 = 1e−9, µs = 1.001, κ = 0.01
Alg.[132] -104026 303 1150.23 K = 1, µ0 = 1e−9, µs = 4.0, κ = 0.1
Alg.[132] -104025 391 1456.13 K = 1, µ0 = 1e−10, µs = 1.05, κ = 0.7
Alg.[132] -104026 329 1193.51 K = 1, µ0 = 1e−10, µs = 1.05, κ = 0.1
Alg.[132] -104028 595 2340.03 K = 1, µ0 = 1e−10, µs = 2.0, κ = 0.7
Alg.[132] -104020 360 1348.14 K = 1, µ0 = 1e−10, µs = 2.0, κ = 0.1
Alg.[132] -104026 325 1250.17 K = 1, µ0 = 1e−10, µs = 4.0, κ = 0.1

for all methods.
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Table 4.2: Comparison of Algorithms (nnex stands for nn10x), infeasible starting point.
Precision of Genz’ code εg = 1e−4.

method Obj. Value Nb. Iter. CPU time (mins) parameters
Alg.PB.SEV -104162 133 379.45 K = 5e4, µ0 = 1e−6, µs = 2.0, κ = 0.25
Alg.PB.NUL -104154 73 167.25 K = 1e4, µ0 = 1e−5, µs = 2.0, κ = 0.1
Alg.[129] -104153 55 114.52 K = 1e4, µ0 = 1e−5, µs = 2.0, κ = 0.1

4.1.6.4 Different variants of Alg.PB.SEV

In order to determine the impact on the convergence, we varied the precision of Genz
code. This test also allows us to check the potential of varying this precision along the
iterations. We took the best method, Alg.PB.SEV, with the same parameter setting, for
different oracle precision. Table 4.3 reports the corresponding results.

Table 4.3: Effect of “Genz Precision” (nnex stands for nn10x), Alg.PB.SEV with K =
5e4, µ0 = 1e−6, µs = 2.0κ = 0.5.

Starting Point Genz Precision objective Value Nb. Iterations CPU time (mins)
Feasible 1e−2 -104177 216 83.55
Feasible 1e−3 -104163 216 87.13
Feasible 1e−4 -104162 222 722.59
Feasible 1e−5 -104161 261 54390.5
Infeasible 1e−2 -104177 71 27.48
Infeasible 1e−3 -104163 108 41.36
Infeasible 1e−4 -104162 128 338.37

The solution obtained when using Genz’ code with precision 1e−2 is slightly infeasible.
This explains the “over”-optimal objective function value. From this table, we see that
if the oracle accuracy is too high, CPU times can reach inacceptably large values.

Continuing with our analysis of the best variant, Alg.PB.SEV with fixed settings, in Table
4.4 we consider different values of βk, ranging between the severe noise test (close to -1)
to the permissive one (close to 1), and likewise for αk, which varies from a severe serious
step test (close to 0) to a permissive on (close to 2).

Table 4.4: Effect of noise test (nnex stands for for nn10x), Alg.PB.SEV withK = 5e4, µ0 =
1e−6, µs = 2.0κ = 0.5, tol = 0.5, and Genz precision 5e−4

Starting Point α β objective Value Nb. Iterations CPU time (mins)
Infeasible 0 −1 + εm -104160 88 21.33
Infeasible 0 0 -104157 87 21.0
Infeasible 0 1− εm -104159 111 30.30
Infeasible 1 −1 + εm -104158 60 12.8
Infeasible 1 −εm -104158 70 15.57
Infeasible 2− 2εm −1 + εm -104077 24 5.35

Higher α values lead to more serious steps, until the extreme of declaring all iterates
serious (α = 2 − 2εm). In our tests, a severe noise test has resulted in a more stable
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management of the prox-parameter. Indeed, we have observed that if noise gets detected
early on, the value of µk remains unchanged a significant number of iterations. By
contrast, the permissive choice for βk leads to some chaotic changes throughout the
iterative process.

We have also tested the two alternative stopping criteria and the alternative serious step
conditions. Table 4.5 reports these results.

Table 4.5: Effect of Descent test & Stopping Criteria (αex stands for α10x). Alg.PB.SEV
with parameter setting K = 5e4, µ0 = 1e−6, µs = 2.0κ = 0.5. Precision of Genz code is
taken to be 5e−4, ρk = 0 α = 0, β = −1 + εm.

Starting Point Descent Test Stopping Criteria objective Value Nb. It CPU time (mins)
Infeasible (4.1.16) δk ≤ 0.5 -104160 93 23.33
Infeasible (4.1.35) δk ≤ 0.5 -104160 93 22.49
Infeasible (4.1.16) (4.1.36) ,tol = 1e−4 -104153 69 16.38
Infeasible (4.1.16) (4.1.37) ,tol = 1e−4 -104156 70 17.39

One can observe that in our specific case the choice of Descent Test (4.1.16) or (4.1.35)
makes no difference. This can be intuited since for a currently feasible stability center
with feasible candidate the check (4.1.35) is indeed identical to that of (4.1.16). Since
this situation seems to occur most often in this application, the result of Table 4.5 are
indeed natural. It could however be argued that descent test (4.1.16) is less sensitive
to the scaling parameter K. In particular one could make an alternative choice for the
Armijo parameter to boost feasibility steps early on. The stopping criteria clearly does
impact results, mainly because the varying tolerances, although equivalent choices exist,
are hard to link together.

Finally, we also examined the impact of penalty parameter ρk, comparing taking ρk = 0
(as in the previous runs in this subsection) with an update as for Alg.[129]4 Results are
provided in Table 4.6. Instead, we observe that with a nonnull ρk a feasible stability
center is found in half the number of iterations. Unfortunately this quest for feasibility
strongly deteriorates the objective function value, and eventually more iterations are
required to converge to very similar solutions in the end.

We conclude that, at least for our runs, the best variant is Alg.PB.SEV with the settings
in Table 4.4.

4.1.7 Solution Quality

To assess the obtained solutions, we simulate the reservoirs evolution and check if the
stipulated probability level is satisfied numerically. Figure 4.2 shows the reservoir lev-
els for 100 simulated inflow scenarios, using the expected-value strategy obtained from

4That is: we multiply ρk by two at each iteration when the current stability center is infeasible. We
take ρk = 0 whenever the current stability center is feasible. Since all following stability centers remain
feasible from that moment onward there is no further effect of ρk.
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Table 4.6: Effect of updating ρk and the noise test (αex stands for α10x). Alg.PB.SEV
with parameter setting K = 5e4, µ0 = 1e−6, µs = 2.0κ = 0.5, tol = 0.5. Precision of
Genz code is taken to be 5e−4

Starting Point α β objective Value Nb. Iterations CPU time (mins)
Infeasible 0 −1 + εm -104160 93 23.33
Infeasible 0 0 -104160 131 31.3
Infeasible 0 1− εm -104157 115 32.40
Infeasible 1 −1 + εm -104158 72 16.31
Infeasible 1 −εm -104159 68 15.57
Infeasible 2− 2εm −1 + εm -104095 27 6.57

solving problem (4.1.41) and Alg.PB.SEV. The figure clearly shows the importance of
integrating uncertainty in order to obtain robust turbining strategies.
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Figure 4.2: Evolution of reservoir “Saut Mortier”, for the expected-value estrategy (left)
and for Alg.PB.SEV strategy (right).

Except for the deterministic solution, which violates constraints for almost all scenarios,
the various methods in our benchmark provide in fact very similar solutions. When slight
differences arise, they account for increased robustness (with respect to the deterministic
solution) and for increased optimality (with respect to various solution methods).
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4.2 A level Bundle Method

Following the discussion of [47] at least three types of bundle methods can be identified.
The classical proximal bundle method ([139] and references therein) of which a special
version for probabilistically constrained programming was derived in Section 4.1. The
level bundle method ([136]) and the trust-region bundle method ([214]). In the last
version the cutting planes model of the convex function (to be minimized) is minimized
under a trust-region constraint as its name implies. In the level method we orthogonally
project the current stability center onto a level set defined by the current cutting planes
model. For a given iteration, we can theoretically find parameter settings such that each
of these methods provides the same next iterate. From a practical viewpoint these three
methods differ in the ease with which the parameters are updated. For instance, the
level bundle method does not have a proximal parameter to update. Since this is one
of the most tricky parts for obtaining an efficient proximal bundle method, this can be
seen as an advantage. In order to investigate this, we will derive a level bundle method
for probabilistically constrained programming in this section. We will repeat some of the
earlier notation for clarity.

Once again, let us consider problems of the type

min
x

f0(x) s.t. x ∈ X ⊂ R
n and fj(x) 6 0 for j = 1, ...,m , (4.2.1)

where fj : R
n → R, j = 0, ...,m are convex functions and X 6= ∅ a polyhedral bounded

set in R
n. We will make the assumption that some (or all) functions fj are hard to

evaluate. We therefore assume that the mappings fj, j = 1, ...,m can be inexactly
evaluated by some oracle (or black-box) providing approximate values and subgradients,
hereafter denoted by oracle information. The precision of the oracle information might
be unknown, but it is assumed bounded.

Applications in which a decision maker has to make a decision hedging risks often lead to
optimization problems with nonlinear convex constraints that are difficult to deal with.
For instance, if such constraints (fj, with j = 1, . . . ,m) are setup as joint chance con-
straints (see Example 4.2.2 below). Evaluating the functions for a given point involves
computing numerically a multidimensional integral. This is a difficult task when uncer-
tainty variables are high-dimensional (say dimension 100), see [248]. A second difficulty
is obtaining an efficient estimate of a subgradient. This can be done in many cases of
interest, but equally involves imprecisions (see [244] for a special case and [233, 235, 236]
for very general results).

The last few years have seen the occurrence of a new generation of bundle methods, capa-
ble to handle inexact oracle information. For unconstrained (or polyhedral constrained)
convex non-smooth optimization problems we refer to [113] and [128] for general ap-
proaches, [132] for a combinatorial context, and [70], [72], [46] and [44] for a stochastic
optimization framework. For an encompassing approach we refer to the recent work [45].

For constrained convex optimization problems like (4.2.1) more sophisticated methods
need to come into play. We refer to [70] and [71] for level bundle methods capable to
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deal with asymptotically exact oracle information. Such oracle information is assumed to
underestimate the exact value of the functions, i.e., the oracle is of the lower type. Since
[70] and [71] are based on the pioneering work [136], they are not readily implementable
because they might require unbounded storage, i.e., all the linearizations built along
iterations must be kept. The work presented in section 4.1 overcomes this drawback and
furthermore allows for upper oracles, i.e., oracles that provide inexact information which
might overestimate the exact values of the functions. In contrast to [70] and [71] that
employ level bundle methods, that work applies a proximal bundle method, see also [114].
In all these approaches we define different improvement functions (see (4.2.8) below) to
measure the improvement of each iterate towards a solution of the problem. Level bundle
methods have at disposal lower bounds (self-built) to define improvement functions, in
contrast to proximal bundle that must find other alternatives to the (in-available) lower
bounds. We refer to [248], [211] and [120] for some improvement function alternatives.

Due to the improvement function definition, level bundle methods are likely to be prefer-
able to proximal bundle methods to handle (nonlinear) constrained convex optimization
problems. For this reason we follow some features of the restricted memory level bundle
method proposed in [127] and extend [71] to handle upper oracles and to keep the stor-
age information bounded; this is what we call restricted memory. Moreover, we extend
[248] by considering upper oracles with on-demand accuracy (see the formal definition
in Section 4.2.3.2), and like [71] we prove convergence for lower oracles with on-demand
accuracy without assuming a Slater point.

This section is organized as follows: Section 4.2.1 presents two important examples of
optimization problems that cast into the problem formulation (4.2.1), with difficult to
evaluate objective and/or constraint functions. In Section 4.2.2 we propose our algorithm
and prove its convergence for exact oracle information. The convergence analysis therein
is the key for proving convergence of the algorithm when inexact oracle information
come into play. Section 4.2.3 deals with inexact oracle information. We consider upper,
lower, and on-demand oracles, depending on the assumptions made. In Section 4.2.4
we provide numerical experiments on realistic joint chance constrained energy problems,
arising when dealing with robust cascaded-reservoir management. These are problems
from Électricité de France. We compare the proposed approaches with some algorithms
considered in [248].

To easy notation, in what follows we consider a short formulation to problem (4.2.1).
Without loss of generality we may assume that m = 1 in (4.2.1) by defining the (non-
smooth and convex) function c : Rn → R

c(x) := max
j=1,...,m

fj(x) ,

and call f0 just f . With this notation, the problem we are interested in solving is (4.1.1):

fmin := min
x∈X⊂Rn

f(x) s.t. c(x) 6 0 , (4.2.2)

which is assumed to have a solution; therefore, its optimal value fmin is finite.
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4.2.1 Some examples coming from stochastic optimization

We now provide two examples coming from stochastic optimization that can be cast into
the above scheme, wherein f and/or c are difficult to evaluate.

Example 4.2.1 (Risk-averse two-stage stochastic programming). Let Z ⊂ Rn be a
bounded polyhedral set. Let also Ξ ⊂ Rd be a finite set containing elements (scenar-
ios) ξi, i = 1, . . . , N ; and suppose that ϕ : Z → R is a convex function. A two-stage
stochastic problem with mean-CV@R aversion model and finitely many scenario can be
written as







min ϕ(z) +
∑N

i=1 piQ(z, ξi)

s.t. t+ 1
β

∑N
i=1 pi[Q(z, ξi)− t]+ 6 ρ

z ∈ Z, t ∈ Re ,
(4.2.3)

where 1 > β > 0 and ρ > 0 are given parameters, pi > 0 is the probability associate to
the scenario ξi, [·]+ denotes the positive part of a real number, and Q : Z × Ξ → R is a
convex function on Z defined for instance by the linear problem

Q(z, ξ) :=







min 〈q, y〉
s.t. W (ξ)y + T (ξ)z = h(ξ)

y ∈ Ren2
+ .

The components q,W, T and h are assumed to be mesurable mappings with appropriate
dimensions and well defined in Ξ.

Problem (4.2.3) is a risk-averse two-stage stochastic programming problem. The nonlin-
ear and difficult to evaluate constraint t + 1

β

∑N
i=1 pi[Q(z, ξi) − t]+ 6 ρ is the so called

conditional value-at-risk (CV@Rβ) with confidence level β; see [198], [199], [71].

By bounding the variable t, writing x = (z, t) ∈ X ⊂ Y ×Re, and by taking

f(x) = f(z, t) = ϕ(z)+
N
∑

i=1

piQ(z, ξi) and c(x) = c(z, t) = t+
1

β

N
∑

i=1

pi[Q(z, ξi)− t]+− ρ

problem (4.2.3) corresponds to (4.2.2). Notice that computing the value of the functions
f(x) and c(x) for each given point x ∈ X amounts to solving N linear problems Q(x, ξi),
i = 1, . . . , N . After having solved those linear problems, subgradients for f and c are
easily at hand; see [216] for more details. Therefore, for large N (say N > 10000) the
functions f and c are hard to evaluate, and by making use of inexact oracle information
(e.g., solving inexactly or just skipping some linear problems) problem (4.2.3) can be
numerically tractable even for a large N .

These problems are taken into account in [71], by considering lower oracles with on-
demand accuracy (see Section 4.2.3.4 for the formal definition). Besides the conditional
value-at-risk approach of two-stage stochastic programs, [71] considers more risk-aversion
concepts such as stochastic dominance, proposed in [52]. In all cases, no upper oracles
are studied.
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Example 4.2.2 (Chance-constrained programming). Given a probability level p, the
optimization problem







min 〈q, x〉
s.t. P[Ax+ a 6 ξ 6 Ax+ b] > p

x ∈ X
(4.2.4)

has a feasible set that is convex for d-dimensional random variables ξ with log-concave
probability distribution (but in many other settings too). In this formulation, A is a fixed
matrix and a, b are fixed vectors with appropriate dimensions. Evaluating the constraint
and computing a gradient with high precision is possible but potentially very costly, espe-
cially when the dimension d is large (say d ≥ 100).

By a classical result (Theorem 2.5.13), not only the feasible set induced by the joint chance
constraint in (4.2.4) is convex but also the function

log(p)− log(P[Ax+ a 6 ξ 6 Ax+ b]) . (4.2.5)

Therefore, problem (4.2.4) corresponds to (4.2.2) by taking

f(x) = 〈q, x〉 and c(x) = log(p)− log(P[Ax+ a 6 ξ 6 Ax+ b]) .

The oracle for the function c(x) employs multidimensional numerical integration and
quasi-Monte Carlo techniques for which the error sign is unknown (but a bound is com-
putable).

Take x ∈ X . Since the inexact oracle information can overestimate the exact value c(x)
(upper oracle), the constrained level bundle methods proposed in [71] is not suitable.

In what follows we propose a new algorithm to deal with (in-)exact oracle information.

4.2.2 Level Bundle Method for Exact Oracles

In this section we assume that both functions f and c in (4.2.2) can be exactly evaluated
by an oracle that provides for each xk ∈ X :

{

f -oracle information: f(xk) and gf
k ∈ ∂f(xk)

c-oracle information: c(xk) and gc
k ∈ ∂c(xk) . (4.2.6)

With such information from the oracle, we consider the approximate linearizations

f̄k(x) := f(xk) +
〈

gf
k, x− xk

〉

c̄k(x) := c(xk) +
〈

gc
k, x− xk

〉

.

At iteration k, two polyhedral cutting-plane models are available:

f̌k(x) := max
j∈Jk

f

f̄ j(x) with Jk
f
⊂ {1, 2, . . . , k} (4.2.7a)
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čk(x) := max
j∈Jk

c

c̄j(x) with Jk
c
⊂ {1, 2, . . . , k} . (4.2.7b)

It follows from convexity that

f̌k(x) 6 f(x) and čk(x) 6 c(x) for all k and for all x ∈ X .

Given a lower bound fk
low

for fmin, we define the so called improvement function at
iteration k by

hk(x) := max{f(x)− fk
low
, c(x)} . (4.2.8)

As already mentioned, the above definition of improvement function is not possible for
proximal bundle methods, since the lower bounds fk

low
are not available. Some alternatives

for fk
low

must be taken instead.

We have the following important result.

Lemma 4.2.3. Consider the improvement function hk given in (4.2.8). Then, hk(x) > 0
for all x ∈ X and for each iteration k. If there exists a sequence {xk

rec
} ⊂ X such that

limk h
k(xk

rec
) = 0, then any cluster point of the sequence {xk

rec
} is a solution to problem

(4.2.2). In particular, if hk(xk
rec

) = 0 for some k then xk
rec

is a solution to problem
(4.2.2).

Proof. Let x ∈ X and k be arbitrary. If c(x) 6 0, then f(x) > fk
low

by definition of fk
low

;
on the other hand, if f(x) < fk

low
then x cannot be feasible, i.e., c(x) > 0. It thus follows

trivially that hk(x) > 0 for all x ∈ X , as x and k were taken arbitrarily.

Assume that a sequence {xk
rec
} ⊂ X such that limk h

k(xk
rec

) = 0 is given. It follows
from (4.2.8) that hk(xk

rec
) ≥ f(xk

rec
) − fk

low
> f(xk

rec
) − fmin. We can thus conclude (i)

0 > limk(f(x
k
rec

)− fk
low

) > limk(f(x
k
rec

)− fmin) and similarly (ii) 0 > limk c(x
k
rec

).

Let x̄ be a cluster point of the sequence {xk
rec
} ⊂ X . Then x̄ ∈ X and by (ii) c(x̄) 6 0.

Therefore, since x̄ is feasible, by (i) we have that 0 > limk(f(x
k
rec

)−fmin) = f(x̄)−fmin >

0. Hence, x̄ is a solution to problem (4.2.2).

In particular, if hk(xk
rec

) = 0 for some k then 0 > f(xk
rec

)− fmin and 0 > c(xk
rec

), showing
that xk

rec
is a solution to problem (4.2.2).

That having been said, we will provide an algorithm that generates a sequence of iterates
{xk} ⊂ X , a subsequence of recorded iterates {xk

rec
} ⊂ {xk}, a nondecreasing sequence

of lower bounds {fk
low
} for fmin, and a sequence of levels fk

lev
≥ fk

low
such that

fk
low
↑ fmin, f

k
lev
→ fmin and hk(xk

rec
)→ 0 .

In order to do so, at iteration k we obtain a new iterate xk+1 by projecting a given
stability center x̂k ∈ X (not necessary feasible for c) onto the level set

X
k := {x ∈ X : f̌k(x) 6 fk

lev
, čk(x) 6 0} (4.2.9)
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whenever it is nonempty. Obtaining xk+1 amounts to solving the following quadratic
problem (QP)

xk+1 := arg min
x∈Xk

1

2
|x− x̂k|2 , or just xk+1 := PXk(x̂k) for short. (4.2.10)

Whenever Xk is empty, the current level fk
lev

and lower bound fk
low

require updating.

The following proposition provides us with properties of the minimizer xk+1. We will use
the notation NX for the normal cone of convex analysis of a set X .

Proposition 4.2.4. The point xk+1 solves (4.2.10) if and only if xk+1 ∈ X, f̌k(xk+1) 6
fk
lev

, čk(xk+1) 6 0, and there exist vectors ĝk
f
∈ ∂f̌k(xk+1), ĝk

c
∈ ∂čk(xk+1), sk ∈ NX(x

k+1)
and stepsizes µk

f
, µk

c
> 0, such that

xk+1 = x̂k−(µk
f
ĝk
f
+µk

c
ĝc+s

k) , µk
f
(f̌k(xk+1)−fk

lev
) = 0 and µk

c
čk(xk+1) = 0 . (4.2.11)

In addition, the aggregate linearizations

f̄af(k)(·) := f̌k(xk+1) +
〈

ĝk
f
, · − xk+1

〉

satisfies f̄af(k)(x) 6 f̌k(x) 6 f(x) for all x ∈ X
(4.2.12a)

c̄ac(k)(·) := čk(xk+1) +
〈

ĝk
c
, · − xk+1

〉

satisfies c̄ac(k)(x) 6 čk(x) 6 c(x) for all x ∈ X.
(4.2.12b)

Moreover,
PXk(x̂k) = PXa(k)(x̂k) (4.2.13)

holds, where Xa(k) is the aggregate level set defined as Xa(k) := {x ∈ X : f̄af(k)(x) 6

fk
lev
, c̄ac(k)(x) 6 0}.

Proof. Let iX be the indicator function of the polyhedral set X , i.e., iX(x) = 0 if x ∈ X
and iX(x) = ∞ otherwise. Remembering that the set X 6= ∅ is polyhedral and by [197,
p.215] ∂iX(x) = NX(x) for x ∈ X , the first claim results from the KKT conditions for
problem (4.2.10) rewritten as







minx∈Rn
1
2
|x− x̂k|2 + iX(x)

s.t. f̌k(x) 6 fk
lev

čk(x) 6 0 .

The subgradient inequality gives (4.2.12).

We now proceed to show (4.2.13). Notice that PXa(k)(x̂k) is the solution to the following
QP:







minx∈Rn
1
2
|x− x̂k|2 + iX(x)

s.t. f̄af(k)(x) 6 fk
lev

c̄ac(k)(x) 6 0 .
(4.2.14)

Moreover, x̄ solves the above problem if, and only if, there exist ρ, λ > 0 and s̄ ∈ NX(x̄)
such that

x̄ = x̂k − (ρĝk
f
+ λĝc + s̄) , ρ(f̄af(k)(x̄)− fk

lev
) = 0 and λc̄ac(k)(x̄) = 0 .
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Notice that by taking ρ = µk
f
, λ = µk

c
and s̄ = sk above, the resulting x̄ = xk+1 satisfies

the optimality conditions for problem (4.2.14). Since (4.2.14) has a unique solution, we
conclude that xk+1 = PXa(k)(x̂k), as stated.

The interest of the aggregate level set is that Xa(k) condenses all the past information
relevant for defining xk+1. This property is crucial for the bundle compression mechanism.
Indeed, this property makes it possible to change the feasible set Xk in (4.2.10), possibly
with many constraints, by any smaller set containing X

a(k). In this manner, the size of
the bundles Jk

f
and Jk

c
in (4.2.7) can be kept controlled, thus making (4.2.10) easier to

solve; see comment (g) below.

We are now in position to give the algorithm with full details. In the algorithm we will
keep track of special iterations called “critical iterations” that allow us to either progress
significantly in the quest of solving (4.2.2) or improve our currently proven lower bound
for fmin in (4.2.2). Critical iterations are counted with l. All iterations are counted with
k. Iterations between the change of the critical iteration counter from l to l + 1 are said
to belong to the l-th cycle. We will moreover denote with k(l) the critical iteration at
the start of the l-th cycle and hence K l = {k(l), k(l)+1, . . . , k(l+1)−1} is the index set
gathering the iterations in the l-th cycle. The recorded sequence {xk

rec
} is constructed

by defining x0
rec

equal to the first iterate x0 and

xk
rec

:=







xk−1
rec

if

[

minj∈Jk
f
∩Jk

c

hk(xj) > hk−1(xk−1
rec

) and k > 1

or {Jk
f
∩ Jk

c
} = ∅,

argminj∈Jk
f
∩Jk

c

hk(xj) otherwise.

(4.2.15)

Algorithm 4.2 (Level Bundle Method). We assume given an oracle computing f/c
values as in (4.2.6) for any x ∈ X.

Step 0 (Input and Initialization) Choose a parameter γ ∈ (0, 1) and a stopping
tolerance δTol > 0. Given x0 ∈ X and a lower bound f0

low
6 fmin, set x̂

0 ← x0. Call the
oracle to obtain (f(x0), gf

0) and (c(x0), gc
0) and set l ← 0, k ← 0, k(l)← 0, J0

f
← {0}

and J0
c
← {0}.

Step 1 (Best Current Minimizer) Update the recorded sequence xk
rec

according to
(4.2.15).

Step 2 (Stopping Test) Perform the stopping test hk(xk
rec

) 6 δTol. If satisfied return
xk
rec

and f(xk
rec

).

Step 3 (Descent Test) In this optional Step we test if hk(xk
rec

) ≤ (1 − γ)hk(l)(xk(l)rec ).
If so we declare a critical iteration and we set l ← l + 1, k(l) ← k and choose x̂k ∈
{xj : j ∈ Jk

f
∩ Jk

c
}.

Step 4 (Level Updating) Set fk
lev
← fk

low
+ γhk(xk

rec
) and update the feasible set Xk

given in (4.2.9).

Step 5 (Quadratic Program) Try to solve the quadratic program (4.2.10). If no
feasible solution is found then declare a critical iteration, set l ← l + 1, k(l) ← k,
fk
low
← fk

lev
and choose x̂k ∈ {xj : j ∈ Jk

f
∩ Jk

c
}. Return to Step 1. If problem (4.2.10)

is solved then move to Step 6.
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Step 6 (Oracle) Call the oracle to obtain (f(xk+1), gf
k+1) and (c(xk+1), gc

k+1).
Set fk+1

low
← fk

low
and x̂k+1 ← x̂k.

Step 7 (Bundle Management) Manage the bundle freely as long as Jk+1
f
⊃ {k +

1, af(k)} and Jk+1
c
⊃ {k + 1, ac(k)} remain true at each bundle compression.

Step 8 (Loop) Set k = k + 1 and go to Step 1.

We can provide the following remarks concerning Algorithm 4.2:

(a) The sequence {hk(xk
rec

)} is monotonically decreasing by (4.2.8) and (4.2.15).

(b) Let K l be the index set belonging to the l-th cycle, it then follows that both the
stability center x̂k and lower bound fk

low
are fixed for all k ∈ K l. As a consequence,

for each fixed l ≥ 0, the sequence {f j
lev
}j∈Kl is nonincreasing. (4.2.16)

This property is essential for Lemma 4.2.7.
It may happen by Step 3 and 5 that K l is an empty set. In the convergence analysis
given below we simply assume that K l is nonempty for each l. This strategy eases the
calculations without loosing generality.

(c) If the level set Xk is empty, this means that fk
lev

< f̌k(x) for all x ∈ {z ∈ X : čk(z) 6
0}. Since čk(·) 6 c(·), it follows that {z ∈ X : c(z) 6 0} ⊆ {z ∈ X : čk(z) 6 0} and
thus, fk

lev
< f̌k(x) for all x ∈ {z ∈ X : c(z) 6 0}. As f̌k(·) 6 f(·) we conclude that fk

lev

is a lower bound for the optimal value fmin. Therefore, the updating rule fk
low
← fk

lev

at Step 4 gives a valid lower bound for fmin.

(d) Whenever the level set is empty at Step 5, the lower bound fk
low

is increased by at least
an amount of γhk(xk

rec
) > 0 and the cycle-counter l is incremented by one. Moreover

fk
low

6 fmin for all k > 0. Assume that δTol = 0. If there is an infinite loop between

Steps 5 and 1, one concludes that f
k(l+1)
low

> f
k(l)
low

because the stopping test in Step 2
fails. Since fmin <∞ is an upper bound on this sequence, we must therefore have that
hk(xk

rec
)→ 0. Hence, if δTol > 0 there cannot be an infinite loop between Steps 5 and

1.

(e) In order to avoid excessively short cycles, we can solve the following linear problem
to update fk

low
at Step 5:

fk
low

= min
x∈X

f̌k(x) s.t. čk(x) 6 0 . (4.2.17)

As fk
lev

> fk
low

, then Xk will be nonempty.

(f) If problem (4.2.17) is solved at each iteration at Step 3, then the level set Xk is
nonempty. However, this procedure might not ensure (4.2.16) and thus Lemma 4.2.7
below holds only if there is no bundle compression along each cycle K l, i.e., Jk+1

f
=

Jk
f
∪ {k+1} and Jk+1

c
= Jk

c
∪ {k+1} for all k ∈ K l. For more details see [136, p. 121]

or [44, Lemma 3.5].

(g) In fact, the aggregate linearizations (4.2.12) do not need to be included in the bundle
at each iteration but only when the bundle is compressed. This provides a versatile
framework for dealing with bundle compression and avoid encumbering memory.
Considering that the bundle is full (we have saved more elements than some a priori
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bound), a quite practical rule would consist of keeping only the active linearization
index sets:

J̄k
f
:= {j ∈ Jk

f
: f̄ j(xk+1) = fk

lev
} and J̄k

c
:= {j ∈ Jk

c
: c̄j(xk+1) = 0} .

If the bundle is still considered full, we can replace any two indices i, j ∈ J̄k
f
by af(k)

(respectively i, j ∈ J̄k
c
by ac(k)) until the Bundle is sufficiently cleaned up. Then we

update as follows:

Jk+1
f

= J̄k
f
∪ {k + 1} and Jk+1

c
= J̄k

c
∪ {k + 1} .

(h) After having solved problem (4.2.10), each constraint f̄ j(xk+1) 6 fk
lev

with j ∈ Jk
f

(respec. c̄i(xk+1) 6 0 with i ∈ Jk
c
) has a Lagrange multiplier αj

f > 0 (respec. αi
c > 0).

Furthermore, it follows from the cutting-plane definition that gf
j ∈ ∂f(xk+1) for all

j ∈ Jk
f
such that αj

f > 0 (respec. gc
i ∈ ∂c(xk+1) for all i ∈ Jk

c
such that αi

c > 0). In this

manner, by taking µk
f =

∑

j∈Jk
f

αj
f and ĝk

f
= 1

µk
f

∑

j∈Jk
f

αj
fgf

j (respec. µk
c =

∑

j∈Jk
c

αj
c

and ĝk
c
= 1

µk
c

∑

j∈Jk
c

αj
cgc

j) the aggregate linearizations (4.2.12) can be easily obtained.

If µk
f = 0, then all constraints f̄ j(xk+1) 6 fk

lev
are inactive (the inequality holds strictly)

and all the bundle Jk
f
information is useless. Then the aggregate linearization f̄a(k) is

also inactive. The equivalent conclusion holds if µk
c = 0. Lemma 4.2.6 below ensures

that µk
c = µk

f = 0 cannot happen, otherwise we would have xk+1 = x̂k.

Steps 6 and 7 in Algorithm 4.2 are optional in a way. We can consider two important
alternatives which will be particularly useful when either the f or the c oracle is costly.

A variant of Algorithm 4.2 for costly c-oracles

The following strategy is useful if the constraint oracle information (c(xk+1), gc
k+1) is

more difficult to obtain than the information (f(xk+1), gf
k+1). This is the case of Exam-

ple 4.2.2.

Goal Avoid computing the c-oracle information if xk+1 does not give a significant de-
crease.

Step 6(f) (Oracle) Set
fk+1
low
← fk

low
, x̂k+1 ← x̂k

and call the oracle to obtain (f(xk+1), gf
k+1). If f(xk+1) > fk

lev
+ (1− γ)hk(xk

rec
) go to

Step 7(f). Otherwise, before going to Step 7(f) compute (c(xk+1), gc
k+1).

Step 7(f) (Bundle Management) Manage the bundle freely as long as:

• (If both f(xk+1) and c(xk+1) were computed at Step 6(f))
Jk+1
f
⊃ {k + 1, af(k)} and Jk+1

c
⊃ {k + 1, ac(k)} hold true at each bundle com-

pression.

• (If c(xk+1) was not computed at Step 6(f))
Jk+1
f
⊃ {k + 1, af(k)} and Jk+1

c
⊃ {ac(k)} hold true at each bundle compression.

We emphasize that the test f(xk+1) > fk
lev

+ (1 − γ)hk(xk
rec

) implies that the c-oracle
information is computed only if f(xk+1) < max{f(xk

rec
), fk

low
+c(xk

rec
)}, i.e., when f(xk+1)

provides decrease with respect to at least one of the two thresholds f(xk
rec

) or fk
low

+c(xk
rec

).
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A variant of Algorithm 4.2 for costly f-oracles

If (f(xk+1), gf
k+1) is more difficult to compute than (c(xk+1), gc

k+1) we may consider the
following strategy in Algorithm 4.2:

Goal Avoid computing the f -oracle information if xk+1 is far from feasibility.

Step 6(c) (Oracle) Set
fk+1
low
← fk

low
, x̂k+1 ← x̂k

and call the oracle to obtain (c(xk+1), gc
k+1). If c(xk+1) > (1 − γ)hk(xk

rec
) go to Step

7(c). Otherwise, before going to Step 7(c) compute (f(xk+1), gf
k+1).

Step 7(c) (Bundle Management) Manage the bundle freely as long as:

• (If both f(xk+1) and c(xk+1) were computed at Step 6(c))
Jk+1
f
⊃ {k + 1, af(k)} and Jk+1

c
⊃ {k + 1, ac(k)} remain true at each bundle

compression.

• (If f(xk+1) was not computed at Step 6(c))
Jk+1
c
⊃ {k+1, ac(k)} and Jk+1

f
⊃ {af(k)} remain true at each bundle compression.

According to the above two strategies, we consider the following three versions for Algo-
rithm 4.2:

Algorithm 4.2(fc) Algorithm 4.2 as it is stated;

Algorithm 4.2(f) Algorithm 4.2 with Steps 6 and 7 replaced by Steps 6(f) and 7(f);

Algorithm 4.2(c) Algorithm 4.2 with Steps 6 and 7 replaced by Steps 6(c) and 7(c).

Remark 4.2.5. Notice that the index set Jk
f
∩ Jk

c
can be empty for versions (f) and (c)

of Algorithm 4.2. If it is the case, the choice of the next stability center x̂k at Steps 3
and 5 is not well defined. We may proceed as follows according to Steps 6(f) and 6(c):

– At Steps 3 and 5 of Algorithm 4.2(f), choose x̂k ∈ {xj : j ∈ Jk
f
∩ Jk

c
} if Jk

f
∩ Jk

c
6= ∅.

Otherwise, x̂k ∈ {xj : j ∈ Jk
f

and f(xj) > f j−1
lev

+ (1− γ)hj−1(xj−1
rec

)}.
– At Steps 3 and 5 of Algorithm 4.2(c), choose x̂k ∈ {xj : j ∈ Jk

f
∩ Jk

c
} if Jk

f
∩ Jk

c
6= ∅.

Otherwise, x̂k ∈ {xj : j ∈ Jk
c

and c(xj) > (1− γ)hj−1(xj−1
rec

)}.

Here comes an interesting feature of Algorithm 4.2: differently from the constrained
level bundle methods [136], [127], [70], [71] and version (fc), the versions (f) and (c)
of Algorithm 4.2 do not need to include the two linearizations f̄k+1 and c̄k+1 into the
bundle at each iteration k. As shown in Theorem 4.2.9 below, even considering less oracle
information, versions (f) and (c) provide the same complexity result than version (fc).

Convergence analysis of the above three versions ((fc), (f) and (c)) of Algorithm 4.2 is
given in the following subsection.

4.2.2.1 Convergence analysis

Throughout this section we suppose the feasible set X in (4.2.2) is compact with diameter
D, and denote by Λf > 0 (respectively Λc) a Lipschitz constant for the objective function
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(respectively constraint) over the set X . Therefore, Λ := max{Λf , Λc} is a Lipschitz
constant for hk, defined in (4.2.8). In what follows, both constants D and Λ can be
unknown, since they are not used by the algorithm but only to give upper bounds for
the length of cycles K l.

In the following lemma, we extend the result given in [127, Lemma 3.1] to our setting.

Lemma 4.2.6. Let l ≥ 0 be arbitrary, Λ = max{Λf ,Λc} and γ ∈ (0, 1) be given. At
iteration k of any version (fc), (f) or (c) of Algorithm 4.2, the following estimates hold:

|xk+1 − xk| >
(1− γ)

Λ
hk(xk

rec
) if k > k(l)

|xk+1 − x̂k| >
(1− γ)

Λ
hk(xk

rec
) if k = k(l) .

Proof. Let us split this proof in three cases: we consider Algorithm 4.2(fc) first, then
Algorithm 4.2(f) and finally Algorithm 4.2(c). We now study the first case.

Let k be arbitrary and j ∈ Jk
f
∩ Jk

c
be given. By (4.2.9) combined with (4.2.10), we get

f(xj) +
〈

gf
j, xk+1 − xj

〉

6 fk
lev

c(xj) +
〈

gc
j, xk+1 − xj

〉

6 0 .

By applying the Cauchy-Schwarz inequality we thus derive

f(xj)− fk
lev

6 |gfj||xk+1 − xj| 6 Λf |xk+1 − xj|
c(xj) 6 |gcj||xk+1 − xj| 6 Λc|xk+1 − xj| .

Since Λ = max{Λf ,Λc}, fk
lev

= fk
low

+ γhk(xk
rec

) and hk(xk
rec

) > 0, we conclude that

Λ|xk+1 − xj| > max{f(xj)− fk
low
− γhk(xk

rec
), c(xj)}

> max{f(xj)− fk
low
− γhk(xk

rec
), c(xj)− γhk(xk

rec
)}

= −γhk(xk
rec

) + max{f(xj)− fk
low
, c(xj)}

= −γhk(xk
rec

) + hk(xj) (4.2.18)

> (1− γ)hk(xk
rec

) .

Assuming that k > k(l), then the Oracle and Bundle Management steps assure that
k ∈ Jk

f
∩ Jk

c
. Hence the estimate (4.2.18) with j = k provides the result. When k = k(l),

the stability center x̂k is chosen among the bundle members. Hence, there exists a
j ∈ Jk

f
∩ Jk

c
such that xj = x̂k and (4.2.18) allows us to conclude this proof for the first

case.

For versions 4.2(f) and 4.2(c) of Algorithm, if k ∈ Jk
f
∩ Jk

c
or j ∈ Jk

f
∩ Jk

c
with xj = x̂k

nothing more needs to be shown. Consider Algorithm 4.2(f) and j ∈ Jk
f
but j /∈ Jk

c

together with f(xj)− f j−1
lev

> (1− γ)hj−1(xj−1
rec

) which holds for j = k and j s.t. xj = x̂k.
As f j−1

lev
> fk

lev
by (4.2.16) and hj−1(xj−1

rec
) > hk(xk

rec
) by (4.2.15) and comment (a), it

follows that
f(xj)− fk

lev
> (1− γ)hk(xk

rec
) .
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Since xk+1 is feasible for (4.2.10), then f(xj) +
〈

gf
j, xk+1 − xj

〉

6 fk
lev

. All together we
conclude that

Λ|xk+1 − xj| >
〈

gf
j, xj − xk+1

〉

> f(xj)− fk
lev

> (1− γ)hk(xk
rec

),

which was to be shown.

Consider Algorithm 4.2(c) and j ∈ Jk
c
but j /∈ Jk

f
such that c(xj) > (1 − γ)hj−1(xj−1

rec
),

which holds for j = k and j s.t. xj = x̂k. In this case we obtain c(xj) > (1 −
γ)hj−1(xj−1

rec
) > (1 − γ)hk(xk

rec
), where the last inequality follows from (4.2.15). Since

xk+1 is feasible for (4.2.10), then 0 > c(xj) +
〈

gc
j, xk+1 − xj

〉

. It follows from Cauchy-
Schwarz inequality that

Λ|xk+1 − xj| >
〈

gc
j, xj − xk+1

〉

> c(xj) > (1− γ)hk(xk
rec

) ,

which concludes the proof.

Lemma 4.2.6 shows that consecutive iterates are different. The following result implies
that each cycle K l is finite.

Lemma 4.2.7. Let l ≥ 0 be arbitrary, D be the diameter of the feasible set X and
Λ = max{Λf ,Λc}. Assume that at each bundle compression in the versions (fc), (f) and
(c) of Algorithm 4.2 we include the aggregate indices in the bundle during the l-th cycle.
Then, for all three versions (fc), (f) and (c) of Algorithm 4.2, any iteration k in the l-th
cycle (i.e., k ∈ K l) with hk(xk

rec
) > δTol may differ no more from k(l) than the following

bound:

k − k(l) + 1 6

(

ΛD

(1− γ)hk(xk
rec

)

)2

Proof. Let k ∈ K l be such that k > k(l). It follows from (4.2.10) that xk = PXk−1(x̂k−1);
thus

〈

x̂k−1 − xk, x− xk
〉

6 0 for all x ∈ X
k−1. (4.2.19)

If no bundle compression took place between step k−1 and step k, it holds that f̌k(x) >
f̌k−1(x), čk(x) > čk−1(x) for all x ∈ Rn. Since fk

lev
≤ fk−1

lev
by (4.2.16), it follows that

Xk ⊆ Xk−1. Since k belongs to the l-th cycle, Xk is nonempty and xk+1 ∈ Xk. This fact
combined with x̂k−1 = x̂k and (4.2.19) allows us to deduce that

〈

x̂k − xk, xk+1 − xk
〉

≤ 0.
When bundle compression took place between steps k − 1 and k, the aggregate indices
belong to the bundle for each of the three considered versions, i.e., af(k − 1) ∈ Jk

f
and

ac(k−1) ∈ Jk
c
for Algorithms 4.2(fc), 4.2(f) and 4.2(c). This implies f̌k(x) > f̄af(k−1)(x),

čk(x) > c̄ac(k−1)(x) for all x ∈ Rn. It follows from (4.2.13) that xk = PXa(k−1)(x̂k−1) and
thus,

〈

x̂k−1 − xk, x− xk
〉

6 0 for all x ∈ X
a(k−1) . (4.2.20)

Since fk
lev
≤ fk−1

lev
by (4.2.16), it follows that Xk ⊂ Xa(k−1). Similarly as before we can

use (4.2.20) to obtain
〈

x̂k − xk, xk+1 − xk
〉

6 0 for each of the versions (fc), (f) and (c).
Therefore, by developing squares in the identity |xk+1 − x̂k|2 = |xk+1 − xk + (xk − x̂k)|2
we have that

|xk+1 − x̂k|2 > |xk − x̂k|2 + |xk+1 − xk|2 .
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As hk(xrec) > δTol for all k ∈ K l, Algorithm 4.2 does not stop and x̂k = x̂k(l). A recursive
application of the above inequality implies

|xk+1 − x̂k|2 > |xk − x̂k|2 + |xk+1 − xk|2
= |xk − x̂k−1|2 + |xk+1 − xk|2
> |xk−1 − x̂k−1|2 + |xk − xk−1|2 + |xk+1 − xk|2
...

> |xk(l)+1 − x̂k(l)|2 +∑k
j=k(l)+1 |xj+1 − xj|2.

SinceX is compact with diameterD and both xk+1 and x̂k are inX , thenD > |xk+1−x̂k|.
Together with Lemma 4.2.6, this yields the bounds

D2 >

(

(1− γ)
Λ

hk(xk
rec

)

)2

+
k
∑

j=k(l)+1

(

(1− γ)
Λ

hk(xk
rec

)

)2

=

(

(1− γ)
Λ

hk(xk
rec

)

)2

(k−k(ℓ)+1) ,

and result follows as k was arbitrary.

If the stopping test tolerance is set to zero, we now show that any cluster point of the
recorded sequence of points generated by any version of Algorithm 4.2 solves problem
(4.2.2).

Theorem 4.2.8. Consider any version (fc), (f) or (c) of Algorithm 4.2. Suppose that
δTol = 0 and that the algorithm does not terminate. Then limk h

k(xk
rec

) = 0 and any
cluster point of the sequence {xk

rec
} is a solution to problem (4.2.2).

Proof. If any version of Algorithm 4.2 stops at iteration k with hk(xk
rec

) = 0, by Lemma 4.2.3
xk
rec

is an optimal solution to problem (4.2.2).

If the algorithms do not stop, then by Lemma 4.2.7 (each cycle K l is finite) we conclude
that l →∞. Let W (respec. L) be an index set gathering counters l updated at Step 3
(respec. Step 5) of (any version of) Algorithm 4.2.

Let li be the i-th index in W = {l1, l2 . . . , }. Therefore, the inequality hk(li)(x
k(li)
rec ) 6

(1 − λ)hk(li−1)(x
k(li−1)
rec ) holds even if there exists some l ∈ L such that li−1 < l < li. A

recursive application of the previous inequality gives us

0 6 hk(li)(xk(li)
rec

) 6 (1− λ)hk(li−1)(xk(li−1)
rec

) 6 . . . 6 (1− γ)ihk(0)(xk(0)
rec

) .

As both function f and c are finite valued, if W has infinitely many indices then
limi h

k(li)(x
k(li)
rec ) = 0. Moreover, limk h

k(xk
rec

) = 0 by monotonicity; see (4.2.15).

Let us now suppose thatW is finite. As l→∞, then the index set L has infinitely many
indices. As f

k(l+1)
low

is increased at Step 5 of the algorithm by an amount of γhk(xk
rec

) > 0
for each l ∈ L, we obtain that limk h

k(xk
rec

) = 0 (otherwise we would have fk
low
↑ ∞,

which contradicts fk
low

6 fmin <∞).

We have shown in both cases (W finite or infinite) that limk h
k(xk

rec
) = 0. Hence, the

stated result follows from Lemma 4.2.3.
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4.2.2.2 Complexity results

We now provide an upper bound for the maximum number of iterations performed by
versions (fc), (f) and (c) of Algorithm 4.2 in order to reach a given tolerance δTol > 0.
To do so, we consider all the versions of Algorithm 4.2 without the optional Step 3.

Theorem 4.2.9. Let D be the diameter of the feasible set X and Λ = max{Λf ,Λc}. Let
−∞ < f1

low
6 fmin be given in all versions (fc), (f) and (c) of Algorithm 4.2 and let

the Step 3 be deactivated. Assume that at each bundle compression the aggregate indices
are included in the bundle. Then, to reach an optimality measure hk(xk

rec
) smaller than

δTol > 0 Algorithms 4.2(fc), 4.2(f) and 4.2(c) perform at most

(

1 +
fmin − f1

low

γδTol

)(

ΛD

(1− γ)δTol

)2

iterations.

Proof. Consider any arbitrary but fixed version of Algorithm 4.2. Notice that every time
that Xk = ∅, the lower bound fk

low
for the optimal value fmin is increased by an amount

of γhk(xk
rec

) (> γδTol). Since f
1
low

is finite, the maximum number of cycles lmx times the
stepsize γδTol is less than fmin − f1

low
, i.e.,

lmx 6
fmin − f1

low

γδTol
.

It follows from Lemma 4.2.7 that each cycle K l has at most
(

ΛD
(1−γ)δTol

)2

iterations, where

we have used that hk(xk
rec

) > δTol since the algorithm did not stop at iteration k. Let
K(δTol) := {1, 2, . . . , } be the index set for which hk(xk

rec
) > δTol. We have thus shown

that K(δTol) is finite and if kδTol is its maximal element, then:

kδTol 6

(

1 +
fmin − f1

low

γδTol

)(

ΛD

(1− γ)δTol

)2

,

as was to be shown.

Notice that the better is the initial lower bound f1
low

for the optimal value fmin, the lower
is the upper bound for the maximum number of iterations performed by any considered
version of Algorithm 4.2. If a lower bound f1

low
is not available, we might obtain an initial

lower bound by solving a linear program, as follows.

Corollary 4.2.10. In the setting of Theorem 4.2.9, suppose that the initial lower bound
f1
low

is defined as
f1
low

= min f̌1(x) s.t. č1(x) 6 0 , x ∈ X .

Then, fmin − f1
low

6 2ΛfD and to reach an optimality measure hk(xk
rec

) smaller than
δTol > 0 Algorithms 4.2(fc), 4.2(f) and 4.2(c) perform at most

(

1 +
2ΛfD

γδTol

)(

ΛD

(1− γ)δTol

)2

iterations.
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Proof. We have that fmin = f(xmin) 6 f(x1) + ΛfD. Let x̌ be a solution to the above
linear program. Then f1

low
= f̌1(x̌) = f(x1) + 〈gf1, x̌− x1〉 > f(x1) − ΛfD by Cauchy-

Schwarz inequality. The result follows by combining the preceding inequalities and in-
voking Theorem 4.2.9.

So far we have considered only exact oracle information. In the next section we deal with
inexactness from the oracle.

4.2.3 Level Bundle Method for Inexact Oracles

In this section we assume that both functions f and c in (4.2.2) are inexactly evaluated.
In what follows we will assume that the oracle provides us for each x ∈ X with






















f -oracle information

[

fx = f(x)− ηx
f

and
g̃f

x ∈ Rn such that f(·) > fx + 〈g̃fx, · − x〉 − ǫxf

c-oracle information

[

cx = c(x)− ηx
c

and
g̃c

x ∈ Rn such that c(·) > cx + 〈g̃cx, · − x〉 − ǫxc

(4.2.21)

for some unknown ηx
f
, ηx

c
, ǫx

f
, ǫx

c
∈ R.

By substituting fx = f(x) − ηx
f
in the second inequality and evaluating at x we derive

that ηx
f
> −ǫx

f
. Similarly we observe that ηx

c
> −ǫx

c
. Therefore, g̃f

x ∈ ∂(ηx
f
+ǫx

f
)f(x) and

g̃c
x ∈ ∂(ηx

c
+ǫx

c
)c(x).

Throughout this section we will make the assumption that the error on each of these
estimates is bounded, i.e., there exist constants ηf, ηc, ǫf, ǫc > 0 such that

|ηx
f
| 6 ηf, ǫ

x
f
6 ǫf, |ηxc | 6 ηc, ǫ

x
c
6 ǫc for all x ∈ X . (4.2.22)

With such information from the oracle, we consider the approximate linearizations

f̄k(x) := fk
x +

〈

g̃f
k, x− xk

〉

and c̄k(x) := ckx +
〈

g̃c
k, x− xk

〉

(4.2.23)

to set up the cutting-plane models in (4.2.7), which gives

f̌k(x) 6 f(x) + ǫf and čk(x) 6 c(x) + ǫc for all k and all x ∈ X . (4.2.24)

Since both functions f and c in (4.2.2) are convex, the feasible set X is compact, and the
oracle errors in (4.2.21) are bounded (it follows from (4.2.21) and (4.2.22) that −ηf 6

ǫx
f
6 ǫf and −ηc 6 ǫx

c
6 ǫc), [114, Prop.XI.4.1.2] ensures that there exists a constant Λ

such that
Λ > max{|g̃fx|, |g̃cx|}; for all x ∈ X . (4.2.25)

Given a (approximate) lower bound fk
low

for the optimal value fmin in (4.2.2), we define
the inexact improvement function by

hki (x) = max{fx − fk
low
, cx} . (4.2.26)

Due to inaccuracy from the oracle, we can have hki (x) < 0.
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Lemma 4.2.11. Consider the improvement function hki given in (4.2.26). If there exists
a sequence {xk

rec
} ⊂ X such that limk h

k
i (x

k
rec

) 6 0, then any cluster point of the sequence
{xk

rec
} is a η-solution to problem (4.2.2), with a possibly unknown error η := max{ηf +

ǫf, ηc}.

Proof. By (4.2.24) the lower bound updating at Step 5.2 ensures that fk
low

6 fmin + ǫf.

If limk h
k
i (x

k
rec

) 6 0, it follows by (4.2.26), the definition of η and oracle assumptions that

(i) 0 > lim
k
(fxk

rec
− fk

low
) > lim

k
(f(xk

rec
)− ηf − fk

low
) > lim

k
(f(xk

rec
)− ηf − fmin − ǫf) ,

(ii) 0 > lim
k
cxk

rec
> lim

k
c(xk

rec
)− ηc .

Let x̄ be a cluster point of the sequence {xk
rec
} ⊂ X . Then x̄ ∈ X and we conclude by

(i) and (ii) that f(x̄) 6 fmin + ηf + ǫf and c(x̄) 6 ηc, i.e, x̄ is a η-solution to problem
(4.2.2).

We now show that Lemma 4.2.6 still holds when all the three versions of Algorithm 4.2
are applied with the inexact improvement function hi of (4.2.26).

Lemma 4.2.12. Let l ≥ 0 be arbitrary, Λ be the bound in (4.2.25) and γ ∈ (0, 1) be given.
At iteration k of all versions (fc), (f) and (c) of Algorithm 4.2 applied to improvement
function hi of (4.2.26), assume that hki (x

k
rec

) ≥ 0 holds. Then the following estimates
are true:

|xk+1 − xk| >
(1− γ)

Λ
hki (x

k
rec

) if k > k(l)

|xk+1 − x̂k| >
(1− γ)

Λ
hki (x

k
rec

) if k = k(l) .

Proof. In the following we focus on the version (fc), i.e., Algorithm 4.2(fc). The proofs
for the remaining two versions can be obtained in a similar manner to the proof of
Lemma 4.2.6.

Let k be arbitrary and j ∈ Jk
f
∩ Jk

c
be given. By (4.2.9) combined with (4.2.10) and

assumptions (4.2.21), we get

fxj +
〈

g̃f
j, xk+1 − xj

〉

6 fk
lev

cxj +
〈

g̃c
j, xk+1 − xj

〉

6 0 .

By applying the Cauchy-Schwarz inequality we thus derive

fxj − fk
lev

6 |g̃fj||xk+1 − xj| 6 Λ|xk+1 − xj|
cxj 6 |g̃cj||xk+1 − xj| 6 Λ|xk+1 − xj| .
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Since fk
lev

= fk
low

+ γhki (x
k
rec

) and hki (x
k
rec

) > 0 by assumption, we conclude that

Λ|xk+1 − xj| > max{fxj − fk
low
− γhki (xkrec), cxj}

> max{fxj − fk
low
− γhki (xkrec), cxj − γhki (xkrec)}

= −γhki (xkrec) + max{fxj − fk
low
, cxj}

= −γhki (xkrec) + hki (x
j) (4.2.27)

> (1− γ)hki (xkrec) .
Assuming that k > k(l), then the Oracle and Bundle Management steps assure that
k ∈ Jk

f
∩ Jk

c
. Hence the estimate (3.4.14) with j = k provides the result. When k = k(l),

the stability center x̂k is chosen among the bundle members. Hence, there exists a
j ∈ Jk

f
∩ Jk

c
such that xj = x̂k and (4.2.27) allows us to conclude this proof.

Similarly Lemma 4.2.7 can be derived by a slight change of conditions, as shown below.

Lemma 4.2.13. Let l ≥ 0 be arbitrary, D be the diameter of the feasible set X and Λ
be the bound of (4.2.25). Consider the versions (fc), (f) and (c) of Algorithm 4.2, with
improvement function hi given in (4.2.26). Assume that at each bundle compression in
all versions (fc), (f) and (c) of Algorithm 4.2 we include the aggregate indices in the
bundle during the l-th cycle. Then, any iteration k in the l-th cycle (i.e., k ∈ K l) may
differ no more from k(l) than the following bound, provided that hji (x

j
rec

) > δTol > 0 for
all j ≤ k:

k − k(l) + 1 6

(

ΛD

(1− γ)hki (xkrec)

)2

The proof of the above lemma is identical to the proof of Lemma 4.2.7.

In what follows we make a distinction on the possible oracle types (4.2.21). We start by
considering the most general case: upper oracles.

4.2.3.1 Inexact constrained level methods for upper oracles

An upper oracle is an oracle of type (4.2.21) wherein ǫf > 0 and/or ǫc > 0 in (4.2.22)
might occur. This in particular implies that ηx

f
, ηx

c
can be negative too and that the f -

(c-) values can be overestimated.

Since in this case (4.2.24) holds, we can no longer keep Step 5 of Algorithm 4.2 as we can
no longer assure that fk

lev
remains a lower bound for fmin. We thus suggest to change

Step 5 as follows:

Step 5 (Upper) Try to solve the quadratic program (4.2.10). If no feasible solution is
found:

Step 5.1 solve the linear problem

valLP := min
∑

j∈Jk
c

sj s.t. x ∈ X, c̄j(x)− sj 6 0 ∀ j ∈ Jk
c
. (4.2.28)

If valLP > 0, stop (the problem is ǫc-infeasible); otherwise,
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Step 5.2 Declare a critical iteration, set l ← l + 1, k(l)← k, fk
low
← fk

lev
and choose

x̂k ∈ {xj : j ∈ Jk
f
∩ Jk

c
}. Return to Step 1.

If problem (4.2.10) is solved then move to Step 6.

We thus obtain the following convergence result.

Theorem 4.2.14. Consider any version (fc), (f) or (c) of Algorithm 4.2, wherein Step
5 is replaced by Step 5 (Upper) applied with an upper oracle (4.2.21) and improvement
function hki given in (4.2.26). Suppose that δTol = 0 and that the algorithm does not
terminate. Then limk h

k
i (x

k
rec

) 6 0 and any cluster point of the sequence {xk
rec
} is a

η-solution to problem (4.2.2), with η := max{ηf + ǫf, ηc}.

Proof. Given the assumptions Lemma 4.2.13 holds. Proceed similarly as in the proof of
Theorem 4.2.8 to show that limk h

k
i (x

k) 6 0, where fmin should be substituted by f̃ + ηf.
Here f̃ is defined as f̃ := minx :c(x)≤−ǫc f(x). It is easily observed that fk

low
is a proven

lower bound for f̃ + ηf and hence indeed hki (x
k
rec

) must tend to zero. We can now use
Lemma 4.2.11 to conclude.

Since the bounds given in Lemmas 4.2.7 and 4.2.13 are the same, we conclude that the
complexity result of Theorem 4.2.9 also holds for inexact oracle satisfying (4.2.21). Up
to our knowledge, general inexact oracles satisfying (4.2.21) have not been considered
for (nonlinear) constrained level bundle methods. In [70] and [71] only lower oracles
(see Section 4.2.3.3 below) are considered. The work [248] deals with upper oracles by
applying a proximal bundle method.

Theorem 4.2.14 assumes that the algorithm does not terminate. This is not the case when
problem (4.2.2) is detected to be ǫc-infeasible, i.e., {x ∈ X : čk(x) 6 0} = ∅ in Step 5.1.
In the following section we deal with ǫc-infeasibility by making additional assumptions
on problem (4.2.2) and oracle (4.2.21).

4.2.3.2 Inexact constrained level methods for upper oracles with on-demand
accuracy

In this subsection we additionally assume that:

– problem (4.2.2) has a Slater point, i.e., there exists a point xs ∈ X such that c(xs) < 0;

– demanding more accuracy on the c-information from (4.2.21) is possible (the upper
bound ǫc in (4.2.22) can be decreased).

From (4.2.21) one directly derives that čk(x) 6 c(x) + ǫc for all x ∈ X . This shows that
upper oracles have nonetheless

{x ∈ R
n : c(x) 6 −ǫc} ⊆

{

x ∈ R
n čk(x) 6 0

}

. (4.2.29)

Now if the optimal value valLP of the LP (4.2.28) is strictly positive, this means that
the latter set is empty. Therefore, no proven feasible point could be produced by the
algorithm and oracle anyway. Requesting that problem (4.2.2) admits a Slater point xs
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and that the oracle error is such that c(xs) < −ǫc as in [248] would eliminate this case and
the need for solving (4.2.28). However, how could we know if the inequality c(xs) < −ǫc
holds when xs is unknown? In fact, as shown below we do not need to verify (at least
explicitly) this inequality.

Let (x̃, s̃) be an optimal solution of problem (4.2.28). We say that c̄j is a wrong lineariza-
tion if s̃j > 0. That having been said, by assuming the existence of a Slater point xs ∈ X
we may modify Step 5 (Upper) above in order to eliminate wrong linearizations c̄j(·) that
cause ǫc-infeasibility. Eliminating indefinitely wrong linearizations from the bundle Jk

c

may deteriorate the convergence. In order to avoid this problem, the adopted strategy is
to clean the bundle Jk

c
while requesting more accuracy from the c-oracle in (4.2.21). It

follows from (4.2.29) that

{x ∈ X : čk(x) 6 0} 6= ∅ if ǫc 6 −c(xs) . (4.2.30)

Hence, if the accuracy ǫc is decreased until it satisfies ǫc 6 −c(xs), no wrong linearization
will be identified and the algorithm will not stop before satisfying the stopping test. In
what follows, we formalize the above idea:

Step 5 (Upper On-demand) Try to solve the quadratic program (4.2.10). If no fea-
sible solution is found:

Step 5.1 Solve the linear problem (4.2.28) to get valLP . If valLP > 0 continue;
otherwise go to Step 5.3.

Step 5.2 (Bundle Cleaning) Let (x̃, s̃) be a solution to (4.2.28). Set Jk
c
← {j ∈

Jk
c
: s̃j 6 0}, ǫc ← ǫc

2
and go back to Step 5.

Step 5.3 declare a critical iteration, set l ← l + 1, k(l) ← k, fk
low
← fk

lev
and choose

x̂k ∈ {xj : j ∈ Jk
f
∩ Jk

c
}. Return to Step 1.

If problem (4.2.10) is solved then move to Step 6.

Every time Step 5.2 is accessed, the maximal c-oracle error is decreased by half. Hence,
after finitely many applications of Step 5.2 the algorithm will determine ǫc 6 −c(xs), and
by (4.2.30) the existence of a Slater point ensures that no infinite loop between Steps 5
and 5.2 can occur. Therefore, Theorem 4.2.14 holds without any change. We emphasize
that only the assumption of such Slater point xs ∈ X is enough for our strategy. In fact,
we need to know neither xs nor c(xs).

Since Step 5.2 requires more accuracy from the c-oracle by checking ǫc-infeasibility, the
above approach can be considered as the on-demand accuracy type. Up to our knowledge,
upper oracles with on-demand accuracy have not been studied so far in the literature of
inexact bundle methods.

In what follows we no longer assume a Slater point. Furthermore, we focus on a particular
case of oracle (4.2.21): lower oracles.

4.2.3.3 Inexact constrained level methods for lower oracles

A lower oracle is an oracle consistent with setting (4.2.21) allowing for one-sided errors
only: in (4.2.22), we therefore assume ǫf ≤ 0, ǫc ≤ 0.
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We thus derive ηx
f
> −ǫx

f
> 0, ηx

c
> −ǫx

c
> 0 for all x ∈ X . In particular, the cutting-

plane models set up from approximate linearizations will remain below the true functions:
using definition (4.2.7), the linearizations (4.2.23) provide for lower oracles cutting-plane
models satisfying

f̌k(x) 6 f(x) and čk(x) 6 c(x) for all iteration counter k and x ∈ X .

In order to state our convergence result, we provide the oracle assumptions formally: for
each given x ∈ X , an inexact oracle delivers

the same information as oracle (4.2.21), however with ǫx
f
6 0, ǫx

c
6 0 . (4.2.31)

As before, the upper bounds ηf and ηc in (4.2.22) can be unknown.

Lemma 4.2.15. For lower oracles, the updating procedure of fk
low

at Step 5 of any
version of Algorithm 4.2 assures fk

low
6 fmin. Moreover, Lemma 4.2.11 holds with

η := max{ηf, ηc}.

Proof. Lower oracles have the special property that

{

x ∈ R
n : f̌k(x) 6 fk

lev

}

∩ {x ∈ R
n : c(x) 6 0} ⊆ X

k,

due to the inequality čk(·) 6 c(·). If Xk is found to be empty, we also have fk
lev
≤

f̌k(x) 6 f(x) for all x ∈ X with c(x) 6 0, thus showing that fk
lev

is indeed a proven
lower bound for fmin. Moreover, since for lower oracles ǫf = 0, Lemma 4.2.11 holds with
η := max{ηf, ηc}.

We thus rely on Lemma 4.2.15 and Theorem 4.2.14 to give an asymptotic convergence
result.

Theorem 4.2.16. Consider any version (fc), (f) or (c) of Algorithm 4.2 applied with
oracle (4.2.31) and improvement function hki given in (4.2.26). Suppose that δTol = 0
and that the algorithm does not terminate. Then limk h

k
i (x

k
rec

) 6 0 and any cluster point
of the sequence {xk

rec
} is a η-solution to problem (4.2.2), with η := max{ηf, ηc}.

Since lower oracles are likely to be less noisy than upper oracles, it is natural to expect
that a solution obtained by any version of Algorithm 4.2 employing a lower oracle has a
better quality. This is confirmed by comparing Theorems 4.2.14 and 4.2.16. Notice that
the only difference between these two theorems is in the solution error η: max{ηf+ǫf, ηc}
for upper oracles and max{ηf, ηc} for lower oracles.
If Algorithm 4.2 terminates at iteration k with hki (x

k
rec

) 6 δTol, then x
k
rec

is a (max{ηf, ηc}+
δTol)-solution to problem (4.2.2). A more refined solution can be ensured if the oracle
errors ηx

k

f
and ηx

k

c
vanish asymptotically for special iterates xk. This case is addressed

in the following section.
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4.2.3.4 Constrained level bundle methods for lower oracles with on-demand
accuracy

Following the lead of [71] we denote xk ∈ X a f -substantial iterate if the inexact value
of the function fk

x meets a descent target fk
tar
∈ R. Similarly, we denote xk ∈ X a c-

substantial iterate if the inexact constraint value ckx meets a feasibility target ck
tar
∈ R. We

call an iterate substantial if it is both f - and c-substantial. Moreover, we call substantial
set S, the index set gathering iterations that provide substantial iterates.

The aim of this section is to make a few changes in Algorithm 4.2 to deal with lower
oracles that cast into the setting of (4.2.21), with errors that vanish for substantial
iterates. Once again, ǫf ≤ 0, ǫc ≤ 0 in (4.2.22). We also assume that for each given point
x ∈ X , upper bound η > 0 for the oracle error, and targets ftar and ctar, an inexact
oracle delivers















the same information as oracle (4.2.21), with:
ǫx
f
≤ 0, ǫx

c
≤ 0

ηx
f
6 η if fx 6 ftar

ηx
c
6 η if cx 6 ctar .

(4.2.32)

Notice that the upper bound for the oracle error η is given as input; therefore, it is
known and controllable. Moreover, oracle (4.2.32) provides information with accuracy
up to η for substantial iterates. We denote an oracle satisfying (4.2.32) by oracle with
on-demand accuracy. This kind of oracles was introduced in [44] for unconstrained (or
polyhedral constrained) convex nonsmooth optimization problems. The recent work [71]
extends this concept to the constrained setting. Differently from the method in [71], our
proposal allows for bundle compression, an important feature for practical applications.
Moreover, in [71] the additional linear problem (4.2.17) is solved at each iteration k, while
in Algorithm 4.2 it is optional.

We emphasize that oracle (4.2.32) is still quite general. Notice that for given xk = x
and ηk = η = 0, the oracle provides exact information if both fk

x and ckx meet the
targets. This is a kind of partially exact oracle introduced in [130] for an unconstrained
proximal bundle method, and further studied in [44] and [45]. Moreover, if both targets
fk
tar

and ck
tar

are set as +∞ for all iterations, then oracle (4.2.32) is an exact one. An
asymptotically exact version of oracle (4.2.32) is obtained if, again, fk

tar
= ck

tar
= ∞

for all k and ηk → 0. A combination between partially exact and asymptotically exact
versions of oracle (4.2.32) is possible. For this setting, in order to get an exact solution
to problem (4.2.2) the algorithm must force ηk → 0 only for substantial iterates.

Let fk
low

be a proven lower bound for fmin at any iteration k. At any substantial iterate
j ∈ S, the oracle bound ηj is known and can be exploited in the definition of the
improvement function. We therefore define:

hkae(x
j) :=

{

max{fxj − fk
low
, cxj}+ ηj if j ∈ S

hj−1
ae (xj−1

rec
) otherwise.

(4.2.33)

Since we force j = 0 ∈ S, the above rule is well defined.
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Lemma 4.2.17. Consider the improvement function hkae given in (4.2.33), and S the
substantial index set. It follows that hkae(x

j) > hk(xj) > 0 for all xj ∈ X and j ∈ S, with
hk defined in (4.2.8). Besides, if there exists an index set K ⊂ S such that {xk

rec
}k∈K ⊂ X

and limk∈K hkae(x
k
rec

) = 0, then any cluster point of the sequence {xk
rec
}k∈K is a solution

to problem (4.2.2).

Proof. Note that for each j ∈ S, hkae(xj) = max{fxj+ηj−fk
low
, cxj+ηj} > max{fxj+ηx

j

f
−

fk
low
, cxj +ηx

j

c
}. By the oracle assumptions, hkae(x

j) > max{f(xj)−fk
low
, c(xj)} = hk(xj).

Therefore, limk∈K hkae(x
k
rec

) = 0 implies that limk∈K hk(xkrec) = 0. As function hk is
monotone, then limk h

k(xk
rec

) = 0 and the stated result follows from Lemma 4.2.3.

With such a new setting, in order to show convergence of Algorithm 4.2 to an exact
solution of problem (4.2.2) we need to force ηk to zero, for substantial iterates. This is
done by controlling the oracle error at Step 5 of Algorithm 4.2 as follows:

Step 5 (On-demand) This step is similar as Step 5, however, if problem (4.2.10) is
solved go to Step 5.1 before going to Step 6.

Step 5.1 (Noise Updating) Update the oracle error ηk+1 ← θh
k(l)
ae (x

k(l)
rec ), for a given

θ ∈ (0, (1− γ)2).
Step 5.2 (Target Updating) Set fk+1

tar
← fk

lev
+ (1 − γ)hkae(xkrec) and ck+1

tar
← (1 −

γ)hkae(x
k
rec

). Go to Step 6.

We now consider the following result based on Lemma 4.2.6.

Lemma 4.2.18. Let Λ > 0 given in (4.2.25) and parameters γ ∈ (0, 1) and θ ∈ (0, (1−
γ)2) in Algorithm 4.2, with Step 5 replaced by Step 5 (On-demand) and improvement
function hk replaced by hkae given in (4.2.33). Then, at iteration k of any version (fc),
(f) or (c) of Algorithm 4.2, the following estimates hold:

|xk+1 − xk| > [(1− γ)2 − θ]
Λ

hkae(x
k
rec

) if k ∈ K l is such that k > k(l) .

Proof. We can proceed as in Lemma 4.2.12 to show that version (fc) satisfies

fk
x − fk

lev
6 |g̃fk||xk+1 − xk| 6 Λ|xk+1 − xk| (4.2.34)

ckx 6 |g̃ck||xk+1 − xk| 6 Λ|xk+1 − xk| . (4.2.35)

Suppose first that xk is a substantial iterate: k ∈ S. Since fk
lev

= fk
low

+ γhkae(x
k
rec

) and
hkae(x

k
rec

) > 0 by Lemma 4.2.17, we conclude that

Λ|xk+1 − xk| > max{fk
x − fk

low
− γhkae(xkrec), ckx}

> max{fk
x − fk

low
− γhkae(xkrec), ckx − γhkae(xkrec)}

= −γhkae(xkrec) + max{fk
x − fk

low
, ckx}

= −γhkae(xkrec) + hkae(x
k)− ηk ,

where the equality follows from (4.2.33), due to the assumption that k ∈ S. Since k ∈ K l

is such that k > k(l), we have by Step 5 (On-demand) that ηk+1 = ηk, and by Step 3
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hkae(x
k
rec

) > (1− γ)hk(l)ae (x
k(l)
rec ). All together with the identity ηk+1 = θh

k(l)
ae (x

k(l)
rec ) by Step

5 (On-demand) we conclude that

Λ|xk+1 − xk| > (1− γ)hkae(xkrec)− θhk(l)ae (xk(l)
rec

)

> (1− γ)2hk(l)ae (xk(l)
rec

)− θhk(l)ae (xk(l)
rec

)

> [(1− γ)2 − θ]hk(l)ae (xk(l)
rec

)

> [(1− γ)2 − θ]hkae(xkrec)
where the last inequality is due to the monotonicity of {hkae(xkrec)}. Hence, the result
follows for k ∈ S.
Under the assumption that k /∈ S, i.e., xk is not a substantial iterate, we have (a)
fk
x > fk

tar
, and/or (b) ckx > ck

tar
.

– Case (a): the inequality fk
x > fk

tar
implies fk

x − fk−1
lev

> (1−γ)hk−1
ae (xk−1

rec
). Since k ∈ K l

is such that k > k(l), we have that fk
lev

6 fk−1
lev

. Therefore, it follows by monotonicity
of hkae that

fk
x − fk

lev
> fk

x − fk−1
lev

> (1− γ)hk−1
ae (xk−1

rec
) > (1− γ)hkae(xkrec) > [(1− γ)2− θ]hkae(xkrec) ,

and the result follows from (4.2.34).

– Case (b): in this version, ckx > (1 − γ)hk−1
ae (xk−1

rec
) > (1 − γ)hkae(x

k
rec

) > [(1 − γ)2 −
θ]hkae(x

k
rec

), and the result follows from (4.2.35).

Since the three considered possibilities (k ∈ S, case (a) and case (b)) cover Algo-
rithms 4.2(fc), 4.2(f) and 4.2(c), the stated result follows.

In what follows, D denotes again the diameter of compact set X .

Lemma 4.2.19. In the setting of Lemma 4.2.18, consider the versions (fc), (f) and (c)
of Algorithm 4.2, with improvement function hkae given in (4.2.33) and Step 5 replaced by
Step 5 (On-demand). Assume that at each bundle compression in all versions (fc), (f)
and (c) of Algorithm 4.2 we include the aggregate indices in the bundle during the l-th
cycle. Then, any iteration k in the l-th cycle (i.e., k ∈ K l) may differ no more from k(l)
than the following bound, provided that hjae(x

j
rec

) > δTol > 0 for all j ≤ k:

k − k(l) + 1 6 1 +

(

ΛD

[(1− γ)2 − θ]hkae(xkrec)

)2

Proof. Since (4.2.16) holds, we can proceed as in Lemma 4.2.7 to conclude that

D2 > |xk+1 − x̂k|2 > |xk(l)+1 − x̂k(l)|2 +
k
∑

j=k(l)+1

|xj+1 − xj|2, for k ∈ K l , l > 0 .

Together with Lemma 4.2.18, this yields the bounds

D2 >

k
∑

j=k(l)+1

(

[(1− γ)2 − θ]
Λ

hkae(x
k
rec

)

)2

=

(

[(1− γ)2 − θ]
Λ

hkae(x
k
rec

)

)2

(k − k(ℓ)) ,

and result follows.
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The main convergence result is given in the following theorem.

Theorem 4.2.20. Consider any version (fc), (f) or (c) of Algorithm 4.2 applied with
oracle (4.2.32) and improvement function hkae given in (4.2.33). Suppose that Step 5 is
replaced by Step 5 (On-demand), and that parameters are chosen to satisfy γ ∈ (0, 1) and
θ ∈ (0, (1 − γ)2). Suppose also that δTol = 0 and that the algorithm does not terminate.
Then limk h

k
ae(x

k
rec

) = 0 and any cluster point of the sequence {xk
rec
} is a solution to

problem (4.2.2).

Proof. If any version of Algorithm 4.2 stops at iteration k with hkae(x
k
rec

) = 0, then by
(4.2.33) we have that k ∈ S. Lemma 4.2.17 ensures that (0 =) hkae(x

k
rec

) > hk(xk
rec

) > 0;
thus xk

rec
is an optimal solution to problem (4.2.2).

If the algorithm does not stop, then by Lemma 4.2.19 (each cycleK l is finite) we conclude
that l →∞. Let W (respec. L) be an index set gathering counters l updated at Step 3
(respec. Step 5 (On-demand)) of (any version of) Algorithm 4.2.

Let li be the i-th index in W = {l1, l2 . . . , }. Therefore, the inequality h
k(li)
ae (x

k(li)
rec ) 6

(1 − λ)hk(li−1)
ae (x

k(li−1)
rec ) holds even if there exists some l ∈ L such that li−1 < l < li. A

recursive application of the previous inequality gives us

0 6 hk(li)ae (xk(li)
rec

) 6 (1− λ)hk(li−1)
ae (xk(li−1)

rec
) 6 . . . 6 (1− γ)ihk(0)ae (xk(0)

rec
) .

As both function f and c are finite valued and the oracle error is bounded by η0 < ∞,
if W has infinitely many indices then limi h

k(li)
ae (x

k(li)
rec ) = 0. Moreover, limk h

k
ae(x

k
rec

) = 0
by monotonicity; see (4.2.33).

Let us now suppose that W is finite. As l → ∞, then the index set L has infinitely
many indices. Since we are dealing with lower oracles, Lemma 4.2.15 shows that fk

low
is a

proven lower bound for fmin <∞. As f
k(l+1)
low

is increased at Step 5 (On-demand) of the
algorithm by an amount of γhkae(x

k
rec

) for each l ∈ L, we obtain that limk h
k
ae(x

k
rec

) = 0
(otherwise we would have fk

low
↑ ∞, which contradicts fk

low
6 fmin <∞).

We have shown in both cases (W finite or infinite) that limk h
k
ae(x

k
rec

) = 0. Hence, it
follows from (4.2.33) that there exists an index set K ⊂ S such that limk∈K hkae(x

k
rec

) = 0,
and together with Lemma 4.2.17 we have the stated result.

Theorem 4.2.20 ensures that if δTol = 0, then the algorithm eventually finds an exact so-
lution to problem (4.2.2). This is not necessary the case if the algorithm is employed with
upper oracles with on-demand accuracy; see Theorem 4.2.14 and comments in Section
4.2.3.2.

4.2.4 Numerical experiments

4.2.4.1 Benchmark Instance

For Benchmarking purposes we will investigate a Joint-Chance-Constrained Program-
ming problem coming from cascaded reservoir management. We refer to section 4.1.5 for
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an analysis of this problem and its adequacy with the structure exhibited in this section.
We also refer to section 5.1 for a full description of the model. One could also consult
[246].

We recall, once again, that these problems fit in the abstract structure (4.2.4), which we
provide here with a few more details:















min 〈q, x〉
s.t. P[ar + Arx 6 ξ 6 br + Arx] > p

Ãx ≤ b̃
x > 0 .

(4.2.36)

In (4.2.36), ξ ∈ R
m is a Gaussian random vector with variance-covariance matrix Σ and

zero mean (we have explicitly extracted the non-zero average in ar, br). The Joint Chance
Constraint arises since we wish to make sure that the volumes in the reservoirs remain
within bounds with high enough probability. The latter volumes are impacted by random
inflows and the turbining strategy. The latter will thus be rendered robust by (4.2.36).
The polyhedral constraint set Ãx ≤ b̃ results from modelling flow constraints, bounds
on turbining, pumping and water valuation. Our first numerical experience consists of
optimizing a hydro valley as in Figure 4.1(a). The dimension of the vector x in this
instance is 672 and ξ has dimension 48. The key difficulty of problems of the type
(4.2.36) is the dimension of ξ. The dimension of x can readily be increased without much
impact on computation time.

In order to compute a (sub-)gradient of the chance constraint involved in (4.2.36), we use
the formulae derived in Lemma 3.2.1. That formulae builds a link between computing
a component of the partial derivative and the evaluation of probabilities of the form
appearing in (4.2.36). Evaluating the latter probabilities requires using efficient numerical
software such as Genz’ Code [83, 84]. The latter code takes as an entry a precision εg,
up to which the probabilities are evaluated. For instance picking εg = 1e−4 implies that
all probabilities are exact up to this precision. This precision allows us to control the
“inexactness” of our Oracle.

A second instance of problem (4.2.36) consists of the Hydro valley appearing in Figure
4.1(b). We will consider 3 variants of this latter instance, wherein the dimension of the
random vector ξ appearing in (4.2.36) varies from 48, 96 up to 168. The dimension of
vector x is 888 in all variants of this instance. The first case occurs when random inflows
are considered on reservoirs “COCHE” and “MONTRIGON”. The random vector has
dimension 96 when reservoirs “BREVIERES” and “LA RAIE” are also impacted by
uncertainty. Finally in the last case all reservoirs are assumed to have random inflows.

4.2.4.2 Preconditioning

Looking carefully at the quadratic program (QP) (4.2.10), one readily observes that the
objective function has approximate order of magnitude O(1

2
‖x‖2). Indeed, x̂k is typically

proportional to the last iterate, so 1
2

∥

∥x− x̂k
∥

∥

2
= 1

2
xTx − (x̂k)Tx + (x̂k)Tx̂k ≈ −1

2
xTx,

by eliminating the constant. If x has large components, this may generate numerical
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problems for the QP solver (even with CPLEX 12.2). We have therefore scaled the
objective function by an appropriate constant in quite a similar way as one would do
with a proximal bundle method. Returning to section 4.1 it appears that µ0 = 1e−6

would make a nice choice.

A second problem might occur when the polyhedral system Ãx ≤ b̃ has disproportionate
components with respect to the constraint čk(x) ≤ 0. We have thus computed bratio =
maxvi=1|b̃i|

minvi=1|b̃i|+1
, where b̃ ∈ Rv. Let gTx ≤ e be an arbitrary constraint figuring in čk(x) ≤ 0.

We have replaced it with sgTx ≤ se, where s = bratio
‖g‖∞

. This scaling also has to be used

for the supporting hyperplane approach, shortly described below.

4.2.4.3 The various compared algorithms

An elementary method for solving problems of the type (4.2.36) is the supporting hyper-
plane method, which we will label Alg.[182]. We refer to section 2.8.4 for some historical
comments on this method and to paragraph 4.1.6.1.3 for more specific information on this
algorithm. The stopping criteria is based on obtaining a solution with proven optimality
gap δTol. This algorithm requires a Slater point, which is computationally expensive to
obtain.

We will also compare our Level Method with the Algorithm of section 4.1. We will refer
to it as Alg.PB. Neither algorithm has used bundle compression. Since the considered
inexact oracle is of the Upper type, the algorithm suggested in [71] is not suitable for
our setting. This is why we have decided not to incorporate the algorithm of [71] in our
numerical runs.

The numerical results show that Alg.LB:

1. Converges faster than Alg.PB to a solution with similarly optimality when parame-
ters are appropriately set. This especially holds if the dimension is big. This might
be due to the naive way in which the proximal parameter is updated. Nonetheless,
even when parameters are not-fine tuned Alg.LB does equally well as Alg.PB.

2. Both the proximal and level bundle method outperform Alg.[182].

4.2.4.4 An extensive discussion of numerical results

It was shown in section 4.1 that an appropriate scaling of the constraints was needed in
order to obtain correct numerical behaviour. This meant that instead of looking at the
constraints c(x) ≤ 0 we numerically deal with Kc(x) ≤ 0 for an appropriately chosen
constant K > 0. For the Algorithm of section 4.1 the constant K impacts both the
constraints of the quadratic program and the definition of the improvement function.
For our Algorithm 4.2 it turns out that scaling is only needed for the definition of the
improvement function. It is then clear that K > 0 allows us to define an implicit
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preference for improving first feasibility (large K values) or the objective function (small
K values). This is also illustrated in Table 4.7.

Table 4.7: Comparison of Algorithms (nnex stands for nn10x). Precision of Genz’ code
εg = 5e−4. The number of iterations at which (4.2.10) is found infeasible is indicated in
between brackets.

method Obj. Value Nb. Iter. [¬(4.2.10)] CPU time parameters
(mins)

Alg.[182] -103363 16 7.2 δTol = 1e−2

Alg.[182] -104077 49 25.5 δTol = 1e−3

Alg.[182] -104156 99 43.9 δTol = 1e−4

Alg.PB -104160 94 13.6 K = 5e4

Alg.PB -104160 91 12.3 K = 1e4

Alg.PB -104159 99 14.4 K = 1e5

Alg.PB * * - K = 1e3

Alg.LB -104159 90 [2] 11.4 K = 5e4, γ = 0.9, δTol = 5
Alg.LB -104158 94 [3] 12.3 K = 1e4, γ = 0.9, δTol = 5
Alg.LB -104159 81 [2] 10.4 K = 1e5, γ = 0.9, δTol = 5
Alg.LB -104160 58 [4] 6.5 K = 1e3, γ = 0.9, δTol = 5
Alg.LB -104160 139 [1] 20.4 K = 1e6, γ = 0.9, δTol = 5
Alg.LB * * - K = 1e2, γ = 0.9, δTol = 5
Alg.LB * * - K = 1e1, γ = 0.9, δTol = 5

One can also observe that Alg.LB is less sensitive to K than Alg.PB, which is a strong
advantage. Nonetheless too small values of K make the algorithm stop with infeasible
solutions. This is understandable in the setting of problem (4.2.36) since the constraint,
a chance constraint, has a rather small value compared to the objective function. Very
small K values make this term negligible for the Algorithm. The observed “divergence”
of Alg.PB with a small K value is of another order. The algorithm does not manage
to produce solutions with improved feasibility at all. The proximal term then slowly
converges to infinity and induces numerical problems in solving the quadratic program.
If one directly compares the nominal solution with K = 5e4 and compares CPU time
with the one figuring in Table 4.4 (first line) it turns out that Alg.PB is found to be
faster here. This is induced by the fact that Genz’ code was recoded (in C++) and an
approximate 30% speed up was obtained in that manner.

The effect of γ on the convergence is investigated in Table 4.8. One can observe that
the behaviour of the Algorithm with γ < 0.5 and γ > 0.5 is slightly different, but
Algorithm 4.2 is not very sensitive to this choice. The number of iterations increases
when γ is small since we will detect empty level sets more often. These iterations are
however not very costly as we do not call the oracle when an empty level set is detected.
The number of iterations seems to be rather stable when γ > 0.5.

In the standard variant of Alg.LB the level set (4.2.9) is detected to be empty when the
quadratic solver attempting to solve (4.2.10) produces an infeasible solution. The lower
bound fk

low
is then updated. Alternatively the lower bound can be updated by solving the

additional linear program (4.2.17) in Step 5 of Algorithm 4.2. Since in these numerical
experiments there is no bundle compression, solving (4.2.17) at each iteration does not
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Table 4.8: Effect of γ (nnex stands for nn10x). Precision of Genz’ code εg = 5e−4. The
number of iterations at which (4.2.10) is found infeasible is indicated in between brackets.

method Obj. Value Nb. Iter. [¬(4.2.10)] CPU time parameters
(mins)

Alg.LB -104162 109 [36] 9.1 K = 1e3, γ = 0.100, δTol = 5
Alg.LB -104162 91 [17] 9.2 K = 1e3, γ = 0.250, δTol = 5
Alg.LB -104162 61 [9] 6.5 K = 1e3, γ = 0.500, δTol = 5
Alg.LB -104162 60 [7] 7.1 K = 1e3, γ = 0.667, δTol = 5
Alg.LB -104162 62 [6] 5.5 K = 1e3, γ = 0.800, δTol = 5
Alg.LB -104160 58 [4] 6.5 K = 1e3, γ = 0.900, δTol = 5
Alg.LB -104160 80 [5] 9.2 K = 5e4, γ = 0.100, δTol = 5
Alg.LB -104159 70 [6] 8.4 K = 5e4, γ = 0.250, δTol = 5
Alg.LB -104161 73 [4] 9.4 K = 5e4, γ = 0.500, δTol = 5
Alg.LB -104159 73 [3] 9.6 K = 5e4, γ = 0.667, δTol = 5
Alg.LB -104159 76 [2] 8.2 K = 5e4, γ = 0.800, δTol = 5
Alg.LB -104159 90 [2] 11.4 K = 5e4, γ = 0.900, δTol = 5

impact the convergence analysis of the algorithm; see comment (f) after Algorithm 4.2.
The effect of this choice is reported in Table 4.9. In the setting of problem (4.2.36) the
c-oracle is costly to call and hence solving an additional linear program (or even quadratic
program) has a negligible effect on computation time. A further effect of adding (4.2.17)
to step 5 of the Algorithm is that (4.2.9) will never be empty anymore.

Table 4.9: Effect of adding (4.2.17) to Step 5. (nnex stands for nn10x). Precision of
Genz’ code εg = 5e−4.

method Obj. Value Nb. Iter. CPU time parameters
(mins)

Alg.LB -104161 35 4.4 K = 1e3, γ = 0.8, δTol = 5
Alg.LB -104158 65 9.2 K = 5e4, γ = 0.8, δTol = 5

In Figure 4.3 we compare the iterative process of the first case in Table 4.9 with its coun-
terpart in Table 4.8. Top graphics show the evolution of the sequences {f(xk)}, {fk

low
}

and {fk
lev
} along the iterations. The bottom left graphic compares the two sequences of

{fk
low
} corresponding to the following two cases: LP (4.2.17) is never solved, and (4.2.17)

is solved at each iteration of Algorithm 4.2. Remember that when LP (4.2.17) is never
solved, the lower bound fk

low
is updated only when the level set (4.2.9) is empty. We

thus conclude by the stairs in the bottom right graphic in Figure 4.3 that the level set
was detected to be empty six times in a total of sixty two iterations (as shown at line
5 of Table 4.8). The Bottom right graphic shows the sequences {c(xk)} for both cases.
Notice that when solving LP (4.2.17) the resulting sequence {xk} is nearer to feasibility.

Up until now we have worked with an reasonably precise oracle: εg = 5e−4. It is of interest
to examine how results are when we are working with a precise Oracle: εg = 1e−4. In
table 4.3 it was shown that a precision εg = 1e−5 led to unreasonable computation times.
We will therefore not investigate this choice here. Table 4.10 provides these results.

When looking at the results of Table 4.10 one can observe that both Alg.LB and Alg.PB
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Figure 4.3: Comparison of Algorithm 4.2 when solving LP (4.2.17).

Table 4.10: Effect of precise Oracle. (nnex stands for nn10x). Precision of Genz’ code
εg = 1e−4.

method Obj. Value Nb. Iter. CPU time parameters
(mins)

Alg.[182] -104154 107 961.5 δTol = 1e−4

Alg.PB -104160 89 71.2 K = 5e4
Alg.LB -104162 33 24.2 K = 1e3, γ = 0.8, δTol = 5
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outperform Alg.[182] in an important way. In particular we can note that a solution
with similar optimality as Alg.[182] is produced by Alg.PB as early as the 67th iteration,
which would correspond to an approximate computation time of around 53 minutes. The
level method does not produce any intermediately feasible solutions and directly stops
at optimality.

We now turn ourselves towards the instance consisting of the Isère Valley (Figure 4.1(b)).
For these instances no Slater point was available so if we wish to use Alg.[182] we need to
compute such a point. We have obtained this point by applying our Level Method with
an increased p level (See (4.2.36) and (4.2.5)). We have taken p = 0.95 as a numeric value.
Now if we use the objective function q of (4.2.36) too in such an algorithm, it is clear that
we end up with a very strong Slater point. For instance, in the Isr96 instance below it
turns out that the Slater point is only 0.3% suboptimal. Clearly the Alg.[182] algorithm
will only need to do a few iterations to converge and obtain the optimal solution. Such
a comparison would therefore be incorrect with respect to the other Algorithms, which
would in fact boil down to a comparison between Alg.LB with hybrid stopping criteria
and the other algorithms. Moreover in practice, such as in Unit-Commitment problems
wherein cascaded reservoir management are a sub-problem, one would typically compute
a Slater point against an early poor estimate of the true “price vector”. See section 5.2
for such a Unit-Commitment decomposition setting. Then the above advantage would
go away. We have thus arbitrarily set q = 0 when computing the Slater point. This time
is not integrated in the results obtained below.

Returning to the work of section 4.1, we can notice that two parameters (α and β)
allow the user to have a control over the severity of the descent test and the noise
test respectively. In this benchmark we make them vary to a setting which was found
beneficial there. As Alg.LB is concerned, we will pick the best parameter settings of
Table 4.7. The scaling parameter K was investigated in the work [249] and this led to
the choice K = 1e5. Again such a choice can be argued to be intuitive since it is roughly
half the order of magnitude of the objective function. It appears that Alg.LB works best
with a choice of K roughly 10 times smaller. This is again confirmed in Table 4.11.

When making the comparison on instance Isr96, some comments are in order. One
should note that Alg.PB with parameter α = 1 produces a solution with similar quality
as Alg.[182] in the 129th iteration, which corresponds roughly to 90 minutes of CPU
time. Algorithm Alg.PB with parameter α = 0 produces such a solution in the 167th
iteration, which corresponds to 118 minutes of CPU time. So both version greatly out-
perform Alg.[182]. Finally Alg.LB in its best setting largely outperforms both Alg.PB
and Alg.[182]. This is quite an encouraging result.

Now we turn our attention to the analysis of instance Isr168. When looking at Alg.PB,
with α = 1, a solution with similar optimality as Alg.[182] is produced in the 153th
iteration, which would correspond to about 480 minutes of CPU time. A substantial
advantage over Alg.[182]. The setting with α = 0 produces such a solution in the 177th
iteration, with about 553 minutes of CPU time. The level method Alg.LB with K = 1e4

produces a solution of such quality as early as the 42nd iteration, but slightly infeasible.
Still feasibility is easily restored when a Slater point is available. Globally both bundle
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Table 4.11: Comparison of Alg.PB and Alg.LB on the Isère Valley. (nnex stands for
nn10x). Precision of Genz’ code εg = 5e−4. The number of iterations at which (4.2.10) is
found infeasible is indicated in between brackets. The indication [¬(4.2.17)] means that
auxiliary problem (4.2.17) is not solved.

Instance method Obj. Value Nb. Iter. CPU time parameters
[¬(4.2.10)] (mins)

Isr48 Alg.[182] -175031 35 10.5 δTol = 1e−4

Isr48 Alg.PB -175043 115 17.5 K = 1e5, µ0 = 1e−5, α = 0, β = −1
Isr48 Alg.PB -175043 88 11.2 K = 1e5,µ0 = 1e−5, α = 1, β = −1
Isr48 Alg.PB -175042 69 8.3 K = 1e5,µ0 = 1e−6, α = 1, β = −1
Isr48 Alg.LB -175039 66 10.0 K = 1e5, γ = 0.8, δTol = 5
Isr48 Alg.LB -175040 38 5.4 K = 1e4, γ = 0.8, δTol = 5
Isr48 Alg.LB -175040 63 [3] 8.6 K = 1e5, γ = 0.8, δTol = 5, [¬(4.2.17)]
Isr48 Alg.LB -175037 38 [4] 5.2 K = 1e4, γ = 0.8, δTol = 5, [¬(4.2.17)]
Isr96 Alg.[182] -175708 143 217.4 δTol = 1e−4

Isr96 Alg.PB -175714 214 152.3 K = 1e5,µ0 = 1e−5, α = 0, β = −1
Isr96 Alg.PB -175715 159 110.9 K = 1e5,µ0 = 1e−5,α = 1, β = −1
Isr96 Alg.PB -175715 177 123.5 K = 1e5,µ0 = 1e−6,α = 1, β = −1
Isr96 Alg.LB -175713 122 82.5 K = 1e5, γ = 0.8, δTol = 5
Isr96 Alg.LB -175713 94 48.4 K = 1e4, γ = 0.8, δTol = 5
Isr96 Alg.LB -175710 115 [3] 75.3 K = 1e5, γ = 0.8, δTol = 5, [¬(4.2.17)]
Isr96 Alg.LB -175697 76 [4] 44.3 K = 1e4, γ = 0.8, δTol = 5, [¬(4.2.17)]
Isr168 Alg.[182] -175222 190 1504.7 δTol = 1e−4

Isr168 Alg.PB -175236 284 888.4 K = 1e5,µ0 = 1e−5,α = 0, β = −1
Isr168 Alg.PB -175237 219 687.4 K = 1e5,µ0 = 1e−5,α = 1, β = −1
Isr168 Alg.PB -175237 188 573.5 K = 1e5,µ0 = 1e−6,α = 1, β = −1
Isr168 Alg.LB -175235 161 529.6 K = 1e5, γ = 0.8, δTol = 5
Isr168 Alg.LB -175232 110 352.3 K = 1e4, γ = 0.8, δTol = 5
Isr168 Alg.LB -175235 165 [3] 423.2 K = 1e5, γ = 0.8, δTol = 5, [¬(4.2.17)]
Isr168 Alg.LB -175220 127 [5] 353.5 K = 1e4, γ = 0.8, δTol = 5, [¬(4.2.17)]
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methods have a significant advantage over Alg.[182]. The level method again offers
advantages over the proximal variant since fine tuning the initial proximal parameter µ0

is not very easy. A key difference between the proximal and the level bundle variant is
that the former produces a feasible solution quickly and all successive stability centers
are feasible solutions. The level method produces a feasible solution quite late, often
near to the convergence.

As explained above the behaviour of Alg.[182] is heavily dependent on the choice of the
Slater point. Surprisingly enough Alg.[182] performs quite well on instance Isr48, even
though the obtained solution is sub-optimal. Furthermore, observing Table 4.10 and
Table 4.7 it clearly appears that Alg.[182] suffers far more from increased oracle accuracy
than Alg.PB or Alg.LB. Indeed the performance ratio moves from Alg.[182]/ Alg.PB
= 3.2 to 13.5 and from 6.8 to 39.7 respectively. And this comparison does not integrate
the loss of optimality incurred for Alg.[182]. This is confirmed by the results of Table
4.12.

Table 4.12: Effect of precise Oracle. (nnex stands for nn10x). Precision of Genz’ code
εg = 1e−4.

Instance method Obj. Value Nb. Iter. CPU time parameters
(mins)

Isr48 Alg.[182] -175037 39 58.5 δTol = 1e−4

Isr48 Alg.PB -175041 81 35.1 K = 1e5,µ0 = 1e−6,α = 1, β = −1
Isr48 Alg.LB -175039 39 16.2 K = 1e4, γ = 0.8, δTol = 5

4.2.4.5 Comments on Parameter Settings

The previous subsection was devoted to a comparison of Bundle Methods and the Sup-
porting Hyperplane method for solving convex joint chance constrained programs. The
latter method requires a Slater point, which might be tricky to obtain, but on the other
hand the method has few parameters. This can be perceived as an advantage, since one
might be afraid to have to spend much time in setting up appropriate choices. How-
ever this is untrue, since natural parameter choices for the Bundle methods led to good
results. Indeed, both Bundle Methods have parameter settings to play with. The prox-
imal variant, has choices for the definition of the nominal decrease, the noise test, the
“magic” scaling parameter K and the initial proximal parameter µ0. The Level Method
also has the scaling parameter K, γ and the stopping tolerance to set. We have however
shown that results are relatively robust to changes in such parameters provided they are
in the right zone. Also when moving from one instance to another (both coming from
cascaded reservoir management) the same rules of thumb seem to give quite excellent
initial choices. Globally for joint chance constraint programming we would suggest to
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solve the following deterministic equivalent of (4.2.36):























min 〈q, x〉
s.t. ar + Arx 6 0

0 6 br + Arx

Ãx ≤ b̃
x > 0

(4.2.37)

and call xd its optimal solution. Then f0
low

=
〈

q, xd
〉

is a good lower bound for (4.2.36),
K = 1

2

〈

q, xd
〉

an appropriate choice for the magic Scaling parameter in the proximal
Bundle Method. For the level method we should pick around 1

10
th of that value. The

initial proximal parameter should be set up according to what has been explained in

section 4.2.4.2. According to our experience the quadratic term
∥

∥x− x̂k
∥

∥

2
should not

exceed 1e11 and µ0 can be set accordingly.
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Chapter 5

Applications of JCCP in large scale
Unit-Commitment through
decomposition

In Energy Management, a key problem known as ”unit-commitment” deals with finding a
minimal cost production schedule. This schedule has to satisfy the operational constraints
of each of the production units and meet customer load as closely as possible. Depending
on the detail with which the operational constraints are modelled, many variants of this
problem can be set up. Since operational constraints involve delays (start-up delays,
etc...), the computed production schedule is often determined quite ahead of real-time.
This allows for uncertainty to have a key impact on the ”feasibility” and ”optimality” of
the executed production schedule. In practice, spinning reserves and intra-daily changes
to the schedule allow the operator to partially account for uncertainty. Highly binding
operational constraints might give rise to difficult situations, wherein the quest for ”fea-
sibility” induces a heavy cost. As such, computing a schedule having seen at least part
of the plausible uncertainty, might turn out less costly eventually. This would be a key
goal of Robust Unit-Commitment. However, unit-commitment problems are already very
challenging in a deterministic setting. This is the consequence of the following facts:

1. each unit is subject to many complex technical constraints.

2. units exist in many varieties (thermal, hydraulic, contracts). Each type comes with
a very specific set of constraints. Most of them requiring specific techniques for an
efficient resolution.

3. the offer-demand equilibrium constraints couple all the units together

In order to tackle these large scale problems, the coupling constraints are often dualized,
using Lagrangian techniques, leading to an effective price decomposition scheme ([38,
138, 79, 210]). Since the global unit-commitment problem is already challenging to solve
in a deterministic setting due to its non-convex feasible sets and large scale, uncertainty is
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often neglected, even though decisions are taken at least one day in advance. Uncertainty
in unit-commitment problems comes at least from the following sources: customer load,
renewable generation, inflows, unit availability. Integrating uncertainty in global unit-
commitment will be quite challenging for the reasons outlined above. Hence, as a first
necessary step, we will focus on hydro valley optimization. This will be investigated in
section 5.1. In section 5.2 we will consider a global robust unit-commitment problem.

5.1 Robust Cascaded Reservoir Management

In the Lagrangian dualization setting of a unit-commitment problem, hydro valley opti-
mization can be seen as a sub-problem. Alternatively, one can interpret this sub-problem
as an optimization against market-prices. Complex dynamic constraints on watershed
controls introduce combinatorial aspects in this sub-problem, making it difficult to solve.
The focus of this section will therefore be on integrating uncertainty in hydro valley
management.

The aforementioned combinatorial aspects result from formulating smoothness requests
on watershed. From an engineering perspective it is undesirable to have turbining output
increase and decrease rapidly over short time spans as this induces a strain on material.
Other combinatorial elements can arise when modelling very realistic efficiency curves.
We refer to [57] for an approach to deal (i.e., remove) the latter combinatorial elements.
In hydro dominated systems, such as in Brazil, Scandinavia and Canada, the emphasis of
accurate modelling lies on hydro generation and combinatorial optimization is common
for cascaded reservoir management. We refer to [10, 75, 174, 162] for more details on such
models. In thermal dominated systems, such as the French system, the modelling em-
phasis lies more on thermal generation. In these large-scale unit-commitment problems,
such additional combinatorial elements are often neglected in order to have an acceptable
computional burden (see [61]). We will make the same assumption. Integrating uncer-
tainty and combinatorial elements in a cascaded reservoir model is quite challenging and
will be investigated in future work. A potential entry point for such an approach would
be the decomposition idea investigated in [75].

Uncertainty in cascaded reservoir management results from uncertainty on inflows and
impacts the physical constraints of the system. Since decisions are taken prior to the
observation of uncertainty, appropriate modelling approaches for integrating uncertainty
have to be considered. The two main approaches are chance constrained programming
and robust optimization. The main focus here is on the former, for the latter we refer
to [13, 7, 3]. In dynamic decision processes, i.e., when decisions in later time periods
are allowed to adapt to earlier observed uncertainty, the main approaches are Stochastic
Dynamic Programming and SDDP (see [169]). Often the convenient hypothesis is made
that uncertainty within the transition problem is known. This essentially makes the
transition problem a deterministic problem. The latter choice is especially questionable
when the transition problem covers a time span of a week such as assumed in [172].

Introduced by [32], probability constraints are quite an appealing tool for dealing with
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uncertainty. In particular, when uncertainty arises in physical constraints, since they
also offer a simple interpretation. Since their first introduction, chance constraints have
become quite common in hydro valley management ([143, 63, 65, 142, 155, 265, 264, 244]),
but often individual chance constraints are used and not joint chance constraints. Though
a very appealing approximation, individual chance constraints unfortunately do not offer
sufficient robustness (see [244]). Hydro reservoir models with joint chance constraints
have been considered, for instance, in [185, 186, 244]. In [1] even a dynamic approach has
been developed in this context. However, these models were comparatively simple from
their structure (no serially linked reservoirs, no delay time between reservoirs, no realistic
water value condition, no time series modelling of statistical data, small dimension). The
main focus of [244] is on deriving an efficient gradient formula for joint chance constraints
of a specific form. The latter form arises naturally in hydro reservoir management.
The interest of the formula is then illustrated on a stylized hydro reservoir optimization
problem.

This section is organized as follows. In section 5.1.1, we present our model for hydro
reservoir management, where combinatorial constraints are neglected and random in-
flows are introduced. We give a detailed description of a real hydro valley, and present
the main optimization problem. As the uncertainty on inflows is concerned, many sta-
tistical models are based on a deterministic trend (potentially dependent on explanatory
variables) and a causal noise process. Since convexity results exist for specific classes of
randomness and in particular Gaussian ones, it seems tempting to place ourselves in such
a setting. Restricting uncertainty laws to such a setting, might seem restrictive at first.
However, we will show that a large class of models is available, i.e., the class of causal
time series models with Gaussian innovations ([217]).

In section 5.1.2, we present several alternatives to the joint chance constraint problem.
In particular, we present an individual chance constraint problem and a robust model.
We report results obtained when solving these various models on a realistic instance
of a hydro valley management problem in section 5.1.3. The interest of joint chance
constrained programming is illustrated by comparing results obtained on this hydro valley
with those obtained from the alternative models.

5.1.1 Problem Description

In this section we will give a description of the hydro reservoir management problem.
We will consider a discretized time horizon. To this end let τ = {1, ..., T} denote the set
of (homogeneous) time steps, where T denotes the last time step. Let ∆t be the time
step size expressed in hours. We will begin by providing problem constraints and the
objective function. We will conclude with a paragraph highlighting the structure of the
problem.
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5.1.1.1 Problem Constraints

5.1.1.1.1 Topology A hydro valley can be seen as a set of connected reservoirs and
associated turbines. We can therefore represent this with a directed graph. Let N be the
set of nodes and let A (of size |N |×|N |) be the connection matrix, i.e., An,m = 1 whenever
water released from reservoir n will flow into reservoir m. We will assume that D is the
flow duration vector, i.e., Dm is the amount of time (measured in time steps) it takes for
water to flow from upper reservoir m to its unique child. It is assumed that pumping
is (nearly) instantaneous. Let T := {gi , i = 1, ..., NT } denote the set of turbines and
P := {pi, i = 1, ..., NP} denote the set of pumping stations. We furthermore introduce
the mapping σT : {1, ..., NT } → N (σP : {1, ..., NP} → N ) attributing to each turbine
(pumping station) the reservoir number to which it belongs. We will also introduce the
sets A(n) = {m ∈ N : Am,n = 1} and F(n) = {m ∈ N : An,m = 1}. The set A(n) is
empty for uphill reservoirs and the set F(n) for downhill reservoirs. To each reservoir
n ∈ N and for each time step t ∈ τ we associate its volume V n(t) in cubic hectometers
hm3. The initial volume of each reservoir n ∈ N is denoted by V n(0), lower and upper
bounds are V n

min(t) and V
n
max(t) respectively.

5.1.1.1.2 Controls We will assume that each turbine (and pumping station) can be
controlled for each time step. To this end we introduce the variables xi(t) for each t ∈ τ
and i = 1, ..., NT . In a similar way we introduce the variables yi(t) for the pumping
stations. The units are in cubic meters per hour, i.e., m3/h. Furthermore we assume
that each of these variables are bounded:

0 ≤ xi(t) ≤ xi(t), ∀t ∈ τ, i = 1, ..., NT (5.1.1)

0 ≤ yi(t) ≤ yi(t), ∀t ∈ τ, i = 1, ..., NP .

5.1.1.1.3 Random Inflows We will assume that inflows (in m3/h) in reservoirs are
the result of some stochastic process. Let An(t) denote this stochastic process for reservoir
n. Not all reservoirs will have stochastic inflows, some of them will have deterministic
inflows. This can be explained by the fact that top reservoirs have random inflows due
to the melting of snow in the high mountains, whereas rain can be neglected for lower
reservoirs. Let N r ⊆ N denote the set of reservoirs receiving random inflows. We will
assume that the stochastic inflow process is the sum of a deterministic trend snt and
a causal process ([217]) generated by Gaussian innovations. To this end, let ζn(t) be a
Gaussian white noise process, where (ζk1(t), ..., ζkl(t)) is a Gaussian random vector of zero
average and variance-covariance matrix Σ(t) ({k1, ..., kl} = N r). This last assumption
means that the innovations for several reservoirs are correlated. This correlation alone
will bring forth the correlation structure on inflows across reservoirs. This assumption
is quite similar to the one made in mathematical finance wherein Brownian motions are
correlated and thus generate correlated commodities.

We will assume independence between time steps of the ζ vector. Since An(t) is a causal
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process, we can write it as follows

An(t) = snt +
∞
∑

j=0

ψn
j ζ

n(t− j) = snt +
∞
∑

j=t

ψn
j ζ

n(t− j) +
t−1
∑

j=0

ψn
j ζ

n(t− j), ∀n ∈ N r, t ∈ τ

for some coefficient vector ψn and infinite past before t = 0 (the beginning of the op-
timization horizon). We will assume that randomness before (and including) t = 0 is
known and as such we can assume w.l.o.g. that the random inflow process can be written
as

An(t) = snt +
t−1
∑

j=0

ψn
j ζ

n(t− j), ∀n ∈ N r, t ∈ τ. (5.1.2)

For reservoirs n ∈ N \ N r, we simply have An(t) = snt .

5.1.1.1.4 Flow constraints and Volume bounds Each reservoir is subject to flow
constraints induced by pumping and turbining. The following balance constraint applies

V n(t) = V n(t− 1) +
∑

m∈A(n)

∑

i∈σ−1
T [m]

xi(t−Dm)∆t−
∑

i∈σ−1
T [n]

xi(t)∆t

+
∑

m∈F(n)

∑

i∈σ−1
P [m]

yi(t)∆t−
∑

i∈σ−1
P [n]

yi(t)∆t (5.1.3)

+ snt ∆t+
t−1
∑

j=0

ψn
j ζ

n(t− j)∆t, ∀t ∈ τ, n ∈ N .

The above equation is entirely deterministic except for the reservoirs n ∈ N r. In order
to deal with this randomness and reservoir bounds we will therefore add the following
constraints

P[V n
min(t) ≤ V n(t) ≤ V n

max(t) ∀t ∈ τ, n ∈ N r] ≥ p (5.1.4)

V n
min(t) ≤ V n(t) ≤ V n

max(t) ∀t ∈ τ, n ∈ N \ N r, (5.1.5)

where P is a probability measure and p a security level. Constraint (5.1.4) is a joint chance
constraint. This means that we wish to satisfy all linear inequalities of the stochastic
system simultaneously with high enough probability. This can be compared to a model
with individual chance constraints, which is a model wherein we wish to satisfy each
inequality with high enough probability, but taken separately. We will show (see section
5.1.3) that the latter model offers insufficient robustness.

5.1.1.1.5 Water Values In short term optimization problems (with time horizons
ranging from several days up to a month) water values provide a way to associate a cost
with used water. Incorporating no such cost in a short term optimization problem would
inevitably lead to a maximum use of water on this specific time horizon, whereas water
might be needed in later time periods. Water might be used to reduce the use of costly

151



thermal generation or as a security to avoid ”black-outs” in difficult situations. Water
values are obtained as the by product of (stochastic) dynamic programming approaches
in mid term (time horizons ranging from 1 to 5 years).

In full generality water values depend on time, a multivariate random vector, the current
water levels in all reservoirs and other quantities that can be considered as inventories or
stocks (such as customer interruption options (see [264] for more details), i.e., an inven-
tory globally very similar to the number of remaining exercise rights in swing options).
As the effect of uncertainty is concerned, it is often averaged out on a set of reasonable
scenarios in order to integrate unconditional water values in short term optimization.
The stochastic dynamic programming algorithms typically deal with uncertainty effects
rarely integrated in short term optimization such as stochastic fuel prices.

The multivariate stock dependency is only known approximately, if at all, since one
quickly hits the curse of dimensionality of dynamic programming. In such cases, ap-
proaches such as approximate dynamic programming (ADP) ([43]), approximate dual
dynamic programming (ADDP) ([86]), SDDP ([169, 173]) or aggregation approaches
([230, 229]) are applied in order to approximately solve the dynamic programming prob-
lem. In the ADP approach, it is commonly assumed that the continuation function of
dynamic programming decomposes as a sum of 1 dimensional functions. Each function
depending on a unique stock only. This then automatically results in single stock depen-
dent water values. Even if water values would be available as multivariate functions, they
would only be known on a set of grid points. If this is to be incorporated in short term
optimization one surely needs interpolation techniques very similar to those explained in
[40]. This interpolation approach leads to the introduction of binary variables in the op-
timization problem. Since multivariate effects in water values are only rarely known and
integrating them induces combinatorial aspects, we will focus on single stock dependent
water values.

As the temporal dependency is concerned it is often daily or intra-daily. Due to the
average effect of climate on unit-commitment, some specific weeks are far more costly
than surrounding weeks. Such weeks have peaking customer load and high risk of black
outs. Such effects get reflected in the water values as well. These effects are moreover
strengthened by averaging out stochastically dependent water values as explained above.

If we wish to incorporate water values in short term optimization, the latter temporal
effect can either be neglected or taken into account. In the first case, we would value
the differential between the end and the initial volume of a reservoir against water values
at that time step. In the second approach we would either value volumes against water
values at each time step or value local volumetric differences. The first approach would
consider indifferently any two storage paths leading to the same end volume. When the
short term time horizon is close to a month and one of the above difficult weeks is within
this time horizon, from an operational view point two paths leading to the same end
volume are not necessarily considered equivalent. It is therefore of interest to integrate
the temporal dependence in order to reflect this feature. A second reason for integrating
this effect is to provide a model that fits better with current practice. In practice, in order
to control the storage path, a selection of time steps τ s ⊆ τ is made where artificially we
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force V n
min(t) ≈ V n

max(t) for t ∈ τ s. Integrating the temporal dependency of water values
in short term optimization is a natural way to have control over the storage path without
risking to have an empty feasible set.

In this section we present a model for incorporating water values without reflecting tem-
poral dependencies as the focus of the section is on Chance Constrained programming for
hydro reservoir management. Upon valuing the volume at each time step against local
water values, the presented model allows for a straightforward extension for incorporat-
ing the above discussed temporal effect of water values. We also discuss how valuing
volumetric differences leads to a non-convex model.

5.1.1.1.5.1 Volume dependent water values Our aim is to set up a model which
evaluates the expected amount of water in the reservoir at the end of the optimization
horizon1. This is necessary in order not to carry out the optimization at the expense of
later periods of time. A possible way to do so is to subdivide the levels of each reservoir
into a finite number of values from bottom to top as follows:

V n
0 , . . . , V

n
Kn

∀n ∈ N .

Each compartment
[

V n
i−1, V

n
i

)

is assigned a water value W n
i (in e/m3) such that

W n
i−1 > W n

i ≥ 0 ∀n ∈ N ∀i = 1, . . . , Kn. (5.1.6)

The value of the expected final water level E (V n(T )) of reservoir n is then simply the
cumulative value of water in the compartments below:

∑

i≤i∗

W n
i (V

n
i − V n

i−1) +W n
i∗(E (V n(T ))−V n

i∗), i∗ := max{i|E (V n(T )) ≥ V n
i }.

Note that this value is an increasing function of the expected final level EV n(T ) despite
the fact that water values are strictly decreasing from bottom to top.

Now, in order to avoid combinatorial arguments concerning the index i∗, we introduce
auxiliary variables zni indicating for each reservoir n the amount of water in compartment
[

V n
i−1, V

n
i

)

. Of course, since all compartments have to be completely filled up to i∗, one
has that

zni =







V n
i − V n

i−1 i = 1, . . . , i∗

E (V n(T ))−V n
i∗ i = i∗ + 1

0 i = i∗ + 2 . . . , Kn

∀n. (5.1.7)

Then, the value of the final water level in reservoir n equals

Kn
∑

i=1

W n
i z

n
i ∀n. (5.1.8)

1In practice, one would evaluate the difference of the final and initial volume. The latter adds a
constant to the objective function and can theoretically be omitted. In practice, it may generate some
numerical difficulties, especially when large volumes are valued and turbining/pumping capacity is small
compared to the volume. In that case, relative changes in valuation induced by the controls are easily
considered negligible. Moreover, the constant can easily be added.
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We claim that the relations (5.1.7) for variables zni can be replaced by the following
relations in which the crucial index i∗ is absent:

Kn
∑

i=1

zni = E (V n(T ))−V n
0 ∀n (5.1.9)

0 ≤ zni ≤ V n
i − V n

i−1 ∀n∀i = 1, . . . , Kn. (5.1.10)

The argument is as follows: as part of the overall objective function in our problem, we
shall maximize the value of the final water level (5.1.8). Given the strictly decreasing
order of water levels in (5.1.6) (from bottom to top), it is clear from (5.1.9) that the upper
inequality in (5.1.10) will be satisfied as an equality as long as possible and that only the
most upper compartment may not be completely filled. This of course is equivalent with
(5.1.7) but avoiding the explicit description of that most upper compartment.

Since the initial volume V n(0) is known in advance, one can define variables zn0,i in a
similar way as zni . It then follows that

Kn
∑

i=1

W n
i (z

n
0,i − zni ) (5.1.11)

is the cost of used water for reservoir n ∈ N . The valuation induced by
∑Kn

i=1W
n
i z

n
0,i is

in fact a constant and can be omitted.

5.1.1.1.5.2 Time and Volume dependent water values : Volumetric differ-
ences Our aim is to set up a model in which (expected) volumetric difference of ad-
jacent time steps are valued with a water value that depends on time and volume. We
will show that such a model is non-convex. We therefore suggest to extend the model of
paragraph 5.1.1.1.5.1 instead. We begin by recalling the subdivision of the levels of each
reservoir in (5.1.1.1.5.1). To each of these compartments we assign a water value Wi(t)

n

(in e/m3), i = 1, ..., Kn, n ∈ N . We assume that these are decreasing:

W n
i−1(t) > W n

i (t) ≥ 0 ∀i = 1, ..., Kn, n ∈ N , t ∈ τ. (5.1.12)

Assuming for simplicity of reasoning that the dependence on the compartments is absent.
Then we wish to value

∑

n∈N

∑

t∈τ
W n(t)E (V n(t)− V n(t − 1 )) . (5.1.13)

For a fixed reservoir n ∈ N we define i∗n,t = max {i E (V n(t)) ≥ V n
i }. Let i = 1, ..., Kn

moreover be arbitrary and define znx,i(t) as negative variations of volume with respect to
expected volume E (V n(t)) (i.e., turbining). Similarly, we define zny,i(t) as the positive
variations (i.e., pumping). Both variations are restricted to the interval [V n

i−1, V
n
i ). This

means that:

V n(t+ 1) = V n(t) +
Kn
∑

i=1

(zny,i(t)− znx,i(t)).
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Since znx,i(t) is defined as the negative variations with respect to the expected volume
E (V n(t)), one has znx,i(t) = 0 for all i > i∗n,t+1. By similar arguments we readily observe
that zny,i(t) = 0 for all i < i∗n,t − 1. Moreover, one has:

znx,j(t) > 0 ⇒ znx,i(t) = min {V n
i ,E (V n(t))} − V n

i−1, i = j + 1, ..., i∗n,t + 1 (5.1.14)

zny,j(t) > 0 ⇒ zny,i(t) = V n
i −max

{

V n
i−1,E (V n(t))

}

, i = i∗n,t − 1, ..., j − 1. (5.1.15)

It therefore follows that the appropriate generalization of (5.1.13) accounting for the
compartments is:

∑

n∈N

∑

t∈τ

Kn
∑

i=1

W n
i (t)(z

n
x,i(t)− zny,i(t)). (5.1.16)

The following constraints:

0 ≤ znx,i(t) ≤ max
{

E (V n(t))−V n
i−1, 0

}

, i = 1, ..., Kn, n ∈ N (5.1.17)

0 ≤ zny,i(t) ≤ max {V n
i − E (V n(t)), 0} , i = 1, ..., Kn, n ∈ N (5.1.18)

assure that znx,i(t) = 0 for all i > i∗n,t + 1 and zny,i(t) = 0 for all i < i∗n,t − 1. One can also
see that the requirements (5.1.14) and (5.1.15) are automatically satisfied by hypothesis
(5.1.12) and objective function (5.1.21). The above non-linear constraints (5.1.17) and
(5.1.18) can be transformed into quadratic constraints by applying Lemma 5.1.1. The
same lemma then allows us to conclude the non-convexity of the model involving valuation
(5.1.16).

Lemma 5.1.1. Let f, g, h : Rn → R be finite-valued mappings. Then the following
problems are equivalent:

min
x∈Rn

{

f(x) : g(x) ≤ [h(x)]+
}

(5.1.19)

and
min

x∈Rn,λ≥0
{f(x) : (g(x)− h(x) + λ)g(x) ≤ 0} (5.1.20)

If moreover, both g and h are linear, the complementarity constraint appearing in (5.1.20)
is quadratic. In the particular case, when g takes the form g(x, z) = z and h(x, z) = aTx,
x ∈ Rn, z ∈ R, the matrix defining the quadratic form of the inequality is given by

Q =





0 −0.5a 0
−0.5aT 1 0.5

0 0.5 0





and has n zero eigenvalues and 2 non-zero ones, 0.5 ± 0.5
√

‖a‖2 + 2. The resulting

quadratic constraint is non-convex.

Proof. For each feasible x for problem (5.1.19), one can find some λ ≥ 0 such that (x, λ)
is feasible for (5.1.20). This can be seen by case distinction on the sign of h(x), g(x).
By case distinction on the sign of g(x) one can see that each feasible (x, λ) for problem
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(5.1.20), yields a feasible x for problem (5.1.19). It is easily seen that the quadratic
constraint is yTQy ≤ 0, with y := (x, z, λ). Clearly any vector (b, 0, 0) with bTa = 0 is an
eigenvector with zero eigenvalue. This means that Q has at least n− 1 zero eigenvalues.
Picking v = (x, z, λ), equating Qv = µv, gives that x = −1

2
z
µ
a, λ = 1

2
z
µ
and shows that

non zero eigenvalues µ must satisfy the equation µ2 − µ − (1
4
aTa + 1

4
) = 0. Solving this

equation yields the two non zero eigenvalues summing up to one as given in the lemma.
This implies that we have identified n+ 1 out of n+2 eigenvalues. Since Tr(Q) = 1, the
last eigenvalue has to be zero too. The non-convexity follows since one eigenvalue of Q
is negative.

5.1.1.2 Objective function

Often, in reality, each reservoir only has a single turbine. The power output of turbining
x, in cubic meters per second m3/s, is given by a function ρ(x). This function is strictly
increasing and concave, i.e., ρ′(x) ≥ 0 and ρ′′(x) ≤ 0. In our model we have split
this range into several subsections (hence several turbines), each with efficiency ρi =
ρ′(s∗i )/3600 (MWh/m3) for some s∗i in each section. We can thus remark that for any
two turbines i1 and i2 belonging to the same reservoir we have ρi1 ≥ ρi2 whenever i1 ≤ i2.
This approximation comes down to approximating ρ(x) by a piece-wise linear function.

We assume given a time dependent price signal λ(t) (in e/MWh). The following objective
function has to be minimized, when integrating the cost of used water according to
equation (5.1.11):

∑

n∈N

Kn
∑

i=1

(W n
i (z

n
0,i − znF,i)−

∑

t∈τ
λ(t)∆t(

NT
∑

i=1

ρi(t)x
i(t)−

NP
∑

i=1

1

θi(t)
yi(t)), (5.1.21)

where, θi(t) is the efficiency of pumping and the auxiliary variables zni satisfy equations
(5.1.9),(5.1.10).

5.1.1.3 Matrix formulation

In this section we show that (5.1.4) can be written as bilateral joint chance constraint.
This means that the model we are interested in is a bilateral joint chance constrained
program with linear objective function and some polyhedral constraints.
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Let us consider equation (5.1.3) and apply it recursively to establish the identity

V n(t) = V n(0) +
t
∑

u=1

∑

m∈A(n)

∑

i∈σ−1
T

[m]

xi(u−Dm)∆t−
t
∑

u=1

∑

i∈σ−1
T

[n]

xi(u)∆t

+
t
∑

u=1

∑

m∈F(n)

∑

i∈σ−1
P [m]

yi(u)∆t−
t
∑

u=1

∑

i∈σ−1
P [n]

yi(u)∆t (5.1.22)

+
t
∑

u=1

snu∆t+
t
∑

u=1

u−1
∑

j=0

ψn
j ζ

n(u− j)∆t,

holding for all t ∈ τ and n ∈ N . In what follows we will denote with Vn ∈ RT the
vector Vn = (V n(1), ..., V n(T )). It is of interest to explicitly establish the way in which
Vn depends on the vector ζn in order to identify the correlation structure of the global
underlying uncertainty vector. One easily observes that Vn depends linearly on x and y.
In order to establish the correlation structure of the vector ζ, we introduce the matrix
mapping C : RT →MT×T . HereMT×T stands for the set of T × T real matrices and C

as applied to the sequence ψ := (ψ0, ..., ψT−1) ∈ RT is defined as:

C(ψ) =











ψ0 0 0 · · · 0
ψ0 + ψ1 ψ0 0 · · · 0

...
. . .

...
∑T−1

j=0 ψj · · · · · · ψ0











.

It will be convenient to extend the definition of C to a sequence ψ shorter than T by
appending with zero entries.

Following equation (5.1.22) for each n ∈ N we can find a T × TNT matrix Mn
T and

T × TNP matrix Mn
P such that

Vn = V0 −∆tMn
T x+Mn

Py +∆tC(1)sn +∆tC(ψn)ζn, (5.1.23)

where sn is the vector formed from the deterministic trend snt of equation (5.1.2). Equa-
tions (5.1.9), (5.1.10) can be written easily in linear form by extracting the last line from
equation (5.1.23) without the term in ζn.

5.1.2 Models for dealing with uncertainty

In this section we will provide our main model, which is a joint chance constrained
programming problem (JCCP). We will also provide several alternative models.

5.1.2.1 Expectation model

In a classic version of cascaded reservoir management in short term optimization, uncer-
tainty is assumed to be absent or sufficiently characterized by a forecast. This amounts to
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the choice of replacing ζn in equation (5.1.23) or equivalently (5.1.2) by its expectation,
i.e., ζn(t) = E (ζn(t)) = 0 ∀t ∈ τ . This substitution in turn impacts equation (5.1.4).

When combining equations (5.1.9), (5.1.23) and relations (5.1.10), (5.1.5) we know that
we can find some extended decision vector (also noted x ∈ Rn) containing (x, y, z) and
some matrix A, vector b such that the system Ax ≤ b models all the deterministic
constraints (including bounds on x) found in section 5.1.1. One can moreover find a
matrix Ar and vectors ar, br such that equation (5.1.4) wherein we have substituted the
expectation of ζ for ζ is reflected by ar + Arx ≤ 0 ≤ Arx+ br.

Combined, this gives the following linear program:

minx∈Rn,x≥0 cTx

s.t. Ax ≤ b

−Arx ≤ br

Arx ≤ −ar. (5.1.24)

This model can be identified with the model considered in a classical deterministic unit-
commitment setting.

5.1.2.2 A Joint Chance Constraint Model (JCCP)

In contrast to the expectation model wherein the effect of uncertainty is neglected, incor-
porating uncertainty fully in equation (5.1.4) leads to a joint chance constrained program.
Indeed, by combining equation (5.1.23) with (5.1.4), we can see that the problem of sec-
tion 5.1.1 can be cast into the following form, where ξ ∈ Rm is a Gaussian random
vector with variance-covariance matrix Σ and zero mean (we have explicitly extracted
the non-zero average in eq.(5.1.23)):

minx∈Rn,x≥0 cTx

s.t. Ax ≤ b

p ≤ P[ar + Arx ≤ ξ ≤ br + Arx]. (5.1.25)

In fact the feasible set of (5.1.25) is convex due to the Gaussian character of ξ ∈ R
m and

a theorem by Prékopa ([181]). This makes the previous optimization problem a convex
one. For convenience we define ϕ : Rn → [0, 1] as ϕ(x) = P[ar + Arx ≤ ξ ≤ br + Arx].

5.1.2.2.1 Link with the Expectation Problem The chance constrained model
can be seen as an extension of the expectation model model since it takes into account
the available stochastic information on the distribution of randomness, whereas model
(5.1.24) only uses a single parameter. The following Lemma shows that any feasible
solution of (5.1.25) is feasible for (5.1.24). Physically this can be explained by the fact
that a ”robust” control has to work well in the average situation.

Lemma 5.1.2. Assume that p > 0.5 and that ξ ∈ R
m is a symmetric random variable,

i.e., P[ξ ∈ A] = P[ξ ∈ −A] for any measurable set A ⊆ Rm. The feasible set of (5.1.25) is
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contained in the feasible set of (5.1.24). As a consequence the optimal value of (5.1.24)
is lower than that of (5.1.25).

Proof. Assume that x ∈ R
n is not feasible for (5.1.24), for instance not ar+Arx ≤ 0, i.e.,

there is at least one strictly positive component. By rearranging we may assume that
this is the first one. Now

P[ar+Arx ≤ ξ ≤ br+Arx] ≤ P[ar+Arx ≤ ξ] ≤ P[eT1 (a
r+Arx) ≤ eT1 ξ] ≤ P[0 < ξ1] < 0.5,

where ξ1 is (also) a centered one dimensional symmetric random variable, and e1 is a
standard unit-vector of Rm. This shows that x can’t be feasible for (5.1.25).

As mentioned the expectation model is a simple linear program. It is therefore much
easier to solve than problem (5.1.25). Despite this fact and the fact that it yields solutions
with low optimal values, it will be shown later that the solutions are useless since they
violate constraints almost surely.

5.1.2.2.2 An algorithm for solving JCCP In order to solve problem (5.1.25) we
will use the supporting hyperplane method. This method was originally introduced by
[253] and adapted to the context of joint chance constrained programming by [185, 222].
This algorithm converges in a finite number of steps as shown in [185]. We repeat the
algorithm for completeness.

1. (Initialization) Let x0 be the solution of (5.1.24), xs a Slater point for (5.1.25). Set
A0 = A, b0 = b and k = 0 and pick some tolerance tol, e.g., tol = 10−2. Let ε > 0
be a tolerance on the evaluation of ϕ.

2. (Interpolation) Find λ∗ such that x∗k = (1− λ∗)xk + λ∗xs and p− ε ≤ ϕ(x∗k) ≤ p.

3. (Add Cut) Add constraint −∇ϕ(x∗k)Tx ≤ −∇ϕ(x∗k)Tx∗k to the matrix system Akx ≤
bk.

4. (Solve LP) Solve

minx∈Rn,x≥0 cTx

s.t. Akx ≤ bk

to find xk+1.

5. (Stopping Test) If
cT(x∗

k−xk+1)

cTxk+1
< tol then stop, x∗k is sufficiently optimal, else set

k = k + 1 and go to step 2.

For the previous algorithm to function we require a Slater point, i.e., some xs such that
Axs ≤ b, and ϕ(xs) > p. It can be obtained by solving the ”max-p” problem (see section
5.1.2.3). Moreover, we should be able to efficiently evaluate ϕ and ∇ϕ. As shown in
Lemma 3.2.1 and Corollary 3.2.3, evaluating the gradient can be analytically reduced to
computing function values in smaller dimension. Finally computing function values such
as ϕ(x) can be done by using the code of Genz ([83]). Evaluating ϕ and ∇ϕ requires
2n+ 1 calls to Genz’ code.
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5.1.2.3 Max-P Problem

We define the ”max-p” problem as the following optimization problem:

maxx∈Rn,x≥0 ϕ(x) := P[ar + Arx ≤ ξ ≤ br + Arx]

Ax ≤ b. (5.1.26)

Clearly any solution xs of the previous problem with objective function value strictly
bigger than p is a Slater point for problem (5.1.25). This ”max-p” problem is not only
an auxiliary problem for obtaining Slater points, but can also be interpreted as the
problem of a decision-maker looking for maximum robustness, regardless of the costs.
As a matter of fact if the optimal solution of (5.1.26) is strictly below one, then almost
surely satisfying the ”random” physical constraints (5.1.4) is not possible. The ”max-p”
problem therefore also provides us with information on the maximum robustness level p
that is ”possible”.

5.1.2.4 Individual Chance Constraint Model (ICCP)

We consider a simplification of the joint chance constrained model (5.1.25) by transform-
ing each stochastic inequality into individual chance constraints of type P[d1 + 〈a1, x〉 ≤
χ] ≥ p and P[χ ≤ 〈a2, x〉+ d2] ≥ p for well chosen vectors a1, a2 ∈ Rn, scalars d1, d2 and
a standard Gaussian random variable χ ∈ R. An exact formulation is:

minx∈Rn,x≥0 cTx

s.t. Ax ≤ b

P[eTi (a
r + Arx) ≤ ξi] ≥ p ∀i = 1, ...,m

P[ξi ≤ eTi (b
r + Arx)] ≥ p ∀i = 1, ...,m, (5.1.27)

where ei ∈ R
m is the i-th standard unit vector.

As a matter of fact, model (5.1.27) can be reduced to a simple linear program since the
inverse of Fξi(z) = P[ξi ≤ z] can be evaluated easily. It also offers improved robustness
with respect to the expectation model (5.1.24) that offered none. However it can’t guar-
antee a probability level of p for the whole stochastic inequality system and therefore
offers far less robustness than the joint model (5.1.25) ([244]). This will become apparent
in the numerical experience.

5.1.2.5 A Robust Model

We would like to identify an uncertainty set Ep ⊆ R
m for our random inflow process

ξ ∈ Rm in such a way that the probability of ξ falling in this set is approximately p. We
will then enforce the constraints of problem (5.1.25) to hold for all ξ in this set rather
than in probability. We will use a specific ellipsoidal form for the uncertainty set and
show that the thus obtained robust optimization problem then boils down to a linear
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program, once two conic quadratic problems have been solved (see [141] and references
therein).

In order to determine Ep, let LLT = Σ be the Cholesky decomposition of Σ. Let y ∈ R
m

be defined as y = L−1ξ and assume that we dispose of a statistical estimate of E
(

y4

i

)

(in the Gaussian case these are known exactly) for i = 1, ...,m. Whenever the law of ξ is
unknown, we can use the variance covariance matrix Σ obtained from statistic estimates.
By construction, y is uncorrelated, we will make the (wrong) approximation that this is
the same as independence. Now by the Lindeberg-Feller Central Limit Theorem ([189])
we obtain that yTy is approximately normally distributed with mean m and standard

deviation σC , i.e., y
Ty ≈ N (m,σC), with σC =

√

∑m
i=1 E

(

y4

i

)

−m.

We now define Ep =
{

z ∈ R
m : zTΣ−1z ≤ m+ Φ−1(p)σC

}

. It follows in the case that ξ
follows a multivariate Gaussian law that P[ξ ∈ Ep] = p. This will be true approximately
when ξ follows another multivariate law. This is a very elementary way of deriving an
uncertainty set. We refer to [8, 12] for more sophisticated approaches.

We therefore consider the following robust version of problem (5.1.25):

minx∈Rn,x≥0 cTx

s.t. Ax ≤ b

ar + Arx ≤ inf Ep
br + Arx ≥ sup Ep, (5.1.28)

where inf Ep ∈ Rm denotes the vector whose components are the coordinate-wise minima
of Ep (sup Ep ∈ Rm is defined similarly). Both inf Ep and sup Ep are solutions of a conic
quadratic optimization problem. Indeed model (5.1.28) is equivalent with

minx∈Rn,x≥0 cTx

s.t. Ax ≤ b

ar + Arx ≤ ξ ≤ br + Arx ∀ξ ∈ Ep.

Since model (5.1.28) basically looks at the smallest rectangle containing Ep and requires
satisfaction of constraints for all elements in the rectangle, one could also look at alterna-
tive ways to obtain such a rectangle. Basically, we are looking for some ξ and ξ such that

P[ξ ≤ ξ ≤ ξ] ≈ p. These would then give better bounds than inf Ep and sup Ep as above,
since in general P[inf Ep ≤ ξ ≤ sup Ep] > p. In the Gaussian case considered here we
can exactly evaluate the probabilistic contents of such rectangles and hence fine-tune the
rectangle. Clearly any feasible solution of problem (5.1.25) will also provide such vectors.
This last way of obtaining those vectors offers no computational advantage to (5.1.28)
other than prematurely ending the algorithm that solves (5.1.25). An alternative would
be to take some q < p, such that P[inf Eq ≤ ξ ≤ sup Eq] ≈ p. This is computationally
not intensive, but requires evaluations of probabilistic contents. In order to investigate
the impact of the choice of this rectangle we have made some runs with model (5.1.28)
wherein the rectangle was made to fit perfectly. In practice, we have obtained ξ and ξ
by taking some ad-hoc convex combinations between the Slater point and the solution
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of (5.1.24). These results will be referred to as Robust-Calibrated (Robust-Calib) or
(5.1.28)-Calib.

5.1.3 Numerical Example

In this section we consider a numerical example from the industry. The instance size is
moderate but realistic. The nominal inflows, i.e., snt in equation (5.1.2), are considered
constant through time. Finally, the water values are not assumed to depend on the
volume, and thereby correspond to the V0 level. It was shown in section 5.1.1.1.5 that
adding the volume dependency induces no substantial difficulties. The focus of this
numerical example is the impact of uncertainty. We will consider 24 time steps of 2
hours each. Figures 4.1(c) and 4.1(a) show further data of our example. This implies
the following dimensions for our problem: the Gaussian vector dimension m is 48, the
decision vector has 700 elements and the polyhedral constraints are defined by about
1000 linear inequalities.

The system topology, that is the relation between the six power reservoirs in the valley,
is expressed by the reservoir connection matrix

A =

















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

















.

Likewise, the vector σT = (1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6) associates each one of the
16 turbines in the valley to a specific reservoir.

As uncertainty is concerned we will assume that reservoirs 1 (”Vouglans”) and 2 (”Saut
Mortier”) have random inflows. The standard deviations of the innovations ζ of the
inflow process An in equation (5.1.2) are taken to be equal to 20% of the nominal inflow
values (0.3 m3/s for reservoir 2). We will consider two instances, one wherein inflows on
both reservoirs follow an AR(1) process with coefficient 0.9. A second instance is one
wherein we assume that inflows on reservoir 2 follow an AR(3) process with coefficients
(0.9, 0.7,−0.7). In this instance inflows on reservoir 1 still follow an AR(1) process. The
required probability level p in (5.1.25) is taken to be 0.8.

To express the hydro valley relations in the presence of uncertainty, we need to write down
the variance-covariance matrix of the stochastic process. This needs the introduction of
some notation. Specifically, we let ψ be a 2 × 24 matrix such that ψ1,j = 0.9j and
ψ2,j = 0.9ψ2,j−1 + 0.7ψ2,j−2 − 0.7ψ2,j−3, j = 1, . . . , 24, where in the last formula any
negative indexed terms are assumed 0. We also define the elementary covariance matrix
Σa:

Σa =

(

4.24 0
0 0.3

)(

1 0.5
0.5 1

)(

4.24 0
0 0.3

)
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and let Σζ be the block diagonal matrix containing 24 copies of Σa. The expression for
matrix Σ can be obtained by using matrix C(ψ) as defined above. As a result, if R is the
48× 48 matrix with Ri,mod(i−1,24)2+1+⌊ i−1

24 ⌋ = 1, it follows that

Σ = (7200)2(R−1
C(ψ)R)Σζ(R

−1
C(ψ)R)T, (5.1.29)

is the variance-covariance matrix of the global random inflow vector, that we shall shorten
to ξ. The vector ξ is a Gaussian multi-variate random variable in dimension 48.

Solving the problems introduced in Section 5.1.2, we obtain the results as given in Table
5.1, Figures 5.1 and 5.2. We have set a tolerance of 10−2 for the supporting hyperplane
algorithm for joint chance constrained programming. It should be stated that the true
optimal solution of problem (5.1.25) for instance 2 gives a cost, only 0.6% away from the
deterministic cost. Indeed the price of chance-constrained robustness is cheap here.

Table 5.1 shows optimal costs and number of violations. In order to compute the latter
information, we have made an a posteriori check of empirical probabilities by generating
100 scenarios and counting the number of violations. The volume trajectories resulting
from these scenarios are shown in Figure 5.1. Clearly we observe the advantage of using
joint chance constrained programming. The additional cost with respect to the determin-
istic solution is only small, but robustness can be fine tuned. A full robust solution turns
out quite costly. Finally individual chance constrained programming can not be used to
mimic joint chance constraints as we have no control over the number of violations over
a period of time.

Table 5.1: Comparison of costs and number of violations

Det JCCP ICCP Robust (Ep) Robust (Calib) MaxP
Inst. Item (5.1.24) (5.1.25) (5.1.27) (5.1.28)-1 (5.1.28)-Calib (5.1.26)
1 nbViol 100 20 29 0 1 0
1 Cost (e) −1.0478e5 −1.0395e5 −1.0443e5 −1.0355e5 −1.0099e5 −9.9176e4
2 nbViol 100 20 35 4 21 2
2 Cost (e) −1.0478e5 −1.0340e5 −1.0422e5 −1.0282e5 −1.0251e5 −9.9176e4

The results of Table 5.1 are readily confirmed by examining the instance of figure 4.1(b)
(see also section 4.2.4). We then get:

Table 5.2: Comparison of costs and number of violations

Det ICCP JCCP Robust (Calib)
Inst. Item (5.1.24) (5.1.27) (5.1.25) (5.1.28)-Calib
Isr48 nbViol 73 34 16 0
Isr48 Cost (e) -1.7594e5 -1.7529e5 -1.7504e5 -1.7170e5
Isr96 nbViol 91 55 16 2
Isr96 Cost (e) -1.7751e5 -1.7649e5 -1.7564e5 -1.5589e5

When comparing the turbined volumes in Figure 5.2, one can observe that they are
quite similar for most solutions (except for max-p which does not see the cost vector
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and is hence only incited to turbine if this allows us to improve robustness) and most
reservoirs, except for ”Saut Mortier”. This reservoir has tight volume bounds and is most
heavily impacted by the stochastic inflows. The solution (5.1.25) turbines a bit less in
the beginning to avoid violations in time steps 8-10, a bit more during time steps 12-15
to avoid violations there and stops earlier to avoid violations for the last time steps.
Solution (5.1.27) offers an intermediate solution. The solution (5.1.28) heavily increases
turbining during steps 10-15 and drastically reduces during steps 15-20 for additional
robustness. Indeed, even though the uncertainty Ep is very well calibrated, the solution
is over-robust. Unfortunately for larger values of p (in fact p > 0.85) this will lead to
an empty feasible set of problem (5.1.28), whereas solutions of (5.1.25) can be found.
It also shows the difficulty of getting the robust rectangle well calibrated for problem
(5.1.28)-Calib. Indeed, even though the rectangle is calibrated to give exactly the same
probabilistic contents in both instances, one gives over-robust results (3.6% away from
deterministic solution), whereas the other gives more reasonable results as the number of
violations is concerned, but still at a large cost (2.2 % away from deterministic solution).
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Figure 5.1: Trajectories of filling levels in reservoir ”Saut Mortier” and instance 2 for 100
simulated inflow scenarios. From top left to bottom right, solutions of problems (5.1.24),
(5.1.25), (5.1.27), (5.1.28), (5.1.28)-Calib and (5.1.26)

164



0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

 

 

turbine Res.1
turbine Res.2
turbine Res.3
turbine Res.4
turbine Res.5
turbine Res.6

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

 

 

turbine Res.1
turbine Res.2
turbine Res.3
turbine Res.4
turbine Res.5
turbine Res.6

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

 

 

turbine Res.1
turbine Res.2
turbine Res.3
turbine Res.4
turbine Res.5
turbine Res.6

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

 

 

turbine Res.1
turbine Res.2
turbine Res.3
turbine Res.4
turbine Res.5
turbine Res.6

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

 

 

turbine Res.1
turbine Res.2
turbine Res.3
turbine Res.4
turbine Res.5
turbine Res.6

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

 

 

turbine Res.1
turbine Res.2
turbine Res.3
turbine Res.4
turbine Res.5
turbine Res.6

Figure 5.2: Turbined volumes (m3) for instance 2. From top left to bottom right, solutions
of problems (5.1.24), (5.1.25), (5.1.27), (5.1.28), (5.1.28)-Calib. and (5.1.26)

5.2 Robust Unit-Commitment

We begin by recalling that deterministic unit-commitment problems are often decom-
posed using Lagrangian techniques. Since many unit-commitment problems involve non-
convex modelling features, such a Lagrangian decomposition scheme often leads to a
non-feasible primary solution. This obtained schedule then needs to be fixed. This
can be done by applying heuristics derived from Augmented Lagrangian ([11, 257]) for-
mulations or other techniques (see [210] for some suggestions or [61, 78]). We wish to
investigate the effects of using chance constraints for robustifying the production sched-
ule in a unit-commitment framework. As a first step we wish to avoid the complex issues
raised by using heuristics as explained above. As a numerical example, we will therefore
consider a variant of Unit-Commitment wherein thermal units have a simple (convex)
representation. The investigated approaches can clearly be applied unchanged to non-
convex Unit-Commitment problems, but the above discussed heuristics might be needed.
This will be the object of future work.

Two difficult sub-problems are those related to the thermal generation units ([77]) and
the hydraulic valleys (see Section 5.1 above or (for instance) [61] and references therein).
Complex dynamic constraints on watershed controls introduce combinatorial aspects in
the hydro sub-problem making it even more challenging to solve ([60]).

Ideally, a Robust unit-commitment problem considers at least the following sources of
uncertainty:

1. uncertainty on inflows for the hydro reservoirs
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2. uncertainty on customer load

3. uncertainty on renewable generation

4. uncertainty on unit availability.

In this section we will consider the first two sources of uncertainty. It can be argued
that the third source can be appended to uncertainty of load. It might however be of
more interest to consider both sources separately as information on their individual laws
might be more readily available than on their aggregated law. Since the deterministic
unit-commitment models are already large-scale, their robust counterparts are clearly at
least as difficult to solve.

Obtaining a globally robust production schedule means that one has to incorporate un-
certainty on load as well. In the literature ”stochastic unit-commitment” models are far
less common than their deterministic counterparts. Most approaches considered so far
use scenario trees in one way or another (e.g. [171, 226, 225, 164, 260]). Uncertainty in
each node of the scenario tree is considered known when the decision is taken. When
the trunk of the tree covers a whole day (as in [225]) the obtained schedule has seen
future uncertainty (past the first day) and can be applied (i.e., sent to the grid operator).
Yet uncertainty during the first day is neglected. When the trunk covers less time, it is
unclear what schedule has to be sent to the grid-operator ([164]). Recently robust opti-
mization has been applied to stochastic Unit-Commitment ([262, 18]). But the suggested
model decouples commitment decisions (starting / stopping status of each unit) from dis-
patch decisions (power output). The latter decisions are then taken when uncertainty is
fully known. Though very interesting, it is unclear still what schedule (including power
output) has to be sent to the grid operator. Moreover, in practice, commitment decisions
can be adapted (at least to some extent) in a 2nd stage.

Here we make the assumption that both commitment and dispatch decisions have to be
taken prior to observing uncertainty. Though it is true that recourse stages exist that
allow us to make changes to the previously committed schedule, we do not consider that
option in the current model. It is left for future work. We suggest a model that uses
a joint-chance constraint to model the deviation between production and load and re-
quest that such a deviation remains between bounds with a specific probability. In this
way the production schedule becomes robust against uncertainty. Since this chance con-
straint renders the offer-demand equilibrium constraints highly non-linear (even implicit)
it prevents straightforward application of classic decomposition schedules to tackle the
large-scale structure. Decomposition schemes are clearly a prerequisite if Robust Unit-
commitment is ever to be used in practice. Therefore, we will examine to what extent
efficient decomposition schemes can be derived in order to solve the proposed Robust
Unit-Commitment problem. We emphasize that our approach differs from the individ-
ual chance constrained approaches considered in [56, 167]. Indeed the individual chance
constraints on the offer-demand equilibrium with uncertainty on load have an equivalent
linear formulation with an additional safety term.

This section is organized as follows: In section 5.2.1 we introduce the specific structure of
robust unit-commitment problems. We then propose several decomposition schedules in
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section 5.2.2. Some theoretical insights on obtaining slater points for bilateral joint chance
constraints, useful for a numerical solution of joint chance constrained programming, are
given in section 5.2.3. Section 5.2.4 contains the description of the model consistent
with the highlighted structure. The numeric results obtained when applying the various
decomposition schedules and a discussion thereof are provided in section 5.2.6.

5.2.1 Problem Structure

In this section we describe the specific block structure of unit-commitment problems with
joint chance constraints. Section 5.2.1.1 contains a short description of our application
showing how this structure arises in practice. Section 5.2.1.2 provides a global view of
the problem structure.

5.2.1.1 Hydro-Thermal Unit-Commitment Problems

In Hydro-Thermal systems, each production unit generates power to meet some overall
equilibrium between customer load and generated power. It is very natural to assume that
units generate power without influencing any other units, at least for thermal production
units. Clearly hydraulic turbines and pumps influence each other through a network
structure and flow constraints. Hydraulic ”units” are therefore typically entire hydro
valleys for which it becomes reasonable to assume that they can be operated indepen-
dently. Key constraints are bilateral bounds on volume in each reservoir, flow constraints
and potentially complex technical constraints on turbining/pumping operation. Cost,
i.e., the value of water is typically computed by a mid-term planning (optimization) tool,
often based on dynamic programming. Since inflows are uncertain and decisions taken
before observing uncertainty, one has to come up with a reasonable way to model the
above bilateral volume constraints. One way of doing so, is to use chance constrained
programming (see Section 5.1). When considering that a Hydro-Valley acts on a price
signal, this would imply the following problem structure:

minx∈Rk cTx

s.t. P[Arx+ ar ≤ ξ ≤ Arx+ br] ≥ p (5.2.1)

Ax ≤ b,

where k is the problem dimension, i.e., the dimension of the decision vector as the hy-
draulic valley is concerned. Moreover, lr specifies the number of lines of matrix Ar in the
joint probabilistic constraint with safety level p and ld specifies the number of lines of
the matrix A. In the specific case of a hydraulic valley, lr would typically be the number
of reservoirs receiving random inflows times the number of time steps. The size of the
parameter ld would also be linked to various auxiliary variables and related constraints.
In applications one has ld > lr. The vectors a

r, br, b, c are of appropriate dimension. The
vector ξ ∈ Rlr follows some appropriate multi-variate law. In the case of a Hydro-Valley,
the cost vector c would reflect costs of using water as computed with loss of opportunity
costs and gain as induced by a price signal. The latter price signal might be one coming
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from a decomposition schedule. The polyhedral constraints Ax ≤ b would contain bounds
on turbining, pumping and bilateral bounds on the volume in reservoirs not impacted
by uncertain inflows. The joint chance constraint would deal with bilateral bounds on
volume for reservoirs impacted by uncertain inflows. As such the matrix vector product
Arx represents the way in which the volume in each reservoir and for each time step is
impacted by the previous turbining/pumping decisions. Roughly speaking ar would be
the minimal volume bound for each reservoir and time step minus the initial volume and
to which we also integrate any deterministically cumulated inflows. The vector br is de-
fined similarly but with respect to a maximal volume bound. It is important to note that
the joint chance constraint is implicit and highly non-linear. Many assumptions (e.g. ξ
Gaussian) can be made under which the feasible set induced by the chance constraint is
convex and an appropriate transform of the joint chance constraint a concave function.
Then problem (5.2.1) can be either solved by the supporting hyperplane method (see
Section 5.2.3) or the bundle methods of Sections 4.1 and 4.2. Again, the main difficulty
lies in computing gradients of the joint chance constraint.

As far as the thermal units are concerned, they are subject to complex technical con-
straints on power variations, starts, ramping rates, minimum up/down times etc... (see
[77, 134] for instance). Typical constraints imply that adjacent power levels are suf-
ficiently close (ramping constraints), the unit remains online or offline for a specific
amount of time (minimum up/down times), the number of starts is limited, starting
costs depend on plant status etc... Most of these constraints imply non-convexities and
typical modelling involves binary variables. Therefore, when considering that a thermal
unit acts on a price signal, in full generality this would imply a problem structure of the
following form:

minx∈Rk,z∈Zr f(x, z)

s.t. Ax+Bz ≤ b, (5.2.2)

where k + r is the dimension of the decision vector for the thermal unit. The objective
function f is typically a separable linear or quadratic function and the polyhedral in-
equality system Ax+Bz ≤ b modelling the constraints, contains vectors and matrices of
appropriate dimension.

In fact the only constraints that couple the units together are the equilibrium constraints.
In a deterministic setting, these simply state that deviation between production and
customer load has to remain small. These constraints then have the typical form

sd ≤ D − Alx ≤ su, (5.2.3)

where sl, su ∈ RT are operator chosen bounds, T is the number of time steps in the
considered time horizon, D customer load and Al the T × n matrix summing up the
production of each of them units aggregated in the decision vector x = (x1, ..., xm). When
D is considered to be uncertain and x decided upon before observing D, an appropriate
model for (5.2.3) results from requiring the decision vector x to satisfy

P[sd ≤ D − Alx ≤ su] ≥ p. (5.2.4)
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A very similar structure is investigated in [202], where stability theory for probabilistically
constrained problems is developed. In particular, the authors explicitly consider stability
results for probabilistically constrained power dispatch models, showing that the models
are stable for several underlying distributions of the load, such as discrete or multi-variate
Gaussian. However, no computational results are presented.

Putting these elements together, one ends up with a typical block structure:

minx:=(x1,...,xm)∈Rn

m
∑

i=1

fi(xi),

s.t. xi ∈ Xi ⊆ R
ni , i = 1, ...,m (5.2.5)

sd ≤ D − Alx ≤ su,

where
∑m

i=1 ni = n and the set Xi integrates the constraints of problems (5.2.2) or (5.2.1)
depending on whether i ∈ {1, ...,m} refers to a hydro valley or thermal unit. Finally
the mappings fi : R

ni → R associate a cost to each decision vector xi ∈ Rni for each
i = 1, ...,m.

Large-scale (or difficult) instances of problem (5.2.5) arise typically when either the num-
ber of units m is very large or the constraint sets Xi are complex for some i ∈ {1, ...,m}.
In practice the instances coming from French Unit-commitment problems have both these
features and therefore require decomposition methods in order to be solved.

5.2.1.2 A bird’s view of the structure

Following the discussion in section 5.2.1.1, unit-commitment problems in Energy manage-
ment have the following typical abstract structure (see also [61] and references therein):

minx∈Rn f(x)

s.t. x ∈ X1 ∩X2 (5.2.6)

x ∈ B := {y : x ≤ x ≤ x} ,
where n is the size of the decision making vector, X1 is the set modelling all constraints
on the individual m units and X2 the offer-demand equilibrium constraints. This first
set is typically structured as a cartesian product of smaller sets. This means that X1 =
∏m

i=1X
1
i , with X

1
i ⊆ R

ni,
∑m

i=1 ni = n. Moreover, the objective function f also allows
for a decomposition along the sets X1

i , i.e., f(x) =
∑m

i=1 fi(xi) and xi ∈ X1
i for all

i = 1, ...,m. Each of the sets X i
1, i = 1, ...,m roughly contains the feasible production

schedules for each unit. In practice a ”unit” would be anything ranging from a thermal
generation unit, a hydro valley to a specific financial contract.

In many classical applications the setX2 is a polyhedral set and the setsX i
1 are defined by

many constraints, possibly involving non-linear, non-convex or combinatorial constraints
and/or variables.

We will consider uncertainty on both inflows and customer load. This impacts problem
(5.2.6) in two ways. Firstly, some of the sets X i

1 will be defined by additional joint bi-
lateral chance constraints. Secondly, the set X2, modelling the offer-demand equilibrium
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constraints will no longer be polyhedral (as in (5.2.3)), but defined by a joint bilateral
chance constraint itself (as in (5.2.4)). As such, classical decomposition schedules based
on Lagrangian decomposition ([138]) can no longer be applied in a straightforward man-
ner. The second difficulty is that even though it has been shown ([246]) that the robust
hydro valley sub-problems (those with the joint bilateral chance constraint due to uncer-
tainty on inflows) are solvable, the computational effort required to handle them is still
substantial. Any algorithm requiring that computational effort at each iteration/step is
incompatible with any operational requirement.

According to the model (5.2.4) it turns out that the problem structure of the problem

minx∈Rn f(x)

s.t x ∈ X2, x ∈ B (5.2.7)

is of the same nature as problem (5.2.1), when f is linear. Indeed the chance constraint
(5.2.4) is of the same nature of the chance constraint appearing in problem (5.2.1).
Data clearly depends on the specific sub-problem. The convexity of the feasible set of
Problem (5.2.1) is of-course important for an efficient solution. In particular whenever
the vector ξ ∈ Rlr follows a (centered) multi-variate Gaussian law with covariance matrix
Σ, convexity can be ensured. Such an assumption is fairly realistic for load as shown
in [24]. Indeed, it follows from a classic result by Prékopa (Theorem 4.2.4 [181]) that
the feasible set induced by the Probabilistic Constraint is convex in that case. In such a
setting, similar algorithms as those found in [246] can therefore be used in order to solve
problems (5.2.1).

We will investigate decomposition methods in order to solve (5.2.6) efficiently in section
5.2.2.

5.2.2 Decomposition Methods

We will investigate decomposition methods based on moving the problem structure of
problem (5.2.6) artificially into a full cartesian product structure. This can be done by
adding additional variables y ∈ Rñ in an appropriate dimension (this technique is called
”variable duplication” in [210] and dates back at least to [218]) playing the same role as
x ∈ Rn. An additional constraint is added to enforce their equality. We will speak of
”lift”, because the problem dimension is increased. Many different lift and decomposition
schedules can be set up. They depend on the choice of the dimension ñ and the way
in which we enforce equality with the original problem variables. In this section we will
specify several such schedules and investigate their efficiency on a numerical example in
section 5.2.6.
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5.2.2.1 Lift and Dualize

Applying the previously described ”duplication” technique directly, yields the following
problem formulation for any α ∈ [0, 1]:

minx∈Rn,y∈Rn αf(x) + (1− α)f(y)
s.t. x ∈ X1 (5.2.8)

y ∈ X2

x = y

x ∈ B, y ∈ B.

It is easily seen that problem (5.2.8) is equivalent with problem (5.2.6) for all α ∈ [0, 1].
Moreover problem (5.2.8) will admit a Slater point if and only if (5.2.6) admits such
points. It does not however exploit any knowledge of the specific nature of the X2 set.
This can be done as explained in section 5.2.2.1.1. The result of which is a lift in smaller
dimension, most likely allowing for a more efficient solution.

In order to solve this new problem formulation, we will consider the Lagrangian dual
of (5.2.8) where the constraint x = y is relaxed (Duplicating variables + Lagrangian
Decomposition is referred to as Lagrangean Decomposition in [93] and references therein).
This implies that for each fixed µ ∈ Rn, the following primal problem has to be solved:

minx∈Rn,y∈Rn αf(x) + (1− α)f(y) + 〈µ, x− y〉
s.t. x ∈ X1 (5.2.9)

y ∈ X2

x ∈ B, y ∈ B.

This primal problem can be naturally decomposed into sub-problems by unit and an
additional load-equilibrium sub-problem. Let x(µ), y(µ) denote an arbitrary optimal
solution. By construction x(µ) is feasible for all operational constraints and y(µ) for the
offer-demand equilibrium constraint.

The dual function Θ : Rn → R defined as

Θ(µ) := αf(x(µ)) + (1− α)f(y(µ)) + 〈µ, x(µ)− y(µ)〉 , (5.2.10)

is a concave typically non-differentiable function. We can use a Bundle Method ([114, 20])
in order to maximize (5.2.10), i.e., optimize the problem dual to (5.2.9). It is known that
the solution (x(µ∗), y(µ∗)) at the optimal dual signal µ∗ is not necessarily an optimal
solution for the primal problem (5.2.9). However, it has been shown that one can take
an optimal convex combination of oracle responses (along the iterations) and that this is
the optimal solution of the bi-dual problem (see [135, 23]). The convex multipliers are
dual variables belonging to the cuts in the last quadratic program solved by the Bundle
Method. If problem (5.2.6) is convex, then this approach allows us to obtain the optimal
primal solution.
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In the specific situation wherein X1 is a closed convex set, constraint (5.2.4) is dealt with
in the form log(p)−log(P[sd ≤ D−Alx ≤ su]) ≤ 0 , D follows a non-degenerate multivari-
ate Gaussian distribution, and either f is linear or α = 1, it follows from [137, Theorem
4.4] that maximizing (5.2.10) might increase the duality gap with respect to a direct du-
alization of the probabilistic constraint under the above form. Since, unit-commitment
problems generally have a non-convex set X1, neither Theorem 4.4 or Theorem 4.5 of
[137] can be used and the duality gap may either increase or decrease. Since constraint
(5.2.4) is highly non-linear, this might be the price to pay in order to decompose the
Lagrangian dual over the m units.

5.2.2.1.1 Dimension Reduction One difficulty in the formulation of problem (5.2.8),
and its dual ”maximize (5.2.10)” is the dimension of the dual signal µ. Indeed, it is of
the global problem dimension n, which might be (very) large. This may in particular
imply some difficulties for convergence of non-smooth optimization tools such as Bun-
dle methods in order to maximize (5.2.10). In our setting we know more about the
structure of the X2 set, since X2 := {x ∈ R

n : s.t (5.2.4) holds }. Let T be the size
of the random vector D, i.e., D ∈ R

T . Now it is clear that x ∈ X2 if and only if
z ∈ X̃2 :=

{

z ∈ RT : P[sd ≤ D − z ≤ su] ≥ p
}

and Alx = z. This alternative descrip-

tion of the set X2, called X̃2 is a subset of RT . Typically T is much smaller than n.

This therefore leads to the following alternative, wherein the problem dimension is equal
to the number of lines in the probabilistic offer-demand equilibrium constraint, i.e., T .
That formulation is:

minx∈Rn,z∈RT f(x)

s.t. x ∈ X1 (5.2.11)

z ∈ X̃2

Alx = z

x ∈ B, z ≥ 0, z ≤ z,

where z is a natural maximum limit on installed capacity of generation and the matrix
Al as defined in equations (5.2.3) and (5.2.4).

The constraint Alx = z is relaxed and the following dual function considered Θ2 : R
T →

R:
Θ2(µ) := f(x(µ)) +

〈

µ,Alx(µ)− z(µ)
〉

. (5.2.12)

The corresponding dual problem to (5.2.11) is that of maximizing (5.2.12).

5.2.2.2 Lift and Dualize - Augmented Lagrangian

A classic idea to overcome the fact that the primal solution of (5.2.8) at the optimal
dual signal µ∗ in (5.2.10) is not optimal, is the use of Augmented Lagrangians. A further
reason for considering such approaches is the fact that in [9] it is reported that they
deal better with a non-convex unit-commitment problem. Non-convexity typically comes
from complex constraints on thermal generation.
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Considering an Augmented Lagrangian, the primal problem formulation becomes:

minx∈Rn,y∈Rn αf(x) + (1− α)f(y) + 〈µ, x− y〉+ c

2
‖x− y‖2

s.t. x ∈ X1 (5.2.13)

y ∈ X2

x ∈ B, y ∈ B,

for some appropriate constant c > 0. The dual problem would consist of maximizing
(5.2.13) over µ ∈ Rn.

Unfortunately this problem no longer naturally decomposes directly into sub-problems.
One can however apply the auxiliary problem principle ([38, 37]) to obtain an effec-
tive decomposition scheme, whenever the problem satisfies appropriate hypotheses. Let
(xk, yk) ∈ X1 ×X2 be a solution generated by an iterative process trying to solve Prob-
lem (5.2.13). In order to decompose problem (5.2.13) according to the auxiliary prob-
lem principle, let us define the kernel Kk : Rn × Rn → R+ as follows Kk(x, y) :=
ĉ
2
‖x− xk‖2+ ĉ

2
‖y − yk‖2, for some constant ĉ > 0. Pick a further set of constants εk > 0

and let these constants satisfy ĉ > 2εkc, then this principle shows that solving

minx∈Rn,y∈Rn εk(αf(x) + (1− α)f(y) + 〈µ, x− y〉) + ĉ

2
‖x− xk‖2 +

+
ĉ

2
‖y − yk‖2 + cεk 〈xk − yk, x− y〉

s.t. x ∈ X1 (5.2.14)

y ∈ X2

x ∈ B, y ∈ B,

to obtain (xk+1, yk+1) will yield a sequence converging to the optimal solution. Moreover
the function values will decrease in each iteration. The advantage is that problem (5.2.14)
can be decomposed naturally. Moreover µ can be updated by using Uzawa’s method,
i.e.,

µk+1 = µk + ρ(xk − yk), (5.2.15)

with an appropriate step size ρ ∈ (0, 2c). No stopping criteria is exhibited in ([38, 37]) or
later documents. We will however choose the stopping criteria ‖xk − yk‖ < tol, for some
user defined tolerance tol.

5.2.2.2.1 Subproblem Structure When applying the augmented Langrangian idea,
the sub-problem structure is no longer that of (5.2.1), but

minx∈Rk cTx+
1

2
xTQx

s.t. P[Arx+ ar ≤ η ≤ Arx+ br] ≥ p (5.2.16)

Ax ≤ b,
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where Q is a k × k semi-definite matrix (typically even diagonal) and other data is
unaltered with respect to problem (5.2.1). In a very similar way as above we also have
to add a quadratic term to the objective function of sub-problem (5.2.2).

These sub-problems can be solved by adapting the supporting hyper-planes methods
([181]) idea in a straightforward manner. A similar change can be operated as the Bun-
dle Methods (of Sections 4.1 and 4.2) for solving (5.2.1) are concerned. It however
requires solving convex-quadratic programs at each iteration instead of linear programs.
Bundle methods already solve such quadratic programs at each iteration, so the overall
computational difficulty is not increased.

5.2.2.2.2 Dimension Reduction In problem (5.2.13), the dual signal µ is again of
dimension n, i.e., the global problem dimension. It can be reduced in a very similar way
as explained in section 5.2.2.1.1. As such, the Reduced Augmented Lagrangian Problem
that we would like to solve becomes:

minx∈Rn,z∈RT f(x) +
〈

µ,Alx− z
〉

+
c

2

∥

∥Alx− z
∥

∥

2

s.t. x ∈ X1 (5.2.17)

z ∈ X̃2

x ∈ B, z ≥ 0, z ≤ z,

for an appropriate constant c > 0. The dual problem would consist of maximizing (5.2.17)
over µ ∈ RT .

Let (xk, zk) ∈ X1× X̃2 be the current iterate. By picking the Kernel Kk : Rn×RT → R+

defined as follows Kk(x, z) := ĉ
2
‖x− xk‖2+ ĉ

2
‖z − zk‖2, for ĉ > 0, the auxiliary problem

principle requires solving the following problem:

minx∈Rn,z∈RT εkf(x) +
〈

µ,Alx− z
〉

+
ĉ

2
‖x− xk‖2

+
ĉ

2
‖z − zk‖2 + cεk

〈

(Al)TAlxk − (Al)Tzk, x
〉

+cεk
〈

zk − Alxk, z
〉

)

s.t. x ∈ X1 (5.2.18)

z ∈ X̃2

x ∈ B, z ≥ 0, z ≤ z,

where εk > 0 is a set of constants. When the parameters satisfy the inequality ĉ >
2max {‖A‖ , 1} εkc, solving (5.2.18) yields a sequence (xk+1, zk+1) converging to the op-
timal solution of (5.2.17). The dual signal µ ∈ R

T can again be updated by applying
Uzawa’s updating schedule and requires ρ ∈ (0, 2c) as before. Alternatively one can up-
date it by considering (xk+1, zk+1) as an inexact solution of problem (5.2.17) and using a
Bundle Method with inexact oracle (see [44] and reference therein) to update µ.
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5.2.2.3 Diagonal Quadratic Approximation

As suggested in [210] we will also investigate the Diagonal Quadratic Approximation
(DQA) technique ([208]). It is called a Block Coordinate Descent Method (or non-linear
Gauss-Seidel method in [11]). The authors of [11] find it to be far more efficient than
the auxiliary problem principle. It’s main idea is to solve problems (5.2.13) or (5.2.17)
by alternating steps between optimizing over x or y (z), while keeping the other fixed
to its current value. In [210] it is suggested to interpret the obtained solution as an
inexact solution to (5.2.13) or (5.2.17) and update the dual signal µ according to an
inexact Bundle Method. We will therefore follow these suggestions as well and apply
the principle on Problem (5.2.17). The impact of using DQA in that setting on the
sub-problems (5.2.16) is that the matrix Q is no longer diagonal.

5.2.3 Algorithmic and Numerical Considerations

In this section we provide some Algorithmic and Numerical considerations in order to
solve Joint Chance Constrained Programs (JCCP) as (5.2.1) or (5.2.16) as efficiently as
possible in order to have efficient decomposition methods. First of all, many algorithms
for solving (5.2.1) require the knowledge of a Slater point. Such a point can, in the general
case, be computed by applying a very similar solution algorithm to a problem wherein
the joint probability is maximized. This is often very involved and computationally quite
long, especially when approaching the maximum feasible level. In section 5.2.3.1 we
provide some results that allow us to obtain such a point in some cases, by solving a
linear program only. Section 5.2.3.2 provides some considerations on how to obtain an
efficient decomposition scheme.

5.2.3.1 Slater Points

The key observation in the following Lemmas is that symmetric random variables maxi-
mize probability when evaluating symmetric rectangles in bilateral chance constraints.

We recall Definitions 2.5.2 and 2.5.6 and state our key result:

Proposition 5.2.1. Let ξ ∈ Rm be a random variable inducing a symmetric γ-concave
probability measure for any γ ∈ [−∞,∞]. Here symmetric means that P[ξ ∈ A] =
P[(−ξ) ∈ A] for any Lebesgue measurable set A. Then for any b ∈ R

m with b ≥ 0, and
α ∈ R

m it holds that

P[−b+ α ≤ ξ ≤ b+ α] ≤ P[−b ≤ ξ ≤ b].

Proof. Let α, b ∈ Rm with b ≥ 0 be arbitrary and define A := {y ∈ Rm : −b ≤ y ≤ b}.
It follows from symmetry and the definition of A that

P[−b+ α ≤ ξ ≤ b+ α] = P[ξ ∈ (A+ α)] = P[ξ ∈ (A− α)].
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From Theorem 4.2.4 in [181] it follows that f(α) := P[ξ ∈ (A+α)] is a γ-concave function.
Now

f(0) = f(
1

2
α +

1

2
(−α)) ≥ mγ(f(α), f(−α),

1

2
) = f(α),

where the mapping mγ is as in Definition 2.5.2 proving the Proposition.

Corollary 5.2.2. Let ξ ∈ R
m be a random variable having the same properties as in

Proposition 5.2.1. Let us consider the following optimization problem

maxx∈Rn P[ar + Arx ≤ ξ ≤ br + Arx]

s.t. Ax ≤ b.

Let α = (br + ar)/2 and assume that X := {x : Arx+ α = 0} ∩ {x : Ax ≤ b} 6= ∅. Then
any x ∈ X is an optimal solution of the problem.

Proof. Setting s = (br − ar)/2 and picking any x one obtains that

P[ar + Arx ≤ ξ ≤ br + Arx] = P[−s+ (Arx+ α) ≤ ξ ≤ s+ (Arx+ α)] ≤ P[−s ≤ ξ ≤ s],

where the latter inequality holds by Proposition 5.2.1 for all x. Moreover we have equality
whenever x ∈ X proving the optimality.

Corollary 5.2.3. Let ξ ∈ Rm be a random variable having the same properties as in
Proposition 5.2.1. Let us consider the following optimization problem

minx∈Rn cTx

s.t. P[ar + Arx ≤ ξ ≤ br + Arx] ≥ p (5.2.19)

Ax ≤ b.

Let α = (br + ar)/2 and assume that X := {x : Arx+ α = 0} ∩ {x : Ax ≤ b} 6= ∅. Then
solving the linear programming problem

min cTx

s.t. Ax ≤ b

Arx = −α,

gives either a Slater point, or an optimal solution for problem (5.2.19) or allows us to
conclude on the infeasability of problem (5.2.19). The latter can be achieved by evaluating
the probabilistic constraint on that x.

Proof. By Corollary 5.2.2 it follows that any solution of the linear programming problem
maximizes the probability. If this solution yields a probability less than p, problem
(5.2.19) is infeasible, bigger than p, it is a Slater point, and equal to p an optimal
solution.
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Remark 5.2.4. The assumption concerning the set X in Corollary 5.2.2 and 5.2.3 can
be easily checked if for instance the matrix Ar is surjective. It then has a right inverse
G. Then indeed x = −Gα is a solution to the first condition and the set X is not
empty if −AGα ≤ b. If the condition fails to be satisfied, one could look at x minimizing
‖Arx+ α‖2 under the constraint Ax ≤ b. This may turn out to be a reasonable Slater
point.

Remark 5.2.5. The interest of Corollary 5.2.3 lies in the clear link between problem
(5.2.19) and that of our application (5.2.1). One could attempt to use Corollary 5.2.3 or
5.2.2 in order to obtain a Slater point for problem (5.2.1). In our application considered
in section 5.2.6 it turns out that Corollary 5.2.3 allows us indeed to obtain a Slater point
for both Hydro Reservoir problems and the load sub-problems. This obtained Slater point
is not the optimal Solution of problem (5.2.1) and appropriate algorithms still have to be
used.

5.2.3.2 Algorithmic Considerations

In the decomposition schemes proposed in section 5.2.2 each iteration requires the solution
of the sub-problems, some of which are joint chance constraint problems. The latter
problems are solvable, but can take some time. Now brutally plugging those solution
methods inside a decomposition scheme might lead to enormous computation times. But
one can do this far more efficiently. Solving such joint chance constrained programming
problems can be done by forming a cutting plane approximation of the feasible set (or a
cutting plane model for an appropriate transform of the joint probabilistic constraint). If
one uses a supporting hyperplane method ([182], see also [246]) in order to solve a joint
chance constrained program, one would start with computing the convex combination
of the current iterate and the Slater point that exactly meets the required probability
level. One would then compute a new cutting plane to improve the current cutting plane
model of the constraint set. This cut removes the previous iterate from the solution set.
Depending on whether the structure is that of (5.2.1) or (5.2.16) one would solve a linear
or quadratic program to come up with the following iterate. If it is feasible one would
stop the algorithm. In such a procedure, most time is spent computing the gradients of
the joint-chance constraint (i.e., the elements of the Bundle).

When solving problems (5.2.1) or (5.2.16) we thus form a cutting plane model of (a
transform of) the joint chance constraint. A change of objective function can be operated
and the latter model would remain valid. Since CPU time is spent setting up a cutting
plane model of the joint chance constraint, it is clearly of interest to improve this cutting
plane model over the course of the iterations of the decomposition schedule. We thus
assume that a first cutting plane model is generated and stored to disk (or computed
in a first lengthy iteration) for each JCCP sub-problem. It can also be observed that
the current solution for a sub-problem solution is feasible for its constraints and can
be used as an initial solution for future iterations. Together with the trivial continuity
property of Lemma 5.2.6, a small change in the objective function would lead to a near
optimal initial solution for two consecutive iterations. Indeed if x ∈ Rk is an optimal
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solution for a sub-problem inside of a decomposition scheme and the following iteration
of this decomposition scheme induces a minor change in the objective function of this
sub-problem, then x is nearly optimal for that sub-problem. In particular this means
that only few iterations are required in order to appropriately solve the sub-problem.
Few iterations imply few costly improvements of the cuttings plane model of the joint
chance constraint. Such improvements are of interest only in the vicinity of the global
optimal solution.

Lemma 5.2.6. Let C ⊆ Rn be a bounded connected set and let f, g : C → R be bounded
functions admitting global minima on C. Let ε > 0 be an arbitrary constant and assume
that g satisfies ‖g − f‖∞ < ε. Then an optimal solution of the problem minx∈C f(x) is
2ε optimal for minx∈C g(x).

Moreover by solving a linear programming problem using the current cutting planes
model, one can obtain a lower bound on the objective function. The current best feasible
point, provides an upper bound. We can therefore terminate any solution algorithm for
JCCP early if the current best feasible point is sufficiently close (relatively) to the best
available bound.

This argument shows that it can be preferable to have small updates in the sub-problem
objective functions in order to have fast decomposition iterates.

5.2.4 Numerical Example: a (simplified) Robust Unit-Commitment
Problem

5.2.5 Robust System-Dispatch Problem

In this section we will give a detailed description of the simplified Robust Unit-Commitment
problem that we will consider in the numerical example. The model considers a Hydro-
Thermal Energy mix such as one could encounter in the French system. We will consider
a Robust version of a realistic hydro valley model (see Section 5.1 for details) since we
consider inflows to be random. We will however consider simplified thermal generation
units in order to keep their feasible set convex as the focus is on dealing with robust
models as defined by joint chance constraints and not on non-convexities induced by
very realistic thermal generation models. Clearly, the suggested methods of section 5.2.2
can easily be applied to models involving far complexer sub-problem models. The ap-
plied decomposition method would need to be followed by a Heuristic approach in order
to recover an interesting Primal Solution. This is not trivial as shown in [78] and will
require substantial additional work. It will be left for future investigations. Finally we
will consider randomness on load and suggest a robust model based on joint chance con-
straints in order to generate sufficient, but not excess energy. The obtained problem
is labelled robust as the obtained production schedule protects against uncertainty on
inflows and load. The obtained problem structure is exactly that of (5.2.6). The set X1

will be detailed in sections 5.1 and 5.2.5.1. The set X2 will be specified in section 5.2.5.2.
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We will consider a discretized time horizon. To this end let τ denote the set of (homoge-
neous) time steps. Let ∆t be this time step size expressed in hours. Occasionally T will
denote the number of (or last) time steps.

5.2.5.1 The Thermal Generation Unit sub-problem

We will consider a very simple thermal sub-problem, wherein power output of thermal
units is considered to be continuous between 0 and some maximum power level Pmx. We
moreover assume that we have some ramping rate s (MW/h), such that any adjacent
power levels may differ no more than s∆t. Finally thermal units have a cost cp (e/MWh).
With initial power level P0 and price signal λ ∈ RT , this gives the following problem.

minx∈RT cTx

s.t.











−s∆t+ P0

−s∆t
...

−s∆t











≤











1 0 0 · · · 0
−1 1 0 · · · 0

. . .

0 · · · 0 −1 1











x ≤











s∆t+ P0

s∆t
...

s∆t











,

where c = cp(1, ..., 1)
T − λ. This is a linear programming model, and therefore convex.

Some more detailed thermal constraints can be found in [134]. These will however imply
a non-convex solution set. We wish to focus only on the difficulties induced by trying to
decompose block structured Chance Constrained Programs. As such, for the moment,
we will avoid difficulties generated by non-convex thermal sub-problems. Such additional
difficulties will be addressed in future work.

5.2.5.2 Offer Demand Equilibrium constraint

We will assume that we have Ih ∪ I t = {1, ...,m} units, where Ih indicates the hydro-
valleys and I t the thermal units. Let Rni be the dimension of the sub-problem i ∈
{1, ...,m}, nh =

∑

i∈Ih ni and nt =
∑

i∈It ni. By construction the thermal sub-problems
have dimension ni = T . Hydro sub-problems have a decision vector xi ∈ R

ni far larger.
By placing the global decision vector x in the order x = (xh1 , ..., x

h

|Ih|, x
t
1, ..., x

t
|It|) ∈

Rnh × Rnt = Rn and by doing some bookkeeping one can readily identify the T × n
matrix Al such that Alx is the amount of generated power.

It seems reasonable to assume that load D ∈ RT follows a model of the form

Dt = µt + ξt, (5.2.20)

where ξt is independent of whatever preceded the first time step t0 and t ∈ τ . This
implies that E (Dt |Ft0) = µt for all t ∈ τ , where Ft0 is the first element of a filtration
{Ft}t∈τ with which we can equip our probability space. The latter filtration would model
information in a dynamic setting, which is not considered here. This makes µt the best
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load forecast at time t0. We moreover assume that ξt follows a causal time series model
with Gaussian Innovations. This is a fairly realistic assumption as [24] shows. We also
assume that we are given some bounds su(t) ≥ 0 and sd(t) ≤ 0 that define acceptable
load mismatches. Typically one would allow production levels higher that Dt in peak
hours and lower than Dt in off-peak hours. The following Joint chance constraint models
the offer demand equilibrium constraint:

P[sd(t) ≤ Dt − (Alx)t ≤ su(t) ∀t ∈ τ ] ≥ p, (5.2.21)

because of the above assumptions, one can find a Gaussian random variable ξ with
variance covariance matrix Σ and 0 mean, such that this constraint is equivalent with

P[sd + Alx− µ ≤ ξ ≤ su + Alx− µ] ≥ p. (5.2.22)

Because of earlier stated results, this implies a convex feasible set for x.

5.2.6 Numerical Example: Data and Results

In this section we provide the results of applying each of the decomposition schedules in
section 5.2.2 to the problem detailed in section 5.2.4. Section 5.2.6.1 provides the specific
numeric data of this test problem, whereas section 5.2.6.3 provides the numeric results.

5.2.6.1 Numerical Data

We will consider a production park with two hydro valleys, and 9 thermal units. We will
consider 24 time steps of 2 hours each. These two hydro valleys are submitted to a joint
probability constraints with uncertainty on inflows. Figures 4.1(a) and 4.1(b) provide
the hydro valley data. Thermal plant data is given in table 5.3.

This gives a global decision vector dimension of size n = 1776. Moreover there are three
joint probability constraints, two of which with a random variable in dimension 48 and
one with a random variable in dimension 24.

Table 5.3: Thermal Plant data

Data Type Plants
Initial Generation 700 700 700 150 150 0 0 0 0

Cost 30 35 37 45 47 60 100 110 150
Max Power 900 900 900 300 300 200 200 200 100
Gradient 100 100 100 30 30 20 20 20 10

5.2.6.2 Numerical results

The numerical results, of which an extensive discussion is provided in section 5.2.6.3 show
that Robust Unit-Commitment with joint probabilistic constraints:
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1. Can be readily solved to optimality in large scale systems under a convexity as-
sumption. The computational effort is controlled except for a first lengthy iteration
in which the cutting plane models for the joint chance constraints have to be set
up.

2. Intuitively the augmented Lagrangian approaches with Bundle Methods for the
dual form an interesting starting point for the non-convex models.

5.2.6.3 An extensive discussion of Numerical results

In this section we will compare the various decomposition methods suggested in section
5.2.2 on the numeric instance. The goal is to show that an efficient decomposition scheme
can be obtained. Two key elements will be examined: feasibility for all constraints of
the obtained solution and cost. We will also provide computation time for each method.
As observed in section 5.2.3.2 some methods may have lengthy iterations as they can
imply ”chaotic” changes in the sub-problems objective functions. Especially the robust
sub-problem models then require some iterations to converge. Since each such iteration
involves the computation of a gradient of a joint-chance constraint, this may take some
time.

Since the model of section 5.2.4 is convex by construction, it is known that the lift and
dualize method of section 5.2.2.1 converges. Moreover, the optimal convex combination
of primal oracle responses in the Lagrangian decomposition (5.2.9) should provide the
optimal primal solution. The same holds for the reduced lift and dualize method of
section 5.2.2.1.1. We will use a Bundle method to maximize the dual functions (5.2.10)
and (5.2.12). The specific Bundle method employed is a variant of the method given in
[139] being able to cope with inexact oracles. It turns out that the method of section
5.2.2.1.1 provides an optimal solution indeed. Table 5.4 provides these results:

Table 5.4: Results for the Lift and Dualize Method

Method objective Value Nb. Iterations CPU time (mins)
Reduced L&D 5.2.2.1.1 3.69963e6 280 62.5

It can be noted here that early iterations for maximizing function (5.2.12) imply some
iterations for each of the sub-problems, meaning a significant, but not too large change
in the objective functions. Later iterations however require almost no further iterations
on solving the sub-problems. This means that the Bundle of Information (containing
the local joint-chance constraint cuts) is sufficiently rich and only minor changes in the
objective function are incurred. This makes sense, since Bundle Methods for maximizing
the dual function (5.2.12) will come up with a new signal µ′ not far from the current
stability center µ̂. It also turns out that it is indeed preferable to keep the dual signal in
small dimension, since problem 5.2.2.1 still did not converge after 5000 iterations.

Since the alternative decomposition methods require parameter settings, we can use these
results from Lagrangian decomposition to benchmark those decomposition methods. We
recall that these alternative methods are considered since they are reported (e.g., in [9])
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to work better in a non-convex (deterministic) setting. Table 5.5 provides the results for
solving problem (5.2.13) by applying principle (5.2.14).

Table 5.5: Results for the Lift and Dualize - Augmented Lagrangian Methods (The
objective function value is shown if a feasible solution is generated)

Method Obj. Value Nb. Iter. CPU (mins) Parameters (c, ĉ, ρ, ε)
AL APP 5.2.2.2 3.9304e6 5000* 484.54 (1.8e−2, 3.6e−2, 1.8e−2, 1.0)
AL APP 5.2.2.2 3.9283e6 5000* 593.43 (0.1, 0.5, 0.1, 1.0)
AL APP 5.2.2.2 3.9288e6 5000* 475.47 (1, 5, 0.5, 1.0)
AL APP 5.2.2.2 3.9410e6 5000* 508.56 (10, 20, 5, 1.0)
AL APP 5.2.2.2 - 5000* 553.3 (1e−3, 2e−3, 1e−3, 1.0)
AL APP 5.2.2.2 3.9213e6 4646 429.0 (2e−2, 5e−2, 2e−2, 1.0)
AL APP 5.2.2.2 3.9172e6 5000* 528.39 (1, 2, 2e−2, 1.0)
AL APP 5.2.2.2 3.9162e6 5000* 600.42 (0.5, 1.0, 0.02, 1.0)
AL APP 5.2.2.2 3.9252e6 5000* 824.17 (1.8e−2, 1.8e−2, 1.8e−2, 0.4)
AL APP 5.2.2.2 3.9049e6 5000* 449.46 (2e−3, 2e−3, 2e−3, 0.4)
AL APP 5.2.2.2 3.9285e6 5000* 682.18 (2e−1, 2e−1, 2e−1, 0.4)
AL APP 5.2.2.2 - 5000* 455.22 (2e−2, 2e−2, 3e−2, 0.4)
AL APP 5.2.2.2 3.9342e6 5000* 689.11 (2, 2, 2, 0.4)
AL APP 5.2.2.2 3.9339e6 5000* 527.45 (2e−1, 2e−1, 2e−1, 0.1)
AL APP 5.2.2.2 3.9248e6 5000* 524.27 (2e−1, 2e−1, 1e−1, 0.4)
AL APP 5.2.2.2 3.9250e6 5000* 541.13 (2e−2, 2e−2, 1e−2, 0.4)

One can conclude from table 5.5 that selecting a correct parameter setting for the aux-
iliary problem principle is delicate. Indeed only one choice of the reported parameters
(c, ĉ, ρ, ε) allows the algorithm to terminate before reaching the maximum number of
iterations. Nonetheless this principle allows us to ultimately generate a feasible solution
for many different parameter settings. These solutions are however approximately 6.2%
more costly. Figure 5.3 shows how the augmented Lagrangian term ‖x− y‖2 decreases
along the number of iterations for a few selected parameter settings of table 5.5.
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Figure 5.3: Iteration Number vs. ‖x− y‖2 for Method 5.2.2.2

In a very similar fashion in which the dimension of the Langrangian dual problem could
be reduced, the same thing can be done for the Augmented Lagrangian technique as
shown in section 5.2.2.2.2. Table 5.5 provides numerical results for applying principle
(5.2.18) for solving problem (5.2.17).
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Table 5.6: Results for the Lift and Dualize - Augmented Lagrangian Methods - Reduced
(The objective function value is shown if a feasible solution is generated)

Method Obj. Value Nb. Iter. CPU (mins) Parameters (c, ĉ, ρ, ε)
AL APP 5.2.2.2.2 - 5000* 300.32 (2e−2, 4e−2, 2e−2, 1.0)
AL APP 5.2.2.2.2 - 5000* 280.40 (2e−2, 2e−2, 2e−2, 0.4)
AL APP 5.2.2.2.2 - 5000* 407.09 (2e−2, 5e−2, 2e−2, 1.0)
AL APP 5.2.2.2.2 - 5000* 349.47 (2e−2, 1e−1, 2e−2, 1.0)
AL APP 5.2.2.2.2 - 5000* 323.50 (2e−2, 5e−2, 2e−2, 0.4)
AL APP 5.2.2.2.2 - 5000* 318.19 (0.1, 1.0, 0.05, 1.0)
AL APP 5.2.2.2.2 - 5000* 376.09 (4.0, 10.0, 0.5, 1.0)
AL APP 5.2.2.2.2 - 5000* 331.28 (40.0, 100.0, 0.5, 1.0)
AL APP 5.2.2.2.2 - 5000* 355.01 (4.0, 10.0, 1.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 412.09 (40.0, 100.0, 10.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 397.44 (4.0, 10.0, 2.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 345.23 (40.0, 100.0, 1.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 361.27 (10.0, 50.0, 2.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 337.46 (40.0, 100.0, 2.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 406.36 (4.0, 10.0, 3.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 373.22 (40.0, 100.0, 3.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 376.28 (40.0, 100.0, 5.0, 1.0)
AL APP 5.2.2.2.2 - 5000* stalls (400.0, 1000.0, 25.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 450.51 (4.0, 10.0, 5.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 372.24 (40.0, 100.0, 6.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 371.4 (40.0, 100.0, 7.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 405.59 (4.0, 10.0, 6.0, 1.0)
AL APP 5.2.2.2.2 - 5000* 368.15 (60.0, 150.0, 6.0, 1.0)
AL APP 5.2.2.2.2 3.9400e6 5000* 381.55 (50.0, 120.0, 6.0, 1.0)
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It turns out that setting up a convergent scheme for the reduced form of the Augmented
Lagrangian (5.2.17), decomposed by using the auxiliary problem principle is delicate.
Only one set of parameters of the over 50 tested allows us to obtain a feasible solution in
the end. Moreover, convergence is very slow compared to the already slow convergence
observed for the full version of the Augmented Lagrangian formulation (5.2.13) (decom-
posed by using the auxiliary problem principle). It seems to be particularly difficult to
rightfully set the ρ parameter for Uzawa’s updating schedule of the dual signal µ. For
this reason we have also attempted to let a Bundle method with inexact oracle update
the dual signal. In such a setting we interpret the solution (xk, zk) given by the auxil-
iary problem principle as an inexact solution of (5.2.17). Results are reported in Table
5.7. One can observe that this allows us to generate a feasible solution for all the tested
settings (c, ĉ, ε) showing the potential for such an idea.

Table 5.7: Results for the Lift and Dualize - Augmented Lagrangian Methods - Reduced
- Updating with Bundle Method (The objective function value is shown if a feasible
solution is generated)

Method Obj. Value Nb. Iter. CPU (mins) Parameters (c, ĉ, ε)
AL APP Bdl 5.2.2.2.2 3.9686e6 296 1120.58 (4.0, 10.0, 1.0)
AL APP Bdl 5.2.2.2.2 4.0390e6 83 514.7 (2.0, 5.0, 1.0)
AL APP Bdl 5.2.2.2.2 3.9321e6 194 520.56 (1.0, 3.0, 1.0)
AL APP Bdl 5.2.2.2.2 3.8576e6 287 171.42 (0.5, 2.0, 1.0)

The last suggested decomposition schedule was based on decomposing the augmented
Lagrangian formulation (5.2.17) according to the diagonal quadratic approximation and
using a Bundle method to update the dual of (5.2.17). Results of applying this suggestion
can be found in table 5.8.

Table 5.8: Results for the Diagonal Quadratic Approximation (The objective function
value is shown if a feasible solution is generated)

Method Obj. Value Nb. Iter. CPU (mins) Parameters c
AL DQA 5.2.2.3 3.89674e6 30 321.59 1e−1

AL DQA 5.2.2.3 4.00927e6 21 318.26 2e−1

AL DQA 5.2.2.3 3.70072e6 208 284.55 2e−2

When looking at the results of table 5.8 we again observe the typical additional cost
implied by the augmented Lagrangian formulations already observed with the other de-
composition schedules. One can also see that when c is small the cost is nearly that of
the optimal solution. This result is clearly as expected, since for very small c, the DQA
schedule actually boils down to the reduced lagrangian dual decomposition of section
5.2.2.1.1.

In figures 5.4, 5.5 and 5.6 we show the optimal solutions produced by the various decom-
position methods.

In figure 5.4 and 5.5 we can see that the optimal turbining strategies differ quite a
lot depending on the decomposition schedule used. It is interesting to observe that
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Figure 5.4: Turbined volumes (m3) for each reservoir of the Ain Valley. From top left to
bottom right, solutions produced by Reduced Lagrangian Dual (§5.2.2.1.1), Augmented
Lagrangian + Auxiliary Problem principle (§5.2.2.2), Reduced Augmented Lagrangian +
Auxiliary Problem principle (§5.2.2.2.2), Reduced Augmented Lagrangian with Bundle
Updating and Reduced Augmented Lagrangian + DQA (§5.2.2.3)
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Figure 5.5: Turbined volumes (m3) for each reservoir of the Isere Valley. From top left to
bottom right, solutions produced by Reduced Lagrangian Dual (§5.2.2.1.1), Augmented
Lagrangian + Auxiliary Problem principle (§5.2.2.2), Reduced Augmented Lagrangian +
Auxiliary Problem principle (§5.2.2.2.2), Reduced Augmented Lagrangian with Bundle
Updating and Reduced Augmented Lagrangian + DQA (§5.2.2.3)
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the turbining strategies produced by the Reduced Lagrangian dual and the Reduced
Augmented Lagrangian + DQA are somewhat similar of aspect, whereas those produced
by using the auxiliary problem principle are all quite different. One can also see that the
solution obtained from using a Bundle method to update the dual signal for the reduced
augmented Lagrangian + auxiliary problem principle yields a very similar result when
using Uzawa’s updating schedule. The latter having been found quite hard to fine tune,
empirically. Figure 5.6 shows that all solutions use the thermal units in quite a similar
way.

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

 

 

Power Th.1
Power Th.2
Power Th.3
Power Th.4
Power Th.5
Power Th.6
Power Th.7
Power Th.8
Power Th.9

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

 

 

Power Th.1
Power Th.2
Power Th.3
Power Th.4
Power Th.5
Power Th.6
Power Th.7
Power Th.8
Power Th.9

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

 

 

Power Th.1
Power Th.2
Power Th.3
Power Th.4
Power Th.5
Power Th.6
Power Th.7
Power Th.8
Power Th.9

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

 

 

Power Th.1
Power Th.2
Power Th.3
Power Th.4
Power Th.5
Power Th.6
Power Th.7
Power Th.8
Power Th.9

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

 

 

Power Th.1
Power Th.2
Power Th.3
Power Th.4
Power Th.5
Power Th.6
Power Th.7
Power Th.8
Power Th.9

Figure 5.6: Thermal Generation (MW ) for each thermal unit. From top left to bot-
tom right, solutions produced by Reduced Lagrangian Dual (§5.2.2.1.1), Augmented La-
grangian + Auxiliary Problem principle (§5.2.2.2), Reduced Augmented Lagrangian +
Auxiliary Problem principle (§5.2.2.2.2), Reduced Augmented Lagrangian with Bundle
Updating and Reduced Augmented Lagrangian + DQA (§5.2.2.3)

Finally we can also look at the feasibility for the offer-demand equilibrium constraint
(5.2.22). As such we have generated 100 scenarios for the random vector ξ in (5.2.22)
and plotted the bounds obtained from the solution for each of the decomposition sched-
ules. These results are shown in figure 5.7. We have also plotted what would happen
if we would generate exactly the average load, i.e., Alx = µ in (5.2.22). One can ob-
serve that the Reduced Lagrangian Dual solution follows closely the general allure of the
scenarios and that the lower bound mainly becomes binding near the end of the time
horizon. The solutions generated by the augmented Lagrangian formulations and there
respective decomposition schedules have some additional bumps that can offer no addi-
tional feasibility, since they stick with the RLD solution elsewhere, but do account for
the additional cost. Altogether as this aspect is concerned, the different solutions are
quite satisfactory.
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Figure 5.7: Deviations from Load. 100 Scenarios for η in eq.(5.2.22) and lower/upper
bounds derived from each of the solutions. Reduced Lagrangian Dual (RLD), Aug-
mented Lagrangian + Auxiliary Problem principle (AL+APP), Reduced Augmented La-
grangian + Auxiliary Problem principle (RAL+APP), Reduced Augmented Lagrangian
with Bundle Updating (RAL+APP+Bdl) and Reduced Augmented Lagrangian + DQA
(RAL+DQA).
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Chapter 6

Concluding Remarks

In this Thesis we have investigated probabilistic programming from a theoretical, algo-
rithmic and applicative point of view. The theoretical work provides new efficient gradient
formulae and extends eventual convexity results for specially structured probabilistic con-
straints. Bundle methods were investigated and applied to probabilistic programming.
This led to the definition of the so-called upper oracle, which might provide lineariza-
tions that locally overestimate the (convex) function. Rendering unit-commitment robust
through the use of probability constraints was the key driver of the applications. In par-
ticular we show that realistically sized problems can, in principle, be dealt with.

As perspectives are concerned, the first one involves an extension of the provided gradi-
ent formulae to the case wherein we are dealing with a random inequality system having
several components. We should examine to what extent those hypothetical results can
equally be used for Student (or T -) uncertainty. It is also important to provide counterex-
amples for differentiability. In particular this implies a thorough investigation of the here
formulated growth condition. Finally, it would seem that an alternative derivation would
lead to less restrictive conditions for the Student case. Déak’s provided sampling scheme
could surely also be improved upon and would potentially lead to improved accuracy.
This would be of interest for reducing computation time.

As convexity is concerned, we have provided a new insight in the eventual convexity
results obtained in [111]. We have shown that those results can be extended to a larger
class of Copulae and that sharper probability thresholds can be obtained. However, these
results are still largely incomplete. It is of particular interest to examine if some elliptical
copulae (Gaussian, T , etc...) exhibit the δ-γ-concavity property as well. Moreover, since
Archimedean Copulae decompose as the product of one-dimensional radial distribution
and a uniform distribution over the unit-simplex it is readily conjectured that most of
these Copulae should be δ-γ-concave. Counter examples should also be looked at to
figure out to what extent the provided probability thresholds are tight.

The use of p-efficient points for discrete distributions might allows us to provide conditions
under which the feasible set of a joint probabilistic constraint can be approximated by
the simpler v-individual probabilistic constraints introduced in this Thesis. When such
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positive cases are sufficiently identified it becomes interesting to examine if a separation
oracle can be provided. The latter would allow us to identify a violated v-individual
constraint for a current candidate solution.

Throughout this work we have remained very attached to the convexity of the feasible
set. This is of course important in order to show convergence to a global solution of the
optimization problem at hand. However many applications simply do not have convexity
at all. Mixed integer programming is a flourishing field in the industry. Unit-commitment
problems are modelled in a non-convex way for many years. This shows that convexity
might not be as important after all. In order to continu the classic approach of probabilis-
tic programming and considerably extend its applications, convexity could be replaced by
local Lipschitz continuity. Such results already exist for multi-variate distribution func-
tions, but would need to be extended to probabilistic constraints involving more general
random inequality systems. The gradient can then readily be replaced by a sub-gradient
in the sense of Clarke. Bundle algorithms for locally Lipschitz functions already exist
and would be a key candidate for dealing with such a non-smooth constraint. It is likely
that those methods would need to be extended to constrained optimization with inexact
(upper) oracles.

From modelling perspectives, we could integrate the combinatorial constraints on the
decision variables, potentially without many difficulties in the cascaded reservoir man-
agement problem (e.g. [75, 5]). Also the impact of more realistic models for thermal
units (with typically non-convex feasible sets) should be investigated. The investigated
decomposition approaches can be applied directly to such a setting, but might need to
be followed by heuristics in order to recover an interesting primal solution. Investigating
such heuristics offers many research perspectives. We should also consider uncertainty on
renewable generation and unit availability. The latter aspect might be particularly tricky
as it could induce a non-convex feasible set for the offer-demand equilibrium constraint.
Then either we try to deal with such a setting as explained above or we set up a hybrid
robust-probabilistically constrained model in order to circumvent the difficulty. Ulti-
mately, a thorough comparison will need to be done in order to investigate the strengths
and weaknesses of each approach. This of course includes robust optimization in the sense
of Ben-Tal and penalized robust optimization as investigated by [154, 12]. In the latter
works, second stage decisions are seen in a simplified manner through the use of a penalty
function. The worst case penalty costs are then minimized along with the first stage ob-
jective function. It is of particular interest to examine if probabilistically constrained (or
robust) optimization can be used instead of a true (robust) multi-stage approach. The
advantage of the former over the latter is evidently its improved ”tractability”.
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[60] G. Doukopoulos-Hechmé, S. Charousset-Brignol, J. Malick, and C. Lemaréchal.
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[108] R. Henrion and W. Römisch. Hölder and lipschitz stability of solution sets in
programs with probabilistic constraints. Mathematical Programming, 100:589–611,
2004.

[109] R. Henrion and W. Römisch. Lipschitz and differentiability properties of quasi-
concave and singular normal distribution functions. Annals of Operations Research,
177:115–125, 2010.

[110] R. Henrion and C. Strugarek. Convexity of chance constraints with independent
random variables. Computational Optimization and Applications, 41:263–276, 2008.

[111] R. Henrion and C. Strugarek. Convexity of Chance Constraints with Dependent
Random Variables: the use of Copulae. (Chapter 17 in [17]). Springer New York,
2011.

[112] N. Van Hien, J-J. Strodiot, and P. Tossings (Eds). Optimization : Proceedings of
the 9th Belgian-French-German Conference on Optimization Namur, volume 481 of
Lecture Notes in Economics and Mathematical Systems. Springer Berlin Heidelberg,
2000.

[113] M. Hintermüller. A proximal bundle method based on approximate sub-

197



gradients. Computational Optimization and Applications, 20:245–266, 2001.
10.1023/A:1011259017643.
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[220] Y. Song, J. Luedtke, and S. Küçükyavuz. Chance constrained binary packing prob-
lems. Preprint : http://www.optimization-online.org/DB FILE/2012/10/3639.pdf,
pages 1–23, 2013.

[221] T. Szántai. Numerical evaluation of probabilities concerning multi-dimensional
probability distributions. PhD thesis, Hungarian Academy of Sciences, 1985.

[222] T. Szántai. A computer code for solution of probabilistic-constrained stochastic

203



programming problems. In (Y. Ermoliev and R.J.-B. Wets eds.): Numerical Tech-
niques for Stochastic Optimization, pages 229–235, 1988.

[223] T. Szántai. Evaluation of a special multivariate gamma distribution. Mathematical
Programming Study, 27:1–16, 1996.

[224] T. Szántai. Improved bounds and simulation procedures on the value of the mul-
tivariate normal probability distribution function. Annals of Operations Research,
100:85–101, 2000.

[225] S. Takriti, J.R. Birge, and E. Long. A stochastic model for the unit commitment
problem. IEEE Transactions on Power Systems, 11:1497–1508, 1996.

[226] S. Takriti, B. Krasenbrink, and L.S.Y. Wu. Incorporating fuel constraints and
electricity spot prices into the stochastic unit commitment problem. Operations
Research, 48(2):268–280, April 2000.

[227] E. Tamm. On g-concave functions and probability measures (russian). Eesti NSV
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